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ABSTRACT

Approximability of Vehicle Routing Problems

by

Liang Xu

Vehicle Routing Problems (VRPs) can be described as a class of combinatorial opti-

mization problems that seek to determine a set of feasible routes for a fleet of vehicles

to serve customers at different locations, so as to optimize certain objective functions.

Due to the growth of the transportation and logistics industries, many new VRPs are

emerging in different contexts. Since they are usually NP-hard, these problems call

for the design of approximation algorithms that achieve constant approximation ra-

tios. Moreover, in the existing literature there are several VRPs whose constant-ratio

approximation algorithms are either unknown or improvable. Therefore, in this the-

sis we study the approximability of the following three categories of VRPs, by either

developing the constant-ratio approximation algorithms or deriving approximation

hardness results.

The first category of problems includes the min-max Path Cover Problem (PCP)

and its variants, which aim to determine a set of k paths for k vehicles to serve

customers in a metric undirected graph, so that the maximum total edge and vertex

weight among all paths is minimized. This category of problems was introduced

in the literature in the context of “vehicle routing for relief efforts”. Since they
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are relatively new in the literature, approximation algorithms are almost unknown.

We consider four variants of the min-max PCP, in which the vehicles have either

unlimited or limited capacities, and they start from either a given depot or any

depot of a given depot set. We have developed approximation algorithms for these

variants, which achieve approximation ratios of max{3− 2/k, 2}, 5, max{5− 2/k, 4},

and 7, respectively. For these four variants of PCP, we have also proved their first

approximation hardness results, by showing that unless P=NP, it is impossible for

them to achieve approximation ratios less than 4/3, 3/2, 3/2, and 2, respectively.

The second category of problems includes the min-max k-Traveling Salesmen

Problem on a Tree (k-TSPT) and its variants. With k a given positive integer de-

noting the number of salesmen, which is independent of the input size, the min-max

k-TSPT aims to determine a set of k tours for the k salesmen to serve all the cus-

tomers that are located in a tree, such that the k tours all start from and return to

the depot, so as to minimize the maximum length of the k tours. In the literature, the

question as to whether or not the min-max 2-TSPT yields a pseudo-polynomial time

exact algorithm has remained open for a decade. We have provided a positive answer

to this open question by developing a pseudo-polynomial time exact algorithm using

a dynamic programming approach. Based on this dynamic program, we have further

developed a fully polynomial time approximation scheme for the problem. Moreover,

we have generalized these algorithms for the min-max k-TSPT for any given constant

k ≥ 2, and we have extended them to other variants.

The third category of problems includes the k-depot Traveling Salesmen Problem

(k-depot TSP) and its variants. The k-depot TSP is an extension of the single-depot

TSP, and it aims to determine a set of k tours for the k vehicles to serve all the

customers on a metric undirected graph so that the total length of the tours is min-

imized. We have shown that a non-trivial extension of the well-known Christofides’

heuristic has a tight approximation ratio of 2− 1/k, which is better than the existing
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2-approximation algorithm available in the literature. This result is significant when

k is small. Moreover, we have demonstrated how this algorithm can be applied to the

development of approximation algorithms for other multiple-depot VRPs.
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CHAPTER 1

Introduction

1.1 Background

Vehicle Routing Problems (VRPs) can be described as a class of combinatorial

optimization problems that seek to determine a set of feasible routes for a fleet of

vehicles to serve customers at different locations, so as to optimize certain objec-

tive functions. The VRPs have wide applications in the transportation and logistics

industries. Among many others, typical applications include solid waste collection,

street cleaning, school bus routing, bank crew scheduling, and salesmen routing [75].

Due to different motivations, there are many variants of the VRPs that have been

studied in previous literature. One of the most classic VRPs is the Traveling Salesman

Problem (TSP), which aims to determine the shortest close route in a weighted graph

for a single vehicle to visit each customer exactly once. Most of the VRPs are NP -hard

since they can be reduced from the Hamiltonian cycle problem or the Hamiltonian

path problem, which aim to determine whether there exists a simple cycle or path

that visits each vertex of a given graph exactly once, and both of them are known to

be NP-complete. For example, the TSP is NP-hard even when the graph is undirected

and the edge weights of the graph form a metric that is symmetric and satisfies the

triangle inequality, because it can be reduced from the Hamilton cycle problem by

setting the distance between two vertices to 1 if they are adjacent, and to 2 otherwise.
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For such VRPs, which are NP-hard, it seems unlikely that one can develop exact

algorithms that can determine optimal solutions in polynomial time. Thus, it is of

great interest to know whether or not one can develop approximation algorithms to

achieve certain worst-case performance guarantees. Here, a ρ-approximation algo-

rithm is defined as a polynomial time algorithm that produces a feasible solution of

objective value no more than ρ times the objective value of an optimal solution to

a minimization problem [35]. The value of ρ indicates the worst-case performance

guarantee of the approximation algorithm, and is therefore called an approximation

ratio. A family of ρ-approximation algorithms is a fully polynomial time approxima-

tion scheme (FPTAS) if ρ = 1+ ϵ for any ϵ > 0 and its running time is polynomial in

1/ϵ. Moreover, for a minimization problem, if one can show that there exists a con-

stant θ such that for any ρ < θ, no ρ-approximation algorithm exists unless P=NP,

then the value of θ indicates the approximation hardness of the problem, and is called

an inapproximability bound [35].

Due to the growth of the transportation and logistics industries, many new VRPs

are emerging in different contexts. Since they are also NP-hard, these problems call

for the design of approximation algorithms that can achieve constant approximation

ratios, and call for the study on inapproximability bounds. Moreover, in the existing

literature, there are several VRPs, whose constant ratio approximation algorithms

are either unknown or expected to be further improved. Therefore, in this thesis,

we study the approximability of the following three categories of VRPs, by either

developing the first or improved constant ratio approximation algorithms, or deriving

inapproximability bounds for approximation hardness results.

The first category of problems includes the min-max Path Cover Problem (PCP)

and its variants, which are to determine a set of paths for vehicles to serve customers

in a metric undirected graph, so that the maximum total edge and vertex weight

among all paths is minimized. The min-max PCP has appeared in the literature
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recently in the context of “routing for relief efforts”, where the minimization of latest

delivery time becomes critical so that the deliveries of humanitarian aid are both fast

and fair [10]. Like other VRPs, the min-max PCP has different variants restricted

to different constraints, such as the vehicle capacity constraint, the vehicle depot

restriction, etc. The min-max PCP is NP-hard, because it can be reduced from the

Hamiltonian path problem by setting the number of vehicles to be one, and setting the

distance between two vertices to 1 if they are adjacent, and to 2 otherwise. However,

the study of approximation algorithms and inapproximability bounds are limited for

the min-max PCP and its variants. Therefore, it is of great interest to investigate the

following research question:

Q1: To what extent can one develop constant ratio approximation algorithms for

the min-max PCP and its variants?

The second category of problems studied in this thesis includes the min-max k-

Traveling Salesmen Problem on a Tree (k-TSPT) and its variants. The min-max k-

TSPT aims to determine a set of k tours for the k vehicles to serve all the customers

that are located in a tree, such that the k tours all start from and return to the

depot, so as to minimize the maximum length of the k tours. Like other VRPs, the

min-max k-TSPT has different variants restricted by different constraints or under

different objectives. This part of the thesis follows a large body of research on VRPs

with customers located in a tree-shaped network, which appears in many practical

situations, such as railway systems for pit mines [54], rural delivery systems with

roads that branch off from a single highway [11, 76], and water systems with a main

stream and several tributaries [51].

When k = 1, the min-max k-TSPT is equivalent to the TSP on a tree, which

can be solved in polynomial time by simply visiting each edge of the tree twice.

When k is a given constant greater than two, the min-max k-TSPT is NP-hard [8].

It is known only that the min-max 2-TSPT has a 4/3-approximation algorithm [8].
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Accordingly, Averbakh and Berman [8] raised an open question on whether or not

the min-max 2-TSPT has a pseudo-polynomial time exact algorithm. Initiated by

this open question, we investigate the following research question for the min-max

k-TSPT and its variants:

Q2: Can one develop an exact algorithm that yields a pseudo-polynomial running

time for the min-max k-TSPT or its variants, for any given constant k ≥ 2?

Can one develop an FPTAS for the min-max k-TSPT or its variants, for any

given constant k ≥ 2?

The third category of problems studied by this thesis includes the k-depot TSP

and its variants. The k-depot TSP is an extension of the single depot TSP, and

aims to determine a set of tours for k vehicles from distinct depots to serve all the

customers on a metric undirected graph, so as to minimize the total length of the

tours. In its typical applications, vehicles are dispatched from a number of different

depots. For example, in the dairy industry, road tankers based at various locations

are used to collect and transport milk from farms to processing plants [32, 39]. In

military applications, unmanned aerial vehicles situated at different bases are routed

to sites to execute various missions [16, 17, 69].

The k-depot TSP for k ≥ 2 is NP-hard since it can be directly reduced from

the TSP. For the TSP on a metric undirected graph, it is known that a tree algo-

rithm achieves an approximation ratio of 2 [64, 73], and that a heuristic given by

Christofides [19] achieves an approximation ratio of 3/2. Thus, the best approxi-

mation ratio that can be expected for the k-depot TSP is 3/2 unless the TSP on a

metric undirected graph has an approximation algorithm superior to the Christofides’

heuristic. However, the best available approximation ratio for the k-depot TSP in

the literature is 2, which is achieved by an approximation algorithm that is based on

the tree algorithm [69]. In the literature [3, 59, 69], it has also been suggested that

the Christofides’ heuristic can be extended for the k-depot TSP. However, worst-case
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analysis of the extended heuristic is known to be difficult [3, 59]. It therefore remains

an open question if a tight approximation ratio of the extended Christofides’ heuristic

can be found for the k-depot TSP. To resolve this open question, we investigate the

following research question in this thesis:

Q3: What is the tight approximation ratio of the extended Christofides’ heuristic

for the k-depot TSP?

1.2 Literature Review

Since the first VRP model, namely, the truck dispatching problem, was first in-

troduced by Dantzig and Ramser [23], VRPs have been studied extensively in the

literature. Due to the NP-hardness of the VRPs, it is unlikely that one can develop

an exact algorithm that can solve all the instances of a vehicle routing problem into

optimality in polynomial time. Thus, a great deal of research has been devoted to

developing exact algorithms to solve restricted instances into optimality, to design-

ing heuristic algorithms to produce near-optimal solutions for randomly generated or

practical instances, and to developing approximation algorithms with constant ap-

proximation ratios for worst-case guarantees. The book edited by Toth and Vigo

[75] surveys exact algorithms proposed for the VRPs up to 2002. Laporte and Semet

[55] and Gendreau et al. [37] have reviewed various heuristics provided for the VRPs

in the literature. More recent heuristics for the VRPs can be found in the survey

of Cordeau et al. [22]. Concerning the approximation algorithms for the VRPs, the

survey by Arora [4] can be referred for more details.

As with other classic combinatorial optimization problems, exact algorithms for

the VRPs rely mostly on a branch-and-bound procedure [1, 20, 29], which derives

lower bounds and upper bounds on the optimal objective values of sub-problems to

fathom nodes in the branch-and-bound tree, so as to obtain a global optimal solution.
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There are two typical variants of the branch-and-bound algorithm for the VRPs. One

is called the branch-and-cut [6, 30, 57], which, at each node in the branch-and-bound

tree, iteratively refines the linear relaxation of the integer programming formulation of

the problem by adding valid linear inequalities, so as to obtain relatively tighter lower

bounds. The other is called the branch-and-price [18, 24, 72], which, at each node

in the branch-and-bound tree, uses a column generation method to obtain relatively

tighter lower bounds.

The family of heuristics for the VRPs can be broadly categorized into two classes:

classic heuristics and meta-heuristics. The classic heuristics are usually based on

constructive and improvement procedures [13, 31, 38], while the meta-heuristics center

on a thorough exploration of most of the potential regions of solution space [36]. The

solutions produced by the meta-heuristics often have better quality than the solutions

obtained by the classic heuristics, while the price to pay for the meta-heuristics is the

increased running time.

This thesis follows a large volume of literature on the development of constant

ratio approximation algorithms for VRPs. In the remainder of this section, we are

going to review the relevant works on the approximability for the three categories of

VRPs studied in this thesis. Like many other works in the literature, we assume that

the edge weights of the underlying graph of the VRPs form a metric that is symmetric

and satisfies the triangle inequality, because the vehicles can always travel along the

shortest path between any two vertices.

1.2.1 Relevant works for the min-max PCP and its variants

There is a growing body of literature on vehicle routing problems under the min-

max objective. Most of them focus on the min-max cycle cover problems and the

min-max tree cover problems, in which customers are serviced by a set of k cycles

and a set of k trees, respectively. Frederickson et al. [34] have proposed an approx-
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imation algorithm for the min-max k-traveling salesmen problem (min-max k-TSP)

that is equivalent to the min-max cycle cover problem with a single depot. Their

algorithm first applies the classical Christofides’ [19] heuristic to obtain an approxi-

mate cycle that covers all customers, and then splits the cycle almost evenly into k

segments. By joining the depot to both the endpoints of each segment, a cycle cover

with an approximation ratio of (5/2− 1/k) is obtained. Bazgan et al. [12] have ana-

lyzed the approximation hardness of the min-max k-TSP. Averbakh and Berman [9]

and Nagamochi and Okada [62] have developed approximation algorithms with error

bounds for the min-max k-TSP on a tree. For min-max tree covers, Arkin et al. [3]

have developed a 4-approximation algorithm for the min-max k-tree cover problem

with no root given. Even et al. [28] have achieved the same approximation ratio for

the problem with a given set of roots. When only one root is given, Nagamochi [61]

has improved the approximation ratio to (3− 2/(k + 1)). When the given graph is a

tree and a root is given, Nagamochi and Okada [63] have improved the approximation

ratio to (2 + ϵ), where ϵ is a positive constant which may be set arbitrarily close to

zero. Xu and Wen [79] have analyzed the approximation hardness of several variants

of min-max tree cover.

There are a few results available on various min-max path cover problems, but they

do not take the service handling time into consideration. Campbell et al. [15] have

analyzed the worst-case performance of the solution that minimizes the total travel

time under the min-max objective. They have shown that for a special case of the

min-max uncapacitated path cover with a single depot where the service handling time

is ignored, the latest service completion time of the solution that minimizes the total

travel time is no greater than 2k times the minimum latest service completion time.

Hoogeveen [44] developed a 3/2-approximation algorithm for the traveling salesmen

path problem, which is equivalent to the min-max uncapacitated path cover problem

with a single vehicle. When replenishment is not allowed after the vehicles have left
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their starting points, so that each vehicle can service at most Q customers, Campbell

et al. [15] have developed a heuristic but without any constant approximation ratio

guarantee. Arkin et al. [3] have devised a 4-approximation algorithm for the problem

with no service handling time, no depot, and uncapacitated vehicles.

Although service handling time has been ignored by most of the related works

in the literature, it often contributes to a significant portion of the latest service

completion time and should be included as vertex weights, i.e., h(v) for all v ∈ V ,

in the problem formulation. Moreover, addressing vertex weights for the min-max

path cover problem has significant research value, due to the challenges explained

as follows: Consider the traditional vehicle routing problems of minimizing the total

edge and vertex weight of all the vehicle routes. Such an objective is a sum of two

separated parts, including the total edge weight and the total vertex weight. Since

the second part always equals
∑

v∈V h(v), which is a constant, the vertex weights in

these problems can be ignored [75]. However, this separation property does not hold

when we have a min-max objective, and therefore the vertex weights cannot simply be

ignored in various min-max path cover problems. Note that even under the min-max

objective, some vehicle routing models seek for tours instead of paths. When tours are

sought, one can always revise the edge weights as w̃(u, v) = w(u, v)+h(u)/2+h(v)/2

for each (u, v) ∈ E to include the vertex weights. The revised edge weights, w̃, still

form a metric, and the total edge weight of every cycle under w̃ equals its total edge

and vertex weight under w and h [75]. However, this property of w̃ is not valid in the

min-max path cover problem, because the latest service completion time of a path

may not include the time spent on the return trip from its last customer to a depot.

Therefore, it is of great research interest to develop constant ratio approximation

algorithms for various min-max path cover problems, with the service handling time

taken into consideration.

When customers are located on a path or tree, several constant ratio approxima-
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tion algorithms are known for an extension of the min-max uncapacitated path cover

problem, namely, the vehicle scheduling problem (VSP), where the task to be served

for each customer has a release time and a processing time. For the VSP on a path

with a single vehicle, Karuno et al. [50] presented a 2-approximation algorithm, which

was later extended and improved by Karuno and Nagamochi [47] and Karuno and

Nagamochi [48], even for the multiple-vehicle case. For the VSP on a tree, Hu [45]

developed a 3-approximation algorithm, and Karuno and Nagamochi [48] presented

a polynomial time approximation scheme that achieves an approximation ratio of

(1 + ϵ) for any ϵ > 0, with the running time polynomial in the input size but expo-

nential to 1/ϵ. However, for the VSP on a metric undirected graph, no constant ratio

approximation algorithms are known in the literature.

Finally, in contrast to algorithm designs, results on approximation hardness are

almost unknown for various min-max path cover problems. It is only known that

the asymmetric TSP cannot be approximated with a ratio less than 117/116 unless

P=NP, whereas the symmetric TSP cannot be approximated with a ratio less than

220/219 [65].

1.2.2 Relevant works for the min-max k-TSP on a tree and its variants

There is a large body of literature on VRPs on trees, because the tree-shaped

networks appear in many practical situations for vehicle routing, such as in railway

systems for pit mines [54], in production lines [14, 49], and in rural delivery systems

with roads that branch off from a single highway [11, 76]. In some water systems,

such as the Pearl River Delta in China, the main stream and its tributaries often form

a tree-shaped or even a line-shaped network [51, 66].

Given that the network is tree-shaped, many VRPs are known to have better

approximation algorithms or even polynomial time exact algorithms. For example,

when k = 1, the min-max k-TSPT is equivalent to the TSP on a tree, which can be
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solved in polynomial time by visiting each edge of the tree exactly twice, while the

general version of the TSP is known to be NP-hard. For the min-max 2-TSP, the

best existing approximation algorithm achieves an approximation ratio of 2 [12], while

for the min-max 2-TSPT, Averbakh and Berman [8] obtained a 4/3-approximation

algorithm. For any given constant k ≥ 2, although the k-TSPT is known to be NP-

hard, it still remains an open question on whether or not a pseudo-polynomial time

exact algorithm or an FPTAS can be developed for the min-max k-TSPT.

There are several studies in the literature on approximation algorithms for dif-

ferent variants of the min-max k-TSPT. For example, Averbakh and Berman [8]

developed a 3/2-approximation algorithm for the min-max 2-depot TSPT, which is

an extension of the min-max 2-TSPT by allowing vehicles to start from different de-

pots. Averbakh and Berman [9] studied another variant of the min-max k-TSPT,

which is called the min-max k-TSPT location-allocation problem, where one needs

to assign a home location (or depot) to each vehicle. For this variant, Averbakh

and Berman [9] developed a (k− 1)/(k+1)-approximation algorithm, whose running

time is O(kk−1nk−1), which is polynomial time if k is a given constant. Nagamochi

and Okada [62] later achieved the same approximation ratio but reduced the running

time to O((k − 1)!n), which, however, is still exponential to k. For a special case of

the min-max k-TSPT, where only optimal home locations must be found, without

the corresponding tours, Averbakh and Berman [10] presented polynomial time exact

algorithms for those special cases with k = 2 and k = 3. However, as far as we

know, no pseudo-polynomial time exact algorithms are known for these variants of

the min-max k-TSPT for any given constant k ≥ 2.

Besides the min-max objective, other objectives have also been studied in the

literature on approximation algorithms for the VRPs on a tree. Averbakh and Berman

[7] studied a VRP on a tree with the objective of minimizing the total waiting time

of the customers, and showed that the problem is polynomial solvable for the single-
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vehicle case, and is strongly NP-hard for the multiple-vehicle case. Karuno et al. [49]

studied a VRP on a tree with the objective of minimizing the maximum lateness of

tasks served for the customers subject to their release times. It was shown that the

single vehicle case of the problem is strongly NP-hard in general, but is polynomial

solvable if only depth-first routing is allowed for the vehicle. Moreover, several authors

studied a capacitated vehicle routing problem on a tree (CVRPT), which aims to

determine a set of routes for vehicles from a given depot to deliver goods to satisfy

demands of customers on a tree, such that for each vehicle, the number of goods

delivered by it cannot exceed a specific capacity limit, so as to minimize the total

edge weight of the routes. When the demand of each customer is not splittable,

Labbé et al. [54] developed a 2-approximation algorithm for the CVRPT. When the

demand of each customer is splittable, Hamaguchi and Katoh [42] developed a 3/2-

approximation algorithm, which was later improved by Asano et al. [5] to achieve an

approximation ratio of 1.3078. Recently, for the CVRPT with multiple depots, where

each given depot has a vehicle with a capacity, Hu [45] developed a 2-approximation

algorithm.

In addition to the VRPs, the tree-shaped network has also been considered for

other combinatorial optimization problems. For example, Johnson and Niemi [46]

introduced a tree knapsack problem, which can be regarded as a 0-1 knapsack problem

on a rooted tree such that if a vertex is selected, then all the vertices on the path

from the selected vertex to the root must also be selected. The objective of the

tree knapsack problem is to minimize the total weight of the edges that join the

selected vertices. Based on the fact that each edge of the tree can be contained

at most once in any feasible solution, Johnson and Niemi [46] developed a dynamic

programming algorithm that returns an optimal solution in pseudo-polynomial time

for any given instance of the tree knapsack problem. Similarly, for other variants of

the tree knapsack problem, such as the tree partitioning problem [53, 58, 77] and the
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tree facility problem [74], one can also obtain pseudo-polynomial time algorithms by

a similar dynamic programming approach. However, for the k-TSPT with a given

constant k ≥ 2, since each edge of the tree may be traversed by more than one vehicle,

the dynamic programming approach for the tree knapsack problem cannot be directly

applied.

1.2.3 Relevant works for the k-depot TSP and its variants

The k-depot TSP for k ≥ 2 is NP-hard since it can be reduced from the single-

depot TSP on a metric undirected graph by setting the depot set D to consist of

the single-depot of the TSP and taking the (k − 1) additional depots to have infi-

nite distances from the customers. This motivates the development of approximation

algorithms that can give good solutions in polynomial time and which guarantee

constant approximation ratios. Indeed, a number of researchers have developed ap-

proximation algorithms with constant approximation ratios for the TSP on a metric

undirected graph [19, 73] and other single-depot vehicle routing problems [26]. These

are typically based on two methods: A tree algorithm [64, 73] and a heuristic given

by Christofides [19]. Both approaches use a basic framework comprising the following

three steps: Step 1: Find a minimum spanning tree (MST) of the given graph; Step 2:

Create a connected Eulerian multigraph by adding a set of edges to the MST; Step 3:

Find a Eulerian closed walk of the multigraph, remove repeated vertices of the closed

walk, and return the resulting cycle.

The two approaches differ in step 2, where the tree algorithm duplicates all edges

of the MST obtained in step 1, whereas the Christofides’ heuristic adds to the MST

only edges of a minimum perfect matching for vertices having odd degrees in the

MST. Both guarantee that every vertex is connected and has even degree so that

there exists a Eulerian closed walk in the multigraph. As the MST is not longer

than the optimal TSP tour, the tree algorithm has an approximation ratio of 2. The
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Christofides’ heuristic, however, achieves a superior ratio of 3/2, since the minimum

perfect matching used in its step 2 is not longer than half of the optimal TSP tour.

In contrast with single-depot vehicle routing problems, many previous works on

multiple-depot vehicle routing problems do not provide worst-case analysis [39, 71,

82]. Based on the tree algorithm, Rathinam et al. [69] developed a 2-approximation

algorithm for the k-depot TSP which is the best available in the literature. Malik

et al. [59] has provided a similar 2-approximation algorithm for a generalized k-depot

TSP, in which more than k depots with distinct salesmen are available in D, of which

only k can be selected to serve customers. Moreover, for some extensions of the k-

depot TSP, such as the capacitated case of the k-depot TSP [43, 56], where each

vehicle can serve a limited number of customers, and the generalized k-depot TSP

[59], in which more than k traveling salesmen are available but only k of them can be

selected to service the customers, although constant ratio approximation algorithms

are known, the approximation ratios are all greater than or equal to 2. Since the best

approximation ratio of 3/2 for the TSP is obtained using the Christofides’ heuristic,

the best ratio that can be expected for the k-depot TSP is 3/2, unless the TSP on a

metric undirected graph has an approximation algorithm superior to the Christofides’

heuristic.

In the literature [3, 59, 69], it has been suggested that the Christofides’ heuristic

can be extended for the k-depot TSP and its variants by computing a constrained

spanning forest in which each tree contains a distinct depot in step 1 above. However,

the worst-case analysis of the extended Christofides’ heuristic is known to be difficult

since this requires bounding the length of a minimum perfect matching for vertices

having odd degrees in the constrained spanning forest [3, 59]. Rathinama and Sen-

gupta [70] recently extended the Christofides’ heuristic to obtain a 3/2-approximation

algorithm for a 2-depot Hamiltonian path problem, which determines paths instead

of tours for salesmen. The analysis of the approximation ratio in their work is
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manageable since it only requires bounding the length of a partial matching for a

2-depot case. Moreover, two recent technical reports [67, 68] claimed to achieve ap-

proximation ratios better than 2 for two multiple-depot Hamiltonian path problems.

However, we note that the proofs for Proposition V.2 in [68] and Proposition II.3

in [67] assume that any concave-convex function f of vectors π and x must satisfy

f(π∗, x∗) = maxπ f(π, x
∗) for all (π∗, x∗) with f(π∗, x∗) = maxπ minx f(π, x), which is

not always the case, in particular for the (π∗, x∗) constructed in [67, 68]. Since these

methods that were developed in the mentioned technical reports seem to be incorrect,

they are not expected to be applied to the k-depot TSP to address the open question.

It therefore remains an open question if a tight approximation ratio of the ex-

tended Christofides’ heuristic can be found for the k-depot TSP. Moreover, besides

the TSP, many researchers have studied approximation algorithms for other single-

depot vehicle routing problems on a metric undirected graph, such as the clustered

TSP [2, 40], the mixed Chinese postman problem [21, 25, 26, 33], the rural postman

problem [27, 34], and the stacker-crane problem [27, 34]. For these problems, the best

approximation algorithms available are all dependant on approximation solutions to

the TSP [26, 27]. As far as we are aware, multiple-depot extensions of these more

complex routing problems have rarely been studied in the approximation algorithm

literature. Therefore, it is possible to extend our proposed approximation algorithm

for the k-depot TSP to develop constant ratio algorithms for these previously men-

tioned multiple-depot extensions.

1.3 Contributions, Organization and Publications

This thesis contributes to the study on approximability for three categories of

VRPs, namely, the min-max PCP, the min-max k-TSPT, and the k-depot TSP, by

investigating the three research questions, Q1, Q2 and Q3, proposed in Section 1.1.

With new techniques developed, we are able to obtain improved constant-ratio ap-
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proximation algorithms and/or the first inapproximability bounds for these VRPs

and their variants. As a result, the two open questions mentioned in Section 1.1 have

been settled. The main results in this thesis have been summarized in Table 1.1,

where the numbers in brackets indicate the best known results in the literature:

Table 1.1: Summary of main results in this thesis.

Problems Approximation
Ratios

Inapproximability
Bounds

Min-max uncapacitated path cover problem
with single depot

max{3− 2/k, 2} 4/3

Min-max uncapacitated path cover problem
with multiple depots

5 3/2

Min-max capacitated path cover problem
with single depot

max{5− 2/k, 4} 3/2

Min-max capacitated path cover problem
with multiple depots

7 2

Min-max 2-traveling salesmen problem on a
tree

1 + ϵ (4/3)

Min-sum k-depot traveling salesmen problem 2− 1/k (2)

Regarding the research question Q1, we have developed the first approximation

algorithms and the first inapproximability bounds for two cases of the min-max PCP

respectively, one for the uncapacitated case where no vehicle has capacity limit, and

the other for the capacitated case where customers served by each vehicle cannot

exceed a capacity limit. For the min-max Uncapacitated PCP (UPCP), we have

obtained the following results for the development of approximation algorithms, as

shown in Chapter 2:

1. We have developed a cycle-splitting-by-weight procedure, which has been used

extensively in the development of constant ratio approximation algorithms for

the min-max UPCP.

2. For the min-max UPCP with a single depot available for all the vehicles, we
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have developed the first constant ratio approximation algorithm, which achieves

an approximation ratio of max{3− 2/k, 2}.

3. For the min-max UPCP with multiple depots available for all the vehicles, we

have developed the first constant ratio approximation algorithm, which achieves

an approximation ratio of 5.

For the min-max Capacitated PCP (CPCP), we have obtained the following results

for the development of approximation algorithms, as shown in Chapter 3:

1. We have developed a cycle-splitting-by-customer-number procedure, which has

been used extensively in the development of constant ratio approximation algo-

rithms for the min-max CPCP.

2. For the min-max CPCP with a single depot available for all the vehicles, we

have developed the first constant ratio approximation algorithm, which achieves

an approximation ratio of max{5− 2/k, 4}.

3. For the min-max CPCP with multiple depots available for all the vehicles, we

have developed the first constant ratio approximation algorithm, which achieves

an approximation ratio of 7.

In addition, we have also demonstrated the possible extensions of our techniques, so as

to develop constant ratio approximation algorithms for other variants of the min-max

PCP. For example, in Section 3.6.1, we have illustrated that the technique developed

for the min-max path cover problem with single depot can be extended to the min-

max cycle cover problem with single depot. The approximation algorithm developed

for the min-max cycle cover problem with single depot has a superior approximation

ratio than the min-max path cover problem with single depot.

For both the min-max UPCP and the min-max CPCP, we have obtained the

first inapproximability bounds in Chapter 4, by reductions from the 3-Dimensional

Matching Problem (3DM) [35], which is a well-known NP-complete problem.
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1. For the the min-max UPCP with a single depot for all the vehicles, we have

shown that it is impossible to achieve an approximation ratio less than 4/3,

unless P=NP.

2. For the the min-max UPCP with multiple depots for all the vehicles, we have

shown that it is impossible to achieve an approximation ratio less than 3/2,

unless P=NP.

3. For the the min-max CPCP with a single depot for all the vehicles, we have

shown that it is impossible to achieve an approximation ratio less than 3/2,

unless P=NP.

4. For the the min-max CPCP with multiple depots for all the vehicles, we have

shown that it is impossible to achieve an approximation ratio less than 2, unless

P=NP.

In addition, we have also demonstrated the possible extensions of our reductions, so

as to derive inapproximability bounds for other variants of the min-max PCP.

Regarding the research question Q2, we have provided a complete answer in Chap-

ter 6:

1. We have developed an exact algorithm for the min-max 2-TSPT by a dynamic

programming approach, which yields a pseudo-polynomial running time. This

also provides a positive answer to the open question raised by Averbakh and

Berman [8].

2. Based on the pseudo-polynomial time exact algorithm, we have developed an

FPTAS for the min-max 2-TSPT.

3. We have shown that both the exact algorithm and the FPTAS can be extended

for the min-max k-TSPT for any given constant k ≥ 2.
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In addition, we have also demonstrated the possible extensions of our algorithms for

several other VRPs on a tree-shaped network.

Regarding the research question Q3, we have provided a complete answer in Chap-

ter 6:

1. We have developed a set of new upper bounds on the length of the matching

used in the extended Christofides’ heuristic for the k-depot TSP. The new upper

bounds are extensively used in deriving the approximation ratio of the extended

Christofides’ heuristic.

2. We have showed that the extended Christofides’ heuristic is a (2−1/k)-approximation

algorithm. This approximation algorithm is better than the 2-approximation

algorithm available in the literature, and is close to 3/2 when k is close to 2.

3. We have devised an example to show that the approximation ratio of the ex-

tended Christofides’ heuristic is not greater than (2− 1/k), which implies that

the approximation ratio of (2− 1/k) is tight.

In addition, we have demonstrated how the results and the techniques can be general-

ized for possible improvements to the extended Christofides’ heuristic for the k-depot

TSP, as well as for the analysis of variants of the extended Christofides’ heuristic for

other multiple-depot VRPs.

We conclude this thesis in Chapter 7 with discussions on both the limitations and

the future research directions.

Finally, some of the results in this thesis have appeared in [78, 80, 81].
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CHAPTER 2

Approximation Algorithms for the Min-max

Uncapacitated Path Cover Problems

2.1 Introduction

The min-max Path Cover Problem (PCP) aims to determine a set of paths for

a given fleet of k vehicles to serve customers in a metric undirected graph, so that

the maximum total edge and vertex weight among all paths is minimized. Most of

the existing literatures in vehicle routing focus on developing efficient and effective

solution methods to find “good” vehicle routes, where the quality of the routes is

usually measured in terms of the total travel distance of the vehicles. However, in some

applications the minimization of maximum arrival time at the customer locations

(i.e., the latest service completion time) is more relevant. Vehicle routing with this

type of min-max objective has recently appeared in the literature in the context of

“routing for relief efforts”, where it is critical that the deliveries of humanitarian aid

are both fast and fair [15]. Since the min-max PCP is relatively new, approximation

algorithms with constant approximation ratios are almost unknown in the literature

for the min-max PCP and its variants.

In this chapter, we develop constant ratio approximation algorithms for two vari-

ants of the min-max uncapacitated path cover problem (UPCP) in a metric undi-
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rected network, where each vehicle is assumed to have an unlimited capacity. This

assumption on uncapacitated vehicles reflects those real-life situations that vehicles

deliver services, rather than physical materials, to customers. The remainder of this

chapter is organized as follows. Section 2.2 introduces the definition of the min-max

UPCP, and the notation that are used throughout this chapter. We then introduce

in Section 2.3 a cycle splitting procedure by revised edge weights, which has been

extensively applied in the development of approximation algorithms in this chapter.

For the min-max UPCP with a single depot available for all the vehicles, we develop

in Section 2.4 the first constant-ratio approximation algorithm, which achieves an

approximation ratio of max{3 − 2/k, 2}. For the min-max UPCP with multiple de-

pots available for all the vehicles, we develop the first constant ratio approximation

algorithm in Section 2.5, which achieves an approximation ratio of 5. Finally, we

summarize this chapter in Section 2.6.

2.2 Notation and Problem Definition

The min-max UPCP can be described as follows: We are given a complete undi-

rected graph G = (V,E) with vertex set V and edge set E. There are a given set of

vehicle depots D ⊂ V , a given set of customer locations J = V \D, and k ≥ 1 identi-

cal vehicles each having an infinite capacity Q = ∞. Each vertex v ∈ V is associated

with a non-negative vertex weight h(v), which represents the service handling time

at the customer location and is equal to zero if v is a depot in D. Each edge e ∈ E

is associated with a non-negative edge weight w(e), which represents the time for the

vehicles to travel along the edge. We would like to determine a set of k paths for the

k vehicles to service all the customers in J , such that each vehicle must start from a

depot in D. The objective is to minimize the latest service completion time among

all vehicles, where the service completion time of a vehicle includes all of its edge

traveling time and service handling time, but excludes its return trip (if any) from
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its last customer back to a depot. We assume that the edge weights form a metric

(i.e., they are symmetric and satisfy the triangle inequality), because the vehicles can

always travel along the shortest path between any two vertices.

We denote the instance of the uncapacitated min-max path cover problem as

(G,D, J, w, h, k,Q). Depending on whether D contains only one depot or multiple de-

pots, the problem has the following two typical variants: the min-max uncapacitated

path cover problem with single depot (UPCP-SD), and the min-max uncapacitated

path cover problem with multiple depots (UPCP-MD).

Consider any instance I = (G,D, J, w, h, k,Q) of the min-max uncapacitated

path cover problem with an underlying complete undirected graph G = (V,E). A

path in G is a sequence P = ⟨v1, v2, . . . , vm+1⟩ of vertices such that (vi, vi+1) ∈ E for

1 ≤ i ≤ m. Vertices v1 and vm+1 are the starting endpoint and the finishing endpoint

of P , respectively. If v1 = vm+1, then P is referred to as a cycle. The length of P ,

denoted ℓ(P ), is the number of edges in P (hence m = ℓ(P )). Thus, if ℓ(P ) = 0, then

the path deteriorates to a vertex. We use “ℓ(P ) < 0” to represent the situation where

the path is empty. Let V (P ), J(P ), and E(P ) denote the vertex set, customer set,

and edge set of P , respectively, where repeated vertices, customers, and edges of P

appear only once in these sets. For any subset U ⊆ V , we say that the path covers U if

U ⊆ V (P ). Let w(P ) =
∑ℓ(P )

i=1 w(vi, vi+1) and h(P ) =
∑ℓ(P )+1

i=1 h(vi) denote the total

edge weight and the total vertex weight of P , respectively, where repeated edges and

vertices of P are counted repeatedly. Note that if P is a cycle, then in the definition

of h(P ), the weights of the two endpoints of P are counted twice, even though these

two endpoints are actually the same vertex. Of course, if the two endpoints of P are

the same depot, then these two endpoints have zero weight. We define a segment of

path P as a contiguous subsequence of its vertices (which is allowed to be empty).

Consider any set of paths P . Let cost(P) denote the cost of P, which is defined
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as the maximum total edge and vertex weight of any path in P:

cost(P) = max
P∈P

{w(P ) + h(P )}. (2.1)

A path cover of I is a set of paths such that each path in this set starts from a

depot, and that each customer of J appears at least once on the paths in this set. A

path cover is exact if each customer of J appears exactly once among all the paths

in the path cover. Thus, a feasible solution to I is an exact path cover that consists

of k paths. Because the cost of any feasible solution P defined in (2.1) is equal to

the latest service completion time, an optimal solution to I is a feasible solution that

minimizes its cost. We let OPT(I) denote the cost of an optimal solution of the given

instance I. Thus, the min-max path cover problem can be formulated as follows.

Min-max Uncapacitated Path Cover Problem

Instance: I = (G,D, J, w, h, k,Q), whereG = (V,E) is a complete undirected graph,

D ⊂ V , J = V \ D, w is a metric function on E, h is a function on V with

h(d) = 0 for each d ∈ D, and k is a positive integer and Q = ∞.

Feasible solution: An exact path cover P of I that consists of k paths.

Objective: minP cost(P).

For ease of exposition, we assume that all edge and vertex weights are integers.

For any U ⊆ V , let h(U) denote the total vertex weight of U . For any F ⊆ E, let

w(F ) denote the total edge weight of F . For any subgraph H of G, let V (H), J(H),

and E(H) denote its vertex set, customer set, and edge set, respectively. For each

depot d ∈ D, we use wmax(d) = maxv∈J w(d, v) to denote the largest weight among

those edges joining d and the customers in J , which equals zero if J is empty. We

use hmax = maxv∈V h(v) to denote the largest weight among the vertices in V . For
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any v ∈ V , Let wmin(v,D) = mind∈D w(v, d) denote the smallest weight among those

edges connecting v and the depots in D.

Finally, we define a revised edge weight for each (u, v) ∈ E as w(u, v)+h(u)+h(v),

which is denoted by w′(u, v). Accordingly, we use w′(F ) to represent the total revised

edge weight of any F ⊆ E. We use w′(P ) to represent the total revised edge weight

of any path P , where repeated edges are counted repeatedly. Note that if P contains

only single vertex, then by definition, w′(P ) = 0. Lemma 2.1 provides an important

property of function w′.

Lemma 2.1. Consider any cycle C with at least one edge but no repeated customers.

It satisfies w′(C) = w(C) + 2h(J(C)). Furthermore, for each segment S of C, if S

contains no edge, then w(S) + h(J(S)) ≤ hmax; otherwise, w(S) + h(J(S)) ≤ w′(S).

Proof. Denote C = ⟨v1, v2, . . . , vm+1⟩, where v1 = vm+1 and m = ℓ(C) ≥ 1. By

definition of w′,

w′(C) =
m∑
i=1

w′(vi, vi+1) =
m∑
i=1

[
w(vi, vi+1) + h(vi) + h(vi+1)

]
= w(C) +

[
h(C)− h(vm+1)

]
+
[
h(C)− h(v1)

]
. (2.2)

Because v1 = vm+1 and ⟨v1, v2, . . . , vm⟩ has no repeated customers, we have h(C) =

h(J(C)) + h(vm+1) = h(J(C)) + h(v1). Thus, from (2.2) we obtain w′(C) = w(C) +

2h(J(C)).

For each segment S of C, if S contains no edge, then w(S)+h(J(S)) = h(J(S)) ≤

hmax. Otherwise, let vp and vq denote the two endpoints of S, where 1 ≤ p < q ≤ m+1.

By definition of w′,

w′(S) = w(S) +
[
h(S)− h(vp)

]
+
[
h(S)− h(vq)

]
. (2.3)

Since h(S) ≥ h(vp) + h(vq) and h(S) ≥ h(J(S)), we obtain w′(S) ≥ w(S) + h(J(S)).
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2.3 Cycle Splitting by Revised Edge Weights

Approximation algorithms developed in this chapter rely on a cycle splitting pro-

cedure, which splits a cycle into a set of segments, such that the revised edge weights

of the segments do not exceed some thresholds.

The cycle splitting procedure is denoted by Split(C, f, {bi}1≤i≤f ). Given a cycle

C = ⟨v1, v2, . . . , vℓ(C)+1⟩ with no repeated customers (except maybe at its endpoints),

a positive integer f , and non-negative thresholds b1, b2, . . . , bf satisfying
∑f

i=1 bi =

w′(C), this procedure splits cycle C into f segments S1, S2, . . . , Sf such that w′(Si) ≤

bi. A description of this cycle splitting procedure is given below:

Algorithm 2.1 (Split(C, f, {bi}1≤i≤f )).

Input : A cycle C = ⟨v1, v2, . . . , vℓ(C)+1⟩ with no repeated customers (except maybe

at its endpoints), an integer f ≥ 1, and non-negative thresholds b1, b2, . . . , bf with∑f
i=1 bi = w′(C).

Output : A set S = {Si : 1 ≤ i ≤ f} of f segments of C with w′(Si) ≤ bi.

1. Set π(0) := 0 and t := 0. If w′(C) ≤ b1, then return S = {Si : 1 ≤ i ≤ f},

where S1 = ⟨v1, v2, . . . , vℓ(C)⟩ and Si = ⟨v1⟩ for 2 ≤ i ≤ f . Otherwise, go to

Step 2.

2. Repeat the following until t = f or π(t) = ℓ(C) + 1:

(a) Increment t by 1. Determine π(t) as follows:

i. If t = f or π(t− 1) + 1 = ℓ(C) + 1, then set π(t) := ℓ(C) + 1.

ii. Otherwise, if w′(vπ(t−1)+1, vπ(t−1)+2) > bt, then set π(t) := π(t − 1) +

1, else set π(t) equal to the largest index in {π(t−1)+2, π(t−1)+

3, . . . , ℓ(C)+1} such that w′(⟨vπ(t−1)+1, vπ(t−1)+2, . . . , vπ(t)⟩) ≤ bt.
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(b) Set segment St := ⟨vπ(t−1)+1, vπ(t−1)+2, . . . , vπ(t)⟩.

3. Suppose the iterations in step 2 stop at t = τ . Then, set Si := ⟨v1⟩ for τ + 1 ≤

i ≤ f . Return S = {Si : 1 ≤ i ≤ f}.

If w′(C) ≤ b1, then Algorithm 2.1 terminates in step 1, and it returns the segment

⟨v1, v2, . . . , vℓ(C)⟩, along with f − 1 single-vertex segments. Otherwise, the algorithm

starts with π(0) = 0 and determines π(t) for t = 1, 2, . . . iteratively in step 2, until

t = f or π(t) = ℓ(C) + 1. In each iteration, a segment St of C is obtained. In

step 2(a)(ii), we fix one endpoint of segment St to vπ(t−1)+1 and select the other

endpoint so that the revised total edge weight of St is as large as possible without

exceeding bt. In the last iteration, according to step 2(a)(i), π(t) is set equal to

ℓ(C) + 1, which is the index of the finishing endpoint of cycle C.

Example 2.1. We use the example shown in Figure 2.1 to illustrate the procedures

of Algorithm 2.1, in which f = 3 and {b1, b2, b3} = {4, 3, 17}. The cycle C without

repeated customers is depicted in Figure 2.1(a), where {d1, d2} are the depots and

{u1, u2, u3} are the customers. The edge weights and vertex weights are also shown in

Figure 2.1(a). For ease of exposition, we relabel the vertices as shown in Figure 2.1(b),

where a cycle C = ⟨v1, v2, . . . , v7⟩ is formed. Note that ℓ(C) = 6 and v1 = v7 = d1.

Algorithm 2.1 first revises the edge weight as w′(u, v) = w(u, v)+h(u)+h(v) for each

edge. For instance, w′(v1, v2) = 2 + 0 + 1 = 3. The revised edge weight for each edge

is depicted in Figure 2.1(b). Set π(0) = 0 and t = 0. Because w′(C) = 24 > b1, step 2

is executed, and cycle C is split into three segments as follows: When t = 1, since

w′(⟨v1, v2⟩) = 3 ≤ b1 and w′(⟨v1, v2, v3⟩) = 9 > b1, then step 2(a)(ii) sets π(1) = 2,

and then step 2(b) generates S1 = ⟨v1, v2⟩. When t = 2, since w′(⟨v3, v4⟩) = 4 > b2,

step 2(a)(ii) sets π(2) = π(1)+1 = 3, and step 2(b) generates S2 = ⟨v3⟩. When t = 3,

since t = f , then π(t) = v7, step 2(a)(i) sets π(3) = 7, and then step 2(b) generates

S3 = ⟨v4, v5, v6, v7⟩. The segments S1, S2 and S3 are shown in Figure 2.1(c).
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Figure 2.1: Example to illustrate Algorithm 2.1
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(c) Segments generated

The following lemma provides us with some important properties of the segments

generated by Algorithm 2.1.

Lemma 2.2. Given any valid input (C, f, {bi}1≤i≤f ), Algorithm 2.1 runs in polyno-

mial time and returns a set S of f segments S1, S2, . . . , Sf that satisfy the following

properties:

(i) Each vertex v ∈ V (C) appears in at least one of the segments S1, S2, . . . , Sf ,

and each customer v ∈ J(C) \ {v1} appears in exactly one of these segments,

where v1 is an endpoint of C.

(ii) Each of the segments S1 and Sf has an endpoint which is the same as the

endpoints of C.

(iii) w′(Si) ≤ bi for all 1 ≤ i ≤ f .

(iv) If bi = b for all 1 ≤ i ≤ f − 1, and if f = ⌈w′(C)/b⌉, then cost(S) ≤

max{b, hmax}.

Proof. Because step 2 of Algorithm 2.1 has at most f iterations and because the

algorithm searches through cycle C only once, Algorithm 2.1 can be terminated in

O(f+ℓ(C)) time. The validity of properties (i), (ii) and (iii) is obvious. If w′(C) ≤ b1,
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then verifying the validity of properties (iv) and (v) is straightforward. Hence, it

suffices to consider the case where w′(C) > b.

To prove property (iv), suppose iterations in Step 2 stop at t = T , where T ≤ f .

From Step 2 and Step 3, it is easy to see that w′(Si) ≤ bi for all i ∈ {1, 2, . . . , f}\{T},

and that w′(ST ) ≤ bT when T < f . Consider the case where T = f . In this case, since

π(t) is non-decreasing in t, we have w′(ST ) = w′(C)−
∑f−1

t=1 [w
′(St)+w′(vπ(t), vπ(t)+1)].

From Step 2(a)ii, we know bt < w′(St) + w′(vπ(t), vπ(t)+1) for 1 ≤ t ≤ f − 1. Hence,

w′(ST ) ≤ w′(C)−
∑f−1

t=1 bt = bf = bT . This implies that w′(ST ) ≤ w′(C)−
∑f−1

t=1 bt =

bf = bT . Thus, property (iv) is proved.

To prove property (v), suppose bi = b for all 1 ≤ i ≤ f − 1, and f = ⌈w′(C)/b⌉,

which implies bf ≤ b because
∑f

i=1 bi = w′(C). For each 1 ≤ i ≤ f , we have

w′(Si) ≤ b according to property (iv), and w(Si) + h(J(Si)) ≤ max{w′(Si), hmax}

by Lemma 2.1. According to property (iii), each segment in S has no repeated

customers, which implies h(J(Si)) = h(Si) for 1 ≤ i ≤ f . Hence, w(Si) + h(Si) =

w(Si)+h(J(Si)) ≤ max{w′(Si), hmax} ≤ max{b, hmax} for all 1 ≤ i ≤ f , which implies

cost(S) ≤ max{b, hmax}.

2.4 Min-max UPCP-SD

For the min-max UPCP-SD, where each of the k vehicles has an unlimited ca-

pacity and must start its path from the only depot d, we present a max{3− 2/k, 2}-

approximation algorithm in Section 2.4.

Given an instance I = (G, {d}, J, w, h, k,∞), our algorithm first obtains a mini-

mum spanning tree of G and then doubles the edges of the minimum spanning tree,

so as to construct a connected Euler graph H on V with each vertex having an even

degree. It is well known that every connected Euler graph has a Eulerian cycle that

contains every edge of the graph exactly once, and that such a Eulerian cycle can
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be obtained in O(|V |2) time [52]. The algorithm short-cuts repeated vertices on the

Eulerian cycle of H to obtain a cycle C that covers V , where C contains no repeated

vertices except for its endpoints. Then, it applies Algorithm 2.1 to split C into a set

S of k segments. By joining the depot d to each segment in S, the algorithm returns

a set P of k paths. A detailed description of this algorithm is given below:

Algorithm 2.2 (Min-max UPCP-SD).

Input : Instance I = (G, {d}, J, w, h, k,∞).

Output : A set of feasible paths P = {Pi : 1 ≤ i ≤ k}.

1. Find a minimum spanning tree T ∗ of G. Double each edge of T ∗ to induce

a connected Euler graph H on V . Obtain a Eulerian cycle on H. Short-cut

repeated vertices on the Eulerian cycle to obtain a cycle C that covers V , where

C contains no repeated vertices except for its endpoints. Relabel the vertices

on C as ⟨v1, v2, . . . , vℓ(C)+1⟩ such that v1 = vℓ(C)+1 = d.

2. Let b = [w′(C) − 2wmax(d)]/k, where wmax(d) = maxv∈J w(d, v) as defined in

Section 2. Define thresholds b1 := b + wmax(d), bi := b for 2 ≤ i ≤ k − 1, and

bk := w′(C) −
∑k−1

i=1 bi. Apply Split(C, k, {bi}1≤i≤k) to split C into a set of k

segments, denoted S = {Si : 1 ≤ i ≤ k}.

3. Set P1 := S1 and Pk := Sk. For 2 ≤ i ≤ k − 1, construct a path Pi by joining d

to the closer endpoint of Si. Return P = {Pi : 1 ≤ i ≤ k}.

Note that in step 3, paths P1 and Pk are set equal to S1 and Sk, respectively. We

can do so because both segments S1 and Sk contain d as one of their endpoints.

Example 2.2. We use an example to illustrate Algorithm 2.2. In this example,

D = {d} and k = 3. The minimum spanning tree T ∗ is shown with solid lines in Fig-

ure 2.2(a). The edge weights w(u, v) and vertex weights h(v) are also shown in the fig-

ure. An Euler graph H is constructed by doubling the edges of T ∗, and a Eulerian cy-

cle ⟨d, u1, d, u2, u3, u2, u4, u2, d, u5, d⟩ is obtained. A cycle C = ⟨d, u1, u2, u3, u4, u5, d⟩
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that covers V is obtained by short-cutting the repeated vertices, as depicted in Fig-

ure 2.2(b). Relabel the vertices from d as v1, v2, . . . , v7 (see Figure 2.2(b)). Fig-

ure 2.2(b) shows the revised edge weights of edges of C. Thus, w′(C) = 28. Since

wmax(d) = 2, we have b = [w′(C)−2wmax(d)]/k = 8, b1 = b+wmax(d) = 10, b2 = b = 8,

and b3 = w′(C) − b1 − b2 = 10. Applying Split(C, k, {bi}1≤i≤k) to split C into three

segments, we obtain S1 = ⟨v1, v2⟩, S2 = ⟨v3, v4⟩, and S3 = ⟨v5, v6, v7⟩. Finally, we

let P1 = S1 and P3 = S3, and after joining v1 to a closer endpoint of S2, we obtain

P2 = ⟨v1, v3, v4⟩. The path set P = {P1, P2, P3} is shown in Figure 2.2(c).

Figure 2.2: Example to illustrate Algorithm 2.2
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To analyze Algorithm 2.2, we first present a lower bound on OPT(I).

Lemma 2.3. For any instance I = (G, {d}, J, w, h, k,∞) of the min-max UPCP-SD,

OPT(I) ≥ max
{
hmax, wmax(d),

b

2
+

wmax(d)

k

}
,

where b = [w′(C)−2wmax(d)]/k, and C is the cycle obtained in step 1 of Algorithm 2.2.

Proof. By definition, every feasible solution to I must cover every customer in J ,

and each of its paths must start from the depot d. Thus, OPT(I) ≥ hmax, and

OPT(I) ≥ wmax(d). To prove OPT(I) ≥ b/2 + wmax(d)/k, consider an optimal path

cover P∗ = {P ∗
i : 1 ≤ i ≤ k}. Since the paths in P∗ are all from d and they connect
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all vertices of G, we have
∑k

i=1 w(P
∗
i ) ≥ w(E(T ∗)) and

∑k
i=1 h(P

∗
i ) ≥ h(J), where

T ∗ is the minimum spanning tree obtained in step 1 of Algorithm 2.2. Hence,

OPT(I) = max
i=1,2,...,k

{w(P ∗
i )+h(P ∗

i )} ≥ 1

k

k∑
i=1

[
w(P ∗

i )+h(P ∗
i )
]
≥ 1

k

[
w(E(T ∗))+h(J)

]
.

(2.4)

According to step 1 of Algorithm 2.2, we know that J(C) = J , and that C has at least

one edge but no repeated customers. Thus, by Lemma 2.1, w′(C) = w(C)+2h(J(C)).

Due to the triangle inequality, w(C) ≤ 2w(E(T ∗)). Therefore, from (2.4),

OPT(I) ≥ 1

k

[w(C)

2
+ h(J(C))

]
=

w′(C)

2k
=

b

2
+

wmax(d)

k
.

We can now establish Theorem 2.1 to show that Algorithm 2.2 achieves an ap-

proximation ratio of max{3− 2/k, 2}.

Theorem 2.1. Given any instance I of the min-max UPCP-SD, Algorithm 2.2 re-

turns a path set P in polynomial time, such that P is a feasible solution to I with

cost(P) ≤ max{3− 2/k, 2}OPT(I).

Proof. Step 1 of Algorithm 2.2 takes O(|V |2) time. By Lemma 2.2, step 2 takes

O(k + |V |) time. Hence, Algorithm 2.2 has a polynomial time complexity. Clearly,

every path in P starts from a depot. By Lemma 2.2(i), each customer in J(V ) appears

in exactly one of the paths in P . Hence, P is a feasible solution to I.

Next, we prove that cost(P) ≤ max{3 − 2/k, 2}OPT(I). As defined in step 2

of Algorithm 2.2, b1 = b + wmax(d) and bi = b for 2 ≤ i ≤ k − 1. Note that bk is

set equal to w′(C) −
∑k−1

i=1 bi. It is easy to check that bk ≤ b + wmax(d). Hence, by

Lemma 2.2(iv), we have

w′(Si) ≤ b+ wmax(d), for i = 1 and k, (2.5)
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w′(Si) ≤ b, for 2 ≤ i ≤ k − 1. (2.6)

By Lemma 2.2(ii), each of S1 and Sk has an endpoint at the depot d. Thus, w(Pi) +

h(J(Pi)) ≤ w(Si) + h(J(Si)) for i = 1 and k. For 2 ≤ i ≤ k − 1, from step 3 of

Algorithm 2.2, it is easy to see that w(Pi) + h(J(Pi)) ≤ w(Si) + h(J(Si)) + wmax(d).

Because the paths in P contain no repeated customers, we have h(J(Pi)) = h(Pi)

for 1 ≤ i ≤ k. Thus, w(Pi) + h(Pi) ≤ w(Si) + h(J(Si)) for i = 1 and k; and

w(Pi)+h(Pi) ≤ w(Si)+h(J(Si))+wmax(d) for 2 ≤ i ≤ k− 1. Hence, by Lemma 2.1,

we have w(Pi) + h(Pi) ≤ max{hmax, w
′(Si)} for i = 1 and k; and w(Pi) + h(Pi) ≤

max{hmax, w
′(Si)} + wmax(d) for 2 ≤ i ≤ k − 1. This, together with (2.5) and (2.6),

implies that w(Pi) + h(Pi) ≤ max{hmax + wmax(d), b + wmax(d)} for all 1 ≤ i ≤ k.

From (2.1), we have

cost(P) ≤ max{hmax + wmax(d), b+ wmax(d)}. (2.7)

When k = 1, by inequality (2.7) and Lemma 2.3, we have

cost(P) ≤ max
{
hmax +

( b
2
+ wmax(d)

)
, 2

( b
2
+ wmax(d)

)}
≤ 2OPT(I).

When k ≥ 2, by inequality (2.7) and Lemma 2.3, we have

cost(P) ≤ max

{
2
( b
2
+

wmax(d)

k

)
+
(
1− 2

k

)
wmax(d), hmax + wmax(d)

}
≤ max

{
3− 2

k
, 2

}
OPT(I).

Combining these two cases, we obtain cost(P) ≤ max{3− 2/k, 2}OPT(I).

Remark 2.1. As the cycle C constructed in step 1 of Algorithm 2.2 covers V and

has no repeated vertices, C is an approximation solution to the traveling salesman
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problem (TSP) on G. Because C is constructed by doubling the edges of a minimum

spanning tree T ∗ of G, we get w(C) ≤ 2w(E(T ∗)) ≤ 2OPT(I). One may consider to

change step 1 of the algorithm by applying Christofides’ heuristic [19] to construct

a better cycle C ′ through adding to T ∗ a minimum perfect matching of odd-degree

vertices in T ∗. However, since each solution to the min-max UPCP-SD is a set of

paths instead of cycles, we do not have w(C ′) ≤ 1.5OPT(I). Thus, changing C to C ′

in step 1 cannot give us a significantly better approximation ratio for Algorithm 2.2.

Remark 2.2. Campbell et al. [15] showed that, for the min-max UPCP-SD, without

the servicing handling time, the latest service completion time of the optimal TSP

tour is no greater than 2k times the minimum latest service completion time for the

min-max UPCP-SD. Based on this result, one can prove that Algorithm 2.2 achieves

an approximation ratio of 5, because the TSP tour split by Algorithm 2.2 has a total

edge weight at most twice the total edge weight of the optimal TSP tour. In this

sense, we contribute to the literature of min-max path cover problem by showing a

tighter approximation ratio of Algorithm 2.2, which equals to max{3 − 2/k, 2}, for

the min-max UPCP-SD.

2.5 Min-max UPCP-MD

For the min-max UPCP-MD, where each of the k vehicles has an unlimited ca-

pacity and can start its path from any depot in the depot set D, we present a 5-

approximation algorithm in Section 2.5.

Given any instance I = (G,D, J, w, h, k,∞) and any guess of OPT(I), denoted

by λ, the following algorithm either returns “λ is too small,” which implies that

λ < OPT(I), or returns a feasible solution P to I with cost(P) ≤ 5λ. We will

show that by incorporating the following algorithm into a binary search procedure,

we can obtain a 5-approximation solution in polynomial time. In what follows, we

use G(J, λ) to denote a subgraph of G that contains only vertices in J and edges with
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weights no greater than λ. For 1 ≤ j ≤ m(λ), we let Gj(λ) denote the jth connected

component of G(J, λ), where m(λ) is the total number of the connected components.

Algorithm 2.3 (Min-max UPCP-MD).

Input : Instance I = (G,D, J, w, h, k,∞); and a guess of OPT(I) denoted by λ > 0.

Output : “λ is too small,” or a feasible solution P to I with cost(P) ≤ 5λ.

1. If there exists v ∈ J with h(v) > λ or wmin(v,D) > λ, then return “λ is too

small.”

2. For 1 ≤ j ≤ m(λ), find a minimum spanning tree T ∗
j of each connected com-

ponent Gj(λ) of G(J, λ). Double each edge of T ∗
j to induce a connected Euler

graph Hj on V (Gj(λ)). Obtain a Eulerian cycle of Hj. Short-cut repeated

vertices on the Eulerian cycle to obtain a cycle Cj that covers the vertex set of

Gj(λ), that has no repeated vertices (except at the endpoints of Cj), and that

contains no depot.

3. Set kj := max{⌈w′(Cj)/(4λ)⌉, 1} for 1 ≤ j ≤ m(λ). If
∑m(λ)

j=1 kj > k, return “λ

is too small.”

4. For 1 ≤ j ≤ m(λ), set thresholds bi := 4λ for 1 ≤ i ≤ kj − 1, and bkj :=

w′(Cj) −
∑kj−1

i=1 bi. Apply Split(Cj, kj, {bi}1≤i≤k) to split Cj into a set of kj

segments, denoted Sj = {Sj,i : 1 ≤ i ≤ kj}.

5. For 1 ≤ j ≤ m(λ) and for 1 ≤ i ≤ kj, construct a path Pj,i by joining one

endpoint of Sj,i to its closest depot in D. If a customer on Pj,i already exists

on one of the paths that we have constructed, then modify Pj,i by short-cutting

that customer. For 1 ≤ i ≤ k−
∑m(λ)

j=1 kj, let Pi := ⟨d⟩, where d is any depot in

D. Let P denote the set of these k paths. Return the resulting P .

Note that unlike step 1 of Algorithm 2.2, step 2 of Algorithm 2.3 constructs a min-

imum spanning tree for each connected component Gj(λ), and this connected compo-
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nent does not contain any depot. In step 4 of Algorithm 2.3, Split(Cj, kj, {bi}1≤i≤k)

is applied to split each cycle into segments. Note that the endpoint of one segment

may be the same as the endpoint of another segment. Thus, in step 5, when a path is

formed, we short-cut those customers that are already covered by other paths. Note

also that in step 5, when path Pj,i is constructed, we may arbitrarily select one of the

two endpoints of Sj,i and then connect it to its closest depot. Next, we establish a

lemma to show the correctness of Algorithm 2.3.

Lemma 2.4. Given any instance I of the min-max UPCP-MD and any λ > 0,

Algorithm 2.3 runs in polynomial time. If Algorithm 2.3 returns “λ is too small,”

then λ < OPT(I). Otherwise, it returns a path set P, which is a feasible solution to

I, with cost(P) ≤ 5λ.

Proof. Step 2 of Algorithm 2.3 takes O(|V |2) time. By Lemma 2.2, step 4 takes

O(
∑

j(kj+ |V (Cj)|)) ≤ O(k+ |V |) time. Hence, Algorithm 2.3 has a polynomial time

complexity.

If Algorithm 2.3 returns “λ is too small” in step 1, then it implies that h(v) > λ or

wmin(v,D) > λ for some v ∈ V . Because h(v) ≤ OPT(I) and wmin(v,D) ≤ OPT(I)

for any v ∈ V , we have λ < OPT(I). If Algorithm 2.3 returns “λ is too small” in

step 3, then
∑m(λ)

j=1 kj > k. Suppose, to the contrary, that OPT(I) ≤ λ. By the

triangle inequality, there exists an optimal solution P∗ such that each path P ∈ P∗

contains no repeated customers. Because cost(P∗) ≤ λ, all customers of P must

belong to the same connected component of G(J, λ), for any P ∈ P∗. For each

1 ≤ j ≤ m(λ), let P∗
j denote the subset of paths of P∗ whose customers belong to

Gj(λ), and let k∗
j = |P∗

j |. Thus, k∗
j ≥ 1 because Gj(λ) contains at least one customer.

Since P∗
j for 1 ≤ j ≤ m(λ) are disjoint from each other, we have

∑m(λ)
j=1 k∗

j ≤ |P∗| = k.

By eliminating the depots from the paths in P∗
j and adding at most k∗

j −1 edges with

each edge having a weight no greater than λ, one can obtain a subgraph that spans
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all vertices of Gj(λ). This implies that

w(E(T ∗
j )) + h(J(T ∗

j )) ≤
∑
P∈P∗

j

[
w(P ) + h(P )

]
+ (k∗

j − 1)λ ≤ 2k∗
jλ, (2.8)

where the latter inequality follows from the fact that each path P in P∗
j has a total

edge and vertex weight no greater than λ. If Cj defined in step 2 of the algorithm

contains at least one edge, then w′(Cj) = w(Cj)+2h(J(Cj)) by Lemma 2.1; otherwise,

w′(Cj) = 0. Thus, w′(Cj) ≤ w(Cj)+2h(J(Cj)). According to step 2 of the algorithm,

w(Cj) + 2h(J(Cj)) ≤ 2[w(E(T ∗
j )) + h(J(T ∗

j ))]. These, together with (2.8), we have

w′(Cj) ≤ 4k∗
jλ. Since kj = max{⌈w′(Cj)/(4λ)⌉, 1} and k∗

j ≥ 1, we obtain kj ≤ k∗
j ,

which implies
∑m(λ)

j=1 kj ≤
∑m(λ)

j=1 k∗
j ≤ k, leading to a contradiction. Therefore, we

conclude that λ < OPT(I) if the algorithm returns “λ is too small.”

Next, if Algorithm 2.3 does not return “λ is too small,” then it returns a path set

P in step 5. Clearly, |P| = k. By Lemma 2.2(i), each customer appears in exactly

one of the segments in
∪m(λ)

j=1 Sj. Thus, each customer appears exactly once in the

paths of P . Since each path in P starts from a depot in D, the path set P must be

a feasible solution to I. By Lemma 2.2(v), we have cost(Sj) ≤ max{4λ, hmax} for

1 ≤ j ≤ m(λ). Because “hmax ≤ λ” is satisfied in step 1, we obtain cost(Sj) ≤ 4λ

for 1 ≤ j ≤ m(λ). Because “wmin(v,D) ≤ λ” is satisfied in step 1 for each v ∈ J , we

conclude that cost(P) ≤ 5λ.

From Lemma 2.4, we can use a binary search to obtain a 5-approximation algo-

rithm, as stated in the following theorem.

Theorem 2.2. There exists a polynomial-time 5-approximation algorithm for the

min-max UPCP-MD.

Proof. It is easy to see that hmax ≤ OPT(I) ≤ w(E) + h(J). We can apply a

binary search for an integer value λ∗ in an interval [hmax, w(E) + h(J)], such that
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Algorithm 2.3 will return a feasible solution to I when λ ≥ λ∗, and that it will return

“λ is too small” when λ < λ∗. Executing Algorithm 2.3 with λ = λ∗ yields a solution

P with cost(P) ≤ 5λ∗ ≤ 5OPT (I). The total number of iterations of this binary

search is O(log(w(E) + h(J))), which is polynomial in the input size of I.

2.6 Summary

In this chapter, we have developed the first constant ratio approximation algo-

rithms for two variants of a min-max uncapacitated path cover problem, where a

fleet of vehicles with unlimited capacity start from the same depot or from any depot

in a given set of multiple depots to serve customers located in a metric undirected

graph, so as to minimize the latest service completion time. Based on the results

presented in this chapter, our future work will focus on improving the worst-case

approximation ratios for problems studied in this chapter, or developing constant

ratio approximation algorithms for other more complicated variants of the min-max

uncapacitated path cover problem.
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CHAPTER 3

Approximation Algorithms for the Min-max

Capacitated Path Cover Problems

3.1 Introduction

The min-max Capacitated Path Cover Problem (CPCP) is an extension of the

min-max Uncapacitated Path Cover Problem (UPCP), in which each vehicle has a

limited capacity Q. Unlike the min-max UPCP, when each of the k vehicles has a

limited capacity of Q, the min-max CPCP allows at most Q customers to be served

by each trip of the vehicle. In other words, the vehicles need to replenish at a depot in

the depot set before servicing at most Q customers further. As far as we know, there

are no constant ratio approximation algorithms available in the literature for the min-

max CPCP. Moreover, due to the capacity restriction, the cycle splitting procedure

designed for the min-max UPCP can not be applied directly to the min-max CPCP.

In this chapter, we develop constant ratio approximation algorithms for two vari-

ants of the min-max CPCP in a metric undirected network. The remainder of this

chapter is organized as follows. Section 3.2 introduces the definition of the min-max

CPCP, and the notation that are used throughout this chapter. In Section 3.3, we

develop a cycle splitting procedure by customer numbers, which has been extensively

applied in the development of approximation algorithms in this chapter. For the
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min-max CPCP with a single depot available for all the vehicles, we develop the first

constant ratio approximation algorithm in Section 3.4, which achieves an approxima-

tion ratio of max{5−2/k, 4}. For the min-max CPCP with multiple depots available

for all the vehicles, we develop the first constant ratio approximation algorithm in

Section 3.5, which achieves an approximation ratio of 7. We then show possible ex-

tensions of our techniques in Section 3.6 to develop approximation algorithms for

other capacitated vehicle routing problems. Finally, we summarize this chapter in

Section 3.7.

3.2 Notation and Problem Definition

The min-max CPCP is an extension of the min-max UPCP, where each of the

k identical vehicles has a capacity Q and needs to replenish at some depot in the

depot set before servicing at most Q customers further. Therefore, we can denote

an instance of the min-max capacitated path cover problem as (G,D, J, w, h, k,Q).

Moreover, similar to the min-max UPCP, depending on whether D contains only one

depot or multiple depots, the problem has the following two typical variants: the min-

max capacitated path cover problem with single depot (CPCP-SD), and the min-max

capacitated path cover problem with multiple depots (CPCP-MD).

Recall that, in Chapter 2, we have defined a segment of path P as a contiguous

subsequence of its vertices (which is allowed to be empty). Thus, we can define a trip

of P as a segment of P consisting of at least two vertices such that the segment starts

from either the starting endpoint of P or a depot, ends at either the finishing endpoint

of P or a depot, and contains no depot in between. In other words, a trip of P is a

segment ⟨vi, vi+1, . . . , vj⟩ of P for any 1 ≤ i < j ≤ ℓ(P ) + 1 such that either i = 1 or

vi ∈ D, that either j = ℓ(P ) + 1 or vj ∈ D, and that vertices vi+1, vi+2, . . . , vj−1 are

elements of J . Hence, if P has at least two vertices, the total number of trips in P

equals one plus the total number of occurrences of depots on P (repeated depots are
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counted repeatedly), excluding the endpoints. In particular, if P has only one vertex,

the total number of trips in P equals one, and if P has no vertex, the total number

of trips in P equals zero.

Accordingly, the min-max CPCP can be formulated as follows:

Min-max Capacitated Path Cover Problem

Instance: I = (G,D, J, w, h, k,Q), whereG = (V,E) is a complete undirected graph;

D ⊂ V ; J = V \ D; w is a metric function on E; h is a function on V with

h(d) = 0 for each d ∈ D; and k, Q are positive integers.

Feasible solution: An exact path cover P of I that consists of k paths, such that

each path in P contains at most Q customers in each of its trips.

Objective: minP cost(P).

Similar to the min-max UPCP, we assume in this chapter that all edge and vertex

weights are integers.

3.3 Cycle Splitting by Customer Numbers

Besides the revised weight w′(u, v) = w(u, v) + h(u) + h(v) for each edge (u, v) ∈

E and the cycle splitting procedure by revised edge weight defined in Chapter 2,

approximation algorithms developed in this chapter also rely on a new cycle splitting

procedure. This cycle splitting procedure not only splits a cycle into a set of segments

but also joins these segments together by inserting depots between segments, so that

a new cycle is constituted with every trip having no more than Q customer.

This cycle splitting procedure is denoted by Split(C ′, p). Given a cycle C ′ =

⟨v′1, v′2, . . . , v′ℓ(C′)+1⟩ which contains exactly one depot located at v′1 = v′ℓ(C′)+1 and

has at least one customer but no repeated customers, and given a vertex index p,

where 1 ≤ p ≤ Q′ and Q′ = min{Q, |J(C ′)|}, this procedure first splits cycle C ′ into
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⌈(|J(C ′)|−p)/Q′⌉+1 segments, with the first segment containing the first p customers

on C ′, and with each of the other segments containing at most Q′ customers. It then

joins these segments together by inserting depots between segments, so that a new

cycle Cp is constituted, and that Cp has its endpoints at a depot, covers all vertices

of C ′, and has no trip containing more than Q customers. A description of this cycle

splitting procedure is given below:

Algorithm 3.1 (Split(C ′, p)).

Input : A cycle C ′ = ⟨v′1, v′2, . . . , v′ℓ(C′)+1⟩ which contains exactly one depot located at

v′1 = v′ℓ(C′)+1 ∈ D, contains at least one customer, but contains no repeated customers;

and a vertex index p, where 1 ≤ p ≤ Q′ and Q′ = min{Q, |J(C ′)|}.

Output : A cycle Cp that covers all customers of C ′ with both of its endpoints at v′1,

with the first trip containing p customers, and with no trip containing more than Q

customers.

1. Let np = ⌈(|J(C ′)| − p)/Q′⌉. If np = 0, then return C ′ as Cp. Otherwise, go to

step 2.

2. Split cycle C ′ into a set of (np+1) segments Sp = {Sp,i : 0 ≤ i ≤ np} as follows:

(a) Set segment Sp,0 := ⟨v′1, . . . , v′p+1⟩.

(b) For 1 ≤ i ≤ np − 1, set segment Sp,i := ⟨v′1+p+(i−1)Q′+1, . . . , v
′
1+p+iQ′⟩.

(c) Set segment Sp,np := ⟨v′1+p+(np−1)Q′+1, . . . , v
′
|ℓ(C′)|+1⟩.

3. Construct cycle Cp from the segments in Sp as follows; For each 1 ≤ i ≤ np,

insert two edges (dp,i, v
′
1+p+(i−1)Q′) and (dp,i, v

′
1+p+(i−1)Q′+1) to connect segments

Sp,i−1 and Sp,i, where dp,i ∈ D is the depot closest to v′1+p+(i−1)Q′ .

4. Relabel the vertices on Cp such that both of its endpoints are at depot v′1.

Return Cp.
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If np = 0, which implies that J(C ′) = p, then Algorithm 3.1 terminates in step 1

and returns C ′ as its output Cp. Otherwise, the algorithm splits C ′ in step 2 into a

set of (np + 1) segments. Note that in step 2(a), segment Sp,0 consists of the depot

v′1 and the first p customers on C ′. In step 2(b), segment Sp,i contains exactly Q′

customers for 1 ≤ i ≤ np − 1. In step 2(c), segment Sp,np contains the remaining

vertices on C ′, which include the depot v′|ℓ(C′)|+1 and at most Q′ customers (because

|J(C ′)| = ℓ(C ′) − 1 and v′1 = v′ℓ(C′)+1 ∈ D). Thus, a cycle Cp is generated in step 3,

because Sp,0 and Sp,np share a common endpoint at v′1 = v′ℓ(C′)+1.

Example 3.1. We use an example to illustrate the Split(C ′, p) procedure. In this

example, p = 1, Q = 2, and D = {d, d′}. The cycle C ′ = ⟨v1, v2, v3, v4, v5, v6, v7⟩

is given in Figure 3.1(a), where v1 = v7 = d and v2, v3, v4, v5, v6 are customers.

Customers v2 is closer to d than to d′, while customers v3, v4, v5, v6 are closer to d
′ than

to d. Note that Q′ = min{Q, J(C ′)} = 2 and np = ⌈(|J(C ′)| − p)/Q′⌉ = 2. Step 2 of

the algorithm constructs segments Sp,0 = ⟨d, v2⟩, Sp,1 = ⟨v3, v4⟩, and Sp,2 = ⟨v5, v6, d⟩

as depicted in Figure 3.1(b). In step 3(b), edges (d, v2) and (d, v3) are inserted to

connect Sp,0 with Sp,1, while edges (d′, v4) and (d′, v5) are inserted to connect Sp,1

with Sp,2. Hence, a cycle Cp = ⟨d, v2, d, v3, v4, d′, v5, v6, d⟩ is obtained as shown in

Figure 3.1(c).

Lemma 3.1. Given any valid input (C ′, p) with 1 ≤ p ≤ Q′ and Q′ = min{Q, |J(C ′)|},

Algorithm 3.1 runs in O(ℓ(C ′)) time and returns a cycle Cp, such that Cp has its end-

points at a depot, covers V (C ′), contains no repeated customers, and that each trip

of Cp contains at most Q customers. Furthermore,

min
1≤p≤Q′

w(Cp) ≤ w(C ′) +
2

Q′

∑
v∈J(C′)

wmin(v,D). (3.1)

Proof. It is easy to verify that Algorithm 3.1 runs in O(ℓ(C ′)) time, that Cp has

its endpoints at a depot, covers V (C ′), and contains no repeated customers, and
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Figure 3.1: Example to illustrate Algorithm 3.1
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that each trip of Cp contains at most Q customers. If np = 0, then verifying the

validity of (3.1) is straightforward. Hence, it is sufficient to prove inequality (3.1) for

the case where np ≥ 1. Consider segments Sp,0, Sp,1, . . . , Sp,np obtained in step 2 of

Algorithm 3.1. Clearly, each Sp,i contains no repeated vertices, and

w(Sp,0) +

np∑
i=1

[
w(v′1+p+(i−1)Q′ , v′1+p+(i−1)Q′+1) + w(Sp,i)

]
≤ w(C ′).

Since dp,i is the closest to v′1+p+(i−1)Q′ among those depots in D, by this fact,we have

w(dp,i, v
′
1+p+(i−1)Q′) = wmin(v

′
1+p+(i−1)Q′ , D). By the triangle inequality, we have

w(dp,i, v
′
1+p+(i−1)Q′) + w(dp,i, v

′
1+p+(i−1)Q′+1)

≤ w(dp,i, v
′
1+p+(i−1)Q′) +

[
w(dp,i, v

′
1+p+(i−1)Q′) + w(v′1+p+(i−1)Q′ , v′1+p+(i−1)Q′+1)

]
≤ 2wmin(v

′
1+p+(i−1)Q′ , D) + w(v′1+p+(i−1)Q′ , v′1+p+(i−1)Q′+1).
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Hence,

w(Cp) = w(Sp,0) +

np∑
i=1

[
w(dp,i, v

′
1+p+(i−1)Q′) + w(dp,i, v

′
1+p+(i−1)Q′+1) + w(Sp,i)

]
≤ w(Sp,0) +

np∑
i=1

[
w(v′1+p+(i−1)Q′ , v′1+p+(i−1)Q′+1) + w(Sp,i)

]
+

np∑
i=1

2wmin(v
′
1+p+(i−1)Q′ , D)

≤ w(C ′) + 2

np∑
i=1

wmin(v
′
1+p+(i−1)Q′ , D),

which implies that

min
1≤p≤Q′

w(Cp) ≤ 1

Q′

Q′∑
p=1

w(Cp) ≤ w(C ′) +
2

Q′

∑
v∈J(C′)

wmin(v,D).

3.4 Min-max CPCP-SD

For the min-max CPCP-SD, where each of the k vehicles has a capacity Q and

must start its path from the only depot d, we present a max{5−2/k, 4}-approximation

algorithm in Section 3.4.

The approximation algorithm for the min-max CPCP-SD is similar to Algo-

rithm 2.2. The main difference is that after obtaining an initial cycle, it applies

Algorithm 3.1 (i.e., the Split(C ′, p) procedure) to construct a new cycle with each

trip containing at most Q customers. When Algorithm 3.1 is applied, the parameter

p is selected in such a way that the total edge weight in the cycle is minimized. A

detailed description of this algorithm is given below:

Algorithm 3.2 (Min-max CPCP-SD).

Input : Instance I = (G, {d}, J, w, h, k,Q).
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Output : A feasible solution to I denoted by P = {Pi : 1 ≤ i ≤ k}.

1. (Same as step 1 of Algorithm 2.2.) Find a minimum spanning tree T ∗ of G.

Double each edge of T ∗ to induce a connected Euler graph H on V . Obtain

an Eulerian cycle on H. Short-cut repeated vertices on the Eulerian cycle to

obtain a cycle C ′ that covers V , where C ′ contains no repeated vertices except

for its endpoints. Relabel the vertices on C ′ as ⟨v′1, v′2, . . . , v′ℓ(C′)+1⟩ such that

v′1 = v′ℓ(C′)+1 = d.

2. Let Q′ = min{Q, |J(C ′)|}. For each 1 ≤ p ≤ Q′, apply Split(C ′, p) to obtain a

new cycle Cp that covers V (C ′). Among all these cycles, let C be the one with

the smallest total edge weight (ties broken arbitrarily). Relabel the vertices on

C as ⟨v1, v2, . . . , vℓ(C)+1⟩ such that v1 = vℓ(C)+1 = d.

3. (Same as step 2 of Algorithm 2.2.) Let b = [w′(C) − 2wmax(d)]/k. Define

thresholds b1 := b+wmax(d), bi := b for 2 ≤ i ≤ k−1, and bk := w′(C)−
∑k−1

i=1 bi.

Apply Split(C, k, {bi}1≤i≤k) to split C into a set of k segments, denoted S =

{Si : 1 ≤ i ≤ k}.

4. (Same as step 3 of Algorithm 2.2.) Set P1 := S1 and Pk := Sk. For 2 ≤ i ≤

k − 1, construct a path Pi by joining d to the closer endpoint of Si. Return

P = {Pi : 1 ≤ i ≤ k}.

To analyze Algorithm 3.2, we first present a lower bound on OPT(I).

Lemma 3.2. For any instance I = (G, {d}, J, w, h, k,Q) of the min-max CPCP-SD,

OPT(I) ≥ max
{
hmax, wmax(d),

w′(C)

4k

}
,

where C is the cycle obtained in step 2 of Algorithm 3.2.

Proof. Clearly, OPT(I) ≥ hmax and OPT(I) ≥ wmax(d). To prove OPT(I) ≥

w′(C)/(4k), consider an optimal path cover P∗ = {P ∗
i : 1 ≤ i ≤ k}. For each
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1 ≤ i ≤ k, we assume that each trip on P ∗
i contains at least one customer (clearly,

there exists an optimal solution to the min-max CPCP-SD in which every trip on a

path contains at least one customer). Let η(i) denote the total number of times that

P ∗
i leaves depot d. Thus, P ∗

i contains exactly η(i) trips, denoted S∗
i,1, S

∗
i,2, . . . , S

∗
i,η(i).

For 1 ≤ j ≤ η(i), let w∗
i,j = maxv∈J(S∗

i,j)
w(d, v). Since S∗

i,j contains depot d,

by the triangle inequality, we have w∗
i,j ≤ w(S∗

i,j). Because |J(S∗
i,j)| ≤ Q′ and∑η(i)

j=1 w(S
∗
i,j) = w(P ∗

i ), we have

∑
v∈J(P ∗

i )

w(d, v)

Q′ =

η(i)∑
j=1

∑
v∈J(S∗

i,j)

w(d, v)

Q′ ≤
η(i)∑
j=1

w∗
i,j ≤

η(i)∑
j=1

w(S∗
i,j) = w(P ∗

i ),

which implies that

∑
v∈J

w(d, v)

Q′ ≤
k∑

i=1

∑
v∈J(P ∗

i )

w(d, v)

Q′ ≤
k∑

i=1

w(P ∗
i ) ≤ k ·OPT(I). (3.2)

Let C ′ be the cycle obtained in step 1 of Algorithm 3.2. Note that J(C ′) = J . Since

wmin(v,D) = w(d, v) for v ∈ J(C ′), by Lemma 3.1, we have

w(C) = min
1≤p≤Q′

w(Cp) ≤ w(C ′) + 2
∑

v∈J(C′)

w(d, v)

Q′ = w(C ′) + 2
∑
v∈J

w(d, v)

Q′ . (3.3)

Note that paths in P∗ span all vertices of G. Thus, w(E(T ∗)) ≤
∑k

i=1 w(P
∗
i ). Because

h(J) ≤
∑k

i=1 h(J(P
∗
i )) and w(P ∗

i ) + h(J(P ∗
i )) ≤ w(P ∗

i ) + h(P ∗
i ) ≤ OPT(I) for

1 ≤ i ≤ k, we have

w(E(T ∗)) + h(J) ≤ k ·OPT(I). (3.4)

Since C covers V , we have J(C) = J . By Lemma 2.1, we get that

w′(C) = w(C) + 2h(J(C)) = w(C) + 2h(J). (3.5)
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From step 1 of Algorithm 3.2, and by the triangle inequality, we have

w(C ′) ≤ 2w(E(T ∗)). (3.6)

Combining (3.2)–(3.6), we obtain

w′(C)

4k
=

w(C) + 2h(J)

4k
≤ w(C ′)

4k
+

1

2k

∑
v∈J

w(d, v)

Q′ +
h(J)

2k

≤ w(C ′)

4k
+

OPT(I)
2

+
h(J)

2k
≤ w(E(T ∗)) + h(J)

2k
+

OPT(I)
2

≤ OPT(I).

We can now establish Theorem 3.1 to show that Algorithm 3.2 achieves an ap-

proximation ratio of max{5− 2/k, 4}.

Theorem 3.1. Given any instance I of the min-max CPCP-SD, Algorithm 3.2 re-

turns a path set P in polynomial time, such that P is a feasible solution to I with

cost(P) ≤ max{5− 2/k, 4}OPT(I).

Proof. Steps 1 and 2 of Algorithm 3.2 take O(|V |2) time. By Lemma 2.2, step 4 takes

O(k + |V |). Hence, the algorithm has a polynomial time complexity. To see that the

path set P returned by Algorithm 3.2 is a feasible solution to I, consider the cycle C

constructed in step 2. Since C covers V , by Lemma 2.2(i), each customer in J must

appear in at least one of the segments obtained in step 3. This implies that P is a

path cover of I. Moreover, since every trip of C contains at most Q customers, every

segment of C in S must also be so. Thus, each trip of the paths in P generated by

step 4 must contain at most Q customers. Therefore, P is a feasible solution to I.

Next, we prove that cost(P) ≤ max{5− 2/k, 4}OPT(I). Notice that the cycle C

obtained in step 2 has both of its endpoints at depot d. As P is constructed from C by

steps 3 and 4 of Algorithm 3.2, which are the same as steps 2 and 3 of Algorithm 2.2,
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by following the same proof of Theorem 2.1, it is easy to check that the inequality

(2.7) also holds for the path set P generated by Algorithm 3.2. Thus,

cost(P) ≤ max{b+ wmax(d), hmax + wmax(d)}, (3.7)

where b = [w′(C) − 2wmax(d)]/k. When k = 1, by inequality (3.7) and Lemma 3.2,

we have

cost(P) ≤ max{w′(C), hmax + wmax(d)} ≤ 4OPT(I).

When k ≥ 2, by inequality (3.7) and Lemma 3.2, we have

cost(P) ≤ max
{
4
w′(C)

4k
+
(
1−2

k

)
wmax(d), hmax+wmax(d)

}
≤ max

{
5−2

k
, 2

}
OPT(I).

Combining these two cases, we obtain cost(P) ≤ max{5− 2/k, 4}OPT(I).

3.5 Min-max CPCP-MD

For the min-max CPCP-MD, where each of the k vehicles has a capacity Q and

can start its path from any depot in D, we present a 7-approximation algorithm in

Section 3.5.

Our approximation algorithm for the min-max CPCP-MD is similar to Algo-

rithm 2.3. Given any instance I = (G,D, J, w, h, k,Q) and any guess of OPT(I),

denoted by λ, the following algorithm either returns “λ is too small,” which implies

that λ < OPT(I), or returns a feasible solution P to I with cost(P) ≤ 7λ. We will

show that by incorporating the following algorithm into a binary search procedure,

we can obtain a 7-approximation solution in polynomial time. We use G(J, λ) to

denote a subgraph of G that contains only vertices in J and edges with weights no

greater than λ. For 1 ≤ j ≤ m(λ), we let Gj(λ) denote the jth connected component

of G(J, λ), where m(λ) denotes the total number of the connected components.
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Algorithm 3.3 (Min-max CPCP-MD).

Input : Instance I = (G,D, J, w, h, k,Q); and a guess of OPT(I) denoted by λ > 0.

Output : “λ is too small,” or a feasible solution P to I with cost(P) ≤ 7λ.

1. (Same as step 1 of Algorithm 2.3.) If there exists v ∈ J with h(v) > λ or

wmin(v,D) > λ, then return “λ is too small.”

2. (Similar to step 2 of Algorithm 2.3.) For 1 ≤ j ≤ m(λ), do the following steps

for each connected component Gj(λ) of G(J, λ):

(a) Find a minimum spanning tree T ∗
j of Gj(λ). Double each edge of T ∗

j to

induce a connected Euler graph Hj on V (Gj(λ)). Obtain a Eulerian cycle

of Hj. Short-cut repeated vertices on the Eulerian cycle to obtain a cycle

C ′′
j that covers the vertex set of Gj(λ), that has no repeated vertices, and

that contains no depot.

(b) Let v′′j be any vertex on C ′′
j . Let d

′′
j be the depot which is the closest to v′′j .

Insert d′′j into C ′′
j immediately next to v′′j to form a cycle C ′

j, whose vertices

are relabeled as ⟨v′j,1, v′j,2 . . . , v′j,ℓ(C′
j)+1⟩ such that v′j,1 = v′j,ℓ(C′

j)+1 = d′′j ∈ D.

3. Repeat the following steps for j = 1, 2, . . . ,m(λ):

(a) For each p with 1 ≤ p ≤ Q′
j, whereQ

′
j = min{Q, |J(C ′

j)|}, apply Split(C ′
j, p)

to obtain a new cycle Cj,p, which covers V (C ′
j), has both its endpoints at

a depot in D, and has no trip containing more than Q customers.

(b) Among all these cycles, let Cj be the one with the minimum total edge

weight.

4. (Similar to step 3 of Algorithm 2.3.) Set kj := max{⌈(w′(Cj) − 2λ)/(6λ)⌉, 1}

for 1 ≤ j ≤ m(λ). If
∑m(λ)

j=1 kj > k, return “λ is too small.”
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5. (Similar to step 4 of Algorithm 2.3.) For 1 ≤ j ≤ m(λ), set thresholds

b1 := 7λ, bi := 6λ for 2 ≤ i ≤ kj − 1, and bkj := w′(Cj) −
∑kj−1

i=1 bi. Ap-

ply Split(C, k, {bi}1≤i≤k) to split each Cj into a set of kj segments, denoted

Sj = {Sj,i : 1 ≤ i ≤ kj}.

6. (Similar to Step 5 of Algorithm 2.3): For 1 ≤ j ≤ m(λ), set paths Pj,1 := Sj,1

and Pj,kj := Sj,kj . For 2 ≤ i ≤ kj − 1, construct a path Pj,i by joining one

endpoint of Sj,i to its closest depot in D. If a customer on Pj,i already exists

on one of the paths that we have constructed, then modify Pj,i by short-cutting

that customer. For 1 ≤ i ≤ k−
∑m(λ)

j=1 kj, let Pi := ⟨d⟩, where d is any depot in

D. Let P denote the set of these k paths.

Next, we establish a lemma to show the correctness of Algorithm 3.3.

Lemma 3.3. Given any instance I of the min-max CPCP-MD and any λ > 0,

Algorithm 3.3 runs in polynomial time. If Algorithm 3.3 returns “λ is too small,”

then λ < OPT(I). Otherwise, it returns a path set P, which is a feasible solution to

I, with cost(P) ≤ 7λ.

Proof. It is easy to see that Algorithm 3.3 runs in polynomial time. If Algorithm 3.3

returns “λ is too small” in step 1, then as shown in the proof of Lemma 2.4, we have

λ < OPT(I). We now consider the case where Algorithm 3.3 returns “λ is too small”

in step 4. In this case,
m(λ)∑
j=1

kj > k, (3.8)

where kj = max{⌈(w′(Cj) − 2λ)/(6λ)⌉, 1} as defined in step 4. Suppose, to the

contrary, that λ ≥ OPT(I). By the triangle inequality, there exists an optimal

solution P∗ such that each path P ∈ P∗ contains no repeated customers. Because

cost(P∗) ≤ λ, all customers of P must belong to the same connected component of

G(J, λ), for any P ∈ P∗. For each 1 ≤ j ≤ m(λ), let P∗
j denote the subset of paths
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of P∗ whose customers belong to Gj(λ), and let k∗
j = |P∗

j |. Because Gj(λ) contains

at least one customer, we obtain k∗
j ≥ 1. Since P∗

j for 1 ≤ j ≤ m(λ) are disjoint from

each other, we have
∑m(λ)

j=1 k∗
j ≤ |P∗| = k. For each 1 ≤ j ≤ m(λ), by following the

same argument as in the derivation of (3.2), we obtain

∑
v∈J(Gj(λ))

wmin(v,D)

Q′
j

≤ k∗
j ·OPT(I). (3.9)

Also, by following the same argument as in the derivation of (2.8), we obtain

w(E(T ∗
j )) + h(J(T ∗

j )) ≤ 2k∗
jλ. (3.10)

By Lemma 3.1, J(Cj) = J(C ′
j) = J(Gj(λ)). Furthermore, w(Cj) ≤ w(C ′

j) +

2
∑

v∈J(Cj)
wmin(v,D)/Q′

j. This, together with (3.9), implies that

w(Cj) ≤ w(C ′
j) + 2k∗

j ·OPT(I). (3.11)

According to step 2(b) and by the triangle inequality, we have w(C ′
j) ≤ w(C ′′

j ) +

2wmin(v
′′
j , D), where v′′j is a vertex on C ′

j defined in step 2(b). Because w(C ′′
j ) ≤

2w(E(T ∗
j )) and wmin(v

′′
j , D) ≤ OPT(I), we have w(C ′

j) ≤ 2w(E(T ∗
j )) + 2OPT(I).

Note that J(Cj) = J(T ∗
j ). Hence,

w(C ′
j) + 2h(J(Cj)) ≤ 2w(E(T ∗

j )) + 2h(J(T ∗
j )) + 2OPT(I). (3.12)

Combining (3.10), (3.11), and (3.12), we obtain w(Cj)+2h(J(Cj)) ≤ 6k∗
jλ+2OPT(I),

implying that

w(Cj) + 2h(J(Cj)) ≤ (6k∗
j + 2)λ.

If Cj defined in step 3(b) of the algorithm contains at least one edge, then w′(Cj) =

w(Cj) + 2h(J(Cj)) by Lemma 2.1; otherwise, w′(Cj) = 0. Thus, w′(Cj) ≤ w(Cj) +
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2h(J(Cj)) ≤ (6k∗
j + 2)λ, which implies k∗

j ≥ max{⌈(w′(Cj) − 2λ)/(6λ)⌉, 1} = kj

because kj ≥ 1. Thus,
∑m(λ)

j=1 kj ≤
∑m(λ)

j=1 k∗
j ≤ k, which contradicts (3.8). Therefore,

we conclude that λ < OPT(I) if the algorithm returns “λ is too small.”

Next, we consider the case where Algorithm 3.3 does not return “λ is too small.”

In this case, the algorithm returns a path set P in step 6. Similar to the proof of

Theorem 3.1, it can be verified that P is a feasible solution to I. To prove cost(P) ≤

7λ, consider each connected component Gj(λ) of G(J, λ), where 1 ≤ j ≤ m(λ).

Notice that step 5 of Algorithm 3.3 applies Algorithm 2.1 to split Cj into a set Sj

of at most kj segments with b1 = 7λ and bi = 6λ for 1 ≤ i ≤ kj − 1. Also, it is

easy to check that bkj ≤ 7λ. Thus, by Lemma 2.1 and Lemma 2.2(iv), w(Sj,i) +

h(J(Sj,i)) ≤ max{hmax, w
′(Sj,i)} ≤ max{hmax, bi} for i = 1, 2, . . . , kj. Moreover, by

step 1, hmax ≤ λ. Hence, w(Sj,1) + h(J(Sj,1)) ≤ 7λ, w(Sj,kj) + h(J(Sj,kj)) ≤ 7λ, and

w(Sj,i) + h(J(Sj,i)) ≤ 6λ for 2 ≤ i ≤ kj − 1. From step 6, we know that Pj,1 = Sj,1

and Pj,kj = Sj,kj . For 2 ≤ i ≤ kj − 1, Pj,i is formed by joining one endpoint of Sj,i to

its closest depot in D, which implies that w(Pj,i) ≤ w(Sj,i) + λ (since, according to

step 1, wmin(v,D) ≤ λ for all v ∈ J). Hence, w(Pj,i) + h(Pj,i) ≤ 7λ for all 1 ≤ i ≤ kj.

Therefore, cost(P) ≤ 7λ.

From Lemma 3.3, we can use a binary search to obtain an approximation algorithm

as stated in the following theorem. The proof of this theorem follows the same

argument as that of Theorem 2.2 and is omitted.

Theorem 3.2. There exists a 7-approximation algorithm for the min-max CPCP-

MD.

3.6 Extensions

The techniques developed for the min-max capacitated path cover problems can

be extended to other min-max capacitated vehicle routing problems. In this section,
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we demonstrate the possible extensions to two such problems, namely, the min-max

capacitated cycle cover problem with a single depot (CCCP-SD) and the min-max

CPCP-SD with single trips (CPCP-SD-ST).

3.6.1 Min-max CCCP-SD

Given an instance I = (G, {d}, J, w, h, k,Q), the min-max capacitated cycle cover

problem with a single depot (CCCP-SD) is to determine a set P of k cycles so as to

minimize cost(P), such that the k cycles cover every customer in J exactly once, and

that each cycle starts and ends at a given depot d and has each of its trips containing

at most Q customers. To develop an approximation algorithm for this problem, we

revise step 4 of Algorithm 3.2 by joining the depot d to both the endpoints of each

segment in S, so that the resulting set P consists of exactly k cycles. Such a revised

Algorithm 3.2 achieves an approximation ratio of (4−1/k) for the min-max CCCP-SD

as stated below.

Theorem 3.3. The revised Algorithm 3.2 is a (4−1/k)-approximation algorithm for

the min-max CCCP-SD.

Proof. It is easy to see that the revised Algorithm 3.2 runs in polynomial time. To

prove the approximation ratio, notice that for any cycle C̃ that contains the depot d,

due to the triangle inequality, we have w(d, v) ≤ w(C̃)/2 for each customer v on C̃.

Therefore, by following the derivation of (3.2) in the proof of Lemma 3.2, we obtain

∑
v∈J

w(d, v)

Q′ ≤ k

2
·OPT(I). (3.13)

Moreover, it is easy to check the (3.3), (3.4), (3.5), and (3.6) remain valid for the
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min-max CCCP-SD. Combining (3.3)–(3.6) and (3.13), we have

w′(C)

3k
=

w(C) + 2h(J)

3k
≤ 1

3k

[
w(C ′) + 2h(J) + 2

∑
v∈J

w(d, v)

Q′

]
≤ 2

3k

[
w(E(T ∗)) + h(J) +

k

2
·OPT(I)

]
(3.14)

≤ 2

3k

[
k ·OPT(I) + k

2
·OPT(I)

]
=OPT(I),

where C is the cycle obtained from step 2 of the revised Algorithm 3.2. Following a

similar argument as in the derivation of (2.7) for Theorem 2.1, and from the fact that

step 4 of Algorithm 3.2 joins the depot d to both the endpoints of each segment in

S, we obtain

cost(P) ≤ max
{
hmax + 2wmax(d), b+ 2wmax(d)

}
, (3.15)

where b = [w′(C)− 2wmax(d)]/k. Note that 2wmax(d) ≤ OPT(I) (due to the triangle

inequality) and that hmax ≤ OPT(I). These, together with (3.14) and (3.15), imply

that

cost(P) ≤ max
{w′(C)− 2wmax(d)

k
+2wmax(d), hmax+2wmax(d)

}
≤

(
4− 1

k

)
OPT(I).

3.6.2 Min-max CPCP-SD-ST

As a variant of the min-max CPCP-SD, the min-max capacitated path cover

problem with single trips (CPCP-SD-ST) forbids any replenishment after the vehicles

have left their starting points. As a result, each path in a feasible solution must form

a single trip that contains at most Q customers, which implies that each vehicle can

service at most Q customers. Campbell et al. [15] have developed a heuristic for this

problem but without proving any constant approximation ratio guarantee. In the
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following, we present a revised version of Algorithm 2.2 and show that it has a worst-

case approximation ratio of 7. Note that the problem is infeasible when |J | > kQ.

Hence, we only consider the case where |J | ≤ kQ.

Consider any instance I = (G, {d}, J, w, h, k,Q) of the min-max CPCP-SD-ST.

The revised Algorithm 2.2 can be described as follows:

1. Follow step 1 of Algorithm 2.2 to obtain a cycle C that covers V and has no

repeated vertices except for its endpoints.

2. Revise step 2 of Algorithm 2.2 as follows: Let b = w′(C)/k. Define thresholds

bi := b for 1 ≤ i ≤ k−1 and bk := w′(C)−
∑k−1

i=1 bi. Apply Split(C, k, {bi}1≤i≤k)

to split C into a set of k segments, denoted S = {Si : 1 ≤ i ≤ k}. Short-cut

the depot so that every segment in S contains no depot.

3. Initialize the path set P to be an empty set. For i = 1, 2, . . . , k, do the following:

(a) Find Smin and Smax, where Smin is a segment in S that contains the smallest

number of customers, and Smax is a segment in S that contains the largest

number of customers.

(b) If |J(Smax)| ≤ Q, then stop the iteration and go to step 4.

(c) Otherwise, from any endpoint of Smax, relabel the vertices on Smax as

⟨v1, v2, . . . , v|J(Smax)|⟩.

i. Set j := Q− |J(Smin)|.

ii. Let Smax,j denote the portion ⟨v1, . . . , vj⟩ of Smax, and let S̄max,j denote

the portion ⟨vj+1, . . . , v|J(Smax|)⟩ of Smax. Let u denote an endpoint of

Smin. Connect Smin, Smax,j, and d to form a path Pi by adding the

edges (u, v1) and (vj, d). Relabel Pi so that its starting endpoint is at

d. Add Pi to the path set P .

iii. Replace Smax in S with S̄max,j. Remove Smin from S.
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4. For each segment remained in S, if it contains at least one vertex, connect

one of its endpoints to the depot d to form a path, which is then added to P ;

otherwise, add a path ⟨d⟩ to P . Return the path set P .

It is easy to see that in step 2, bk ≤ b. Furthermore, the segments generated by

step 2 contain no depot and contain each customer exactly once. For each iteration

of step 3, if |J(Smax)| ≥ Q+ 1, then in step 3(c) we “transfer” the first Q− |J(Smin)|

customers of segment Smax to segment Smin, and then, after adding a depot to Smin, we

obtain a path with exactly Q customers. We can always guarantee that in step 3(c)(i),

|J(Smin)| ≤ Q− 1 (and thus, j ≥ 1). To see this, suppose the ith iteration is the first

iteration where each segment in S contains at least Q customers, but segment Smax

contains more than Q customers. At this moment, S contains k − i + 1 segments,

and P contains i − 1 paths. Because each of these i − 1 paths contains exactly Q

customers, we have |J | > kQ, which violates the condition “|J | ≤ kQ”.

Theorem 3.4. The revised Algorithm 2.2 is a 7-approximation algorithm for the

min-max CPCP-SD-ST.

Proof. Clearly, the revised Algorithm 2.2 runs in polynomial time. It is easy to see

that the path set P returned by step 4 contains exactly k paths, that each path in P

starts from a depot, and that segments in S obtained in step 2 cover all customers

in J and so do the paths in P . Moreover, as explained above, each path in P must

contain at most Q customers. Therefore, P is a feasible solution to I.

Next, we show that cost(P) ≤ 7OPT(I). Following the same argument as in the

proof of Lemma 2.3, we obtain that OPT(I) ≥ max{hmax, wmax(d), b/2}, where b =

w′(C)/k. By Lemma 2.2(v), we have cost(S) ≤ max{w′(C)/k, hmax} ≤ 2OPT(I).

Consider the two segments Smin (with an endpoint u) and Smax,j (with endpoints v1

and vj), which are used to construct a path Pi in step 3(c) during the ith iteration.

By the triangle inequality, we have w(u, v1) ≤ w(u, d) + w(d, v1) ≤ 2wmax(d). This,

55



together with the fact that w(vj, d) ≤ wmax(d), implies that w(Pi)+h(Pi) ≤ 2cost(S)+

3wmax(d) (because, according to step 3(c), Pi is formed by combining two segments

with edges (u, v1) and (vj, d)). Thus, w(Pi)+h(Pi) ≤ 7OPT(I). In addition, for each

path constructed in step 4, its total edge and vertex weight must not be greater than

cost(S) + wmax(d) ≤ 3OPT(I). Hence, we conclude that cost(P) ≤ 7OPT(I).

3.7 Summary

In this chapter, we have developed the first constant ratio approximation algo-

rithms for two variants of a min-max capacitated path cover problem, where a fleet

of vehicles with limited capacity start from the same depot or from any depot in a

given set of multiple depots to serve customers located in a metric undirected graph,

so as to minimize the latest service completion time. Based on the results presented

in this chapter, our future work will focus on improving the worst-case approximation

ratios for problems studied in this chapter, or developing constant ratio approxima-

tion algorithms for other more complicated variants of the min-max capacitated path

cover problem.
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CHAPTER 4

Approximation Hardness for the Min-max Path

Cover Problems

4.1 Introduction

In this chapter, we derive the first results on approximation hardness for the min-

max UPCP-SD, min-max UPCP-MD, min-max CPCP-SD and the min-max CPCP-

MD, which are defined in the previous two chapters, by showing that it is impossible

for them to achieve approximation ratios less than 4/3, 3/2, 3/2, and 2, respectively,

unless P=NP. The method for deriving approximation hardness results relies on a

reduction from 3-Dimensional Matching (3DM) that is a well-known NP-complete

problem. If there exist polynomial-time θ-approximation algorithms for these four

variants of the min-max path cover problem, where θ is less than 4/3, 3/2, 3/2 and

2, respectively, we can show that these algorithms can be used to solve 3DM in

polynomial time, which contradicts to the fact that 3DM is NP-complete.

The remainder of this chapter is organized as follows. Approximation hardness

results for the the min-max UPCP-SD, min-max UPCP-MD, min-max CPCP-SD

and the min-max CPCP-MD are proved in Section 4.2, Section 4.3, Section 4.4 and

Section 4.5, respectively. In Section 4.6, we show a possible extension of our method to

prove approximation hardness result for the min-max capacitated cycle cover problem
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with a single depot.

4.2 Min-max UPCP-SD

The following theorem gives an approximation hardness result for the min-max

UPCP-SD.

Theorem 4.1. Unless P=NP, there is no polynomial-time (4/3 − ϵ)-approximation

algorithm for the min-max UPCP-SD for any ϵ > 0, even if h(v) = 0 for all v ∈ V .

Proof. Consider the 3-dimensional matching (3DM) problem defined as follows:

Instance: Set M ⊆ X × Y ×Z with |M| = m, where X, Y , and Z are disjoint sets

having the same number n of elements.

Question: Does M contain a matching M′ ⊆ M such that |M′| = n and no two

elements of M′ agree in any coordinate?

It is well-known that 3DM is NP-complete [60]. Suppose, to the contrary, that

there is an ϵ > 0 such that a polynomial-time (4/3 − ϵ)-approximation algorithm

exists for the min-max UPCP-SD with h(v) = 0 for all v ∈ V . Then, we will

show that this algorithm can be used to solve 3DM in polynomial-time. We denote

X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn}.

Given any instance of 3DM, we construct the corresponding instance of the min-

max UPCP-SD I = (G, d, J, w, h, k,∞) as follows: Let G = (V,E) be a complete

undirected graph with vertex set V = {d}∪X∪Y ∪Z∪
∪m

i=1

{
qij : 1 ≤ j ≤ 6

}
, where

d is the depot. The customer set is J = V \{d}. For eachMi = (xα(i), yβ(i), zγ(i)) ∈ M,

we define Ẽi as the edge subset consisting of the 11 edges as depicted in Figure 4.1,

where α(i), β(i), γ(i) ∈ {1, 2, . . . , n} and i = 1, 2, . . . ,m. (In Figure 4.1, the grey

vertex represents the depot.) Let Ẽ =
∪m

i=1 Ẽi. We let w(e) = 1 for each e ∈ Ẽ, and
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Figure 4.1: A component forMi = (xα(i), yβ(i), zγ(i)) in transforming 3DM to min-max
UPCP-SD.
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w(e) = 2 for each e ∈ E \ Ẽ. Clearly, the edge weight function w forms a metric. We

let h(v) = 0 for all v ∈ V . Finally, we let k = 2m+ n.

Define F(3, 3) as the set of paths P in G such that P starts from the depot d,

that |J(P )| = 3, and that w(P ) ≤ 3. Then, for each path P ∈ F(3, 3), every edge

of P must have an edge weight equal to 1. From Figure 4.1, it is easy to see that

for each i = 1, 2, . . . ,m, there are six possible paths in P ∈ F(3, 3) that traverse the

edges in Ẽi. They include:

Pi1 = ⟨d, qi1, qi2, xα(i)⟩, Pi2 = ⟨d, qi1, qi2, qi3⟩, Pi3 = ⟨d, yβ(i), qi3, qi2⟩,

Pi4 = ⟨d, yβ(i), qi3, qi6⟩, Pi5 = ⟨d, qi4, qi5, qi6⟩, Pi6 = ⟨d, qi4, qi5, zγ(i)⟩.

Because all edge and vertex weights are integers, the (4/3 − ϵ)-approximation al-

gorithm must return a solution with an integer objective value. We consider two

different cases.

Case 1: The (4/3 − ϵ)-approximation algorithm returns a feasible solution to I

with an objective value greater than or equal to 4. In this case, we will show that

the given instance of 3DM does not contain a matching. By contradiction, suppose it

contains a matching M′. Then, we can construct the following solution to instance

I: For i = 1, 2, . . . ,m, if (xα(i), yβ(i), zγ(i)) ∈ M′, then we assign paths Pi1, Pi4, and
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Pi6 to three different vehicles; otherwise we assign paths Pi2 and Pi5 to two different

vehicles. The total number of assigned vehicles is 3n+ 2(m− n) = k. Because M′ is

a matching, each of the vertices x1, . . . , xn, y1, . . . , yn, z1, . . . , zn is covered by exactly

one path. Hence, this solution is feasible. The objective value of this solution equals

3. This implies that the optimal solution value of I is no greater than 3, which in

turn implies that the approximation algorithm must return a feasible solution with an

objective value no greater than (4/3− ϵ)(3) < 4, which is a contradiction. Therefore,

in this case the given instance of 3DM does not contain a matching.

Case 2: The (4/3 − ϵ)-approximation algorithm returns a feasible solution to I

with an objective value less than or equal to 3. Let P denote the set of all paths

in this feasible solution. In this case, each path P ∈ P covers no more than three

customers. Note that |J | = 6m + 3n, k = 2m + n, and the paths cover all the

customers in J . Thus, P ⊆ F(3, 3), and no two different paths in P cover the same

customer in J . Hence, for each j = 1, 2, . . . , n, there exists a unique and distinct path

in P ⊆ F(3, 3) that covers yj. According to the construction of G and the definition

of F(3, 3), the path in P that covers yj must not contain any edge in E \ Ẽ. Thus,

it must be either Pσ(j),3 or Pσ(j),4 with β(σ(j)) = j, for some σ(j) ∈ {1, 2, . . . ,m}.

However, Pσ(j),3 cannot be in P , because vertex qσ(j),1 cannot be covered by any path

in F(3, 3) that covers no customer in J(Pσ(j),3). Thus, Pσ(j),4 ∈ P. This also implies

that Pσ(j),1 (resp. Pσ(j),6) is also in P , since Pσ(j),1 (resp. Pσ(j),6) is the only possible

path in F(3, 3) that covers vertex qσ(j),1 (resp. qσ(j),5) without covering any vertex

that is already covered by Pσ(j),4. Therefore, among all the paths in P , only Pσ(j),1

covers vertex xα(σ(j)), only Pσ(j),4 covers vertex yβ(σ(j)), and only Pσ(j),6 covers vertex

zγ(σ(j)). Let M′ = {(xα(σ(j)), yβ(σ(j)), zγ(σ(j))) : j = 1, 2, . . . , n}. Then, |M′| = n, and

no two elements of M′ agree in any coordinate. This implies that M′ is a matching

in the given instance of 3DM.

Summarizing Cases 1 and 2, we conclude that the (4/3− ϵ)-approximation algo-
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rithm, which has a polynomial running time, can be used to determine whether or

not the given instance of 3DM contains a matching. This is impossible unless P=NP.

The proof is completed.

4.3 Min-max UPCP-MD

The following theorem gives an approximation hardness result for the min-max

UPCP-MD.

Theorem 4.2. Unless P=NP, there is no polynomial-time (3/2 − ϵ)-approximation

algorithm for the min-max UPCP-MD for any ϵ > 0, even if h(v) = 0 for all v ∈ V .

Proof. Suppose, to the contrary, that there is an ϵ > 0 such that a polynomial-time

(3/2− ϵ)-approximation algorithm exists for the min-max UPCP-MD with h(v) = 0

for all v ∈ V . Then, we will show that this algorithm can be used to solve 3DM in

polynomial-time.

Consider any given instance M ⊆ X × Y × Z of 3DM with |M| = m, where

X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn} are disjoint sets.

We construct the corresponding instance I = (G,D, J, w, h, k,∞) of the min-max

UPCP-MD as follows: Let G = (V,E) be a complete undirected graph with vertex

set V = D ∪ J , where J = X ∪ Y ∪ Z ∪
∪m

i=1

{
qij : 1 ≤ j ≤ 9

}
is the set of

customers, and D = {y′1, y′2, . . . , y′n}∪
∪m

i=1

{
q′i1, q

′
i4, q

′
i9} is the set of depots. For each

Mi = (xα(i), yβ(i), zγ(i)) ∈ M, we define Ẽi as the edge subset consisting of the 15 edges

as depicted in Figure 4.2, where α(i), β(i), γ(i) ∈ {1, 2, . . . , n} and i = 1, 2, . . . ,m.

(In Figure 4.2, the grey vertices are depots.) Let Ẽ =
∪m

i=1 Ẽi. In each Ẽi, let

w(e) = 0 for each e ∈ {(yβ(i), y′β(i)), (qi1, q′i1), (qi4, q′i4), (qi9, q′i9)}, and let w(e) = 1 for

each e ∈ Ẽi \ {(yβ(i), y′β(i)), (qi1, q′i1), (qi4, q′i4), (qi9, q′i9)}. For each (u, v) ∈ E \ Ẽ, we

define the edge weight of (u, v) as the shortest distance from u to v in graph (V, Ẽ).

Clearly, the edge weight function w forms a metric. We let h(v) = 0 for all v ∈ V .

Finally, we let k = 3m+ n.
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Figure 4.2: A component forMi = (xα(i), yβ(i), zγ(i)) in transforming 3DM to min-max
UPCP-MD.

qi6qi3qi2

qi9

qi5

qi8

qi4

( )ixα ( )izγ

( )izγqi1 q'i4

( )iyβ

1

q'i1
0

( )iyβ′ qi7 q'i9

1 1 1 1

1 1
0 1 0

1

1 1

0

Define F(3, 2) as the set of paths P in G such that P starts from a depot in

D, with |J(P )| = 3 and w(P ) ≤ 2. Then, for each path P ∈ F(3, 2), the path P

must have at least an edge with weight equal to 0, and it must not contain any edge

with edge weight greater than 1. From Figure 4.2, it is easy to see that for each

i = 1, 2, . . . ,m, the following seven paths are some of the possible paths in F(3, 2)

that traverse the edges in Ẽi:

Pi1 = ⟨q′i1, qi1, qi2, xα(i)⟩, Pi2 = ⟨y′β(i), yβ(i), qi8, qi7⟩, Pi3 = ⟨q′i4, qi4, qi5, zγ(i)⟩,

Pi4 = ⟨q′i9, qi9, qi6, qi3⟩, Pi5 = ⟨q′i1, qi1, qi2, qi3⟩, Pi5 = ⟨q′i4, qi4, qi5, qi6⟩,

Pi7 = ⟨q′i9, qi9, qi8, qi7⟩.

Because all edge and vertex weights are integers, the (3/2 − ϵ)-approximation al-

gorithm must return a solution with an integer objective value. We consider two

different cases.

Case 1: The (3/2−ϵ)-approximation algorithm returns a feasible solution to I with

an objective value greater than or equal to 3. In this case, we will show that the given

instance of 3DM does not contain a matching. By contradiction, suppose it contains

a matching M′. Then, we can construct the following solution to instance I: For

i = 1, 2, . . . ,m, if (xα(i), yβ(i), zγ(i)) ∈ M′, then we assign paths Pi1, Pi2, Pi3, and Pi4
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to four different vehicles; otherwise we assign paths Pi5, Pi6, and Pi7 to three different

vehicles. The total number of assigned vehicles is 4n+ 3(m− n) = k. Because M′ is

a matching, each of the vertices x1, . . . , xn, y1, . . . , yn, z1, . . . , zn is covered by exactly

one path. Hence, this solution is feasible. The objective value of this solution equals

2. This implies that the optimal solution value of I is no greater than 2, which in

turn implies that the approximation algorithm must return a feasible solution with an

objective value no greater than (3/2− ϵ)(2) < 3, which is a contradiction. Therefore,

in this case the given instance of 3DM does not contain a matching.

Case 2: The (3/2 − ϵ)-approximation algorithm returns a feasible solution to I

with an objective value less than or equal to 2. Let P denote the set of all paths in this

feasible solution. In this case, each path P ∈ P covers no more than three customers.

Note that |J | = 9m+3n, k = 3m+n, and the paths cover all the customers in J . Thus,

P ⊆ F(3, 2), and no two different paths in P cover the same customer in J . Hence,

for each j = 1, 2, . . . , n, there exists a unique and distinct path in P that covers zj.

According to the construction of G and the definition of F(3, 2), the path in P that

covers zj must not contain any edge in E \Ẽ. Thus, this path must be Pσ(j),3 for some

σ(j) ∈ {1, 2, . . . ,m} such that γ(σ(j)) = j. Since Pσ(j),4 is the only path in F(3, 2)

which covers qσ(j),6 without covering any customer of Pσ(j),3, we have Pσ(j),4 ∈ P .

This also implies that Pσ(j),1 (resp. Pσ(j),2) is also in P , because Pσ(j),1 (resp. Pσ(j),2) is

the only possible path in F(3, 2) that covers qσ(j),1 (resp. qσ(j),7) without covering any

customer that is already covered by Pσ(j),3 and Pσ(j),4. Therefore, among all the paths

in P , only Pσ(j),1 covers vertex xα(σ(j)), only Pσ(j),2 covers vertex yβ(σ(j)), and only

Pσ(j),3 covers vertex zγ(σ(j)). Let M′ = {(xα(σ(j)), yβ(σ(j)), zγ(σ(j))) : j = 1, 2, . . . , n}.

Then, |M′| = n, and no two elements of M′ agree in any coordinate. This implies

that M′ is a matching in the given instance of 3DM.

Summarizing Cases 1 and 2, we conclude that the (3/2− ϵ)-approximation algo-

rithm, which has a polynomial running time, can be used to determine whether or not
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the given instance of 3DM contains a matching. This is impossible unless P=NP.

4.4 Min-max CPCP-SD

The following theorem gives an approximation hardness result for the min-max

CPCP-SD.

Theorem 4.3. Unless P=NP, there is no polynomial-time (3/2 − ϵ)-approximation

algorithm for the min-max CPCP-SD for any ϵ > 0, even if h(v) = 0 for all v ∈ V .

Proof. Suppose, to the contrary, that there is an ϵ > 0 such that a polynomial-time

(3/2 − ϵ)-approximation algorithm exists for the min-max CPCP-SD with h(v) = 0

for all v ∈ V . Then, we will show that this algorithm can be used to solve 3DM in

polynomial-time.

Consider any given instance M ⊆ X × Y × Z of 3DM with |M| = m, where

X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn} are disjoint sets.

We construct the corresponding instance I = (G, {d}, J, w, h, k,Q) of the min-max

CPCP-SD as follows: Let G = (V,E) be a complete undirected graph with vertex

set V = {d} ∪ X ∪ Y ∪ Z ∪
∪m

i=1

{
qij : 1 ≤ j ≤ 6

}
, where d is the depot. The

customer set is J = V \ {d}. For each Mi = (xα(i), yβ(i), zγ(i)) ∈ M, we define

Ẽi as the edge subset consisting of the 16 edges as depicted in Figure 4.3, where

α(i), β(i), γ(i) ∈ {1, 2, . . . , n} and i = 1, 2, . . . ,m. Let Ẽ =
∪m

i=1 Ẽi. In each Ẽi,

let w(e) = 0 for each e ∈ {(qi1, qi2), (qi4, qi5), (qi3, qi6)}, and let w(e) = 1 for each

e ∈ Ẽi \ {(qi1, qi2), (qi4, qi5), (qi3, qi6)}. For each (u, v) ∈ E \ Ẽ, we define the edge

weight of (u, v) as the shortest distance from u to v in graph (V, Ẽ). Clearly, the

edge weight function w forms a metric. We let h(v) = 0 for all v ∈ V . Finally, we let

Q = 3 and k = 2m+ n.

Define F(3, 2) as the set of paths P in G such that P starts from the depot d,

that |J(P )| = 3, and that w(P ) ≤ 2. Then, for each path P ∈ F(3, 2), every edge of
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Figure 4.3: A component forMi = (xα(i), yβ(i), zγ(i)) in transforming 3DM to min-max
CPCP-SD.
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P must have an edge weight of at most 1, because there are no two adjacent edges

in G with edge weights both equal to zero. From Figure 4.3, it is easy to see that

for each i = 1, 2, . . . ,m, the following eight paths are some of the possible paths in

F(3, 2) that traverse the edges in Ẽi:

Pi1 = ⟨d, qi1, qi2, xα(i)⟩, Pi2 = ⟨d, qi2, qi1, xα(i)⟩, Pi3 = ⟨d, yβ(i), qi3, qi6⟩,

Pi4 = ⟨d, yβ(i), qi6, qi3⟩, Pi5 = ⟨d, qi4, qi5, zγ(i)⟩, Pi6 = ⟨d, qi5, qi4, zγ(i)⟩,

Pi7 = ⟨d, qi1, qi2, qi3⟩, Pi8 = ⟨d, qi4, qi5, qi6⟩.

Because all edge and vertex weights are integers, the (3/2 − ϵ)-approximation al-

gorithm must return a solution with an integer objective value. We consider two

different cases.

Case 1: The (3/2 − ϵ)-approximation algorithm returns a feasible solution to I

with an objective value greater than or equal to 3. In this case, we will show that

the given instance of 3DM does not contain a matching. By contradiction, suppose it

contains a matching M′. Then, we can construct the following solution to instance

I: For i = 1, 2, . . . ,m, if (xα(i), yβ(i), zγ(i)) ∈ M′, then we assign paths Pi1, Pi3, and

Pi5 to three different vehicles; otherwise we assign paths Pi7 and Pi8 to two different

vehicles. The total number of assigned vehicles is 3n+ 2(m− n) = k. Because M′ is

a matching, each of the vertices x1, . . . , xn, y1, . . . , yn, z1, . . . , zn is covered by exactly
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one path. Hence, this solution is feasible. The objective value of this solution equals

2. This implies that the optimal solution value of I is no greater than 2, which in

turn implies that the approximation algorithm must return a feasible solution with an

objective value no greater than (3/2− ϵ)(2) < 3, which is a contradiction. Therefore,

in this case the given instance of 3DM does not contain a matching.

Case 2: The (3/2 − ϵ)-approximation algorithm returns a feasible solution to I

with an objective value less than or equal to 2. Let P denote the set of all paths in

this feasible solution. Each path P ∈ P contains at most one trip, since otherwise its

total edge and vertex weight will exceed 2. Moreover, since Q = 3, each path P ∈ P

covers no more than three customers. Note that |J | = 6m+3n, k = 2m+n, and the

paths cover all the customers in J . Thus, P ⊆ F(3, 2), and no two different paths in

P cover the same customer in J . Hence, for each j = 1, 2, . . . , n, there exists a unique

and distinct path in P ⊆ F(3, 2) that covers yj, which must be either Pσ(j),3 or Pσ(j),4

such that β(σ(j)) = j, for some σ(j) ∈ {1, 2, . . . ,m}. This also implies that Pσ(j),1

or Pσ(j),2 (resp. Pσ(j),5 or Pσ(j),6) is also in P , since Pσ(j),1 and Pσ(j),2 (resp. Pσ(j),5

and Pσ(j),6) are the only possible paths in F(3, 2) that cover qσ(j),1 (resp. qσ(j),4)

without covering any customer that is already covered by Pσ(j),1 or Pσ(j),2. Note that

among all the paths in P , only Pσ(j),1 or Pσ(j),2 covers vertex xα(σ(j)), only Pσ(j),3

or Pσ(j),4 covers vertex yβ(σ(j)), and only Pσ(j),5 or Pσ(j),6 covers vertex zγ(σ(j)). Let

M′ = {(xα(σ(j)), yβ(σ(j)), zγ(σ(j))) : j = 1, 2, . . . , n}. Then, |M′| = n, and no two

elements of M′ agree in any coordinate. This implies that M′ is a matching in the

given instance of 3DM.

Summarizing Cases 1 and 2, we conclude that the (3/2− ϵ)-approximation algo-

rithm, which has a polynomial running time, can be used to determine whether or not

the given instance of 3DM contains a matching. This is impossible unless P=NP.
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4.5 Min-max CPCP-MD

The following theorem gives an approximation hardness result for the min-max

CPCP-MD.

Theorem 4.4. Unless P=NP, there is no polynomial-time (2 − ϵ)-approximation

algorithm for the min-max CPCP-MD for any ϵ > 0, even if h(v) = 0 for all v ∈ V .

Proof. Suppose, to the contrary, that there is an ϵ > 0 such that a polynomial-time

(2 − ϵ)-approximation algorithm exists for the min-max CPCP-MD with h(v) = 0

for all v ∈ V . Then, we will show that this algorithm can be used to solve 3DM in

polynomial-time.

Consider any given instance M ⊆ X × Y × Z of 3DM with |M| = m, where

X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and Z = {z1, z2, . . . , zn} are disjoint sets.

Similar to the proof of Theorem 4, we construct the corresponding instance I =

(G,D, J, w, h, k,Q) of the min-max CPCP-MD as follows: Let G = (V,E) be a com-

plete undirected graph with vertex set V = D∪J , where J = X∪Y ∪Z∪
∪m

i=1

{
qij : 1 ≤

j ≤ 9
}
is the set of customers, and D = {y′1, y′2, . . . , y′n} ∪

∪m
i=1

{
q′i1, q

′
i4, q

′
i9} is the set

of depots. For each Mi = (xα(i), yβ(i), zγ(i)) ∈ M, we define Ẽi as the edge subset con-

sisting of the 15 edges as depicted in Figure 4.4, where α(i), β(i), γ(i) ∈ {1, 2, . . . , n}

and i = 1, 2, . . . ,m. Let Ẽ =
∪m

i=1 Ẽi. In each Ẽi, let w(e) = 0 for each e ∈

{(yβ(i), y′β(i)), (qi1, q′i1), (qi4, q′i4), (qi9, q′i9), (qi1, qi2), (qi4, qi5), (qi7, qi8), (qi6, qi9)}, and let

w(e) = 1 for each e ∈ Ẽi \ {(yβ(i), y′β(i)), (qi1, q′i1), (qi4, q′i4), (qi9, q′i9), (qi1, qi2), (qi4, qi5),

(qi7, qi8), (qi6, qi9)}. For each (u, v) ∈ E \ Ẽ, we define the edge weight of (u, v) as the

shortest distance from u to v in graph (V, Ẽ). Clearly, the edge weight function w

forms a metric. We let h(v) = 0 for all v ∈ V . Finally, we let Q = 3 and k = 3m+n.

Define F(3, 1) as the set of paths P in G such that P starts from a depot in

D, with |J(P )| = 3 and w(P ) ≤ 1. Then, for each path P ∈ F(3, 1), the path P

must have at least two edges with weight equal to 0, and it must have no edge with
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Figure 4.4: A component forMi = (xα(i), yβ(i), zγ(i)) in transforming 3DM to min-max
CPCP-MD.
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weight greater than 1. From Figure 4.4, it is easy to see that for each i = 1, 2, . . . ,m,

the following eleven paths are some of the possible paths in F(3, 1) that traverse the

edges in Ẽi:

Pi1 = ⟨q′i1, qi1, qi2, xα(i)⟩, Pi2 = ⟨q′i1, qi2, qi1, xα(i)⟩, Pi3 = ⟨y′β(i), yβ(i), qi8, qi7⟩,

Pi4 = ⟨y′β(i), yβ(i), qi7, qi8⟩, Pi5 = ⟨q′i4, qi4, qi5, zγ(i)⟩, Pi6 = ⟨q′i4, qi5, qi4, zγ(i)⟩,

Pi7 = ⟨q′i9, qi9, qi6, qi3⟩, Pi8 = ⟨q′i9, qi6, qi9, qi3⟩, Pi9 = ⟨q′i1, qi1, qi2, qi3⟩,

Pi,10 = ⟨q′i4, qi4, qi5, qi6⟩, Pi,11 = ⟨q′i9, qi9, qi8, qi7⟩.

Because all edge and vertex weights are integers, the (2− ϵ)-approximation algorithm

must return a solution with an integer objective value. We consider two different

cases.

Case 1: The (2− ϵ)-approximation algorithm returns a feasible solution to I with

an objective value greater than or equal to 2. In this case, we will show that the

given instance of 3DM does not contain a matching. By contradiction, suppose it

contains a matching M′. We can construct the following solution to instance I: For

i = 1, 2, . . . ,m, if (xα(i), yβ(i), zγ(i)) ∈ M′, then we assign paths Pi1, Pi3, Pi5, and

Pi7 to four different vehicles; otherwise we assign paths Pi9, Pi,10, and Pi,11 to three

different vehicles. Following the same argument as in the proof of Theorem 4.2, this
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solution is feasible with an objective value equal to 1. This implies that the optimal

solution value of I is no greater than 1, which in turn implies that the approximation

algorithm must return a feasible solution with an objective value no greater than

(2− ϵ)(1) < 2, which is a contradiction. Therefore, in this case the given instance of

3DM does not contain a matching.

Case 2: The (2− ϵ)-approximation algorithm returns a feasible solution to I with

an objective value less than or equal to 1. Let P denote the set of all paths in this

feasible solution. In this case, it is not difficult to check that because Q = 3, each path

P ∈ P covers no more than three customers. Note that |J | = 9m+ 3n, k = 3m+ n,

and the paths cover all the customers in J . Thus, P ⊆ F(3, 1), and no two different

paths in P cover the same customer in J . Hence, for each j = 1, 2, . . . , n, there

exists a unique and distinct path in P that covers zj, which must be either Pσ(j),5

or Pσ(j),6 such that β(σ(j)) = j, for some σ(j) ∈ {1, 2, . . . ,m}. This implies that

Pσ(j),7 or Pσ(j),8 is also in P , since Pσ(j),7 and Pσ(j),8 are the only possible paths in

F(3, 1) which cover qσ(j),6 without covering any customer of Pσ(j),5 or Pσ(j),6. This

also implies that Pσ(j),1 or Pσ(j),2 (resp. Pσ(j),3 or Pσ(j),4) is also in P, because Pσ(j),1

and Pσ(j),2 (resp. Pσ(j),3 and Pσ(j),4) are the only possible paths in F(3, 2) that cover

qσ(j),1 (resp. qσ(j),7) without covering any customer that is already covered. Note that

among all the paths in P , only Pσ(j),1 or Pσ(j),2 covers vertex xα(σ(j)), only Pσ(j),3

or Pσ(j),4 covers vertex yβ(σ(j)), and only Pσ(j),5 or Pσ(j),6 covers vertex zγ(σ(j)). Let

M′ = {(xα(σ(j)), yβ(σ(j)), zγ(σ(j))) : j = 1, 2, . . . , n}. Then, |M′| = n, and no two

elements of M′ agree in any coordinate. This implies that M′ is a matching in the

given instance of 3DM.

Summarizing Cases 1 and 2, we conclude that the (2−ϵ)-approximation algorithm,

which has a polynomial running time, can be used to determine whether or not the

given instance of 3DM contains a matching. This is impossible unless P=NP.
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4.6 Min-max CCCP-SD

The following theorem states the approximation hardness of the min-max capac-

itated cycle cover problem with a single depot (CCCP-SD).

Theorem 4.5. Unless P=NP, there is no polynomial-time (4/3 − ϵ)-approximation

algorithm for the min-max CCCP-SD for any ϵ > 0, even if h(v) = 0 for all v ∈ V .

Proof. Suppose, to the contrary, that there is an ϵ > 0 such that a polynomial-time

(4/3 − ϵ)-approximation algorithm exists for the min-max CCCP-SD with h(v) = 0

for all v ∈ V . Then, we will show that this algorithm can be used to solve 3DM in

polynomial-time.

Given any instance of 3DM, similar to the proof of Theorem 4.1, we construct

the corresponding instance I = (G, {d}, J, w, h, k,Q) of the min-max CCCP-SD

as follows: Let G = (V,E) be a complete undirected graph with vertex set V =

{d} ∪X ∪ Y ∪ Z ∪
∪m

i=1

{
qij : 1 ≤ j ≤ 6

}
. For each Mi = (xα(i), yβ(i), zγ(i)) ∈ M, we

define Ẽi as the edge subset consisting of the 15 edges as depicted in Figure 4.5, where

α(i), β(i), γ(i) ∈ {1, 2, . . . , n} and i = 1, 2, . . . ,m. We define w(e) = 0 for each e ∈

{(qi1, qi2), (qi3, qi6), (qi4, qi5)}, and w(e) = 1 for each e ∈ Ẽi\{(qi1, qi2), (qi3, qi6), (qi4, qi5)}.

Let Ẽ =
∪m

i=1 Ẽi. For each (u, v) ∈ E \ Ẽ, we define the edge weight of (u, v) as the

shortest distance from u to v in graph (V, Ẽ). Clearly, the edge weight function w

forms a metric. We let h(v) = 0 for all v ∈ V . Finally, we let Q = 3 and k = 2m+n.

Define F(3, 3) as the set of cycles P in G such that P starts from the depot d and

returns to d, that |J(P )| = 3, and that w(P ) ≤ 3. Then, for each cycle P ∈ F(3, 3),

every edge of P must have an edge weight no greater than 1. From Figure 4.5, it is

easy to see that for each i = 1, 2, . . . ,m, the following eight cycles are some of the
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Figure 4.5: A component forMi = (xα(i), yβ(i), zγ(i)) in transforming 3DM to min-max
CCCP-SD.
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possible cycles in F(3, 3) that traverse the edges in Ẽi:

Pi1 = ⟨d, qi1, qi2, xα(i), d⟩, Pi2 = ⟨d, qi2, qi1, xα(i), d⟩, Pi3 = ⟨d, yβ(i), qi3, qi6, d⟩,

Pi4 = ⟨d, yβ(i), qi6, qi3, d⟩, Pi5 = ⟨d, qi4, qi5, zγ(i), d⟩, Pi6 = ⟨d, qi5, qi4, zγ(i), d⟩,

Pi7 = ⟨d, qi1, qi2, qi3, d⟩, Pi8 = ⟨d, qi4, qi5, qi6, d⟩.

We consider two possible cases.

Case 1: The (4/3 − ϵ)-approximation algorithm returns a feasible solution to I

with an objective value greater than or equal to 4. In this case, we will show that

the given instance of 3DM does not contain a matching. By contradiction, suppose it

contains a matching M′. Then, we can construct the following solution to instance

I: For i = 1, 2, . . . ,m, if (xα(i), yβ(i), zγ(i)) ∈ M′, then we assign cycles Pi1, Pi3, and

Pi5 to three different vehicles; otherwise we assign cycles Pi7 and Pi8 to two different

vehicles. The total number of assigned vehicles is 3n+ 2(m− n) = k. Because M′ is

a matching, each of the vertices x1, . . . , xn, y1, . . . , yn, z1, . . . , zn is covered by exactly

one cycle. Hence, this solution is feasible. The objective value of this solution equals

3. This implies that the optimal solution value of I is no greater than 3, which in

turn implies that the approximation algorithm must return a feasible solution with an

objective value no greater than (4/3− ϵ)(3) < 4, which is a contradiction. Therefore,
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in this case the given instance of 3DM does not contain a matching.

Case 2: The (4/3 − ϵ)-approximation algorithm returns a feasible solution to I

with an objective value less than or equal to 3. Let P denote the set of all cycles in this

feasible solution. By a similar argument as in the proof of Theorem 4.1, P ⊆ F(3, 3),

and no two different cycles in P cover the same customer in J . Hence, for each

j = 1, 2, . . . , n, there exists a unique and distinct cycle in P ⊆ F(3, 3) that covers

yj. Thus, it must be either Pσ(j),3 or Pσ(j),4 (or the reverses of these two cycles) with

β(σ(j)) = j, for some σ(j) ∈ {1, 2, . . . ,m}. This also implies that Pσ(j),1 or Pσ(j),2

(resp. Pσ(j),5 or Pσ(j),6) is also in P . Note that among all the cycles in P, only Pσ(j),1 or

Pσ(j),2 covers vertex xα(σ(j)), only Pσ(j),3 or Pσ(j),4 covers vertex yβ(σ(j)), and only Pσ(j),5

or Pσ(j),6 covers vertex zγ(σ(j)). Let M′ = {(xα(σ(j)), yβ(σ(j)), zγ(σ(j))) : j = 1, 2, . . . , n}.

Then, |M′| = n, and no two elements of M′ agree in any coordinate. This implies

that M′ is a matching in the given instance of 3DM.

Summarizing Cases 1 and 2, we conclude that the (4/3− ϵ)-approximation algo-

rithm, which has a polynomial running time, can be used to determine whether or not

the given instance of 3DM contains a matching. This is impossible unless P=NP.

4.7 Summary

In this chapter, we have proved the first approximation hardness results for four

typical variants of the min-max path cover problem. Furthermore, we have demon-

strated an extension of our method to derive the first approximation hardness result

for the min-max capacitated cycle cover problem with a single depot. Based on

the results presented in this chapter, our future work will focus on improving the

approximation hardness results for problems studied in this chapter, or deriving ap-

proximation hardness results for other min-max vehicle routing problems.
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CHAPTER 5

Approximation Schemes for the Min-max 2-TSPT

and Its Extensions

5.1 Introduction

The min-max 2-Traveling Salesmen Problem on a Tree (2-TSPT) aims to deter-

mine a set of two tours for two vehicles to serve customers located in a tree, such

that each of the two tours starts from and returns to a given depot, with the max-

imum length of the two tours minimized. Although the min-max 2-TSPT has been

proved to be NP-hard by Averbakh and Berman [8], it is not clear whether or not

it is NP-hard in the strong sense, and this has been an open question for a decade.

Motivated by this open question, we investigate in this chapter as to whether there

exists a pseudo-polynomial time exact algorithm, or even a fully polynomial time

approximation scheme (FPTAS), for the min-max 2-TSPT.

The remainder of this chapter is organized as follows. Section 5.2 introduces the

definition of the min-max 2-TSPT and the notation that are used throughout this

chapter. Section 5.3 illustrates the main results presenting a pseudo-polynomial time

exact algorithm and an FPTAS for the min-max 2-TSPT. In Section 5.4, we generalize

these algorithms for several multiple-vehicle routing problems in trees, including the

min-max k-TSPT, which is an extension of the min-max 2-TSPT by taking into
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consideration k vehicles. This chapter is then summarized in Section 5.5.

5.2 Notation and Problem Definition

Consider a tree T = (V,E) with the vertex set denoted by V = {1, 2, ..., n} and

the edge set denoted by E, where s ∈ V denotes the root and the depot of T . For

each edge (u, v) ∈ E, it has a non-negative integer edge weight denoted by w(u, v).

A vertex u is called an ancestor of vertex v if u lies on the unique path from the root

s to v; a vertex v is called a descendant of vertex u if u is an ancestor of vertex v.

For each vertex v ∈ V , the depth of v in T is defined as the number of edges on the

path from the root s to v. The min-max 2-TSPT is to decide two tours that start

from s and return to s, so as to visit all the vertices in V through the edges of E with

the maximum total edge weight of the two tours minimized. Thus, we use [T,w, 2] to

denote an instance of the min-max 2-TSPT.

Let Φ = (∅, ∅) denote an empty tree whose vertex and edge sets are both empty.

For any subtree Q of T , let V (Q) and E(Q) denote the vertex set and the edge set

of Q, respectively. Thus, the subtree Q can be denoted as (V (Q), E(Q)). Let w(Q)

denote the total edge weight of Q. For any edge subset E ′ ⊆ E, we use w(E ′) to

denote the total edge weight of E ′. Moreover, let W = w(T ) denote the total edge

weight of T .

For each tour in T , the subtree of T that spans the vertices of the tour has a

weight of at most half of the tour. For each subtree of T , duplicating the edges of the

subtree constitutes a tour in T with a weight of at most double of the subtree. Thus,

the min-max 2-TSPT can be equivalently defined so as to determine a two-subtree

tuple (Q1, Q2) of T , such that V (Q1)∪ V (Q2) covers all vertices in V , and that both

V (Q1) and V (Q2) cover s, with max{w(Q1), w(Q2)} minimized:

Min-max 2-TSPT
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Instance: [T,w, 2], T = (V,E) is a tree rooted at s where V = {1, 2, ..., n}, and

w : E → Z+ represents edge weights.

Feasible solution: A two-subtree tuple (Q1, Q2) of T such that V ⊆ V (Q1)
∪
V (Q2),

and s ∈ V (Qi), for i = 1, 2.

Objective: To minimize max{w(Q1), w(Q2)}.

Given an instance [T,w, 2] of the min-max 2-TSPT, we use (T̃1, T̃2) to denote an

optimum solution to [T,w, 2], and let OPT = max{w(T̃1), w(T̃2)} indicate the optimal

objective value.

5.3 Main Results

In this section, we first introduce a transformation in Section 5.3.1 that can trans-

form any instance of the min-max 2-TSPT defined on a general tree to a “standard”

instance defined on a full binary tree, so as to simplify the presentation of our main

results for the min-max 2-TSPT. The main results for the min-max 2-TSPT include

a pseudo-polynomial time exact algorithm in Section 5.3.2 and an FPTAS in Sec-

tion 5.3.3.

5.3.1 Transformation to standard instances

We define the “standard” instances of the min-max 2-TSPT as follows.

Definition 5.1. An instance of the min-max 2-TSPT is standard if and only if the

underlying tree is a full binary tree, which means that each vertex in the tree other

than the leaves has exactly two children.

Given two instances [T,w, 2] and [T ′, w′, 2] of the min-max 2-TSPT, if any feasible

solution to [T,w, 2] can be transformed in polynomial time to a feasible solution to

[T ′, w′, 2] with the same objective value, and vice versa, then the two instances are

75



defined as being equivalent. Accordingly, if there exists a pseudo-polynomial time

exact algorithm (or respectively, an FPTAS) for [T ′, w′, 2], then the same algorithm

can be applied to obtain a pseudo-polynomial time exact algorithm (or respectively,

an FPTAS) for [T,w, 2], and vice versa.

Given any instance [T,w, 2] of the min-max 2-TSPT, we can transform it to a

standard instance [T ′, w′, 2] by Algorithm 5.1.

Algorithm 5.1.

Input: An instance [T,w, 2]

Output: A standard instance [T ′, w′, 2].

1. Set T ′ = T and w′ = w.

2. Repeat the following steps until no vertex in T ′ has only one child:

(a) Let v denote any vertex in T ′ that has only one child.

(b) Insert a new vertex v′ = |V (T ′)|+ 1 into T ′ to be the second child of v by

adding an edge (v, v′) and setting w′(v, v′) = 0

3. Repeat the following steps until no vertex in T ′ has more than two children:

(a) Let v denote any vertex in T ′ that has more than two children.

(b) Add a new vertex v′ = |V (T ′)| + 1. For each child u of v, other than the

first child, move u to be a child of v′ by replacing the edge (u, v) with an

edge (u, v′) and setting w′(u, v) = w′(u, v′).

(c) Insert v′ into T ′ to be the second child of v by adding an edge (v, v′) and

setting w′(v, v′) = 0.

4. Return the resulting instance [T ′, w′, 2].
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We use Example 5.1 to illustrate Algorithm 5.1.

Example 5.1. Consider an instance [T,w, 2] shown in Figure 5.1(a), where the tree

T is rooted at vertex 5, and the edge weight w(e) is indicated by an integer on each

edge e ∈ E(T ).

Figure 5.1: Example to illustrate Algorithm 5.1.
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Algorithm 5.1 first sets T ′ = T and w′ = w in Step 1. Since vertex 4 in T ′ has

only one child, as depicted in Figure 5.1(b), Step 2.b inserts a new vertex 6 into T ′

to be the second child of vertex 4 by adding an edge (4, 6) and setting w′(4, 6) = 0.

Since no vertex in T ′ has only one child, then Algorithm 5.1 goes to Step 3. Since

vertex 5 has more than two children, Step 3.b adds a new vertex 7, moves vertex 2

to be a child of vertex 7 by replacing the edge (5, 2) with an edge (7, 2) and setting

w′(7, 2) = w′(5, 2), and moves vertex 1 to be a child of vertex 7 by replacing the edge

(5, 1) with an edge (7, 1) and setting w′(7, 1) = w′(5, 1). It is noted that vertex 4

is still the first child of vertex 5. Then, Step 3.c inserts the new vertex 7 into T ′ to

be the second child of 5 by adding an edge (5, 7) and setting w′(5, 7) = 0. Since no

vertex in T ′ has more than two children, the resulting instance [T ′, w′, 2], which is

shown in Figure 5.1(c), is returned in Step 3.

The following theorem states that any instance [T,w, 2] to the min-max 2-TSPT

can be transformed to an equivalent standard instance [T ′, w′, 2] by Algorithm 5.1.

Theorem 5.1. Given any instance [T,w, 2] of the min-max 2-TSPT, Algorithm 5.1

outputs an equivalent standard instance [T ′, w′, 2] in O(n) time.
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Proof. In Algorithm 5.1, Step 2 terminates in O(n) iterations, because each new

vertex inserted in Step 2.b has no child. In each iteration of Step 3, let q denote

the total number of non-leaf vertices in T ′ and let p denote the sum of the numbers

of children for all non-leaf vertices. It can be seen from Step 3.b and Step 3.c that

the value of (p − 2q) is decreasing after each iteration in Step 3. Since (p − 2q) is

less than or equal to n before Step 3, and equals zero when Step 3 terminates, we

obtain that Step 3 stops in O(n) iterations. Thus, we obtain that the running time

of Algorithm 5.1 is O(n).

It can be seen that after Step 2 of Algorithm 5.1, no vertex in T ′ has only one child,

and after Step 3, no vertex in T ′ has more than two children, or has only one child.

Therefore, the resulting tree T ′ is a full binary tree, which, by definition, indicates

that [T ′, w′, 2] is a standard instance. In the following, we only need to verify that

[T,w, 2] and [T ′, w′, 2] are equivalent.

On the one hand, given any feasible solution (Q1, Q2) to [T,w, 2], for i = 1, 2, we

can transform Qi to a subtree Q′
i of T

′ by the following three steps:

Step 1: Set Vi initially to be V (Qi).

Step 2: For each v ∈ V (T ′) \ V (T ), let a(v) denote the first ancestor of v in T ′ that

is also in V (T ), and let A(v) denote all the vertices lying on the path from a(v)

to v (including a(v) and v). If a(v) ∈ Vi, add A(v) to Vi.

Step 3: Return Q′
i as the subtree of T ′ induced by Vi.

It is easy to verify that the subtree Q′
i constructed above for i = 1, 2 is a connected

subgraph, and satisfies that V (Qi) ⊆ V (Q′
i), and that w′(Q′

i) = w(Qi) according

to the definition of w′ in Step 2.b and Step 3.c of Algorithm 5.1. Therefore, we

obtain that max{w′(Q′
1), w

′(Q′
2)} = max{w(Q1), w(Q2)}. Since (Q1, Q2) is a feasible

solution to [T,w, 2], we have V (T ) = V (Q1)
∪
V (Q2), and the root s ∈ V (Qi), for

i = 1, 2. Since V (Qi) ⊆ V (Q′
i) for i = 1, 2, and since V (T ′)\V (T ) ⊆ V (Q′

1)
∪
V (Q′

2),
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we obtain that s ∈ V (Q′
i) for i = 1, 2, and V (T ′) ⊆ V (Q′

1)
∪

V (Q′
2). Thus, (Q′

1, Q
′
2)

is a feasible solution to [T ′, w′, 2] with max{w′(Q′
1), w

′(Q′
2)} = max{w(Q1), w(Q2)}.

On the other hand, given any feasible solution (Q′
1, Q

′
2) to [T ′, w′, 2], for i = 1, 2,

we can transform Q′
i to a subtree Qi of T by the following two steps:

Step 1: Label all vertices in V (Q′
i)\V (T ) in a breadth-first order inQ′

i as v1, v2, . . . , vmi
.

Step 2: For j = mi,mi − 1, . . . , 1, let p(vj) denote the parent of vj in Q′
i, delete vj

and the edge (p(vj), vj), and move each child u of vj to be a child of p(vj) by

replacing edge (vj, u) with an edge (p(vj), u) and setting w′(p(vj), u) = w′(vj, u).

It is easy to verify that the subtree Qi constructed above for i = 1, 2 is a connected

subgraph, and satisfies that V (Qi) ⊆ V (Q′
i), and that w(Qi) = w′(Q′

i) according

to the definition of w′ in Step 2.b and Step 3.c of Algorithm 5.1. Since (Q′
1, Q

′
2)

is a feasible solution to [T ′, w′, 2], we have V (T ′) = V (Q′
1)
∪

V (Q′
2), and the root

s ∈ V (Q′
i), for i = 1, 2. According to the construction of Qi for i = 1, 2, all vertices in

V (Q′
i)
∩
V (T ) are maintained in Qi, including the root s. We obtain that s ∈ V (Qi)

for i = 1, 2, and that V (T ) ⊆ V (Q1)
∪

V (Q2). Thus, since V (Qi) ⊆ V (T ) for

i = 1, 2, then (Q1, Q2) is a feasible solution to [T,w, 2] with max{w(Q1), w(Q2)} =

max{w′(Q′
1), w

′(Q′
2)}. Hence, Theorem 5.1 is proved.

5.3.2 Dynamic programming for the min-max 2-TSPT

Due to Theorem 5.1, we can assume without loss of generality that any given

instance [T,w, 2] of the min-max 2-TSPT is standard. Furthermore, to ease the

presentation, we can assume without loss of generality that vertices in V = {1, 2, ..., n}

are labeled in a non-increasing order on their depths in T , so that for each u, v ∈ V ,

if v is a child of u, then v ≤ u− 1. Finally, we assume without loss of generality that

n is the root and the depot of T .

For each v ∈ V , let T (v) denote a subtree of T that contains v and all the decedents
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of v. Let S(v) denote a set of all the subtrees of T (v). For each subtree Q ∈ S(v), recall

that w(Q) denotes the total edge weight of Q. We let a single bit α(v)(Q) equal 1 if

Q contains v, and equal 0 otherwise. Let a single bit β(Q) equal 1 if Q is an empty

tree, and equal 0 otherwise. Thus, we use a 3-tuple (w(Q), α(v)(Q), β(Q)) to define

the state of Q as a subtree of T (v).

To develop an exact algorithm for the min-max 2-TSPT, we first define Proce-

dure 5.1 as follows, which, for any v ∈ V , and for any subtree L of T (l) and any

subtree R of T (r), where l and r are the left and right children of v respectively, joins

L and R to form subtrees of T (v).

Procedure 5.1.

Input: A vertex v ∈ V , a subtree L of T (l) where l is the left child of v, and a

subtree R of T (r) where r is the right child of v.

Output: A set Q of all the subtrees of T (v) that contain L as a subtree induced by

V (T (l)), and contain R as a subtree induced by V (T (r)).

1. Define G1 = Φ, G2 = ({v}, ∅), G3 = ({v, l}, {(v, l)}), G4 = ({v, r}, {(v, r)}),

and G5 = ({v, l, r}, {(v, l), (v, r)}).

2. Set Q = ∅. Then, for t = 1, 2, .., 5, do the following steps:

(a) Let Tt = (L ∪R) ∪Gt.

(b) If the following three conditions are satisfied, then add Tt to Q.

(i) Tt is connected.

(ii) The subgraph of Tt induced by V (T (l)) is equal to L.

(iii) The subgraph of Tt induced by V (T (r)) is equal to R.

3. Return Q.

We use Example 5.2 to illustrate Procedure 5.1.
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Example 5.2. Consider the vertex v = 4 of the full binary tree in the standard

instance shown in Figure 5.1(c), which has exactly two children, where vertex 3 is the

left child and vertex 6 is the right child. Given a subtree L = Φ of T (3) and a subtree

R = ({6}, ∅) of T (6), let us apply Procedure 5.1 on v, L, and R to obtain a set Q

of subtrees of T (4). According to the definition of Gt, for t = 1, 2, . . . , 5, in Step 1,

we have G1 = Φ, G2 = ({4}, ∅), G3 = ({4, 3}, {(4, 3)}), G4 = ({4, 6}, {(4, 6)}), and

G5 = ({4, 3, 6}, {(4, 3), (4, 6)}). Accordingly, we can obtain Tt = (L ∪ R) ∪ Gt, for

t = 1, 2, . . . , 5, which are shown in solid lines in Figures 5.2(a)-(e), respectively.

Figure 5.2: Example to illustrate Procedure 5.1.
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It can be seen that T1 is connected, and the subgraph of T1 induced by V (T (3))

is Φ, which equals L, and that the subgraph of T1 induced by V (T (6)) is ({6}, ∅),

which equals R. Thus, the subtree T1 of T (4) is added to Q. Similarly, it can be see

that T4 is also added to Q. Since T2 and T3 are not connected, they are not added

to Q. Although T5 is connected, the subgraph of T5 induced by V (T (3)) is ({3}, ∅),

which does not equal L. Thus, T5 is not added to Q. Therefore, we obtain that

Procedure 5.1 returns Q = {T1, T4}.

We next prove Lemma 5.1 as follows to present, for each t where 1 ≤ t ≤ 5, a

sufficient and necessary condition for Tt to be added to Q in Step 2 of Procedure 5.1.

Lemma 5.1. Consider Step 2 of Procedure 5.1. Then,

(i) T1 is added to Q if, and only if, β(L) ∨ β(R) = 1;

(ii) T2 is added to Q if, and only if, β(L) = β(R) = 1;
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(iii) T3 is added to Q if, and only if, α(l)(L) = β(R) = 1;

(iv) T4 is added to Q if, and only if, β(L) = α(r)(R) = 1;

(v) T5 is added to Q if, and only if, α(l)(L) = α(r)(R) = 1.

Proof. Firstly, if T1 is added to Q, then T1 is connected. Thus, since T1 = (L∪R)∪G1

and G1 is an empty tree, we know that either L or R must be empty, which implies

that β(L)∨β(R) = 1. Moreover, if β(L)∨β(R) = 1, then the conditions for Step 2.b

of Procedure 5.1 to add T1 to Q are satisfied. Thus, (i) is proved. Secondly, if T2 is

added to Q, then T2 is connected. Thus, since T2 = (L ∪ R) ∪G2 and G2 contains v

only, we know that both L and Rmust be empty, which implies that β(L) = β(R) = 1.

Moreover, if β(L) = β(R) = 1, then the conditions for Step 2.b of Procedure 5.1 to

add T2 to Q are satisfied. Thus, (ii) is proved. Thirdly, if T3 is added to Q, then T3

is connected. Thus, since T3 = (L ∪ R) ∪ G3 and G3 contains (v, l) only, we know

that R must be empty and L contains l, which implies that α(l)(L) = β(R) = 1.

Moreover, if α(l)(L) = β(R) = 1, then the conditions for Step 2.b of Procedure 5.1

to add T3 to Q are satisfied. Thus, (iii) is proved. Fourthly, the proof of (iv) is

similar to the proof of (iii). Finally, if T5 is added to Q, then T5 is connected. Thus,

since T5 = (L ∪R) ∪G5 and G5 contains only (v, l) and (v, r), we know that L must

contain l and R must contain r, which implies that α(l)(L) = α(r)(R) = 1. Moreover,

if α(l)(L) = α(r)(R) = 1, then the conditions for Step 2.b of Procedure 5.1 to add T5

to Q are satisfied. Thus, (v) is proved.

We can then establish Lemma 5.2 to present, for each t where 1 ≤ t ≤ 5, the state

of Tt as a subtree of T (v), if Tt is added to Q in Step 2 of Procedure 5.1.

Lemma 5.2. Consider Step 2 of Procedure 5.1. Then,

(i) If T1 is added to Q, then w(T1) = w(L) + w(R), α(v)(T1) = 0, and β(T1) =

β(L) ∧ β(R);
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(ii) If T2 is added to Q, then w(T2) = w(L) + w(R), α(v)(T2) = 1, and β(T2) = 0;

(iii) If T3 is added to Q, then w(T3) = w(L) + w(R) + w(v, l), α(v)(T3) = 1, and

β(T3) = 0;

(iv) If T4 is added to Q, then w(T4) = w(L) + w(R) + w(v, r), α(v)(T4) = 1, and

β(T4) = 0;

(v) If T5 is added to Q, then w(T5) = w(L)+w(R)+w(v, l)+w(v, r), α(v)(T5) = 1,

and β(T5) = 0.

Proof. For 1 ≤ t ≤ 5, since Tt = (L∪R)∪Gt, the values of w(Tt) can be easily verified

by the definition of Gt. Moreover, since G1 is an empty tree, and all Gt for 2 ≤ t ≤ 5

contain v, we have that α(v)(T1) = 0 and α(v)(Tt) = 1 for 2 ≤ t ≤ 5. Finally, since

all Gt for 2 ≤ t ≤ 5 are not empty, we obtain that β(Tt) = 0 for 2 ≤ t ≤ 5. Since

T1 = (L ∪ R) ∪G1 and G1 is an empty tree, we obtain that T1 is empty if, and only

if, both L and R are empty, which implies that β(T1) = β(L) ∧ β(R).

According to Lemma 5.2, we can determine the state of each tree in Q, returned

by Procedure 5.1, from the states of the given subtrees L and R of T (l) and T (r). Let

us continue Example 5.2, for which Q = {T1, T4}. The state of T1, which is a subtree

of T (4) shown in Figure 5.2(a), can be determined by (i) of Lemma 5.2 as follows.

Since w(L) = w(R) = 0, β(L) = 1 and β(R) = 0, then w(T1) = w(L) + w(R) = 0,

α(4)(T1) = 0, and β(T1) = β(L) ∧ β(R) = 0, which implies that the state of T1 is

(0, 0, 0). Similarly, according to (iv) of Lemma 5.2, we can obtain that the state of

T4, which is a subtree of T (4) shown in Figure 5.2(d), is (0, 1, 0).

Moreover, for any vertex v ∈ V , where l and r are the left and the right children of

v, consider any two subtrees L and L′ of T (l) with α(l)(L) = α(l)(L′) and β(L) = β(L′),

and two subtrees R and R′ of T (r) with α(r)(R) = α(r)(R
′) and β(R) = β(R′). For

each t with 1 ≤ t ≤ 5, Lemma 5.1 implies that (L∪R)∪Gt is in the output returned
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by applying Procedure 5.1 to L and R if, and only if, (L′ ∪R′) ∪Gt is in the output

returned by applying Procedure 5.1 to L′ and R′. Moreover, by Lemma 5.2, we have

that α(v)((L′∪R′)∪Gt) = α(v)((L∪R)∪Gt) and β((L′∪R′)∪Gt) = β((L∪R)∪Gt),

and that if w(L′) ≤ w(L) and w(R′) ≤ w(R), then w((L′∪R′)∪Gt) ≤ w((L∪R)∪Gt).

We can then prove the correctness of Procedure 5.1 in Lemma 5.3.

Lemma 5.3. Procedure 5.1 runs in O(1) time, and returns a set Q, such that:

(i) Each Q ∈ Q is a subtree of T (v), such that the subtree of Q induced by V (T (l))

is equal to L, and that the subtree of Q induced by V (T (r)) is equal to R.

(ii) Each Q of T (v), such that the subtree of Q induced by V (T (l)) is equal to L, and

that the subtree of Q induced by V (T (r)) is equal to R, is in Q.

Proof. It is easy to see that Procedure 5.1 runs in O(1) time, and it is easy to verify

from Step 2 that (i) holds for each Q ∈ Q. To prove (ii), consider each subtree Q

of T (v), such that the subtree of Q induced by V (T (l)) is equal to L, and that the

subtree of Q induced by V (T (r)) is equal to R. Define V ′ = V (Q) \ V (L) \ V (R)

and E ′ = E(Q) \ E(L) \ E(R). By the definition of Q, we have V ′ ⊆ {v} and

E ′ ⊆ {(v, l), (v, r)}. Consider the five cases for V ′ and E ′ as follows, where Gt for

1 ≤ t ≤ 5 are defined in Step 1 of Procedure 5.1. Case 1: If V ′ = ∅, then E ′ = ∅,

which implies that Q = (L ∪ R) ∪ G1. Thus Q ∈ Q. Case 2: If V ′ = {v} and

E ′ = ∅, then Q = (L ∪ R) ∪G2, which implies that Q ∈ Q. Case 3: If V ′ = {v} and

E ′ = {(v, l)}, then Q = (L∪R)∪G3, which implies that Q ∈ Q. Case 4: If V ′ = {v}

and E ′ = {(v, r)}, then Q = (L ∪ R) ∪ G4, which implies that Q ∈ Q. Case 5: If

V ′ = {v} and E ′ = {(v, l), (v, r)}, then Q = (L∪R)∪G5, which implies that Q ∈ Q.

Hence, Lemma 5.3 is proved.

Based on Procedure 5.1, we can construct S(v) for v = 1, 2, ..., n, iteratively, to

enumerate all the tuples in S(n) × S(n) so as to find an optimal solution to the min-

max 2-TSPT, which, however, has a running time exponential to n. Therefore, we
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develop a dynamic programming as follows in Algorithm 5.2, to construct only a

subset H(v) ⊆ S(v) × S(v), for v = 1, 2, ..., n, iteratively, such that the size of H(v)

for each v is bounded by a polynomial in U , where U is an upper bound on the

optimal objective value to the min-max 2-TSPT. We will later show that this dynamic

programming returns an optimal solution to any given instance of the min-max 2-

TSPT.

During each iteration of Step 1 for v = 1, 2, ..., n, Algorithm 5.2 first constructs a

subset H(v)
1 of S(v)×S(v) in Step 1.a as follows. Initially, H(v)

1 is set to be empty. If v

is a leaf, then we have T (v) = ({v}, ∅), which has only two subtrees, T (v) and Φ. Thus,

we set H(v)
1 = {Φ, T (v)} × {Φ, T (v)}. Otherwise, v has a left child and a right child,

denoted by l and r respectively. Since max{l, r} ≤ v − 1, both H(l) and H(r) have

been constructed. Thus, for each tuple (L1, L2) ∈ H(l) and each tuple (R1, R2) ∈ H(r),

we apply Procedure 5.1 to join Lj and Rj to obtain a set Qj of subtrees of T (v) in

Step 1.a.i for j = 1, 2, and then we add all the tuples in Q1×Q2 to H(v)
1 in Step 1.a.ii.

Next, for each tuple (Q1, Q2) ∈ H(v)
1 obtained in Step 1.a, Algorithm 5.2 examines

in Step 1.b whether or not v ∈ V (Q1)∪V (Q2), and whether or not v ∈ V (Q1)∩V (Q2)

if v = n. Only the tuples that satisfy these conditions are kept to form a set H(v)
2 in

Step 1.b.

Then, we construct H(v) from H(v)
2 in Step 1.c and Step 1.d as follows. For each

w1 ∈ {0, 1..., U}, and for each αj, βj ∈ {0, 1} for j = 1, 2, we use wmin
2 (w1, α1, α2, β1, β2)

to denote the smallest value of w2 ∈ {0, 1, ..., U}, such that there exists at least

one tuple (Q1, Q2) ∈ H(v)
2 with the state of Qj equal to (wj, αj, βj) for j = 1, 2.

If there exists at least one tuple (Q′
1, Q

′
2) such that the state of Q′

1 is equal to

(w1, α1, β1) and the state of Q′
2 is equal to (wmin

2 (w1, α1, α2, β1, β2), α2, β2), we use

Qmin(w1, α1, α2, β1, β2) to denote the set that consists any one of such tuples; other-

wise, let Qmin(w1, α1, α2, β1, β2) be an empty set. Then, to construct H(v), we only

need to add all tuples in Qmin(w1, α1, α2, β1, β2) to H(v), for each w1 ∈ {0, 1..., U},
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and for each αj, βj ∈ {0, 1} for j = 1, 2.

Finally, among all the tuples (Q1, Q2) stored in H(n), Algorithm 5.2 identifies and

returns a tuple (Q∗
1, Q

∗
2) in Step 2 that minimizes max{w(Q1), w(Q2)}.

Algorithm 5.2.

Input: A tree T = (V,E), an upper bound U on the optimal objective value, and an

edge weight function w.

Output: A tuple (Q∗
1, Q

∗
2) where Q∗

j is a subtree of T for j = 1, 2.

1. For v = 1, 2, ..., n, do the following steps:

(a) Set H(v)
1 to be empty. If v is a leaf, then set H(v)

1 = {Φ, T (v)} × {Φ, T (v)}.

Otherwise, v has a left child and a right child, denoted by l and r respec-

tively. Then, for each tuple (L1, L2) ∈ H(l) and each tuple (R1, R2) ∈ H(r),

do the following steps:

i. For j = 1, 2, apply Procedure 5.1 to join Lj and Rj to obtain a set Qj

of subtrees of T (v).

ii. Add all the tuples in Q1 ×Q2 to H(v)
1 .

(b) Set H(v)
2 to be empty. For each tuple (Q1, Q2) ∈ H(v)

1 , add (Q1, Q2) to H(v)
2

if both the following two conditions are satisfied:

(i) v ∈ V (Q1) ∪ V (Q2), and

(ii) if v = n, then v ∈ V (Q1) ∩ V (Q2).

(c) For each w1 ∈ {0, 1..., U}, and for each αj, βj ∈ {0, 1} for j = 1, 2, set

wmin
2 (w1, α1, α2, β1, β2) = +∞ and Qmin(w1, α1, α2, β1, β2) = ∅. For each

(Q1, Q2) in H(v)
2 , do the following steps:

i. Let w(Q1) = w1, α
(v)(Q1) = α1, α

(v)(Q2) = α2, β(Q1) = β1, β(Q2) =

β2.

ii. If w(Q2) < wmin
2 (w1, α1, α2, β1, β2), set w

min
2 (w1, α1, α2, β1, β2) = w(Q2),

and set Qmin(w1, α1, α2, β1, β2) = {(Q1, Q2)}.
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(d) SetH(v) to be empty. For each w1 ∈ {0, 1..., U}, and for each αj, βj ∈ {0, 1}

for j = 1, 2, set H(v) = H(v)
∪

Qmin(w1, α1, α2, β1, β2).

2. Among all the tuples (Q1, Q2) inH(n), return (Q∗
1, Q

∗
2) such that max{w(Q1), w(Q2)}

is minimized.

We use Example 5.3 to illustrate Algorithm 5.2.

Example 5.3. Consider the instance [T,w, 2] shown in Figure 5.3, where vertices in

T are labeled in a non-increasing order on their depths in T .

Figure 5.3: An instance [T,w, 2] to illustrate Algorithm 5.2.
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Let us apply Algorithm 5.2 on this instance, and explain the construction of H(v)

for v = 6 as follows, this being based on the construction of H(3) and H(4). Consider

the construction of H(3) in the iterations of Step 1 of Algorithm 5.2 for v = 3. It can

be seen that Step 1.a adds {Φ, T (3)}×{Φ, T (3)} to H(3)
1 . Then, as shown in Table 5.1,

Step 1.b adds only (Φ, T (3)), (T (3),Φ), and (T (3), T (3)) to H(3)
2 , because vertex 3 is

not in V (Φ)∪ V (Φ). Moreover, by definition, we know that the state of Φ is (0, 0, 1),

and the state of T (3) is (0, 1, 0). Thus, each subtree Q of T (3) satisfies w(Q) = 0 and

(α(3)(Q), β(Q)) ∈ {(1, 0), (0, 1)}. Therefore, Step 1.c needs to consider only w1 = 0

and (αj, βj) ∈ {(1, 0), (0, 1)} for j = 1, 2, and Step 1.d constructs H(3) from H(3)
2 ,

so that H(3) = {(Φ, T (3)), (T (3),Φ), (T (3), T (3))}, as shown in Table 5.2. For example,

when w1 = 0, (α1, β1) = (0, 1) and (α2, β2) = (1, 0), there exists one and only one

tuple (Φ, T (3)) ∈ H(3)
2 such that the state of Φ is equal to (w1, α1, β1), and that

(α(3)(T (3)), β(T (3))) = (α2, β2). According to the definition of wmin
2 (0, 0, 1, 1, 0), we
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obtain that wmin
2 (0, 0, 1, 1, 0) = 0, and Qmin(1, 0, 1, 1, 0) = {(Φ, T (3))}. Similarly, for

v ∈ {1, 2, 4}, we can obtain from Step 1 that H(v) = {(Φ, T (v)), (T (v),Φ), (T (v), T (v))}.

Table 5.1: Illustration of construction of H(3)
2 for the instance in Figure 5.3.

H(3)
1 H(3)

2

(T (3),Φ) 3 ∈ V (T (3))
∪

V (Φ) (T (3),Φ)

(Φ, T (3)) 3 ∈ V (Φ)
∪
V (T (3)) (Φ, T (3))

(T (3), T (3)) 3 ∈ V (T (3))
∪

V (T (3)) (T (3), T (3))

(Φ,Φ) 3 ̸∈ V (Φ)
∪
V (Φ)

Table 5.2: Illustration of construction of H(3) for the instance in Figure 5.3.

w1 α1 β1 α2 β2 H(3)
2 wmin

2 (w1, α1, α2, β1, β2) H(3)

0 1 0 0 1 (T (3),Φ) 0 (T (3),Φ)

0 1 0 1 0 (T (3), T (3)) 0 (T (3), T (3))

0 0 1 1 0 (Φ, T (3)) 0 (Φ, T (3))

0 0 1 0 1 +∞ ∅

Next, consider the iterations in Step 1 for v = 6, which has vertices 4 and 3 as the

left and the right children, respectively. Let Hi for i = 1, 2, ..., 7 denote all the seven

subtrees of T (6), these being shown in solid lines in Figures 5.4(a)-(g).

Figure 5.4: Illustration of each subtree Hi of T
(6) for i = 1, 2, . . . , 7.
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For each tuple (L1, L2) ∈ H(4), and for each tuple (R1, R2) ∈ H(3), Step 1.a.i of

Algorithm 5.2 applies Procedure 5.1 to join Lj and Rj for j = 1, 2 to obtain a set

Qj of subtrees of T (6). We take (L1, L2) = (Φ, T (4)) and (R1, R2) = (Φ, T (3)) as an
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example to illustrate this step as follows. According to Procedure 5.1, Q1 contains H4

and H7, which is returned by joining Φ and Φ, and Q2 contains H1, which is returned

by joining T (3) and T (4). Hence, Step 1.a.i of Algorithm 5.2 adds {H4, H7} × {H1}

to H(6)
1 . Furthermore, since (H4, H1) and (H7, H1) both satisfy conditions (i) and (ii)

in Step 1.b, they are further added to H(6)
2 . Similarly, by enumerating each tuple

(L1, L2) ∈ H(4) and each tuple (R1, R2) ∈ H(3), we can obtain all the tuples in H(6)
1

and H(6)
2 , as shown in Table 5.3.

Table 5.3: Construction of H(6)
1 and H(6)

2 for the instance in Figure 5.3.

(L1, L2):(R1, R2) H(6)
1 H(6)

2

(T (4),Φ):(T (3),Φ) (H1, H4),(H1, H7) (H1, H4),(H1, H7)

(Φ, T (4)):(T (3),Φ)
(H3, H2),(H3, H5),
(H6, H2),(H6, H5)

(H3, H5),(H6, H2),
(H6, H5)

(T (4), T (4)):(T (3),Φ) (H1, H2),(H1, H5) (H1, H2),(H1, H5)

(T (4),Φ):(Φ, T (3))
(H2, H6),(H2, H3),
(H5, H3),(H5, H6)

(H2, H6),(H5, H3),
(H5, H6)

(Φ, T (4)):(Φ, T (3)) (H4, H1),(H7, H1) (H4, H1),(H7, H1)

(T (4), T (4)):(Φ, T (3)) (H2, H1),(H5, H1) (H2, H1),(H5, H1)

(T (4),Φ):(T (3), T (3)) (H1, H3),(H1, H6) (H1, H3),(H1, H6)

(Φ, T (4)):(T (3), T (3)) (H3, H1),(H6, H1) (H3, H1),(H6, H1)

(T (4), T (4)):(T (3), T (3)) (H1, H1) (H1, H1)

According to Lemma 5.2, the state of Hi, which is denoted by Si, for i = 1, 2, . . . , 7

can be determined as follows:

S1 = (1, 1, 0), S2 = (0, 0, 0), S3 = (0, 0, 0),

S4 = (0, 1, 0), S5 = (1, 1, 0), S6 = (0, 1, 0), S7 = (0, 0, 1).

Thus, each subtree Q of T (6) satisfies that w(Q) ∈ {0, 1}, and that if w(Q) = 1,

then (α(6)(Q), β(Q)) = (1, 0), and otherwise, (α(6)(Q), β(Q)) ∈ {(0, 1), (1, 0), (0, 0)}.

Therefore, in Step 1.c of Algorithm 5.2, if w1 = 1, we need to consider only (α1, β1) =
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(1, 0) and (α2, β2) ∈ {(0, 1), (1, 0), (0, 0)}, and otherwise, w1 = 0, and we need to

consider only (αi, βi) ∈ {(0, 1), (1, 0), (0, 0)} for i = 1, 2. Accordingly, we can obtain

H(6) from H(6)
2 as shown in Table 5.4.

Table 5.4: Illustration of construction of H(6) for the instance in Figure 5.3.

w1 α1 β1 α2 β2 H(6)
2 wmin

2 (w1, α1, α2, β1, β2) H(6)

1 1 0 0 1 (H1, H7) 0 (H1, H7)

1 1 0 1 0
(H1, H1),(H1, H4),(H1, H5),
(H1, H6),(H5, H1),(H5, H6)

0 (H1, H4)

1 1 0 0 0 (H1, H3),(H1, H2),(H5, H3) 0 (H1, H3)

0 0 1 0 1 +∞ ∅
0 0 1 1 0 (H7, H1) 1 (H7, H1)

0 0 1 0 0 +∞ ∅
0 1 0 0 1 +∞ ∅
0 1 0 1 0 (H4, H1),(H6, H5),(H6, H1) 1 (H6, H1)

0 1 0 0 0 (H6, H2) 0 (H6, H2)

0 0 0 0 1 +∞ ∅

0 0 0 1 0
(H2, H6),(H2, H1),(H3, H5)
(H3, H1)

0 (H2, H6)

0 0 0 0 0 +∞ ∅

For example, when w1 = 1, (α1, β1) = (1, 0) and (α2, β2) = (0, 0), there exist three

tuples (Q1, Q2) ∈ H(6)
2 such that the state of Q1 is (w1, α1, β1) and (α(6)(Q2), β(Q2)) =

(α2, β2). These three tuples in H(6)
2 can be seen to be (H1, H3), (H1, H2) and (H5, H3).

Since w(H3) = 0 and w(H2) = 0, then wmin
2 = 0 for the case w1 = 1, (α1, β1) = (1, 0)

and (α2, β2) = (0, 0), and Qmin(1, 1, 0, 0, 0) = {(H1, H3)}.

To show the correctness of Algorithm 5.2, we first establish Lemma 5.4, which

implies that each tuple (Q1, Q2) ∈ H(n), obtained in Step 1 of Algorithm 5.2, covers

all the vertices in T .

Lemma 5.4. For each v = 1, 2, ..., n, and for each tuple (Q1, Q2) ∈ H(v) obtained in

Step 1 of Algorithm 5.2, it satisfies that V (T (v)) = V (Q1) ∪ V (Q2).
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Proof. We prove Lemma 5.4 by induction. For each leaf v of T , it can be verified

from Step 1 of Algorithm 5.2 that V (T (v)) = V (Q1)∪V (Q2) for each (Q1, Q2) ∈ H(v).

Consider any vertex v ∈ V that is not a leaf. Let l and r denote the left and

right children of v, respectively. Suppose that V (T (u)) = V (Q′
1) ∪ V (Q′

2) holds for

each (Q′
1, Q

′
2) ∈ H(u), for 1 ≤ u ≤ v − 1. Consider each (Q1, Q2) ∈ H(v). For

j = 1, 2, let Lj and Rj denote the subtrees of Qj induced by V (T (l)) and V (T (r))

respectively. Due to Step 1.a.i and Lemma 5.3, we have V (Q1) ∪ V (Q2) ⊆ V (T (v)),

(L1, L2) ∈ H(l), and (R1, R2) ∈ H(r). Since max{l, r} ≤ v − 1, we obtain that

V (T (l)) = V (L1)∪V (L2) and V (T (r)) = V (R1)∪V (R2), which implies that V (T (v))\

{v} ⊆ V (Q1) ∪ V (Q2). Moreover, by Step 1.b, we know v ∈ V (Q1) ∪ V (Q2). Thus,

we obtain V (T (v)) ⊆ V (Q1)∪V (Q2), which, together with V (Q1)∪V (Q2) ⊆ V (T (v)),

implies that V (T (v)) = V (Q1) ∪ V (Q2). Lemma 5.4 is proved.

Consider the optimal solution (T̃1, T̃2) to any instance of the min-max 2-TSPT.

We can then establish Lemma 5.5 to further prove the correctness of Algorithm 5.2.

Lemma 5.5. For each v = 1, 2, ...n, there exists a tuple (Q1, Q2) ∈ H(v), obtained in

Step 1 of Algorithm 5.2, such that the state of Q1 is the same as the state of T̃
(v)
1 ,

and that w(Q2) ≤ w(T̃
(v)
2 ), α(v)(Q2) = α(v)(T̃

(v)
2 ), and β(Q2) = β(T̃

(v)
2 ), where T̃

(v)
i

denotes the subtree of T̃i induced by V (T (v)), for i = 1, 2.

Proof. We prove Lemma 5.5 by induction. For each leaf v of T , we know that T̃
(v)
j ∈

{Φ, T (v)} for j = 1, 2, which implies that (T̃
(v)
1 , T̃

(v)
2 ) ∈ H(v)

1 , according to Step 1.a of

Algorithm 5.2. By v ∈ V (T̃1) ∪ V (T̃2) and n ∈ V (T̃1) ∩ V (T̃2), according to Step 1.b

of Algorithm 5.2, we obtain (T̃
(v)
1 , T̃

(v)
2 ) ∈ H(v)

2 . Thus, from Step 1.c and Step 1.d of

Algorithm 5.2, we obtain that Lemma 5.5 holds for the leaf v.

Next, consider any v ∈ V that is not a leaf. Let l and r denote the left and

right children of T (v), respectively. Assume that Lemma 5.5 holds for each u where

1 ≤ u ≤ v − 1. We are going to show as follows that Lemma 5.5 holds for v.
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Since max{l, r} ≤ v − 1, we know that there exist Lj ∈ H(l) and Rj ∈ H(r) for

j = 1, 2, such that the states of L1 and R1 are equal to the states of T̃
(l)
1 and T̃

(r)
1

respectively, that w(L2) ≤ w(T̃
(l)
2 ), α(l)(L2) = α(l)(T̃

(l)
2 ), β(L2) = β(T̃

(l)
2 ), and that

w(R2) ≤ w(T̃
(r)
2 ), α(r)(R2) = α(l)(T̃

(r)
2 ), and β(R2) = β(T̃

(r)
2 ). Let Qj denote the

set returned by Procedure 5.1 in Step 1.a.i of Algorithm 5.2 to join Lj and Rj, for

j = 1, 2.

For j = 1, 2, since T̃
(v)
j is a subtree of T (v), and since the subtrees of T̃

(v)
j induced by

V (T (l)) and V (T (r)) are equal to T̃
(l)
j and T̃

(r)
j respectively, from Lemma 5.3, it can be

seen that by applying Procedure 5.1 to join T̃
(l)
j and T̃

(r)
j , we can obtain a set Q̃j, such

that T̃
(v)
j ∈ Q̃j, and that T̃

(v)
j = (T̃

(l)
j ∪ T̃

(r)
j )∪Gt for some t with 1 ≤ t ≤ 5, where Gt

is the same as that defined in Step 1 of Procedure 5.1. Let Q′
j = (Lj ∪Rj)∪Gt. Since

α(l)(Lj) = α(l)(T̃
(l)
j ), β(Lj) = β(T̃

(l)
j ), α(r)(Rj) = α(r)(T̃

(r)
j ), and β(Rj) = β(T̃

(r)
j ),

from Lemma 5.1 and (T̃
(l)
j ∪ T̃

(r)
j ) ∪ Gt ∈ Q̃j we have Q′

j ∈ Qj. Hence, due to

Step 1.a.i and Step 1.a.ii of Algorithm 5.2, we obtain (Q′
1, Q

′
2) ∈ H(v)

1 .

Since the states of L1 and R1 are equal to the states of T̃
(l)
1 and T̃

(r)
1 respectively,

due to Lemma 5.2, we have α(v)(Q′
1) = α(v)(T̃

(v)
1 ), β(Q′

1) = β(T̃
(v)
1 ), and w(Q′

1) =

w(T̃
(v)
1 ). Moreover, since w(L2) ≤ w(T̃

(l)
2 ), α(l)(L2) = α(l)(T̃

(l)
2 ), β(L2) = β(T̃

(l)
2 ),

w(R2) ≤ w(T̃
(r)
2 ), α(r)(R2) = α(l)(T̃

(r)
2 ), and β(R2) = β(T̃

(r)
2 ), from Lemma 5.2, we

obtain α(v)(Q′
2) = α(v)(T̃

(v)
2 ), β(Q′

2) = β(T̃
(v)
2 ), and w(Q′

2) ≤ w(T̃
(v)
2 ). Thus, since

T̃
(v)
1 and T̃

(v)
2 satisfy the two conditions in Step 1.b of Algorithm 5.2, it is easy to see

that Q′
1 and Q′

2 also satisfy the two conditions, which implies that (Q′
1, Q

′
2) ∈ H(v)

2 .

Hence, since w(Q′
1) = w(T̃

(v)
1 ) and w(Q′

2) ≤ w(T̃
(v)
2 ), noticing that w(Q′

1) ≤ U and

w(Q′
2) ≤ U , from Step 1.c and Step 1.d of Algorithm 5.2, we obtain that Lemma 5.5

holds for v, which completes the proof.

From Lemma 5.4 and Lemma 5.5, we can establish Theorem 5.2, which shows the

correctness and time complexity of Algorithm 5.2.
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Theorem 5.2. Algorithm 5.2 returns an optimal solution to any given instance of

the min-max 2-TSPT in O(nU2) time.

Proof. Due to Step 1 of Algorithm 5.2, |H(v)| is O(U) for all the leaves. Thus, in

Step 1.a of Algorithm 5.2, if v is a not a leaf, it takes at most O(U2) time to construct

H(v)
1 from H(l) and H(r). To construct H(v)

2 from H(v)
1 , we only need to enumerate

each tuple in H(v)
1 just once. Therefore, it takes O(U2) time to construct H(v)

2 from

H(v)
1 . According to Step 1.c, it needs to enumerate each tuple in H(v)

2 exactly once.

Therefore, it takes O(U2) time to constructH(v) fromH(v)
2 . In summary, it can be seen

that the running time of Step 1 of Algorithm 5.2 is at most O(U2) for v = 1, 2, . . . , n.

Thus, the running time of Algorithm 5.2 is O(nU2).

Consider (Q∗
1, Q

∗
2) returned by Algorithm 5.2, which implies that (Q∗

1, Q
∗
2) ∈ H(n).

From Step 1.b of Algorithm 5.2, we know that bothQ∗
1 andQ∗

2 contain the root n of the

tree T . By Lemma 5.4, we know that V = V (Q∗
1)∪V (Q∗

2), which implies that (Q∗
1, Q

∗
2)

is a feasible solution. Moreover, consider the optimal solution (T̃1, T̃2). By Lemma 5.5,

we know that there exists a tuple (Q1, Q2) ∈ H(n), such that w(Q1) = w(T̃1) and

w(Q2) ≤ w(T̃2), which implies that max{w(Q1), w(Q2)} ≤ max{w(T̃1), w(T̃2)}. Thus,

due to Step 2 of Algorithm 5.2, we have max{w(Q∗
1), w(Q

∗
2)} ≤ max{w(Q1), w(Q2)},

which implies that max{w(Q∗
1), w(Q

∗
2)} ≤ max{w(T̃1), w(T̃2)}. Since (T̃1, T̃2) is an

optimal solution, we obtain that max{w(Q∗
1), w(Q

∗
2)} = max{w(T̃1), w(T̃2)}. Hence,

(Q∗
1, Q

∗
2) is also an optimal solution.

Finally, we can establish Lemma 5.6 as follows, which implies that w(T )/2 ≤

OPT ≤ w(T ), where OPT is the objective value to an optimal solution to [T,w, 2].

Thus, we can choose U = w(T ) for Algorithm 5.2, so that the time complexity of

Algorithm 5.2 is O(nW 2), which is a pseudo-polynomial time.

Lemma 5.6. For any instance [T,w, 2] of the min-max 2-TSPT, the optimal objective

value OPT to [T,w, 2] satisfies w(T )/2 ≤ OPT ≤ w(T ).
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Proof. Consider the optimal solution (T̃1, T̃2). Since V (T ) ⊆ V (T̃1) ∪ V (T̃2) and

n ∈ V (T̃1) ∩ V (T̃2), we obtain w(T ) ≤ w(T̃1) + w(T̃2), which implies that w(T )/2 ≤

max{w(T̃1), w(T̃2)} = OPT. Moreover, since (T,Φ) is a feasible solution, we obtain

OPT ≤ w(T ). Thus, Lemma 5.6 is proved.

5.3.3 An FPTAS for the min-max 2-TSPT

Based on Algorithm 5.2, which is a pseudo-polynomial time exact algorithm for

the min-max 2-TSPT, we develop a fully polynomial time approximation scheme

(FPTAS) as follows in Algorithm 5.3. For any given ϵ > 0 and any instance [T,w, 2],

Algorithm 5.3 first scales the edge weight w(e) for each e ∈ E(T ) to w′(e) = ⌊w(e)/δ⌋

in Step 1, where δ = ϵw(T )/(2|E(T )|), so as to create a new instance [T,w′, 2]. It can

be seen that w′(T ) ≤ 2|E(T )|/ϵ ≤ 2(n−1)/ϵ. Thus, since {T,Φ} is a feasible solution

to [T,w′, 2], the objective value of an optimal solution to the instance [T,w′, 2] is less

than or equal to 2(n−1)/ϵ. Algorithm 5.3 then applies Algorithm 5.2 with U = w′(T )

to [T,w′, 2] in Step 2, to find an optimal solution (Q∗
1, Q

∗
2) to [T,w′, 2], which is also

a feasible solution to [T,w, 2], and is returned in Step 3.

Algorithm 5.3.

Input: Any constant ϵ > 0, and an instance [T,w, 2] of the min-max 2-TSPT.

Output: A feasible solution (Q∗
1, Q

∗
2).

1. let δ = ϵw(T )/(2|E(T )|). For each e ∈ E(T ), let w′(e) = ⌊w(e)/δ⌋ to construct

a new instance [T,w′, 2].

2. Apply Algorithm 5.2 to obtain an optimal solution, denoted by (Q∗
1, Q

∗
2), to the

instance [T,w′, 2].

3. Return (Q∗
1, Q

∗
2).

We can establish Theorem 5.3 as follows, which implies that Algorithm 5.3 is an

FPTAS for the min-max 2-TSPT.
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Theorem 5.3. Algorithm 5.3 is an FPTAS for the min-max 2-TSPT.

Proof. Consider the optimal solution (T̃1, T̃2) to the problem instance [T,w, 2], which

is also a feasible solution to the problem instance [T,w′, 2]. Since (Q∗
1, Q

∗
2) returned

by Algorithm 5.3 is an optimal solution to [T,w′, 2], we obtain that (Q∗
1, Q

∗
2) is also a

feasible solution to [T,w, 2], and that max{w′(Q∗
1), w

′(Q∗
2)} ≤ max{w′(T̃1), w

′(T̃2)}.

Moreover, for j = 1, 2, we have

w(Q∗
j) ≤

∑
e∈E(Q∗

j )

(w′(e) + 1)δ ≤ δw′(Q∗
j) + δ|E(Q∗

j)|,

which implies that

max{w(Q∗
1), w(Q

∗
2)} ≤ δmax{w′(Q∗

1), w
′(Q∗

2)}+ δ|E(T )|

≤ δmax{w′(T̃1), w
′(T̃2)}+ ϵw(T )/2.

Thus, since w′(T̃j) ≤ w(T̃j)/δ for j = 1, 2, we obtain that δmax{w′(T̃1), w
′(T̃2)} ≤

OPT. By Lemma 5.6, w(T )/2 ≤ OPT. Thus, we obtain that max{w(Q∗
1), w(Q

∗
2)} ≤

(1 + ϵ)OPT.

Moreover, since T is a tree, we have |E(T )| ≤ n− 1. Thus,

w′(T ) =
∑

e∈E(T )

w′(e) ≤
∑

e∈E(T )

w(e)/δ ≤ w(T )/δ = 2|E(T )|/ϵ ≤ 2(n− 1)/ϵ,

which, together with Theorem 5.2, implies that the running time of Algorithm 5.3 is

in O(n3/ϵ2). Hence, Theorem 5.3 is proved.

5.4 Extensions

In this section, we first generalize the dynamic programming approach to develop

a pseudo-polynomial time exact algorithm and an FPTAS for the min-max k-TSPT in
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Section 5.4.1, for any given constant k ≥ 2. We then further generalize the algorithms

for two other variants of the min-max k-TSPT in Section 5.4.2 and Section 5.4.3,

where multiple depots and demand points are taken into consideration, respectively.

We then investigate a min-sum k-TSPT, with a min-sum objective to minimize the

total weight of routes of the vehicles. For any given constant k ≥ 2, by generalizing

the dynamic programming approach derived for the min-max k-TSPT, we obtain the

first polynomial time exact algorithm for the min-sum k-TSPT with multiple depots

in Section 5.4.4.

5.4.1 Min-max k-TSPT

The min-max k-TSPT is an extension of the min-max 2-TSPT by taking into

consideration k vehicles with k a given constant independent of the input size greater

than one, which aims to determine a k-subtree tuple (Q1, Q2, ..., Qk) of T such that

the depot is contained in every subtree of (Q1, Q2, ..., Qk) and the union of V (Qj)

for 1 ≤ j ≤ k covers V , with the the maximum total edge weight of the k subtrees

minimized. We use [T,w, k] to denote an instance of the k-TSPT, and adopt the

same definition as Definition 5.1 to define standard instances. Thus, Algorithm 5.1

can transform any instance [T,w, k] of the min-max k-TSPT to a standard instance

[T ′, w′, k]. By following arguments similarly to those in the proof of Theorem 5.1, we

can obtain that the resulting standard instance [T ′, w′, k] is equivalent to [T,w, k].

Thus, without loss of generality, we assume that any given instance [T,w, k] of the

min-max k-TSPT is standard, and that vertices in V = {1, 2, ..., n} are labeled in a

non-increasing order on their depths in T , so that n is the root and the depot of T .

By extending the dynamic programming for the min-max 2-TSPT in Algorithm 5.2,

we can obtain a dynamic programming for the k-TSPT, as shown in Algorithm 5.4.

Algorithm 5.4 constructs H(v) for v = 1, 2, ..., n, iteratively, where H(v) here is a set

of k-subtree tuples (Q1, Q2, ..., Qk) with Qj being a subtree of T (v) for 1 ≤ j ≤ k. Let
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w̃ = (w1, w2, . . . , wk−1), α̃ = (α1, α2, . . . , αk), and β̃ = (β1, β2, . . . , βk). Similar to the

min-max 2-TSPT, for each w̃ ∈ {0, 1..., U}k−1, each α̃ ∈ {0, 1}k, and each β̃ ∈ {0, 1}k,

we use wmin
k (w̃, α̃, β̃) to denote the smallest value of wk ∈ {0, 1, ..., U}, such that

there exists at least one tuple (Q1, Q2, . . . , Qk) ∈ H(v)
2 with the state of Qj equal to

(wj, αj, βj) for j = 1, 2, . . . , k. If there exists at least one tuple (Q′
1, Q

′
2, . . . , Q

′
k) such

that the state of Q′
j is equal to (wj, αj, βj) for j = 1, 2, . . . , k− 1, and the state of Q′

k

is equal to (wmin
k (w̃, α̃, β̃), αk, βk), we use Qmin(w̃, α̃, β̃) to denote the set that consists

any one of such tuples; otherwise, let Qmin(w̃, α̃, β̃) to be an empty set.

Algorithm 5.4.

Input: A tree T = (V,E), an upper bound U on the optimal objective value, and an

integer k ≥ 2.

Output: A k-subtree tuple (Q∗
1, Q

∗
2, .., Q

∗
k) where Q

∗
j is a subtree of T for j = 1, 2, ..., k.

1. For v = 1, 2, ..., n, do the following steps:

(a) Set H(v)
1 to be empty. If v is a leaf, then let H(v)

1 be the set of all tuples

(Q1, Q2, ..., Qk) with Qj ∈ {Φ, T (v)} for 1 ≤ j ≤ k. Otherwise, v has a left

child and a right child, denoted by l and r respectively. Then, for each

tuple (L1, L2, ..., Lk) ∈ H(l) and each tuple (R1, R2, ..., Rk) ∈ H(r), do the

following steps:

i. For 1 ≤ j ≤ k, apply Procedure 5.1 to join Lj and Rj to obtain a set

Qj of subtrees of T
(v).

ii. Add all the tuples in Q1 ×Q2 × ...×Qk to H(v)
1 .

(b) SetH(v)
2 to be empty. For each tuple (Q1, Q2, ..., Qk) ∈ H(v)

1 , add (Q1, Q2..., Qk)

to H(v)
2 if both the following two conditions are satisfied:

(i) v ∈
∪k

j=1 V (Qj), and

(ii) if v = n, then v ∈
∩k

j=1 V (Qj).
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(c) For each w̃ ∈ {0, 1..., U}k−1, each α̃ ∈ {0, 1}k, and each β̃ ∈ {0, 1}k, set

wmin
k (w̃, α̃, β̃) = +∞ and Qmin(w̃, α̃, β̃) = ∅. For each (Q1, Q2, . . . , Qk) in

H(v)
2 , do the following steps:

i. Let (w(Q1), w(Q2), . . . , w(Qk−1)) = w̃, (α(v)(Q1), α
(v)(Q2), . . . , α

(v)(Qk)) =

α̃, (β(Q1), β(Q2), . . . , β(Qk)) = β̃.

ii. If w(Qk) < wmin
k (w̃, α̃, β̃), set wmin

2 (w̃, α̃, β̃) = w(Qk), and setQmin(w̃, α̃, β̃) =

{(Q1, Q2, . . . , Qk)}.

(d) Set H(v) to be empty. For each w̃ ∈ {0, 1..., U}k−1, each α̃ ∈ {0, 1}k, and

each β̃ ∈ {0, 1}k, let H(v) = H(v)
∪
Qmin(w̃, α̃, β̃).

2. Identify the tuple (Q∗
1, Q

∗
2, ..., Q

∗
k) among all the tuples (Q1, Q2, ..., Qk) in H(n),

such that max{w(Q1), w(Q2), ..., w(Qk)} is minimized. Return (Q∗
1, Q

∗
2, ..., Q

∗
k).

Similar to the proofs of Lemma 5.4, Lemma 5.5, and Theorem 5.2, it is able to

show that Algorithm 5.4 returns an optimal solution to any given instance of the

min-max k-TSPT in O(nU2(k−1)) time. Moreover, similar to the proof of Lemma 5.6,

it is able to show that w(T )/k ≤ OPT ≤ w(T ), where OPT is the optimal objective

value to [T,w, k]. Thus, we can choose U = w(T ) for Algorithm 5.4, so that the

running time of Algorithm 5.4 is O(nW 2(k−1)), which is pseudo-polynomial when k is

a constant independent of the input size.

Based on Algorithm 5.3, for any given ϵ > 0, we can then develop a (1 + ϵ)-

approximation scheme for the min-max k-TSPT. Given any instance [T,w, k] of the

min-max k-TSPT and any ϵ > 0, we first scale w(e) to w′(e) for each e ∈ E(T )

by following Step 1 of Algorithm 5.3, so as to obtain a scaled instance [T,w′, k] of

the min-max k-TSPT. We then apply Algorithm 5.4, instead of Algorithm 5.2, on

[T,w′, k] with U = w′(T ) to obtain an optimal solution to the scaled instance [T,w′, k],

which is denoted by (Q∗
1, Q

∗
2..., Q

∗
k). Similar to the proof of Theorem 5.3, it is able to
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show that max{w(Q∗
1), w(Q

∗
2), ..., w(Q

∗
k)} ≤ (1+ϵ)OPT, which implies that the above

algorithm is an (1 + ϵ)-approximation scheme for the min-max k-TSPT. Moreover,

since the approximation scheme has a running time in O(n2k−1/ϵ2k−2), it is an FPTAS

if k is a given constant independent of the input size.

Finally, we show as follows in Theorem 5.4 that if k is part of the input, then

the min-max k-TSPT is NP-hard in the strong sense, which implies that it has no

FPTAS unless NP = P .

Theorem 5.4. If k is part of the input, then the min-max k-TSPT is NP-hard in the

strong sense.

Proof. Given a set J of n jobs where each job ji has a processing time li for i =

1, 2, . . . , n and a set M of k processors, the multiprocessor scheduling problem is

known to minimize the latest completion time to process all the jobs in J on the k

processors, such that there is no overlap between any two consecutive jobs on the

same processor. According to Garey and Johnson [35], the multiprocessor scheduling

problem is NP-complete in the strong sense.

Thus, by a reduction from the multiprocessor scheduling problem, we prove as

follows that the min-max k-TSPT with k belonging to the input is NP-hard in the

strong sense. Given any instance of the multiprocessor scheduling problem, consider

a star-shaped tree T with n + 1 vertices denoted by V = {1, 2, . . . , n + 1}, where

vertex n + 1 is the common end point of all edges, and is also the depot, and the

edge weight w(i, n+ 1) equals li for each vertex i = 1, 2, . . . , n. A fleet of k traveling

salesmen are initially located at the common depot n+1 to service all the customers

in {1, 2, . . . , n}, with the objective to minimize the maximum total edge weight of

tours of all the k traveling salesmen.

Thus, on one hand, any feasible solution to the above instance of the min-max

k-TSPT can be transformed to a feasible schedule for the given instance of the mul-

tiprocessor scheduling problem, such that the latest completion time of the latter
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schedule is at most half of the maximum total edge weight of tours in the former

solution. On the other hand, any feasible schedule for the given instance of the

multiprocessor scheduling problem can be transformed to a feasible solution to the

above instance of the min-max k-TSPT, such that the maximum total edge weight of

tours in the latter solution is at most twice the latest completion time of the former

schedule. Hence, we obtain that the given instance of the multiprocessor scheduling

problem has a feasible schedule with a latest completion time less than or equal to P ,

if and only if the optimal solution to the above instance of the min-max k-TSPT has

an objective value less than or equal to 2P . This implies that the min-max k-TSPT

is NP-hard in the strong sense, if k is part of the input.

5.4.2 Min-max k-TSPT with multiple depots

The min-max k-TSPT with multiple depots (k-TSPT-MD) is an extension of the

min-max k-TSPT, where a depot candidate set D ⊆ V is given, so that a feasible

solution to the min-max k-TSPT-MD is defined as a k-subtree tuple (Q1, Q2, ..., Qk)

of T with each Qj, for 1 ≤ j ≤ k, containing at least one vertex in D as the depot,

and with all subtrees in (Q1, Q2, ..., Qk) covering V . Therefore, we can use [T,w, k,D]

to denote an instance of the min-max k-TSPT-MD. Similar to the min-max k-TSPT,

by following Definition 5.1, we can assume without loss of generality that any given

instance [T,w, k,D] of the min-max k-TSPT-MD is standard, and that vertices in

V = {1, 2, ..., n} are labeled in a non-increasing order on their depths in T , so that n

is the root of T .

To obtain a pseudo-polynomial time exact algorithm for the min-max k-TSPT-

MD, we first extend the state of any subtree Q of T by including an additional

bit γ(Q), where γ(Q) = 1 if Q includes a vertex in D, and γ(Q) = 0 otherwise.

Consider a vertex v ∈ V , where l and r denote the left and right children of v,

respectively. Consider any subtree L of T (l) and any subtree R of T (r). We can still
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apply Procedure 5.1 to join L and R to obtain a set Q of subtrees of T (v). Moreover,

we can extend Lemma 5.2 as follows, to determine the value of γ(Tt) for each subtree

Tt, defined in Step 2 of Procedure 5.1, for 1 ≤ t ≤ 5, if Tt is returned in Q by

Procedure 5.1.

(i) If T1 is added to Q, then γ(T1) = γ(L) ∨ γ(R);

(ii) If T2 is added to Q, then if v ∈ D, then γ(T2) = 1, and otherwise, γ(T2) = 0;

(iii) If T3 is added to Q, then if v ∈ D or γ(L) = 1, then γ(T3) = 1, and otherwise,

γ(T3) = 0;

(iv) If T4 is added to Q, then if v ∈ D or γ(R) = 1, then γ(T4) = 1, and otherwise,

γ(T4) = 0;

(v) If T5 is added to Q, then if v ∈ D, or γ(L) = 1, or γ(R) = 1, then γ(T5) = 1,

and otherwise, γ(T5) = 0.

We use Example 5.4 to illustrate how to determine the states of subtrees in Q

returned by Procedure 5.1 for this multiple-depot case.

Example 5.4. Let us follow Example 5.2, and apply Procedure 5.1 to join L and R,

where L = Φ is a subtree of T (3) and R = T (6) is a a subtree of T (6). Accordingly, we

obtain Q = {T1, T4}, where for each subtree in Q, the subgraph induced by V (T (3))

equals L, and the subgraph induced by V (T (6)) equals R. Suppose D = {3, 4} is

the depot set. Then, the state of each subtree in Q can be determined as follows,

according to the extension of Lemma 5.2 explained before. First, since L contains no

depot in D, then γ(L) = 0, which implies that the state of L is (0, 0, 1, 0). Similarly,

since R contains no depot in D, then γ(R) = 0, which implies that the state of R

is (0, 1, 0, 0). Moreover, since T1 ∈ Q, then according to the condition (i) above, we

obtain that γ(T1) = γ(L) ∨ γ(R) = 0. Since w(T1) = 0, α(4)(T1) = 0, β(T1) = 0,

and γ(T1) = 0, we obtain that the state of T1 is (0, 0, 0, 0). Since T4 ∈ Q and vertex
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4 ∈ D, according to the condition (iv) above, we obtain that γ(T4) = 1, which implies

that the state of T4 is (0, 1, 0, 1).

Accordingly, we can revise Algorithm 5.4 as follows to obtain a dynamic program-

ming for the min-max k-TSPT-MD. In Step 1.b, we change the condition (ii) to if

v = n, then γ(Qj) = 1 for 1 ≤ j ≤ k, so as to guarantee that each Qj contains at least

one vertex in D as the depot. Let w̃ = (w1, w2, . . . , wk−1), α̃ = (α1, α2, . . . , αk), β̃ =

(β1, β2, . . . , βk), and γ̃ = (γ1, γ2, . . . , γk). Then, Step 1.c can be revised as follows: For

each w̃ ∈ {0, 1..., U}k−1, each α̃ ∈ {0, 1}k, each β̃ ∈ {0, 1}k, and each γ̃ ∈ {0, 1}k set

wmin
k (w̃, α̃, β̃, γ̃) = +∞ andQmin(w̃, α̃, β̃, γ̃) = ∅. For each (Q1, Q2, . . . , Qk) inH(v)

2 , do

the following steps: (i) Let (w(Q1), w(Q2), . . . , w(Qk−1)) = w̃, (α(v)(Q1), α
(v)(Q2), . . . ,

α(v)(Qk)) = α̃, (β(Q1), β(Q2), . . . , β(Qk)) = β̃, (γ(Q1), γ(Q2), . . . , γ(Qk)) = γ̃. (ii) If

w(Qk) < wmin
k (w̃, α̃, β̃, γ̃), then set wmin

2 (w̃, α̃, β̃, γ̃) = w(Qk), and setQmin(w̃, α̃, β̃, γ̃) =

{(Q1, Q2, . . . , Qk)}. Accordingly, Step 1.d can be revised as follows: Set H(v) to be

empty. For each w̃ ∈ {0, 1..., U}k−1, each α̃ ∈ {0, 1}k, each β̃ ∈ {0, 1}k, and each

γ̃ ∈ {0, 1}k, let H(v) = H(v)
∪

Qmin(w̃, α̃, β̃, γ̃).

Similar to the proofs of Lemma 5.4, Lemma 5.5, and Theorem 5.2, we can show

that the revised dynamic programming returns an optimal solution to any given

instance of the min-max k-TSPT-MD in O(nU2(k−1)) time, where U can be chosen

as W , because (T, T, ..., T ) is a feasible solution. Thus, the running time is pseudo-

polynomial if k is a given constant independent of the input size.

Next, we are going to develop an FPTAS for the min-max k-TSPT-MD. Since a

feasible solution to the min-max k-TSPT-MD may not necessarily cover each edge of

the underlying tree T , then w(T )/k ≤ OPT may not be valid here, where OPT is the

optimal objective value to any given instance of the min-max k-TSPT-MD. Thus, to

find a valid lower bound on OPT, we use T (λ) to denote the subgraph of T obtained

by removing all the edges with a weight greater than λ. It can be seen that the

instance [T,w, k,D] has a feasible solution that consists only of edges with weights
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less than or equal to λ, if, and only if, such λ satisfies that T (λ) has less than or

equal to k connected components, and that each connected component of T (λ) has at

least one depot in D. Let us define λ∗ as the minimum value of such λ that T (λ) has

less than or equal to k connected components, and that each connected component

of T (λ) has at least one depot in D. Since λ∗ belongs to {w(e) : e ∈ E}, we can

first sort edge weights in {w(e) : e ∈ E} in a non-decreasing order, and then apply

a binary search to the sorted edge weights in {w(e) : e ∈ E} to find λ∗. Thus, since

|E| ≤ n, it can be seen that the total running time to find λ∗ is O(n log n). Moreover,

by definition of λ∗, any feasible solution to [T,w, k,D] must contain an edge whose

edge weight is at least λ∗. Thus, we can establish Lemma 5.7 as follows for λ∗.

Lemma 5.7. For any instance [T,w, k,D] of the min-max k-TSPT-MD, it satisfies

that λ∗ ≤ OPT ≤ nλ∗, where OPT is the optimal objective value to [T,w, k,D].

Proof. According to the definition of λ∗, any feasible solution to [T,w, k,D] must

contain an edge e satisfying w(e) ≥ λ∗, which implies that λ∗ ≤ OPT. Moreover,

there exists a solution, denoted by {Q1, Q2, . . . , Qk}, such that each edge of Qi for

1 ≤ i ≤ k has a weight less than or equal to λ∗, which implies that max1≤i≤k{w(Qi)} ≤

|E(T (λ∗))|λ∗ ≤ nλ∗. Consider an optimal solution (T̃1, T̃2, . . . , T̃k) to [T,w, k,D].

Since (Q1, Q2, . . . , Qk) is also a feasible solution to [T,w, k,D], we obtain that

max
1≤i≤k

{w(T̃i)} ≤ max
1≤i≤k

{w(Qi)} ≤ nλ∗. (5.1)

This completes the proof.

Similar to Algorithm 5.3, we develop Algorithm 5.5 for the min-max k-TSPT-MD

as follows. Let δ = ϵλ∗/|E(T )|. Algorithm 5.5 scales w to w′ in Step 1 by setting

w′(e) = ⌊w(e)/δ⌋ for each e ∈ E(T ), so as to obtain a scaled instance [T,w′, k,D] of

the min-max k-TSPT-MD. Thus, according to Lemma 5.7, we know that nλ∗/δ is a

valid upper bound of the objective value of an optimal solution to the scaled instance
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[T,w′, k,D]. Thus, Algorithm 5.5 applies the revised dynamic programming with

U = nλ∗/δ to [T,w′, k,D] in Step 2 to obtain an optimal solution (Q∗
1, Q

∗
2, . . . , Q

∗
k) to

[T,w′, k,D], and returns it in Step 3.

Algorithm 5.5.

Input: An instance [T,w, k,D] to the min-max k-TSPT-MD, any ϵ > 0, and λ∗.

Output: A k-subtree tuple {Q∗
1, Q

∗
2, . . . , Q

∗
k} where Q∗

j for j = 1, 2, . . . , k is a subtree

of T .

1. Let δ = ϵλ∗/|E(T )|. For each e ∈ E(T ), let w′(e) = ⌊w(e)/δ⌋. Then, a scaled

instance [T,w′, k,D] can be constructed.

2. Let U = nλ∗/δ. Apply the revised dynamic programming for the min-max k-

TSPT-MD to obtain an optimal solution, denoted by (Q∗
1, Q

∗
2, . . . , Q

∗
k), to the

instance [T,w′, k,D].

3. Return (Q∗
1, Q

∗
2, . . . , Q

∗
k).

Consider the optimal solution {Q∗
1, Q

∗
2, . . . , Q

∗
k} to [T,w′, k,D] returned by the re-

vised dynamic programming applied in Step 2 of Algorithm 5.5. Since {Q∗
1, Q

∗
2, . . . , Q

∗
k}

is also a feasible solution to [T,w, k,D], and since λ∗ ≤ OPT where OPT denotes the

objective value of an optimal solution to [T,w, k,D], by following arguments similar

to the proof of Theorem 5.3, we can obtain that max1≤i≤k{w(Q∗
i )} ≤ (1 + ϵ)OPT.

Moreover, since T is a tree, we have |E(T )| ≤ n− 1. It can be seen that the running

time of Algorithm 5.5 is O(n4k−3/ϵ2(k−1)). Thus, Algorithm 5.5 is an FPTAS for the

min-max k-TSPT-MD, if k is a given constant independent of the input size.

5.4.3 Min-max k-TSPT with demand points

The min-max k-TSPT with demand points (k-TSPT-DP) is an extension of the

min-max k-TSPT, where each of the given demand points that needs to be covered,

is located either at a vertex in V or on an edge in E. Thus, instead of covering all
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vertices in V (T ), a feasible solution to the min-max k-TSPT-DP is defined as a k-

subtree tuple (Q1, Q2, ..., Qk), where Qj for 1 ≤ j ≤ k is a subtree of T that contains

the depot, such that
∪k

j=1 V (Qj) needs to cover a given subset J of vertices in V ,

and that
∪k

j=1 E(Qj) needs to cover a given subset F of edges in E. Thus, we use

[T,w, k, J, F ] to denote an instance of the min-max k-TSPT-DP. Similar to the min-

max k-TSPT, by following Definition 5.1, we can assume without loss of generality

that any given instance [T,w, k, J, F ] of the min-max k-TSPT-DP is standard, and

that vertices in V = {1, 2, ..., n} are labeled in a non-increasing order on their depths

in T , so that n is the root and the depot of T .

To develop an FPTAS for the min-max k-TSPT-DP, we can revise Algorithm 5.4

to obtain a dynamic programming by replacing the condition (i) of Step 1.b with the

following three conditions: (i-1) if v ∈ J then v ∈
∪k

j=1 V (Qj), (i-2) if (v, l) ∈ F then

(v, l) ∈
∪k

j=1 E(Qj), and (i-3) if (v, r) ∈ F then (v, r) ∈
∪k

j=1 E(Qj), to ensure that

the given vertex subset J and edge subset F are covered. It is easy to see that the

dynamic programming returns an optimal solution to any given instance of the min-

max k-TSPT-DP, and has a running time O(nU2(k−1)), where U is an upper bound

on the optimal objective value to the min-max k-TSPT-DP. Since (T,Φ,Φ, ...,Φ)

is a feasible solution, we can choose U = w(T ), which implies that the running

time of the dynamic programming is O(nW 2(k−1)). Moreover, based on this dynamic

programming, for any given ϵ > 0, by following an approach similar to the one for the

min-max k-TSPT-MD we can obtain a (1+ϵ)-approximation scheme for the min-max

k-TSPT-DP with a running time O(n4k−3/ϵ2(k−1)), which is an FPTAS when k is a

given constant independent of the input size.

Furthermore, if we replace condition (i) of Step 1.b in the dynamic programming in

Section 5.4.2 for the min-max k-TSPT-MD, with the three conditions (i-1), (i-2) and

(i-3) described above for the min-max k-TSPT-DP, we can obtain an exact algorithm

for a variant of the min-max k-TSPT, where both a set of multiple candidate depots
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and a set of demand points are given. Following an approach similar to the one for the

min-max k-TSPT-MD, for any given ϵ > 0, we can also obtain a (1+ϵ)-approximation

scheme for this variant.

5.4.4 Min-sum k-TSPT

The min-sum k-TSPT is to determine a k-subtree tuple (Q1, Q2, ..., Qk), where

Qj for 1 ≤ j ≤ k is a subtree of T that contains the depot, such that
∪k

j=1 V (Qj)

covers all the vertices in V , so as to minimize the total weight of all the subtrees

in (Q1, Q2, ..., Qk). Given any instance, denoted by [T,w, k], of the min-sum k-

TSPT, since the trees in each feasible solution are all connected, it is easy to see

that (T,Φ, ...,Φ) is an optimal solution to [T,w, k], with an objective value equal to

w(T ).

Although the min-sum k-TSPT is trivial for any given constant k, neither any

polynomial-time exact algorithm nor any proof of NP-hardness is known for its exten-

sion with multiple depots. The min-sum k-TSPT-MD aims to determine a k-subtree

tuple (Q1, Q2, ..., Qk), where Qj for 1 ≤ j ≤ k is a subtree of T that contains at least

a depot in a given depot set D, such that
∪k

j=1 V (Qj) covers all the vertices in V , so

as to minimize the sum of the total edge weight of the subtrees in (Q1, Q2, ..., Qk).

Similar to the min-max k-TSPT, by following Definition 5.1, we can assume without

loss of generality that any given instance [T,w, k,D] of the min-sum k-TSPT-MD is

standard, and that vertices in V = {1, 2, ..., n} are labeled in a non-increasing order

on their depths in T , so that n is the root of T .

Based on the dynamic programming for the min-max k-TSPT-MD in Section 5.4.2,

we can develop a dynamic programming for the min-sum k-TSPT-MD by revising

Step 1.c as follows: For each α̃ ∈ {0, 1}k, each β̃ ∈ {0, 1}k, and each γ̃ ∈ {0, 1}k, set

wmin(α̃, β̃, γ̃) = +∞ and Qmin(α̃, β̃, γ̃) = ∅. For each (Q1, Q2, . . . , Qk) in H(v)
2 , do the

following steps: (i) Let (α(v)(Q1), α
(v)(Q2), . . . , α

(v)(Qk)) = α̃, (β(Q1), β(Q2), . . . , β(Qk)) =
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β̃, and (γ(Q1), γ(Q2), . . . , γ(Qk)) = γ̃. (ii) If
∑

k w(Qk) < wmin(α̃, β̃, γ̃), then set

wmin(α̃, β̃, γ̃) =
∑

k w(Qk), and set Qmin = {(Q1, Q2, . . . , Qk)}. Accordingly, Step 1.d

can be revised as follows: Set H(v) to be an empty set. For each α̃ ∈ {0, 1}k, each

β̃ ∈ {0, 1}k, and each γ̃ ∈ {0, 1}k, let H(v) = H(v)
∪

Qmin(α̃, β̃, γ̃).

Similar to Lemma 5.5, we can show that for each v = 1, 2, ...n, there exists a tuple

(Q1, Q2, ..., Qk) ∈ H(v), obtained in Step 1 of the above dynamic programming for the

min-sum k-TSPT-MD, such that α(v)(Qj) = α(v)(T̃
(v)
j ), β(Qj) = β(T̃

(v)
j ), and γ(Qj) =

γ(T̃
(v)
j ) for 1 ≤ j ≤ k, and that

∑k
j=1 w(Qj) ≤

∑k
j=1 w(T̃

(v)
j ). Accordingly, similar

to the proof of Theorem 5.2, we can obtain that the above dynamic programming

returns an optimal solution to any given instance of the min-sum k-TSPT-MD, with

a running time O(2kn), which is polynomial when k is a constant independent of the

input size.

5.5 Summary

In this chapter, we have developed a pseudo-polynomial time algorithm for the

min-max 2-TSPT through a dynamic programming approach, which provides a posi-

tive answer to a research question that has remained open for a decade. Based on this

dynamic program, we have further developed a fully polynomial time approximation

scheme for the problem. We have conducted preliminary numerical experiments to

test the performance of the FPTAS for the min-max 2-TSPT. The results indicate

that, for the min-max 2-TSPT, the worse-case performance and the average perfor-

mance of the FPTAS are better than the traditional local search scheme.

Moreover, we have generalized the pseudo-polynomial time exact algorithm and

the FPTAS for the min-max k-TSPT with k ≥ 2 and other multiple vehicle routing

problems. The running time of the FPTAS for the min-max k-TSPT with k ≥ 2 is

exponential to k, and is polynomial only when k is a constant independent of the

input size. To tackle this problem, we need to design more sophisticated heuristic for
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the min-max k-TSPT with k ≥ 2.
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CHAPTER 6

Improved Approximation Algorithm for the

k-depot TSP

6.1 Introduction

The k-depot TSP (k ≥ 2) is an extension of the single depot TSP, and it aims to

determine a set of k tours for the k vehicles located at distinct depots, to serve all the

customers on a metric undirected graph so that the total length of the tours is mini-

mized. Based on the tree algorithm, Rathinam et al. [69] developed a 2-approximation

algorithm for the k-depot TSP which is the best available approximation result. In

the literature [3, 59, 69], it has been suggested that the Christofides’ heuristic can be

extended for the k-depot TSP and its variants by computing a constrained spanning

forest in which each tree contains a distinct depot. However, the worst-case analysis of

the extended heuristic is known to be difficult since this requires bounding the length

of a minimum perfect matching for vertices having odd degrees in the constrained

spanning forest [3, 59]. It thus remains an open question whether a tight approx-

imation ratio of the extended Christofides’ heuristic can be found for the k-depot

TSP.

Initiated by the open question above, we prove a tight approximation ratio (2−

1/k) of the extended Christofides’ heuristic in this chapter, which implies that the
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extended Christofides’ heuristic is better than the existing 2-approximation algorithm

available in the literature, especially when k is small. The remainder of this chapter is

organized as follows. In Section 6.2, we introduce the notation that are used through-

out this chapter. In Section 6.3, we describe the extended Christofides’ heuristic for

the k-depot TSP, and present an example to show that its approximation ratio is not

less than (2 − 1/k). We then prove in Section 6.4 that (2 − 1/k) is indeed a tight

approximation ratio of the extended Christofides’ heuristic. Some results derived

in Section 6.4 have been generalized in Section 6.5, and several applications of the

extended Christofides’ heuristic have been demonstrated in Section 6.6 to develop

approximation algorithms for other k-depot vehicle routing problems. Finally, we

summarize this chapter in Section 6.7.

6.2 Notation

Given an integer k ≥ 2, let G = (V,E) with vertex set V and edge set E be

a complete graph. Each edge in E has a non-negative length, where lengths are

assumed to be symmetric and satisfy the triangle inequality. Let D ⊆ V denote a set

of k depots, where each depot has a distinct salesman. Taking vertices, denoted by

I, which are not depots to represent customers, the k-depot TSP seeks to minimize

the total length of a collection of k tours that the salesmen from D use to visit each

customer in I exactly once, where each tour must begin at a distinct depot and return

to it.

We recall the definitions of walk, tree, rooted tree, forest, matching, and perfect

matching [52]. Thus, a walk, which is denoted by (v1v2...vtvt+1) where t ≥ 0, is closed

if its start vertex v1 and end vertex vt+1 are the same. A walk with no repeated

vertices is called a path. A closed walk with no repeated vertices except its start and

end vertices is called a cycle. An undirected multigraph is Eulerian if the degree

of each vertex is even and a connected Eulerian multigraph must always have an
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Eulerian closed walk, i.e., a closed walk containing every edge [52].

Given a rooted tree T with root r, a vertex u in T is an ancestor of a vertex v in

T if u lies on the unique path from r to v. If, in addition, (u, v) is the last edge on

the path from r to v, then u is the parent of v, and v is a child of u.

Given a graph H, consider any subgraph H ′. Let V (H ′) and E(H ′) denote the

vertex and the edge sets of H ′. Given lengths of edges in E(H), the length of H ′ is

defined as the total length of its edges (where multiple edges are counted multiply),

which is denoted by ℓ(H ′). Similarly, we can define V (W ), E(W ) and ℓ(W ) for

any walk W of H, and V (E ′) and ℓ(E ′) for any edge subset E ′ of H. Further, if

V (E ′) ⊆ V (H ′), then we use H ′ \E ′ and H ′ ∪E ′ to denote subgraphs on V (H ′) with

edge subsets E(H ′) \ E ′ and E(H ′) ∪ E ′, respectively.

Consider a complete graph H with edge lengths satisfying the triangle inequality.

Thus, given any closed walk W of H, we can remove all repeated vertices in W

by shortcuts to obtain a cycle with length not longer than ℓ(W ), such that each

vertex of W appears exactly once in the cycle. Moreover, consider any cycle C of H,

represented by a vertex sequence (v1v2...vtvt+1) with vt+1 = v1 and t ≥ 0. For any

V ′ = {vi1 , vi2 , ..., vin} ⊆ V (C), where 1 ≤ i1 < i2 < ... < in ≤ t, if n is even, then edge

subsets M1 = {(vi2j−1
, vi2j) : 1 ≤ j ≤ n/2} and M2 = {(vi2j , vi2j+1

) : 1 ≤ j ≤ n/2}

embedded in C are two disjoint perfect matchings in the complete graph on V ′ and

by the triangle inequality, the shorter of M1 and M2 is not longer than ℓ(C)/2.

Finally, for a given k-depot TSP instance, which we denote by (G,D), a cycle

partition is a collection of cycles of G such that each vertex of G appears exactly once

in the cycles. Thus, a feasible solution for an instance (G,D) is a cycle partition of

k cycles such that each cycle contains exactly one depot in D. An optimal solution

is a feasible solution with the shortest length, and is denoted by C∗ throughout this

work.
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6.3 The Extended Christofides’ Heuristic

In order to adapt the Christofides’ heuristic for the k-depot TSP, it is natural to

define a constrained spanning forest as follows.

Definition 6.1. Given a k-depot TSP instance (G,D), a constrained spanning forest

(CSF) with regard to (w.r.t.) (G,D) is a set of k rooted trees such that each vertex

of G appears exactly once in the trees, and each tree contains exactly one depot in

D at which it is rooted. A minimum CSF is a CSF with the shortest length.

In the remainder of this paper, we use F ∗ to denote a minimum CSF w.r.t. (G,D).

Note that for every cycle C in an optimal solution C∗, a tree rooted at the unique

depot in C is obtained by either deleting an edge from C if E(C) is not empty,

or otherwise leaving it unchanged. The collection of such trees forms a CSF w.r.t.

(G,D) by Definition 6.1. Thus, taking emax(C) to denote the longest edge of a cycle

C, where ℓ(emax(C)) = 0 if E(C) is empty, we have the following upper bound on

ℓ(F ∗):

ℓ(F ∗) ≤ ℓ(C∗)−
∑
C∈C∗

ℓ(emax(C)). (6.1)

As shown in [69], F ∗ can be computed in O(|V |2) time since the problem can be

transformed to an equivalent minimum spanning tree problem by contracting multiple

depots inD into a single vertex. Hence, as we show in Algorithm 6.1, the Christofides’

heuristic for the TSP can be extended for the k-depot TSP by computing F ∗ in step 1.

Algorithm 6.1.

Input : a complete graph G = (V,E) with a depot set D ⊆ V where |D| = k

Output : a feasible solution to the k-depot TSP on (G,D)

1: Compute a minimum CSF F ∗ w.r.t. (G,D).

2: Create a Eulerian multigraph (which may not be connected), by first finding all
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the vertices of V that have odd degree in F ∗, which constitutes a vertex set

denoted by Odd(F ∗), and then compute a minimum perfect matching M∗(F ∗) in

the complete graph of Odd(F ∗) and add all the edges in M∗(F ∗) to F ∗.

3: Find a Eulerian closed walk for each connected component of the Eulerian multi-

graph, and shortcut each repeated vertex in the Eulerian closed walk by triangle

inequality to obtain a cycle. For any resulting cycle obtained from the Eularian

closed walks, if it has more than one depots, keep any one of the depots, and

shortcut all the other depots by triangle inequality. For each depot that is not in

any resulting cycle, construct a cycle that consists of the depot only. Denote the

resulting k cycles as C(F ∗). Return C(F ∗).

We establish Theorem 6.1 to show the correctness of Algorithm 6.1, and to provide

an upper bound on the length of C(F ∗) given by Algorithm 6.1.

Theorem 6.1. Given any k-depot TSP instance (G,D), Algorithm 6.1 returns a

cycle collection C(F ∗) in O(|V |3) time, such that C(F ∗) is a feasible solution with

ℓ(C(F ∗)) ≤ ℓ(F ∗) + ℓ(M∗(F ∗)).

Proof. Since the number of vertices having odd degrees in F ∗ is always even, Odd(F ∗)

obtained in step 1 of Algorithm 6.1 must have a minimum perfect matching. Thus,

adding edges of the minimum perfect matching M∗(F ∗) to F ∗ in step 2 constitutes

a Eulerian multigraph, and therefore, each connected component of the multigraph

must be Eulerian, and must contain a Eulerian closed walk [52]. Since each of the k

trees of F ∗ is rooted at a distinct depot of D, the Eulerian multigraph obtained in

step 2 has at most k connected components with each containing at least one depot.

Hence, according to step 3, the collection C(F ∗) returned by Algorithm 6.1 consists of

exactly k cycles in which each vertex of G appears exactly once. Moreover, since each

tree of F ∗ contains exactly one depot, each Eulerian closed walk obtained in step 3

contains at least one depot, which implies that each cycle of C(F ∗) must contain
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exactly one depot. Therefore, C(F ∗) is a feasible solution by definition. From the

construction of the Eulerian multigraph, one can see that, it consists of only those

edges in F ∗ and M∗(F ∗). Thus, the total length of the Eulerian multigraph is less

than or equal to ℓ(F ∗) + ℓ(M∗(F ∗)). Since each edge of the Eulerian multigraph

(obtained in step 2) appears exactly once in the Eulerian closed walks (obtained in

step 3), the total length of these closed walks equals ℓ(F ∗)+ℓ(M∗(F ∗)), and is greater

than or equal to ℓ(C(F ∗)) due to step 3 and the triangle inequality. Finally, the time

complexity of Algorithm 6.1 is O(|V |3), because computing M∗ in step 2 and finding

Eulerian closed walks in step 3 can be accomplished in O(|V |3) time and O(|V |2)

time, respectively [64]. Thus, Theorem 6.1 is proved.

Although one might expect Algorithm 6.1 to achieve an approximation ratio close

to 3/2, we can construct an instance in Example 6.1 to show that the ratio must, in

fact, be larger than or equal to (2− 1/k).

Figure 6.1: An instance of the k-depot TSP with |D| = k ≥ 2, which shows that
the approximation ratio of Algorithm 6.1 with F ∗ is not smaller than
(2− 1/k).
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Example 6.1. For each k ≥ 2, consider the following complete graph G = (V,E)

with D ⊆ V and |D| = k. Let V be the union of k disjoint subsets V1, V2, ..., Vk, where

Vi = {vi,j : 1 ≤ j ≤ 4} for 1 ≤ i ≤ k. Note that |V | = 4k. Let D = {vi,4 : 1 ≤ i ≤ k}

contain exactly k depots. The customer set is given by I = V \ D. As shown in

Figure 6.1, we first set lengths for the following edges: ℓ(vi,1, vi,2) = ℓ(vi,1, vi,3) = 1/4,

for 1 ≤ i ≤ k; ℓ(vi,1, vi,4) = ℓ(vi,2, vi+1,3) = 1/2 for 1 ≤ i ≤ k − 1; ℓ(vk,1, vk,4) = 0;

and ℓ(vk,2, v1,3) = 1/2. For other edges, lengths are then defined based on the above

setting by the length of the shortest path between endpoints. Thus, edge lengths ℓ

are symmetric and satisfy the triangle inequality.

We can show that the heuristic solution C(F ∗) returned by Algorithm 6.1 for the

instance (G,D) has length equal to (2 − 1/k)ℓ(C∗) and therefore that the ratio is

bounded below by (2− 1/k).

To compute the feasible solution returned by Algorithm 6.1, let us first consider

any CSF F w.r.t. (G,D) and derive a lower bound on ℓ(F ) as follows. Since F

consists of k trees, F must have exactly |V | − k edges. Moreover, since each tree in

F contains a depot, we have that for each i with 1 ≤ i ≤ k− 1, F must have at least

one edge with one endpoint in {vi,1, vi,2, vi,3} (which consists of three customers only)

and with its other endpoint in V \ {vi,1, vi,2, vi,3}. According to Figure 6.1, each such

edge has length at least 1/2 and thus, F must have at least (k − 1) edges with each

having length at least 1/2. Since each edge other than (vk,4, vk,1) has length at least

1/4, we obtain that ℓ(F ) ≥ (k − 1)/2 + (|V | − k − k)/4 = k − 1/2.

Next, by definition, the collection {T1, T2, ..., Tk}, as shown by the solid lines in

Figure 6.1, where E(Ti) = {(vi,1, vi,2), (vi,1, vi,3), (vi,1, vi,4)} for 1 ≤ i ≤ k, is a CSF

w.r.t. (G,D) with length equal to exactly (k−1/2), and therefore is a minimum CSF

w.r.t. (G,D). Thus, we can take F ∗ := {T1, T2, ..., Tk} to be the minimum CSF w.r.t.

(G,D) obtained in step 1 of Algorithm 6.1, with ℓ(F ∗) = k − 1/2.

We note that Odd(F ∗) here equals V . Consider any perfect matching M for
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vertices in V and derive a lower bound on ℓ(M) as follows. Let eM(v) denote the

unique edge in M that is incident on v for each v ∈ V . By the fact that ℓ(eM(vk,j)) ≥

1/4 for j = 2, 3 (by Figure 6.1), we can show
∑4

j=1 ℓ(eM(vk,j)) ≥ 1 by the following

arguments. If ℓ(eM(vk,1)) = 0, then from Figure 6.1, it can be seen that eM(vk,1) must

be edge (vk,1, vk,4), which implies that neither eM(vk,2) nor eM(vk,3) can be incident

on vk,1, and therefore, ℓ(eM(vk,j)) ≥ 1/2 for j = 2, 3 (according to Figure 6.1).

Hence,
∑4

j=1 ℓ(eM(vk,j)) ≥ 1. Otherwise, ℓ(eM(vk,1)) > 0, and therefore, eM(vk,1)

cannot be incident on vk,4. Thus, from Figure 6.1, it can be seen that ℓ(eM(vk,j)) ≥

1/4 for j = 1, 4. This, together with ℓ(eM(vk,j)) ≥ 1/4 for j = 2, 3, implies that∑4
j=1 ℓ(eM(vk,j)) ≥ 1.

Now, for 1 ≤ i ≤ k − 1, noting that ℓ(eM(vi,4)) ≥ 1/2 and ℓ(eM(vi,j)) ≥ 1/4

for 1 ≤ j ≤ 3 (by Figure 6.1), we can prove that
∑4

j=1 ℓ(eM(vi,j)) ≥ 2 as fol-

lows. If ℓ(eM(vi,4)) > 1/2 + 1/4 = 3/4, then from Figure 6.1, it can be seen that

ℓ(eM(vi,4)) ≥ 1/2 + 1/4 + 1/2 = 5/4 due to the triangle inequality, which implies

that
∑4

j=1 ℓ(eM(vi,j)) ≥ 5/4 + 3/4 = 2. Otherwise, ℓ(eM(vi,4)) ≤ 3/4, and therefore,

from Figure 6.1, it can be seen that eM(vi,4) must be in {(vi,j, vi,4) : 1 ≤ j ≤ 3}. If

eM(vi,4) equals (vi,1, vi,4), then ℓ(eM(vi,4)) = ℓ(eM(vi,1)) = 1/2, and neither eM(vi,2)

nor eM(vi,3) can be incident on vi,1, and therefore, ℓ(eM(vi,j)) ≥ 1/2 for j = 2, 3

(by Figure 6.1). Hence,
∑4

j=1 ℓ(eM(vi,j)) ≥ 2. Otherwise, eM(vi,4) is either (vi,2, vi,4)

or (vi,3, vi,4), which implies that either eM(vi,2) = eM(vi,4) = 1/2 + 1/4 = 3/4, or

eM(vi,3) = eM(vi,4) = 1/2 + 1/4 = 3/4. This, together with ℓ(eM(vi,j)) ≥ 1/4 for

1 ≤ j ≤ 3, implies that
∑4

j=1 ℓ(eM(vi,j)) ≥ 2.

In summary, since M is a perfect matching for V , we find that

ℓ(M) =
k∑

i=1

4∑
j=1

ℓ(eM(vi,j))/2 ≥ k − 1/2.

Moreover, it can be seen that the edge set
∪k

i=1{(vi,2, vi,3), (vi,1, vi,4)} is a perfect
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matching for V with length exactly equal (k−1/2), and is therefore a minimum perfect

matching. Since Odd(F ∗) equals V , we can suppose that M∗(F ∗) :=
∪k

i=1{(vi,2, vi,3),

(vi,1, vi,4)} is the minimum perfect matching obtained in step 2 of Algorithm 6.1 for

Odd(F ∗), with ℓ(M∗(F ∗)) = k − 1/2.

Accordingly, adding edges of M∗(F ∗) to F ∗, we can obtain the heuristic solution

C(F ∗) = {C1, ..., Ck} returned by step 3 of Algorithm 6.1, where Ci = (vi,4vi,1vi,2vi,3vi,4)

for 1 ≤ i ≤ k. It is easy to see that ℓ(C(F ∗)) = 2k − 1.

Next, to compute ℓ(C∗) for an optimal solution C∗, we first derive a lower bound

on ℓ(C∗) as follows. From Figure 6.1, it can be seen that C∗ must contain at least one

edge with length at least 1/2, which implies that
∑

C∈C∗ ℓ(emax(C)) ≥ 1/2. Due to

(6.1) and since ℓ(F ∗) = k − 1/2, we find that ℓ(C∗) ≥ k − 1/2 + 1/2 = k. Moreover,

it is easy to verify that the cycle collection {C∗
1 , ..., C

∗
k}, where C∗

i = (vi,4vi,4) for

1 ≤ i ≤ k − 1 and C∗
k = (vk,4vk,2v1,3v1,1v1,2v2,3v2,1v2,2.... vk−1,3vk−1,1vk−1,2vk,3vk,1vk,4),

is a feasible solution with length equal to exactly k, and therefore is an optimal

solution. Thus, ℓ(C∗) = k.

Hence, since ℓ(C(F ∗)) = 2k − 1 and ℓ(C∗) = k, we can write l(C(F ∗)) = (2 −

1/k)ℓ(C∗) to show that (2 − 1/k) is a lower bound of the approximation ratio of

Algorithm 6.1.

6.4 Approximation Ratio

In this section, we establish Theorem 6.2 to show the tight approximation ratio

of Algorithm 6.1.

Theorem 6.2. Algorithm 6.1 achieves a tight approximation ratio of (2 − 1/k) for

the k-depot TSP.

As shown in Example 6.1, the approximation ratio of Algorithm 6.1 is at least
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(2− 1/k). In order to prove Theorem 6.2, we only need to show:

ℓ(C(F ∗)) ≤ (2− 1/k)ℓ(C∗). (6.2)

Since ℓ(C(F ∗)) ≤ ℓ(F ∗) + ℓ(M∗(F ∗)) by Theorem 6.1 and ℓ(F ∗) can be bounded by

(6.1), we only need to derive upper bounds on ℓ(M∗(F ∗)) to verify (6.2). This is

shown in (6.3) and (6.4).

To derive the first upper bound on ℓ(M∗(F ∗)), consider each tree T in F ∗. By

doubling edges of T , we obtain a connected Eulerian multigraph which contains a

Eulerian closed walk. After removing repeated vertices of the closed walk by shortcuts,

we get a cycle, which we denote by CT . Note that T contains an even number

of vertices in Odd(F ∗), all of which are on the cycle CT . Thus, CT must embed

a perfect matching MT for vertices in V (T ) ∩ Odd(F ∗) with ℓ(MT ) ≤ ℓ(CT )/2 ≤

ℓ(T ). Combining MT for all trees T in F ∗ leads to a perfect matching for vertices in

Odd(F ∗), which implies:

ℓ(M∗(F ∗)) ≤ ℓ(F ∗). (6.3)

However, the upper bound in (6.3) alone cannot prove (6.2) and we need to es-

tablish Lemma 6.1, Lemma 6.2, and Lemma 6.3 below to derive the second upper

bound on ℓ(M∗(F ∗)). To do this, we first make use of the notion of an edge set.

For any edge subset A of E, let C∗ ∪ A denote a graph on V with the edge set that

combines E(C∗) and A. We first establish Lemma 6.1 to show a sufficient condition

for ℓ(M∗(F ∗)) ≤ ℓ(C∗)/2 + ℓ(A).

Lemma 6.1. Consider any edge subset A of E. If each connected component of C∗∪A

contains an even number of vertices in Odd(F ∗), then ℓ(M∗(F ∗)) ≤ ℓ(C∗)/2 + ℓ(A).

Proof. Adding edges in A twice to C∗, we can obtain a Eulerian multigraph, denoted
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by H, with ℓ(H) ≤ ℓ(C∗)+2ℓ(A). Note that vertices belonging to the same connected

component of H must also belong to the same connected component of C∗ ∪ A, and

vice versa. Thus, if each connected component of C∗ ∪ A contains an even number

of vertices in Odd(F ∗), then so does each connected component of H. Consider each

connected component W of H. Since H is Eulerian, W must also be Eulerian. Thus,

since W is connected, it must contain a Eulerian closed walk. By removing repeated

vertices of the closed walk by shortcuts, we obtain a cycle denoted by CW . Note

that W contains an even number of vertices in Odd(F ∗), which are all on the cycle

CW . Thus, CW must embed a perfect matching MW for vertices in V (W )∩Odd(F ∗)

with ℓ(MW ) ≤ ℓ(CW )/2 ≤ ℓ(W )/2. Combining MW for all connected components W

of H, we obtain a perfect matching for Odd(F ∗), which implies that ℓ(M∗(F ∗)) ≤

ℓ(H)/2 ≤ ℓ(C∗)/2 + ℓ(A).

Next, we construct an edge subset A′ by the following three steps, such that, as

shown later in Lemma 6.2, A′ consists of at most (|C∗| − 1) edges of F ∗ and satisfies

the condition specified for A in Lemma 6.1:

1. Construct a contracted graph, denoted by [C∗, E(F ∗)], in which each cycle of

C∗ is represented by a distinct vertex, and vertices representing two different

cycles of C∗ are incident with an edge if and only if the two cycles are connected

by an edge in E(F ∗).

2. Let S denote any forest that consists of a spanning tree in each connected

component of the contracted graph [C∗, E(F ∗)].

3. For each edge s in [C∗, E(F ∗)], the two endpoints of s represent two cycles in

C∗ which are connected by at least one edge of F ∗. Pick exactly one of these

edges and denote it by e(s). Define A′ as the set of edges e(s) for all s ∈ E(S).

Example 6.2. Figure 6.2 shows an instance (G,D) of the k-depot TSP with k = 3,

where vertices v1, v2, v3 (shown by rectangles) are depots, and other vertices (shown by
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circles) are customers. The length of each edge shown in Figure 6.2 is indicated by an

integer number nearby. For other edges, their lengths are then defined by the length

of the shortest path between endpoints. Based on this setting, it is not difficult to see

that the three cycles denoted by C1, C2, C3 in Figure 6.2 form an optimal solution C∗

with ℓ(C∗) = 9, and that the three trees, shown in solid lines, form an optimal CSF F ∗

w.r.t. (G,D) with ℓ(F ∗) = 5. Accordingly, to construct A′, note that the contracted

graph [C∗, E(F ∗)] in step 1 of the construction has three vertices which represent

C1, C2, C3, respectively, and has two edges which connect the vertex representing C1

with the vertices represent C2 and C3, respectively. Thus, the forest S defined in step 2

of the construction has only one tree which consists of the two edges of [C∗, E(F ∗)].

This implies that A′ = {(v2, v8), (v3, v5)} according to step 3 of the construction,

because (v2, v8) and (v3, v5) are the only edges that connect C1 with C2 and C3,

respectively. Furthermore, note that C∗ ∪ A′ has only one connected component,

which must contain an even number of vertices in Odd(F ∗). Thus, by Lemma 6.1,

we know that ℓ(M∗(F ∗)) ≤ ℓ(C∗)/2 + ℓ(A′) ≤ 9/2 + 2 = 13/2. In fact, it can

be seen from Figure 6.2 that M∗(F ∗) = {(v1, v4), (v9, v10), (v11, v12), (v2, v7), (v3, v6)}

with length equal to 5.

Figure 6.2: Example to illustrate the construction of A′.

Using the A′ thus constructed, we can establish the second Lemma 6.2.

Lemma 6.2. (i) A′ consists of at most (|C∗| − 1) edges of F ∗. (ii) Each connected

component of C∗ ∪ A′ contains an even number of vertices in Odd(F ∗).
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Proof. To prove (i), note that forest S (in step 2 of the construction of A′) has the

same number of vertices as the contracted graph [C∗, E(F ∗)], which has at most |C∗|

vertices. Thus, S has at most (|C∗|−1) edges. According to step 3 of the construction,

A′ has the same number of edges as S, and A′ is a subset of E(F ∗). Thus, (i) is proved.

To prove (ii), consider any two vertices u and v belonging to the same connected

component of F ∗. We know that C∗ has exactly one cycle, which we denote by Cu,

that contains u, and exactly one cycle, which we denote by Cv, that contains v, where

Cu and Cv are possibly identical. In any case, vertices that represent Cu and Cv in the

contracted graph [C∗, E(F ∗)] must belong to the same connected component. This

implies u and v belong to the same connected component of C∗ ∪ A′ in view of the

construction of A′. Therefore, since each connected component of F ∗ contains an

even number of vertices in Odd(F ∗), each connected component of C∗ ∪A′ must also

contain an even number of vertices in Odd(F ∗).

For the edge subset A′ constructed above, we then establish Lemma 6.3 to derive

an upper bound on the length of each edge in A′.

Lemma 6.3. For each edge (u, v) ∈ A′, where u is the parent of v in the unique tree

T(u,v) of F
∗ that contains (u, v), consider the unique cycle Cv in C∗ that contains v.

Then, (i) there exists an edge e ∈ E(Cv) such that F ∗ \ {(u, v)}∪ {e} is a CSF w.r.t.

(G,D), and (ii) ℓ(u, v) ≤ ℓ(emax(Cv)).

Proof. Since F ∗ is a minimum CSF w.r.t. (G,D), (ii) can be derived from (i) directly.

To prove (i), let us consider the edge (u, v) first. According to the construction

of A′, since (u, v) is in A′, vertices u and v must belong to two different cycles in C∗.

Thus, u is not on Cv.

Consider T(u,v) \ {(u, v)}, which is a forest consisting of two trees, with one tree

denoted by Tu containing u, and the other tree denoted by Tv containing v. Note that

the only depot contained in T(u,v) is the root of T(u,v), and therefore is contained in Tu
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but not in Tv because u is the parent of v in T(u,v). Thus, noticing that Cv contains

v and a depot, and that Tv contains v but no depot, we obtain that there must exist

an edge e of Cv such that e has exactly one endpoint in V (Tv). Accordingly, let p

denote the other endpoint of e, which is not in V (Tv).

Consider a forest Fu defined as F ∗ \ {T(u,v)} ∪ {Tu}. Since p is not in V (Tv) and

F ∗ is a CSF w.r.t. (G,D), Fu must contain a unique tree Tp that contains p. Using

the edge e to connect Tp and Tv, we can obtain a tree denoted by T ′. It can be seen

that Fu \ {Tp} ∪ {T ′} and F ∗ \ {(u, v)} ∪ {e} are the same.

Thus, to prove (i), we only need to show that Fu \ {Tp} ∪ {T ′} is a CSF w.r.t.

(G,D). Note that F ∗ consists of k trees, which implies that Fu consists of k trees,

and so does Fu \ {Tp} ∪ {T ′}. Moreover, since each tree in F ∗ contains a depot in

D, and Tu contains a depot in D, each tree in Fu contains a depot in D. Thus, Tp

contains a depot in D, and so does T ′. This implies that each tree in Fu \{Tp}∪{T ′}

contains a depot in D, which can be assigned as the root. Finally, it can be seen that

each vertex not in V (Tv)∪V (Tp) must appear exactly once in trees of Fu\{Tp}. Since

V (T ′) equals V (Tv) ∪ V (Tp), each vertex in V must appear exactly once in trees of

Fu \ {Tp} ∪ {T ′}. Therefore, according to Definition 6.1, Fu \ {Tp} ∪ {T ′} is a CSF

w.r.t. (G,D), and so is F ∗ \ {(u, v)} ∪ {e}. Hence, (i) is proved.

Let ℓmax := maxC∈C∗ ℓ(emax(C)). Noticing that |C∗| = k, from (i) of Lemma 6.2

and (ii) of Lemma 6.3, we obtain that ℓ(A′) ≤ (k − 1)ℓmax. This, together with

Lemma 6.1 and (ii) of Lemma 6.2, implies that

ℓ(M∗(F ∗)) ≤ ℓ(C∗)/2 + ℓ(A′) ≤ ℓ(C∗)/2 + (k − 1)ℓmax, (6.4)

which gives the second upper bound on ℓ(M∗(F ∗)).

We can now use (6.3) and (6.4) to prove the main result of this work.

Proof of Theorem 6.2. To show that Algorithm 6.1 has a tight approximation ratio of
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(2−1/k), we only need to show (6.2) as follows. On the one hand, from Theorem 6.1,

(6.4), (6.1), and ℓmax ≤
∑

C∈C∗ ℓ(emax(C)), we know:

ℓ(C(F ∗)) ≤ 3ℓ(C∗)/2 + (k − 2)ℓmax. (6.5)

On the other hand, from Theorem 6.1, (6.3), (6.1), and and ℓmax ≤
∑

C∈C∗ ℓ(emax(C)),

we have:

ℓ(C(F ∗)) ≤ 2ℓ(F ∗) ≤ 2ℓ(C∗)− 2
∑
C∈C∗

ℓ(emax(C)) ≤ 2ℓ(C∗)− 2ℓmax. (6.6)

By (6.5) and (6.6), we obtain:

ℓ(C(F ∗)) ≤ min{3ℓ(C∗)/2 + (k − 2)ℓmax, 2ℓ(C∗)− 2ℓmax}. (6.7)

Thus, if 3ℓ(C∗)/2+(k−2)ℓmax ≤ 2ℓ(C∗)−2ℓmax, then (2k)ℓmax ≤ ℓ(C∗), which, together

with (6.7) and k ≥ 2, implies that ℓ(C(F ∗)) ≤ 3ℓ(C∗)/2+(k−2)ℓmax ≤ (2−1/k)ℓ(C∗).

Otherwise, 2ℓ(C∗) − 2ℓmax ≤ 3ℓ(C∗)/2 + (k − 2)ℓmax, then ℓ(C∗) ≤ (2k)ℓmax, which,

together with (6.7), implies that ℓ(C(F ∗)) ≤ 2ℓ(C∗)− 2ℓmax ≤ (2− 1/k)ℓ(C∗). Hence,

(6.2) is proved, and the proof of Theorem 6.2 is completed.

6.5 Extensions

In Section 6.4, we have proved that the extended Christofides’ heuristic for the

k-depot TSP, which is shown in Algorithm 6.1, achieves a tight approximation ratio of

(2−1/k). Our analysis relies on developing an upper bound on the length ℓ(M∗(F ∗))

in (6.4) derived from Lemma 6.1, Lemma 6.2, and Lemma 6.3 which use a minimum

CSF F ∗. This naturally suggests CSFs other than F ∗ might be useful for further

improvements. With this in view, we extend the first two lemmas here to provide

insights for possible future work.
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Lemma 6.4. Consider any edge subset A of E. For any cycle partition C and any

CSF F w.r.t. (G,D), let M∗(F ) denote a minimum perfect matching for vertices in

Odd(F ). If each connected component of C ∪ A contains an even number of vertices

in Odd(F ), then ℓ(M∗(F )) ≤ ℓ(C)/2 + ℓ(A).

Proof. For any edge subset A of E, let C ∪A denote a graph on V with the edge set

that combines E(C) and A. If each connected component of C ∪ A contains an even

number of vertices in Odd(F ), by replacing C∗ and F ∗ with C and F in the proof of

Lemma 6.1, it can be shown that ℓ(M∗(F )) ≤ ℓ(C)/2 + ℓ(A).

Lemma 6.2 was derived for a particular edge subset A′. To generalize it, we first

extend the notion given by [C∗, E(F ∗)] used in the construction of A′. For any cycle

partition C and any edge subset E ′, let [C, E ′] denote the contracted graph in which

each cycle of C is represented by a distinct vertex, and where vertices representing

two different cycles of C are incident with an edge if and only if the two cycles are

connected by an edge in E ′. Thus, according to the construction of A′ and Lemma 6.2,

it is easy to verify the following properties of A′: (i) A′ is a subset of E(F ∗); (ii) each

edge in A′ connects two different cycles of C∗; (iii) each pair of cycles in C∗ is connected

by at most one edge in A′; (iv) each connected component of C∗∪A′ contains an even

number of vertices in Odd(F ∗); and (v) the contracted graph [C∗, A′] is a forest.

Moreover, for any CSF F w.r.t. (G,D) and any cycle partition C, we can construct

an edge subset A which has similar properties as A′ as follows:

1. Construct a contracted graph, denoted by [C, E(F )], in which each cycle of C is

represented by a distinct vertex, and vertices representing two different cycles

of C are incident with an edge if and only if the two cycles are connected by an

edge in E(F ).

2. Let S denote any forest that consists of a spanning tree in each connected

component of the contracted graph [C, E(F )].
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3. For each edge s in [C, E(F )], the two endpoints of s represent two cycles in C

which are connected by at least one edge of F . Pick exactly one of these edges

and denote it by e(s). Define A as the set of edges e(s) for all s ∈ E(S).

In the following lemma, we can show that, the edge subset A satisfies properties

similar to A′.

Lemma 6.5. (i) A is a subset of E(F ); (ii) each edge in A connects two different

cycles of C; (iii) each pair of cycles in C is connected by at most one edge in A; (iv)each

connected component of C ∪ A contains an even number of vertices in Odd(F ); and

(v) the contracted graph [C, A] is a forest.

Proof. By construction of A, properties (i),(ii) and (iii) are straightforward. By re-

placing C∗ and F ∗ with C and F in the proof of Lemma 6.2, property (iv) can be

proved. Finally, in step 2 of construct of A, since S is a forest, then we can conclude

that the contracted graph [C, A] is also a forest.

6.6 Applications

In the literature, the Christofides’ heuristic for the TSP has been extensively ap-

plied in the development of approximation algorithms for various single-depot vehicle

routing problem, such as the stacker crane problem (SCP) [33], the clustered TSP

[41], the capacitated vehicle routing problem (CVRP) [56], and etc. In this section, we

are going to illustrate applications of the extended Christofides’ heuristic to develop

constant ratio approximation algorithms for several multiple depot vehicle routing

problems, including the k-depot SCP, the clustered k-depot TSP, and the k-depot

CVRP.
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6.6.1 The k-depot stacker-crane problem

The Stacker-crane Problem (SCP) is defined on a mixed graph G = (V, Z
∪

E),

where Z is a set of directed arcs, and E is a set of undirected edges. The problem

determines the shortest tour which include each arc of Z at least once. Thus, given

a depot set D ⊆ V , where |D| = k, the k-depot stacker-crane problem (k-depot

SCP) is to determine the shortest collection of tours that start and end at distinct

depots which visit each arc of Z at least once. Frederickson et al. [33] provided two

heuristics for this problem, known as LARGEARCS and SMALLARCS. The shorter

one of the solutions returned by these two heuristics achieves an approximation ratio

of 9/5. Here, we show it is possible to extend these heuristics to solve the k-depot

SCP, based on results obtained for the k-depot TSP.

Without loss of generality, assume that arcs of Z are not incident to any depot D

(otherwise, we can construct an equivalent instance by making a copy of each depot

and move all edges incident to the depot to its copies, such that the resulting instance

satisfies the assumption). We use C∗ to denote the optimum solution to the k-depot

SCP.

For the LARGEARCS heuristic in Frederickson et al. [33], a minimum bipartite

matching between heads and tails of arcs of Z is inserted into G, connected compo-

nents of the resulting graph are contracted to obtain a contracted graph, and then a

minimum spanning tree of the contracted graph is constructed. To solve the k-depot

SCP, we construct a minimum CSF F ∗ of the contracted graph. It is easy to verify

that the length of F ∗ is not longer than [ℓ(C)∗ − ℓ(Z)]. Following the same steps of

LARGEARCS in Frederickson et al. [33], we are able to construct a Eulerian graph

and obtain a solution to the k-depot SCP with length not longer than [3ℓ(C∗)−2ℓ(Z)].

The SMALLARCS heuristic in Frederickson et al. [33], contracts arcs of Z to

obtain a contracted graph G′, and then applies Christofides’ heuristic to obtain a

solution to the TSP on G′. To solve the k-depot SCP, we take G′ to include depots
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of D, and apply the extended Christofides’ algorithm on the instance (G′, D) to

obtain a solution C ′ to the k-depot TSP. By Theorem 6.2, we know that ℓ(C ′) ≤

(2− 1/k)[ℓ(C∗)− ℓ(Z)]. Following the same steps in SMALLARCS, we can constrct

a Eulerian graph and obtain a solution to the k-depot SCP with a length not longer

than [(2− 1/k)ℓ(C∗) + 1/kℓ(Z)].

It can be seen that, the shorter of the solutions returned by LARGEARCS and

SMALLARCS achieves a performance ratio of (2 − 1/(2k + 1)), which equals to

9/5 when k = 2. Consider the SMALLARCS heuristic for the k-depot SCP. As a

comparison, if the tree algorithm developed by Rathinam et al. [69] is applied to obtain

a solution C ′ to the k-depot TSP rather than the extended Christofides’ heuristic, we

are able to construct a solution to the k-depot SCP with length not longer than 2ℓ(C∗).

Therefore, with the same LARGEARCS heuristic for the k-depot SCP, the shorter

solution returned by LARGEARCS heuristic and tree algorithm based SMALLARCS

heuristic achieves an approximation ratio of 2. Thus, when applied to the k-depot

SCP, the extended Christofides’ heuristic proposed in this chapter leads to a better

approximation algorithm for the k-depot SCP than the tree algorithm.

6.6.2 The clustered k-depot TSP

Given a collection of clusters that forms a partition of the vertex set, the clustered

TSP determines the shortest tour that visits every vertex at least once and vertices of

each cluster consecutively. Thus, given a depot set D with |D| = k, the clustered k-

depot TSP determines the shortest collection of k tours which start and end at distinct

depots and visit every vertex at least once and vertices of each cluster consecutively in

a tour. Guttmann-Beck et al. [41] proposed several approximation algorithms which

solve the clustered TSP and achieve constant performance ratios. Their approaches

can be extended to solve the clustered k-depot TSP.

For example, consider the case with given start and end vertices for each cluster.
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In Guttmann-Beck et al. [41], a 21/11-approximation scheme is used to solve the

corresponding variant of clustered TSP. The first step of their method is to determine

a Hamiltonian path for each cluster with the start and the end vertices of the cluster

as its endpoints. The second step is to solve the stacker-crane problem on the graph

with directed arcs from the start to the end vertices of the clusters, to obtain a tour

which can be transformed to a solution of the clustered TSP by replacing directed

arcs with the corresponding Hamiltonian paths of the first step. To solve the clustered

k-depot TSP, we solve the k-depot SCP in step 2 with the approximation algorithm

provided in the previous subsection. Let C∗ denote the optimum solution to the

clustered k-depot TSP, X denote the set of edges of the paths of C∗ through each

cluster, Y denote the set of edges in C∗ but not in X, and Z denote the set of edges

of directed arcs from the start vertices to the end vertices in all clusters. Following a

similar analysis as in Guttmann-Beck et al. [41], one can find that the length ℓ(P) of

Hamiltonian paths of the first step is not longer than min{2ℓ(X) − ℓ(Z), 3/2ℓ(X) +

1/2ℓ(Z)}, and the length of the solution Cscp to the k-depot SCP of the second step

is not longer than min{3ℓ(Y ) + ℓ(Z), (2− 1/k)ℓ(Y ) + 2ℓ(Z)}. Thus the length of the

solution to the clustered k-depot TSP, which equals (ℓ(P)− ℓ(Z) + ℓ(CSCP )), is not

longer than (2− 1/(4k + 3))ℓ(C∗), which implies that there exists a (2− 1/(4k + 3))-

approximation algorithm for the clustered k-depot TSP. Similarly, as a comparison,

when a tree algorithm by Rathinam et al. [69] is applied in the second step to obtain

a solution to the k-depot SCP, the length of the returned solution is not longer

than min{3ℓ(Y ) + ℓ(Z), 2ℓ(Y ) + 2ℓ(Z)}. In this case, the solution returned to the

clustered k-depot TSP achieves an approximation ratio of 2. Thus, when applied

to the clustered k-depot TSP, the extended Christofides’ heuristic proposed in this

chapter leads to a better approximation algorithm for the k-depot TSP than the tree

algorithm.
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6.6.3 The k-depot capacitated vehicle routing problem

The Capacitated Vehicle Routing Problem (CVRP) aims to determine a set of

routes starting from and ending up with the same depot for vehicles to service cus-

tomers, such that for each vehicle, after service Q customers, it must return to the

depot for replenishment to restart its trip, so as to minimize the total edge weight

of the routes. Li and Simchi-Levi [56] provided an approximation algorithm which

achieves an approximation ratio of [1+ (1−1/Q)α]. Their algorithm mostly relies on

an Iterated Tour Partitioning (ITP) procedure, which partitions a traveling salesman

tour into segments, such that the first segment contains exactly p customers, and that

the customer number in each segment does not exceed Q. Given an approximate TSP

solution, the ITP procedure is executed Q times to generate Q segment sets denoted

by Sp, for p = 1, 2, . . . , Q, such that the first segment in each Sp contains exactly p

customers, and that the customer number in each segment of Sp does not exceed Q.

Then, the segment set with minimum total edge weight is chosen. By joining both

of the end points in each segment of the chosen segment set to the depot, a feasible

solution to the CVRP can be obtained. When an α-approximation algorithm is ap-

plied to generate an approximate TSP tour, the approximation ratio of the algorithm

proposed by Li and Simchi-Levi [56] can be proved to be [1 + (1− 1/Q)α].

The k-depot Capacitated Vehicle Routing problem (k-depot CVRP) is an exten-

sion of the CVRP, which takes into consideration a depot D with |D| = k at each of

which a distinct vehicle is located. For each vehicle at a distinct depot, it is required

to start from and return to its depot, while, in its trip, it can return to any depot in

D for replenishment. Here, we use J to denote the customer set, and without loss of

generality, we assume that the customer set J and the depot set D are disjoint. As far

as we know, no constant ratio approximation algorithm is available in the literature

for the k-depot CVRP.

In the followings, we present a constant ratio approximation algorithm for the
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k-depot CVRP, based on the extended Christofides’ heuristic for the k-depot TSP,

and the splitting procedure, Split(C ′, p) (Algorithm 3.1) developed in Chapter 3:

Step 1: Apply the extended Christofides’ heuristic to find an approximate solution

C = {C1, C2, . . . , Ck} for the k-depot TSP.

Step 2: For each tour Ci in the approximate solution for the k-depot TSP, for

i = 1, 2, . . . , k, apply Split(Ci, p) to obtain a new cycle Cp
i , for p = 1, 2, . . . , Q,

such that Cp
i covers all customers of Ci with both of its endpoints at the depot

of Ci, with the first trip containing p customers, and with no trip containing

more than Q customers.

Step 3: For i = 1, 2, . . . , k, let C ′
i indicate the cycle that minimizes ℓ(Cp

i ) among all

the cycles Cp
i for p = 1, 2, . . . , Q.

Step 4: Return C ′ = {C ′
1, C

′
2, . . . , C

′
k}.

It can be verified that, each cycle C ′
i obtained in Step 3, where 1 ≤ i ≤ k, starts

from and ends up with a distinct depot, and that all the customers are covered by

cycles, C ′
1, C

′
2, . . . , C

′
k, in C ′ without violating the capacity of the vehicles. Thus,

{C ′
1, C

′
2, . . . , C

′
k} is a feasible solution to the k-depot CVRP.

Let C∗ = {C∗
1 , C

∗
2 , . . . , C

∗
k} denote an optimal solution to the k-depot CVRP. Since

C∗ is also a feasible solution to the k-depot TSP, and since the extended Christofides’

heuristic used in Step 1 has an approximation ratio of (2 − 1/k), we obtain that

ℓ(C) ≤ (2−1/k)ℓ(C∗). Moreover, according to Lemma 3.1, for i = 1, 2, . . . , k, we have

ℓ(C ′
i) = min

1≤p≤Q
ℓ(Cp

i ) ≤ ℓ(Ci) +
2

Q

∑
v∈J(Ci)

ℓmin(v,D),

where J(Ci) denotes the set of customers on Ci, and ℓmin(v,D) is defined as the
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distance between v and its closest depot in D. Thus,

k∑
i=1

ℓ(C ′
i) ≤

k∑
i=1

ℓ(Ci) +
2

Q

∑
v∈J

ℓmin(v,D). (6.8)

Consider any cycle C∗
i in the optimum solution C∗, where 1 ≤ i ≤ k. Let η(i) de-

note the total number of times that C∗
i leaves a depot in D. Thus, C∗

i contains exactly

η(i) subsegments between two consecutive depots, denoted by S∗
i,1, S

∗
i,2, . . . , S

∗
i,η(i). For

1 ≤ j ≤ η(i), let v be any customer contained in S∗
i,j. Since S

∗
i,j contains two depots in

D, by the triangle inequality, we have 2ℓmin(v,D) ≤ ℓ(S∗
i,j). Since each S∗

i,j contains

at most Q customers, and since
∑η(i)

j=1 ℓ(S
∗
i,j) = ℓ(C∗

i ), we have

∑
v∈J(C∗

i )

ℓmin(v,D)

Q
=

η(i)∑
j=1

∑
v∈J(S∗

i,j)

ℓmin(v,D)

Q
≤

η(i)∑
j=1

1

2
ℓ(S∗

i,j) =
1

2
ℓ(C∗

i ),

which implies that

2

Q

∑
v∈J

ℓmin(v,D) ≤
k∑

i=1

ℓ(C∗
i ) = ℓ(C∗).

Together with ℓ(C) ≤ (2 − 1/k)ℓ(C∗), it is obtained that
∑k

i=1 ℓ(C
′
i) ≤ (3 −

1/k)ℓ(C∗). Thus, our algorithm proposed for the k-depot CVRP achieves an approx-

imation ratio of (3− 1/k). As a comparison, if C in Step 1 is constructed by doubling

each edge of the minimum CFS F ∗ rather than applying the extended Christofides’

heuristic, we will obtain an approximation algorithm with an approximation ratio of

3, which is worse than the proposed (3− 1/k)-approximation algorithm above based,

especially when k is small.

6.7 Summary

In this chapter, we have proved that an extended Christofides’ heuristic achieves

a tight approximation ratio of (2 − 1/k) for the k-depot TSP, which is better than
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the existing 2-approximation algorithm in the literature. We have also demonstrated

that the extended Christofides’ algorithm can be applied to develop approximation

algorithms for other multiple-depot vehicle routing problems. Moreover, since the

best possible approximation ratio for the k-depot TSP is 3/2 unless there exists a

better approximation algorithm for the TSP than the Christofides’ heuristic, it sill

remains an open question on whether or not there exists a tight 3/2 approximation

algorithm for the k-depot TSP. Therefore, we have also generalized our results for

the extended Christofides’ heuristic in this chapter to prepare for future attempt to

address this open question.
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CHAPTER 7

Conclusions

In this thesis, we have studied the approximability of three categories of VRPs,

namely, the min-max PCP, the min-max k-TSPT, and the k-depot TSP, by either

designing improved constant ratio approximation algorithms and/or proving the in-

approximability bounds.

For the four typical variants of the min-max PCP, where vehicles have either un-

limited or limited capacities, and start from either the same depot or different depots,

we have presented their first approximation algorithms and their first approximation

hardness results. One possible research direction is to improve the worst-case ap-

proximation ratios, or to derive tighter inapproximability bounds. Moreover, it may

be of more practical value to develop more sophisticated heuristics that can exhibit

good average performance in terms of solution qualities and running times. Taking

the solutions output by the approximation algorithms developed in this thesis as ini-

tial solutions, one can apply various neighborhood search schemes to obtain better

solutions by local search, simulated annealing, or other meta-heuristics.

For the min-max k-TSPT, we have in this thesis developed a pseudo-polynomial

time algorithm and an FPTAS. However, the running times of the algorithms devel-

oped are exponential to the number of vehicles, k, and is polynomial time only if k

is a given constant not included in the problem instance. Moreover, when k can be
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arbitrarily large, we have shown that the k-TSPT is strongly NP-hard. Therefore, it

may be of more practical value to develop constant ratio approximation algorithms

or heuristics for this general version of the problem. One possible approach for de-

veloping a heuristic for the k-TSPT is to use the FPTAS for the min-max 2-TSPT,

as follows. Given any feasible solution to the k-TSPT with k ≥ 3, which is a set of k

subtrees, the subtree with the greatest total edge weight is referred to as the “criti-

cal” subtree, in the sense that it decides the objective value of the feasible solution.

Thus, we can adopt the FPTAS for the min-max 2-TSPT on this “critical” subtree

and any other subtree in the current feasible solution to see whether or not the maxi-

mum weight of these two subtrees can be reduced. This improvement procedures can

be continued until there is no further improvement. Since the running time of the

FPTAS for the min-max 2-TSPT is O(n3/ϵ2), each iteration of the proposed heuristic

for the k-TSPT is in polynomial time. In our future work, we will conduct extensive

numerical experiments to evaluate the performance of this heuristic.

For the k-depot TSP, we have developed a tight (2−1/k)-approximation algorithm

which is better than the 2-approximation algorithm available in the literature. As

mentioned previously, the best possible approximation ratio for the k-depot TSP is

3/2, unless there is an approximation algorithm superior to the Christofides’ heuristic

for the TSP in a metric undirected graph. Therefore, the question still remains open

as to whether or not the k-depot TSP has a 3/2-approximation algorithm. One

possible approach to improve the extended Christofides’ heuristic is to use a CFS

rather than F ∗ in the first step. The results that we have generalized in Section 6.5

for arbitrary CFSs may be useful in the analysis of the approximation ratio for such

approximation algorithms.

Moreover, there are other variants of the k-depot TSP whose approximation algo-

rithms may be improved by certain extended Christofides’ heuristics. For example,

consider the generalized k-depot TSP, in which m ≥ k traveling salesmen are located
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at distinct depots, and only k of them are selected to service all the customers. Malik

et al. [59] have developed the following 2-approximation algorithm based on the tree

algorithm: Step 1: Add a root vertex r to connect to all the vertices corresponding

to traveling salesmen with zero edge weight, and remove all edges between vertices

corresponding to traveling salesmen. Step 2-1: Calculate an MST of the result graph,

which requires the total degrees of the vertices denoting traveling salesmen to be at

most m + k. Step 2-2: Remove the m edges between the root r and the vertices de-

noting traveling salesmen to obtain at most k non-trivial trees. Step 3: Double each

edge of the k non-trivial trees and obtain a tour for each of the k traveling salesmen

by shortcut. Accordingly, it is natural to extend the Christofides’ heuristic for this

generalized problem, by adding a perfect matching between all vertices which have

odd degrees in the k non-trivial trees constructed in step 3. However, the analysis of

approximation ratio for such an extended Christofides’ heuristic can be challenging,

because the tree obtained in steps 2-1 and 2-2, and used in step 3 is not F ∗. However,

the results that we have generalized in Section 6.5 for arbitrary CFSs have laid a

foundation to tackle the challenges.
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