
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

 

SHM-BASED CONDITION ASSESSMENT OF  

IN-SERVICE BRIDGE STRUCTURES USING  

STRAIN MEASUREMENT  

 

 

 

Hong-Wen XIA 

 

 

 

Ph.D. 

 

THE HONG KONG POLYTECHNIC UNIVERSITY 

 

2012 

 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.




 

The Hong Kong Polytechnic University 

Department of Civil and Structural Engineering 

 

 

 

SHM-BASED CONDITION ASSESSMENT OF  

IN-SERVICE BRIDGE STRUCTURES USING 

STRAIN MEASUREMENT 

 

 

 

 

 

 

Hong-Wen XIA 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

 

April 2011 

 
 



 
 
 
 
 
 
 
 
 
 

To my parents and wife 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

CERTIFICATE OF ORIGINALITY 
 
 
 
I hereby declare that this thesis is my own work and that, to the best of my 

knowledge and belief, it reproduces no material previously published or written, nor 

material that has been accepted for the award of any other degree or diploma, except 

where due acknowledgement has been made in the text. 

 

 

 

 

__________________________________ (Signed) 

________ Hong-Wen XIA ____________ (Name of student) 

i 



 ii

 
 
 

ACKNOWLEDGEMENTS 
 
 

The road towards my PhD degree is not easy. I fortunately have had a group of 

people supporting, encouraging and helping me on the way and herein would like to 

express my sincerest thanks to them upon the completion of this PhD thesis. First of 

all, I owe my deepest gratitude to my supervisor, Prof. Y. Q. Ni, for his enlightening 

guidance, generous patience, highly sense of responsibility, and critical comments 

throughout my PhD study and preparation of the thesis.  

I would like to express my warmest appreciation to Dr. K. Y. Wong from the 

Highways Department of HKSAR (Hong Kong Special Administrative Region) 

Government for providing me invaluable structural health monitoring data. I am also 

grateful to all of my friends and colleagues in the Department of Civil and Structural 

Engineering, particularly Dr. X. W. Ye, Dr. Z. W. Chen, Dr. L. Hu, Mr. P. Zhang, 

and Mr. W. A. Shen for their very precious discussions and suggestions on the thesis. 

My heartfelt acknowledgement must go to the Research Committee of The Hong 

Kong Polytechnic University for providing me such a golden opportunity to 

undertake this research project. And I am also indebted to the staff in the university 

library, research office, and finance office, for their kindly help and assistance during 

my stay at the university. 



 iii

Last but not least, I wish to express my intense gratitude to my beloved parents and 

wife. Without their everlasting love, support and encouragement during the past 

years, I cannot insist on the way of pursuing my doctoral study. 



 iv

ABSTRACT 

In realistic scenarios, in-service bridge structures are at risk from structural 

degradation, service demands of increasing traffic flow and heavier truck loads, 

natural or man-made disasters, or deferred maintenance. Condition assessment of 

these public facilities for future serviceability and safety is a challenging task to their 

owners and engineers. A paradigm of integrating structural health monitoring (SHM) 

data into procedures of structural condition assessment is expected to achieve 

objective and quantitative condition assessment in practice. The work addressed in 

this dissertation has been dedicated to investigating condition assessment of existing 

bridge structures using strain measurement acquired under in-service environment by 

a long-term bridge health monitoring system (BHMS). 

 

Under in-service circumstance, bridge structures are subject to temperature variation, 

traffic and wind effect, and material deterioration due to aging or aggressive 

environmental attack. Strain measurement acquired under operational environment 

by the SHM system is naturally a result of combination of these external loadings 

and environmental effects. Source separation of these effects from the raw 

measurement is a challenging job and it is pursued in this study. The proposed 

method takes the benefits of discrete wavelet transform (DWT) which satisfies the 

mathematical principle of multi-component separation quite well (less distortion and 
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cross-talking among components). Based on the wonderful decomposition platform 

of DWT, component extraction with physical meanings is realized by integrating 

physical mechanism of the desired structural behavior into the selection criterion of 

source separation. Specific application of the proposed method in component 

analysis of the measured strains from the Tsing Ma Bridge (TMB) deck exemplifies 

its effectiveness in source separation of multi-component strain monitoring signals. 

By interpreting separated strain components from the raw measurement, structural 

behaviors of the TMB deck under temperature effect, live load effect and traffic 

effect are identified for further condition assessment. 

 

When using the strain response data caused by live load effect for reliability 

assessment, another problem arises in the inference of probability distribution from 

the observed data that strain response due to live load effect collected under 

in-service environment is still a result of multi-load effect such as traffic (highway, 

railway, or both of them) and wind (monsoon or typhoon), and it cannot be 

characterized by a standard probability distribution model adequately. Mixed 

distributions existing in the monitoring data are explored primarily by histogram 

analysis. Then hybrid mixture estimation including model selection and parameter 

estimation is evaluated and a structure of mixed Weibull model is proposed for the 

probability density function (PDF) estimation of peak-stress values counted from the 

derived stress-time histories. Different mixture models (e.g., normal mixtures, 

log-normal mixtures and Weibull mixtures) are compared in the process of model 
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selection by calculating Akaike’s information criterion (AIC) values. Convergences 

of AIC value with a varying component number are addressed for the optimal 

determination of component numbers in mixture models. Based on the estimated 

PDFs, reliability based condition assessment of the performance of the TMB deck 

trusses is carried out for various load scenarios such as monsoon, typhoon, with and 

without railway traffic. 

 

As another target pursued in this study, strain response data due to traffic effect are 

used to estimate the neutral-axis position of the monitored deck section for further 

application in damage detection. It is revealed by the monitoring data that under 

traffic effect the TMB deck performs as a flexural beam, i.e., the deck top 

compresses and the deck bottom tensions concurrently, or vice versa. Based on the 

relation between the neutral-axis position and strain responses at the top and bottom 

of a cross section, a Kalman filter (KF) estimator for locating the neutral-axis 

position from strain measurement is elaborately designed and in succession comes 

the validation of its stability to noise disturbance through numerical studies. Two 

levels of noise contamination (5% and 10%) in the sensor readings are considered in 

the simulation studies. Results of the numerical simulation show that the KF based 

estimation method can generate better results in comparison with a direct estimation 

approach. Moreover, application of the proposed KF estimator to the neutral-axis 

position estimation of the instrumented TMB deck sections demonstrates its 

efficiency in the real monitoring data. 
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To further testify the feasibility of neutral-axis position as a damage indicator, 

experiment and numerical simulation are conducted to demonstrate its sensitivity to 

damage and independence of traffic load patterns. In design of the experiment, a 

flexible steel beam subject to moving bogies is objectively used as the testing model 

to simulate the structural behavior of a bridge deck under the traffic effect and a cut 

on a selected cross section is to simulate damage incurred on the testing model. By 

establishing a multi-scale finite element method (FEM) model, numerical simulation 

for damage detection (using the neutral-axis position as an indicator) of the testing 

model is conducted for static and moving load cases respectively. Physical 

experiment on damage detection of the testing model follows and the previously 

designed KF estimator is used to locate the neutral-axis position from the noisy 

experiment data. Results of the numerical simulation and physical experiment show 

that the neutral-axis position can serve as a good indicator of damage and it can be 

conveniently achieved through strain monitoring in practice. 

 

In summary, the research described in this dissertation chiefly contributes to the 

development of a systematic framework for condition assessment of existing bridge 

structures making use of long-term monitoring data of strain responses. This 

approach involves the multi-component analysis of strain monitoring signals, 

mixture distribution model based reliability assessment, Kalman filter based optimal 

estimation of neutral-axis position, and neutral-axis position based damage detection. 
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Following this approach, objective and quantitative condition assessment of 

in-service bridge structures can be achieved with the use of SHM data. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Bridges are defined as structures, which provide a connection or passage over a gap 

without blocking the opening or passageway beneath (Tonias and Zhao 2007). 

According to the specific landform of their location bridges can be over streams, 

canals and rivers; creeks and valleys; or roads and railways passing underneath. 

Bridges are even now being provided across ocean bodies and for linking a number 

of islands. With respect to the played role in their lifetime, bridges can be for passage 

or carriage of persons, cattle, vehicles, water or other material carried across in pipes 

or conveyors. As expected bridges are built for enhancing the quality of life of the 

society; the benefits of some major bridges can go to the people of an entire nation 

such as the bridges across Yangtse River or Yellow River in China (Feng 2009), the 

bridges across Ganga River in India (Ponnuswamy 2008), and the Honshu-Shikoku 

Connection across many islands in Japan (Wu et al. 2003). They can even benefit 

more than one country as in the case of the Oresund Link Crossing over the Baltic 

ocean (Matthiessen 2000). It is highly spoken by Ponnuswamy (2008) that no other 
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creation of a civil engineer has such a general appeal and fascination to the people. 

 

Because of playing an important role in enhancing the life quality of the society, 

bridge structures are expected to function well for a long term. However, in realistic 

scenarios, bridges cannot last forever although desired to be. Whatever forms of 

construction are used and whatever materials adopted, sooner or later the effects of 

degradation will appear (Catbas and Aktan 2002). There are many contributory 

factors that affect the nature and degree of degradation of in-service bridge structures. 

They generally come from two categories: (1) the bridge structure itself; (2) the 

external working environment. Factors concerning the structure itself mainly include 

the adopted structural form, the quality of construction, design and detailing, 

construction material deterioration, inadequate maintenance, and structural damage 

from natural or man-made disasters. On the other hand, factors from the working 

environment consist of adverse atmospheric environment, weather, floods, 

earthquakes, etc. Structural degradation could make bridge components 

unserviceable and even finally might lead to the collapse of an entire bridge. Failures 

of some major bridges, arising from such as lack of inspection and maintenance, or 

natural and man-made disasters, have been widely addressed and acknowledged in 

the community of bridge engineering (Shepherd and Frost 1995; Wang et al. 2002). 

A notable example is the failure of Ashtabula Bridge in 1876 attributed to the 

passage of a high-speed train during severe storm. About eighty deaths were caused. 

Investigation showed that this failure resulted from buckling and fracture of critical 
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members due to lack of inspection and maintenance. By bitter experience people 

learnt that it is of vital importance to assess in-service bridge structures from time to 

time during their operation. 

 

On purpose of possibly avoiding the tragic disasters, condition assessment of 

in-service bridge structures (Ratay 2006) arises as a fascinating and challenging task 

to the bridge engineers. Its fascination exists in an expectation that condition 

assessment of an existing bridge may be conducted to develop a bridge load rating, 

or confirm an existing load rating, or to determine whether the bridge must be posted 

in the interest of public safety when natural disasters are incoming. The challenge is 

that subjective and inaccurate condition assessment is easy to run into in practice. It 

is identified as the most critical technical barrier to effective management of highway 

bridges (AASHTO 1989; Aktan et al. 1996). As commonly used structural analysis 

based condition assessment is typically based on an idealized analytical model. In a 

sense, this approach may not permit an accurate evaluation of the bridge condition 

because it takes no consideration of the existing states and actual behavior of the 

as-built bridge structures. Inspection does find signs of damage (such as cracks, 

spalls, chemical deterioration, and corrosion) when they become visible. 

Nevertheless, the relation between visible damage signs and the bridge condition is 

often very difficult to establish and hence decision making on management has to be 

carried out by heuristic and experience (Aktan et al. 1997). Bridge engineering 

community has long been aware of the limitation of visual inspection (FHWA 2001), 
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and thereby turns to the objective measuring of bridge conditions. 

 

Measurement based approaches to condition assessment of the existing bridges are 

generally divided into three classes: instrumented load testing (ILT), local 

nondestructive testing (NDT) and structural health monitoring (SHM). ILT is 

dedicated to investigating actual behavior of the instrumented bridge under 

controlled truck loadings. With the ability of considering as-built characteristics, ILT 

can provide an improved estimate of load-carrying capacity and may avoid 

unnecessary or ill-advised posting. Lousily, the expense of ILT may be magnified by 

traffic restriction or closure if the bridge is on a major traffic artery. The use of NDT 

technologies could provide invaluable information on bridge conditions without 

reducing the functional capability as opposed to the destructive testing. Common 

NDT methods include ultrasonic, magnetic-particle, liquid penetrant, radiographic, 

eddy-current testing, etc. (Stubbs and Farrar 1995). Nevertheless, the most 

significant challenge faced by any local NDT technology is that there are difficulties 

in directly relating the testing results to the global condition of bridges. With sensors 

densely distributed over bridge structures, SHM systems can offer rich information 

on bridge conditions in a localized or globalized way without the limitation of traffic 

restriction or closure. 

 

On the promise that SHM can provide accurate and objective information on 

structural condition via various sensors, it has been practiced increasingly in bridge 
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engineering community around the world (Andersen and Pedersen 1994; Cheung et 

al. 1997; Barrish et al. 2000; Sumitro et al. 2001; Mufti 2002; Koh et al. 2003; Wang 

et al. 2003; Wong 2004; Ko and Ni 2005; Ou and Li 2005; Wang 2005). In the 

United States of American, a large research effort has been devoted to SHM-based 

bridge condition assessment (Aktan et al. 2000). Some collaborative projects on 

bridge health monitoring were organized at a national level in Europe (Grosso et al. 

2002). In Japan, the need for monitoring is mainly driven by the concern of the 

effects of earthquakes on the integrity of bridge structures (Kashima 2000). In Hong 

Kong, several cable-supported bridges, such as Tsing Ma Bridge (TMB), Kap Shui 

Mun Bridge (KSMB), Ting Kau Bridge (TKB), Western Corridor Bridge (WCB) and 

Stonecutters Bridge (SB), were installed with a long-term structural health 

monitoring system (Wong 2004; Ko and Ni 2005; Wong and Ni 2009). 

 

Although applications of SHM have gone far beyond the damage detection, detecting 

damage or deterioration as early as possible is still an important topic of an SHM 

system. In the past decades, vibration-based damage detection methods have 

obtained considerable research efforts; they are usually based on the fact that changes 

in physical properties (such as mass, stiffness and boundary conditions) give rise to 

changes in dynamic characteristics (such as modal frequency, modal shape, or their 

derivations). Although the underlying philosophy of vibration-based damage 

detection appears intuitive, assessing structural damage in large-scale bridges 

remains still a challenging task. The main pitfalls, limiting the practical applicability 
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of vibration-based damage detection methods, consist of the insensitivity of modal 

properties to local damage, uncertainty and incompleteness in measurement data, 

modal variability arising from varying operational and environmental conditions, as 

well as modeling errors in the analytical model. An experimental verification of 

vibration-based damage detection on a large-scale structure (Frishwell and Penny 

1997) showed that modal characteristics are insensitive to the localized structural 

damage. 

 

While vibration data remain valuable in bridge condition assessment, the 

measurements of strain response are receiving more and more attentions on the other 

hand. Strain data can be directly used to indicate the safety reserve of a bridge 

component (Bergmeister and Santa 2000; Koshiba 2001) or provide information on 

the load-carrying capacity of a whole bridge; and they may be better suited to 

characterize the local damage of the bridges than vibration data. In practice strain 

sensors can be intentionally placed at critical points of a bridge where high strains 

are expected to be developed that could approach or surpass the material resistance 

(Chakraborty and DeWolf 2005). Although the philosophy of strain measurement 

based condition assessment of in-service bridge structures appears intuitive, there are 

still some challenges. For example, the strain data acquired by an SHM system are a 

result of multi-source combination of external loadings and environmental effects. 

Processing them individually is practically desired, especially when each effect on 

structural behavior needs to be quantified. Another challenge arising in the strain 
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measurement based reliability assessment is that standard probability distribution 

models cannot be adequate to characterize the statistical properties of strain 

monitoring data collected by an SHM system. As to the problem of damage detection 

from the strain measurement, whether the strain-related indicators are sensitive to 

local damage and insensitive to the changing environment must be accounted for in 

the real application. 

 

Stimulated by challenges and chances stated above, the aim of the present study is to 

explore structural condition assessment of in-service bridge structures using 

measured strains from an SHM system. This study starts with developing a 

multi-component separation method for the strain monitoring data analysis. Strain 

response due to temperature effect, live load effect and traffic effect will be extracted 

from the raw measurement data for further pertinent condition assessment. In 

recognizing that mixture distributions usually exist in the live-load effects, mixture 

distribution model based reliability assessment will be developed. A KF estimator 

will be specially designed to locate the neutral-axis position from the separated 

traffic-induced strains. To further testify the feasibility of the estimated neutral-axis 

position as a damage indicator of the bridge deck, an experimental verification will 

be conducted to demonstrate its sensitivity to damage and independence of traffic 

load patterns. Following these approaches, objective condition assessment of 

in-service bridge structures will benefit from the implemented SHM systems. 
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In Hong Kong, a sophisticated on-structure instrumentation system, called Wind And 

Structural Health Monitoring System (WASHMS), has been devised and deployed by 

the HKSAR Government Highways Department to monitor the five long-span 

cable-supported bridges, namely TMB, KSMB, TKB, WCB and SB (Wong 2004; 

Wong and Ni 2009). The on-line monitoring system for the five bridges consists of 

more than 3,000 sensors of different types permanently installed on the bridges, 

including accelerometers, strain gauges, displacement transducers, level sensors, 

anemometers, temperature sensors, corrosion sensors, weigh-in-motion (WIM) 

sensors and global positioning systems (GPS). Continuously acquired data by the 

WASHMS system provide research resources for this PhD project as well. 

1.2 Research Objectives 

The aim of this PhD study is to investigate condition assessment of in-service bridge 

structures using strain measurement data acquired by an SHM system. Related issues 

such as multi-component analysis of strain monitoring data, mixture distribution 

model based reliability analysis, as well as neutral-axis position based damage 

detection will be addressed in this study. The specific objectives of this research are: 

(1) To develop a method for source separation of multi-component strain monitoring 

data according to physical meanings. Strain components due to temperature effect, 

live load effect and traffic effect will be separated from so that structural 

behaviors of the in-service bridge under each effect can be identified for further 
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pertinent structural condition assessment. 

(2) To propose a systematic approach to reliability assessment of in-service bridge 

structures using strain monitoring data due to live load effect. Under in-service 

environment, bridge structures are subject to traffic (highway, railway, or both of 

them) and wind (monsoon or typhoon) effects. These external loadings cannot be 

controlled as people expect in a sense that their random combination produces 

the strain response data. In recognizing that the strain response data cannot be 

characterized by a standard probability distribution model adequately, mixture 

model based reliability assessment will be pursued in this PhD project. 

(3) To develop an approach to optimal estimation of the neutral-axis position from 

the extracted traffic-induced strains. Under traffic effect, the bridge deck 

performs as a flexural beam, i.e., the top compressed and the bottom tensioned 

concurrently, or vice versa. Based on the relationship of strain responses at the 

top and bottom of a deck cross section, a KF estimator will be elaborately 

formulated. The stability of the proposed KF estimator to different extents of 

noise will be testified. 

(4) To conduct an experimental verification of the neutral-axis position based 

damage detection. Utilization of the neutral-axis position as a damage indicator is 

based on the assumption that it will shift when damage occurs. Numerical 

simulation of damage detection using the neutral-axis position as an indicator 

will be conducted before the physical testing. Sensitivities of the neutral-axis 
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position to damage will be studied for both static and moving load cases. 

1.3 Thesis Organization 

There are seven chapters in this thesis, which are organized into three parts. Part I 

consists of Chapters 1 and 2. Research background and objectives are introduced in 

Chapter 1, and a literature review on the related research issues is provided in 

Chapter 2. Chapters 3 to 6 constitute Part II, as the main body of the thesis, which 

including multi-component analysis of strain monitoring data, mixture distribution 

model based reliability assessment, Kalman filter based optimal estimation of 

neutral-axis position, and experimental verification of the neutral-axis position based 

damage indicator. As the final part of this thesis, Chapter 7 gives conclusions 

obtained in this study as well as recommendations for future work. A brief 

description of these chapters is given as follows. 

Chapter 1 introduces the background and research objectives of this PhD study, and 

the dissertation structure. The significance of bridge structures to the life quality of 

the society is demonstrated to fetch out the importance of bridge condition 

assessment under in-service environment. 

Chapter 2 contains a literature review on the strain monitoring in SHM, source 

separation of multi-component monitoring data, mixture distribution model in 

reliability analysis, and damage detection using strain measurement. In general, the 
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literature review follows a clue that what the problem is and how it is to be solved. 

After a brief review of the practice of strain monitoring in SHM, the issue of source 

separation of strain monitoring data is introduced. Then, research efforts pertaining 

to source separation of multi-component signals from frequency filters to filter banks 

and wavelets are reviewed. When using extracted strain response data due to live 

load effect for reliability assessment, another issue arises in the monitoring data 

based reliability evaluation that the strain response due to live load effect collected 

under in-service environment is a result of multi-load effect. It cannot be 

characterized by a standard probability density function adequately. Hence the 

mixture distribution modeling methods in reliability analysis are reviewed. Literature 

review on damage detection using strain measurement is then conducted. As a result 

of the literature review, critical issues to be addressed in this PhD study will be 

discussed. 

In Chapter 3, a wavelet based multi-component decomposition method is proposed to 

extract strain components of temperature effect, live load effect and traffic effect 

from the raw measurement data. Peculiarity of strain monitoring data collected by an 

SHM system is explained as a combination of live load and environmental effects. 

Principles for source separation of the multi-component data are then presented. By 

combining mathematical and physical principles elaborately, a method of component 

extraction according to the physical meanings is proposed and realized in the wavelet 

decomposition domain. Application of the proposed method to component analysis 

of the strain monitoring data from TMB is illustrated at the end of this chapter. 
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In Chapter 4, mixture distribution model based reliability analysis is proposed for the 

condition assessment of in-service bridge structures using strain response data due to 

live load effect (extracted from the raw measurement data). Inference of a probability 

distribution from the observed data is necessary in any reliability analysis. Often this 

inference is complicated by the presence of multiple engendering effects that may 

create a heterogeneous dataset, making standard distribution models inadequate. 

Mixture distributions existing in the strain data are first identified by the histogram 

analysis. Then mixture estimation including model selection and parameter 

estimation is addressed and a structure of mixed Weibull model is proposed for the 

PDF inference of peak-stress values counted from the derived stress-time histories. 

Further application of the mixed Weibull model for reliability assessment of the 

TMB deck is illustrated at the end of this chapter. 

In Chapter 5, estimation of the neutral-axis position from the traffic-induced strain is 

explored and a KF estimator is proposed to perform the estimation with 

consideration of noise in the sensor readings. The neutral-axis position is provided as 

an indicator of damage because of its independence of traffic load patterns and its 

shift in the occurrence of damage. The design of the KF estimator is introduced 

firstly. In succession comes the validation of its stability to different levels of noise 

by numerical simulation. Application of the proposed KF estimator to the 

neutral-axis position estimation in TMB is provided at the end of this chapter. 

In Chapter 6, an experimental verification of the neutral-axis position based damage 
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detection method is conducted. Experimental setup including design and fabrication 

of the test model, instrumentation, moving load and damage simulation is outlined 

first. By formulating a multi-scale FEM model, numerical simulation study on the 

damage detection of the test model (using neutral-axis position as an indicator) is 

then carried out for static and moving load cases, respectively. Physical experiment 

on damage detection of the test model is then conducted. The Sensitivity of the 

neutral-axis position to damage is discussed at the end of this chapter. 

Chapter 7 summarizes contributions, findings and conclusions achieved in this PhD 

project through theoretical and experimental research. Recommendations for future 

work are also presented. 
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 CHAPTER 2 

LITERATURE REVIEW 

A literature review was conducted before this research began. This literature review 

includes articles of strain monitoring in SHM, processing of multi-component 

monitoring data, mixture distribution models in reliability analysis, as well as 

damage detection using strain measurement. At the end of this chapter, a short 

summary of the previous studies as well as a number of key issues identified to be 

pursued in this PhD project will be provided. 

2.1 Strain Monitoring in SHM 

Accurate information on in-service bridge structures is an essential part of 

implementing a cost-effective and safety-conscious bridge management and 

maintenance system (BMMS). Expectedly SHM can provide more accurate 

information on the condition of in-service bridge structures that cannot be obtained 

by traditional visual surveys, and insights into actual behavior of bridges under 

in-service environment. In practice of bridge monitoring, most common 

measurement items include strain, displacement and acceleration responses of the 
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target bridge (Doebling et al. 1998; Chang 2001; Mufti and Bakht 2002). Particularly 

the capability of measuring strain response of a bridge during its operation is 

meaningful to bridge owners and engineers for a variety of reasons. Strain data can 

be directly used to indicate fatigue or yielding of the material, safety reserve or 

reliability of a structural component (Bergmeister and Santa 2000; Koshiba 2001), or 

provide information on the load-carrying capacity of a whole bridge. From another 

point of view, strain response data can be used to derive stresses or pressures. With 

careful design strain gauge arrays can be used to create very accurate transducers of 

acceleration, moment, and torque. Moreover these derived quantities can offer 

another perspective on the condition or status of in-service bridge structures. In a 

sense, as a typical local response, strain measurement may be better suited to 

characterize the local behavior or damage of the bridge structure than acceleration 

data, therefore strain sensors can be deployed at critical parts of a bridge where high 

strains are anticipated to be developed that could approach or surpass the material 

resistance (Chakraborty and DeWolf 2006). 

 

The most common method of measuring strain is with an electrical strain gauge 

(ESG), a device whose electrical resistance varies in proportion to the amount of 

strain in the device. Resistive foil ESGs may set up in full-, half-, or quarter-bridge 

configuration with a voltage excitation source to measure the changes in electrical 

resistance. Usually the metallic strain gauge consists of a very fine wire or, more 

commonly, metallic foil arranged in a grid pattern bonded to a thin backing carrier, 
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which can be attached directly to the test specimen or real structures. Therefore, the 

strain experienced by the test specimen or real structures is transferred directly to the 

strain gauge. Another traditional method of measuring strain is the vibrating wire 

strain gauge (VWSG). This strain gauge operates on the principle that a tensioned 

wire, when plucked, vibrates at a frequency that is proportional to the strain in the 

wire. As to its configuration, the gauge is constructed such that a wire is held in 

tension between two mounting blocks that can be welded to the specimen or real 

structures. Loading on the targeted structure changes the distance between the two 

mounting blocks and results in a change in the tension of the wire. Then a controlled 

electromagnet is used to pluck the wire and measure the vibration frequency of the 

wire in tension. Strain is consequently calculated by applying calibration factors to 

the frequency measurement. VWSGs can be practically surface mounted or 

embedded into concrete structures. In comparison to ESGs, advantages of vibrating 

wire strain gauges are that the frequency output is immune to electrical noise, able to 

tolerate wet wiring, and capable of signal transmission of several kilometers without 

serious loss of the signal. However, as point sensors, ESG and VWSG have 

difficulties in enhancing their spatial resolution by sensor arrays densely distributed 

on the structure. In answer to the awkward problem, fiber optical strain gauges 

(FOSGs) have the ability to multiplex many sensors using only one optical fiber, 

providing a very low-cost mechanism for densely instrumenting large-scale 

structures. And optical fiber is comparatively smaller and much lighter than ESG and 

VWSG sensors so that extensive FOSG sensor installations can be made that were 
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hitherto impossible with ESG and VWSG sensors. 

 

With rapid development of sensor technologies, the capabilities of strain monitoring 

in SHM have been vastly improved. Both short-term and long-term strain monitoring 

has been practiced according to different considerations of owners and engineers 

(Liu and Lin 1996; Shkarayev et al. 2001; Johnson et al. 2004). In short-term strain 

monitoring, interests are focused on short-term structural behaviors and monitoring 

systems can be configured for recording the strain responses under some specific 

load effects such as random truck passages, wind gusts, ice pack impacts, or some 

other extreme events. On the contrary, long-term continuous strain monitoring is to 

monitor and measure the structural behavior over an extended period of time (maybe 

more than weeks, months, years, or permanently). It is anticipated that the resulted 

database could provide high quality performance data to bridge engineers for better 

bridge management planning. In addition, on a continuous basis, long-term 

monitoring can offer a chance to track structure status dynamically and early 

warnings could be signaled before catastrophic failure happens. Related issues of 

short-term and long-term strain monitoring such as sensor selection and design, 

instrumentation system installation, data acquisition, data reduction, data 

interpretation and storage of the data were thoroughly investigated in the literature 

(Sartor et al. 1999; Chakraborty and DeWolf 2006). 

2.1.1 Short-Term Monitoring 
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With respect to the process of human cognition, short-term strain monitoring was 

preliminarily practiced and expected to serve as a basis for the long-term strain 

monitoring in future. In the retrospection of the history of short-term strain 

monitoring program for evaluation of steel bridges done by the University of 

Connecticut (DeWolf et al. 1998), it was stated that the initial strain monitoring in 

bridge engineering began with a portable computer, which was originally developed 

for automobile testing. Adaption of this device for strain monitoring in bridge 

community involves extensive software development and in-house design of signal 

conditioning modules. These innovative technologies have greatly simplified such 

testing and hence provided an opportunity for full application in the field of bridge 

engineering. 

 

As a useful tool in assessing condition of existing bridge structures, short-term strain 

monitoring was practiced on a variety of bridge structures of different types. 

Diaphragms of a typical composite multi-steel girder bridge (Bernard et al. 1997; 

DeWolf et al. 1998) were instrumented with a short-term strain monitoring system to 

determine the cause of cracking in diaphragms and provide information useful for 

making repairs. Short-term strain monitoring studies on critical components of 

several movable bridges (Sartor et al. 1999) were conducted to get answers to 

questions on condition assessment. DelGrego et al. (2004; 2008) conducted a field 

testing on a century-old railroad truss bridge to evaluate the structural behavior and 

the influence of aging. In this field testing, a data logger with 96 channels and a total 
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of 372 strain gauges were used to collect strain response data over a two-week 

period.  

 

In view on applying strain measurement data to condition assessment, short-term 

strain monitoring was carried out by bridge engineers with different objectives. 

Nearly 20 years ago, Bernard et al. (1997) and DeWolf et al. (1998) conducted a 

field monitoring on a typical composite multi-steel girder bridge to demonstrate its 

feasibility of supplementing visual inspection and analytical studies in condition 

assessment of existing bridge structures. Kim and Nowak (1997) proposed that load 

distribution factors stipulated in AASHTO (American Association of State Highway 

and Transportation Officials) were definitely conservative to a series of steel 

multi-girder bridges. Chajes and Shenton (2005) involved use of strain measurement 

from controlled load tests to determine the actual load distribution, unintended 

composite action and contribution from nonstructural components. As to load ratings, 

special attention was paid to in-service monitoring of strain response from normal 

traffic environment by Bhattacharya et al. (2008). Barr et al. (2001) evaluated the 

flexural live load distribution factors for a three-span pre-stressed concrete girder 

bridge. Wang et al. (2005) studied the fatigue damage for typical multi-girder steel 

bridges through synthesizing traffic data collected by a WIM system. Yakel and 

Azizinamini (2005) proposed a method for the calculation of positive bending 

moment capacity of composite steel girders by using strain monitoring data. 
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2.1.2 Long-Term Monitoring 

In recognizing that budget for the long-term monitoring effort is not very high, 

long-term strain monitoring in bridge engineering was practiced increasingly (Abe et 

al. 2000; Barrish et al. 2000; Feng and Kim 2001; Choi et al. 2004; DeWolf et al. 

2006; Olund 2006). Increasing attentions from bridge owners and engineers are 

mainly due to an expectation that long-term continuous monitoring systems can 

provide ongoing information regarding the behavior and health of a bridge, fatigue 

performance, or general operational information over an extended period of time. 

Moreover, long-term monitoring data can be batched and fed back into the design 

process as well as can be integrated into the current procedure of condition 

assessment. Because the system need operate continuously at an unattended and 

often remote location, it is critical that high reliability and automaticity of the system 

should be guaranteed for the long-term running. 

 

Regarding the nature of long-term monitoring, the long-term stability, accuracy and 

reliability of the sensing devices must be taken into account preliminarily. At the 

early stage, drifting phenomenon in sensor readings was identified in the practice of 

long-term strain monitoring. This is because there are no exactly the same 

coefficients of thermal expansion between two materials of sensor itself and substrate 

being monitored. Usually a temperature-compensated backing technology was 

utilized to eliminate much of the potential thermal effect (Smith et al. 1999). From 
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another way, Begueret et al. (1997) designed and tested two new converters of strain 

gauge transducers dedicated to long-term monitoring with minimum temperature 

effect as possible. An automatic offset cancellation capability is embodied in their 

circuitry design and hence this arrangement has a low drift characteristic and is well 

suited for the long-term monitoring.  To testify the applicability of traditional and 

newly developed strain sensors in long-term monitoring, a notable program on 

instrumentation performance was conducted by Robertson et al. (2005) for ten years. 

Over 200 strain sensors were installed on a long-span box-girder viaduct on the 

island of Oahu and each of the instrumentation systems is evaluated for its 

performance in monitoring short-term and long-term structural behavior. Advantages 

and disadvantages of each type of strain sensors were summarized. Other research on 

the sensor durability, stability and reliability for the long-term strain monitoring can 

be found in the literature (Sohn et al. 2003). As a whole, in the current research of 

long-term strain monitoring, most of researchers focused on sensor devices, but less 

attention was paid on the peculiarity of long-term monitoring data analysis. 

 

Generally the long-term monitoring system is designed with advanced automatic data 

collection algorithms, which record structural response under operational conditions 

in a real-time way. Rather than capturing triggered data of events, long-term 

continuous monitoring provides a unique perspective on structural response which 

allows detailed studies of long-term changes of structural properties, behavior and 

performance over time. Along with the advantage of automatic data collection, 
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challenges in the data analysis arise simultaneously. The peculiarity of long-term 

monitoring data is that it has a heterogeneous data structure engendered by the 

presence of multi-load and environmental effects, i.e., all different structural 

behaviors are mixed together. In the following, a literature review on source 

separation of monitoring signals will be carried out. 

2.2 Source Separation of Multi-Component Signals 

In view on the way of data acquisition, long-term SHM systems, on a continuous 

basis, acquire structural response data passively under operational conditions rather 

than measuring a specific structural behavior by actively controlling the load 

environment such as load testing. Therefore, SHM systems record information from 

various sources, such as external loading and environmental effects, sudden accident 

events, along with sensor noise, which might lead to a complicated multi-component 

data structure (Choi and Williams 1989; Cohen 1989). A logical way to efficiently 

interpolate the SHM measurement is to decompose the original measurement into 

mono-components such that distinct structural behaviors under different loading 

scenarios and environmental conditions can be revealed for the pertinent condition 

assessment or damage detection.  

 

The recovery or separation of desired sources from an observed mixture is a classic 

but difficult problem in signal processing. Conventional approaches to signal 
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component separation originate in the discrete domain in the spirit of frequency 

filters (Weinstein et al. 1993). Although frequency filters does extract a component 

of exact frequency content, they simultaneously introduce modifications of the 

original source signal such as ringing effects and spurious oscillations (Abarbanel 

1996; Kantz and Schreiber 1997). As another disadvantage, conventional frequency 

filters do not provide an extension beyond the two-mixture case, i.e., three or more 

signals mixed together cannot be separated in this manner. Aiming to the 

multi-component separation problem, filter banks are arranged as an array of 

frequency filters that separate the input signal into multiple components, each one 

carrying a single frequency content of the signal. Particularly, with a tree structure of 

a series of low-pass and high-pass filters, discrete wavelet filter banks have certain 

advantages in decomposition of a multi-component signal, such as parsimonious 

representation, energy decomposition, effective de-correlation and perfect 

reconstruction (PR). In regard to the main stream of research in this field, literature 

review on the source separation of multi-component signal was carried out from 

frequency filters, filter banks, to wavelets. 

2.2.1 Frequency Filters 

In signal processing, frequency filter is a device or operator that removes from a 

signal some unwanted component or feature in order to suppress interfering signals 

and reduce background noise. More often, this operator takes a filter function in the 
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Fourier domain and correspondingly the filtering process is implemented in the 

Fourier domain by multiplication. Since the multiplication in the Fourier domain is 

identical to convolution in the time domain, all frequency filters can in theory be 

realized in the time domain. As interpreted in the time domain, a linear filter simply 

converts a signal xt into another signal yt by a linear transformation. The output yt of 

the linear filter is a result of the convolution of the input xt with a coefficient vector 

wt. The elements of the vector wt = (…, w-2, w-1, w0, w1, w2, …) are called filter 

coefficients. The convolution of the input vector xt with the coefficient vector wt may 

be expressed as 

t i t i
i

y w x





                           (2.1) 

where the future values of xt are required to obtain the filter output at time t. This 

may not be feasible in certain applications. As a result, some restrictions are imposed 

on a filter such that the output of the filter is not allowed to exist before the 

realization of the input, i.e., 

0
t i t i

i

y w x





                          (2.2) 

where only the past and present values of input are utilized. A filter with this property 

is called a causal filter or a physically realizable filter. The form of the filter function 

determines the effects of the operator. There are basically three different kinds of 

filters: low-pass, high-pass and band-pass filters. 
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 Low-pass: a low-pass filter attenuates high frequencies and retains low 

frequencies unchanged. The result in the time domain is equivalent to that of a 

smoothing filter. This filter is defined by two corner frequencies: low pass and 

low cut; 

 High-pass: a high-pass filter, on the other hand, passes without attenuation 

frequencies above some cutoff frequency and attenuates all lower frequencies. 

This filter is defined by two corner frequencies: high cut and high pass; 

 Band-pass: a band-pass filter is a trapezoidal filter defined by the four corner 

frequencies: high cut, high pass, low pass, and low cut. It is used to attenuate 

both low-frequency and high-frequency noise. Frequencies that fall within the 

bandwidth (from the high pass to low pass points) pass without any attenuation. 

Frequencies that fall on the slopes of the filter are increasingly attenuated away 

from the central bandwidth. 

2.2.2 Filter Banks 

Filter banks are arrangements of low-pass, band-pass, and high-pass filters used for 

the spectral decomposition of signals. They play an important role in many modern 

signal processing applications such as audio and image coding. The reason for their 

popularity is the fact that they easily allow simultaneous extraction of several 

spectral components of a signal at one implementation and, with two complementary 

analysis and synthesis filter banks, perfect reconstruction of the input signal can be 
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achieved. Perfect reconstruction means that the output signal is a copy of the input 

signal with no further distortion than a time shift and amplitude scaling. It is a 

rigorous requirement in the theory of signal decomposition but cannot be achieved 

by a low-pass, band-pass, or high-pass filter alone. 

 

 

Figure 2.1 M-channel filter banks 

 

Figure 2.1 shows an M-channel filter banks for an example. The input signal is 

decomposed into M sub-band signals by applying M analysis filters with different 

pass-bands. Thus each of the sub-band signals carries information of the input signal 

in a particular frequency band. The blocks with arrows pointing downwards in 

Figure 2.1 indicate down-sampling (subsampling) by factor N, and the blocks with 

arrow pointing upwards indicate up-sampling by N. Subsampling by N means that 

only every Nth sample is taken. This operation serves to reduce or eliminate 

redundancies in the M sub-band signals. Up-sampling by N means the insertion of 

(N-1) consecutive zeros between the samples. This allows us to recover the original 
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sampling rate. The up-samplers are followed by filters which replace the inserted 

zeros with meaningful values. Therefore, perfect reconstruction of the input signal 

can be achieved by delicately designing analysis and synthesis filter banks. 

2.2.3 Wavelets 

As reviewed in the previous section, an important issue in the filter bank theory is 

how to design perfect reconstruction filter banks. An easy way to construct 

multichannel filter banks is to cascade two-channel banks appropriately. One case 

can be seen in Figure 2.2(a), where frequency analysis is obtained by simply 

iterating a two-channel division on the previous low-pass channel. This results in a 

tree with 2J leaves, each corresponding to (1/2J)th of the original bandwidth, with a 

down-sampling by 2J. Considering the filter bank given in Figure 2.2, it shows that 

the signal is split first via a two-channel filter bank, then the low-pass version is split 

again using the same filter bank, and so on. This structure implements a discrete time 

biorthogonal wavelet series on the condition that the two-channel filter banks are 

perfect reconstruction. If the two-channel filter bank is orthonormal, then it 

implements an orthonormal discrete-time wavelet series. With orthonormal perfect 

reconstruction filter banks, Daubechies (1988) constructed compactly supported 

orthonormal wavelets and orthonormal scaling functions. Vetterli and Herly (1992) 

showed that biorthogonal perfect reconstruction filter banks could generate 

biorthogonal wavelets and biorthogonal scaling functions. 
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(a) Analysis part 

 

(b) Synthesis part 

Figure 2.2 Implementation of an orthogonal discrete-time wavelet series 

2.3 Mixture Distribution Models for Reliability Analysis 

Condition assessment of in-service bridge structures becomes an increasingly active 

field driven in part by the need for efficient management of these public assets. 
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Available data in conventional practice of structural condition assessment generally 

come from visual inspections which have been proved to be limited and subjective. 

In addition to the inspection methods, a strategy of integrating structural condition 

assessment with the SHM system is expected to become a valuable practice in this 

field. Methods of integrating SHM data with procedures of reliability assessment 

have received much attention because reliability is an important performance 

measure of structural condition (Lark and Flaig 2005) and reliability based 

approaches have the capability of accommodating uncertainties in measurement data 

(Bhattacharya et al. 2008; Catbas et al. 2008). Messervey and Frangopol (2008) 

proposed a scheme of SHM based condition assessment in which reliability 

algorithms can be fed with SHM data. In their method, a standard density function 

was used for the reliability data modeling. However, in-service monitored response 

of bridge structures is a combination of multi-load effects such as traffic (highway, 

railway, or both of them) and wind (monsoon or typhoon), whose statistical 

properties may not be characterized by a single distribution function adequately. 

2.3.1 Mixture Distribution in Reliability-Related Data Analysis 

Finite mixture models made their first recorded appearance in a paper by Newcomb 

(1886) who used it in the context of modeling outliers. A few years later, Pearson 

(1894) used a mixture of two univariate Gaussian distributions to analyze a dataset 

containing ratios of forehead to body lengths for 1,000 crabs, and by the method of 
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moments (MOM) to estimate the parameters in the mixture model. More recently, 

mixtures of Poisson distributions have been used in the positron emission 

tomography to model emissions occurring in a line along each pair of electronically 

coupled photon-sensitive crystal detectors (Vardi et al. 1985). Poisson mixtures have 

also been used for document classification in the field of information retrieval (Li 

and Zha 2006). Other paramedic mixtures including the von Mises-Fisher 

distributions were proposed for the analysis of text and gene expressions (Banerjee et 

al. 2005). The mixture distribution in statistical analysis has long been aware of and, 

data modeling including model selection and parameter estimation has also been 

addressed. 

2.3.2 Model Selection 

Generally, a mixture distribution model is defined as a weighted sum of component 

distributions as 

1

( ) ( )
m

j j
j

f x a f x


 jΘ θ                          (2.3) 

where the overall parameter vector Θ = (a1,…, am; θ1,…, θm) and each component 

density function is parameterized by vector θj (for j = 1,…, m). The proportion aj 

may be alternatively interpreted as the prior probability of observing a sample from 

class j. Furthermore, the prior probabilities aj for each distribution must be 

nonnegative and sum-to-one, or 
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0 1, ,ja for j m                            (2.4) 

and 
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j
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a


                          (2.5) 

Correspondingly fj(x|θj) may be interpreted as the posterior probability distribution 

or conditional probability distribution. Through an appropriate choice of its 

components and weightings, a mixture model is expectedly able to model quite 

complex distributions. It is often in the case that what kind of mixture types and how 

many components in the model are not known at first and they must be estimated 

from the data. The task of finding the mixture type and optimal number of 

components is called model selection in a sense. In practice, it is usually assumed 

that the variables and the functional form of mixing densities are known. Therefore, 

model selection has typically referred to the problem of choosing the optimal number 

of components M.  

 

In definition of a finite mixture, the most fundamental parameter, to some extent, is 

the number of components. Its importance results partially from technical 

considerations that without knowing the component number the process of mixture 

distribution estimation cannot go further. There is a vast literature devoted to the 

issue of choosing the optimal number of components. It can refer to McLachlan and 

Basford (1988) who provided a detailed review of different approaches available to 
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address this problem. Most common methods devoted to estimating M can broadly 

be divided into two categories both based on the log likelihood function. The first 

group of methods is information based while the second relies on the testing 

procedures. Information based approaches are usually used and they choose the 

component number by minimizing the negative log likelihood function. Various 

information based criteria such as Akaike Information Criterion (AIC) (Akaike 1973), 

Bayes Information Criterion (BIC) (Schwarz 1978) and their modifications such as 

quadratic AIC/BIC (Ray and Lindsay 2008), the Integrated Classification Likelihood 

Criterion (ICLC) (Biernacki et al. 2000), Normalized Entropy Criterion (NEC) 

(Biernacki et al. 1999), Minimum Information Ratio Criterion (MIRC) (Windham 

and Cutler 1992), and Laplace-Empirical Criterion (LEC) (McLachlan and Peel 

2000), have been developed. Among the easily implemented methods, AIC has been 

repeatedly demonstrated good performance (Pan and Shen 2006), and is given as 

follows 

2 ( ) 2nAIC L k  Θ                          (2.6) 

where Ln(Θ) is the log likelihood, and k is the number of free parameters in the 

mixture model. The model with a minimum AIC value is chosen to be the best model. 

Once the component number is specified, estimation of the mixture parameters can 

be conducted straightforward. 

2.3.3 Parameter Estimation 
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The task of finding the mixture parameters is called parameter estimation and it was 

studied as early as 1890s by Pearson (1894). In his work, Pearson used the method of 

moments to extract model parameters for a mixture of two normal distributions. 

Solving for the parameters required finding a particular root of a ninth-order 

polynomial, a very difficult calculation in that time. Subsequently Cohen (1967) 

discovered an iterative method to solve the same problem that only requires solving 

cubic polynomials. However, the moment method does not guarantee any sort of 

optimality of the solution and was initially useful since MLE (Maximum Likelihood 

Estimation) methods were almost intractable before computers became commonly 

available. Fryer and Roberson (1972) and Tan and Chang (1972) showed that 

moment methods were inferior to MLE approaches in their problem of determining 

the parameters of a mixture of two normal distributions. With the availability of 

digital computers, MLE became practical tools for general mixture problems. EM 

(Expectation Maximization) algorithm was further developed by Dempster et al. 

(1977), which provides a general iterative procedure of computing the MLE 

solutions for mixture models. The EM algorithm has an important feature that the 

likelihood is non-decreasing in each iteration. Additionally, the maximization step 

can be done in closed-form for many distribution families (McLachlan and Basford 

1988). In general, the EM algorithm is a simple and versatile procedure for the 

likelihood maximization in mixture estimation problems and thereby it has various 

applications in the real-world problems. 
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2.4 Measurement Based Damage Detection 

As a primary part of SHM, damage detection has been extensively studied, 

producing a number of methods as summarized by Doebling et al. (1996) and Sohn 

et al. (2003). Generally, these methods were classified according to different 

standards such as destructive or non-destructive, static or dynamic, model-based or 

non-model-based, etc. Herein, they are particularly categorized as measurement 

based (signal based) or model based with respect to their dependence on the 

structural model (Lee et al. 2005). The model based approaches usually identify 

damage by correlating an analytical model, which is often established on the finite 

element procedure. On the contrary, measurement based damage detection does not 

require a detailed analytical structural model and can work by directly utilizing 

features extracted from recorded data. In this project, efforts mainly focus on the 

development of a strain measurement based approach to damage detection, therefore 

this section only reviews the damage detection methods using vibration and strain 

measurement data. 

2.4.1 Vibration Based Approaches 

As commonly used in SHM, vibration based damage detection methods have been 

extensively studied and a number of damage indices were proposed (Doebling et al. 

1996; Sohn et al. 2003). Generally all of these indices are based on the assumption 
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that changes in physical properties (such as mass, stiffness and boundary conditions) 

will give rise to changes in dynamic characteristics (such as modal frequency, modal 

shape, or their derivations). Salawu (1997) outlined the damage characterization 

problem by using natural frequency changes identified from the acceleration data. 

But local damage in a structure may cause only very little changes of the natural 

frequency. The change of natural frequencies may not be sufficient for the damage 

location. Contrastively modal shape based methods have the ability of damage 

location. Two types of approaches based on the change of modal shapes and their 

derivatives were recently summarized by Gandomi et al. (2008). Pandey et al. (1991) 

demonstrated that the curvature of modal shape is more sensitive to damage than the 

mode shape itself. In their method, by plotting the difference of modal curvature 

between the intact and damage states, a peak at the damage element indicates the 

presence of a fault. A gapped smoothing method was presented by Hoerst and 

Ratcliffe (1997) and Ratcliffe and Bagaria (1998), which essentially improves the 

ability of extracting peaks. As a whole, vibration features applied for damage 

identification were summarized by Lee et al. (2002). 

 

Although vibration based damage detection methods have some certain success in 

numerical simulations and laboratory experiments, their applicability needs further 

verification in real monitoring practices. Farrar and Jauregui (1998) presented a 

comparative study of damage identification algorithms, and found that standard 

modal properties, such as resonant frequencies and modal shapes, are poor damage 
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indicators. Actually changes in modal properties resulting from changes in 

environmental conditions can be as significant as the changes caused by damage 

(Abdel Wahab and De Roeck, 1997). Measurement noise can as well significantly 

affect the success of these detection techniques. For example, the curvature changes 

could be masked by the derivative operations when noise presenting in the modal 

shape data (Chance et al. 1994). On awareness of the limitation in vibration based 

damage detection methods, research attention nowadays goes to strain 

measurements. 

2.4.2 Strain Based Approaches 

Structural damage could be often discerned by the variation of strain response or its 

derivatives. But strain measurements always serve an auxiliary role in the damage 

detection, partially due to its locality that the influence of damage on strain response 

cannot be reflected effectively unless the area where the strain sensors deployed 

could cover the damaged region. Favorably the recent development of distributed 

Brillouin optical fiber sensing (BOFS) techniques improves the spatial resolution of 

strain measuring definitely. Therefore strain-related detection methods have received 

increasing efforts as described in the literature (Kahl and Sirkis 1996; Yam et al. 

1996; Doebling et al. 1997; Oh and Jung 1998; Abdel Wahab and De Roeck 1999; 

Chen et al. 2000; Ray et al. 2000; Liang and Hwu 2001; Ndambi et al. 2002; Sahin 

and Shenoi 2003; Chen et al. 2004; Kang et al. 2006; Lee et al. 2006; Wu and Li 
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2007; Kesavan et al. 2008; Wildy et al. 2008; Cardini and DeWolf 2009; Katsikeros 

and Labeas 2009).  

 

In general most of the proposed methods are based on the concepts of strain mode 

shape, flexibility matrix, damage locating vectors (DLV), and strain energy. Yao et al. 

(1992) presented a damage localization method by using the strain mode shape and 

strain frequency response function (SFRF). Stubbs et al. (1992) developed a modal 

strain energy method and demonstrated its applicability to various beam-like 

structures. Cornwell et al. (1999) further extended it to the plate-like structures. 

Zonta et al. (2003) proposed a strain-flexibility based approach and applied it to 

detect scattered cracks in a concrete beam. Adewuyi et al. (2009) summarized that 

damage detection techniques based on the distributed strain measurement are a more 

efficient choice than the traditional vibration approaches particularly when noises 

presenting in the sensor readings. 

2.5 Key Issues Identified 

The aim of this PhD study is to develop a systematic approach to condition 

assessment of in-service bridge structures using strain measurement acquired by an 

SHM system. Research interest includes the component analysis of strain monitoring 

data, reliability assessment using mixture distribution models, and neutral-axis 

position based damage detection along with experimental verification. As a result of 
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the literature review, critical issues to be solved in this PhD study are identified as 

follows: 

(1) To develop a DWT based method for source separation of multi-component 

strain monitoring data according to physical meanings, such as temperature effect, 

live load effect, and traffic effect. Long-term SHM systems, on a continuous 

basis, acquire structural response data passively in a sense rather than measuring 

specific structural behavior by actively controlling the load environment. 

Therefore SHM systems record information from various sources, such as 

external loadings and environmental effects, sudden accident events, and along 

with the sensor noise, which will lead to a complicated multi-component data 

structure. A logical way to efficiently interpolate SHM measurement data is to 

decompose the original measurement data into mono-components such that 

distinct structural behaviors under different loading scenarios and environmental 

conditions can be revealed for pertinent condition assessment or damage 

detection. As reviewed in the literature, the recovery or separation of desired 

source signals from an observed mixture is a classic but difficult problem in 

signal processing. Although frequency filters can extract a component of exact 

frequency content, they simultaneously introduce modifications of the original 

source signal such as ringing effects and spurious oscillations. As another 

drawback, conventional frequency filters do not provide an extension beyond the 

two-mixture case, i.e., three or more signals mixed together cannot be separated 

in this manner. Filter banks are arranged as an array of frequency filters and can 
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decompose the input signal into multiple components, each one carrying a single 

frequency content of the input signal. Particularly with a specialized perfect 

reconstruction (PR) filter bank, the DWT decomposition method has advantages 

of parsimonious representation, energy decomposition, and effective 

de-correlation, which satisfy the mathematical principle of multi-component 

separation quite well (less distortion and cross-talking among components). 

Hence DWT techniques can offer a wonderful decomposition platform for 

component extraction according to physical meanings. 

(2) To propose a mixture distribution based approach to reliability assessment of 

in-service bridge structures. Under in-service environment, bridge structures are 

subject to traffic (highway, railway, or both of them) and wind (monsoon or 

typhoon) effects. These external loadings cannot be controlled as people expect 

in a sense that their random combination produces the strain response data. It is 

recognized that strain measurement data due to the multi-load effect cannot be 

characterized by a standard probability density function adequately. Mixture 

model based reliability assessment of in-service bridge structures is thereby 

pursued in this PhD project. As reviewed, the Weibull family functions are the 

most commonly used distributions in the reliability-related data analysis because 

they have an excellent adaptability to different types of distributions. Hence they 

can be utilized as the base distribution of a finite mixture model. In contrasting 

with other parameter estimation methods, the EM algorithm is elegant, easy to 

implement, numerically stable, and its memory requirements are generally 
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reasonable even in very large-scale problems. Therefore mixed Weibull models 

with the EM algorithm for the parameter estimation will be explored in this study. 

(3) To develop a strain-related condition index for bridge deck assessment which is 

estimated from the traffic-induced strain response data. With respect to its live 

load capacity, bridge deck is one of the most critical parts of a bridge system 

which directly carrying the traffic. Bridge decks are deteriorating at an 

ever-increasing number and pace according to the FHWA report (1977). Usually 

the obsolescence results from traffic or load increasing, harsh environment 

attacking, or other adverse changes in the use of the structure. Deterioration of 

bridge decks can cause public inconvenience, travel delay, economic impact, 

even life lost, giving rise to the most severe problem for the highway industry 

today. A cost-effective approach to preventing this problem is the use of 

monitoring technologies to collect data pertaining to the condition of in-service 

bridge decks. Such precautionary work can be done before more serious situation 

arises or catastrophe happens. In selecting condition indices for bridge deck 

monitoring, their sensitivity to damage and robustness with respect to random 

traffic load patterns should be taken into consideration. Although strain response 

at each measurement point of a bridge deck section evolves with time according 

to the incoming random traffic, their ratio of different locations on a same cross 

section, such as the top and bottom of the cross section, may be independent of 

the traffic loading. Theoretically, the neutral-axis position of the bridge deck 

section (in terms of the strain ratio at top and bottom locations) remains 
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unchanged under the varying traffic environment. And it has potential to have a 

high damage sensitivity because the neutral-axis position reflects the local 

cross-section property. In practice optimal estimation of the neutral-axis position 

from the strain measurement is a key issue of the proposed method. KF 

estimators have the anti-disturbance capability in noisy environment, and they 

will be pursued in this project for locating the neutral-axis position from the 

traffic-induced strain data. 

(4) To conduct an experimental verification of the neutral-axis position based 

damage detection of beam-like bridge decks. Long-span bridge deck behaves as a 

flexural beam when traffic loads cause it to bend. Hence cracks are prone to 

happen in the beam-like decks under traffic loading environment. Crack damage 

can heavily affect the global safety and performance of the long-span bridge 

structures, and more severely, continual operation without noticing the damage 

accumulation would be disastrous. To testify the feasibility of the neutral-axis 

position as a damage indicator, experiment and numerical simulation will be 

conducted to demonstrate its sensitivity to crack damage and its independence of 

random traffic load patterns. 
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CHAPTER 3 

WAVELET BASED MULTI-COMPONENT ANALYSIS OF 

STRAIN MONITORING DATA UNDER IN-SERVICE 

ENVIRONMENT 

3.1 Introduction 

In-service infrastructure systems are subject to age-related deterioration, leading to 

concerns regarding the safety and serviceability of these systems. Continuous 

awareness of the evolution of the structural condition of in-service infrastructure 

systems is of great value for their owners as it allows making informed decisions 

regarding the maintenance and management of the infrastructure assets (Ebeling 

1997; Imai and Frangopol 2001; Ko and Ni 2005; Ratay 2006). Structural condition 

assessment via monitoring gains its popularity in recent years because it can provide 

engineers with plentiful information on structural condition by various sensors 

(DeWolf et al. 1998; Sartor et al. 1999; Sohn et al. 2000). Expectedly integrating the 

data from an on-line SHM system with structural condition assessment would be able 

to dynamically trace the health status of existing structures (Aktan et al. 1997; Wong 

2004; Ko et al. 2009). 
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The most common measurements in structural monitoring are strain and acceleration 

responses (Doebling et al. 1998; Chang 2001; Mufti and Bakht 2002). In practice, 

in-service monitoring of strain response plays an important role in structural 

condition assessment via monitoring because strain measurement can, on one hand, 

be directly used to indicate fatigue or yielding of the material, on the other hand, 

offer derived information of stresses experienced by the structure during its operation. 

Generally, strain monitoring in the field can be classified into two categories: 

long-term monitoring and short-term testing (Sartor 1995; Bernard et al. 1997). 

During temporary field experiments such as traffic load testing, some long-term 

effect on strain response can be ignored since this kind of testing is usually 

completed in short time and purposed to record short-term structural behavior. 

Contrarily, long-term continuous monitoring, on a continuous basis, can capture 

real-time structural behavior not readily apparent from short-term testing, for 

instance, the daily and seasonal variations (Cardini and DeWolf 2009). More 

important, it can dynamically trace structural behavior and accumulate plentiful data 

for condition assessment. As a result, long-term continuous monitoring of real-time 

streaming of strain is emerging as a critical strategy in the assessment, inspection and 

decision making on maintenance/repair of bridges, buildings, and other civil 

engineering structures. 

 

From a practical viewpoint, one main aim of in-service strain monitoring is to 
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acquire information about stresses experienced by the structure under operational 

environment. Stress is probably the most important data as it directly indicates the 

safety reserve of structural components (Bergmeister and Santa 2000; Koshiba et al. 

2001) and stress response to external loadings is one of the main inputs into 

structural condition assessment procedures (Aktan et al. 1996; Ko and Ni 2005; 

Catbas et al. 2008; Frangopol et al. 2008). However, inferring stress based on the 

measured strain is not easy because strain not only arises from stress but also from 

temperature influences and from processes inside the material. Long-term strain data 

acquired under in-service conditions physically result from a combination of these 

effects leading to a multicomponent data structure. Strain components due to 

different effects play different roles in contribution to stress quantities. For example, 

the strain of bridge deck induced by temperature effect, although considerably large, 

contributes little to the stress as the majority of the temperature-caused strain will be 

released through expansion joints as expected in the design. Various effects mixed 

together also imply that the desired source signal in monitoring may be contaminated 

or distorted by other effects. An efficient way of interpolating multi-component strain 

monitoring signals is to decompose original measurement into mono-components 

such that distinct structural behaviors under different loading scenarios and 

environmental conditions can be revealed for pertinent condition assessment. 

 

In this chapter, a wavelet based multi-component decomposition method is proposed 

to extract components (due to different loadings and environment effects) of 
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long-term monitoring strain data and is applied to the instrumented TMB to 

demonstrate the validity and efficiency of the proposed scheme. Peculiarity of strain 

monitoring data collected by an SHM system is explained as a combination of live 

load and environmental effects. Mathematical and physical principles for source 

separation of multi-component signals are then presented. Wavelet multi-resolution 

analysis (WMRA) satisfies the mathematical principle (less distortion and 

cross-talking among components) quite well with specialized perfect reconstruction 

(PR) filter banks. As a result, wavelet transform based decomposition offers a 

wonderful platform for component extraction according to physical meanings, which 

is the ultimate goal of signal separation. As to the real application, specific response 

properties of bridge structures under temperature effect, live load effect and traffic 

effect are utilized in the establishment of selection criteria to realize physical 

component separation of the strain monitoring data. 

3.2 Principle of Signal Source Separation 

A multi-component signal may contain a number of components that usually come 

from several different sources. In matrix form, the considered source separation 

model can be written as 

( ) ( )t A tx s                            (3.1) 

where s(t) = [s1(t), …, sN (t)]
T represents the unknown sources, x(t) = [x1(t), …, xN (t)] 
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represents the mixtures, and A represents the N by N unknown mixing matrix. As 

depicted in Figure 3.1, source separation consists of recovering unmeasured source 

signals s(t) from observed mixtures x(t), by estimating a de-mixing or separation 

matrix W: 

ˆ( ) ( )t W ts x                            (3.2) 

ˆ ˆˆ ( ) ( )t A tx s                            (3.3) 

and 

1Â W                               (3.4) 

The superscript ‘^’ denotes estimation and the superscript ‘-1’ represents matrix 

inverse. Such problem arises in many real life applications such as mechanics, radar, 

sonar and wireless communication. 
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Figure 3.1 Principle of source separation 

 

Without some a priori knowledge, it is not possible to uniquely estimate the original 

source signal because there is a basic indeterminacy that it is possible to construct 
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another solution satisfying the same condition. However, one can usually estimate 

them up to certain mathematical or physical principles. In a sense mathematical 

principles can be expressed as spatio-temporal de-correlation, statistical 

independence, sparseness, smoothness or lowest complexity. However, there is no 

guarantee that the estimated or extracted components according to the mathematical 

principles have exactly the same waveforms as the source signals, since these 

adopted mathematical principles for the separation may not match the physical 

mechanisms perfectly. Because physical mechanisms control the mixing process, the 

ultimate goal of signal decomposition is to estimate sources having true physical 

meanings or interpretations, not necessarily satisfying the mathematical requirements. 

In practice, the physical mechanism oriented separation is complicated by the fact 

that in real situations, many relevant characteristics, such as the exact frequency 

content of both the signal sources and the mixing media, are unknown. 

 

Although source separation according to physical meaning is the ultimate goal, it is 

difficult to establish a mathematical principle satisfying all the physical mechanisms. 

In this study, a compromise way is designed consisting of two steps: (1) preliminary 

decomposition based on mathematical principles; (2) physical component extraction 

in the decomposition domain. Wavelet multi-resolution decomposition satisfies the 

mathematical principles (less distortion and cross-talking among components) quite 

well with perfect reconstruction (PR) filter banks. Hence wavelet transform based 

decomposition offers a wonderful platform for component extraction according to 
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physical meanings. 

3.3 Wavelet Based Multi-Component Analysis 

In signal processing, component separation methods are usually based on the 

understanding of signals themselves, such as parametric or non-parametric 

representations. Although parametric and semi-parametric methods have been 

available for this purpose (Fox and Taqqu 1986; Beran 1994), the performance of the 

parametric methods heavily depends on how well the parametric assumption (e.g., 

data structure model) fits measurement data. Alternatively, without the limitation of 

data structure model assumption, nonparametric approaches provide more flexibility 

and they are mainly enlightened by frequency or time-frequency representation of 

concerned signals. 

3.3.1 Signal Representation and Wavelet 

Before source separation methods could be designed pertinently, it is necessary to 

understand and describe signals in different forms. When a signal is measured with 

an oscilloscope, it is usually viewed in the time domain. For many signals, this is the 

most logical and intuitive way to view them. However, a time-domain graph can only 

show how a signal changes over time and cannot help our understanding of 

information contained in the frequency domain. Without the help of frequency 
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domain information, source separation based on time representations will become 

difficult in the case that components are overlapped in the time domain. 

 

When the frequency content of a signal is of interest, it makes sense to view the 

signal graph in the frequency domain. The frequency representation shows how the 

energy of a signal is distributed over concerned frequency bands. The process of 

doing this is called Fourier Transform Analysis. Fourier theory says that any complex 

periodic waveform can be decomposed into a set of sinusoids with different 

amplitudes, frequencies and phases. Adding these sinusoids together again will 

reproduce exactly the original waveform. According to this principle, various 

frequency representation based band-pass filters have been developed, which can be 

used to isolate the component of a signal that lies within a particular band of 

frequencies. Nevertheless, the use of frequency filters for source separation will 

encounter difficulties when the signal components are overlapped in the frequency 

domain. 

 

As described previously, component separation methods based on the time or 

frequency representation have their limitations in handling real life signals of 

complex data structures, e.g. overlaps in the time and frequency domains 

simultaneously. The time-frequency analysis technique (Li et al. 2004; Trung et al. 

2005), among others, was proposed to deal with such problems. It is expected that, 

by the time-frequency representation, overlaps in the time or frequency domain can 
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be separated. The short-time Fourier transform (STFT) is one of the earliest methods 

used for time-frequency analysis. A moving window cuts out a slice of the signal, 

and Fourier transform of this slice gives the local properties of the signal. But the 

analysis result seriously depends on the choice of the window function, leading to a 

trade-off between time localization and frequency resolution (Cohen 1989). Another 

commonly used time-frequency distribution (TFD) is the Wigner-Ville distribution 

(WVD) (Classen and Mecklenbrauker 1980). Theoretically the WVD has an infinite 

resolution in time due to the absence of averaging over any finite time interval. With 

an infinite lag length, it has an infinite frequency resolution also. But the WVD, 

being quadratic in nature, will introduce cross terms in multi-component signal 

analysis. The generated cross terms may have significant amplitudes and can corrupt 

the separation method. 

 

Wavelet based time-frequency representation relies on the introduction of an 

appropriate Hilbert space basis and spans the signal in it (Burrus et al. 1997). With 

various discrete scales acting on a mother wavelet, DWT resolves the fixed 

time-frequency resolution problems inherent in STFT. Besides, since a 

time-frequency representation of wavelet transform is linear by definition, DWT 

based methods do not have any cross term interference. Therefore, DWT based 

methods can decompose a multi-component signal into mono-components with 

significant reduction of distortions and cross talking. 
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3.3.2 Wavelet Multi-Resolution Decomposition 

In the course of wavelet-based multi-resolution analysis, one at first chooses a 

particular function as the mother wavelet, and by scaling and shifting, defines a 

family of daughter wavelets which form a complete set of basis functions. Then map 

the signal into the transform space spanned by the derived basis functions. This 

elegant processing can decompose a signal into the meshed spaces of increasing 

frequency resolution without losing any part of the signal. From a practical point of 

view, DWT allows the decomposition of a signal into various resolution scales: the 

data with coarse resolution (approximations) contain the information about 

low-frequency components and the data with fine resolution (details) contain the 

information about high-frequency components (Burrus et al. 1997). The 

decomposition process is explained in detail as follows. 

 

Using a selected mother wavelet function Ψ(t), the continuous wavelet transform of a 

signal is defined as 
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             (3.5) 

where Ψ(t) is so-called ‘mother wavelet’; a is scale parameter; and b is time 

parameter. The superscript ‘’ denotes complex conjugation. It is known that the 

function f(t) can be reconstructed from WΨf(a,b) by the double integral representation 

as defined by 
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In practical signal processing, a discrete version of the continuous wavelet transform 

is often employed by discretizing the scale parameter a and the time parameter b. In 

general, the procedure becomes much more efficient if dyadic values of a and b are 

used, i.e., 

Zkjkba jj  ,;; 22                  (3.7) 

where Z is a set of positive integers. With some special choices of Ψ(t), the 

corresponding discretized wavelets {Ψj,k} in the expression of 

)2(2)( 2/
, ktt jj
kj                        (3.8) 

constitute an orthonormal basis for L2(R). Using this orthonormal basis, the wavelet 

expansion of a function f(t) can be obtained as 

)()( ,, ttf kj
j k

kj                        (3.9) 

where 

, ,( ) ( )j k j kf t t dt



                        (3.10) 

In the discrete wavelet analysis, a signal can be represented by its approximations 

and details. The detail at level j is defined as 

)(,, tD kj
Zk

kjj 


                       (3.11) 
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and the approximation at level J is defined as  





Jj

jJ DA                          (3.12) 

It follows that 

( ) J j
j J

f t A D


                           (3.13) 

Equation (3.13) provides a tree-structure decomposition of a signal (as shown in 

Figure 3.2) and a reconstruction procedure as well. By selecting different dyadic 

scales, a signal can be broken down into many frequency components. 
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Figure 3.2 Tree structure of wavelet decomposition 

3.3.3 Proposed Method for Component Extraction in Wavelet Decomposition 

Domain 

As discussed before, the separated narrow-band components by DWT transform 
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satisfy the mathematical requirement only but have no physical interpretations. And 

the source signal (produced by a physical mechanism) may disperse on different 

levels of DWT decomposition. To restore the desired source signal, component 

extraction need be conducted in the wavelet decomposition domain. The proposed 

method for source separation of a signal according to physical meanings is illustrated 

in Figure 3.3. A multi-component signal x(t) is firstly decomposed into multiple 

components using DWT. Then, they are set as the multiple inputs of the selection 

module, which use a pre-set criterion to select the wanted physical component. 
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Figure 3.3 Wavelet decomposition based component extraction 

 

Although the proposed method appears straightforward, there are still two unsolved 

issues. One is how to select wavelet scales to keep enough resolutions in the 

decomposition. The other is how to establish the selection criterion for physical 

source extraction. These two problems can be resolved by introducing correlation 

coefficients of the source component with a reference signal (produced by the same 

mechanism). Convergence of the correlation coefficient can be used to determine the 
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decomposition resolution. Then strong or weak correlation can be used to 

differentiate the level-component in the wavelet decomposition domain. 

Mathematically, for two datasets si(t) and ri(t), their correlation is formulated as: 

   ( ) ( )

( ) ( )

i i i i
i

i i

E s E s r E r

D s D r


 
                            (3.14) 

where E(·) represents the mean and D(·) represents the variance; si(t) denotes the 

desired source signal; and ri(t) denotes the reference signal from other channels. By 

calculating the correlation coefficient, the physical component can be extracted in the 

wavelet domain. 

3.4 Application to Component Analysis of Strain Monitoring Data 

from TMB 

3.4.1 TMB and Its SHM System 

The TMB with a main span of 1,377 m is a suspension bridge carrying both highway 

and railway traffic. It forms a key part of the most essential transportation network 

linking the Hong Kong International Airport to the urban areas. After completing 

construction in 1997, the bridge was instrumented with a sophisticated long-term 

SHM system by the Highways Department of the HKSAR Government to monitor 

and evaluate the structural health and performance (Wong 2004). As part of the 

monitoring system, 110 strain gauges were installed to measure dynamic strain 
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response at three bridge-deck sections denoted by CH23488.00, CH23623.00 and 

CH24662.50 (chain mileages of the deck sections of TMB) as shown in Figure 3.4. 

The deployment locations of strain gauges include the chord members of the 

longitudinal trusses, cross-frame chord members, bracing members, deck trough and 

rocker bearings at one tower. 
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Figure 3.4 TMB and deck sections instrumented with strain gauges 

Before interpreting readings from these strain gauges, it would be helpful to explain 

the structural configuration of the TMB deck. In the longitudinal direction, the bridge 

deck continuously expands from the Ma Wan abutment to the Tsing Yi abutment. On 

the Ma Wan abutment, the bridge deck is supported on hinge bearings as illustrated 

in Figure 3.5(a), which allow the rotation of bridge deck other than the displacement; 

whereas an expansion joint is provided on the Tsing Yi abutment as shown in Figure 

3.5(b), which is designed to accommodate the longitudinal displacement of the deck 

due to temperature effect. The constraint condition of the bridge deck on the internal 

piers and towers allows free movement of the deck in the longitudinal direction. 
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(a) Ma Wan abutment 

 

(b) Tsing Yi abutment 

Figure 3.5 Support conditions of TMB deck at two abutments 

 

As shown in Figure 3.6, the deck of TMB is a double-deck box with truss stiffening 

and non-structural edge fairing. The longitudinal diagonally braced trusses on the 

north and south sides of the cross-section consist of top chords, diagonal struts and 

bottom chords. All truss components on the selected cross-sections have been 

instrumented with strain gauges (single, pair and rosette strain sensors) as illustrated 

in Figure 3.7. The strain data were acquired at sampling rates of 25.6 Hz and 51.2 
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Hz, respectively. Strain responses of the deck trusses are monitored and recorded 

continuously. 

 

 

(a) Elevation view 
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(b) Cross-section view 

Figure 3.6 Truss deck of TMB 

3.4.2 Strain Monitoring Data of Bridge Deck 

In TMB, the in-service monitoring data of strain acquired from the deck trusses stem 

mainly from four effects: highway traffic, railway traffic, wind, and temperature (the 

static strain due to initial dead loads is unable to obtain as the strain gauges were 

installed after the completion of construction). Strain components due to different 
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effects play different roles in contribution to stress quantities. For example, the 

temperature-caused strain, although considerably large, contributes little to the stress 

as the majority of it is released since the movement of the bridge deck is 

accommodated at expansion joints and bearings (shown in Figure 3.5). 
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(a) Elevation view 
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(b) Cross-section view 

Figure 3.7 Strain gauges on deck section CH24662.50 

 

The strain responses of truss members on the three cross-sections CH23488.00, 

CH23623.00 and CH24662.50 have been acquired simultaneously and continuously 

under operational conditions. Figure 3.8 illustrates the measured in-service strain 
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data in one-day period (bottom chords on the north side of the three cross-sections). 

As shown in Figure 3.8, for all three cross-sections, the magnitude of the strain 

responses acquired at 2:00 to 5:00 am is relatively small since railway traffic ceases 

to operate during that period. It is also observed that there are trend ingredients 

(low-frequency components) in all three strain time histories, which will be 

demonstrated to be the daily cycle effect of temperature variation. It is reasonable to 

infer that the bottom chords on the three cross-sections expand and contract almost 

concurrently under temperature effect. 

 

As illustrated by the monitoring data, under temperature effect, the bridge deck 

mainly behaves as expanding or contracting along the longitudinal direction, and 

accordingly the expansion joint moves forward or backward. Contrarily, under traffic 

loading, the bridge deck performs as flexural bending: the top chords compress and 

the bottom chords extend concurrently, or vice versa. These two kinds of distinct 

responses are mixed in the monitoring data. It is desirable to present and process 

them separately when each effect on structural behavior needs to be quantified. The 

extraction of a specific effect is not easy when the measured signals are 

nonstationary and non-Gaussian noising in nature. Parametric, semi-parametric, and 

nonparametric methods have been available for this purpose (Fox and Taqqu 1986; 

Beran 1994; Mallat 1999). But the performance of parametric or semi-parametric 

methods depends on how well the model assumption fits the measurement data. As 

an example, Catbas et al. (2008) proposed a linear regression model with a sinusoidal 
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(a) CH23488.00 

 

(b) CH23623.00 

 

(c) CH24662.50 

Figure 3.8 One-day monitoring data of strain (bottom chord on north truss side)
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component to model temperature-induced strain and estimated the model parameters 

from monitoring data. They concluded that the temperature-induced strain was 

difficult to conceptualize and model with the use of conventional parametric methods. 

Alternatively, without the limitation of model assumption, nonparametric approaches 

provide more flexibility. The previously proposed method takes advantage of the 

nonparametric DWT decomposition delicately and will be applied to the component 

analysis of the strain monitoring data from TMB. 

3.4.3 Component Extraction of Strain Monitoring Data 

Utilizing the DWT decomposition procedure, the strain monitoring data from TMB 

are firstly decomposed into approximations and details (i.e., high-frequency and 

low-frequency components) at various levels. For each level, the high-frequency part 

(details) separated and the remaining low-frequency part (approximations) is 

transferred into the next level of decomposition. Through the elegant decomposition, 

the strain component due to temperature effect is modeled as the lowest-frequency 

part in the wavelet domain. Figure 3.9 shows the results of multi-level 

decomposition of the strain signal and the temperature-induced strain is modeled 

successfully through 12-level decomposition. To illustrate the low-pass and high-pass 

characteristics of DWT level decomposition, the magnitude spectra of the 

decomposed level-component at different scales are shown on the right side of 

Figure 3.9. It is observed that DWT separates the stain data into a set of narrow-band 
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components whose spectra occupy different segments of the frequency axis. Based 

on the DWT decomposition platform, physical component extraction of temperature 

effect, live load effect and traffic effect is carried out as follows. 

3.4.3.1 Strain response due to temperature effect 

In TMB, under temperature influence, the bridge deck behaves mainly as expanding 

and contracting along the longitudinal direction and the expansion joint moves 

forward and backward accordingly. It implies that there exists a strong correlation 

between the temperature-induced strain and the displacement at the expansion joint 

because they are all produced by the temperature effect (as shown in Figure 3.11(a)). 

The relationship between the temperature-induced strain and the longitudinal 

displacement at the expansion joint is approximately expressed by 

0

l

tl dl                              (3.15) 

where Δl is the longitudinal displacement at the expansion joint; t is the strain 

caused by temperature variation. On the assumption that the temperature-induced 

strain is uniformly distributed along the bridge deck, the temperature-induced strain 

can be approximately estimated from the displacement at the expansion joint as 

t

l

l
 
                              (3.16) 

where l is the length of continuous bridge deck in the longitudinal direction.  
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Figure 3.9 Multi-level wavelet decomposition (cont’d) 
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(a) Time domain (b) Frequency domain 

Figure 3.9 Multi-level wavelet decomposition 
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In the present method, temperature-caused strain estimated from expansion joint 

displacement data is used as a reference signal. Its correlation with the 

lowest-frequency part separated by the DWT decomposition is further used for 

component matching. Separated low-frequency parts of A1~A12 for temperature 

effect modeling are shown in Figure 3.10. A quantitative evaluation of their quality 

is conducted by calculating the correlation coefficients. As shown in Table 3.1, the 

correlation coefficient from levels 9 to 12 almost does not change, implying that 

12-level decomposition can ensure enough resolution for the temperature effect 

modeling. In the time domain, the extracted temperature-induced strain coincides 

favorably with its counterpart derived from the expansion joint displacement data as 

shown in Figure 3.11(b). Figure 3.11(a) also illustrates atmospheric temperature 

variation and joint displacement. 

3.4.3.2 Strain response due to live load effect 

In the previous discussion, the in-service monitoring data of strain responses at TBM 

deck trusses are a combination of live load and temperature effects. The ingredient 

caused by the temperature effect, although considerably large, contributes little to the 

stress as the majority of temperature-caused strain is released by movement at the 

expansion joint. To obtain the strain response due to live load effect, the strain data 

are processed by eliminating the temperature-caused ingredient from the raw data. 

Figure 3.12 illustrates a typical daily strain time history (of the top chord on the 
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Figure 3.10 12-level wavelet decomposition for approximations 
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Table 3.1 Correlation coefficients of approximations with displacement-derived 

strain due to temperature effect 

Level Time scale Approximation Correlation coefficient 

0 20 A0 0.949531  

1 21 A1 0.949542  

2 22 A2 0.949569  

3 23 A3 0.949799  

4 24 A4 0.952326  

5 25 A5 0.957979  

6 26 A6 0.964319  

7 27 A7 0.966266  

8 28 A8 0.966879  

9 29 A9 0.967101  

10 210 A10 0.967145  

11 211 A11 0.967150  

12 212 A12 0.967153  

 

(a) Temperature variation and joint displacement   (b) Temperature-induced strain 

Figure 3.11 Extracted temperature-induced strain and displacement-derived 

strain 
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north truss side) under live load effect during operational traffic and normal wind 

conditions. 

 

TMB is located at a region with typhoon wind climate. In 1999, totally five typhoons 

named “Leo”, “Maggie”, “Sam”, “York”, and “Dan” buffeted Hong Kong. Table 3.2 

lists the typhoon warning signals in 1999 issued by the Hong Kong Observatory. The 

strain response data during the typhoon attacks were recorded by the monitoring 

system. Figure 3.13(a) shows the recorded strain response of a bottom chord (on the 

north truss side of the monitored cross section CH24662.50) from August 20~23 

under typhoon “Sam” attacking. The corresponding live load effect after eliminating 

the temperature-caused ingredient is illustrated in Figure 3.13(b). 

 

 

 

Figure 3.12 Typical daily strain time history under live load effect 
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Table 3.2 Typhoon warning signals in 1999 (Hong Kong Observatory) 

Name Signal 
Issuing Canceling 

hh mm dd/mon/yyyy hh mm dd/mon/yyyy 

Leo 1 09:40 29/Apr/1999 16:15 30/Apr/1999 

Leo 3 16:15 30/Apr/1999 13:30 02/May/1999 

Leo 8 NE 13:30 02/May/1999 17:30 02/May/1999 

Leo 3 17:30 02/May/1999 20:45 02/May/1999 

Maggie 1 23:45 05/Jun/1999 14:15 06/Jun/1999 

Maggie 3 14:15 06/Jun/1999 00:30 07/Jun/1999 

Maggie 8 NW 00:30 07/Jun/1999 02:45 07/Jun/1999 

Maggie 9 02:45 07/Jun/1999 05:45 07/Jun/1999 

Maggie 8 NE 05:45 07/Jun/1999 10:30 07/Jun/1999 

Maggie 3 10:30 07/Jun/1999 14:45 07/Jun/1999 

Maggie 1 22:30 07/Jun/1999 00:45 08/Jun/1999 

Maggie 3 00:45 08/Jun/1999 13:45 08/Jun/1999 

Sam 1 16:15 20/Aug/1999 02:30 22/Aug/1999 

Sam 3 02:30 22/Aug/1999 12:30 22/Aug/1999 

Sam 8 NW 12:30 22/Aug/1999 20:10 22/Aug/1999 

Sam 8 SW 20:10 22/Aug/1999 03:50 23/Aug/1999 

Sam 3 03:50 23/Aug/1999 21:00 23/Aug/1999 

York 1 10:45 13/Sep/1999 10:15 15/Sep/1999 

York 3 10:15 15/Sep/1999 03:15 16/Sep/1999 

York 8 NW 03:15 16/Sep/1999 05:20 16/Sep/1999 

York 9 05:20 16/Sep/1999 06:45 16/Sep/1999 

York 10 06:45 16/Sep/1999 17:45 16/Sep/1999 

York 8 SW 17:45 16/Sep/1999 22:10 16/Sep/1999 

York 3 22:10 16/Sep/1999 00:45 17/Sep/1999 

Dan 1 20:45 05/Oct/1999 05:35 07/Oct/1999 

Dan 3 05:35 07/Oct/1999 16:15 07/Oct/1999 

Dan 1 16:15 07/Oct/1999 09:25 09/Oct/1999 
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(a) Raw measurement data 

 

(b) Strain after eliminating temperature effect 

Figure 3.13 Strain time history under live load effect during typhoon “Sam” 

3.4.3.3 Strain response due to traffic effect 

The proposed method also extracts the strain response due to traffic effect which is 

an outstanding live load effect in TMB. Under traffic loading, the truss stiffening 

bridge deck performs like a flexural beam, i.e., the top chords compress and the 

bottom chords extend concurrently, or vice versa. The dynamic strain data of the 

deck trusses on the same cross-section should reflect this behavior well if there is no 

temperature effect. As shown in Figure 3.14, the raw measurement data (total strain) 
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do not display the flexural behavior well owing to the presence of temperature effect. 

To restore the traffic-induced strain, DWT based 12-level decomposition of the strain 

data from top and bottom chords is conducted, and correlation coefficients of their 

level components are obtained in Table 3.3. Non-diagonal elements in Table 3.3 are 

almost zero, which means that there is little correlation among them. However, 

coefficients on the diagonal show a certain correlation, varying between -1 and +1. 

There are only two of them positive that are 0.1555 and 0.9672 at D4 and A12 levels. 

With respect to the flexural behavior of the deck under traffic loading, correlation 

coefficients of the strain response at top and bottom chords should be non-positive. 

Therefore, in the extraction of traffic-induced strain, level components with positive 

correlation coefficients should be eliminated.  

 

 

Figure 3.14 Total strain responses of top and bottom chords on deck cross 

section CH24662.50 
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(a) Under highway traffic 

 

(b) Under railway traffic 

Figure 3.15 Flexural behaviors of longitudinal trusses on deck cross section 

CH24662.50 

 

The extracted traffic-induced strains restore the bending behavior favorably as shown 

in Figure 3.15. Figure 3.15(a) and 3.15(b) illustrate the traffic-induced strain time 

histories (experienced by a top chord and a bottom chord on deck section 
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CH24662.50) due to highway and railway traffic, respectively. It is observed that the 

strain at the top chord and the strain at the bottom chord evolve with time in almost 

same amplitudes but opposite directions. This observation verifies the quality of the 

extracted strain component. 
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Table 3.3 Correlation coefficients of 12-level decomposition components of strain data (top and bottom chords) 

Top 

Bottom  
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 A12 

D1 -0.0055 -1.5E-07 3.4E-08 -2.5E-08 9.6E-08 1.9E-07 6.7E-09 -1.2E-08 -1.3E-08 3.3E-09 4.0E-08 -3.0E-08 -4.5E-07 

D2 -8.4E-07 -0.1149 8.7E-07 5.7E-07 1.1E-07 -1.8E-07 1.6E-07 1.6E-08 -2.5E-08 -2.5E-08 2.1E-08 -6.5E-08 1.4E-05 

D3 -5.7E-07 4.5E-07 -0.1031 1.7E-06 5.5E-07 -2.8E-07 2.2E-07 -2.0E-08 -3.6E-08 -2.3E-08 2.2E-08 -5.7E-08 1.0E-05 

D4 -4.2E-08 -2.0E-07 2.2E-06 0.1555 -3.9E-06 -6.5E-06 -4.2E-07 3.6E-07 4.4E-07 -5.4E-08 -1.3E-06 1.1E-06 -1.2E-05 

D5 -2.1E-07 1.6E-07 1.6E-06 -2.3E-06 -0.1248 -3.0E-06 -1.2E-06 -6.7E-07 4.1E-07 3.6E-07 -1.1E-06 1.7E-06 -2.6E-04 

D6 -6.4E-08 1.0E-07 -1.4E-07 1.0E-07 -1.2E-06 -0.6015 -8.7E-08 -3.2E-07 -1.4E-07 -5.0E-08 2.3E-07 -3.7E-07 5.6E-05 

D7 -1.4E-07 1.2E-07 4.9E-07 -1.5E-06 -1.3E-06 -8.6E-07 -0.9216 -2.2E-06 -1.2E-06 8.2E-08 -6.2E-07 1.1E-06 -2.9E-04 

D8 -1.2E-08 7.1E-09 -4.6E-09 -2.0E-07 -4.4E-07 3.9E-07 -3.0E-06 -0.9635 -5.9E-07 -6.4E-07 1.1E-06 -2.0E-06 3.3E-04 

D9 2.5E-08 -2.8E-08 -7.7E-08 1.7E-07 1.9E-07 -4.2E-09 -1.4E-06 -6.6E-07 -0.9670 1.7E-07 6.8E-07 -1.3E-06 6.2E-04 

D10 5.4E-08 -5.2E-08 -1.5E-07 5.0E-07 6.1E-07 -3.4E-07 6.0E-07 -1.3E-06 1.4E-07 -0.9458 -1.7E-06 6.9E-06 1.8E-03 

D11 -1.0E-07 1.2E-07 2.2E-07 -7.1E-07 -1.3E-06 1.2E-06 -2.0E-06 2.7E-06 2.5E-06 -1.3E-06 -0.8598 -5.1E-05 -3.8E-03 

D12 1.3E-07 -1.4E-07 -3.2E-07 1.1E-06 1.6E-06 1.3E-06 2.7E-06 -3.3E-06 -3.0E-06 3.2E-06 -4.2E-05 -0.8525 2.7E-02 

A12 -1.3E-05 1.1E-05 4.3E-05 -1.6E-04 -1.6E-04 1.4E-04 -4.5E-04 2.3E-04 5.8E-04 9.1E-04 3.5E-06 8.6E-03 0.9672  
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3.5 Summary 

On a continuous basis, long-term SHM systems acquire structural response data 

passively in a sense rather than measuring a specific structural behavior by actively 

controlling load environment. Therefore, SHM systems record information from 

various sources, leading to a complicated multi-component data structure. A logical 

way to efficiently interpolate the SHM data is to decompose original measurement 

data into mono-components so that distinct structural behaviors under different 

loadings and environmental conditions can be revealed for pertinent condition 

assessment or damage detection. With specialized perfect reconstruction (PR) filter 

banks, DWT based decomposition has advantage of parsimonious representation, 

energy decomposition, and effective de-correlation, which offers a wonderful 

decomposition platform for physical component extraction of the multi-component 

strain monitoring data. 

 

To conduct the physical component extraction in the wavelet domain, correlation 

coefficients of the level components with a reference signal are calculated to 

establish a selection criterion. Based on the established selection criterion, physical 

source separation of the multi-component data is realized. With the application of the 

proposed method to TMB, the following observations have been made: (1) DWT can 

effectively separate a multi-component signal into a set of narrow band components 
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satisfying the mathematical requirement quite well; (2) the extracted 

temperature-induced strain component in along-bridge direction coincides well with 

the displacement time history measured at the expansion joint; (3) the extracted 

traffic-induced strains at the top chords and at the bottom chords of the same deck 

cross section evolve with time in almost same amplitudes but opposite directions, 

indicating flexural bending behavior of the deck cross section under traffic loading. 
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CHAPTER 4 

RELIABILITY ASSESSMENT OF BRIDGE DECK USING 

STRAIN RESPONSE DUE TO LIVE LOAD EFFECT 

4.1 Introduction 

Condition assessment of in-service structures becomes an increasingly active field 

driven in part by the need for efficient management of these public assets (Ratay 

2005). Of conventional way, structural condition assessment usually involves 

activities of visual observation, photographing, record keeping, documentation, 

report preparation and the like, which are still a standard practice today. However, 

the data from the traditional practice were proved to be limited and subjective 

(FHWA 2001). In addition to the existing inspection methods, a strategy of 

integrating structural condition assessment with SHM is expected to become a 

valuable practice in this field. The most challenging issue in implementing this 

strategy is how to develop an objective-oriented method to effectively process and 

interpret the monitoring data. Since reliability is an important performance measure 

of structural condition (Frangopol and Estes 1997), a reliability-oriented approach to 

processing SHM data for condition assessment naturally obtains its popularity. The 
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popularity is in a sense attributed to its capability in accommodating the uncertainties 

in response- and/or resistance-related parameters (Ellingwood 1996; Frangopol et al. 

2001; Lark and Flaig 2005). 

 

As well known, the elementary reliability indices can be approximated once 

probability distribution functions (PDFs) are determined from the observation data or 

investigations. Messervey and Frangopol (2008) proposed a scheme in which 

reliability algorithms can be fed by SHM data. As a further application, Catbas et al. 

(2008) conducted a reliability estimation study for main truss components of a long 

span truss bridge by using strain monitoring data. It was shown that 

temperature-induced strain had a significant effect on structural reliability and need 

to be considered for epistemic uncertainty. Usually temperature-caused strain in 

structure components is expected to be released through the movement of expansion 

joints. By using in-service monitoring strain data, Bhattacharya et al. (2008) 

proposed a reliability-based method to evaluate the safety of an existing bridge. A 

significant part of their effort involved statistical characterization of the live load 

effect based on a standard extreme distribution function. However, they inferred the 

probability distribution of peak strains on the assumption that they are caused by one 

traffic population whose characteristics do not evolve in the time. In reality, there 

will be more than one population of traffic passing through bridges during their 

service life time. It is reasonably presumed that the probability distribution of the 

response-related quantities may have a very complicated geometry due to multiple 



 80

load effects. They cannot be characterized by a standard distribution function 

adequately. Mixture distribution models shall be more adequate and provide more 

flexibility for this purpose. 

 

In this chapter, mixture distribution model based reliability analysis will be 

developed and applied for condition assessment of the TMB deck. The in-service 

monitoring data of strain responses at the deck trusses of TMB stem mainly from 

four effects: highway traffic, railway traffic, wind, and temperature (the static strain 

due to initial dead loads is unable to obtain as the strain gauges were installed after 

the completion of construction). Although considerably large, the temperature-caused 

strain contributes little to the stress as the majority of it is released since the 

movement of the bridge deck is accommodated at expansion joints and bearings. 

Because of their contribution to stresses, the strain responses caused by live loadings 

such as traffic and wind are intentionally extracted for stress based reliability 

assessment. Mixed distributions existing in the live-load effect data are explored 

preliminarily by histogram analysis. Then hybrid mixture estimation including model 

selection and parameter estimation is addressed. A structure of mixed Weibull model 

is proposed for the PDF (probability density function) inference of peak stresses 

counted from the derived stress time histories. In the process of model selection, 

different mixture models (such as normal mixtures, log-normal mixtures and Weibull 

mixtures) are compared by calculating their AIC (Akaike Information Criterion) 

values. In the parameter estimation, the EM algorithm is applied and its efficiency in 
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the estimation will be demonstrated in terms of the component parameter 

convergence. Based on the inferred PDFs from the monitoring data, reliability-based 

condition assessment of the TMB deck trusses is realized for different load scenarios 

such as monsoon, typhoon, with and without railway traffic. 

4.2 Finite Weibull Mixture Models 

4.2.1 Structure of Weibull Mixtures 

Inference of a probability distribution from observed data is necessary in any 

reliability analysis. Often this inference is complicated by the presence of multiple 

engendering effects that may create a heterogeneous dataset, making standard 

distribution models inadequate. Finite mixture distributions are expected to be of 

considerable interest and importance in modeling measurement data like this. Some 

of the most important references that discussed different types of mixture 

distributions are a monograph by Everitt and Hand (1981) and two survey books by 

Tittringto et al. (1985) and McLachlan and Basford (1988).  

 

Theoretically mixture distribution models consist of a weighted sum of standard 

distributions and therefore are a flexible tool in modeling measurement data with a 

heterogeneous population. For a random variable X, finite mixture distribution 

models decompose a probability density function f(x|Θ) into the sum of m class 
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probability density functions fj(x|θj) (for j = 1,…,m), and the expression can be 

written as 

1

( ) ( )
m

j j
j

f x a f x


 jΘ θ                    (4.1) 

where Θ = (a1,…, am; θ1,…, θm) is the overall parameter vector and each component 

density function is parameterized by the vector θj (for j = 1,…, m). The proportion aj 

can be interpreted as the prior probability of observing a sample from class j. 

Furthermore, the prior probability aj for each class distribution must be nonnegative 

and sum-to-one, or 

0 1, ,ja for j m                            (4.2) 

and 

1

1
m

j
j

a


                          (4.3) 

Correspondingly fj(x|θj) is interpreted as the posterior probability distribution or 

conditional probability distribution. Through an appropriate choice of its components 

and weightings, a mixture model is expectedly able to model quite complex 

distributions. 

 

In selection of elementary distribution for the mixtures, a significant and practical 

simplification can be achieved if all components are of the same type. Although 
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simplified loathly, this approach can recuperate its rationality if the parametric 

structure of the component density could model a variety of shapes. Particularly, in 

finite mixture modeling, Weibull mixtures have been studied frequently because 

Weibull family has a capability of extensive adaptation in modeling complicated 

shapes (Bučar and Nagode 2004). The two-parameter Weibull distributions are one 

of the most commonly used types and they can attain many shapes through various 

values of parameters ß (shape) and θ (scale) in the expression 

1

( ) exp ,
j j

j
j

j j j

x x
f x

 

  

                   
jθ               (4.4) 

where the parameters ßj and θj stand for Weibull shape and scale of the component 

densities fj(x|θj) (for j = 1,…, m). The adaptability of Weibull family to different 

shapes is demonstrated in Figure 4.1. 

 

 

Figure 4.1 Adaptability of Weibull distribution families 
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4.2.2 Model Selection and Parameter Estimation 

A mixture distribution model is generally defined as a weighted sum of component 

distributions. As shown in Equation (4.1), the overall parameter vector is Θ = (a1,…, 

am; θ1,…, θm). Parameters aj and parameter vectors θj (for j = 1,…, m) are unknown 

at first and must be estimated from observed data. How many components needed in 

the model are also not known and will be estimated from the data. In the process of 

model estimation, the task of finding the optimal number of components is called 

model selection while the task of estimating the parameters is called parameter 

estimation. 

 

In a sense, the most fundamental parameter in definition of a finite mixture is the 

number of components. Its importance results partly from the technical consideration 

that without knowing the component number the process of mixture distribution 

estimation cannot go further. There is a vast literature devoted to this issue of 

choosing the optimal number of components, which can broadly be divided into two 

categories both based on the log likelihood function. The former selects the model by 

testing the significance of the component coefficients and the insignificant ones are 

deleted from the model. Whereas, the latter (information criterion based methods) 

chooses the model which minimizes a given risk function. The representative criteria 

are such as Akaike information criterion (AIC) by Akaike (1973), Bayesian 

information criterion (BIC) by Schwarz (1978), and their modifications. As widely 
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discussed, the AIC is given as follows: 

2 ( ) 2nAIC L k  Θ                     (4.5) 

where Ln(Θ) is the log likelihood, and k is the number of free parameters in the 

mixture model. The model with a minimum AIC value is chosen to be the best 

model. 

 

When the model is specified the parameter estimation is conducted straightforward. 

There is a remarkable variety of estimation methods that have been applied to finite 

mixture problems such as MOM, MLE and Bayesian approaches. With the 

availability of digital computers, MLE has been by far the most commonly used 

approach to the general mixture problems. The EM algorithm provides a general 

iterative procedure to obtain the MLE solution of a mixture model. In the EM 

algorithm some estimates for the parameters are fixed initially which can be arbitrary 

but their selection will affect the final result. The expectation of the log likelihood is 

then calculated and the resulting value of the expectation is maximized by selecting 

new parameter estimates according to the direction of the gradient. The expectation 

and maximization steps are iterated until a stopping criterion is met. Formulas of the 

EM algorithm for the mixed Weibull model will be derived in the following. 

4.2.3 Reliability Estimation Using Finite Weibull Mixture Model 
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As discussed in the previous section, Weibull mixtures have advantages in modeling 

measurement data with multimodalities, and EM algorithm performs excellently in 

the parameter estimation. In recognizing this, EM algorithm based Weibull mixture 

modeling will be developed in this section. Theoretically the EM algorithm is a 

general method for finding the maximum-likelihood estimate of the parameters in 

underlying distributions for a given data set. And it can be implemented for mixture 

estimation by an iterative procedure in practice. Each iteration consists of two steps: 

estimation of the membership of the sample data by expectation (E-step); 

maximization of the updated likelihood given the estimate (M-step). In the E-step, 

the expected likelihood can be simplified as the so-called Q-function and formulated 

as follows (Bishop 1995) 
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where the posterior probability f(j|xi,Θ
(k)) can be expressed using the Bayes’s rule as 
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The evaluation of this expectation is called the E-step of the algorithm. The second 

step (M-step) of the EM algorithm is to maximize the expectation computed in the 

first step to obtain new parameter estimations Θ(k+1). As shown in Equation (4.6), the 
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term containing aj and the term containing θj can be maximized independently since 

they are not related. To find the expression for aj, the Lagrange multiplier λ with the 

constraint of Equation (4.3) is introduced and the derivatives of Equation (4.6) with 

respect to aj are taken to be zero: 
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Summing both sides over j and using ( )
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For Weibull mixture models, analytical expressions for the parameters (ßj and θj) can 

be obtained as follows: Taking the natural logarithm of Equation (4.7) and 

substituting it into the right side of Equation (4.8), the term containing ßj and θj can 

be re-written as: 
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Taking the derivative of Equation (4.11) with respect to ßj and θj, after some algebra 

we get: 
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Then update Equations (4.10), (4.12) and (4.13) for the new estimation of the 

parameters Θ(k+1) in terms of the old parameters Θ(k). The algorithm proceeds by 

using the newly derived parameters as the guess for the next iteration until the 

algorithm converges. Once mixture models are inferred from observation data, it is 

straightforward to conduct reliability analysis for a defined failure criterion. For 

example, the cumulative distribution function (CDF) of a mixed Weibull model can 

be obtained as follows: 
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4.3 Statistical Analysis of Stress Data from TMB 

4.3.1 Stress Time Histories from Extracted Strain Data 
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For the TMB deck, traffic, wind and temperature effects mixed together to produce 

the strain measurement data. The temperature-caused strain, although considerably 

large, contributes little to the stress as the majority of them are released by the 

movement and rotation of the bridge deck at expansion joints and bearings. 

Contrarily, the strain components caused by live loadings (such as traffic and wind) 

develop into stresses. As described in Chapter 3, the DWT based component 

extraction method has successfully separated live-load effects from the raw 

measurement data. On the monitored deck cross sections, strain response data from 

truss chords and diagonal struts were obtained. Figure 4.2 shows the measured 

strains from a top chord on the deck cross section CH24662.50. Figure 4.2(a) 

illustrates the sensor deployment on the chord section and recorded strain responses 

at the top and bottom locations are illustrated in Figure 4.2(b). It is observed that the 

strains at the opposite sides of the chord section evolve with time almost in same 

amplitudes. Similar observations are obtained in other truss members. It reasonably 

infers that the truss members perform like axial bars and the stress distribution on the 

truss section is uniform. Hence stress based safety assessment is viable for the TMB 

deck trusses. The stress time histories undergoing in the truss members are obtained 

by multiplying the extracted strain data of live-load effect with elastic modulus E of 

the steel material, in recognizing the fact that the bridge is almost in elastic stage 

under in-service conditions. A typical daily stress time history experienced by a 

bottom chord is illustrated in Figure 4.3. 
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(a) Sensor distribution 

 

(b) Strain measurements 

Figure 4.2 Strain responses at top and bottom locations of a top chord cross 

section 

4.3.2 Statistical Counting of Peak Stresses 

The stress time histories undergoing in the deck truss members are random processes 

in nature. Some methods such as the sampling method, threshold method, level 

crossing methods were proposed for the statistical counting of peak stresses (Frýba 

1996). Illustrated in Figure 4.4 are the peak values counted from the stress time 

histories (the threshold level is set as 0.1 MPa). In this study, one-year stress history data have been processed to explore  
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(a) Extracted strain data sequence 

 

 

(b) Derived stress time history 

Figure 4.3 Typical daily stress time history derived from extracted strain data 

(bottom chord on north truss side) 

 

their probability distribution. All the obtained peak stresses are classified into three 

groups according to different load scenarios: HL + NW (highway traffic + normal 

wind); HL + RL + NW (highway traffic + railway traffic + normal wind); and HL + 

RL + TW (highway traffic + railway traffic + typhoon). 
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(a) Under highway traffic 

 

(b) Under railway traffic 

Figure 4.4 Peak counting of stress time histories 

As shown in Figure 4.5, the obtained peak stresses are randomly dispersed. In the 

case of HL + NW, most of the stress peaks are less than 2 MPa, whilst for the each of 

the other two cases of HL + RL + NW and HL + RL + TW, there are two clustering 

centers around 1 MPa and 10 MPa respectively. Different from the case of HL + RL 

+ NW, it is observed that in the case of HL + RL + TW there are more in-between 

values as shown in Figure 4.5(c), which may due to the typhoon effect. 
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(a) HL + NW 

 

(b) HL + RL + NW 

 

(c) HL + RL + TW 

Figure 4.5 Counted peak stresses under three load conditions 
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4.3.3 Histograms of Peak Stresses 

As a non-parametric approach histograms can offer preliminary information about 

the probability distribution. Histograms of peak stresses are shown in Figure 4.6 for 

a bottom chord on the deck cross section CH24662.50. Mixture distributions are 

clearly displayed in Figures 4.6(b) and 4.6(c), which represent a combination of 

different load effects. Even for the simplest load condition of HL + NW as shown in 

Figure 4.6(a), it is difficult to specify the probability distribution satisfactorily by 

using a standard distribution function. This is because there are some hetero 

populations in the highway traffic with distinct statistical characteristics. Histogram 

analysis results show that the PDF inference is complicated by the presence of 

multiple engendering effects that create a heterogeneous dataset, making standard 

distribution models inadequate. Previously formulated Weibull mixture models will 

be adopted in the peak-stress data modeling. 

4.4 Weibull Mixture Based Reliability Assessment of TMB Deck 

4.4.1 PDF Estimation of Peak Stress Distribution 

As discussed before, a key issue to finite Weibull mixture modeling is to find the 

optimal number of components. Once the component number is specified, estimation 

of its parameters is straightforward by applying the EM algorithm. Figure 4.7 shows 
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(a) HL + NW 

 

(b) HL + RL + NW 

 

(c) HL + RL + TW 

Figure 4.6 Histograms for three load conditions (truss element: bottom chord at 

north side) 



 96

the calculated AIC values for a varying component number in the case of HL + RL + 

TW. It shows that the Weibull mixture model has advantages of less component 

number and lower AIC values in comparison with normal and log-normal mixture 

models. The optimal component number (i.e. where the AIC value is the lowest) for 

this case is determined as four.  

 

When the EM algorithm is applied for parameter estimation, the calculated log 

likelihood goes stability nearly at -21000 after 20 iterations as shown in Figure 4.8. 

Euclidean norm of the mixture parameter vector is calculated and utilized as the 

convergence criterion of the EM algorithm. Its relative errors during the iteration are 

shown in Figure 4.9. After around 20 iterations it goes nearly zero, which indicating 

the process of parameter searching can stop at this iteration step. 

 

 

Figure 4.7 AIC values in the process of model selection 
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Figure 4.8 Log-likelihood in EM algorithm 

 

Figure 4.9 Convergence of Euclidean norm of parameter vector 

 

Convergences for different component parameters are shown in Figure 4.10. 

Although there are some differences among them, all of the component parameters 

converge simultaneously after 20 iterations, demonstrating the efficiency of the EM 

algorithm for Weibull mixture estimation. 
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(a) Component 1 

 

(b) Component 2 

 

(c) Component 3 

Figure 4.10 Convergence of component parameters in EM algorithm 

(cont’d) 
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(d) Component 4 

Figure 4.10 Convergence of component parameters in EM algorithm 

 

The estimated mixture Weibull model and its component distributions are illustrated 

in Figure 4.11. Estimated parameters of the component distributions are listed in 

Table 4.1, where the parameters ßj and θj characterize each component of the Weibull 

mixture. 

 

 

Figure 4.11 Estimated Weibull mixture and its component distributions 
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Table 4.1 Estimated parameters of Weibull mixture distribution 

(load condition: HL + RL + TW) 

 

Component Component Parametric Theta Beta 
index weight family θ β 

1 7.86E-01 Weibull 1.59E+00 1.58E+00 

2 4.69E-02 Weibull 6.02E-01 1.60E+00 

3 1.26E-01 Weibull 9.22E+00 7.84E+00 

4 4.11E-02 Weibull 1.12E+01 4.18E+00 

 

Figure 4.12 illustrates the formulated Weibull models for three load conditions (HL 

+ NW, HL + RL + NW, and HL + RL + TW). It is observed that the proposed 

Weibull mixture model has an excellent performance in the PDF inference. 

4.4.2 In-Service Condition Assessment Using Estimated PDFs 

After obtaining the PDFs of peak stresses by finite Weibull mixture models, 

evaluation of the failure probability or reliability index can be conducted 

straightforward for a defined failure criterion. In this study, for the reliability method 

applied to sensor readings, limit state functions are defined in terms of sensor 

readings as proposed by Frangopol et al. (2008). It is required that the structural 

resistance R is greater than the monitored load effect S, i.e., g(X) = R – S > 0 where  
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(a) HL + NW 

 

(b) HL + RL + NW 

 

(c) HL + RL + TW 

Figure 4.12 PDF inference in three load conditions (truss element: bottom chord 

on north truss side) 
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X is the parameter vector. In the design stage, the maximum allowable stress for live 

load effect was specified as 60 MPa (Wong 2007). Based on the estimated PDFs, the 

CDF for the case HL + RL + TW is calculated and illustrated in Figure 4.13. 

 

 

Figure 4.13 Cumulative probability based on estimated PDF (load condition: 

HL + RL + TW) 

Table 4.2 Cumulative probability based on estimated PDF 

(load condition: HL + RL + TW) 

 

Component Component Parametric Cumulative 
index weight family probability 

1 7.86E-01 Weibull 0.999999999995914  

2 4.69E-02 Weibull 0.999999999949830  

3 1.26E-01 Weibull 0.999999999991836  

4 4.11E-02 Weibull 0.999999998502600  

Mixture probability 0.99999999993186 or reliability 6.42 

 

Table 4.2 provides the mixture CDF and its components, along with the 



 103

corresponding reliability index. Following the proposed approach, reliability indices 

of all the truss members on the deck cross section CH24662.50 are calculated and 

listed in Table 4.3 for the three load conditions. 

 

Table 4.3 Reliability indices of truss components for three load conditions 

(on deck cross section CH24662.50) 

 

Location   Truss element  
Load conditions 

HL+NW HL+RL+NW   HL+RL+TW  

N
or

th
 S

id
e

Top chord 9.76 8.11 6.84 

Diagonal strut 10.84 9.18 7.98 

Bottom chord 9.24 7.86 6.42 

S
ou

th
 S

id
e

Top chord 9.72 8.20 6.80 

Diagonal strut 10.65 9.02 7.88 

Bottom chord 9.08 7.93 6.37    

Note: HL – highway traffic; RL – railway traffic; NW – normal wind; TW - typhoon. 

 

As shown in Table 4.3, the reliability indices of diagonal struts are higher than those 

of top and bottom chords for all the three load conditions, which means the safety 

condition of diagonal struts are better than the truss chords. Of all the three load 

conditions, the case of HL + RL + TW is the most dangerous. Bridge owner should 

pay more attention on guard when typhoon is coming. As shown in Table 4.4, the 

correspondence between the reliability index value and the required maintenance 

action has been established by Frangopol et al. (2001) and by Lark and Flaig (2005). 

By comparing Table 4.3 and Table 4.4, it is concluded that all the deck truss 
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components are in a good safety condition, and hence no maintenance action is 

needed at present. With monitoring data continuously streaming in, the probability 

distribution model of the live load effect can be updated for future condition 

assessment. 

 

Table 4.4 Relationship between safety state and maintenance action 

 

Safety state 5 4 3 2 1 

Reliability index β>9.0 9.0>β>8.0 8.0>β>6.0 6.0>β>4.6 4.6>β 

Attribute for safety excellent very good good fair unacceptable

Maintenance action No action
Preventive 
inspection

Detailed 
inspection  

Possible 
strengthening 

Rehabilitation

4.5 Summary 

In TMB, the in-service monitoring data of strain responses at the deck trusses are a 

combination of live-load and environmental effects such as traffic, wind and 

temperature. Strain components due to different effects play different roles in 

contribution to stress quantities. As the majority of temperature-caused strain is 

released by the movement and rotation of the bridge deck at expansion joints and 

bearing, it contributes little to the stress although considerably large. Contrarily, the 

strain components caused by live loadings (such as traffic and wind) develop into 
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stresses and are extracted for the stress based reliability assessment. 

 

When using strain response data due to live load effect for reliability assessment, a 

problem arises in the inference of probability distribution from observation data. 

Strain response due to live load effect collected under in-service environment is a 

result of multi-load effect such as traffic (highway, railway, or both of them) and 

wind (monsoon or typhoon). It cannot be characterized by a standard probability 

density function adequately. Weibull mixture models are developed and applied to 

characterize the statistical properties of peak-stress data. With the application of the 

proposed method to TMB, the following observations have been made: (1) the PDF 

of peak stresses has a very complicated shape due to multi-load effect; (2) Weibull 

mixtures have advantages of less component number and lower AIC values in 

comparison with normal and log-normal mixtures; (3) The EM algorithm is a 

suitable tool for the Weibull mixture parameter estimation with fast convergences 

and excellent stabilities; (4) Through reliability analysis, it is found that all the deck 

truss members are in a good safety condition and no maintenance action is needed; (5) 

Among the three load condition, the HL + RL + TW case is the most dangerous. 
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CHAPTER 5 

KALMAN-FILTER BASED ESTIMATION OF NEUTRAL-AXIS 

POSITION OF BRIDGE DECK USING STRAIN RESPONSE DUE 

TO TRAFFIC EFFECT 

5.1 Introduction 

Long-span bridge deck can be considered to behave like a beam when its length 

exceeds its width by such an amount that its cross sections displace bodily and do not 

change shape when traffic loads cause it to bend. Cracks are prone to occur in 

beam-like bridge deck under traffic loading environment. Crack damage can heavily 

affect the global safety and performance of in-service bridges, and more severely, 

continual operation without noticing the damage accumulation will be disastrous. To 

understand the bridge deck failure, numerous studies of crack damage detections 

have been carried out on beam-like structures in laboratory (DeMerchant et al. 1999, 

2000; Bao et al. 2001; Kim et al. 2002; Zeng et al. 2002; Bernini et al. 2006; Gao et 

al. 2006; Wu et al. 2006; Zhang et al. 2006). Kim (2003) conducted an experimental 

investigation of saw-cut damage on the 1/15 scale model of a suspension bridge deck. 

In his study, signal anomaly index was proposed as an indicator of damage. Park et al. 
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(2007) presented a strain flexibility based crack detection method for a steel beam. 

An experimental study was carried out by Lee et al. (2010) on a cracked cantilever 

beam to verify their proposed neural-network method for structural damage detection. 

Although the above methods achieved a certain success with simulation and 

laboratory data, they still have limitations in application to in-service monitoring 

data. 

 

The use of structural response of a bridge deck under the operational traffic loading 

for structural condition assessment has received increasing attention in the past 

decade. Catbas and Aktan (2002) indicated that it is possible to extract the actual unit 

influence line (UIL) of a bridge deck for damage detection. Online evaluation of UIL 

under normal traffic environment is envisioned as long as the limitations of signal 

decomposition are clearly understood and mitigated. But UIL based damage 

detection methods may have the same problem of damage sensitivity as vibration 

based approaches have. Zhu and Law (2006) presented a wavelet-based method for 

crack detection under moving load condition. A dip of wavelet coefficients of one 

measurement signal was used as an indication of damage happening on a test beam. 

However, anomalies of the wavelet coefficient may be due to varying load patterns 

and they cannot be related to damage. In selection of damage indices for bridge deck 

assessment, their sensitivity to damage and robustness with respect to random traffic 

load patterns should be taken into consideration. 
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Theoretically the neutral-axis position of the bridge deck section remains unchanged 

under the varying traffic environment. On the other hand, it has potential in 

improving the sensitivity to damage because it reflects the local cross-section 

property. In this chapter, the neutral-axis position is proposed as an indicator of 

damage for deck condition assessment. A KF estimator is first formulated for 

locating the neutral-axis position from the local strain measurements. Numerical 

simulation is then conducted to verify its anti-disturbance in noise contaminations. 

Finally application of the proposed KF estimator to TMB for deck assessment is 

carried out. 

5.2 Structural Behavior of Beam-Like Deck 

Generally long-span bridge deck behaves like a bending beam because the cross 

section under eccentric loads has relatively little influence on the principal bending 

strain or stress responses. In the elastic theory of bending beams, it is assumed that 

the plane sections remain plane when deforming, and that the beam is composed of 

discrete linear fibers. From the assumption it can be shown that, at any point on a 

cross section, the longitudinal strain ε is proportional to the distance y of the point 

from the neutral axis, which passes through the centroid of the section. As illustrated 

in Figure 5.1, the flexural strain can be expressed as 

0 0

' ( )
lim lim
s s

s s y y

s

   
   

  
   
 

   
 

              (5.1) 
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where ρ is the curvature radius of the bending beam, y is the distance of the point 

from the neutral axis. According to force equilibrium, bending strain can also be 

formulated as 

My

EI
                                  (5.2) 

where M is the total bending moment on section, I is the moment of inertia of cross 

section about the neutral axis. In a more complicated situation, if a beam is subjected 

to loads which are not normal to a principal axis of the section, then the loads can be 

resolved into components normal to the two respective principal axes. Bending 

analysis about each axis can be conducted separately. 

5.3 Neutral-Axis Position Estimation 

According to the Euler-Bernoulli assumption, the strain distribution is assumed to be 

linear over depth of the cross-section. Correspondingly strains at the bottom and top 

locations of the section are denoted by εb and εt respectively, as shown in Figure 5.2. 

Following the geometric relation, the ratio of εb and εt can be expressed as 

t t

b b

y

y




                                (5.3) 

or  

t t

t b t b

y

y y


 


 

                               (5.4) 
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(a) Undeformed element 

 

(b) Deformed element 

Figure 5.1 Bending behavior of beam-like deck 

 

where yt is the distance between the top and the neutral axis, and yb is the distance 

between the bottom and the neutral axis. The ratio in Equation (5.4) is equivalent to 

that of the neutral-axis location over the height of the cross section: 
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t n

t b

y y
r

y y h
 


                               (5.5) 

where yn denotes the neutral axis location of the cross section, and h is the height of 

the cross section. 

 

 

Figure 5.2 Flexural strain distribution over depth of cross section 

5.3.1 Direct Estimation Method 

Under traffic loadings, bending behavior dominates the response of beam-like bridge 

deck. The neutral-axis position can be estimated by 

ˆ b

t b

r


 



                               (5.6) 

if the strain responses at top and bottom points are measured. But its efficiency can 

only be ensured on the condition that measurement data are without noise 

contamination. 
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5.3.2 KF Based Estimation Method 

The Kalman filter is a mathematical method named after Kalman (1960). It is 

purposed to use measurements observed over time (containing noise and other 

inaccuracies) to produce values that tend to be closer to the true values of the 

measurements. Theoretically Kalman filter combines a system’s dynamic model (i.e., 

physical laws of motion) and measurements (such as sensor readings) to form an 

estimate of the system’s varying quantities (its state) that is better than the estimate 

obtained by measurement alone (Brown and Hwang 1992). It is similar in many 

respects to the least-square approach to estimation and, in a sense, Kalman filter can 

be regarded as a generalization of the least-square method (Sorenson 1970). A salient 

advantage of the Kalman filter is that the assumption of stationarity of the model 

coefficients can be relaxed. 

 

In this study, the neutral-axis position in ratio (r = yn/h) is taken as the state variable 

to be estimated. Because there is no deterministic disturbance or control scalar, the 

discrete model of the chosen state is given by 

1k k k kr r w                                  (5.7) 

where Фk is the propagation scalar that propagates the state from one sampling 

instant to the next and wk is the white process noise. And the measurement equation 

is given as 
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k k kz Hr v                                 (5.8) 

where H is the measurement scalar that relates the state to the observation zk, and vk 

is the measurement noise. In this special case the discrete Kalman filtering equation 

simplifies to 

1 1ˆ ˆ ˆ( )k k k k k k kr r K z H r                             (5.9) 

From the preceding equations, the error in the estimate is 

1 1ˆ ˆ ˆ( )k k k k k k k k k kr r r r r K z H r                       (5.10) 

Recognizing that the measurement can be expressed in terms of the state, Equation 

(5.10) can be formulated as 

1 1ˆ ˆ ˆ( )k k k k k k k k k k kr r r r r K Hr v H r                      (5.11) 

Noting that the state at time k can be replaced by an alternate expression at time k-1, 

it is obtained that 

1 1 1ˆ ˆ ˆ( )k k k k k k k k k k k k kr r r r r K H r Hw v H r                    (5.12) 

Because 

ˆk k kr r r                              (5.13) 

it also says that 
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1 1 1ˆk k kr r r                                (5.14) 

Therefore, combining the similar terms in the error estimation equation yields 

1(1 ) (1 )k k k k k k k kr K H r K H w K v                      (5.15) 

If the covariance of estimate error is defined as 

2( )k kP E r                              (5.16) 

and similarly 

2( )k kQ E w                             (5.17) 

2( )k kR E v                             (5.18) 

then by squaring and taking expectations of both sides of Equation (5.15) yields 

2 2 2
1(1 ) ( )k k k k k k kP K H P Q K R                       (5.19) 

By defining 

2
1k k k kM P Q                               (5.20) 

then the covariance equation becomes 

2 2(1 )k k k k kP K H M K R                        (5.21) 

The Kalman filter gain Kk that minimizes the variance of the error in the estimate can 
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be found by simply taking the derivative of the preceding expression with respect to 

the gain and setting the result equal to zero, that is, 

2(1 ) ( ) 2k
k k k k

k

P
K H M H K R

K


   


                   (5.22) 

Solving the preceding equation for the gain yields 

2 1
2

( )k
k k k k

k k

M H
K M H H M R

H M R
  


                 (5.23) 

Substitution of the optimal gain into the covariance equation yields 

2
k k k k

k
k k

R M R K
P

H M R H
 


                        (5.24) 

By inverting the optimal gain equation, it obtain 

2
k k k k kK R M H H M K                         (5.25) 

Substituting the preceding equation back into the variance equation yields 

2
k k k k k

k k k k

R K M H H M K
P M HM K

H H


                  (5.26) 

or, more simply, 

(1 )k k kP K H M                          (5.27) 

The above derivation shows that the gain of the Kalman filter is chosen to minimize 
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the variance of the error in the estimate. An iterative way of finding the optimal gain 

at each step is illustrated in Equations (5.20), (5.23) and (5.27). 

5.3.3 Numerical Simulation 

In the previous section, the KF estimator for neutral-axis position has been derived 

based on the relation between neutral-axis position and strain measurement. The 

validation of its stability to noise disturbance by numerical simulation comes in this 

section. 

5.3.3.1 Case 1: Free of noise 

Dynamic strain response data are first produced by FEM simulation of a flexural 

beam under moving load. Details of the FEM modeling and moving load simulation 

will be discussed in Chapter 6. The simulated strain responses at the top and bottom 

of a cross section are illustrated in Figure 5.3. It is shown that the strain responses at 

the top and bottom points evolve with time in almost same amplitudes but opposite 

directions, which favorably demonstrates the bending behavior. 

 

In the Kalman filter method, improper filter initialization can degrade filter 

performance or cause the performance to collapse. Different initial values for 

the  proposed KF est imator  are  f i rs t  examined.  Figure 5 .4  shows the 
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Figure 5.3 Simulated strain responses at top and bottom of section C 

 

Figure 5.4 KF estimation of neutral-axis position (initial value: 0.2, 0.5, 0.8) 

 

Figure 5.5 KF estimation of neutral-axis position (initial value: 0.4, 0.5, 0.6) 
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performance of the KF estimator when the initial values is chosen as 0.2, 0.5 and 0.8, 

respectively and Figure 5.5 for another group when the initial value is 0.4, 0.5 and 

0.6, respectively. The true value of the estimate is 0.5 where the structural model and 

the sensor location are symmetric. As shown in Figure 5.4 and Figure 5.5, when the 

initial value is chosen to be the same as the true value, the proposed KF estimator has 

an excellent performance. In other cases, although the initial values have some 

deviation from the true value, the KF estimator can still converge to the true value. 

When the initial value is closer to the true value, the KF estimator has a faster 

convergence rate. 

 

In the case of no additional noise contamination, the direct estimation method gives 

rise to satisfactory results which are further improved by the proposed KF estimator 

as shown in Figure 5.6. The direct estimation results vary between 0.4990~0.5010, 

and the KF estimation results (denoted by the line in Figure 5.6) fluctuate between 

0.5000~0.5005, which are only 1/4 of those obtained by the direct estimation method. 

Figure 5.7 illustrates the convergence of the Kalman gain in Case 1. It shows that the 

Kalman gain descends very fast at the first 10 steps of iteration. Then the descending 

speed decreases drastically, implying that the estimate is approaching to the true 

value. 
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Figure 5.6 Comparison between direct and KF estimation methods in Case 1 

 

 

Figure 5.7 Kalman gain evolution in Case 1 

5.3.3.2 Case 2: 5% noise contamination 

As discussed before, the efficiency of the direct estimation method can only be 

ensured in the case of no noise corrupted in the data and the KF estimation method is 

superior in handling this kind of problems. In this and next sections, the 

anti-disturbance ability in noise contamination will be testified. In this case, 5% 
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Gaussian white noise process is added to the strain response data adopted in Case 1. 

Figure 5.8 shows the generated data sequence with 5% Gaussian white noise. The 

Q-Q plot (“Q” stands for quantile) is used to verify the similarity of the generated 

sample data versus the standard normal distribution.  

 

 

Figure 5.8 Generated Gaussian white noise sequence (5% noise) 

 

 

Figure 5.9 Q-Q plot of sample data versus standard normal distribution (5% 

noise) 
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As shown in Figure 5.9, the sample data are linearly related to the standard normal 

distribution, meaning that the sample data sets favorably conform to the pre-set 

standard Gaussian white noise generator. Data sequences of strain responses with 5% 

noise are illustrated in Figure 5.10. Compared with Figure 5.3 of Case 1, the strain 

responses with 5% noise are not smooth. 

 

 

Figure 5.10 Simulated strain responses at top and bottom of section C (5% 

noise) 

 

 

Figure 5.11 Comparison between direct and KF estimation methods (5% noise) 
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Although the 5% noise disturbances are not very remarkable in strain response data, 

the estimation results of neutral-axis position by the direct method fluctuate 

noticeably and the variation ranges between 0.4 and 0.6 as shown in Figure 5.11. 

Particularly the direct method has a worse performance at the beginning and ending 

of the data sequence as opposed to the middle part. Due to the low signal-noise ratio, 

the direct estimation results are unacceptable. In contrast, the KF method achieves a 

better estimation and particularly has an excellent performance when the signal-noise 

ratio is low. As shown in Figure 5.12, the Kalman gain converges after 10 steps of 

iteration. Residual errors of the KF estimator are illustrated in Figure 5.13 which 

shows that the residual errors are randomly distributed around zero. The Q-Q plot, as 

illustrated in Figure 5.14, displays a strong linearity of the residual errors against the 

standard normal distribution. The residual errors follow a normal distribution, 

demonstrating again the validity of the proposed KF approach for neutral-axis 

position estimation. 

 

 

Figure 5.12 Kalman gain evolution in Case 2 (5% noise) 
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Figure 5.13 Residual errors (5% noise) 

 

 

Figure 5.14 Q-Q plot of residual errors versus standard normal distribution 

(5% noise) 

5.3.3.3 Case 3: 10% noise contamination 

To simulate strain response data with 10% noise contamination, the random number 

generator used in Case 2 is utilized to produce noise samples. Figure 5.15 shows the 
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generated noise samples which randomly vary between -20 and +20 micro-strain. 

The strong linearity of the simulation samples against the standard normal 

distribution, as shown in Figure 5.16, demonstrates the validity of the generated 

noise data. Figure 5.17 illustrates the strain response data with 10% noise corrupted. 

 

 

Figure 5.15 Generated Gaussian white noise sequence (10% noise) 

 

 

Figure 5.16 Q-Q plot of sample data versus standard normal distribution (10% 

noise) 
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As shown in Figure 5.18, the variation of the estimation results of neutral-axis 

position by the direct method ranges from 0.2 to 0.8 in Case 3. It is also observed in 

Figure 5.18 that the direct method performs worse when the signal-noise ratio is low 

(at the beginning or ending of the data sequence). As expected, the KF estimator 

significantly improves the estimation accuracy. 

 

 

Figure 5.17 Simulated strain responses at top and bottom of section C (10% 

noise) 

 

Figure 5.18 Comparison between direct and KF estimation methods 

(10% noise) 
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Residual errors in the process of KF estimation are illustrated in Figure 5.19, which 

randomly disperse around zero. The Q-Q plot shows a strong linearity of the residual 

errors against the standard normal distribution, as illustrated in Figure 5.20. Figure 

5.21 illustrates the convergence of the Kalman gain in Case 3. It shows that the 

Kalman gain descends quickly at the first 10 steps of iteration. Subsequently the 

descending speed decreases drastically when the estimate approaches to the true 

value. 

 

Figure 5.19 Residual errors (10% noise) 

 

Figure 5.20 Q-Q plot of residual errors versus standard normal distribution 

 (10% noise) 
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Figure 5.21 Kalman gain evolution in Case 3 (10% noise) 

5.3.3.4 Analysis of results 

In this section, the performance of the direct and KF estimation methods is evaluated. 

As illustrated in Figure 5.22, when there is no noise contamination, the KF estimator 

has a perfect performance. With 5% noise being corrupted, the performance of the 

KF estimator degrades at the beginning but after a while the estimation converges to 

the true value. As to the more noisy case with 10% noise contamination, the 

fluctuation becomes more serious at the beginning of the estimation process. But 

with the iteration going further, convergence is achieved as expected. A comparison 

of the results from the three cases is provided in Table 5.1. In Case 1, the direct and 

KF estimation methods both reach almost the true value of 0.5. Their relative errors 

are 0.0313% and 0.0308%, respectively. The standard deviation of the direct 
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estimation results is as small as 5.78 E-04, demonstrating its efficiency when there is 

no noise. However, with the increase of noise level, the estimation results by the 

direct method deteriorates seriously such that the relative error goes to 0.1038% and 

-0.3056% in Case 2 and Case 3, respectively. The standard deviation increases 

obviously, indicating that the direct estimation results are not reliable. 

 

 

Figure 5.22 Performance assessment of KF estimator in different noise levels 

 

Table 5.1 Performance analysis of KF estimator in simulation data 

Simulation 
cases 

Direct method 
KF 

method 

mean  standard deviation   

Case 1 0.5001565 5.78E-04 0.5001539 

Case 2 0.5005189 0.0258 0.5002154 

Case 3 0.4984721 0.1156 0.4995412 

 

Contrarily, the KF approach achieves improved estimates, evidenced by the relative 
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error of 0.0431% in Case 2 and -0.0918% in Case 3. These results demonstrate that 

the KF estimator has an excellent anti-disturbance ability in noise contamination. 

5.4 Application to TMB Deck Assessment 

As presented in Chapter 3, the extracted traffic-induced strain responses restore the 

flexural behavior very well either in highway or railway traffic. Figure 5.23 

illustrates the extracted traffic-induced strains experienced by a top chord and a 

bottom chord on the deck cross section CH24662.50 for a typical day. It is observed 

that the magnitude of the strain responses acquired at 2:00 to 5:00 am are relatively 

small since railway traffic ceases to operate during that period. This observation 

reveals that strain responses are sensitive to traffic load patterns. 

 

 

Figure 5.23 Traffic-induced strain time histories experienced by top and bottom 

chords on deck section CH24662.50 for a typical day 

 

Theoretically, the neutral-axis position of the bridge deck cross section does not 

change under the varying traffic environment. It will be testified in this section. Four 
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typical load patterns are observed in Figure 5.25 and grouped as follows: (1) 

00:00~02:00; (2) 03:00~05:00; (3) 05:00~07:00; (4) 10:00~12:00. The KF approach 

to the neutral-axis position estimation is applied on these strain measurement data. 

Figure 5.24 shows the extracted strain response data during the time period of 

00:00~02:00, which include a transition of traffic pattern from having to not having 

railway traffic. Although this transition pattern is remarkably reflected in the strain 

responses, it does not affect the neutral-axis position estimated by the KF approach 

as shown in Figure 5.25. 

 

 

Figure 5.24 Traffic-induced strain time histories between 00:00 and 02:00 

 

Figure 5.25 Estimated neutral-axis position from strain measurement 

(00:00 ~ 02:00) 
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Figure 5.26 illustrates the strain responses from 03:00 ~ 05:00 and there is no 

railway traffic effect in this time period. Magnitude of the strain responses is much 

lower than the case with railway traffic. The estimated neutral-axis position by the 

direct and KF methods in this scenario is shown in Figure 5.27. 

 

 

Figure 5.26 Traffic-induced strain time histories between 03:00 and 05:00 

 

Figure 5.27 Estimated neutral-axis position from strain measurement (03:00 ~ 

05:00) 

 

In the time period of 05:00~07:00, there is a traffic pattern transition from not having 

to having railway traffic as shown in Figure 5.28. Figure 5.29 illustrates the 

neutral-axis position estimated by the KF method during this time period, which is 
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not affected by the traffic pattern transition. 

 

 

Figure 5.28 Traffic-induced strain time histories between 05:00 and 07:00 

 

Figure 5.29 Estimated neutral-axis position from strain measurement (05:00 ~ 

07:00) 

 

For the last pattern of highway and railway traffic mixing together, the strain 

responses from 10:00 to 12:00 are illustrated in Figure 5.30. Estimation results of the 

neutral-axis position by the direct and KF methods are illustrated in Figure 5.31. No 

observable variation of the neutral-axis position estimated by the KF method is 

found. 
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Figure 5.30 Traffic-induced strain time histories between 10:00 and 12:00 

 

Figure 5.31 Estimated neutral-axis position from strain measurement (10:00 ~ 

12:00) 

 

The entire time histories of the neutral-axis position estimated by the direct and KF 

methods for a complete day (24 hours) are illustrated in Figure 5.32. It is shown that 

there are no remarkable transition patterns appearing in the time series of the 

estimated neutral-axis position although they do exist in the strain response time 

histories. Estimation results for different time periods are listed in Table 5.2. The 

variation range of the estimation mean by the direct method is between 0.5408021 

and 0.5476296, but the standard deviation is remarkable. Contrarily the KF method 
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has a stable performance during the estimation process. The estimation results vary 

in the range of 0.5408047 to 0.5476295 for all the time periods. They fluctuate 

between -0.49% and 0.77% of their mean value. 

 

 

Figure 5.32 Estimated neutral-axis position from strain measurement (00:00 ~ 

24:00) 

 

Table 5.2 Comparison of estimated neutral-axis position in TMB deck under 

different load patterns 

Time period 
Direct method 

Kalman Filter based 
method 

mean  standard deviation   

00:00 - 02:00 0.5423851 0.2127 0.5423849 

03:00 - 05:00 0.5476296 0.2348 0.5476295 

05:00 - 07:00 0.5425675 0.2071 0.5425693 

10:00 - 12:00 0.5408021 0.2044 0.5408047 

00:00 - 24:00 0.5438627 0.1968 0.5438627 
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5.5 Summary 

In selection of damage indices for bridge deck assessment, their sensitivity to 

damage and robustness with respect to random traffic load patterns should be taken 

into consideration. Theoretically the neutral-axis position of a bridge deck cross 

section remains unchanged under the varying traffic environment. In addition, it has 

potential in improving the sensitivity to damage because it reflects the local 

cross-section property. In this chapter, the neutral-axis position is proposed as an 

indicator of damage for deck condition assessment. TMB bridge deck performs like a 

flexural beam, i.e., the deck top compresses and the deck bottom tensions 

concurrently, or vice versa. Based on the bending behavior, a KF estimator of 

locating the neutral-axis position from the strain measurement is formulated. Its 

capability of anti-disturbance in noise contamination has been testified by numerical 

studies.  

 

Three extents of noise contamination (0%, 5% and 10%) in sensor readings are 

considered in the simulation. In Case 1, the direct and KF estimation methods almost 

reach the true value. Their relative errors are 0.0313% and 0.0308%, respectively. 

The standard deviation of the direct estimation results is as low as 5.78 E-04, 

demonstrating its efficiency when there is no noise. However, with the increase of 

noise extents, the estimation results by the direct method deteriorate seriously such 

that the relative error goes to 0.1038% in Case 2 and -0.3056% in Case 3 respectively. 



 136

The standard deviation increases obviously, implying that the direct estimation 

results are not reliable. Contrarily the KF approach improves the estimation accuracy 

significantly, with the relative error being 0.0431% and -0.0918% for Case 2 and 

Case 3, respectively. It can be concluded that the proposed KF estimator has an 

excellent anti-disturbance ability in noise contamination. 

 

Moreover, the proposed KF estimator has been applied to the strain measurement 

data acquired from the TMB deck. The direct and KF estimation results of the 

neutral-axis position under different load patterns are obtained and compared. The 

variation range of the estimation mean by the direct method is between 0.5408021 

and 0.5476296, but the standard deviation is remarkable. In contrast, the KF method 

has a stable performance under different load patterns and the estimation results vary 

in the range of 0.5408047 to 0.5476295. They fluctuate between -0.49% and 0.77% 

of their mean value. It is therefore concluded that the neutral-axis position of the 

bridge deck cross section does not change under the varying traffic environment. 
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CHAPTER 6 

NEUTRAL-AXIS POSITION BASED DAMAGE DETECTION OF 

BRIDGE DECK USING STRAIN MEASUREMENT: 

EXPERIMENTAL VERIFICATION 

6.1 Introduction 

Structural damage is usually viewed as any deviation from original condition or 

status, which leads to the weakening of structural safety and serviceability. Early 

damage is desired to be detected by the practice of SHM. Significant attention has 

been devoted to finding damage-sensitive indices from global or local measurements. 

In recognizing that acceleration data can be conveniently acquired and the noise on 

them is relatively low, vibration based global damage detection methods have been 

extensively explored. Principally these methods are grounded on the assumption that 

changes in physical properties (such as mass, stiffness and boundary conditions) give 

rise to changes in dynamic characteristics (such as modal frequency, modal shape, or 

their derivations). Early work of such methodologies focused on the natural 

frequency (Cawley and Adams 1979) and modal shape information (Pandey et al. 

1991; Chance et al. 1994; Dong et al. 1994). Some derivatives of modal shapes, such 
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as Modal Assurance Criteria (MAC) (West 1984), Coordinate Modal Assurance 

Criterion (COMAC) (Lieven and Ewins 1988), and Multiple Damage Location 

Assurance Criterion (MDLAC) (Lu et al. 2002), were also formulated for damage 

localization. 

 

Although the underlying philosophy of vibration based damage detection appears 

intuitive, assessing structural damage in large-scale bridges remains still a 

challenging task. The main pitfalls limiting the practical applicability of vibration 

based damage detection methods include the insensitivity of modal properties to 

local damage in bridge structures, uncertainty and incompleteness in measurement 

data, modal variability arising from varying operational and environmental 

conditions, and modeling errors in the analytical model. Abdel Wahab and De Roeck 

(1997) showed that changes in modal properties resulting from changes in 

environmental conditions (such as temperature variation and random traffic effect) 

can be as significant as the changes caused by damage. Besides measurement noise 

can also significantly affect the success of vibration based damage detection. For 

example, changes of modal shape curvature, although sensitive to damage, could be 

masked by the derivative operation on the noisy data (Chance et al. 1994). An 

experimental verification of vibration based damage detection algorithms on a 

large-scale bridge was carried out by Frishwell and Penny (1997) and they concluded 

that modal characteristics might be insensitive to local damage. 
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In recognizing that damage is an intrinsically local phenomenon, the use of local 

measurement may have potential to improve the performance of damage detection 

methods. Jenkins et al. (1997) showed by an experiment that strain responses are 

more locally sensitive than the acceleration. However, strain responses are also 

sensitive to the loading environment and temperature variation, which cannot be 

related to damage. Therefore, in developing strain-related damage indicators, their 

insensitivity to loading and environmental variation should be taken into 

consideration. When using strain measurements for damage detection, strain 

components due to different mechanisms should be separated and processed 

individually. Because an indicator specially designed for a certain structural behavior 

may be seriously distorted by other source effects, and misjudgment of damage 

might happen. As described in Chapter 1, this study focuses on the development of a 

strain-related damage indicator for bridge deck assessment. Aiming at this purpose, 

Chapter 5 has proposed the neutral-axis position as a damage index for bridge deck 

assessment. A KF estimator has been formulated to locate the neutral-axis position 

based on the strain measurement. This Chapter is to testify the feasibility of 

neutral-axis position based damage detection by an elaborately designed experiment.  

 

For the experimental verification, a flexible steel beam subject to moving bogies is 

used as the test structure to simulate the structural behavior of bridge deck under 

traffic effect. And cutting on a selected cross section is to simulate crack damage. 

Experimental setup including design and fabrication of the test model, sensor 
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instrumentation, testing load and damage simulation will be described. Then by 

establishing a multi-scale FEM (finite element method) model, numerical simulation 

based damage detection of the test model will be carried out for static and moving 

load cases, respectively. Physical experiment on damage detection of the test 

structure will be conducted eventually. 

6.2 Experimental Setup 

In the physical experiment, bridge deck is simplified as a flexural beam and traffic 

loading is modeled by a moving bogie with adjustable weight and speed. The crack 

damage is simulated by a reduction of stiffness properties of the cross section. 

Damage detection under static and moving load cases is experimentally explored. 

6.2.1 Design and Fabrication of Test Model 

As shown in Figure 6.1, the experimental model consists of two steel beams with a 

span of 6 m which are simply supported and fixed on two abutment pieces, 

respectively. Each steel beam is composed of three welded plates, namely left flange, 

web plate, and right flange. Its section parameters is HB 150×75×5×7mm as 

shown in Figure 6.1(b). Two support conditions (shown in Figure 6.2) are 

designated in the experiment to testify whether the neutral-axis position of a cross 

section is affected by different boundary conditions.  
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(a) Elevation view 

 

 

(b) Cross section view 

Figure 6.1 Schematic of experimental model 

 

The material grade of the steel beam is BS4360-43A and its elastic modulus and 

yielding strength are 205GPa and 275MPa, respectively, and the Poisson’s ratio are 

0.3. The chemical compositions and mechanical properties are listed in Table 6.1.  

6.2.2 Instrumentation 
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Table 6.1 Chemical compositions and mechanical properties 

 

Material 
Grade 

Chemical Compositions Mechanical Properties 

C Mn P S Si 
Yield 

strength
Tensile 
strength 

Elongation 
(%)

BS4360-4 0.25 1.60 0.05 0.05 0.50 275 430-58 22 

 

 

 

(a) Simply supported case 

 

(b) Fixed case 

Figure 6.2 Two support conditions 
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The main experimental devices for the strain measurement are the ESG sensors 

(TML PFL-10-11) and data acquisition equipment (NI SCXI-1000), as shown in 

Figure 6.3 and Figure 6.4. The maximum sampling rate of the ESG interrogator is 

1000 Hz and the gauge length is 10 mm. The total number of the channels of the data 

acquisition system is 32, of which 12 channels are used for strain measurement. 

Totally 12 ESG sensors are installed on the three sections of the main beam (SB1) 

which are denoted by sections A, B, and C (shown in Figure 6.1). 4 ESG sensors are 

installed on the mid-span section (denoted as section C’) of the reference beam (SB2). 

Figure 6.5 shows the schematic of the sensor distribution on the mid-span section C, 

and Figure 6.6 shows the photo of strain gauges deployed on the testing structure.  

 

 

 

Figure 6.3 ESG gauges 
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Figure 6.4 ESG data acquisition equipment 

 

 

Figure 6.5 Deployment of strain sensors on section C 

 

 

Figure 6.6 Photo of strain sensors deployed on section C 
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6.2.3 Description of Testing Load 

In the experiment, traffic loading is simulated by a bogie with wheel axis length of 

400 mm pulled by an automatic transmission equipment as shown in Figure 6.7 and 

Figure 6.8. Four different load weights, namely 89 kg, 131 kg, 157 kg and 257 kg, 

are accounted for in the experiment for moving load simulation. 

 

 

Figure 6.7 Automatic bogie transmission equipment 

 

 

Figure 6.8 Bogie for moving vehicle simulation 
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6.2.4 Damage Simulation 

Bending behavior dominates the response of bridge deck under traffic loading and 

hence bending cracks are prone to happen. An artificial cut on the cross section is 

introduced to simulate bending cracks induced by traffic loadings. In this experiment, 

two extents of damage are considered, respectively with 5 mm and 15 mm cuts on 

the mid-span section C of the main beam SB1, as shown in Figure 6.9 and Figure 

6.10. 

 

Figure 6.9 Schematic of cuts on cross section 

6.2.5 Chart of Experiment 

As illustrated in Figure 6.11, the model experiment includes two main parts: 

numerical simulation and physical testing. Numerical simulation for damage 

detection of the test structure is first conducted as a preparation of the physical 

testing. Undamaged, damaged_5mm, and damaged_15mm are considered in the 

static and moving load cases. The moving load simulation is to verify whether 
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(a) 5 mm 

 

 

(b) 15 mm 

Figure 6.10 Two extents of damage produced 

 

the neutral-axis position is insensitive to the moving load weight and speed. 

Calibration of the neutral-axis position under different boundary conditions will be 

conducted before the physical testing. 
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Figure 6.11 Chart of experiment 

6.3 Neutral-Axis Position Based Damage Detection of Test Model: 

Numerical Simulation 

6.3.1 Multi-Scale FEM Model 

As strain and stress responses are required for the damage detection simulation, 3D 

solid elements are adopted to establish FEM model. When using a full 3D model, the 

computational time will become a big hurdle. In order to achieve a compromise 

between the computation precision and efficiency, the multi-scale finite element 

method (MsFEM) is applied in this study. It can efficiently capture the large scale 

behavior without resolving all the small-scale features. By using the commercial 

FEM software of ANSYS, the global model of the test structure is established as 

shown in Figure 6.12. Local FEM model at the damage region is illustrated in 
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Figure 6.13, where a smaller mesh size is used. 

 

 

Figure 6.12 Global FEM model of test structure 

 

 

Figure 6.13 Local FEM model at damage region 

 

As described in Chapter 5, under traffic loading environment, bending cracks are 

prone to arise in beam-like deck. For the crack damage simulation, an artificial 

deletion of the elements from the undamaged FEM model is used. Figure 6.14 is for 
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the damage extent of 5 mm depth cut at the bottom of the selected cross section and 

Figure 6.15 is for the damage extent of 15 mm depth cut at the same section. 

 

 

Figure 6.14 Damage simulation (Extent 1: cut with 5 mm depth) 

 

 

Figure 6.15 Damage simulation (Extent 2: cut with 15 mm depth) 

6.3.2 Static Load Cases 

In the static load simulation, a concentrated force is applied on the FEM model as 
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shown in Figure 6.16. The calculated strain distribution along the beam is illustrated 

in Figure 6.17 and the strain distribution on the cross section C is shown in Figure 

6.18. Based on the simulated strain responses at the top and bottom of the designated 

cross sections (refer to Figure 6.1), the neutral-axis positions for the undamaged case 

are obtained and listed in Table 6.2. And those for 5 mm and 15 mm damage are also 

obtained as shown in Table 6.3 and Table 6.4, respectively. 

 

 

Figure 6.16 Static load simulation 

 

Figure 6.17 Strain distribution along beam structure 
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Figure 6.18 Strain distribution on cross section C 

 

Table 6.2 Neutral-axis position obtained by simulation data (static load case 1: 

undamaged) 

Strain at Beam cross sections 
sensor 
locations  

Section A Section B Section C 

Top_1 0.12291 e-3 -0.29674 e-4 -0.18286 e-3 

Bottom_4 -0.12294 e-3 0.29642 e-4 0.18283 e-3 

Neutral-axis position (ratio) 

  0.50006 0.50003 0.50004 

 

A comparison of the results obtained for the three damage cases is provided in Table 

6.5. It is shown that shifts of the neutral-axis position of sections A, B and C are 

0.38%, 0.96% and 3.19% for the 5 mm damage extent. In the case of 15 mm extent, 

they are 1.84%, 2.98% and 12.00%, respectively. 
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Table 6.3 Neutral-axis position obtained by simulation data (static load case 2: 

damage with 5 mm cut) 

Strain at   Beam cross sections 
sensor 
locations  

Section A Section B Section C 

Top_1 0.84044 e-3 -0.20218 e-3 -0.12805e-2   

Bottom_4 -0.83434 e-3 0.19837 e-3  0.12015 e-2  

Neutral-axis position (ratio) 

  0.49818 0.49524 0.48409 

 

 

 

Table 6.4 Neutral-axis position obtained by simulation data (static load case 3: 

damage with 15 mm cut) 

Strain at Beam cross sections 

sensor locations  Section A Section B Section C 

Top_1 0.84435 e-3  -0.19824 e-3  -0.14773 e-2  

Bottom_4 -0.81407 e-3 0.18679 e-3  0.11607 e-2  

Neutral-axis position (ratio) 

  0.49087 0.48514 0.4400 
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Table 6.5 Comparison of neutral-axis position for three damage cases 

Damage condition 
Neutral-axis position (ratio) 

Section A Section B Section C 

Undamaged 0.50006 0.50003 0.50004 

Damaged_5mm 0.49818 0.49524 0.48409 

Damaged_15mm 0.49087 0.48514 0.4400 

Scenario 1: Damaged_5mm 

  0.38% 0.96% 3.19% 

Scenario 2: Damaged_15mm 

  1.84% 2.98% 12.00% 

6.3.3 Moving Load Cases 

In the moving load cases, strain responses at top and bottom of the designated 

sections A, B, and C are simulated and illustrated in Figure 6.19 for the undamaged 

case. The moving speed is specified as 1 m/s. The simulation results show that 

bending behavior dominates the structural response of the test structure. 

 

To testify whether the neutral-axis position is insensitive to load patterns, different 

load weights and moving speeds are simulated on the undamaged model. Figure 

6.20 shows the simulated strain responses at the top of section C for the load weights 

of 100 KN, 200 KN, and 300 KN. Based on the simulated strain response data, the 

KF estimation of neutral-axis position of at the three sections is obtained and given 

in Table 6.6. It is observed that the neutral-axis position remains almost unchanged 
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with varying load weight. 

 

(a) Section A 

 

(b) Section B 

 

(c) Section C 

Figure 6.19 Simulated strain responses at top and bottom of designated sections 

(moving speed: 1 m/s; undamaged) 
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Figure 6.20 Simulated strain responses at top of section C under different load 

weights (moving speed: 1 m/s; undamaged) 

 

Table 6.6 Neutral-axis position of designated sections under different load 

weights (moving speed: 1 m/s) 

Load weight 
Neutral-axis position (ratio) 

Section A Section B Section C 

W1 (100 kN) 0.5002 0.5004 0.5003 

W2 (200 kN) 0.5008 0.5007 0.5004 

W3 (300 kN) 0.5005 0.5001 0.5006 

 

 

FEM simulation of strain responses under different moving speeds is conducted as 

well. Figure 6.21 illustrates the obtained strain responses at the top of section C. As 

shown in Table 6.7, different moving speeds have no influence on the estimation of 

neutral-axis position. 
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Figure 6.21 Simulated strain responses at top of section C under different 

moving speeds 

 

Table 6.7 Neutral-axis position of designated sections under different moving 

speeds 

Moving speed Neutral-axis position (ratio) 

Section A Section B Section C 

V1 (1 m/s) 0.5006 0.5007 0.5002 

V2 (2 m/s) 0.5003 0.5005 0.5009 

V3 (3 m/s) 0.5008 0.5002 0.5004 

 

 

After verifying the independence of neutral-axis position on moving load patterns, 

damage detection simulation based on the FEM model is conducted. Strain responses 

at top and bottom of the designated sections A, B, and C are illustrated in Figure 

6.22 for the damage case of 5 mm depth cut. Figure 6.23 is for the damage case of 

15 mm depth cut. 
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(a) Section A 

 

(b) Section B 

 

(c) Section C 

Figure 6.22 Simulated strain responses at top and bottom of designated sections 

(moving speed: 1 m/s; damage case: 5 mm cut) 
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(a) Section A 

 

(b) Section B 

 

(c) Section C 

Figure 6.23 Simulated strain responses at top and bottom of designated sections 

(moving speed: 1 m/s; damage case: 15 mm cut) 
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For the three damage cases, KF estimation of the neutral-axis position of the 

designated sections is obtained as shown in Table 6.8. It is shown that shifts of the 

neutral-axis position of sections A, B and C are 0.48%, 0.80% and 3.36% for the 5 

mm damage case. And for the 15 mm damage case, the changing rate is 2.06%, 

3.22% and 13.83%, respectively. 

 

Table 6.8 Comparison of neutral-axis position for three damage cases (moving 

load simulation) 

Damage condition 
Neutral-axis position (ratio) 

Section A Section B Section C 

Undamaged 0.5006 0.5003 0.5004 

Damaged_5mm 0.4982 0.4963 0.4836 

Damaged_15mm 0.4903 0.4842 0.4312 

Scenario 1: Damaged_5mm 

  0.48% 0.80% 3.36% 

Scenario 2: Damaged_15mm 

  2.06% 3.22% 13.83% 

 

6.4 Neutral-Axis Position Based Damage Detection of Test Model: 

Experiment and Data Analysis 

6.4.1 Calibration of Neutral-Axis Position 

Before the physical testing for damage detection, calibration of neutral-axis position 

with respect to different boundary condition is conducted. Figure 6.24(a) shows the 
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measured strain responses at the top and bottom of section C when the test beam is 

simply supported, while Figure 6.24(b) is for the fixed boundary condition. As 

shown in Figure 6.24, the testing data coincide favorably with the simulation data. 

And it is clearly observed that noise is present in the sensor readings. 

 

 

(a) Simply supported 

 

(b) Fixed supported 

Figure 6.24 Measured strain responses at top and bottom of section C (different 

boundary conditions) 

 

Direct and KF estimations of the neutral-axis position are illustrated in Figure 6.25 

for both support conditions. The results of neutral-axis position obtained by the KF 
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method are 0.5034 and 0.5046, respectively for the two boundary conditions. The 

difference is only 0.23%, which means different boundary conditions have little 

effect on the estimation of neutral-axis position. 

 

 

(a) Simply supported 

 

(b) Fixed supported 

Figure 6.25 Estimated neutral-axis position based on measured strain responses 

(different boundary conditions) 

6.4.2 Moving Load Testing 

In the physical testing, strain responses at top and bottom of the designated sections 
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are measured and fed into the KF estimator to obtain the neutral-axis position. 

Figure 6.26 shows strain responses measured at the top and bottom of sections A, B 

 

 

(a) Section A 

 

(b) Section B 

 

(c) Section C 

Figure 6.26 Measured strain responses at top and bottom of designated sections 

(fixed boundary condition) 
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and C for the fixed boundary condition. By comparison with Figure 6.19, it is 

observed that the measured strain responses coincide favorably with the simulation 

results. Strain responses of the test structure under moving bogies are measured for 

all three damage cases, as shown in Figure 6.27(a). Figure 6.27(b) shows the 

estimated neutral-axis position by the direct and KF methods. It is observed that the 

neutral-axis position by the KF approach effectively reflects the damage conditions 

of the test structure. 

 

 

(a) Strain measurements 

 

(b) Estimated neutral-axis position 

Figure 6.27 Damage detection of test structure under three damage conditions 

by KF estimator 
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Sensitivity analysis of the neutral-axis position at the three instrumented sections A, 

B and C is conducted, of which the results are listed in Table 6.9. In the damage case 

1, change rates of neutral-axis position at the three sections are 0.43%, 0.92% and 

3.58%, respectively. For the 15 mm damage case, they are 2.15%, 2.14% and 10.96%. 

These results validate that neutral-axis position is sensitive enough for damage 

detection. Besides, Table 6.9 indicates that the sensitivity of neutral-axis position 

decreases substantially as it is away from the damaged section. Therefore the 

neutral-axis position can also serve as an indicator of damage location. With the 

development of distributed sensing technology (such as distributed Brillouin optical 

fiber sensor), the limitation of spatial resolution in strain measuring can be overcome 

in the near future. 

 

Table 6.9 Comparison of neutral-axis position for three damage cases (moving 

load testing) 

Damage condition 
Neutral-axis position (ratio) 

Section A Section B Section C 

Undamaged 0.5061 0.5092 0.5054 

Damaged_5mm 0.5039 0.5045 0.4873 

Damaged_15mm 0.4952 0.4983 0.4500 

Scenario 1: Damaged_5mm 

  0.43% 0.92% 3.58% 

Scenario 2: Damaged_15mm 

  2.15% 2.14% 10.96% 
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6.5 Summary 

Small structural defects could be often discerned from the variation in strain or its 

derivatives rather than in acceleration. Strain based identification methods for 

structural damage detection have received increasing attention. But strain responses 

are also sensitive to the loading environment and temperature variation, which 

cannot be related to damage. In developing strain-related damage indicators, their 

insensitivity to loading and environmental variation is a big concern. Theoretically 

the neutral-axis position of bridge deck cross section should remain unchanged under 

the varying traffic environment, and it may have a better damage sensitivity because 

it reflects the local cross-section property. Because of these advantages, Chapter 5 

has proposed the neutral-axis position as a damage index for bridge deck assessment. 

A KF estimator has been formulated to locate the neutral-axis position from the strain 

measurement. The feasibility of neutral-axis position based damage detection is 

testified by an elaborately designed experiment in this Chapter. The experiment 

includes two parts: numerical simulation and physical testing. 

 

Numerical simulation based damage detection of the test model was conducted for 

static and moving load cases, respectively. In the static load simulation, it is shown 

that shifts of the neutral-axis position of sections A, B and C are 0.38%, 0.96% and 

3.19%, respectively for the 5 mm damage case. For the 15 mm damage case, they are 

1.84%, 2.98% and 12.00%, respectively. As to the moving load case, shifts of the 
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neutral-axis position of sections A, B and C are 0.48%, 0.80% and 3.36%, 

respectively for 5 mm damage case. They are 2.06%, 3.22% and 13.83% for the 15 

mm damage case. It is observed that the results from the static load case agree 

favorably with those from the moving load case. The neutral-axis position obtained 

in the two cases can capture the damage happening on the test model. In addition, it 

is validated that the neutral-axis position is insensitive to different moving load 

weights and speeds. 

 

Calibration of the neutral-axis position with respect to two different boundary 

conditions is conducted before the physical testing. The difference between simply 

and fixed support cases is only 0.23%, which means different boundary conditions 

have little effect on the estimation of neutral-axis position. In the physical testing, 

change rates of the neutral-axis position at the three sections are identified as 0.43%, 

0.92% and 3.58% for the 5 mm damage case. They are 2.15%, 2.14% and 10.96% for 

the 15 mm damage case. The experimental results validate that neutral-axis position 

is sensitive enough for detecting local damage. Neutral-axis position can also serve 

as an indicator of damage location. The recent development of distributed sensing 

technology can bring a promise in overcoming the limitation of spatial resolution 

faced by the traditional strain measuring technologies. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The research described in this dissertation chiefly contributes to the development of a 

systematic framework for condition assessment of existing bridge structures making 

use of long-term monitoring data of strain response. This approach involves 

multi-component analysis of strain monitoring data, mixture distribution model 

based reliability assessment, KF based optimal estimation of neutral-axis position, 

and experimental verification of neutral-axis position based damage detection. 

Following this approach, objective and quantitative condition assessment of 

in-service bridge structures is realized. 

(1) Development of a method for source separation of strain monitoring data 

according to physical mechanisms 

As demonstrated by the monitoring data, strain responses of bridge structures under 

in-service conditions are a combination of live-load and environmental effects. 

Multi-component data structures have been found in the long-term strain monitoring 
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data. A logical way to efficiently interpolate the multi-component measurement data 

is to decompose them into mono-components. In this way distinct structural 

behaviors under different loading scenarios and environmental conditions are 

revealed for condition assessment or damage detection. With specialized PR filter 

banks, DWT based decomposition possesses advantages of parsimonious 

representation, energy decomposition, and effective de-correlation. However, there is 

no guarantee that the decomposed components by DWT transform have exactly the 

same waveforms as the source signals. To restore the desired source signal, 

component extraction needs to be conducted in the wavelet decomposition domain. 

 

Correlation coefficients of the level component of wavelet transform with a reference 

signal are introduced to determine the DWT decomposition resolution and establish 

the selection criterion for physical component extraction. Based on the selection 

criterion, physical source separation of the multi-component data is realized. With 

the application of the proposed method to TMB, the following observations have 

been made: 

(i) DWT can effectively separate a multi-component strain data into a set of 

narrow band components which satisfying the perfect reconstruction 

requirement. By scaling and shifting a mother wavelet, DWT decomposes 

strain data into various resolution scales: the data with coarse resolution 

contain the information about low-frequency components and the data with 

fine resolution contain the information about high-frequency components. 
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Each level component carries a single frequency content of the original signal; 

and 

(ii) The extracted temperature-induced strain component in along-bridge 

direction coincides well with the displacement time history measured at the 

expansion joint. Under temperature effect, the bridge deck behaves mainly as 

expanding or contracting along the longitudinal direction and the expansion 

joint moves forward or backward accordingly. A strong correlation between 

the temperature-caused strain and the longitudinal displacement at the 

expansion joint has been demonstrated; and 

(iii) The extracted traffic-induced strains at the top and bottom chords of the same 

deck cross section evolve with time in almost same amplitudes but opposite 

directions. Under traffic loading, the bridge deck performs like a flexural 

beam, i.e., the deck top compresses and the deck bottom extends concurrently, 

or vice versa. The extracted strain component due to traffic effect reveals the 

bending behavior of the bridge deck under traffic loading favorably. 

(2) Establishment of mixture distribution model based reliability assessment of 

in-service bridge deck 

When using the strain response data due to live load effect for reliability assessment, 

a problem arises in the inference of probability distribution from observation data. 

Collected under in-service environment, strain response due to live load effect is a 

result of multi-load effect such as traffic (highway, railway, or both of them) and 
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wind (monsoon or typhoon). It cannot be characterized by a standard probability 

density function adequately. Weibull mixture models are therefore developed and 

applied to characterize the statistical properties of peak-stress data. With the 

application of the proposed method to TMB, the following observations have been 

made:  

(i) The PDF of peak stresses has a very complicated shape due to multi-load 

effect. Mixture distributions are clearly displayed in the histogram analysis of 

the peak-stress data for different load conditions. It is concluded that multiple 

engendering effects with distinct statistical characteristics create the mixture 

distribution phenomenon; and 

(ii) In distribution modeling Weibull mixtures have advantages of less component 

number and lower AIC values in comparison with normal and log-normal 

mixtures. Weibull family is demonstrated to have a capability of extensive 

adaptation through various shape and scale parameters. Advantages of 

Weibull mixtures in modeling measurement data has been exhibited in the 

PDF inference of peak stresses; and 

(iii) The EM algorithm is a suitable tool for Weibull mixture parameter estimation 

with fast convergence and excellent stability. Formulas of the EM algorithm 

for Weibull mixtures have been derived. That component parameters 

converge almost simultaneously demonstrates the efficiency of EM algorithm 

in the Weibull mixture modeling; and 

(iv) By reliability analysis based on the estimated PDFs, it is found that all the 
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deck truss members are in a good safety condition so no maintenance action 

is needed. Among the three load scenarios (HL + NW, HL + RL + NW, and 

HL + RL + TW), the HL + RL + TW case is the most dangerous. 

(3) Development of a KF estimation method to locate neutral-axis position of 

bridge deck from traffic-induced strain response 

Bending behavior dominates the response of bridge deck under traffic loading. Based 

on the structural behavior, direct and KF methods of locating the neutral-axis 

position from the strain measurement data are formulated. Numerical studies on their 

capability of anti-disturbance in noise contamination have been conducted and some 

conclusions are drawn as follows: 

(i) The efficiency of the direct estimation method can only be ensured on the 

condition that measurement data are without noise contamination. When the 

simulation data are free of noise, the direct method reaches the true value. 

With the increase of noise levels, the estimates by the direct method 

deteriorate seriously. Standard deviation of the estimation results increases 

remarkably, indicating that the direct estimation results are not reliable under 

noisy environment; and 

(ii) In comparison to the direct method, the KF estimator achieves a better 

estimation, and particularly has an excellent performance when the 

signal-noise ratio is low. It is demonstrated that the KF estimator is superior 

to the direct method which uses the measurement alone. 
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The verified KF estimator is further applied to the strain measurement data acquired 

from the TMB deck. Estimates of the neutral-axis position for different load patterns 

are obtained. The direct and KF methods obtain a consistent result of 0.5408~0.5476, 

which fluctuate between -0.49% and 0.77% of their mean value. It is therefore 

concluded that the neutral-axis position of the bridge deck cross section remains 

almost unchanged under the varying traffic environment. Hence it can serve as a 

good indicator for deck condition assessment. 

(4) Experimental verification of neutral-axis position based damage detection of 

bridge deck under traffic loading 

The neutral-axis position is independent of traffic load patterns and it shifts in the 

occurrence of damage. An experimental verification of neutral-axis position based 

damage detection of bridge deck has been conducted in this study. The experiment 

includes two parts: numerical simulation and physical testing. 

(i) Numerical simulation shows that the neutral-axis position is insensitive to 

moving load weights and speeds. The sensitivity of neutral-axis position to 

damage under static load cases agree favorably with that of moving load 

cases; and 

(ii) Calibration of the neutral-axis position with respect to two different support 

conditions has been conducted before damage testing. The difference of 

estimation results between simply and fixed support cases is 0.23%, implying 
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that different support conditions have little effect on the neutral-axis position. 

(iii) In the damage detection testing, change rates of the neutral-axis position are 

effectively identified from the strain measurement data. Testing results show 

that neutral-axis position is sensitive enough for local damage detection and 

can also serve as an indicator of damage location. 

7.2 Recommendations 

The established methods for condition assessment of in-service bridge structures 

using strain measurements are still preliminary and in its infancy. More thorough 

research is expected to improve the proposed methods for better benefiting bridge 

maintenance and management. The recommendations for future exploration are as 

follows. 

(1) Development of Wiener-filter based component extraction method in wavelet 

decomposition domain 

As demonstrated in this project, wavelet multi-resolution decomposition satisfies the 

mathematical principle of source separation quite well with the specialized PR filter 

banks. Component extraction in the wavelet decomposition domain according to 

physical mechanisms is realized by establishing a correlation-based selection 

criterion. The proposed method handles the extraction problem at different-resolution 

levels where components with a correlation coefficient higher or lower than a 
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threshold will be retained or discarded. Dropping a certain level-component entirely 

could incur a loss of useful information because the desired source signal may 

disperse on various levels as fractals. As to the fractal extraction, Wiener filter in the 

wavelet domain could perform better than the thresholding methods because 

correlation based selection might be carried out on each subband individually. 

Therefore, wavelet based Wiener filter approach to signal source separation can be 

expected to extract whole segments in different level components of wavelet 

decomposition. 

(2) Establishment of a time-dependent mixture distribution model by using 

long-term monitoring data and Bayesian theory 

In this study, hybrid mixture estimation including model selection and parameter 

estimation has been explored and a structure of Weibull mixture model has been 

proposed for PDF inference of peak-stress values counted from the derived stress 

time histories. As more and more strain monitoring data acquired by the SHM system 

become available, a more accurate probabilistic model of live load effect can be 

formulated with the aid of the Bayesian updating method.  

 

Bayesian theory is a powerful and feasible tool to improve the model and parameter 

estimation as new data are coming into (Yuen 2010). It offers the possibility to 

combine existing knowledge with subsequent available information to update the 

pre-established probabilistic model and parameters. By integrating the updated live 
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load effect model into the reliability based condition assessment procedure, 

time-dependent failure probability or reliability index for a structural component in a 

bridge can be calculated. With the obtained time-dependent reliability indices and 

rating factors, the bridge inspection and maintenance activities could be planned in 

accordance with the variation of reliability index and rating factor profiles at the 

in-service stage. 

(3) Investigation of distributed optical fiber sensing technology in integration 

with neutral-axis position based damage detection method 

The use of strain measurement may have potential to improve the performance of 

damage detection methods in recognition of the trait of local damage phenomenon. 

This study has demonstrated that neutral-axis position derived from strain 

measurements is sensitive enough to damage and insensitive to different moving load 

weights and speeds. Therefore, the neutral-axis position can serve as a damage 

indicator for bridge deck assessment. But the neutral-axis position based damage 

detection method will confront the problem of locality that the influence of damage 

on neutral-axis position cannot be reflected effectively unless the area where the 

strain sensors are deployed could cover the damage region. 

 

The recent development of distributed Brillouin optical fiber sensing (BOFS) 

technology can provide the measurement availability of strain field and, in a sense, 

can solve the spatial resolution problem. Fiber optical strain gauges (FOSGs) have 
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the ability to multiplex many sensors using only one optical fiber, providing a very 

low-cost mechanism for densely instrumenting large-scale structures. Investigation 

of distributed optical fiber sensing technology can be expected to extend the 

applicability of the proposed damage detection method. 
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