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Abstract

VOICE ACTIVITY DETECTION FOR NIST SPEAKER

RECOGNITION EVALUATIONS

Since 2008, interview-style speech has become an important part of the NIST

Speaker Recognition Evaluations (SREs). Unlike telephone speech, interview

speech has a substantially lower signal-to-noise ratio, which necessitates robust

voice activity detectors (VADs). This dissertation highlights the characteristics

of interview speech files in NIST SREs and discusses the difficulties in perform-

ing speech/non-speech segmentation in these files. To overcome these difficul-

ties, this dissertation proposes using speech enhancement techniques as a pre-

processing step for enhancing the reliability of energy-based and statistical-model-

based VADs. A decision strategy is also proposed to overcome the undesirable

effects caused by impulsive signals and sinusoidal background signals. The pro-

posed VAD is compared with five popular VADs.

1. Average-Energy (AE)-Based VAD. This is an energy-based VAD with deci-

sions governed by the linear combination of average magnitude of background

noises and signal peaks.

2. Automatic Speech Recognition (ASR) Transcripts. In this VAD, speech/non-

speech decisions are based on the ASR transcripts provided by NIST.

3. VAD in the ETSI-AMR Option 2 Coder. This VAD is part of the Adap-

tive Multi-Rate (AMR) codec released by the European Telecommunication

Standard Institute (ETSI).

4. Statistical-Model (SM)-Based VAD. This VAD assumes that the complex

frequency components of signals and noises follow a Gaussian distribution



and uses likelihood-ratio tests in the frequency domain for speech/non-speech

decisions.

5. Gaussian-Mixture-Model (GMM)-Based VAD. This is an extension of the

statistical-model-based VAD, which considers the long-term temporal infor-

mation and harmonic structure in noisy speech.

These five VADs have been evaluated on the NIST 2010 dataset. The comparison

of VADs leads to seven findings:

1. Noise reduction is vital for VAD under extremely low SNR;

2. Removal of the sinusoidal background noise is of primary importance as this

kind of background signal could lead to many false detection in AE-based

VAD;

3. A reliable threshold strategy is required to address the impulsive signals;

4. ASR transcripts provided by NIST do not produce accurate speech and non-

speech segmentations;

5. Spectral subtraction contributes to both AE- and SM-based VADs;

6. Spectral subtraction makes better use of background spectra than the likelihood-

ratio tests in the SM-based VAD; and

7. The proposed SS+AE-VAD outperforms the SM-based VAD, the GMM-

based VAD, the AMR speech coder, and the ASR transcripts provided by

NIST SRE Workshop.
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Chapter 1

INTRODUCTION

NIST Speaker Recognition Evaluations (SREs)1 are biannual activities in the

speaker recognition community. The evaluations aim at calibrating the capabili-

ties of text-independent speaker recognition technology and measuring the perfor-

mance of the state-of-the-art approaches to speaker recognition. This dissertation

develops voice activity detection (VAD)2 techniques for extracting speech segments

from the interview speech files of recent NIST SREs.
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Figure 1.1: The enrollment phase in speaker verification.
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Figure 1.2: The verification phase in speaker verification.

1http://www.itl.nist.gov/iad/mig/tests/sre

2In this dissertation, the abbreviation VAD stands for voice activity detection or voice activity
detector depending on the context
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1.1 Speaker Verification

In speaker verification, the identity of a claimant is verified based on his or her

own voices [5]. The applications of speaker verification include transaction authen-

tication, access control and information retrieval. For example, Banco Bradesco,

a Brazil’s private bank, uses Nuance’s speaker verification solution to verify its

15 million customers over the phone [6]. In a similar example, ABN AMRO uses

VoiceVault’s speaker verification system in its telephone banking services [7]. More

recently, NAP Personal Banking in Australia and T-mobile of Deutsche Telekom

in Netherlands provide voice authentication for their customers [8, 9].

The two main stages in speaker verification are enrollment and verification [10],

as illustrated in Fig. 1.1 and Fig. 1.2, respectively. The utterances from back-

ground speakers (uttbkg), target speakers (uttspk) and test speakers (utttst) are

transformed into speaker-specific feature vectors, e.g., MFCC [11, 12]. Before en-

rollment and verification, a universal background model (UBM) – which is typ-

ically a Gaussian mixture model with a large number of mixture components –

is firstly trained by using the speech of a large number of background speakers

to represent the characteristics of the general population. During the enrollment

stage, a target-speaker model (Λspk) is created by adapting the UBM [13] using

the feature vectors obtained from the utterances of the target-speaker. During

verification, the feature vectors (Xtst) extracted from a test speaker (an unknown

person) are compared against the background and target-speaker models to give

a similarity score, S(Xtst) = log p(Xtst|Λspk)− log p(Xtst|Λubm). The score is then

compared against a decision threshold to determine whether the test speaker is a

genuine speaker or an impostor.

The utterances can be collected from the conversations of speakers in telephone

calls, meetings, and interviews. Different transducers and recording environments

could affect the performance of speaker recognition systems. In recent NIST SREs,

more emphasis has been put on interview speech.
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1.2 Importance of VAD in Speaker Verification

NIST SREs have been focusing on text-independent speaker verification over tele-

phone channels since 1996. In recent years, NIST introduces interview-style speech

into the evaluations. For example, the speech files in NIST 2008 SRE contain con-

versation segments of approximately five minutes of telephone speech and three

minutes of interview speech, and the speech files in NIST 2010 SRE contain in-

terview recordings with duration ranging from three to fifteen minutes. In each

speech file, about half of the conversation contains speech, and the remaining part

contains pauses or silence intervals. The inclusion of non-speech intervals in the

speech files necessitates voice activity detection (VAD) because these intervals

do not contain any speaker information. VAD is a very useful technique for im-

proving the performance of speaker recognition systems working in such scenario.

In particular, VAD can be used to identify speech segments prior to the feature

extraction process.

The determination of speech segments is critical for speaker verification because

misclassifying non-speech segments as speech segments means that incorrect infor-

mation will be used for speaker modeling and for decision making. Speech/Non-

speech detection can be formulated as a statistical hypothesis problem aimed at

determining to which class a given speech segment belongs. However, a high level

of background noise can cause numerous detection errors. This is because the

noise partly or completely masks the speech signal [14]. A robust decision rule

that works under noisy conditions is therefore essential. Most of the existing VAD

algorithms are effective under clean acoustic environments, but they could fail

badly under adverse acoustic conditions [15].

1.3 Contributions and Organization of the Dissertation

This dissertation proposes using spectral subtraction to remove the background

noise as much as possible before applying the energy-based VAD and statistical-

model-based VAD. The advantage of using spectral subtraction is that it allows
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us to introduce a nonlinear filtering operation on the noisy signal, which has

the effect of emphasizing the speech signal at high SNR regions and suppress-

ing the background noise (to almost zero) in low SNR regions. This nonlinear

operation effectively boost the SNR of the whole speech file, which makes the

subsequent energy-based VAD uncomplicated. Experimental evaluations suggest

that the VAD is particularly suitable for extracting speech segments from the

interview-speech files of NIST SREs.

This work has the following contributions to VAD aand speaker verification.

1. Compare the effectiveness of the state-of-the-art VADs – including the statistical-

model(SM)-based VAD and the Gaussian-mixture-model(GMM)-based VAD

– for speaker verification;

2. Develop a novel technique to extract reliable speech and non-speech segments

for training the GMM models in GMM-VAD;

3. Develop a threshold determination strategy that can largely eliminate the

influence of impulsive signal; and

4. Discover that spectral subtraction is a simple and good preprocessor for the

energy-based VAD and SM-VAD.

Chapter 3 highlights the special characteristics of interview speech in recent

NIST SREs and demonstrates how these characteristics cause difficulties in ex-

tracting the speech segments accurately. Then, Chapter 4 describes different VADs

and argues that spectral subtraction is an essential step in overcoming the difficul-

ties. Further evidences are then reported in Chapter 6 where the proposed VAD

shows promising results in NIST 2008 and 2010 SREs.
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Chapter 2

LITERATURE REVIEW ON VAD

VAD is an essential part of many speech processing and communication sys-

tems. For example, VAD helps enhancing system capacity and reducing power

consumption of portable communication devices via discontinuous transmission

(DTX) of coded speech [16]. Many VAD methods have been used in the past.

Some popular ones use periodicity measure [17], zero-crossing rate [18], pitch [19],

energy [20], spectrum analysis [21], higher order statistics in the LPC residual

domain [22], or combinations of different features [23].

During the last decade different VAD methods have been applied to real-time

speech transmission on the Internet [24], mobile communication services [16] and

noise reduction for digital hearing aid devices [25]. These methods can be generally

divided into three categories and they will be briefly explained in this chapter.

2.1 Conventional Time- or Frequency-Based Methods

Early VADs extract parameters such as LPC distance [26], energy levels, and zero

crossing rates [18, 20, 27] from speech signals and compare these parameters with

a set of thresholds for detecting the speech regions of an utterance. In 1993, an

energy-based speech detector was proposed [28] and its algorithm can be described

by the following equations:

E =
T−1∑
t=0

s2(t) or E =
K−1∑
k=0

S2
k , (2.1)

Ep = 1.5Ed, (2.2)

Enew
d = (1− p)Eold

d + pE, (2.3)
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where E is the frame energy computed either from signal samples s(t) or from DFT

coefficients Sk of a frame. This energy is compared with the threshold Ep derived

from the background noise energy Ed, i.e., speech is detected if E is greater than

Ep; otherwise, the background noise energy Ed is modified according to Eq. 2.3.

The zero-crossing rate of a signal is defined as the number of times the signal

crosses the ‘zero’ line [29]. The number of zero crossings for noise is random and

unpredictable; in contrast, the number of zero crossings for speech signals lies in

a fixed range. Specifically, the number of zero crossings for a 10-ms frame lies

between 5 and 15 [24]. This characteristic has been used to formulate decision

rules [24] that are independent of energy and hence is able to detect the low-

energy phonemes of a word or utterance. Typically, the following decision rule is

used:

Frame =

⎧⎪⎨
⎪⎩
‘Speech’ if Zl ≤ NZCR(m) ≤ Zu,

‘Non-speech’ otherwise,

(2.4)

where NZCR(m) is the number of zero crossings detected at frame m, and Zl and

Zu are respectively the lower and upper limits of the zero-crossings in typical

speech frames.

The detection accuracy of these earlier methods, however, could degrade dra-

matically under adverse acoustic conditions.

2.2 VAD Methods in Speech Coders

Advanced speech coders typically use more sophisticated methods in their VAD

than the conventional methods mentioned earlier. For example, the European

Telecommunication Standard Institute (ETSI) has released two VAD options [30]

for the Adaptive Multi-Rate (AMR) codec.

In Option 1 of the ETSI-AMR coder (AMR1) [1], speech is firstly passed

through a filterbank and the signal level in each band is calculated. The SNR

of these bands together with the output of a pitch detector, a tone detector and a

complex-signal analysis module are used to make VAD decisions. Thus, the clas-
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sification of voice activity depends on a mixture of acoustic information including

pitch, tone, complex-signal correlation and the energy levels of 9 frequency bands.

In Option 2 of the coder (AMR2), the decision logic is based on the energy of

16 channels (frequency bands), background noise, channel SNR, frame SNR, and

long-term SNR [31]. As an enhanced version of the original VAD, AMR2 takes

advantage of speech encoder parameters and is more robust against environmental

noise than AMR1 and G.729 [32].

One advantage of this coder is that the VAD decision threshold is adapted

dynamically according to the acoustic environment, allowing on-line speech/non-

speech detection under non-stationary acoustic environments.

2.3 Statistical-Model-Based Methods

More recently, research has focused on statistical-model-based VAD where indi-

vidual frequency bins of speech are assumed to follow a parametric density func-

tion [4]. In this approach, VAD decisions are based on a Likelihood Ratio Test

(LRT) where the geometric mean of the log-likelihood ratios of individual fre-

quency bins are estimated from observed speech signals. The statistical model can

be Gaussian [4]. However, it has been recently found that Laplacian and Gamma

models are more appropriate for handling a wide variety of noise conditions [33].

Using an online version of the Kolmogorov-Smirnov test, the type of models can be

selected adaptively for different noise types and SNRs [33]. Furthermore, Gaussian

mixture models trained with clean speech and noise have been used to provide an

appropriate decision rule for speech/non-speech detection [2, 32].

To improve the robustness of VAD under adverse acoustic environment, con-

textual information derived from multiple observations has been incorporated into

the LRT (MO-LRT) [34].
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2.4 Applications of VAD

VAD has been applied to many areas of speech processing, including coding, en-

hancement and recognition [14]. For speech coding, taking ETSI-AMR as an

example, the coder works at eight different bit rates ranging from 12.2 kb/s to

4.75 kb/s [35]. The coder is equipped with a voice activity detector [36–38] that

enables silence compression, facilitates channel interference reduction, and extends

the battery life time for mobile communications.

VAD plays an important role in speech enhancement. The purpose of speech

enhancement is to improve the speech quality under noisy environments. There

are two main difficulties for designing a speech enhancement system. One is the

lack of explicit statistical models for the speech and noise signals. Another one is

non-stationary property of speech and possibly also the noise signals. In practice,

the noise source is assumed to be additive and contains no correlation with the

clean speech signals. Spectral subtraction has been proposed in 1979 for lowering

the level of background noise [39]. This method is popular because of its simplicity

and ease of implementation.

The quality of speech signal has a strong influence on the performance of speech

recognition systems. To improve performance, VAD can be used to remove the

non-speech frames from the speech signals, a technique commonly known as frame

dropping [40].

2.5 VAD for NIST SRE

In recent NIST SREs, several sites provided the details of their VAD in the system

descriptions. Typically, these systems use energy-based methods that estimate a

file-dependent decision threshold according to the maximum energy level of the

file [41]. Some sites used the periodicity of speech frames or the power of noise-

removed speech frames to make speech/non-speech decisions [42, 43]. An alter-

native approach is to use the ASR transcripts supplied by NIST to remove the

non-speech segments [44].
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Chapter 3

CHARACTERISTICS OF INTERVIEW SPEECH IN

NIST SRES

In early NIST SREs, researchers seldom pay attention to VAD. This is because

the telephone speech files in early SREs have high signal-to-noise ratios (SNRs),

making VAD a trivial task. The high SNR in telephone speech is resulted from the

close proximity between speaker’s mouth and the handset. In interview speech,

however, different microphone types were used for recording. For example, twelve

microphones were used in NIST 2008 SRE,1 and in NIST 2010 SRE, the intervie-

wees used different types of far-field microphones, such as lavaliere microphones,

camcorders, and hanging microphones [45]. These microphones lead to four types

of speech files. This chapter highlights the characteristics of these files and explains

why these characteristics cause difficulty to VAD.

1Some of these microphones are of the same models, but they were placed at different positions
with respect to the speakers.
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(a)

(b)

AMR-VAD:

ASR-VAD:

GMM-VAD:

SM-VAD:

SS+AE-VAD:

(c)

Figure 3.1: (a) A short segment of low-energy interview speech in NIST 2010 SRE with
high-energy spikes. (b) The spectrogram of the same short segment. (c) Speech/non-
speech decisions (S for speech and h# for silence) made by five different VADs, which
are abbreviated in Table 6.1.

3.1 Impulsive Signals

Some files contain a number of spikes caused by plosive sounds or the speaker

speaking too close to the microphone, as illustrated in Fig. 3.1. The presence of

the impulsive signals causes problems in determining the VAD decision threshold,

because the spikes affect the maximum SNR in the file. If the decision threshold

is based on the background amplitude and the maximum amplitude, the presence

of these spikes will lead to overestimation of the decision threshold, causing low-

energy speech segments to be mistakenly detected as non-speech.

Some of the files in NIST 2010 SRE contain a large number of spikes that

seriously mask the amplitude of speech segments, as illustrated in Fig. 3.2.
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(a)

(b)

(c)

AMR-VAD:

ASR-VAD:

GMM-VAD:

SM-VAD:

AE-VAD:

SS+AE-VAD:

Hand Labeling:

(d)

Figure 3.2: (a) Waveform of low-energy microphone speech in NIST 2010 SRE with
numerous high-energy spikes. (b) The short segment of the same utterance. (c) The
corresponding spectrogram of the same short segment. (d) Speech/non-speech decisions
(S for speech and h# for silence) made by six VADs abbreviated in Table 6.1 and listening
tests (Hand Labeling).
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(a)

(b)

Figure 3.3: (a) A short segment of a speech file in NIST 2008 SRE. The segment con-
tains a high-level of periodic background noise. (b) The same segment after performing
spectral subtraction.

3.2 Low-energy Speech Superimposed on Periodic Background Sig-

nals

Some files contain low-energy speech superimposed on periodic background noise,

as exemplified in Fig. 3.3 and Fig. 3.4.

3.3 Low Signal-to-Noise Ratio

Depending on the microphone types, some of the interview speech segments have

extremely low SNR, causing problems in conventional VAD. Fig. 3.5(a) shows the

waveform of an interview speech file (ftvhv.sph) in NIST 2008 SRE, and Fig. 3.5(c)

highlights a short segment of the same file. Evidently, the SNR is very low. This

low SNR will cause numerous errors in energy-based VAD, as evident in the lower

panel (labeled with .phn) of Fig. 3.5(c).
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(a)

(b)

(c)

Figure 3.4: (a) A short segment of low-energy interview speech in NIST 2008 SRE
superimposed on periodic background noise. (b) The same segment after spectral sub-
traction. The VAD decisions (S for speech and h# for silence) are shown in the bottom
panel. (c) VAD decisions made by an ETSI-AMR coder.
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(a) The whole speech file (without denoising)

(b) The whole speech file (with denoising)

(c) A short segment (without denoising)

(d) A short segment (with denoising)

� �

(e) A short segment

Figure 3.5: Waveform, spectrogram, and speech/non-speech decision of an interview-
speech file in NIST 2008 SRE without [(a) and (c)] and with [(b) and (d)] denoising.
(e) VAD decisions of the ETSI-AMR coder, Option 2 [1]. For (c)–(e), the results of
VAD are shown in the panels labelled with .phn, with S and h# representing speech and
non-speech intervals, respectively.
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� � � � � � � � 	� � � � � � � � 	

(a) Interviewee’s channel

(b) Interviewer’s channel

(c) Crosstalk removed segmentation in Interviewee’s channel

Figure 3.6: (a) and (b) show the waveform of a short speech segment from an interviewee
and interviewer respectively. The corresponding VAD results (S for speech and h# for
silence) are displayed under their waveform. (c) VAD results of the interviewee’s speech
after performing crosstalk removal.

3.4 Crosstalks

Each interview speech file in NIST 2010 SRE contains two channels, one recording

the speech of an interviewee and the other the speech of an interviewer. As far-field

microphones were used for recording interviewee’s speech, a low-energy crosstalk

signal appears in the interviewee’s channel when the interviewer is talking, causing

the VAD mistakenly considers the crosstalk as belonging to the interviewee. This

situation is exemplified in Fig. 3.6(a) in which the microphone of the interviewee’s

channel picks up the speech of the interviewer in Interval A. This problem can

be solved by using the signal in the interviewer’s channel as follows. First, the

noise in the interviewer’s channel is removed by spectral subtraction, which is

followed by identifying the speech segments in the interviewer’s channel. Then,

the intervals for which the VAD detects speech in both channels are reverted to

non-speech. As can be seen from Fig. 3.6(c), Interval A has been successfully

reverted to non-speech by using the above strategy.
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Chapter 4

VOICE ACTIVITY DETECTION

After investigating the characteristics of interview speech in NIST SREs, we

implement different VAD methods to detect the speech segments in these files.

This chapter describes statistical-model(SM)-based VAD [4] incorporated with

fixed decision threshold. By extending the SM-based VAD, a Gaussian-mixture-

model-based VAD [46] that considers the long-term spectro-temporal and static

harmonic features [2] is explained. An energy-based VAD that uses spectral sub-

traction [39, 47, 48] as a preprocessor is then proposed.
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4.1 Statistical-Model-Based VAD

4.1.1 Formulation

Recent state-of-the-art VADs are based on likelihood ratio tests where the distri-

butions of the frequency components of speech and noise are approximated by a

statistical model (SM). In SM-based VAD, noisy speech y(t) is assumed to be a

combination of clean speech x(t) and uncorrelated additive noise b(t), resulting

in y(t) = x(t) + b(t), where t represents the sample index. Their corresponding

K-dimensional DFT are denoted as Y (m), X(m), and B(m), respectively, where

m denotes the frame index. Two hypotheses are made for each frame:

H0 : speech absent : Y (m) = B(m),

H1 : speech present : Y (m) = X(m) +B(m).
(4.1)

The distributions of the noisy DFT coefficients conditioned on the above hy-

potheses are given by [49]

p(Y |H0) =

K−1∏
k=0

1

πλB,k
exp

{
−|Yk|2
λB,k

}
(4.2)

p(Y |H1) =
K−1∏
k=0

1

π[λB,k + λX,k]
exp

{
− |Yk|2
λB,k + λX,k

}
, (4.3)

where λB,k and λX,k denote the variances of additive noise and clean speech for

frequency bin k, respectively.

The likelihood ratio for the k-th frequency bin at frame m is

Λk(m) �
p(Yk(m)|H1)

p(Yk(m)|H0)
=

1

1 + ξk(m)
exp

{
γk(m)ξk(m)

1 + ξk(m)

}
, (4.4)
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where

γk(m) =
|Yk(m)|2
λB,k

, (4.5)

ξk(m) =
λX,k(m)

λB,k

, (4.6)

are respectively defined as the a posteriori signal-to-noise ratio (SNR) and the a

priori SNR. In practice, λB,k’s are estimated from non-speech regions; therefore,

γk(m) can be computed easily. To compute ξk(m), Sohn et al. [4] suggest to apply

the decision direct formulation:

ξ̂k(m) = α
X̂2

k(m− 1)

λB,k(m− 1)
+ (1− α)max {γk(m)− 1, 0} (4.7)

where X̂k(m− 1) is the estimated spectrum of the previous frame obtained using

the MMSE estimator [49].

To account for the correlation in consecutive speech frames, an HMM-based

hangover scheme is adopted. In this scheme, the sequence of frame states (H0 or

H1) is modeled as a first-order Markov process. Given a set of observations up to

frame m, Y(m) = {Y (m), Y (m− 1), . . . , Y (1)}, the forward variable is defined as
αi(m) � p(q(m) = Hi,Y(m)) where q(m) denotes the state of the m-th frame and
is either H0 or H1. By using the forward procedure [50], αi(m) can be written as

follows:

αi(m) =

⎧⎪⎨
⎪⎩
P (Hi) · p(Y (1)|q(1) = Hi), if m = 1

(α0(m− 1)a0j + α1(m− 1)a1j) · p(Y (m)|q(m) = Hi), if m ≥ 2.

(4.8)

where aij � P (q(m) = Hj|q(m− 1) = Hi).

After some mathematical manipulations, the decision rule can be written as [4]

Γ(m) =
α1(m)P (H0)

α0(m)P (H1)
=

a01 + a11Γ(m− 1)

a00 + a10Γ(m− 1)

P (H0)

P (H1)
Λ(m)

H1

≷
H0

η (4.9)
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where η is a decision threshold and Λ(m) =
[∏K−1

k=0 Λk(m)
] 1

K

is the geometric

mean of the likelihood ratios for the individual frequency bins.

To improve the robustness of VAD under adverse acoustic environment, contex-

tual information derived from multiple observations has been incorporated into the

LRT (MO-LRT) [34]. Given the observation vectors {X(l−n), . . . , X(l), . . . , X(l+

n)}, the MO-LRT is defined as follows:

ϕ(l, n) =

l+n∑
m=l−n

ln

[
p(X(m)|H1)

p(X(m)|H0)

]
H1

≷
H0

η (4.10)

where η is a fixed threshold, and l denotes the frame being classified as speech (H1)

or non-speech (H0). Thus, the decision is based on a sliding window consisting

of observation vectors around the current frame. It was found that this decision

rule achieves significant improvements in speech/non-speech discrimination when

compared with those that rely on a single observation only [51].

4.1.2 Threshold Determination and VAD Decision Logic
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Figure 4.1: The structure of SM-VAD incorporated with a fixed threshold.

The VAD accuracy is highly dependent on the decision threshold η, we advo-

cated a method to determine the threshold that is fixed across the whole utterance.

For this method, the SM scores Γ(m) of the entire utterance are ranked in descend-

ing order as shown in Fig. 4.1. Then, a fixed percentage of scores in the lower
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and upper ends of the ranked list are selected and assumed to be the background

frames and peak frames, respectively. The VAD’s fixed decision threshold is a

linear combination of the score mean of the lower end (Γ̄b) and the minimum score

in the upper end as follows:

η = νΓ̄b + (1− ν)min{Γ(p1), . . . ,Γ(pL)}, (4.11)

where 0 � ν < 1 is a weighting factor and {Γ(p1), . . . ,Γ(pL)} are top-L scores.

Note that L cannot be too large; otherwise the rank list may include the peaks of

some high-energy speech frames, which will lead to under-estimation of η. How-

ever, when L is too small, some medium-amplitude spikes will be missed. It was

found that the influence of spikes can be largely eliminated by using the minimum

amplitude in this ranked list, as evidenced by the VAD result in the Fig. 3.1(c).

The above procedure raises the issue of determining an appropriate percentage

for the lower and upper ends of the ranked score list. These percentages can be

founded by inspecting several interview speech files in NIST 2005–2008 SREs. By

examining some of these files, we found that it is fairly safe to consider 10% of a

speech file contain background frames and 5% of the file contain signal peaks.
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4.2 Gaussian-Mixture-Model-Based VAD

This section outlines the procedures of extracting the long-term temporal cepstra

and harmonic features [2] from noisy signals and explains how to use these features

to discriminate between speech frames and non-speech frames by using Gaussian

Mixture Models (GMMs) [46].

4.2.1 Static Harmonic Features

Mel-frequency cepstral coefficients (MFCCs) are known to be inadequate for dis-

criminating speech and non-speech frames, primarily because of the similarity

between the static MFCC vectors of speech and background noise. On the other

hand, the harmonic structures of speech and background noise are more distin-

guishable and more noise robust [52]. Based on this argument, Fukauda et al. [2]

extracted the harmonic-structure-based features from the middle range of the cep-

stral coefficients obtained from the discrete cosine transform (DCT) of the power

spectral coefficients. Fig. 4.2 shows the procedure of extracting the harmonic-

structure-based features.
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Figure 4.2: The procedure Eq. 4.12 to 4.15 of extracting the harmonic-structure-
based features (after [2]).

The power spectrum is first obtained from the observed speech, which is fol-

lowed by taking logarithm to produce a log power spectrum Yk(m), where m and

k are the frame index and frequency bin index, respectively. Then, a cepstrum
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ci(m) is obtained by applying DCT to the log-power spectrum:

ci(m) = ωi

K∑
k=1

Yk(m) cos
π(2k − 1)(i− 1)

2K
, i = 1, . . . , I (4.12)

where ωi = 1/
√
K if i = 1, and ωi =

√
2/K otherwise; K is the length of

Y (m) and i is the cepstral index. The cepstral coefficients ci(m) with small and

large indexes i are liftered out because they include long and short oscillations.

On the other hand, the coefficients in the middle part of the cepstrum capture

the harmonic structure information in the human voice. Therefore, the following

liftering process is applied to the cepstrum ci(m):

ĉi(m) =

⎧⎪⎨
⎪⎩
λci(m), if (i < DL) and (i > DH)

ci(m), otherwise

(4.13)

where λ (= 10−3) is a small constant, DL and DH are the lower- and upper-limit

of cepstral indexes corresponding to the range of pitch frequencies in human voice.

For example, for F0 ranges between 100 and 400 Hz, DL = 20 and DH = 80.1 The

liftered cepstrum ĉi(m) is converted back to the log power spectrum by Inverse-

DCT:

Wk(m) =
I∑

i=1

ωiĉi(m) cos
π(2k − 1)(i− 1)

2I
, k = 1, . . . , K (4.14)

followed by the exponential transform to obtain the linear power spectrum

Ŵk(m) = exp (Wk(m)). (4.15)

The coefficients Ŵk(m) are finally converted to mel-cepstrum q̂n(m) by applying

a mel-scale filter bank and DCT, where n is the bin number of the harmonic

structure-based mel cepstral coefficients. This feature captures the envelope infor-

mation of the local peaks in the frequency spectrum corresponding to the harmonic

information in the speech signals.

1All utterances in NIST SREs were sampled at 8kHz.
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4.2.2 Long-Term Dynamic Features

Dynamic (spectro-temporal) features capture the variation of the spectral en-

velopes along the time axis. They are typically obtained by estimating the deriva-

tive of 5 to 9 consecutive acoustic vectors. The first-order derivative of a sequence

of cepstral vectors is called delta cepstrum, and the second-order derivative is

called delta-delta cepstrum.

Denote the cepstral sequence as C = [c(1), c(2), . . . , c(m), . . . , c(M)], where

c(m) = [c1(m), c2(m), . . . , cI(m)]
T is an I-dimensional cepstral vector. The I-

dimensional delta cepstrum is given by [53]

Δci(m) =

∑N
n=−N nci(m+ n)∑N

n=−N n2
, i = 1, . . . , I (4.16)

where ci(m) is the i-th coefficient of c(m) and 2N +1 cepstral vectors are used for

estimating the delta cepstrum. The value of N is set to eight to extract long-term

temporal information, leading to long-term dynamic features.

4.2.3 Threshold Determination and VAD Decision Logic

GMM-based VAD is a kind of statistical-model-based VAD in which the K-

dimensional feature vectors y(m), m = 1, . . . ,M , are assumed to follow a mix-

ture of Gaussian distributions. The probability density functions (PDF) of speech

(i = 1) and non-speech (i = 0) vectors in the j-th Gaussian are given by

pj(y(m)|Hi) =
1

(2π)K/2|Σij|1/2 exp
[
−1
2
(y(m)− μij)

TΣ−1ij (y(m)− μij)

]
(4.17)

where μij and Σ−1ij are the mean vector and covariance matrix for either speech

(i = 1) or non-speech (i = 0) model. The Gaussian density functions are then

linear combined to give the mixture distributions:

p(y(m)|Hi) =
J∑

j=1

βijpj(y(m)|Hi) (4.18)
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where βij’s are the mixture coefficients, H0 and H1 represent non-speech and

speech hypothesis (model), respectively.

The decision rule is obtained by comparing the log-likelihood ratio

L(m) = log p(y(m)|H1)− log p(y(m)|H0) (4.19)

with decision threshold η:

L(m)
H1

≷
H0

η (4.20)

The decision threshold η is determined by a strategy similar to that of SM-VAD

described in Section 4.1.2. Specifically, 20% and 5% of a speech file are assumed

to contain background frames and signal peaks, respectively.

Architecture of GMM-Based VAD

Unlike the SM-based VAD, the GMM-based VAD require the training of two

GMMs – one representing speech and another one representing non-speech. This

means that some speech files with speech and non-speech segmentations are re-

quired. In theory, the segmentations had better to be the ground-truths, i.e., they

need to be done by listening tests and human inspections of spectrograms. This

is not a problem if clean speech files are available and the VAD is tested on the

same files but with noise added to them, e.g., the experiments in [2]. However, in

NIST SREs, the requirement of ground-truth segmentations will cause difficulty

because no clean speech files are available for the listening tests or spectrogram

inspections. Even if we can find some interview-style speech files with high enough

SNR for the listening tests, they may be too clean and therefore cannot represent

the realistic situations in other noisy speech files. Furthermore, hand labeling

of large amount of speech files is simply too laborious and time-consuming. To

overcome this difficulty, this dissertation proposes method that can determine the

segmentations that are close enough to the ground-truths for training the GMMs

without human intervention.

Fig. 4.3 shows the architecture of GMM-based VAD for NIST SREs. Unlike
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Figure 4.3: Overview of the GMM-based VAD. See Fig. 4.4 for the algorithm of frame
index extraction.

the VAD in [2], our GMM-based VAD contains an extra processing block (Frame

Index Extraction) that finds the frame indexes of speech and non-speech segments

with very high confidence of being correct. This seems to create a chicken-and-egg

problem because if a reliable VAD exists, we do not need to build a new one in the

first place. However, having some reliable speech and non-speech segments does

not mean that we need a reliable VAD to detect both at the same time. The idea is

that we can always make a simple energy-based VAD “very” reliable in detecting

speech but extremely unreliable in detecting non-speech by adjusting the decision

threshold such that it can achieve a very low false alarm (consider non-speech as

speech) but having a very high missing rate (consider speech as non-speech). A

similar argument applies to the reliable detection of non-speech. Note that as this

simple VAD can only maintain either the false alarm or missing rate low but not

both, it can only be used as a pre-processing step in more sophisticated VADs

such as the one illustrated in Fig. 4.3.

The idea is to leverage the large number of speech files in NIST SREs avail-

able for training the GMMs. Specifically, for each interview-style speech files in

the training set (e.g., past NIST SREs), a simple energy-based VAD is used to

determine the energy of all frames. Then, the frames are ranked in ascending

order of energy as illustrated in Fig. 4.4. The top 5% of the ranked list are dis-

carded because the high energy is most likely caused by spiky signals instead of

speech. Because of the simplicity of the energy-based VAD, there will be many

false alarms and misses in the detections. Therefore, only a small percentage in the
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upper- and lower-part of the ranked list are considered as speech and non-speech,

respectively. In other words, about 99% of the frames in the middle of the ranked

list will be ignored, and only the frames with a very high confidence of having a

correct segmentation are retained for training the GMMs.
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Figure 4.4: The procedure of extracting the frame indexes representing the speech and
non-speech segments in the processing block “Frame Index Extraction” in Fig. 4.3.

Given the frame indexes of speech and non-speech segments, static harmonic

features and long-term dynamic features are extracted and concatenated (i.e.,

y = [q̂T ΔcT ]T ), forming two streams of feature vectors as shown in Fig. 4.3.

These concatenated features vectors are then used to train the GMMs.

In this work, 3569 interview-style utterances from NIST SRE 2005–2008 were

used for training the GMMs. This amount to 280,010 training vectors per GMM.

The number of mixtures J was set to 32, and all Gaussians have a full covariance

matrix. Similar to the SM-based VAD described in Section 4.1.2, the decision

threshold η was determined by considering 20% and 5% of a speech file contain

background frames and signal peaks, respectively.

4.2.4 Characteristics of GMM-Based VAD

Unlike the SM-based VAD, the GMM-based VAD uses GMMs to model the dis-

tribution of multi-dimension acoustic features. This approach makes the VAD

less susceptible to spiky signals because these signals have low-level of harmonic

contents and their temporal property is also different from that of speech signals.
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This ability is evident in Fig. 3.2 where the segmentations of GMM-based VAD

are closest to those obtained by hand labeling.

However, GMM-based VAD also has its own limitations. In particular, be-

cause the GMM-based VAD does not rely on SNR, it could falsely detect some

weak cross-talks from other speakers as speech segments as long as the cross-talks

contain speech-like characteristics. This phenomenon is especially apparent in

the “Phonecall-Microphone” speech files2 in NIST 2010 SRE, as exemplified in

Fig. 4.5. Evidently, this drawback can be alleviated by using spectral subtraction

as a pre-processor because the weak cross-talks will be considered as background

signals so that they can be largely eliminated in the spectral subtraction process.

Further discussions on the use of spectral subtraction as a pre-processor can be

found in Section 4.3.

2Speech passed through a telephone channel but recorded by microphones.
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GMM-VAD:

AE-VAD:

SS+AE-VAD:

(d)

Figure 4.5: (a) A short segment of phonecall-microphone speech in NIST 2010 SRE with
not-so-apparent crosstalk. (b) The spectrogram of the short segment in (a). (c) The log
likelihood ratio (blue curve) of the segment obtained by a GMM-based VAD with the
fixed decision threshold (red line). (d) Speech/non-speech decisions (S for speech and h#

for silence) made by GMM-based VAD (GMM-VAD), the energy-based VAD without
(AE-VAD) and with spectral subtraction (SS+AE-VAD).
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4.3 Energy-Based VAD with Spectral Subtraction

Noise removal is a vital step for pre-processing the interview speech files in NIST

SREs because many of them have very low SNR. This dissertation proposes to

apply spectral subtraction (SS) with a large over-subtraction factor to discard the

background noise as much as possible before passing the enhanced speech to an

energy-based VAD. Advanced speech enhancement techniques (e.g. MMSE [49]

and LSA-MMSE [54]) have not been used because audio quality of reconstructed

speech is not the main concern. Instead, it is more important to increase the

SNR in speech regions and to minimize the background noise in non-speech re-

gions. Spectral subtraction can well meet this requirement without unnecessarily

complicating the whole system.

4.3.1 Noise Reduction via Spectral Subtraction

To obtain the enhanced speech x̂(t) from the noisy speech y(t) at frame m, we

implemented the spectral subtraction [39, 47, 48] of the form

X̂k(m) =

⎧⎪⎨
⎪⎩
[|Yk(m)| − α(m)|B̂k|]ejϕk(m) if |Yk(m)| > (α(m) + β(m))|B̂k|

β(m)|B̂k|ejϕk(m) otherwise,

(4.21)

where k is the frequency bin index, ϕk(m) is the phase of Yk(m), B̂k is the aver-

age spectrum of some non-speech regions, α(m) is an over-subtraction factor for

removing background noise, and 0 < β(m)� 1 is a spectral floor factor ensuring

that the recovered spectra never fall below a preset minimum. When the SNR

is low, the spectral floor factor ensures that a low-level of noise is present in the

enhanced signal. This noise helps to reduce the musical noise that may otherwise

be introduced if the recovered spectrum X̂k(m) is set to zero.
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The value of α(m) and β(m) can be computed as

α(m) = −1
2
γ(m) + c (αmin ≤ α(m) ≤ αmax)

β(m) =

⎧⎨
⎩

βmin if γ(m) < 1

βmax otherwise

(4.22)

where γ(m) =
∑

k
|Yk(m)|

∑
k
|B̂k|

is the a posteriori SNR, c is a constant (= 4.5 in this

work), αmin, αmax, βmin, and βmax constrain the allowable range of the over-

subtraction factor and the noise floor. These limits are set according to the amount

of tolerable musical noise in the denoised speech. Note that musical noise is not

a main concern in our application as speakers’ features were extracted from the

original files instead of the enhanced files. We thus set these values such that

the speech spectra are over-subtracted when the SNR is low. In this work, we set

αmax = 4, αmin = 0.5, βmax = 0.05, and βmin = 0.01. These values were determined

by observing the reconstructed waveform of several files.
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Figure 4.6: Plot of α against γ in the Eq. 4.22.

Eq. 4.22 ensures that when SNR is high (see Fig. 4.6) α(m) will be small,

and therefore spectral subtraction (upper-part of Eq. 4.21) will occur, but the

amount of subtraction is small. This ensures that the original speech signal will

not be significantly distorted by the subtraction process. For moderate SNR,

either over-subtraction or noise flooring may be applied to the noisy spectra. For
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those frequency components that are subject to over-subtraction, the amount of

subtraction is larger. This ensures that more noise will be removed. At regions

with very low SNR, noise flooring is more likely to occur. For the frequency

components that meet the condition, |Yk| − α|B̂k| > β|B̂k|, majority of noise will
be largely removed because α becomes very large.

Note that α should not be too large for two reasons. First, if α is very large,

most of the frequency components cannot meet the condition |Yk|−α|B̂k| > β|B̂k|,
which results in losing speech contents in the denoised speech. Second, for those

components that can meet the above condition, the degree of over-subtraction will

be too significant, resulting in severely distorted speech.

For the value of β, at region of low SNR, β is set to its minimum value.

This ensures that the non-speech region of the denoised speech has a low-level

of noise. Note that at low SNR, almost all frequency component cannot meet

the condition |Yk| − α|B̂k| > β|B̂k|. As a result, noise flooring will be applied to
almost all frequency components. Therefore, keeping β small can help reducing

the background noise in the denoised speech. On the other hand, at the region of

high SNR, β is set to its maximum value. This strategy helps to avoid the abrupt

change in the frequency spectra of the denoised speech at high SNR region. The

reason is that although at high SNR, majority of the frequency components can

meet the condition |Yk| − α|B̂k| > β|B̂k|, some of the frequency components may
not. For those components that cannot meet this condition, noise flooring will be

applied. If the value of β is too small, the corresponding frequency components

in the denoised speech will be significantly smaller than the other components,

causing significant spectral distortion in the denoised speech.

4.3.2 Applying Spectral Subtraction to the Energy-Based VAD

Fig. 4.7 shows the structure of the proposed energy-based VAD, which we refer to

as SS+AE-VAD. Figs. 3.5(b) and (d) show the same speech file and segment as in

Figs. 3.5(a) and (c) but after spectral subtraction. Evidently, with the background

noise largely removed, speech and non-speech intervals can be correctly detected by
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Figure 4.7: The structure of the proposed VAD for NIST SREs.

an energy-based VAD. To highlight the advantage of spectral subtraction, Fig. 3.5

compares the segmentation results of SS+AE-VAD and that of the ETSI-AMR

coder (Option 2). The figure suggests that this coder over-estimates the length of

speech segments, whereas the SS+AE-VAD correctly detects the speech segments.

To collect more evidences on the advantage of noise removal, we applied energy-

based VAD without SS, ETSI AMR, and energy-based VAD with SS to extract the

speech segments of 6249 files in NIST 2005–2008. For each file, we used the three

detectors to extract the speech segments and computed the ratio between speech-

segment length and total-signal length. The distributions of speech-segment-length

to total-signal-length ratio are shown in Fig. 4.8. The figure shows that without

noise removal, the detector mistakenly determines many non-speech segments as

speech segments in a large number of speech files, as evident by the high frequency

of occurrences at ratio over 0.9–1.0. On the other hand, with noise removal, the

detector considers half of the total signals contain speech in many speech files.

The ETSI AMR lies in between VAD with noise removal and VAD without noise

removal.

4.3.3 Threshold Determination and VAD Decision Logic

The presence of spikes in some files affects the maximum SNR in these files, which

needs to be taken care of when determining the VAD decision threshold. In par-

ticular, these spikes lead to overestimation of the decision threshold if it is based

on the background amplitude and the maximum amplitude. Consequently, low-

energy speech segments could be mistakenly detected as non-speech. To address

this problem, we have developed a similar strategy as the one in Section 4.1.2, but
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Figure 4.8: Distribution of speech-segment-length to total-signal-length ratio deter-
mined by three VAD detectors: energy-based VAD without noise removal (blue), energy-
based VAD with noise removal (red dashed), and VAD (Option2) in ETSI-AMR coder
(black dashed-dot).

considering signal amplitude rather than statistical scores. The decision thresh-

old is a linear combination of the mean of background amplitude (āb) and the

minimum of the signal peaks:

η = νāb + (1− ν)min{a(p1), . . . , a(pL)}, (4.23)

where {a(p1), . . . , a(pL)} are the amplitudes of L largest-amplitude frames. In

this work, L was set to 1% of the total number of frames in the speech file. By

comparing the amplitude of each frame in the file with the threshold, those frames

with amplitude larger than the threshold are considered as speech frames.

However, some speech files contain segments with a large DC offset after spec-
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tral subtraction, and these segments should be considered as non-speech. There-

fore, another decision logic is applied: Frame with extremely low zero-crossing rate

(smaller than 10% of background zero-crossing rate) are considered as non-speech.

The pseudo-code of the proposed SS+AE-VAD can be found in the appendix A.
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Chapter 5

ANALYTICAL COMPARISON OF SM-VAD AND

SS+AE-VAD

This chapter compares and contrasts analytically the decision rules of the

statistical-model-based VAD (SM-VAD) and the spectral-subtraction-based VAD

(SS+AE-VAD) described in Chapter 4.

5.1 Decision Rules of Energy-Based VAD

5.1.1 Without Spectral Subtraction

The decision rule of an energy-based VAD without spectral subtraction is given

by

1

K

K−1∑
k=0

|Yk|2
H1

≷
H0

1

K

K−1∑
k=0

|B̂k|2 + η

⇒ 1

K

K−1∑
k=0

[
|Yk|2 − |B̂k|2

] H1

≷
H0

η

(5.1)

where k = 0, . . . , K − 1 is the frequency bin index, K is the frame size, and η is a

decision threshold.

5.1.2 With Generalized Spectral Subtraction

With the generalized spectral subtraction, the k-th frequency bin of the enhanced

power spectrum |X̂k|2 is given by |Yk|2 − α|B̂k|2. Then the a priori and a pos-

teriori SNR are respectively given by ξk = |X̂k|2/|B̂k|2 = λX,k/λB,k and γk =

|Yk|2/|B̂k|2 = λY,k/λB,k. Consider the generalized spectral subtraction in Eq. 4.21
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as a filtering process shown in Fig. 5.1. Then, |Hk|2 can be expressed as

|X̂k|2
|Yk|2 =

|Yk|2 − α|B̂k|2
|Yk|2 =

|Yk|
2

|B̂k|2
− α

|Yk|2

|B̂k|2

=
γk − α

γk
. (5.2)

Therefore, we have |Hk| =
√

γk−α
γk

, and for |Hk| to be real, γk ≥ α ∀k and thus

|Yk|2 ≥ α|B̂k|2. To make VAD decisions, we compute the energy of |X̂k| for each
frame and compare it with the background energy, i.e.,

1

K

K−1∑
k=0

|X̂k|2 = 1

K

K−1∑
k=0

[
γk − α

γk

]
|Yk|2

H1

≷
H0

1

K

K−1∑
k=0

|B̂k|2 + η (5.3)

According to Eq. 4.21, if |Yk|2 < |B̂k|2, then |X̂k|2 = β|B̂k|2. Therefore, when
SNR is small, the VAD decision rule is given by

1

K

K−1∑
k=0

β|B̂k|2
H1

≷
H0

1

K

K−1∑
k=0

|B̂k|2 + η. (5.4)

To make correct decisions, β needs to be less than 1, which agrees with the setting

of βmax and βmin in Section 4.3.1.

Figure 5.1: Relationship between noisy speech (input) and denoised speech (out-
put).
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5.1.3 With Simple Spectral Subtraction

When α(m) = 1 and β(m) = 0 in Eq. 4.21, we have the most basic form of spectral

subtraction. The enhanced power spectrum is given by

|X̂k|2 =

⎧⎪⎨
⎪⎩
|Yk|2 − |B̂k|2 if |Yk|2 > |B̂k|2

0 otherwise,

(5.5)

and using Eq. 5.2 and Eq. 5.3, the VAD decision rule is given by

1

K

K−1∑
k=0

[
γk − 1

γk

]
|Yk|2

H1

≷
H0

1

K

K−1∑
k=0

|B̂k|2 + η

⇒ 1

K

K−1∑
k=0

[
|Yk|2 − |Yk|2

γk

]
H1

≷
H0

1

K

K−1∑
k=0

|B̂k|2 + η

⇒ 1

K

K−1∑
k=0

[
|Yk|2 − |B̂k|2

] H1

≷
H0

η +
1

K

K−1∑
k=0

λB,k

⇒ 1

K

K−1∑
k=0

[
|Yk|2 − |B̂k|2

] H1

≷
H0

η′

(5.6)

where η′ = η+ 1
K

∑K−1
k=0 λB,k, and Eq. 4.5 has been used in the derivation. Eq. 5.1

and Eq. 5.6 suggest that VAD with simple spectral subtraction can be reduced to

energy-based VAD as in Eq. 5.1. Therefore, in order to make spectral subtraction

useful for VAD application, we should consider the generalized form in Eq. 5.3.

5.1.4 Benefit of Spectral Subtraction

Without spectral subtraction, the ratio between the energy of speech and non-

speech can be determined by

SNR(withoutSS ) = γ =

∑
k |Yk|2∑
k |B̂k|2

. (5.7)
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Figure 5.2: Waveform of a short segment (a) before and (b) after performing spectral

subtraction.

With spectral subtraction, the signal-to-noise ratio becomes

SNR(withSS ) = γ′ =

∑
k

[
|Yk|2 − α|B̂k|2

]
β
∑

k |B̂k|2
=

γ − α

β
, (5.8)

where γ is the SNR without SS in Eq. 5.7. The minimum value of γ for which

spectral subtraction is beneficial can be found by the following inequality:

SNR(withSS ) > SNR(withoutSS )

⇒γ − α

β
> γ

⇒γ(1− β) > α

⇒γ >
α

1− β
.

(5.9)

This inequality provides a guideline for setting the limits of α and β. Let us use

the setting in Section 4.3.1 as a numerical example. Using αmax = 4, αmin = 0.5,

βmax = 0.05 and βmin = 0.01, we have

0.53 =
0.5

1− 0.05
=

αmin

1− βmax
<

α

1− β
<

αmax

1− βmin
=

4

1− 0.01
= 4.04.
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Therefore, as long as the SNR γ is greater than 0.53, the SNR after spectral

subtraction will be higher than that before spectral subtraction, thus bringing

benefit to the energy-based VAD. Fig. 5.2 further exemplifies this situation.

5.2 Decision Rules of SM-Based VAD

5.2.1 Without Spectral Subtraction

To simplify analysis, let us consider the Itakura-Saito distortion (ISD) based de-

cision rule (Eq. 6 of [4]) in SM-based VAD:

log Λ̂ =
1

K

K−1∑
k=0

{γk − log γk − 1}
H1

≷
H0

η (5.10)

where γk = |Yk|2/|Bk|2.

5.2.2 With Spectral Subtraction

With spectral subtraction, we replace γk in Eq. 5.10 with γ′k =
γk−α
β
, leading to

the following decision rule:

1

K

∑
k

[γ′k − log γ′k − 1]
H1

≷
H0

η′

⇒ 1

K

∑
k

[
γk − α

β
− log

(
γk − α

β

)
− 1

]
H1

≷
H0

η′

⇒ 1

K

∑
k

[γk − α− β log(γk − α) + β log β − β]
H1

≷
H0

η′β

⇒ 1

K

∑
k

[γk − β log(γk − α) + c]
H1

≷
H0

η′′

(5.11)

where c = β log β − α− β and η′′ = η′β. As Eq. 5.10 and Eq. 5.11 have a similar

form, statistical model with and without spectral subtraction will not produce

significantly different VAD result as long as γk > α. This argument is supported

by the experimental results in Section 6.2.2.
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Chapter 6

EXPERIMENTS

VAD algorithms are typically evaluated by comparing the VAD results on

clean speech against the VAD results on noise contaminated speech [55], with

performance shown on a receiver operating characteristic (ROC) curve. However,

the noisy speech files in NIST SREs do not have their clean counterparts. Instead

of hand labeling a large amount of speech files, this chapter uses the performance

indexes of speaker verification, i.e. EER, DET, minimum DCF and minimum

normalized DCF, for quantifying VAD performance.

The experiments involve nine VADs. They are (see Table 6.1)

1. AE-VAD: average-energy-based VAD,

2. ASR-VAD: ASR transcripts provided by NIST 2010 SRE Workshop,

3. AMR-VAD: the VAD in the ETSI-AMR coder (option 2),

4. SM-VAD: a statistical-model-based VAD,

5. GMM-VAD: a Gaussian-mixture-model-based VAD,

6. SS+SM-VAD: spectral subtraction followed by SM-VAD, and

7. SS+AE-VAD: spectral subtraction followed by AE-VAD.

6.1 Selection of Threshold Parameters for SS+AE-VAD

As mentioned in Section 4.3, energy-based VAD requires a decision threshold for

making speech/non-speech decisions. This section describes an experiment that
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VAD Description

1 AE-VAD Energy-based VAD with the decision governed by the combina-
tion between average magnitude of background noise and signal
peaks. The combination is controlled by a weighting factor (ν in
Eq. 4.23).

2 ASR-VAD Speech segments in the Automatic Speech Recognition transcripts
provided by NIST [45].

3 AMR-VAD VAD in ETSI Adaptive Multi-Rate coder (Option2) [1].

4 SM-VAD Sohn’s statistical-model-based VAD incorporated with a fixed
threshold, determined by Eq. 4.11.

5 GMM-VAD Gaussian-mixture-model-based VAD using long-term temporal
information and harmonic structure-based features in noisy
speech [2] incorporated with a fixed decision threshold.

6 SS+SM-VAD SM-VAD with spectral subtraction as a pre-processing step.

7 SS+AE-VAD AE-VAD with spectral subtraction as a pre-processing step.

Table 6.1: The voice activity detection (VAD) methods being applied in this
dissertation and their acronym.

investigates the effect of the weighting factor ν (Eq. 4.23) on the energy-based

VAD.

6.1.1 Experimental Setup

NIST 2005–2008 Speaker Recognition Evaluations (SREs) were used in the exper-

iments. NIST’05 and NIST’06 SREs were used as development data, and NIST’08

was used for performance evaluations.1 Only male speakers in these corpora were

used.

The core task (short2-short3) of NIST’08 has eight common conditions. We

focus on Common Conditions 1 to 4 (CC1–CC4), because these four conditions

involve interview speech. For example, CC3 reflects the performance of systems

that were trained and tested on different microphones in the interview recordings.

Table 6.2 summaries these four common conditions in NIST’08.

For each utterance, an energy-based VAD, the ETSI-AMR coder, and the

proposed spectral subtraction energy-based VAD were used to remove the silence

1Hereafter, all NIST SREs are abbreviated as NIST’XX , where XX stands for the year of
evaluation.
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Common
Train/Test Condition

No. of No. of
Condition Targets Trials

1 All Interview speech 622 14405

2 Interview speech, same microphone type for training
and test

125 731

3 Interview speech, different microphone types for train-
ing and test

622 13674

4 Interview speech for training, telephone speech for test 622 5048

Table 6.2: The training and test speech types used in Common Conditions 1 to 4
in NIST’08 (male speakers).

regions. This procedure results in three segmentation files for each utterance.

For the SS+AE-VAD (see Table 6.1), different values of the weighting factor (ν

in Eq. 4.23) were applied to the speech files in NIST’08. For the speech files in

NIST’05 and NIST’06 used for creating the UBM [13] and Tnorm models [56], the

weighting factor was set to 0.95.2

In feature extraction, twelfth-order MFCCs [12] plus their first derivative were

extracted from the speech regions of the utterance, leading to 24-dim acoustic vec-

tors. We used GMM-SVM [57] as target-speaker models. Specifically, interview

utterances from the male speakers of NIST’05 and NIST’06 were used for creating

a 512-center, gender-dependent universal background model (UBM). MAP adap-

tation [13], with relevance factor set to 16 was then performed for each of the

target-speakers to create target-dependent GMMs. The same MAP adaptation

was also applied to 300 background speakers (also from NIST’05 and ’06) to cre-

ate 300 impostor GMMs. The mean vectors of these GMMs were stacked to form

12288-dim GMM-supervectors [57]. For each target speaker, his target-dependent

GMM-supervector and the background GMM-supervectors were used to train a

GMM-SVM speaker model.

To reduce channel effects, 81 male speakers from NIST’05 and NIST’06 were

2The weighting factor was fixed for all speech files used for creating the UBM and Tnorm
models because we assume that the optimal value of this parameter can be obtained during
system development.
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VAD Method ν
EER (%) Minimum DCF

CC1 CC2 CC3 CC4 CC1 CC2 CC3 CC4

AE-VAD 0.95 8.28 1.93 8.08 13.61 0.041 0.009 0.041 0.053

AE-VAD 0.99 8.14 3.57 7.71 12.68 0.043 0.015 0.041 0.048

AMR-VAD – 8.51 1.53 8.54 11.05 0.040 0.003 0.040 0.042

SS+AE-VAD 0.00 16.69 10.21 16.72 19.49 0.069 0.052 0.066 0.074

SS+AE-VAD 0.80 13.29 5.51 13.40 16.36 0.055 0.012 0.055 0.054

SS+AE-VAD 0.90 9.09 1.93 9.25 12.21 0.041 0.009 0.041 0.039

SS+AE-VAD 0.95 6.94 1.12 7.08 9.99 0.035 0.008 0.035 0.038

SS+AE-VAD 0.99 6.44 1.12 6.37 9.64 0.032 0.007 0.032 0.038

SS+AE-VAD 1.00 8.94 1.83 8.82 13.11 0.042 0.009 0.041 0.053

Table 6.3: Performance on NIST 2008 SRE under common conditions (CC) 1 to
4. ν in the 2nd column is the weighting factor in Eq. 4.23 for the interview-speech
files in NIST’08. AE-VAD: energy-based VAD without noise removal. AMR-

VAD: VAD in AMR coder. SS+AE-VAD: the proposed spectral-subtraction
VAD.

used for estimating the gender-dependent nuisance attribute projection (NAP)

matrices [58]. Each of these speakers has at least 8 utterances. The NAP corank

was set to 128. Three hundred male utterances from NIST’05 were used for cre-

ating Tnorm speaker models [56]. The same set of background speakers used for

creating the target-speaker SVMs were used for creating the Tnorm SVMs.

6.1.2 Results and Discussions

Table 6.3 and Fig. 6.1 show the equal error rate (EER) and minimum decision

cost function (minDCF) achieved by the three VAD methods. The results shown

in Fig. 6.1 strongly suggest that preprocessing the noisy sound files by spectral

subtraction is a promising idea. With SS, the VAD reduces the EER by 21% in

CC1.

Table 6.3 and Fig. 6.2 also suggest that the best range of ν in Eq. 4.23 is

between 0.95 and 0.99. Once this value drops below 0.95, the performance degrades

rapidly. This implies that the peak amplitudes can only be used as a reference

for setting the VAD decision threshold, whereas the background amplitudes are

more trustworthy. However, the threshold cannot totally relies on the background
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Figure 6.1: The lowest EER achieved by three different VADs in Table 6.3 under
Common Conditions (CC) 1–4 in NIST’08 (male).
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Figure 6.2: Equal error rate against weighting factor ν in Eq. 4.23 under Common
Conditions (CC) 1, 2, 4, 7 and 9 in NIST’10 (male). SS+AE-VAD (see Table 6.1) was
used in all cases.
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Figure 6.3: DET performance of 3 VADs under Common Condition 1 in NIST’08
(male).
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amplitude, because the EER and minDCF increase when ν increases from 0.99 to

1.0.

Fig. 6.3 shows the DET performance (under CC1) of the three VAD methods.

The results show that SS+AE-VAD achieves a significant lower error rates than

the ETSI-AMR coder for a wide range of operating points.



47

6.2 Comparison of Different VADs

Different VADs mentioned in Table 6.1 were applied to justify the effectiveness of

the proposed SS+AE-VAD.

6.2.1 Experimental Setup

NIST 2005–2010 SREs were used in the experiments. NIST’05–08 SREs were

used as development data, and NIST’10 was used for performance evaluations.

Only male speakers in these corpora were used. The core task of NIST’10 is

divided into 9 common conditions. Conditions 1, 2, 4, 7 and 9 were considered

because interview speech and telephone speech collected by different microphones

are involved in these five conditions. Detail descriptions of these five conditions

can be found in the Section 4 of [59].

Note that in VADs 6–7 of Table 6.1, spectral subtraction was used as a pre-

processing step to remove the background noise. By comparing the speaker ver-

ification performance obtained by these VADs against the ones without spectral

subtraction, we can observe the contribution of spectral subtraction to the VAD

performance.

The weighting factor ν in Eq. 4.23 was set to 0.95 and 0.96 for AE-VAD and

SS+AE-VAD, respectively. For SM-VAD, SS+SM-VAD, and GMM-VAD, ν in

Eq. 4.11 was set to 0.993.

We extracted 12 MFCCs [12] and their first derivatives from the speech regions

of the utterances to create 24-dim acoustic vectors. Cepstral mean normalization

[60] was applied to the MFCCs, followed by feature warping [61].

The target-speakers were modeled by GMM-SVM [57]. In the modeling pro-

cess, a gender-dependent universal background model (512-center) was created by

using the interview utterances of NIST’05–06. MAP adaptation [13], with rel-

evance factor set to 16, was then performed for each of the target-speakers to

create target-dependent GMMs. The same MAP adaptation was also applied to

300 background speakers (also from NIST’05–06) to create 300 impostor GMMs.
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The mean vectors of these GMMs were stacked to produce 12288-dim GMM-

supervectors [57]. Finally, a GMM-SVM speaker model for each target speaker

is trained by using his target-dependent GMM-supervector and the background

GMM-supervectors.

The utterances of 144 male speakers from NIST’05–08 were used for estimating

the gender-dependent NAP matrices [58] to reduce channel effects (NAP corank

was set to 128). Each of these 144 speakers has at least 8 utterances. For the

T-norm speaker models [56], 300 male utterances from NIST’05 were used. The

same set of background speakers used for creating the target-speaker SVMs were

used for creating the T-norm SVMs.

6.2.2 Results and Discussions

Table 6.4 shows the equal error rate (EER) and minimum normalized decision cost

function (minNDCF) achieved by seven VAD methods. The results strongly sug-

gest that preprocessing the noisy sound files by spectral subtraction is a promising

idea. After applying SS, the AE-VAD and SM-VAD reduce the overall EER by

56% and 5% respectively.

The overall values of EER and minNDCF in Table 6.4 were then plotted for

the seven VADs in Fig. 6.5. Evidently, the proposed SS+AE-VAD attains the

lowest EER and minNDCF among all seven VADs.

Fig. 6.4 shows the DET performance based on the seven VADs. The results

show that SS+AE-VAD achieves a significant lower error rates than the ETSI-

AMR coder, ASR transcripts and the simple energy-based VAD for a wide range

of operating points. In the plot, SM-VAD performs even better than GMM-VAD.

We notice that both SS and SM work well for the interview speech in NIST 2010

SRE. The error rates achieved by SS+AE-VAD, however, are slightly lower than

that achieved by SM-VAD.

Comparing the results of AE-VAD and SS+AE-VAD reveals that SS has sig-

nificant contribution to the conventional energy-based VAD. However, the per-

formance of SS+SM-VAD is better than SM-VAD by a small margin only. This
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VAD Method CC1 CC2 CC4 CC7 CC9 Overall

AE-VAD 6.57 11.72 7.23 12.28 7.44 10.30

ASR-VAD 5.15 8.58 7.74 12.81 5.74 8.88

AMR-VAD 4.44 8.05 9.44 12.85 5.98 9.61

GMM-VAD 3.64 5.68 5.71 8.93 4.27 6.28

SM-VAD 3.23 4.68 4.49 9.48 3.06 5.03

SS+SM-VAD 2.83 4.45 4.04 7.58 2.56 4.80

SS+AE-VAD 2.82 4.44 3.51 6.70 2.37 4.55

(a) EER (%)
VAD Method CC1 CC2 CC4 CC7 CC9 Overall

AE-VAD 0.84 0.99 0.96 0.84 0.97 0.97

ASR-VAD 0.78 0.85 0.74 0.88 0.77 0.90

AMR-VAD 0.81 0.85 0.80 0.77 0.55 0.90

GMM-VAD 0.71 0.72 0.72 0.63 0.45 0.82

SM-VAD 0.66 0.68 0.70 0.65 0.38 0.77

SS+SM-VAD 0.62 0.61 0.70 0.59 0.42 0.76

SS+AE-VAD 0.70 0.58 0.62 0.64 0.17 0.72

(b) minNDCF

Table 6.4: Performance on NIST 2010 SRE achieved by 7 VADs. (a) EER and
(b) minimum normalized DCF under Common Conditions (CC) 1, 2, 4, 7 and 9.
AE-VAD: energy-based VAD without noise removal; ASR-VAD: VAD segmen-
tation from NIST provided ASR transcripts; AMR-VAD: VAD in ETSI-AMR
coder; GMM-VAD: Gaussian-mixture-model-based VAD [2]; SM-VAD: Sohn’s
VAD [4] incorporated with the proposed fixed thresholds (Eq. 4.11); SS+SM-

VAD: SM-VAD with spectral subtraction; SS+AE-VAD: the proposed spectral-
subtraction VAD.

suggests that SS is not vital to the statistical-model-based VAD. The reason is

that in SM-based VADs, the background spectrum has already been taken into

account in the scoring function. As pre-processing the noisy speech by spectral

subtraction is another approach to using the background spectrum, therefore in

SS+SM-VAD, the background spectrum has been used twice. As a result, the gain

of applying SS to SM-VAD is not very significant.

Note that SS+AE-VAD and SM-VAD use the background spectrum in a dif-

ferent manner. For the former, the background spectrum is used for spectral

subtraction, whereas for the latter it is used for computing the likelihood ratio

scores. This difference enables us to make better use of the background spectrum

in SS+AE-VAD. Specifically, to remove as much background noise as possible, we
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Figure 6.4: DET performance of all trials combining common conditions 1, 2, 4, 7, and

9 in NIST’10 (male). Labels in the legend are arranged in descending EER.

may apply a large upper-limit for the over-subtraction factor (αmax) and a small

lower-limit for the noise floor (βmin).
3 The over-subtraction factor α(m) is a linear

function of the a posteriori SNR for certain range of SNR and is bounded by the

lower- and upper-limit when the SNR is beyond this range. As a result, more

background noise will be removed in low SNR region whereas more speech content

will be retained in high SNR region. The SM-VAD, on the other hand, does not

have such property because the background spectrum is assumed constant for both

low and high SNR.

The results show that using the ASR transcripts provided by NIST SRE Work-

shop as VAD leads to poor speaker verification performance, suggesting that the

3Note that musical noise is not a concern because the denoised speech is only used for VAD,
not for speaker recognition.
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Figure 6.5: EER and minimum normalized DCF based on all trials in Common Condi-

tions 1, 2, 4, 7 and 9 achieved by the 7 VADs in Table 6.1.

ASR transcripts do not produce accurate speech/non-speech segmentations. The

VAD in ETSI-AMR coder also performs poorly. This is mainly caused by the

overestimation of both the speech onset and offset regions. To ensure the intel-

ligibility of the encoded speech, it is important for the VAD in a speech coder

to include speech onsets and offsets. However, this overestimation is not appro-

priate for speaker verification, as excessive amount of non-speech will be used for

verification.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

A voice activity detector specially designed for extracting speech segments from

the interview-speech files in NIST SREs has been proposed and evaluated under

the NIST 2008 and 2010 SREs protocols. Several conclusions can be drawn from

this work:

1. noise reduction is of primary importance for VAD under extremely low SNR;

2. it is important to remove the sinusoidal background noise found in NIST

SRE sound files as this kind of background signal could lead to many false

detection in energy-based VAD;

3. a reliable threshold strategy is required to address the spiky (impulsive)

speech signals, and;

4. our proposed spectral subtraction VAD outperforms the segmentations de-

rived from the ASR transcripts provided by NIST, the VAD in the advanced

speech coder (ETSI-AMR, Option2), the state-of-the-art statistical-model-

based VAD, and Gaussian-mixture-model-based VAD in speaker verification.

7.2 Future Work

The GMM-based VAD can be improved in two aspects: (1) Selection of Noise

Robust Features and (2) Determination of better decision thresholds.
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7.2.1 Selection of Noise-robust Features for GMM-based VAD

MFCCs have been widely used in speaker recognition due to their acceptable per-

formance under moderate noisy conditions. However, MFCC-based systems are

susceptible to the acoustic mismatch in training and testing conditions. More

recently, researchers have started to investigate a new feature for speaker recogni-

tion [3]. The new feature promises to be more robust to noise and is capable of

capturing speaker identity conveyed in speech signals [3]. It has been found that

feature parameters obtained from the temporal envelope of a gammatone filterbank

can achieve a significantly higher recognition accuracy than that of MFCCs [3].

This motivates extensive research efforts in the use of such feature for training

GMM-based speaker recognition systems [5].

Fig. 7.1 depicts the procedure for extracting the new acoustic feature for GMM-

based VAD. The speech signal s(n) is first filtered using a 32-channel gammatone

filterbank to simulate the effect of auditory filtering [62]. Hilbert transform is then

applied to the temporal envelope of the j-th channel s(n, j) of the filter to obtain

the Hilbert envelope e(n, j). To determine the amplitude of the temporal envelope

at frame t, the sample means are calculated:

E(t, j) =
1

N

N−1∑
n=0

w(n)e(n, j), (7.1)

where w(n) denotes the Hamming window and N is the frame size. Natural

logarithm is then applied to the envelope E(t, j) to compress the dynamic range.

The compressed envelopes are normalized for each channel by their long-term

average:

En(t, j) =
Elog(t, j)

1
T

∑T
t=1 Elog(t, j)

. (7.2)

Finally, DCT is applied to decorrelate the normalized features to produce 32-

dimensional spectral vectors called mean Hilbert envelope coefficients (MHEC).
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Figure 7.1: Block diagram of the Sadjadi’s feature extraction scheme [3].

7.2.2 Threshold Determination for GMM-based VAD

In this dissertation, a fixed decision threshold for GMM-based VAD is determined

by a linear combination of the GMM-scores of background frames and signal-peak

frames. However, this threshold determination strategy may not be appropriate for

GMM-based VAD because overestimation of speech segments may occur in some

situations, as exemplified in Fig. 7.2(d). The log likelihood ratios in Fig. 7.2(c)

suggests that the speech and non-speech segments are highly distinguishable, how-

ever, the fixed threshold cannot make good use of this characteristic. Therefore,

a better threshold determination strategy is required for the GMM-based VAD.
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(a)

(b)

�

(c)

GMM-VAD:

SS+AE-VAD:

(d)

Figure 7.2: (a) A short segment of interview speech in NIST 2010 SRE. (b) The spec-
trogram of the same segment. (c) The log likelihood ratios (blue curve) of the same
segment obtained from GMM-based VAD with a fixed decision threshold (red line). (d)
Speech/non-speech decisions (S for speech and h# for silence) made by GMM-based VAD
(GMM-VAD) and the energy-based VAD with spectral subtraction as a pre-processor
(SS+AE-VAD).
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Appendix A

PSEUDO CODE OF THE PROPOSED SS+AE-VAD

Input: Y (1), . . . , Y (M) - original noisy speech frames

αmin, αmax - limits of over-subtraction factor (refer to Eq. 4.22)

βmin, βmax - limits of spectral floor factor (refer to Eq. 4.22)

ν - combination weight (refer to Eq. 4.23)

Local parameter: X(1), . . . , X(M) - enhanced speech frames

X(b1), . . . , X(bK) - background frames (typically K = 0.05M)

X(p1), . . . , X(pL) - peak frames (typically L = 0.01M)

a(1), . . . , a(M) - amplitude of denoised frames

a(b1), . . . , a(bK) - amplitude of background frames

a(p1), . . . , a(pL) - amplitude of peak frames

z(1), . . . , z(M) - zero-crossing rate of denoised frames

z(b1), . . . , z(bK) - zero-crossing rate of background frames

η - VAD decision threshold

Output: S(1), . . . , S(N) - speech frames, where N < M

beginproc

// Denoise input signal using spectral subtraction, refer to Eq. 4.21

[X(1), . . . , X(M)] = SpectralSubtraction([Y (1), . . . , Y (M)], αmin, αmax, βmin, βmax);

// Remove DC offset

[X(1), . . . , X(M)] = RemoveDCOffset([X(1), . . . , X(M)]);

// Find the background frames by searching for K frames with the lowest amplitude

// among the M frames in the denoised speech

[X(b1), . . . , X(bK)] = FindBkgFrames([X(1), . . . , X(M)]);

// Find the peak frames by searching for L frames with the largest amplitude among

// the M frames in the denoised speech

[X(p1), . . . , X(pL)] = FindPeakFrames([X(1), . . . , X(M)]);

// Determine VAD threshold η based on the mean of background frames and

// the minimum amplitude of peak frames

[a(b1), . . . , a(bK)] = Amplitude([X(b1), . . . , X(bK)]);

[a(p1), . . . , a(pL)] = Amplitude([X(p1), . . . , X(pL)]);
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āb = mean([a(b1), . . . , a(bK)]);

η = νāb + (1 − ν)min([a(p1), . . . , a(pL)]);

if (η == 0 || η > 0.2 ∗mean([a(p1), . . . , a(pL)]))

η = 0.2 ∗mean([a(p1), . . . , a(pL)]);

endif

// Detect speech frames by comparing the smoothed amplitude of [X(1), . . . , X(M)] with threshold η

// Consider frames with extremely low zero-crossing rate as non-speech

[a(1), . . . , a(M)] = Amplitude([X(1), . . . , X(M)]);

[a(1), . . . , a(M)] = MovingAverage([a(1), . . . , a(M)]);

[z(1), . . . , z(M)] = MovingAverage([z(1), . . . , z(M)]);

n = 1;

for m = 1, . . . ,M

if (a(m) > η && z(m) > 0.1 ∗mean([z(b1), . . . , z(bK)]))

S(n) = X(m);

n = n+ 1;

endif

endloop

endproc // End of SS+AE-VAD algorithm
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