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Abstract 

 

Travel time, which may be the most intuitive network performance index that can be 

perceived by the travelers and planners, is a fundamental measure in transportation 

systems. Because of their importance in traffic surveillance, management and control, 

path planning, and routing, travel time estimation and prediction have attracted 

significant research interests. On the other hand, traffic networks are fragile to the 

demand and supply uncertainties to which they exposed, especially under incident 

scenarios and adverse weather conditions. Due to the importance of transportation 

networks in economics and daily lives of citizens, the reliability of transportation 

networks cannot be overemphasized. Meanwhile, travel time reliability (TTR) has been 

widely recognized as one of the key performance measures that describe the reliability 

of a transportation network. To this end, this dissertation investigates two important 

topics: 1) estimating and predicting the distribution of stochastic dynamic travel time 

for short-term planning and intelligent transportation systems (ITSs) applications; 2) 

evaluating the travel time reliability index based on the stochastic dynamic travel time 

distribution obtained previously and analyzing the relationship between the TTR and 

the skewness of travel time distribution.  

 

The thesis extends the definition of (deterministic) link travel time to a stochastic 

version by defining a kind of likelihood between the stochastic link inflow and outflow 

profiles. The physical meaning of the proposed likelihood is the probability that the 

difference between the cumulative link inflow and the cumulative link outflow be less 

than or equal to a prescribed bound, e.g one unit vehicle. Based on this likelihood 

definition, the probability mass function (PMF) of the link travel time is evaluated by 

defining some appropriate sampling interval. The dynamic link travel time distribution 

is evaluated by fitting this PMF with skew normal distribution. The dissertation then 

extends the deterministic nested delay operator to evaluate stochastic journey time 

distribution. The PMF of journey time is obtained by a series of “nested” conditional 

probabilities along the links on the route. By the same distribution fitting mechanism, 

the stochastic journey time distribution is deduced. Two empirical studies are 

conducted to verify the proposed method. The results prove a satisfactory performance 

of the proposed method for estimating and predicting stochastic dynamic travel time 
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and its distribution. It is also been validated that the shewness analysis is consistent 

with the empirical observations reported in the transportation literature. The results 

indicate the proposed methods are adaptive to abnormal traffic conditions.   

 

To increase the accuracy of travel time prediction and to handle the abnormal traffic 

conditions such as traffic incidents, adverse weather conditions, the dissertation extends 

the SCTM to consider the temporal and spatial correlations of traffic flow for 

short-term traffic state prediction. Meanwhile, this dissertation also extends the 

methodology proposed previously to predict journey travel time distribution for TTR 

prediction analysis and real-time applications. To incorporate the correlations, the 

SCTM is expanded with a best linear predictor. This predictor is utilized to predict the 

inflow demand and supply functions. Historical traffic flow profiles are taken as inputs 

to the predictor to forecast the demand and supply functions. Meanwhile, the real-time 

measurement, as another input to the predictor, is utilized to correct the prediction. For 

real-time application, the prediction is conducted in a rolling horizon manner. The 

rolling horizon method is useful especially under abnormal traffic conditions, e.g. 

traffic incidents, adverse weather conditions. Finally, the traffic state and journey time 

predictions are verified by empirical studies, which prove that significant improvement 

can be achieved by incorporating the correlations into the SCTM framework.    

 

In conclusion, this thesis contributes to the literature on estimation and prediction of 

stochastic dynamic traffic state and travel time distribution, as well as the travel time 

reliability analysis. 
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Chapter 1 

Introduction 

 

1.1 Motivation   

 

Traffic flows on road networks are dynamic and stochastic. Dynamics reflects the 

evolutions of traffic states or traffic conditions over time for a certain location; and 

stochasticity originates from the uncertainties of travel demand and supply functions 

(such as the free-flow speed, capacity, and jam density) over time. Previous traffic 

empirical studies have revealed that the fundamental flow-density diagram admits 

large variations due to the weather conditions, vehicle types, driving behavior, etc. 

While the other kind of uncertainty is travel demand1 variability, which is always 

regarded as recurrent uncertainty or disturbance in traffic flow. For O-D demand, the 

regular fluctuations may originate from human behaviors due to different days in a 

week or seasons in a year; while the abnormal weather conditions, traffic incident 

information and special events contribute to the irregular variations (the uncertainties 

of path flow demand and link flow demand are caused by similar reasons). The 

stochastic travel time is a result of these demand and supply uncertainties (Lint et al., 

2008).  

 

Traffic networks are fragile to the demand and supply uncertainties, especially under 

incident scenarios and adverse weather conditions. The importance of the reliability of 

transportation systems can never be overemphasized because of the importance of 

transportation systems in economics and daily lives of citizens. With the increase of 

                                                              
1 For a traffic flow model, we may refer the inflow demand as travel demand in this thesis which 

should be distinguished from the concept of O-D demand. For example, a cell transmission model 

representation of a freeway segment, the upstream inflow and on-ramp flows to the segment are 

always taken as travel demand to the model in literature.  

1
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the value of travel time, unexpected schedule delay, including both early and late 

arrival, might incur loss to travelers. Therefore, travel time reliability (TTR) has been 

widely recognized as one of the key performance measures that describe the reliability 

of a transportation network. Journey time reliability, which describes the degree of 

stability of journey travel time for a certain route based on the travelers’ experience or 

real-time prediction, significantly influences their route choice and departure time 

choice behavior. Moreover, the analysis and application of TTR heavily depend on the 

distribution of stochastic dynamic travel time. Therefore, to analyze the TTR we first 

need to provide accurate estimation and/or prediction of the distribution of stochastic 

dynamic travel time. 

 

As an essential performance measure of the traffic network and an essential decision 

factor, travel time information is crucial for a variety of travel time reliability analysis 

and network planning applications. The estimation and prediction of travel time have 

attracted significant interests of researchers and other traffic engineering practitioners. 

By its very nature, travel time information adopted by the travel time reliability 

analysis and applications should possess several distinct characteristics: anticipative, 

dynamic, and furthermore, stochastic as mentioned previously. Conventionally, there 

are several main methods to estimate/predict travel (or journey) time: vehicle tracing 

technologies based approaches (e.g. Coifman and Cassidy, 2002), dynamic traffic 

assignment models (e.g. Carey and Ge, 2011), statistical and computational 

intelligence based approaches (e.g. Van Lint, 2004), and dynamic traffic flow 

propagation based matching algorithms (e.g. Lo and Szeto, 2002).  

 

However, these existing methods either have high requirements for automatic vehicle 

identification (AVI), data mining algorithm or are only able to produce deterministic 

(or mean) travel (journey) time or mean travel time plus/minus its safety margins (e.g. 

variance of the travel time instead of the corresponding distribution). Also, these 

methods may not be suitable for current traffic measurement systems (e.g. the 

Performance Measurement System (PeMS) in California) which can just provide some 

2
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limited traffic information, such as flow counts, average speed, during fixed detecting 

time intervals with the detecting loops installed several kilometers away from the 

neighboring ones. Moreover, few of the existing methods can release the complete 

distribution of dynamic travel time. And, as it will be reviewed in Chapter 2, these 

methods are both analytically difficult and computationally expensive. Nevertheless, 

the evaluation process of route travel time distribution from link travel time is still not 

well developed. Therefore, in this dissertation, a practical method which is 

analytically easy and computationally efficient to estimate and predict dynamic travel 

time distribution for the purposes of TTR analysis and applications will be proposed. 

 

Due to the similar environmental conditions and human behaviors, demand and supply 

profiles are correlated in space and time domain. However, most of the existing 

models and algorithms assume them to be independent. However, considering these 

spatial and temporal correlations along with the traffic dynamics might bring 

significant potential advantages for the development of efficient traffic state 

estimation/prediction (Chandra and Al-Deek, 2009; Min and Wynter, 2011). 

Therefore this dissertation further aims at estimating/predicting the distribution of 

dynamic travel time considering the spatial-temporal correlation of traffic flow. 

Detailed objectives of this dissertation and their interconnection will be discussed in 

the forthcoming sections. 

 

1.2 Objectives  

 

This thesis aims at developing a framework for assessing or predicting journey time 

reliability via integrating stochastic dynamic models and the dynamic traffic flow 

propagation based travel (journey) time estimation algorithm by considering temporal 

and spatial correlations of traffic flow. The following objectives will be pursued in 

this study:  

 

i) To develop an algorithm to estimate/predict the distribution of stochastic dynamic 

3
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link travel time. 

 

ii) To extend the algorithm to estimate/predict dynamic journey time distribution 

based on the link travel time distributions obtained in (i). 

 

iii) To analyze the relationship between the skewness of travel time distribution and 

the level of congestion.  

 

iv) To evaluate the travel time reliability index based on the dynamic journey time 

distribution generated in (ii) and to analyze the relationship between the reliability of 

travel time and the skewness of travel time distribution.  

 

v) To extend the stochastic cell transmission model (SCTM) to consider 

spatial-temporal correlations of demand and supply functions to improve its accuracy 

for short-term traffic state prediction. 

 

vi) To integrate (i)—(v) to develop a framework for journey time prediction and its 

reliability analysis.   

 

1.3 Thesis contributions and organization  

    

Chapter 2 carries out a brief literature review on related topics and provides 

background information on macroscopic traffic model, journey time estimation and 

prediction algorithm, and the implementation of temporal-spatial correlations of traffic 

flow for short-term traffic state prediction. 

 

Chapter 3 reviews the development of stochastic cell transmission model (SCTM) 

(Sumalee et al., 2011) from the cell transmission model (CTM) (Daganzo 1994, 1995), 

the modified cell transmission model (MCTM) (Munoz et al., 2003). The chapter also 

discusses different representations and extensions of the SCTM with respect to 

different congestion levels of the underlying freeway segment and different 

4
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assumptions. Finally, several technical directions for the applications of SCTM in 

numerical simulation and empirical study are summarized. 

 

Chapter 4 first introduces the definition of (deterministic) link travel time in terms of 

dynamic flow matching under first-in-first-out (FIFO) principle. The chapter then 

extends this definition to a stochastic version by defining a kind of likelihood between 

the stochastic link inflow and outflow profiles. Based on this likelihood definition, the 

probability mass function (PMF) of the link travel time is evaluated by defining some 

appropriate sampling interval. Then we can construct the dynamic link travel time 

distribution by fitting the PMF with skew normal distribution. After obtaining the link 

travel time distributions along a route, we extend the deterministic nested delay 

operator to evaluate stochastic journey time distribution. The PMF of journey time is 

obtained by a series of “nested” conditional probabilities along the links on the route. 

By the same distribution fitting mechanism, the stochastic journey time distribution is 

deduced. An empirical study is conducted to verify the proposed method. The results 

prove a satisfactory performance of the proposed algorithm for travel time distribution 

estimation. The shewness analysis is also consistent with the empirical observations 

argued in transportation literature (e.g.Van Lint et al., 2008). Effects of different 

incidents are captured by the proposed model.     

 

Chapter 5 extends the SCTM to consider the temporal and spatial correlations of 

traffic flow for short-term traffic state prediction and extends the methodology 

proposed in Chapter 4 to predict journey travel time distribution for TTR prediction 

analysis and real-time applications. Firstly, the SCTM is extended by a multivariate 

normal distribution based best linear predictor. This predictor is utilized to forecast the 

inflow demand and supply functions. Historical traffic flow profiles are taken as 

inputs to the predictor to forecast the demand and supply functions. The real-time 

measurements, to be more specific the “weighted” error between the statistics of the 

historical traffic flow profiles and the real-time measurements, are utilized to correct 

the prediction. The predicted demand and supply functions are taken as inputs to the 

5
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SCTM to perform short-term traffic state prediction. For real-time application, the 

prediction is conducted in a rolling horizon manner. The rolling horizon method is 

useful especially under abnormal traffic conditions, e.g. traffic incidents, adverse 

weather conditions. Finally, the traffic state and journey time predictions are verified 

by empirical studies. The results indicate that significant improvement over the origin 

SCTM can be achieved by incorporating the spatial-temporal correlations.  

 

Chapter 6 gives a conclusion of this thesis. Some topics for the future research such as 

the application of journey time reliability prediction on route choice decision and 

traffic management as well as the issue of incident detection are also highlighted in 

this chapter. 

 

An overview of the structure of the main body of this thesis is given in Figure 1.1.  

 

 

Figure 1.1. An overview of the structure of the thesis 
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Chapter 2  

Background and literature review 

 

2.1 Background  

 
2.1.1 Traffic congestion and intelligent transportation systems 

   

Traffic congestion on traffic networks has been recognized as a severe problem. 

Research has reached a consensus that building and expanding roadway facilities 

solely cannot handle the explosive growth in traffic volume and travel demand. This is 

because of the prohibitively high costs, as well as social, political, and environmental 

issues resulting from urban and suburban infrastructure construction. This problem 

motivates the idea of developing Intelligent Transportation Systems (ITS) to manage 

the road network infrastructure and to make efficient use of the existing capacity. 

Recently, the ITS has been recognized as an effective tool to alleviate traffic 

congestion by leading to more efficient travel demand and transportation network 

management, improving safety and efficiency, and hence reducing vehicle emissions. 

  

Among various subsystems of an ITS, the advanced traveler information system 

(ATIS) and the advanced transportation management system (ATMS) are key 

components. The basic objectives of the ATIS are to acquire, analyze, communicate, 

and present information to users to enhance personal mobility and hence the efficiency 

of travel, and safety. The ATIS provides pre-trip and/or en route travel information 

concerning traffic conditions through various information media. The information is 

broadcasted to support travelers’ decision making. Meanwhile, the ATMS collects 

data from a variety of sources, such as loop detectors, probe vehicles, video cameras, 

and other communication systems. The ATMS aims at managing and adjusting the 

traffic control systems in the network to respond to dynamic traffic conditions released 

from the collected data. The ATMS is proven to be helpful in optimizing urban traffic 

7
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signals, ramp-metering control, variable speed limit (VSL) control, etc. Since the 

ATIS and ATMS are interrelated, they are also known as advanced traffic 

management information systems (ATMIS). 

 

As an essential performance measure of the traffic network and a significant decision 

factor, travel time information is crucial for a variety of ATIS and ATMS applications. 

For instance, travel time is the key information among the information broadcasted to 

travelers by ATIS. The ATMS aids in providing route guidance to travelers (drivers) 

through the ATIS. Among the performance indexes, travel time is an essential 

performance index of the ATMS as it is the key decision variable for route choice as 

well as traffic control design (see e.g. Van Lint (2004) for an overview of ITS 

applications of travel time information).  

 

Accurate travel time estimation and prediction are essential to access the underlying 

network traffic conditions for the purposes of path planning, routing. For example, 

under the rational assumption of the road users1, providing travelers with accurate 

(estimated and/or predicted) travel time information allows them to make more 

reasonable decisions, which in turn yields not only cost-benefits for individual road 

users, but potentially results in more stable and less congested traffic conditions. 

Travel time estimation and prediction are also important inputs to traffic management 

and control systems (see e.g. Papageorgiou and Kotsialos, 2002; Papageorgiou et al., 

2003). Travel time also provides an insight for the traffic surveillance (Chen, 2003). 

The estimation and prediction of travel time have attracted significant interests of 

researchers and other traffic engineering practitioners. By its very nature, travel time 

                                                              
1 Rational road users are decision makers who make their choices (e.g. route and departure time) 

to minimize their expected costs (e.g. in terms of travel time and travel time reliability), subject to 

their personal preferences, attitudes (e.g. risk taking behaviors) and perception of the information 

on the traffic network to minimize their expected costs (e.g. in terms of travel time and travel time 

reliability), subject to their personal preferences, attitudes (e.g. risk taking behaviors) and 

perception of the information on the traffic network. 
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information adopted by the ATIS and ATMS applications should possess several 

distinct characteristics: anticipative, dynamic, and furthermore, stochastic.  

 
2.1.2 Stochastic travel time and travel time reliability 

 

Traffic networks are exposed to uncertainties from both demand and supply sides. 

Figure 2.1 depicts a typical calibration of fundamental flow-density diagram from 

empirical traffic data. From this figure, we note that the fundamental flow-density 

diagram admits large variations due to the extensive congestion, driving behavior, etc. 

The stochastic flow-density diagram can be regarded as supply uncertainty. In the 

microscopic modeling approach, stochastic flow-density diagram has been interpreted 

as the effects of anticipation, strong correlations in the vehicle motion on different 

lanes, delay in the driving adaptation or safe time-gap variations (Ngoduy, 2009). In 

the macroscopic modeling approach, stochasticity of the flow-density diagram has 

been modeled as a diffusion coefficient to reproduce significant elements of the 

synchronized traffic flow, the interactions between several vehicle classes (e.g. trucks 

and cars), randomness in driving behavior, traffic incidents, and adverse weather 

conditions, etc., (Chen et al., 2001; Ngoduy, 2009). The other kind of uncertainty is 

travel demand variability, which is always regarded as recurrent uncertainty or 

disturbance in traffic flow dynamics. Stochastic distribution of travel time is a result of 

these demand and supply uncertainties (Lint et al., 2008).  

 

Traffic networks are fragile to these demand and supply uncertainties, especially under 

incident scenarios and adverse weather conditions. For instance, the incident on 9th 

May 2005 involved a heavy rainstorm and incidents on three roads in Kowloon area 

causing a severe gridlock problem. The rainfall on 23 June 2011 in Beijing caused a 

widely traffic congestion. Journey time reliability, which describes the degree of 

stability of journey travel time, plays an important role in travelers’ route choice and 

departure time choice behavior. Therefore, the travel time uncertainty needs to be 

taken into account in the context of ATIS/ATMS to better enhance the performance of 

9
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transportation systems. 

 

Figure 2.1. A fundamental flow–density diagram of traffic flow 

 

As transportation network is a backbone of a city, the disruption or failure of the 

transport system may jeopardize the security and welfare of the population. For these 

reasons, travel time reliability (TTR) has been widely recognized as one of the key 

performance indicators of transportation networks (see e.g. Bell, 1999; Bell, and 

Cassir, 2000; Lo, 2002; Cassir et al., 2001). Existing studies on TTR primarily focus 

on devising indices to quantify the level of journey time uncertainty (or reliability) in a 

static network model (Bell and Cassir, 2000). Applications of travel time reliability for 

performance assessments of transportation network planning are investigated by many 

researchers (see, e.g. Plugurtha and Pasupuleti, 2010; Lyman and Bertini, 2008; 

Susilawati, et al., 2010). Travel time reliability based route choice/departure time 

choice modeling frameworks are also proposed as another application of travel time 

reliability (see, e.g. Bogers and Van Zuylen, 2004; Shao et al., 2006). Despite its 

importance, there is no uniform definition of TTR in sense that what should be 

precisely entailed by TTR or how it should be made operational (see e.g. Bell, 2000, 

2002; Lo, 2002; Cassir et al., 2001). Nevertheless, the propagation of delay and 

uncertainty through the traffic network dynamically and spatially can be naturally 

observed. The level of travel time reliability and uncertainty, hence, should be 
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assessed dynamically. 

 
2.1.3 Measures for travel time reliability 
 

As previously explained, there are many different definitions for travel time reliability. 

As a subsequence, different measures for travel time reliability have been proposed in 

literature. However, what these measures have in common is that the longer-tailed the 

travel time distribution is on a particular time-of-day (TOD), day-of-the-week (DOW), 

the more unreliable travel time on a freeway network or corridor is considered (Lint et 

al., 2008). The above common measure yields a relative common definition of 

optimality in stochastic routing is to balance the risk of arriving late and travel time 

budgets rather than to minimize the expected travel time, i.e. travelers tend to prefer 

reliable over (on average) faster routes, in case the latter ones are very unreliable. A 

comprehensive overview of travel time reliability measures can be found in Lomax et 

al. (2003) and Lint et al. (2008). In this section, we summarize several measures for 

travel time reliability.  

 

1. Statistical range methods, which is directly related to the shape of travel time 

distribution. For instance, Travel Time Window (e.g. mean travel time ± standard 

deviation). The underlying “plus” or “minus” operation indicates the possible spread 

of travel time around the expected value, wherein the distribution of travel time is 

implicitly assumed to be symmetric. Some other measures that can be categorized into 

this sort are the Percent Variation (i.e. the ratio of standard deviation and mean travel 

time), the Variability Index (the ratio between 95% travel time during peak hours and 

95% during off peak).  

  

2. Buffer time methods. The buffer time index represents the extra time that travelers 

must add to their average travel time when planning trips to ensure their on-time 

arrivals (or to have less than X% chance to miss an appointment) (Lomax et al., 2003). 

The buffer time calculates the minutes of extra time needed to guarantee a statistically 

minimum number of arrivals within the preferred arrival time at destination (Pearce, 
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2001; Lomax et al., 2003). In this dissertation, we will apply buffer time index to 

characterize the travel time reliability.  

 

3. Tardy-trip measures (e.g. misery index), which is defined as the gap between the 

average travel time of the 20% worst trips and the overall mean travel time (Pearce, 

2001; Lomax et al., 2003).  

 

4. Probabilistic measures: the probability that a trip would be made within the nominal 

travel time multiplied by a prescribed factor (Bell, 1999; Yang et al., 2000). The 

probabilistic measures are often used as measure for travel time unreliability in 

literature. Probabilistic measures utilize either a threshold for travel time or a 

predefined time window to distinguish between reliable and unreliable travel times. In 

this sense, choosing the parameters (e.g. prescribed factor) properly is essential for 

these probabilistic measures, which renders they are application and context specific. 

 

5. Skew-width measures, wherein skewness of travel time is defined as the ratio of the 

distance between the 90th and 50th percentile travel time to the distance between the 

50th and 10th percentile travel time. Generally, larger skewness of travel time means 

higher probability for extreme travel times (relative to the mean travel time) to occur. 
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2.2 Travel time estimation and prediction  

 
2.2.1 Travel time estimation and prediction2  

 

Much research work has been dedicated recently to the study of the way travelers 

react to the shape of the DDTT (see e.g. Bates et al. (2001); Pattanamekar et al. 

(2003); Chang et al. (2005); Gao and Chabini (2006)). However, less attention has 

been paid to developing tools for estimating the DDTT itself Sun et al. (2008); Yeon 

et al. (2008). In the context of optimal routing, most of the algorithms consider the 

expected value of link travel-time as a sufficient statistic for the problem and produce 

least expected travel-time paths, i.e. travelers are assumed to choose their routes with 

minimum expected costs (Fu and Rilett, 1998; Miller- Hooks and Mahmassani, 1998, 

2000; Waller and Ziliaskopoulos, 2002). In reality, link travel times are heavily 

dependent on prevailing physical, traffic, and environmental conditions that cause the 

travel time to exhibit stochastic and time-variant behavior. In dynamic aspect, 

Bertsekas (2005) formulates the stochastic optimal routing problem as a stochastic 

optimal control problem. Static information about the network structure is combined 

with real-time information about actual travel-times to deduce an adaptive solution 

that is an optimal policy as opposed to an optimal path. An (adaptive) optimal policy 

generates a node-based decision rule that defines the optimal path from a given node 

to the destination conditioned on the realized travel-time. Gao and Chabini (2006); 

Gao et al. (2008) studied this optimal policy for optimal routing in stochastic 

time-dependent networks. Gao and Huang (2011) extended the model to consider the 

                                                              

2 Travel time estimation is to “pertain” to reconstructing (mean) travel times of realized trips 

based on known speeds, flows, travel times, or other quantities which are mathematically related 

to travel times. On the other hand, travel time prediction refers to calculating travel times for 

unknown (future) traffic conditions. Indirect travel time prediction is to predict traffic quantities 

(e.g. speeds, densities) which are used to derive travel times, while direct travel time prediction is 

to predict travel times without the intermediate step of predicting other traffic quantities.  
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effect of real-time information on adaptive routing. However, all these methods 

ignore the issue of travel-time reliability which is an important decision factor in 

numerous practical applications. Several studies extend the dynamic optimal routing 

algorithms to consider the travel-time reliability, e.g. Gao et al. (2010); Gao and 

Huang (2011) adopted the prospect theory approach to capture travelers’ strategic 

behavior when adapting to revealed traffic conditions en route in a stochastic network; 

Samaranayake et al. (in press) defined an optimality policy as: maximizing the 

probability of arriving on time at a destination given a departure time and a time 

budget which was validated by implementing the algorithm in the Mobile Millennium 

traffic information system. Nevertheless, recent research also suggests that even both 

the mean and variance of the travel time are obtained, still they should be used and 

interpreted with some reservations when telling the travel time unreliability, since 

they only account for a part of the costs of unreliability (van Lint et al., 2008; Cassir 

et al., 2001). The skewness of the travel time distribution plays an important role in 

travel time unreliability. As an essential performance measure of the traffic network 

and an essential decision factor, travel time information is crucial for a variety of 

travel time reliability analysis, network planning applications and optimal control and 

routing algorithms. For these reasons, it is instructive and important to develop sound 

evaluation methods for the distribution of stochastic dynamic link travel time 

(DDTT). 

 

Travel times, taken as the reciprocal of speed, are shown to be roughly normally 

distributed. However, this conclusion is valid only under the assumptions that 

individual vehicles maintain a constant speed and that speeds are symmetric about 

their means (Kharoufeh and Gautam, 2004). Travel times are distributed with 

skewness under congested traffic condition.  

 

Under deterministic environment, theoretical models have also been developed for 

estimating dynamic travel time from loop detector data based on traffic flow theory. 

To evaluate the travel time via the traffic flow propagation, the principle of 
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first-in-first-out (FIFO) of traffic flows and flow conservation is utilized, i.e. 

comparing the cumulative inflow and cumulative outflow profiles in which the exit 

time for traffic entering the link at time t is the time when the cumulative outflow of 

that link is equal to the cumulative inflow up to time t. Some of these methods perform 

well for normal-flow conditions only, while others are applicable for congested traffic 

flow conditions only. The results are reported as unsatisfactory during the transition 

periods from congested to un-congested conditions and vice versa. These models also 

tend to underestimate travel times under congested conditions because of the 

difficulties in capturing vehicle queue formations and dissipations under stochastic 

environment (traffic flow exhibits more randomness under congested condition) (Liu 

et al., 2010; Kharoufeh and Gautam, 2004; Soriguera et al., 2010). 

 

Conventionally, there are several main methods to estimate/predict travel (or journey) 

time under stochastic environment: estimation from advanced surveillance systems: 

video image processing, automatic vehicle identification, smart phone/GPS tracking, 

probe vehicles (see e.g. Petty et al. (1998); Coifman (2002); Dion and Rakha (2006); 

Tam and Lam (2008); Haghani et al. (2010); Herrera et al. (2010); Sumalee and Wang 

(2012)), dynamic traffic assignment models (see e.g. Peeta and Ziliaskopoulos (2001); 

Wen (2008)), statistical and computational intelligence based approaches (see e.g. Wu 

et al. (2004); Yeon et al. (2008); van Lint et al. (2005); van Lint (2008); Jula et al. 

(2008); Hinsbergen et al. (2009); Ng and Waller (2010); Karlaftis and Vlahogianni 

(2011)), and dynamic traffic flow propagation based matching algorithms (see e.g. Lo 

and Szeto (2002); Carey and Ge (in press)). These methods can be regarded as fitting 

different types of models to observed data at individual sites. In this sense, major 

techniques for short-term travel-time estimation/prediction are of three major 

categories in transportation literature: parametric methods3 (e.g. linear regression, 

                                                              
3 The common assumption of the parametric methods is the model parameters of the system are 

known precisely. The parametric methods may produce larger prediction errors when the model 

parameters are biased. 
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time series models, dynamic traffic assignment models, Kalman4 filtering techniques), 

nonparametric statistical methods (e.g. neural network models, simulation models, 

Bayesian models, support vector regression), and hybrid integration methods. The 

statistical approaches have more solid and widely accepted mathematical foundations 

than the CI based approaches (Karlaftis and Vlahogianni, 2011). On the other hand, 

the statistical approaches frequently fail when dealing with complex and highly 

nonlinear data and suffer from the curse of dimensionality. As highlighted by 

Karlaftis and Vlahogianni (2011), the CI based approaches, combining techniques 

from machine learning, adaptation, evolution and fuzzy logic to create intelligent 

models to emerge unstructured data by following some performance indexes, may 

outperform the statistical approaches. However, we may point out that abnormal 

traffic patterns caused by non-recurrent congestion or incidents may deteriorate the 

performance of these models (Fei et al., 2011). Some of these methods do not work 

well under demand and supply uncertainties. The DTA based approaches would suffer 

                                                              
4 The Kalman filter (as a kind of state-space models) based approaches belong to the multivariate 

family of time series models that provide a good basis for modeling traffic data. In statistics and 

filtering literature, Kalman filter mainly refers to estimation of the state variables, which is an 

algorithm for efficiently doing exact Bayesian inference in a linear dynamical system. A 

commonly applied technique based on Kalman filtering for traffic state (including travel time) 

estimation is developed based on a predictor–corrector form of the Kalman filter wherein 

historical data is used for predicting the travel times, and real-time measurements are used to 

correct and update the prediction at each time instant (Vlahogianni et al., 2004; Jula et al., 2008). 

For the sake of simplicity and technical limitations of Kalman filter, most of the existing travel 

time estimators/predictors ignore possible spatial and temporal correlation between adjacent links 

and time instances. Under such kind of simplification, link travel times are implicitly assumed to 

be separable. In other words, to estimate/predict the travel time along a link, we utilize the 

historical and real-time data on the link and ignore possible network affects, e.g. spillback effect 

of congestion. As expected, these approaches have limited performance under congested traffic 

condition especially in presence of queue spillover. The readers can refer to an overview paper 

(Vlahogianni et al., 2004) and technical papers (Wang and Papageorgiou, 2005; Jula et al. 2008) 

for detailed discussions on Kalman filtering with applications in traffic engineering. The 

underlying assumptions of Kalman filtering are: the system is observable; the system has no 

strong nonlinearity (so that the system dynamics can be well approximated by its linearization).  
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from the disadvantages of the accuracy of network loading models and scalability. 

Nevertheless, most of these methods provide mean and variance of the dynamic travel 

time only, which may not sufficient for a broad range of applications. 

 

As to the analytical aspect, only few works has dedicated to the stochastic travel time 

distribution (Kharoufeh and Gautam, 2004). The approach implicitly captures the time 

dependence of vehicle speed. The stochastic process for vehicle speed leads to a 

partial differential equation. When the environmental process is known to be a 

continuous-time Markov chain (CTMC), an explicit matrix equation for the stochastic 

dynamic link travel time distribution can be obtained. Although the technique 

presented therein provides an analytical result for the link travel-time distribution, 

some ingenuity will be required in determining the appropriate selection of transition 

rates for the CTMC and the speed function, no general solution is provided. Neither 

explicit expressions for the moments of the random travel time nor asymptotic 

approximations thereof are obtained in Kharoufeh and Gautam (2004). Since the 

method based on some partial differential equations (PDEs) and CTMC, it is very 

computationally demanding. Nevertheless, this method is not ready to be extended to 

capture route travel (or journal) time distributions. 

 

2.2.2 Spatial-temporal correlations of traffic flow and its application to traffic 

forecasting 

 

Short-term traffic prediction aims at estimating the anticipated traffic conditions at a 

future time given the historical traffic information in the “near future” and real-time 

detected traffic information (Lam et al., 2005; Sheu et al., 2009; Tam and Lam, 2008;  

Vlahogianni et al., 2004; 2005; 2007). Short-term traffic state prediction is one of the 

critical components of an ATIS and real-time implementation of surveillance and 

control tools. We adopt the table from Vlahogianni et al. (2004) to conclude the 

review on characteristics of the widely used methods for short-term traffic state 

forecasting in traffic engineering for completeness.  
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Most of the time series methods, e.g. the univariate Auto-Regressive Integrated 

Moving Average (ARIMA) time series models, are based on the autocorrelation 

function of the time series of traffic variable at a specific location, e.g. the location 

with measurement devices (Smith et al., 2002). Under this circumstance, the traffic 

state information of upstream and downstream locations has been largely neglected in 

these traffic prediction methods.  

 

However, due to high traffic density and congestion in the network as well as the 

interaction of the demand and supply uncertainties along with the dynamic nature of 

traffic flow, the demand and supply uncertainties are correlated in both space and time 

domains. For example, the free-flow speeds are spatial correlated (cell-to-cell, 

lane-to-lane correlated) (Kwon et al., 2003); the demand profiles are temporal 

correlated (Yuan and Mills, 2005); the traffic state of a specific site is highly affected 

by the upstream and downstream traffic conditions (Chandra and Al-Deek, 2009; Min 

and Wynter, 2011). By considering these spatial and temporal correlations along with 

the traffic dynamics bring significant potential advantages for development of efficient 

traffic state estimation/prediction. The heuristic nearest neighbor methods, e.g. 

k-nearest neighbor algorithm (KNN) (Lam et al., 2005), incorporate temporal and 

spatial traffic characteristics into the forecasting process. However, performances of 

such kind of heuristic nearest neighbor methods are limited. As concluded by Smith et 

al. (2002) that the seasonal ARIMA model produces better accuracy than the heuristic 

nearest neighbor method at the price of highly computationally intensive. 

 

Major existing approaches, regarding the treatment of temporal and spatial features of 

traffic flow for short-term forecasting first need to calibrate both temporal and spatial 

correlations among the available traffic data. One has to process an extremely large 

amount of data simultaneously in the calibrations of spatial and temporal correlations 

(Stathopoulos and Karlaftis, 2003). The calibrated results are then fed to the prediction 

algorithm externally (Vlahogianni et al., 2004). Besides the extremely large amount of 

data and arduous calibration, this kind of methods requires another preprocessing step. 

18



Chapter 2. Literature review and background     

In the preprocessing step, both autocorrelations and cross-correlations are calculated to 

obtain the appropriate time lag of each correlated series (Clark et al., 1993). These 

preprocessing steps, which are also computationally expensive, render the spatial and 

temporal features of traffic flow difficult to be incorporated in short-term traffic 

prediction. An alternative approach to consider the spatial and temporal correlation 

analysis is to utilize dynamics of the traffic model in conjunction with some extended 

dynamics, e.g. random walk (Wang and Papageorgiou, 2005), colored noise (Chui and 

Chen 2009). In this approach, the spatial and temporal correlations of the uncertainties 

are propagated by the extended dynamics, which in turn affects the traffic flow 

models.  

 

Finally, we would like to point out that all of the above mentioned approaches for 

travel time estimation and/or prediction, except the analytical approach proposed by 

Kharoufeh and Gautam (2004), produce mean travel time or mean and variance of 

travel time rather than its distribution. Although the analytical approach proposed by 

Kharoufeh and Gautam (2004) provides approximation of dynamic link travel time 

distribution, it is very computationally expensive and is not ready to be extended to 

estimate/predict route travel time distribution. In this dissertation, we will propose a 

practical method that is analytically easy and computationally efficient to estimate and 

predict dynamic travel time distribution considering the spatial-temporal correlation of 

traffic flow. To furnish the development, we provide some background materials on 

macroscopic traffic flow modeling.   
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Table 2.1. Summary of characteristics for the widely used models in traffic forecasting (Vlahogianni et al., 2004) 
 Parametric modeling Non-parametric modeling 

Smoothing ARMA Kalman filtering Non-parametric regression Neural networks 

Hypothesis on the statistical nature of 

data 

Deterministic Stochastic  Stochastic Gaussian nature 

of initial conditions 

 Non-linear deterministic  Not required 

Hypothesis on the temporal regularity 

(stationarity) 

Regular Weak stationary Not required Not required Not required 

Hypothesis on linearity or 

non-linearity 

Linear  Input parameter* Input parameter* Input parameter* Not required 

Multivariate modeling impossible   difficult straightforward difficult Easily incorporated 

DATA   Quantity short series extensive extensive extensive extensive 

  Quality continuity continuity continuity Not required Not required 

Results Extraction Explicit Explicit Explicit Explicit Implicit 

 Accuracy Low  Low but acceptable Medium High  Best 

Nature of predictions Static Static  Recursive Static Updated through training  

Main advantages Short series needed Well-established theoretical 

background 

Multivariate nature Simple model structure Non-stationary and non-linear 

environment, wide mapping 

capabilities 

Main disadvantages Relatively low accuracy Weak stationarity, low 

accuracy in extreme values 

Gaussian hypothesis Non-linear deterministic 

nature, data intensive 

Data intensive, complex 

internal structure 

* Input parameter: the decision of linear or non-linear modeling must be predefined because it largely affects model structure 
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2.3  Macroscopic traffic flow model with physical queue 

 
2.3.1 Basic definitions, quantities and requirements  
 

The macroscopic dynamic traffic flow models attempt to replicate the aggregate 

response of a large number of vehicles while ignoring the behavior of the individual 

driver. These models represent traffic as a compressible fluid5, in terms of traffic flow, 

density, and speed. Almost all the analytical dynamic traffic assignment (DTA) 

problems, nearly all model-based on-ramp metering control designs, and practical 

traffic engineering have adopted macroscopic modeling of traffic flow. As a result, 

dynamic traffic flow models are essential for dynamic traffic surveillance, assignment, 

and control. In particular, we rely on macroscopic dynamic traffic flow models to 

conduct (indirect) travel time estimation and prediction in this dissertation. We thus 

review some related fundamental quantities and a fundamentally important 

macroscopic traffic flow model. According to the HCM (2000), the following 

quantities are defined. 

 

• Speed v(y, t) is defined as a rate of motion expressed as distance per unit of time, 

where y, t represents position (measured in the direction of traffic flow) and time, 

respectively. Depending on how it is measured, v(y, t) is referred to as either space 

mean speed or time mean speed (HCM, 2000). The other speed concept used in 

dynamic traffic flow models is the so-called free-flow speed, which is defined as the 

average speed of traffic measured under light conditions so that vehicles can move 

freely at their desired speed.  

 

• Flow f(y, t) is defined as the total number of vehicles that pass by the measure point y 

during a given time interval including t, divided by the length of the time interval.  

 

• Density ρ(y, t) is the number of vehicles occupying a (unit) length of roadway around 

                                                              
5 The flow is incompressible when the density reaches the jam density .  
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the measure point y at time t. The term can be obtained by the flow-density 

relationship, i.e.   

 .
),(

),(
=),(

tyv

tyf
ty                              (2.1) 

The flow-density relationship of a freeway segment is often referred to as the 

fundamental flow-density diagram (or fundamental diagram for short) of the segment. 

Depending on how we specify the speed-density relationship, the fundamental 

diagram can have different shapes. The Greenshields’ quadratic fundamental diagram 

and the Newell’s triangular fundamental diagram are two most common used 

fundamental diagrams.  

 

Some restrictions are imposed upon the dynamic marcoscopic traffic flow models to 

describe the link traffic dynamics, travel time of the link, and flow propagation. 

Among these restrictions: non-negativity of traffic flow, flow conservation, flow 

propagation, the first in/first out (FIFO) principle, causality, continuity are the 

common requirements. Here, we provide a brief description on flow conservation, the 

FIFO principle and the travel time definition based on these restrictions. For the sake 

of clarity, we first define the flow conservation.  

  

Flow Conservation: The conservation of traffic flow is one of the most important 

requirements that dynamic traffic flow models should possess. The conservation is 

enforced to prevent the situations that travelers enter the network vanish before 

reaching the destination during the planning horizon, or the total outflow exceeds the 

total inflow to a link at any time instance. As depicted in Figure 2.2, the flow 

conservation for a link a can be expressed as follows:   

 ),()(=)( txtDtA aaa                            (2.2) 

where )(tAa  denotes the cumulative arrivals up to time t and )(tDa  is the 

cumulative departures up to time t, respectively. This equation states that cumulative 

traffic volume on link a at time t is equal to the difference between cumulative arrivals 
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and cumulative departures up to time t from the initial time t0 with initial condition 

0=)( 0txa . For the case that link a  is not empty at the initial moment, we can revise 

(2.2) as   

 ).()(=)()( 0 txtDtxtA aaaa   

 

( )t t

( )t

 

Figure 2.2. Illustration of travel time calculation under FIFO principle 

 

Definition 2.1 First-In-First-Out (FIFO) Principle: Roughly speaking, the FIFO 

principle requires that vehicles entering a link first must also exit from the link first. 

Mathematically, this condition takes the form,   

 ),(>)(> tttttt                       (2.3) 

where τ(t) is the link travel time for vehicles entering the link at time t.     

 

Definition 2.2 Link travel time: Given that the FIFO principle hold, the travel timeτ(t) 

for link a at time t can be deduced from the time-flow consistency equation as follows 

                ( ) = ( ) .a aA t D t t                              (2.4) 

 

Nie and Zhang (2005) provided an overview on the role of FIFO principle in modeling 

network traffic dynamics. Note from Equation (2.2), the FIFO may imply no 

overtaking in practice. Therefore, as explained in Mun (2007), in traffic engineering 

practice the FIFO principle can not be always fulfilled. However, the voilation of 
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FIFO principle may be permitted in microscopic models through overtaking since we 

can specify different characteristics for different vehicles even though they entered a 

link at the same time. Different from microscopic models, in macroscopic (or 

aggregate) models vehicles are considered to take the same travel time to traverse a 

link if they enter it at the same time since macroscopic (or aggregate) models describe 

the average (statistical) behavior of vehicles (Mun, 2007). The FIFO principle is 

therefore should be enforced in dynamic assignment models for the issue of equity 

(Mun, 2007). If the FIFO principle is enforced for a traffic flow model, we have the 

following proposition.   

 

Proposition 2.1 (Chow, 2007) If a traffic model satisfies the FIFO principle and the 

link travel time function τ(t) is differentiable, then the following condition will be 

satisfied   

 
 
  0,

)(
1 

dt

td
                                (2.5) 

for all times of entry t to the link.     

 

2.3.2  The Lighthill-Whitham-Richards (LWR) model 

 

Among the macroscopic traffic flow models, Lighthill-Whitham-Richards (LWR) 

model would be the most popular and most-cited one. In terms of fluid dynamics, the 

traffic dynamics modeled by the LWR model is governed by the following two 

equations.   

 

 .),(=),(

0,=
),(),(

tyFtyf

y

tyf

t

ty












                               (2.6) 

The first equation of (2.6) is the principle of conservation of vehicles, which is 

followed from fluid mechanics. The second equation of (2.6) is a flow-density 

relationship which is also known as the “fundamental (flow-density) diagram”. As a 

“fluid-dynamic” traffic flow model, since the LWR model does not contain a 
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second-order derivative (such as a diffusion term), it is classified into the category of 

first-order model.  

 

Detailed discussions on the LWR model can be found in Haberman (1977); Gomes 

(2004); Schönhof and Helbing (2007). The LWR model is capable of reproducing 

many important phenomena of freeway traffic. For instance, it captures the main 

difference between free-flow and congested traffic, which is that they propagate small 

disturbances in opposite directions, e.g. forward and backward waves, and at different 

speeds, e.g. free-flowing speed and backward wave speed. The LWR model also 

explains the formation and dissipation of queues upstream of a bottleneck, the 

dynamics of deceleration shock waves, and the absence of naturally forming 

acceleration shock waves (Gomes, 2004). However, in the meantime, the model is 

criticized for predicting some unrealistic traffic behavior, e.g. unable to describe 

unstable flow, unable to describe spontaneous breakdowns of traffic flow, steady (or 

static) flow-density fundamental diagram assumption (Gomes, 2004; Schönhof and 

Helbing, 2007) .  

 

To allow source terms which may be due to ramp flows, the traffic dynamics of a 

freeway segment modeled by the LWR model is governed by  

 
 ,),(=),(

),,(),(=
),(),(

tyFtyf

tyty
x

tyf

t

ty




 








                    (2.7) 

where ),( tx  denotes the source terms which may be due to ramp flows with the 

plus sign denotes on-ramps and the minus sign denotes off-ramps. There are several 

ways to introduce stochastic elements to the LWR modeling framework, e.g.   

    1.  stochastic initial and boundary conditions,  

    2.  stochastic source terms, and  

    3.  stochastic speed-density relationship or fundamental diagram. 

We may recognize the forst two terms as demand uncertaity and the third term as 

supply uncertainty.  
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Chapter 3  

The stochastic cell transmission model (SCTM) and its 

extensions    

 

Firstly, this chapter reviews the previous works related to the development of the cell 

transmission model (CTM) from the deterministic nonlinear CTM to its extensions 

such as the Modified CTM (MCTM) and its piecewise linearized version---Switch 

Mode Model (SMM). Next, SCTM is introduced from the cell assignment with 

respect to the characteristics of freeways, to the evaluation stochastic dynamic traffic 

flow propagation. Finally, advantages/disadvantages of the model are listed with the 

cautions needed to be paid when implementing the SCTM for virtual traffic flow 

simulation and empirical study. 

 

3.1 The cell transmission model and its extensions   

 

3.1.1 The CTM and MCTM 

 

The Cell Transmission Model (CTM), which was proposed by Daganzo (1994, 1995) 

is a deterministic dynamic traffic flow model which discretizes the LWR model in 

both time and space. As shown in Figure 3.1, the model devides a freeway segment 

into several homogeneous, consecutively numbered cells with length il , where i  is 

a cell index. Idealy, the cell length should be equal to the distance travelled by free 

flowing vehicles during one simulation time increment, that is 
i f s
l v T= , where 

f
v

 
is 

the free-flow speed of the freeway segment, and 
s
T

 
is the simulation time increment. 

The model assumes that the traffic state is homogenous within one cell. The number 

of vehicles on cell i  at time tk  which is taken as the state variable for the cell can 

be evaluated according to the following flow conservation equation: 
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( )1
( 1) = ( ) ( ) ( )
i i i i
n k n k y k y k

+
+ + -                 (3.1) 

where ( )
i
y k  is the inflow volume from cell i-1 to i during time interval

( ) ), 1
s s

kT k Té +êë . The flow from cell i -1 into cell i is the minimum of three quantities:    

{ }1
( ) min ( ), ,( / ) ( )
i i i c f i i
y k n k Q w v N n k-

é ù= -ê úë û                (3.2) 

where 
i
N is the maximum number of vehicles that can be present in cell i with 

i J i
N lr= ; 

i
Q is the maximum number of vehicles that can flow into cell i during 

time interval ( ) ), 1
s s

kT k Té +êë  with 
i M s
Q Q T= ;

c
w is the backward wave speed when 

traffic is congested (e.g. mile/hr); and fv
 
is the free-flow speed (e.g. mile/hr). 

( / ) ( )
c f i i
w v N n ké ù-ê úë û  is the jam-limited volume, which depends on the amount of 

available space of cell i. In this case, the CTM corresponds to a trapezoidal 

fundamental diagram shape, as shown in Figure 3.2., where QM is the maximum 

allowable flow rate (e.g. veh/hr), J  is the jam density (e.g. veh/mile) and c  is the 

critical density (e.g. veh/mile). 

 

( )
i
n k

( )
i
y k

1
( )

i
y k+  

Figure 3.1. Cell partition of a freeway segment 

 

Figure 3.2. A trapezoidal fundamental diagram for CTM and MCTM 

 

MQ

fv
cw

c J

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For traffic surveillance and control purpose, traffic density may be a more natural 

mearsure as it characterizes the level of congestion. For example, the mapping from 

traffic volume to traffic density is a multi-valued one as illustrated by the fundamental 

diagram, e.g. Figure 3.2. A flow rate of 5000 veh/hr may correspond to either 

free-flowing traffic condition (i.e. the left hand side of the fundamental diagram) or 

congested traffic condition (i.e. the right hand side of the fundamental diagram). On 

the other hand, the mapping from traffic density to traffic condition is unique. To this 

end, the modified cell transmission model (MCTM) was developed by Munoz et al. 

(2003) for traffic surveillance. Moreover, this model permits the CTM to adopt 

non-uniform cell lengths and leads to greater flexibility in partitioning freeways. In 

the MCTM, the density of cell i evolves as: 

        ( ), ,
( 1) = ( ) ( ) ( ) ,s

i

T

i i i in i outl
k k q k q kr r+ + -                 (3.3) 

where ( )
i
kr is the vehicle density in cell i at time index k, 

,
( )

i in
q k  and 

,
( )

i out
q k are the 

flow rates (in vehicles per unit time) entering and leaving cell i during the time 

interval ( ) ), 1
s s

kT k Té +êë  respectively. The model defines some piecewise affine 

sending and receiving functions of traffic volumes to describe the interactions between 

neighboring cells as well as the shockwaves of a freeway segment. ( )
i
q k is 

determined by taking the minimum of two quantities:   

     
, 1
( ) = min( ( ), ( ))

i in i i
q k S k R k-

                          (3.4) 

where
1
( )

i
S k- is the maximum flow that can be supplied by cell i-1 under free-flow 

conditions, over the interval ( ) ), 1
s s

kT k Té +êë , and ( )
i
R k is the maximum flow rate 

that can be received by cell i under congested conditions, over the same time interval： 

1 , 1 1 , 1
( ) = min( ( ), )

i f i i M i
S k v k Qr- - - -

                         (3.5) 

, , ,
( ) = min( , ( ( )))
i M i c i J i i
R k Q w kr r-                         (3.6) 

From (3.4)-(3.6),   

, , 1 1 , 1 , , ,
( ) = min( ( ), , , ( ( )))

i in f i i M i M i c i J i i
q k v k Q Q w kr r r- - - -              (3.7) 
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The definitions of sending and receiving functions are useful when the model is 

extended to tackle general network topologies (Daganzo, 1995; Munoz et al., 2003). 

The CTM was further extended to track the path flows for the purpose of dynamic 

traffic assignment by Lo et al. (2001). As a discrete version of the LWR model, the 

CTM suffers from most of the drawbacks of the LWR model in describing traffic flow. 

 

3.1.2 Switching Mode Model (SMM)  

 

Although the MCTM is much simpler than many other higher order hydrodynamics 

based partial differential models, the nonlinear nature of the flow-density relationship 

due to (3.7) still makes it difficult to analyze and to be used as a basis for the design of 

traffic controllers. To avoid the nonlinearity, the Switching Mode Model (SMM) was 

proposed (Munoz et al. 2003). The SMM is a hybrid system (switched linear system) 

that switches among different sets of linear difference equations (representing 

different traffic states of the highway), and the mainline boundary data and the 

congestion status of the cells in a highway section detemine which equation is adopted 

(see Figure 3.4). The formulation of SMM avoids the nonlinearity of the CTM at the 

cost of introducing the “switching” condition and using triangular flow-density 

relationship. The triangular relatioship means 
, ,

, ,

1 1
( )

M i J i
f i c i

Q
v w

r+ = for each cell 

(i=1,2,….,z), as shown in Figure 3.3. As stated in Munoz et al. (2003), the following 

assumptions are made to simplify the problem:  
 

 

Assumption 3.1 The traffic flow rates and densities of the segment upstream and 

downstream boundaries, as well as the flow rates of on-/off- ramps are known.  

 

Assumption 3.21  There is at most one wave-front within the freeway segment. 
                                                              
1 Some authors, e.g. Perakis and Roles (2006), refer this assumption as “At Most One Shock” 

which is stated as: there is at most one shock on the road, dividing an upstream uncongested 

region from a downstream congested region. 

29



Chapter3．The SCTM and its extensions     

Based on the above assumptions, five modes are defined according to different traffic 

states for each segment(see Figure 3.4): (I) “Free flow-Free flow (FF)” (Figure 3.4a), 

(II) “Congestion - Congestion (CC)” (Figure 3.4b), (III) “Congestion - Free flow (CF)” 

(Figure 3.4c), (IV) “Free flow-Congestion 1 (FC1)” (Figure 3.4d), and (V) “Free flow 

- Congestion 2 (FC2)” (Figure 3.4e). The two “Free flow – Congestion” modes are 

determined by the moving direction of the wave front. If the wavefront is moving 

downstream, then the mode is FC1; while if the wave front is moving upstream, it is 

FC2 mode. The moving direction of the wave-front depends on the relative 

magnitudes of the supplied flow from the last uncongested cell (cell l-1) and the 

available space in the first congested cell downstream (cell l). As presumded in 

Assumption 3.2, there is at most one wave front in the freeway segment, modes (I) 

and (II) can be regarded as steady-state modes, while modes (III), (IV), and (V) can be 

viewed as transient modes with the wave front located on the boundary of cell l-1 and 

l (l=1,…, z-1).  

MQ

fv
cw

c J


 

Figure 3.3. A triangular fundamental diagram for the SMM 

 

In Figure 3.4, 
u
q and 

u
r are the inflow rate and density measured by the detectors at 

the upstream boundary, respectively，and 
d
q and

d
r  are the outflow rate and density 

measured at the downstream boundary, respectively. 
b
r denotes the on-ramp flow 

merges into the mainline at the upstream boundary of cell b, and 
e
f denotes the 

off-ramp flow diverts from the the mainline at the downstream boundary of cell e. In 

Munoz et al. (2003), ( )
u
kr , ( )

d
kr  in conjunction with the estimated densities 
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( )
i
kr (if necessary) are applied to determine under which mode the freeway segment 

is operating and the location of wave-front with moving direction:  

If 
,1

( )
u c
kr r<  and

,
( )
d c z
kr r< , then mode FF is determined at time index k. 

If 
,1

( )
u c
kr r>  and

,
( )
d c z
kr r> , then mode CC is determined.  

If 
,1

( )
u c
kr r>  and

,
( )
d c z
kr r< , then mode CF is determined, and if furthermore 

,
( )
j c j
kr r>  and

1 ,. 1
( )

j c j
kr r+ +< , then l=j, i.e. the wave-front is located at the 

boundary between cell j and cell j+1.  

If 
,1

( )
u c
kr r<  and

,
( )
d c z
kr r> , then mode FC is determined, and if furthermore 

,
( )
j c j
kr r<  and

1 ,. 1
( )

j c j
kr r+ +> , then l=j; 

Moreover, if 
, , 1 , 1 1
( ) ( ( ))

f j j c j J j j
v k w kr r r+ + +< - , then FC1 is activated; else FC2 is 

activated. 

 

uq

br ef

dq

u d

 

a). Free-flow-Free-flow (FF) mode 

uq

br ef

dq

u d

 

b). Congestion to Congestion (CC) mode 

uq

br ef

dq

u d

 

c). Congestion to Free-flow (CF) mode. 

uq

br ef

u d

dq

 

d). Free-flow to Congestion (FC 1) mode 
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uq

br ef

u d

dq

 

e). Free-flow to Congestion (FC 2) mode 

 
Figure 3.4. Freeway segment with z cells for SMM and SCTM 

Because of the deterministic environment, there must be one mode and only one mode 

that represents the traffic state at a certain time. Each mode corresponds to a 

discrete-time linear system of the following form:  

  
, , , , , ,

( 1) ( ) ( )
s l s l J s l J Q s l M

k A k B u k B B qr r r+ = + + +               (3.8) 

where s denotes the mode FF, CC, CF, FC1 and FC2, and l denotes the location of 
wave-front, the vector of traffic densities of the freeway segment is denoted as 

( ) ( ) ( )( )1
= , ,

T

z
k k kr r r , and ( ) ( ) ( ) ( ) ( )( )= , , ,

T

u b e d
u k q k r k f k q k  is comprised of 

inflow and outflow rates including the on-/off- ramp flows. The vectors ,
J M
qr are 

jam densities and capacities of all the cells along the freeway segment, that is 

,1 ,2 ,
, ,

T

J J J J z
r r r ré ù= ê úë û and

1 2
, ,

T

M z
q Q Q Qé ù= ê úë û  .The matrices 

, , , ,
, , ,

s l s l J s l
A B B   and 

, ,Q s l
B  are system matrices of mode s with the subscript l denotes the wave-front 

location. For example, when z=4, s=FC2, l=2, r=2, e=3, the system matrices are thus 
defined:  
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From the introductions of the CTM, the MCTM and the SMM, all of these models 

rely on the steady supply functions as well as the assumption that the inflow demand 

and supply functions are deterministic. However, as explained in the previous chapters, 

this assumption is not realistic due to the inherent demand and supply uncertainites. 

The Monte Carlo method is a simple way to extend the SMM to handle the demand 

and supply stochasticities. However, the potentially high computational cost and the 

techniques requiured to reduce the variances of the results may be the apparent 

disadvantages and difficulties. In order to model the effects of demand and supply 

uncertainties on traffic flow dynamics and its propagation, a stochastic dynamic traffic 

flow model that extends the SMM to consider stochastic parameters of the 

fundamental flow-density diagram as well as the stochastic travel demand was 

proposed by Sumalee et al. (2011). This model is titled as the stochastic cell 

transmission model, which is introduced and discussed in the following sections.  

 

3.2 The stochastic cell transmission model (SCTM) 

 

The stochastic cell transmission model (SCTM) proposed by Sumalee et al. (2011) is 

a stochastic dynamic traffic flow model for the traffic state estimation. The random 

demand profiles and stochastic supply functions, e.g. the variations of day-to-day 

inflow demand as illustrated in the left hand side of Figure 3.5 (inflow demand at 

non-rush hour on seven days) and uncertain parameters in the flow-density 

fundamental diagrams as illustrated in the right hand side of Figure 3.5 (flow-density 

data collected for 54 days), are taken as exogenous inputs to the SCTM. The SCTM 

evaluates the stochastic dynamic traffic states as demonstrated in Figure 3.6. We 

interpret it by the following three steps:  

 

Step 1: The model defines five probabilistic events corresponding to different 

congestion status as shown in Figure 3.4 which have been described as operational 

modes and explained in details in previous SMM section. As the traffic states and 
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supply functions are both stochastic, therefore more than one traffic modes might exist 

simultaneously instead of just only one mode at each time in the deterministic case. 

Using real-time detection or historical data, the model evaluates the probabilities of 

the five modes.   

 

Step 2: Evaluate the mean and auto-correlation of cell traffic densities for each mode 

based on the corresponding bilinear system formulation given the statistics of random 

inflow profiles, supply functions, and the traffic states evaluated in last iteration.  

 

Step 3: Approximate the stochastic traffic densities (mean and standard deviation) by 

applying finite mixture to the five distributions and relevant probabilities obtained 

from Steps 1 and 2.  

 

These three steps will be introduced in details in the following sections. In this chapter, 

demand and supply uncertainties are assumed to be independent Gaussian white 

noises in both time and space domains.  

 

 

Figure 3.5. The stochastic inflow demand and fundamental diagram 
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( )s k

( )k

 

Figure 3.6. The implementation process of the SCTM 

 

3.3 Probabilities of occurrence of modes  

 

The SCTM adopts the five traffic operational modes introduced in the SMM to 

represent the traffic state under different congestion levels, i.e. FF, CC, CF, FC1 and 

FC2. However, due to the demand and supply uncertainties, we cannot determine 

under which exact mode the freeway segment is operating. Therefore, in the SCTM, 

we define several probabilities to describe the likehood of occurrence of these 

operational modes. In this chapter, the probabilities of occurrence of these five modes 

are denoted as Pr ( )
s
k  with s= FF, CC, CF, FC1, FC2.  

 

In Munoz (2003), the freeway between two neighboring detector stations is assigned 
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to be one SMM segement by enforcing Assumption 3.2. Actually, this assumption 

might be voilated especially when the length of the segment is long, e.g. 5 kilometers 

which may be divided into 10 cells. In Suamlee et al. (2011) and Zhong (2011), two 

kinds of assignments are proposed for choice to relax the one wave-front assumption. 

The first appropach is to assign multiple cells (generally more than 2 cells) between 

two neighboring detectors as one system as shown in Figure 3.4. The other one is to 

represent the freeway segment by cascaded sub-systems with each sub-system 

consisting of two cells only as shown in Figure 3.7. 

 

3.3.1 Multiple cells case 

 

The probabilities of occurrence of the four main operational modes can be defined as: 

• FF mode:  ,1 ,( ) Pr ( ) < ( ) < ,FF u c d c zP k k k                       (3.9) 

        • CC mode:  ,1 ,( ) Pr ( ) ( ) ,CC u c d c zP k k k         

        • CF mode:  ,1 ,( ) Pr ( ) ( ) < ,CF u c d c zP k k k         

        • FC mode: ( ) 1 ( ( ) ( ) ( )),FC FF CC CFP k P k P k P k     

These definitions are proposed based on the assumption that there is no more than one 

wave-front in a SCTM segment. A SCTM segment is freeway section between 

adjacent detectors along the test site.The physical meannings of these probabilities can 

be thus explained, e.g. the probability of FF mode can be regarded as the likihood that 

the upstream detected density is less then the critical density of the first cell and the 

downstream detected density is less than the critical density of the last cell. The 

following step seperates the CF and FC modes by the location and moving direction 

of wave-front.  

 

For CF mode, the conditional probability , | ( )CF l CFP k , that is the wave-front located at 

the boundary between cells l and l+1 (l=1,2,……, z-1) based on the CF mode as 

 , | , , 1 , 1( ) Pr ( ) ( ) < ,CF l CF O l c l l c lP k k k      
             (3.10) 
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But the summation of conditional probabilieis , | , ( )CF l CF OP k for l=1,……,z-1 might not 

be equal to 1. A weighting method is applied to overcome this disadvantage: 

, | ,
, | 1

, | ,
1

( )
( )

( )

CF l CF O
CF l CF z

CF l CF O
l

P k
P k

P k






                        (3.11) 

Then  

, , |( ) ( ) ( ).CF l CF l CF CFP k P k P k                          (3.12) 

 

FC mode involves both the location and wave-front moving direction problems. The 

conditional probability 
1, |
( )

FC l FC
P k , i.e. the wave-front located at the boundary 

between cells l and l+1 (l=1,2,……,z-1), with the wave-front moving downstream is 

defined as   

 ( )1, | , , 1 , 1 , 1 , 1 1
( ) Pr ( ) ( ) ( ) ( ( )) ,

FC l FC O l c l l c l f l l l J l l
P k k k v k w kr r r r r r r+ + + + +< Ç ³ Ç £ -

       

and the probability of the wave-front moving upstream as  

( )2, | , , 1 , 1 , 1 , 1 1
( ) Pr ( ) ( ) ( ) ( ( )) ,

FC l FC O l c l l c l f l l l J l l
P k k k v k w kr r r r r r r+ + + + +< Ç ³ Ç > -

Similarly, the summation of 
1, | ,

( )
FC l FC O
P k  and 

2, | ,
( )

FC l FC O
P k  might not be equal to 1, 

so the weighting method is utilized: 

( )
, | ,

, | 1

1, | , 2, | ,
1

( )
( ) , 1, 2

( ) ( )

FCx l FC O

FCx l FC z

FC l FC O FC l FC O
l

P k
P k x

P k P k
-

=

= =
+å

             (3.13) 

Then,                , , |( ) ( ) ( )FCx l FCx l FC FCP k P k P k   

where ,c i  is the critical density of cell i, vf is the free flow speed, wi is the backward 

congestion wave speed, ,J i  is the jam density of cell i, 
i
r  is the joint density of 

cell i, which is approximated by the finite mixture distribution of the five probabilistic 

events as it will be discussed in details in Section 3.3.3. 
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3.3.2 Two cells case 

 

As previously mentioned, a freeway can be also divided into several subsystems with 

each subsystem consists of two cells as depicted in Figure 3.7. The essential 

advantage of this approach is that the description of each mode is simpler and 

Assumption 3.2 is automatically satisfied due to the homogeneous assumption within 

one cell, e.g. the wave-front location within each subsystem for transient modes (CF, 

FC1 and FC2) is not varying any more (it has to located at the boundary between the 

two cells). This in turn yields definitions of probabilities of occurrence of the five 

operational modes easy to be evaluated. 

 

uq

sn

dq

         Figure 3.7. Subsystems and traffic states 

 

Probabilities of occurrence of operational modes of subsystem j are given by: 

FF:  ( )( ) ,1 , ,1 ,2 , ,2
( ) Pr ( ) ( ) .

FF j j c j j c j
P k k kr r r r= < Ç <

                     
CC： ( )( ) ,1 , ,1 ,2 , ,2

( ) Pr ( ) ( ) .
CC j j c j j c j
P k k kr r r r= > Ç >  

CF:  ( )( ) ,1 , ,1 ,2 , ,2
( ) Pr ( ) ( ) .

CF j j c j j c j
P k k kr r r r= > Ç <  

FC1: ( )1( ) ,1 , ,1 ,2 , ,2 , ,1 ,1 , ,2 ,1 ,1
( ) Pr ( ) ( ) ( ) ( ( ))

FC j j c j j c j f j j c j J j
P k k k v k w kr r r r r r r= < Ç > Ç < -  

FC2: ( )2( ) ,1 , ,1 ,2 , ,2 , ,1 ,1 , ,2 ,1 ,1
( ) Pr ( ) ( ) ( ) ( ( ))

FC j j c j j c j f j j c j J j
P k k k v k w kr r r r r r r= < Ç > Ç > -  

 

3.3.3 Independent assumption and probability evaluation  

 

The SCTM framework proposed by Sumalee et al. (2011) and Zhong (2011) has 

enforced the uncorrelated assumption. Take Equation (3.9) as an example, the joint 
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probability is evaluated as  

     ,1 , ,1 ,( ) Pr ( ) < ( ) < Pr ( ) < Pr ( ) < ,FF u c d c z u c d c zP k k k k k                 (3.14) 

Equation (3.14) means that the event ( )u k  is smaller than ,1c  will not be 

influnced by the relationship between ( )d k and ,c z . However, this assumption may 

not be true in practice which will be discussed in Chapter 5. 

 

3.4 The bilinear system and finite mixture 

 

The dynamics of each mode is represented by a bilinear system of the following form: 

,0 , , ,0 , ,
=1 =1

( 1) = ( ) ( ) ( ) ( ) ( ),
p p

s s s i s i s s i s i s s
i i

k A A k k B B k k B u kr w r w l
æ ö æ ö÷ ÷ç ç÷ ÷+ + + + +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

å å
 (3.15)

 

where 
,s i
A  and 

,s i
B ( 0,1, )i z=   are the constant system matrices with the 

elements constituted by simulation time interval sT  and cell lengths il , 
,
( )

s i
kw  and 

( )
s
kl  denote the uncertain supply functions, and ( )u k  is the vector of demand (or 

in-/out- flows of the segment).  

 

Consider a freeway segment divided into four cells with one on-ramp connected to 

cell 2 and one off-ramp connected to cell 3, i.e. p=4, r=2, e=3. Denote the vector of 

cell traffic densities and vector of inflows as 

1 2 3 4
( ) ( ), ( ), ( ), ( )

T

k k k k kr r r r ré ù= ê úë û
, and 

2 3
( ) ( ), ( ), ( ), ( )

T

u d
u k q k r k f k q ké ù= ê úë û . 

 

Under the FF mode 
, ,
( )

FF i f i
k vw = ,

4 1
( ) 0

FF
kl ´= , the supply uncertainty comes from 

variation of the free-flow speed. The system matrices for (3.15) under FF mode are 
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1

2
,0 4 4 ,1 ,2 ,3

2 3

3

4

0 0

0 0
0

0, , , ,0
0

0 0
0

0 0 0 0

s

s

s s
FF FF FF FF

s

s

T

Tl
T Tl

A I A A A
Tl l

Tl

l

´

é ù é ù é ù
ê ú ê ú ê ú-ê ú ê ú ê ú
ê ú ê ú ê ú-ê ú ê ú ê ú
ê ú ê ú ê ú= = = = -ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

1

,4 2

4

4

0

0 0

,0 0
0

0
0

s

s

FF FF

s

s

T

l
T

A B l

T
Tl
l

é ù
ê ú

é ù ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú= =ê ú ê ú
ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê úë û -ê ú

ê úë û

 

Under CC mode, 
, ,
( )

CC i c i
k ww = ,

,1 ,2 ,3 ,4
( ) = , , ,

T

CC J J J J
kl r r r ré ù

ê úë û
, the backward wave 

speeds and the jam densities are the supply uncertainties. The system matrices for this 

mode are           

1
1

,0 4 4 ,1 ,2
2

,

0

0 0, ,
0 0

0
0 0

0

s
s

s

CC CC CC

T
T

l
l

T
A I A A

l´

é ù
é ù ê ú
ê ú ê ú-ê ú ê ú
ê ú ê ú
ê ú ê ú-= = =ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ê úë û

2
,3 ,4

3

3

4

0 0

0 0
0

, 0 0

0
0

s

s
CC CC

s

s

T

Tl
A A

T l
Tl

l

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú= =ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê úë û ë û

 

,0 4 4 ,1 ,1 ,2 ,2 ,3 ,3

1

,4 ,4

3

4

0 , , , ,

0

0

, .

CC CC CC CC CC CC CC

s

CC CC CC s

s

B B A B A B A

T

l

B A B T

l
T

l

´= = - = - = -
é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú= - = ê ú-ê ú
ê ú
ê ú
ê ú-ê ú
ê úë û

 

In CF mode, assume that the wave-front is located at the boundary of cell 2 and cell 3 , 
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i.e. l=2. Then
,2, ,
( ) ,

CF i c i
k ww = if i=1,2; 

,2, ,
( ) ,

CF i f i
k vw = if i=3,4, and

,1 ,2 ,2
( ) = , , , 0

T

CF J J M
k Ql r ré ù

ê úë û  

1 1
1

,2,0 4 4 ,2,1 ,2,2 ,2,2
2 2

0 0

0, = , = , = ,

0
0 0

0
0 0

s s
s

s s

CF CF CF CF

T T
T

l l
l

T T
A I A A A

l l´

é ù é ù
é ù ê ú ê ú
ê ú ê ú ê ú-ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú- -= ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê úë û ê ú ê úë û ë û

,2,3 ,2,4

3

4
4

0
0

0
0

= , = 0

0

s
CF CF

s
s

T
A A

l
T

T
l

l

é ù
é ùê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú- ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú ë ûê úë û

1

2
,2,0 ,2,1 ,2,1 ,2,2 ,2,2 ,2

3

4

0
0

0
0

= , = , = , =
0

0
0

s

s

CF CF CF CF CF CF
s

s

T

T l

l
B B A B A B

T

Tl

l

é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê ú- -ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê úë û ë û

In FC1 mode, assume that the wave-front is located at the boundary of cell 2 and cell 

3, i.e. l=2. In this case 
1,2, ,
( ) ,

FC i f i
k vw = for i=1,2; 

1,2, ,
( ) ,

FC i c i
k ww =  for i=4; 

1,2 ,1
( ) =

FC J
kl r . 

1

2
1,2,0 4 4 1,2,1 1,2,2

2

3

0

0, = , = ,

0
0

0 0

s

s

s

FC FC FC
s

T

Tl
T l

A I A A
Tl

l

´

é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê ú= ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û
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1,2,4

3

4

0

0

= ,0 s
FC

s

T
A

l
T

l

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú-ê ú
ê úë û

1

1,2,4 1,2 2

3

4
3 4

0

0

, =

0

s

s

s
FC FC

s
s s

T

l
T

T
B B l

l
T

T T
l

l l

é ù
é ù ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú= -ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú-ê ú ê úë û ê úë û

 

In FC2 mode, assume the wave-front is located at the boundary of cell 2 and cell 3, i.e.  

l=2. In this case 
1,2, ,
( ) ,

FC i f i
k vw = for i=1; 

1,2, ,
( ) ,

FC i c i
k ww =  for i=3,4; 

2,2 ,3 ,4
( ) = ,

T

FC J J
kl r ré ù

ê úë û . 

1

2,2,0 4 4 2,2,0 4 4 2,2,1
2

0= , = , = ,

0

0

s

s

FC FC FC

T

l
T

A I A I A
l´ ´

é ù
ê ú-ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 

2
2,2,3 2,2,4

3

3

4

0 0

0
0

= , = ,0

0

s

s
FC FC

s

s

T

Tl
A A

T l
Tl

l

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê ú-ê ú ê ú
ê ú ê úë û ë û

 

1

2
2,2,3 2,2,4 2,2 2

3

3

4
3 4

0 0 0 0

0

= , = , =

0

0
0 0

s

s
s

s
FC FC FC

s

s
s s

T

l
T

T
Tl

B B B l
T l

Tl
T T

l
l l

é ù
é ù é ù ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú-ê ú ê ú ê ú
ê ú ê ú ê ú-ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú-ê ú ê ú ê úë û ë û ê úë û

   

The mean of the density vector of mode s, i.e. ( )( 1)
s

E kr + , can be evaluated as 
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( ) ( ) ( )

( ) ( ) ( )

,0 , ,
=1

,0 , ,
=1

( 1) = ( ) ( )

( ) ( ) ( ) .

p

s s s i s i
i

p

s s i s i s s
i

E k A A E k E k

B B E k E k B E u k

r w r

w l

æ ö÷ç ÷+ +ç ÷ç ÷çè ø
æ ö÷ç ÷+ + +ç ÷ç ÷çè ø

å

å          (3.16) 

The auto-correlation matrix is: 

( )

( ) ( ),0 , , ,0 , ,
=1 =1

, , , , , , ,
=1 , 1

( 1) = ( 1) ( 1)

( ) ( ) ( )

( ) ( ) ( ),

T

s s s

T
p p

s s i s i s s i s i
i i

p z
T T

s i s i s i s i j s i s j s
i i j

i j

Q k E k k

A A E k Q k A A E k

A Q k A A Q k A V k

r r

w w

g c
=

¹

+ + +

é ù é ù
ê ú ê ú= + +ê ú ê ú
ë û ë û

+ + +

å å

å å

            (3.17) 

where

                                                   

 

( )( )
( ) ( )( ) ( )

( )( ) ( )( )

,0 , , ,0 , ,
=1 =1

, , , , , , ,
=1 , 1

( ) = ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

T T T
s s s s s

T
p p

T
s s i s i s s s s i s i

i i
p z

T T T T
s i s i s s s i s i j s i s s s j

i i j
i j

V k G k G k B E u k u k B

B B E k E k k B B E k

B E k k B B E k k B

w l l w

g l l c l l
=

¹

+ +

é ù é ù
ê ú ê ú+ + +ê ú ê ú
ë û ë û

+ +

å å

å å
  (3.18)          

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

,1 ,2 ,3

,1 ,0 , ,
=1

,2 ,0 , ,
=1

( ) ( ) ( ) ( ),

( ) = ( ) ( ) ( ) ( ) ( ) ,

( ) = ( ) ( ) ( ) ,

s s s s

p TT
T

s s s i s i s
i

p T
T

s s s i s i s s
i

G k G k G k G k

G k A E k E u k A E k E k u k B

G k B B E k E k E u k B

r r w

w l

= + +
é ù
ê ú+ê ú
ë û
é ù
ê ú+ê ú
ë û

å

å
   (3.19)

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

,3 ,0 , ,
=1

,0 , , , , ,
=1 =1

, , , ,
, 1

( ) = ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ,

p T

s s s i s i s
i

T
p p T

T
s s i s i s i s i s s i

i i
z T

T
s i j s i s s j

i j
i j

G k A E k A E k E k E k

B B E k A E k E k B

A E k E k B

r w r l

w g r l

c r l
=

¹

é ù
ê ú+ê ú
ë û
é ù
ê ú+ +ê ú
ë û

+

å

å å

å    

( ) ( )( ) ( )
2

, , , , ,
( ) ( ) ( ) var ( ) ,

s i s i s i s i s i
E k k E k kg w w w w= - =  

( ) ( ) ( ) ( ), , , , , , , ,
( ) ( ) ( ) ( ) cov ( ), ( ) .

s i j s i s j s i s j s i s j
E k k E k E k k kc w w w w w w= - =  

 

As it has been assumed that the supply functions are uncorrelated, so that
, ,

0
s i j

c =  
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whenever i j¹  in (3.18) and (3.19).  

 

To evaluate the mean and variance matrix of the joint traffic density vector ( 1)kr + , 

a finite mixture distribution of ( 1)
s
kr + , s = 1, 2, …, 5, is applied to approximate the 

overall effect of the five operational modes.   

( ) ( )( )= ( 1) = Pr ( ) ( 1) .
s ss

k E k k E km r r+ +å                   (3.20) 

Then the auto-correlation matrix ( 1)Q k + and variance matrix ( )( )Var kr  can be 

evaluated as:   

( 1)= Pr ( ) ( 1)
s ss

Q k k Q k+ +å  

( )( ) = Pr ( ) ( 1) ( ) ( ).T
s ss

Var k k Q k k kr m m+ -å            (3.21) 

 

3.5 Recommondations and summary of the SCTM  

 

3.5.1 Recommendations for empirical studies and numerical simulations  

 

The SCTM can be applied to both empirical studies and numerical simulations for 

traffic state estimation and prediction. For empirical studies, historical records of 

traffic conditions such as boundary densities and flow rates are available for 

simulation. However, for numerical simulations, one would like to test the model 

under extreme conditions such as sudden increase and decrease of the demand profiles, 

see e.g. Sumalee et al. (2011), Zhong et al. (2011). We may need to adjust the 

definitions of the probabilities of occurrence of the operational modes to adapt 

different environments and the available data. Indeed, as commented by Sumalee et al. 

(2011) that the definition of probabilities of occurrence of operational modes 

presented in the paper is only a feasible definition to the author, not a uniform 

definition of probabilities of occurrence of operational modes. One can revise the 

definition of probabilities of occurrence of operational modes to adapt to different 
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traffic conditions and the desired accuracy. For example, in Section 3, the probabilities 

of occurrence of the operational modes are defined in line with Assumption 3.1, i.e. 

according to the real measurements. However, for numerical simulations, they are 

unavailable. To this end, we may revise those probabilities of occurrence of 

operational modes by replacing the measurements with the estimated boundary 

densities 1( )k  and ( )z k  obtained from the SCTM. Furthermore, the inflow of the 

upstream ( )uq k , and outflow from the downstream ( )dq k  will be used to handle the 

extreme simulation conditions such as sudden increase and decrease of the demand 

profiles. Take the multiple cells scenario as an example, the probabilities of 

occurrence of operational modes can be restated as:   

•FF mode: 

      
        

1 ,1 , ,

1 ,1 , , ,1 1 ,1

( ) < ( ) < ( ) ( )
( ) Pr

( ) ( ) ( ) ( ) ( ) ( ( ) )

c z c z f z z d

FF

c z c z f z z d u c J

k k v k q k
P k

k k v k q k q k w k

    

      

    
 
          



 
  

•CC mode:   

      
        

1 ,1 , ,1 1 ,1

1 ,1 , , ,1 1 ,1

( ) ( ) ( ) ( ( ) )
( ) Pr

( ) ( ) ( ) ( ) ( ) ( ( ) )

c z c z u c J

CC

c z c z f z z d u c J

k k q k w k
P k

k k v k q k q k w k

     

      

       
 
         




 

•CFmode: 

        1 ,1 , , ,1 1 ,1( ) Pr ( ) ( ) ( ) ( ) ( ) ( ( ) ) ,CF c z c z f z z d u c JP k k k v k q k q k w k                  

• FC mode: ( ) 1 ( ( ) ( ) ( )),FC FF CC CFP k P k P k P k     

 

3.5.2 Summary   

 

This chapter reviewed the basic CTM proposed by Daganzo (1994), the modified 

CTM and its piecewise linearized version SMM., and then discussed the SCTM 

proposed by Sumalee et al. (2011), an extension of the CTM to the stochastic 

environment, from cell assignments, SCTM segments, evaluations of probabilities of 

occurrence of operational modes, stochastic bilinear system representations of 

different operational modes, to the finite mixture distribution approximation of the 
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overall effect of the five operational modes. This chapter also highlighted the 

advantages and disadvantages of the model and the technical issues regarding to its 

applications to different purposes.  

 

As mentioned previously, the uncorrelated assumption may be not reasonable in 

practice. To be more specific, the uncorrelated or independent assumptions enforced 

explicitly or implicitly in the SCTM framework cause several limitations to the 

definitions of probabilities of occurrence of operational modes and their evaluations. 

These drawbacks render the model may not perform very well when it is applied for 

short-term traffic flow prediction, especially under abnormal traffic conditions, e.g. 

incidents and adverse weather conditions due to the fact that the model does not 

consider the spatial-temporal correlations of the traffic flow fully and lacks of a proper 

prediction algorithm to forecast demand and supply profiles. This issue will be 

addressed in Chapter 5.  
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Chapter 4  

Estimation of journey time distribution and reliability analysis  

 

This chapter proposes an algorithm to estimate the stochastic dynamic journey time and 

indexes to quantify the stochastic dynamic travel time reliability. Section 4.1 clarifies the 

relationship between several definitions used in this chapter, i.e. cells, segments, links, and 

routes. Section 4.2 introduces the concept of likelihood and PMF (Probabilistic Mass Function) 

based on the stochastic cumulative link in-/out- flows for the construction of stochastic 

dynamic travel time distributions. Section 4.3 develops an algorithm to calculate the PMF of 

journey time of a route by extending the deterministic nested delay operator to a stochastic 

version based on a series of conditional probabilities. The distributions of dynamic link and 

route travel times are obtained by fitting their PMFs to a kind of skew normal distribution. 

Journey time reliability is analyzed in Section 4.4. Finally, the empirical study in Section 4.5 

confirms the effectiveness and efficiency of the proposed algorithms by the consistency 

between the estimated journey time and the detected one as well as the consistency between 

the results obtained from the proposed skewness analysis and the statistical records reported in 

the transportation literature. 

 

4.1 The definition of link, route and SCTM segment  

 

This section clarifies the difference of SCTM segment and freeway link within a certain path. 

Consider a path on a long freeway corridor as depicted in Figure 4.1. Firstly, the path is 

naturally divided into links by the on-ramps and the off-ramps along the corridor without any 

interruption within each link. As illustrated in Figure 4.1(a), the path is partitioned into Nl 

links. As to segment, which is a concept frequently used in the SCTM (refer to Section 3.1.2), 

usually consists of several cells and always has detectors installed on its boundaries. The same 

freeway corridor represented by Ns segments is shown in Figure 4.1(b).  
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Figure 4.1. The relationship of the SCTM segment and the link used in travel time 
 

With these concepts, we introduce the link travel time evaluation under a deterministic 

continuous-time macroscopic dynamic traffic flow model. The flow propagation equation for 

link lm can be expressed as follows 

               ( ) = ( ( )),m m

m

l l
in out lC t C t                              (4.1) 

where ( )
ml

t  is the exit time from link lm for a vehicle entering this link at time t . ( )ml
inC t  

and ( ( ))m

m

l
out lC t  are the cumulative inflow and outflow volumes at the entry and exit times of 

this link, respectively. The time-flow consistency equation in (4.1) is applicable on condition 

that the FIFO principle holds and there was no vehicles on the within link lm at initial time. 

Under FIFO, the deterministic link travel time ( )
ml

t  can be defined as   

( ) = ( ) .
m ml lt t t                                 (4.2) 

The journey time of route p is then defined by the nested delay operator with exit time 

 ( ),
ml mt l p    of all the links on the path as:  

     
1

( ) = ( ( ( ))) .
Nl mp l l lt t t                            (4.3) 

where the exit time from link m is the entry time to link m+1. 

 

Under the deterministic environment, Lo and Szeto (2002) extended this flow matching 

algorithm to approximate both link and route travel times by simultaneously tracing the link 

and route flows by the CTM and adopting the mean-value theorem in Calculus. This method is 

somehow tedious and difficult to be extended to handle the stochastic environment. In this 

research, we adopt the SCTM to model the stochastic traffic flow (or the SCTM is utilized as 

the network loading model). Rather than tracing the link and route flows simultaneously, we 
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first obtain the PMF of link travel times and then extend the nested delay operator to 

stochastic case to calculate the route travel time.  

 

4.2 The PMF algorithm for link travel time estimation 

 

4.2.1 Evaluation of cumulative flows from the SCTM 

 

Because the SCTM propagates stochastic traffic density in discretized space and time domains, 

the above continuous cumulative flow matching algorithm for travel time calculation need to 

be transferred to a discrete version. Under the SCTM framework, the distributions of inflow 

rate ( )ml

in
q k and outflow rate ( )ml

out
q k  of link lm can be obtained by evaluating the probabilities 

of occurrence of operational modes and traffic states of the freeway segments corresponding 

to the entry and exit of the link. For example, in Figure 4.1 the entry of link 3l  is located at 

the 1 1e   cell within segment 1 while the exit of link 3 is located at cell je  within segment j. 

The mean value of in-/out- flow rates (veh/hr) 3 ( )l

in
q k and 3 ( )l

out
q k can be evaluated by the 

following equations: 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

3
1 1 1 1

1 1 1 1

3

, , ,

, , 1 , 1 1

, ,

, , 1 , 1 , 1 ,

( ) = Pr ( ) ( )

Pr ( ) ,

( ) = Pr ( )

Pr ( ) ( )

j j j

j j j j j

l

in ss FX e f e e off e

ss CX e c e J e e

l

out ss FX e f e e

ss CX e c e J e e off e

E q k k v k q k

k w k

E q k k v k

k w k q k

r

r r

r

r r

=

= + + +

=

= + + +

-

+ -

+ - +

å
å

å
å

     (4.4) 

where ( )
,

Pr jFX e
k  denotes the traffic modes that all the cells at the upstream of cell je  

within segment j is free-flow status, e.g.  1, 1, +1 1, +2
, ,j j je e e

FF FC FC FC ，

 2, 1 2, 2, +1j j je e e
FC FC FC


， ; while ( )

,
Pr jCX e

k  denotes  + 2+1
, j j je e e

CC CF CF CF ， . ( )ml

in
q k

 

and ( )ml

out
q k

 
of other links can be similarly calculated. Equation (4.4) applies the same finite 

mixture algorithm as Equation (3.20). The standard deviation ( )lm
inq
xs and ( )lm

outq
xs  can be 

evaluated via the same method as Equation (3.21).  
 

Assume ( 1)ml

in
q k -

 
 and ( 1)ml

out
q k -  are conducted during interval [ 1, ) sk k T .  Then mean 

value of cumulative flow volumes (vehicles) are: 
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( )
( )

1

1
1

1

( ) ( ) ,

( ) ( ) .
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in in s
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l l

out out s
x
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å                          (4.5)
 

The corresponding standard deviations are: 

( ) ( )

( ) ( )

1
2

1

1
2

1

,

.

l lm m
in in

l lm m
out out

x k

sC q
x

x k

sC q
x

k x T

k x T

s s

s s
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=
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=

=

=

å

å                          (4.6) 

The cumulative inflow and outflow distributions can easily be represented as: 

( )
( )

( ) ( ), ( ) ,

( ) ( ), ( ) ,

m m
lm
in

m m
lm
out

l l

in Cin in C

l l

out Cout out C

C k f C k k

C k f C k k

s

s

@

@
 
                         (4.7)

 

where ()
Cin
f ⋅  and denotes a certain statistical distribution, ( )

lm
inC k  denotes the mean value, 

and ( )lmCin

k  denotes the standard deviation of the cumulative link inflow. The cumulative 

outflow distribution can be similarly defined. In this research ()
Cin
f ⋅

 
is assumed to be 

normally distributed. 

 

 

4.2.2 The concept of likelihood and PMF 
 

Since the cumulative inflow and outflow are both random processes, the FIFO principle based 

link travel time estimation method is not directly applicable1. Nevertheless, the FIFO 

                                                              
1If a macroscopic traffic flow model is adopted to simulate the traffic dynamics, the FIFO principle needs 

to be fulfilled by the underlying traffic flow model. In this chapter, SCTM is utilized as the network loading 

model. Under the deterministic CTM, the FIFO principle will be fulfilled if the cell length li is chosen such 

that ,f i s iv T l  where ,f iv  is the free flow speed of cell i, and sT  is the simulation time increment. This 

condition cannot always be satisfied in the SCTM framework since mathematically the free-flow speed 

,f iv  can be anything along its distribution. Nevertheless, certain concept that is similar to the “almost sure 

(or with probability one)” in stochastic analysis can be adopted to redefine this condition. The probabilistic 
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principle is extended here to estimate the probability of travel time to be a certain value. For a 

given entry time, this extension estimates the probability of each of the future time interval to 

be the exit time of this entry time according to the likelihood that the difference between the 

cumulative inflow and the cumulative outflow at a future time step is less than a prescribed 

bound. 

 

The probability of the time step k′ to be the exit time for vehicles entering the link at time step 

k (i.e. the entry time ET = k) can be written as:
 

( )Pr ( ) ( ) .m ml l

in out
C k C k ET k¢= =  However, 

this probability is not well defined. We, thus, propose the likelihood of time step k′ to be the 

exit time (or k′ − k to be travel time) for vehicles entering the link at time k as the probability 

of the distribution of difference ( )( ) ( )m ml l

out in
C k C k¢ -  between the cumulative inflow ( )ml

in
C k  

at a certain time step k  and the cumulative outflow ( )ml

out
C k ¢  at time step 'k  is less than a 

prescribed bound e : 

( )|
= ( ) ( ) |m ml l

k k out in
P Pr C k C k ET ke e¢
¢ ¢- £ - £ =              (4.8) 

where Re +Î  denotes a pre-defined positive small number. The definition of e might 

influence the accuracy of result which will be discussed in Section 4.5.4. 

 

Given an entry time k, all future time steps  1,k    could be the admissible exit time 

steps. However, this is not practical and unnecessary, e.g. it would be a waste of time and 

computational effort to trace all future time intervals. In this research, similar to Miller-Hooks 

and Mahmassani (1998, 2000), we evaluate the probability in Equation (4.8) against a certain 

subset of the possible exit time, which is defined by the lower-bound klb and upper-bound kub 

of the following sampling interval [klb, kub] as:   

                                                                                                                                                                                                  

version of the FIFO condition in the SCTM framework is roughly defined as  ,Pr f i s iv T l   , where 

  is a positive real number which satisfies 1 < < 1   for a small real number  . We may choose 

  very close to 1, such that  ,Pr 1f i s iv T l  , i.e. the event ,f i s iv T l  is almost sure. In the 

empirical studies, the cell lengths are defined according to this condition. In a word, the FIFO is well 

satisfied in the sense of “almost sure” in the SCTM formulation. 
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( ) ( )
( ) ( )
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l lm m
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m m
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l l
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           (4.9)
 

where 
s
e

 
is a small positive number which is a prescribed error bound, and i, j are always 

selected as positive integers (non-integers are also acceptable) which can be adjusted as long 

as there is no overlapping between the two curves ( ) ( )m
lm
in

l

in C
C k i ks-  and ( ') ( )m

lm
out

l

out C
C k j ks+

 

(which in turn implies k' > k). The selection of i and j will also be discussed in Section 4.5.4. 

An illustration of this sampling region concept is given by Figure 4.2.  

 

 

( ) ( )m
lm
in

l
in C

C k i k

lbk ubk

( ) ( )m
lm
out

l
out C

C k i k

 
Figure 4.2. An illustration of the sampling region 

Following the sampling technique previously described, we can obtain a series of 
|k k

P ¢
¢  which 

describes the likelihood of k' is the exit time index (link travel time to be equal to k'-k) for 

entry time k. Note that the summation of the probabilities 
|

ub

lb

k

k kk
P ¢
¢å may not be equal to 1, so 

the relative frequency is introduced to normalize the probabilities. For a vehicle entering link 

lm at time k, the relative frequency
|k k

P ¢  is defined as:   

                       

|

|

|

= , [ , ].k k

k k lb ubkub

k kklb

P
P k k k

P

¢
¢

¢

¢
¢" Î

¢å
             (4.10) 

From the normalized probabilities, we can construct the Probabilistic Mass Function (PMF) of 

the link travel time for traffic entering the link at time k.  
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   Figure 4.3  The PMF and the corresponding CMF respect to exit time index for entry time index k 

An example of the PMF of the link travel time is shown in Figure 4.3. Each bar on the upper 

plot represents
|k k

P ¢ . The solid line with dots on the lower plot denotes the corresponding 

cumulative mass function (CMF).   

  

4.2.3 Interpretation of the likelihood and simplification of cumulative flow calculations    

 

To interpret and simplify the likelihood, ( ) = ( ) ( )
l lm m

k out ine k C k C k    is defined as the matching 

error which measures the difference between the cumulative inflow and outflow distributions. 

Equation (4.8) is then equivalent to  

( )|
= Pr ( ) | =

k k k
P e k ET ke e¢
¢ ¢- £ £ .  

Simplify the calculation of ( )
k
e k ¢  as: 
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        (4.11) 

where 
l
m

NC  is the number of cells on link 
m
l , ( )

l
m
i
kr  is the density of the thi  cell on link 

0

1

Exit time
 

 

Cumulative Likelihood

0

PMF and CMF of the exit time for entry time index k 

 

 
Likelihood

klb
kub

kubklb
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m
l  at time k, and 

l
m
i
s  is the length of the cell i. Note that 

l
m
i
s  and 

s
T  are constants, 

meanwhile the link outflow profile and cell densities are normally distributed by assumption, 

and the matching error is normally distributed2. Thus, it is sufficient for us to obtain the mean 

and variance of ( )
k
e k ¢  so as to evaluate the probability defined by Equation (4.8). The 

expectation of Equation ( )
k
e k ¢  is   

 ( ) ( ) ( )
= 1 =1

( ) = ( ) ( ) .
m

NC
lk

l l l
m m m

k s out i i
x k i

E e k T E q x s E kr
¢

+

¢ ⋅ - ⋅å å
       

  

If the above random variables are uncorrelated, we can obtained the variance of ( )
k
e k ¢  easily 

by the additive of independent normal variables. However, the variance is not additive in 

general due to the correlation. Nevertheless, we can make use of the covariance matrix3 of 

the corresponding vector (augmented by the above random variables) obtained from the 

SCTM to proceed the variance evaluation which is discussed in details in the Appendix of the 

chapter. 

 

4.3 The extended nested delay operator and distribution fitting 

 

Consider a path which starts at link l1 and ends at lNl as depicted in Figure 4.4(a). Tracing the 

path travel time distribution for vehicles entering the origin at time step k, we extend the 

nested delay operator to stochastic case. For vehicles entering the origin at time step k, the 

relative frequency of time-step Nlt  to be the exit time from the destination of the path for is 

evaluated as the following progress: 

( ) ( )

1 1 1 1 1
1, 1

1

2 22 2 1 1 2 1 1
2, 2 1,

1 1=

( | ) = ( | ), ,

( | ) = ( | ) ( | ), ,

l l

nest lb ub

l
k l lub l l

nest nest lb ub
lb ubl

k
lb

P k P k k k

P k P P k k k

t

t t t

t t t t t

é ùÎ ê úë û

é ù
ê úÎ ê ú
ë û

å



 

                                                              
2 Please see the appendix for details. 
3 If X is a random vector with n components, the matrix  ( ) = ( ( ))( ( ))TVar X E X E X X E X   is the 

(theoretical) covariance matrix. 
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where 1 1,l l

lb ub
k k  can be defined according to (4.9), while the superscript lm is used to denote the 

link number. Other bounds can be defined recursively as: 

( ) ( ) ( )
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Figure 4.4(b) demonstrates the evaluation of stochastic nested delay operator over a path with 

2 links. Each time step within the sampling region 1 1,l l
lb ubk k   both correspond to a probability 

of exit time for link 1 and a PMF over link 2. Propose a weighed summation to each exit time 

of link 2, the PMF of path travel time can be evaluated. Meanwhile, the sampling region is 

extended to     2 2
1 1,

l ll l
lb ublb ub

k k 
  

. 

 
van Lint et al. (2008) found that the stochastic journey time may not follow the normal 

distribution in which different patterns of skewness can be observed under different traffic 

conditions. The travel time under the free-flow condition usually follows a normal 

distribution. On the other hand, under the congested condition or the congestion 

onset/dissolve process, the link travel time may follow a skewed distribution (van Lint et al., 

2008; Kharoufeh and Gautam, 2004). Thus, fitting the PMF to a distribution with skewness 

should better describe the uncertainty of journey time (or link time). The shape of the journey 

time distribution will also affect the evaluation of the travel time reliability.
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(b) Stochastic nested delay operator for a path with 2 links 

Figure 4.4. Nested delay operator  
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After obtaining the PMF of the path journey time, various random distribution fitting 

techniques can be applied to obtain the distribution that best fits the estimated PMF. 

( )( ) ( ), ( ), ( )
rs
T k g k k kx w a=  is the distribution of the dynamic journey time at time k, if 

( )( )
( ), , ( )

k
g k kbb s a  best fits the PMF and/or the corresponding CMF with mean 

2
x wd

p
+ , 

standard deviation 
22

1
d

w
p

- and shape parameter ( )ka  which reflects the skewness of the 

PMF, where 
21 




 . In this chapter, the skew normal distribution is used to describe the 

characteristic of the travel time distribution with the PDF (Azzalini and Capitanio, 1999): 

 2 2

22 2
1 1

( ) 2
2 2

x x t

g x e e dt
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 

 

    
 


 

                 (4.14)
 

where the distribution is called positive skew if  > 0 with a longer right tail and 

concentrating on the left side, while negative skew if  < 0 with a longer left tail and 

concentrating on the right side (see e.g. Figure 4.5). 

 
   Figure 4.5. The skew normal distribution  

 

4.4 Index of travel time reliability and conclusion of PMF based journey 

time estimation algorithm 

 

Several indicators of travel time reliability were proposed in literature. For illustrative purpose 

we adopt the buffer time index as the measure of travel time reliability for the case studies in 
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this chapter. The buffer time index (BTI) is one of the most widely used travel time reliability 

indicators, in which the buffer time represents the extra time that travelers must add to their 

average travel time when planning trips to ensure his on-time arrival (Lomax et al., 2003). 

This concept is similar to the safety margin measure proposed in Hall (1983) which was 

recently adopted in Lam et al. (2008). In this chapter, the probability of arriving on-time is set 

at the 95th percentile which can be translated as “can be late for work one day per month 

without getting into too much trouble” or 95% of travel time observations can be found under 

this criterion. Buffer time index can then be calculated by Equation (4.15): 

95
100%

th Pencentile Travel Time AverageTravel Time
Buffer Time Index

AverageTravel Time

é ù-ê ú= ´ê ú
ê úë û

 (4.15) 

From Equation (4.15), it is obvious that adequate information about the journey time 

distribution, including mean, standard deviation and the shape parameter, are required to 

evaluate the BTI properly. The skew normal distribution satisfies this requirement. 

 

4.5 Empirical study 1: Journey time estimation on a segment of Hanshin 

Expressway 

 

This section presents an empirical study to illustrate and validate the proposed algorithm for 

estimating the dynamic stochastic journey time and calculating the buffer time index. This 

empirical study is tested on a long corridor within the Hanshin expressway in Osaka, Japan, 

and focuses on estimating the influence of accidents to the journey time reliability.   

 

4.5.1 Description of the test site and data preparation  

 

The empirical study is conducted on a 12 km segment on No.11 Hanshin Expressway Ikeda 

corridor from Toyonaka city to the CBD of Osaka as illustrated in Figure 4.6. This expressway, 

which includes 10 sections, is composed of 9 links determined by the on-ramps and off-ramps 

as shown in Figure 4.7. 

 

Table 4.1 presents the callibration results of the parameters in fundamental diagrams based on 

the historical data under normal scenario (i.e. no incident), which is provided by detectors 
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equipped within each section. The historical data, which will be used in simulation, includes 

flow and speed, which is provided by all the 11 detectors from 0:00 AM of May 11 (Sunday), 

2008 to 23:55 PM of May 17 (Saturday), 2008 with a detecting interval as 5 minutes. Table 

4.2 depicts the assignment of cells along the whole expressway corridor, where the 38 cells 

mentioned in the table constitute the 10 SCTM segments. The simulation step is chosen as 10 

seconds. The objective of this empirical study is to simulate the effects of traffic incidents to 

the dynamic journey time and traffic states, e.g. how would different incidential locations and 

time of occurrence and duration generate different kinds of traffic jams. Table 4.3 depeicts the 

a sample of incident record which indicates 3 traffic accidents and 3 traffic jams happened on 

the main road during 7:00 AM-21:00 PM on May 12, 2008: Jam 1898 during 7:16 AM-7:28 

AM starts from Link 5 and Link 6 is not caused by accident. Jam 1909 and Jam 1910 during 

8:38 AM-10:35 AM on Link 10 and its upstream segments are induced by Incident 1599 and 

Incident 1419 during 8:30 AM-10:35 AM on Link10, while Incident 1417 does not lead to any 

congestion. Note that the information on the jams are not complete, e.g. the spillback effects 

of congestion are not recorded in the database. 
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Figure 4.6. The map of the test segment from Toyonaka to Osaka 

 

Link ID 
(Length/km) 

Section 
ID 

ˆ
f
v  

f̂v
s  ˆ

c
w ˆcw

s  ĉ
r  

Ĵ
r  

Ĵr
s  ˆ

m
Q  ˆ

mQ
s  

Link 1 (2.2) 1 82 6.2 13 5.0 39 279 98 3300 248 
Link 2(1.0) 2 106 16.2 14.5 4.9 28.1 235 78.5 3000 456 
Link 3(0.3) 3 78 9.2 13.6 3.7 44.3 302 76.3 3500 407 
Link 4(3.1) 4 73 6.5 23.8 6.6 54.2 222 50.6 4000 350 

Link 5-6 
(1.5) 

5 78 18.6 22.3 9.9 51 231 100 4000 953 
6 83 7.4 18.8 5.2 48 261 63.3 4000 356 

Link 7(1.8) 7 71 5.2 19.7 6.2 55.7 259 70.6 4000 288 
Link 8(0.9) 8 72 5.1 23.8 4.3 56.6 225 31.0 4000 289 
Link 9(0.3) 9 73 6.5 16.2 5.2 52.0 286 84.0 3800 340 

      
â
r

b̂
r     

Link 1(1.0) 10 69 6.3 13.1 2.7 58 150 450 64.0 4000 367 
    Table 4.1  The parameters of fundamental diagrams along the route under normal case 



Chapter 4. Estimation of journey timee distribution and relia

Fig

ability analysis

gure 4.7  The asssignment of cells aand the locations oof the detectors 

 

 

61



Chapter 4. Estimation of journey time distribution and reliability analysis   

 

*The location of detector 

Table 4.2. The assignment of cells and segments for SCTM

Link ID and length (km) Section ID Cell ID and Length(km) SCTM segment ID
Link 1(2.2) 

Toyonaka-Kita On-ramp 
-Kami Tsushima 

Off-ramp 

Section 1 *Cell S1A(0.2) 
 Cell S1B(0.3) 

  Cell1S1 C(0.2) 
  Cell S1D(0.3)* 

Segment S1A-S1D

*Cell S1E(0.4) 
  Cell S1 F(0.4) 
  Cell S1 G(0.4) 

Segment S1E-S2A

Link 2(1.0) 
Kami Tsushima Off-ramp 

-Meishin Off-ramp 

Section 2   Cell S2A(0.3)* 
*Cell S2B(0.3) 
 Cell S2C(0.2) 
 Cell S2D(0.2) 

Segment S2B-S3A
 

Link 3(0.3)  
Meishin Off-ram 

-Meishin On-ramp 

Section 3   Cell S3A (0.3))* 

Link 4(3.1) 
Meishin On-ramp 

-Kashima On-ramp 

Section 4 *Cell S4A(0.5) 
 Cell S4B(0.5) 
 Cell S4C(0.5) 

   Cell S4 D(0.5)* 

Segment S4A-S4D

*Cell S4 E(0.4) 
 Cell S4F(0.4) 
 Cell S4G(0.3) 

Segment S4E-S5A

Link 5-6 (1.5) 
Kashima On-ramp 

-Tsukamoto On-ramp 

Section 5  Cell S5A(0.3)* 
*Cell S5B(0.2) 
 Cell S5C(0.3) 
 Cell S5D(0.2) 

Segment S5B-S6A

Section 6   Cell S6A(0.3)* 
*Cell S6B(0.2) Segment S6B-S7C

Link 7(1.8) 
Tsukamoto On-ramp 

-Fukushima Off-ramp 

Section 7  Cell S7A(0.5) 
 Cell S7B(0.5) 
 Cell S7C(0.4)* 
*Cell S7D(0.2) 
 Cell S7E(0.2) 

Segment S7D-S8B

Link 8(0.9) 
Fukushima Off-ramp 

-Umeda Off-ramp 

Section 8 Cell S8A(0.3) 
 Cell S8B(0.3)* 
*Cell S8C(0.2) Segment S8C-S9A

Link 9(0.3) 
Umeda Off-ramp 
-Umeda On-ramp 

Section 9   Cell S9A(0.2)* 
*Cell S9B(0.2) Segment S9B-S10C

Link 10(1.0) 
Umeda On-ramp 

-Osaka CBD 

Section 10  Cell S10A(0.3) 
 Cell S10B(0.3) 

  Cell S10C(0.2)* 
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Jam 1909 and Jam 1910 are induced by Incident 1599 at cell S10A. The congestion 

wave propagates to upstream until it reaches cell S4D. During this spillback process, 

the congestion wave caused by Jam 1909 and Jam 1910 merges with that caused by 

Jam 1898 at S7A. The sudden increase of traffic density of cell S1C around 10:10 AM 

reflects the effect of Incident 1415. However, no obvious congestion is caused by this 

incident. Similarly, Incident 1417 does not lead to any significant disturbance to the 

traffic flow. 

 

The estimated traffic density against the detected one presented in Figure 4.8 confirms 

that the SCTM performs well in stochastic traffic state estimation even under incident 

scenarios. Moreover, the model is also able to capture congestion formation, spillback 

and dissolve. However, there are still some discrepancy between simulation result and 

measurement because the related fundamental diagrams cannot be adjusted timely due 

to the lack of traffic data under incident. Finally, these stochastic densities are used to 

evaluate dynamic stochastic journey time and the subsequent journey time reliability 

analysis.  
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(a). Cell S1A-S1D 

 

(b). Cell 1E-2A 
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(c). Cell 2B-3A 
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(d). Cell 4A-4D 

 

 e). Cell 5B-6A 
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  f). Cell 6B-7C 

 

g). Cell 7D-8B 
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h). Cell 8C-9A 

 

i). Cell 8C-10C 

Figure 4.8. Measured and estimated density with 68% confidence interval of ten segments 
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Figure 4.9. Link travel time estimation of four links 

 

 

 Figure 4.10. Journey time and reliability of Toyonaka-Kita to Osaka CBD 
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 4.5.3 Link travel time and journey time estimations 

 

Given the estimated stochastic dynamic cell densities as shown in Figure 4.8，dynamic 

link travel time distributions of the 9 links can be evaluated by the PMF based 

algorithm proposed in this chapter. Figure 4.9 depicts four representative links to 

illustrate the results, i.e. link 2, 4, 7 and 10, where link 7 is the only link that can 

provide detected travel time for comparison. The comparison confirms the good 

performance of the PMF based algorithm except for a little overestimation (indeed, 

the detected travel time is not accurate). 

 

The figures reflect that the estimated travel times are in accordance with the traffic 

states on the links. For example, link 2 is congested during 7:30 AM to 8:30 AM as 

shown in Figure 4.8 (b-c), and the corresponding link travel time (as illustrated by 

Figure 4.9 (a)) during this period is greater than the travel time in any other time 

periods. Link 4 suffers from two congestions. As a consequence, its link travel time 

(as reflected by Figure 4.9 (b)) has two peaks. The estimated link travel time of link 7 

(Figure 4.9 (c)) is consistent with the measured one in general, wherein the travel time 

arises at about 8:30 AM, maintaining a relative large value from 9:00 AM to about 

10:15 AM. The congestion starts to dissolve from 10:15, and the dissolving progress 

lasts more than one hour. Travel time of link 10 reflects the effect of Incident 1599.   

 

Since the journey time over the whole corridor (link 1 to link 10) is not directly 

provided by the database, Figure 4.10 depicts the journey time estimation results, the 

reliability index and the skewness parameter. At the beginning of the simulation 

horizon, the journey time is about 9 minutes. However, the journey time remains at 

such a small value only for about five minutes and starts to increase sharply since 7:05 

AM due to Jam 1898. This congestion period generates a journal time up to 25 

minutes, which is about 3 times of the free-flow time. At about 8:00 AM, the journey 

time reduces a bit due to the dispersion of Jam 1898, while it increases again due to 

Jam 1909 and Jam 1910 started from about 8:30 AM. Finally, the journey time reduces 
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to free flow time (9 minutes) after all these congestions are dissolved. Figure 4.10 also 

presents the Buffer Time Index (BTI) of the journey time in the second figure. The 

unreliable periods concentrate during 7:05 AM-11:30 AM due to the jams and 

incidents. The peaks of travel time reliability index appear at three times: (1) the 

congestion onset progress around 7:12 AM caused by Jam 1898; (2) the intersection 

of congestion dissolve of Jam 1898 and congestion onset of Jams 1909/1910 around 

8:30 AM; (3) the final congestion dissolve around 11:15 AM. 

 

Table 4.4 presents the MAPE (Mean Absolute Percentage Error) of estimated journey 

time compared with the available measured travel times. The results confirm a 

satisfactory performance of the proposed method. 

 

Travel time Path (link 1-2) Path (link 1-7) Path (link 1-8) 
MAPE 9.93% 9.75% 9.78% 

Table 4.4. MAPE of estimated journey time 

 

4.5.4 Sensitivity analysis of travel time estimation 

 

Table 4.5 presents the MAPE of journey time for a path (link1-2) with different pairs 

of   for error bound definition of equal and the selection of i and j. The table 

illustrates that the accuracy of journey time generally remains almost the same given 

the following settings of and i, j and  . This implies that the proposed method is not 

sensitive to the choice of these parameters.   



 3 , 3 

 4 , 4 

 , 

 

Table 4.5. MAPE of journey time for one path (link 1-2) 
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In this empirical study,  3 , 3   is chosen for the definition of sampling region 

 ,lb ubk k in Equation (4.9) as a greater pair of i, j cannot improve the journey time 

estimation significantly but increase the computational effort. 1  is used to 

evaluate the likelihood of link travel time '
'|k kP  in Equation (4.8).   

 

4.5.5 Skewness of journey time 

 

From Figure 4.9 to Figure 4.10, it can be observed that the gaps between the mean 

travel time with the upper bound of 90% confidence interval and that with the lower 

bound are not equivalent. This implies that travel time is skewed distributed. Lint et 

al., (2008) concluded the characteristics of skewness during the different periods of 

congestion: 

 

(1). Congestion onset: the mean travel times are increasing, and the distribution is 

positively skew. 

(2). Congestion dissolve: the mean travel times are decreasing, and the distribution is 

positively skew. 

(3). Congestion: the mean travel times are high, while the travel time distribution is 

wide and either symmetric or slightly negative skew. 

(4). Free flow: the mean travel times are low, and the travel time distribution is narrow 

and either symmetric or slightly negatively skew. 

 

The above conclusions were based on the analysis of statistics. However, in this 

research, similar results can also be observed from the simulation results for empirical 

study, such as the shape parameters of the stochastic travel time as depicted in the 

third figure of Figure 4.10. Generally, the journey times during 7:00 AM-11:30 AM 

are positively skew, as this period is composed of congestion onset and congestion 

dissolve except for two short stationary stages of congestion which are negatively 

skew. After 11:30 am, the journey times are approximately symmetric normally 
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distributed.    

 

a. Positively skew journey time distribution 

 
b. Negatively and symmetrically ally skew journey time distribution 

Figure 4.11. Skewness analysis of journey time  
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In order to illustrate the characteristics of the skewness of journey time, Figure 4.11 

depicts the PMFs and corresponding shape parameter to assist the comprehension. 

The positively skew distributions in Figure 4.11 (a) confirm conclusion (1) and (2) by 

presenting the PMFs of the journey times during congestion onset progress at 7:06:40 

AM and congestion dissolve progress at 10:24:20 AM. Figure 4.11 (b) confirms 

conclusion (3) and (4) by the negatively skew distributions at 8:30 AM under 

congested condition and the symmetric distribution at 14:30 PM under free flowing 

condition respectively. 

   

4.5.6 Computational time of simulation 

 

Simulation of this empirical study consists of three main parts: estimation of 

stochastic dynamic traffic densities for the 38 cells (from 7:00 AM-22:00 PM), 

evaluation of cumulative flows and PMFs of the link travel times of the 9 links, and 

calculation of journey time PMFs and skew normal distribution fitting. Table 4.6 lists 

the computational time for each item based on Matlab 2009b, CPU: Intel Core 2 Duo 

E8500 @3.16GHz and 4G DDR3 1067MHz.  

 

Computational items Computational time (second)

Density estimation 404 

Link time estimation 140 

Journey time estimation 38 

Total  582 

Table 4.6. Computational time 

 

4.6 Summary of the empirical study and further discussions  

 

Chapter 4 proposed an algorithm to estimate the dynamic stochastic journey time 

distribution and to access the dynamic journey time reliability based on the stochastic 

cell transmission model (as described in Chapter 3). The SCTM generates the 

stochastic cumulative link inflow and outflow profiles. The algorithm for calculating 
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the probability mass function (PMF) of the stochastic dynamic journey time was 

proposed by devising the sampling process of the cumulative flows for each entry 

time interval. The journey time is then estimated by extending the nested delay 

operator to the stochastic case based on the conditional probability. This chapter also 

adopted the nonlinear curve fitting method in Matlab to fit the estimated PMF of the 

journey time to a class of skew normal distribution to determine the skewness of the 

journey time distribution. The model and the algorithm were validated via an 

empirical study conducted on a long segment of an expressway between 

Toyanaka-kita and Osaka CBD. The empirical study illustrated that the model and the 

algorithm are capable of simulating the complicate traffic conditions caused by the 

jams due to different incidents and reconstructing the stochastic dynamic travel time 

distributions.  

 

Appendix 

 

A.1  Variance of the matching error 
 

To calculate the variance of the matching error, it is convenience for us to express it in 

a vector form so as to make use of the property of multivariate normal distribution 

(Gut, 2009; Hardle and Simar, 2007; Johnson and Wichern, 2007). Let   
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The matching error is then can be written as ( ) = T

k
e k a¢  . By assumption,   has a 

multivariate normal distribution. Then, ( )
k
e k ¢  is a normally distributed random 

variable as every linear combination of normally distributed variables is normally 

distributed (Gut, 2009; H¨ardle and Simar, 2007; Johnson and Wichern, 2007). The 

variance of the matching error is now   
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 ( ) ( )( ) = = ( )T T

k
Var e k Var a a Var a¢   , 

where the covariance matrix ( )Var   can be obtained from the SCTM. For the 

special case, where the components of   are assumed to be independent, ( )Var   

is a diagonal matrix which is denoted as d . By this observation, we may have more 

interesting results by exploring the relation between the independent case and the 

dependent case. To begin with, we first introduce the following lemma, which states 

we can always find a linear transformation, e.g. Mahalanobis transformation, to 

transfer a vector of multivariate normal distribution with dependent components into a 

random vector with independent (standard) normal random variables (Gut, 2009; 

H¨ardle and Simar, 2007; Johnson and Wichern, 2007):   

Lemma A.1  For a random vector ( )~ ,N m L  has a multivariate normal 

distribution, we have:   

• There exists a random 2 -vector Z, whose components are independent standard 

normal random variables, a 1 -vector  , and a 21    matrix A, such that 

= AZ m+ . The covariance matrix of   is then given by = TAAG  with 

rank 2=  .  

• Let = TH C  , where the orthogonal matrix C is such that =TC C DL . Then 

( )~ ,TH N C Dm . Moreover, the components of H are independent and 


1

= , = 1,2, ,
k k

VarY kl   , where 
111 ,,,    are the eigenvalues of  .  

• For the Mahalanobis transformation ( )1/2=Y m-L - , we have ( )~ 0,Y N I , 

i.e., the components of Y are independent standard normal random variables.  

     

By this lemma, we can always find some invertible linear transformation (i.e. 

isomorphism), such that the original correlated random vector can be transferred to an 

independent one. Also note that the variance of ( )
k
e k ¢  with correlated components of 
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 , say ( )1
( )
k

Var e k ¢ , is a linear functions of that with independent components of  , 

say ( )2
( )
k

Var e k ¢ , i.e. ( ) ( )1 , 2
( ) = ( )
k k k k

Var e k b Var e k¢
¢ ¢ , where 

,k k
b ¢  is certain constant. 

Thus, the likelihood measure given by (4.8) may be changed. However, the relative 

frequency given by (4.10) may not change significantly. The idea of coordinate 

transformation is commonly utilized in statistics and signal processing theory, e.g. the 

unscented Kalman filter.  

 

A.2  Summations of the nested probabilities 

  

In this appendix, we will show that summations of the nested probabilities over the 

corresponding sampling time steps equal to one for each departure time k. The proof 

is established by mathematical induction in terms of link sequential order. For the first 

link 
1
l  of a route and a given departure time k, we have that   
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Next, we will show that the nested probability of link 
2
l  over the corresponding 

sampling time steps equals to one for the departure time k.   
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 Now, we interchange the order of summation so that   
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Now we assume this is hold for link 
m
l  on the route, that is   
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By interchanging the order of summation, we have   
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By definition of the relative frequency (4.10), we have that   
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Thus   
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by assumption. Therefore,   
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which concludes the proof. 
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Chapter 5 

Traffic state prediction by considering temporal and spatial 

correlation  

  

As we have mentioned in Chapter 3, the SCTM is originally proposed for traffic state 

estimation under several assumptions, e.g. the independent/uncorrelated assumption of 

the underlying stochastic processes governing the demand and supply uncertainties. 

Note that the traffic flow, by nature, is correlated in both spatial and time domains due 

to its dynamics and flow propagation. However, the development of the SCTM 

framework, to be specific the uncorrelated assumption, ignores this issue. The SCTM 

framework as introduced in Chapter 3 does not address the issue of traffic state 

prediction which may also prevent the model from a broad range of applications. In 

this chapter, we aim to extend the SCTM framework to address these problems. First 

of all, a predictor is adopted as an auxiliary dynamical system to the original SCTM. 

This predictor will accept the historical spatial-temporal correlated traffic flow data 

and real-time detected data as inputs to forecast the demand profile and supply 

functions. The predicted demand profile and supply functions will be taken as inputs 

to the SCTM to calculate the traffic states. Then we aim to relax the 

independent/uncorrelated assumption of the model. Moreover, a rolling horizon 

algorithm is developed to further support traffic state forecasting in real-time manner.  

 

This chapter is organized as: Section 5.1 introduces the phenomena and measurement 

of temporal and spatial correlations of traffic flow. Section 5.2 introduces a 

multivariable best linear predictor to extend the SCTM to consider the temporal and 

spatial correlations of traffic flow. Section 5.3 reviews the three steps in SCTM and 

adjusts them by considering spatial correlations. Section 5.4 introduces the concept of 

rolling horizon and proposes a framework for real-time prediction. Finally, Section 5.5 

conducts an empirical study for journey time prediction on a segment of I210-W and 

compares the predicting results with and without considering the correlations.     
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5.1 Temporal and spatial correlation phenomena and measurement 

 

Spatial-temporal correlations, which may reflect the spatial and temporal similarities 

of the traffic flow and is recognized as one of the characteristics to describe the 

relativity of traffic phenomenon, can be utilized to predict short-term traffic 

state. Rather than introducing the mathematical definitions of these correlations, we 

would like to give an intuitive example by analyzing the detected traffic flow data 

from a 2-mile freeway segment on I210-W in California. Figure 5.1-5.4 depicts the 

temporal and spatial correlated traffic flow phenomena via the historical traffic data of 

the freeway segment, e.g. the density and inflow profiles detected at locations A, B 

and C on Tuesday, Wednesday, and Thursday of March and April 2008 and 2009 (see 

Figure 5.9 and Figure 5.10).  

 

Figure 5.1(a) shows the temporal similarity (or correlation) of the flow profile 

detected at location A for the three weekdays from 5:00 to 6:00 A.M with a detection 

frequency (i.e. the sample time interval) of 5 minutes. It is observed that these flow 

profiles are positively correlated at the adjacent time steps, which implies that the 

higher value a certain flow profile at a certain time step, the flow profile intends to 

have a larger value in the near future. For example, the flow profile of March 12 is 

larger than that of 25 March at 5:05 AM the positive correlation implies this will hold 

for 5:10 AM. Temporal covariance and correlation coefficient of q(k) between two 

adjacent time steps k and k-l are defined as: 

( )( )
1

( ) ( ) ( ) ( )
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i i
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q k q k q k l q k l
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        (5.2) 

where ( )
i
q k

 
is the value of the detected flow during interval k on the ith day, l is a 

positive integer less than or equal to 
e
l  which is a predefined bound (also an integer) 
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for the calculation, and 
( )q k
s denotes the standard deviation of the detected flow q(k) 

for the N sample days. Figure 5.1(b) presents the 
tm

g of the flow profiles detected at 

location A with three different values of l (e.g. distances of 5 minutes, 30 minutes and 

55 minutes in the figure) from 4:00 AM to 12:00 AM over N=54 days. The result 

illustrates that the temporal correlations of the flow profiles will generally decrease as 

l increase, which can be interpreted as the flow pattern of a given time is more similar 

to a near flow pattern than a distant one, e.g. 

( (5 : 30), (5 : 25)) ( (5 : 30), (5 : 00)) ( (5 : 30), (4 : 35))
tm tm tm
q q q q q qg g g> > .  

Temporal correlation of the parameters of a fundamental diagram (or supply functions) 

for a given location also can be analyzed similarly: 
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where ( )
i p
kd is a certain parameter calibrated with data detected during the time 

period 
p
k  (e.g. half an hour) on the ith day. ( )

p
kd  is the mean of ( )pkd , and 

( )
p

s kd  is the corresponding standard deviation over the N days.   

 

As shown in Figure 5.2, temporal correlations of free-flow speed 
f
v during the 

non-rush hours are much more evident than the correlations of wave-back speed 
c
w

during the rush hours. Compared with the analysis of detected flow patterns, the 

supply uncertainties are more complicated because the flow-density relationship might 

not always constitute a complete triangular fundamental diagram, e.g. 
c
w  cannot be 

observed during 4:00-6:00 AM while 
f
v cannot be evaluated during rush hours 

7:00-9:00 AM. This is reflected in the figure as zero entries. Because the temporal 
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correlation coefficients of 
m
Q , 

c
r and

J
r  are very small, the results are omitted for 

brevity. 

 

a). Flow profiles of the three days between 5:00-6:00

 

b).Temporal correlation coefficient of the flow 

Figure 5.1. Temporal correlation of the inflow profiles 
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Figure 5.2. Temporal correlation coefficients of the supply functions  

 

Figure 5.3(a) depicts the spatial correlation of the free-flow speeds calibrated at three 

adjacent sites based on the flow-density data detected during 4:00-4:30AM for two 

days (April 24, 2008 and April 21, 2009) under different weather conditions. In this 

example, the free-flow speeds are found to be positively spatially correlated which 

implies if the free-flow speed at site A (S. Myrtle) increase/decrease, then the 

free-flow speed at site B (W. Huntington Dr) and site C (N. Santa Anita) will 

increase/decrease accordingly. The spatial covariance and correlation coefficient of the 

free-flow speed of three adjacent sites during time interval kp is defined as: 
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where the notations in equation (5.5) and (5.6) are similar with the ones in (5.3) and 

(5.4) but for the differentiation of ( )
m p
kd  and ( )

n p
kd  denoted by m and n which 

represent the adjacent locations. Figure 5.3(b) shows the spatial correlation 

coefficients of free-flow speed and congestion wave speed among the three locations. 
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Figure 5.4 presents the spatial correlation of densities by: 
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,
( )

m i
kr  is the traffic density detected at location m during time interval k on the ith 

day, ( )
m
kr  is the mean density over the N days, and 

( )m k
sr  is the corresponding 

standard deviation. 

 

5.2 Temporal correlation and best linear predictor  

 

5.2.1 Best linear predictor  

 

As mentioned in Chapter 3, the accuracy of the prediction heavily depends on the 

similarity between the historical data and the current trend of the traffic flow when we 

apply the SCTM to predict traffic state. The prediction may fail when the traffic 

network is suffering from traffic incident or abnormal weather conditions (see, e.g. 

Sumalee et al. (2010b) and the empirical study in Section 5.5.1). The prediction 

accuracy would increase by incorporating the spatial and temporal correlations of 

traffic flow into the SCTM. In order to extend the SCTM for traffic state prediction, 

we may adopt certain prediction algorithm to forecast the inflow/outflow profiles and 

supply functions. In this section, the Multivariable Normal Distribution (MND) based 

best linear predictor (Tong, 1990) is utilized to accomplish this objective. 
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a). Spatial correlation of free-flow speed 

 

b). Spatial correlation coefficients of free-flow speed and wave-back speed 

Figure 5.3. Spatial correlation phenomena of supply side  
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Figure 5.4. Spatial correlation coefficients of densities 

 

Take the prediction of flow profile at a given location as an example; we assume that 

the dynamic statistical flow profiles are normally distributed. The flow profile vector 

conditioned on the current measurement can be forecasted by the following best linear 

predictor: 

( ) ( )( )
,

1( | )
f m mf m f q m m

E E E-= + -å q
q q q s q q 

 
                 (5.9) 

where ( ) ( )( )1 , ,
f
col q k q k n= + +q  denotes the extended flow vector to be 

forecasted for the coming predicting horizon, 
f
q


 is the corresponding historical data 

during the same period with ( )fE q
  denotes the mean value of 

f
q


, while

( ) ( )( )( 1) , ,
m
col q k l q k= - +q   is the measured flow vector for current time 

period. ( )
, ,f mq i j n l

s
´

=s  denotes the covariance matrix between 
f
q

 
and 

m
q , where 

 ( ),
cov( ( ), ( )) cov ( ), ( )

i j f m
s q i q j q k i q k l j= = + - +   

,  1, , ; 1, ,i n j l= =   

 and 1

m

-å q
 is the inverse of the covariance matrix of 

m
q


with ( ) 
,
,

m i j l l
s

´
=å q

 and 

( ) ( )( ),
cov( ( ), ( )) cov ( ) , ( ) ,

i j m m p p
q i q j q k l i T q k l j Ts = = - + - +      , 1, ,i j l=  . 
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The conditional variance matrix of the flow profile can be evaluated as: 

( )
, ,

1| ( )
f m m f m

T

f m f q q
DX DX q -= - å q

q q s s  


                  (5.10) 

where ( )
( 1)

( 2)

( )

0

|

0

q k

q k

f m

q k n n n

DX

DX
DX

DX

+

+

+ ´

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

q q



 


 ,

and  

( )
( 1)

( 2)

( )

0

0

q k

q k

f

q k n n n

DX

DX
DX

DX

+

+

+ ´

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

q










 


 

where ( )( )
var ( )

q k i
DX q k i+ = + . 

 

The mechanism of the best linear predictor is depicted in Figure 5.5. We utilize the 

difference between the historical mean and current measurement of the flow profile 

(we will refer to this as “error”) to correct the prediction. Ideally, if this error is zero, 

the predicted flow profile “equals to” the historical flow profile, or no adjustment is 

made. Otherwise, we adjust the prediction by the error weighted by the covariance 

matrices (or their inverses) if the error is not zero.      

m
å q



,f mq
s



Figure 5.5. Illustration of the mechanism of the best linear predictor  
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The prediction of supply functions conditioned on the current observation can also be 

predicted by the same algorithm: 

( ) ( )( )
,

1( | )
mf mf m f m m

E E Edd d d d d-= + -å q
s  

 

                    (5.11) 

where ( | )
f m

E d d  is the mean value of parameter 
f
d  given the real-time calibrated

m
d , 

,f mds  and 
m

å q
  are variance vector or matrix respectively.  

 

The best linear predictor can forecast the flow profiles and supply functions by 

considering their historical statistics and the real-time detection. This method avoids 

the time consuming approaches such as data mining in database (e.g. k-NN algorithm). 

Thus, it is efficient. Adopting the time-dependent supply functions instead of the fixed 

parameters renders the prediction of traffic state more reliable. The accuracy of 

predictor may be influenced by the following factors: the size of 
f
q and

m
q

(prediction and measurement horizons), the degree of corresponding correlations (i.e. 

the weighting matrices), and the characteristic of the traffic flow pattern. This issue 

will be discussed in the empirical study. 

  

5.2.2 Inflow demand and available outflow capacity    

 

Equation (5.9) introduces the prediction algorithm for dynamic short-term forecasting 

of stochastic inflow, outflow profiles and supply functions for a freeway segment. 

However, the emphasis of prediction will be different under different traffic conditions. 

Referring to the short-term prediction of demand profile of a freeway segment, e.g. 

2 3
( ) ( ), ( ), ( ), ( )

T

u d
u k q k r k f k q ké ù= ê úë û  introduced in Section 3.4 (i.e. the inflow profile, 

on-ramp flow, off-ramp flow and outflow profile of the segment). These profiles may 

not be required simultaneously in prediction. For example, in Cx mode (such as CC 

and CF mode), ( )
u
q k  is not necessary to be predicted as the inflow to the segment is 

directly determined by the available capacity of the first cell, i.e. 
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 , ,1 ,1 1( ) ( )u Cx c Jq k w k   .  However, for Fx mode (such as FC and FF mode), 

( )
u
q k  must be predicted by utilizing the predictor. Similarly, in xF mode (such as FF 

and CF mode), ( )
d
q k  is not necessary to be provided by the predictor as the outflow 

from the segment is determined by the density of the last cell, i.e. , ,( ) ( )d xF f z zq k v k . 

However in xC mode (CC and FC mode), ( )
d
q k  must be forecasted by the predictor 

by utilizing the temporal correlation of the outflow and the methodology introduced in 

Section 5.2.1.    

 

5.3 Extension of the SCTM  

 

The consideration of spatial-temporal correlations affects two major components of 

the SCTM, i.e. the evaluations of probabilities of occurrence of different modes and 

the traffic flow propagation as mentioned in Section 3.2 and 3.3. In the original SCTM, 

uncorrelated assumption is enforced to simplify both the probability evaluation and 

traffic flow propagation, e.g. Equations (3.1) and (3.4) define the probabilities of four 

basic modes, FF, CC, CF and FC, while Equation (3.7) simplifies them based on the 

un-correlation assumption. In fact, as we have illustrated in Section 5.1, both the cell 

densities and critical densities are spatially correlated. This implies that we should 

evaluate this joint probability rather than regarding them as independent events, or 

     Pr Pr PrA B A B   . 

We here investigate a scenario introduced in Section 3.2.1. To begin with, we define 

Xud as:  

,1 ,

,

( ) ( ), ( ) ( ) .

T

ud u d

T

u c d c z

X X X

k k k kr r r r

é ù= ê úë û
é ù= - -ê úë û 

 
Then the probability density function of Xud is a bivariate normal distribution: 

 
( )

( ; , )/2

1/2

1
( ; , )

2

ud ud udQ X

ud ud ud

ud

pdf X e mm
p

- SS =
S

             (5.12) 
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where ( ),1 ,
( , ) ( ) ( ), ( ) ( )

T
T

ud u d u c d c z
k k k km m m r r r r= = - -  is the expectation of Xud, 

and 
ud

S
 
is the covariance matrix, with

 
,

,

Xu Xu Xd

ud
Xu Xd Xd

Var Cov

Cov Var

é ù
ê ú= ê ú
ê úë û

å  

and ( ) ( ) ( )1
; ,

T

ud ud ud ud ud ud udud
Q X X Xm m m

-
S = - -å . 

Then Equations (3.1) can be evaluated as: 

( )
( )

,1 ,

0 0

( ) Pr ( ) < ( ) <

Pr 0 0

( ; , )

FF u c d c z

u d

ud ud ud Xu Xd

P k k k

X X

pdf X d d

r r r r

m
-¥ -¥

= Ç

= < Ç <

= Sò ò

 

                  (5.13) 

0 0
( ) ( ; , )

CC ud ud ud Xu Xd
P k pdf X d dm

+¥ +¥
= Sò ò  

0

0
( ) ( ; , )

CF ud ud ud Xu Xd
P k pdf X d dm

+¥

-¥
= Sò ò  

                      ( ) 1 ( ( ) ( ) ( )).
FC FF CC CF
P k P k P k P k= - + +

    

 
Figure 5.6. The PDF of bivariate normal distribution and probabilities of occurrence of 

different modes 
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A demonstration of the PDF of the bivariate normal distribution discussed above is 

given in Figure 5.6. The probabilities of occurrence of different modes can be 

evaluated by the area of the corresponding regimes, e.g. the probability of FF mode is 

given by the yellow cover. Similar method can be applied to evaluate the probabilities 

of occurrence of transient modes, i.e. 
,
( )

CF l
P k

1,
( )

FC l
P k and

2,
( )

FC l
P k . To evaluate

,
'( )

CF l
P k , i.e. the probability of CF mode with the wave-front located at the boundary 

of cell l-1 and cell l, we define the following vector:  

    1

1 ,1 , ,

, ,

( ) ( ), ( ) ( ), , ( ) ( ) , 2, 1.

T

r z

T
c r c r z c z

X x x x

k k k k k k r zr r r r r r

é ù= ê úë û
é ù= - - - = -ê úë û

 

    
  

The PDF of X is assumed to be multivariate normal distribution: 

( )
( ; , )/2

/2 1/2

1
( ; , )

2

zQ X

z
pdf X e mm

p

- SS =
S

                      (5.14) 

where 
1 2 1 ,1 , ,
( , , ) ( ( ) ( ), ( ) ( ) , ( ) ( ))T T

z c r c r z c z
k k k k k km m m m r r r r r r= = - - -    is 

the expectation vector of X, and S
 
is the covariance matrix, with 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1

2 1 2 2

1 2
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where 1 ,i j z£ £  and ( ) ( ) ( )1; , .
T

z
Q X X Xm m m-S = - -å             

Then 
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( )

, 1 ,1 1 , 1 , ,

1 1
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1 10 0
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( ; , )
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CF l c l c l l c l z c z

l l z

l l z

P k k k k k

X X X X

pdf X dx dx dx dx

for l z

r r r r r r r r
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(5.15)

 

However the summation of probabilieis , '( )CF lP k for 2,l z=   may not be equal to 

( )CFP k , then the weighting method is applied to overcome this problem: 
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,
,

,
2

'( )
( ) ( )

'( )

CF l
CF l CFz

CF lx
lx

P k
P k P k

P k




                        (5.16) 

1,
( )

FC l
P k  and 

2,
( )

FC l
P k can be evaluated similar to (3.13) and (5.14)-(5.16).  

Evaluation of the autocorrelation matrix of the bilinear system should be adjusted 

accordingly. Referring to equation (3.9)-(3.12), the following adjustment is made:  

( ) ( ) ( ) ( ), , , , , , , ,
( ) ( ) ( ) ( ) cov ( ), ( )

s i j s i s j s i s j s i s j
E k k E k E k k kc w w w w w w= - =

. 

Section 5.3 extends Step 2 and Step 3 in Figure 3.1(b) to consider spatial correlations 

of stochastic parameters of the fundamental diagram and stochastic densities on 

adjacent cells.  

 

5.4 The framework of online traffic state and journey time prediction 

  

The flow chart of online journey time prediction is depicted in Figure 5.7(a). The 

online prediction framework consists of two major parts as described in the previous 

sections, i.e. the SCTM considering temporal and spatial correlations and journey time 

evaluation based on the predicted traffic densities via the model. The forecasting 

framework utilizes the rolling horizon approach which is a concept widely used in 

online predictions. In this rolling horizon approach, traffic density and journey time 

are predicted cycle by cycle with pre-defined prediction horizon 1 . Every two 

neighboring horizons are differentiated by re-predicting horizon which is generally 

shorter than predicting horizon as illustrated in Figure 5.7(b) .  

 

The rolling horizon approach can be interpreted as, for example the route guidance in 

                                                              

1 This is also known as rolling horizon length which is the time period for which prediction takes 

place. This length is a function of the maximum trip length. A rolling horizon is usually divided 

into short time intervals, e.g. rolling horizon step size which specifies how often guidance is 

renewed. 
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an advanced traveler information system (ATIS), under this model, the route guidance 

is periodically generated and evaluated for a given time horizon (or the prediction 

horizon, e.g. 45 minutes) based on the latest information available. However, 45 

minutes may be too long for us to trust the prediction (or the prediction may not 

reflect the current traffic state). On the other hand, the measurement systems keep 

detecting the real-time traffic state, e.g. the PeMS can provide real-time traffic 

information every 30 seconds and aggregate traffic state every 5 minutes. We would 

like to use this information, e.g. the 5 minutes aggregate data, to adjust the prediction 

which is discussed in the previous sections. Therefore, the current guidance until the 

next guidance update (e.g. 5 minutes) is actually implemented. The travelers may 

update their route choices according to the guidance updates. We call this interval of 5 

minutes as the rolling horizon step size2.  

 

Due to the inherent bad detected data, errors of the measurement systems, and 

communication delays, it may not possible for us to implement a traffic simulator in 

real-time. This may be overcome by using this rolling horizon approach as depicted in 

Figure 5.8. The measure data is not directly used by the simulator, e.g. the SCTM is 

the thesis. On the other hand, it is processed by a predictor/filter, e.g. data filtering (e.g. 

imputation of bad detections) and the prediction of demand and supply functions as 

discussed in the previous sections. The filtered data and predicted demand and supply 

functions are stored in a repository of road networks, which is also a database. The 

simulator fetches data directly from this repository to conduct real time traffic state 

estimation prediction.  

 

                                                              
2 This step size may be determined based on level of variation in traffic conditions over time (e.g. 

a longer step size can be used if traffic conditions do not change very much), the resolution of the 

measurement system, timing of incidents, and available computational resources.  
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a) Framework of journey time prediction 
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b) Rolling horizon 

Figure 5.7. Framework of the SCTM based traffic prediction with rolling horizon 

 

 

Figure 5.8. Data flow of a real-time traffic state prediction system 

  

5.5 Empirical study 2: journey time prediction on a short segment of I210-W 

 

This empirical study is tested on a 2-miles segment of Interstate 210 Freeway near Los 

Angeles. The traffic data collected on the morning of March 26, 2008 is selected for 
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the simulation due to the abnormal traffic conditions observed. The basic information 

of this segment and the traffic state on that day will be introduced briefly in Section 

5.5.1. Section 5.5.2 and Section 5.5.3 compare the journey time predicting results by 

adopting the original SCTM introduced in Chapter 3 and extended prediction 

framework proposed in this chapter.  

 

5.5.1 Description of the test site and simulating period 

 

A segment of Interstate 210 West bound, approximately two miles in length, is chosen 

in this case study as depicted in Figure 5.9. This segment, located in Monrovia, Los 

Angeles, stretches from S Myrtle Ave (A) through W. Huntington Dr (B) to N Santa 

Anita Ave (C) with two on-ramps and two off-ramps. The section is instrumented with 

single-loop inductance detectors, which are embedded in the pavement along the 

mainline, HOV lane, on-ramps, and off-ramps. The historical data provided by the 

detectors are used to calibrate the random supply functions.   

 
Figure 5.9. Location of the case study  

,u uq 

1r1f

,d dq 

2r2f

,m mq 

 

Figure 5.10. Assignment of cells and its detector configuration 
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 ˆ fv  ˆ fv  ˆ cw  ˆcw  ˆ
c  ˆc

  ˆ
J  ˆ J

  ˆ
mQ  ˆ

mQ


Cell 1 65.5 9.0 11.3 0.07 109 1.8 742.2 11.3 7154 623 

Cell 2 63.9 6.4 11.9 0.09 113 2.1 725.8 12.5 7264 657 

Cell 3 63.9 6.4 11.9 0.09 113 2.1
 

725.8 12.5 7264 657 

Cell 4 65.4 6.4 12.7 0.09 108 2.0 671.0 11.4 7119 615 

Table 5.2. Calibration results of the four cells 

 

 

Figure 5.11. Fundamental diagrams of the four cells  

 

On the morning of March 26, 2008, there was an abnormal traffic condition due to 

certain incident as illustrated in Figure 5.12. As we can observe that the detected 

inflow and outflow profiles of the day, compared with the distribution of the flows 

collected over the 54 days shown in Table 5.2a, admitted sudden declines at around 

6:30 AM. Note also that the outflow of the segment admitted a decline before the 

inflow did, which implies this decline was due to the congestion spillback. Clearly, the 

flows of the tested day are quite different with the mean flows of the 54 sample days 

especially during the early morning time period 6:15-7:10 AM. If we just directly 

input the statistical flow profiles of the 54 sample days to a traffic simulator for 
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short-term prediction, the results, both traffic density and journey time, may be poor in 

terms of accuracy due to the great difference of the flow profiles.    

 

Figure 5.12. Inflow and outflow profile detected on March 26, 2008 

 

5.5.2 Traffic density prediction on March 26, 2008—an inaccurate empirical 

study without considering correlations 

  

In this part, the traffic state prediction between 5:00-11:00 AM on March 26, 2008 

will be conducted every 10 minutes. In order to look into the disadvantages of the 

framework without considering the correlations, statistics of historical data, i.e. the 

detected traffic data of 54 sample days and their distributions as shown in Figure 5.12, 

will be applied for the prediction. The stochastic fundamental diagrams calibrated 

from historical data as listed in Table 5.2 will be adopted in the simulation.  

 

Table 5.3 lists the basic configurations of the simulation. Predicting horizon length is 
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assigned to be 40 minutes with 10 minutes margin for journey time prediction in order 

to ensure all the vehicles entering the link within the initial 30 minutes can exit from 

the link. Rolling horizon step size is 10 minutes which can be adjusted according to 

the accuracy requirement.  

 

Items of time interval Time 

Raw detection time interval of PeMS 30 seconds 

Aggregated time interval of PeMS 5mins 

Density estimating/predicting simulation time interval 5 seconds 

Predicting horizon 40 minutes 

Time predicting horizon 30 minutes 

Rolling horizon step size 10 minutes 

Test date March 26, 2008 

Test time 5:00-11:00 

Table 5.3. Simulation settings 

 

Figure 5.13(a) depicts the statistical value of upstream inflow and downstream 

outflow (blue “+” lines) of three prediction cycles which begin at 6:10, 6:20 and 6:30 

AM on March 26, 2008 compared with the actual detected flow profiles (black star 

lines), respectively. Figure 5.13(b) depicts the corresponding cell density distributions 

of cell 1 and cell 3, which are predicted for the three prediction cycles mentioned 

above, against the actual (black * lines) measurements and mean value of the 

historical data (pink square lines). Clearly, both of the inflow/outflow profiles and the 

predicted results are far away from those detected on March 26, 2008 because of the 

abnormal traffic condition on that day.  
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a) Conditional inflow and outflow profiles for three cycles                

 

b) Predicted cell densities without considering correlations 

Figure 5.13. Prediction results at 6:10, 6:20 and 6:30 on March 26, 2008 
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Figure 5.14. Prediction results of cell densities along the whole period 

 

 Inflow Outflow Cell 1 Cell 2 Cell 3 Cell 4 Overall 

MAPE(Cycle A) 142% 265% 58.9% 53.2% 54.3% 65.2% 57.9% 

MAPE(Cycle B) 179% 241% 47.4% 45.8% 49.6% 63.2% 51.5% 

MAPE(Cycle C) 148% 154% 37.6% 33.3% 37.2% 53.2% 40.3% 

MAPE(Cycle A-C) 156% 220% 47.9% 44.1% 47.2% 60.5% 49.9% 

MAPE 

(6:10-6:20 in Cycle A) 

72% 238% 42.9% 27.1% 32.1% 48.3% 37.6% 

MAPE 

(6:20-6:30 in Cycle B) 

183% 364% 14.5% 18.1% 32.0% 60.5% 31.3% 

MAPE 

(6:30-6:40 in Cycle C) 

191% 256% 11.4% 10.5% 24.6% 54.7% 25.3% 

MAPE 

(6:10-6:40) 

149% 286% 22.9% 18.6% 29.6% 54.5% 31.4% 

Table 5.4. MAPE of prediction results of three periods 

 

Figure 5.14 provides intuitive results over the whole prediction period by merging the 

results of all the rolling horizon steps (every 10 minutes). Table 5.4 summarizes the 
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MAPE of the predicted densities during the three periods and the ones of the initial 10 

minutes within the three cycles. Note that the MAPEs of predicted densities are 

smaller than those of flows due to the fact that the factor Ts/l <<1 in the SCTM 

dynamics, which transfers the flow into density, scales the amplitude. It can be 

concluded that the prediction is poor in terms of accuracy which reflects the 

disadvantages of the original SCTM for traffic state prediction under abnormal traffic 

conditions. It will be shown in the following section that this problem will be resolved 

by considering the temporal correlations of inflow and outflow profiles for prediction. 

 

5.5.3 Traffic state prediction on March 26, 2008—an accurate empirical study by 

considering correlations 

 

This section conducts an empirical study to validate the significant improvement of 

prediction results by introducing spatial and temporal correlations to the short-term 

traffic state forecasting framework as summarized in Figure 5.7(a). Figure 5.15(a) 

depicts the predicted inflow/outflow profiles for three rolling horizon steps by using 

multivariate normal distribution based best linear predictor introduced in Section 5.2. 

As we can see from the figure that in the first rolling horizon step, both inflow and 

outflow predictions are far away from the actual detections. This is because the 

abnormal traffic condition occurs after the prediction started at 6:10AM. The 

prediction cannot make use of the detected flow pattern until the next rolling horizon 

step, i.e. 10 minutes later. Compared with the prediction based on the original 

framework (brown dot line), the MAPE of density decreased from 52.4% to 18.0% as 

listed in Table5.5, and the impulse at the beginning of each rolling horizon step (due to 

initialization) does not exist anymore. The huge errors between the historical flow 

pattern and the real-time measurement are indentified by the predictor to adjust the 

prediction for next rolling horizon step. As reflected by the figure that, the predicted 

outflow profile meets the detected one in Cycle B. However the decrease of predicted 

inflow is still unsatisfactory as the decrease at 6:15 is not convincing enough. Figure 

5.15(b) plots the predicted densities of cell 1 and cell 3 for the related cycles 
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accordingly. Compared with Figure 5.13(b), it is clear that the new prediction 

framework over performs the original SCTM. In Cycle B, the traffic state prediction 

over-estimates the traffic density but with the MAPE improved from 50.9% (by the 

original SCTM) to 17.2%. The prediction will keep on adjusting if the error between 

the historical mean and the current measurement is not zero. Cycle C (6:30-7:10) 

demonstrates this adjustment by the multivariate normal distribution based best linear 

operator considering temporal correlations. The level of improvement depends on the 

relationship between the characteristics of traffic incident and the rolling horizon step 

size. Of course, we may also use smaller rolling horizon step size to accelerate the rate 

that the prediction adapts to the abnormal traffic conditions, e.g. from 10 minutes to 2 

minutes (with a minimum determined by the resolution of the measurement system, 

e.g. 30 seconds in PeMS system).    

 

The fundamental diagram has no significant change due to normal weather condition 

and the fact that the incident does not occur on the underlying segment (as we have 

mentioned the change of the flow pattern is due to congestion spillback). As illustrated 

by Figure 5.16, the free flow speed (dash dotted black line) which is calibrated based 

on the flow-density pairs (blue dots) detected between 5:00-5:30 on March 26 is 

slightly lower than the historical record (red line). The predicted free flow speed 

which will be applied for the predicting cycle 5:30-6:00 might also decrease 

accordingly (green dot line) based on the positive correlation of free flow speed 

between these two time periods (see the spatial correlation measurement in Figure 5.2). 

As we have mentioned in Section 5.1, the temporal correlations cannot be calculated 

for all parameters of the fundamental diagram along the whole period due to the fact 

that they cannot be calibrated for the whole day, e.g. the congestion wave speed 

cannot be observed during 4:00-5:00AM. The parameters in Table 5.2 will be applied 

directly when the parameter is no predictable. 
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(a).Predicted conditional inflow and outflow profiles for three cycles 

 
(b).Predicted cell densities for three cycles considering correlations 

Figure 5.15. Prediction results of cell densities on 6:10, 6:20 and 6:30 of March 26, 2008 
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Figure 5.16. The prediction of fundamental diagram for cycle 5:30-6:00 

 

 

Figure 5.17 Prediction results of cell densities along the whole period  
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 Inflow Outflow Cell 1 Cell 2 Cell 3 Cell 4 Overall 

MAPE(Cycle A) 130.1% 213.4% 25.1% 19.3% 19.0% 8.5% 18.0% 

MAPE(Cycle B) 135.7% 16.6% 18.4% 22.5% 21.2% 6.8% 17.2% 

MAPE(Cycle C) 39.7% 46.5% 19.7% 27.8% 25.0% 4.4% 19.2% 

MAPE(Cycle A-C) 102.1% 92.2% 21.1% 23.2% 21.8% 6.6% 18.2% 

MAPE 

(6:10-6:20 in Cycle A) 

63% 188% 36.2% 10.1% 8.7% 11.8% 16.7% 

MAPE 

(6:20-6:30 in Cycle B) 

136% 32% 20.3% 16.0% 18.3% 10.7% 16.3% 

MAPE 

(6:30-6:40 in Cycle C) 

43% 71% 13.3% 28.5% 30.0% 4.7% 19.3% 

MAPE (6:10-6:40) 80% 97% 23.3% 18.2% 19.0% 9.1% 17.4% 

Table 5.5. MAPE of Predicting results for three periods 
 

Figure 5.17 depicts the traffic density prediction of each rolling horizon step. 

Compared with the prediction by the original SCTM (the gallery dots), the new 

framework significantly improves the predictions of cell densities. For this special 

weekday with long lasting traffic incident during the morning rush hour, the MAPE of 

predicted densities of thirty six 40-minutes predicting horizons over 6 hours equals to 

15.9%. 

 

5.5.4 Journey time prediction on March 26, 2008  
 

Dynamic journey time distributions predicted during the three cycles with 

corresponding Buffer Time Indexes are presented in Figure 5.18. Each time predicting 

horizon is 10 minutes shorter than their density predicting horizons as we have 

mentioned in previous sections. The predicted journey sharply rises from about 100 

seconds to 600 seconds from about 6:00, and keeps on oscillating at high value until 

9:20 AM around. 

 

The dynamic stochastic journey time is reliable most of the time except for the period 

suffering from the spillback effect of traffic jam; the index reaches its highest value 

around 6:30 which means the driver should assign 60% of mean travel time as extra 

time in order to assure she/he can arrival on-time (or have less than 5% chance to 

arrive late).  
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 Figure 5.18. Predicted journey times on three cycles  

 

Figure 5.19. Summary of journey time 
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5.5.5 Discussion of computational time and parameter sensitivity   

 

Table 5.6 gives the computational times of related items in one predicting cycle of 

Empirical 2-2. The study is also simulated on Matlab 2009(b), CPU: Intel Core 2 Duo 

E8500 @3.16GHz and 4G DDR3 1067MHz, which is the same configuration with 

Empirical 1(Journey time estimation on Hanshin Expressway). The table indicates that 

the prediction based on this framework is acceptable, as the system just needs 14.5 

seconds to predict 40 minutes traffic densities for 4 cells plus 30 minutes journey time 

for 2 links. 

 

Computational items Computational time (sec) for 

one cycle

Inflow and outflow prediction 0.0013

SCTM propagation 5.2

Relative frequency generation and distribution fitting of link 1 2.0

Relative frequency generation and distribution fitting of link 2 1.8

Nested operation of the PMF and the distribution fitting of 

journey time

5.9

The total time cost in traffic state and travel time prediction 14.5

Table 5.6. The computation time   

 

The selection of n in equation (5.9) is determined by the balance of the accuracy of 

prediction and computational time. Table 5.7 presents the MAPE of inflow and 

outflow profile prediction on March 26, 2008 over three prediction periods (7:10, 7:20, 

7:30) and the whole time scale (5:00-11:00) with n=8, 4, 2, 1 on the condition of l=8. 

That is to test the 40-minutes short term prediction of inflow and outflow by referring 

to different length of measurement such as the past 40 minutes, 20 minutes, 10 

minutes or 5 minutes. Compared with the MAPE of historical record with the test day, 

the result shows that the best linear prediction has obvious effect, and generally it 

becomes more effective as n get larger for 4n  , that is to say a longer observation of 

real-time trend will benefit the prediction. However, n does not need to be infinitely 

long as too much consideration on the period far away from current time may decrease 

the sensitivity of prediction such as n=8. Additionally, the computational time also   
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becomes greater. Finally, n=4 is considered to be the best selection for equation (5.9) with l=8. 

 

 n=8 n =4 n =2 n =1 Historical record

 Inflow Outflow Inflow Outflow Inflow Outflow Inflow Outflow Inflow Outflow

MAPE(Cycle A) 126% 226.0% 130.9% 213.4% 131.7% 227.2% 132.3% 232.1% 141.8% 256.2%

MAPE (Cycle B) 131.3% 119.4% 135.7% 16.6% 136.4% 31.2% 136.7% 54% 179.1% 240.5%

MAPE (Cycle C) 66.1% 33.4% 39.7% 46.5% 18.12% 11.4% 18.0% 14.6% 148.5% 154.5%

MAPE 

(5:00-11:00 ) 

28.7% 31.4% 21.9% 23.9% 21.7% 25.7% 24.5% 29.0% 37.4% 49.1%

Average 

Computational 

time 

(Second/horizon) 

0.0017 0.0013 0.0004 0.0004 --

Table 5.7 Influence of n to the precision of prediction
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5.6 Summary 

 

Chapter 5 developed an online framework by extending the stochastic cell 

transmission model (SCTM) to consider the spatial-temporal correlations of the 

uncertain flow profiles and supply functions for the short-term traffic state prediction. 

The traffic inflow/outflow profiles and the fundamental diagrams, conditioned on the 

real-time observation, are predicted via the Multivariable Normal Distribution based 

best linear predictor given the statistics of the historical data. The predictor is able to 

adjust the value of flow profiles by capturing the error between the real-time 

measurements and the historical mean. Meanwhile, the key processes of the SCTM, 

that is the evaluation of probabilities and propagation of traffic states, are improved by 

considering the spatial correlations of supply and traffic cell densities. The empirical 

study on a short freeway segment confirmed the benefit of the extended framework by 

demonstrating the significant improvement via comparisons of the simulation results. 
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Chapter 6  

Conclusions and future works 

 

This chapter presents concluding remarks on this research, highlights its significance, 

and suggests directions for future research. This chapter is organized in two sections. 

Section 6.1 summarizes the research, discusses associated conclusions and highlights 

the significance of the research. Some recommendations and potential values of the 

research to the practitioners and decision makers are given. Section 6.2 discusses 

possible extensions and directions for future research. 

 

6.1 Summary and conclusions 

 

Significant interests of researchers and other traffic engineering practitioners have 

been spent on the problems of estimating and predicting travel time in the past decades. 

However, as reviewed in Chapter 2, the existing methods either rely on the availability 

of the data from automatic vehicle identification (AVI) system (which may not be 

available in some cases) or are only able to produce deterministic estimation of travel 

(or journey) time. Also, these methods may not be applicable to the data provided by 

traditional traffic measurement systems (e.g. loop detector or auto-scope system) 

which can provide flow counts, density, and average speed during fixed detecting time 

intervals. Nevertheless, few of these existing methods can generate statistical 

distributions of travel time over different time periods. This thesis contributes to the 

literature on travel time estimation and prediction for freeway networks in two aspects: 

stochastic dynamic traffic flow modeling and stochastic dynamic travel time 

estimation and prediction.  

  

This research extended the framework of Stochastic Cell Transmission Model (SCTM) 

proposed by Sumalee et al. (2011) in two major aspects. First, a practical method to 

approximate dynamic travel time distribution from the outputs of the SCTM was 
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proposed in Chapter 4. The original framework of SCTM provides the stochastic 

traffic density on each cell along a freeway corridor. The method proposed in Chapter 

4 uses the stochastic traffic density to estimate the statistical distributions of dynamic 

link travel time and journey time of a given route. To be specific, Chapter 4 first 

introduced the definition of (deterministic) link travel time in terms of dynamic flow 

matching under the first-in-first-out (FIFO) principle. This definition was then 

extended to the stochastic version by defining a likelihood concept that measures the 

probability of the difference between the cumulative stochastic link inflow and 

outflow profiles be less than or equal to a prescribed bound. Based on this likelihood 

measure, the probability mass function (PMF) of the link travel time was evaluated 

over an appropriate sampling interval. The dynamic link travel time distribution was 

constructed by fitting the PMF with a skew normal distribution. After obtaining the 

link travel time distributions along a route, the deterministic nested delay operator was 

extended to evaluate stochastic journey time distribution of a given route. The PMF of 

journey time was defined as a series of “nested” conditional probabilities along the 

links on the route. By fitting the PMF of the journey time by skew normal distribution, 

the stochastic journey time distribution was deduced.   

 

The empirical study was conducted on a long segment of an expressway between 

Toyanaka-kita and Osaka CBD to validate the proposed method for travel time 

estimation under incident scenarios with limited traffic measurements and incident 

records. The results showed a satisfactory performance of the proposed algorithm for 

travel time distribution estimation/prediction if the SCTM can provide an accurate 

estimation of the cell densities. The results on the shewness analysis of the travel time 

distribution are also consistent with the empirical observations in Lint et al (2008). 

The statistical distribution of dynamic travel time can also be used to calculate travel 

time reliability index. In Chapter 4, the buffer time index (BTI) was used as the travel 

time reliability index. The BTI was calculated for the case study reported in Chapter 4. 

This allows the analysis of travel time reliability, which has been discussed previously 

only in the context of static analysis in the literature, with the dynamic consideration.  
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Due to the lack of a proper prediction algorithm for demand and supply profiles and 

the inherent independent/uncorrelated assumptions in the original SCTM framework, 

the SCTM cannot predict traffic states accurately for on-line applications. This 

prediction error in traffic states caused the inaccurate prediction of the stochastic 

travel time. Chapter 5 was devoted to tackle this issue wherein the SCTM framework 

is extended for on-line traffic state prediction.  

 

As discussed earlier, the difficulty to obtain accurate short-term traffic state (including 

travel time) estimation/prediction is due to the high traffic density and congestion in 

the network as well as the interaction of the demand and supply uncertainties along 

with the dynamic nature of traffic flow. The demand and supply uncertainties are 

correlated in both space and time domains. The traffic flow models and traffic 

forecasting methods can be further refined if the spatial correlation, i.e. systematic 

dependence between the observations at each location and the observations at 

neighboring locations, is taken into account in the modeling and prediction 

frameworks. The second contribution of this research is the extension of the original 

SCTM framework to consider spatial-temporal correlations of the model inputs (on 

both demand and supply sides) and traffic states. The travel time evaluation method 

proposed in Chapter 4 was also extended to the SCTM with spatial-temporal 

correlations.  

 

A multivariate normal distribution based best linear predictor was utilized to predict 

the inflow demand and supply functions of the SCTM. The statistical correlations of 

demand and supply as analyzed from the historical traffic data are used in conjunction 

with the recent updated traffic data (from online measurement) to predict the demand 

and supply in the short-term future. The predicted demand and supply are taken as 

inputs to the SCTM to perform short-term traffic state prediction. For real-time or 

online application, the prediction is conducted in a rolling horizon manner. The 

extended SCTM model and prediction algorithm were tested with an empirical data 

from the PeMS database. As shown by the test, incorporating the prediction algorithm 
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for demand and supply profiles improved the accuracy of traffic state prediction of the 

SCTM. The empirical results also revealed the potential application of the proposed 

method for traffic state prediction under abnormal traffic conditions, e.g. incidents and 

adverse weather conditions.    

 

6.2 Future research 

 

6.2.1 Reliability-based stochastic dynamic traffic assignment  

 

The proposed methods have potential applications in stochastic dynamic traffic 

assignment studies. In the deterministic dynamic traffic assignment framework, four 

key components are required:  

(i) models of link and path delays;  

(ii) flow dynamics;  

(iii) flow propagation constraints; and  

(iv) a route/departure-time choice model. 

All these components are either missing from the literature on stochastic dynamic 

traffic assignment or not very well defined. The proposed SCTM and its extension in 

this thesis offer an approach to describe components (ii) and (iii). The link and route 

travel time calculation methods developed in this thesis offer the first component. The 

fourth component is an interesting direction for future studies of this research.  

 

Indeed, the reliability analysis in this thesis provides half of the fourth component for 

a reliability-based stochastic dynamic traffic assignment. The remaining challenges are 

to model traveler’s departure time/route choice behavior under uncertainties and to 

define dynamic user equilibrium under stochastic environments. Some preliminary 

results on this stream were achieved by Li (2009), Zhong (2011) and Szeto et al. 

(2011). In Li (2009), the author investigated travelers’ choice behavior modeling 

under travel time uncertainty and applied the deterministic DUE to study traveler’s 
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departure time/route choice behavior. However, the uncertainty considered in Li (2009) 

is mainly on the random fluctuations of the capacity from day-to-day, while other 

supply and demand functions are assumed to be deterministic, e.g. a fixed number of 

travelers, constant from day-to-day, is presumed. The DUE was solved by a simulation 

based solution approach. Szeto et al. (2011) proposed a Monte–Carlo cell-based 

multi-class dynamic traffic assignment formulation that considers random evolution of 

traffic states. Travelers are assumed to select routes based on perceived effective travel 

time, where effective travel time is the sum of mean travel time and safety margin (as 

in the deterministic case, this may not capture the route travel time accurately). All 

drivers are assumed to select routes based on the dynamic extension of the 

reliability-based stochastic user equilibrium principle (Shao et al., 2006) called the 

reliability-based stochastic-dynamic–user-equilibrium (RSDUE) principle. This 

RSDUE principle states that for each class of drivers departing at any time, they select 

routes with the minimum perceived effective travel time at the time of departure. The 

RSDUE problem was then investigated by certain heuristic simulation based approach.  

 

On the other hand, Zhong (2011) investigated the stochastic system optimal traffic 

scheduling problem by applying stochastic dynamic programming theory to a 

simplified version of the SCTM. A set of optimal control laws were obtained 

analytically in terms of recursive coupled Riccati difference equations. As the optimal 

control may be fragile with respect to the model miss-specifications, e.g. errors in 

calibrations and sharply variations under abnormal traffic conditions, he further 

pursued the robust (optimal) decision policy, which would act robust with respect to 

the parameter miss-specifications in the traffic flow model, and to attenuate the effect 

of disturbances in the freeway network (wherein demand uncertainty is usually taken 

as a kind of disturbance). To overcome the curse of dimensionality of dynamic 

programming, it was suggested by Zhong (2011) that the approximate dynamic 

programming (ADP) approach would provide a better numerical solution algorithm. In 

the future works, we may adopt the stochastic dynamic programming approach as 

adopted in Zhong (2011) in conjunction with the RSDUE travelers’ behavior 
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assumption as adopted in Szeto et al. (2011) to address the stochastic DUE traffic 

assignment problem and apply the ADP approach to obtain an efficient solution 

algorithm for the SDTA problem.   

 

6.2.2 Incident detection  

 

This work aims to propose a new methodology aims at detecting freeway incidents in 

real-time and characterizing incidents in terms of time-varying lane-changing fractions 

(or probabilities), queue lengths, sharply changes in demand (or boundary inflow 

profiles) or supply functions, and delays caused by incidents, etc.  

 

Recent studies, e.g. Laval and Daganzo (2006), have revealed that a lane changing 

vehicle acts as a moving bottleneck on its destination lane while accelerating to the 

speed prevailing on the lane. As a consequence, such disruption triggers other lane 

changes. To more realistically capture traffic dynamics along a freeway corridor, the 

lane-changing behavior has to be taken into account when developing traffic flow 

models. On the other hand, time-varying lane-changing fractions and queue lengths 

play an important role in detection and subsequent traffic control of lane blocking 

incidents (Sheu and Ritchie, 2001; Sheu, 2004).  

 

In the future works, we will further extend the SCTM to consider the lane-changing 

behavior. In the deterministic counterpart, the multi-lane hybrid cell transmission 

model (CTM) was proposed by Laval and Daganzo (2006). The multi-lane hybrid 

CTM was shown to be able to capture both the mandatory and the discretionary 

lane-changing behaviors, and to treat lane changing vehicles as moving bottlenecks. 

However, just like the CTM, this hybrid CTM is a non-linear non-differentiable 

transformation from one traffic state to another, particularly with the lane-choice 

probability involved. Similar to Sheu and Ritchie (2001) and Sheu (2004), we will 

define the lane changing fractions (or probabilities), e.g. lane changing fraction from 

the original lane to adjacent lanes and return-lane-changing fraction from adjacent 
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lanes to the original lane in the downstream. These lane changing fractions are then 

extended as state dynamics parallel to the stochastic traffic density in the existing 

SCTM framework. In this manner, we can represent the extended SCTM as a 

discrete-time nonlinear stochastic system, which characterize cell traffic densities, 

levels of congestion, queue lengths, inter-lane and intra-lane traffic states in terms of 

mean and variance or probability of occurrence. Contrary to the original SCTM 

wherein aggregated traffic measurements are used to calibrate and simulate the model, 

the extended SCTM requires lane traffic count and occupancy as two major types of 

input data. 

 

The above extended stochastic cell transmission model (ESCTM) improves the 

original SCTM by involving a best linear predictor and an additional dynamics 

governing the lane-changing behavior. The best linear predictor as proposed in 

Chapter 5 utilizes the spatial-temporal correlations of traffic flow to forecast the 

demand and supply functions. Then the predicted demand and supply functions are 

loaded into the SCTM as exogenous signals to predict short-term traffic states in terms 

of traffic density and queue length. During and after a lane blocking incident, the 

traffic flow characteristics along the related links may change substantially, e.g. the 

demand and supply functions and traffic state. By comparing the real-time 

measurements and estimations of these characteristics with the predicted ones, such 

abrupt changes may be identified, and hence the incident occurrence may be 

recognized, leading to corresponding incident alarms.  

 

However, this judgment may be not sufficient for real-time incident detection, 

especially under free-flowing traffic conditions during non-rush hour (no queue and no 

significant changes in the demand and supply functions would be observed). Therefore, 

we further utilize the lane-changing fractions given by the ESCTM to develop a more 

comprehensive incident detection algorithm and subsequent incident characterization. 

Considering the stochastic input/outputs of the SCTM framework for traffic state 

estimation/prediction and lane-changing fractions, probabilistic functions can also be 
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defined to characterize the likelihood of an incident. Furthermore, we will define 

several time-varying thresholds, which may be a combination of the lane-changing 

fractions, traffic density, queue lengths as well as the demand and supply functions, 

for incident detection. Similar to Sheu (2004), finally, incident detection will be 

formulated as a pattern recognition problem by comparing the likelihood functions 

with the time-varying thresholds. Incident induced delay is important to characterize 

the incident and for the purpose of incident management. We will also extend the 

methodology proposed in Chapter 4 to calculate the distribution of stochastic delay 

induced by an incident.  
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