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Abstract

The dissertation is composed of three distinct but related components, which relate to
direction finding and/or polarization estimation with diversely polarized antenna arrays.

The three parts are briefly summarized below:

(1) “Vector cross-product direction-finding” with an electromagnetic vector-sensor of six

orthogonally oriented but spatially non-collocating dipoles / loops

Direction-finding capability has recently been advanced by synergies between the cus-
tomary approach of interferometry and the new approach of “vector cross product”
based Poynting-vector estimator. The latter approach measures the incident electro-
magnetic wavefield for each of its six electromagnetic components, all at one point in
space, to allow a vector cross-product between the measured electric-field vector and
the measured magnetic-field vector. This would lead to the estimation of each inci-
dent source’s Poynting-vector, which (after proper norm-normalization) would then
reveal the corresponding Cartesian direction-cosines, and thus the azimuth-elevation
arrival angles. Such a “vector cross product” algorithm has been predicated on the
measurement of all six electromagnetic components at one same spatial location.
This physically requires an electromagnetic vector-sensor, i.e., three identical but
orthogonally oriented electrically short dipoles, plus three identical but orthogonally
oriented magnetically small loops — all spatially collocated in a point-like geometry.
Such a complicated “vector-antenna” would require exceptionally effective electro-
magnetic isolation among its six component-antennas. To minimize mutual coupling
across these collocated antennas, considerable antennas-complexity and hardware
cost could be required. Instead, Chapter 2 shows how to apply the “vector cross-
product” direction-of-arrival estimator, even if the three dipoles and the three loops
are located separately (instead of collocating in a point-like geometry). This new
scheme has great practical value, in reducing mutual coupling, in simplifying the an-
tennas hardware, and in extending the spatial aperture to refine the direction-finding

accuracy by orders of magnitude.



(2)

Various triad-compositions of collocated dipoles/loops, for direction finding & po-

larization estimation

To form a collocated triad of orthogonally oriented dipole(s) and/or loop(s), 20 dif-
ferent compositions are possible and these compositions are investigated in Chapter
3. For each such composition: (i) closed-form formulas are produced here to esti-
mate the azimuth-elevation direction-of-arrival and the polarization-parameters, or

(ii) reasoning is given why such estimation is inviable.

Polarization estimation with a dipole-dipole pair, a dipole-loop pair, or a loop-loop

pair of various orientations

Chapter 4 aims to estimate the polarization of fully polarized sources, given prior
knowledge of the incident sources’ azimuth-elevation directions-of-arrival, using a
pair of diversely polarized antennas — two electrically small dipoles, or two small
loops, or one each. The pair may be collocated, or spatially separated by a known
displacement. Each antenna may orient along any Cartesian coordinate. Altogether,
fifteen antenna/orientation configurations are thus possible. For each configuration,
Chapter 4 derives (i) the closed-form polarization-estimation formulas, (ii) the associ-

ated Cramér-Rao bounds, and (iii) the associated computational numerical stability.
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Chapter 1

Introduction

This dissertation presents 3 research projects of the candidate student’s work during the
the past two years and two months. All these 3 research projects have been published or
accepted to publish in IEEE journals and all of them are about direction finding and/or
polarization estimation with diversely polarized antenna arrays.

In radar and wireless communication systems, it is essential to consider the transmis-
sion, propagation and reception of electromagnetic waves, since they are inherent physical
processes of the signal. Furthermore, they are polarization-sensitive processes. Polarime-
try is the measurement and the interpretation of the polarization of transverse waves [8].
The polarization state of an incident wave could reveal attributes intrinsic to the emit-
ter or the reflector, e.g. a star’s photosphere asymmetry due to “limb polarization” [79].
Therefore, polarization-related considerations should be critical factors in the design and
operation of any aforementioned system. Based on the polarization diversity among the
receive-antennas, the incident sources can be separated on account of their polarization
differences, in addition to their azimuth/elevation angular differences [32]. Commonly
used for polarization-estimation are electrically short dipoles and small loops.! Such a
dipole (loop), when oriented along a Cartesian coordinate, would measure the electric-

field (magnetic-field) component of the incident transverse wavefield along that axis.

1.1 Review of the Electromagnetic Vector

Consider a far-field source S, depicted in Figure 1.1, emitting a completely polarized
transverse electromagnetic wave, which can be characterized by the electric-field vector

e and the magnetic-field vector h. With (v,7), defined in Table 1.1 2, to denote the

LA dipole is considered “short”, if it is much shorter than a wavelength. A loop is considered “small”,

if its circumference is below a quarter-wavelength [15].
2If the electromagnetic wave is linearly polarized, n = 0 [32]. If the electromagnetic wave is circularly

polarized, v = 45° and n = £90° (4 for left circularly polarized and — for right circularly polarized) [32].

13



Table 1.1: Definitions of Symbols

Symbol Definition

v € [0,7/2] | auxiliary polarization angle
[

n € [-m, 7| | polarization phase difference

6 € [0,n] elevation angle

7r
¢ €10,27) | azimuth angle

Table 1.2: List of Notations

Notation | Definition

T transposition operator

H Hermitian operator

* complex conjugation

& Kronecker product

® element-wise multiplication between two vectors
-l Frobenius norm

/ the angle of the ensuring entity

[]e (th entity of the vector in | |

polarization state of the source, in spherical coordinates as shown in Figure 1.1, e and h

can be expressed as [13, 20, 32]:

e = sinye!"Vy + cosyva, (1.1)

h = Z,(cosyVy +sin 76”\7’9) , (1.2)

where Z, is the intrinsic impedance of the transmission medium, v,,, is a unit vector along
the direction of m (see Figure 1.1).
Equivalently, in Cartesian coordinates after normalization, e and h can be re-expressed

as [13, 20, 32]

e = (sin~ycosfcospe’ — cos~ysin ¢)V,

+(sin~y cos 0 sin e’ + cosy cos @)V

— sinysin 0e/7¥ ., (1.3)
h = —(cos~cosfcos ¢+ sin~ysin ¢e’)v,

—(cos~y cos fsin ¢ — sin~y cos pe!) v,

+ cosysin v, (1.4)

where (6, ¢) symbolize the direction-of-arrival of the source and they are defined in Table

14



Figure 1.1: Electromagnetic vector.

1.1. Re-express the above e and h in matrix form as [15, 20, 32]:

[ ex (0, 0,7v,1m) ] [ sin y cos 0 cos e’ — cos ysin ¢ ]
ey(0,0,v,1n) sin 7y cos 6 sin e’ + cos y cos ¢
e, (0,7, — sin y sin fel"
=(0,7,m) def Y | (1.5)
hy (6, ¢,7v,1n) — cos 7y cos 6 cos ¢ — sin ~y sin e’
hy(8, ¢,v,1m) — €08 7y cos 0 sin ¢ + sin 7y cos gel”
| 2 (0,7) | i cosysin 6 |
[ cos 0 cos ¢ —sing ]
cos fsin ¢ cos ¢
—sinf 0 sin yel"
(1.6)
—sing  —cosfcos ¢ cos 7y
. E/_/
cos ¢ —cosfsin ¢ 9l ()
i 0 sin 6 ]
“'o(0.9)

Table 1.2 lists the notations used in this dissertation and they will not be defined again

in the later chapters.

1.2 Literature Review of Diversely Polarized Antennas In-

vestigated for Direction Finding and Polarization Esti-

mation

Direction-of-arrival estimation is an important functional requirement in various systems

and practical applications, such as: the smart antennas, radar, mobile communication,

15



imaging, biomedical systems and target tracking applications. A variety of algorithms
have been investigated for direction-of-arrival estimation with antenna arrays [30, 41], for
example: the Capon [1] algorithm, the subspace fitting algorithm [10], MUSIC [4] like
algorithms [7, 14, 57, 58, 80, 93], ESPRIT [6] like algorithms [5, 24, 141, 151], and the
maximum likelihood (ML) method [9], etc.

Since polarized antennas can provide additional information of the incident source, di-
versely polarized antenna arrays have received considerable attentions during the past two
decades and they have been exploited extensively for direction-finding by adopting vari-
ous algorithms mentioned above [13, 17, 20, 21, 23, 110]. Widely used polarized antennas
in the literature include: a) the six-component collocated electromagnetic vector sensor,
b)collocated antenna triads, and c)collocated antenna pairs. The spatial collocation of an
array of receive-antennas would mean no spatial phase delay in the array manifold. Hence,

the array manifold would be independent of the incident sources’ frequency-spectrum.

1.2.1 The Six-Component Collocated Electromagnetic Vector Sensor

Figure 1.2: Electromagnetic vector sensor. [101]

16



A six-component electromagnetic vector-sensor consists of three identical, but orthog-
onally oriented, electrically short dipoles ({e;, ey, €.} in Figure 1.2), plus three identical
but orthogonally oriented magnetically small loops ({hy, hy, h.} in Figure 1.2) — all spa-
tially collocated in a point-like geometry (see Figure 1.2) [32]. This electromagnetic
vector-sensor aims to distinctly measure all three Cartesian components of the incident
electric field and all three Cartesian components of the incident magnetic field, as a 6 x 1
vector, at one spatial location and at one time-instant.

Such an electromagnetic vector-sensor’s array manifold may be idealized, by overlook-
ing all mutual coupling among its six collocated constituent antennas. This idealized
array manifold would be a concatenation of the 3 x 1 electric-field vector e with the 3 x 1
magnetic-field vector h, to be (1.5) in Section 1.1 [13, 20, 32].

The unique array-manifold in (1.5) has been much exploited by various eigenstructure-
based direction-finding schemes [15, 27, 32, 33, 37, 43, 46, 47, 50-53, 56, 63, 71, 73-76, 86,
87, 89, 94, 97-100, 102, 105, 109, 116, 119, 131-135, 137, 138, 150].

{a} “Vector-cross-product” approach of direction-finding with an electromagnetic vector
sensor was proposed in [20] and this method was used for source tracking in [47]. This
“vector-cross-product” approach was advanced in [50-53] for direction-finding and
polarization estimation with electromagnetic vector sensor arrays. The direction-
finding and polarization estimation of multiple sources with a single electromagnetic
vector sensor were investigated in [32, 56, 76, 87, 97, 98, 133, 134]. The separation
and tracking of multiple sources were studied in [63] with one electromagnetic vector

Sensor.

{b} The ESPRIT [6] algorithm was investigated in [15] for direction-of-arrival and po-
larization estimation with electromagnetic vector sensors and a simplified algorithm
was developed in [50] by adopting the above “vector-cross-product” approach. [46]
advanced the ESPRIT algorithm for direction finding with electromagnetic vector

sensors in a scenario with both completely and incompletely polarized signals.

{c} MUSIC-based algorithms were developed in [53, 75, 133, 134] and quaternion-based
direction-finding algorithms were studied in [73, 89, 109, 131] with electromagnetic
vector sensors. The propagator method was adopted in [137] for direction-of-arrival
estimation with electromagnetic vector sensors and a twofold mode-projection based

direction-finding algorithm was proposed in [138].

{d} Direction-finding of coherent sources with electromagnetic vector sensors were inves-

tigated in [71, 74, 105, 150].
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1.2.2 Various Triad-Compositions of Collocated Dipoles/Loops

For simultaneous estimation of the azimuth/elevation arrival angles (¢, §) and polarization

parameters (7, 7), a minimum of three diversely polarized antennas are needed, because at

least three complea-value equations (based on three antennas’ measurements) are needed

to be solved for the four unknown real-value source-parameters (i.e. 6, ¢,~,n) and for the

one unknown complex-value multiplicative coefficient «, which arises from the eigen-based

estimation of the source’s steering vector.

To select three out of the six electromagnetic components, the number of different

choices amount to = 20. Among these 20 possible configurations,

1)

The dipole triad (a.k.a. a tripole) has been used for direction-of-arrival estimation in
[40, 42, 48, 49, 59, 68, 77, 91, 95, 96, 107, 111, 120, 128-130, 137, 138, 144, 146, 163],
with closed-form estimation formulas available in [59, 137, 146]. The dipole triad has
also been used for polarization estimation in [59, 137], with closed-form estimation
formulas available therein. For closed-form Cramér-Rao bound expressions, please
refer to [136]. For antenna-electromagnetic implementation of this tripole, please see

[111].

The loop triad has been used for direction-of-arrival estimation in [59, 61, 129, 137],
with closed-form estimation formulas available in [59, 137]. The dipole triad has
also been used for polarization estimation in [59, 137], with closed-form estimation
formulas available therein. For closed-form Cramér-Rao bound expressions, please
refer to [136]. For antenna-electromagnetic implementation of this loop triad, please

see [61].

The {es, ey, h.} triad has been investigated in [129]; however, no closed-form formula

is available in this reference.

The {e., hy, hy} triad has been investigated in [34, 81, 85, 101, 103], with closed-form
estimation formula available for the azimuth arrival angle in [81], but no closed-form
estimation formula is available for the elevation arrival angle nor for the polarization
parameters in any of these references. For closed-form Cramér-Rao bound expres-

sions, please refer to [136].

The {es, ey, hy} triad has been investigated in [129]; however, no closed-form formula

is available therein.
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1.2.3 Antennas Pairs of of Various Orientations

Polarization is bivariate; hence, a minimum of two diversely polarized antennas are needed
for polarimetry of a fully polarized wavefield. If limiting the choice of antennas to linearly

polarized antennas (i.e. dipole(s) or/and loop(s)) aligned along some Cartesian axes, there

exist = 15 possible antenna/orientation configurations, because two components
2

are here chosen, out of a total of six electromagnetic components.
Such dipole/dipole, loop/loop, or dipole/loop antenna-pairs have been much investi-

gated in the open literature:

(a) One dipole and one loop, collocated and identically oriented, are labeled a “Co-
centered Orthogonal Loop and Dipole” (COLD) array. Its physical implementation
and electromagnetics are discussed in [44, 60, 104, 114, 123, 124]. It is used to es-
timate the arrival-angles and/or the polarization in [29, 88, 113, 127, 145, 147, 153,
162, 165].

(i) Specifically the vertical oriented COLD array is studied in [29, 88, 127, 147, 153]
(with the corresponding Cramér-Rao bounds available in [145]).

(ii) Specifically the horizontal oriented COLD array is investigated in [129].

(b) Two identical dipoles:

(i) When both horizontally but orthogonally oriented in spatial collocation, they
have been used as a unit for the estimation of the arrival-angles and/or the
polarization in [11-13, 18, 25, 26, 28, 31, 38, 45, 64, 66, 78, 108, 122, 125, 126,
129, 138, 142, 152, 157, 159].

(ii) With one vertical and one horizontal, they are similarly used in [35, 54, 55, 70,
115, 130, 158].

(iii) Other orthogonally oriented dipole-pairs are similarly studied in [16, 19, 22, 39,
67, 70, 92, 148, 166].

Physical implementations of a dipole-pair are presented in [84, 90, 121, 139, 140,
149, 160].

(¢) Two identical loops:

3 An orthogonally (not identically) oriented dipole/loop pair has its electromagnetics investigated in

36, 82, 112].
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1.3

(i) When horizontally and orthogonally oriented in spatial collocation, they have
been used as a unit for the estimation of the arrival-angles and/or the polar-

ization in [81, 85, 101, 106, 155].

(ii) Other orthogonally oriented loop-pairs are similarly studied in [92, 156].

Hardware implementations and electromagnetics are discussed in [3, 65, 72, 83, 154,

164].

Contributions of This Work

The main contributions presented in this thesis are listed below:

{Ch-2}

{Ch-3}

In Chapter 2, a new scheme is proposed to reduce the mutual coupling across the six
collocated antennas that constitute the electromagnetic vector-sensor. Unrealisti-
cally presumed by the algorithms cited in Section 1.2.1, however, is negligible mutual
coupling across the six collocated antennas. Mutual coupling could be reduced but
never entirely avoided, and only by intricate electromagnetic isolation, that would
categorically complicate the antenna implementation and would thus sky-rocket the
hardware cost [143]. Instead, Chapter 2 will propose a new scheme to by-pass this
mutual coupling problem, by spatially displacing the six component-antennas and
showing how to modify the “vector-cross-product” Poynting-vector estimator accord-
ingly. That is, the proposed method will retain all advantages of collocated vector-
sensor direction-finding, despite spatially separating the six component-antennas
here. Furthermore, additional advantages will be available, such as reducing the mu-
tual coupling and extending the spatial aperture to improve the azimuth-elevation

spatial resolution. Much of this contribution has been published in [161].

Chapter 3 will investigate various triad-compositions of collocated dipoles/loops for
direction finding and polarization estimation. An electrically short dipole measures
one Cartesian component of the electric-field vector, along the Cartesian axis on
which the dipole is aligned. Similarly, a magnetically small loop measures one Carte-
sian component of the magnetic-field vector, along which the loop-axis is aligned.
Hence, with a collocated triad of three such diversely polarized antennas, three com-
ponents of the six-element electromagnetic-field vector can be measured, at one point
in space. As reviewed in Section 1.2.2, only 2 out of 20 possible compositions have
closed-form formulas available in the open literature for the estimation of the ar-
rival angles or the polarization. Overlooked, in the open literature, are the other

18 compositions. Chapter 3 aims to fill this literature gap. Closed-form estimation
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formulas for 0, ¢, v, and 7 (and their associated validity regions) are advanced for
14 of the overlooked configurations. For the remaining 4 configurations, they will be
shown to be inadequate for such closed-form estimation. Much of this contribution

appears in [167].

{Ch-4} Chapter 4 aims to estimate the polarization of fully polarized sources, given prior
knowledge of the incident sources’ azimuth-elevation directions-of-arrival, using a
pair of diversely polarized antennas — two electrically small dipoles, or two small
loops, or one each. There exist 15 possible antenna/orientation configurations for a
pair of polarized antennas to measure any 2 of the 6 components of the electromagnetic-
field vector. The effectiveness of polarimetry depends critically on what and how the
antennas are employed. As reviewed in Section 1.2.3, the open literature presently
offers no comprehensive comparison among these 15 configurations. This literature
gap is filled by Chapter 4. The 15 antenna pairs investigated in Chapter 4 may
be collocated, or spatially separated by a known displacement. Each antenna may
orient along any Cartesian coordinate. For each configuration, Chapter 4 derives
(i) the closed-form polarization-estimation formulas, (ii) the associated Cramér-Rao
bounds, and (iii) the associated computational numerical stability. Much of this

contribution appears in [168].

21



Chapter 2

“Vector Cross-Product
Direction-Finding” with an
Electromagnetic Vector-Sensor of
Six Orthogonally Oriented but
Spatially Non-Collocating Dipoles
/ Loops

This chapter will propose a class of array-configurations to spatially space the six con-
stituent antennas of the now-spread electromagnetic vector-sensor, such that the vector
cross-product estimator would still work — and would work better, indeed. The proposed
scheme is utilized to by-pass the mutual coupling among the six constituent antennas of
the electromagnetic vector-sensor, by spatially displacing the six component-antennas
and showing how to modify the “vector-cross-product” Poynting-vector estimator accord-
ingly. The proposed method will retain all advantages of collocated vector-sensor direction-
finding, despite spatially separating the six component-antennas, and also provide addi-

tional advantages. !

"Much of this chapter has been published in [161].
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2.1 “Vector Cross-Product Direction-Finding” with a Col-

located Electromagnetic Vector Sensor

By measuring the incident electromagnetic wavefield explicitly in terms of its six individ-
ual electromagnetic components, the electromagnetic vector-sensor physically gathers the
full data necessary to estimate the Poynting-vector p, via a simple vector-cross-product
between the measured electric-field vector and the measured magnetic-field vector. This
estimated Poynting-vector, when normalized with respect to its Frobenius norm || - ||,
gives the incident source’s Cartesian direction-cosines (and hence the incident source’s

elevation-angle and azimuth-angle). Mathematically [20],

Dz . U sin @ cos ¢
def exh def
p = = — = v = sin 6 sin (2.1)
Py fell - ] >
D w cos 6

where x symbolizes the vector cross-product operator, with u, v, and w representing
the impinging source’s direction-cosines respectively along the z-axis, the y-axis, and the
zZ-axis.

Many are the advantages offered by this six-component electromagnetic vector-sensor

to arrival-angle estimation:

{1} In a multi-source scenario, each source’s three Cartesian direction-cosine estimates
(and thus each source’s azimuth-angle estimate and elevation-angle estimate) can be

automatically paired without further post-processing.

{2} Like other diversely polarized antenna-arrays, the electromagnetic vector-sensor can
resolve incident sources on account of the sources’ polarization-difference, in addition

to their azimuth/elevation angular differences.

{3} The “vector-cross-product” approach of direction-finding in (2.1) can complement
the customary interferometry approach of DOA-estimation, which is based on the
spatial phase-delay across displaced antennas. Creative synergy between these two

approaches has produced several novel capabilities:

(a) The direction-of-arrival estimation accuracy can be improved by orders of mag-
nitude, by extending the spatial aperture, without incurring ambiguity in the
direction-of-arrival estimates and without requiring additional antennas. [51],
[52].

(b) The directions-of-arrival may be estimated without prior knowledge/estimation
of the nominal/actual geometric array-grid and without any calibration-source,

thereby easing “real-world” deployment. [50]
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(c) No prior coarse estimate is needed to initiate the MUSIC (MUltiple SIgnal
Classification) iterative parameter-estimation routine. Instead, MUSIC can

now “self-initiate” its iteration. [53]

(d) Blind geolocation, beamforming, and interference-rejection are possible for frequency-
hopping sources of unknown and arbitrary hop-sequences and directions-of-

arrival. [56]

2.2 An Electromagnetic Vector-Sensor of Spatially Non-Collocating

Component-Antennas

Unrealistically presumed by the algorithms cited in Section 1.2.1, however, is negligible
mutual coupling across the six collocated antennas that constitute the electromagnetic
vector-sensor. Mutual coupling could be reduced but never entirely avoided, and only
by intricate electromagnetic isolation, that would categorically complicate the antenna
implementation and would thus sky-rocket the hardware cost [143]. Instead, this pro-
posed scheme by-passes this mutual coupling problem, by spatially displacing the six
component-antennas and showing how to modify the “vector-cross-product” Poynting-
vector estimator accordingly. That is, this proposed method will retain all advantages
mentioned in Section 2.1 of collocated vector-sensor direction-finding, despite spatially
separating the six component-antennas here. Furthermore, additional advantages become

available, as explained below:

{4} As the six constituent antennas now span an extended spatial aperture (instead of
collocating at one point), the resulting antennas have improved azimuth-elevation
spatial resolution. That is, the present scheme spatially extends the geometric aper-

ture, without additional antenna.

{5} As already mentioned, spatially separation of the six component-antennas reduces
their mutual coupling, thereby saving the cost to implement electromagnetic isola-

tion.

The key question now is: Across the spatially displaced component-antennas, spatial
phase shifts exist, invalidating the array manifold of (1.5) and nullifying the vector cross-
product Poynting-vector estimation in (2.1). To these problems, this chapter will advance
a class of array-configurations to spatially space the six constituent antennas of the now-

spread electromagnetic vector-sensor, such that the vector cross-product estimator would
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still work — and would work better, indeed. 2 3

2.3 Array Manifold for the New Electromagnetic Vector-

Sensor with Non-Collocated Component-Antennas

The following notation will be used: The symbol F, refers to the dipole oriented along the
x-axis, similarly for F, and F.. The symbol H, corresponds to the loop oriented along
the z-axis, analogously for H, and H,. The symbols 6,0, Ay signify, respectively, the
elevation-angle, the azimuth-angle, and the distance of E, relative to E,. Similarly, A, .

defines the distance of F, from E,.

This work will show the following:

The “vector-cross-product” estimator remains applicable for an electromagnetic vector-

sensor of spatially non-collocated component-antennas, if ¢

{A} The z—, y—, and z—axis oriented dipoles are all placed on a straight line, with
a spacing A, , between the first two dipoles, and a spacing A, . between the last

two dipoles.

{B} The z—, y—, and z—axis oriented loops are placed in an order opposite to that in
{A}, on another straight line in parallel to the first straight line, ® with a spacing

A,y between the first two loops, and a spacing A, ., between the last two loops.

“These constitute a sufficient condition, maybe not a necessary condition.

MIf 6 = 5, the aforementioned two array-axes will be parallel to the z-y Cartesian plane. If q~5 =3

additionally, the two lines are parallel to the y-axis; if& = 0 instead, the two lines lie in parallel to z-axis.

For the spatially non-collocating electromagnetic vector-sensor mentioned above, the

2[59] has previously shown how the vector-cross-product DOA-estimator remains fully applicable, for a
dipole-triad that is displaced from a loop-triad. However, the three dipoles there remain spatially collocated
among themselves; and so do the three loops among themselves. Hence, mutual coupling, though reduced
in [59], remains very substantial. In contrast, the present scheme allows each of six constituent antennas

to occupy its distinct location, away from all other five component-antennas.
3Estimation accuracy bounds are derived in [69] for a spatially extended electromagnetic vector-sensor

under certain specific array-configurations; however, no algorithm is presented therein. [117, 118] advance
hardware implementations of a spatially extended electromagnetic vector-sensor, but again no algorithm.
Original to the present work is the modification of the vector cross-product estimator to adopt to a spatially

extended electromagnetic vector-sensor.
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) (6)

Figure 2.1: Six permutations to place the six orthogonally dipoles / triads on two parallel

lines, which may lie arbitrarily in three dimensional space as shown in Figure 2.2.
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array manifold is no longer (1.5), but

1 €x
oI 5 Aa y (WutTv+dw) ey
dof F def e—jQTﬁ[Az,y(ﬂu—l—f}v—l—u?w)—&—Ay,z(ﬁu—i—f}v—i—u")w)] e,
~ de e
a = ~ = o © )
h eI (@hutynvtznw) by
efj?(xhu+yhv+zhw) ejQ%Azyy(ﬂquﬁerﬂJ)w) hy
e—jQT” (gchu—ﬁ-yhv—i—zhw)ej2T7T [Az,y (Gut+dv+w)+Ay, - (Gut-tv+dw)] h,
R
Ld@.0) :
(2.2)

where @ = sin(f0) cos(¢), v = sin(0) sin(¢), w = cos(d), (xn,yn, zn) is the coordinate of
the loop H,, and ® symbolizes the element-wise multiplication between two vectors. The
spatial support-region is hemispherical, with the hemispherical base perpendicular to the
two array-axes, as in Figure 2.2. % In (2.2), the /th element of d(f,¢) represents the
fth component-antenna’s spatial phase-factor, whereas the ¢th element of a gives the /th
component-antenna’s gain / phase /polarization response. Note the anti-symmetry in the
exponents of I, and E., versus the exponents of H, and H,. This will be critical to the

success of the proposed scheme.

2.4 A New “Vector-Cross-Product” Direction-Finding Al-

gorithm

In all eigen-based “vector-cross-product” direction-finding schemes cited in Section 2.3, an
intermediate algorithmic step would estimate each incident source’s steering vector, but
correct to only within an unknown complex-value scalar c. > That is, available (in each
algorithm for each incident emitter)® is the estimate & ~ ca, from which § and ¢ are to
be estimated. (This approximation becomes an equality in noiseless or asymptotic cases.)
The question now is whether a ~ ca suffices to estimate 6 and ¢ unambiguously, where a

denotes the spatially extended (2.2), instead of the collocated (1.5).

“In the special case of the two parallel lines parallel to the z-axis, the spatial support-region for the
estimates would be either the right or the left hemisphere. If the two parallel lines are parallel to the y-axis,
the spatial support-region would be either the front or the back hemisphere. If parallel to the z-axis, the

spatial support-region for the estimates would be either the upper or the lower hemisphere.
SFor example, see step {2c.} in Section 2.5.1, which reviews the key algorithmic steps in the Uni- Vector-

Sensor ESPRIT method of [32].
5This does NOT presume only a single incident source. Multiple, possibly cross-correlated / broadband

/ time-varying sources can be handled. For details, please refer to those references directly.
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Figure 2.2: Spatial geometry, showing for the dipoles/loops permutation case (1) in Figure

2.1.

The answer is “yes”; and the following shows why and how. Cross-multiply cé and ch
to give
u e B 200 y+Ay L) (Gutdv+dw)]
o (cﬁ>* = |e2ed X nutynotznw) | G2 (Mg Ay ) (@t Sotaw)] | (2.3)
w e—j%ﬂam,y(auﬁwww)
Next, normalize (2.3) according to its Frobenius norm,

U e—j 27” [(2Az,y+Ay, ) (Gut+Dv+dw))]

A *
(Ce) X (Ch) _ ej%’r(a:hu-i-yhv-&-zhw) v e—j%’r[(Azyy+Ay’Z)(ﬁu+fw+u”;w)} def q.

w e d %Am,y (Gu+vv+w)

To ease subsequent exposition, assume momentarily that the two array-axes are parallel

to one of the Cartesian axis.

2.4.1 If the Two Array-Axes are Parallel to the z-Axis

This special case has 6=mn /2 and qB = 0; hence, q degrades to:

R JCT N

def ej%ﬂ(xhu-i-yhv-i-zhw)

a T a3y

v

- 27
—J5 Az yu
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Consider the following two disjoint cases, separately.

Suppose ¢ € [-7/2,7/2]
Consequentially, the z-axis direction-cosine u > 0,76 € [0, w|. Hence,

u
Qe 4l — v I EDuyu = 4. (2.4)

w ejQTﬂ(AIvy+Ayyz)u

The above equation leads to these estimates of the three Cartesian direction-cosines,

Ucoarse = [(ix} 15 (25)
,[) - Re {[q;r]Q e_j%Ax«yﬁcoarse} ,
'LZJ == Re { [C’lx]3 e_jQTﬂ(Awyy""Ay,z)ﬂcoarse } ,

In the above, Gcoarse 1S set to [z]1, not to |[dz]1], to retain the sign of [q;];. Similar consid-
erations apply for © and w. The operand, under noiseless or asymptotic conditions, would
necessarily be real-value for each inverse-trigonometric operator above. These operands
could become complex-value with noise, hence the real-value operators above.

However, the complex-phases in (2.4) can afford also fine estimates of the z-axis

direction-cosine:

~ A 1 [/az]Q

= _— 4 2.
Ufine,1 o Ax,y { o } ) ( 6)
~ A 1 [élm]3

= — Z . 2.
e T 9 By + Bye) { i } 27

These finer-resolution estimates are obtainable, due to the non-zero inter-antenna spacings

of Ay, and A, ., on account of the sparse array-spacing principle.

These more accurate estimates are available here for only the x-axis direction-cosine,
because both A;, and A, . are aligned along the z-axis. Therefore, the inter-antenna
spacings are sparse along only the z-axis, but not along the y-axis nor along the z-axis.

As A, lengthens beyond %, more than one value may exist of tgye 1 that satisfy (2.6).
Hence, this more accurate dgne 1 could be cyclically ambiguous, in contrast to @icoarse, which
is unambiguous but coarser in estimation accuracy. Similar considerations hold for tigpe 2.
These several complementary estimates of u in (2.5), (2.6), (2.7)), could be synergized by
using dcoarse to disambiguate tgne,1 and dgne 2, to produce an estimate that is both fine in

estimation resolution and unambiguous:

ST W U SR A (2.8)
i = 5 Ufine,1 m$7yAx’y 5 Ufine,2 mx’ZAx,y_'_Ay,z ) .
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where

° arg min | N A
Mgy — Moy |Ucoarse — Ufine,1 — Mazy A, .
° arg min | N A
m = m U, — Ufine.s — Mg y————————
T,z T,z coarse ne T,2
’ 7 7 Ax’y + Ay7z

for

Ay . A, A
Mgy € { ’7>\,y(1 - ucoarse)“ 5 \‘ \ Y (1 - Ucoarse)J } 5

ma:,z S { [W(_l - ﬁcoarse)“ 9 \‘W(l - 7lcoarse)J } )

where [a] refers to the smallest integer not less than «, and |a] refers to the largest

integer not exceeding a.

However, for A, , < A, the spatial aperture is not much extended; hence, simply set

U = Ucoarse-

Lastly,

>
I
o)
=
o
a
o
7]

~
g

—

Suppose ¢ € [7/2,37/2]

Consequentially, u < 0,6 € [0, 7]. This gives

—u
que Al =y K A g,
—w eI E Doy tAy)u
acoarse = —[qz]l

b o= Re{—[dx]z efj%”Az,yacome}

W = Re{—[qx]g e*j?(Az,y+Ay,zmcmc}

(ZAS = arctan{2}+7r

6 = arccos{w} ,

with Qfpe,1 remains as in (2.6), Ugne2 as in (2.7), and @ as in (2.8).

2.4.2 1If the Two Array-Axes are Parallel to the y-Axis

This special case has § = /2 and b= /2; therefore, q degrades to

u eI E 200y TAy )Y
Q def ej%"(zhu+yhv+zhw) v e—jQT“(Ax’y—&-Ay,z)U

-2
w eI EDayv

Separately consider the following two disjoint cases:
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Suppose ¢ € [0, 7]

Hence the y-axis direction-cosine v > 0,76 € [0, w]. Hence,

qyeij[Qy}Q _

A
Ucoarse —

2A}ﬁne, 1 =

2A}ﬁne,Q =

if Ayy > A, where

for

u e_jZTﬁszy”
def
v = 4y, (2.9)
w eI Ny
Gy 2
Al [Gy )1
B 2.10
2m Ay y { o )’ (2.10)
Al CHE
ALy 2.11
2m Ay . { w (2.11)

A

1(. o A 1/, o
5 {Uﬁn&l + mm’yA:Jc,y} * § {Uﬁne’2 + Mz, A:v,y + Ay7z

} . (212)

arg min | R A
= Mgy |VUcoarse — Ufine,1 — mm,y?
x?y
arg min | A
= Mg

Ucoarse — Vfine,2 — Mg,z %+
’ Az, + A
7y y7Z

A, ) A, .
m:v,y € { ’V)Cy(_l - Ucoarse)-‘ ) \‘Ay(l - Ucoarse)J } )

My »

Ax,y + Ay,z N Ax,y + Ay,z N
{ ’7)\( 1 Ucoarse)—‘ ) \‘)\(1 Ucoarse) .

However, for A, , < A, simply set ¥ = Vcoarse-

Also from (2.9),

Suppose ¢ € [, 27]

u = Re { [ély] 1 GjQTWAzyyﬁcoarse }

@ = Re {[qy]3 e—j%my,zﬁmrse}

3 arctan {2}, if 4>0
arctan {§} + 7, if 4 <0

6 = arccos {w}.

This implies that the y-axis direction-cosine v < 0,V € [0, w]. Therefore,

qye—jl[be —

-2
P LN

—v = qy‘

—w ejQTﬂAy,zU
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Ucoarse = — [ély] 2

4 = Re {_[ély]l SjQTﬂAx,y'acoarse}
’(I) = Re {—[ély]3 @_joﬂAy,z'Dcoarse
3 arctan {2}, if 4>0

arctan{%} +m, if a<0

0 = arccos{w},

with Ofine,1 remains as in (2.10), Ofpe2 as in (2.11), and ¢ as in (2.12).

2.4.3 If the Two Array-Axes are Parallel to the z-Axis

This particular case has 6 = 0. q degrades to:
eI E A A,

def ej%ﬂ(l"hu-l-yhv-%zhw)

q, = _j?(Az’y—FAy’z)w

ve
— 2T AL yw
w e INPry

Separately consider the following two disjoint cases:

Suppose 0 € [0, 7/2]

This would imply that the z-axis direction-cosine w > 0. Therefore,

L ST,

—i/[qs]: 2 def
q-e JZla:=ls  _— v e Ay, 2w = 4.
w
From the above equation,
wcoarse = [Qz]&
1 — T35 =
e 21 (Do + Ay.2) U 7
. Al d:]2
Wfine,2 = —5_ z ~ )
21 Ay, D
i L +mg A + L +
W = =< Wipe1 +mMmo, ——— — { Whne2 +m
2 ne, X,z Ax7y + Ay72f 2 ne,
for A, . > X\, where
° arg min | N A
m = Mgz |Wcoarse — Wfine,l — Mg 27—~
o Agy + Ay,
o arg min | N A
my . = Myz |Wcoarse — Wiine,2 — my,z?
y’z

for

A A
A, . Ay - .
My, € { ’V)y\’(_l - wcoarse)-‘ s \‘)y\’(l - wcoarse)J } .
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However, for A, . < X, simply set @ = Weoarse-

Also from (2.13),

Re {[q.], % (et onee

U =

o = Re {[qz]z ea"’%AJw}

3 arctan {2}, it 4> 0
arctan{%} +m, if 4<0

6 = arccos {w}.

Suppose 0 € [7/2, 7]

This implies that w < 0. Therefore,

qze_jé[qz]g = —v e_jQTWAy,Zw def q-.
—w
As a result,
i = Re{—fq.)s e X Gutsnnl
o = Re{—[d.], /¥4t
Weoarse = —[dz]3

(;3 _ arctan{%}, if >0
arctan{%} 4+, if a<0

§ = arccos{w},

with Wgne,1 remains as in (2.14), Wape 2 as in (2.15), and W as in (2.16).

2.4.4 If the Two Array-Axes are Arbitrarily Oriented

In the general case that the two parallel array-axes are arbitrarily oriented, a new coor-
dinate (2/,y/,2’) could be defined such that the two array-axes would fit with one of the
special cases in Sections 2.4.1-2.4.3. With reference to these (2/,y’,2’), the directional
cosines (u/,v’,w’) are estimated. Then the following rotational transformation through
the Euler angles (a,,7) (see Figure 2.3 and p. 147 of [2]) would give the Cartesian

directional cosines (1, v,) in the Cartesian coordinates (z,y, 2).

U cost sint 0 1 0 0 cosa  sina 0 u’
v = —sint  cosT 0 0 cosf sing —sina cosa 0 v
w 0 0 1 0 —sinf cosf 0 0 1 w’
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PN

Figure 2.3: The Cartesian coordinates (z’,7/,2’) are rotated through the Euler angles
(a, B,7), to give a second set of Cartesian coordinates (x,y, z). (This diagram is based on

a similar diagram in Wikipedia’s entry on “Euler angles”.)

34



2.5 A Full Algorithm to Illustrate How to Apply the New

Technique in Section 2.4

The new “vector-cross-product” direction-finding technique proposed in Section 2.4 may
be applied to any eigen-based parameter-estimation algorithm that can estimate a source’s
steering vector (to at least within a possibly unknown complex-value scalar).

To illustrate how so, this section will consider the “uni-vector-sensor ESPRIT” algo-
rithm of [32], which is originally developed for an electromagnetic vector-sensor of collo-
cated component-antennas. This section will instead show how the technique in Section
2.4 can modify [32] for a spatially spread vector-sensor as defined in the boxed description

in Section 2.3.

2.5.1 Review of Data Model & Algorithm of [32] for a Collocated Elec-

tromagnetic Vector-Sensor

Multiple completely polarized transverse electromagnetic waves, having traveled through
an homogeneous isotropic medium, impinge upon a single electromagnetic vector-sensor,
with spatially collocated component-antennas, all at the origin of the Cartesian coordinates.
The kth such wavefront is associated with the steering vector ag, defined analogously
as in (1.5). Let the kth incoming signal si(¢) have power Py, but to be temporally
monochromatic at a frequency fi (distinct from all other incident sources’ frequencies)
with an initial phase of ¢;. With K such incident sources, the 6 x 1 data-vector collected
at time ¢ equals z(t) = Y5, v/Prare’>™ s+ 4 n(t), where n(t) symbolizes the additive
noise at the electromagnetic vector-sensor. 7

The Uni-Vector-Sensor ESPRIT algorithm [32] would form these two time-delayed
data-subsets out of the aforementioned collected data: {z(t,), Vn =1,..., N} and
{z(tn, + Ar),Yn=1,..., N}, where A represents a constant time-delay between the two
sets of time samples.

The following will summarize the algorithmic steps of the Uni-Vector-Sensor ESPRIT

algorithm. For the motivations underlying these algorithmic steps, please refer to the

lengthy exposition in [32] itself.

{1.} Form the 6 x N data-matrices Z; = [z(t1),z(t2), - ,z(tn)] and
Zo =[z(t1 + A7), z(ta + A7), - ,z(ty + Ar)]. ®Then, form the 6x6 data-correlation

"The technique proposed in Section 2.4 may be readily applied to other data models, and not restricted

to the one reviewed here of [32]. This present data model serves only as an illustrative example.
8The two datasets Z; and Z are inter-related by the temporal “invariances” of {ej@"f’“AT)’ k=1,2, ’K},

thereby allowing the use of the parameter-estimation method of ESPRIT (“Estimation of Signal Parameters
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matrices Ry = Z1Z and Ry = ZoZ%.

{2.} Apply ESPRIT to the matrix-pencil {Rq, Rz}, as follows, to estimate all K imping-

ing sources’ steering-vectors:

{2a.} Let E; denote the 6 x K signal-subspace eigenvector matrix whose K columns
are the 6 x 1 signal-subspace eigenvectors associated with the K largest eigenval-
ues of Ry. Let Es denote the corresponding signal-subspace eigenvector matrix

for R2 .

{2b.} Define the K x K matrix,
v = (EVE)) " (EfE;) = T '&T,

where the jth eigenvalue of ¥ equals {[®];; = ¢/>/i®T j =1,...,K} and

the corresponding right-eigenvector constitutes the jth column of T.

{2c.} The K impinging sources’ steering-vectors of (1.5) may be estimated, to within

a complex-value multiplicative scalar, as
A A 1 -1 —1g-1
[al,--- ,aK] = §{E1T + ET '@ }

These K unknown complex-value multiplicative scalars arise from the eigen-decomposition

of W.

{3.} Apply the vector-cross-product of (2.1) to the kth source’s above-estimated steering-

vectors, as follows, to obtain the three corresponding Cartesian direction-cosine es-

timates:
Uy, .
X _ & Wy
Vg T - a—
1€xll |/l
Wy,

The kth source’s azimuth-elevation direction-of-arrival can then be estimated as:

0, = arcsin(y/ 43 + 02) = arccos(wy),

¢r = arctan(og/u),

and the corresponding polarization parameters can then be estimated as:

4k = arctan [21) (2.17)
9k,2
e = Z(9k1/9k2) (2.18)
. Jk,1 HoA O Y P
where g = K = [@ (Ok, o1)© (O, D1 O (Ok, o1)af2.19)
9k,2

Via Rotational Invariance Techniques”) [6].
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2.5.2 Applying Section 2.4’s Proposed Method, to the Uni- Vector-Sensor
ESPRIT Algorithm of [32], but Now with the Component-Antennas
Spatially Spread as in Section 2.3

Suppose now the spatially spread electromagnetic vector-sensor of Section 2.3 is now de-
ployed, instead of a spatially collocated electromagnetic vector-sensor.

The 6x1 data-vector collected at time ¢ would now equal Z(t) = S| v/Pragel > /et+er 4
n(t), instead. From this, Section 2.5.1’s algorithmic steps {1.}, {2a.}, {2b.}, and {2¢c.}
can still follow here, but now with a tilde atop all symbols.

However, as for 4y, 0, W, ¢Ek, 0 of the preceding Section 2.5.1, replace them by their
counterpart estimation-formulas newly defined in Sections 2.4.1, 2.4.1, 2.4.2, 2.4.2, 2.4.3,or
2.4.3. 7

2.6 Monte Carlo Simulation for the Algorithm Obtained
from Modifying [32] by the Technique Proposed in Sec-
tion 2.4

The proposed scheme’s direction-finding efficacy and extended-aperture capability are
demonstrated by Monte Carlo simulations.

Figures 2.4-2.6 show a three-source scenario simulation results of direction-cosines es-
timation with three different array configurations. '© The array geometry in each figure
is set with the two array-axes paralleling to one of the three Cartesian coordinate axes
(x/y/zaxis). Each graph plots the mean-square-error of each incident source’s Cartesian
direction-cosine estimate along the array-axes, versus the inter-antenna spacing parameter
% = {. Fach data-point on each graph consists of 1000 statistically independent Monte
Carlo trials. These estimates use 400 temporal snapshots. All sources have unity power.
Each source’s signal-to-noise ratio equals 30dB. The “spatially spread” electromagnetic

vector-sensor conforms to a rectangular grid. Specifically, referring to the array geometric

symbols defined in Figure 2.2: (zp, yn, zn) = (A(2,1,v/2), & = 22 = 802 — 4 with A

defined to equal the minimum of Ay,--- , Ax.

Figures 2.4-2.6 clearly demonstrate the proposed scheme’s success in resolving the
incident sources, even if the electromagnetic vector-sensor’s six component-antennas are
spaced very far apart. In fact, this spatial non-collocation leads to orders-of-magnitude

improvement in estimation accuracy, even as mutual coupling is reduced. Moreover, the

For polarization estimation, (2.17)-(2.19) remain applicable, except that (2.19) needs to have its &

replaced by ag, and to have its ©(fy, ¢x) replaced by d(0x, px) © O (Ok, dr).
10The estimation bias is about an order-of-magnitude smaller than the corresponding estimation MSE.
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Figure 2.4: The mean-square-error (MSE) of the Cartesian direction-cosine estimate , for

three incident sources, at digital frequencies f; = 0.0985, f5 = 0.1765, and f5 = 0.1165, re-
spectively with (01, ¢1,7v1,m) = (33°,42°,45°, —90°), (02, P2, 72, m2) = (38°,35°,45°,90°),

and (93>¢37737n3) = (520751074507_900)'

The same “spatially spread” electromagnetic

vector-sensor configuration is set as (9~, 45) = (90°,0°), with the two array-axes paralleling

to z-axis in the Cartesian coordinate system.
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Figure 2.5: The mean-square-error of the Cartesian direction-cosine estimate v, for the

three same incident sources as in Figure 2.4. The “spatially spread” electromagnetic

vector-sensor configuration is set as (6, ¢) = (90°,90°), with the two array-axes paralleling

to y-axis in the Cartesian coordinate system.
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Figure 2.6: The mean-square-error of the Cartesian direction-cosine estimate w, for the
three same incident sources as in Figure 2.4. The “spatially spread” electromagnetic

vector-sensor configuration is set as (0, ¢) = (0°,90°), with the two array-axes paralleling

to z-axis in the Cartesian coordinate system.
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Figure 2.7: The standard derivations of the estimates for the polarization parameters

{Vk, Mk}, for the three same incident sources as in Figure 2.4.

39



estimation is very close to the Cramér-Rao lower bound (derived in the Appendix) as the
inter-antenna spacing increases above a few wavelengths.

On the other hand, the non-collocating configuration of the vector sensor studied in this
work assumes the polarization is the same as the collocating case. Hence, the investigated
algorithm for the non-collocating scheme will not affect the polarization estimation. Figure
2.7 plots the standard derivations of the estimates for the polarization parameters {~yx, n }
in the scenario corresponding to Figure 2.4. Figure 2.7 shows that the standard derivations
of the estimates for the polarization parameters remain in a very small region in different
inter-antenna spacings and this verifies the assumption that the polarization of the non-

collocating vector sensor remains the same as the collocating electromagnetic vector sensor.

2.7 Summary

Many direction-finding advantages are offered by the recent synergy between interferom-
etry and “vector cross-product” Poynting-vector estimation. However, the practicality of
this synergy is limited by the mutual coupling across the six component-antennas com-
prising the electromagnetic vector-sensor. To alleviate this mutual-coupling problem, and
thus to simplify the antenna implementation and to reduce hardware cost, this chapter
shows a method how to achieve “vector cross-product” Poynting-vector estimation while
spacing the six component-antennas far from each other. This spatial non-collocation ex-
tends the spatial aperture, to improve direction-finding accuracy by orders of magnitude,

at lower hardware cost.

2.8 To Follow-Up the Non-Collocating Electromagnetic Vector-

Sensor

The following problems can be investigated to follow-up the non-collocating electromag-

netic vector-sensor proposed in this chapter:

1) coherent sources direction finding and polarization estimation with non-collocating

electromagnetic vector-sensors,

2) wideband sources direction finding and polarization estimation with the non-collocating

electromagnetic vector-sensor,

3) linear dependence of steering vectors of sources with the non-collocating electromag-

netic vector-sensor,
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4) more generalized array configurations of the non-collocating electromagnetic vector-

Sensor:

The previous results require a very specific array geometry, namely, two parallel lines,
one with only dipoles, the other one with only loops and in specific permutation. The
future work will further explore more generalized array configurations.

Assume that the three dipoles and three loops are arbitrarily located in the space
with: eg at (0,0,0), e, at (Tey, Yey, Zey)s €z at (Tez, Yez, Zez), ha at (Thas Ynws 2hz), hy at

(hys Yhys 2hy) and hy at (Thz, Yns, 2nz), the “vector-cross-product” will then be

* * *
0 —e. e h, —ezhy +eyh’

*
exh" = €, 0 —eg h;’; = e.h} —ezh’
—ey ey 0 h; —eyhy + eghy

(sin 6 cos ¢ sin? v — sin @ cos 6 sin ¢ sin y cos yel")
X ejQTﬂ[(xhy*fEEZ)“JF(yhy*yEZ)”JF(Zhy*ZEZ)w]
+(sin @ cos ¢ cos? y + sin @ cos 6 sin ¢ sin y cos ye’")

X €j 2T7r [(l'hz _-Tey)u+(yhz —yey)v-i-(th _Zey)w]

(sin @ sin ¢ sin? v + sin 6 cos # cos ¢ sin y cos ye")

X ej ZT‘K [(Zha —Tez)ut(Yna—Yez )v+(2he —2ez )W)

—(sin @ cos 6 sin ¢ sin y cos ye! — sin f sin ¢ cos? y
B Xej%[zhzu+yhzv+zhzw} ' ’
[cos O(sin? ¢ sin? v + cos? ¢ cos? )]

X 6]2{ [(th_mey)u"’_(yhm_yey)v‘f'(zhz_Zey)w]
+[cos §(cos? ¢ sin? v + sin? ¢ cos? ’7)]6]'2777 [#hy Ut tnyvt2ny vl
+[sin ¢ cos ¢ sin 7y cos y(e 7" + cos? fe’")]

X ej QTW [(xhx _$ey)u+(yhx _yey)v+(zhx _Zey)w]

: : ; Ny 2m
—[sin ¢ cos ¢ siny cos (e~ + cos? fel)]ed X [Fryutynyvtzny ]

This notation will facilitate the subsequent exposition: Define (6,,¢,,A,) as the
elevation-angle, azimuth-angle, and distance of the location of E, relative to the location
of E,. Similarly, define (0., ¢.,A,) as the elevation-angle, azimuth-angle, and distance of
the location of F, relative to the location of F.

The basic insight is as follows: Suppose the three dipoles and the three loops are

displaced to satisfy:

E.E, = —H,H, (2.21)
— —
E,E. = —H,H., (2.22)



where E represents the vector specifying the location of antenna B relative to the location

of antenna A. Then the “vector-cross-product” result in (2.20) would be simplified to

u e I2v eI

q = e |y e—dave—ia || (2.23)
w e %
where
By = 2Tﬁ(xhu + Ypv + zZpw),
ay = ?Ay(ayu + Uyv + Wyw),
or = AL+ bt ),
Uy = sinf,cos ¢y,
Uy = sinf,sin¢,,
Wy = cosby,
U, = sinf,cospo,,
U, = sinf,sin¢,,
w, = cosb,.

Some specific array configurations are depicted in Figure 2.8:

(a) All six component-antennas lie on the same plane, but not necessarily parallel to

any Cartesian axis.

(b) A special case (a), with the plane equal to the z-y Cartesian plane at z = 0. Then,
6, =0, = m/2. This is portrayed in Figure 2.8b.

(c) A special case (a), the six component-antennas lie on a circle, e.g., if the circle is on
the zoy plane, with A, = A, ¢, =0, and ¢, = —27/3; or with Ay = A, ¢, = 7/2,
and ¢, = /3. See Figure 2.8c. !

For each candidate array configuration, a corresponding estimation algorithm for the
direction-of-arrival and polarization will be investigated. In addition, the corresponding

estimation accuracy and the estimation region of each parameter will be analyzed.

2.9 Appendix: Derivation of the Cramér-Rao Bound

To avoid unnecessary distraction, simple assumptions will be made of the signal statistical
model in Section 2.5.1: One single pure-tone’s frequency and known initial phase are pre-

sumed as known constants. The data sampling instants occur at t = nTs, where T refers

" The right circular configuration in Figure 2.8c was named “DEMCA?” in [102].
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Figure 2.8a: One permutation to place
the six orthogonally dipoles / triads, Figure 2.8b: One composition on the xoy

which may lie arbitrarily in the three di- plane.

mensional space.

Figure 2.8e: A special array configuration in which the dipoles/loops are oriented along the

x /y-axis.

to the time-sampling period, and n(¢) denotes a 6 x 1 vector of additive zero-mean spatio-
temporally uncorrelated complex Gaussian noise, with an unknown covariance-matrix of
Ty, which is deterministic, 6 x 6, diagonal with all diagonal elements equal to o2, which

represents the known noise-variance at each component-antenna.
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With N number of time-samples, the data-set is 6N x 1 and equals

K
T - T
¢ = [@T)" @NT)] = > (sk@ap) + [(m(T)", -, (a(NT)"],
k=1 —~
—_——— =
=p
where s;, = /¢ [eﬂ’rfkTS, eI i Ts ... ,ejQN”f’CTS}T, v represents a 6N x 1 noise vector with

a spatio-temporal covariance matrix of I' = Iy ® I'g, and Iy denotes an N x N identity

matrix. Therefore, ¢ ~ N (u,T), i.e., a Gaussian vector with mean g and covariance T.

Collect all deterministic unknown entities into a 4K x 1 vector,
W = [01,01,71,11, 0K, dr, 7K, NK]" . The resulting 4K x 4K Fisher Information Ma-
trix (FIM), J, would have its (i, j)th entry equal to (equation (8.34) in [62])

() ()

where Re[.] denotes the real-value part of the entity inside [.], and Tr[.] represents the

N )\

Iy = 2Re el ol

+ Tr [I‘

trace operator.

Any unbiased estimation of the directions-of-arrival would have these Cramér-Rao

lower bounds:

CRB(0) = [I7']
CRB(¢) = [J71]

These equations may be easily evaluated by MATLAB’s symbolic toolbox, to obtain the

Cramér-Rao bound curves in Figures 2.4-2.6.

For a general K-source scenario, the Fisher Information Matrix would be 4K x 4K in
size, to be specified by 8 K2 + 2K number of distinct scalar equations (after accounting for
symmetry in the matrix). As illustration the following equations present the 10 equations
for the Fisher Information Matrix’s 16 elements in the single-source case, for the specific
case of A, = A, . = kX. The equations would become excessively lengthy to state here
for the general array manifold of (2.2). Define the elements of the single-source Fisher

Information Matrix as follows:

Joo Joo Jon Jom

Jso Joo Jon Jom
J%9 J%(b J%W JWI

Jnﬁ Jn,qﬁ Iny Inm



Jo0

Using symbolic programming by MATLAB and Mathematica,

2N
o2)\2

+8kAm2(cosv)2[(cos ) (—2zp, + 21, (cos ¢)? + x(cos @) sin(27) + yu(sin @) sin(27))

{02 4 4n22 — 8kAr? 2y (cos )er + 16k2N2 w2 (cos 0)% + 4k X\2r2c?

+25, cos(¢p — @) sin(27)(sin )] + 4kAw?(cos 0)*[—3kA sin(2¢)czco
+(cos)3(—2zp(cos 0) + (yn(cos @) sin(26) + (2yn + 1, sin(2¢))(sin @))(sin §))

+3kA(—1 + 2(cos 0)% 4 ¢2) + (cos ¢)* (sin @) (kA(cos 0)? sin(2¢) + 2z, (cos )¢

)
+(cos §) (—2kA(sin §) + 2yn(cos )*(sin )))
+(cos ¢)* (—kA(cos 0)? + 2(cos 7)* (wn(cos @) — yn(sin §))(sin §)

FEX(1 = 2¢3)) — (cos )2 (2(cos )2 (2 (cos 0) — zpea) + k(=2 + (cos §)?

+5¢2))] — 472 cos O]—2c10kAzp, (cos 0) sin(26) + 2(sin 0) (21,25 (cos @) + ypzx(sin ¢)
+kX(cos ¢)3(—znea(siny)? + (cos 0) (—zp(sin )% 4 kdez))
+kA(cos ¢)? sin ¢(—zp (siny)2es + (cos ) (—yn(siny)? + kAes)))]

—47? cos 02 [—4k2N? — 2 + 22 4+ 11E2\%(cos 6)?

—2k2 22 sin(2¢) sin(26) + 2k2\%(cos 0)? sin(2¢) sin(2¢)
+4k2X2e2 + 2kX cos v (—3zp (cos 0) + (yp(cos @) sin(2¢)
+(2yn + xpsin(29)) (sin §)) (sin ) + (cos ¢)*(3k*A? — 2, + vj;

—k2X\%(cos 0)? — 2kA(cos ) (2, — 2xpeiocs) + dkAzpciocacy
+2kX\yncs + 2k cos v (22, (cos ) — 3yp(sin @) (sin ) — TE2A2c3)
+kA(cos ¢)*(sin 0) (2, (cos @) (sin )% — kA(cos @)ca
+(sin @) (—2yn (siny)? + kAez)) + (cos @) (—2zyn (sin @) + 4kAeyo(sin 0) (yp (cos )
+213)) — 2kA(cos )3 (2¢10 sin O (yp (cos 8) + zpcs) + (sin ¢)(sin ) (=, (sin 7)? (sin ¢)
+(cos ) (—yn(siny)? + kAcz)))] — 8k*A*m* (cos §) (cos §) sin(27) [sin(26)]

—8k2 X212 (sin ¢) sin(2) (sin @)[sin(20)] + 4kAn?(cos 8)*[c10 sin(2¢) (—2zp, (cos 0)
+2c0s(¢ — §)(xn(cos ) + yn(sin ¢))(sin 0))

—(sin 0)((cos)2(3 + cos(2¢))(cos d(xp (cos 0) + zpca)

+(sin @) (yp(cos 0~) + zpes)) — 0.5kA(7 + cos(2¢)) cos(¢ — qg)(sm(Qé)))]}
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J97¢

];[)\2 {16k (cos ¢)* sin(26) (sin 0)[(—xp, + 21, (cos7)?(1 + (cos §)?)

—2c10yn(cos 6))(sin @) + (cos §)(—yn + ya(cos 7)*(1 + (cos 6)?)

+2¢1025(cos 0) 4 kA(sin 0)2c3)] + 8kAm(cos ¢)3[2kA(cos 8) cos(2¢) (cos A) % (sin ¢)(sin §)*

Jo0 =

+EN(sin ¢) sin(20) + 2z, (sin ¢) sin(26)ca + 22xc3 — 225, (cos v)%e3

+(cos 0)*(zp, 4 21 cos(2y) — 2kA(cos 0))es + 2yp (cos )2 (sin ¢) sin(26)c3

+2(cos 0)%(—zp,(sin @) 4 4croca(yn (cos @) 4 x4 (sin @))) (sin 0)

—4(cos 0) (kA(cos $)* (sin @) (sin ) + (cos7)(cos @) (24 (cos ) (sin 7)

+ap(cos)cs)(sin B) + ypeacs) + 2(cos B) (y, + yn(cosy)2(—1 4 (cos 6)*)

—2¢102p(cos 0) + 2c19zp (cos 0) — (cos 8)% (yn — 2kAez)) + 2(cos 0)3(22,2¢10¢2

+ca(—kX + 2k (cos §)? — 2z, (cosy)2ea + 2yn(cosv)2e2)) — kAce)

+8(cos ¢) [—2kAm(cos 0) (22, (cos 7)2cacy + 2¢10(2p (cos 0) + zcz))

+2k A (cos 0)*(—3kA(cos B)cs + (cos )% (yn(cos 0) + znez)) — 2m(ynzn

+4k2N\%(cos 0)cz — 2kA(cos7)2 (yn(cos B) + znes)) + 2kAm(cos 0) (2c10(zp (cos B) + zuc3)

—4eq(kX(cos 0)2 + yp(cos y)%e3)) 4 (cos 0)2(2mynzn — Azpery — 6kAm(cos )2 (yn(cos §)

+znes) + Th2N2meg)] — 42k (cos 0)2 (sin 0) (sin 6) (2¢10 sin(26) (yn (cos @) + p, (sin ¢))
+2(cos 7)?(cos 0) (yn(cos @) + (xn — yn sin(2¢))(sin §)) — 3kA(cos ) (cos(26) sin(2¢)

+5in(2¢))(sin §)) + sin(20)(=Azpcr1 + 7(2znyn — 4kA(cos )% (yn(cos ¢)

+25,(sin @) (sin 0) + 4k2\% sin(26) (sin 0)? + sin(2¢) (—4k?\2 + 22 — 47 — dkAzp(cos)2ey

+8k2X2¢2))) + 2(sin @) (kA (cos 0)* (2(cos )2 (zh (cos 0) + zpea) — 3kAcs)

—2m(xpzn — 2kA(cos )2 (zp(cos 0) + znea) + 2k>A2¢s5)

+(cos 0)2(2mxpzn + Ayncrr — 6kAm(cosy)2(zh(cos 0) + zpea) + Th2A27es))]

+7(cos )?[—16kAz, (cos v)?(cos 0)* (sin ¢)co + 32(cos 0) (zyp (sin 6)

—kXyp (cos 0)cipea(sin ) — kXzpcro(sin @)es) + 16kA(cos 0)2(z, (cos )% (cos 0) ey (sin 0)

+2zp (sin @) g — 4eig(sin 0) (2, (cos @) — yp(sin @) (sin 0)) — 8kA(cos 0)3 (—4z,4c10(sin ¢)es

+(sin 0) (5kAsin(29) — 2(cos7)* (yn(cos §) + za(sin §)) (sin §)))

— kX162, (cos 0) (siny)2c4 (sin ) + kX(cos A)%(18sin(26) — 5sin(46)) sin(2¢)

+4(sin(260) (= Tk sin(20) + (3 4 5cos(27)) (yn(cos @) + z(sin ¢))(sin §))

+2(cos @) (sin @) (22, (sin)?(sin 6) — kA(sin 8)*sin(26))))]}
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JG,n

o= %lm[(—G 1 605(20) + cos(2(6 — ) + 6 cos(20) + cos(2(6 + 0))) sin(29)
—8(cos 0)(sinn) sin(2¢)][—(cos 0)(sin 0) + (cos 0) cos(¢ — ¢)(sin )],

Ino = 2N o (sin ) {kA(cos ¢)3(cos 0)[(1 + (cos 0)?)(cos ¢)(sin ) 4 2¢7(sin ¢)] (sin 0)

a2
+kX(cos ¢)2[—(1/4)(cos B) (sin ) (5(sin 0) + sin(36)) + (cos B)(sin ¢)(—2¢7(cos @)

+(1 + (cos 0))(sin ) es] + (siny)[—kA(cos 0)%(cos 0)(sin 0) + (2, + 2kA(cos 0))(sin 0)
+kA(cos ) (sin ¢)(sin ¢) (sin 6) — (cos ) (sin @) (ys, + 2kAc3)] + (cos @) (cos 0)[—(sin ) (zp,

—0.5kA(—3 + cos(26))ca) + 2kA(cos 1) (cosy)((cos 8)cq — (cos B)e3)]},
2N
o2)\2
+8k% X272 (cos 0)% sin(2¢) sin(2¢) — 16kAw2azp (cosv)?(cos @) (sin §)

{02 4+ 47222 +16K2X27% (cos @) — 16k2 X272 (cos §)? (cos 0)% — 8k*A%x? sin(2¢) sin(2¢)

+8kAm2yp, (cos )% (cos @) eg — 8kAm?ay, (cos 0)3(cos ¢)erocs

+8kAm2ay, (cos )2 (sin ¢)cg 4+ 4Amy, (cos 0) sin(27)|[(sin ) (sin ¢) (sin 0)
+km(cosn)(cos ¢) sin(2¢)(sin 0)] — 2k n>(cos 0)*(sin 0) (4zp, (cos v)%(cos @)
+3kA(—2(cos @)% 4 sin(2¢) sin(26))(sin 8)) + (cos )3 (N2 — 4nz?

+24k Az, (cos 7)o — 28K N2 2 c3) 4 kA (cos ¢)3 (sin ¢) (sin 6)[8z, (cos )% (cos 0)* (sin p)
+8p,(siny)?(sin @) — 16¢19yp (cos )3 (sin @) + 16¢10(cos 8)(—zpco

+yn(sin @) — (cos @) (—8yn (sin~)?(sin 8)% + kA(11 + 4 cos(20) + cos(46))c3)

—8(cos 0)*(yn(cos y)%cy + (sin @) (xp, — 2kAca))]

—4kAn?(cos @) (sin 0)2[— kA 4+ kX(cos 0)2 — 2z, (siny)%co + 2uncs — 2yn(cosy)3es
—4c10(cos 0) (yp(cos @) + xp(sin @) (sin 6) + 2kAc3 + (cos 0)%(—kA(cos §)?
+2(cos7)*(znea — ynes) + kA1 — 2¢3)))]

—47%(cos ¢)%(sin 0)2[—4k> N2 + 27 — y? + 4k2 X% (cos 0)? — kEAxp, (1 + 3cos(27))cz
+4kAyp (cosy)2es + derokA(cos 0) (ynes + xpes) 4+ ThEN 2

—kX(cos 0)%(3kA(cos 0)2 + 2yp(cosy)2es + kA(—3 + 5¢2))]

+87(cos ¢)[—0.5¢11 Ay (cos 0) (sin 0) + 7 (sin @) (—zpyn + kA(cos~)?(cos 0)* (y (cos ¢)
)(sin 0) + (cos 0)(zyn — 3kA(cos7)* (yn(cos §)

(
(
+ap(
(sin ) (sin 6) + 7k*X\*(cos §)(sin f)e3))]},

sin )
+p(sin @)
—4N

Jy.6 = —5—(cos 0){cosn — kn(sin ) [sin(26))(sin ) sin(¢ — 6)](sin )},

Ty = 2o x(sin ) (sin ) {~2kA(cos 6)2(sin 6)[(1 + (cos 6)?)(cos §)(sin7)
+2¢7(sin @) (sin 0) 4 2k (cos ¢)3[—2¢7(cos @) + (1 + (cos 0)?)(sin ) (sin ¢)] (sin 8)
+(sin ) (sin @)[2z, — kA(=3 4 cos(26))ca] + (cos ¢)[4kAcres + (siny)(—2yn

+EA(—3 + cos(20))c3)]},
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where ¢; = (cos @)(cosf), ¢ = (cosP)(sinh), c3 = (sin@)(sinh), ¢4 = (sin¢)(sind), c5 =

(cos @) sin(26), ¢ = (sin @) sin(20), ¢z = (cosn)(cosy)(cosh), cg = sin(2¢)(sinh), cg

J = —
VY 0_2 ?
Jyn = Iy =0,
4N (sin~)?
Jnm = o2 J

(cos ¢)(sin 0)2, ¢19 = (cosn)(cosy)(sin~y), ¢11 = (sinn) sin(27).

The Cramér-Rao bounds would be excessively lengthy to state here for the spatially
spread electromagnetic vector-sensor, even for the single-source case. These expressions
are very long, because the Fisher Information matrix needs be inverted to produce the

Cramér-Rao bounds. However, for £ = 0 (i.e. the six component-antennas are spatially

collocated), the Cramér-Rao bounds equal:

CRB.(0)

CRB.(¢)
CRB.(v)

CRB.(n)

o2

2N’

o? 1

2N {1 + (cos 6)2[1 — 2(cosn)2 — 2(cosy)2(sinn)?]}’

ig [1+ (cos #)? — 2(cos §)?(cos)?(sinn)?]

AN {1+ (cos0)2[1 — 2(cosn)? — 2(cosy)2(sinn)?|}’

i 1 [1+ (cosB)? — 2(cos 8)%(cosn)?]

4N (sin~y)2 {1+ (cos0)?[1 — 2(cosn)? — 2(cosy)2(sinn)?|}
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Chapter 3

Various Triads of Collocated
Dipoles/Loops, for Direction

Finding & Polarization Estimation

For simultaneous estimation of the azimuth/elevation arrival angles (¢, 6) and polarization
parameters (y,7), a minimum of three diversely polarized antennas are needed, because at
least three complez-value equations (based on three antennas’ measurements) are needed
to solved for the four unknown real-value source-parameters (i.e. 8, ¢,~y,n) and for the one
unknown complex-value multiplicative coefficient «, which arises from the eigen-based
estimation of the source’s steering vector. Because at least three antennas are needed,
this chapter will focus on diversely polarized antennas in a triad.

For antennas spatially collocated in a point-like geometry, no spatial phase-factor will
exist among them. These collocated antennas’ resulting array manifold will thus enjoy
the following advantages: (i) The array manifold is independent from the spectrum of the
incident signal. This includes independence from the signal’s center-frequency and band-
width.! (ii) The array manifold is less sensitive to the source’s distance from the antenna-
array. (iii) In a K-source scenario, the K azimuth-angle estimates, the K elevation-angle
estimates, and the K polarizations can all be intrinsically associated to the proper sources,
even without any further post-estimation processing. [32] (iv) The antenna-triad is phys-
ically more compact.

This chapter will investigate a collocated triad of dipole(s) and/or loop(s). An elec-
trically short dipole measures one Cartesian component of the electric-field vector, along

the Cartesian axis on which the dipole is aligned. Similarly, a magnetically small loop

! Real antenna patterns depend on frequency. The array manifold would not depend on frequency if

all antennas have the same frequency-dependence.
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measures one Cartesian component of the magnetic-field vector, along which the loop-axis
is aligned. Hence, with a collocated triad of three such diversely polarized antennas, three
components of the six-element electromagnetic-field vector can be measured, at one point
in space. To select three out of the six electromagnetic components, there exist 20 different
configurations. Among these 20 possible configurations, only 2 out of 20 possible compo-
sitions have closed-form formulas available in the open literature for the estimation of the
arrival. This chapter aims to fill this literature gap. Closed-form estimation formulas for
0, ¢, v, and 1 (and their associated support regions) are herein advanced for 14 of the 18
overlooked configurations. For the remaining 4 configurations, they will be shown to be

inadequate for such closed-form estimation. 2

3.1 A Triad’s Directional & Polarizational Responses

A unit-power, completely polarized, transverse electromagnetic wave may be characterized

by its six-component electromagnetic-field vector, expressible in the Cartesian coordinates

as [20]
_ex | _cosgbcosG —sin¢ |
€y sin ¢ cos 0 cos ¢
e —sinf 0 siny el
E ’ 51
h hy —sin¢g  —cos¢cosl cos 7y
—_———
hy cos ¢ —sin ¢ cosf def
| he | i 0 sin 0 ]
d:ef®
[ cos ¢ cos f siny cosn — sin ¢ cos vy | _cosqﬁcosesinvsinn_
sin ¢ cos 0 sin y cos 17 + €os ¢ cos Y sin ¢ cos f sin y sinn
—sin#sinycosn , —sin@sinysinn
= +3J (3.2)
— sin ¢ sin y cos ) — cos ¢ cos 6 cos ~y —sin ¢ sinysinn
cos ¢ sin -y cosn — sin ¢ cos 6 cos y cos ¢ sinysinn
i sin 6 cos ] i 0 |

where 0 € [0, 7] signifies the emitter’s elevation-angle measured from the positive z-axis,
¢ € [0,27) denotes the corresponding azimuth-angle measured from the positive z-axis,
~v € [0,7/2) refers to the auxiliary polarization angle, and n € [—m,7) symbolizes the
polarization phase difference. Note that ® depends on only the source’s direction-of-

arrival, whereas g depends on only the incident source’s polarization state.

2Much of this chapter appears in [167)].
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Any three of the six elements in (3.1) may be measured, at a point in space, by a triad
of collocated dipoles and/or loops oriented along the corresponding Cartesian axes. Such

a triad’s 3 x 1 array manifold would be
a = S , (3.3)

where S symbolizes a 3 x 6 selection-matrix of all zeroes, except one entry of a “1” at a

different position on each row. For example, a dipole-triad has

10 000 O
S = 010000
001 00O

3.2 Closed-Form Formulas to Estimate the Azimuth-Elevation

Arrival Angles & the Polarization-Parameters

In most eigen-based sensor-array parameter-estimation algorithms, an intermediate step
estimates each incident source’s steering vector, but correct to only within an unknown
complex-value scalar . That is, available (in each algorithm for each incident emitter)? is
the estimate & ~ aa, *from which 6, ¢, 7, and 1 are to be estimated. (This approximation
becomes equality in noiseless or asymptotic cases.) The question is whether a ~ «a suffices
to estimate 0, ¢, v, and n. The following five tables shows what, how, and why.

Tables 3.1 7 to 3.5 list the closed-form estimation-formulas for 6, dA), 4, 7. These estimation-

formulas are new to the open literature, except as noted earlier in Section 1.2.2, to the

3This does NOT presume only a single incident source. Multiple, possibly cross-correlated / broadband

time-varying sources can be handled. For details, please refer to those references directly.
ymg Y
4 The following simple data-model demonstrates how eigen-based parameter-estimation algorithms

would lead to a =~ aa.
Suppose the emitted signal arrives at the triad as s(¢), but corrupted additively by the triad’s thermal
noise-vector n(t). The triad’s measured data thus equals a 3 x 1 vector z(t) = s(t)a+n(t), at each t = t,,.

From M such time-samples, an eigen-based parameter-estimation algorithm can form a 3 x 3 data covari-

M
m=12

ance matrix C = G (tm) [2(tm)]", where the superscript  symbolizes the hermitian operator.
Suppose further that {s(t),Vt} and {n(t),Vt} are each temporally white, each temporally stationary, and
not cross-correlated. Then, C ~ C = Paal + P,I, where P, denotes the power of the incident signal,
P, refers to the thermal noise power at each antenna, and I signifies a 3 X 3 identity matrix. This 3 x 3
matrix C is Hermitian, and asymptotically approaches C, as M — oco. The asymptotic C has a principal
eigenvector equal to ca, where o can be any complex-value number that has a magnitude of 1/|/a| and
that is algebraically independent of a. Hence, the principal eigenvector of the sampled data-covariance
matrix C is approximately aa.

This & &~ aa arises also for more complex data-models involving multiple incident sources, more compli-

cated channels, and more complicated noises.

SFor compositions 1.1 and 1.2 in Table 3.1, the dA) formula in [59] is erroneous.
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best knowledge of the present authors. These formulas are valid, except at a finite number
of discrete values, which occur with probability zero, anyway. Some estimation-formulas
may require some prior information as specified in the far-right column in those tables.
These formulas are obtained by algebraic and trigonometric manipulations of the three
complex-value equations (i.e. six real-value equations) from the three component-antenna
consisting of the triad, to solve for the six real-value unknown scalars of 6, ¢, v, n, Re{a},
and Im{«a}. The Appendix shows such detailed algebraic and trigonometric manipulations
for the composition of {e;,e,,h.}. The derivation would be similar for the other cases.
In these estimation-formulas, Re{-} refers to the real-value part of the entity inside the
curly brackets, Im{-} denotes to the imaginary-value part of the entity inside the curly

brackets.
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Below are some qualitative observations on the above formulas:

{1} The various compositions are organized into the five tables, according to the prior

knowledge needed in these closed-form estimation-formulas: Based on the prior re-

quirement knowledge, the 16 configurations can be classified into 4 different groups:

(1a)

(1c)

(1d)

{2} (22)

(2d)

{3} (3a)

The all-dipole or all-loop triads (i.e. compositions 1.1 and 1.2): Some prior
knowledge of only 7 is required, to resolve a m-ambiguity in gZA) as shown in

Table 3.1.

Triads with both the z-oriented dipole and the z-oriented loop (i.e. compo-
sitions 2.1 to 2.4): Some prior knowledge of only € is required, to resolve a

m-ambiguity in qg as shown in Table 3.2.

Other triads that have exactly one component-antenna along each of the three
Cartesian axes (i.e. compositions 3.1 to 3.4): Some prior knowledge of only ¢

is required, to resolve a m-ambiguity in gg as shown in Table 3.3.

The remaining 6 compositions: Some prior knowledge of both 6 and 7 is re-

quired, to resolve m-ambiguities in (ZB, 9, qg and 7).

The dipole-triad {es, ey, e,} and the loop-triad {h,, hy, h.} each has a validity
region for (6, ¢) covering the entire sphere, if the sign of sin# is known a priori.
This is because the dipole-triad {e;, ey, e.} and the loop-triad {hg, hy, h.}, but
no other composition, enjoys one additional constraint from the normalization

lefl = 1 or [[h]| = 1.

For the four compositions of {e;,e., hy}, {€x, hy, ho}, {ey, €z, ha}, {€y, ha, b2},

1

the gg suffers ambiguity due to the presence of the cos™! or sin~! functions.

For the four compositions with the z-oriented dipole and the z-oriented loop,
the azimuth-elevation direction-of-arrival estimate has (6, ¢) validity region over
only an hemisphere. This is because 6 can be estimated only to tan? é, hence

™

there is ambiguity between 6 € [0, ] or 0 € (5, 7].

Similarly for the six remaining compositions, QE can be estimated only to within
an hemisphere, and requires sin 7. The parameter 7 refers to the phase by which

the electric field’s y-axis component leads the z-axis component.

For those compositions with exactly one component-antenna along each of x-
, Y-, and z-axis, the azimuth-elevation direction-of-arrival needs be estimated
before the polarization parameters. There, the resulting array manifold’s z-

component and y-component would have imaginary parts interrelated by either
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tan ¢ or cosf. For example, the composition {e,e,,e,} has an z-component
with an imaginary part of Im{— cos(f)cos(¢)sin(y) + cos(vy) sin(¢) cos(n) —
jcos(y)sin(¢)sin(n)}, and a y-component with an imaginary part of

Im{— cos(0) sin(¢) sin(y) — cos(7y) cos(¢) cos(n) + j cos(y) cos(p) sin(n)}. They
are interrelated by — tan ¢.

(3b) For all other compositions, the polarization parameters need to be estimated
before the azimuth-elevation direction-of-arrival. For example, for compositions
with both the z-axis dipole and the z-axis loop, their array manifolds have
entries /7 sin(#) sin(v) and sin(f) cos(y), interrelated by a ratio of —e’” tan(y),

which depends on only the polarization parameters.

3.3 Why Closed-Form Estimation-Formula Unavailable for
the Other Four Compositions

Closed-form estimation-formulas are given in Section 3.2 for 16 compositions (out of 20
possible compositions) of a triad of orthogonally oriented dipole(s) and/or loop(s). The
commonality among those 16 compositions are their inclusion of a z-axis dipole and/or
a z-axis loop. With either, no closed-form estimation-formula is possible, due to the
under-determined condition explained below.

Recall that each triad provides six real-value equations, from which the six real-value
scalar unknowns of 0, ¢,~v,n,Re{a},Im{a} are to be determined. However, these six
equations would be linearly dependent for any of the four compositions without a z-axis
dipole and without z-axis loop. Hence, the six unknowns would be under-determined.

For example, the triad {es, ey, h;} has these six linearly dependent equations:

=Re{[a]:}
=Re{[a]2}

Re{a}(cos ¢ cos @ sinycosn — sin ¢ cosy) — Im{a}(cos ¢ cos f sinysinny

Re{a}(sin ¢ cos f sin~y cosn + cos ¢ cosy) — Im{a}(sin ¢ cos f siny sinn

=Im{[a]; }
=Im{[als}

Re{a}(—sin¢sinysinn) + Im{a}(—sin ¢ sin~y cosn — cos ¢ cos  cosy) =Im{[a]s}

)
)
Re{a}(—sin¢siny cosn — cos ¢ cos @ cosy) — Im{a}(—sin ¢ sinysinn) =Re{[a]3}
Re{a}(cos ¢ cos 0 sinysinn) + Im{a}(cos ¢ cos 0 siny cosn — sin ¢ cos )

)

Re{a}(sin ¢ cos 0 siny sinn) + Im{a}(sin ¢ cos 6 sin y cos n + cos ¢ cos y

These six equations are linearly dependent, as
(Im{a}) x (3.5) = (Re{a}) x (3.8) — (Re{a})(tan ¢) x (3.7) + (Im{a})(tan ¢) x (3.4)
(Im{a}) x (3.5) = (Re{a}) x (3.8) + (Re{a})(cos ) x (3.9) — (Im{a})(cosb) x (3.6)

(Im{a})(tan @) x (3.4) = (Re{a})(cosh) x (3.9) — (Im{a})(cosf) x (3.6) + (Re{a})(tan ¢) x (3.7).
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3.4 Monte Carlo Simulation

Estimation Errors (in degrees)
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Figure 3.1a: Estimation errors in 6 for

Composition 2.1: {ez,e,,h,}.
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Figure 3.1b: Estimation errors in ¢ for

Composition 2.1: {ez,e,, h,}.
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Figure 3.1c: Estimation errors in 4 for Figure 3.1d: Estimation errors in 7 for

Composition 2.1: {ez,e,,h,}. Composition 2.1: {e;,e,, h.}.

To demonstrate the efficacy of the closed-form estimation-formulas with eigen-based
parameter-estimation algorithms, Monte Carlo simulations are conducted here. The eigen-
based parameter-estimation method used here is the uni-vector-senor ESPRIT method of

[32]. The six-component vector-sensor in [32] is substituted by the triad.

Two pure-tone sources impinge upon the triad. Their digital frequencies are f] =
0.0685 and f} = 0.2685}. Their elevation-azimuth angles-of-arrival are (61, ¢1) = (32°,62°)
and (62, ¢2) = (73°,147°), with polarization states (y1,m1) = (45°,90°) (left circularly
polarized) and (vy2,72) = (45°, —90°) (right circularly polarized). Both sources have unity
power. These signals are corrupted by additive noise, modeled as white complex complex
Gaussian distributed (WGN). The estimates are based on 900 temporal snapshots. Each

data-point on each graph consists of 2000 statistically independent Monte Carlo trials. The
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Figure 3.2b: Estimation errors in ¢ for

Composition 1.2: {hg, hy, h}.

Figure 3.2a: Estimation errors in 6 for

Composition 1.2: {hg, hy, h.}.
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Figure 3.2¢: Estimation errors in ~ for Figure 3.2d: Estimation errors in 7 for

Composition 1.2: {hg, hy, h;}. Composition 1.2: {hy, hy, h.}.

following graphs clearly show the efficacy of the derived closed-form estimation-formula.
Figure 3.1 plots the bias and standard deviations of (6, ¢, y,n) for the triad {e,,e., h.}.

Figure 3.2 plots the bias and standard deviations of (6, ¢,v,n) for the triad {hs, hy, h.}.

Figure 3.3 plots the bias and standard deviations of (6, ¢,v,n) for the triad {ey, hy, h.}.

3.5 Summary

Azimuth-elevation direction finding and polarization estimation are investigated for all
20 possible different compositions of a collocated triad of orthogonally oriented dipole(s)
and/or loop(s). For the 4 compositions without any dipole and any loop oriented along
the z-axis, closed-form estimation is not viable. Closed-form estimation-formulas are de-
rived for 16 compositions, 14 of these were previously unavailable in the open literature.

The dipole-triad and the loop-triad alone (among all 20 compositions) allow unambiguous
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Figure 3.3a: Estimation errors in 6 for

Composition 4.4: {ey, hy, h.}.

Figure 3.3b: Estimation errors in ¢ for

Composition 4.4: {ey, hy, h.}.
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Figure 3.3c: Estimation errors in ~ for Figure 3.3d: Estimation errors in 7 for

Composition 4.4: {ey, hy, h.}. Composition 4.4: {ey, hy, h.}.

direction-of-arrival estimation over the entire sphere. The other 14 compositions have
azimuth-elevation arrival-angles estimates with only an hemispherical (not spherical) va-

lidity region, due to the hemispherical ambiguity in the trigonometric functions.

3.6 Appendix: The Detailed Derivation for Composition

1.3: {es, ey, h.}

To demonstrate detailed algebraic and trigonometric manipulations leading to the estimation-
formulas in Tables 3.1-3.5, this appendix will use Composition 1.3: {es, ey, h.} as an

illustrative example.
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The derivation here will start from the left-hand side of

€ cos ¢ cos 0 sin vel — sin ¢ cos ¥
a = a e = o« | sin¢cosfsinyel + cospcosy | s (3.10)
h sin 6 cos «y

where « represents an unknown complex-value number that may have arisen from eigen-
based data-processing as discussed in footnote 4.
As 0 € [0,7] and v € [0,7/2), it is true that sinf cos~y > 0. Define
I AL IE!
cos ¢ cos f siny cosn — sin ¢ cos vy cos ¢ cos @ sinysinn
= Jal | sin ¢ cosfsinycosn+ cospcosy | + Jle sin ¢ cos # sin -y sin (3.11)
sin 6§ cos 7y 0
From (3.11),
Re{[bli} = |a|(cos¢cosfsinycosn —sin¢pcosy),
Re{[b]2} = |a|(sin ¢ cosfsin~ycosn + cos ¢ cos7y),

( (3.12)
( (3.13)
Re{[bls} = |a|(sinf cosn), (3.14)
Im{[bl1} = [a|(cos ¢ cos sinysiny), (3.15)

( (3.16)

Im{[bl]e} = |a|(sin¢ cosfsin~ysinn).

3.6.1 To Derive (/3

From (3.15)-(3.16),

_ Im{[bls}
tang = Tm{[bl,} (3.17)
As tan ¢ = tan(¢ + 7),
1 2 .
; - tan~ <I$EEH> if (cos@sinn)Im{[b]1} >0 (3.18)
tan~ Gﬁﬁiﬁ) + 7, if (cos@sinn)Im{[b];} <O.

The above conditions arise from the following consideration:

(cosfsinn)Im{[bl1} >0 = cos¢p>0 = ¢ |[—7/2,7/2]
(cos@sinn)Im{[b];} <0 = cos¢p <0 = ¢ (7n/2,31/2),
which help to determine whether ¢ € [—7/2,7/2] or ¢ € (7/2,37w/2). The inequalities in
(3.18) require prior knowledge which of cases (i) or (ii) holds:
(1) 6€l0,n/2]Nne[-m0) = coshsinn <0,
€ (r/2,mrjNne[0,m) = cosfhsinn <0,
(17) 0 €]0,7/2]Nne|0,m) = cosfsinn > 0,
€ (r/2,7]Nn € [-m,0) = cosfsinn > 0.
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3.6.2 To Derive 0

From (3.12)-(3.13),
Re{[b]2} cos ¢ — Re{[b];}sin¢ = |a|cos~. (3.19)

Together with (3.14),

sinf = Re{[bls} (3.20)

Re {[b]z} cosd — Re {[b];} sin¢
As sin @ = sin(7 — 0) for 6 € [0, 7],

o1 Ref[bl:} : .
T {| Rermreme o 1 00/ (3.21)
7 —sin~! Re{[bl;) — }, it 0¢e (m/2,7]|.
Ref{[bl2} cos d-Re{[b]: }sind

The above requires prior knowledge of whether 6 € [0,7/2] holds or 6 € (7/2, x| holds.

3.6.3 To Derive 7

From (3.12)-(3.13),

[b]icosé + [blasing = |a|cos@sinycosn + j|a|cosd sin~ysing

= |a|cosfsinvy(cosn + jsinn)

= |a|cosfsinyel". (3.22)
As |a|siny > 0,
. 4{[b]1cos¢+[b]2sm¢} (3.23)
cos 6
3.6.4 To Derive ¥
From (3.14) and (3.15),
Im{[b], } ,
= tan~y(cos ¢ cot fsinn),
Reffplp — n(cosocotfiinn

tany = Im{[b]; } tan 6 (3.24)

Re{[b]s} cos ¢psinn’
4 = tan”! { } . (3.25)

3.6.5 The Validity Region
Examining the prior knowledge required by the four estimation-formulas of (3.18), (3.21),

As siny > 0,

Im{[b];} tan
Re{[b]3} cos ¢ sin7)

. an .25), those estimation-formulas’ validity region equals € [0,5] or 0 €
3.23 d (3.25), th i ion-f las’ validi i Is {6 0,3 0

(5,7} {p €0,2m)} N{y €[0,5)} N{n € [-m,0) or n € [0,m)}.
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Chapter 4

Polarization Estimation with a
Dipole-Dipole Pair, a Dipole-Loop
Pair, or a Loop-Loop Pair of

Various Orientations

Polarization is bivariate; hence, a minimum of two diversely polarized antennas are needed
for polarimetry of a fully polarized wavefield. If limiting the choice of antennas to linearly

polarized antennas (i.e. dipole(s) or/and loop(s)) aligned along some Cartesian axes, there

exist = 15 possible antenna/orientation configurations, because two components
2

are here chosen, out of a total of six electromagnetic components. The open literature
presently offers no comprehensive comparison among these 15 configurations, even though
the effectiveness of polarimetry depends critically on what and how the antennas are
employed. This literature gap is filled by this chapter.

As reviewed in Section 1.2.3, closed-form estimation formulas are available in the open
literature for polarization-parameters (with the incident source’s direction-of-arrival is
already known) for three out of fifteen possible antenna/orientation configurations. In this
Chapter, Section 4.2 will provide closed-form estimation formulas for the other twelve.
Section 4.3 will derive and will compare the corresponding Cramér-Rao lower bounds
in polarization-estimation for these fifteen antenna/orientation configurations. Lastly,
Section 4.4 will contrast these fifteen configurations’ intrinsic numerical stability, with
respect to the matrix-inversion implicitly involved in the polarization estimation, given

prior knowledge of the direction-of-arrival. !

"Much of this chapter appears in [168].
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4.1 The Antenna-Pair’s Array Manifold

A fully polarized transverse electromagnetic wave is characterized by its six-component
electromagnetic-field vector (equations (2.5)-(2.8) and (2.11)-(2.12) in [20] with the noise

there set to zero),

ex e cos ¢ cos @ sin y — sin ¢ cos y
ey e sin ¢ cos 6 sin v + cos ¢ cos y
e €z | det —eJ" sin 0 sin y Vi V3 siny /"
h hy —eJsin ¢ siny — cos ¢ cos 0 cos ~y vy —Vi cos 7y
hy eI cos ¢ siny — sin ¢ cos f cos y def g def
h., sin 6 cos v

where 0 € [0, 7] signifies the emitter’s elevation-angle measured from the positive z-axis,
¢ € [0,27) denotes the corresponding azimuth-angle measured from the positive z-axis,
v € [0,7/2) refers to the auxiliary polarization angle, n € [—m,7) symbolizes the po-
larization phase difference, vi = [cos ¢ cos 0, sin ¢ cos 0, — sin G]T, vy = [—sin ¢, cos ¢, O]T.
Note that ® depends on only the incident source’s direction-of-arrival (DOA) and enjoys
a block-radialoid structure, whereas g depends on only the sources’ polarization state.

If the receive-antennas are either dipoles and/or loops, and if these receive-antennas
orient along some Cartesian axes, then the array manifold would equal the two corre-
sponding components of the six-element vector in (4.1). Thus, %u = 15 different an-
tenna/orientation configurations are possible for such an antenna-pair. For this selection
of 2 out of 6 elements, it may be represented by a 2 x 6 selection-matrix S, which has a
“1” on each row, but zeroes elsewhere.

All subsequent analysis will allow these two receive-antennas to be spatially separated
or collocated — the latter obviously represents a degenerate case of the former. More
mathematically, let one antenna be located at the Cartesian origin, with the other antenna
at a known location (Ag, Ay, A;), without loss of generality. Then, a spatial phase-
factor of exp{—j%F (A sinfsing + Aysinfcos¢ + A cosf)} would exist between these

two antennas. Each of these 15 configurations would have a 2 x 1 array-manifold,

1 0 e
a = S . (4.2)
0 exp{—j2F(A;sinfsing + Aysinfcosg + A, cos )} h
e

The question is: Which of these fifteen antenna-pair options would be “best”, to
estimate v and 1 unambiguously. This work will investigate this issue, with regard to
the numerical stability, the estimation accuracy, and the estimation validity-region of each

antenna/orientation configuration.
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Note that a number of relationships exist among the array manifolds of these 15 con-

figurations:

T
57%77) )
a{ey,ez}( 0, Y,M) = Ales.e} (07¢ - ga%ﬁ) )
6.0m) = apun (6,0~

0,0,7,m ) = Qle,ey}

age, n, ) (0.0,7,m) = age, n,) (9 ¢ —

Afhy,h=}

Afh,hy}

(¢
(
H
(6

A 410,677 a)en
agn, n1(0,6,7%,0) = ag, ..} (e,m— g,—n) e’
= A, e} (9,¢ g,’y - g, —"7> el
are, n.3(0,0,7,m) = ag, ny <9,¢—g,%n)7
am, e (0,0,7,1m) = ag, e (9 ¢— g,%n)-

4.2 The Polarization-Estimation Formulas for All 15 An-

tenna/Orientation Configurations

Eigen-based parameter-estimation algorithms typically involve an intermediate step, that
estimates each incident source’s steering vector, correct to within an unknown complex-
value scalar c. That is, available (for each incident source)? is the estimate a ~ ca, from
which v and 7 are to be estimated. (This approximation becomes equality in noiseless
or asymptotic cases.) Hence, there exist two equations and two unknowns. Algebraic
manipulation of the two equations yields the estimation formulas of 4 and 7). For example,
consider the {e, h,} pair (i.e. configuration 1A of Table 4.1). The two equations are the
two rows of

10 100000 siny eI

S}

0 efj%r(Azsin95in¢>+Aysin@cos¢)+Azcos0) 000 10 0 cos

ca = ¢C

(4.3)

The two unknowns are v and 7, with A, Ay, A,, 0, ¢, and A (thus ©) already known.?
Table 4.1 lists the estimation formulas of 4 and 7, for each of the 15 antenna/orientation
configurations. “There, B = 27” (Ag sin0sin p+Ay sin 6 cos p+A; cos f). These estimation-

™

formulas are applicable for the entire validity-region of v € [0, ) and n € [—m, 7). These

2This does NOT presume only a single source impinging upon the receiver. There could be multiple
sources. Moreover, these several sources could possibly be cross-correlated, broadband, and/or time-

varying.
SIf A, = Ay = A, =0 here, (4.3) gives the “COLD” array oriented along the z-axis.
*To facilitate the subsequent exposition, the orthogonal-loop-and-dipole (OLD) configurations of 1A,

1B and 1C in Table 4.1 will be identified as the “OLD array”.
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estimation-formulas are new to the open literature, to the best knowledge of the present
authors, except those few antenna/orientation configurations with references cited in Table
4.1.

It is noteworthy that the vertically oriented “OLD array” (i.e. the {e., h.} configu-
ration) has estimation-formulas independent of the source’s direction-of-arrival; hence, %
and 7) there require no prior information of # and ¢. This independence applies to no other
antenna/orientation configuration. This vertically oriented “OLD array” is unique in this

regard, because
(i) Its array manifold is independent of the azimuth-angle ¢.

(ii) Though its array manifold depends on the elevation-angle 6 through (and only
through) sin @, this siné factor is common to both entries in the array manifold.

Hence, the ratio between these two entries would be independent of 6.
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4.3 Cramér-Rao Bounds, CRB(v) and CRB(7), for All 15

Antenna/Orientation Configurations of Section 4.2

To avoid unnecessary distraction from the present objective to compare among the fifteen
antenna/orientation configurations, a very simple statistical data model will be used here
for the Cramér-Rao bound derivation: The received signal s(t) = e/(27/o*€) is a pure tone
at unity-power, a known frequency of f,, and a known initial phase of €. At the mth

time-instant of ¢ = mT, the antenna-pair collects the 2 x 1 data-vector,

z(mTs) = as(mTs)+ n(mTy), (4.4)

where Ty refers to the time-sampling period, n(¢) denotes a 2 x 1 vector of spatio-temporally
uncorrelated zero-mean complex Gaussian additive noise, with an unknown deterministic

2

covariance-matrix of I'g = diag (02, 02), where o“ representing the known noise-variance

at each antenna.

With M number of time-samples, the 2M x 1 collected data-set equals

¢ = (@) @MT)) = s@a+ (@) @Mn)], (45)
~ -

. . . . T . .
where s = €€ [eJTS“,eﬂTS”,--- ,e]MTS‘”] , v represents a 2M x 1 noise vector with a
spatio-temporal covariance matrix of I' = Iy ® I'g, and Ij; denotes an M x M identity

matrix. Therefore, ¢ ~ N(u,T), i.e. a Gaussian vector with mean p and covariance T.

The to-be-estimated v and n are modeled as deterministic. Collect all deterministic
unknown entities into the 2x 1 vector of 1 = [y, n]”

Matrix (FIM)

. The resulting 2 x 2 Fisher Information

Jye T
Jo= | (4.6)
Jﬂ77 JWI

has its (i, j)th entry equal to (please see equation (8.34) in [62]):

op \" __, ([ op L, 00 __, or
Ji; = 2Re ( > r ( +Tr|T r ()
’ Il oY), ol Ol;
where Re[.] denotes the real-value part of the entity inside [.], Tr[.] represents the trace
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operator, and

g: = gj®s, (4.8)
g’: = g:;®s, (4.9)
g: = Q stsjnej ] (4.10)

where ¥ Ds©.

The elements of the Fisher Information Matrix equal:

Ty = ZE1198), 17 + (1985, (cos)” +[(8©); )7 + (S8, (sin)?
—([8©],,[S8], , + [S®],,[SO], 5) sin(27)(cos 77)} (4.12)
= 27]‘24 [e1(cosv)? + ea(siny)? — c3sin(27)(cosn)] (4.13)
Ty = 2 [(180],,) 4 (180),7] (5n)? = Ze(sing)? (414)
T = 2y [(1501,,180); , + 801,86l ) (sin ) (sin)]
= 2;\2403(sinfy)2(sinn), (4.15)

where ¢ = ([86]1,1)2+([S®]2,1)27 2= ([86]172)2—%([8@]272)2, and ¢3 = [S@]l,l[S@]l,Q+
[S®], ,[S®], 5, with [];; symbolizing the (i, j)th entry of the matrix in [-].

The polarization-estimation Cramér-Rao bounds equal

CRB(y) = [J7']

1,1
_ T
Sy Inm = (Jyn)?
_ a 4.16
"~ 2M [c3(cosy)? + crca(siny)? — cze sin(27)(cos ) — c3(siny)2(sinn)2]’ (4.16)
CRB() = (377,
_ Iy
Sy Inn = (Jyn)?
o1 [c1(cosy)? + ca(siny)? — e3sin(27)(cos )]
2M (sin)2 [2(cos7)2 + crea(siny)? — czer sin(29)(cos ) — ¢2(siny)2(sinn)?]’
(4.17)

Tables 4.2-4.3 ® list the closed-form formulas for CRB(y) and CRB(n), explicitly in

terms of the data-model parameters. These Cramér-Rao bounds would be unchanged by

°In these tables, cs = (cosn)(cos ¢)(sin ¢)(cosf)sin(27y), ¢s = 1 + 2(cosn)?(cosf)? + (cos ), ¢ =
1+ 2cos(2n)(cos 0)? + (cos 0)*.
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any prior known spatial separation between the two receive-antennas, and these Cramér-

Rao bounds are independent also of the value of the frequency, if prior known. This is

because the values of the spatial separation and of the frequency would affect only B in

D, which is cancelled in the course of calculating the Fisher Information Matrix.

Figures 4.1a to 4.1c plot %CRB(’y) = Z(T—Af(sin 7)2CRB(n) for the three “OLD arrays”
of configurations 1A-1C of Table 4.1. Figures 4.2a to 4.2b plot CRB(y) and CRB(7) of the

horizontally oriented dipole-pair (i.e. configuration 2A). Figures 4.2¢ to 4.2d do the same

for the horizontally loop-pair (i.e. configuration 2B). Each remaining configuration has

CRB(v) and CRB(7n) dependent on three or more independent variables, thus not fully

representable by any three-dimensional graph.

Below are some qualitative observations on these derived Cramér-Rao bounds.

{1}

{2}

{3}

{4}

{5}

The horizontally oriented “OLD arrays” ({e, h,} of configuration 1A, and {e,, hy}
of configuration 1B) offer finite Cramér-Rao bounds for sources impinging not hori-
zontally. Please see Figures 4.1a and 4.1b. In contrast, the vertically oriented “OLD
array” ({es, h,} of configuration 1C) offers finite Cramér-Rao bounds for sources

impinging horizontally. Please see Figure 4.1c.

The horizontally oriented “OLD arrays” ({es, hy} of configuration 1A, and {ey, hy}
of configuration 1B) has a CRB(7) independent of the polarization parameters of
and 1. The vertically oriented “OLD array” ({es, h.} of configuration 1C) has both
CRB(y) and CRB(n) independent of the azimuth-angle ¢.

The Cramér-Rao bounds of the {e, hy} “OLD array” are related to the Cramér-Rao
bounds of the other horizontally oriented “OLD array” of {e,, hy}, by substituting ¢
by ¢ + 5 . This is because a14(0, ¢,7,1) = a1p(0, ¢ + 5,7, n). Similar relationships
exist between configurations 3A and 4A, between configurations 3B and 4B, between

configurations 6A and 7A, and between configurations 6B and 7B.

For configurations 3A-7B, both CRB(v) and CRB(7) depend on the direction-of-
arrival (i.e. 6 and ¢) and the polarization (i.e. v and 7). Other dependencies are

listed in Table 4.4.

CRB(n) — o0 as 7 — 0 for all 15 configurations.
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Table 4.2: Cramér-Rao Bounds for Polarization-Estimates for the 15 Antenna/Orientation

Configurations — a

Configuration | Receive-Antennas | CRB’s
0'2 .
1A {ezv h’z} CRB(V) = 2M [(sin ¢)2+(Cols ¢)2(Cos 9)2] = (SlIl 7)2CRB(T))
0'2 .
1B {ey7 hy} CRB(W) T 3 [(cos ¢)2+(si11 $)2(cos 9)2] = (Sln 7)2CRB(77)
1C {e=,hz} CRB(Y) = £ gz = (5in7)?CRB(y) [145]
N 1
2A {el ey} CRB(’Y) - 2M [(sin ~)24(cos )2 (cos '\/)2]
) (72
CR‘B(T]) = 2M (sinl'y)2 (cos,16)2
_ 0% 1
2B {ha: hy} CRB(’}/) - 2M [(cos ¥)2+(cos 0)2(sin 'y)2]
’ 2
CRB(T]) = ;W (sinl'y)2
o2 |1—(cos 6)2 (sin ¢)>
(sin.6)% + (co37)*[(cos 6)°
20 112
P —(cos0)*(sin¢)?] + ca
CRB(T]) —  2M (sinn)2 c3A
3A {ea,es} (cos #)*[(cosn)?(cos 0)?
+(cosy)?(1 — 2cos? 6 + cos? Osin’ n)
—(sin 0)2] + (cos #)*[(cos v)*(cos §)*
€34 =
—(cosn)?(cos 0)?(sinv)?]
+ca[(cos ¢)?(cos 0)? 4 (sin 8)?]
+(sin 0)%[1 — (cosv)?(cos §)?]
2
CRB(y) = AT C;B
{ (csc $)°[1 — (cos 7)? (cos 6)?
3B ha, b .2 —(cos 0)?(sin ¢)?(sin 7)? — cd]
{ } CRB(U) = 2Mm (sinl’y)2 c3p
(sin 0)? + (cos ¢)?(cos ) (sin~)?(cos 1)?
C3B =
+(cosv)?[(cos )% — (cos ¢)?] — ca
o2 |[1—(cos 6)2 (cos ¢)?
CRB(Y) = 33 %
o2 (cos ¢)2+(cos v)2[(sin ¢)2 —(cos 8)% (cos ¢)?]—c
CRB(”) = 3M (sinl’y)2 { C4A 4}
4A {ey,e-} (cos ¢)%[1 + (cos 0)?(sin $)?(cos n)? — (cos 6)*
—(cosy)?(1 + (cos 0)*(1 4 cos® 1))]
C4A =
+(cos ¢)*(cosy)*(cos 0)[(cosn)? + (cos §)?]
+(cosy)? — ca[l — (cos $)?(cos 0)?]
0_2
—(cos 0)?(sin )
. —(cos )2 (tan §)? + (sec )2(1 + 1)
4B {hy,h=} CRB(n) = 2M (Sinl’Y)Q c4B
(sin 0)? + (cosy)?[(cos 0)?(sin? n
€4B = + cos® ncos? ¢) — (sin ¢)?]
+(cos 0)?(cosn)?(sin ¢)? + c4
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Table 4.3: Cramér-Rao Bounds for Polarization-Estimates for the 15 Antenna/Orientation

Configurations — b

Configuration | Receive-Antennas | CRB’s
o2 |1+(cos 6)2
CRB(y) = gttt
(sec ¢)2{[3 + cos(26)][(cos v)? cos(2¢)
5A ez, h o2 +(sin §)°] + deq}
{ v y} CRB(U) = oM (sinl'y)2 2c54
c _ —2(cos 8)2(sinn)2 + c5[1 4 2(cos v)? (cos ¢)?]
oA —cgl(cos $)2 + (cos 1)2] + 2¢a[1 + (cos 6)?]
52 |—1—(cos )2
CRB(’}/) = oM 7[ e, ]
(csc )2 {—(cos ¢)? [1 + (cos 9)2]
5B e h 2 +1 (cosv)? cos(2¢) [3 + cos(260)] + 2¢4}
{ v z} CRB(TI) = ;W (sinl'y)2 : csB
c _ 2c4[1 + (cos 0)2] + 2c5(cos v)2 (cos ¢) >
5B - —cg(cos §)2 — (cos 7)2[L + (cos 0)2]2
0,2
CRB(v) = 3% 061A
(sec @) (sec 0)2[2(sin 1) + ca]
6A ez, h 2 1 —(sin~)?[(sec 0)2 + (sec ¢)?] + (cos7)?
{ X Z} CRB(/,’]) = 23 (sin7)2 con
. _ (sin7)2[(sin 6)2 + (sin ¢)2(cos m)?]
64 +(cos 7)%(cos $)2 (cos 0)2 + c4
CRB(’Y) _ 2(;-7]@ {2[27005(2C<é>;7cos(26)]}
{ (cos ¢)? (cos 0)2 (sin v)?
- 4 +(cos 7)2[(sin 6)2 + (sin ¢)2] —cq
CRB(’/]) = 2M (sin~)2 c6B
6B {es, hy}
4(cos 7)2[(0052 6 — 2)2
+(cos $)* (1 + cos? n cos? 6)
. _ +(cos ¢)2(—4 + (cos 0)* + cos? 0sin? n)]
6B o +4(cos ¢)? (cos 0)2 (sin 6)?
+2cy4[csc(2v) sin(2¢) (cos 1) (cos )
+ cos(26) + cos(2¢) — 2]
0_2
(csc ¢)2 (sec 0)2{(cos ¢)?[(sin v)?
—(cos v)?(cos 6)2] + (sin 6)?
TA {ey’ hZ} &2 1 +(cos v)? cos(26) — cq}
CRB (n) = oM (sinv)2 crA
c _ (cos 77)2(005 ¢)2(sin ’y)2 — cq + (sin 9)2
A —(cos’y)2[1 — 2(cos 6)2 + (cos 6)2(cos ¢)2]
52 |(cos ¢)2+(sin 9)2
CRB(v) = & %
{ (cosv)? [%(cos )2 + %(cos )2 cos(20)
- 1 — cos(20)] + (cos 6)2 (sin ¢)2 + c4
CRB(U) = 2M (sinv)2 crB
7B {ez, hy}
(cos 7)2{(cos ¢)4[1 + (cos n)?(cos 6)2]
~(cos #)2[~2 + (1 + (cos m)?)(cos 6)2
crB = +(cos 6)4] — cos(260)(sin 0)2}

+ea[(sin 0)2 + (cos ¢)?]
+(cos 6)2 (sin ¢)2[(cos n)? (cos ¢)? + (sin 6)?]
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Figure 4.1a: %CRE(W) = Figure  4.1b: %T—AQJCRB (7) =
(sin 7)220—]‘2/[CRB(77) plotted versus ¢ (sin 7)220—]\24CRB(7;) plotted versus 0
and ¢, for configuration 1A (i.e. the and ¢, for configuration 1B (i.e. the
horizontally oriented “OLD” array, horizontally oriented “OLD” array,

{ex, hat). {eyv hy})-

?CRB(U)

2M

(sinv)?

,+

CRB(7)

/4
//I///////// /

2M
o2

0 (degrees) 00 ¢ (degrees)

Figure 4.lc: ZICRB(v) =
(sin V)Q%CRB(U) plotted versus ¢
and ¢, for configuration 1C (i.e. the ver-

tically oriented “OLD” array, {e.,h.}).
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10° o : 10

7y (degrees) 0 0 § (degrees) 7 (degrees) 00 9 (degrees)
Figure 4.2a: %T—AQ/[CRB(W) plotted ver- Figure 4.2b: %CRB(?]) plotted ver-
sus 0 and ~, for configuration 2A (i.e. sus 0 and ~, for configuration 2A (i.e.

{em,ey}). {ex,ey}).

20

7y (degrees) 0 o 9 (degrees)  (degrees) o O 0 (degrees)
Figure 4.2c: %CRB(v) plotted ver- Figure 4.2d: %CRB(n) plotted ver-
sus 0 and +, for configuration 2B (i.e. sus 6 and +, for configuration 2B (i.e.
{ha; hy}). {ha, hy})-
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4.4 The Condition Numbers Associated with the Estimation-

Formulas of Section 4.2

The estimate g could be construed as

-1

P - -1
g = |Dse z(t) ~ c(SO®) 'seg, (4.18)
=0 ~ cDSOg

where z(t) denotes the 2 x 1 data collected at the time-instant ¢. The above requires

an inversion of the 2 x 2 matrix @ = DS®. %The numerical robustness in computing g

thus depends on the condition number Ko = ’;2?: of 2, where Apax denotes the largest-
magnitude eigenvalue of the matrix €2, and A;, symbolizes the smallest-magnitude eigen-
value. If Q approaches singularity, Ko would approach infinity. The numerically most
stable matrix-inversion corresponds to Ko = 1.

Table 4.5 lists the condition number for each of the 15 different composition/orientation
configurations, derived by the present authors. Because Ko depends only on €2, K is
independent of v and 7, but depends only on 8 and ¢.

The ideal o = 1 is attained by only the three “OLD array” compositions/orientations
of {ez,hy}, {ey,hy}, and {e.,h,}. For the other 12 configurations (i.e. configurations
2A-2B to 7A-7TB), Figures 4.3a-4.3f plot their condition numbers versus 6 € [0, 7] and
versus ¢ € [0,27). Each figure shows the values of 6 and ¢ where Ky — oo. These are

summarized in the two rightmost columns of Table 4.5.

Below are some qualitative observations:

{6} The condition numbers are all independent of the spatial separation between the two
component-antennas, and independent of the frequency. This is because the matrix
D always has a unity condition number, regardless of the aforementioned entities.

Hence, K5 is unaffected by these entities.

{7} For and only for the three “OLD array” configurations (i.e. a dipole and a loop in

an identical orientation), Ko = 1,76, ¢. The reason is as follows: From (4.1),
DS® = D = Q, (4.19)

with [.],, referring to the mth entry of the vector inside the square brackets. The

radialoid structure of Q gives Q7 = ([v1]2, + [v2]2,) I, where I symbolizes a 2 x 2

6 If g were estimated without the above matrix inversion, this condition-number analysis would be

irrelevant.
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{8}

{9}

{10}

{11}

identity matrix. Hence, the condition number equals 1. 7

For all the dipole-pair configurations and all the loop-pair configurations (i.e. con-
figurations 2A-2B, 3A-3B, 4A-4B), each “A” configuration (such as 2A) can lead
to the corresponding “B” configuration (such as 2B), by switching e with hA. More

precisely, with € = Q4 for the “A” configuration and with Q@ = Qpg for the “B”

0 —1
configuration, then Qp = Q 4P, where P = denotes a 90°-rotation ma-
1 0

trix. That is, 4 and Qp are similar matrices. Hence, configuration 2A must have
the same condition number as configuration 2B. Similar reasoning applies between

3A and 3B, and between 4A and 4B.

For non-identically oriented dipole/loop antenna-pairs (i.e. configurations 5A-5B to
7TA-7TB), each “A” configuration (such as 5A) can lead to the corresponding “B”

configuration (such as 5B), also by switching e with h. Consider configurations 5A

0
and 5B, Qg = RO 4P, where R = denotes a reflection matrix. Hence,

0 -1
Q4 and Qp have the same condition number. Consequentially, configuration 5A

must have the same condition number as configuration 5B, Similar reasoning applies

between 6A and 6B, and between 7A and 7B.

s

The condition number of configurations 3A-3B, with a 3 shift in ¢, leads to the
condition number of configurations 4A-4B. This is because the z-axis in 3A-3B cor-
responds to the y-axis in 4A-4B. Similarly, this holds between configurations 6A-6B

on one hand and configurations 7A-7B on the other hand.

For each antenna/orientation configuration, the condition number is symmetric with

respect to 0 = 7 along the f-axis, and with respect to ¢ = 7 along the ¢-axis.

"Below is a more intuitive explanation: For a dipole and a loop, they would most “completely” measure

the incident electromagnetic field, if the dipole and the loop are identically oriented. As an example,

consider a vertically oriented dipole/loop pair, i.e. {e, h.}. The vertically oriented loop h, measures the z-

axis magnetic field, which contains partial information of the z-axis and y-axis components of the electrical

field, complementary to the vertical dipole’s z-axis electric field measurement. This complementarity

(between the dipole’s measurement and the loop’s measurement) would disappear for any of the twelve

non- “OLD-array” configurations.
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4.5 Summary

Investigated herein are all 15 possible antenna/orientation configurations that measure
any 2 of the 6 components of the electromagnetic-field vector. Obtained for each an-
tenna/orientation configuration are the closed-form polarization-estimation formulas, the
corresponding validity region for unambiguous estimation, the corresponding Cramér-Rao
bounds, and the corresponding condition number as a function of the azimuth-elevation
direction-of-arrival. The same derived results would apply, whether each pair is collo-
cated or spatially separated. Among these 15 configurations, especially advantageous is
the vertically oriented “OLD array” (i.e. the {e,,h.} configuration), which requires no
prior information of the source’s direction-of-arrival for polarization, but offers an ideal
condition number of unity, and has a finite Cramér-Rao bounds except for near-vertically
incident sources. For the horizontally oriented “OLD arrays” (i.e. the {e,h,} configu-
ration or the {ey, hy} configuration), they also offer the ideal condition number of unity,

and have finite Cramér-Rao bounds except for near-horizontally incident sources.
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Chapter 5

Conclusion

This study investigates the direction-finding and/or polarization estimation with diversely
polarized antenna-arrays, which include: a) a spatially spread electromagnetic vector sen-
sor, b) various triad-compositions of collocated dipoles/loops, and c) a pair of diversely
polarized antennas.

Chapter 2 has proposed a spatially spread electromagnetic vector sensor composed
of six orthogonally oriented but spatially non-collocating dipoles / loops to advance the
“vector cross-product” direction-of-arrival estimator. This new scheme has great practical
value, in reducing mutual coupling, in simplifying the antennas hardware, and in extending
the spatial aperture to refine the direction-finding accuracy by orders of magnitude.

Chapter 3 has investigated various triad-compositions of collocated dipoles/loops,
for direction finding and polarization estimation. Among the 20 different compositions,
closed-form formulas are produced for 16 compositions to estimate the azimuth-elevation
direction-of-arrival and the polarization-parameters. The reason is given why such esti-
mation is inviable for the remaining 4 compositions. The dipole-triad and the loop-triad
are found to allow unambiguous direction-of-arrival estimation over the entire sphere.

Chapter 4 has developed the polarization estimation of fully polarized sources, given
prior knowledge of the incident sources’ azimuth-elevation directions-of-arrival, using a
pair of diversely polarized antennas — two electrically small dipoles, or two small loops,
or one each. The pair may be collocated or spatially separated by a known displacement.
Each antenna may orient along any Cartesian coordinate. Among the 15 configurations,
the “OLD arrays” are found to be advantageous.

Some future work may be conducted, such as:

1) In Chapter 2, to further study the geometry of the spatially-spread electromag-
netic vector sensor, some generalized array configuration may be more efficient for

direction finding and polarization estimation. In addition, the spatially-spread elec-
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tromagnetic vector sensor used for coherent sources direction finding could be devel-

oped.

In Chapter 3, to further study the direction finding and polarization estimation with
four collocated dipoles/loops, some compositions may have larger validity region for
the direction-of-arrival and polarization parameters. In addition, comprehensive
comparison among the 20 triad-compositions could be developed based on the asso-

ciated Cramér-Rao bounds.
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