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I 

Abstract 

The low frequency power oscillation of inter-area modes inherently induced 

by interconnections of local electric networks aiming at transmission of power 

between different areas, over long distances, to realize stable power supply, as 

well as to balance the uneven distribution of primary energy sources (such as 

coal and renewable energy), has resulted in severe threats to safety of operations 

of power systems. Normally, use of damping controllers such as power system 

stabilizers (PSSs) and supplementary damping controllers (SDCs) for flexible 

AC transmission system (FACTS) devices is the most cost-effective means to 

alleviate the problem of inter-area oscillations, though design of them for modern 

power systems is never a trivial work. Therefore, on the basis of the foundation 

laid by the excellent pioneering research works already done, this thesis strives to 

make further contribution to the knowledge about design of damping controllers 

for suppression of inter-area oscillations. 

So far, limited attention has been paid to closed loop system eigenvectors in 

design of damping controllers as most existing designs focus only on eigenvalues. 

In fact, it is readily accepted that appropriate design of eigenstructure (both 

eigenvalues and eigenvectors) can obtain more satisfactory control effects than 

assignment of only eigenvalues. This thesis harnesses the eigenstructure of 

closed loop systems by exploring its integral and structural relationship with time 

domain responses. Accordingly, a novel way of constructing the eigenstructure-

based index, which is equivalent to the corresponding quadratic cost function 
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defined in time domain in terms of measuring the system dynamics objective, is 

proposed. Specifically, unlike the cost function, this index is not associated with 

the initial state of the system. Moreover, calculation of the index is independent 

of structures adopted by controllers. Thus, by formation of eigenstructure-based 

indexes for different measurement intentions, various optimization-based 

methods which use these indexes as objective functions can be formulated to 

tune the structurally constrained damping controllers for expected control effects. 

Firstly, a tuning scheme is proposed to coordinate wide-area signals based 

PSSs and SDCs for FACTS devices to mitigate inter-area oscillations with 

optimal control efforts under multiple operating conditions. This involves 

minimizing of an eigenstructure-based index which measures the dynamic 

performance of inter-area oscillations and control efforts together. Here, PSSs 

and SDCs are simple controllers with structural constraints, for consideration 

their applications in practice. Besides, SDCs and PSSs are simultaneously tuned 

by another proposed two-stage optimization method named IAMO-PS where an 

inter-area mode oriented pole placement strategy is implemented for damping of 

inter-area oscillations in the first stage while control efforts measured by 

eigenstructure-based indexes are coordinated under the constraints of such pole 

placement in the second stage. 

Subsequently, it is emphasized in this thesis that wind turbines employing 

doubly fed induction generators (DFIGs) have to sacrifice their dynamic 

performance as they are controlled to suppress inter-area oscillations. Thereby, a 

dual-channel SDC is proposed and tuned to drive the DFIG to offer the required 

damping to inter-area modes by using the method of IAMO-PS with optimizing 

of weighted control efforts of active and reactive power modulation, measured by 
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eigenstructure-based indexes. Consequently, the DFIG dynamics are apparently 

improved because of their tight relationship with the optimized power outputs. 

The effectiveness of the proposed eigenstructure-based indexes and the 

associated tuning methods are validated in the classic two-area systems and New 

England and New York interconnected systems. 
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Chapter 1 

Introduction 

1.1 Research Background 

In the modern society, people’s lives as well as economic development in 

general have become increasingly dependent on electricity. Few are likely to 

have forgotten the failure of the electricity supply system in large portions of 

Midwest and Northeast regions of United States and Ontario, Canada on 14 

August 2003, resulting in loss of US$ 10 billion to American businesses, and 

about 50 million persons being affected by the large scale blackout [1, 2]. 

Therefore, more and more strict requirements have been imposed on operations 

of power systems to ensure power supply with security, reliability and quality. 

Power system stability is the key issue in ensuring secure and uninterrupted 

power supply. The IEEE/CIGRE Joint Task Force Report [3] has defined power 

system stability as the ability of an electric power system, for a given initial 

operating condition, to regain a state of operating equilibrium after being 

subjected to a physical disturbance, with all system variables bounded so that 

practically the entire system remains intact. Nevertheless, among various 

categories of stability problems in power systems, power angle oscillatory 

instability (electromechanical oscillation) caused by insufficient damping torque 

has become a serious problem in power systems because of the rapid growth of 
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power demand, as well as wide usage of high gain and fast acting automatic 

voltage regulators (AVR) which can largely eliminate the insufficient 

synchronizing torque [4]. The nature of electromechanical oscillations can be 

classified into the following types [5, 6]: 

(1) Intraplant mode oscillations: generators in the same power plant swing 

against each other at frequencies of 2.0 to 3.0 Hz, which is dependent on 

unit ratings and the reactance connecting them. 

(2) Local plant mode oscillations: one generator oscillates against the rest of the 

system at 1.0 to 2.0 Hz. 

(3) Inter-area mode oscillations: two or more large coherent groups of 

generators swing against each other at low frequency (1 Hz or less). 

(4) Control mode oscillations: these are related to generating units and other 

controls such as poorly tuned exciters and governors. 

(5) Torsional mode oscillations: these modes are with frequencies in the range 

of 10-46 Hz, associated with a turbine generator shaft system. 

Obviously, compared to the other four types of oscillations, inter-area mode 

oscillation is more complex due to its association with a large number of 

components with highly nonlinear dynamic behaviors which distributes in the 

power grid covering hundreds and thousands of miles [7, 8]. Generally, when a 

power source is far away from a load center in terms of the electric distance (or 

say, the two areas are weakly electrically coupled), transmitting an amount of 

power between the two areas may give rise to inter-area oscillation. Moreover, 

frequency of inter-area oscillations decreases to quite a low value as the number 

of synchronous generators increases, to produce more power to meet the rising 

demand which actually augments the equivalent inertia of each area. A more 
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serious factor is that the planned power transmission between interconnected 

areas may be forbidden because the damping of inter-area oscillation can 

deteriorate significantly when the transmitted power increases. The Western 

Electricity Co-ordination Council (WECC) has a long history of lightly damped 

inter-area oscillations at 0.33 Hz and 0.7 Hz which greatly influenced its 

planning, design and operations strategy [6, 9]. Inter-area oscillations among the 

four provincial power grids occurred several times and were a significant 

problem in the operation of the China Southern Power Grid, a long-distance bulk 

power transmission system with AC/DC hybrid interconnections [10-12]. A 

major concern in the Brazilian power system project for interconnection of 

North-Northeast and South-Southeast subsystems in 1999 was a poorly damped 

low frequency (0.17-0.25 Hz) inter-area mode [13, 14]. [15] and [16] reported a 

0.2 Hz poorly damped power oscillation existing between Greece and the rest of 

UCTE (Union for the Co-ordination of Transmission of Electricity) networks 

which had posed threats to further interconnection of Turkey and UCTE 

networks. 

Although building more transmission circuits to strengthen power networks 

can substantially alleviate the inter-area oscillation problem, the associated huge 

capital investment implies that this is doomed to be an impractical approach. The 

most cost-effective method for damping electromechanical oscillations is 

installation of power system stabilizers (PSS) which can produce an electrical 

torque (called damping torque) proportional to rotor speed change so as to 

suppress the oscillation by only adding a supplementary exciting signal to the 

excitation system [17]. PSSs have been widely employed in power systems all 

over the world and have played an indispensable role in enhancing stability [18, 
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19]. Originally, PSSs were designed to provide damping to local oscillatory 

modes, to address destabilization caused by high gain, fast acting AVRs. 

Therefore, their designs were based on a simple equivalent dynamic model, i.e. a 

single-machine-infinite-bus (SMIB) system, to achieve robust performance with 

relatively higher gains [20-22]. However, design of PSSs for inter-area 

oscillations requires more proper representation of the entire interconnected 

system, and their performance may be more sensitive to change of operating 

conditions and network configuration [5, 8]. 

The mechanism of the PSSs is that the generators act to amplify their power 

so that they can damp the electromechanical oscillations [4]. The high power 

electronic equipments such as high voltage direct current (HVDC) links and 

flexible alternating current transmission system (FACTS) devices have been 

deployed in power systems with primary functions like power flow control or 

voltage control [23-27]. Moreover, they are also able to enact the role of power 

amplifier during the transient dynamics because of their fast power switching 

capabilities. Thus, once installed, an auxiliary function of these devices, to 

increase damping of electromechanical oscillations, can be implemented with the 

help of a supplementary damping controller (SDC) which modulates their power 

outputs. Unlike synchronous generators, power electronic devices with primary 

controls are rarely involved in electromechanical oscillations because they do not 

contain any rotating mechanical parts. They initiatively engage in damping 

control via SDCs which control them to induce additional damping torques on 

generator shafts [28]. 

FACTS devices of different types [29, 30] have been utilized for damping 

control, for example, Static Var Compensator (SVC) [31], Thyristor Controlled 
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Series Compensator (TCSC) [32], STATic synchronous COMpensator 

(STATCOM) [33], Static Synchronous Series Compensator (SSSC) [34], Unified 

Power Flow Controller (UPFC) [35], and Interline Power Flow Controller (IPFC) 

[36]. Though these devices can be employed to effectively damp power 

oscillations, it has been figured out that the series-connected devices (TCSC, 

SSSC and IPFC) may be generally more efficient than the shunt-connected 

devices (SVC and STATCOM), in terms of damping effects per installed MVar 

[37]. This can be heuristically accepted as shunt-connected devices perform only 

reactive power modulation while series-connected devices can be modeled as 

equivalent to shunt-connected devices which are able to inject both active and 

reactive power to grids. It is known that power angle oscillations directly result 

from imbalance of active power in the system, which indicates that the active 

power modulation should be more efficient and direct than the reactive power 

modulation, in damping of oscillations. 

Stimulated by the need for reducing carbon emissions and addressing global 

warming, wind power generation has grown considerably all over the world 

during the past few years [38]. Massive wind power penetration also poses great 

challenges to operation and control of power systems [39]. However, at early 

stages, wind turbine generators (WTGs) have relatively small capacities and tend 

to employ squirrel cage induction generators because of their simple structures 

and low investment. The generator is directly connected to the grid and is 

normally referred to as fixed speed induction generator (FSIG) since its rotor slip 

changes slightly as the operating power level changes. Apparently, unlike 

conventional synchronous generators, FSIGs are unable to contribute to network 

support and operation, due to lack of control capability. Actually, as generated 
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power increases, they consume more reactive power and thus it is generally 

necessary to provide power factor correction capacitors at each wind turbine. 

What is more, FSIG cannot capture the maximum wind power at various wind 

speeds via rotor speed adjustment. As the size of individual wind turbines and 

total wind power penetration increase, these issues are becoming more important 

and complex and the corresponding technologies are naturally switching from 

fixed to variable speeds [40]. Among various variable speed WTG technologies, 

doubly fed induction generator (DFIG) based WTG is considered state-of-the-art. 

The torque-slip characteristic of DFIG can be changed by injecting magnitude 

and angle controllable voltage with slip frequency from a back-to-back voltage-

source converter to the wound rotor so that it can operate at different rotor speeds 

to capture maximum wind power [41]. Furthermore, through implementation of 

proper control on the rotor side converter (RSC) to adjust active and reactive 

power outputs, DFIG is also capable of active participation in network frequency 

and voltage control [42, 43].  

An important aspect of DFIG contributing to network support is enhancement 

of network damping via a SDC loop [44]. It has been recognized that DFIGs can 

act similar to FACTS devices to provide additional damping to inter-area 

oscillations since both employ power electronic devices to realize flexible output 

power control [45-47]. However, unlike the shunt-connected FACTS devices, 

although the DFIG is connected in shunt with the network, it can perform both 

active and reactive power modulations. Normally, when employed for damping 

control, the dynamics of FACTS devices can be ignored or simply represented 

because time constants of power electronic devices and associated control 

systems are much smaller than time constants of electromechanical oscillations 
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[48-50]. Nevertheless, it is noted that power outputs of DFIG are coupled with its 

rotor slip, a state variable regarding the mechanical dynamics. Therefore, though 

the DFIG does not participate in electromechanical oscillations since no power 

angle is defined, its shaft dynamics inevitably impact power modulation. This 

situation is especially noticeable when the WTG uses a relatively “soft” (low 

stiffness) shaft which leads to the torsional mode falling into the frequency range 

of electromechanical oscillations [51, 52]. So, it is generally necessary to model 

DFIG dynamics which may interact electromechanical dynamics, when used for 

damping control. In this context, greater consideration of the dynamics of DFIGs 

is warranted during designing of damping controllers.  

1.2 Incentives of Thesis 

It has to be admitted that currently numerous approaches are available for the 

design of PSSs and SDCs for damping inter-area oscillations [4, 6, 53-55]. 

However, there is still significant room for exploring novel control methods. 

According to linear system theories, eigenvalues of the system state matrix 

contain the information of damping and frequencies of oscillations in time 

domain [56]. Hence, positioning closed loop eigenvalues at locations with 

adequate damping (or damping ratio) in the complex plane is the common 

objective of many damping controller design methods [57-61]. Undoubtedly, 

such a way of pole placement for damping of electromechanical oscillations is 

feasible and effective. However, it has been recognized that assigning only 

eigenvalues does not utilize all available degrees of freedom for a MIMO system 

[62]. Left and right eigenvectors are coupled with time domain responses as well, 

which indicates that proper design may further improve system dynamics. The 
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left eigenvector determines the extent to which the corresponding mode is 

excited, while the right eigenvector decides energy distribution of the mode 

among all states. Actually, several state and output feedback algorithms making 

use of available degrees of control freedom with eigenstructures (both 

eigenvalues and eigenvectors) assignment have been proposed, one example 

being aerospace applications related to flight control stabilization [63]. In 

addition to assignment of eigenvalues, the partial right eigenvectors are 

appropriately assigned in power system controller designs so that the presence of 

critical mode in certain state variables is minimized [64, 65]. Moreover, the 

possible adverse excitation of critical modes themselves is explicitly minimized 

in coordinated design of PSS and active damping controller for the DFIG by 

additionally assigning partial left eigenvectors [52]. 

As is known to all, time domain responses are the most direct representations 

to assess system dynamic performance. However, it should be mentioned that 

eigenstructure assignment techniques deal with eigenvalues, left and right 

eigenvectors partially and separately, whereas time domain responses are 

integrally and structurally dependent on them. Partial assignation of eigenvectors 

is unable to consider effects on other eigenvectors. Furthermore, interactions 

between assignments of left and right eigenvectors, as well as between 

assignments of eigenvalues and eigenvectors are also considerable issues during 

the design process [52]. Therefore, theoretically speaking, it is never easy to 

achieve competitive improvements in system dynamics by additionally assigning 

the eigenvectors, compared to assignment of only eigenvalues. 

The difficulties of using eigenstructure assignment to enhance system 

dynamics can be attributed to the fact that the integral structural relationship 
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between the time domain responses and the eigenstructure is not explicitly 

considered. This relationship was first explored in tuning of PSSs by Kahaldi 

(1993) and a time domain modal performance measure, an analytical function of 

eigenstructure, initial state and studied time span, was defined [66]. By 

minimizing this performance measure, PSSs’ parameters were optimized. Similar 

works were conducted by Simo in 1996 for the design of flexible controllers 

based on the improved modal performance measure which additionally takes into 

account damping ratios [67]. It is noted that with any given initial state, the 

modal performance measure evaluated over the studied time span can be 

analytically calculated and no numerical integration is required. Thus, 

optimizations based on this measure are much faster than those employing time 

domain indexes evaluated from nonlinear numerical integrations [68, 69]. 

However, both types of optimizations suffer the drawback that optimization 

results are influenced by the initial state as well as the selected time span. This is 

undesirable because the initial state (post-fault states) depend only on the 

intrinsic characteristics of the system and the disturbance events are undermined. 

An appropriate initial state has to be carefully selected by the designer in 

advance so as to assure the final solution is consistently feasible for maximum 

possible other initial states. Obviously, this may be a laborious process. Thus, in 

order to cure this weakness, [70] defined a selective modal performance index by 

artificially setting test inputs and observation outputs in the closed loop system 

and performing unit impulse response tests on all input-output pairs. Although 

this index can be analytically computed, irrespective of the initial state, it is 

definitely impacted by selection of inputs and outputs. Moreover, a pre-set time 

horizon is also required for calculation of this index.  
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To make use of the closed loop system eigenstructure for improving system 

dynamics, [66, 67, 70] attempted to analytically create linkages between the time 

domain performance indexes and the eigenstructure, though they suffer several 

defects, as mentioned above. This thesis continues along this direction but with 

full consideration of these defects. The above analysis naturally leads to 

derivation of a performance index which relies only on eigenstructure and has no 

relationship with initial state and time span. Moreover, this eigenstructure-based 

index should entirely preserve the structural relationship between eigenstructure 

and time domain responses. Therefore, the fundamental contribution of this 

thesis is to derive such an index. Definitely, there are some predictable benefits 

of derivation of the index. First, it is easily inferred that calculation of the index 

is independent of control structures because it uses eigenstructure of the closed 

loop system. Thus, one significance of the index is that it can be applied for 

solution of structurally constrained control problems [67, 70]. Furthermore, for 

development of the optimization techniques, a number of (deterministic or 

stochastic) methods are available which can solve constrained nonlinear 

optimization problems [71-73]. This truly provides opportunities for this research 

work to develop optimization based damping controller design methods which 

employ the eigenstructure-based indexes as objective functions. These methods 

can combine the merits of the indexes and generic optimization based methods. 

Hence, some design specifications like structural constraints and robustness, as 

well as optimization and coordination of control efforts, should be considered. 

It is not difficult to validate the eigenstructure-based performance indexes 

and the corresponding controller tuning methods by applying them to 

coordinated design of PSSs and SDCs for FACTS devices. However, the thesis 
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also tries to exploit their potential to challenge some special issues in designing 

SDCs for DFIGs. As easily observed in [44, 46, 74], use of DFIGs with SDCs to 

damp inter-area oscillations sacrifices their dynamic performance, compared to 

cases with no SDCs. Thus, intuitively, when providing necessary damping to 

inter-area oscillations, dynamics of DFIGs can also be optimal. The DFIG 

contributes to damping control by injecting modulated active and reactive power 

to grid, which inherently impacts its dynamics. For instance, the active power 

modulation may interact with the torsional dynamics whereas the reactive power 

modulation obviously influences the stator voltage dynamics [51]. Consequently, 

seeking optimized DFIG active and reactive power outputs during the transient 

appears natural. Moreover, although additional damping can be supplied to inter-

area oscillations by active or reactive power modulation, flexible coordination of 

the two means does not appear to have been addressed by any researchers. Thus, 

these issues are specifically addressed in this thesis with the help of the 

eigenstructure-based indexes which are expected to be capable of measuring the 

performance of active or reactive power output dynamics.  

1.3 Thesis Layout 

The remainder of the thesis is organized as follows. 

Chapter 2 introduces some essential details regarding small signal stability 

analysis and control, which serves as the foundation for the work reported in this 

thesis. The eigen-analysis and the damping torque analysis are investigated, and 

their relationship is explained. Moreover, various methods for model reduction 

are reviewed. In addition, the damping control structure is thoroughly 
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investigated, and the structurally constrained controllers used throughout the 

thesis are specifically emphasized. 

Chapter 3 proposes an eigenstructure-based index to measure the dynamic 

performance of the system as well as control efforts. This index can be utilized 

for solving structurally constrained control problems. Thus, a tuning scheme 

based on this index is proposed for coordinating PSSs and SDCs for FACTS 

devices to damp inter-area oscillations of systems and to optimize their control 

efforts under multiple operating conditions. Here, both PSSs and SDCs are 

designed as structurally constrained controllers. 

Chapter 4 proposes an inter-area mode oriented pole-shifting method (named: 

IAMO-PS) that coordinates control efforts to tune power oscillation damping 

controllers. IAMO-PS is indeed a two-stage optimization problem in which a 

specific pole placement strategy suitable for control of inter-area modes is 

implemented in the first stage while still being subjected to constraints of pole 

placement in the second stage; control efforts of different controllers measured 

by an eigenstructure-based index are flexibly coordinated.  

Chapter 5 proposes designs of controllers for DFIG-based WTGs to 

demonstrate the capability of DFIG to suppress inter-area oscillations. In 

addition to the primary power and voltage (PV) controllers, a SDC is proposed 

for the DFIG to adequately harness its damping function. Furthermore, the 

design scheme employs differential evolution (DE) algorithms to simultaneously 

optimize parameters of PV controllers and SDCs. 

Chapter 6 proposes a dual-channel SDC for DFIG-based WTG to optimally 

coordinate its active and reactive power modulation for suppression of inter-area 

oscillations. The IAMO-PS is employed to tune the SDC for providing expected 
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damping to inter-area modes with optimizing of weighted sum of control efforts 

of active and reactive power modulation. Consequently, since the dynamics of 

DFIG are directly coupled with power outputs as optimized and coordinated 

active and reactive power outputs lead to significant improvements in DFIG 

dynamics when it is controlled for initiative damping function. 

Chapter 7 concludes the thesis. Some prospective extensions as well as the 

possible direction for future research are also presented. 
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Chapter 2 

Essentials for Small Signal Stability Analysis and 

Control 

2.1 Eigen-Analysis of Dynamic Systems 

Real power systems are highly nonlinear and non-stationary systems whose 

dynamics should be generically represented by a parameter dependent 

differential-algebraic-discrete model [75]. But, for electromechanical oscillation 

studies, the major concerned dynamics with frequencies range from less than 1 

Hz to 3 Hz can be well preserved in the reduced nonlinear differential and 

algebraic equations as follows [5]: 

 , ,x F x g u                                                    (2.1) 

 , ,0 G x g u                                                   (2.2) 

 , ,y H x g u                                                  (2.3) 

where F is the vector of differential equations depicting electromechanical 

dynamics of equipments such as generators, excitation systems and governors; G 

is the vector comprising static network equations as well as algebraic equations 

of the dynamic equipments, for example, the stator voltage equations of 

generators; H is the vector of output equations; and x, g, u and y are vectors of 

state variable, algebraic variable, input and output, respectively. In small signal 



16 

stability analysis, (2.1)-(2.3) are linearized around an operating point (x0, g0, u0, 

y0), and then algebraic variables are eliminated to obtain a standard state-space 

representation as follows: 

     x A x B u                                             (2.4) 

+   y C x D u                                              (2.5) 

where Δx=x-x0, Δy=y-y0, and Δu=u-u0 denote increments from the operating 

point; A, B, C and D are the state matrix, input matrix, output matrix and 

feedforward matrix, respectively. The symbol ‘Δ’ will be omitted in the 

following text for the sake of statement simplicity. Moreover, since there is in 

general not any feedforward path directly connecting inputs and outputs, (2.4) 

and (2.5) can be rewritten with D=0 as follows: 

 x Ax Bu                                                (2.6) 

y Cx                                                        (2.7) 

The small signal stability of the system (2.1)-(2.3) can be judged depending 

on eigenvalues of A of the above linear system: the original system is 

asymptotically stable when all eigenvalues have negative real parts, whereas it 

will be unstable if at least one eigenvalue has a positive real part. However, when 

some eigenvalues have real parts equal to zero, it will be futile to use (2.6)-(2.7) 

to depict the manifold of (2.1)-(2.3) around the equilibrium point and the high-

order approximation is normally necessary [76]. Moreover, the ith eigenvalue λi, 

the ith right eigenvector vi and the ith left eigenvector wi of A satisfy the 

following relationship: 

i i iAv v                 o1, 2,..., ni                  (2.8) 

i i iAw w                                                   (2.9) 
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where no is the dimension of the open loop system. vi is normalized so that ║ vi 

║2=1. Furthermore, the eigenvectors are related to each other as follows: 

1     = 

0     i j

i j

i j


  

w v                                            (2.10) 

Or, (2.10) can be expressed in terms of matrices as follows: 

 WV VW I                                          (2.11) 

where I is a no-dimensional identity matrix; W and V are the left and right 

eigenvector matrices defined as follows: 

o

TT T T
1 2 n, ,...,   W w w w                                    (2.12) 

o1 2 n, ,...,   V v v v                                        (2.13) 

Physically, the kth element vki of vi measures the activity of the kth state 

variable xk in the ith mode and the kth element wik of wi weights the contribution 

of this activity to the mode. Thus, the net measurement of the relative 

participation of xk in the ith mode which is termed participation factor is defined 

as follows: 

pki ki ikv w                                                 (2.14) 

Moreover, it is easily to verify the following equations: 

on

1

p 1ki
k

      or      
on

1

p 1ki
i

                                   (2.15) 

Therefore, the nature of a mode can be identified according to the participation 

factors [77]. For example, electromechanical modes are much more significantly 

participated by state variables regarding the power angle and the rotor speed of 

synchronous generators, than by other non-mechanical state variables. Moreover, 

in general an inter-area mode is evenly participated by a large number of 

generators, while a local mode is only participated by several generators. 
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Another merit of participation factor is that it can be utilized to choose PSS site. 

In principle, as a generator markedly participates in an electromechanical mode, 

it should be an ideal location to site PSS to damp the mode. Nevertheless, it is 

noted that participation factors are only based on the state matrix. The 

effectiveness of the selected control loops in controlling targeted modes should 

be exactly evaluated based on indexes which are calculated from eigenvectors as 

well as input and output matrices. 

By applying similar transformation x=Vz to (2.6)-(2.7), the dynamic 

equations in a decoupled form can be obtained as follows: 

b

b

o o o o o

1 1 1 2 1 n1 1 1

2 2 2 2 1 2 2 2 n

n n n n 1 n 2
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z z
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   
     



 w b

        (2.16) 

o

o

c oc c c o

1 1 1 2 1 n1 1

2 2 1 2 2 2 n 2

n nn 1 n 2 n n

       

      

                    

    

y z

y z

y z

    
    
         
    
        





   



c v c v c v

c v c v c v

c v c v c v

                          (2.17) 

where 
o

T

1 2 n, ,...,z z z   z  represents the state vector in the modal space; nb and 

nc are the number of inputs and outputs, respectively; uk denotes the kth input and 

bk the kth column vector of B corresponding to this input; and yj denotes the jth 

output and cj the jth row vector of C corresponding to this output. Apparently, 

from (2.16)-(2.17) it is known that the index wibk measures the controllability of 

uk in the ith mode while the index cjvi reflects the observability of the ith mode in 

yj. The geometric approach used in [78] and [79] to represent controllability and 

observability for control loop selections is derived from these two indexes. 
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Hence, the net effectiveness of control of the ith mode by using uk and yj to form 

the feedback control loop can be jointly indicated by the following index: 

R i
kj j i i k c v w b                                                (2.18) 

where R i
kj  is also known as modal residue that can be calculated as follows: 

 R lim G ( )
i

i
kj i kj

s
s s





                                        (2.19) 

where Gkj(·) denotes the transfer function between uk and yj.  

The significance of the residue is that it successfully connects the modal 

controllability and observability to the eigenvalue sensitivity [80]. As illustrated 

in Fig. 2.1, the sensitivity of the ith eigenvalue (mode) with respect to Kkj can be 

computed when Kkj is initially equal to zero (open loop), as follows: 

 R ii
kj kj i

kj

H
K

 



                                          (2.20) 

where Kkj is the gain of the feedback controller and Hkj(·) denotes the phase 

compensation blocks. Thus, the first order prediction of the closed loop 

eigenvalue i  can be calculated as follows: 

 R i
i i kj kj kj iK H                                        (2.21) 

If Hkj(λi) exactly compensates the phase angle of R i
kj  to -180º, increasing Kkj will 

purely enhance the damping of λi in the sense of linear prediction. In such case, 

obviously larger magnitude of R i
kj  implies that the control loop from yj to uk will 

be more efficient in increasing the damping of λi. According to (2.18), this 

actually fits to the general conclusion that the control loop with higher 

controllability and observability to a mode will be more suitable for controlling 

the mode. 
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 Gkj s

 kjH s

 
 

Fig. 2.1. SISO feedback control system 

2.2 Damping Torque Analysis 

A SMIB system is originally employed for understanding the essences of 

damping of power system electromechanical oscillations [17]. The block diagram 

of the linearized model of such system is shown in Fig. 2.2 where δ and ω are 

power angle and rotor speed, respectively, of the generator; H is the inertia 

constant; D0 is the mechanical damping coefficient; d0T  is the d-axis open-circuit 

transient time constant; Tm is the mechanical torque; EXC(s) is the transfer 

function of the excitation system; and K1 to K6 are constant coefficients 

associated with parameters of the external network and generation system. 

Process of deducing K1 to K6 can refer to that in [5]. Firstly, it is assumed that a 

controller of proportional gain KD is able to directly produce an additional torque 

on the shaft of the generator, as shown in Fig. 2.2(a). This hypothetic controller 

uses the rotor speed as control input, and thus the produced torque can be 

calculated as follows: 

D DT K                                                   (2.22) 

In the complex frequency domain, TD is clearly in phase with ω and well known 

as the damping torque. If the initial value of KD is zero (open loop), the residue 

of the control loop from TD to ω with respect to the only electromechanical mode 

λe can be derived based on (2.18), as follows [28]: 
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e ep
R

2H
                                                    (2.23) 

where pωe is the participation factor of ω with respect to λe. Thus, according to 

(2.21), the linear prediction of the closed loop electromechanical e  can be 

calculated as follows: 

e
e e D

p

2H
K                                                 (2.24) 

Because the electromechanical mode is almost exclusively participated by δ and 

ω, pωe is very close to a real value [53]. Consequently, augment of KD will just 

increase the damping of λe. This also accounts for that introduction of additional 

damping torque to the generator shaft can help to suppress its oscillation.  
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Fig. 2.2. Detailed block diagram of a SMIB system 
 
 

Although forming a hypothetic control loop from TD to ω can assist to 

consolidate the mathematical foundation of the damping torque concept based on 

residue analysis, it is apparently impossible to employ it in the damping control 

design. The practical situation is shown in Fig. 2.2(b) where the PSS produces 

the output directly added to the voltage reference input, rather than the generator 

shaft. In this diagram, GEP(s) denotes the transfer function from upss to yt, 
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assuming that the generator inertia constant is infinite [20]. Moreover, according 

to Mason’s gain formula [81], Fig. 2.2(b) is equivalent to Fig. 2.2(a) in terms of 

the closed loop eigenvalues. This indicates that the PSS can operate to introduce 

an additional damping torque on the generator shaft as done in Fig. 2.2(a), as 

long as the phase of the PSS can exactly counteract that of GEP(·) at the 

frequency λe. Such phase compensation technique is well known as the GEP 

method and has been intensively investigated for the PSS design in multimachine 

power systems [82, 83]. Apart from the PSS, the damping torque induced by the 

SDC installed in FACT device is deduced in [28] through proper manipulation of 

the transfer function, and the induced damping torque coefficients (IDTCs) are 

thus defined. Based on the relationship between the residue and the damping 

torque as discussed above, the pole shifting due to the SDC can be linearly 

predicted by using the IDTCs [53, 84]. Therefore, relying on such linear 

prediction of the pole shifting, Reference [85] uses a linear programming method 

to tune the PSSs and SDCs in a coordinate manner.  

2.3 Model Reduction for Damping Control Design 

The order of a power system model is often quite high, and in reality it easily 

reaches several thousands. Direct use of this model for control design may 

encounter numerical problems and/or cost an unacceptable computational time. 

Moreover, because modern control design methods such as optimal control or H∞, 

produce controllers of order at least equal to the order of the plant, the resulted 

controllers will be very complex if these methods are implemented based on a 

full system model [6]. Thus, it is necessary to simplify original high-order system 

model to ease the design procedure and to avoid complexity in final controllers. 
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This simplification is known as model reduction and requires that the reduced 

model should be a good approximation of the original model.  

Given the no-dimensional open loop system (2.6)-(2.7) which can be 

expressed by the transfer function G(s)=C(sI-A)-1B, the model reduction 

procedure is to derive a low-order approximation Gr(s) of order nr (nr<<no) such 

that the infinite norm of their error ║G-Gr║∞ which denotes the peak gain of the 

error transfer function across frequency is sufficiently small. Among various 

methods for model reduction, the Schur balanced truncation method is a 

commonly used one which can ensure a definite bound on the H∞ of the error as 

follows [86]: 

 
o

r

n

r
n 1

( ) i
i

s s 


 

  G G                                  (2.25) 

where σi is termed the ith Hankel singular value (HSV) of G(s) and defined as 

the square root of the ith largest eigenvalue of the Hermite matrix PQ which are 

the solutions of the following Lyapunov equations: 

T T  PA AP BB 0                                      (2.26) 

T T  QA A Q C C 0                                      (2.27) 

where P and Q are known as the controllability and observability grammians, 

respectively. Moreover, the largest singular value σ1 is defined as the Hankel 

norm of the system, that is ║G║H= σ1. In the balanced truncation method, the 

original system is transformed to a balanced realization through a series of 

similarity transformation such that P and Q are equal and diagonal. The entries in 

the diagonal of P or Q are thus the HSVs of G(s). The most useful aspect of such 

realization is that it relates each transformed state to a HSV which indicates to 

what extends this state influences the frequency response of G(s). For example, if 
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σi>> σi+k, the effect of state xi in input-output behavior will be considerable 

greater than that of xi+k. In such case, each state is as equally controllable as it is 

observable and HSV can be viewed as an index which guides to what extend a 

system model can be reduced. Therefore, according to the HSV, the states in the 

balanced realization are partitioned into two groups: one group includes states 

which show significance in the input-output behaviors and the rest least 

significant states with poor controllability and observability form another group. 

The truncation is then applied to obtain the reduced model by ignoring the least 

significant states. 

In the approach of optimal Hankel norm approximation, the reduced low-

order model is derived by solving an optimization problem where the Hankel 

norm of the error transfer function ║G-Gr║H is minimized [87]. Nevertheless, it 

is noted that the conventional calculation of the controllability and obervability 

grammians, and thus the HSVs of a quite high-order model on the basis of a 

state-space representation is quite computationally expensive, sometimes even 

prohibitive [88]. Thus, Reference [89] has proposed a sparse low-rank Cholesky 

factorization-alternating direction implicit method based on descriptors of power 

system models to computes approximations to the grammians. The method 

exploits the sparsity of the descriptor systems and thus is applicable to large scale 

systems while keeping memory and CPU requirements at modest levels. 

Moreover, model reduction of large scale power systems is performed in [90] by 

using a Krylov subspaces based moment matching method which presents less 

computational effort and less storage requirements than the grammian-based 

methods although the ability of global approximation in the frequency domain of 

the former is inferior to that of the latter. Furthermore, the modal truncation 
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method numerically computes the dominant poles and zeros of the system and 

preserves them in the reduced model [91, 92]. As the method avoids the 

prohibitive effort in calculation of HSVs of the full order system, it is suitable for 

cope with large scale interconnected power system problems although it requires 

reliably and correctly determining the dominant poles and zeros.  

All above mentioned methods directly manipulate the linearized models of 

systems. Another important class of attempts for model reduction is to use the 

identification techniques on the basis of the time domain responses of the 

systems which are obtained from either the numerical simulation programs or 

actual measurements. The Prony method is a representative one which in essence 

fits weighted sum of exponential terms to given signals [93, 94]. Reference [95] 

fits a low-order state-space model to system impulse response based on the 

singular value decomposition of the Hankel matrix associated with the impulse 

response. This method is further improved in [96] for the better numerical 

characteristics. Moreover, the genetic algorithm is employed in [97] to combine 

with the standard Prony algorithm to overcome its insufficiency in identifying 

transfer function zeros of the reduced model.  

2.4 Power System Damping Control Structures 

Commonly, in the case of using a SISO or MIMO controller employing local 

signals to control a plant, control structure can be viewed as the model structure 

of the controller. However, in the context of power system damping control, 

especially for inter-area modes, multiple components (generators or FACTS 

devices) which are distributed in networks should be controlled simultaneously 

and coordinatedly. Thus, the concept of control structure should be necessarily 
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extended to cover the meaning of control architecture, i.e. how the damping 

controllers are configured. 

2.4.1 Damping Control Architectures 

Generally, four types of architectures having been proposed for damping 

control are shown in Fig. 2.3 [98]: 

(1) Decentralized control: each controller receives local feedback signals and 

sends produced control outputs to the controlled object in situ. Although this 

architecture is easily implemented, it may be ineffective to damp inter-area 

oscillations because local signals often lack of good observability of some 

significant inter-area modes [85, 99]. 

(2) Quasi-decentralized control: its difference from the decentralized control is 

that the remote signals are additionally fed-back to the local controller as 

control input (sometimes local signal is unnecessary). Its advantage is that 

the local controller can perceive the global system dynamics from the 

remote signals which make it act more effectively to suppress inter-area 

oscillations. Furthermore, this architecture could well preserve the simplicity 

of the decentralize control though inducing remote signals may decrease its 

reliability [32, 100]. 

(3) Centralized control: a centralized control can be conceptually regarded as a 

MIMO controller which is actually placed in a control center that is 

responsible for collecting remote feedback signals and transmitting control 

outputs to the remote controlled objects. Obviously, powerful modern 

control tools can be applied to synthesize this controller. However, it suffers 

the complexity of using a control center as well as risk of loss of 

communication links [101]. 
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(4) Hierarchical or multilevel control: two or more control levels are 

constructed, for example, C1 and C2 form level one while C3 is level two. 

Controllers in one level receive control signals from controllers in a level 

above. Although a control center is still required, this structure can maintain 

a minimum performance in the event of loss of communication links with 

the help of the controllers in lower level [98, 102, 103]. 

 

 
 
Fig. 2.3. Damping control architectures: (a) decentralized control; (b) quasi-decentralized control; 
(c) centralized control; (d) hierarchical control 
 

2.4.2 Model Structures of PSS and SDC 

In order to conveniently discuss the control architecture in Fig. 2.3, the model 

structures of C1, C2 and C3 are ignored. However, they are actually the function 

parts in the whole control system. In this subsection, the commonly used model 

structures of PSS and SDC are introduced. 
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During the developing history of PSS, several standard structures have been 

proposed for field application. In 1992, IEEE Std-421.5 recommended Type 

PSS1A and PSS2A [18]. Type PSS2B, PSS3B and PSS4B were suggested in 

1996 [19]. Most recently, a novel multi-band PSS was proposed and later 

included in the revised IEEE Std-421.5 as Type PSS4B [104]. The most 

commonly used PSS structure — Type PSS1A is shown in Fig. 2.4. Such 

conventional structure comprises a gain, phase compensation blocks, a washout 

filter and output limits [5]. The washout block is a high-pass filter to eliminate 

the steady state output of the PSS so that it does not impact the steady state of 

system. The value of Tw is selected to present a band-pass effect to the input 

signal containing local and inter-area modes. The output of the PSS is limited 

properly otherwise it might prevent the action of AVR which functions to induce 

sufficient synchronizing torque for the first swing stability. Originally, when only 

local signals are available for control, shaft speed and terminal frequency are 

among the commonly used input signals. Although shaft speed is the most direct 

variable to observe electromechanical oscillation, application of it as control 

input to the PSS in thermal units should carefully consider the effects on 

torsional oscillations. A torsional filter is normally required in the stabilizing 

path to attenuate the torsional components. This filter, however, has a 

destabilizing effect on the ‘exciter mode’, thus imposing a maximum limit on the 

allowable stabilizer gain which may limit the overall effectiveness of the 

stabilizer in damping rotor oscillations. Since the sensitivity of the terminal 

frequency to rotor oscillations increases as the electrical connection strength of 

external transmission system becomes weaker, the frequency based PSS may 

give more contributions in damping inter-area mode oscillations than the speed 
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based PSS. Nevertheless, as in the case of speed based PSS, care has to be taken 

to remove torsional modes when frequency based PSS is used in steam turbine 

unit. The problem of deteriorating torsional modes is not serious when dual-input 

PSS (PSS2A and PSS2B) employs shaft speed and electrical power to derive the 

equivalent speed signal as control input which does not contain torsional modes 

because the torsional components are inherently attenuated in the integral of 

electrical power. So far, although no authoritative document addresses the issue 

of structure standardization, effective and simple structures imitating those of the 

PSSs have been successfully utilized in many literatures for the SDC design, for 

example, a classic low-order phase lead-lag compensator [28, 85, 99, 105]. 
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Fig. 2.4. Block diagram of Type PSS1A 

 

2.4.3 Structurally Constrained Controllers 

It is not surprised that power engineers favor to use simple control structures 

which they are familiar to. This is readily accepted as on the one hand a familiar 

control structure can enhance their confidence for practical application, and on 

the other hand the implementation as well as maintenance in the future of a 

controller with a simple structure will be relatively easy [106]. Therefore, besides 

the expected control effects, they usually impose structural constraints on the 

control architecture as well as model structures of the damping controllers. A 

normal way to fulfill control design with structural constraints is to give control 

structures in advance with some tunable parameters by the designers based on 

analysis of characteristics of the controlled objects as well as consideration of 
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their preferences, and then tune these parameters with the adopted design 

methods to achieve certain control effects. It is not difficult to note that a large 

category of damping controllers reported in existing literatures is synthesized in 

such way, and thus these controllers can be termed structurally constrained 

controllers [34, 66, 85, 98, 99, 106-109]. 

No matter what structure a PSS or SDC is used, there are commonly some 

key parameters which can significantly impact electromechanical oscillations, for 

example, K, T1, T2, T3, and T4 in Fig. 2.4. Tuning these critical parameters play 

central role in damping the power oscillations. Although power engineers can 

design control structure according to their experiences and preferences, it is 

obviously not straightforward to obtain optimal parameters to fulfill the expected 

performance. In fact, many modern control methods are yet unable to flexibly 

tune the structurally constrained controllers, for example, the linear matrix 

inequalities (LMI) and the H∞ robust control, because they normally produce 

MIMO controllers whose transfer function matrices have non-zero elements in 

all positions while the transfer function matrices of the structurally constrained 

MIMO controllers are often in specific forms, such as the diagonal form in the 

decentralized or quasi-decentralized control [32, 61, 110, 111]. Moreover, as 

mentioned in Section 2.3, these methods produce controllers whose order is at 

least as large as the open-loop system [112]. Thus, together with some other 

requirements on the control design such as robustness in multiple operating 

conditions and optimization of control efforts, the structural constraints indeed 

pose great challenges on the design of damping controllers for the inter-area 

oscillations. 
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2.5 Summary 

In this chapter, the fundamentals for the small signal stability analysis and 

control have been introduced. The eigen-analysis is prone to address the small 

signal stability problem from a mathematical viewpoint, while the damping 

torque analysis gives a more physical picture depicting the essence of power 

system damping. These two naturally distinctive methods have been successfully 

unified by the residue analysis. Since the model reduction is an indispensable 

step in the design of damping controllers for a practical large power system, 

various model reduction techniques have been reviewed. Moreover, the damping 

control structures have been discussed. It has been pointed out that the design 

methods should be capable of dealing with the structurally constrained 

controllers to obtain the desired control effects. 
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Chapter 3 

Application of Eigenstructure-Based Performance 

Index to Control Design for Damping Inter-Area 

Oscillations in Power Systems 

3.1 Introduction 

Generally, it is expected that as damping controllers (PSSs and SDCs) work 

in a coordinated manner to provide adequate additional damping to inter-area 

oscillations, their control efforts should be optimal [113, 114]. Moreover these 

controllers should be robust for different operating conditions or network 

configurations [105, 106]. Besides, structural constraints are usually imposed on 

damping controllers: they must use dynamic output feedback control schemes 

because it is difficult to implement state feedback control in power systems; they 

should be low order and with a simple structure familiar to engineers so that 

implementation and the subsequent tuning are easy [98, 105, 106]. Moreover, 

although a decentralized implementation scheme using only local signals as 

inputs is more practical for damping controllers, they can be configured for 

quasi-decentralized implementation when wide area signals are employed as 

inputs to enhance their effectiveness in damping inter-area oscillations [98]. 
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However time delays that occur because of use of wide area signals should be 

considered in the design. 

Several methods have been proposed for the design of damping controllers. 

Approaches based on robust control theories and LMI have been applied for 

damping controller design to deal with uncertainties of operating conditions [6, 

32, 105, 113, 115]. However they cannot be applied for design of structurally 

constrained controllers. In [105], for designing structurally constrained SDCs for 

coordinated functioning, the LMI based regional pole placement problem is 

converted into the iteratively solved bilinear matrix inequalities (BMI) problem. 

Nevertheless, this method assumes that input matrices of state space equations of 

the controllers are known. Methods that directly optimize eigenvalues of the 

closed loop system can readily be applied to structurally constrained controllers 

while considering multiple operating conditions [70, 99, 106, 116, 117]. 

However, system dynamics in time domain are not only related to eigenvalues, 

but also associated with eigenvectors [52]. Moreover, control effort cannot be 

explicitly optimized in these methods. Therefore, one salient merit of optimal 

control [98, 114] is that the control process, together with the system dynamics 

objective, can be explicitly considered in the cost function. Unfortunately 

standard optimal control cannot be applied to structurally constrained controllers 

although it can perform well for state feedback controllers [6]. The method 

applied in [98], [107] and [118] tries to solve this problem by assuming that 

poles of synthesized controllers are known. However, this assumption is only 

applicable for some certain control structures and the method cannot take 

multiple operating conditions into consideration. 
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In this chapter an eigenstructure-based performance index is proposed to 

measure the system dynamic performance as well as the control efforts. 

Computation of this index does not rely on the control structures because it is 

only related to the eigenstructure of the closed loop system and the design 

parameters. Minimizing this index can improve system dynamics and optimize 

the control efforts. Therefore, by utilizing this index to construct objective 

functions, structurally constrained controllers can be designed for optimization of 

control. Based on this idea, a tuning method is proposed for coordination of 

structurally constrained PSSs and SDCs as stated above, to damp inter-area 

oscillations as well as to optimize the control efforts under multiple operating 

conditions. 

This chapter is organized as follows. Firstly, the eigenstructure-based 

performance index is introduced. Then, the closed loop power system model 

used to calculate the index is synthesized. Subsequently, the tuning scheme for 

coordination of PSSs and SDCs is introduced.  Simulation results are reported at 

the final stage. 

3.2 Eigenstructure-Based Performance Index 

Irrespective of the structure adopted by damping controllers, the synthesized 

linear model of a closed loop power system around an operating point can 

generally be described as follows: 

j j jx A x                                                         (3.1) 

o j jy E x                                                         (3.2) 

c j ju K x                                                        (3.3) 
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where n
j x  and n n

j
A  are the state vector and state matrix, respectively, 

for the jth operating condition taken into consideration; yo is the output vector 

representing system dynamics objective; uc is the output vector of damping 

controllers; and Ej and Kj are output matrices. The system dimension may vary 

in different operating conditions. Nevertheless, the deduction shown afterward is 

irrespective of the variation of system dimension which thus is denoted by n for 

the sake of statement simplicity. 

For the jth operating condition, a quadratic performance measurement (cost 

function) is defined as: 

 H H
o o c c0

cost dj j j t

    y Q y u R u      00j jx x                 (3.4) 

where Q Qn n
j

Q  and R Rn n
j

R  are diagonal matrices with positive entries 

on their respective diagonals; H is the conjugate transpose operator; and xj0 is the 

initial value of xj. As variables denoting relative power angles of generators are 

often selected as components of yo, minimization of (3.4) will suppress power 

angle oscillations of the system and also optimize control efforts of damping 

controllers. Substituting (3.2) and (3.3) into (3.4), costj can be rewritten as: 

H

0
cost dj j j j t


  x P x                                            (3.5) 

where Pj is a Hermite matrix defined as: 

H H
j j j j j j j P E Q E K R K                                     (3.6) 

In power system dynamic analysis, state matrix Aj can be similarly 

diagonalized [5, 119]. Thus the time domain solution of (3.1) can be derived as: 

0( ) jt

j j j jt e Λx U V x        0t                              (3.7) 

where Uj and Vj are right and left eigenvector matrices, respectively, of Aj; Λj is 
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a diagonal matrix defined as follows: 

 1 2 ndiag , ,...,j j j j  Λ                                    (3.8) 

where 1 2 n, ,...,j j j    are eigenvalues of Aj. 

If the system is stable, i.e. all eigenvalues of Aj are with negative real parts, 

then (3.5) can be calculated based on (3.7), as follows: 

 
 

H

H

H H H
0 00

H H H
0 00

H H H
0 0

H
0 0

cost  d

           = d

           = 

           = 

j j

j j

t t

j j j j j j j j

t t

j j j j j j j

j j j j j j j j

j j j

e e t

e e t





 
 

 
  
  





Λ Λ

Λ Λ

x V U P U V x

x V U P U V x

x V U P U L V x

x M x

                        (3.9) 

where Mj is termed as cost matrix for the jth operating condition and is defined 

as follows: 

 H H
j j j j j j j

   M V U P U L V                                   (3.10) 

Here · denotes dot production and Lj is a Hermite matrix with the following 

definition: 

* * *
1 1 1 2 1 n

* * *
2 1 2 2 2 n

* *
n 1 n 2

1 1 1
                    

1 1 1
                    

                                                        

1 1
                    

j j j j j j

j j j j j jj

j j j j

     

     

   

  

   

 

L





   


*
n n

1
  

j j 

 
 
 
 
 
 
 
 
 
  

               (3.11) 

where * is the conjugate operator. The core of deduction for obtaining (3.9) is 

presented in the Appendix. 

It is seen from (3.4) that costj is positive for any given xj0. Therefore, from 

(3.9) and (3.10), it is inferred that Mj is a positive definite matrix. Consequently 

(3.9) can be further decomposed as follows: 
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2 2 2H
0 0 1 1 2 2 n n

1 2 n                 0

j j j j j j j j j

j j j

z z z  

  

   

   

x M x 


                      (3.12) 

2 2 2 2

0 1 2 n2j j j jz z z   x                                  (3.13) 

where 1 2 n, ,...,j j j    are eigenvalues of Mj and are real positive numbers; 

1 2 n, ,...,j j jz z z  are the corresponding coordinates’ values when projecting xj0 onto 

the orthogonal basis formed by the right eigenvectors of Mj. It is noted that 

1 2 n, , ,j j j    are only related to the eigenstructure of the system (Uj, Vj and Lj) 

and design parameters (Ej, Kj, Qj and Rj) for the jth operating condition. 

Actually, xj0 denotes the initial disturbed deviation from the operating point 

and it cannot be determined in the control design process [113], which means 

that 1 2 n, ,...,j j jz z z  are also undetermined. Therefore, though costj is a direct time 

domain indicative of the dynamic performance of the system and has been 

utilized in the state feedback optimal control [114], it is generally ineffective to 

use costj directly for designing the structurally constrained controllers because 

the undetermined xj0 can not be dealt with in such cases. Nevertheless, according 

to (3.12), a way to reduce costj for the undetermined xj0 is to reduce 1 2 n, ,...,j j j   , 

and vice versa. Therefore, a new performance index is proposed in this chapter as 

follows: 

n

p
1

j kj
k

f 


                                                  (3.14) 

Obviously this index is independent of xj0, and it is equivalent to costj in terms of 

measuring the performance of system dynamics as well as the control efforts. 

Furthermore, irrespective of control structures, derivation of this index can be 

just based on the synthesized closed loop system model. 
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It is clear that fpj is the function of parameters of damping controllers. The 

system dynamics as well as control efforts can be optimized by adjusting these 

parameters to minimize fpj. However in order to calculate fpj, the linear model of 

the closed loop system has to be constructed; this is introduced in the next 

section. 

3.3 Modeling of the Closed Loop System  

3.3.1 System Structure 

The structure of the overall system in which PSSs and SDCs work in a 

coordinated manner to damp inter-area oscillations is illustrated in Fig. 3.1. Both 

PSSs and SDCs are assumed to be a classical phase lead-lag compensator. They 

are implemented in a quasi-decentralized manner, and wide-area signals are 

employed to enhance their effectiveness in damping inter-area oscillations. 

Possible time delays are approximately considered in the design. The modeling 

of each part in Fig. 3.1 and synthesis of the closed loop system model are 

presented in the following subsections. 
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Fig. 3.1. Overall system structure 
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3.3.2 Reduced-Order Open Loop Power System Model 

To reduce the time required for computation of fpj and to accelerate the tuning 

process, the Schur balanced model truncation algorithm [86] is applied to obtain 

the following reduced-order open loop power system model: 

r r r r cj j j j x A x B u                                          (3.15) 

  HH

c o r r r, ,j j j   y y C E x                                   (3.16) 

where rn
rj x  and r rn n

rj
A  are the state vector and state matrix, 

respectively, of the reduced-order system for the jth operating condition; cy  is 

the output vector for inputs of damping controllers; Brj is the input matrix; Crj 

and Erj are output matrices. 

3.3.3 Time Delay Approximation 

Time delays are approximated by using the second order Pade formula [98]: 

2

2

6 12

6 12
s s s

e
s s

  
 

  


 
                                           (3.17) 

where τ is the time delay vector and right hand side of (3.17) will be calculated 

based on each of its elements separately. The state space equations describing the 

dynamics of time delays are obtained as follows: 

c    x A x B y                                           (3.18) 

c c   y C x D y                                           (3.19) 

where xτ is the state vector of time delays; yc is the input vector of damping 

controllers; Aτ, Bτ, Cτ and Dτ are state matrix, input matrix, output matrix and 

feed-forward matrix, respectively. 

By incorporating (3.18) and (3.19) into (3.15) and (3.16), the following linear 

model is obtained: 
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1 1 1 1 cj j j j x A x B u                                       (3.20) 

  HH

c o 1 1 1, ,j j j   y y C E x                                (3.21) 

with the following matrix definition: 

r

1

j

j



 
  
 

x
x

x
    

r

1
r

         

     

j

j
j 

 
  
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A 0
A

B C A
    r

1

j

j

 
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 

B
B

0
     

1 r     j j    C D C C     1 r     j j   E E 0  

3.3.4 Modeling of Controllers 

Suppose there are nc damping controllers (specifically in Fig. 3.1, nc=2) and 

the ith controller has parameters Twi, Tmi, Ki, T1i, T2i, T3i and T4i. These controllers 

can be modeled as: 

c c c c ci i i i iy x A x B                                        (3.22) 

c c ci i iu C x                c1, 2,..., ni                  (3.23) 

where uci and yci are output and input, respectively, of the ith controller; xci is the 

state vector; and the following matrices are defined: 

c

H

c c1 c2 cn, ,...,u u u   u   
c

H

c c1 c2 cn, ,...,y y y   y  
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1 1 3 m w    i i i ia T T T T     
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4 1 3 m wi i i ia T T T T  

Then state space equations of the synthesized controller are expressed as: 

c c c c c x A x B y                                            (3.24) 

c c cu C x                                                       (3.25) 

where 

 
cc c1 c2 cndiag , ,...,A A A A         

cc c1 c2 cndiag , ,...,B B B B     

 
cc c1 c2 cndiag , ,...,C C C C     

c

H
c c1 c2 cn[ , ,..., ]x x x x     

The linear model (3.1)-(3.3) can then be constructed by incorporating (3.24) a

nd (3.25) into (3.20) and (3.21). The corresponding matrix relationships are obtai

ned as follows: 

1

c

j

j

 
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 

x
x

x
     

1 1 c

c 1 c

  

  

j j

j
j

 
  
  

A B C
A

B C A
     1j j   E E 0        c  j K 0 C  

Consequently the proposed index can be calculated from the synthesized 

linear model of the closed loop system. A tuning scheme based on this index is 

proposed in the next section to simultaneously adjust parameters of PSSs and 

SDCs to damp inter-area oscillations and to optimize their control efforts under 

multiple operating conditions. 

3.4 Procedure of Controller Tuning 

3.4.1 Tuning Problem Formulation 

Choosing variables to form yo should take into account two points: one is that 

inter-area modes should be sufficiently observed in yo so that minimizing fpj will 

result in suppression of inter-area oscillations; and another is that if the damping 

of a mode (i.e. a local mode) deteriorates dramatically after controller tuning due 
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to its poor visibility in yo, variables that significantly participate in this mode 

should be included in reconstruction of yo so that it can be considered in 

controller tuning and thus appropriately damped. 

To ensure robustness of the controllers, typical multiple operating conditions 

are considered in the design. In this chapter, parameters Ki, T1i, T2i, T3i and T4i of 

PSSs and SDCs are assumed to be adjustable, while filter constant Tmi and 

washout time constant Twi are preset and remain fixed during the tuning process. 

Therefore, an optimization based tuning scheme for coordination of PSSs and 

SDCs is proposed as follows: 

pn

p
1

min j j
j

f



p
                                                            (3.26) 

s.t.  c kj              1, 2,..., nk     p1, 2,..., nj      (3.27) 

min max p p p                                                         (3.28) 

where np is the number of operating conditions; αj is the weight of the jth 

operating condition; kj  is the damping ratio of kj ; c  is a real positive number 

(2% in this chapter) to ensure some small signal stability margin while the 

objective of system damping control is achieved by minimization of (3.26); and 

p is the parameter vector with the following definition: 

c c c c c

H

1 11 21 31 41 n 1n 2n 3n 4n, , , , ,..., , , , ,K T T T T K T T T T   p  

pmin and pmax are lower and upper limits, respectively, of p; calculation of these 

limits is presented in the following. 

Suppose there is a phase lead-lag block shown as follows: 

   q h1 1sT sT                                              (3.29) 

If the phase of this block reaches maximum (or minimum) of θc at frequency ωc, 
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then time constants Tq and Th can be determined by: 

 2
q c c c1 tan tanT                                     (3.30) 

 2
h c c1 tan tan cT                                     (3.31) 

When the maximum and minimum compensated phases provided by the block 

and frequencies of inter-area modes are given, upper and lower limits of Tq and 

Th can be calculated depending on (3.30) and (3.31), respectively. Upper and 

lower limits of the gain of the phase compensator can be calculated by residue 

analysis [105]. 

3.4.2 Solving the Optimization Problem 

The optimization problem (3.26)-(3.28) is a standard constrained nonlinear 

programming problem (NLP) solved in this thesis by sequential quadratic 

programming (SQP), a highly effective and matured method for the NLP [71]. 

Initial values of controller parameters used as a starting point for the SQP are 

given by the conventional sequential tuning method, which is also employed for 

comparison with the proposed tuning scheme [99]. Firstly, the compensated 

phase supplied by a controller to an inter-area mode is derived by residue 

analysis in the nominal operating condition [6]. The gain of this controller is then 

increased gradually to enhance damping of the mode while considering the 

control effort of the controller as well as side effects on other modes. Each 

controller is tuned sequentially while the other already tuned controllers are 

online. 

To depict the solving process more conveniently, (3.26)-(3.28) are expressed 

in a more general and compact form as follows: 

 min F
p

p                                                  (3.32) 
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s.t.   0h p                                              (3.33) 

(3.32)-(3.33) are solved by an iteration process based on the Lagrangian function, 

constructed as follows: 

     h h,L F p λ p λ h p                                 (3.34) 

where λh is the Lagrangian multiplier vector for h(p). At the beginning of the lth 

iteration, the controller parameter vector pl and the positive definite Hessian 

matrix Hl (which is initially an identity matrix and is updated iteratively to 

finally converge to the real Hessian matrix of the Lagrangian function) are 

available. Then, the following steps are executed [71]: 

S.1) Formulate and solve the following convex quadratic programming (QP) 

subproblem: 

   T T
min 0.5

l

l l l l
lF 

s
p s s H s                            (3.35) 

s.t.      T
0l l l h p h p s                             (3.36) 

where sl is the search direction vector of parameters at the lth iteration;   

and T are Hamilton and transpose operators, respectively. 

S.2) Based on sl, the controller parameter vector at the next iteration is 

calculated as follows: 

1l l l l  p p s                                        (3.37) 

where βl is the optimal step length along the search direction sl and it can be 

determined by minimizing the following merit function: 

    1 1min max ,
l

l lF


    p ρ 0 h p                     (3.38) 

where ρ is the penalty parameter vector. 

S.3) If the stopping criteria are satisfied, terminate the iteration process; 
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otherwise, go to next step. 

S.4) The new Hessian matrix is obtained by using the quasi-Newton method, as 

follows: 

T T

1 T T
l l l l l l

l l
l l l l l

   
γ γ H d d H

H H
γ d d H d

                                   (3.39) 

1l l
l

 d p p                                                               (3.40) 

 1l l l l l l   γ J H d                                               (3.41) 

   +1 1
p h p h, ,l l l l

l L L  J p λ p λ                             (3.42) 

T T

T

T T

1.0                       if 0.2

0.8
   otherwise

l l l l l

l l l l

l l l l l


 
 
 

d J d H d

d H d

d H d d J

              (3.43) 

S.5) Set l=l+1 and go to the next iteration. 

3.4.3 Selection of Design Parameters Qj, Rj and αj 

Firstly, the appropriate initial guesses for Qj, Rj and αj are determined. From 

(3.6), (3.10) and (3.14), fpj can be rewritten in an alternative expression, as 

follows: 

        
Q Rn n

p
1 1

, ,j j j j j
ii kk

f ii ii ii kk kk kk
 

  Q CQ R CR              (3.44)  

where Qj(ii,ii) and Rj(kk,kk) are iith and kkth diagonal entries of Qj and Rj, 

respectively; CQj is the nQ-dimensional vector and its iith component CQj(ii) is 

computed from fpj when setting Qj(ii,ii)=1, the rest of entries of Qj are zeros and 

Rj=0; CRj is the nR-dimensional vector and its kkth component CRj(kk) is 

computed from fpj when setting Rj(kk,kk)=1, the rest of entries of Rj are zeros and 

Qj=0. Depending on the initial values of controller parameters, CQj and CRj can 

be calculated. It is expected that all additive terms on the right hand side of (3.44) 
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can be weighted in the same order of magnitude in fpj so that all components of 

yo and uc can be equivalently considered in optimization. Hence, the initial 

guesses for Qj and Rj are determined by simply setting these additive terms equal. 

With these initial guesses, fpj can be calculated. Thus, the initial guesses for αj are 

derived by assuming that all additive terms in objective function (3.26) are equal 

as well. 

Based on the initial guesses, a trial process is then performed to adjust Qj, Rj 

and αj until acceptable controller tuning results for all operating conditions are 

derived [98]. The adjustment of design parameters is according to the following 

heuristic principles: enhancing corresponding entries of Qj may increase 

damping of the system, while controller outputs would be significantly 

constrained by larger entries of Rj; increasing αj could give more control priority 

to the jth operating condition. 

3.5 Case Studies 

3.5.1 Four-Machine Two-Area System 

The classic 4-machine 2-area system (Fig. 3.2) is employed to demonstrate 

the proposed performance index and its application in simultaneous tuning of 

PSSs and SDCs. The data of this system is given in the Appendix. A Statcom is 

installed at Bus 8 to maintain its voltage. The steady voltage at Bus 8 will rise to 

nearly 1.0 p.u. with reactive power support from the Statcom. The Statcom is 

modeled as a current injection Iq always kept in perpendicular with bus voltage 

so that there is only reactive power exchange between the grid and the Statcom 

(Fig. 3.3) [120]. The voltage regulator of the Statcom is an inert block, with 

Kst=100 and Tst=0.005. The unit of time constants used in this chapter is seconds, 
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unless otherwise specified. The loads are modeled as a combination of constant 

impedances (50%) and induction motors (50%). The 47-order open loop system, 

therefore, has 24 state variables of generators (power angle, angular speed, d-axis 

and q-axis transient voltages, and d-axis and q-axis sub-transient voltages), 16 

state variables of excitation systems, 1 state variable of the Statcom and 6 state 

variables of induction motors (angular speed, and d-axis and q-axis voltages 

behind transient reactance). 

 

 
 

Fig. 3.2. Four-machine two-area system 
 
 

st

st1

K

sT
stu

 
 

Fig. 3.3. Control structure of Statcom. 
 
 

Operating conditions considered for this system are as in Table 3.1, where the 

first five are used for design while the last one is applied for validation of 

robustness of the controllers. The loads remain fixed for all operating condition. 

Two local modes in this system are well damped. However, an inter-area mode (-

0.1069+4.0898i, in the nominal operating condition) residing between Area 1 

and Area 2 is poorly damped. Hence a SDC is equipped in the Statcom, together 

with a PSS installed in Generator 4, to provide additional damping for inter-area 
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oscillation. PSS is installed in Generator 4 on the basis of analysis of 

participation factors. 

Selection of wide-area feedback signals is based on residue analysis. Large 

residues of a system’s input-output pair, with respect to a mode, indicate that this 

mode can be effectively controlled by the input-output pair using closed loop 

feedback control [6]. Accordingly, it is found that active power in line 10-9 is the 

most effective input signal for both PSS and SDC in damping inter-area 

oscillation and, therefore, it is chosen as the control input for these two 

controllers. The communication latency will be around 20ms for sending this 

signal to the remote SDC site through a dedicated fiber-optic communication 

channel [121, 122]. Moreover, since the time required for phasor measurement 

(about 3 60Hz-cycles or 50ms [121]) and signal processing is also considered, 

the total delay of 80ms in feedback signal for the SDC is used in this design. 

Furthermore, the time delay in feedback signal for the PSS is assumed to be zero. 

The filter time constant and the washout time constant are set to 0.01 and 10, 

respectively, for both controllers. 

 
TABLE 3.1 OPERATING CONDITIONS FOR THE 4-MACHINE 2-AREA SYSTEM 

 
Case Pg1(MW) Pg2(MW) Pg3(MW) Pg4(MW) Line outage 

1 700 700 716 700 no outage 
2 400 1000 708 700 no outage 
3 700 700 408 1000 no outage 
4 700 700 727 700 8-9 
5 700 700 727 700 7-8 
6 800 700 836 500 no outage 

 
 
Since the inter-area mode is mainly dominated by the relative motions of 

generators between the two areas, output vectors used to form the cost function 

are defined as follows: 
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 H

o 3 1 3 2 4 1 4 2              y                      (3.45) 

H

c st pss   u u   u                                                      (3.46) 

where δ1, δ2, δ3 and δ4 are power angles of Generators 1, 2, 3 and 4, respectively; 

and ust and upss are outputs of the SDC and the PSS, respectively.  

The open loop frequency response of output of the SDC to input of the SDC 

is illustrated in Fig. 3.4. A 15-order reduced model is obtained through model 

reduction of the original 47-order system and time delay is approximated by the 

Pade formula. Model reduction for each operating condition takes about 0.082s; 

all time consumption tests in this chapter are conducted in a desktop computer 

with 2.66GHz CPU and 2G RAM. It is clearly seen that the approximated model 

can be employed to accurately represent the full model within the frequency 

range of interest. 
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Fig. 3.4. Open loop frequency response of output of SDC to input of SDC 
 
 

Lower and upper boundaries LB and UB of controller parameters are given in 

Table 3.2. Here parameters K1, T11, T21, T31 and T41 are corresponding to the 
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SDC, while K2, T12, T22, T32 and T42 are for the PSS. Initial as well as tuned 

values of these parameters are also shown in the table. The searching process for 

solution of (3.26)-(3.28) is illustrated in Fig. 3.5 and the time cost for finding this 

solution is about 1.74s. It is clearly seen that the SQP is quite efficient in solving 

the proposed controller tuning problem. 

 
TABLE 3.2 CONTROLLER PARAMETERS  

 

Parameter LB UB 
Initial 

(Conventional) 
Tuned 

K1 0.0000 0.0250 0.0050 0.0030 
T11 0.0655 0.9125 0.1426 0.1300 
T21 0.0655 0.9125 0.5224 0.7290 
T31 0.0655 0.9125 0.1426 0.1478 
T41 0.0655 0.9125 0.5224 0.7167 
K2 0.0000 0.2500 0.0500 0.0925 
T12 0.0655 0.9125 0.1973 0.2669 
T22 0.0655 0.9125 0.3447 0.5187 
T32 0.0655 0.9125 0.1973 0.1787 
T42 0.0655 0.9125 0.3447 0.2530 
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Fig. 3.5. Searching process of SQP 
 
 

Eigenvalues of cost matrices are calculated when the PSS and the SDC are 

simultaneously tuned by the proposed method and are sequentially tuned by the 
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conventional method. The first four eigenvalues for each operating condition 

considered in the design are depicted in Fig. 3.6. The first is the dominant one; it 

is much larger than the remaining. It is clear that this eigenvalue is obviously 

reduced when the proposed controllers are installed, compared to when the 

system is equipped with sequentially tuned controllers. Moreover, from (3.14), it 

is known that fpj is defined as the sum of eigenvalues of the cost matrix, which 

means the proposed controllers will result in smaller fpj than that given by 

sequentially tuned controllers. Because fpj is capable of indicating the system’s 

dynamic performance, it is naturally inferred that simultaneously tuned 

controllers will lead to a better dynamic performance of the system than 

sequentially tuned controllers. This is verified by computation of the closed loop 

system eigenvalues and the time domain simulations shown in the following. 
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Fig. 3.6. Eigenvalues of cost matrices. 
 
 

The inter-area mode eigenvalues of the closed loop system for all operating 

conditions are presented in Table 3.3. The comparison shows that the proposed 



52 

controllers truly provide more additional damping to the inter-area mode than 

sequentially tuned controllers not only for operating conditions used for design 

but also for the condition included in validation; damping of the inter-area mode 

is enhanced considerably by the proposed controllers. 

Because inter-area oscillations are adequately observed in yo, fpj can 

effectively measure the performance of these inter-area oscillation dynamics 

according to the inference drawn in Section 3.2. Minimization of fpj suppresses 

inter-area oscillations and thus inevitably increases damping of the inter-area 

mode. Accordingly, though the proposed index is directly related to eigenvalues 

of the cost matrix, rather than the closed loop system, lowering it can actually 

enhance damping of closed loop system modes strongly associated with yo. This 

is verified as reduction of σ accords well with increase of damping of the inter-

area mode shown above. 

 
TABLE 3.3 EIGENVALUES OF INTER-AREA MODE 

 
Case No controller  Conventional Proposed 

1 -0.1069±4.0898i -0.4180±4.2037i -0.7213±4.3490i 
2 -0.1147±4.0758i -0.4263±4.1712i -0.7231±4.3017i 
3 -0.1293±4.0661i -0.4417±4.1867i -0.7580±4.3301i 
4 -0.1883±3.2122i -0.4632±3.2401i -0.8086±3.3177i 
5 -0.0009±3.6318i -0.3860±3.8065i -0.8046±3.9831i 
6 -0.1328±3.9576i -0.4784±4.1180i -0.8374±4.2733i 

 
 

A three phase short circuit fault occurs at Bus 6 when the system is in 

operating condition 5 and the fault is cleared 50ms later. The power angle 

oscillations between Generators 2 and 4 are shown in Fig. 3.7. It is seen that 

inter-area oscillation decay quite fast when the system is equipped with 

simultaneously tuned controllers, compared to the marginally stable system 

without controllers and the system with sequentially tuned controllers. Outputs of 

PSS and SDC are also optimized when they are coordinately designed by the 
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proposed method (Fig. 3.8). The limits for outputs of PSS and SDC are set to 

±0.10 and ±0.05, respectively. Therefore, together with the above eigen-analysis, 

these results indicate that the proposed index is an effective measurement of 

performance of system dynamics as well as control efforts. Furthermore the 

proposed simultaneous tuning method based on this index for coordination of 

PSS and SDC can well damp inter-area oscillation under multiple operating 

conditions. 
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Fig. 3.7. Power angle oscillations (solid line: proposed; dot line: conventional; dash line: no 
controller). 
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Fig. 3.8. Control signals (solid line: proposed; dot line: conventional). 
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3.5.2 New England and New York Interconnected System 

The equivalent (16-machine 5-area) model of New England and New York 

interconnected networks (Fig. 3.9) is employed to demonstrate performance of 

the proposed controller design including multiple inter-area modes. This system 

is a modified version of [6]: the quite large mechanical damping coefficients in 

the original model have been removed from some generators and local PSSs are 

then installed in some generators to damp their local mode oscillations. A TCSC 

is installed in transmission line 50-18 to compensate 50% of its reactance in the 

steady state. The allowable TCSC dynamic compensation is from 10% to 90% of 

line reactance. The dynamic model of the TCSC is shown in Fig. 3.10 [32], 

where time constant Ttc is chosen to be 10ms. A combination of constant 

impedances (50%) and induction motors (50%) is employed to model the large 

loads and the remaining is modeled as constant impedance Thus, there are 96 

state variables of generators (the same six-order model as in the first example), 

64 state variables of excitation systems, 18 state variables of local PSSs, 1 state 

variable of TCSC, and 57 state variables of induction motors in this system. By 

changing network configurations and transmitting different levels of power from 

area A1 to A2, 9 typical operating conditions (Table 3.4) are considered in this 

study. The detailed data of this system is presented in the Appendix. 

Eigen-analysis shows that for all operating conditions there are two quite 

poorly damped inter-area modes in this system: M1 and M2. M1 with frequency at 

about 0.65Hz is dominated by the oscillation between generators in areas A1 and 

A2, while M2 with frequency at about 0.32Hz depicts oscillations of generators in 

areas A1 and A2 with respect to generators in the rest of the system. The 

participation factors of all generators with respect to M1 (-0.0292+4.4623i) and 
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M2 (0.0402+2.3903i) in the operating condition of Case 1 are shown in Fig. 3.11. 

Meanwhile, Fig. 3.12 depicts the modal shape of the two modes in such case. 

 

 
 

Fig. 3.9. New England and New York interconnected system. 
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Fig. 3.10. Dynamic model of TCSC. 

 
 
 

TABLE 3.4 OPERATING CONDITIONS FOR THE 16-MACHINE 5-AREA SYSTEM 
 

Case Tie-line flow(MW) Line outage  
1 715 no outage 
2 715 53-54 
3 714 60-61 
4 715 27-53 
5 914 no outage 
6 102 no outage 
7 524 no outage 
8 524 60-61 
9 914 53-54 
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Fig. 3.11. Participation factors of generators (left plot: M1; right plot: M2). 
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Fig. 3.12. Modal shapes (left plot: M1; right plot: M2). 
 
 

To provide additional damping to the two inter-area modes, a SDC equipped 

in TCSC is designed. Meanwhile since Generator 13 greatly participates in both 

inter-area modes, a PSS is installed in Generator 13 to work in coordination with 

the SDC for damping control. Furthermore according to residue analysis, active 

power in transmission line 13-17 is selected as control input for both PSS and 

SDC. Time delay is assumed to be 80ms for transmitting the signal to the remote 

SDC. Participation factor analysis shows that Generators 13, 5 and 6 greatly 

participate in M1, while Generators 14, 15 and 13 greatly participate in M2. 

Therefore output vectors are formed as follows: 

 H

o 5 13 6 13 14 13 15 13              y                         (3.47) 
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H

c tc pss   u u   u                                                               (3.48) 

where δ5, δ6, δ13, δ14 and δ15 are power angles of Generators 5, 6, 13, 14 and 15, 

respectively; and utc and upss are outputs of SDC and PSS, respectively. The first 

six operating conditions in Table 3.4 are used for design, while the last three are 

applied for validation. It costs about 3.29s to reduce the 236-order open loop 

power system model to a 28-order reduced model which can lead to satisfactory 

results of controller tuning by the proposed method. 

The lower and upper boundaries, the initial values, and the tuned values of 

controller parameters are shown in Table 3.5. Here parameters K1, T11, T21, T31 

and T41 are for the SDC, while K2, T12, T22, T32 and T42 are for the PSS. 

Specifically, it takes about 15 iterations and 6.18s for the SQP method to 

converge. It is found that the controller parameter searching process for this 

much higher order system is still as efficient as that in the first example, although 

the time cost (3.29s) for model reduction in this system is relatively larger, 

compared to that (0.082s) in the first small system. This means that the proposed 

tuning scheme can be applied to large scale power systems due to the efficient 

reduced-order model based controller parameter searching process. 

 
TABLE 3.5 CONTROLLER PARAMETERS 

 

Parameter LB UB 
Initial 

(Conventional) 
Tuned 

K1 0.0000 0.0050 0.0035 0.0018 
T11 0.0600 0.8364 0.3546 0.1206 
T21 0.0600 0.8364 0.3058 0.1985 
T31 0.0600 0.8364 0.3546 0.1206 
T41 0.0600 0.8364 0.3058 0.0891 
K2 0.0000 0.2000 0.0600 0.0754 
T12 0.1121 1.5316 0.9892 0.6517 
T22 0.1121 1.5316 0.3823 0.1121 
T32 0.1121 1.5316 0.9892 0.6517 
T42 0.1121 1.5316 0.3823 0.1121 
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Eigenvalues of cost matrices for the first six operating conditions are 

illustrated in Fig. 3.13. It is obvious that they are reduced by optimization. 

According to the verification shown in the first example, the proposed controllers 

perform better than the sequentially tuned controllers. This is indeed confirmed 

again by facts shown in Table 3.6, that the proposed controllers provide more 

damping to both inter-area modes than the sequentially tuned controllers. The 

two inter-area modes are sufficiently damped for all operating conditions when 

the proposed controllers are installed. 
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Fig. 3.13. Eigenvalues of cost matrices. 

 
 

A three phase short circuit fault occurs at Bus 60 when the system is in 

operating condition 1. The fault is cleared 100ms later by tripping one of tie-lines 

between Bus 60 and 61. Oscillations of relative power angles and active power in 

key tie-lines are depicted in Fig. 3.14 and Fig. 3.15, respectively. The 

compensation percentage provided by the TCSC and the output of the PSS 

during the dynamics are illustrated in Fig. 3.16. It is clear that simultaneously 
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tuned controllers outperform sequentially tuned controllers, and the two inter-

area oscillations are well damped by coordinately tuned PSS and SDC with 

optimum control outputs. 

TABLE 3.6 EIGENVALUES OF INTER-AREA MODE  
 

Case No controller Conventional Proposed 

1 
  0.0402±2.3903i -0.2214±2.4280i -0.5475±2.6984i 
-0.0292±4.4623i -0.2658±4.3266i -0.4815±4.5881i 

2 
  0.0305±2.3679i -0.2194±2.4065i -0.5448±2.6645i 
-0.0140±4.2788i -0.2712±4.1621i -0.5388±4.4882i 

3 
  0.0314±2.3843i -0.2201±2.4253i -0.5381±2.6876i 
-0.0215±4.2542i -0.2752±4.1453i -0.5472±4.4854i 

4 
  0.0382±2.3851i -0.2211±2.4231i -0.5473±2.6909i 
-0.0251±4.4164i -0.2655±4.2856i -0.4907±4.5602i 

5 
  0.0347±2.3858i -0.2197±2.4299i -0.5503±2.6927i 
-0.0475±4.4422i -0.2626±4.3256i -0.4780±4.5725i 

6 
  0.0590±2.3993i -0.2266±2.4171i -0.5439±2.7116i 
  0.0270±4.5007i -0.2723±4.3125i -0.4953±4.6165i 

7 
  0.0458±2.3940i -0.2231±2.4255i -0.5456±2.7033i 
-0.0116±4.4784i -0.2683±4.3252i -0.4855±4.6000i 

8 
  0.0368±2.3893i -0.2216±2.4239i -0.5357±2.6929i 
-0.0029±4.2799i -0.2746±4.1519i -0.5372±4.5028i 

9 
  0.0254±2.3627i -0.2176±2.4074i -0.5479±2.6569i 
-0.0325±4.2549i -0.2697±4.1578i -0.5470±4.4673i 
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Fig. 3.14. Power angle oscillations (solid line: proposed; dot line: conventional; dash line: no 
controller). 
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Fig. 3.15. Oscillations of active power in key tie-lines (solid line: proposed; dot line: 
conventional; dash line: no controller). 
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Fig. 3.16. Dynamics of controllers (solid line: proposed; dot line: conventional). 

3.6 Summary 

A novel eigenstructure-based performance index is proposed to solve 

structurally constrained control problems. This index can measure performance 

of system dynamics as well as control efforts. Calculation of this index has no 
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bearing on control structures; it is based only on eigenstructure of the closed loop 

system and the design parameters. This index has been applied to a proposed 

optimization based tuning scheme used for coordination of structurally 

constrained PSSs and SDCs to damp inter-area oscillations and to optimize their 

control efforts under multiple operating conditions. Applications of the proposed 

control design method on a 4-machine 2-area system and the New England and 

New York interconnected system have been demonstrated. Results show that the 

proposed index is an effective way of measuring system’s dynamic performance 

and reducing this index can improve the system dynamics. Structurally 

constrained PSSs and SDCs simultaneously tuned by the proposed method can 

effectively damp inter-area oscillations and their control efforts are also 

optimized. 
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Chapter 4 

An Inter-Area Mode Oriented Pole-Shifting Method 

with Coordination of Control Efforts for Tuning 

Power Oscillation Damping Controllers 

4.1 Introduction 

Reference [123] has pointed out that using PSS to damp electromechanical 

oscillations is generally at the expense of the generator’s terminal voltage profile 

during the transient. Moreover, when FACTS devices are installed on the key 

corridors of grids, they show significant potential for damping inter-area 

oscillations by using their available capacities [124]. Hence, with an additional 

aim of reducing side effects of the PSS, the FACTS device, equipped with a SDC, 

is expected to assist damping control. To achieve this objective, an effective 

index that is able to accurately measure the control effort of the damping 

controller used needs to be designed. Then the adopted tuning method has to 

possess capability of coordinating control efforts of different damping controllers. 

However, this will proceed only under the premise that inter-area oscillations are 

satisfactorily damped when the tuning method is applied to the controllers. 

Many damping controller design methods ensure the dynamic performance of 

the closed loop system by driving all poles to a so-called LMI region specifically 
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defined in the complex plane [6, 113, 125]. The LMI region can be shaped into 

various forms for which the extended Lyapunov Theorem is applicable [126]. 

For example, a conic region has been used in [32] and [127] for H∞ control, 

while the mixed H∞/H2 synthesis used in [128] has employed a trapezoidal region. 

Though use of the LMI region, where all poles should locate, to damp inter-area 

oscillations has been reported in literature [32, 105, 127, 128], no reports 

addressing impacts of other modes on control of the inter-area modes have been 

found. 

Generally, in damping control of inter-area oscillations, the aim is to push 

inter-area modes, not all modes, to the specific region. It is reasonable to expect 

that the pole placement can guarantee that major available control capacities are 

used for control of inter-area modes; little adverse effect is caused on other 

modes by the controllers. Although some other specific pole placements have 

been implemented for designing damping controllers by properly defining 

objective and constraint functions consisting of closed loop poles in some 

mathematical programming based methods [85, 109, 129], they are not capable 

of measuring and coordinating control efforts of different controllers. Two 

simple heuristic indices have been used in [130] for optimization of control 

efforts: one is defined as the sum of weighted magnitudes of the controller at 

some specific frequencies, and another is simply the sum of numerator 

coefficients of the transfer function. Nevertheless, in order to conduct 

incremental optimization based on linear predictions of eigenvalues, coefficients 

of the controller transfer function denominator should be given in advance and 

they should remain fixed during the optimization. An effective eigenstructure 

based index has been proposed in Chapter 3 to measure system dynamic 



64 

performances as well as control efforts. However, since no pole placement has 

been used, it achieves acceptable damping control of inter-area oscillations and 

coordination of control efforts through proper selection of weights of objective 

function which is obviously an onerous work. Moreover, frequency drift of the 

inter-area mode has not been explicitly limited. 

In this chapter, firstly, impacts of other modes on control of inter-area modes 

are studied via a proposed pole-shifting method (named: SCCS-PS) which tunes 

the controllers by moving all poles to a sequentially compressed conic section. 

Motivated by this study, therefore, an inter-area mode oriented pole-shifting 

method (named: IAMO-PS) is proposed, which can not only achieve a specific 

pole placement suitable for controlling inter-area oscillations, but also provide 

the mechanism to distribute control burden among different controllers since an 

effective index is employed for measuring the control effort. The SQP method is 

used to solve optimization of both methods, and a two-stage optimization 

procedure is proposed for IAMO-PS to ensure that a feasible starting point that 

enables its convergence can be readily derived, which thus can greatly facilitate 

its practical application. 

This chapter is organized as follows. Firstly, SCCS-PS and IAMO-PS are 

introduced. Then, the system used for demonstrating both methods is given. 

Finally, simulation results are discussed. 

4.2 Impacts of Other Modes on Control of Inter-Area Modes 

with Use of a Conic Section 

Before introduction of SCCS-PS, the closed loop system model should be 

obtained. Firstly, a reduced-order model which can accurately approximate the 
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input-output relationship of the high-dimensional full model within the frequency 

range of interest is commonly employed for design [6]. Wide-area signals are 

used to enhance the effectiveness of the controllers in damping inter-area 

oscillations and the corresponding time-delays involved in the signals are then 

approximately considered by the second order Pade formula [98]. Further-more, 

the control structure of each individual controller (PSS or SDC) is a classic phase 

lead-lag compensator. Finally, when the reduced-order open loop power system 

model (including time-delays) and the controller models are available, they are 

used to synthesize the closed loop system model as follows: 

x Ax                                                          (4.1) 

u Ex                                                          (4.2) 

where nx  is the state vector; A and E are the state matrix and the output 

matrix, respectively; and u is the output vector with the following definition: 

 T1 2 m, ,..., ,...,ku u u uu                                         (4.3) 

where uk is the output of the kth controller and m denotes the number of 

controllers. Among all eigenvalues of A: λ1, λ2… λn, there are some weakly 

damped inter-area modes. A pole-shifting method used for tuning the controllers, 

as well as providing insight into influences on control of inter-area modes caused 

by other modes when a conic section is employed for pole placement, is 

proposed in the following. 

4.2.1 Pole Shifting via Sequentially Compressing Conic Section (SCCS-PS) 

When all closed loop poles have shifted into a conic section (there will be 

one or more poles on its border), as the shadowed area shown in Fig. 4.1(a), it 

gives the system some small signal stability margin in terms of damping ratio ξm. 

However, no systematic method has been found so far to compute the maximum 
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ξm (minimum conic section) with respect to tunable parameters of damping 

controllers. Thus, an optimization based approach is proposed, as follows: 

p
mmin  

x
                                                       (4.4a) 

s.t.   m 0l              1, 2,..., nl                         (4.4b) 

pmin p pmax x x x                                            (4.4c) 

where ξl is the damping ratio of the lth eigenvalue λl; xpmax and xpmin are the 

upper and lower boundaries, respectively, of the variable vector xp, defined as: 

 Tp m  x p                                               (4.4d) 

where p is the tunable controller parameter vector. 

 

 
 

Fig. 4.1. Pole placement strategies of the two methods. 

 
 

The SQP, which represents the state-of-the-art in numerical optimization, is 

employed to solve (4.4); its brief procedure for solving a constrained nonlinear 

programming problem has been given in Subsection 3.4.2. Thus, ξm will be 

sequentially increased during the optimization. This is visually interpreted as the 

conic section shown in Fig. 4.1(a) is sequentially compressed, i.e. from position 
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1 to 2. Consequently, accompanying this compressing process, all poles shift 

gradually towards the left hand side of the complex plane under the force of the 

constraints, until they finally locate within the conic section represented by the 

maximum ξm. The upper limit of ξm is simply set to 1.0 in this study. Specifically, 

for given initial controller parameters, all poles and their damping ratios are 

computed. The minimum damping ratio is then chosen as the lower limit of ξm 

and it is also used as the initial value of ξm, so that the starting point for the SQP 

method is feasible. 

4.2.2 Discussion 

The maximum ξm obtained from solution of (4.4) indicates that the inter-area 

modes will have damping ratios not less than ξm. Nevertheless, due to the same 

damping ratio requirement imposed on all modes, improvement of inter-area 

modes may be considerably limited because the controllers may be ineffective in 

controlling some other modes. Obviously, if so, SCCS-PS can easily find these 

modes because they will reside on the border of the conic section. Generally, for 

some modes with high frequencies, it is unnecessary to require damping ratios as 

large as the inter-area modes. Excessively changing the damping of these high 

frequency modes will waste the limited available control capacities and may 

exacerbate the control effect for the inter-area modes. Hence, it is expected that 

inter-area modes can be treated as different from other modes. Besides, some 

additional considerations are usually preferred in design of controllers for inter-

area oscillations. Based on these points of view, a more elaborate method is 

proposed in the next section. 
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4.3 IAMO-PS with Coordination of Control Efforts 

4.3.1 Control Effort Measurement 

Generally, measurement of the control effort of the kth controller can be 

explicitly defined as: 

2

0
dk kCE u t


         0 0t

x x                            (4.5) 

where x0 is the initial state of the closed loop system (4.1)-(4.2). It represents the 

initial disturbed deviation from the operating point, and thus cannot be 

determined in advance. It is ineffective to use CEk directly for the control design 

because of its dependence on the undermined x0. When all eigenvalues of A have 

negative real parts, however, (4.5) can be transformed into the following form: 
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                   (4.6) 

where H is the conjugate transpose operator; Mk is a positive definite matrix with 

the following definition: 

 H H H
k k k

   M V U E E U L V                             (4.7) 

where · denotes dot production; U and V are right and left eigenvector matrices, 

respectively, of A; Ek is the kth row vector of E; L is a Hermite matrix, whose 

entry in the position of iith row, jjth column is defined as, 



69 

  *

1
L ,

ii jj

ii jj
 

 


     1, 2,..., nii     1, 2,..., njj     (4.8) 

where * is the conjugate operator. Accordingly, (4.6) can be decomposed as 

follows: 

H
0 0k kCE  z N z                                                  (4.9) 

where Nk is a diagonal matrix with the following definition: 

 1 2 ndiag , ,...,k k k k  N      1 2 n 0k k k          (4.10) 

where σ1k,σ2k,…,σnk are eigenvalues of Mk, and thus z0 is the coordinate vector 

when projecting x0 onto the orthogonal basis spanned by the right eigenvectors of 

Mk. Transforming x0 into z0 is an orthogonal transformation which will not 

change the length of the vector. Thus, based on (4.9) and (4.10), it can be 

inferred that reducing σ1k,σ2k,…,σnk can equivalently decrease CEk for the 

undermined x0, and vice versa. Consequently, instead of using CEk, a novel index, 

which has no relationship with x0, is proposed for measuring the control effort of 

the kth controller in this chapter: 

n

1
k ik

i

f 


                                                (4.11) 

Based on index fk, IAMO-PS is proposed. It is formulated as a two-stage 

mathematical programming problem where optimization in the first stage is 

solved to provide a feasible starting point for the second stage optimization, so as 

to facilitate its application. In other words, all poles are moved in the first stage 

(introduced in Subsection 4.3.3) to meet the specific pole placement suitable for 

controlling inter-area oscillations. Then, subjected to constraints for such pole 

placement, control efforts of different controllers are coordinated in the second 

stage, which is discussed in the following subsection. 
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4.3.2 Coordinating Control Efforts of Different Controllers 

m

1

min  w k k
k

f



p
                                                          (4.12a) 

s.t.   min maxi i i         i1, 2,..., ni                       (4.12b) 

   o o1 1+i i i                                       (4.12c) 

c 0j j            c1πj                                    (4.12d) 

c 0j j                                                          (4.12e) 

min max p p p                                                   (4.12f) 

where wk is the weight of the kth controller; subscripts i refers to the weakly 

damped inter-area mode and the first ni eigenvalues are such mode; the other 

modes are referred by subscript j; ωi is the imaginary part of λi, while αj is the 

real part of λj; ωio is the special value of ωi when no damping controller is 

installed; η is a small positive number; ξimin and ξimax are the lower and upper 

limits, respectively, of ξi; ξjc and αjc are the critical values of ξj and αj, 

respectively; πc1 is the set of modes which may be greatly deteriorated after 

optimization. 

Constraint (4.12c) on frequencies of inter-area modes is used to avoid 

excessive over- or under-phase compensations which may significantly alter 

synchronizing damping torques of the generators. ξimin is generally set to 

guarantee that the settling time of the ith mode is less than a required value, 

while ξimax is set to prevent excessive control efforts. Therefore, (4.12b) and 

(4.12c) ensure that the inter-area mode can locate in area Ωi, indicating 

acceptable dynamics, as shown in Fig. 4.1(b). For modes in πc1, ξjc is chosen to 

be slightly less than the initial value of ξj, which is calculated when the initial 

controller parameters are used. Likewise, αjc is set to be slightly larger than the 
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initial value of αj. Thus, according to Fig. 4.1(b), (4.12d) and (4.12e) are able to 

constrain this mode within area Ωj after optimization, which can avoid excessive 

negative effects on it brought by tuning of the controllers. 

It is noted that the contribution of each controller to the specific pole 

placement can be altered by adjusting weight wk in (4.12a). Thus, the control 

burden can be reasonably allocated among the controllers, which obviously 

makes more practical sense when considering limited available capacities of the 

controllers, as well as some operational requirements. 

Unfortunately, unlike (4.4), it is usually not easy to obtain a feasible starting 

point (initial controller parameters) when employing the SQP method to solve 

(4.12) because (4.12b) and (4.12c) cannot be well satisfied simultaneously by 

using a simple tuning method. What is more, a starting point far from the feasible 

region is prone to cause the search process of the SQP to diverge. Therefore, the 

optimization process proposed in the following subsection serves to provide the 

starting point for (4.12), and to enhance its convergence. 

4.3.3 Inter-Area Mode Oriented Pole Shifting 

in

1

min  i
i





p

                                                       (4.13a) 

s.t.      maxi i         i1, 2,..., ni                            (4.13b) 

   o o1 1+i i i                                (4.13c) 

c 0j j         c2πj                              (4.13d) 

c 0j j                                                 (4.13e) 

min max p p p                                           (4.13f) 

where πc2 has the same meaning as πc1. Process of determining ξjc and αjc in (4.13) 
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is the same as that in (4.12). Obviously, compared to the difficulty in directly 

obtaining a feasible starting point for (4.12), it is quite straightforward to provide 

a feasible starting point which can simultaneously satisfy (4.13b) and (4.13c), 

when using the SQP method to solve (4.13). For example, the initial controller 

parameters can be easily determined with the phase compensation technique. 

Therefore, a feasible starting point formed by these practically meaningful 

parameters (or with some adjustments) can generally lead to sequential 

movement of inter-area modes into the specific region shown in Fig. 4.1(b), 

which indicates that the final solution of (4.13) can be used as the feasible 

starting point for (4.12). 

4.3.4 Implementation Procedure of IAMO-PS 

Because most modes are generally either quite deeply damped or insensitive 

to controllers, πc1 and πc2 contain only a small number of modes, and they are 

determined in an iterative manner during implementation of IAMO-PS, which 

includes the following steps: 

S.1) Select a feasible starting point for (4.13). 

S.2) Depending on the starting point, πc2 is initially set to consist of modes 

whose frequencies locate in the studied range, say 0.2 to 1.0Hz; 

S.3) Solve (4.13) based on the starting point and πc2; 

S.4) Find modes which are significantly deteriorated after solving (4.13). These 

modes are added to πc2 and then go to S.3. If no such mode is found, go to 

the next step; 

S.5) Check whether inter-area modes have been moved to the specific regions. 

If not, adjust the starting point and go to S.2, or derive the solution and go 

to the next step; 
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S.6) Use the solution of (4.13) as the starting point for (4.12). πc1 is initially set 

to be equal to πc2; 

S.7) Solve (4.12) based on the starting point and πc1; 

S.8) Find modes which are significantly deteriorated after solving (4.12). Add 

these modes to πc1 and then go to S.7. If no such mode is found, obtain the 

solution and the computation is terminated. 

4.3.5 Discussion 

For damping control of inter-area oscillations, IAMO-PS is much more 

objective-oriented than SCCS-PS. Besides offering the inter-area modes 

satisfactory damping ratios, coordination of control efforts, limiting frequency 

drifts of inter-area modes, and impacts of controllers on other non-inter-area 

modes are also explicitly considered in IAMO-PS. Moreover, due to use of the 

two-stage optimization procedure, a feasible starting point for IAMO-PS 

(actually for (4.13)), which enables its convergence, can be readily obtained, 

which makes its practical application as easy as that of SCCS-PS. Subsequently, 

SCCS-PS and IAMO-PS are compared in the next section on the basis of 

applications to coordinated design of a SDC for the TCSC and a PSS to damp 

inter-area oscillations in the New York and New England interconnected system. 

4.4 Investigated System 

The modified version of the New England and New York interconnected 

system (Fig. 3.8) used in the previous chapter is employed again to demonstrate 

the proposed control design methods. Similarly, a TCSC is installed in line 50-18 

to compensate 40% of its reactance in the steady state. The minimum and 
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maximum allowable dynamic compensation of the TCSC are 25% and 65%, 

respectively, of line reactance. Fig. 4.2(a) shows the TCSC dynamic model with 

time constant Ttc equal to 10ms. The large loads are modeled as a combination of 

constant impedances (50%) and classic third-order induction motors (50%), 

while the remaining is modeled as constant impedance. Consequently, the open 

loop system model has a dimension of 236. 
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Fig. 4.2. Block diagrams (a: TCSC; b: SDC; c: PSS). 

 
 

According to the geographic distribution, this system can be partitioned into 

five areas, of which Areas A3, A4 and A5 are represented by a single aggregated 

generator. In the steady state, a total of about 2860MW power is imported to 

Area A2; 715MW from Area A1 and 2145MW from A3, A4 and A5. The high 

level of power transmission between interconnected areas has given rise to two 

poorly damped oscillations of inter-area modes M1 and M2. M1 with frequency at 

about 0.65Hz dominates the power oscillation between A1 and A2, while M2 

oscillating at frequency of about 0.32Hz mainly depicts the power oscillation 

between A1, A2 and the rest of the system. Hence, in order to damp these two 

modes, a wide-area signal based PSS is installed in Generator 13 which greatly 

participates in M1 and M2. Moreover, since the TCSC locates at the key 

transmission corridor, a SDC is installed in it to share the control burden of the 
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PSS.  

Model structures of SDC and PSS are presented in Fig. 4.2(b) and (c), 

respectively: tunable controller parameters are K1, T11, T21, T31, T41, K2, T12, T22, 

T32, and T42; filter constant (Tm1 and Tm2) and washout time constant (Tw1 and Tw2) 

are preset to be 0.012s and 10s, respectively, and they remain fixed during the 

design. The detailed process of obtaining upper and lower limits of p can refer to 

Subsection 3.4.1. Residue analysis indicates that the signal of active power in 

line 13-17 is the most effective signal in damping of inter-area oscillations by 

both controllers; it is selected as the controllers’ input. Moreover, the time-delay 

related to sending the wide-area signal to the remote SDC site through a 

dedicated fiber-optic communication channel is assumed to be 80ms, and it is 

assumed that no time-delay exists in feedback signal for the PSS. The time-delay 

is approximated by a second order Pade formula. 

Model reduction should consider that inter-area modes are well preserved in 

the reduced-order model because the proposed methods are based on eigenvalues. 

Therefore, a 26-order reduced model, which has almost the same inter-area 

modes as those in the full model, is obtained by using the Schur balanced model 

truncation algorithm [86]. The step responses from u2 to y1 of both models are 

illustrated in Fig. 4.3. The two almost overlapped curves further confirm that the 

reduced-order model can accurately approximate the full model within the 

frequency range of studied dynamics. In fact, the same phenomenon has been 

observed in the step response experiments conducted respectively with the other 

three input-output pairs (u1-y1, u1-y2 and u2-y2). 

It is commonly expected that oscillations of inter-area modes can settle down 

within 10s. Thus, the minimum damping ratios of M1 and M2 are set to be 10% 
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and 18%, respectively, in IAMO-PS. Moreover, the upper limit is 25% for M1, 

and it is 30% for M2. η is chosen to be 5%. For modes in πc1 and πc2, both αjc and 

ξjc are chosen to be 95% of their initial values. 
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Fig. 4.3. Step response from input u2 to output y1 (thick dash line: reduced; thin solid line: full). 

4.5 Simulation Results and Analysis 

4.5.1 Control Effect Comparisons between Two Methods 

For both SCCS-PS and IAMO-PS, a feasible starting point is required.  

Firstly, T11 to T41 are selected to compensate phase of the residue from u1 to y1, 

with respect to M2, to -180˚. Likewise, T12 to T42 are determined for the SDC, 

with respect to M1. Then, K1 and K2 are simply set to be zero, which disables the 

controllers. Thus, M1 and M2 in the system with these controller parameters will 

apparently be the same as that in the open loop system. Consequently, these 

initial parameters serve to form the starting point for both methods (Table 4.1). 

The optimization process of SCCS-PS is illustrated in Fig. 4.4. It is seen that 

the SQP method is quite efficient in solving (4.4) and the maximum ξm is 0.0383. 

The inequality constraint in (4.4b) associated with mode (-0.3636+9.4600i) is 

activated at the final solution, which means it locates on the border of the conic 

section. For IAMO-PS, evolutions of both inter-area modes during optimization 

are depicted in Fig. 4.5. The first 41 iterations are at the first stage, while the 
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second stage costs 9 iterations to converge. Clearly, damping ratios of the two 

modes are efficiently improved and, during this process, their frequency drifts 

are also well controlled. The final tuned controller parameters for SCCS-PS and 

IAMO-PS are presented in Table 4.1. In addition, Table 4.2 compares the control 

results in terms of inter-area modes. It is easy to check that both M1 and M2 have 

been moved to the expected region by controllers designed by IAMO-PS. 

Furthermore, although SCCS-PS can design controllers that are able to stabilize 

the unstable open loop system, they cannot perform as well as controllers tuned 

by IAMO-PS. Damping ratios of M1 and M2 are only 0.0418 and 0.1348, 

respectively. Moreover, it is easily observed that frequencies of M1 and M2 have 

been significantly altered, compared to the case with IAMO-PS. 

 
TABLE 4.1 INITIAL AND TUNED CONTROLLER PARAMETERS  

 
 LB UB Initial SCCS-PS IAMO-PS 

K1 0.0000 0.0500 0.0000 0.0124 0.0163 
T11 0.1100 1.0300 0.7851 0.8929 0.6884 
T21 0.0800 0.7400 0.2275 0.1067 0.0800 
T31 0.1100 1.0300 0.7851 0.8929 0.6884 
T41 0.0800 0.7400 0.2275 0.1067 0.0800 
K2 0.0000 0.1200 0.0000 0.0365 0.0248 
T12 0.1100 1.0300 0.4054 0.5995 0.3139 
T22 0.0800 0.7400 0.1244 0.5593 0.0800 
T32 0.1100 1.0300 0.4054 0.5995 0.3139 
T42 0.0800 0.7400 0.1244 0.5593 0.0800 
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Fig. 4.4. Optimization process of SCCS-PS. 
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Fig. 4.5. Evolutions of inter-area modes during optimization (solid line: M1; dash line: M2). 

 
 

TABLE 4.2 CONTROL RESULTS FOR THE INTER-AREA MODES  
 

Mode Open loop SCCS-PS IAMO-PS 
M1 -0.0118±4.4531i -0.1689±4.0328i -0.4348±4.3259i 
M2   0.0655±2.3660i -0.2790±1.9792i -0.7850±2.5001i 

 
 

Nonlinear numerical simulations are conducted to further demonstrate the 

control effects. A three phase short circuit fault occurs at Bus 60 at 1.0s and it is 

cleared 100ms later by removing one of transmission lines between Buses 60 and 

61. This key corridor located fault can effectively excite two inter-area mode 

oscillations in the system. Thus, Fig. 4.6 depicts the relative power angle 

oscillations of all generators with respect to Generator 13 when subject to the 

disturbance. It is clear that the oscillatory instability has emerged in the open 

loop system owing to the unstable mode M2. Nevertheless, these sustainable 

oscillations can be suppressed by the coordinated SDC and PSS tuned by SCCS-

PS or IAMO-PS. Even so, it is obvious that oscillations of both inter-area and 

local modes in the system under control of IAMO-PS tuned controllers decay 

much faster (within 10s) than those in the system with controllers designed by 

SCCS-PS. Curves of relative power angle of Generators 6 and 15 (Fig. 4.7) 

strongly confirm the conclusion that IAMO-PS is more suitable for coordinating 
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controllers aiming at inter-area oscillations. Furthermore, the dynamic 

compensation of the TCSC, as well as the PSS output during the transient, is also 

shown in Fig. 4.7. When SCCS-PS is employed, control effort of the TCSC is 

rather lightly exerted, compared with the PSS. This is because SCCS-PS only 

focuses on the pole placement and lacks of mechanism to distribute control 

burden among different controllers. However, it is also noted that this issue does 

not exist in controllers designed by IAMO-PS. In this study, w1 and w2 are 

selected to be 1 and 0.8, respectively, which can appropriately utilize the 

available capacity of the TCSC to help relieve the control burden of the PSS. 
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Fig. 4.6. Power angle oscillations of all generators with respect to Generator 13 (upper plot: no 
controller; middle plot: SCCS-PS; lower plot: IAMO-PS). 
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Fig. 4.7. Partial system dynamics (dot line: SCCS-PS; solid line: IAMO-PS). 
 

4.5.2 Comparison with the PSS in Service Only 

In the heuristic sense, a much larger w1 will greatly constrain the control 

effort of the SDC, and vice versa. Obviously, the same principle holds for the 

PSS. Thus, an extreme case with w1=1 and w2= 0 is employed for test, which 

predicts that only control effort of the SDC is limited and the PSS can freely 

meet the pole placement requirement. Using the same initial controller 

parameters as shown in Table 4.1, the final tuned parameters in such cases are 

calculated and given in Table 4.3. Interestingly, it is noted that K1 has been 

driven to zero by optimization, which is qualitatively different from that when 

w1=1 and w2=0.8; it can be understood as implying that the SDC will be out of 

service (no control effort) and the PSS can take the whole responsibility to damp 

inter-area oscillations. Obviously, this is in accordance with the aforementioned 

prediction, and thus validates the notion that the index fk is effective in measuring 

the control effort, and IAMO-PS employing this index can properly coordinate 

control efforts of different controllers. 
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TABLE 4.3 CONTROLLER PARAMETERS FOR DIFFERENT WEIGHTS 

 
 w1=1 w2=0.8 w1=1 w2=0 

K1 0.0163 0.0000 
T11 0.6884 0.2518 
T21 0.0800 0.2528 
T31 0.6884 0.2539 
T41 0.0800 0.2528 
K2 0.0248 0.0717 
T12 0.3139 0.4695 
T22 0.0800 0.0802 
T32 0.3139 0.7233 
T42 0.0800 0.1499 

 
 

Comparisons of the PSS output as well as the terminal voltage of Generator 

13 in the two cases are given in Fig. 4.8, when the system is subject to the same 

disturbance as that in Section 4.5.1. It is seen that although the PSS can work 

alone to suppress the oscillations, it has to sacrifice the voltage dynamics of the 

generator. However, when the control burden has been shared appropriately by 

the TCSC, control effort of the PSS is reduced, resulting in the terminal voltage 

profile obviously improving.  
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Fig. 4.8. PSS output and terminal voltage of Generator 13 (solid line: w1=1 and w2=0.8; dot line: 
w1=1 and w2=0). 
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4.5.3 Study of Influence of Other Modes on Control of Inter-Area Modes 

in SCCS-PS 

25 sets of controller parameters are randomly generated, within the range of 

parameter limits. In each of them, K1 and K2 are fixed to be zeros. Each set of 

parameters is used to form the starting point for both methods. It is found that 

regardless of their randomness, optimizations of both methods are able to 

converge for all sets of parameters. Moreover, in SCCS-PS, the maximum ξm 

stays always around 0.0383 for all tested starting points and a mode with 

imaginary part of about 9.4600 always locates on the border of the conic section. 

Therefore, it is inferred that this mode should be the obstacle for SCCS-PS to 

further enhance system stability because the controllers are unable to 

significantly improve its damping ratio. 

Damping ratios of the two inter-area modes at the final solution are shown in 

Fig. 4.9. It is seen that when SCCS-PS is utilized, M1 and M2 can obtain damping 

ratios not less than 0.0383 in all cases, but they appear to be greatly dependent on 

the initial controller parameters. This is because although poorly damped M1 and 

M2 are moved towards the high damping ratio region at the initial stage of the 

optimization, they are not ‘specially cared’ afterward, once their damping ratios 

are larger than other modes. Their final locations may not be within the expected 

region and are considerably affected by the initial controller parameters. 

However, it is noted that M1 and M2 are with satisfactory damping ratios when 

the system is under control of controllers tuned by IAMO-PS, which is an inter-

area mode oriented method. Handling inter-area modes and other modes 

differently enables IAMO-PS to concentrate on control of M1 and M2. 
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Fig. 4.9. Damping ratios of the two inter-area modes for different starting points (upper plot: 
SCCS-PS; lower plot: IAMO-PS). 

4.6 Summary 

This chapter first proposes the SQP based SCCS-PS, which tunes the 

controllers by moving all poles to a sequentially compressed conic section, in 

order to provide insights into the impacts of other modes on control of inter-area 

modes. Inspired by analysis of SCCS-PS, IAMO-PS is then specifically proposed 

for damping control design to suppress inter-area oscillations. The pole 

placement in IAMO-PS makes the controllers focus on controlling inter-area 

modes. Moreover, it flexibly allocates the control burden among different 

controllers. The two-stage SQP proposed for IAMO-PS enables easy selection of 

the starting point, which makes it convenient for application. Both methods were 

applied to coordinate the PSS and the SDC for the TCSC in the New England 

and New York interconnected system. SCCS-PS has disclosed that 

improvements of inter-area modes could be considerably limited by some other 



84 

high frequency modes if all poles are pushed into a conic section because the 

controllers cannot significantly impact these modes. However, IAMO-PS yielded 

quite satisfactory control effects for inter-area modes. Successfully relieving the 

control effort of the PSS by properly allocating some of its control burden to the 

SDC by IAMO-PS, which reduces its adverse effects on the system operation, 

has shown that measuring and coordinating control efforts of different controllers 

is important and practically meaningful in pole placement based damping control 

designs. 
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Chapter 5 

Optimal Design of Controllers for DFIG-based 

WTG to Damp Inter-Area Oscillations 

5.1 Introduction 

Besides extensive works have been devoted to investigate effects of 

continuously increased wind power penetration on the transient stability, voltage 

stability and frequency dynamics, its impacts on power system oscillations have 

also drawn much concern from power researchers [42, 43, 131-136]. 

Interestingly, it is in general accepted that the wind power proliferation is benefit 

to the damping of electromechanical oscillations [137, 138]. This can be 

conceptually explained under the assumption that the increased WTGs replace 

some conventional synchronous generators to supply the grid. Thus, the 

remaining synchronous generators become relatively smaller with respect to the 

impedance of the grid. This actually strengthens their mutual coupling, which in 

most cases improves the damping of any oscillations that occur between the 

synchronous generators.  Moreover, it is also advocated in [138] that the fixed 

speed WTGs affect the damping of power system oscillations more than the 

variable speed WTGs because the former are directly connected to the grid while 

the latter are decoupled from the grid by the power electronic converter. 

However, these are just heuristic conclusions used for a meaningful schematic 
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understanding. In fact, sensitivities studies in [139] indicate that the damping 

performance of the New Zealand system is not materially affected by a high level 

of wind generation as well as the types of WTGs. Moreover, Reference [140] 

reports that increased wind power penetration causes congestion at weak 

interconnection lines that leads to reduced damping. Therefore, the real situation 

of wind power penetration influencing the system small signal stability should 

depend on the concrete study background. 

Reference [141] has summarized four mechanisms by which DFIGs can 

affect the damping of electromechanical modes: (1) displacing synchronous 

machines thereby affecting the modes; (2) impacting major path flows thereby 

affecting the synchronizing forces; (3) displacing synchronous machines that 

have PSSs; (4) DFIG controls interacting with the damping torque on nearby 

large synchronous generators. Generally, replacement of synchronous generators 

by WTGs leads to the reduction of system effective inertia. Therefore, the 

eigenvalue sensitivities with respect to the inertia of synchronous generators are 

calculated in [141] to predict impacts of the augmented wind power on 

electromechanical modes. Apart from these replacement caused impacts, it is 

pointed out in [45] that, as the DFIG-based wind power penetration increases, its 

reactive power control loop have more obvious impacts on inter-area oscillations 

than other control loops such as phase-locked loop (PLL) and pitch angle control.  

Furthermore, Reference [142] has shown that when the reactive power control 

loop works at voltage control (VC) mode, its impacts are quite sensitive to the 

parameter setting and if inappropriate tuned, certain penetration levels will bring 

considerable adverse effects to the damping of inter-area modes.  

In heuristic sense, as the active power injected by the WTG decreases, the 
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synchronous generator power is increased, which leads to deceleration of its rotor. 

Based on this physical consideration, in order to provide a novel source of 

oscillation damping and reinforce the positive damping effect of the DFIG, a 

simple stabilizer which adds an auxiliary signal proportional to the frequency 

deviation to the active power reference has been proposed in [143]. Moreover, 

the rate of change of the PLL angle which is equivalent to the DFIG bus 

frequency deviation is employed in [144] as an available input signal to the 

stabilizer. From another perspective, this type of damping controllers actually 

provides additional equivalent inertia to the system, probably benefitting the 

inertia response during the transient [43]. Reference [145] has proposed a control 

strategy to mitigate the impact of reduced inertia due to DFIGs by adjusting pitch 

compensation and maximum active power order. Consequently, the 

improvements of system dynamics in terms of power oscillation damping have 

been observed in a large power system. However, since these damping control 

methods are just based on general physical interpretations, it is easily found that 

their control effects may not be comparable with those of approaches employing 

SDCs designed based on exact control theories and system models, as in [44, 46, 

74]. Therefore, installation of SDCs to DFIG-based WTGs is a common way to 

engage them active participation in system damping control. 

According to the above statement, an optimal control design is employed for 

the DFIG-based WTG in this chapter to systematically demonstrate its capability 

of damping inter-area oscillations. Firstly, the operating modes of the DFIG at 

the steady state are discussed. The simplified dynamic models of the WTG are 

then introduced. Subsequently, an optimization problem is constructed for 

damping control where parameters of the power and voltage (PV) controllers and 
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the SDC are simultaneously adjusted by using differential evolution (DE), which 

is a simple but yet powerful evolutionary optimization algorithm, especially for 

problems with real-valued parameters. A two-area system is employed at final 

stage to verify the design and draw some profitable conclusions. 

5.2 Steady-State Operation of DFIG 

At the steady state, DFIG operates to influence the system load flow. It is 

necessary to obtain the steady-state model of DFIG for load flow calculation as 

well as system initialization for further dynamic analysis [146, 147]. Additionally, 

the process of internal energy transfer in the DFIG can be thoroughly perceived 

based on the steady-state analysis of DFIG. Normally, the DFIG steady-state 

operation can be mathematically described by the following equations in the 

synchronously rotating d-q reference frame [39]: 

ds s ds s ss qs s m qrr L Lv i i i      (5.1)

qs s qs s ss ds s m drr L Lv i i i      (5.2)

dr r dr s rr qr s m qsr L Lv i s i s i     (5.3)

qr r qr s rr dr s m dsr L Lv i s i s i     (5.4)

where vds and vqs are d and q components, respectively, of stator voltage; vdr and 

vqr are d and q components of rotor voltage; ids and iqs are d and q components of 

stator current; idr and iqr are d and q components of rotor current; Lss and Lrr are 

the stator and rotor inductances, respectively; Lm is the magnetizing inductance; 

rs and rr are stator and rotor resistances, respectively; ωs is the synchronous speed; 

and s is the slip. All variables and parameters are expressed in per-unit terms in 

this chapter, if not specified.  
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Based on (5.1)-(5.4), by expressing all voltage and current as phasors in 

terms of their d and q components, the equivalent circuit of DFIG at the steady 

state is illustrated in Fig. 5.1 where Ls and Lr are stator and rotor leakage 

inductances, respectively; Pe, Pm and Pr represent air-gap power delivered from 

rotor to stator, mechanical power and injected rotor active power, respectively. 

Thus, according to this diagram, these three kinds of power are calculated as 

follows: 

* 2r r
e r r

r
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v
P I I

s s
   
 

   (5.5)
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1 s 1 s r
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s s

  
  

 

   (5.6)

 *
r r rReP v I   (5.7)

where Re(.) is the operator that obtains the real part of a complex number. 

Obviously, the following relationships are hold among them: 

2
e m r r rrP P P I    (5.8)

 m e1P s P   (5.9)

2
r e r rrP sP I   (5.10)

From (5.8), it is told that the power passing from rotor to stator via the air gap is 

the sum of mechanical power and injected rotor active power minus the power 

loss at the rotor resistance. Moreover, since the mechanical power should be 

always larger than zero (Pm>0), from (5.9) and (5.10), it is readily concluded that 

there are five types of operating modes for the DFIG at the steady state according 

to its internal power flow directions, as follows: 

(1) Subsynchronous mode (0<s<1): an amount of active power is injected into 
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the rotor from the external network. A part of them will be consumed by 

the rotor resistance and the remaining together with the mechanical power 

will be delivered to the stator through the air gap. 

(2) Synchronous mode (s=0): the injected rotor active power exactly 

counteracts the power consumed by the rotor resistance. Only mechanical 

power will be delivered to the stator. 

(3) Supersynchronous mode (s<0) and Pr>0: a part of mechanical power plus 

the active power injected from the external network into the rotor is 

consumed by the rotor resistance and the rest of mechanical power is 

delivered to the stator. 

(4) Supersynchronous mode (s<0) and Pr=0: the power consumed by the rotor 

resistance is exactly balanced by a part of mechanical power and no active 

power is exchanged between the rotor and the external network. 

(5) Supersynchronous mode (s<0) and Pr<0: deducting the power consumed by 

the rotor resistance, the mechanical power will be partly delivered to the 

external network through the rotor in addition to the part delivered through 

the stator. 
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Fig. 5.1. Steady-state equivalent circuit of DFIG 
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Clearly, it is found that given the stator voltage, the active and reactive power 

outputs of the DFIG can be flexibly controlled by adjusting the magnitude and 

phase angle of the rotor voltage. This indicates that the bus incorporating the 

DFIG can be modeled as the machine or load bus in the load flow calculation. 

Moreover, to take into account more real scenarios, it is also possible to use the 

wind speed as an input variable for the load flow [147]. In such case, the steady-

state model (5.1)-(5.4) of the DFIG should be necessarily involved in the 

iterations of load flow computation. 

5.3 Dynamic Models of DFIG-based WTG 

5.3.1 Simplified DFIG Model 

The sketch diagram of a DFIG-based WTG is shown in Fig. 5.2. In this study, 

the dynamics of the DC capacitor are neglected; the active power on the RSC is 

assumed to be equal to the active power on the grid side converter (GSC). 

Moreover, the GSC is manipulated ideally to ensure that no reactive power is 

exchanged with the grid during the transient and the reactive power support is 

totally accomplished by the stator. By ignoring dynamics of the stator current 

and assuming a lumped-mass shaft model, the simplified third-order model of 

DFIG is derived as follows: 

 d m
d qs s q s qr

b 0 r m

d L1 1
X X

d T L L

e
e i s e v

t
 


        

 (5.11)

 q m
q ds s d s dr
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d T L L

e
e i s e v
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ds s ds qs dr Xv i i e     (5.14)

qs s qs ds qr Xv i i e     (5.15)

m
dr q ds

s m r m

L1
= +

L L L
i e i

 
 (5.16)

m
qr d qs

s m r m

L1
=

L L L
i e i







 (5.17)

g ds ds qs qs dr dr qr qr= +P v i v i v i v i   (5.18)

g qs ds ds qs=Q v i v i  (5.19)

where  

 d s m m r qrL / L Le      (5.20)

 q s m m r drL / L Le     (5.21)

  2
s s m m m rX L L L / L L      (5.22)

 s s mX L L   (5.23)

 0 r m rT L L / r   (5.24)

where ψdr and ψqr are d and q components, respectively, of rotor flux; ed and eq 

are d and q components, respectively, of internally generated voltage; Pg and Qg 

are active and reactive power output of DFIG; ωr is the rotor speed; X and X' are 

open-circuit and short-circuit reactance; T0 is the transient open-circuit time 

constant; H is the inertia constant in unit of second; Tm is the mechanical torque; 

and ωb is the system speed base in unit of rad/s. Specifically, as the ones used in 

References [46] and [148], such simplified model suffices for manifestation of 

the capability of WTGs in suppression of inter-area oscillations with the merit of 

facilitation of control design. 
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Fig. 5.2. Sketch diagram of DFIG-based WTG 
 
 

The dynamic equivalent circuit and vector diagram of DFIG are shown in Fig. 

5.3. The mechanical torque generated by the wind turbine is modeled as follows: 

2 3
p w

m
r

0.5 R VC
T




                                              (5.25) 

where R is the wind turbine radius; Vw is wind speed; ρ is the air mass density; 

and Cp is the power coefficient, defined as follows: 

0.17R
2

p

R
0.5 0.022 5.6 eC 



 
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 
                             (5.26) 

where γ is the tip speed ratio and β is the pitch angle which is set to 0.2349 and 

kept fixed during the study process. 
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Fig. 5.3. Dynamic equivalent circuit and vector diagram of DFIG 
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5.3.2 Power and Voltage Control Systems 

The control system for DFIG should be able to deal with wind speed 

variation and extract maximum electric power under different wind speeds. 

Furthermore reactive power support should be provided by DFIG to maintain the 

terminal voltage. In this study, the rotor flux magnitude and angle control 

(FMAC) method is applied to accomplish these two tasks. 

From the equivalent circuit and vector diagram in Fig. 5.3, it can be observed 

that internally generated voltage e  plays a role in induction generator that is 

similar to the role of q-axis transient electric potential in a synchronous generator. 

Therefore, the angle of e  is employed to control the active power output of 

DFIG, while its magnitude is applied for maintaining terminal voltage in DFIG.  

The block diagram of PV control system for DFIG is shown in Fig. 5.4. Ee 

and δe are magnitude and angle, respectively, of e . vref is the terminal voltage 

reference of DFIG. Popm is the optimal reference power output, which is 

calculated from the power-speed function of the wind turbine, for maximum 

power extraction. Tv is the time constant used to approximate the time delay 

between the control signal and the real output of the converter. upss is the signal 

provided by the SDC for the DFIG. 

5.3.3 SDC for DFIG 

The SDC with the traditional lead-lag compensation structure is shown in Fig. 

5.5. Through investigation it is found that it is more effective to add 

supplementary damping signal in the power control loop for increasing damping 

of the inter-area mode, compared with adding it in the voltage control loop. 

Moreover in the steady state upss is zero so that it will not impact the maximum 

power extraction function of the power control loop. Also because of the high 



95 

visibility of the inter-area mode in the terminal voltage signal, it is selected as the 

control input for the damping controller in this study.  
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Fig. 5.4. Power and voltage control loops for DFIG 
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Fig. 5.5. Supplementary damping controller for DFIG 

5.4 Controller Tuning and Differential Evolution 

5.4.1 Problem Formulation 

The tunable parameters of the PV controllers and the SDC are adjusted 

simultaneously to ensure dynamic performance of the system, especially for 

suppressing inter-area oscillation. This indicates that eigenvalues of the final 

tuned closed loop system are expected to locate in the shadowed D-shaped region 

S* in Fig. 5.6, where αc and ξc are acceptable limits for the damping constant and 

the damping ratio, respectively, to guarantee that the system can settle down as 
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soon as possible after disturbances [116].  
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Fig. 5.6. Desired eigenvalues distribution region 
 
 

The controllers should be tuned aiming at shifting eigenvalues outside the 

region into the region. This results in the following optimization problem: 

*

min ( ) i
i S

f d


 p                                              (5.27) 

                                                    min maxs.t.      p p p     

where di is the horizontal distance from the ith eigenvalue which locates outside 

S*, toward the boundary of S*, and p is the parameter vector defined as 

T

pp pi vp vi mp mi ap ai pss 1 2 3 4, , , , , , , , , , , ,k k k k k k k k k T T T T   p              (5.28) 

where pmax and pmin are the upper and lower limits, respectively, of the parameter 

vector. From the theoretical viewpoint, the controllers tuned by this optimization 

based method may not be as efficient as the ones tuned by the method of IAMO-

PS presented in Chapter 4 in controlling inter-area modes. However, it is indeed 

found that this method seldom obstructs from showing the damping control 

capability of WTGs. Moreover, the optimization problem formulated in such a 

simple form facilitates employment of DE as the solver which can endeavor to 

seek the global optimal solution.  
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5.4.2 Solving the Optimization Problem Using DE 

To minimize the objective function (5.27), the following classic DE 

procedure is employed [73]:  

S.1) Initialization of the population: Each individual representing a parameter 

vector as (5.28) can be randomly generated, for a population with NP 

individuals, as follows: 

 0 min max min
, ( )i j j j jp p r p p                                    (5.29) 

where  0
,i jp  denotes the jth controller parameter (gene or chromosome) of 

the ith parameter vector (individual)  0
ip  in the first generation, and min

jp  

and max
jp  are the lower and upper limits of the jth controller parameter, 

respectively. r is a uniformly distributed random value over the range of [0, 

1]. 

S.2) Differential mutation: The ith mutant  n
iv  (parameter vector) in generation 

n is produced according to the following formula: 

             1 2

n n n n n n
b best mi i i r rK F    v p p p p p                (5.30) 

where  n
bestp  is the best individual among the population in generation n. Kb 

and Fm are constants in [0, 1]. r1 and r2 are two randomly generated 

integers between 1 and NP.  n
ip ,  

1

n
rp  and  

2

n
rp  are the ith, r1th and r2th 

individuals, respectively, in the population. 

S.3) Crossover: The ith mutant  n
iv  (father) is then mated with individual  n

ip  

(mother) to produce child  n 1
i
c  in generation n+1. The One-Point crossover 

strategy is used in this study. 

S.4) Selection: The mother-child competition is applied for generating 
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individual  n+1
ip  in generation n+1, which can be expressed mathematically 

as follows: 

 
       
 

n 1 n 1 n

n 1

n

      if     

       otherwise

i i i

i

i

f f 


  


c c p
p

p
                      (5.31) 

Repeat Steps 2 to 4 until the objective function in (5.27) becomes zero or the 

specified maximum number of generation is reached. Then the individual with 

minimum objective function in final generation will be selected as the controller 

parameters. 

5.5 Simulation Studies 

5.5.1 System Introduction 

A two-area system (Fig. 5.7) derived from the two-area four-machine system 

used in Chapter 3 is employed for demonstration. They share the most data but 

with exception in this chapter that a DFIG-based WTG is connected to the grid in 

Area 1 and it outputs 411MW to the system in normal operating condition while 

the other four synchronous generators’ output are: PG1=494MW, PG2=494MW, 

PG3=700MW and PG4=700MW. The DFIG parameters are given in Table 5.1. 

Wind power penetration is about 30% of the power generated in Area 1; 

about 400MW of power is transferred from Area 1 to Area 2. An inter-area mode 

with frequency of about 0.7 Hz exists in the relative motion of generators in Area 

1 with respect to generators in Area 2. In addition, there are two local modes at 

about 1.3 Hz and they depict the relative motion between generators in each area. 

Wind speed is assumed to remain constant. 
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Fig. 5.7. Two-area system with a DFIG-based WTG 
 
 

TABLE 5.1 DFIG PARAMETERS (POWER RATING: 900MVA) 
 

H (s) rs rr xs xr xm 
5.0444 0.0088 0.1060 0.1663 0.1793 7.1168 

 

5.5.2 Simulation Results and Discussion 

In order to verify the effectiveness of the optimal control design in damping 

inter-area oscillation, two experiments are carried out. The first experiment is 

conducted on the DFIG with only PV controllers whose parameters are carefully 

tuned to ensure satisfactory DFIG dynamics [39]. Then in the second experiment, 

the PV controllers and the SDC are installed to control the DFIG, and the optimal 

parameter vector p is derived by using DE.  

The average converging curves of the search process of DE are given in Fig. 

5.8. In this case, both Kb and Fm are chosen to be 0.9, and the population size NP 

is set to 50. It is clear that the objective function can reach zero after about 450 

generations of evolution. The optimization results are presented in Table 5.2. 

When only PV controllers are installed, the tuned parameters are given in this 

table as well. 
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Fig. 5.8. Objective function converging curves of DE. 
 

 
TABEL 5.2 CONTROLLER PARAMETERS 

 
 kpp kpi kvp kvi kmp kmi 

PV+SDC 2.8815 0.2955 0.0297 2.2012 0.0014 0.1187 
PV 0.6527 0.5043 0.8832 0.4155 0.0083 0.0223 

Range [0,5] [0,5] [0,5] [0,5] [0,5] [0,5] 
 

kap kai kpss T1 T2 T3 T4 
0.2541 3.4238 0.9968 0.9962 0.9965 0.0530 0.0952 
0.9833 0.6997 - - - - - 
[0,5] [0,5] [0,1] [0,1] [0,1] [0,1] [0,1] 

 
 

Distribution of partial eigenvalues for the two experiments is shown in Fig. 

5.9. It is rather obvious that when there are only PV controllers for the DFIG, the 

inter-area oscillation is poorly damped. In contrast, the coordinatedly tuned PV 

controllers and SDC can move all eigenvalues to the desired region. 

To further demonstrate the effectiveness of the employed optimal control 

design, numerical simulations are conducted. A three-phase fault takes place at 

bus 9 at 1.0s and it is cleared 50ms later. The relative power angle dynamics of 

the synchronous generators are illustrated in Fig. 5.10. It is seen that the system 

can settle down much faster in the case with optimal PV controllers and SDC 

than with only PV controllers. This can be further confirmed by generators’ 
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active power output as shown in Fig. 5.11. This implies that the PV controllers 

and the SDC equipped in the DFIG can work cooperatively to damp the inter-

area oscillation. 
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Fig. 5.9. Distribution of partial eigenvalues (left plot: no SDC; right plot: optimal PV controllers 
and SDC). 
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Fig. 5.10. Relative power angle oscillation curves (upper plot: no SDC; lower plot: optimal PV 
controllers and SDC). 
 
 

Apparently, it is seen from Fig. 5.11 that the active power output of DFIG 

with PV controllers and SDC is a little more fluctuant than that of DFIG with 

only PV controllers, at the initial stage after disturbance. This means damping 
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control is achieved via DFIG’s active power modulation. However, this 

fluctuation can disappear rather quickly because of the sufficient damping of the 

system. 
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Fig. 5.11. Generator power oscillation curves (upper plot: no SDC; lower plot: optimal PV 
controllers and SDC). 
 
 

Dynamics of DFIG rotor voltage magnitude, rotor speed and stator voltage 

magnitude are depicted in Fig. 5.12. It is easily found from the plot of rotor 

voltage magnitude that much more control efforts have been generated by the PV 

controllers and the SDC to drive the DFIG so as to help increase the damping of 

the system, compared to those when only PV control is implemented for the 

DFIG. Nevertheless, such large control effort will very likely deteriorate the 

dynamic performance of the DFIG. Actually, this is confirmed by the further 

observation that the rotor speed and the stator voltage magnitude oscillate 

fiercely at the beginning, when the DFIG is controlled by the PV controllers and 

the SDC. Therefore, it can be concluded that the DFIG has to sacrifice its 

dynamic performance when it is employed for providing additional damping to 

the system. However as mentioned before, these dynamics caused by the 
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presence of these controllers can vanish quite fast due to the increased damping 

of the system. 
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Fig. 5.12. Partial dynamics of DFIG (upper plot: rotor voltage magnitude; middle plot: rotor 

speed; lower plot: stator voltage magnitude). 
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5.6 Summary 

In this chapter, simultaneous tuning of PV controllers and the SDC for the 

DFIG has been performed to increase the damping of the system in a high wind 

power penetration scenario. The classic FMAC method has been employed for 

PV control. Furthermore a SDC has been added to work in coordination with PV 

controllers to damp the inter-area oscillation of the system. Simultaneous tuning 

of parameters of these controllers is accomplished by using DE. The simulation 

results on a two-area system demonstrate the effectiveness of the proposed 

control scheme. 

 



105 

Chapter 6 

Optimal Coordination of Active and Reactive 

Power Modulation of DFIG-Based WTG to Damp 

Inter-Area Oscillations 

6.1 Introduction 

It has been solidly corroborated by the works conducted in Chapter 5 that 

DFIG-based WTGs can be employed to damp inter-area oscillations. Actually, as 

early as in 2006, Reference [44] already formally proposed the concept of PSS 

specifically for a wind turbine employing DFIG to damp electromechanical 

oscillations. Such PSS employed a conventional structure used by the PSSs for 

synchronous generators, producing an auxiliary damping signal added to the 

control input of rotor voltage phase angle. The phase compensation technique 

was utilized to tune the PSS. In this context, Reference [149] further investigated 

the impacts of tower shadow and wind turbulence on performance of the PSS 

when stator power, rotor speed of the DFIG and grid frequency were employed 

as the control input of the PSS, respectively. It was shown that the tower shadow 

deteriorated performance of the rotor speed based PSS but enforced little effect 

on the other two, and the influence caused by the wind turbulence was almost 

trivial. Furthermore, by using the partial eigenstructure assignment technique, the 
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active damping controller for DFIG in [52] is devised in cooperation with the 

PSSs (for the synchronous generators) to mitigate torsional as well as 

electromechanical oscillations. 

As the basis of the supplementary damping control, the power and voltage 

control of the DFIG in [44, 52, 149] is implemented via the FMAC scheme. 

Nevertheless, it has been verified in [150] that there is a strong coupling between 

the voltage control loop and the power control loop which weakens robustness of 

the controllers and makes the controller design more difficult. In fact, the 

majority of power and voltage control schemes for DFIG including the 

commercial products are based on stator voltage oriented vector control which 

comprises well decoupled active and reactive power control loops [151-153]. 

Accordingly, taking advantage of the vector control, Reference [46] adds the 

auxiliary damping signal produced by a SDC to the power reference of the active 

power control loop to modulate active power output of the DFIG to suppress the 

inter-area oscillation. Although the SDC is acceptably tuned by the classic root 

locus method, a washout block that is necessary to avoid influences of the SDC 

on the power outputs of DFIG at the steady state is not included in [46]. In 

contrast, similar works are carried out in [47] with the main exception that the 

damping signal is added to the reactive power reference so that reactive power 

output of the DFIG is modulated. Afterwards, by using a two-mass shaft model 

instead of the one-mass shaft model used in [46] where no torsional mode exists, 

Reference [51] presents a systematic comparison of these two types of power 

modulation methods on their effectiveness in damping inter-area oscillations and 

their interaction with wind turbine’s shaft dynamics. It is found that although 

both modulation methods can effectively enhance the damping of inter-area 
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modes, the active power modulation (PM) has the risk of adversely interacting 

with the shaft dynamics but imposes little impact on the stator voltage, whereas 

the reactive power modulation (QM) is naturally immune to such interaction but 

significantly worsens the stator voltage dynamics. Hence, Reference [154] 

presents the proposal of hybrid modulation of active and reactive power of DFIG 

for damping control. Furthermore, optimization techniques have also revealed 

considerable perspective in design of damping controllers for DFIGs [74, 155, 

156]. For example, Reference [148] introduces an evolutionary particle swarm 

optimization algorithm to design robust damping controllers for DFIGs under 

multiple operating conditions. 

As discussed in Chapter 1, unlike the FACTS devices, the DFIG cannot be 

modeled as a static or quasi-static device when it participates in control of 

electromechanical dynamics, at least the shaft dynamics should be preserved in 

the simplified model [157]. Even though above mentioned literatures have 

successfully applied the DFIGs to damp inter-area oscillations, they commonly 

overlook to confront a problem, as shown in Chapter 5 that the DFIGs need to 

sacrifice the dynamic performance for the engagement in damping control. In 

fact, this phenomenon can be clearly observed in [44, 46, 47, 51, 74, 149]. On the 

other hand, the dynamics of DFIGs without SDC generally rarely interacts with 

the external electromechanical dynamics. Therefore, these indicate that there is a 

trade-off for DFIG between damping control and dynamic performance. From 

another point of view, it should be feasible that the damping control capability of 

the DFIG is moderately exploited by the SDC so as to just provide required 

additional damping to the inter-area mode. In such situation, besides to drive the 

DFIG to supply desired damping, there is still extra freedom for the design of the 
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SDC to optimize the DFIG dynamics.  

Based on a dual-channel SDC, PM and QM will be coordinated for DFIG to 

damp inter-area oscillations in this chapter. Moreover, because DFIG dynamics 

are strongly coupled with its active and reactive power outputs, the control 

efforts of PM and QM which are measured by eigenstructure-based indexes 

during the damping control process will also be optimized. Thus, the DFIG 

dynamics in such case will be significantly improved, compared to those in the 

case that PM and QM are just simply coordinated. Specifically, a revised version 

of IAMO-PS which has been introduced in Chapter 4, will be utilized to tune the 

SDC which are able to simultaneously control the inter-area mode and result in 

optimal DFIG dynamics. 

This chapter is organized as follows. Firstly, the stator voltage oriented vector 

control scheme which is used for design of the power and voltage controllers for 

DFIG will be briefly introduced. Subsequently, since DFIG dynamics are the 

investigated objective in this study, the models that describe these dynamics will 

be presented. A classic two-area system is then employed to show the process for 

optimally coordinate PM and QM of DFIG to damp inter-area oscillations. The 

simulation results and discussion are presented at the final stage.  

6.2 Stator Voltage Oriented Vector Control 

The advantage of the stator voltage oriented vector control is that the 

electrical torque and the stator reactive power can be managed in an almost 

decoupled manner by controlling the q-axis and d-axis rotor currents, 

respectively. However, for this control scheme, the q-axis of the synchronously 

rotating d-q reference frame should be aligned in the direction of the stator 
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voltage so that vds=0 and vqs=vs (It should be noted that the same symbols 

appeared in this chapter and Chapter 5 have the same meaning, if not specified). 

The phase locked loop which is able to rapidly track the direction of the rotor 

voltage is normally employed to perform the orientation task. 

In general, the stator resistance of an induction generator is much smaller 

than the stator leakage reactance and the magnetizing reactance. Thus, by 

neglecting the term associated with stator resistance in (5.1), the following 

equation is derived: 

ds s ss qs s m qrL Lv i i    (6.1)

Then, under the condition of vds=0, the q-axis stator current can be expressed in 

terms of the q-axis rotor current as follows: 

qr m
qs

ss

L

L

i
i   (6.2)

Similarly, the d-axis stator current can be represented by the d-axis rotor current 

by neglecting the stator resistance and applying vqs=vs in (5.2), as follows: 

s m
ds dr

s ss ss

L

L L

v
i i


    (6.3)

Moreover, the general expression for the electrical torque Te is as follows: 

 e m dr qs qr dsLT i i i i   (6.4)

Then, substituting (6.2) and (6.3) into (6.4) yields, 

s m
e qr

s ss

L

L

v
T i


  (6.5)

Generally, in any d-q reference frame the stator reactive power output Qsg can 

be calculated as follows: 

sg qs ds ds qsQ v i v i   (6.6)
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In particular, with consideration of vds=0 and vqs=vs, and substitution of (6.3) for 

iqs in (6.6), the following equation is obtained: 

2
s m s

sg dr
s ss ss

L

L L

v v
Q i


    (6.7)

Obviously, given a constant stator voltage vs, it is observed from (6.5) and 

(6.7) that Te and Qsg are in linear relationship with iqr and idr, respectively, in the 

stator voltage oriented vector control scheme. Therefore, through manipulation 

of d and q components of the rotor current, the terminal voltage and active power 

output of the DFIG can be flexibly and independently controlled.  

6.3 General Model of DFIG-based WTG 

The WTG is complicated equipment which is concerned with mechanics, 

electrics and magnetics. It is definitely unnecessary to model all dynamics of the 

equipment in full time scale when only electromechanical dynamics are the focus 

[158]. As done in Chapter 5, various simplified models have been utilized to 

describe the dynamics of DFIG-based WTGs [45, 157, 159-163]. For example, 

Reference [146] ignores the dynamics of the rotor and its current control loops 

and models the rotor circuit as a controlled current source. Nevertheless, unlike 

the situation in Chapter 5 where a simplified WTG model can be used because it 

mainly concerns the impacts of the WTG on electromechanical dynamics of the 

system and intends to show the damping control function of WTG, a more 

detailed model describing WTG dynamics should be utilized in this chapter 

which focuses on dynamics of both WTG and system as well as their interactions. 

Actually, a more general model with proper descriptions of rotor dynamics for 

the DFIG-based WTG has been employed in studies of electromechanical 
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transient [39, 46, 47, 51, 155, 156, 159, 164, 165]. Therefore, without loss of 

generality, this chapter continues to use this model for demonstration. Fig. 6.1 

shows a WTG with DFIG whose components are introduced in the following 

subsections. 
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Fig. 6.1. Detailed structure of a DFIG-based WTG 
 

6.3.1 Drive Train Model 

The mechanical system of the WTG mainly consists of the generator rotor, 

turbine shaft, gear box, and blades. Generally, there are two major mechanical 

modes in this system. One corresponds to the oscillation of the blades with 

respect to the hub where they are mounted. This mode arises due to the fact that 

the blades are not rigid and could be bended. Another mode depicts the torsional 

motion between the generator rotor and the turbine shaft which are connected via 

the gear box. The frequency of this torsional mode greatly depends on the 

stiffness and mass of the whole shaft. In general, the presence of the gear box 

makes the shaft more slender and reduces the shaft stiffness. Moreover, increased 

individual wind turbine capacity leads to use of turbine shaft with quite large 

mass, which also augments the distinction in mass between the turbine shaft and 

the generator rotor. As a result, the frequency of the torsional mode is rather low 
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and well within the bandwidth that is normally considered in power system 

dynamic analysis (0.1-10 Hz). 

Except for some special researches that need to use a three-mass drive train 

model to take into account the bending flexibility and the torsional flexibility, 

most literatures employs a two-mass model to capture the concerned torsional 

dynamics because the mode associated the blade-hub system is generally well 

damped and out of the frequency range of interest as well. Thus, the two-mass 

drive train model is used in this chapter as follows: 

 tw
b t r

d

dt

      (6.8)

 t
m tw tw tw t r

t

d 1
K D

d 2H
T

t

          (6.9)

 r
tw tw tw t r e

g

d 1
K D

d 2H
T

t

          (6.10)

where ωt is the turbine speed; θtw (rad) is the shaft twist angle; Ktw (p.u./rad) and 

Dtw are the shaft stiffness and mechanical damping coefficients, respectively; Ht 

(s) and Hg (s) are the wind turbine and generator inertia constants, respectively. 

6.3.2 DFIG Model 

In power system electromechanical transient simulations, the fast stator 

dynamics of induction generators are normally neglected to ensure compatibility 

with the models representing other system components, particularly the 

transmission network. Therefore, the model describing the dynamics of DFIG is 

given as follows: 

 d m
d qs s q s qr

b 0 r m

d L1 1
X X

d T L L

e
e i s e v

t
 


        

 (6.11)
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 q m
q ds s d s dr

b 0 r m

d L1 1
X X

d T L L

e
e i s e v

t
 


        

 (6.12)

ds s ds qs dr Xv i i e     (6.13)

qs s qs ds qr Xv i i e     (6.14)

m
dr q ds

s m r m

L1
= +

L L L
i e i

 
 (6.15)

m
qr d qs

s m r m

L1
=

L L L
i e i







 (6.16)

As shown in Fig. 6.1, the stator active power output Psg and reactive power 

output Qsg are calculated as follows: 

sg ds ds qs qs=P v i v i  (6.17)

sg qs ds ds qs=Q v i v i  (6.18)

6.3.3 Models of Converters and DC Capacitor 

The dynamics of the dc capacitor between the RSC and GSC are described by 

the following equation: 

gc crdc

dc

d 1

d C

P Pv

t v

 
  

 
 (6.19)

where vdc is the voltage across the dc link; C (s) is the capacitance; Pcr is the 

power delivered from the dc capacitor to the RSC, while Pgc is the power injected 

to the dc capacitor from the GSC. In this study, the RSC and GSC are modeled as 

lossless devices so that Pcr is equal to the active power injected to the rotor and 

Pgc is equal to the active power exchanged between the GSC and the external 

network through a transformer shown in Fig. 6.1. Thereby, Pcr and Pgc can be 

calculated as follows: 
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cr dr dr qr qrP v i v i   (6.20)

qs dg ds qg
gc

tx

v v v v
P


  (6.21)

where vdg and vqg are the d and q components, respectively, of the GSC voltage; 

xt is the reactance of the transformer. Moreover, the reactive power Qgc absorbed 

from the external network is given as follows: 

2 2
ds qs ds dg qs qg

gc
tx

v v v v v v
Q

  
  (6.22)

The switching dynamics of the power electronic converters are much faster 

than the concerned dynamics in the stability studies. Thus, the RSC and GSC are 

in general modeled as static devices which can instantaneously change the output 

in response to the control input. 

6.3.4 Power and Voltage Control Systems 

According to the principle introduced in Section 6.2, the management of 

power and voltage of the DFIG is accomplished through implementation of the 

stator voltage oriented vector control on the RSC. The Block diagrams of the 

RSC controllers are shown in Fig. 6.2 where up and uq are the supplementary 

damping signals added to the power and voltage control loops, respectively. 

The GSC controllers take responsibilities to maintain the voltage of the dc 

capacitor as well as to make sure no reactive power injected into (or absorbed 

from) external network by the GSC in this study. From (6.21) and (6.22) it is 

deduced that Pgc and Qgc can be independently controlled by vdg and vqg, 

respectively, in the stator voltage oriented vector control scheme. Moreover, it is 

known from (6.19) that increasing Pgc will raise the voltage of the dc capacitor, 

and vice versa. Thus, the GSC controllers are designed as shown in Fig. 6.3. 
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Fig. 6.2. Block diagram of RSC controllers 
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Fig. 6.3. Block diagram of GSC controllers 

6.4 Optimal Coordination of PM and QM of DFIG 

6.4.1 Investigated System 

The two-area system with the same configuration (Fig. 5.1) as that used in 

Chapter 5 will be employed in this chapter for demonstration of optimally 

coordinating PM and QM of DFIG to damp inter-area oscillations. Except for the 

WTG, all other system components as well as the steady state operating 

condition are the same as those used in Chapter 5. The DFIG-based WTG used in 

this system is represented by the model described in Section 6.3 and its data are 

given in Table 6.1. As normal, the RSC and GSC controllers are tuned in 

advance to ensure the control performance for management of the power and 

voltage of the DFIG. Actually, several effective PID controller tuning methods 

can be utilized [46, 162, 166], and the tuned parameters are presented in Table 

6.2. Subsequently, small signal stability analysis shows that besides the two 

adequately damped local modes, a 0.68 Hz poorly damped inter-area mode 



116 

resides in this system as well. Therefore, to increase the damping of this mode, 

the DFIG is equipped with a dual-channel SDC which is introduced in the 

following subsection. 

 
TABLE 6.1 PARAMETERS OF DFIG-BASED WTG (POWER RATING: 700MVA) 

 
rs rr xs xr xm Hg 

0.00488 0.00590 0.09241 0.09955 3.95379 0.4 
 

Ht Ktw Dtw xt C 
3.8 0.6 0.45 0.0550 0.0410 

 
 

TABLE 6.2 PARAMETERS OF RSC AND GSC CONTROLLERS 
 

k1p k1i k2p k2i k3p k3i 
0.6742 0.9252 0.0588 0.7857 0.8492 0.8640 

 

k4p k4i k5p k5i k6p k6i 
0.1744 0.6829 0.0124 0.0297 0.4270 0.5156 

 

6.4.2 Dual-Channel SDC 

Since the active and reactive power controls are nearly decoupled in the 

vector control scheme, it has been observed in [46] and [47] that the SDC 

attached to the power control loop of the DFIG mainly impacts its active power 

output while the SDC installed in the voltage control loop principally influences 

the reactive power output. Therefore, in order to make utilization of both PM and 

QM of the DFIG for damping control possible, a dual-channel SDC whose 

structure is illustrated in Fig. 6.4 is proposed. It is seen that the DFIG active and 

reactive power can be modulated by the controller since both control loops are 

compensated. Each channel is constituted by a gain and two same phase lead-lag 

compensation blocks that can supple necessary phase compensation to the inter-

area mode. Kp, Tp1, Tp2, Kq, Tq1 and Tq2 are the adjustable parameters. One 

washout block is shared by the two channels to annihilate the steady-state offset 

of the control input so that the SDC will have no effect on the steady-state power 
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and voltage control results. 

Remote signals which have a quite high visibility of inter-area modes are 

generally much more effective control inputs for damping controllers installed in 

DFIGs than local signals [167]. In the investigated system, the power angle 

difference between Generator 1 and 3 is the most direct and effective signal to 

observe the inter-area mode, and thus it is selected as control input of the SDC. 

Specifically, time delays introduced by usage of the remote signal are ignored 

since they could be dealt with by many techniques in practice which will seldom 

challenge the demonstration theme of this study [46, 47, 51]. 
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Fig. 6.4. Dual-channel SDC 
 

6.4.3 Measurements of PM and QM Control Efforts 

By support from the dual-channel structure of the SDC, it is possible to 

flexibly allocate control burden between PM and QM of the DFIG for damping 

the inter-area oscillation. However, to do this, the premise is the availability of 

indexes that can effectively indicate the control efforts of PM and QM during the 

transient. Therefore, inspired by the studies carried out in Chapter 1 and 2, the 

eigenstructure-base indexes are proposed to perform measurements of PM and 

QM control efforts. 

The linearized closed loop system incorporating the SDC around the 

operating point can be described by the following equations: 
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x Ax  (6.23)

g pP  E x  (6.24)

g qQ  E x  (6.25)

where x is the state vector of the closed loop system; A is the state matrix; Pg and 

Qg are the deviations of the DFIG active and reactive power outputs, respectively, 

from the equilibrium point; and Ep and Eq are the corresponding output matrices. 

Thus, in the normal case that A can be similarly diagonalized and the closed loop 

system is stable, the index fp measuring the PM control effort is defined as 

follows: 

n

p p
1

k
k

f 


  (6.26)

where n is the dimension of the closed loop system. σpk is the kth eigenvalue of 

the cost matrix Mp which is constructed as follows: 

 H H H
p p p

   M V U E E U L V  (6.27)

where U and V are right and left eigenvector matrices, respectively, of A; H is 

the conjugate transpose operator, while · denotes dot production; and L is an n×n 

Hermite matrix, whose entry in the position of iith row, jjth column is defined as, 

  *

1
L ,

ii jj

ii jj
 

 


 (6.28)

where * is the conjugate operator; λii is the iith eigenvalue of A. The deduction 

process of fp can be similarly derived according to Equations (3.4)-(3.14) 

presented in Chapter 3. It is known from the deduction process that fp is derived 

from the time domain cost function costp defined in the following and can 

perform resembling it to indicate the control effort of PM of the DFIG: 
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2
p g0

dcost P t


   (6.29)

Obviously, the advantage of fp over costp is that the former is independent to the 

initial state of the system which is required by calculation of the latter. It is clear 

that the system initial state which is related to the disturbance is actually 

undetermined. Thus, it will be ineffective to directly apply costp to the design of 

the controller, whereas use of fp can satisfactorily overcome this problem since it 

depends only on the eigenstructure of the closed loop system. 

Similar to the definition of fp, an eigenstructure-based index fq is defined to 

measure the control effort of QM of the DFIG. All above discussion is applicable 

to fq only with proper substitutions, for example, using Eq to replace Ep. 

6.4.4 Tuning Method for the SDC and Interpretation 

The tuning method used in this chapter will refer to the method of IAMO-PS 

introduced in Chapter 4. A derivative version of IAMO-PS with coordination of 

PM and QM of the DFIG will be employed for tuning of the SDC. Likewise, the 

tuning method is formulated as a two-stage mathematical programming problem 

in which the optimization in the first stage serves to offer a starting point for the 

optimization in the second stage. Physically, the SDC is tuned in the first stage to 

move all closed loop poles to fulfill the specific pole placement requirements. 

Then, subjected to constraints of such pole placement, the SDC is further tuned 

in the second stage so that the coordination of PM and QM is optimized. 

In the first stage, the inter-area mode is moved to the specific region that 

indicates acceptable dynamics of the inter-area oscillation by solving a 

minimization problem as follows: 

 2

io expmin   
p

 (6.30a)
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s. t. iomin io   (6.30b)

iomin io iomax     (6.30c)

cj j                  c2j   (6.30d)

min maxj j j     (6.30e)

min max p p p  (6.30f)

where αio and ωio is the real and imaginary parts, respectively, of the inter-area 

mode; αiomin is the lower limit of αio to prevent from exploiting too much control 

effort of the DFIG and it is set to -0.5; αexp is the expected value of αio and it is 

selected to be -0.42; ωiomin and ωiomax are the lower and upper limits, respectively, 

of ωio to avoid unexpected frequency drift; πc2 is the set consisting of modes such 

as λj, that may be significantly deteriorated after the optimization; αj and ωj are 

the real and imaginary parts, respectively, of λj; αjc is the critical value of αj, 

while ωjmin and ωjmax are the lower and upper limits, respectively, of ωj; and p is 

the tunable controller parameters defined as follows: 

T

p p1 p2 q q1 q2, , , , ,K T T K T T   p  (6.31)

To ensure that λj is not obviously exacerbated by the SDC, αjc is set to be slightly 

larger than the initial value of αj which is obtained when the system is open loop. 

Similarly, ωjmin and ωjmax are chosen to be properly smaller and larger, 

respectively, than the initial value of ωj. In particular, the same iterative process 

as that used in Chapter 4 will be employed to determine πc2. 

The optimization problem (6.30) will be solved by the SQP method for which 

a feasible starting point can be readily provided to enhance its reliability in 

convergence by setting Kp and Kq to zeros. Furthermore, if the final solution can 
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ensure that the settling time of the inter-area oscillation is less than a required 

value, i.e. αio≤αiomax, then it can be used as the starting point for the optimization 

to coordinate PM and QM in the second stage, as follows: 

p p q qmin  w wf f
p

 (6.32a)

s. t. iomin io iomax     (6.32b)

iomin io iomax     (6.32c)

cj j                  c1j   (6.32d)

min maxj j j     (6.32e)

min max p p p  (6.32f)

where wp and wq are the weights of fp and fq, respectively; πc1 has the same 

meaning as πc2 and is initially equal to final πc2. Moreover, the iterative process 

used for determining πc2 is also applicable to πc1. In this study, αiomax is chosen to 

be -0.4 since the inter-area oscillation is normally expected to settle down within 

about 10s. Likewise, the SQP method is used to solve (6.32). 

It is known that by only satisfying the constraints (6.32b)-(6.32f), the inter-

area mode will be acceptably damped. The frequency drift and impacts on the 

other modes caused by the SDC can also be considered and limited. Moreover, 

owing to the dual-channel structure of the SDC, both PM and QM of the DFIG 

can be utilized in a coordinated manner for the damping function. However, it is 

clear that the active and reactive power outputs of the DFIG during the transient 

are not optimized. Thus, the dynamics of the DFIG will not be optimal 

correspondently because they are tightly coupled with the power outputs. In 

contrast, by additionally incorporating the objective of (6.32a), the coordinated 
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PM and QM according to the given wp and wq will be further explicitly 

optimized, leading to the improved DFIG dynamics. 

The natures of wp and wq are apparent in this study. Larger wp indicates that 

the damping function of the DFIG will be more reliant on PM, which tends to 

bring more impacts to the DFIG dynamics associated with the active power 

output, for example, the rotor dynamics. On the other hand, QM will be more 

dominant in controlling the inter-area mode when wq is quite larger. 

Consequently, the DFIG dynamics related to the reactive power output such as 

the rotor voltage will be more obviously influenced. Accordingly, the control 

efforts of damping the inter-area mode can be flexibly distributed between PM 

and QM of the DFIG by adjusting wp and wq. Nevertheless, it may be naturally 

expected that all kinds of dynamics can be evenly sacrificed when the DFIG 

contributes to the damping control. Apparently, such control objective can be 

readily achieved through appropriate selection of wp and wq. 

6.5 Simulation Results and Discussions 

In order to enhance the quality of final solution, several different starting 

points will be tried for the optimization to avoid the unacceptable local minimum 

which is the intrinsic insufficiency of the SQP method. Moreover, Pg and Qg are 

normalized respectively so that fp and fq will be in the same order of magnitude, 

which can facilitate the selection of wp and wq. Furthermore, according to the 

aforementioned rules of adjustment for wp and wq, it is easily found that the SDC 

obtained with wp=0.8 and wq=1.0 can fairly and optimally coordinate PM and 

QM of the DFIG to damp the inter-area mode. As a targeted comparison, the case 

in which the only objective is to damp the inter-area mode by the coordinated 
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PM and QM and no optimization of the DFIG dynamics is performed is also 

studied. In such case, only optimization problem (6.30) is solved with different 

starting points and among all solutions, the one which results in αio≤αiomax and 

relatively fair control efforts between PM and QM will be chosen as the 

parameters of the SDC. For these two cases, the corresponding SDC parameters 

are given in Table 6.3.  

 
TABLE 6.3 TUNED PARAMETERS OF SDC 

 
 Kp Tp1 Tp2 Kq Tq1 Tq2 

Coordination 2.4544 0.7504 0.3117 6.7454 0.5861 0.5441 
wp=0.8, wq=1.0 0.2879 0.9885 0.1646 3.4389 0.0100 0.0749 

 
 

During the SDC tuning process, besides the inter-area mode, it has to pay 

special attention to other four modes which have the risk of being significantly 

altered by the SDC since their frequencies lay within the frequency range of 

electromechanical dynamics. These modes are listed in Table 6.4 where M1 is the 

inter-area mode; M2 is the torsional mode; M3 and M4 are the two local modes; 

and M5 is the mode greatly participated by the dc capacitor dynamics. It is seen 

that in both cases, the inter-area mode has received required damping 

enhancement with quite limited frequency drift (maximum about 5%). Moreover, 

M2 to M5 are also not considerably changed by the SDC, compared to their open 

loop values. These indicate that the inter-area oscillation will be acceptably 

damped by the SDC and the adverse effects of the SDC on the other modes are 

also well controlled via the explicit constraints imposed on the shifting of these 

modes in the employed pole placement strategy. 

In the case of optimal coordination of PM and QM (wp=0.8 and wq=1.0), the 

evolutions of the inter-area mode and M2 to M5 during the searching process are 

illustrated in Fig. 6.5 and 6.6, respectively. Clearly, the effectiveness and 
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efficiency of the two-stage optimization based IAMO-PS in tuning the SDC for 

the DFIG can be confirmed from these diagrams. 

 
TABLE 6.4 CONCERNED MODES 

 
 Open loop Coordination Optimal Coordination 

M1 -0.0629+4.2446i -0.4199+4.4748i -0.4000+4.2415i 
M2 -1.8982+11.4654i -2.0186+11.4981i -1.9550+11.3964i 
M3 -1.0770+7.6569i -1.1145+7.5305i -1.0041+7.6069i 
M4 -0.8471+8.2977i -0.8396+8.3014i -0.8441+8.3053i 
M5 -2.9699+21.7083i -2.9703+21.7074i -2.9700+21.7073i 
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Fig. 6.5. Evolution of the inter-area mode during the searching process (left plot: real part; right 
plot: imaginary part). 
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Fig. 6.6. Evolution of the other modes during the searching process (left plot: real part; right plot: 
imaginary part). 
 
 

The eigenvalues of Mp and Mq in the two cases are calculated and depicted in 

Fig. 6.7. Only the first eight eigenvalues are displayed since they are much larger 
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than the remaining. It is found that the dominant (the first two) eigenvalues of 

Mp in the optimal coordination case are markedly smaller than those in the 

coordination case. The same observation can be found for the first three 

dominant eigenvalues of Mq. Consequently, according to (6.26), it is inferred that 

fp (or fq) in the optimal coordination case will be much smaller than fp (or fq) in 

the coordination case. This essentially indicates that the power output dynamics 

of the DFIG in the optimal coordination case will be comparatively better than 

those in the coordination case.  
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Fig. 6.7. Partial eigenvalues of cost matrices (left plot: Mp; right plot: Mq) 
 
 

In order to confirm the above inferences, the time domain simulation is 

conducted. A three-phase short circuit fault occurs at Bus 9 at 1.0s and it is 

cleared 50ms later. The relative power angles of all synchronous generators are 

illustrated in Fig. 6.8. It is easily observed that in both cases, the inter-area 

oscillation can quickly settle down within 10s after the disturbance. From the 

viewpoint of increasing the damping of the inter-area oscillation, the SDCs used 

in the two cases have little distinction. Together with the eigen-analysis shown in 

Table 6.4, it manifests that by only implementing the pole placement strategy 

irrespective of the DFIG dynamics, as done in many literatures, the SDC can 
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undoubtedly be satisfactorily tuned to drive the DFIG to provide required 

damping to the inter-area oscillation. However, by additionally optimizing the 

power outputs of the DFIG, it is quite clearly observed in Fig. 6.9 that the DFIG 

dynamics are considerably improved in the optimal coordination case, compared 

to those in the coordination case. This phenomenon is exactly consistent with the 

inference drawn from Fig. 6.7, which in turn substantiates the effectiveness of 

the eigenstructure-based indexes fp and fq in measuring the control efforts of PM 

and QM. Furthermore, comparisons of the DFIG dynamics in the system with the 

SDC and those in the open loop system again confirm the conclusion that the 

DFIG will sacrifice its dynamic performance for contribution to the damping 

control. 
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Fig. 6.8. Power angle oscillation curves of all generators with respect to Generator 4 (upper plot: 
open loop; middle plot: coordination; lower plot: optimal coordination). 
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Fig. 6.9. Partial DFIG dynamics ((a) active power output; (b) reactive power output; (c) rotor 
speed; (d) electrical torque;  (e) rotor voltage; (f) dc capacitor voltage). 

6.6 Summary 

In this chapter, it has been demonstrated in a two-area system that PM and 

QM of the DFIG can be optimally coordinated to damp the inter-area oscillation. 

Firstly, the dual-channel SDC is employed for the DFIG to enable coordination 

of PM and QM. Furthermore, based on the eigenstructure-based indexes which 

accurately indicate the control efforts of PM and QM, the power outputs of the 

DFIG during the transient are optimized when it is driven by the SDC to provide 
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expected damping to the inter-area mode. Therefore, in such case the DFIG 

dynamics which are tightly associated with the power outputs are significantly 

improved, compared to those in the case where PM and QM of the DFIG are 

only coordinated to perform the damping function.  
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

In power systems all over the world, medium-size local electricity networks 

are increasingly being interconnected by long-distance transmission lines for 

stabilizing the demand-supply balance by transportation power from resource 

centers to all sorts of load centers. Such interconnections have given rise to 

emergence of very large scale power systems where safety of operations is often 

threatened by low frequency power oscillations of inter-area modes. Heuristically, 

as the quantum of power transmitted between interconnected areas and 

transmission distances increases, management of inter-area power oscillations is 

becoming increasingly important and difficult. Thus, design of damping 

controllers for damping of inter-area oscillations has received increasing 

attention from academic researchers. Damping of inter-area oscillations is the 

major theme of this thesis, with considerable innovation and improvements 

proposed on the basis of pioneering research works already conducted. 

The eigenstructures (both eigenvalues and eigenvectors) of closed loop 

systems have been innovatively utilized in the design of damping controllers, 

compared to the conventional methods which are mostly based on eigenvalues 

but rarely consider eigenvectors. By a novel way, eigenvalues and eigenvectors 
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are synthesized into indexes which are equivalent to corresponding cost functions 

defined in time domain, in terms of measuring system dynamic performance. 

Nevertheless, unlike the cost functions, the eigenstructure-based indexes have no 

relationship with system initial states which are actually undermined in the 

control design. Moreover, calculation of these indexes has no bearing on 

structures of damping controllers, which enables applications for solving 

structurally constrained control problems. Thus, due to these favorable features, 

eigenstructure-based indexes have been utilized throughout the thesis for design 

of damping controllers. 

An eigenstructure-based index jointly measuring the dynamic performance of 

inter-area oscillations and control efforts has been employed in coordinated 

tuning of PSSs and SDCs for FACTS devices under multiple operating 

conditions. Both PSSs and SDCs use control structures as a classic simple SISO 

phase lead-lag compensator, and wide-area signals are employed as inputs to 

enhance their effectiveness in controlling inter-area modes. Time delays caused 

by introduction of the wide-area signals are also approximately considered in the 

design. These structurally constrained controllers have been successfully tuned 

by solving a nonlinear optimization problem which takes the eigenstructure-

based index as the objective function. Specifically, weights of the objective 

function have been determined by a systematic procedure to ensure acceptable 

damping of inter-area modes and coordinating control efforts although it may be 

a little onerous. Furthermore, regarding coordination of PSSs and SDCs, the 

method of SCCS-PS has been utilized to demonstrate that control of inter-area 

modes by moving all closed loop poles to a conic section in the complex plane 

may be significantly impacted by other modes. Accordingly, the method of 
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IAMO-PS, a two-stage optimization method in which the inter-area mode 

oriented pole placement is implemented in the first stage, is used for damping 

control. Control efforts measured by the eigenstructure-based indexes are 

coordinated in the second stage under constraints such as pole placement. This 

has been proved to be a satisfactory alternative. 

Compared to the conventional applications of PSSs and/or SDCs for FACTS 

devices in damping of inter-area oscillations, installing SDCs in DFIG-based 

WTGs for the damping function is a relatively new background. Through 

simultaneously optimizing parameters of SDCs and PV controllers of DFIGs by 

the DE algorithm, capabilities of DFIGs in damping inter-area oscillations have 

been demonstrated. However, it has been obviously addressed and emphasized 

that employing DFIG for damping control means sacrificing its dynamic 

performance. Furthermore, control efforts of active and reactive power 

modulation of DFIG have been measured by the eigenstructure-based indexes. 

Thus, by the method of IAMO-PS with optimal coordination of active and 

reactive power modulation, the dual-channel SDC has been designed for DFIG to 

optimize its power outputs as it is controlled to provide the required damping to 

inter-area modes. Consequently, in such a case, the dynamics of DFIG have been 

significantly improved since they are tightly coupled with power outputs of 

DFIG, in contrast with the case where the DFIG is employed for damping control 

but without optimizing its power outputs. 

7.2 Future Work 

This thesis has laid a substantial foundation for application of eigenstructure-

based indexes to design damping controllers to suppress inter-area oscillations. 
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However, the following three aspects may be worthy of further research in the 

future: 

(1) Extension of the IAMO-PS method to the robust design. Although this 

method has been proven to be successful for a single operating condition, 

multiple operating conditions should be taken into account during the 

design to ensure robustness of the final tuned controllers. 

(2) Application of the proposed methods to real large scale power systems, 

such as the China southern power grid, which quite possibly suffers the 

threat of low frequency oscillations. However, in order to facilitate the 

applications, proper low-order system models should be derived. The 

identification based techniques should be promising in model reduction as 

they just process data of time domain responses from real measurements or 

numerical simulation programs which can deal with large scale power 

systems. 

(3) Design of SDCs for DFIGs in more complex scenarios. It is known that 

wind energy is an intermittent type of energy, and the wind speed varies 

from time to time. The SDC designed for a given constant wind speed may 

not be robust enough in other wind speeds. Thus, consideration of wind 

speed variation in the design of SDCs for DFIGs to increase damping of 

inter-area modes is necessary. Moreover, SDCs for DFIGs should also be 

designed to operate in coordination with PSSs and SDCs for FACTS 

devices. 
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Appendix 

A. Core of Deduction 

For the diagonal matrix Λj, the following equation holds: 
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Moreover, an auxiliary matrix is defined as follows: 
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It is found that the core of (3.9) is the calculation of the following equation: 
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Therefore, by substituting (A.1) and (A.2) into (A.3), the following 

transformation can be derived: 
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B. Data of Four-Machine Two-Area System 

Note: If not specified, all data in per unit are calculated on the basis of power 

rating of 100MVA and voltage rating of 230KV. 

 
TABLE A.1 MACHINE BUS DATA  

 
Bus  Voltage (p.u.) Power generation (p.u.) 

1 1.0300 7.0000 
2 1.0100 7.0000 
3 1.0300 7.1900 
4 1.0100 7.0000 

 
 
 

TABLE A.2 LOAD BUS DATA  
 

Bus  Real load (p.u.) Reactive load (p.u.) 
7   9.7600 7.0000 
9 17.6700 7.0000 
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TABLE A.3 SHUNT COMPENSATION  

 
Bus  Compensation (p.u.) 

7 2.0000 
9 3.5000 

 
 

TABLE A.4 TRANSMISSION LINE DATA  
 

From Bus To Bus Resistance(p.u.) Reactance (p.u.) Line Charging (p.u.) 
5 6 0.0025 0.0250   0.04375 
6 7 0.0010 0.0100 0.0175 
9 8 0.0110 0.1100 0.1925 
7 8 0.0110 0.1100 0.1925 

11 10 0.0025 0.0250   0.04375 
10 9 0.0010 0.0100 0.0175 
9 8 0.0110 0.1100 0.1925 
7 8 0.0110 0.1100 0.1925 

 
 

TABLE A.5 TRANSFORMER DATA (POWER RATING: 900MVA) 
 

From Bus To Bus Reactance (p.u.) Tap ratio (p.u.) 
1 5 0.1500 1.0000 
2 6 0.1500 1.0000 
4 10 0.1500 1.0000 
3 11 0.1500 1.0000 

 
 

TABLE A.6 MACHINE DATA (POWER RATING: 900MVA AND VOLTAGE RATING: 20KV) 
 
 

 

 
 
 
 
 
 
 

TABLE A.7 DC EXCITATION SYSTEM DATA  
 

 
 

Bus xl r xd x′d x″d T′d0 (s) T″d0 (s) 
1 0.2000 0.0025 1.8000 0.3000 0.2500 8.0000 0.0300 
2 0.2000 0.0025 1.8000 0.3000 0.2500 8.0000 0.0300 
3 0.2000 0.0025 1.8000 0.3000 0.2500 8.0000 0.0300 
4 0.2000 0.0025 1.8000 0.3000 0.2500 8.0000 0.0300 

xq x′q x″q T′q0 (s) T″q0 (s) H(s) 
1.7000 0.5500 0.2500 0.4000 0.0500 6.5000 
1.7000 0.5500 0.2500 0.4000 0.0500 6.5000 
1.7000 0.5500 0.2500 0.4000 0.0500 6.1750 
1.7000 0.5500 0.2500 0.4000 0.0500 6.1750 

Bus Vrmax Vrmin KA TA (s) KF TF (s) TE (s) TR (s) Aex  Bex 
1 5 -5 20.000 0.0550 0.1250 1.8000 0.3600 0.0500 0.0056 1.0750 
2 5 -5 20.000 0.0550 0.1250 1.8000 0.3600 0.0500 0.0056 1.0750 
3 5 -5 20.000 0.0550 0.1250 1.8000 0.3600 0.0500 0.0056 1.0750 
4 5 -5 20.000 0.0550 0.1250 1.8000 0.3600 0.0500 0.0056 1.0750 
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C. Data of New England and New York Interconnected System 

Note: If not specified, all data in per unit are calculated on the basis of power 

rating of 100MVA. 

 
TABLE A.8 MACHINE BUS DATA  

 
Bus  Voltage (p.u.) Power generation (p.u.) 

1 1.0450 2.5000 
2 0.9800 5.4500 
3 0.9830 6.5000 
4 0.9970 6.3200 
5 1.0110 5.0500 
6 1.0500 7.0000 
7 1.0630 5.6000 
8 1.0300 5.4000 
9 1.0250 8.0000 

10 1.0100 5.0000 
11 1.0000 10.0000 
12 1.0156 13.5000 
13 1.0110 35.9100 
14 1.0000 17.8500 
15 1.0000 10.0000 
16 1.0000 40.0000 

 
 

TABLE A.9 LOAD BUS DATA  
 

Bus  Real load (p.u.) Reactive load (p.u.) 
17 60.0000 3.0000 
18 24.7000 1.2300 
20 6.8000 1.0300 
21 2.7400 1.1500 
23 2.4800 0.8500 
24 3.0900 -0.9200 
25 2.2400 0.4700 
26 1.3900 0.1700 
27 2.8100 0.7600 
28 2.0600 0.2800 
29 2.8400 0.2700 
33 1.1200 0.0000 
36 1.0200 -0.1946 
39 2.6700 0.1260 
40 0.6563 0.2353 
41 10.0000 2.5000 
42 11.5000 2.5000 
44 2.6755 0.0484 
45 2.0800 0.2100 
46 1.5070 0.2850 
47 2.0312 0.3259 
48 2.4120 0.0220 
49 1.6400 0.2900 
50 1.0000 -1.4700 
51 3.3700 -1.2200 
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52 1.5800 0.3000 
53 2.5270 1.1856 
55 3.2200 0.0200 
56 2.0000 0.7360 
59 2.3400 0.8400 
60 2.0880 0.7080 
61 1.0400 1.2500 
64 0.0900 0.8800 
67 3.2000 1.5300 
68 3.2900 0.3200 

 
 

TABLE A.10 TRANSMISSION LINE (TRANSFORMER) DATA  
 

From Bus To Bus Resistance(p.u.) Reactance (p.u.) Line Charging (p.u.) Tap ratio 
54 1 0.0000 0.0181 0.0000 1.0250 
58 2 0.0000 0.0250 0.0000 1.0700 
62 3 0.0000 0.0200 0.0000 1.0700 
19 4 0.0007 0.0142 0.0000 1.0700 
20 5 0.0009 0.0180  0.0000 1.0090 
22 6 0.0000 0.0143 0.0000 1.0250 
23 7 0.0005 0.0272 0.0000 1.0000 
25 8 0.0006 0.0232 0.0000 1.0250 
29 9 0.0008 0.0156 0.0000 1.0250 
31 10 0.0000 0.0260 0.0000 1.0400 
32 11 0.0000 0.0130 0.0000 1.0400 
36 12 0.0000 0.0075 0.0000 1.0400 
17 13 0.0000 0.0033 0.0000 1.0400 
41 14 0.0000 0.0015 0.0000 1.0000 
42 15 0.0000 0.0015 0.0000 1.0000 
18 16 0.0000 0.0030 0.0000 1.0000 
36 17 0.0005 0.0045 0.3200 1.0000 
49 18 0.0076 0.1141 1.1600 1.0000 
68 19 0.0016 0.0195 0.3040 1.0000 
19 20 0.0007 0.0138 0.0000 1.0600 
68 21 0.0008 0.0135 0.2548 1.0000 
21 22 0.0008 0.0140 0.2565 1.0000 
22 23 0.0006 0.0096 0.1846 1.0000 
23 24 0.0022 0.0350 0.3610 1.0000 
68 24 0.0003 0.0059 0.0680 1.0000 
54 25 0.0070 0.0086 0.1460 1.0000 
25 26 0.0032 0.0323 0.5310 1.0000 
37 27 0.0013 0.0173 0.3216 1.0000 
26 27 0.0014 0.0147 0.2396 1.0000 
26 28 0.0043 0.0474 0.7802 1.0000 
26 29 0.0057 0.0625 1.0290 1.0000 
28 29 0.0014 0.0151 0.2490 1.0000 
53 30 0.0008 0.0074 0.4800 1.0000 
61 30 0.0019 0.0183 0.2900 1.0000 
61 30 0.0019 0.0183 0.2900 1.0000 
30 31 0.0013 0.0187 0.3330 1.0000 
53 31 0.0016 0.0163 0.2500 1.0000 
30 32 0.0024 0.0288 0.4880 1.0000 
32 33 0.0008 0.0099 0.1680 1.0000 
33 34 0.0011 0.0157 0.2020 1.0000 
35 34 0.0001 0.0074 0.0000 0.9460 
34 36 0.0033 0.0111 1.4500 1.0000 
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61 36 0.0022 0.0196 0.3400 1.0000 
61 36 0.0022 0.0196 0.3400 1.0000 
68 37 0.0007 0.0089 0.1342 1.0000 
31 38 0.0011 0.0147 0.2470 1.0000 
33 38 0.0036 0.0444 0.6930 1.0000 
41 40 0.0060 0.0840 3.1500 1.0000 
48 40 0.0020 0.0220 1.2800 1.0000 
42 41 0.0040 0.0600 2.2500 1.0000 
18 42 0.0040 0.0600 2.2500 1.0000 
17 43 0.0005 0.0276 0.0000 1.0000 
39 44 0.0000 0.0411 0.0000 1.0000 
43 44 0.0001 0.0011 0.0000 1.0000 
35 45 0.0007 0.0175 1.3900 1.0000 
39 45 0.0000 0.0839 0.0000 1.0000 
44 45 0.0025 0.0730 0.0000 1.0000 
38 46 0.0022 0.0284 0.4300 1.0000 
53 47 0.0013 0.0188 1.3100 1.0000 
47 48 0.0025 0.0268 0.4000 1.0000 
47 48 0.0025 0.0268 0.4000 1.0000 
46 49 0.0018 0.0274 0.2700 1.0000 
45 51 0.0004 0.0105 0.7200 1.0000 
50 51 0.0009 0.0221 1.6200 1.0000 
37 52 0.0007 0.0082 0.1319 1.0000 
55 52 0.0011 0.0133 0.2138 1.0000 
53 54 0.0035 0.0411 0.6987 1.0000 
54 55 0.0013 0.0151 0.2572 1.0000 
55 56 0.0013 0.0213 0.2214 1.0000 
56 57 0.0008 0.0128 0.1342 1.0000 
57 58 0.0002 0.0026 0.0434 1.0000 
58 59 0.0006 0.0092 0.1130 1.0000 
57 60 0.0008 0.0112 0.1476 1.0000 
59 60 0.0004 0.0046 0.0780 1.0000 
60 61 0.0023 0.0363 0.3804 1.0000 
58 63 0.0007 0.0082 0.1389 1.0000 
62 63 0.0004 0.0043 0.0729 1.0000 
64 63 0.0016 0.0435 0.0000 1.0600 
62 65 0.0004 0.0043 0.0729 1.0000 
64 65 0.0016 0.0435 0.0000 1.0000 
56 66 0.0008 0.0129 0.1382 1.0000 
65 66 0.0009 0.0101 0.1723 1.0000 
66 67 0.0018 0.0217 0.3660 1.0000 
67 68 0.0009 0.0094 0.1710 1.0000 
53 27 0.0320 0.3200 0.4100 1.0000 
69 18 0.0006 0.0144 1.0300 1.0000 
50 69 0.0006 0.0144 1.0300 1.0000 

 
 

TABLE A.11 MACHINE DATA  
 

Bus 
Base 
MVA 

xl r xd x′d x″d T′d0 (s) T″d0 (s) 

1 100 0.0125 0.0000 0.1000 0.0310 0.0250 10.2000 0.0500 
2 100 0.0350 0.0000 0.2950 0.0697 0.0500 6.5600 0.0500 
3 100 0.0304 0.0000 0.2495 0.0531 0.0450 5.7000 0.0500 
4 100 0.0295 0.0000 0.2620 0.0436 0.0350 5.6900 0.0500 
5 100 0.0270 0.0000 0.3300 0.0660 0.0500 5.4000 0.0500 
6 100 0.0224 0.0000 0.2540 0.0500 0.0400 7.3000 0.0500 



139 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

TABLE A.12 DC EXCITATION SYSTEM DATA  
 

 
 

TABLE A.13 STATIC EXCITATION SYSTEM DATA  
 
 
 
 
 
 
 
 
 
 

7 100 0.0322 0.0000 0.2950 0.0490 0.0400 5.6600 0.0500 
8 100 0.0280 0.0000 0.2900 0.0570 0.0450 6.7000 0.0500 
9 100 0.0298 0.0000 0.2106 0.0570 0.0450 4.7900 0.0500 

10 100 0.0199 0.0000 0.1690 0.0457 0.0400 9.3700 0.0500 
11 100 0.0103 0.0000 0.1280 0.0180 0.0120 4.1000 0.0500 
12 100 0.0220 0.0000 0.1010 0.0310 0.0250 7.4000 0.0500 
13 200 0.0030 0.0000 0.0296 0.0055 0.0040 5.9000 0.0500 
14 100 0.0017 0.0000 0.0180 0.00285 0.0023 4.1000 0.0500 
15 100 0.0017 0.0000 0.0180 0.00285 0.0023 4.1000 0.0500 
16 200 0.0041 0.0000 0.0356 0.0071 0.0055 7.800 0.0500 

xq x′q x″q T′q0 (s) T″q0 (s) H(s) D 
0.0690 0.0280 0.0250 1.5000 0.0350 42.0 4.0000 
0.2820 0.0600 0.0500 1.5000 0.0350 30.2 9.7500 
0.2370 0.0500 0.0450 1.5000 0.0350 35.8 10.0000 
0.2580 0.0400 0.0350 1.5000 0.0350 28.6 0.0000 
0.3100 0.0600 0.0500 0.4400 0.0350 26.0 3.0000 
0.2410 0.0450 0.0400 0.4000 0.0350 34.8 0.0000 
0.2920 0.0450 0.0400 1.5000 0.0350 26.4 0.0000 
0.2800 0.0500 0.0450 0.4100 0.0350 24.3 9.0000 
0.2050 0.0500 0.0450 1.9600 0.0350 34.5 14.0000 
0.1150 0.0450 0.0400 1.5000 0.0350 31.0 0.0000 
0.1230 0.0150 0.0120 1.5000 0.0350 28.2 13.6000 
0.0950 0.0280 0.0250 1.5000 0.0350 92.3 0.0000 
0.0286 0.0050 0.0040 1.5000 0.0350 248.0 0.0000 
0.0173 0.0025 0.0023 1.5000 0.0350 300.0 0.0000 
0.0173 0.0025 0.0023 1.5000 0.0350 300.0 0.0000 
0.0334 0.0060 0.0055 1.5000 0.0350 225.0 0.0000 

Bus Vrmax Vrmin KA TA (s) KF TF (s) TE (s) TR (s) Aex  Bex 
1 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 
2 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 
3 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 
4 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 
5 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 
6 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 
7 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 
8 10 -10 40.000 0.0200 0.0000 1.0000 0.7850 0.0100 0.07 0.9100 

Bus Vrmax Vrmin KA TA (s) TR (s) 
9 5 -5 200.0 0.0001 0.0100 

10 5 -5 200.0 0.0001 0.0100 
11 5 -5 200.0 0.0001 0.0100 
12 5 -5 200.0 0.0001 0.0100 
13 5 -5 200.0 0.0001 0.0100 
14 5 -5 200.0 0.0001 0.0100 
15 5 -5 200.0 0.0001 0.0100 
16 5 -5 200.0 0.0001 0.0100 
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TABLE A.14 LOCAL SPEED BASED PSS DATA (MODEL STRUCTURE SHOWN IN FIG. 2.4) 

 
 
 
 
 
 
 

Bus Vrmax Vrmin Tw Kpss T1 (s) T2 (s) T3 (s) T4 (s) 
10 0.1 -0.1 10.0 1.5000 0.1631 0.0746 0.1631 0.0746 
13 0.1 -0.1 10.0 18.000 0.2936 0.2856 0.2936 0.2856 
15 0.1 -0.1 10.0 28.000 0.2196 0.2021 0.2196 0.2021 
16 0.1 -0.1 10.0 20.000 0.3280 0.2941 0.3280 0.2941 



141 

Reference 

[1] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. 

Kundur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, R. Schulz, 

A. Stankovic, C. Taylor, and V. Vittal, "Causes of the 2003 major grid 

blackouts in north America and Europe, and recommended means to 

improve system dynamic performance," IEEE Trans. Power Syst., vol. 20, 

no. 4, pp. 1922-1928, Nov. 2005. 

[2] U. S.-Canada Power System Outage Task Force, "Final report on the 

August 14, 2003 blackout in the United States and Canada: causes and 

recommendations," https://reports.energy.gov/, 2004. 

[3] IEEE/CIGRE joint task force on stability terms and definitions, "Definition 

and classification of power system stability," IEEE Trans. Power Syst., vol. 

19, no. 2, pp. 1387-1401, May 2004. 

[4] G. Rogers, Power system oscillations. Bostan: Kluwer Academic, 2000. 

[5] P. Kundur, Power system stability and control. New York: McGraw-Hill, 

1994. 

[6] B. Pal and B. Chaudhuri, Robust control in power systems. New York: 

Springer, 2005. 

[7] M. Klein, G. J. Rogers, and P. Kundur, "A fundamental study of inter-area 

oscillations in power systems," IEEE Trans. Power Syst., vol. 6, no. 3, pp. 

914-921, Aug. 1991. 

[8] M. Klein, G. J. Rogers, S. Mooty, and P. Kundur, "Analytical investigation 



142 

of factors influencing power system stabilizers performance," IEEE Trans. 

Energy Conversion, vol. 7, no. 3, pp. 382-390, Sep. 1992. 

[9] F. R. Schleif and J. H. White, "Damping for northwest-southwest tie line 

oscillations-an analogue study," IEEE Trans. Power Apparatus and 

Systems, vol. PAS-85, no. 12, pp. 1239-1247, Dec. 1966. 

[10] J. He, C. Lu, X. Wu, P. Li, and J. Wu, "Design and experiment of wide 

area HVDC supplementary damping controller considering time delay in 

China southern power grid," IET Gener. Transm. Distrib., vol. 3, no. 1, pp. 

17-25, 2009. 

[11] P. Li, X. Wu, C. Lu, J. Shi, J. Hu, J. He, Y. Zhao, and A. Xu, 

"Implementation of CSG's wide-area damping control system: overview 

and experience " in Power Systems Conference and Exposition, 2009. 

[12] X. M. Zhang, Y. Zhang, L. Guan, and X. C. Wu, "Coordinated control of 

interarea oscillation in the China Southern Power Grid," IEEE Trans. 

Power Syst., vol. 21, no. 2, pp. 845-852, May 2006. 

[13] A. M. Simoes, D. C. Savelli, P. C. Pellanda, N. Martins, and P. Apkarian, 

"Robust design of a TCSC oscillation damping controllers in a weak 500-

kV interconnection considering multiple power flow scenarios and external 

disturbances," IEEE Trans. Power Syst., vol. 24, no.1, pp. 226-236, Feb. 

2009. 

[14] N. Martins, A. A. Barbosa, J. C. R. Ferraz, M. G. dos Santos, A. L. B. 

Bergamo, C. S. Yung, V. R. Oliveira, and N. J. P. Macedo, "Retuning 

stabilizers for the north-south Brazilian interconnection," in IEEE PES 

Summer Meeting, 1999. 

[15] B. M. Nomikos, M. E. Kouveletsou, and C. D. Vournas, "PSS design for 



143 

the Hellenic system with partial interconnection to Turkey," in IEEE Power 

Tech, 2009. 

[16] C. D. Vournas, A. Metsiou, and B. M. Nomikos, "Analysis of intra-area 

and interarea oscillations in South-Eastern UCTE interconnection," in 

IEEE PES General Meeting, 2009. 

[17] F. P. Demello and C. Concordia, "Concepts of synchronous machine 

stability as affected by excitation control," IEEE Trans. Power App. Syst., 

vol. PAS-88, no. 4, pp. 316-329, Apr. 1969. 

[18] IEEE Standard 421.5, "IEEE recommend practice for excitation system 

models for power system stability studies," Aug. 1992. 

[19] IEEE Digital Excitation Task Force of the Equipment Working Group of 

the IEEE/PES Excitation System Subcommittee, "Computer model for 

representation of digital-based excitation systems," IEEE Trans. Energy 

Conversion, vol. 11, no. 3, pp. 607-615, Sep. 1996. 

[20] E. V. Larsen and D. A. Swann, "Applying power system stabilizers Part : 

general concepts," IEEE Trans. Power App. Syst., vol. PAS-100, no. 6, pp. 

3017-3024, Jun. 1981. 

[21] E. V. Larsen and D. A. Swann, "Applying power system stabilizers Part II: 

performance objectives and tuning concepts," IEEE Trans. Power App. 

Syst., vol. PAS-100, no. 6, pp. 3025-3033, Jun. 1981. 

[22] E. V. Larsen and D. A. Swann, "Applying power system stabilizers Part III: 

practical considerations," IEEE Trans. Power App. Syst., vol. PAS-100, no. 

6, pp. 3034-3046, Jun. 1981. 

[23] Y. H. Song and A. T. Johns, Flexible ac transmission systems (FACTS). 

London: Institution of Electrical Engineers, 1999. 



144 

[24] N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, "VSC-based 

HVDC power transmission systems: an overview," IEEE Trans. Power 

Electron., vol. 24, no. 3, pp. 592-602, Mar. 2009. 

[25] Y. Xiao, Y. H. Song, C.-C. Liu, and Y. Z. Sun, "Available transfer 

capability enhancement using facts devices," IEEE Trans. Power Syst., vol. 

18, no. 1, pp. 305-312, Feb. 2003. 

[26] N. Yorino, E. E. El-Araby, H. Sasaki, and S. Harada, "A new formulation 

for FACTS allocation for security enhancement against voltage collapse," 

IEEE Trans. Power Syst., vol. 18, no. 1, pp. 3-10, Feb. 2003. 

[27] C. A. Canizares and Z. T. Faur, "Analysis of SVC and TCSC controllers in 

voltage collapse," IEEE Trans. Power Syst., vol. 14, no. 1, pp. 158-165, 

Feb. 1999. 

[28] P. Pourbeik and M. J. Gibbard, "Damping and synchronizing torques 

induced on generators by FACTS stabilizers in multimachine power 

systems," IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1920-1925, Nov. 

1996. 

[29] R. L. Lee, M. J. Beshir, A. T. Finley, D. R. Hayes, J. C. Hsu, H. R. 

Peterson, G. L. DeShazo, and D. W. Gerlach, "Application of static var 

compensators for the dynamic performance of the mead-adelanto and 

mead-phoenix transmission projects," IEEE Trans. Power Delivery, vol. 10, 

no. 1, pp. 459-466, Jan. 1995. 

[30] C. Gama, L. Angquist, G. Ingestrom, and M. Noroozian, "Commissioning 

and operative experience of TCSC for damping power oscillation in the 

Brazilian north-south interconnection," in Proc. CIGRE, France, 2000. 

[31] H. F. Wang and F. J. Swift, "Capability of the static VAr compensator in 



145 

damping power system oscillations," IEE Proc.-Gener. Transm. Distrib., 

vol. 143, no. 4, Jul. 1996. 

[32] B. Chaudhuri, R. Majumder, and B. C. Pal, "Robust damping of multiple 

swing modes employing global stabilizing signals with a TCSC," IEEE 

Trans. Power Syst., vol. 19, no. 1, pp. 499-506, Feb. 2004. 

[33] S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, "Optimal wide 

area controller and state predictor for a power system," IEEE Trans. Power 

Syst., vol. 22, no. 2, pp. 693-705, May 2007. 

[34] D. Rai, S. O. Faried, G. Ramakrishna, and A.-A. Edris, "Damping inter-

area oscillations using phase imbalanced series compensation schemes," 

IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1753-1761, Aug. 2011. 

[35] Z. Y. Huang, Y. X. Ni, C. M. Shen, F. F. Wu, S. S. Chen, and B. L. Zhang, 

"Application of unified power flow controller in interconnected power 

systems—modeling, interface, control strategy, and case study," IEEE 

Trans. Power Syst., vol. 15, no. 2, pp. 817-824, May 2000. 

[36] S. Mishra, P. K. Dash, P. K. Hota, and M. Tripathy, "Genetically optimized 

neuro-fuzzy IPFC for damping modal oscillations of power system," IEEE 

Trans. Power Syst., vol. 17, no. 4, pp. 1140-1147, Nov. 2002. 

[37] L. Anquist, B. Lundin, and J. Samuelsson, "Power oscillation damping 

using controlled reactive power compensation: a comparison between 

series and shunt approaches," IEEE Trans. Power Syst., vol. 8, no. 2, pp. 

687-699, May 1993. 

[38] T. Ackermann, Wind power in power systems. Chichester: John Wiley, 

2005. 

[39] O. Anaya-Lara, N. Jenkins, J. Ekanayake, P. Cartwright, and M. Hughes, 



146 

Wind energy generation—modelling and control. Chichester, U.K.: 

John&Sons, 2009. 

[40] L. Holdsworth, X. G. Wu, J. B. Ekanayake, and N. Jenkins, "Comparison 

of fixed speed and doubly-fed induction wind turbines during power 

system disturbances," IEE Proc.-Gener. Transm. Distrib., vol. 150, no. 3, 

pp. 343-352, May, 2003. 

[41] O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, "Rotor flux 

magnitude and angle control strategy for doubly fed induction generators," 

Wind Energy, vol. 9, no. 5, 2006. 

[42] E. Vittal, M. O'Malley, and A. Keane, "A steady-state voltage stability 

analysis of power systems with high penetrations of wind," IEEE Trans. 

Power Syst., vol. 25, no.1, pp. 433-442, Feb. 2010. 

[43] J. Morren, S. W. H. Haan, W. L. Kling, and J. A. Ferreira, "Wind turbines 

emulating inertia and supporting primary frequency control," IEEE Trans. 

Power Syst., vol. 21, no. 1, pp. 433-434, Feb. 2006. 

[44] F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, "A power system 

stabilizer for DFIG-based wind generation," IEEE Trans. Power Syst., vol. 

21, no. 2, pp. 763-772, May 2006. 

[45] L. Fan, Z. Miao, and D. Osborn, "Impact of doubly fed wind turbine 

generation on inter-area oscillation damping," in IEEE PES General 

Meeting, 2008. 

[46] Z. Miao, L. Fan, D. Osborn, and S. Yuvarajan, "Control of DFIG-based 

wind generation to improve inter-area oscillation damping," IEEE Trans. 

Energy Conversion, vol. 24, no. 2, pp. 415-422, Jun. 2009. 

[47] H. Yin, L. Fan, and Z. Miao, "Reactive power modulation for inter-area 



147 

oscillation damping of DFIG-based wind generation," in IEEE PES 

General Meeting,2010. 

[48] H. F. Wang and F. J. Swift, "A unified model for the analysis of FACTS 

devices in damping power system oscillations part I: single-machine 

infinite bus power systems," IEEE Trans. Power Delivery, vol. 12, no. 2, 

pp. 941-946, Apr. 1997. 

[49] H. F. Wang, F. J. Swift, and M. Li, "A unified model for the analysis of 

FACTS devices in damping power system oscillations part II: multi-

machine power systems," IEEE Trans. Power Delivery, vol. 13, no. 4, pp. 

1355-1362, Oct. 1998. 

[50] H. F. Wang, "A unified model for the analysis of FACTS devices in 

damping power system oscillations—part III: unified power flow 

controller," IEEE Trans. Power Delivery, vol. 15, no. 3, pp. 978-983, Jul. 

2000. 

[51] L. Fan, H. Yin, and Z. Miao, "On active/reactive power modulation of 

DFIG-based wind generation for interarea oscillation damping," IEEE 

Trans. Energy Conversion, vol. 26, no. 2, pp. 513-521, Jun. 2011. 

[52] N. Kshatriya, U. D. Annakkage, F. M. Hughes, and A. M. Gole, 

"Optimized partial eigenstructure assignment-based design of a combined 

PSS and active damping controller for a DFIG," IEEE Trans. Power Syst., 

vol. 25, no. 2, pp. 866-876, May 2010. 

[53] M. J. Gibbard and D. J. Vowles, "Reconciliation of methods of 

compensation for PSSs in multimachine systems," IEEE Trans. Power 

Syst., vol. 19, no. 1, pp. 463-472, Feb. 2004. 

[54] M. J. Gibbard, N. Martins, J. J. Sanchez-Gasca, N. Uchida, V. Vittal, and L. 



148 

Wang, "Recent application of linear analysis techniques," IEEE Trans. 

Power Syst., vol. 16, no. 1, pp. 154-162, Feb. 2001. 

[55] N. Martins, S. Corsi, G. Andersson, and M. J. Gibbard, "Impact of the 

interaction among power system controls," CIGRE Special Publication 

38.02.16, Technical Brochure, 2000. 

[56] L. Rouco, "Eigenvalue-based methods for analysis and control of power 

system oscillations," in IEE Colloguium on Power System Dynamics 

Stabilization, 1998. 

[57] M. A. Abido, "Optimal design of power-system stabilizers using particle 

swarm optimization," IEEE Trans. Energy Conversion, vol. 17, no. 3, pp. 

406-413, Sep. 2002. 

[58] J. H. Chow and J. J. Sanchez-Gasca, "Pole-placement designs of power 

system stabilizers," IEEE Trans. Power Syst., vol. 4, no. 1, pp. 271-277, 

Feb. 1989. 

[59] Y.-N. Yu and Q.-H. Li, "Pole-placement power system stabilizers design of 

an unstable nine-machine system," IEEE Trans. Power Syst., vol. 5, no. 2, 

pp. 353-358, May 1990. 

[60] J. C. R. Ferraz, N. Martins, and G. N. Taranto, "Simultaneous partial pole 

placement for power system oscillation damping control," in IEEE PES 

Winter Meeting, 2001. 

[61] P. S. Rao and I. Sen, "Robust pole placement stabilizer design using linear 

matrix inequalities," IEEE Trans. Power Syst., vol. 15, no. 1, pp. 313-319, 

Feb. 2000. 

[62] B. Moore, "On the flexibility offered by state feedback in multivariable 

systems beyond closed loop eigenvalue assignment," IEEE Trans. Autom. 



149 

Control, vol. AC-21, pp. 689-692, Oct. 1976. 

[63] G. Liu and R. Patton, Eigenstructure assignment for control system design. 

Chichester, U. K.: Wiley, 1998. 

[64] J. Lu, H. D. Chiang, and J. S. Thorp, "Eigenstructure assignment by 

decentralized feedback control," IEEE Trans. Autom. Control, vol. 38, no. 

4, pp. 587-593, Apr. 1993. 

[65] P.-H. Huang and Y.-Y. Hsu, "Eigenstructure assignment in a longitudinal 

power system via excitation control," IEEE Trans. Power Syst., vol. 5, no. 

1, pp. 96-102, Feb. 1990. 

[66] M. R. Khaldi, A. K. Sarkar, K. Y. Lee, and Y. M. Park, "The modal 

performance measure for parameter optimization of power system 

stabilizers," IEEE Trans. Energy Conversion, vol. 8, no. 4, pp. 660-666, 

Dec. 1993. 

[67] J. B. Simo, I. Kamwa, G. Trudel, and S.-A. Tahan, "Validation of a new 

modal performance measure for flexible controllers design," IEEE Trans. 

Power Syst., vol. 11, no. 2, pp. 819-826, May 1996. 

[68] A. J. Urdaneta, B. Feijoo, N. J. Bacalao, L. Flores, and R. Diaz, "Tuning of 

power system stabilizers using optimization techniques," IEEE Trans. 

Power Syst., vol. 6, no. 1, pp. 127-134, Feb. 1991. 

[69] X. Lei, E. N. Lerch, and D. Povh, "Optimization and coordination of 

damping controls for improving system dynamic performance," IEEE 

Trans. Power Syst., vol. 16, no. 3, pp. 473-480, Aug. 2001. 

[70] I. Kamwa, G. Trudel, and L. Gerin-Lajoie, "Robust design and 

coordination of multiple damping controllers using nonlinear constrained 

optimization," IEEE Trans. Power Syst., vol. 15, no. 3, pp. 1084-1092, Aug. 



150 

2000. 

[71] J. Nocedal and S. J. Wright, Numerical optimization. New York: Springer, 

2006. 

[72] M. C. Joshi and K. M. Moudgalya, Optimization: theory and practice. 

Harrow: Alpha Science International Ltd., 2004. 

[73] A. Qing, Differential evolution: fundamentals and applications in electrical 

engineering. Singapore: Wiley, 2009. 

[74] A. Mendonca and J. A. P. Lopes, "Simultaneous tuning of power system 

stabilizers installed in DFIG-based wind generation," in IEEE Power Tech, 

2007. 

[75] I. A. Hiskens and M. A. Pai, "Trajectory sensitivity analysis of hybrid 

system," IEEE Trans. Circuits Syst. Part I, vol. 47, no. 2, pp. 204-220, Feb. 

2000. 

[76] T. V. Cutsem and C. Vournas, Voltage stability of electric power systems. 

Boston, Mass: Kluwer Academic Publishers, 1998. 

[77] I. J. Perez-Arriaga, G. C. Verghese, and F. C. Schweppe, "Selective modal 

analysis with applications to electric power systems, part I: heuristic 

introduction," IEEE Trans. Power App. Syst., vol. PAS-101, no. 9, pp. 

3117-3125, Sep. 1982. 

[78] A. Heniche and I. Kamwa, "Control loops selection to damp inter-area 

oscillations of electrical networks," IEEE Trans. Power Syst., vol. 17, no. 2, 

pp. 378-384, May 2002. 

[79] A. Heniche and I. Kamwa, "Assessment of two methods to select wide-area 

signals for power system damping control," IEEE Trans. Power Syst., vol. 

23, no.2, pp. 572-581, May 2008. 



151 

[80] F. L. Pagola, I. J. Perez-Arriaga, and G. C. Verghese, "On sensitivities, 

residues and participations: applications to oscillatory stability analysis and 

control," IEEE Trans. Power Syst., vol. 4, no. 1, pp. 278-285, Feb. 1989. 

[81] J. R. Leigh, Control theory. London: Institution of Electrical Engineers, 

2004. 

[82] M. J. Gibbard, "Co-ordinated design of multimachine power system 

stabilisers based on damping torque concepts," IEE Proceedings, Part C, 

vol. 135, no. 4, pp. 276-284, Jul. 1988. 

[83] M. J. Gibbard, "Robust design of fixed-parameter power system stabilisers 

over a wide range of operating conditions," IEEE Trans. Power Syst., vol. 6, 

no. 2, pp. 794-800, May 1991. 

[84] P. Pourbeik, M. J. Gibbard, and D. J. Vowles, "Proof of the equivalence of 

residues and induced torque coefficients for use in the calculation of 

eigenvalue shifts," IEEE Power Eng. Rev. , vol. 22, no. 1, pp. 58-60, Jan. 

2002. 

[85] P. Pourbeik and M. J. Gibbard, "Simultaneous coordination of power 

system stabilizers and facts device stabilizers in a multi-machine power 

system for enhancing dynamic performance," IEEE Trans. Power Syst., vol. 

13, no. 2, pp. 473-479, May 1998. 

[86] M. G. Safonov and R. Y. Chiang, "A Schur method for balanced model 

reduction," IEEE Trans. Autom. Control, vol. AC-34, no. 7, pp. 729-733, 

Jul. 1989. 

[87] K. Glover, "All optimal Hankel norm approximation of linear multivariable 

systems and their l infinite error bounds," International journal of control, 

vol. 39, no. 6, pp. 1115-1193, 1984. 



152 

[88] N. Martins, F. G. Silva, P. C. Pellanda, and A. de Castro, "Utilizing transfer 

function modal equivalents of low-order for the design of power oscillation 

damping controllers in large power systems," in IEEE PES General 

Meeting, 2005. 

[89] F. D. Freitas, J. Rommes, and N. Martins, "Gramian-based reduction 

method applied to large sparse power system descriptor models," IEEE 

Trans. Power Syst., vol. 23, no. 3, pp. 1258-1270, Aug. 2008. 

[90] D. Chaniotis and M. A. Pai, "Model reduction in power systems using 

Krylov subspace methods," IEEE Trans. Power Syst., vol. 20, no. 2, pp. 

888-894, May 2005. 

[91] N. Martins and P. E. M. Quintao, "Computing dominant poles of power 

system multivariable transfer functions," IEEE Trans. Power Syst., vol. 18, 

no. 1, pp. 152-159, Feb. 2003. 

[92] N. Martins, P. C. Pellanda, and J. Rommes, "Computation of transfer 

function dominant zeros with applications to oscillation damping control of 

large power systems," IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1657-

1664, Nov. 2007. 

[93] D. J. Trudnowski, J. R. Smith, and T. A. Short, "An application of Prony 

methods in PSS design for multimachine systems," IEEE Trans. Power 

Syst., vol. 6, no. 1, pp. 118-126, Feb. 1991. 

[94] J. R. Smith, J. F. Hauer, and D. J. Trudnowski, "Transfer function 

identification in power system applications," IEEE Trans. Power Syst., vol. 

8, no. 3, pp. 1282-1290, Aug. 1993. 

[95] I. Kamwa, R. Grondin, J. Dickinson, and S. Fortin, "A minimal realization 

approach to reduced-order modeling and modal analysis for power system 



153 

response signals," IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1020-1029, 

Aug. 1993. 

[96] J. J. Sanchez-Gasca and J. H. Chow, "Computation of power system low-

order models from time domain simulations using a Hankel matrix," IEEE 

Trans. Power Syst., vol. 12, no. 4, pp. 1461-1467, Nov. 1997. 

[97] A. Hasanovic, A. Feliachi, A. Hasanovic, N. B. Bhatt, and A. G. DeGroff, 

"Practical robust PSS design through identification of low-order transfer 

function," IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1492-1500, Aug. 

2004. 

[98] D. Dotta, A. S. Silva, and I. C. Decker, "Wide-area measurements-based 

two-level control design considering signal transmission delay," IEEE 

Trans. Power Syst., vol. 24, no. 1, pp. 208-216, Feb. 2009. 

[99] L. J. Cai and I. Erlich, "Simultaneous coordinated tuning of PSS and 

FACTS damping controllers in large power systems," IEEE Trans. Power 

Syst., vol. 20, no. 1, pp. 294-300, Feb. 2005. 

[100] J. H. Chow, J. J. Sanchez-Gasca, R. Haoxing, and S. Wang, "Power system 

damping controller design using multiple input signals," IEEE Control Syst. 

Mag. , vol. 20, no. 4, pp. 82-90, Aug. 2000. 

[101] H. Wu, S. T. Konstantinos, and G. T. Heydt, "Evaluation of time delay 

effects to wide-area power system stabilizer design," IEEE Trans. Power 

Syst., vol. 19, no. 4, pp. 1935-1941, Nov. 2004. 

[102] I. Kamwa, R. Grondin, and Y. Hebert, "Wide-area measurement based 

stabilizing control of large power systems-a decentralized/hierarchical 

approach," IEEE Trans. Power Syst., vol. 16, no. 1, pp. 136-153, Feb. 2001. 

[103] H. Ni, G. T. Heydt, and L. Mili, "Power system stability agents using 



154 

robust wide-area control," IEEE Trans. Power Syst., vol. 17, no. 4, pp. 

1123-1131, Nov. 2002. 

[104] R. Grondin, I. Kamwa, G. Trudel, J. Taborda, R. Lenstroem, L. Gerin-

Lajoie, J. P. Gingras, M. Racine, and H. Baumberger, "The multi-band PSS: 

a flexible technology designed to meet opening markets," in Proc. CIGRE, 

France, 2000. 

[105] R. V. de Oliveira, R. Kuiava, R. A. Ramos, and N. G. Bretas, "Automatic 

tuning method for the design of supplementary damping controllers for 

flexible alternating current transmission system devices," IET Gener. 

Transm. Distrib., vol. 3, no. 10, pp. 919-929, 2009. 

[106] B. Chaudhuri, S. Ray, and R. Majumder, "Robust low-order controller 

design for multi-modal power oscillation damping using flexible AC 

transmission system devices," IET Gener. Transm. Distrib., vol. 3, no. 10, 

pp. 919-929, 2009. 

[107] A. J. A. S. Costa, F. D. Freitas, and H. E. Pena, "Power system stabilizer 

design via structurally constrained optimal control," Electr. Power Syst. 

Res., vol. 33, no. 1, pp. 33-40, Apr. 1995. 

[108] S. Q. Yuan and D. Z. Fang, "Robust PSS parameters design using a 

trajectory sensitivity approach," IEEE Trans. Power Syst., vol. 24, no. 2, pp. 

1011-1018, May 2009. 

[109] R. A. Jabr, B. C. Pal, and N. Martins, "A sequential conic programming 

approach for the coordinated and robust design of power system 

stabilizers," IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1627-1637, Aug. 

2010. 

[110] R. Majumder, B. Chaudhuri, H. El-Zobaidi, B. Pal, and I. Jaimoukha, "LMI 



155 

approach to normalised H infinite loop-shaping design of power system 

damping controllers," IEE Proc.-Gener. Transm. Distrib., vol. 152, no. 6, 

pp. 952-960, Nov. 2005. 

[111] M. Djukanovic, M. Khammash, and V. Vittal, "Sequential synthesis of 

structured sigular value based decentralized controllers in power systems," 

IEEE Trans. Power Syst., vol. 14, no. 2, pp. 635-641, May 1999. 

[112] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis 

and design. Chichester England; Hoboken, NJ: John Wiley, 2005. 

[113] R. A. Ramos, A. C. P. Martins, and N. G. Bretas, "An improved 

methodology for the design of power system damping controllers," IEEE 

Trans. Power Syst., vol. 20, no. 4, pp. 1938-1945, Nov. 2005. 

[114] A. C. Zolotas, B. Chaudhuri, I. M. Jaimoukha, and P. Korba, "A study on 

LQG/LTR control for damping inter-area oscillations in power systems," 

IEEE Trans. Control Syst. Technol., vol. 15, no. 1, pp. 151-160, Jan. 2007. 

[115] R. A. Ramos, L. F. C. Alberto, and N. G. Bretas, "A new methodology for 

the coordinated design of robust decentralized power system damping 

controllers," IEEE Trans. Power Syst., vol. 19, no. 1, pp. 444-454, Feb. 

2004. 

[116] Z. Wang, C. Y. Chung, K. P. Wong, C. T. Tse, and K. W. Wang, "Robust 

power system stabilizer design under multioperating conditions using 

differential evoluation," IET Gener. Transm. Distrib., vol. 2, no. 5, pp. 690-

700, 2008. 

[117] D. Z. Fang, S. Q. Yuan, Y. J. Wang, and T. S. Chung, "Coordinated 

parameter design of STATCOM stabilizer and PSS using MSSA 

algorithm," IET Gener. Transm. Distrib., vol. 1, no. 4, pp. 670-678, 2007. 



156 

[118] A. J. A. S. Costa, F. D. Freitas, and A. S. e Silva, "Design of decentralized 

controllers for large power systems considering sparsity," IEEE Trans. 

Power Syst., vol. 12, no. 1, pp. 144-152, Feb. 1997. 

[119] J. J. Sanchez, V. Vittal, M. J. Gibbard, A. R. Messina, D. J. Vowles, S. Liu, 

and U. D. Annakkage, "Inclusion of higher order terms for small-signal 

(modal ) analysis: committee report-task force on assessing the need to 

include high order terms for small-signal (modal) analysis," IEEE Trans. 

Power Syst., vol. 20, no. 4, pp. 1886-1904, Nov. 2005. 

[120] M. H. Haque, "Improvement of first swing stability limit by utilizing full 

benefit of shunt FACTS devices," IEEE Trans. Power Syst., vol. 19, no. 4, 

pp. 1894-1902, Nov. 2004. 

[121] C. W. Taylor, D. C. Erickson, K. E. Martins, R. E. Wilson, and V. 

Venkatasubramanian, "WACS-Wide-area stability and voltage control 

system: R&D and online demonstration," Proc. IEEE, vol. 93, no. 5, pp. 

892-906, May 2005. 

[122] J. W. Stahlhut, T. J. Browne, G. T. Heydt, and V. Vittal, "Latency viewed 

as a stochastic process and its impact on wide area power system control 

signals," IEEE Trans. Power Syst., vol. 23, no. 1, pp. 84-91, Feb. 2008. 

[123] G. J. W. Dudgeon, W. E. Leithead, A. Dysko, J. O'Reilly, and J. R. 

McDonald, "The effective role of AVR and PSS in power systems: 

frequency response analysis," IEEE Trans. Power Syst., vol. 22, no. 4, pp. 

1986-1994, Nov. 2007. 

[124] M. Zarghami, M. L. Crow, J. Sarangapani, Y. Liu, and S. Atcitty, "A novel 

approach to interarea oscillation damping by unified power flow controllers 

utilizing ultracapacitors," IEEE Trans. Power Syst., vol. 25, no. 1, pp. 404-



157 

412, Feb. 2010. 

[125] W. Yao, L. Jiang, Q. H. Wu, J. Y. Wen, and S. J. Cheng, "Delay-dependent 

stability analysis of the power system with a wide-area damping controller 

embedded," IEEE Trans. Power Syst., vol. 26, no. 1, pp. 233-240, Feb. 

2011. 

[126] M. Chilali and P. Gahinet, "H infinite design with pole placement 

constraints: an LMI approach," IEEE Trans. Autom. Control, vol. 41, no. 3, 

pp. 499-506, Mar. 1996. 

[127] B. C. Pal, "Robust damping of interarea oscillations with unified power 

flow controller," IEE Proc.-Gener. Transm. Distrib., vol. 149, no. 6, pp. 

733-738, 2002. 

[128] Y. Zhang and A. Bose, "Design of wide-area damping controllers for 

interarea oscillations," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1136-

1143, Aug. 2008. 

[129] T. T. Nguyen and R. Gianto, "Optimization-based control coordination of 

PSSs and FACTS devices for optimal oscillations damping in 

multimachine power system," IET Gener. Transm. Distrib., vol. 1, no. 4, 

pp. 564-573, 2009. 

[130] J. L. C. Zanetta and J. J. D. Cruz, "An incremental approach to the 

coordinated tuning of power system stabilizers using mathematical 

programming," IEEE Trans. Power Syst., vol. 20, no. 2, pp. 895-902, May 

2005. 

[131] M. V. A. Nunes, J. A. P. Lopes, H. H. Zurn, U. H. Bezerra, and R. G. 

Almeida, "Influence of the variable-speed wind generators in transient 

stability margin of the conventional generators integrated in electrical 



158 

grids," IEEE Trans. Energy Conversion, vol. 19, no. 4, pp. 692-701, Dec. 

2004. 

[132] S. O. Faried, R. Billinton, and S. Aboreshaid, "Probabilistic evaluation of 

transient stability of a power system incorporating wind farms," IET Gener. 

Transm. Distrib., vol. 4, no. 4, pp. 299-307, 2010. 

[133] D. J. Trudnowski, A. Gentile, J. M. Khan, and E. M. Petritz, "Fixed-speed 

wind-generator and wind-park modeling for transient stability studies," 

IEEE Trans. Power Syst., vol. 19, no. 4, pp. 1911-1917, Nov. 2004. 

[134] N. R. Ullah, T. Thiringer, and D. Karlsson, "Voltage and transient stability 

support by wind farms complying with the E.ON netz grid code," IEEE 

Trans. Power Syst., vol. 22, no. 4, pp. 1647-1656, Nov. 2007. 

[135] J. Ekanayake and N. Jenkins, "Comparison of the response of doubly fed 

and fix-speed induction generator wind turbines to changes in network 

frequency," IEEE Trans. Energy Conversion, vol. 19, no. 4, pp. 800-802, 

Dec. 2004. 

[136] E. Muljadi, C. P. Butterfield, B. Parsons, and A. Ellis, "Effect of variable 

speed wind turbine generator on stability of a weak grid," IEEE Trans. 

Energy Conversion, vol. 22, no. 1, pp. 29-36, Mar. 2007. 

[137] J. J. Sanchez-Gasca, N. W. Miller, and W. W. Price, "A modal analysis of a 

two-area system with significant wind power penetration," in IEEE Power 

Syst. Conf. Expo., 2004. 

[138] J. G. Slootweg and W. L. Kling, "The impact of large scale wind power 

generation on power system oscillations," Electr. Power Syst. Res., vol. 67, 

pp. 9-20, 2003. 

[139] D. Vowles, C. Samarasinghe, M. Gibbard, and G. Ancell, "Effect of wind 



159 

generation on small-signal stability—a New Zealand example," in IEEE 

PES General Meeting, 2008. 

[140] A. Mendonca and J. A. P. Lopes, "Impact of large scale wind power 

integration on small signal stability," in Int. Conf. Future Power Systems, 

2005. 

[141] D. Gautam, V. Vittal, and T. Harbour, "Impact of increased penetration of 

DFIG-based wind turbine generators on transient and small signal stability 

of power systems," IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1426-1434, 

Aug. 2009. 

[142] G. Tsourakis, B. M. Nomikos, and C. D. Vournas, "Effect of wind parks 

with doubly fed asynchronous generators on small-signal stability," Electr. 

Power Syst. Res., vol. 79, no. 1, pp. 190-200, Jan. 2009. 

[143] P. Ledesma and C. Gallardo, "Contribution of variable-speed wind farms to 

damping of power system oscillations," in IEEE Power Tech., 2007. 

[144] G. Tsourakis, B. M. Nomikos, and C. D. Vournas, "Contribution of doubly 

fed wind generators to oscillation damping," IEEE Trans. Energy 

Conversion, vol. 24, no. 3, pp. 783-791, Sep. 2009. 

[145] D. Gautam, L. Goel, R. Ayyanar, V. Vittal, and T. Harbour, "Control 

strategy to mitigate the impact of reduced inertia due to doubly fed 

induction generators on large power systems," IEEE Trans. Power Syst., 

vol. 26, no. 1, pp. 214-224, Feb. 2011. 

[146] P. Ledesma and J. Usaola, "Doubly fed induction generator model for 

transient stability analysis," IEEE Trans. Energy Conversion, vol. 20, no. 2, 

pp. 388-397, Jun. 2005. 

[147] J. F. M. Padron and A. E. F. Lorenzo, "Calculating steady-state operating 



160 

conditions for doubly-fed induction generator wind turbines," IEEE Trans. 

Power Syst., vol. 25, no. 2, pp. 922-928, May 2010. 

[148] F. M. Hughes, O. Anaya-Lara, G. Ramtharan, N. Jenkins, and G. Strbac, 

"Influence of tower shadow and wind turbulence on the performance of 

power system stabilizers for DFIG-based wind farms," IEEE Trans. Energy 

Conversion, vol. 23, no. 2, pp. 519-528, Jun. 2008. 

[149] L. Fan, Z. Miao, S. Yuvarajan, and J. Glower, "A comparison of slip 

control, FMA control and vector control in DFIG converter," in Industrial 

Electronics, 2008. 

[150] A. Tapia, G. Tapia, J. X. Ostolaza, and J. R. Saenz, "Modelling and control 

of a wind turbine driven doubly fed induction generator," IEEE Trans. 

Energy Conversion, vol. 18, no. 2, pp. 194-204, Jun. 2003. 

[151] W. Chen and Y. Hsu, "Controller design for an induction generator driven 

by a variable-speed wind turbine," IEEE Trans. Energy Conversion, vol. 21, 

no. 3, pp. 625-635, Sep. 2006. 

[152] Y. Lei, A. Mullane, G. Lightbody, and R. Yacamini, "Modeling of the 

wind turbine with a doubly fed induction generator for grid integration 

studies," IEEE Trans. Energy Conversion, vol. 21, no. 1, pp. 257-264, Mar. 

2006. 

[153] Y. Sun, L. Wang, G. Li, and J. Lin, "A review on analysis and control of 

small signal stability of power systems with large scale integration of wind 

power," in International Conference on Power System Technology, 2010. 

[154] Y. Mishra, S. Mishra, M. Tripathy, N. Senroy, and Z. Y. Dong, "Improving 

stability of a DFIG-based wind power system with tuned damping 

controller," IEEE Trans. Energy Conversion, vol. 24, no. 3, pp. 650-660, 



161 

Sep. 2009. 

[155] Y. Mishra, S. Mishra, F. Li, Z. Y. Dong, and R. C. Bansal, "Small-signal 

stability analysis of a DFIG-based wind power system under different 

modes of operation," IEEE Trans. Energy Conversion, vol. 24, no. 4, pp. 

972-982, Dec. 2009. 

[156] A. Mendonca and J. A. P. Lopes, "Robust tuning of power system 

stabilizers to installed in wind energy conversion system," IET Renew. 

Power Gener., vol. 3, no. 4, pp. 465-475, 2009. 

[157] P. P. (convener), "Modeling and dynamic behavior of wind generation as it 

relates to power system control and dynamic performance," in CIGRE, 

France, 2007. 

[158] P. Ledesma and J. Usaola, "Effect of neglecting stator transients in doubly 

fed induction generators models," IEEE Trans. Energy Conversion, vol. 19, 

no. 2, pp. 459-461, Jun. 2004. 

[159] F. Mei and B. C. Pal, "Modelling and small-signal analysis of a grid 

connected doubly-fed induction generator," in IEEE PES General Meeting, 

2005. 

[160] J. B. Ekanayake, L. Holdsworth, X. Wu, and N. Jenkins, "Dynamic 

modeling of doubly fed induction generator wind turbines," IEEE Trans. 

Power Syst., vol. 18, no. 2, pp. 803-809, May 2003. 

[161] F. Mei and B. Pal, "Modal analysis of grid-connected doubly fed induction 

generators," IEEE Trans. Energy Conversion, vol. 22, no. 3, pp. 728-736, 

Sep. 2007. 

[162] R. G. de Almeida, J. A. P. Lopes, and J. A. L. Barreiros, "Improving power 

system dynamic behavior through doubly fed induction machines 



162 

controlled by static converter using fuzzy control," IEEE Trans. Power 

Syst., vol. 19, no. 4, pp. 1942-1950, Nov. 2004. 

[163] S. K. Salman and A. L. J. Teo, "Windmill modeling consideration and 

factors influencing the stability of a grid-connected wind power-based 

embedded generator," IEEE Trans. Power Syst., vol. 18, no. 2, pp. 793-802, 

May 2003. 

[164] F. Wu, X.-P. Zhang, and P. Ju, "Small signal stability analysis and optimal 

control of a wind turbine with doubly fed induction generator," IET Gener. 

Transm. Distrib., vol. 1, no. 5, pp. 751-760, 2007. 

[165] J. P. A. Vieira, M. V. A. Nunes, U. H. Bezerra, and A. C. do Nascimento, 

"Design optimal controllers for doubly fed induction generators using a 

genetic algorithm," IET Gener. Transm. Distrib., vol. 3, no. 5, pp. 472-484, 

2009. 

[166] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design, and 

Tuning. Research Triangle Park, NC: Instrument Society of America, 1995. 

[167] K. Elkington, M. Ghandhari, and L. Soder, "Using power system stabilizers 

in doubly fed induction generators," in Australasian Universities Power 

Engineering Conference, 2008. 




