

 II

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to the following

persons or parties.

First of all, I must thank my supervisor, Dr. James Liu, who has provided

constructive, valuable advices and guidance to me throughout the period of my study

and research. Without his insight, enthusiasm, encouragement and inspiration, I would

not have the courage and determination to complete the thesis.

Second, I would like to thank Dr. Raymond Lee, Dr. John Sum, and Dr. Yangjian,

who have given me considerable suggestions and academic comments.

Third, Mr. Martin, who has helped polish my papers and given me a lot of

unreserved and remarkable comments, is highly appreciated.

Fourth, I thank Liyan and Jing shuyuan who have discussed with me about

academic problems and given me some valuable comments.

Fifth, thanks must be given to my department at PolyU for providing monthly

studentship and research finances, and to the technical team including Evan and Amy

who have provided excellent support and services.

Sixth, I would like to express my special thanks to the following friends: Yaogang,

Fengbo, Raymond Kwong, Steve, Niuben, Zheng yongjie, Molly. Their assistances

and the warm relationship are appreciated.

Finally, I thank my parents and my wife for their continuous and tremendous

support, encouragement and tolerance as well as their patience during my research.

Without the support and assistance of these people and other persons who have

helped me but not appeared here, I would not able to continue my study and research,

nor complete the thesis. Thanks again.

 III

ABSTRACT

Internet-based robot teleoperation obviates the need for dedicated networks and

devices, reduces costs, extends operating distances, and allows precious resources

sharing for public education or academic research. Except for operating in hazardous

environments, Internet telerobotics has opened up a new range of real-world

applications, involving tele-manufacturing, tele-training, tele-surgery, museum guide,

space exploration, disaster rescue, and health care. There are many problems on

Internet-based teleoperation that need to be addressed, such as data transmission over

uncertain time-delay and unreliable Internet, teleoperation by inexperienced users,

short of interactivity, and so on. Moreover, Internet robots require a much higher

degree of autonomy than traditional teleoperation so that the robots are able to ensure

safe operations and perform some tasks autonomously.

In this thesis, we aim at developing a practical robotic system for the target

application: the inexperienced Internet users can remotely control a wheeled robot

which is able to perform some complex tasks autonomously (e.g. active map learning,

goal-oriented navigation) or to interact with human operator in order to explore

unknown and dynamic environments. The experiments are based on a Pioneer robot

that is equipped with an onboard camera and eight forward ultrasonic sensors. The

control commands transfer through radio Ethernet devices. To help realize such

robotic system, the research is conducted on the following aspects:

1) The video transmission via the low-bandwidth Internet is investigated and

implemented so that the robot’s surroundings can be seen by any remote operators

through the images captured from an onboard camera. It is a prerequisite to develop a

practical teleoperation system. Traditional approach is via the picture transmission

(e.g. JPEG or GIF), which leads to a very poor quality of service (QoS) because of the

high latency of the Internet, such as long time delay, data error or restricted bandwidth.

The thesis investigates and develops a streaming technology based approach for

streaming video transmission. Two video compression algorithms (WMV9 and

MPEG4) under different bandwidth, two video encoding methods (CBR and Quality-

based VBR) as well as the transmission stability and time delay have been

investigated.

 IV

2) A framework for autonomous navigation using fuzzy logic is proposed. This

work is a base for the subsequent designs of intelligent control programs so that the

mobile robot is able to autonomously perform some complex tasks amid various

degrees of uncertainties. The proposed framework involves goal determination,

preprocessing, behavior design, behavior arbitration, and command fusion.

Traditional framework for autonomous navigation is SMPA (Sense-Model-Plan-Act)

approach, which is inadequate for dealing with unknown and dynamic real world. The

behavior-based approach can act in real-time and has good robustness in such

environments. The preprocessing module is used to reduce the complexity of input

space by introducing a limited number of intermediate variables. The elementary

behavior can be designed using fuzzy logic controller or an analytic algorithm. A

behavior arbitration module is used to calculate the crisp weighting factors of each

elementary behavior. The final robot motion output is obtained by the command

fusion for a weighting combination of all elementary behaviors. A goal-oriented

navigation task, combined with obstacle-avoidance (OA) and goal-seeking (GS)

behaviors, is implemented as an example of the proposed framework.

3) A new teleoperation approach so called telecommanding is proposed to

provide an interactive control interface and a complete framework for control

management and command processing. The traditional direct control reduces the

stability of control loop because the controlled robot has no local intelligence and it

needs to maintain continuous connection. The existing supervisory control methods

are inadequate mainly in that they fail to provide human-robot interactivity. The

proposed approach involves two different but complementary commands: joystick

command (e.g. LEFT, RIGHT, UP, and DOWN) and linguistic command (e.g.

MOVE, TURN, GOTOEND, WANDER, COORDINATE, and MAPPING). Each

command is designed to perform independent task, which is defined with multiple

events (non-time action references) and corresponding response functions. Simulated

and real world experiments have been conducted to test the use of both joystick

commands and linguistic commands for Internet-based robot teleoperation. The

advantages and disadvantages as well as stability of telecommanding are analyzed.

4) To model a priori unknown environment (i.e. a MAPPING linguistic

command), a new map learning approach called memory grid mapping is proposed.

The robot builds a map based on robot’s sensory information and actively explores

the unknown environment. The approach includes a map model, a map update method,

 V

an exploration method, and a map postprocessing method. The map adopts a grid-

based representation. A so-called obstacle memory dot (OMD) matrix is designed to

save the frequency values which measure the confidence that a cell is occupied by an

obstacle. A so-called trajectory memory dot (TMD) matrix is designed to save the

trajectory traversed by the robot in order to facilitate the online path planning. Two

behaviors, path-exploring behavior and environment-detecting behavior, are

coordinated to make the robot exploring a least known environment. The map

postprocessing method includes a threshold operation, a template operation, and an

insert operation. The efficiency of map learning is investigated. The map accuracy

under different cell sizes and different map postprocessing is investigated as well.

Experiments are done for the map learning in different simulation environments.

5) For a teleoperated mobile robot that is exploring unknown indoor

environments, it is desired that the robot is able to autonomously arrive at a given goal

location (i.e. an enhanced COORDINATE linguistic command), even though the

environments involve all kinds of complex situations with local minima. The thesis

proposes a new navigation method, namely minimum risk method, to realize such

function. The method makes use of the proposed memory grid map. When a mobile

robot is performing the goal-oriented navigation, it updates a memory grid map in

real-time. A novel path-searching (PS) behavior is developed to use the map

information and to recommend a safest regional direction that can enable the robot to

detect potential local minima and escape from them. The final command outputs are

obtained by coordinating the behaviors: PS, OA, and GS. Fuzzy logic controllers are

used to implement behavior design and coordination. The method is experimentally

demonstrated to give global convergence to a given goal location, even though it is

used in the long-wall, large concave, recursive U-shape, unstructured, cluttered,

maze-like, or dynamic (i.e. with moving human) environments.

The developed telerobotic system has been demonstrated to be feasible to provide

the service of Internet-based teleoperation in university campus and exhibition center.

The tests have been performed successfully through the Internet remotely from

overseas places (e.g. Canada, Singapore, Chinese Beijing, Shanghai, Xiamen) to

Hong Kong.

 VI

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY .. I

ACKNOWLEDGEMENTS...II

ABSTRACT... III

TABLE OF CONTENTS ... VI

LIST OF FIGURES ..X

LIST OF TABLES... XIII

PUBLICATIONS ARISING FROM THE THESIS..XIV

CHAPTER 1. INTRODUCTION ..1

1.1 Background..1

1.1.1 The history and development of Internet telerobotics1

1.1.2 Research problems on Internet telerobotics ..7

1.2 Research objective and outline ..9

1.3 Organization of the thesis ..12

1.4 List of contributions...14

CHAPTER 2. LITERATURE REVIEW ..16

2.1 Time delay and data lost of the Internet ..16

2.2 Teleoperation paradigm ...18

2.3 Autonomous robot navigation ...19

2.4 Map building and exploration..22

2.5 Goal-oriented navigation in unknown environment with local minimum.........24

CHAPTER 3. VIDEO TRANSMISSION USING A STREAMING TECHNOLOGY BASED

APPROACH ...26

3.1 Introduction..26

3.2 A streaming technology based approach ...27

3.3 Experimental results ..28

3.3.1 Compression performance of two video codec...28

3.3.2 Transmission performance of two video encoding methods29

3.3.3 Transmission stability and time delay...32

 VII

3.3.4 Robot teleoperation through low-bandwidth Internet.................................33

3.4 Comparison with other approaches for image feedback....................................34

3.5 Summary..35

CHAPTER 4. A FRAMEWORK OF AUTONOMOUS NAVIGATION USING FUZZY LOGIC

..37

4.1 Introduction..37

4.2 A framework of behavior-based autonomous navigation..................................39

4.2.1 Preprocessing ..39

4.2.2 Goal determination..40

4.2.3 Behavior design ..40

4.2.4 Behavior arbitration and command fusion..42

4.3 An example of behavior-based autonomous navigation....................................43

4.4 Experimental results ..49

4.4.1 Experiment for goal-oriented navigation ..49

4.4.2 Experiment for robot wander ..50

4.5 Discussion..52

4.6 Summary..54

CHAPTER 5. TELECOMMANDING: A NEW INTERACTIVE TELEOPERATION

APPROACH ...56

5.1 Introduction..56

5.2 The proposed teleoperation approach ..59

5.2.1 The framework of telecommanding..59

5.2.2 Telecommanding using joystick commands ...62

5.2.3 Telecommanding using linguistic commands...65

5.3 Teleoperation platform ..71

5.4 Experimental results ..73

5.4.1 Teleoperation using joystick commands...73

5.4.2 Teleoperation using linguistic commands...75

5.4.3 Robot teleoperation over a long distance..79

5.4.4 Performance and stability analysis..80

5.5 Comparison with other control approaches ...81

5.6 Summary..83

CHAPTER 6. REAL-TIME MAP BUILDING AND ACTIVE EXPLORATION....................85

 VIII

6.1 Introduction..85

6.2 The proposed approach..87

6.2.1 The model of memory grid map ...87

6.2.2 A framework of map building and active exploration88

6.3 The map update..89

6.4 The environmental exploration..93

6.5 The map postprocessing...100

6.6 Experimental results ..103

6.6.1 Performance analysis of exploration process..103

6.6.2 Performance of map postprocessing ...107

6.6.3 Performance of map with different cell sizes ...108

6.6.4 Performance in complex environments ..110

6.7 Discussion..111

6.8 Summary..113

CHAPTER 7. GOAL-ORIENTED NAVIGATION IN UNKNOWN ENVIRONMENT WITH

LOCAL MINIMUM ..114

7.1 Introduction..114

7.2 The regional path searching behavior ..116

7.2.1 Regional Risk Index..118

7.2.2 Turn rules ..119

7.2.3 Weight rules ..122

7.3 The local obstacle avoidance behavior ..123

7.4 The global goal seeking behavior ..124

7.5 Performance Analysis ..126

7.5.1 Convergence analysis..126

7.5.2 Trial-and-return phenomenon ...127

7.5.3 Complexity analysis..129

7.5.4 The performance influenced by localization technique130

7.6 Experimental results ..131

7.6.1 Performance analysis in long-wall environments131

7.6.2 Comparison of performance in concave environments135

7.6.3 Performance in complex environments ..137

7.6.4 Performance in simulation with odometry drift..138

 IX

7.6.5 Performance in real world with odometry drift ..138

7.6.6 Performance in real world with dynamic environment.............................139

7.7 Categorization and comparison with related methods.....................................140

7.8 Summary..143

CHAPTER 8. EVALUATIONS AND RESEARCH IMPACT..145

8.1 Evaluations...145

8.2 Research impact ...149

CHAPTER 9. CONCLUSIONS AND FUTURE WORK ..152

9.1 Conclusions..152

9.2 Future work..155

REFERENCES..157

APPENDIX A. THE ROBOTIC PROGRAMMING...171

APPENDIX B. REPORTS OF NEWSPAPER AND MAGAZINES IN HONG KONG.............175

APPENDIX C. SNAPSHOTS OF THE WEBSITE...178

APPENDIX D. STREAMING TECHNOLOGIES..179

APPENDIX E. A BRUSH-UP OF FUZZY SYSTEM THEORY ...181

 X

LIST OF FIGURES

Figure 1.1: Earliest systems of Internet telerobotics ……………………………….. 3

Figure 1.2: The KhepOnTheWeb system …………………………………………... 4

Figure 1.3: Xavier (left) and its web control interface (right) 5

Figure 1.4: Autonomous tour-guide robots …………………………………………. 5

Figure 1.5: Traditional teleoperation & Internet-based teleoperation ………………. 8

Figure 1.6: The design flow of research outline ……………………………………. 10

Figure 1.7: The Pioneer robot and its accessories ………………………………….. 12

Figure 2.1: The diagram of a typical Internet-based teleoperation ………………… 16

Figure 2.2: SMPA approach & behavior-based approach architecture …………….. 21

Figure 3.1: Internet-based teleoperation using streaming video transmission …….. 27

Figure 3.2: An early user interface of streaming client …………………………….. 30

Figure 3.3: Transmission performances of two video encoding methods ………….. 31

Figure 3.4: The robot to be remotely controlled to navigate in a hall ……………… 34

Figure 4.1: A framework of behavior-based autonomous navigation ……………… 39

Figure 4.2: Behavior coordination problem ………………………………………... 42

Figure 4.3: Membership functions for (a) obstacle distance (b) weight (c) speed (d)

delta turn angle ……………………………………………………………………... 45

Figure 4.4: Heading error between current robot heading and goal direction ……... 48

Figure 4.5: Performance comparison for goal-oriented navigation ………………... 50

Figure 4.6: Robot wandering in a circular small area ……………………………… 51

Figure 4.7: The speed and turn angle of mobile robot during wandering ………….. 51

Figure 5.1: The robot in a maze ……………………………………………………. 60

Figure 5.2: The framework of telecommanding ……………………………………. 61

Figure 5.3: Three types of routeway suitable for the use of GOTOEND ………….. 71

Figure 5.4: A platform for Internet-based teleoperation using telecommanding …... 71

Figure 5.5: The display and control interface ……………………………………… 72

Figure 5.6: Teleoperation simulation using joystick command ……………………. 74

Figure 5.7: Joystick commands for the use in Internet-based teleoperation ……….. 75

Figure 5.8: Simulation using linguistic commands ………………………………… 76

Figure 5.9: The use of linguistic commands for Internet-based teleoperation ……... 77

Figure 5.10: The goal-oriented navigation in a maze ………………………………. 78

 XI

Figure 5.11: The goal-oriented navigation using one enhanced COORDINATE …. 79

Figure 5.12: The robot is navigating by telecommanding in the HKCEC …………. 80

Figure 6.1: A memory grid map and its coordinate mapping ……………………… 87

Figure 6.2: A framework of the proposed approach memory grid mapping ………. 88

Figure 6.3: The update of OMD matrix in a memory grid map ……………………. 91

Figure 6.4: The exploration method by ED and PE behavior coordination ……….. 93

Figure 6.5: Detection regions for the PE behavior …………………………………. 94

Figure 6.6: A framework of the proposed method for map postprocessing ………. 101

Figure 6.7: Eight templates for map postprocessing ……………………………… 102

Figure 6.8: Real-time map building and active exploration ………………………. 105

Figure 6.9: Performance comparison between active and random exploration …... 106

Figure 6.10: The results of map postprocessing …………………………………... 107

Figure 6.11: The results of map with different cell size ………………………….. 109

Figure 6.12: Map learning in complex environments …………………………….. 110

Figure 7.1: Two environment maps ………………………………………………. 115

Figure 7.2: Membership functions for (a) iteration risk (b) collision risk (c) trajectory

dot intensity (d) obstacle dot intensity ……………………………………………. 118

Figure 7.3: Membership functions for (a) Risk Index (b) turn angle (c) goal location

(d) behavior weight ……………………………………………………………….. 119

Figure 7.4: The determination of the turn angle by the PS behavior ……………... 122

Figure 7.5: Architecture of fuzzy logic controller (FLC) …………………………. 122

Figure 7.6: Weight determination of OA, PS, GS behaviors …………………….. 125

Figure 7.7: “Trial-and-return” behavior phenomenon ……………………………. 128

Figure 7.8: Minimum risk method to long-wall environment with local minimum. 133

Figure 7.9: The results of different behaviors ……………………………………. 134

Figure 7.10: In a large concave and recursive U-shape environment …………….. 136

Figure 7.11: In a concave environment …………………………………………… 136

Figure 7.12: In a recursive U-shape environment ………………………………… 137

Figure 7.13: In complex environments …………………………………………… 138

Figure 7.14: In a recursive U-shape environment without and with odometry drift. 138

Figure 7.15: Performance in real world with local minimum …………………….. 139

Figure 7.16: Performance in dynamic real world …………………………………. 140

Figure 7.17: The flowchart of the approaches for local minimum problem ……… 141

Figure 8.1: Public demonstration of Internet-based robot teleoperation …………. 146

 XII

Figure 8.2: Statistics of countries or regions where the visitors come from ……… 150

Figure 8.3: Statistics of the visit quantity for every month ………………………. 151

 XIII

LIST OF TABLES

Table 2.1: Round-trip time and data lost rate of transmitting data ………………… 17

Table 3.1: Network bandwidth & video codec ……………………………………. 29

Table 3.2: Transmission stability and time delay under different Internet bandwidth 33

Table 3.3: Comparison using different approaches for image feedback …………… 35

Table 4.1: Turn rules for the OA behavior …………………………………………. 46

Table 4.2: Move rules for the OA behavior ………………………………………... 46

Table 4.3: Weight rules for the OA behavior ……………………………………… 47

Table 5.1: Comparison of related systems under various teleoperation approaches . 81

Table 6.1: Turn rules for the ED behavior ……………………………………….. 99

Table 6.2: Weight rules for the ED behavior …………………………………….. 99

Table 7.1: Fuzzy rules of regional Risk Index ……………………………………. 118

Table 7.2: Turn rules for the PS behavior ………………………………………… 120

Table 7.3: Weight rules for the PS behavior ……………………………………… 123

Table 7.4: Turn rules for the OA behavior ……………………………………….. 124

Table 7.5: Weight rules for the GS behavior …………………………………….. 124

Table 7.6: Comparison of related methods that address local minimum problem .. 142

 XIV

PUBLICATIONS ARISING FROM THE THESIS

International Journal papers:

[3] Meng Wang, James N.K. Liu, " Interactive control for Internet-based mobile robot

teleoperation”, Robotics and Autonomous Systems, Vol.52, Iss.2-3, pp.160-179,

Aug. 2005

[2] James N.K. Liu, Meng Wang, Feng Bo, "iBotGuard: An Internet-based Intelligent

Robot Security System Using Invariant Face Recognition Against Intruder", IEEE

Transactions on Systems, Man, and Cybernetics. Part C, Vol.3, Iss.1, pp.97-105,

Feb. 2005

[1] Meng Wang, James N.K. Liu. "PolyUiBot: Sensibility Improvement Using

Streaming Technology for Internet Telerobotics", WSEAS Transactions on

Computers, Vol.3, Iss.3, pp.592-601, July 2004.

Book chapter:

[1] Meng Wang, James N.K. Liu, "Behavior-based Blind Goal-oriented Robot

Navigation by Fuzzy Logic”, R.Hkosla et al (Eds.) Lecture Notes On Artificial

Intelligences (LNAI) series by Springer-Verlag, Vol.3681, pp.686-692, 2005

Under reviewing journal papers:

[1] Meng Wang, James N.K. Liu, “Fuzzy Logic Based Real-Time Robot Navigation

in Unknown Environment with Local Minimum", under reviewing in Robotics and

Autonomous Systems

[2] Meng Wang, James N.K. Liu, “Real-time map building and active exploration for

autonomous robot in unknown environment", under reviewing in Autonomous

Robots

Conference papers:

[8] James N.K. Liu, Meng Wang, “Fuzzy logic based active map learning for

autonomous robot”, presented in 2006 IEEE International Conference on Fuzzy

Systems, Vancouver, Canada, July 16-21, 2006

 XV

[7] Meng Wang, James N.K. Liu, "Fuzzy logic based robot path planning in unknown

environment", 4th International Conference on Machine Learning and Cybernetics,

Guangzhou, China, pp.813-818, August 18-21, 2005

[6] Meng Wang, James N.K. Liu, "Online Path Searching for Robot Autonomous

Navigation", IEEE Conference on Robotics, Automation and Mechatronics (RAM),

Singapore, pp.746-751, Dec.1-3, 2004

[5] Meng Wang, James N.K. Liu, "A Novel Teleoperation Paradigm for Human-robot

Interaction", IEEE Conference on Robotics, Automation and Mechatronics (RAM),

Singapore, pp.13-18, Dec. 1-3, 2004

[4] Meng Wang, James N.K. Liu, "Autonomous Robot Navigation using Fuzzy Logic

Controller", 3th International Conference on Machine Learning and

Cybernetics, Shanghai, China, pp.691-696, August 26-29, 2004

[3] Meng Wang, James N.K. Liu. "A Streaming Technology Based Approach for

Internet Telerobotics", 5th Proceedings of ACM Postgraduate Research Day, Hong

Kong, pp.194-202, January, 2004.

[2] Meng Wang, James N.K. Liu, "Streaming Technologies based Internet

Telerobotics", 2nd IASTED International Conference on Communications, Internet

& Information Technology, Scottsdale, USA, pp.565-570, Nov. 17-19, 2003

[1] Meng Wang, James N.K. Liu. “Wavelet-based Real-time Video Compression and

Transmission System for Wireless Channel and Its Synchronization Technology”,

4th Proceedings of ACM Postgraduate Research Day, Hong Kong, pp.143-150,

January 2003.

CHAPTER 1. Introduction

 1

CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 The history and development of Internet telerobotics

A new field, “Internet telerobotics” technologies for online robot teleoperation

through the Internet, is emerging in the recent decade. Online Robots (or Internet

Robots) are the robots that can be accessible from any computer on the Internet

[Goldberg & Siegwart, 2002]. In the late 1950s and early 1960s, engineers began

dreaming of remote manipulation where the operator and the manipulation task

environment were distance apart and visual feedback was via TV. This kind of

operation, to operate a vehicle or manipulator over a distance, is called teleoperation.

The human is the operator, who monitors the operated machine and makes the needed

control actions. The first "remote-manipulators" were developed for handling

radioactive materials during 1950s. Outstanding pioneers were Raymond Goertz and

his colleagues at the Argonne National Laboratory outside of Chicago, and Jean

Vertut and his engineers at a counterpart nuclear engineering laboratory near Paris

[Goertz & Thompson, 1954]. Their first system allowed human operators to stand

outside of radioactive "hot cells," peer through leaded glass radiation barriers, and

grip "master" arms coupled to "slave" arms and hands inside the cells, which in turn

grasped the remote objects. The Internet's key advantage is the flexibility of where the

operator can gain access to communication. With the rapid growth of the Internet,

more and more intelligent devices or systems have been embedded into it for service,

security and entertainment, including distributed computer systems, surveillance

cameras, telescopes, manipulators and mobile robots. Moreover, recent advances in

computer technology and software engineering and the development of inexpensive

sensory equipment have allowed the development of not just local spot robot

applications, but of Internet-based, distant-controlled telerobotics.

The Internet has opened the door to a much wider audiences. Some types of

remote access technologies on the Internet have broadly used in our daily life. The

computer network services, such as FTP, Telnet, the World Wide Web (WWW or the

Web), e-mail, etc., provide us convenient tools and devices to transmit remote

CHAPTER 1. Introduction

 2

information. Most people, however, continue to think of the Internet as a means of

sending e-mail and getting information from remote databases. They remain unaware

that another huge class of operations lies just ahead, namely the ability to control

physical objects remotely over the Internet. What kinds of things? Anything one can

imagine what an Internet robot can do. When away from home, for example, one

could turn up the heat, start the preparation of a meal, feed the cat, put out the garbage,

examine the mail, or check whether someone cuts the grass. An office or factory

manager could inspect the work of others or ready a product for shipping. A student

could inspect some ancient ruins in a museum, perform an experiment on the ocean

floor, shake hands or participate in an experiment or athletic activity with students in

another country.

 Although the field of Internet telerobotics is relatively new and still in its infancy,

it has captured the huge interest of many researchers worldwide in the last decade. In

1994 the “Mercury Project” was one of the earliest implementations of telerobotics

over the Internet [Goldberg & Gentner et al., 2000], with Australia’s Telerobot

[Taylor & Trevelyan, 1995] coming online at almost the same time. Since then, about

forty such systems have been put online by research teams around the world. In the

Mercury project, a remotely controlled industrial robot arm was used to explore a

sandbox filled with buried artifacts (See Figure 1.1(a)). The systems used the HTTP

protocol and browser interface. A four-axis IBM robot with camera and air nozzle

was set up over a sandbox so that remote viewers could excavate for buried objects by

positioning a mouse and clicking from any web browser. Each operation was atomic

(self-contained) and the application was designed so that singularities and collisions

cannot occur. The system was designed to be operated by nonspecialists and to

operate reliably twenty-four hours a day. Telegarden [Goldberg, et al., 1995] replaced

the Mercury robot in 1995. The Telegarden system additionally used CAD drawings

to animate the state of the manipulator, and allowed the Web users to remotely control

an Adept 6 DOF arm to dig and water the plants. Australia's Telerobot on the web

[Taylor & Trevelyan, 1995] gives web users the opportunity to build complex

structures from toy blocks (See Figure 1.1(b)).

CHAPTER 1. Introduction

 3

 (a) (b)

Figure 1.1: Earliest systems of Internet telerobotics. (a) Mercury robot,

camera, and air nozzle above workspace [Goldberg, et al., 2000]. (b)

Australia's Telerobot, enables web users to build complex structures from

toy blocks [Taylor & Trevelyan, 1995].

The 1st generation of Internet robots is mainly based on robotic arms or simple

mobile robots that are directly controlled by human operators. In other words, a

human is in the control loop. These online robots operate within a well-structured

environment with little uncertainty, and have no local intelligence such as obstacle

avoidance. Stein developed an interesting application of an Internet robot: the

PumaPaint project [Stein, 2002]. The project is a Web robot that allows any user to

control a PUMA 760 robot to paint through the Internet. The robot is equipped with

four paintbrushes (red, green, blue, and yellow paint) and two color cameras. Users

can select a color and paint on the virtual canvas; the motion will be transformed into

sequential commands to the remote robot to apply paint to the real canvas. The

Mechanical Gaze system [Paulos & Canny, 1996], developed at Berkeley University,

allows remote WWW users to control a robot arm with an attached camera to explore

remote objects. Another example is the Bradford Robotic Telescope [Baruch & Cox,

1996]. The WWW users can look at an image taken from an observation with the

telescope and compare it with one taken from a star database held at NASA. In The

Swiss Federal Institute of Technology, The KhepOnTheWeb [Saucy et al, 2000]

system consists of a mobile robot that moves in a wooden maze (see Fig.1.2). The

Web users, using clickable images obtained from an onboard camera, can control the

robot's movements and orientation. This system was available from May 1997 to May

1998. Although KhepOnTheWeb provides a satisfactory user experience, it has a

CHAPTER 1. Introduction

 4

major drawback: the direct control of the robot is difficult under important delays

without help, so that the system does not scale to real world environments.

(a) (b)

Figure 1.2: The KhepOnTheWeb system. (a) mobile robot with its on-board video

camera in a 65×90cm maze; (b) the Web control interface [Saucy et al, 2000].

In contrast, research on the 2nd generation of Internet robots has begun to focus on

autonomous mobile robots that navigate in a dynamic and uncertain environment,

including the Xavier -- an office exploring robot at CMU [Simmons, et al, 2000], and

the museum tour-guide robot RHINO and MINERVA [Thrun, et al, 1999; Schulz et al,

2000]. Xavier (See Figure 1.3) was probably the first mobile robot to operate in a

populated office building controlled through the web. Xavier can be advised by web

users to move to an office and to tell a “knock-knock” joke after arrival. The robot

collects the requests both off-line and on-line and processes them during special

working hours. After the successful execution of the mission, Xavier informs the web

user via e-mail. Xavier’s web interface relies on client-pull and server-push

techniques to provide images taken by the robot. Furthermore, it provides a map of

the environment and indicates the robot’s current position in regular intervals. RHINO

and MINERVA (See Figure 1.4) not only can enable Internet users to remote control

the robot through the Internet for museum visit, but also can provide a control

interface for the local people in the museum. The key features of this generation of

Internet robotic projects are their autonomy and reactive behaviours which enable

them to navigate and cope with uncertainty in the real world. Supervisory control is

the main teleoperation paradigm in building this generation of Internet robots.

Unfortunately, this paradigm has a real negative impact on web-based interaction:

commanding at a high level is not as interactive as teleoperation using direct control.

CHAPTER 1. Introduction

 5

Figure 1.3: Xavier (left) and its web control interface (right) [Simmons, et al, 2000]

(a) (b) (c)

Figure 1.4: Autonomous tour-guide robots (a) RHINO (b) MINERVA (c)

MINERVA in the museum [Thrun, et al, 1999; Schulz et al, 2000]

In general, there are four kinds of control architecture for Internet robots: one to

one, one to many, many to one, and many to many.

A. One to One. This is the common control architecture for most Internet

telerobotic systems to provide one user control of one robot (one-one). The examples

are Mercury, PumaPaint, KhepOnTheWeb, Xavier, RHINO and MINERVA and so

on, which were introduced in the above paragraphs. Another one important example

is the NASA’s WITS (Web Interface for Telescience), which has been developed to

provide Internet-based distributed ground operations for planetary lander and rover

missions [Volpe et al., 2000]. The user gets the software through a HTML page and

then stops using HTML, as the Java applet is then in charge of accessing the user’s

CHAPTER 1. Introduction

 6

local WITS database and the WITS server. The user generates a sequence of actions

locally, using the FIDO simulator to check the results. When finished, the user sends

the sequence to the WITS server. It is checked using a sequence integration and

verification module and then the full sequence is sent to the rover. The user accesses

the data received through the downlink into the remote WITS database. This data

includes the robot position and images from the navigation stereo cameras, the

panoramic stereo cameras and other sensors.

B. One to Many. Some Internet telerobotic systems permit one user control for

multiple robots (one-many). As an example, Luo has designed an automatic guided

intelligent wheelchair system for hospital automation through the Internet [Luo et al.,

1998]. Each mobile robot and the intelligent wheelchairs are individual agents in the

hospital automation system. When the human operate orders a command to help one

user/wheelchair, the control center starts to broadcast a message to all agents to look

for a server agent for completing this task.

C. Many to One. Few researchers propose that multiple users control a single

robot (many-one). One example is that Goldberg et al. [2000] propose the

collaborative teleoperation system. The system allows many users to simultaneously

teleoperate an industrial robot arm through the Internet. Their idea is that many

people are working together to control a robot, and each user monitors different

sensors and submits control inputs based on the different sensor information. Finally,

all control inputs must be combined to a single control signal for the robot.

D. Many to Many. Several researchers have devoted efforts to the multiple-users-

control-multiple-robots system (many-many). For example, Lo and Liu et al [2004]

developed a system that enables multiple operators at different sites to cooperatively

control multiple robots with real-time force reflecting via the Internet. The operator in

China helped the operator in the U.S. to grasp the object by controlling the mobile

cameras serve as “mobile eyes” for the operator in the U.S.

Internet-based telerobotics has also attracted interests among researchers in Hong

Kong and on the Chinese mainland. The Chinese University of Hong Kong (CUHK),

jointly with the universities from the United States, Japan and Chinese mainland, has

developed Internet-operated, supermedia-enhanced telerobotic systems that includes

the bilateral control of mobile manipulators [Elhajj, et al.,2003; Lo et al, 2004].

CUHK also designed an Internet-based Pulse Palpation system for Chinese medicine

CHAPTER 1. Introduction

 7

[Xiang, et al., 2002]. The City University of Hong Kong has exploited a human-robot

interface that uses agent communication with an XML-based markup language

[Makatchev, et al., 2000], as well as investigating dynamic Internet performance and

establishing an Internet-based control transmission model. On the mainland,

Tsinghua University (TU) has combined an event-based direct control method with a

graphic predictive simulation to achieve an Internet-based multi-operator dual-arm

teleoperation system [Jinshi Cui, et al., 2002] as well as a robot arm that can be

teleoperated through the Internet to write Chinese characters. The Harbin Engineering

University (HEU) investigated the round trip delay (RTT) of Internet-based

teleoperation [Ye, et al., 2002] and a UDP-based protocol for data transmission [Liu

et al., 2002].

Apart from for operating in hazardous environments that are traditional

telerobotic areas, Internet telerobotics has opened up a new range of real-world

applications, involving tele-manufacturing, tele-training, tele-surgery, museum guide,

space exploration, disaster rescue, house cleaning, and health care.

On 17th Sep. 2002, the “Pyramid Rover” robot entered the queen’s tomb in the

ancient Egypt pyramid to explore beyond a long-unopened door. This robot was

controlled by the traditional direct control of an operator through the reliable cable

connection. Worldwide, people watched the event via a live satellite television

broadcast. However, if you explore the pyramids by yourself over the Internet, how is

your feeling!

1.1.2 Research problems on Internet telerobotics

Internet-based robot teleoperation obviates the need for dedicated networks, devices,

and operators, reduces costs, extends operating distances, allows precious resources

sharing for public education or academic research, and is accessible from any node

on the Internet. Although the Internet provides a cheap and readily available

communication channel for teleoperation, there are still many problems that need to

be addressed. Figure 1.5(a) shows one example of traditional teleoperation. Figure

1.5(b) shows one example of Internet-based teleoperation.

CHAPTER 1. Introduction

 8

(a)

(b)

Figure 1.5: (a) Traditional teleoperation. The human operator has most of

the time straight visual contact to the controlled target. Control commands

are sent electronically through wire or radio; (b) Internet-based

teleoperation. The human operator holds a haptic device attached to the

local computer, a robot controlled by the remote computer, and both

computers communicating via the Internet.

Internet-based teleoperation differs from traditional teleoperation on several

aspects. These differences are also research problems on Internet telerobotics as

follows.

• There is much latency on the Internet: restricted bandwidth, uncertain time delay,

packet lost, and data error, which is unlike traditional teleoperation where the

interfaces have fixed delays and guaranteed services.

• Internet telerobotics must ensure safe operations even if communication breaks

down. With communication as unpredictable as it is on the Internet, online robots

require a much higher degree of autonomy than traditional teleoperation.

• Internet robots require local intelligence (e.g. obstacle avoidance, path planning,

map learning, objective recognition, etc.) to sense the exploring environments and

to deal with uncertainties derived from both real world and robots themselves.

CHAPTER 1. Introduction

 9

Human operators provide such intelligence in traditional teleoperation.

• Internet users require high-quality feedback from remote robots in order to obtain

satisfactory experience for virtual tele-presence. Traditional teleoperation

provides human operator direct feedback on the spot.

• Internet telerobotics requires a mechanism to provide human operators reliable

hands-on control and other high level commands in order to obtain more

interactive experience. This is easy for traditional teleoperation without the

Internet latency.

• Internet telerobotics requires an intuitive and easy-to-use teleoperation interface

because Internet robots are typically remotely controlled by many people with

little expertise and few skills. In contrast, traditional teleoperation are handled by

trained operators.

In addition, we compare Internet-based teleoperated robots with autonomous and

interactive robots. The key difference is the communication between human operators

and robots. The latter can real-time communicate with humans while humans are able

to easily know robot’s current surroundings and working status. The former is more

difficult because the Internet leads to uncertain and unreliable information

transmission between human operators and teleoperated robots.

1.2 Research objective and outline

The research objective of the thesis is to develop a practical telerobotic system for the

target application: inexperienced Internet users can remotely control a mobile robot to

perform some complex tasks autonomously (e.g. active map learning, goal-oriented

navigation) or to interact with human operators in order to explore unknown and

dynamic environments. To help realize such robotic system, we mainly do research

on the following aspects:

1) To investigate and implement the video transmission via the low-bandwidth

Internet so that the robot’s surroundings can be seen by any remote operators through

the images captured from an onboard camera.

2) To develop a new teleoperation approach that can provide interactive control

interface so that inexperienced operators have better robot teleoperation experiences.

3) To develop and realize some high-level control commands for the use of

Internet-based robot teleoperation to navigate the mobile robot that explores

CHAPTER 1. Introduction

 10

unknown environments.

4) To develop a map learning approach for autonomous robot to actively explore

unknown indoor environments and build a map based on robot’s sensory information.

5) To develop a new behavior-based navigation method for mobile robot to

autonomously search the path and finally arrive at a given goal within unknown and

dynamic indoor environments which involve local minima (i.e. dead ends).

There are three phases for the above research. Figure 1.7 shows the design flow

diagram of our research.

Figure 1.6: The design flow of research outline.

In the first phase, we do the investigations of image transmission over the Internet

at first, and implement it based on the streaming technology. This work is a

prerequisite to develop a practical Internet-based teleoperation system so that any

CHAPTER 1. Introduction

 11

authorized users can see the remote robot’s surroundings through the images captured

from an onboard camera. The robotic programming (see Appendix A) is not an

important research work, but it is indeed a basic programming work for subsequent

robotic development. Next a framework for autonomous robot navigation is

investigated. The framework includes the steps of goal determination, preprocessing,

behavior design, behavior arbitration, and command fusion. This work is a base for

the subsequent designs of intelligent control programs so that the mobile robot is able

to autonomously perform some complex tasks in spite of the uncertainties derived

from real world and robot itself.

In the second phase, we implement an interactive teleoperation interface through

the Internet. A novel teleoperation approach so called telecommanding is proposed.

Telecommanding involves two different but complementary commands: joystick and

linguistic commands. Each joystick or linguistic command is defined with multiple

events (non-time action references) and the corresponding response functions. In this

phase, we define and realize four joystick commands (UP, DOWN, LEFT, and

RIHGT) and five linguistic commands (MOVE, COORDINATE, TURN,

GOTOEND, and WANDER). Another one linguistic command (MAPPING) is

realized in the third phase.

In the third phase, we propose a new map learning approach called memory grid

mapping (i.e. MAPPING linguistic command) to model a priori unknown indoor

environments. The approach includes a map model, a map update method, an

exploration (i.e. online path planning) method, and a map postprocessing method.

Finally, we propose a new behavior-based navigation method called minimum risk

method to realize an enhanced COORDINATE linguistic command. The method is

an application of the proposed memory grid map. It is developed to give global

convergence to a given goal in different indoor environments, including long-wall,

large concave, recursive U-shape, unstructured, cluttered, maze-like, and dynamic

environments.

For each phase, we perform evaluations by specified experiments. In addition,

public demos and real teleoperation of remote users overseas are performed

throughout the research period. Another encouraging observation is that we provide a

website about our telerobotic research during the second phase. From the statistics of

website visitors, we are able to know the impact of our research to related academic

CHAPTER 1. Introduction

 12

researchers.

The experiments of the thesis are based on a mobile robot (vehicle) shown in

Figure 1.6. The robot uses a multifunctional Hitachi H8S-based microcontroller, and

has a 44cm x 38cm x 22cm aluminum body and a ring of eight forward sonars. The

control commands are transferred through radio Ethernet devices, and the video/audio

data is fed back through a set of 2.4GHz frequency A/V transmitter-receivers from a

pan-tilt-zoom camera mounted on the robot deck.

Figure 1.7: The Pioneer robot and its accessories. The robot has eight

forward ultrasonic sensors and an onboard pan-tilt-zoom camera.

1.3 Organization of the thesis

This chapter introduces the background and research problems of Internet

telerobotics, proposes the research objective and outline, and states the main

contributions of the thesis.

Chapter 2 reviews the related literatures. Section 2.1 introduces a time-delay

model of Internet-based teleoperation as well as investigations about round-trip time

and packet lost rate of data transmission via the Internet. Section 2.2 introduces the

existing teleoperation paradigm: direct control and supervisory control. Section 2.3

describes two approaches for autonomous robot navigation: SMPA and behavior-

based approach. Section 2.4 introduces the related approaches for real-time map

building and exploration, and Section 2.5 the related approaches for goal-oriented

navigation in known and unknown environments.

Chapter 3 implements a streaming technology based approach for video

transmission. Two video compression algorithms (WMV9 and MPEG4) under

CHAPTER 1. Introduction

 13

different bandwidth, two video encoding methods (CBR and Quality-based VBR) as

well as the transmission stability and time delay have been investigated. A test of real

robot teleoperation using direct control via a 33.6Kbps (modem) Internet connection

has been done successfully. Finally we compare the performances of different

approaches for image transmission.

Chapter 4 proposes a framework of autonomous navigation using fuzzy logic. A

goal-oriented navigation task, combining with obstacle-avoidance and goal-seeking

behaviors, is implemented and tested as an example of the proposed framework.

Finally we discuss pros and cons of the use of fuzzy logic controller as well as

machine learning technique.

Chapter 5 proposes a new teleoperation approach so called telecommanding.

Experiments have been done to test the use of both joystick commands and linguistic

commands for Internet-based simulated and real robot teleoperation. The advantages

and disadvantages as well as stability of telecommanding are analyzed. The

comparisons with direct control and supervisory controls are made as well.

Chapter 6 proposes a new map learning approach to model a priori unknown

indoor environment. The efficiency of map learning is investigated. The map

accuracy under different cell sizes and different map postprocessing is investigated as

well. Experiments are done for the map learning in different simulation environments.

Chapter 7 proposes a new navigation method to navigate the robot to a given goal

within an unknown environment with local minima. Performances of the proposed

method in long-wall, large concave, recursive U-shape, unstructured, cluttered, maze-

like, and dynamic indoor environments are experimented. A detailed comparison

with both boundary-following and virtual-subgoal approaches is made.

Chapter 8 evaluates the research results of the thesis. Public demos and

teleoperation of authorized users overseas verify the developed telerobotic system.

The advantages and limitations of the research are discussed. In addition, we provide

an interesting statistics of our website which has been built to introduce our

telerobotic system. The results of this statistics are analyzed to show the impact of

our research.

Chapter 9 concludes the thesis and suggests possible future researches.

Appendix A describes the related robotic programming. Appendix B shows one

newspaper and two magazines, which reported our telerobotic system to the public in

CHAPTER 1. Introduction

 14

Hong Kong. Appendix C gives the snapshots of our website. Appendix D introduces

the emerging streaming technologies for media transmission through the Internet.

Appendix E gives a brief introduce of related fuzzy system theory that would be used

in this thesis.

1.4 List of contributions

This section states the contributions of the work in the thesis.

• Chapter 5 proposes a new teleoperation approach so called telecommanding in

order to provide an interactive control interface and a complete framework for

control management and command processing. This work is one of our major

contributions. Telecommanding involves two different but complementary

commands: joystick and linguistic commands. It gives more experience of

interactivity and functionality compared with the existing direct control and

supervisory control methods. Under the framework of telecommanding, we

extend our system by realizing more linguistic commands.

• Chapter 6 proposes a new map learning approach called memory grid mapping in

order to model a priori unknown indoor environment. This work is one of our

major contributions. The approach includes a map model, a map update method,

an exploration method, and a map postprocessing method. The work has

addressed an important topic in robotics, and has contributed some useful ideas

such as simple map model, exploration method and map postprocessing method.

• Chapter 7 proposes a new behavior-based navigation method called minimum risk

method in order to address local minimum problem faced by goal-oriented robot

navigating in unknown indoor environments. This work is another major

contribution. The method is experimentally demonstrated to give global

convergence to a given goal location, even though it is used in the long-wall,

large concave, recursive U-shape, unstructured, cluttered, maze-like, or dynamic

(i.e. with moving human) environments. Compared with the existing boundary-

following or virtual-subgoal approach, the proposed method can deal with more

complex environments and is able to find the nearest exit to escape from local

minimum.

• In addition, the developed prototype system for Internet-based teleoperation turns

CHAPTER 1. Introduction

 15

out to be practical and be feasible to provide the service at university campus or

exhibition center.

• Chapter 3 presents a streaming technology based approach for streaming video

feedback from remote robots. This work is a less important part. But the work is

beneficial for the researchers in the field of Internet telerobotics to adopt similar

techniques in order to improve image transmission and make the Internet-based

teleoperation usable.

• Chapter 4 proposes a framework for autonomous robot navigation using fuzzy

logic. This framework involves goal determination, preprocessing, behavior

design, behavior arbitration, and command fusion. The work in this chapter

focuses on the development of a simple and practical navigation framework that

is useful for easy realization of building robust control programs. Although this

work is a less important part, it is a base for the subsequent research to implement

some complex tasks.

CHAPTER 2. Literature Review

 16

CHAPTER 2. LITERATURE REVIEW

2.1 Time delay and data lost of the Internet

Different from traditional teleoperation systems using private transmission media,

Internet telerobotics uses the Internet, which is a public transmission media on which

unknown numbers of end users share the bandwidth concurrently. Internet robots

encounter the uncertain transmitting time-delay and data-loss problems, which

always makes the remote control becoming unstable or failing. A diagram of typical

Internet-based teleoperation is drawn in Figure 2.1 [Luo and Chen, 2000]. The total

time of performing a teleoperation per cycle is t1 + t2+ t3 + t4, where the four types

of time delay are:

1) t1: time delay of transmitting the remote information (e.g., images, sensory

data, robot’s status data) from the robot to the operator;

2) t2: time delay of making control decision by the operator;

3) t3: time delay of transmitting a command from the operator side to the robot;

4) t4: execution time of the robot to perform a command.

Figure 2.1: The diagram of a typical Internet-based teleoperation. [Luo and Chen,

2000]

Assume “m” is the degree of robot’s autonomy, the higher the “m” degree

representing the higher degree of autonomy (i.e., to simplify the problem, operator

sends one command and the robot performs “m” nonredundant actions to complete it),

and m=1 representing that the robot has no autonomy (i.e., one command and one

primitive action). If we assume that each of the four delays is always a constant, and

CHAPTER 2. Literature Review

 17

the desired task requires the robot to perform “n” primitive actions (i.e., complexity is

n) to complete it, the total time spent for completing a task is (n/m)*(t1+t2+t3)+n*t4.

As a result, the task completion time is inversely proportional to m.

Unfortunately, communication through the Internet t1 and t3 are usually

unpredictable. The latency of the Internet usually contains the uncertain round trip

delay and the data loss rate. Luo and Chen [2000] have repeatedly tested the

transmitting efficiency of the network by sending 64 bytes data every time from their

Web server in laboratory to different remote Web servers. The resulting statistics of

round-trip time and data-lost rate are shown in Table 2.1, where Min. represents the

minimum round trip delay, Max. is the maximum, and Avg. is the average delay of

total tests. It can be seen that the latency of the Internet not only contains the serious

and uncertain round-trip delays but also the data-loss rate.

In the TCP/IP protocol, once the data is lost, the remote site will require a

retransmission. This leads to a longer delay of total transmission time. Assume the

data-lost rate is “ p” and the average round-trip delay is “R” s; the expected time of

transmitting a control command with 64 bytes can be roughly estimated by

R/2*(1+p+p2+p3+…) = R/(2*(1-p)) second. In a local area network (LAN) this value

(several ms) is small, but for transmission across the Internet, it cannot be guaranteed.

Teleoperation of a “puppet like” robot via the high latency Internet is not suitable, but

most of the existing systems do this. The long transmission delay may result in the

failure of remote controls in a complex task or, more seriously, endanger the robot

and its workspace.

TABLE 2.1: Round-trip time and data lost rate of transmitting data between

internal Web server and remote others. [Luo and Chen, 2000]

Web Address Min. (ms) Avg.(ms) Max.(ms) Loss Rate

www.ccu.edu.tw (South R.O.C) 1 4 20 < 1%

www.ncku.edu.tw (South R.O.C) 3 4 19 2%

www.ntu.edu.tw (South R.O.C) 11 17 50 20%

www.ncsu.edu (NCSU) 331 375 1616 46%

www.cmu.edu (CMU) 336 358 1461 50%

www.ynu.ac.jp (Japan) 440 493 2576 69%

www.cam.ac.uk (UK) 436 772 4468 51%

www.fu-berlin.de (Germany) 446 860 5505 42%

CHAPTER 2. Literature Review

 18

2.2 Teleoperation paradigm

In general, the teleoperation paradigms of Internet telerobotics can be divided into

two types: direct control, supervisory control. Most of Internet-based teleoperation

systems are basic extensions of these two paradigms.

A. Direct Control

In the direct control paradigm, the human operator can control the mobile robot

directly by sending the primitive commands (e.g. force or velocity commands) and

necessary parameters continuously through the Internet. The robot will execute the

commands without any intelligence, and it maintains continuous connection with the

remote controller. Direct control has obvious drawbacks such as reduced stability of

the control loops due to uncertain long delay of the Internet. To alleviate the

problems derived from the Internet latency, three main approaches are developed.

1) Predictive aiding approach. With time delay, received remote information may

be invalid to represent the current remote situation. The predictive aiding approach is

developed to extrapolate forward environmental information and manipulator states

in time by stochastic predictors for displaying on the operator’s monitor. [Kikuchi, et

al., 1999; Schulz, et al., 1998].

2) Simulating and planning display approach. This approach is developed to use

local simulated manipulator in order to assist the human operator to control the

remote robot more intuitively. The operator can control the simulated manipulator

directly, and the computer stores the sample state-command pairs in the memory

buffer. When the operator has finished a task by a local simulated device, the queued

data will be sent to the actual manipulator to execute. The time and position clutching

method [Conway, et al., 1990] is such an example of this approach.

3) Event-based approach. The general idea of non-time based control is to model

the system and the trajectory as functions of a non-time based variable, which is

called motion reference or action reference. It is also usually denoted as and called

the event-based action reference. The stability of teleoperation systems with non-time

based motion reference is guaranteed if their local robot controllers are stable and the

non-time based motion reference is a non-decreasing function of time. Such non-time

based reference is usually related directly to real time sensor measurements or the

task. The advantage of this approach, which differentiates it from the other

CHAPTER 2. Literature Review

 19

approaches in the literature, is that stability is proven independently of the specific

human operator or the statistics of time delay [Xi & Tarn, 2000].

B. Supervisory Control

In supervisory control paradigm, the remote robot operates in a large autonomous

mode and only interacts with the human operator until the robot encounters a

situation it cannot handle. The robot requires only specifying its new desired

destination or state. Therefore, there is no need for high speed continuous

communication. Because of the latency of the Internet and the requirement for safety

of a mobile robot, the supervisory control is essential for the Internet application.

Many researchers establish the local intelligence of mobile robots, such as collision

avoidance, path planning, self-referencing, object recognition, and so on. The RHINO

and MINERVA [Thrun, et al., 1999] tour guide robots are operated at this level.

Internet users can control the robots to visit an exhibition position via the Web by

clicking the marked position on the map. Therefore, the communication content from

the user to the robot only consists of the goal command, and the sensory information

of the remote environment is not really necessary when the robot is executing the task.

2.3 Autonomous robot navigation

In general, robots can be categorized as two types: mobile manipulators with haptic

feedback and mobile vehicles for navigation. This thesis only addresses the Internet-

based teleoperation of wheeled robot for navigation. Although human intelligence is

important in robot teleoperation systems, it is essential for local robot to have

autonomous capabilities to handle unexpected events and dynamic environmental

changes.

The goal of autonomous mobile robotics is to build physical systems that can

move purposefully and without human intervention in real world. On the one hand,

traditional robots lack the ability to provide flexibility and autonomy: typically,

perform preprogrammed sequences of operations in highly constrained environments,

and are not able to operate in new environments or to face unexpected situations. On

the other hand, there is a clear emerging market for truly autonomous robots. Possible

applications include intelligent service robots for offices, hospitals, and factory floors;

maintenance robots operating in hazardous or inaccessible areas; domestic robots for

CHAPTER 2. Literature Review

 20

cleaning or entertainment; autonomous and semi-autonomous vehicles for help to the

disabled and the elder and so on.

Any approach to control a dynamic system needs to use some knowledge, or

model, of the system to be controlled. In the case of a robot, this system consists of

the robot itself plus the environment in which it operates. Unfortunately, while a

model of the robot on its own can normally be obtained, these environments are

characterized by the ubiquitous presence of uncertainty, and we are often not able to

precisely model or quantify this uncertainty. First, the uncertainty induced by the

presence of people. People move around, and they may change the position of objects.

Additionally, results of the robot's movement and sensing actions are influenced by a

number of environmental conditions, which are hardly accounted for. For example,

the error in the robot's motion may change as a result of a wet floor; and the

reliability of distance measured by a sonar sensor is influenced by the geometry and

the reflectance properties of the objects in the environment.

A common strategy to cope with this large amount of uncertainty is to abandon

the idea of completely modeling the environment at the design phase, and to endow

the robot with the capability of building this model by itself on-line. This strategy

leads to the so-called SMPA(Sense-Model-Plan-Act) approach [Saffiotti, 2000] (see

Figure 2.2(a)). The robot uses exteroceptive sensors, like a camera or a sonar sensor,

to observe the state of the environment; it uses proprioceptive sensors, like a compass

or shaft encoders on the wheels, to monitor the state of its own body parts. By using

the exteroceptive sensors, the robot acquires a model of the workspace as it is during

the moment when the task must be performed. From this model, a planning program

builds a plan that will perform the given task in the given environment. This plan is

then passed to a lower-level control program for execution.

But there are a number of problems using the SMPA approach to deal with real-

world environments. The model acquired by the robot is incomplete and inexact, due

to the uncertainty in perception. Moreover, this model is likely to rapidly become out

of date in a dynamic environment, and the plan built from this model will then turn

out to be inadequate for the environment actually encountered during execution. The

fact that the modeling and planning processes are usually computationally complex

and time consuming exacerbates this problem, because the feedback loop with the

environment must pass through all these processes "Sense-Model-Plan-Act" [Cang

CHAPTER 2. Literature Review

 21

Ye, et al., 2000].

 (a) (b)

Figure 2.2: (a) SMPA approach architecture; (b) Behavior-based approach

architecture. The lower layer uses perception to dynamically adapt plan

execution to the environmental contingencies. The execution module must

simultaneously consider demands coming from the plan and from the

environment.

A modern approach, so-called behavior-based approach [Arkin, 1998], is shown

in Figure 2.2(b). The general feeling is that planning should make as few assumptions

as possible about the environment actually encountered during execution; and that

execution should be sensitive to the environment, and adapt to the contingencies

encountered. To achieve this, perceptual data has to be included into the executive

layer. This apparently simple extension has two important consequences. First, it

makes robot's interaction with the environment much tighter, since the environment is

now included in a closed-loop with the (usually fast) execution layer. Second, the

complexity of the execution layer has to be greatly increased, since this needs now to

consider multiple objectives: pursuing the tactical goals coming from the planner, and

reacting to the environmental events detected by perception.

In behavior-based approach, each behavior fully implements a control policy for

one specific sub-task, like following a path, avoiding sensed obstacles, or crossing a

door way. Simple behaviors are combined in order to produce a complex strategy

able to pursue the strategic goals of the agent, while effectively reacting to

contingencies.

CHAPTER 2. Literature Review

 22

Fuzzy logic controllers provide a means of transforming linguistic control

strategy based on expert knowledge into an automatic control strategy. It appears to

be very useful for handling problems that are too complex to be analyzed by

conventional quantitative techniques or when the available sources of information

provide qualitative, approximate, or uncertain data. Reactive navigation of a mobile

robot falls into this class of problems that fuzzy control system copes well.

2.4 Map building and exploration

To efficiently carry out complex missions in indoor environments, autonomous

mobile robots must be able to acquire and maintain models of their environments. The

problem of acquiring models is difficult and far from being solved. The following

impose practical limitations on a robot’s ability to learn and use accurate models.

1) Sensors. Sensors often are not capable of directly measuring the quantity of

interest. For example, ultrasonic sensors measure the distance to obstacles,

whereas for navigation one might be interested in assertions such as “there is a

door in front of the robot”.

2) Perceptual limitations. The perceptual range of most sensors (e.g. ultrasonic

sonars, cameras) is limited to a small range around the robot. To acquire global

information, the robot has to actively explore its environment.

3) Sensor noise. Sensor measurements are typically corrupted by noise. Often, the

distribution of this noise is not known.

4) Drift/slippage. Robot motion is inaccurate since odometric errors accumulate over

time. For example, even the smallest rotational errors can have huge effects on

subsequent translational errors when estimating the robot’s position.

5) Complexity and dynamics. Robot environments are complex and dynamic, making

it impossible to maintain exact models and to give prediction accurately.

6) Real-time requirements. Time requirements often demand that internal models

must be simple and easily accessible. For example, accurate fine-grain CAD

models of complex indoor environments are often inappropriate if actions have to

be generated in real-time.

There are two major representations for mapping indoor environments [Victorino

et al, 2003; Meyer & Filliat, 2003]: topological and grid-based. Topology maps

permit efficient path planning and have low space complexity, but it is often difficult

CHAPTER 2. Literature Review

 23

to learn and maintain accurate and consistent topology maps in large-scale

environments, particularly if sensor information is ambiguous [Thrun, 1998]. Grid-

based maps have the disadvantage of being space-consuming, but they can tolerate

uncertainties in sensory data and are easier to build and maintain, providing more

opportunities to satisfy the requirements of real-time path planning and execution.

The grid-based map model represents the robot’s work area by a two-dimensional

array of square elements denoted as cells. Each cell contains a certainty value to

measure the confidence that an obstacle exists within the cell area. Certainty values

are updated by a function that takes into account the characteristics of the sensors.

In robotics, there are several different grid-based representations to be used to

represent the environment. The main difference among them is the function used to

update the cells, for example: probability [Thrun, 1998b; Yamauchi et al., 1998;

Wallner & Dillmann, 1994; Dieguez et al., 2003; Song & Chang, 1999; etc.], fuzzy

possibility [Oriolo et al., 1998], frequency [Borenstein & Koren, 1991; Edson et al.

2004] and so on.

Probability values are commonly used in grid-based maps. The first grid-based

method to use probability values to measure the spatial uncertainty generated by

sonar sensors was Occupancy grid [Moravec & Elfes, 1985; Elfes, 1987; Moravec,

1988]. Thrun [1998] used an occupancy-grid framework to implement an incremental

mapping scheme. The probability of each cell being occupied is updated using the

Bayes rule. This probability is computed using a neural network that has been trained

by back-propagation in a known environment. Thrun makes the additional hypothesis

that walls are orthogonal. Such a hypothesis limits the estimation error in the robot’s

direction to values that permit local map-matching and efficient correction of the

robot’s position estimate. Thrun also resorts to an exploration scheme that allows the

robot to drive towards unexplored areas. Yamauchi et al. [1998] provide a similar

scheme but without using the orthogonal walls assumption. Their computation of

occupancy probabilities is based on the combination of laser-scans and sonar-sensor

values. This combination is designed to simultaneously avoid the use of spurious

measurements from the sonar-sensors, and to filter too high laser-scan values that

arise when the laser ray is targeted above the obstacles. The exploration is directed

toward the closest frontier between explored and unexplored areas. Wallner and

Dillmann [1994] construct local certainty grids around new detected obstacles. The

CHAPTER 2. Literature Review

 24

methods allow the combination of a parametric description of known obstacles with

grid-based mapping. Grid probabilities result from the information obtained from

ultrasonic range sensors and an active stereo-vision system. This approach combines

cyclic path replanning and grid refinement.

Oriolo et al. [1997; 1998] proposed a grid-based map that was defined as the

fuzzy set of unsafe cells whose membership function quantifies the possibility for

each cell occupied by some obstacles. Fuzzy set operators are used to process

ultrasonic sensor data, producing a grey-level bitmap that provides risk information

for each cell. On a fuzzy map, A*-based path planning is performed by searching for

optimal paths from the current robot location to the desired goal.

Koren & Borenstein [1991] used frequency values to indicate the measurement of

confidence that a cell is occupied by an obstacle. Their histogramic in-motion

mapping approach uses a very simple metric sonar model that assumes that a single

point in the sonar’s direction is detected at the distance measured by the sonar. The

frequency value of the cell containing at that point is simply increased, while the

frequency values of the cells between the robot and that point are accordingly

decreased by a smaller value. Edson et al. [2004] adopted a similar scheme. This

approach has the advantage of highly efficient computation.

2.5 Goal-oriented navigation in unknown environment with

local minimum

The goal-oriented autonomous navigation is a robot task that is commonly required in

Internet-based teleoperation systems such as the office-exploring robot Xavier and

museum tour-guide robots RHINO and MINERVA. This task calls for a robot to be

given a goal position and for the robot then to arrive at the goal autonomously while

to avoid any static or dynamic obstacles in its path. One suggested solution is to use

an approach that combines both global path planning and path tracking [Huh et al,

2002; Ryu & Yang, 1999; Meyer & Filliat, 2003]. This approach guarantees global

convergence to the goal. We call this scheme “heuristic goal-oriented navigation”.

The key precondition of heuristic goal-oriented navigation is to obtain the requisite

environmental knowledge in advance.

Unfortunately, the characteristics of real world applications have created a

CHAPTER 2. Literature Review

 25

number of difficulties in applying an approach that uses heuristic goal-oriented

navigation. First, in general, prior knowledge about an environment may be

incomplete, uncertain, imprecise, and perhaps even entirely unavailable. Second, the

dynamics of real-world environments are typically complex and unpredictable. A

third difficulty is created by the fact that robot tasks (e.g. Mars exploration) are often

real-time and non-repetitive.

An alternative scheme is one that we call “myopic goal-oriented navigation”. By

“myopic” we mean that the robot is moving in an environment but without prior

knowledge about it. The popular control strategy for autonomous navigation, an

advance on the early SMPA (Sense-Model-Plan-Act) approach, takes a so-called

behavior-based approach [Arkin, 1998]. Local path-planning behaviors use local

sensory information in a largely reactive fashion. They are much simpler to

implement since they typically map the sensor readings directly to actions. Specific

examples include potential-field methods [Tsourveloudis et al., 2001] and neural-

fuzzy approaches [Rusu et al., 2003; Godjevac and Steele, 2000]. None of these

examples, however, guarantee global convergence to the goal because they are

susceptible to get trapped in local minima (or dead ends) of the environments.

In the literatures [Maaref & Barret, 2002; etc.], the local minimum problem, also

called the deadlock, dead end or limit-cycle problem, has been addressed using what

we categorize as two types of approach: the boundary-following approach, and the

virtual subgoal approach. Boundary-following approaches [Huang & Lee, 1992;

Kamon & Rivlin, 1997; Lim & Cho, 1998; Krishna & Kalra, 2001; Maaref & Barret,

2002; Chatterjee & Matsuno, 2001] have a common control structure. Initially the

robot moves directly toward the goal using a normal navigation module. When the

robot judges that the context is satisfying a detection criterion (e.g. an obstacle is hit),

it follows the obstacle boundary until an escape criterion is satisfied. In order to

detect and escape from the local minimum, boundary-following approaches flexibly

change the navigation module by judging the detection and escape criterion. Virtual

subgoal approaches [Pin & Bender, 1999; Xu, 2000; Xu & Tso, 1999] have only one

navigation module. When a detection criterion is satisfied, a new subgoal is set to

guide the robot in escaping from the local minimum. When an escape criterion is

satisfied, the original goal is recovered.

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 26

CHAPTER 3. VIDEO TRANSMISSION USING A

STREAMING TECHNOLOGY BASED APPROACH

This chapter investigates and implements video transmission through the Internet

from the robot server to user clients. This work is a prerequisite to develop a practical

Internet-based teleoperation system so that any authorized Internet users any where

are able to see the remote robot’s surroundings through the images captured from an

onboard camera. It is desired that the client users under different Internet bandwidth

can receive stable and continuous video images with high resolution. Emerging

streaming technologies (e.g. MPEG4, RTP, MMS) make it possible to transfer

multimedia perception information with good quality of service (QoS) through the

Internet.

3.1 Introduction

The most intuitive and informative way to obtain remote robot’s surroundings and

improve the user experience of virtual tele-presence is via vision feedback.

Researchers have approached this problem in a variety of ways. Early researchers

used a picture transmission scheme (e.g. JPEG or GIF) or hybrid image and virtual

reality [Goldberg et al, 2000; Simmons et al, 2000; Thrun et al, 1999; Schulz et al,

2000; etc.]. The drawback of picture transmission is the very low frame rate and large

time delay (over 10-20s). A more serious problem is that Internet performance

degrades, such as reductions in bandwidth, may cause service-stop errors. Researchers

[Barbera et al, 2001; Safaric et al, 2003] have now begun to use video conferencing

systems instead of picture transmissions, but the crucial video coding algorithms of

these systems are obsolete (e.g. H.261, H.263). The best current candidates for

transferring multimedia perception information with the best quality of service (QoS)

through the Internet are emerging streaming technologies such as MPEG4, RTP, and

MMS [Mack, 2002].

The rest of this chapter is organized as follows. Section 3.2 proposes and

implements an approach that uses the emerging streaming technology for video

transmission. Section 3.3 shows the experimental results, involving the real robot

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 27

teleoperation over a low-bandwidth Internet connection. Section 3.4 makes a

comparison with some techniques used by other telerobotic systems. The final section

summarizes the chapter.

3.2 A streaming technology based approach

This section proposes a streaming technology based approach for Internet-based robot

teleoperation as shown in Figure 3.1. Internet users (clients) remotely control a robot

in response to live streaming video captured by the camera mounted on the robot. The

robot server connects the robot and camera over a wireless channel, obviating the

problems associated with cables. The streaming server captures and encodes the real-

time video from the camera on the robot under the instructions of the robot server.

The compressed video images are streamed to transfer to the master client and slave

clients. The service of robot server and streaming server can be distributed from the

same computer to the Internet.

Figure 3.1: Internet-based robot teleoperation using streaming

technology for video transmission.

Only one master client dominates the full control privilege to interact with the

robot server through the Internet. The robot server interprets and activates the

intelligent robot navigation algorithms, as well as the low-level motion control of the

robot via the wireless channel. The remote control includes the pan-tilt-zoom

commands of the camera on the robot. The other slave clients can simultaneously

watch the streaming video using the streaming player, but have no control privilege

unless the master client hands over his privilege to another one client.

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 28

Two stream transmission schemes can be adopted: "push" and "pull". In a push

scheme, the streaming server actively pushes the encoded stream media to the clients.

If the clients do not work, this scheme has the potential to consume lots of network

resources. As a result, we have adopted the pull scheme where the streaming server

listens to a predefined port, and transfers the stream video after it receives a request

from the clients.

There are two video encoding methods that can be applied to a live broadcast,

Constant Bit Rate (CBR) encoding and Quality-based Variable Bit Rate (VBR)

encoding. CBR encoding allows us to specify the average bit rate that we want to

maintain and to then set the size of the buffer. The bit rate will fluctuate across the

stream, but the fluctuations are constrained by the buffer size. Quality-based VBR

allows us to specify a desired quality level (from 0 to 100), then during encoding the

bit rate fluctuates according to the complexity of the stream. A higher bit rate is used

for intense detail or high motion, and a lower bit rate is used for simple content. We

compare the two encoding methods in the experiment, and choose the CBR encoding

method.

Microsoft provides a complete series of software development kits (SDKs), the

Windows Media Series SDK [http://www.microsoft.com/windows/windowsmedia/].

The SDK helps researchers to develop their streaming applications based on Windows

Media Series 9. Using the SDK, we have implemented a prototype system.

3.3 Experimental results

This section reports the experiments. Section 3.3.1 investigates the compression

performance of two video codec under different network bandwidth. Section 3.3.2

investigates the transmission performance of two video encoding methods under

different network bandwidth. Section 3.3.3 investigates the transmission stability and

time delay. Section 3.3.4 shows a real robot teleoperation through a low-bandwidth

Internet connection via a telephone line.

3.3.1 Compression performance of two video codec

We investigate the compression performance of two video codec WMV9 and MPEG4.

WMV9 denotes Windows Media Video 9 which is involved in windows media

encoder V9 [http://www.microsoft.com/windows/windowsmedia/]. MPEG4 implies

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 29

ISO MPEG4 video codec [ISO, 2002], which is implemented using QuickTime Player

Pro [http://www.apple.com/mpeg4/]. We have used these two video codec to

compress a 19-second video clip, operating under different network bandwidths.

Table 3.1 gives the compression results. In Table 3.1, we categorize the potential

audiences into five types with capacities ranging from a 28kbps dial-up modem to a

150kbps LAN or DSL audience. Note that the actual stream media should be lower

than the theoretical network bandwidth. For example, in order to ensure stable

performance, a 50kbps media stream is provided for a 64kbps Single ISDN audience.

TABLE 3.1: Network Bandwidth versus Video Codec. Note: fps means

frame per second. * means there is no way to produce a stream at 20kbps.

The 19-second video clip simulates the rapid movement of the robot in the

campus. The source resolution is 320×240, the frame rate is 25 fps, and the

data size of uncompressed RGB24 format is 110MB.

 WMV9 MPEG4

20 kbps (28k dial-up modem, 3 fps) 50 KB *

34 kbps (56k dial-up modem, 12 fps) 92 KB 183 KB

50 kbps (64k Single ISDN, 15 fps) 131 KB 193 KB

100 kbps (128k Dual ISDN, 15 fps) 240 KB 260 KB

150 kbps (150k LAN or DSL, 15 fps) 384 KB 378 KB

The results of Table 3.1 show that at a low bandwidth (< 100kbps) WMV9 is

more effective than MPEG4, while at a higher bandwidth, over 100kbps, their

performance is similar. More importantly, it is feasible to highly compress the video

images for streaming, which is discussed further in the following.

3.3.2 Transmission performance of two video encoding methods

We investigate the transmission performance of two video encoding methods, i.e.

CBR and Quality-based VBR. We conducted the experiment, using WMV9 as the

video codec and using MMS (TCP) as the streaming protocol at the side of streaming

server, with CBR and Quality-based VBR encoding methods at different bandwidth.

The source data was a 19-second campus video clip, broadcast ten times for a total of

190 seconds. We measured the actual receiving bit rate every second at the side of the

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 30

streaming client. Figure 3.2 shows an early user interface of streaming client. The

experimental results are shown in Figure 3.3.

Figure 3.2: An early user interface of streaming client.

Quality-based VBR performs well at a high bandwidth but poor at a lower

bandwidth. The curve as seen in Figure 3.3(a) is well-regulated. This is the reason that

Quality-based VBR maintains a consistent quality across all streams at a high

bandwidth (over 2.5Mbps). The wave crest and trough represent the repeated scene

details. At a lower bandwidth (about 100kbps), however, playback performance is

poor as seen in Figure 3.3(b). The advantage of Quality-based VBR encoding is that

the quality remains consistent across all streams for which the specified quality setting

(i.e. quality level ranging from 0 to 100) is the same. The disadvantage is that we

cannot predict the file size or bandwidth requirements of the encoded content. We

conclude that Quality-based VBR is not suitable for the live broadcast on Internet-

based teleoperation.

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 31

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160 180

Time (s)

B
it

ra
te

 (
kb

ps
)

(a) Quality based VBR, quality level 100

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

Time (s)

B
it

ra
te

 (
kb

ps
)

 (b) Quality based VBR, quality level 50

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

Time (s)

B
it

ra
te

 (
kb

ps
)

(c) CBR, 100kbps (campus Internet), 15fps

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180

Time (s)

B
it

ra
te

 (
kb

ps
)

 (d)CBR, 20kbps (33.6kbps modem), 5fps

Figure 3.3: Transmission performance of two video encoding methods (CBR

and Quality-based VBR). The source data was a 19-second campus video clip,

broadcast ten times for a total of 190 seconds. Note that different frame rate

in (c) and (d) is used to ensure the transmission stability.

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 32

CBR encoding method performs well under 100kbps (see Figure 3.3(c)) and

20kbps bandwidth (Figure 3.3(d)). The content quality fluctuates to ensure that the

buffer does not overflow or underflow. The advantage of CBR encoding is that the bit

rate and size of the content are known before encoding, so we can predict the final

size and bandwidth requirements of the encoded content. Of course, when content

varies in complexity, the encoding quality is not constant. Using CBR encoding on

Internet-based teleoperation ensures that the video images are streamed smoothly.

3.3.3 Transmission stability and time delay

We investigate the transmission stability and time delay under different Internet

bandwidth by adjusting the video codec parameters. A campus video (320×240

resolution) broadcasts live from the streaming server to the client for playback about 5

minutes per test. Two typical bit rates (100kbps and 20kbps) are the encoded rates for

different Internet connection. At the streaming server, WMV9 is used as the video

codec, MMS is used as the streaming protocol, and CBR method is used for video

encoding. The time delay is estimated for communication between the streaming

server and the streaming client. The results are given in Table 3.2.

Whatever the Internet bandwidth is, increasing the codec buffer or decreasing the

number of key frames can improve the system performance of transmission stability.

The time delay is caused mainly by the buffer time of both encoder and player, which

is used to guarantee the quality of service (QoS). Currently, most Internet users in the

world use dial-up modem, ISDN, DSL or LAN and so on. The speed varies from

28kbps to 3Mbps or more. The results in Table 3.2 show that it is possible for all

kinds of users to remotely monitor the robot surroundings via the video feedback.

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 33

Table 3.2: Transmission stability and time delay under different Internet

bandwidth. Encoder buffer 5s means that the streaming server needs to cache

5 seconds video data for transmission. Player buffer 5s means that the

streaming client needs to cache 5 seconds video data for playback. Key frame

1s means that the interval of two key frames is 1 second. Buffering counts 7

means that the streaming client may buffer 7 times during 5 minutes playback,

which represents an unstable transmission. Buffering counts 1 means that the

streaming client only buffers once at the beginning, which represents a stable

transmission without obvious interruption.

Video codec parameters Stability & time delay

100Kbps(campus Internet), Encoder buffer
3s, Player buffer 3s, key frame 8s

Buffering Counts: 7
Performance: unstable
Time Delay: 10 s

100Kbps(campus Internet), Encoder buffer
5s, Player buffer 5s, key frame 8s

Buffering Counts: 1
Performance: stable
Time Delay: 12 s

100Kbps(campus Internet), Encoder buffer
3s, Player buffer 3s, key frame 1s

Buffering Counts: 1
Performance: stable
Time Delay: 10 s

20Kbps(33.6kbps modem), Encoder buffer
3s, Player buffer 3s, key frame 1s

Buffering Count: 15
Performance: unstable
Time Delay: 10 s

20Kbps(33.6kbps modem), Encoder buffer
5s, Player buffer 5s, key frame 1s

Buffering Count: 13
Performance: unstable
Time Delay: 12 s

20Kbps(33.6kbps modem), Encoder buffer
5s, Player buffer 5s, key frame 4s

Buffering Counts: 1
Performance: stable
Time Delay: 12 s

3.3.4 Robot teleoperation through low-bandwidth Internet

We set up a real robot teleoperation through a low-bandwidth Internet connection.

The robot server and streaming server (see Figure 3.1) are connected to our campus

Internet. The master client (human operator) is connected to the Internet via a

telephone line using a 33.6Kbps dial-up modem. With the streaming video feedback,

the human operator can see the remote robot's surroundings for global information.

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 34

The operator is able to remotely control the robot to explore areas of interest, and also

able to observe details via the camera pan-tilt-zoom movement. Although there is a

large time delay (about 12 seconds), we did succeed in remotely controlling the robot,

using direct control to navigate in a complicated hall with many desks and walls (See

Figure 3.4). Recently, a latest teleoperation from Canada (a user made connection to

the Internet via a 56kbps dial-up modem) to Hong Kong has further demonstrated the

feasibility of the use of streaming technology on the Internet telerobotics.

Figure 3.4: The robot to be remotely controlled to navigate in a complicated hall.

3.4 Comparison with other approaches for image feedback

We compare the projects of Internet telerobotics according to their approaches to

image feedback. Table 3.3 gives the comparison result.

There are a number of advantages of streaming technology based approach

compared with other approaches for image feedback. Some of them are as follows:

• Better Quality of Service: Streaming technology, based on WMV9 or MPEG4

compression algorithms, can greatly improve the quality of service over a low-

bandwidth and uncertain Internet transmission channel, producing a more stable

system, higher image resolution, and smoother image streams.

• Multicast: Streaming technology allows many Internet users to monitor the remote

robot’s surroundings simultaneously, without reducing quality of service or

increasing network bandwidth. This function is derived from an attractive feature

of streaming technology: Multicast. When using multicast streams, the streaming

server generates one single stream that allows multiple player-clients to connect

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 35

with it. Users watch the content from the time they join the broadcast. The client

is connected to the stream rather than to the server.

• Extensibility: Streaming technology can incorporate multiple types of data into a

single transmission stream. This function will be an advantage if future

applications of Internet telerobotics need more multimedia information feedback,

such as audio.

TABLE 3.3: Comparison using different approaches for image feedback

Project name Test
environment Technology Image size Efficiency

Mercury (1994) 14.4K Modem
Internet GIF client pull 192 × 165 1 frame every 60

seconds

Xavier (1995)
Lowest

bandwidth
Internet

GIF server push Low
resolution

1 frame every 20
seconds

EPFL (1998) LAN GIF or JPEG
server push 200 × 150 10-15fps

BGen (2001) Internet Video conference
using H.261 176 × 144 7.5 frames per

second (fps)

Essex (2001) Internet JPEG server push 200 × 150 7-8 fps/
total 50 frames

VLAB (2003) Internet Video
conferencing unknown 3-4 fps

Our system
(2003)

33.6K Modem
Internet

Streaming
technology using

WMV9 or MPEG4
320 × 240 5 fps /total 25

frames

The disadvantage of the use of streaming technology is that the buffer time causes

a large time delay (over 10 seconds). That’s really difficult for the human operator to

have enough experience of interactivity with the robot. Therefore, it is desirable for

the robot server to feedback more timely information about robot to human operator.

Chapter 5 will describe a compensation means to visualize the robot’s local

information, such as sonar readings or trajectory data.

3.5 Summary

This chapter presents a streaming technology based approach for Internet-based robot

teleoperation. The streaming video is used to transmit the images captured by the

robot’s onboard camera so that remote Internet users can see the robot’s surroundings

to obtain global information. In Internet telerobotics, few literatures have discussed

CHAPTER 3. Video Transmission Using a Streaming Technology Based Approach

 36

the techniques or performances of image transmission over the Internet in details.

That’s why we investigate the video streaming in this chapter. We indeed do not go to

the depth of streaming technology itself to improve its video compression and

transmission. It is more of an investigation and implementation of the existing

streaming technology, to see that which techniques about video codec or video

encoding etc are feasible for Internet telerobotics and how their performance are. The

work in this chapter is beneficial for the researchers of Internet telerobotics to adopt

similar techniques in order to improve image transmission and make the Internet-

based teleoperation usable.

It is experimentally shown that the streaming technology, using WMV9 or

MPEG4 algorithm as well as CBR video encoding method, can produce a more stable

system, higher image resolution, and smoother image streams. It is also demonstrated

to be feasible for real robot teleoperation through a low-bandwidth Internet

connection.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 37

CHAPTER 4. A FRAMEWORK OF AUTONOMOUS

NAVIGATION USING FUZZY LOGIC

Chapter 3 presents a real robot teleoperation by using direct control. The robot is like

a puppet without autonomous capability for sensing the environment and dealing with

unexpected events such as moving objects. It is dangerous for such robot to be

remotely control through the Internet since the time delay of transmitting images is

large. A robot, which is able to sense the environment and perform some tasks

autonomously, is highly desired. This chapter proposes a framework of autonomous

navigation using fuzzy logic. This work is a base for the subsequent chapters to

implement some complex tasks, such as active map learning, goal-oriented navigation.

4.1 Introduction

The main challenge of today's autonomous robotics is to build robust control

programs that reliably perform complex tasks in spite of the uncertainties derived

from environments and robots themselves. Despite the recent advances in the field of

autonomous robotics, there are some problems that have to be addressed in order to

exhibit truly autonomous navigation [Saffiotti, 2000]. First, prior knowledge about the

environment is, in general, incomplete, uncertain, and approximate. For example,

maps typically omit some details and temporary features, spatial relations between

objects may have changed since the map was built, and the metric information may be

imprecise and inaccurate. Second, perceptually acquired information is usually

unreliable. The limited range, combined with the effect of environmental features

(e.g., occlusion) and of adverse observation conditions (e.g., poor lighting), leads to

noisy and imprecise data; and errors in the measurement interpretation process may

lead to incorrect beliefs. Third, real-world environments typically have complex and

unpredictable dynamics: objects can move, other agents can modify the environment,

and relatively stable features may change with time (e.g., seasonal variations). Finally,

the effect of control actions is not completely reliable: wheels may slip, and a gripper

may lose its grasp on an object.

Traditional work in robotics has tried to overcome these difficulties by carefully

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 38

designing the robot mechanics and sensors, or engineering the environment, or both.

Engineering the robot or the environment, however, increases costs, reduces robot's

autonomy, and cannot be applied to all domains. If we want to build easily available

robots that inhabit our homes, offices, or factory floors, the platform cannot be overly

sophisticated, and the environment should not be modified.

Since Brooks [1986] proposed the behavior control architecture, the idea has been

adopted to solve the navigation problem in an unknown environment. Unlike the

traditional navigation architecture [Saffiotti, 2000] which decomposes the navigation

task using a sense-model-plan-act (SMPA) framework and connects each module

serially, the behavior control method decomposes the navigation system into special

task-specific behavior modules, e.g., obstacle avoidance, goal seeking, etc., which are

connected directly to sensors and actuators and operate in parallel. Simple behaviors

are then combined in order to produce a complex strategy able to pursue the strategic

goals while effectively reacting to any contingencies. Therefore, this architecture can

act in real-time and has good robustness. As the behavior control architecture tackles

the navigation problem in an on-line manner and requires no environment model, it is

efficient in dealing with navigation in an unknown environment.

In the behavior control architecture, behavior modules are usually constructed as

reactive systems, which map the perceived situations to the correct actions. Fuzzy

logic method [Lee & Wu, 2003; Seraji & Howard, 2002; Saffiotti et al, 1999; etc.] is

an efficient way of representing this mapping relationship as it is able to represent

human expert’s knowledge and requires no mathematical model.

This chapter proposes a framework for a behavior-based navigation strategy of

autonomous robots. The framework includes the steps of goal determination,

preprocessing, behavior design, behavior arbitration, and command fusion. It is

practical and has been shown experimentally to be reliable.

The rest of this chapter is organized as follows. Section 4.2 proposes the

framework of behavior-based autonomous navigation. Section 4.3 describes an

example of the proposed framework. Section 4.4 makes the experiments. Section 4.5

discusses the proposed framework. The last section summarizes the chapter.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 39

4.2 A framework of behavior-based autonomous navigation

A framework of a behavior-based autonomous navigation is proposed as shown in

Figure 4.1. It is independent of robotic development platform. In every robot control

cycle, the robot’s reasoning system outputs the next set of motor control commands

by performing an inference process I. This inference process can be defined as a

relationship between the input space U and the output space Y. The input space U is

multidimensional, with each dimension corresponding to a particular input data mode,

e.g., distance to front obstacle, direction to the goal. Similarly, the output space Y is

multidimensional, with each dimension corresponding to a particular type of output,

which normally includes motor speed and delta turn angle. Thus it is expressed by:

 1 2 i n 1 2 j mI : U(u ,u , , u , , u) Y(y , y , , y , , y)→

Goal ?Preprocessing

Behavior
Arbitration

Behavior n

Behavior 1
Stop or

next goal

Command
Fusion

...U Y
motor

commands
no

yes

Figure 4.1: A framework of behavior-based autonomous navigation

4.2.1 Preprocessing

In the preprocessing module, the input space U, including the exteroception and

proprioception sensing data, should be gathered and updated. The robot uses

exteroceptive sensors, like a camera or a sonar or laser sensors, to observe the state of

the environment. It uses proprioceptive sensors, like a compass or shaft encoders on

the wheels, to monitor the state of its own body.

If the input space U is too large, the computational complexity should be

controlled by reducing the number of dimensions. A common way to do this is to use

a “situation clustering” approach [Goodridge & Kay, 2000] in which the complexity

of the input space is reduced by introducing a limited number of intermediate

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 40

variables. These variables classify the different "perceptual situations" relevant to the

robot's behavior. Possible intermediate variables are statements such as

"facing_obstacle" or "distance_to_left_obstacle". These variables are then used by the

consequent behavior design. Typical example is provided in Section 4.3.

4.2.2 Goal determination

In our view, a task possesses two types of goal determination: a determined goal and a

non-determined goal.

When a goal is determined, its exact coordinate is given. A typical example is the

task for goal-oriented navigation, in which the robot must move to a given target

while autonomously avoid any static or dynamic obstacles in its path. The robot

succeeds only if it arrives at the goal without any collisions.

When a goal is non-determined, it does not have an exact coordinate location.

Instead, the goal is defined by a termination criterion. An example is the task for

GOTOEND, in which the robot is required to avoid any lateral obstacles and to stop

only if the distance to front obstacle is less than a threshold. Another example is the

task for WANDER. The robot is required to wander randomly without exact goal

location. A possible termination criterion is that the total distance of wandering is

over a given value.

4.2.3 Behavior design

A complex task can be decomposed into multiple simpler behaviors which can

subsequently be coordinated. The framework allows multiple individual behaviors

and the module of behavior arbitration to be executed in parallel. This makes full use

of precious computational resources and results in the best real-time efficiency.

Classically, robot behaviors are of two types: global (e.g., path-tracking and goal-

seeking) and local (e.g., obstacle-avoidance, wall-following, door-crossing, and light-

reaching). For example, to realize a mobile robot’s path-tracking behavior, a

controller is given a path in some internal reference frame, and it generates motor

commands in order to follow the path as closely as possible. Local behaviors are

actually sensor-based behaviors, which implement a control strategy based on

external sensing.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 41

There are three common ways to design a behavior. One is to use an analytic

algorithm with a determined model (see the example in Section 4.3). The second way

uses a machine learning technique based on supervised learning or reinforcement

learning [Godjevac & Steele, 2000; HuaNan Yu et al, 2002; Hagras et al, 2001; Na &

Oh, 2003; etc.]. We will discuss it in Section 4.5. The third way uses a pure fuzzy

logic controller [Seraji & Howard, 2002; etc.]. Since the critical problem for behavior

design is to guarantee robust operation in the presence of uncertainty, we focus on the

way using fuzzy logic controller in the following paragraphs.

In our fuzzy logic controller, reasoning is embodied in the rules operating on

linguistic input and output variables, as in

 If 1 1 2 2 n nu is A and u is A and and u is A

 Then 1 1 2 2 m my is B and y is B and and y is B

Where the uis are input linguistic variables taking linguistic values Ai , each

linguistic value being defined by a membership function ()
iA iuµ ; the yis are output

linguistic variables taking linguistic values Bi , each linguistic value being defined by

a membership function ()
iB iyµ .

Given two linguistic values A and B defined on the same universe of discourse,

the AND and OR operation are defined respectively as Eq. (4.1) and Eq. (4.2).

 min((), ())A B A Bu U
u uµ µ µ∩ ∈

= (4.1)

 max((), ())A B A Bu U
u uµ µ µ∪ ∈

= (4.2)

The best well-known Centroid method is chosen as the defuzzification method.

For the continuous output space, we obtain

 Y*

Y

y (y)dy
y

(y)dy

⋅µ
=

µ
∫
∫

 (4.3)

where ∫ is the classical integral. So this method determines the center of the area

below the combined membership function.

Algorithm 4.1 shows the fuzzy inference process. The examples of behavior

design are presented in Section 4.3.

Algorithm 4.1 (fuzzy inference process):

Input: uis = crisp numerical values of the input variables.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 42

Output: yis = crisp numerical values of the output variables.

BEGIN:

Step 1: Fuzzification of the input variables uis;

Step 2: Application of the fuzzy operator (AND or OR) as Eqs.(4.1)-(4.2) in the

antecedent of the rules;

Step 3: Implication from the antecedent to the consequent using the AND

operation as Eq. (4.1);

Step 4: Aggregation of the consequents across the rules using the OR operation

as Eq.(4.2);

Step 5: Defuzzification into output variables yis using Eq.(4.3).

END Algorithm 4.1

4.2.4 Behavior arbitration and command fusion

As suggested by Figure 4.2, behavior coordination problems can be approached as

two conceptually different problems: (i) how to decide which behavior, obstacle-

avoidance (OA) or goal-seeking (GS) for example, should be activated at each

moment - and, possibly, to what extent; and (ii) how to combine the results from

different behaviors into one command to be sent to the robot's motors - possibly,

taking weightings into account. These sub-problems are, respectively, called the

behavior arbitration and the command fusion problems [Saffiotti, 2000].

Behavior 1

Behavior 2

Behavior arbitration

Command fusion

exteroception

proprioception

speed

turn
angle...

Behavior N

Figure 4.2: Behavior coordination problem decomposing into two

subproblems: behavior arbitration and command fusion.

Some [Gat, 1998; etc.] of the behavior arbitration methods adopt High-Priority-

Take-All or Winner-Take-All selection strategies but these strategies come with two

disadvantages: their performance in certain situations is inefficient, and the

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 43

desirability of each behavior cannot vary from situation to situation. Other strategies

have employed fusion methodologies in which each behavior is allowed to affect the

final output based on the situational context. One such strategy is context-dependent

blending (CDB) [Saffiotti et al, 1999] in which fuzzy logic is applied so that a

decision between behaviors can be made in a prevailing situation.

Our behavior arbitration strategy is similar to the CDB approach. It uses fuzzy

context rules to express a behavior arbitration strategy. When the obstacle is close,

both OA and GS behaviors are partially activated. Each behavior is assigned a

weighting factor, and these factors are adjusted dynamically according to the fuzzy

weight rules. The weighting factors determine the degree of influence of each

behavior on the final motion command. The weight rules continuously update the

behavior weighting factors during robot motion.

The strategy adopted in our approach is simpler than that of the CDB approach.

The CDB approach uses a fuzzy preference combination to carry out command fusion

but we first use a behavior arbitration module to calculate the defuzzified weight

factors of all behaviors, and then carry out command fusion directly using these

weight factors in Eqs. (4.4) and (4.5). One advantage of this coordination strategy is

that the defuzzified weight factors can be visualized (refer to Section 7.6.1 in Chapter

7). As a result, the tuning of the fuzzy logic controller is easier because the

contributions by different behaviors are clearly visualized.

i

ii

w
wv

∑
⋅∑

=ν (4.4)

 i i

i

w
w

θθ ∑ ⋅
=

∑
 (4.5)

where, v and θ are the desired final speed and the delta turn angle values

respectively while vi and iθ are the speed and angle preference values suggested by

each individual behavior respectively. wi is the defuzzified weight factors that are

output by the behavior arbitration module.

4.3 An example of behavior-based autonomous navigation

In this section, an example (i.e. goal-oriented navigation) of behavior-based

autonomous navigation is given using the proposed framework. The goal-oriented

navigation is a common robot navigation task. It calls for a robot to be given a goal

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 44

location and for the robot to then reach the goal autonomously. Here we assume that:

1) the robot is located in an environment but without prior knowledge about it; 2) the

robot knows the coordinates of current location and goal location; 3) the robot senses

the environment depending on its ultrasonic sensors (i.e. sonars).

We decompose the task of goal-oriented navigation into two elementary behaviors:

obstacle-avoidance (OA) and goal-seeking (GS). The OA behavior is a sensor-based

local behavior which implements a control strategy based on external sensing. It is

activated if obstacles are close. The GS behavior is a global behavior which does not

rely on external sensory data, but seeks for the globally exact goal location. The two

behaviors are coordinated to select the final motor control values that steer away from

the obstacle while maintaining the goal direction.

In the preprocessing module, we reduce the complexity of input space by

grouping the robot’s sonar readings into three sectors (left, front, right). For example,

our robot has a ring of eight forward ultrasonic sonars that produce a set of obstacle

distances {d0, d1, d2, d3, d4, d5, d6, d7}. We obtain three groups of obstacle

distances by the following equations.

 dleft = min(d0, d1); (4.6)

 dfront = min(d2, d3, d4, d5); (4.7)

 dright = min(d6, d7). (4.8)

The OA behavior is designed using fuzzy logic controller in order to deal with

uncertainties from sonar readings. The obstacle distance of each sector is represented

by three linguistic fuzzy sets {VERYNEAR, NEAR, FAR}, with the membership

functions shown in Figure 4.3 (a). The weight of OA behavior woa is represented by

three linguistic fuzzy sets {SMALL, MEDIUM, LARGE} with the membership

functions shown in Figure 4.3 (b). The motion control variables of the mobile robot

are the translational speed and the rotational turn angle. The robot speed is

represented by three linguistic fuzzy sets {STOP, SLOW, FAST}, with the

membership functions shown in Figure 4.3 (c). The robot delta turn angle is

represented by five linguistic fuzzy sets {NB, NS, ZE, PS, PB}, with the membership

functions shown in Figure 4.3 (d), where NB is negative-big, NS negative-small, ZE

zero, PS positive-small, and PB positive-big. The positive and negative terms stand

for the robot turning to the left and right, respectively.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 45

0

1

()dµ

d

verynear near far

1d 5d3d2d 4d 0

1

()wµ

w

small medium large

4w2w1w 3w

(a) (b)

0

1

()vµ

v

stop slow fast

3v1v 2v 0

()µ θ

θ

NB

1θ

NS ZE PS PB

2θ 3θ1θ−2θ−3θ−

(c) (d)

Figure 4.3: Membership functions for (a) obstacle distance; (b) weight;

 (c) speed; (d) delta turn angle.

The OA navigation rules are presented below. The turn rules for the OA behavior

are summarized in Table 4.1. The rules exhibit such a behavior characteristic: if the

obstacle distance in any sector is VERYNEAR, the robot should turn away to find a

safer direction. For instance, the (1,3) element of the bottom layer in Table 4.1 can be

written out as the rule:

 IF dfront is FAR AND dleft is FAR AND dright is VERYNEAR, THEN θoa is PS.

Note that when the three sectors have the same VERYNEAR obstacle distance as

shown in the (3,3) element of the top layer in Table 4.1, a large left turn (PB) angle is

recommended. This turn rule enables the robot to escape from its current embarrassed

situation.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 46

Table 4.1: Turn rules for the OA behavior.

rightd

PS PB

NS PS

NB NS PB

frontd
leftd

far near verynear
far

near

verynear

PS PS

NS ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

ZE ZE PS

ZE ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

PS
PS

ZE

Table 4.2: Move rules for the OA behavior.

rightd

STOP

STOP STOP

STOP STOP STOP

frontd
leftd

far near verynear
far

near

verynear

SLOW SLOW

SLOW SLOW SLOW

SLOW SLOW SLOW

frontd
rightd

leftd
far near verynear

far

near

FAST SLOW SLOW

SLOW SLOW SLOW

SLOW SLOW SLOW

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

STOP
STOP

SLOW

STOP

The move rules of the OA behavior is summarized in Table 4.2. The rule enables

the robot to decrease its speed when an obstacle is approaching. In fact, the elements

of the bottom layer in Table 4.2 can be written out as two rules:

1) IF dfront is FAR AND dleft is FAR AND dright is FAR, THEN voa is FAST.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 47

2) IF dfront is FAR AND (dleft is VERYNEAR OR dleft is NEAR OR dright is VERYNEAR OR

dright is NEAR), THEN voa is SLOW.

Table 4.3 summarizes the weight rules of the OA behavior. The weight is derived

directly from obstacle distances in the three sectors.

Note that the fuzzy logic navigation and weight rules developed in this chapter

can be applied to any mobile robot, regardless of robot characteristics such as wheel

size. These characteristics are reflected only in the definition of the membership

functions used in the fuzzy rules.

Table 4.3: Weight rules for the OA behavior.

rightd

large large large

large large large

large large large

frontd
leftd

far near verynear
far

near

verynear

medium large large

large large large

large large large

frontd
rightd

leftd
far near verynear

far

near

small small large

small medium large

large large large

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

The GS behavior is designed using a precise analytical model. We first assume

that the GS behavior does not influence the speed of the robot, and contributes only to

the rotational turn angle. Second, we use a very simple analytical model rather than a

set of fuzzy logic navigation rules. So,

 vgs = 0 (4.9)

 θgs = φ1 (4.10)

where, vgs and θgs are the speed and delta turn angle respectively recommended by

the GS behavior. φ1 is the heading error between the current robot heading and goal

direction as shown in Figure 4.4. Thus, the value domain of θgs is (-1800, 1800].

Similarly, the positive and negative terms have implied that the robot turns to the left

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 48

and right respectively. The calculation of φ1 requires that we take into account all

situations in a system of coordinates, in which the robot and the goal are located in

different quadrants.

Robot
1ϕ(0, 0, 0)x y ϕ

(1, 1)x y
Goal

X

Y

0ϕ

Figure 4.4: Heading error between the current robot heading and goal direction.

There are only three rules for the weight of the GS behavior. The weight wgs is

derived directly from the weight woa of the OA behavior.

1) IF woa is SMALL, THEN wgs is LARGE.

2) IF woa is MEDIUM, THEN wgs is MEDIUM.

3) IF woa is LARGE, THEN wgs is SMALL.

Algorithm 4.2 gives the control algorithm for the task of goal-oriented navigation.

Algorithm 4.2: (Goal-oriented navigation)

Input: (x1, y1) = goal location; (x0, y0) = current robot location;

 φ0 = current robot heading angle;

 (d0, d1, d2, d3, d4, d5, d6, d7) = sonar readings.

Output: (v, θ) = speed and delta turn angle

BEGIN:

Step 1. To update sensory data including (x0, y0), φ0 and (d0, d1, d2, d3, d4, d5,

d6, d7);

Step 2. To preprocess the sonar readings using Eqs. (4.6), (4.7), and (4.8);

Step 3. IF the distance from current robot location to goal location is less than a

predefined threshold (i.e. distance tolerance), THEN the goal is reached and the

robot is stopped, OTHERWISE go to the Step 4;

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 49

Step 4. To calculate voa and θoa recommended by the OA behavior using

Algorithm 4.1 and the turn rules as in Table 4.1, the move rules as in Table 4.2;

Step 5. To calculate vgs and θgs recommended by the GS behavior using Eqs. (4.9)

and (4.10);

Step 6. To calculate the weight woa of the OA behavior using Algorithm 4.1 and

the weight rules as in Table 4.3;

Step 7. To calculate the weight wgs of the GS behavior using Algorithm 4.1 and the

three weight rules of the GS behavior;

Step 8. To calculate (v, θ) by the command fusion using Eqs. (4.4) and (4.5);

Step 9. To execute the motor control commands (v, θ), and go to the Step 1 again.

END Algorithm 4.2

4.4 Experimental results

4.4.1 Experiment for goal-oriented navigation

First we perform the simulated experiments for goal-oriented navigation in unknown

environment. Two methods are implemented to complete the task of goal-oriented

navigation for comparison. The first one is “exclusive OA+GS” that we name. In this

method, the task is decomposed into two behaviors: obstacle-avoidance (OA) and

goal-seeking (GS). But the OA behavior is designed using a precise mathematic

model (threshold control) instead of fuzzy logic controller. Moreover, the OA and GS

behavior are exclusive each other since only one behavior is activated in a situation.

The second method is implemented using Algorithm 4.2. We call it “OA+GS” method.

Figure 4.5 shows the experimental results for comparison.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 50

(a) (b)

Figure 4.5: Performance comparison for goal-oriented navigation in

unknown environment. The continuous curve is the actual trajectory of the

robot movement. (a) Exclusive OA+GS, 22s; (b) OA+GS, 19s.

The performance (i.e. time efficiency and trajectory) of the “OA+GS” approach is

superior to that of the “Exclusive OA+GS” approach. Starting from A, the robot is

required to reach the goal B. Two methods consume 22 seconds and 19 seconds

respectively. The differences in the performance arise from the process in which the

robot avoids the obstacles and looks for the safe path. The performance of the

“Exclusive OA+GS” approach is poor. When the robot is very close to the obstacles,

the OA behavior is activated under a threshold control and replaces the GS behavior.

When the OA behavior is in operation, the GS behavior can not make a contribution.

This is why the turn angle of the trajectory is large and the time efficiency is low. The

“OA+GS” method outperforms the “Exclusive OA+GS” method. Because the weights

of the two behaviors are being adjusted in real time, both the OA and GS behaviors

can be activated simultaneously. Moreover, fuzzy logic provides a good means for

mobile robot to handle uncertainties derived from sensory data.

4.4.2 Experiment for robot wander

Next we perform the experiment for robot wandering in a real world. The robot’s

wander is implemented only using an elementary behavior: obstacle-avoidance (OA).

The OA behavior is designed using fuzzy logic controller as described in Section 4.3.

Figure 4.6 shows a series of pictures captured from a camera during the experiment.

The experiment involves allowing the robot to wander within a small circular area

A

B

A

B

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 51

provided with both static obstacles (e.g. boxes and walls) and dynamic obstacle (e.g.

moving human). Figure 4.7 shows the variations of robot’s speed and turn angle

during wandering. From the Figure 4.7(a) and (b), we know that the robot would

decrease its speed and turn a degree of angle for safety when it is closing to obstacles.

Note that the robot always turns left because the obstacles are always approaching on

its right. The experiment demonstrates that the robot’s wandering based on the

reactive OA behavior using fuzzy logic is feasible and reliable, even in a dynamic

environment (i.e. with moving humans).

Figure 4.6: Robot wandering in a circular small area set with static obstacles

and moving human.

0

50

100

150

200

250

1 51 101 151 201 251 301 351 401

Time

Sp
ee

d(
m

m
/s

)

(a)

0

5

10

15

20

25

30

35

40

45

50

1 51 101 151 201 251 301 351 401

Time

D
el

ta
 tu

rn
 a

ng
le

 (d
eg

re
e)

(b)

Figure 4.7: The speed and turn angle of mobile robot during wandering.

(a) speed; (b) delta turn angle. Positive degree implies turning left.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 52

4.5 Discussion

The success of fuzzy logic controller is owed in a large part to the ability of

technology which can convert qualitative linguistic descriptions into complex

mathematical functions. It appears very useful when the processes are too complex for

analysis by conventional quantitative techniques or when the available sources of

information are interpreted qualitatively, inexactly, or uncertainly, which is the case

with mobile robots. Given the uncertain and incomplete information an autonomous

robot has about the environment, fuzzy rules provide an attractive means for mapping

sensor data to appropriate control actions in real time. However, fuzzy logic controller

does not have the self-learning capability and is difficult to tune. Also, as the number

of input variables increases (which is the case with mobile robots), the number of

rules increases exponentially, which creates much difficulty in determining large

numbers of rules.

Therefore, the machine learning techniques, such as neural network or neuro-

fuzzy controller, are used to design a behavior or a whole robotic system in recent

years [Chen et al, 2001; Na & Oh, 2003; Yang & Meng, 2003; etc.]. The arbitrary

determination of the structure and initial weight of neural network have great impact

on the performance of neural network controller. As an alternative, neuro-fuzzy

controllers [Rusu et al., 2003], which combine the learning ability of the neural

network with the advantage of the rule-based structure of fuzzy logic, have been

extensively studied. In many cases of neuro-fuzzy control, the back-propagation

algorithm has been widely used. However, being a gradient descent method, such

algorithm has many drawbacks, which include slow convergence, local minimum, and

so on. The evolutionary algorithm [Yamada, 2005], for example Genetic Algorithm

(GA), is another well-accepted technique to design fuzzy controllers. Unfortunately,

most of the work using evolutionary algorithm were undertaken using simulation as it

takes a large number of iterations to develop a good controller in conventional GA.

Thus, it is not feasible for a simple GA to learn online and adapt in real time. The

situation is worsen by the fact that most evolutionary methods developed so far

assume that the solution space is fixed (i.e. the evolution takes place within a

predefined problem space, not in a dynamically changing and open one), thus

preventing them from being used in real-time applications.

From another perspective, reinforcement learning and supervised learning [Tan et

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 53

al, 2002; Cang Ye et al, 2003; Kaelbling & Littman, 1996] are commonly used to

construct the neural or neuro-fuzzy controller automatically. Reinforcement learning

method seems quite promising as it requires no training data. However, it usually

leads to a heavy learning phase as the gradient information is not provided explicitly.

For example, due to the large number of the input space for learning obstacle

avoidance, the search space becomes too large and the performance evaluation surface

becomes too complex to allow efficient learning. Therefore, it is not easy to apply the

reinforcement structural and parameter learning methods to learn obstacle avoidance,

since it is difficult to tell that an incorrect response is due to a mismatch antecedent

part or due to an incorrect consequent part. Furthermore, the phenomenon of

premature convergence (e.g., trap situation) and ill behavior (e.g., circumnavigate

around an obstacle closely and slowly) further undermines the practicality of these

methods. On the contrary, supervised learning method has the advantages of fast

convergence and is suitable for structure and parameter learning. However, it is very

difficult to obtain sufficient training data, which contain no conflict input/output pairs.

Insufficient training data may result in an incomplete fuzzy rule base, while the

conflicts among the training data may cause incorrect fuzzy rules.

In this thesis, we construct fuzzy logic controllers using a “trial-and-error”

approach by human designer to tune the parameters and fuzzy rules. Because the

complexity of input space is greatly reduced by introducing a limited number of

intermediate variables (e.g. dleft , dfront , dright), we can easily guarantee the consistency

and completeness of the fuzzy rule base. Moreover, it is highly desirable that we can

easily realize the desired behavior characteristics by explicitly expressing the

linguistic rules using a common natural language. More examples can be seen in the

behavior designs in Chapter 6 and Chapter 7.

The fuzzy control approaches for robot navigation have been widely used in

literatures. The main difference between our approach and the existing ones is that

they have different fuzzy-rule based inference model (e.g. Mamdani model or Takagi-

Sugeno-Kang model), defuzzification method (e.g. Centroid or Maximum

defuzzification), membership functions (e.g. triangular or Gaussian), or fuzzy rules.

Fuzzy logic is just a tool for the proposed framework to design a behavior or make

behavior arbitration.

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 54

The following summarizes the key attributes of the proposed framework for

behavior-based autonomous navigation.

a) Linguistic representation: The framework allows the capture of human

commonsense knowledge, intuitive reasoning and decision making. The

navigational logic uses linguistic terms from a common natural language.

b) Uncertainty Management: Fuzzy logic provides a systematic framework for

dealing with imprecise and uncertain information. Thus errors arising from

sensor noise are effectively handled by the navigation system.

c) Reliability: Fuzzy logic can deal with imprecise and uncertain sensing

information. While one behavior may produce unreasonable control outputs, it

can be made more reliable by coordinating multiple behaviors.

d) Parallelity: A complex navigation task can be divided into multiple

independent behaviors. Each individual behavior can be executed in parallel.

e) Computational Efficiency: The fuzzy logic controller can be implemented

using series of min- and max-gates in hardware, with all rules operating in

parallel [Watanabe et al., 1990]. Other calculations, such as command fusion,

are computationally efficient as well. All these facilitate their use on a real-

time mobile robot.

f) Extensibility: The behavior-based approach makes it easy to add new modules

that represent additional behaviors to the navigation system. The framework

makes the navigation logic easily extensible while it does not rely on any

specific robotic development platform.

4.6 Summary

This chapter proposes a framework of autonomous navigation for mobile robot. Note

that the behaviour-based navigation is not a fresh idea or concept. The work in this

chapter focuses on the development of a simple and practical navigation framework

that can be easily realized to build robust control programs.

The framework includes the preprocessing, goal determination, behavior design,

behavior arbitration, and command fusion. A complex task can be decomposed into

multiple simpler behaviors for coordination. The intermediate variables are introduced

in the preprocessing module in order to reduce the complexity of input space, so that

CHAPTER 4. A Framework of Autonomous Navigation Using Fuzzy Logic

 55

fuzzy logic controller can be easily constructed to implement the behavior design and

behavior arbitration. Section 4.5 has discussed why we choose fuzzy logic as one of

the tools to construct a controller for robot navigation. An example, goal-oriented

navigation in unknown environment, is realized to demonstrate that the proposed

framework is practical and feasible. The framework has several desirable attributes,

including linguistic representation, uncertainty management, reliability, parallelity,

computational efficiency, and extensibility.

We think that the proposed framework is simple and practical. For example, as

mentioned in Section 4.2.4, we first use a behavior arbitration module to calculate the

defuzzified weight factors of all behaviors, and then carry out command fusion

directly using these weight factors. As a result, the tuning of fuzzy logic controller is

easier because the contributions by different behaviors are clear by visualizing the

defuzzified weight factors in the tests.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 56

CHAPTER 5. TELECOMMANDING: A NEW

INTERACTIVE TELEOPERATION APPROACH

Chapter 3 presents an Internet-based robot teleoperation using direct control. The

direct control could only support some simple tasks for mobile robot teleoperation,

because this kind of control mode makes the teleoperation very inefficient and

dangerous due to the high latency of the Internet, such as restricted bandwidth and

uncertain time delay. An interactive teleoperation approach, which is able to provide

sufficient functionality and easy-to-use user interface, is highly desired. This chapter

proposes a new teleoperation approach, which implements an interactive control

interface and a complete framework for control management and command

processing.

5.1 Introduction

Robots can now not only make basic motions but can also closely interact with people.

Internet robots can provide many different remote services with potential applications

in many areas: consumer home pet services, entertainment, telemedicine, distance

learning, and the sharing of laboratory resources, as well as industry automation,

military and security applications [Luo et al, 2003]. On the other hand, the Internet

also entails a number of limitation and difficulties, such as restricted bandwidth,

arbitrarily large transmission delays, and packet lost or error, all of which influence

the performance of Internet-based telerobotics systems [Brady & Tarn, 2002; Luo et

al, 2003].

Existing online robots are of two types: mobile manipulators with haptic or force

feedback [Taylor & Trevelyan, 1995; Goldberg et al, 2000; Elhajj et al, 2003; Stein,

2003; Li & Lu, 2002], and mobile vehicles used for navigation [Simmons et al, 2000;

Thrun et al, 1999; Saucy & Mondada, 2000; Siegwart &Saucy, 1999; Huang et al,

2001]. Because manipulated robots and wheeled robots have different characteristics,

in the context of Internet-based teleoperation, they call for different control paradigms.

The manipulated robots are often located in a limited or known workspace. Direct

control is the popular control paradigm for Internet-based manipulated robot

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 57

teleoperation. To alleviate the problem of uncertain time delay, three approaches [Luo

& Su, 2003] are often used in such systems: the predictive aiding approach, the

simulating and planning display approach [Sayers, 2002; etc.], and the event-based

approach [Elhajj et al, 2003]. Our focus is on the field of wheeled robot teleoperation.

For Internet-based wheeled mobile robot teleoperation, some systems have used

direct control [Han et al, 2001; etc.]. The typical example is the KhepOnTheWeb

system [Saucy & Mondada, 2000], in which Web users, via clickable images fed back

from a camera, are able to control the robot's movements as it moves within a small

wooden maze. Obviously, the direct control is not suitable for Internet-based mobile

robot teleoperation because of the high latency derived from the Internet, such as

restricted bandwidth, uncertain time delay, packet lost or error, and so on.

Supervisory control paradigm is commonly used for Internet-based mobile robot

teleoperation [Luo & Chen, 2000; Simmons et al, 2000; etc.]. In this case, problems

derived from the Internet are alleviated by giving the robot local intelligence.

Unfortunately, most such systems lack adequate interaction between human operator

and robot. We refer to this type of control paradigm as passive supervisory control.

Passive supervisory control is inadequate in four ways: (1) The control interface is

only able to provide single or limited available control methods (e.g. using a mouse to

click a map); (2) The human operator can issue only very high-level instructions to

the robot, and it is difficult to obtain the robot’s running status or information about

the events the robot has encountered; (3) The robot has considerable autonomy but

lacks the interaction with the human operator; (4) It is often needed to let the robot

know some environmental knowledge in advance for path planning or self-

localization, which causes that it is difficult to be applied in an unknown and highly

dynamic environment. The typical examples are Xavier, an office-exploring robot at

CMU [Simmons et al, 2000], and the museum tour-guide robot RHINO and

MINERVA [Thrun et al, 1999]. They allow Web users to take the goal control, but

the robots must know some global environment knowledge in advance. The control

mode used on the Mars lander [Backes et al, 2002] can also be categorized as passive

supervisory control. The human operators on earth use a Web-based tool to specify

multiple waypoints as the navigation subgoals in 3D views of the landing site. These

waypoints were generated from images obtained using stereo cameras on the lander.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 58

One important characteristic between human and robot is interactivity. Simmon et

al summarized their lessons from the 5 year (Dec. 1994 – Dec. 1999) public Xavier

experiment as follows [Simmons et al, 2000].

“Autonomy can help in reducing the bandwidth requirements for control but this

introduces problems of its own, particularly in the area of interactivity. People seem

to prefer ‘hands on’ control. ….. The only real negative impact of autonomy on web-

based interaction is that commanding at a high level is not as interactive as

(conventional) teleoperation.”

Saucy et al also pointed out the significance of interactivity over the 1 year (May

1997 – May 1998) KhepOnTheWeb system that was accessible to the public [Saucy

& Mondada, 2000].

“Another problem is obviously the delay that prevents people from having a good

interaction and from taking interests in the site. That’s one reason why users do not

come back.”

Researchers are attempting to add more interaction between humans and robots

[Chung et al, 1998; etc.], such as behavior-programming control [Luo & Chen, 2000],

supervised autonomy [Cheng & Zelinsky, 2001], shared control [Rybski & Stoeter,

2002], cooperative control [Bourhis & Agostini, 1998], collaborative control [Fong et

al, 2003], and fitting autonomy [Vieira et al, 2001]. We refer to these control modes

as active supervisory control or interactive control. Section 5.6 provides a detailed

analysis and comparison of these control modes. The main deficiencies of these

control modes are: (1) They lack a complete framework to process the commands that

can be sent continuously from human operator; (2) They are difficult to evaluate the

online running performance and provide the corresponding response actions; (3) Their

components are interdependent, which means that one poor component may cause

multiple tasks fail; (4) The interfaces are not sufficiently human-friendly and they

cannot provide a multi-modal control interface. In this chapter, we attempt to address

the problems faced by the existing passive supervisory control and interactive control

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 59

methods by proposing a new interactive control approach, telecommanding, for

Internet-based mobile robot teleoperation.

The rest of the chapter is organized as follows. Section 5.2 proposes the theoretic

framework of telecommanding. Section 5.3 introduces our teleoperation experimental

platform. Section 5.4 presents the simulation and real world experiments. Section 5.5

gives a comparison between telecommanding and other approaches. Section 5.6

summarizes the chapter.

5.2 The proposed teleoperation approach

The section describes in detail a proposed teleoperation approach: telecommanding.

Section 5.2.1 proposes a theoretic framework of telecommanding, which involves two

different but complimentary teleoperation commands: joystick commands and

linguistic commands. Section 5.2.2 describes the design of joystick commands, and

Section 5.2.3 the design of linguistic commands.

5.2.1 The framework of telecommanding

Central to the telecommanding framework is its use of two kinds of control

commands: joystick commands and linguistic commands. Imagine a complex

navigational task guided by a human. It may be, for example, to guide a bewildered

person out of a maze (see Figure 5.1) from the start A to the goal D. The human guide

may use three possible methods. One is that the guide directly guides the person step

by step. The second method is that the guide may simply give directions, just like

someone giving instructions on how to reach the nearby post office: “Turn right and

move forward 50 meters, then turn right and go to the end. Next take a right, move

forward 100 meters. And there’s the post office.” The third method is to use a map

and point out the coordinates of three waypoints (B, C and D) or only the coordinate

of goal D with respect to the start A. We call the instructions used in the first method

“joystick commands”, and the instructions used in both the second and third methods

“linguistic commands”.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 60

Figure 5.1: The robot in a maze. A is the start, D is the goal.

Figure 5.2 illustrates the framework of robot telecommanding with its multimodal

(joystick/linguistic) control interface. Beginning on the left, we can see that the

remote human operator issues joystick commands either via the computer keyboard or

a real joystick device. As in our example in the preceding paragraph, linguistic

commands may be issued in two ways: via an interactive command window in a

graphical display interface (words) or via a computer mouse by clicking in the graphic

window of a display interface (a map). The display interface shows visual feedback

from a camera mounted on the robot, the history and current status, as well as the

visualized pose and the obstacles. The Command Parser is responsible for parsing the

joystick or linguistic commands from the local computer, then transferring them to the

corresponding Command Processor for further command processing and to be passed

on for execution at the Command Executor. The Sensing Update Module captures raw

exteroception and proprioception sensory data from the robot’s sensors. The

Command Executor, the robot, and the Sensor Update Module form a reaction loop

which enables the robot to react rapidly to unexpected events. Expected events are

detected by the Sensing Transformation Module, which transforms raw sensing data

into high-level data (e.g. total distance travelled). These expected events provide data

from which the command processor can autonomously make a deliberative plan,

allowing the robot to respond to the current situation. The Command Processor,

Command Executor, Robot, Sensing Update, and Sensing Transformation Modules

together constitute a deliberative loop. The larger loop, which includes the human

operator, forms a complete telecommanding system.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 61

Figure 5.2: The framework of Telecommanding

Joystick commands and linguistic commands are exclusive. When the human

operator sends a joystick command, all previous linguistic commands are discarded.

Similarly, linguistic commands invalidate previous joystick commands. Linguistic

commands, however, can be sent continuously, are stored in an ordered command

queue and applied according to a FIFO (first-in-first-out) policy.

In every robot control cycle (e.g. 100 ms in our robotic system), the deliberative

loop executes an inference process to output the next set of low-level motor controls.

The inference process I can be defined as a relationship between the input space U

and the output space Y. The input space U is multidimensional, with each dimension

iu corresponding to a particular input data mode derived from the sensing

transformation module, e.g., distance to front obstacle, direction to the goal, the total

moving distance, or distance to the goal. Similarly, the output space Y is

multidimensional, with each dimension corresponding to a particular type of output,

normally motor speed v and delta turn angle ω . This is expressed by

1 2 i nI : U(u ,u , , u , , u) (v,)→Υ ω

We define some terms in the following, which will be used in the design of both

joystick and linguistic commands.

Definition 5.1 (Event): Let ie be a subset of input space 1 2 j nU(u , u , , u , , u) ,

i ∈{ 1, 2, …m }, and mi eeeeU ∪∪∪∪= 21 , so ie is called an event.

Definition 5.2 (Event occurs): Let ie be an event, and tx an input vector at the

time t, t 1 2 i nx U(u ,u , ,u , , u)∈ . If it ex ∈ , so the event ie occurs, otherwise the

event ie does not occur.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 62

Definition 5.3 (Response function): Let ie be an event. When the event ie occurs,

the robot should output the response actions ty according to a function
ie t t 1f (x , y)− ,

where tx is the input vector at the current time t, t 1 2 i nx U(u ,u , , u , , u)∈ , t 1y − is

the output vector at the time t-1, t 1y Y(v,)− ∈ ω , so
ie t t 1f (x , y)− is called the response

function of the event ie .

Definition 5.4 (Command function): Let N be a joystick or linguistic command.

The corresponding command execution function N t t 1f (x , y)− is called the command

function associated with the command N, where tx is the input vector at the current

time t, t 1 2 i nx U(u ,u , ,u , , u)∈ , and yt-1 the output vector at the time t-1,

t 1y Y(v,)− ∈ ω .

For example, suppose 1u is an input variable, denoting the distance between the

robot and the frontal obstacle. An event ie can be defined as

}15.0|),,{(11 <≤= uuue ni . If it ex ∈ , the event ie occurs, whose physical mean

is such that if the distance between the robot and the frontal obstacle is in a range of

0.5 to 1.0 meters, the robot should not respond to the command from the human

operator but should autonomously calculate the motor outputs in accordance with the

response function −ie t t 1f (x , y) . For instance, a response function is simply defined as

tv = −ie t t 1f (x , y)= t 1v − -100, where t 1v − is the speed of the robot at the time t-1. This

response function does not affect the turn angle of the robot.

5.2.2 Telecommanding using joystick commands

Telecommanding using joystick commands is in some ways similar to what we find in

a car driven by a human. Like a driver using a steering wheel, the human operator

uses <Left and Right> joystick commands to steer the robot. Like the driver using the

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 63

accelerator and brake, the operator uses <Up and Down> joystick commands to

accelerate or decelerate, even to stop or to reverse the robot.

In other ways, the use of joystick commands substantially differs from the use of a

human driving a car with the principal difference being that the latter applies a

traditional direct control: the driver receives environmental information in real-time

through the human vision and through the car instrument, and from this

simultaneously builds a real world model; the driver can respond immediately to any

contingency and the driver's actions are immediately effective; the car typically lacks

autonomous intelligence and relies on the driver to handle unexpected events. In short,

a human driver must continuously provide input about steering or acceleration. But

given issues such as restricted bandwidth, uncertain time delay in Internet-based

teleoperation, it is desirable that human operators send the remote control as few

commands as possible and that the robot should have an autonomous capability to

respond some expected events as well as to react rapidly to contingencies, so that

human operators do not need to handle the control details.

In the telecommanding, joystick commands enable the human operator to send as

few commands as possible since the robot uses local intelligence. As the robot would

continue to execute a joystick command until otherwise instructed, the operator sends

such commands only if necessary. This greatly reduces the number of commands an

operator must issue. In addition, the robot may autonomously make judgments about

situations. If it becomes aware of some impending danger, for example, nearby

obstacles, the robot autonomously decreases the speed to a reasonable value while

turning toward a safer direction. If the danger is immediate (e.g. someone suddenly

blocks the path), the robot stops. In such situations, the internal autonomous behavior

of the robot dominates the control privilege. Potentially, the robot may not respond to

the human’s joystick commands until it thinks the current danger has passed or unless

the joystick command makes it safe.

In the implementation of our telerobotic system, we define four joystick

commands (UP, DOWN, LEFT, RIGHT) and the corresponding joystick command

functions as the Eqs. (6.1)-(6.4).

t 1 t max
t UP t t 1

max

v , if v v
v f (x , y)

v ,otherwise
−

−

+ ∆ν <⎧
= = ⎨

⎩
 (6.1)

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 64

t 1 t min
t DOWN t t 1

min

v , if v v
v f (x , y)

v ,otherwise
−

−

− ∆ν >⎧
= = ⎨

⎩
 (6.2)

t LEFT t t 1f (x , y)−ω = = ∆θ (6.3)

t RIGHT t t 1f (x , y)−ω = = −∆θ (6.4)

where, tv , tω are the output variables at the current time t, respectively denoting

the speed and delta turn angle of the robot. maxv and minv are respectively the minimum

and maximum bounds of the speed. Because our robot does not have rear sensors, we

set minv =0, meaning that the robot is not allowed to reverse. ν∆ is a constant

parameter (mm/s), and θ∆ is a constant parameter (degree/s). The joystick commands

UP and DOWN affect the speed of the robot while LEFT and RIGHT affect only the

robot’s steering angle.

In addition, we need to define the corresponding joystick events and response

functions associated with these four joystick commands. For example, we define

several joystick events associated with UP as },,{ 1 UkU ee , and the corresponding

joystick response functions as
U1 Uke e{f , , f } , where ∅=∩ UjUi ee , i, j ∈{ 1, 2, …,

k }, which guarantees that there is only one joystick event associated with a joystick

command that occurs.

 1 3 4 5 3 4 5{(, , , , ,) | ((0.15 0.5) (0.15 0.5)) (0)}U ne u u u u u u u= ≤ < ∨ ≤ < ∧ > ,

 2 3 4 5 3 4 5{(, , , , ,) | ((0 0.15) (0 0.15)) (0)}U ne u u u u u u u= ≤ < ∨ ≤ < ∧ > ,

where 3u is a distance value (meter) to front obstacle, 4u is a distance value to

lateral obstacle, and 5u is a currently actual speed of the robot. Obviously,

1 2U Ue e∩ =∅ . Correspondingly, we simply define two joystick response functions as

the Eq.(6.5).

 U1

U 2

e t t 1 t U1
t

e t t 1 t U2

vf (x , y) , if x e
v 2

f (x , y) 0, if x e

−

−

∆⎧ = ∈⎪= ⎨
⎪ = ∈⎩

 (6.5)

 In the actual implementation of joystick response function, we define such

functions that enable the robot to autonomously decrease the speed to a reasonable

value while to turn toward a safer direction.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 65

In every robot control cycle, Algorithm 5.1 is called once. In this algorithm, we

ignore the feedback of the running events but they should be displayed on the display

interface of human operator’s monitor.

Algorithm 5.1: JOYSTICKCOMMANDPROCESSOR()

Input: t 1 2 i nx (u ,u , , u , , u) , t 1 t 1 t 1y (v ,)− − −ω

Output: t t ty (v ,)ω

BEGIN:

Step1. IF there is a new joystick command, THEN

 To calculate t N t t 1y f (x , y)−= according to the corresponding Eqs.(6.1)-(6.4);

 ELSE

 t t 1 tv v ; 0;−= ω = /* maintain the previous robot speed */

 END IF

Step2. Detect and respond the joystick events associated with joystick command UP:

 IF 1Ut ex ∈ , THEN
U1t e t t 1v f (x , y)−= ; /* execute the response function */

 … …

 IF Ukt ex ∈ , THEN
Ukt e t t 1v f (x , y)−= ;

Step3. Detect and respond to the joystick events associated with joystick commands

DOWN, LEFT and RIGHT, similar to Step 2.

Step4. IF no events occur AND there is no joystick command, THEN

 To maintain the current status of the robot;

 ELSE

 Output the low-level motor command t t ty (v ,)ω ;

 END IF

END Algorithm 5.1

5.2.3 Telecommanding using linguistic commands

By telecommanding using linguistic commands, human operators do not care about

the low-level control details. As an example in Section 5.2.1, a person gives a stranger

a series of high level instructions to guide him to the nearby post office. The robot

must follow these instructions (“linguistic commands”) while at the same time

autonomously handle unexpected events and avoid any static or dynamic obstacles

(e.g. humans) in its path. Therefore, telecommanding using linguistic command can

reduce the influence of the high latency of the Internet.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 66

Robotics researchers are able to design any variety of linguistic commands and

integrate them into the telecommanding framework to be adapted to specific tasks. In

our research examples, we have designed linguistic commands (MOVE, TURN,

WANDER, GOTOEND, COORDINATE, and MAPPING) to realize specific tasks.

The human operator is able to continuously input these commands from the

interactive command window, or by clicking on the special command

COORDINATE in the graphical window, without the need of having to wait until the

previous linguistic command is finished. If the command is correct and there are no

exceptional events, the robot may follow these commands to reach the goal state.

Otherwise, the robot enters the command exception handle module automatically.

Every linguistic command is stored in an ordered command queue that adopts the

policy of FIFO (first-in-first-out). This command queue is a two dimensional array:

commandQueue[M][N], where

• m : denotes the mth command. m M [0,)∈ = +∞

• n : denotes the nth parameter of the mth command. n ∈ N = { 0, 1, 2, 3, 4}

• commandQueue[m][0] : the index number of this command type. E.g.

MOVE_INDEX, or COORDINATE_INDEX.

• commandQueue[m][1], commandQueue[m][2]: two working parameters of this

command, e.g. (x, y) coordinate. The parameters are set to adapt flexibly to the

real world model.

• commandQueue[m][3], commandQueue[m][4]: two performance evaluation

parameters of this command. Using the two parameters, the robot can evaluate the

performance (success or failure) of execution result of current command, in order

to make a decision to enter either the command exception handle module or the

next command execution module.

For the design of linguistic commands, we define the following terms.

Definition 5.5 (Target event): Let Te be an event associated with a linguistic

command N. If the event Te occurs, the robot has reached the goal state. So Te is

called a target event associated with the linguistic command N.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 67

Definition 5.6 (Overrun event): Let Oe be an event associated with a linguistic

command N, and Te a target event associated with N. If the event Oe occurs and Te

does not occur, the robot has met an overrun exception. So Oe is called an overrun

event associated with the linguistic command N.

Definition 5.7 (Underrun event): Let Ue be an event associated with a linguistic

command N, and Te a target event associated with N. If both the events Ue and Te

occur, the robot has met an underrun exception. So Ue is called an underrun event

associated with the linguistic command N.

In fact, each linguistic command can be defined as a seven-element tuple {N, Te ,

Oe , Ue ,
Oef ,

Uef , Nf }. N is the definition of this linguistic command, involving its

name and parameters. The target event Te is determined by two working parameters

(commandQueue[m][1], commandQueue[m][2]) of the linguistic command. The

underrun event Ue is determined by the first performance evaluation parameter

commandQueue[m][3]. The overrun event Oe is determined by the second

performance evaluation parameter commandQueue[m][4].
Oef and

Uef are the

corresponding overrun and underrun response functions respectively.

We explain the physical mean of these events using a linguistic command

GOTOEND. When the linguistic command GOTOEND is running and the actual

moving distance of the robot has already exceeded the expected maximum distance,

the overrun event occurs. This means that the robot has received an incorrect

command or encountered an exception (e.g., the goal is too far away or it is not

reachable). When the command GOTOEND is finished because of satisfying the

target event but the actual moving distance does not exceed the expected minimum

distance, the underrun event occurs. This means that the robot has also encountered an

incorrect command or an exception (e.g. someone suddenly blocks the path). In such

two situations, the robot should then enter the command exception handle module to

execute the corresponding overrun or underrun response function.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 68

For the purpose of presenting how to design a linguistic command in terms of {N,

Te , Oe , Ue ,
Oef ,

Uef , Nf }, we will make use of a linguistic command MOVE. The

formal definition of the linguistic command MOVE in our telerobotic system is as

follow:

MOVE(double Distance, double minDistanceScale = 0.5, double

maxDistanceScale =1.5)

If the human operator does not input minDistanceScale and maxDistanceScale,

the default values are used. MOVE is a complex linguistic command. Its function is

to enable the robot to arrive at a goal lying ahead of the current location, and to avoid

any static or dynamic obstacles (e.g. box and human). MOVE is converted into the

following style in the command queue for execution.

commandQueue(MOVE_INDEX, Distance, 0, minDistanceScale, maxDistanceScale).

 The current location of the robot in the robot internal coordinate can be

represented as a vector),,(000 ϕyx , where 0ϕ denotes the current absolute heading

angle. The command goal location is),,(TTT yx ϕ . The current location of the robot is

)',','(ϕyx . The expected minimum and maximum moving distance are respectively

mind and
maxd . Therefore,

 mind = minDistanceScale × Distance;

maxd = maxDistanceScale × Distance;

 += 0xxT Distance)cos(0ϕ× ;

+= 0yyT Distance)sin(0ϕ× ;

 0ϕϕ =T

So a target event
Te can be defined as)}()(|),,,,{(21321 βλ <∧<= uuuuuue nT

,

where 1u is the distance between current location of the robot and the goal, and

T 2 T 2
1u (x ' x) (y ' y)= − + − .

2u is the angle difference between current heading angle of

the robot and the heading angle of the goal. T
2u | ' |= ϕ − ϕ . λ is a constant that

denotes the minimum tolerance for 1u . β is a constant that denotes the minimum

tolerance for
2u . An underrun event

Ue can be defined as

}|),,,,{(min3321 duuuuue nU <= . An overrun event
Oe can be defined as

}|),,,,{(max3321 duuuuue nO >= , where
3u is the actual moving distance of the robot.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 69

The overrun and underrun response function (i.e.
Oef and

Uef) can be simply designed

to enable the robot to cancel all subsequent linguistic commands in the command

queue while to stop the movement of the robot. A more sophisticated strategy is to

enable the robot to reschedule the command queue. The command function Nf is the

most important element of a linguistic command. The command function of MOVE is

implemented to realize a goal-oriented navigation. The main idea of such function is

to decompose the task into two behaviors (i.e. goal-seeking, and obstacle-avoidance)

and navigate the robot to the goal location through the coordination of the two

behaviors. The details about goal-oriented navigation are previously described in

Section 4.3 of Chapter 4.

In every robot control cycle, Algorithm 5.2 is called once.

Algorithm 5.2: LINGUISTICCOMMANDPROCESSOR()

Input: t 1 2 i nx (u ,u , ,u , ,u), t 1 t 1 t 1y (v ,)− − −ω

Output: t t ty (v ,)ω

BEGIN:

Step1.

IF a target event
Te of current linguistic command occurs, THEN

 IF an underrun event
Ue occurs, THEN

Ut e t t 1y f (x , y)−= ; /* execute the underrun response function */

 ELSE

 IF the next linguistic command can be obtained from the command queue

via FIFO, THEN

 To set the
Te ,

Ue Oe of this command, and go to the Step 1 again;

 ELSE

 t tv 0; 0;= ω = /* stop the robot */

 END IF

 END IF

ELSE

 IF an overrun event
Oe occurs, THEN

Ot e t t 1y f (x , y)−= ; /* execute the overrun response function */

 ELSE

 t N t t 1y f (x , y)−= ; /* execute the linguistic command function */

 END IF

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 70

END IF

Step2. Output the low-level motor command t t ty (v ,)ω .

END Algorithm 5.2

Each linguistic command should be designed to autonomously perform an

independent task. More linguistic commands, such as light-seeking, door-crossing,

wall-following, can be designed to perform more complex tasks. The linguistic

command MOVE has been described in the above paragraphs. The definitions of

other linguistic commands in our telerobotic system are as follows:

 TURN(double deltaAngle)

 GOTOEND(double minDistance = 0, double maxDistance = INFINITE)

 WANDER(double totalDistance, double minDistanceScale=0.5, double

maxDistanceScale=1.5)

 COORINDATE(double x, double y, double minDistanceScale=0.5, double

maxDistanceScale=1.5)

MAPPING(double totalDistance, double minDistanceScale=0.5, double

maxDistanceScale=1.5)

TURN is a simple linguistic command, whose function is to enable the robot to

rotate. GOTOEND is an interesting linguistic command that enables the robot to

reach the end of a routeway (e.g. corridor end) while to avoid any lateral obstacles.

Three types of routeway shown in Figure 5.3 are particularly suitable for the use of

this linguistic command. The linguistic command WANDER enables the robot to

wander randomly without collision with any obstacles. It is simply realized using an

obstacle-avoidance behavior. Fuzzy logic is used for the behavior design.

COORDINATE is a complex linguistic command that enables the robot to move from

the current location to a given goal location. The robot does not have any a priori

known environmental knowledge. As it happens, MOVE and COORDINATE share

the same linguistic command function as presented in Section 4.3 of Chapter 4.

Unfortunately, such realization of goal-oriented navigation makes it easy that the

robot gets trapped in a dead end, which is the local minimum problem encountered by

autonomous robots in unknown environments. Chapter 7 will present a new

navigation method (i.e. an enhanced COORDINATE linguistic command) to address

this problem. MAPPING is a complex linguistic command that enables the robot to

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 71

autonomously explore unknown environment and build a map based on robot’s

sensory information. We will present the implementation of MAPPING in Chapter 6.

Figure 5.3: Three types of routeway that are suitable for the use of

linguistic command GOTOEND. A is the start, B is the end.

5.3 Teleoperation platform

A platform for Internet-based teleoperation using telecommanding is shown in Figure

5.4. The research is tested on a mobile robot with eight forward ultrasonic sensors.

The control commands transfer through radio Ethernet devices, and the video data is

feedback through a set of A/V transmitter-receiver from a pan-tilt-zoom camera

mounted on the robot deck. The work style and the use of streaming video are

previously presented in Section 3.2 of Chapter 3.

Figure 5.4: A platform for Internet-based teleoperation using telecommanding

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 72

The data visualization (e.g. sonar reading visualization, virtual trajectory display)

is developed to complement the video transmission technique. The streaming video

provides global environment feedback, and truly improves the quality of services over

the low-bandwidth and unreliable Internet, producing a more stable system, higher

image resolution, and smoother images. On the other hand, the video transmission

time delay is large (about 8 seconds through the campus Internet, and about 12

seconds through the 33.6 Kbps Internet connection over a telephone line). This time

delay is caused mainly by the encoder and decoder buffers, which are used to

guarantee quality of service. Therefore we develop the data visualization using sonar

readings and dead reckoning data in order to obtain more timely perceptual feedback

(less than 1 second to transfer in our campus Internet). The human operator can obtain

the robot’s global context information through the video feedback, and obtain the

local context information through the data visualization. This enables the operator to

easily predict the next control command, and improves the efficiency of teleoperation.

Figure 5.5: The display and control interface. Joystick commands are sent via

the computer keyboard; linguistic commands are sent via the bottom

command window or clicking in the graphic window. The commands and

sensory information are transferred via the VNC Web service, and video

images are transferred based on streaming technology.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 73

 Currently, unlike the other existing Internet telerobotics projects [Taylor &

Trevelyan, 1995; etc.], we have not built our own Web-based data transmission

system. Instead, we use an Ultr@VNC service [http://ultravnc.sf.net] for

simplification of development workload, which is a reliable and convenient way for

Web users to connect with the robot server. The display and control interface is

shown in Figure 5.5. On the other hand, the VNC service is not an efficient

teleoperation service since it consumes extra bandwidth for unnecessary data

transmission. Moreover, through this service, the human operator actually dominates

the control privilege of the robot server so that it is not safe for real public application.

5.4 Experimental results

In this section, we perform the simulated and real world experiments to test the

performance of the proposed telecommanding approach. In Section 5.4.1 Internet-

based teleoperation uses joystick commands in both the simulation and the real world.

In Section 5.4.2, teleoperation applies linguistic commands. Section 5.4.3 presents a

robot teleoperation over a long distance. Section 5.4.4 provides a performance and

stability analysis.

5.4.1 Teleoperation using joystick commands

We conducted a simulation to test the performance of joystick commands as shown in

Figure 5.6(a). To make the robot move from the start A to the goal H, the human

operator uses the joystick commands <UP, DOWN, LEFT, RIGHT>. The trajectory is

indicated by a chain of black circles. The program draws a circle once every 0.5

second. A denser concentration of circles (e.g. B to C in Figure 5.6(a)) thus indicates

that the robot is traveling more slowly. Figure 5.6(b) shows the relationship of the

robot speed, the robot turn and the joystick command <UP>. The robot begins to

increase its speed from location A. Every time the robot receives an <UP> joystick

command (see Figure 5.6(b) 1st, 2nd, 3th, 4th, etc. <UP> command), the speed increases

100 mm/s until it reaches the predefined maximum bound (400mm/s). When the robot

is approaching obstacles, it may not respond to the <UP> command from the human

operator and may autonomously decrease its speed to a reasonable value 100mm/s

and turn in a safer direction (see B to G in Figure 5.6(a) and (b)). When the robot is

very close to obstacles, its speed is autonomously set to 0 mm/s (see B and H in

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 74

Figure 5.6). For simplicity of implementation, in this test, we simply define the

joystick events and corresponding joystick response functions.

(a)

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

sp
ee

d
(m

m
/s

)

<UP>
Speed
Turn

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

time (ms)
A

B C D E F G
H

(b)

Figure 5.6: Teleoperation simulation using joystick command. (a) the robot is

moved from the start A to the goal H. (b) The relation of the robot speed,

robot turn and joystick command <UP>. Each peak (*) in the curve

represents an <UP> joystick command. Each peak (•) in the curve represents

a turn action that is automatically produced by the control program. There

are 17 <UP> commands in total. (A-H) correspond to the locations in (a).

Next we test the Internet-based teleoperation in our department corridor using

joystick commands (see Figure 5.7). A remote human operator controlled a real robot

through the campus Internet. The remote operator used the experimental platform and

control interface discussed in Section 5.3 and found it convenient to control the robot

using joystick commands. The operator did not need any robotic expertise as it is just

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 75

doing like playing a game using the keyboard’s <Up, Down, Left, Right> keys. The

task is completed in about 180 seconds. The maximum speed was 400mm/s. The

actual average speed of the robot was 45000/180 = 250mm/s. During the process, the

robot autonomously decelerates and turns in a safer direction if it is approaching an

obstacle, and stops if danger is imminent (e.g. someone suddenly blocks the path). As

a result, the robot was able to avoid collisions with obstacles (e.g. walls, desks, boxes,

and humans), even though we purposely disconnected the network cable in order to

lose the Internet connection for a period.

Figure 5.7: Joystick commands for use in Internet-based teleoperation. The

robot moves in our department corridor under remote control. The corridor is

about 45 meters long and contains two corners and a number of obstacles.

5.4.2 Teleoperation using linguistic commands

First we conduct a simulation experiment to demonstrate how to control a robot so

that it can navigate in a complex and unknown space using linguistic commands. As

shown in Figure 5.8(a), the remote operator guides the robot by continuously sending

a series of linguistic commands. The instructions are to first move forward (MOVE)

to the location B; then take a right turn 450 (TURN) and go to the end C (GOTOEND);

next turn right 900 (TURN) and go to the end D (GOTOEND); turn right 450 (TURN)

and move forward (MOVE) to the location E; finally turn right 450 (TURN) and go to

the end (GOTOEND) to reach the final goal F. Those commands are stored in a

command queue and allowed to execute only after completion of the previous

command. This test was successful without any occurrence of overrun or underrun

events. By storing all of those linguistic commands in the robotic system, we obtain a

new linguistic command GOTO_ROOM_F. The learned linguistic command

GOTO_ROOM_F was reissued from location A again as shown in Figure 5.8(b).

Because the sensing data are not identical with data of the previous test, the trajectory

of the robot was a little different. When the command GOTOEND() is running from

location C, the target event does not occur at location D, but occurs at location E. The

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 76

subsequent MOVE(1000) is wrong because it causes the robot to move toward

location G, which is not reachable. This leads to an overrun event when the robot tries

to move around to reach location G. This triggers the corresponding command

exception handle module. In our telerobotic system, the robot is simply stopped

autonomously so that the human can send further commands.

Those linguistic commands reduce the length and complexity of the command list,

making it suitable for Internet-based teleoperation. For example, the robot is expected

to move forward three meters from location A to location B. But a corner blocks its

path (see Figure 5.8). Our MOVE command provides a convenient way to reach the

goal. To avoid the obstacle, the operator needs only send the command MOVE(3000)

instead of a lot of low-level commands. The linguistic commands are particularly

useful in the dynamic real world.

(a) (b)

Figure 5.8: Simulation using linguistic commands from the start A to the goal F.

(a) GOTO_ROOM_F= {MOVE(3000),TURN(-45),GOTOEND(),TURN(-90),

GOTOEND(),TURN(-45),MOVE(1000),TURN(-45),GOTOEND()}; (b) Learned

linguistic command GOTO_ROOM_F is executed. An overrun event occurs

when MOVE(1000) is running at the location E.

Next we test an Internet-based teleoperation in real world using linguistic

commands to navigate a robot in a complex house (see Figure 5.9). The remote

operator observes the robot’s surroundings through the streaming video feedback. The

perceptual data visualization provides more timely local information. The remote

operator sends a series of linguistic commands to let the robot move to the end of the

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 77

path, return to the cross, then turn and go to the final goal. As the robot is highly

autonomous, its maximum speed is set at 200mm/s. The experimental task took about

100 seconds without any collisions, and the trajectory was about 13 meters long,

making the average speed 13000/100 = 130mm/s. We ran the same Internet-based

teleoperation test using direct control without robot intelligence. The task took over

300 seconds and on several occasions the robot collided with walls or doors because

of the large time delay derived from the video feedback.

Figure 5.9: The use of linguistic commands in real world for Internet-based

teleoperation. The remote operator sends a series of linguistic commands:

{GOTOEND(), TURN(180), GOTOEND(), TURN(40), MOVE(2000), TURN(90),

MOVE(1000), TURN(50), MOVE(3000)}

Finally we conduct the experiments to demonstrate the COORDINATE linguistic

command. As shown in Figure 5.10, the robot does not have a priori knowledge about

the map of a maze. It is required to move from the start S to the goal T. By clicking a

mouse, the human operator is able to send the COORDINATE command. The

simplest way to do this is to continuously give out three COORDINATE commands

(see Figure 5.10(a)). This allows the robot to pass by the waypoints A and B from the

start S to the goal T, thereby escaping from the dead ends. Another way is using an

enhanced COORDINATE command to simply point out the final goal location T. The

robot is able to autonomously look for the safest regional direction and escape from

the dead end. The experimental results are encouraging. The robot autonomously

finds the correct path out of the maze (see Figure 5.10(b)). More tests are shown in

Figure 5.11.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 78

(a)

 (b)

Figure 5.10: The goal-oriented navigation in a maze from the start S to the goal T.

(a) Three COORDINATE command (S->A->B->T) by the use of the command

queue; (b) One enhanced COORDINATE command (S->T). The robot

autonomously searches the solution path by coordinating three behaviors: path

searching, obstacle avoidance, and goal seeking behaviors.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 79

(a)

(b)

Figure 5.11: The goal-oriented navigation using one enhanced

COORDINATE command. (a) in a structured environment. (b) in a cluttered

and unstructured environment.

5.4.3 Robot teleoperation over a long distance

We tested the Internet-based teleoperation using telecommanding over a long distance

from Beijing to Hong Kong (over 1500 kilometers). A remote human operator

(located in Beijing) connects with the robot server (located at our department in Hong

Kong) through the VNC service, and observes the robot’s surroundings (our

department corridor) through streaming video (50Kbps). Combining the graphical

control interface and local perceptual data visualization, the remote operator can

determine and send the telecommanding commands. The experiment has tested the

use of joystick commands and linguistic commands. The operator has no robotic

expertise and he is told the teleoperation commands only at the beginning of the test.

The test demonstrates that the telecommanding is interactive, effective, and easy to

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 80

use. The telerobotic system was publicly demonstrated and was well received at the

Hong Kong Convention and Exhibition Center in April, 2004. Here are some video

clips shown in Figure 5.12.

Figure 5.12: The robot is navigating by telecommanding in the Hong Kong

Convention and Exhibition Center. Some audiences think the robot is “alive” and

they are interested in testing the response of the robot by blocking its path ahead.

5.4.4 Performance and stability analysis

As shown in the above real-world tests, telecommanding using joystick commands is

easy to use and is reliable even in a crowded exhibition center. Joystick commands

provide the human operator ‘hands-on’ control, giving the operator a strong feeling of

interaction with the robot. On the other hand, the human operator does have to spend

more effort on the control details if joystick commands are used in the highly dynamic

environment. It should also be noted that joystick commands are not suitable for

carrying out some more skilful tasks (e.g. finding and entering a door located in the

lateral wall of the corridor) if an uncertain or long time delay exists (e.g. through the

Internet or the space).

Telecommanding using linguistic commands compensates for the disadvantages

of using joystick commands. Moreover, it can evolve and obtain more high-level

linguistic commands by learning the linguistic commands queue from the human

operator. Each linguistic command can be designed and used independently. This

means that one poor linguistic command may not affect the performance of others.

The use of linguistic commands is easy to be accepted by inexperienced users so that

it does not require expertise. Linguistic commands are suitable for the use in the

environments affected by uncertain or long time delays. The disadvantages of

telecommanding using linguistic commands are that a linguistic command function

involves quite complicated design and that we currently lack an explicit standard to

define exception detection and responses.

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 81

The stability of Internet-based telerobotic system is affected by the uncertain time

delay that results in the loss of synchronization of time based action references. In the

telerobotic system by telecommanding, the predefined events, e.g. the distances to

obstacles, are non-time-based action references that are non-decreasing functions to

time. These events are independent of the uncertain time delay, and drive the robot to

output actions in accordance with predefined response functions. Xi & Tarn [2000]

have previously proven the theoretical stability of non-time referenced Internet-based

telerobotic systems, and now it has been demonstrated via our tests in simulation and

in the real world.

5.5 Comparison with other control approaches

It is obvious that the direct control is unsatisfactory for use in Internet-based mobile

robot teleoperation because of the high latency derived from the Internet such as

restricted bandwidth and uncertain time delay. Passive supervisory control is

unsatisfactory mainly in that it fails to provide adequate human-robot interactivity.

Table 5.1 provides a comparison of these approaches with the telecommanding.

Table 5.1: Comparison of related systems under various teleoperation approaches

 Direct control
Passive supervisory

control

Telecommanding

(interactive

control)

Command type
low-level speed &

angle

determined goal

coordinate

joystick & linguistic

commands

Command send Continuous One by one Both

Command level Low High High

Task efficiency Low High High

Semi-autonomy None High High

Stationary environment Feasible Feasible Feasible

Dynamic environment Dangerous Feasible Feasible

Internet connection lost Dangerous Safe Safe

Complex task Difficult Feasible Feasible

Human-robot interactivity Good Poor Good

Real world applicability Good Poor Good

Easy to use Easy Easy Easy

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 82

Researchers are attempting to add more human-robot interaction in the form of

behavior-programming control, fitting autonomy, supervised autonomy, shared

control, cooperative control, collaborative control, and so on. We refer to these

strategies as active supervisory control or interactive control. Chung et al [1998]

propose a control strategy consisting of three major parts: behaviors, planner, and

coordinator. The coordinator produces a wake-up table that contains all behaviors

which should be scheduled by a real-time robotic system. Each task action must be

defined with three conditions: pre_activate, fire_condition, and post_activate. These

conditions respectively denote a group of behaviors that must be activated at the

corresponding time. This kind of control strategy is too complex and the running

performance of the robotic system is difficult to evaluate. One poor behavior could

lead to the failure of multiple tasks. The human operator also finds it difficult to

provide suggestions for action via the command parameters. Similar problems arise in

the behavior-programming control mode proposed by Luo et al [2000]. In behavior-

programming control mode, the event derived from a motion assistant is used on the

robot to select a behaviour that is suitable in the encountered situation. Vieira et al

[2001] proposed a concept of fitting autonomy, which allows the mobile agents to

adapt its high level abstract plan to the exact environment it finds in remote places

and to execute the adapted plan including execution monitor and error recovery. This

concept is evaluated in the field of mobile manipulator teleoperation.

Gordon Cheng et al. [2001] propose a teleoperation paradigm: supervised

autonomy. This allows some qualitative instructions (e.g. Go Forward, Go Toward,

Go Between, or Keep To) to be implemented using a vision-based approach. These

instructions are slightly similar to our linguistic commands, but they lack the

performance evaluation and it allows instructions to be sent only one at a time. More

importantly, this paradigm does not have a complete framework for command

processing and event response. The shared control in literature [Lin et al, 1996] is

similar to our joystick command, but it is rather simple and lacks the corresponding

events definition and response functions. Bourhis and Agostini [1998] used

cooperative control to control an intelligent wheelchair. This allows, at certain times,

both the robot and the human to become the supervisor. Three types of behaviors are

defined: skill-based, rule-based, and knowledge-based behaviors. The collaborative

control in [Fong et al, 2003] is a model based on human-robot dialogue. Both the

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 83

cooperative control and collaborative control are difficult to apply in Internet-based

mobile robot teleoperation because the Internet causes uncertain time delays and the

robot cannot obtain timely suggestions from the human operator.

In summary, the differences between the proposed telecommanding and the

existing passive or active supervisory control methods (including the event-based

control) are as follows.

First, the proposed telecommanding can provide a complete framework to process

different types of commands (e.g. joystick commands or linguistic commands) and

allow these commands to be sent continuously. Most of other control methods are

only able to provide single or limited available control commands (e.g. using a mouse

to click a map).

Second, in most existing Internet telerobotic systems, the robots have considerable

autonomy but lack the interaction with the human operator. For example, the operator

is only able to send very high-level commands to the robot, without the capability of

using the running parameters to influence the robot’s execution process. Also, it is

difficult to obtain the robot’s running status or information about the events the robot

has encountered. The proposed telecommanding provides such linguistic commands

with flexible working parameters, and allows that the robot can respond and feedback

predefined expected events as well as react to unexpected events.

Third, most robots under passive supervisory control need to know environmental

knowledge in advance for path planning or localization, which cause that it is difficult

to be applied in an unknown and dynamic environment. The proposed

telecommanding is proposed to fully address the teleoperation of remote robot that

explores unknown and dynamic environments.

5.6 Summary

This chapter proposes a new teleoperation approach namely telecommanding, which

involves two different but complementary commands: joystick commands and

linguistic commands. The commands are designed to perform different independent

tasks. Each joystick or linguistic command is defined with multiple events (non-time

action references) and the corresponding response functions. Some events (e.g.

overrun event or underrun event) are used to evaluate the performance of the task

when the robot is executing a linguistic command. The approach allows the robot to

CHAPTER 5. Telecommanding: A New Interactive Teleoperation Approach

 84

deliberately respond to expected events while to reactively respond to unexpected

events. Telecommanding ensures the safety of Internet robot that is navigating in an

unknown and highly dynamic real world, and alleviates the problems of arbitrary

network delays and restricted bandwidth. Moreover, it eases the work load of the

human operator, reduces the operation sequence and its complexity in the command

queue, and improves the interactivity and reliability of Internet telerobotics. The

experiments have demonstrated the promising performance and the advantages of

telecommanding over direct control and passive supervisory control.

CHAPTER 6. Real-time Map Building and Active Exploration

 85

CHAPTER 6. REAL-TIME MAP BUILDING AND

ACTIVE EXPLORATION

Chapter 5 presents a new teleoperation approach, which provides a complete

framework of control management and command processing. Both joystick and

linguistic commands are designed to help human operators remotely control the

mobile robot to explore unknown environments. One of the linguistic commands is

MAPPING, which allows a mobile robot to be able to actively explore the unknown

environment and to build a map autonomously. This chapter realizes such command

function by proposing a new map learning approach.

6.1 Introduction

To perform fully autonomous tasks, it is necessary for mobile robots to model an a

priori unknown environment. The optimal way to do this is for the mobile robot to

actively explore the environment and construct a map based on its sensory

information. This is the problem of active map learning [Arleo et al., 1999], which is

a little different from the SLAM (Simultaneous Localization And Mapping) problem

[Filliat & Meyer, 2003; Chong & Kleeman, 1999]. The former focuses more on the

active exploration strategy for sensing the environment, while the latter focuses more

on the localization strategy for estimating robot’s accurate position. This chapter

addresses the problem of active map learning.

There are some practical limitations on a robot’s ability to learn accurate map

models including the perceptual limitations of most sensors (e.g. ultrasonic sensors,

cameras), sensor noise, drift or slippage, environmental complexity and dynamics, as

well as real-time requirements [Thrun, 1998b]. In addition, two fundamental

requirements must be satisfied for effective active map learning: first, the robot must

have an efficient map model for representing the environment, and second, the robot

must incorporate a fast path-planning algorithm based on this representation for

actively exploring the environment.

There are a variety of map learning approaches, as described in Chapter 2. They

use different grid-based map models to represent the environments, and update a map

CHAPTER 6. Real-time Map Building and Active Exploration

 86

based on probability [Thrun, 1998b; Yamauchi et al., 1998; Wallner & Dillmann,

1994; Dieguez et al., 2003; Song & Chang, 1999; etc.], fuzzy possibility [Oriolo et al.,

1998], or frequency concept [Borenstein & Koren, 1991; Edson et al. 2004]. Some

active exploration methods are developed to navigate a mobile robot to least known

environments. Almost all of these methods adopt the strategy of global path planning

and path tracking, typically belonging to a SMPA (Sense-Model-Plan-Act) approach

[Saffiotti, 2000]. In these methods, a target representing least known environment is

selected at first based on an already modelled environment, then an optimal path from

current robot position to the selected target is obtained by global search, finally the

robot follows the planned path to reach the target and chooses another target again.

One drawback of such exploration approach is that the computational complexity of

path planning rapidly increases as the environmental complexity or the scale of

learned map increases, making real-time computation in practical applications

infeasible. Moreover, this approach encounters the problem that the plan built from

the modelled map will be inadequate to the environment actually faced during

execution, particularly in a dynamic environment.

This chapter proposes a new approach called “memory grid mapping” for active

map learning in unknown indoor environments. The proposed map model adopts a

grid-based representation and uses frequency values to measure the confidence that a

cell is occupied by obstacle. The map model allows that more information about the

environment and the robot’s history of experience (e.g. its trajectory) can be kept in a

map. The exploration strategy adopts a behavior-based approach as previously

presented in Chapter 4. In each control period, the proposed exploration method

recommends a direction that provides minimum risk in a predetermined region in

order to drive the robot greedily moving toward less visited environment. This

minimum risk involves both minimum collision risk with obstacles and minimum

iteration risk toward previously visited area. The proposed map postprocessing

method, including a threshold operation, a template operation, and an insert operation,

is useful to improve the accuracy of learned map. The approach makes no

assumptions about environmental complexity or the shape or size of obstacles, but we

assume in this chapter that the robot obtains an accurate position by localization

without odometric errors.

The rest of the chapter is organized as follows. Section 6.2 proposes a new map

CHAPTER 6. Real-time Map Building and Active Exploration

 87

learning approach, involving a grid-based map model and a framework for real-time

map building and active exploration. Section 6.3 presents a map update method,

Section 6.4 an exploration method, and Section 6.5 a map postprocessing method.

Section 6.6 provides the results of our simulations experiments. Section 6.7 gives

some discussions. Section 6.8 summarizes the chapter.

6.2 The proposed approach

6.2.1 The model of memory grid map

The proposed map represents an environment by using evenly-spaced grid cells. A

map shown in Figure 6.1 can be defined as a vector GridHead GridHeadV(x , y ,M, N,) ,

where (xGridHead, yGridHead) is the coordinate of the top-left-corner cell in the internal

coordinate systems of the robot; (M, N) are respectively the rows and columns; is a

constant denoting the length of the cell size. Coordinate mapping is a transform

process from the internal coordinate (x , y)′ ′ of the robot to the coordinate (m ,n)′ ′ of

the grid cell. By using a coordinate mapping, current physical position of the robot is

mapped into a position of the grid-based map so that corresponding information can

be saved in a map.
),(GridHeadGridHead yx N

M

),(nm ′′

),(yx ′′

Figure 6.1: A memory grid map and its coordinate mapping

The equations of coordinate mapping are as follows.

ˆy , if 0 y 0.5
m

ˆy 1, if 0.5 y 1
≤ <⎧′ = ⎨ + ≤ <⎩

 (6.1)

CHAPTER 6. Real-time Map Building and Active Exploration

 88

ˆx , if 0 x 0.5
n

ˆx 1, if 0.5 x 1
≤ <⎧′ = ⎨ + ≤ <⎩

 (6.2)

where,
GridHeadx ' xx Int()−

= GridHead GridHeadx ' x x ' xx̂ Int()− −
= −

GridHeady y 'y Int()−
= GridHead GridHeady y ' y y 'ŷ Int()− −

= −

We call the proposed map memory grid map because each grid cell of the map

contains two kinds of memorized information that we call memory dot. One is

Obstacle Memory Dot (OMD). The other is Trajectory Memory Dot (TMD). The

OMD’s value (,)OMDV i j indicates the measure of confidence that an obstacle exists

within the cell (i, j) area, where i = 1, 2, …, M, and j=1, 2, …, N. The TMD’s value

(,)TMDV i j indicates the number of occurrence, i.e. how many times the robot traverses

the cell (i, j) area. The TMD is designed to record the previously traversed trajectory

as well as the time consumed by the robot that traverses the cell area. The information

about TMD can be used for robot online path-planning. The information saved in the

map appears as matrix, such as OMD matrix OM×N and TMD matrix TM×N. Every

control period (100ms in our robotic system), we update OM×N and TM×N. The update

algorithm is described in Section 6.3.

6.2.2 A framework of map building and active exploration

A framework of the proposed approach is shown in Figure 6.2 for map building and

active exploration. In this approach, a memory grid map is built based on robot’s

sensory information, so that we call the approach memory grid mapping. The

approach includes three modules: map update, environmental exploration, and map

postprocessing. This section provides a short description of their design ideas.

Map
Update

Environment
Exploration

Map
Postprocessing

Figure 6.2: A framework of the proposed approach

1) Map update

The module of map update is to interpret the sensor readings and integrate them

over time into a map that models the environment. In this module, the sonar readings

are mapped into frequency values (i.e. OMD’s values) which represent the confidence

CHAPTER 6. Real-time Map Building and Active Exploration

 89

of the cells where they are occupied by obstacles or not. These values are integrated

over time to yield a single, combined estimate of occupancy in a map (i.e. OMD

matrix OM×N) by simple addition or subtraction of frequency values. For the update of

TMD matrix TM×N, only one cell where the robot is currently located is incremented

in each control period. The detail is presented in Section 6.3.

2) Environmental exploration

The module of environmental exploration is to make online path planning in order

to actively explore the least known environment. In this module, the path planning

method adopts a strategy of multi-behavior coordination, in which a novel regional

path-exploring behavior is developed to recommend the regional direction toward less

visited environment, and a local environment-detecting behavior is developed to

detect the environment details while to avoid obstacles. The TMDs in the memory

grid map are used by the path-exploring behavior to evaluate the risk whether or not

the robot is iterating the previously visited areas. Each behavior is assigned a

weighting factor, and these factors are adjusted dynamically by weighting functions

during robot motion. The weighting factors determine the degree of influence of each

behavior on the final motion command. The final command output is obtained by

coordinating these two behaviors using a command fusion equation. The detail is

presented in Section 6.4.

3) Map postprocessing

The module of map postprocessing is to filter the learned map offline in order to

remove some misclassified cells and to obtain a more consistent and complete

environment map. At first we use a threshold operation in order to remove some

misclassified cells from the perspective of cell’s intensity (i.e. magnitude of OMD

value). Next we use a template operation in order to remove most misclassified cells

from the perspective of neighboring correlation. Finally we use an insert operation in

order to add some undetected cells. The detail is presented in Section 6.5.

6.3 The map update

The map update is done real time in order to build a map based on robot’s sensory

information. In general, a map is updated in two steps. First, sensor readings are

interpreted to draw a local map (i.e. a map that only keeps the obstacle information

CHAPTER 6. Real-time Map Building and Active Exploration

 90

derived from current sensor readings). Then the local map is integrated into a global

map (i.e. a map that keeps global obstacle information throughout the entire control

period) and the corresponding cells are updated. Thrun’s method [1998b] trains an

artificial neural network using Back-Propagation to map sonar readings to occupancy

values. Multiple sonar interpretations are then integrated over time using Bayes rule

to form a global metric grid. This approach requires many calculations. Arleo et al

[1999] use a similar neural network technique to obtain the local grid-based map, but

this local map is subsequently used only to identify obstacle boundaries in order to

build a variable-resolution partitioning map. Song and Chang’s method [1999]

extends from heuristic asymmetric mapping (HAM) [Song & Chen, 1996], in which a

sonar reading indicates the probabilities of multiple cells that correspond to physical

occupied region and empty region. The probability of each cell is then integrated into

a global grid map through a first-order digital filter to generate a certainty value from

-1 to 1. Oriolo et al. [1997; 1998] provide a fuzzy reasoning method to update the map.

Borenstein and Koren [1991] uses a simple metric sonar model that increases the cell

value measured by the sonar and decreases the cells corresponding to free areas.

The update method of the proposed memory grid map involves two parts: one is to

update the OMD matrix OM×N, another is to update the TMD matrix TM×N. Initially,

both OM×N and TM×N are set to zero matrixes. The details are as follows.

The update method of OMD matrix OM×N increments only one cell for each range

reading. At the same time it decrements those cells that represent “empty” areas in

this range reading. This design makes the update algorithms simple and fast. For

sonar sensors as shown in Figure 6.3, the incremental cell is the one Sd that

corresponds to the measured distance d and lies on the acoustic axis of the sonar S0.

The incremental cell is updated by Eq. (6.3)

OMD OMD O MAX
OMD

O MAX

V (i, j) I , If V (i, j) V
V (i, j)

V Otherwise

+
−

−

⎧ + <
= ⎨
⎩

 (6.3)

where, VOMD(i, j) is the OMD value of grid cell (i, j), i = 1, 2, …, M, and j=1,

2, …, N, VO-MAX is a constant for a grid cell’s maximum OMD value. The increment

I+ is 3 and VO-MAX is 25, experimentally determined in our robotic system.

The decremental cells are located on the line of the acoustic axis except the

incremental cell Sd. They are upated by Eq. (6.4).

CHAPTER 6. Real-time Map Building and Active Exploration

 91

OMD OMD O MIN
OMD

O MIN

V (i, j) I , If V (i, j) V
V (i, j)

V Otherwise

−
−

−

⎧ − >
= ⎨
⎩

 (6.4)

where VO-MIN is a constant for a grid cell’s minimum OMD value. The decrement

I- is 1 and VO-MIN is 0. These values are determined experimentally. Note that I- must

be smaller than I+ because only one cell is incremented whereas multiple cells are

decremented for one reading.

Finally, we only update the cells that are located inside a circular sector of radius

centered at the sonar position. This circular sector is called the “confidence sector”.

The radius rc of this sector is 1 metre, which is an acceptable value that we have

confidence to obtain the correct sonar readings in our robotic system. This reduces

artifacts produced by sonar noises (e.g. noises from false reflections). Because of this

update strategy, a likelihood distribution of occupancy is actually obtained by

continuously and rapidly sampling each sensor as the robot is moving, in which high

values are obtained in cells close to the actual location of the obstacle.

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 +3

Obstacle

Sonar
S0

Sd
Increment = +3
Decrement = -1

Figure 6.3: The update of OMD matrix in a memory grid map. The

incremental cell Sd, corresponding to measured distance d, is incremented

by I+, and other decremental cells between S0 and Sd are decremented by I−.

The update method of the TMD matrix TM×N is very simple. Only one cell where

the robot is currently located is incremented in each control cycle.

TMD TMD T MAX
TMD

T MAX

V (i, j) 1, If V (i, j) V
V (i, j)

V Otherwise
−

−

+ <⎧
= ⎨
⎩

 (6.5)

where VTMD(i, j) is the TMD value of grid cell (i, j), i = 1, 2, …, M, and j=1, 2, …,

N, VT-MAX is a constant for a grid cell’s maximum TMD value. This maximum value

is 50, experimentally determined in our robotic system. There is no decrement for

CHAPTER 6. Real-time Map Building and Active Exploration

 92

TMD matrix, which means that the trajectory experienced by the robot might not be

forgotten.

During every control cycle (100ms in our robotic system), Algorithm 6.1 is called

once to update a memory grid map.

Algorithm 6.1: MAPUPDATE()

Input: (x0, y0) = current robot location; φ0 = current robot heading angle;

 di (i = 0, 1, …, 7) = sonar readings from eight forward sonars.

Output: OM×N = The OMD matrix; TM×N = The TMD matrix.

BEGIN:

Step 1. Update the TMD matrix TM×N.

Step 1.1. Do the coordinate mapping to transform current robot coordinate

(x0, y0) into coordinate (m0, n0) of memory grid map by Eqs. (6.1) and

(6.2);

Step 1.2. Update the TMD value VTMD(m0, n0) of corresponding cell (m0, n0)

in TM×N By Eq. (6.5);

Step 2. Update the OMD matrix OM×N.

 FOR every sonar Si (i=1 to 8), Do the same jobs as the following:

 IF the sonar reading di is less than the radius rc of confidence sector, THEN

Step 2.1. Calculate the coordinate (xSd, ySd) of incremental cell Sd as in

Figure 6.3 based on the sonar’s coordinate (xS0, yS0) and sonar

reading di;

Step 2.2. Do the coordinate mapping to transform (xSd, ySd) into grid

coordinate (mSd, nSd) by Eqs. (6.1) and (6.2);

Step 2.3. Increment the OMD value VTMD(mSd, nSd) of cell (mSd, nSd) in

OM×N By Eq. (6.3);

Step 2.4. Calculate the grid coordinates of all decremental cells between

S0 and Sd;

Step 2.5. Decrement the OMD value of all decremental cells in OM×N By

Eq. (6.4);

 OTHERWISE

 Step 2.6. Calculate the grid coordinates of all decremental cells within

confidence sector between S0 and Sd;

CHAPTER 6. Real-time Map Building and Active Exploration

 93

 Step 2.7. Decrement the OMD value of all decremental cells in OM×N By

Eq. (6.4);

 END IF

 NEXT FOR

END Algorithm 6.1.

6.4 The environmental exploration

The environmental exploration methods are developed for the mobile robot to actively

explore the least known environment. Thrun [1998b] resorts to an exploration scheme

that allows the robot to drive towards unexplored areas, i.e. areas where cell

probabilities have never been updated. For each cell, this scheme updates a value

representing the distance to the closest unvisited cell area using a value-iteration

algorithm, so that performing a gradient descent on these values leads to unexplored

areas. Instead of using value-iteration, Yamauchi et al. [1998] implement the

exploration by directing the robot toward the closest frontier between explored and

unexplored areas. The path to this frontier is computed using a depth-first search in

known open-areas. Arleo et al. [1999] develops a technique called counter-based

exploration with decay [Thrun, 1992], in which a counter keeps track of the number

of occurrences for each partition (i.e. how many times that partition has been visited).

The counter is multiplied by a decay factor in order to take into account when a

partition has been visited. The exploration is directed toward the partitions that have

been less often and less recently visited.

ED Behavior

PE Behavior

Command
fusion

exteroception

proprioception

memory grid

speed

turn
angle

,PE PEwθ

,θED EDw

Figure 6.4: The proposed exploration method by ED and PE behavior coordination.

The proposed exploration method adopts a strategy of multi-behavior coordination

as shown in Figure 6.4, which comprises two elementary behaviors, path-exploring

(PE) behavior and environment-detecting (ED) behavior. The PE behavior’s role is to

CHAPTER 6. Real-time Map Building and Active Exploration

 94

navigate a mobile robot to a less visited region. This region is among the LEFT,

RIGHT, FRONT regional sectors as shown in Figure 6.5(a), which we call “turn

detection region”. The total values of OMDs of a turn detection region would

represent the risk that the robot could collide with obstacles in this region. Similarly,

the total values of TMDs of a turn detection region would represent the risk that the

robot is moving to its previously visited areas. Therefore, the region with minimum

risk is the one with the minimum values of both TMDs and OMDs. Such regional

direction is the best choice for the robot in trying to avoid both obstacles and previous

trajectory, and consequently safely explore new environment. The local ED behavior

is a sensor-based behavior, which detects the environment while making the robot

safe without collision with obstacles. It’s desired that the ED behavior enables the

robot to follow the boundary of obstacles as near as possible in order to detect more

environmental details.

(a) (b)

Figure 6.5: Detection regions for the PE behavior. (a) Arc-shaped turn

detection regions (i.e. LEFT, FRONT, RIGHT). (b) Square-shaped weight

detection region. The center is the robot location.

In each control period, the final motion command is obtained by fusing two

behaviors’ weighting output. The rotational turn angle θ and the speed v are obtained

by Eqs. (6.6) and (6.7) respectively.

PE PE ED ED

PE ED

w w
w w
⋅θ + ⋅θ

θ =
+

 (6.6)

v = vc (6.7)

where, θED and θPE are respectively the delta turn angle recommended by the ED

and PE individual behavior. wED and wPE are respectively the weighting factor of the

ED and PE behavior. vc equals to 100mm/s in our robotic system. The robot’s speed v

CHAPTER 6. Real-time Map Building and Active Exploration

 95

is set to this small constant value so that the robot has enough time to detect the

environment. We shall describe the design of two behaviors in the following.

To calculate the turn angle and weight of the PE behavior, we define the following

terms at first.

Definition 6.1 (Iteration Risk): Iteration Risk (IR) of a region A is defined as

TMD
(i, j) A

(A) V (i, j)
∈

α = ∑ , where A is an arc-shaped turn detection region (see Figure

6.5(a) left, front, right regions), (,)TMDV i j is the TMD’s value of the cell (i, j)

involved in the region A.

In fact, Iteration Risk is defined as the total values of TMDs saved in a turn

detection region. Similarly, we define the following terms.

Definition 6.2 (Collision Risk): Collision Risk (CR) of a region A is defined as

OMD
(i, j) A

(A) V (i, j)
∈

β = ∑ , where A is an arc-shaped turn detection region (see Figure

6.5(a). left, front, right regions), (,)OMDV i j is the OMD’s value of the cell (i, j)

involved in the region A.

Definition 6.3 (Trajectory Dot Intensity): Trajectory Dot Intensity (TDI) of a

region B is defined as
 TMD

(i, j) B
(B) V (i, j)

∈

κ = ∑ , where B is a square-shaped weight

detection region (see Figure 6.5(b)), (,)TMDV i j is the TMD’s value of the cell (i, j)

involved in the region B.

TDI and IR have different detection regions. We call the region B weight detection

region as shown in Figure 6.5(b). The regions available for robot traversal (i.e. turn

detection regions) are three circular side sectors as shown in Figure 6.5(a). The radius

of the circular sector is the robot’s regional perception range, i.e. the distance at

which we wish the robot to react to the regional risk features. The size of the radius is

1 metre in our robotic system since the robot updates the OMD’s value only in those

cells that are located inside a circular sector of 1 metre in radius. These regional

sectors are labelled left, front, and right, and have the central angular values of +60 ° ,

CHAPTER 6. Real-time Map Building and Active Exploration

 96

0 ° , - 60° respectively. The weight detection region is no directionality (i.e. it is same

whatever angle the robot’s heading is). This design makes the computation of TDI

very simple and fast. In our robotic system, the size of this squared region is 2m×2m

(i.e. a half of the side is 1 metre) so that it is similar with the size of the turn detection

region.

Algorithm 6.2 is used to calculate the turn angle of the PE behavior. The output

only contains three angle values {600, 00, -600} that respectively correspond to the

LEFT, FRONT and RIGHT regional direction.

Algorithm 6.2: (Calculate the turn angle of PE behavior)

Input: OM×N = The OMD matrix; TM×N = The TMD matrix.

Output: θPE = delta turn angle of the PE behavior, θPE ∈{600, 00, -600}

BEGIN:

Step 1. Update the iteration risk and collision risk of all turn detection regions,

including α(Afront), α(Aleft), α(Aright), β(Afront), β(Aleft), and β(Aright);

Step 2. Find out all turn detection regions (among Aleft, Afront, Aright regions) whose

collision risk β(A) are less than a threshold T1. IF so, THEN the corresponding

regions are reserved and go to Step 3, OTHERWISE the weight of PE behavior is

forced to zero (i.e. wPE =0) and RETURN;

Step 3. IF the front region is one of the reserved regions AND its iteration risk

α(Afront) is less than a threshold T2, THEN the direction toward front region is

recommended to move (i.e. θPE = 0) and RETURN, OTHERWISE go to Step 4;

Step 4. The regional direction, whose iteration risk α(A) is minimum among the

reserved regions, is chosen as the recommended turn angle θPE , and RETURN.

END Algorithm 6.2

The purpose of Step 2 is to guarantee that the recommended regional direction has

minimum CR. Because of the uncertainty from sensor errors, it is reasonable to

assume that the region is safe when it has a small CR value less than the threshold T1.

This threshold (25 in our robotic system) is mainly determined by the size of turn

detection region. Similarly, we assume that the region has a safe IR if its value is less

than the threshold T2. This threshold (30 in our robotic system) is mainly determined

by the size of turn detection region and robot’s speed. The Step 3 guarantees that the

CHAPTER 6. Real-time Map Building and Active Exploration

 97

front region that has a safe IR is recommended as the moving direction, in spite of

that the left or right region has smaller IR than that of front region. This step allows

the robot to avoid frequent variations of the turn angle in order to decrease the

odometric error. The Step 4 guarantees that the PE behavior recommends a less

visited region (i.e. with minimum IR).

The weight of the PE behavior is calculated by Eq. (6.7).

PE

0, if (B) T3
w (B) T3, if T3 (B) T3 100

100, if (B) T3 100

κ ≤⎧
⎪= κ − < κ ≤ +⎨
⎪ κ > +⎩

 (6.7)

where, k(B) is the TDI of the weight detection region B. T3 is a threshold that

represents how many times the region B has been visited by the mobile robot. The PE

behavior is activated only when k(B) is larger than T3 (200 in our robotic system).

Note that, in Step 2 of Algorithm 6.2, when all turn detection regions whose CR are

not less than the threshold T1, the weight wPE of PE behavior is forced to zero. At this

time, the robot depends on the ED behavior to escape from this puzzle.

The ED behavior is designed using fuzzy logic controllers as presented in Chapter

4 in order to deal with uncertainties from sonar readings. The sonar readings of the

robot are grouped into three sectors (left, front, right). It is similar as represented by

Eqs. (4.6) (4.7) (4.8) in Chapter 4. The obstacle distance of each sector is represented

by three linguistic fuzzy sets {VERYNEAR, NEAR, FAR}. The robot turn angle is

represented by five linguistic fuzzy sets {NB, NS, ZE, PS, PB}, where NB is

negative-big, NS negative-small, ZE zero, PS positive-small, and PB positive-big.

The weight of ED behavior wED is represented by three linguistic fuzzy sets {SMALL,

MEDIUM, LARGE}. The membership functions of obstacle distance, turn angle, and

weight are referred to the Figure 4.4 in Chapter 4.

Table 6.1 summarizes the turn rules of the ED behavior. For instance, the (1,1)

element of the top layer in Table 6.1 can be written as the rule:

IF dfront is VERYNEAR AND dleft is FAR AND dright is FAR, THEN θED is PS.

The turn rules of the ED behavior govern the following behavior characteristics: if

the obstacle is not very near, the robot still keeps moving forward (i.e. turn angle is 0),

otherwise the robot only turns left or right a small angle to avoid the obstacle. Note

that, when the three sectors have the same VERYNEAR obstacle distance as shown in

the (3,3) element of the top layer in Table 6.1, a large left turn (PB) angle is

CHAPTER 6. Real-time Map Building and Active Exploration

 98

recommended. This turn rule enables the robot to escape from its current embarrassed

situation.

Table 6.2 summarizes the weight rules of the ED behavior. The weight is derived

directly from obstacle distances in the three sectors. Note that the weight’s range is 0

to 100, same with that of the weight of PE behavior. On the other hand, the

defuzzified minimum weight of the ED behavior is a small non-zero value. As a result,

when the weight of the PE behavior is zero, the ED behavior might dominate the final

motion output although its weight possibly is small.

CHAPTER 6. Real-time Map Building and Active Exploration

 99

Table 6.1: Turn rules for the ED behavior.

rightd

PS PS

NS PS

NS NS PB

frontd
leftd

far near verynear
far

near

verynear

ZE PS

ZE ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

ZE ZE PS

ZE ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

PS
PS

ZE

Table 6.2: Weight rules for the ED behavior.

rightd

large large large

large large large

large large large

frontd
leftd

far near verynear
far

near

verynear

medium large large

large large large

large large large

frontd
rightd

leftd
far near verynear

far

near

small small large

small medium large

large large large

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

CHAPTER 6. Real-time Map Building and Active Exploration

 100

For every control cycle, Algorithm 6.3 is called once for environmental

exploration.

Algorithm 6.3: ENVIRONMENTEXPLORATION()

Input: (x0, y0) = current robot location; φ0 = current robot heading angle;

 (d0, d1, d2, d3, d4, d5, d6, d7) = sonar readings.

Output: (v, θ) = speed and delta turn angle of the robot

BEGIN:

Step 1. To preprocess the sonar readings using Eqs. (4.6), (4.7), and (4.8) in

Chapter 4;

Step 2. IF the total distance the robot travels is greater than a given threshold OR

the robot receives a STOP command, THEN the robot is stopped and RETURN,

OTHERWISE go to the Step 3;

Step 3. To calculate the weight wPE of the PE behavior using Eq. (6.8);

Step 4. To calculate the delta turn angle θPE recommended by the PE behavior

using Algorithm 6.2;

Step 5. To calculate the delta turn angle θED recommended by the ED behavior

using Algorithm 4.1 in Chapter 4, and using the turn rules as in Table 6.1;

Step 6. To calculate the weight wED of the ED behavior using Algorithm 4.1 in

Chapter 4, and using the weight rules as in Table 6.2;

Step 7. To calculate (v, θ) by the command fusion using Eqs. (6.6) and (6.7);

Step 8. To execute the motor control commands (v, θ).

END Algorithm 6.3

6.5 The map postprocessing

The purpose of map postprocessing method is to filter the constructed map offline in

order to remove noises and obtain a more consistent and complete environment map.

In histogramic in-motion mapping [Borenstein & Koren, 1991], the permanent map is

obtained by simple threshold comparison. The certainty values of the cells are set to

zero if they are less than a predetermined threshold, otherwise they are reserved in the

permanent map. In Edson’s method [2004], cells have three states: occupied, free

CHAPTER 6. Real-time Map Building and Active Exploration

 101

space, and not explored. Cells are changed to occupied if their immediate neighbors

on both sides are occupied, and cells classified as not explored are changed to free

space if most of their neighboring cells are explored (either free space or occupied).

Dieguez et al. [2003] developed a mechanism called propagation to increase or

decrease the confidence value of each cell according to the total values of this cell’s

neighbors.

This chapter proposes a method for map postprocessing as shown in Figure 6.6.

The final map is obtained after the raw learned map (i.e. the OMD matrix OM×N) is

orderly processed by the modules of a threshold operation, a template operation, and

an insert operation.

Threshold
Operation

Insert
Operation

Template
Operation

Raw map Final map

Figure 6.6: A framework of the proposed method for map postprocessing

First the threshold operation eliminates some misclassified cells from the

perspective of cell’s intensity (i.e. magnitude of OMD’s value). Note that the cells

belonging to free area (whose OMD value is zero) are called free cells, and the cells

occupied by obstacles (whose OMD value is non-zero) are called occupied cells. The

misclassified cells are those free cells but they are mistakenly classified as occupied

cells because of the errors of sonar readings. By threshold operation, the OMD’s

value of each cell is set to zero if it is not larger than a threshold T4, otherwise it is set

to the maximum value VO-MAX (25 in our robotic system, see Section 6.3). This

threshold T4 in our robotic system is 3, which implies that each occupied cell is

eligible to reserve in the final map only if the cell’s area is detected at least twice by

any of robot’s sensors.

Next the template operation eliminates most of the misclassified cells from the

perspective of neighboring correlation. The nature of this operation is to realize the

following heuristic rule: Isolated cells (i.e. cells whose neighbors are not occupied as

they have small frequency values) come mostly from erroneous sonar readings. We

have defined eight templates shown in Figure 6.7. Every cell of the processed map is

matched with the eight templates. For example, the first template (see Figure 6.7(1))

is used to match. If all neighboring cells are occupied (i.e. the OMD’s values are

larger than zero in these neighboring cells), this template is matched successfully,

CHAPTER 6. Real-time Map Building and Active Exploration

 102

otherwise it fails. The OMD’s value of the cell is maintained in the final map if any

one template is matched successfully. If all templates fail to match, the OMD’s value

of the cell is set to zero (i.e. a free cell).

 (1) (2) (3) (4)

 (5) (6) (7) (8)

Figure 6.7: Eight templates for map postprocessing. (1-8) The black dot in

template center is the cell that is being matched. The other black dots are

neighboring cells of the matched cell.

Finally the insert operation adds some undetected cells. The undetected cells are

those occupied cells that are mistakenly classified as free cells because the sonars

miss those cell areas due to the robot moving. The purpose of this operation is to

realize the following heuristic rule: the cells, whose neighbors on both sides are

occupied, should be also occupied. The insert operation makes use of the former four

templates (see Figure 6.7(1-4)) to match every cell of the processed map. If any

template is matched successfully, the OMD value of the matched cell is set to the

maximum value VO-MAX, otherwise its value is maintained.

In summary, Algorithm 6.4 gives the process of map postprocessing.

Algorithm 6.4: MAPPOSTPROCESSING()

Input: OM×N = The OMD matrix

Output: OM×N = The OMD matrix

BEGIN:

Step 1. Do the threshold operation.

 FOR every cell (i, j) in OM×N, i = 1, 2, …, M, and j=1, 2, …, N, DO

 IF VOMD(i, j) > T4, THEN

 VOMD(i, j) = VO-MAX

CHAPTER 6. Real-time Map Building and Active Exploration

 103

 ELSE

 VOMD(i, j) = VO-MIN

END IF

 NEXT FOR

Step 2. Copy OM×N into O’
M×N , then do the template operation.

 FOR every cell (i, j) in O’
M×N, i = 1, 2, …, M, and j=1, 2, …, N, DO

 IF all templates as in Figure 6.7(1-8) are failed to match, THEN

 Update the cell (i, j) in OM×N using VOMD(i, j) = VO-MIN

END IF

 NEXT FOR

Step 3. Copy OM×N into O’
M×N , then do the insert operation.

 FOR every cell (i, j) in O’
M×N, i = 1, 2, …, M, and j=1, 2, …, N, DO

 IF any one template as in Figure 6.7(1-4) is successful to match, THEN

 Update the cell (i, j) in OM×N using VOMD(i, j) = VO-MAX

END IF

 NEXT FOR

END Algorithm 6.4

6.6 Experimental results

Section 6.6.1 shows a simulation test to analyze the robot’s exploration process and to

evaluate the learning efficiency of the proposed approach. Section 6.6.2 evaluates the

map accuracy after map postprocessing. Section 6.6.3 evaluates the map accuracy if

the size of cells is different. Section 6.6.4 will give the simulation tests in more

complex environment.

6.6.1 Performance analysis of exploration process

The purpose of this simulation experiment is to analyze the exploration process in

which how the robot makes decision to explore unknown environment. At the

beginning of map learning, the values of all TMDs and OMDs in a memory grid map

are initialized to zero. The memory grid map is updated by Algorithm 6.1. The cell

size is 100mm×100mm. When the robot begins to explore unknown environment

CHAPTER 6. Real-time Map Building and Active Exploration

 104

(see Figure 6.8(1)), the weight of PE behavior is zero because the TDI in weight

detection region B is smaller than the threshold T3. At this moment, the ED behavior

makes dominant contribution to the final motion output. When the robot closes to

obstacles (see Figure 6.8(2)(3)), the weight of ED behavior becomes larger. The ED

behavior recommends a small turn angle to make the robot following the boundary of

obstacles in order to detect more environmental details. When the weight of PE

behavior becomes larger with the increase of TDI (see Figure 6.8(4)), both behaviors

coordinate to drive the robot moving toward less visited and safe area. When the robot

is far away from obstacles, the weight of ED behavior becomes smaller. The PE

behavior is dominant with the increase of TDI (see Figure 6.8(5)(6)(7)), which

enables the robot to avoid visiting previously traversed area and to move toward less

visited environment. We manually stop the map learning when the result is acquired

as shown in Figure 6.8(7). Observe that the learned map (here only the OMD matrix

OM×N is taken into consideration) contains a number of misclassified cells that are

derived from sensor errors. It is necessary to post process the learned map. Figure

6.8(8) shows the simulation interface and the result of map postprocessing, in which

many misclassified cells are removed. Section 6.6.2 will analyze the performance of

map postprocessing. In addition, observe that some corners in the environment are not

modelled. The main reason is that our robot only gets equipped with eight forward

sonar sensors but without backward sensors. When the robot turns at the corners, the

forward sensors do not have enough time to detect the environmental details. To

install some backward sonars will effectively improve the robot’s detection capability.

CHAPTER 6. Real-time Map Building and Active Exploration

 105

 (1) (2) (3)

 (4) (5) (6)

 (7) (8)

Figure 6.8: Real-time map building and active exploration in unknown indoor

environment. Note that to exhibit the different contributions to the final

control output provided by the different behaviors, data visualization is

developed. Each behavior produces a turn angle recommendation while its

weight represents the degree of influence on the final angle output. The

different lines “a” and “b”, drawn automatically by the control program,

respectively represent the turn angles recommended by the ED, PE behaviors.

The length of each line represents the weight value of each behavior. The

trajectory is indicated by the chain of circles. The program draws the circle

once every 0.5 second. (1-7) exploration process; (8) simulation interface.

CHAPTER 6. Real-time Map Building and Active Exploration

 106

In order to evaluate the learning efficiency, we define the following utility

function:

()() () ()

O tU t d t O t
=

+

where, O(t) is the total number of cells whose OMD values are not zero, which

represents how much environmental knowledge the robot has already known. d(t) is

the actual total distances(mm) the robot has already travelled. is the length of cell

size (mm). It is desired that the robot could obtain the environmental knowledge as

much as possible while it travels the distance as short as possible. As a result, the

larger the value of U(t), the better the learning efficiency is. Figure 6.9 compares the

performances of the active exploration and of a random exploration during the map

learning process within the environment shown in Figure 6.8. The diagram shows the

active exploration outperforms the random walk. The main reason is that the robot

randomly walking is easier to get trapped in local minima and it often visits previous

traversed areas. If the test environment contains more complex local minima, the

active exploration would obtain much better learning efficiency than the random

exploration.

0 100 200 300 400 500 600 700
0.4

0.5

0.6

0.7

0.8

0.9

U
(t)

Active exploration
Random exploration

(a)

(b)

t

Figure 6.9: Performance comparison between active exploration and random

exploration. (a) active exploration; (b) random exploration.

CHAPTER 6. Real-time Map Building and Active Exploration

 107

6.6.2 Performance of map postprocessing

In order to evaluate the map accuracy after map postprocessing, we define a simple

index e to measure the misclassified cells (i.e. free cells that are misclassified as

occupied cells) of total classified cells. Let Ae be the total number of misclassified

cells, and Atot be total number of cells whose OMD values are not zero. The error e is:

e

tot

Ae
A

= ,

Figure 6.10 shows the simulation results of map postprocessing. Obviously, the

processed map has higher accuracy compared with the unprocessed map. The

template operation is particularly useful to greatly eliminate misclassified cells. On

the one hand, the insert operation adds some undetected occupied cells. On the other

hand, it adds some misclassified cells as well. These misclassified cells are often close

to the correct occupied cells. From the perspective of acquiring the environmental

knowledge as much as possible, the insert operation is useful.

 (a) e=17.4%; (b) e=13.9%;

 (c) e=2.6%; (d) e=2.9%.

Figure 6.10: Map postprocessing. (a) unprocessed map (100mm×100mm cell

size); (b) map after threshold operation; (c) map after template operation; (d)

the final map after insert operation.

CHAPTER 6. Real-time Map Building and Active Exploration

 108

6.6.3 Performance of map with different cell sizes

In order to evaluate the map accuracy when the size of cells (i.e. granularity) is

different, we adopt the Index of Performance (IOP) proposed by Raschke and

Borenstein [1990]. The purpose of this index is to quantitatively express the quality of

matching between a learned map and a reference map.

min[(,) (,)]
(,)

D i j CV i j
IOP

CV i j
⋅

= ∑
∑

where, Dmin(i,j) is the distance (millimetre) from cell (i,j) to the nearest occupied

cells, and CV(i,j) is the certainty value of cell (i,j) in learned map. Here, when the

cell’s OMD value is zero, the certainty value of the cell is equal to 0, otherwise it is

equal to 1. The meaning of this index is the average error distance between the

represented and the actual obstacles. It is independent of the cell size, the adopted

map representation, and the environment range. The smaller the IOP is, the smaller

the error between a learned map and a reference map will be. In other words, the

learned map has higher accuracy.

Figure 6.11 shows the results of map postprocessing with different cell sizes. In

this test, the IOP of former two are close, and the IOP of latter one is relatively larger.

We think that the 100mm×100mm cell size is a good compromise between map

accuracy and space requirement of map storage.

CHAPTER 6. Real-time Map Building and Active Exploration

 109

(a) IOP = 4.98mm;

(b) IOP = 4.93mm;

 (c) IOP = 17.08mm.

Figure 6.11: Maps with different cell size. (a) map with 40mm×40mm cell size;

(b) map with 100mm×100mm cell size; (c) map with 200mm×200mm cell size.

CHAPTER 6. Real-time Map Building and Active Exploration

 110

6.6.4 Performance in complex environments

We perform the simulation tests of active map learning in more complex

environments. Figure 6.12 shows the learned results, which demonstrates that the

proposed memory grid mapping approach is able to model not only structured

environments but also unstructured even cluttered environment. The approach does

not need any assumption with the environmental complexity or obstacle’s shape or

size. Note that some corners in the environment are not modelled because our robot is

only equipped with eight forward ultrasonic sonar sensors as described in Section

6.6.1.

(a)

(b)

Figure 6.12: Map learning in complex environments. (a) Structured office-

like environment; (b) Unstructured and cluttered environment.

CHAPTER 6. Real-time Map Building and Active Exploration

 111

6.7 Discussion

Here we discuss the proposed map learning approach and compare it with existing

approaches in literatures from the following several aspects.

1) Map model. The idea of obstacle memory dot (OMD) of the proposed memory

grid map is similar to the map of histogramic in-motion mapping approach proposed

by Koren & Borenstein [1991], which uses frequency values to indicate the

measurement of a confidence that a cell is occupied by obstacles. The update of

frequency values is simple and fast, different from the most ones based on probability

[Moravec, 1988; Thrun, 1998; Dieguez et al., 2003]. One special of the proposed map

is that the trajectory memory dot (TMD) is designed to record previously traversed

trajectory and the time consumed by the robot that traverses the cell area. In a short,

the proposed map itself is not a novel idea, but it is suitable for our online path

planning (i.e. exploration) method, making it possible that the proposed approach has

a low time complexity.

2) Time complexity. Almost all of others adopt the strategy of global path

planning and path tracking in order to find an optimal exploration path and guarantee

global convergence. The drawback of such approach is that the time complexity of

both path planning and map update rapidly increases as the environmental complexity

or the scale of learned map increases, making real-time computation in a large scale

practical application infeasible. Our mapping approach takes use of a small range of

sensory data and map information, making the time complexity of both map update

and exploration algorithms low. The limitation of the proposed exploration method is

that it is difficult to guarantee global convergence because the decision is based on

local information.

3) Learning efficiency and map accuracy. Since it is short of standard test map

and standard robotic hardware configuration in the field of robotics, it is quite difficult

to compare the mapping efficiency and accuracy among different map learning

approaches. Our robot is only equipped with eight forward inaccurate sonar sensors. It

is difficult to compare the mapping performance with those robots that are equipped

with more advanced sensors such as laser. Possibly those robots are better suited for

the type of mapping application.

4) Granularity (i.e. different cell size) evaluation. Most mapping approaches

CHAPTER 6. Real-time Map Building and Active Exploration

 112

have adopted the cell size 100mm×100mm, but they do not explain why this cell size

is chosen. We have experimentally evaluated the map accuracy under different cell

sizes (e.g. 40mm×40mm, 100mm×100mm, 200mm×200mm), which quantitatively

obtains the result that the 100mm×100mm cell size is a good compromise between

map accuracy and space requirement of map storage.

5) Performance of map postprocessing method. Few literatures have proposed

the techniques of map postprocessing or evaluated their performance. We have

quantitatively evaluated the map representation accuracy when different map

postprocessing technique is used. The proposed map postprocessing method is able to

improve the representation accuracy from the original error index e = 17.4% to e =

2.6%.

6) Exploration of dynamic environment. Almost all of other exploration

methods typically belong to a SMPA (Sense-Model-Plan-Act) approach. This

approach encounters the problem that the plan built from the modelled map will be

inadequate to the environment actually faced during execution, particularly in a

dynamic environment. The proposed exploration method is based on real-time

behavior coordination, enabling the robot to explore a dynamic environment (i.e. with

humans) safely.

7) Localization. One short of the proposed approach is that we assume that an

ideal localization technique can estimate robot’s position accurately. However, it is

unrealistic for real robot. The self-localization technique using odometry data is not

enough, which results in serious odometric errors in a large space area. Our robot

cannot do the accurate map learning in a real world at this stage because of two

reasons: (1) The accumulated odometric errors have not been corrected. Especially

our test environments (e.g. corridor and office) are covered with carpets, making the

errors worse. (2) The robot’s sonar sensors often obtain wrong sonar readings in our

test environments with smooth walls. On the other hand, it is more difficult to find a

suitable localization technique for teleoperated mobile robots, especially which can be

applied in structured and unstructured even outdoor environments. Possibly, to limit

the environment the teleoperated robot works or to equip with more advanced sensors

such as laser, compass, or GPS, might help improve the accuracy of localization.

CHAPTER 6. Real-time Map Building and Active Exploration

 113

6.8 Summary

This chapter proposes a new map learning approach namely memory grid mapping.

The approach includes a map model, a map update method, an exploration method,

and a map postprocessing method. The map adopts a grid-based representation and

uses frequency value to measure the confidence that a cell is occupied by an obstacle.

The fast map update and path planning (i.e. the exploration method) make the

approach a candidate for real-time implementation on mobile robots. The proposed

map postprocessing method, including a threshold operation, a template operation,

and an insert operation, is useful to improve the accuracy of the learned map.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 114

CHAPTER 7. GOAL-ORIENTED NAVIGATION IN

UNKNOWN ENVIRONMENT WITH LOCAL

MINIMUM

Chapter 4 has realized a goal-oriented navigation by coordinating two elementary

behaviors: obstacle-avoidance (OA) and goal-seeking (GS). Such navigation method

makes it easy that the mobile robot gets trapped in a local minimum (i.e. dead end) of

the environment. This is the reason that the OA behavior is trying to get away from

the local minimum while the GS behavior is making the robot to move back toward

the goal. For a teleoperated mobile robot that is exploring unknown indoor

environments, it is desired that the robot is able to autonomously arrive at a given goal

location, even though the environments involve all kinds of complex situations, such

as long-wall, large concave, recursive U-shape, unstructured, cluttered, maze-like, or

dynamic (i.e. with moving human) environments. This chapter realizes this function,

which is an enhanced COORDINATE linguistic command.

7.1 Introduction

For the goal-oriented navigation in unknown environments, it is difficult to apply the

approach of global path planning and path tracking because it is short of a prior

known knowledge for global environment. Moreover, the dynamics of real-world

environments are typically complex and unpredictable, making a planned path rapidly

out of date. Other approaches, such as potential-field [Tsourveloudis et al., 2001] or

neural-fuzzy approach [Rusu et al., 2003; Godjevac & Steele, 2000], however, are

difficult to guarantee global convergence to the goal because the mobile robots are

susceptible to get trapped in local minima (or dead ends) of the environments.

Two types of approaches, i.e. boundary-following and virtual subgoal approach as

described in Chapter 2, are specially developed to address the local minimum problem

in the literatures [Huang & Lee, 1992; Kamon & Rivlin, 1997; Lim & Cho, 1998;

Krishna & Kalra, 2001; Maaref & Barret, 2002; Chatterjee & Matsuno, 2001; Pin &

Bender, 1999; Xu, 2000; Xu & Tso, 1999]. Section 7.7 provides a detailed

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 115

comparison of these approaches. Unfortunately, they are still difficult to guarantee

global convergence in complex environments. The following, a-f, are just some of the

difficulties that have to be overcome in solving local minimum problem. (a) When the

goal is always at the side of the wall, a long-wall environment (Figure 7.1(a)) may

cause a robot to be trapped in a wrong boundary-following direction. (b) Unstructured

and cluttered environments (Figure 7.1(b)) invalidate methods that recognize typical

landmarks. (c) A dynamic environment may lose preserved information, resulting in

an inability to satisfy detection or escape criterion. (d) Recursive U-shape or maze-

like environments (Figure 7.1(b)) may cause a robot to regress into the old local

minimum. (e) Inaccurate localization estimation derived from the odometry drift

problem may result in an inability to satisfy detection or escape criterion. (f) The

sensing capability (e.g. sonar sensors) and sensing noises make it difficult to

determine the size or location of obstacles when this information is required for the

escape criterion.

 (a) (b)

Figure 7.1: Two environment maps. S is the start of the robot, T is the goal location.

(a) long-wall environment; (b) unstructured, cluttered, and maze-like environment

This chapter proposes a new navigation method that we call minimum risk method

to address local minimum problem for goal-oriented robot navigation in unknown

environments. The method is an application of the memory grid map proposed in

Chapter 6. The key of the method is to design a novel regional Path-Searching (PS)

behavior that complements the local OA and global GS behaviors commonly used in

behavior-based navigation systems. The framework of behavior-based navigation

using fuzzy logic proposed in Chapter 4 is used in this method. The mobile robot is

required to reach a given goal by coordinating three elementary behaviors: PS, OA,

and GS.

The rest of the chapter is organized as follows. Section 7.2 describes the design of

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 116

our path-searching behavior, Section 7.3 obstacle-avoidance behavior, and Section 7.4

goal-seeking behavior. Section 7.5 provides a detailed discussion about global

convergence, the complexity of the method as well as the performance influenced by

the localization technique. Section 7.6 shows the experimental results for both our

simulated and real world tests. Section 7.7 categorizes and compares the existing

methods with the proposed method. The final section summarizes this chapter.

7.2 The regional path searching behavior

This section designs a regional Path-Searching (PS) behavior that navigates a mobile

robot to the safest (i.e. minimum risk) region in order to move away from the local

minima. This region is among the LEFT, RIGHT, FRONT turn detection regions as

shown in Figure 6.5 of Chapter 6. The region with minimum risk is the one with

minimum values of both TMDs and OMDs in a memory grid map (The definitions are

referred to Section 6.2.1). This map is updated every control cycle based on robot’s

sensory information as described in Section 6.3. Such regional direction with

minimum risk is the best choice for the robot in trying to avoid both obstacles and

previous trajectory, and consequently escape from the local minima. That’s why we

call our navigation method minimum risk method.

The use of a memory grid map for the PS behavior is similar to the use for the

path-exploring (PE) behavior as described in Chapter 6, but the two behaviors are

different at least on two aspects. First, the PE behavior is activated only at the time the

robot is visiting its previously traversed areas so that the robot is driven to explore

less visited environment. However, it is desired that the PS behavior is activated as

long as the robot encounters the obstacles so that the robot can detect potential dead

ends and escape from them. Therefore, the calculation of the PS behavior’s weight

must take the obstacle dot intensity (we define it in the following) into consideration.

Second, the output space (i.e. turn angle) of the PE behavior only contains three crisp

angle values {600, 00, -600} that respectively correspond to LEFT, FRONT and

RIGHT three regional direction. It is desired, however, that the output space of the PS

behavior is continuous within the range (-900, 900] so that the robot turns smoother.

Therefore, we design the PS behavior using fuzzy logic controller rather than using an

analytic algorithm like the design of the PE behavior.

To realize such PS behavior, we do at first by inferring a Risk Index for each turn

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 117

detection region. Then we develop the PS behavior’s fuzzy turn rules based on the

Risk Index, and develop a complementary algorithm. Finally, we develop a fuzzy

logic to obtain the weight of the PS behavior. The details are as follows.

When the robot begins to move, it constructs a so-called memory grid map based

on sensory information. During every control period, the OMD matrix OM×N and the

TMD matrix TM×N are updated to represent the current environmental obstacles and

the previously traversed trajectory. At the same time, advanced data features, i.e.

iteration risk (IR), collision risk (CR), trajectory dot intensity (TDI), and obstacle dot

intensity (ODI), are extracted from OM×N and TM×N for each turn and weight detection

regions in order to aid the robot in making decision to turn next. In fact, the minimum

risk means the minimum IR and CR. The IR and CR are used to infer the Risk Index

for the fuzzy navigational rules of PS behavior. The TDI and ODI are used in

combination with fuzzy logic to calculate the weight of the PS behavior. We have

defined IR, CR, and TDI in the Definitions 6.1, 6.2, 6.3 respectively in Chapter 6.

Now we define the ODI.

Definition 7.1 (Obstacle Dot Intensity): Obstacle Dot Intensity (ODI) of a region

B is defined as
 OMD

(i, j) B
(B) V (i, j)

∈

τ = ∑ , where B is a square-shaped weight detection region

(see Figure 6.5(b) in Chapter 6), OMDV (i, j) is the OMD’s value of the cell (i, j)

involved in the region B.

The magnitude α of IR is converted into three linguistic fuzzy sets {LOW,

MEDIUM, HIGH}, with the membership functions shown in Figure 7.2(a). The

magnitude β of CR is converted into three linguistic fuzzy sets {LOW, MEDIUM,

HIGH} with the membership functions shown in Figure 7.2(b). The magnitude κ of

TDI is converted into three linguistic fuzzy sets {SMALL, MEDIUM, BIG} with the

membership functions shown in Figure 7.2(c). The magnitude τ of ODI is converted

into three linguistic fuzzy sets {SMALL, MEDIUM, BIG} with the membership

functions shown in Figure 7.2(d).

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 118

0

1

()µ α

α

low medium high

1α 5α4α3α2α 0

1

()µ β

β

low medium high

1β 5β4β3β2β
 (a) (b)

0

1

()µ κ

κ

small medium big

1κ 5κ4κ3κ2κ 0

1

()µ τ

τ

small medium big

1τ 5τ3τ2τ 4τ
 (d) (e)

Figure 7.2: Membership functions (a) for iteration risk. (b) for collision risk.

(c) for trajectory dot intensity. (d) for obstacle dot intensity.

7.2.1 Regional Risk Index

The Fuzzy Rule-Based Risk Index combines the two regional risk parameters into a

single indicator of how safe it is for the mobile robot to traverse the region. The Risk

Index r is represented by three linguistic fuzzy sets {DANGEROUS, UNCERTAIN,

SAFE} with the membership functions shown in Figure 7.3(a). The Risk Index r is

defined in terms of both the iteration risk α and the collision risk β by a set of simple

intuitive fuzzy logic relations as Table 7.1. For instance, the (3, 3) element of Table

7.1 can be written as one rule: IF α is LOW AND β is LOW, THEN r is SAFE. Naturally,

we define that the region with minimum risk is the region that has a “SAFE” Risk

Index. The Risk Indices for three turn detection regions, rleft , rfront and rright, are

inferred using the fuzzy rules of Risk Index.

Table 7.1: Fuzzy rules of regional Risk Index r

α β HIGH MEDIUM LOW

HIGH DANGEROUS DANGEROUS DANGEROUS

MEDIUM DANGEROUS DANGEROUS UNCERTAIN

LOW DANGEROUS UNCERTAIN SAFE

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 119

Note that multiple rules can be active at the same time and the fuzzy classes have

overlaps. Hence, the Risk Index can have, for instance, both 0.5 UNCERTAIN and

0.5 SAFE membership values. The multivalued nature of the proposed fuzzy logic

representation of regional risk offers significant robustness and tolerance to the large

amount of uncertainty and imprecision inherent in sonar sensing of a region. This

robustness is due to the fact that the output of a rule-based system depends on the

fuzzy values of the input variables.

0

1

()rµ

r

dangerous uncertain safe

1r 5r3r2r 4r 0

()µ θ

θ

NB

1θ

NS ZE PS PB

2θ 3θ1θ−2θ−3θ−
(a) (b)

0

1

()µ ε

ε

left

1− 1

right

 0

1

()wµ

w

small medium large

4w2w1w 3w
(c) (d)

Figure 7.3: Membership function. (a) for Risk Index. (b) for turn angle.

(c) for goal location. (d) for behavior weight.

7.2.2 Turn rules

Here the Risk Index is used to develop a fuzzy turn rules of the PS behavior. The

motion control variables of the mobile robot are the translational speed v and the

rotational turn angle θ. The robot’s safety is influenced mainly by the OA behavior

that is able to detect the environmental obstacles real time. Therefore we assume that

the robot speed v is determined only by the OA behavior rather than by the PS or GS

behavior. In addition, we assume that the robot can move only in the forward

direction (i.e., reverse motion is not considered) because our robot does not have

backward sensors. The robot turn angle θ is represented by five linguistic fuzzy sets

{NB, NS, ZE, PS, PB}, with the membership functions shown in Figure 7.3(b), where

NB is negative-big, NS negative-small, ZE zero, PS positive-small, and PB positive-

big. The positive and negative terms have implied that the robot turns to the left and

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 120

right, respectively.

The turn rules of the PS behavior are summarized in Table 7.2. The rules have a

tendency to select the direction that is closest to the forward direction, so that the

robot does not make unnecessary rotations. As shown in Table 7.2, when the robot

needs to turn but the left and right sectors have the same Risk Indices, then the

recommended turn angle θps is GOAL, where GOAL implies that the recommended

turn angle should be toward the direction close to the goal location. For instance, the

(3, 3) element of the top layer in Table 7.2 denotes two rules:

IF rfront is DANGEROUS AND rleft is SAFE AND rright is SAFE AND ε is LEFT, THEN

θps is PS;

IF rfront is DANGEROUS AND rleft is SAFE AND rright is SAFE AND ε is RIGHT, THEN

θps is NS;

where, ε is the goal location, with the membership functions shown in Figure

7.3(c).

Another important note: a turn maneuver is not initiated when the three sectors

have the same dangerous risk indices as shown in the (1, 1) element of the top layer in

Table 7.2. The turn rule does not force the robot to arbitrarily choose between left and

right, but maintain the turn angle at zero at this stage. The final selection will be made

using a complementary algorithm introduced in the following.

Table 7.2: Turn rules for the path-searching behavior.
rightr

ZE NS NB

PS NS

PB PS

frontr
leftr

dangerous uncertain safe
dangerous

uncertain

safe

ZE ZE NS

ZE ZE NS

PS PS

frontr
rightr

leftr
dangerous uncertain safe

dangerous

uncertain

safe

ZE ZE ZE

ZE ZE ZE

ZE ZE ZE

frontr
rightr

leftr
dangerous uncertain safe

dangerous

uncertain

safe

dangerous

uncertain

safe

GOAL

GOAL

GOAL

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 121

The fuzzy turn rules proposed above can work well in most of possible situations

so as to make recommendation for the region with the minimum risk. On the other

hand, when the robot is located in an extreme situation (e.g. three turn detection

regions have the same HIGH iteration risk), the fuzzy turn rules cannot judge the

region with real minimum iteration risk. We know that the region with HIGH

collision risk cannot be recommended, but under such extreme situation the robot can

choose a region that has a HIGH iteration risk but its value is minimum among the

three turn detection regions (i.e. left, front and right regions).

The kernel idea of the complementary algorithm as seen in Algorithm 7.1 is that if

the turn regional direction recommended by the turn rules does not have a SAFE Risk

Index (by threshold comparison), the collision risk and iteration risk of all three

sectors are compared again (by threshold comparison) so as to recommend a regional

direction that has a safe collision risk and a minimum iteration risk. The thresholds for

IR and CR are α1 and β1 as shown in Figure 7.2(a) and (b) respectively. The

complementary algorithm is exact, not fuzzy. Both the turn rules and the

complementary algorithm are comprised of a complete framework for calculating the

turn angle of PS behavior as shown in Figure 7.4. Figure 7.5 shows the architecture of

the fuzzy logic controller whose details are described in Chapter 4. Therefore, the turn

angle recommended by the PS behavior can prevent the robot from iterating its

previous trajectory as few as possible, so that the robot chooses to explore a new

region as a means of escaping from the local minimum.

Algorithm 7.1: (A complementary algorithm for turn rules)

Input: θps = original crisp turn angle output by turn rules of the PS behavior;

α(Afront), α(Aleft), α(Aright) = IR values of LEFT, FRONT, and RIGHT turn

detection regions respectively;

β(Afront), β(Aleft), β(Aright) = CR values of LEFT, FRONT, and RIGHT turn

detection regions respectively;

Output: θps = final turn angle of the PS behavior

BEGIN:

Step 1: IF the turn region recommended by the turn rules has a lower IR value

than the threshold α1, THEN maintain the original turn angle and RETURN;

OTHERWISE go to Step 2;

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 122

Step 2: To check whether or not there are regions that have a lower CR value

than the threshold β1. IF not, THEN maintain the original turn angle and RETURN;

OTHERWISE go to Step 3.

Step 3: IF only one region that has a lower CR value than the threshold β1

exists, THEN this region is recommended as the turn direction and its turn angle is

returned; OTHERWISE go to Step 4.

Step 4: The region, which has a minimum IR value, is recommended and its

turn angle is returned.

END Algorithm 7.1

FLC
frontα

frontβ frontr

FLC
leftα

leftβ leftr

FLC
rightβ rightrrightα

goal error ε

FLC psθ complementary
algorithm

psθ

Turn rules

Figure 7.4: The determination of the turn angle recommended by the PS

behavior using both Turn Rules and a complementary algorithm.

Fuzzifier Inference
Engine

Fuzzy Logic
Controller (FLC)

Defuzzfier

Knowledge
Base

Figure 7.5: Architecture of fuzzy logic controller (FLC).

7.2.3 Weight rules

The weighting factor wps represents the strength by which the PS behavior

recommendation is taken into account to compute the final motion command. The

weight of PS behavior is represented by three linguistic fuzzy sets {SMALL,

MEDIUM, LARGE} with the membership functions shown in Figure 7.3(d), and is

derived directly from both the TDI and ODI (see Section 3.1) of a square-shaped

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 123

region (i.e. weight detection region), using the rule sets as in Table 7.3. For instance,

the (1,1) element of Table III represents one rule:

IF κ is BIG AND τ is BIG, THEN wps is LARGE.

Table 7.3: Fuzzy weight rules of the PS behavior

κ τ BIG MEDIUM SMALL

BIG LARGE LARGE LARGE

MEDIUM LARGE LARGE MEDIUM

SMALL LARGE MEDIUM SMALL

7.3 The local obstacle avoidance behavior

The local Obstacle-Avoidance (OA) behavior is a sensor-based behavior which makes

the robot safe without collision with obstacles. It is activated if obstacles are

approaching. We design the OA behavior using fuzzy logic controller, almost the

same as that of the OA behavior in Section 4.3 of Chapter 4. The difference is only

the turn rules.

In this navigation method, the turn rules for the OA behavior are summarized in

Table 7.4. When the robot needs to turn, but the left and right sectors have the same

obstacle distance, then the recommended turn angle is GOAL, where GOAL implies

that the recommended turn angle should be toward the direction close to the goal

location. This is similar to the turn rules for PS behavior. For example, the (1, 1)

element of the top layer in Table 7.4 represents two rules:

IF dfront is VERYNEAR AND dleft is FAR AND dright is FAR AND ε is LEFT, THEN θoa is

PS;

IF dfront is VERYNEAR AND dleft is FAR AND dright is FAR AND ε is RIGHT, THEN θoa is

NS;

where, ε is the goal location.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 124

7.4 The global goal seeking behavior

The Goal-Seeking (GS) behavior is a global behavior which does not rely on external

sensing data, but seeks for the exact goal location. The calculation of the speed and

turn angle recommended by the GS behavior is same as that of the GS behavior in

Section 4.3 of Chapter 4. But their weight rules are different.

The weight wgs of the GS behavior here is based on the weights of both OA and

PS behaviors. Figure 7.6 shows the weight determination of three behaviors. Table 7.5

summarizes the weight rules of the GS behavior.

Table 7.5: Fuzzy weight rules of the GS behavior

woa wps LARGE MEDIUM SMALL

LARGE SMALL SMALL SMALL

MEDIUM SMALL SMALL SMALL

SMALL SMALL SMALL LARGE

Importantly, the weight of GS behavior is suppressed and is small when any

Table 7.4: The turn rules of the OA behavior.

rightd

PS PB

NS PS

NB NS PB

frontd
leftd

far near verynear
far

near

verynear

PS PS

NS ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

ZE ZE PS

ZE ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

GOAL
GOAL

GOAL

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 125

weight of the OA or PS behaviors is not SMALL. When the weights of both OA and

PS are SMALL, the GS behavior can make a dominant contribution to the final

control command. Although the GS behavior is usually suppressed, the GOAL factor

is reflected in the turn rules of both OA and PS behaviors (see Tables 7.2 and 7.4). It

is an important factor for our minimum risk method to ensure global convergence.

This point is analyzed in Section 7.5.

FLC

FLC

frontd

leftd

rightd

κ
τ

oaw

psw
FLC gsw

Figure 7.6: Weight determination of OA, PS, GS behaviors.

For every control cycle, Algorithm 7.2 is called once to perform the goal-oriented

navigation by coordinating three behaviors in our minimum risk method.

Algorithm 7.2: (Goal-oriented navigation by minimum risk method)

Input: (x1, y1) = goal location; (x0, y0) = current robot location;

 φ0 = current robot heading angle;

 (d0, d1, d2, d3, d4, d5, d6, d7) = sonar readings.

Output: (v, θ) = speed and delta turn angle

BEGIN:

Step 1. Update sensory data including (x0, y0), φ0 and (d0, d1, d2, d3, d4, d5, d6,

d7);

Step 2. IF the distance from current robot location (x0, y0) to goal location (x1, y1)

is less than a predefined threshold (i.e. distance tolerance), THEN the goal is reached

and the robot is stopped, OTHERWISE go to the Step 3;

Step 3. Preprocess the sonar readings using Eqs. (4.6), (4.7), and (4.8);

Step 4. Update the OMD matrix OM×N and the TMD matrix TM×N using Algorithm

6.1;

Step 5. Update the IR and CR of three turn detection regions, including α(Afront),

α(Aleft), α(Aright), β(Afront), β(Aleft), and β(Aright);

Step 6. Update the TDI’s value κ(B) and ODI’s value τ(B) of weight detection

region B;

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 126

Step 7. Calculate the Risk Index of three turn detection regions, including r(Afront),

r(Aleft), r(Aright) using Algorithm 4.1 and the fuzzy rules as in Table 7.1;

Step 8. Calculate the turn angle θps recommended by the PS behavior using

Algorithm 4.1 and the turn rules as in Table 7.2;

Step 9. Calculate the final turn angle θps recommended by the PS behavior using

the complementary Algorithm 7.1, and set the speed of the PS behavior to zero;

Step 10. Calculate the weight wps of the PS behavior using Algorithm 4.1 and the

weight rules as in Table 7.3;

Step 11. Calculate the speed voa and the turn angle θoa recommended by the OA

behavior using Algorithm 4.1 and the turn rules as in Table 7.4, the move rules as in

Table 4.2;

Step 12. Calculate the weight woa of the OA behavior using Algorithm 4.1 and the

weight rules as in Table 4.3;

Step 13. Calculate the speed vgs and the turn angle θgs recommended by the GS

behavior using Eqs. (4.9) and (4.10);

Step 14. calculate the weight wgs of the GS behavior using Algorithm 4.1 and the

weight rules as in Table 7.5;

Step 15. To calculate (v, θ) by the command fusion using Eqs. (4.4) and (4.5);

Step 16. To execute the motor control commands (v, θ).

END Algorithm 7.2

7.5 Performance Analysis

7.5.1 Convergence analysis

When there exists a region with minimum risk in the turn detection regions (i.e. left,

right, and front regions), the PS behavior can be guaranteed to recommend it. The

reasons are the following. First, the Risk Index rules guarantee that if a region (among

LEFT, FRONT, and RIGHT regional sectors) contains both LOW Collision Risk (CR)

and LOW Iteration Risk (IR), it might be labeled as “SAFE” region. The turn rules of

PS behavior guarantee that the direction toward a region with “SAFE” Risk Index

must be recommended if such a region exists. Second, when no region that has a

“SAFE” Risk Index exists, a complementary algorithm is triggered. The

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 127

complementary algorithm guarantees that if regions that have a safe CR (less than the

threshold β1) exist, a region that has a safe CR and a minimum IR must be

recommended by the exact threshold comparison.

Consequently if a solution path exists for a goal-oriented navigation task in

unknown environment, the minimum risk method can guarantee global convergence

to the given goal location. This is the reason that the solution path always contains

minimum collision risk and iteration risk (i.e. SAFE Risk Index), while the method

guarantees that such region with minimum risk can be recommended by the PS

behavior so as to escape from potential local minima and the global goal is sought by

coordinating three behaviors (i.e. PS, OA, ad GS).

Even though the robot is located in a dynamic environment (e.g. moving humans

exist), the minimum risk method can guarantee global convergence if a solution path

exists. This is the reason that the robot may detect the environmental change in real-

time and update a memory grid map accordingly. Based on the continuously updated

memory grid map, the PS behavior can choose the safest direction to escape from

potential local minima. At the same time, the OA behavior keeps the robot safe,

which is able to respond to any contingency and to avoid the collision with any

possible stationary or dynamic obstacles.

7.5.2 Trial-and-return phenomenon

Now we introduce an interesting and important behavioral phenomenon of the robot.

We call it “trial-and-return” phenomenon, as shown in Figure 7.7. The robot is

required to move from the start S to the goal T. At first, the robot moves toward the

goal along a straight line, chiefly guided by the GS behavior. When obstacles are

encountered, the robot follows the boundary of the obstacles. But the underlying

mechanism of this boundary following is totally different from that of other methods

[Huang & Lee, 1992; Krishna & Kalra, 2001; Maaref & Barret, 2002]. It is not the

result of a single behavior, but of the coordination of the OA, GS, and PS behaviors.

Although the weight of the GS behavior is small, the influence of the GOAL is

represented in the turn rules of OA and PS behaviors (see Tables 7.2 and 7.4). As

indicated in Table 7.4 the OA behavior may recommend a turn angle in order to turn

away from the lateral obstacle. Just as shown in Figure 7.7(a), the robot tries to turn

right so as to keep itself away from the wall boundary, but the GOAL factor leads the

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 128

OA and PS behaviors to recommend the robot to turn left toward the wall because the

goal T is at the side of the wall. The robot exhibits the action of following the wall

until it moves to the location A as seen in Figure 7.7(a). At location A, the goal error

angle between the current robot heading and the goal direction is very large. When the

OA behavior tries to turn the robot far away from the wall boundary, this goal error

angle increases beyond 180˚, which causes the goal T to change from the left side of

the robot to the right side. Thus the GOAL factor enables the robot to turn backward

and return, instead of following the wall boundary again. At this time, the PS behavior

makes a dominant contribution to enable the robot to move closing to the previous

trajectory instead of moving in the same trajectory. The location B is the nearest exit,

where the robot might continue to move and reach the goal T under the dominant

influence of GS behavior. At location A of the Figure 7.7(b), the goal T is quickly

changed from the left side of the robot to the right side because of the forward wall

obstacle. Then the robot returns and moves to the location B. A similar situation

occurs at the location B. Thus the robot returns again and moves to location C. This

kind of “trial-and-return” behavioral phenomenon is maintained until the robot arrives

at the nearest exit D.

 (a) (b)

Figure 7.7: “trial-and-return” behavior phenomenon. S is the start of the

robot. T is the goal location.

Obviously, if there is no obstacle blocking the nearest exit, the “trial-and-return”

behavior phenomenon enables the robot to find the exit and escape from the local

minimum. It is verified by the experiments in Section 7.6. This property is particularly

useful in the local minimum problem. Although sometimes the “trial-and-return”

behavior phenomenon looks stupid in an environment such as that in Figure 7.7(b), it

is a smart strategy for all kinds of environmental situations because it guarantees that

the robot is never trapped in a wrong boundary-following direction. Most of local

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 129

minimum problems have a nearer exit to escape from the dead ends. The “trial-and-

return” phenomenon thus improves the efficiency of the minimum risk method. More

importantly, it guarantees global convergence.

7.5.3 Complexity analysis

A) Space complexity

The minimum risk method requires a fixed memory space to save a memory grid map

if the goal location is determined. Importantly, this space requirement does not change

with the navigational time or environmental complexity. The map should cover the

physical areas that include the start, the goal and the solution path. When the cell size

of the map is determined, the size of the whole memory grid map is determined.

Assume that the length of the cell size is λ, so that an M×N grid map covers a physical

space whose area is M×λ×N×λ. For example, if λ= 0.2 metre (in our robotic system),

a 1000×50 grid map may cover an actual space whose area is (1000×0.2) × (50×0.2) =

2000 m2.

If the memory space of a robot is really not enough or the goal is too distant, a

dynamic memory grid technique can be used to obviate the need for a large memory.

Note that only those cells that are located inside a circular sector are updated in each

control period, and the decision is determined only based on a small range of map

information and sensory data. Therefore, the robot needs to save only the necessary

memory grid map information into the working memory while other map information

is saved in the hard disk. If necessary, the other map information is switched to the

working memory. Using the dynamic memory grid technique, it is possible to control

the memory space requirement into an acceptable range.

B) Time complexity

The computational time of the minimum risk method is fixed and efficient. As

discussed in A), the decision is determined based on a small range of map information

and sensory data. Hence, the calculations of four features (iteration risk, etc.) involve

very few addition operations. In addition, the fuzzy rule-based navigation algorithm is

computationally fast and efficient [Heraji & Howard, 2002]. Other calculations such

as command fusion are some simple equations or threshold comparison.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 130

7.5.4 The performance influenced by localization technique

There are two classic problems in robotics: Where is the robot, and how does the

robot reach the goal? These two problems correspond respectively to localization

[Victorino et al, 2003] and path-planning problems [Meyer & Filliat, 2003]. The self-

localization using dead reckoning data is widely used, but it tends to inaccurately

estimate the robot’s location because of the well-known odometry drift problem

caused by wheel slippage, gear backlash and so on. Long-distance movement makes

this error even worse. This problem can be improved by adopting global or external

localization techniques or special devices [Filliat & Meyer, 2003; Golfarelli et al,

2001]. Although many researchers have addressed this problem, it is still difficult to

be fully solved. The localization technique is not our focus in this chapter. We here

address only the path-planning problem in terms of the goal-oriented navigation

within an unknown indoor environment with local minimum.

The minimum risk method can guarantee global convergence if an ideally

accurate localization of the robot exists. It can also work if a self-localization

technique using dead-reckoning data is adopted. Consider that the local minimum

often occurs in a small space (e.g. within 10 m2), the accumulated data error from

odometry drift is not serious. The memory grid map uses a value of TMD or OMD to

save the information of the whole cell area, and the PS behavior uses the information

of a whole detection region to make decision, which naturally can tolerate a certain

degree of data error. On the other hand, the foundation of fuzzy logic is the

representation of, and reasoning with, imprecise information. Fuzzy logic provides a

systematic framework for dealing with imprecise and uncertain information.

Therefore, the odometry drift problem has little influence on the minimum risk

method if it is used in a small space. This point is verified by the simulation and real

world tests in Sections 7.6.4, 7.6.5 and 7.6.6. In fact, the main influence of an

inaccurate localization technique is that the robot misses the goal’s exact location and

it arrives at another nearby location. This problem, however, is a matter related to the

localization technique, which is beyond the scope of this chapter.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 131

7.6 Experimental results

To exhibit the different contributions to the final control output provided by the

different behaviors, we use data visualization. Each behavior produces a turn angle

recommendation while its weight represents the degree of influence on the final angle

control output. Thus the different lines, drawn automatically by the control program,

respectively represent the final turn angle and the turn angles recommended by the

OA, PS, and GS behaviors. The length of each line represents the weight value of

each behavior. The trajectory is indicated by the chain of circles. The program draws

the circle once every 0.5 second. A denser concentration of circles thus indicates that

the robot is travelling more slowly.

7.6.1 Performance analysis in long-wall environments

The purpose of this experiment is to analyze the decision-making process when the

robot adopts our minimum risk method. The robot is required to move from the start S

to the goal T. When the robot starts to move at a normal (maximum) speed, the OMD

and TMD values saved in the memory grid map are SMALL, so that the TDI and ODI

are SMALL. The weight of the PS behavior is thus small. At this time the weight of

the OA behavior is small too because the front obstacle is distant. Consequently, at

this time the GS (line c) behavior makes the dominant contribution to the final motion

output (Figure 7.8(1)). When in response to a nearby obstacle the robot decreases its

speed, the number of memory dots increases and the TDI or ODI becomes MEDIUM

or LARGE. Consequently, the weight of PS behavior increases, and the PS behavior

(line b) is activated in these cases (see (2)(3)(4)(5)(6) in Figure 7.8); When the robot

is approaching the obstacles, the weight of OA behavior (line a) becomes large (see

(2)(4)(6) in Figure 7.8); When the OA or PS behaviors are dominant, the GS behavior

is suppressed and its weight is small (see (2)(3)(4)(5)(6) in Figure 7.8). When the

robot is far from the obstacles and is approaching the goal T at a normal speed, the

weight of both OA and PS behavior is small and only the GS behavior is dominant

(Figure 7.8(7)). Figure 7.8(9) shows the underlying memory grid map, drawn as

horizontal and vertical lines. Figure 7.8(9) also shows our control and display

interface. The labels A, B, C, D, E, F, S, and T represent the robot locations, as shown

in Figure 7.9(a-d) and Figure 7.8(8).

Figure 7.9 (a) shows the turn angles recommended by different behaviors. The

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 132

turn angles recommended by OA and PS behavior are consistent during most of the

entire task period. At the locations B, C, and D, the goal T is switched from the left of

the robot to the right, or from the right to the left. This is why the robot leaves the

wall at location D and turn toward location E. This “trial-and-return” property enables

the robot to avoid being trapped in a wrong boundary-following direction.

Figure 7.9 (b) shows the weight values of different behaviors. The weight of GS

behavior is suppressed and small when the weight of either OA or PS is larger. Figure

7.9 (c) shows the relation between memory dot intensity and the PS behavior’s weight.

The TDI and ODI determine the weight of PS behavior (refer to Section 7.2.3). Figure

7.9 (d) shows the robot’s speed during the task period. The speed may decrease when

the robot is approaching to an obstacle.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 133

 (1) (2) (3)

 (4) (5) (6)

 (7) (8)

(9)

Figure 7.8: Minimum risk method to the long-wall environment with local

minimum. (1-8) S is the start, T the goal target. OA is the line “a”, PS is the line

“b”, GS is the line “c”. (9) Underlying memory grid map is shown by the spaced

horizontal and vertical lines; The obstacle memory dots (OMD) are drawn as the

squares of different sizes. The larger is the square’s size, the higher the possibility

of the obstacle is; The trajectory memory dots (TMD) are drawn as the circles of

different sizes. The bigger is the circle, the larger the TMD value is.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 134

0 50 100 150 200 250 300 350 400 450 500
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time

D
el

ta
 tu

rn
 a

ng
le

 (d
eg

re
e)

OA
PS
GS
Final

S A

B

C
D

E
F

T

(a)

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

Time

W
ei

gh
t

OA
PS
GS

S A
B C D E F

T

(b)

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Time

PS behavior weight
Trajectory dot intensity
Obstacle dot intensity

S

A

B

C D

E F

T

(c)

0 50 100 150 200 250 300 350 400 450 500

50

100

150

200

Time

S
pe

ed
 (m

m
/s

)

S A

B C
D

E F T

(d)

Figure 7.9: (a) Turn angles recommended by different behaviors. For the

display, the GS turn angle is a half. (b) Weight values suggested by different

behaviors. (c) The relation among the memory dot intensity and PS behavior

weight. (d) The speed of the robot during the task period.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 135

7.6.2 Comparison of performance in concave environments

We firstly compare our minimum risk method with the virtual target method [Xu &

Tso, 1999; Xu, 2000], Krishna and Kalra’s method [2001], and Maaref and Barret’s

method [2002]. All of them are applied to a large concave and recursive U-shape

environment. As shown in Figure 7.10(a), the virtual target method detects the local

minimum by using an abrupt change in the goal orientation with respect to current

robot heading. Upon detection, the robot continues to navigate using a new virtual

goal orientation T1 at the location “a” until it finds an opening. But the robot detects a

new local minimum at the locations “b” and “c”. As a result, the robot is trapped in a

dead cycle as it seeks both T1 and another new virtual target T2. The virtual target

method fails to reach the goal in this kind of recursive U-shape environment. A

modified strategy proposed by Krishna et al. [2001] can improve the virtual target

method, but is still not suitable for complex environments. Figure 7.10(b) shows the

result of Krishna and Kalra’s method. This method detects the local minimum by

recognizing a landmark encountered in the previous navigation. The robot then

follows the wall boundary until it goes outside a configured bounding rectangle. This

method highly depends on landmark recognition and exact coordination localization.

In addition, as discussed in the next paragraph, it is difficult to choose a correct

boundary-following direction. Figure 7.10(c) shows the result of our minimum risk

method. The robot exhibits a typical “trial-and-return” phenomenon, which helps the

robot find the nearest exit to escape from the local minimum and guarantee global

convergence. This is further demonstrated in Figure 7.11(c). Maaref and Barret’s

method fails to reach the goal in this large concave environment because it detects the

local minimum using a restricted criterion that all sensors must give small distances to

obstacles at the same time.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 136

 (a) (b) (c)
Figure 7.10: In a large concave and recursive U-shape environment. (a) virtual

target method. (b) Krishna and Kalra’s method. (c) our minimum risk method.

We next compare our minimum risk method with Krishna and Kalra’s method

[2001], Huang and Lee’s method [1992], Distbug [Kamon & Rivlin, 1997; Lim &

Cho, 1998], and Virtual-target-side method [Chatterjee et al., 2001]. Figure 7.11(a)

shows the result of Huang and Lee’s method. This method detects the local minimum

by comparing a large difference in rotation of the robot over successive control

periods. The robot then follows the wall boundary until an escape criterion is satisfied.

As seen in Figure 7.11 (a), when the detection point a, the escape point b and the goal

c are collinear and b is between a and c, the robot leaves the wall boundary and seeks

for the goal again. This conservative escape criterion produces a longer path than

other methods that adopt the boundary-following strategy. Figure 7.11 (b) shows the

result of Krishna and Kalra’s method. This method has a better escape criterion but it

is still difficult to choose the correct boundary-following direction. Similar problems

occur using the Distbug method and Virtual-target-side method. The main difference

between both is that they have different detection and escape criteria. Figure 7.11 (c)

shows our minimum risk method. It finds the nearest exit to reach the goal.

 (a) (b) (c)

Figure 7.11: In a concave environment. (a) Huang and Lee’s method. (b)

Krishna and Kalra’s method. (c) our minimum risk method.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 137

Finally, we compare our minimum risk method with the virtual obstacle method

[Pin & Bender, 1999]. Figure 7.12 (a) shows the result of the virtual obstacle method.

This method finds the local minimum when the robot twice visits the same location

with the same orientation. This detection criterion is so difficult to satisfy that the

unnecessary iteration is caused. Upon detection, this method sets a virtual obstacle

that involves all traversed path, and sets a new subgoal that is located outside the

virtual obstacle. When this subgoal is reached, the robot recovers the original goal. In

this process, the robot has to memorize all traversed trajectories and this requires a

very large memory. This method produces the longest path of all referred methods.

Figure 7.12 (b) shows the result of our minimum risk method. Clearly, it is simple and

efficient.

(a) (b)

Figure 7.12: In a recursive U-shape environment.

(a) virtual obstacle method. (b) our minimum risk method.

7.6.3 Performance in complex environments

We tested our minimum risk method in unknown complex environments. Figure 7.13

(a), (b), (c) show the results for, respectively, circular, unstructured and cluttered, and

maze-like environments. Figure 7.13 (d) shows the result for a highly complex

environment that is unstructured, cluttered, recursive U-shape, and maze-like. The

underlying mechanism of the results has been analyzed in Sections 7.5 and 7.6.1.

(a) (b)

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 138

(c) (d)

Figure 7.13: (a) in circle-shape environment. (b) in unstructured and cluttered

environment. (c) in maze-like environment. (d) in highly complex environment.

7.6.4 Performance in simulation with odometry drift

This section considers the performance influenced by the odometry drift problem.

Odometry drift produces inaccurate location estimation, which is reflected by the

obstacle memory dots as seen in Figure 7.14. Figure 7.14 (a) and (b) show the results

without and with odometry drift respectively. As discussed in Section 7.5.4, the use of

the memory grid map and fuzzy logic makes our minimum risk method tolerant of the

uncertainty and errors derived from sensor noise and self-localization. Ultimately, the

robot reaches the desired goal.

(a) (b)

Figure 7.14: In a recursive U-shape environment. (a) without odometry drift.

(b) with odometry drift.

7.6.5 Performance in real world with odometry drift

In this section, we describe a real world test conducted in a corridor located in our

department. Most related methods do not adequately consider the performance

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 139

influenced by the odometry drift problem, and are little tested in the real world. Here

we simply use the dead-reckoning data for self-localization. Figure 7.15 (a) shows a

series of pictures captured during robot movement. Figure 7.15 (b) shows the actual

trajectory and the OMD. Figure 7.15 (c) shows the memory grid map that saves the

TMD and OMD. The result has verified that there is little influence from the

odometry drift problem if our minimum risk method is applied in a small space (e.g.

less than 10m2) where the local minimum occurs. To address the local minimum

problem in a large space, the other localization techniques have to be used to

compensate for the drift error.

(a)

(b) (c)

Figure 7.15: Performance in real world with local minimum

7.6.6 Performance in real world with dynamic environment

Here we exhibit a real world test in a dynamic environment (i.e. moving human

exists). Figure 7.16 (a) shows a series of pictures of the test. One person first blocks

the exit “A” (Figure 7.16 (b)), which forces the robot to turn around in order to look

for another exit. Then the person moves to the location “B” where he is approaching

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 140

the robot but leaving the exit “A” clear. When the robot avoids the person and it is

approaching to the exit “A” again, the OMD in “A” is updated to decrement its value

so that “A” becomes a safest regional direction with minimum collision risk and

iteration risk. Consequently, the robot finds the exit “A” while avoiding the moving

obstacle (i.e. the person). Figure 7.16 (b) shows the actual trajectory and the OMD.

Figure 7.16 (c) shows the memory grid map that records the TMD and OMD.

(a)

(b) (c)

Figure 7.16: Performance in dynamic real world.

7.7 Categorization and comparison with related methods

The literatures [Araujo et al, 1999; Seraji & Howard, 2002; etc.] address the robot

navigational problem using machine learning or fuzzy behaviors approaches. They do

not focus on local minimum problem in unknown indoor environments. As a result,

they at most handle very simple environment with local minimum, and cannot go to

the goal location in more complex environments with local minima.

For the related methods [Huang & Lee, 1992; etc.] that focus on local minimum

problem, we have categorized them as three types of approach: boundary following,

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 141

virtual subgoal, and behavior arbitration. Most of related methods belong to the

boundary-following approach. Figure 7.17 (a)(b)(c) show the flowcharts of three

different approaches. Table 7.6 compares how these methods address the local

minimum problem in unknown indoor environments.

Normal
navigation

mode?
End

Boundary
Following

Meet the
escape

criterion?

Meet the
detection
criterion?

Goal reach?

Normal
navigation

module

No

Yes

No

No

yes

yes

yes

No

(a)

Subgoal
mode? End

Recover the
original goal

Meet the
escape

criterion?

Meet the
detection
criterion?

Goal
reach?

Set a new
subgoal

No

Yes
No

No

yes

yes

yes

No

Maintain
current goal or

subgoal

Navigation
module

(b)

EndBehavior
arbitration Goal reach?

Weighted
behavior
command

fusion

yes

No

(c)

Figure 7.17: The flowchart of the approaches for local minimum problem.

(a) boundary following. (b) virtual subgoal. (c) behavior arbitration.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 142

Table 7.6: Comparison of related methods that address local minimum problem.
 Methods Detection and escape criterion, and comments

Detection criterion: When a large difference in rotation of the robot
between successive control periods is detected.

Escape criterion: When the detection point a, the escape point b, and the
goal c are collinear and b is between a and c. Huang and Lee

Comments: Because of empiric detection it is easy to produce
wrong classification of the local minimum. The
conservative escape criterion creates a long path.

Detection criterion: When an obstacle is encountered.
Escape criterion: When the goal is visible, or the nearest obstacle toward

the goal is closer to the goal than the current obstacle
followed.

Distbug

Comments: Escape criterion is dependent on maximal sensor range.
Detection criterion: When a large differential change of the goal angle is

detected, the obstacle boundary is followed with a
virtual goal side.

Escape criterion: When the current goal distance is below the minimum
distance attained prior to the trap detection, the real
target side is used again for navigation.

Virtual-target-
side

Comments: A better strategy derived from a virtual target side, but
still a long path.

Detection criterion: When all sensors detect the small obstacle distances.
Escape criterion: When the three sensors measure big distances and the

goal is not at the side of the obstacle followed by the
robot.

Maaref and
Barret

Comments: Fails to detect most local minima.
Detection criterion: When the robot recognizes the landmarks experienced

by previous navigation in a similar environment at the
same position.

Escape criterion: When the robot reaches a location outside the bounding
rectangle where the goal and obstacle are on the same
side of the robot.

B
ou

nd
ar

y
fo

llo
w

in
g

ap
pr

oa
ch

Krishna and
Kalra

Comments: Detects using spatial and temporal reasoning. Depends
on landmark recognition and exact coordinate
localization.

Detection criterion: When an abrupt change in robot’s turning tendency
occurs due to a change in goal orientation.

Escape criterion: When an opening in the obstacle is detected. Virtual target
Comments: Regresses into the same infinite loop it tries to avoid,

and is unsuitable for recursive U-shape environments.
Detection criterion: When the robot twice visits the same location with the

same orientation.
Escape criterion: When the subgoal created is reached.

V
irt

ua
l

su
bg

oa
l a

pp
ro

ac
h

Virtual
obstacle Comments: Very large memory requirements. Long corridor may

create many virtual obstacles that lead to the longest
path. Has difficulties detecting the local minimum.

Detection criterion: When the obstacle or trajectory dot intensity is not
small, the weight of path-searching behavior becomes
higher.

Escape criterion: When both the obstacle and trajectory dot intensities
are small, the weight of path-searching behavior is low.

B
eh

av
io

r c
oo

rd
in

at
io

n
ap

pr
oa

ch

Our Minimum
Risk method Comments: Multiple weighted behaviors coordination, and global

convergence guaranteed in all local minimum
situations. Able to find the nearest exit to escape from
the local minimum.

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 143

Now we describe the general problems of the existing related methods. The

differences among the boundary-following methods [Huang & Lee, 1992; Kamon &

Rivlin, 1997; Lim & Cho, 1998; Krishna & Kalra, 2001; Maaref & Barret, 2002;

Chatterjee & Matsuno, 2001] are that they have different detection and escape criteria.

There is not any method that can be proved to obtain a shorter path. More importantly,

they have no way to choose the nearest exit, and they possibly choose a wrong

boundary-following direction leading to a rather inefficient path. Virtual-subgoal

methods [Pin & Bender, 1999; Xu, 2000; Xu & Tso, 1999] encounter difficulties in

dealing with unstructured or cluttered environments. Moreover, when used in

recursive U-shape or more complex environments they may overproduce virtual

subgoals, leading to a dead cycle arising from conflict subgoals. In addition, the

problem must be taken into account whether or not the subgoal is located in an

unreachable place. The above methods adopt an analytical model for detection and

escape criteria. These, however, are not suitable for dealing with the uncertainties

produced by sensors and the real world, and especially by the odometry drift problem.

7.8 Summary

This chapter proposes a new behavior-based navigation method called “minimum risk

method”. The method is an application of the memory grid map, which addresses the

local minimum problem for goal-oriented robot navigation in unknown indoor

environments. This method is experimentally demonstrated to give global

convergence to a given goal location even in long-wall, large concave, recursive U-

shape, unstructured, cluttered, maze-like, and dynamic indoor environments. One of

the future works is to improve and formulate the method as well as to theoretically

prove global convergence.

The proposed minimum risk method for the goal-oriented navigation is not

suitable for a long-distance navigation at this stage because the accumulated

odometric errors have not been corrected. The method is currently particularly

suitable for the applications of short path navigation between waypoints in complex

environments with local minima. The Internet-based teleoperation falls into this kind

of application where the human operator can give a number of subgoals to enable the

remote robot exploring unknown environments. The minimum risk method has not

been tested in outdoor environments because of the serious odometric errors as well

CHAPTER 7. Goal-oriented Navigation in Unknown Environment With Local Minimum

 144

as a short wireless communication distance between the robot and the control

computer. However, the ideas involved in the memory grid map and navigational

algorithm can be applied in outdoor environments as well.

CHAPTER 9. Conclusions and Future Work

 145

CHAPTER 8. EVALUATIONS AND RESEARCH

IMPACT

8.1 Evaluations

We have performed the Internet-based teleoperation for robot navigation by

inexperienced users remotely from places overseas (e.g. Canada, Singapore, Chinese

Beijing, Shanghai, Xiamen) to Hong Kong. The authorized remote human operators

(e.g. located in Canada) connect with the robot server (located at our department in

Hong Kong) through the VNC service, and observe the robot’s surroundings (our

department corridor) through streaming video. The authorized users commonly have

no robotic expertise and they learn the joystick and linguistic commands only at the

beginning of the teleoperation. By using the telecommanding, the remote users are

able to control the real robot to explore areas of interest, and also able to observe

details via the camera movement.

The first public show of this Internet telerobotic system was on March 19th to 20th,

2004 during our departmental Demo Day (see Figure 8.1 (a). It was then publicly

demonstrated at the International ICT Expo (see Figure 8.1 (b)), which was held at the

Hong Kong Convention and Exhibition Center on April 14-17th, 2004. The latest

public services were done in our campus during the university’s Info Day on 9th

October 2004 (see Figure 8.1(c)), and on 8th October 2005 (see Figure 8.1(d)),

respectively.

All the remote user operations and public demonstrations have adopted a same

teleoperation platform mentioned in Section 5.3, in which the VNC service is used as

the interface between human operator and the robot server, the streaming video is

transferred to help human operator obtain remote robot’s surroundings, and the

proposed telecommanding provides both joystick and linguistic commands to human

operator in order to control the remote robot. The difference among the different

evaluation scenarios is the number of linguistic commands we had completed. In the

early period of open evaluations, we have completed four joystick commands and

four linguistic commands (i.e. MOVE, COORDINATE, TURN, GOTOEND). During

CHAPTER 9. Conclusions and Future Work

 146

the next period, we progressively add WANDER, MAPPING, and enhanced

COORDINATE linguistic commands.

The remote user operations and public demonstrations show that, our Internet

telerobotic system is practical and is feasible to provide the service of Internet-based

teleoperation for robot navigation in order to interact with people and to explore

unknown environments.

(a)

(b)

(c)

(d)

Figure 8.1: Public demonstration of Internet-based robot teleoperation.

(a) Demo Day in our department, March 19th -20th, 2004; (b) International ICT

Expo at the Hong Kong Convention and Exhibition Center, April 14-17th, 2004;

(c) Info Day in our university campus, Oct. 9th, 2004; (d) Info Day in our

university campus, Oct. 8th, 2005

In the following, we draw our lessons and limitations of the developed Internet

telerobotic system in this thesis compared with other existing systems in literature.

1) Interactivity. Most of existing Internet robots have considerable autonomy but

lack the interaction with human operator. For example, the operator is only able to

CHAPTER 9. Conclusions and Future Work

 147

send very high-level commands to the robot without intermediate feedback. However,

the interactivity is an important factor to attract Internet users’ interests. Our system

can provide more interaction between human operator and online robot through the

telecommanding. For instance, the use of joystick commands particularly gives

human operator a strong experience of hands-on control. In addition, human operator

is able to continuously send linguistic commands with flexible working parameters to

influence the robot’s execution process, and online robot can respond and feedback

predefined expected events to human operator as well as react to unexpected events.

The limitation of the proposed telecommanding is that joystick commands are not

suitable to handle more skilful tasks and linguistic commands need quite complicated

design of a linguistic command function.

2) Video transmission. Other Internet telerobotic systems often adopt the

techniques of picture transmission or video conference system to transfer the images

about online robot’s surroundings. Our system has adopted the latest streaming video

technology that provides better quality of service (QoS) and extensibility. The

limitation of streaming video is that the codec buffer leads to a long time delay (over

10s). Moreover, our streaming video transmission is developed based on Windows

operational system. The client must have installed the Windows Media Player to

receive the streaming video. These prevent the developed telerobotic system being

remotely controlled by mobile devices (e.g. mobile phones or PDA).

3) Usability. There are two factors that mainly influence the usability of our

telerobotic system: wireless connection, and battery recharging. Other existing

Internet mobile robots have encountered the same problem. The robot server is a

computer which directly controls the mobile robot and provides the Internet

connection. The distance of wireless connection between the robot and the robot

server is too short. For example, the distance that can provide a good quality

communication is less than 50 metres in our robotic system. In addition, the batteries

of the robot are only able to support the robot moving continuously for a limited few

hours. The two factors highly influence the mobility of a mobile robot and the

continuous teleoperation service to the public. In the last public demonstration during

Info Day (see Figure 8.1(d)), we tried to place the robot server computer onboard the

robot via the cable connection. This configuration of the telerobotic system is still

CHAPTER 9. Conclusions and Future Work

 148

restricted by the wireless connection to the Internet, but it is useful for the mobile

robot to perform some autonomous tasks.

4) Data transmission. Most Internet telerobotic systems have developed a private

Web-based client interface for command and status data transmission. At this stage,

we do not spend much time on the development of Web-based data transmission for

workload simplification. We make use of an existing tool, i.e. the VNC service, for

the Web users to send control commands and receive the information transferred from

the robot server. The VNC service is indeed a convenient way for Web users to

connect with the robot server, but it is inefficient because it consumes extra

bandwidth for unnecessary data transmission.

5) Time delay. All Internet telerobotic systems have encountered the time delay

problem caused by the Internet. Although it has been addressed in literatures, it is still

the most difficult problem that influences the practical use of an Internet telerobotic

system. Our research allows that a long and uncertain time delay exists. The solution

is that the mobile robot is equipped local intelligence to handle expected events while

to react to unexpected events, or to perform some tasks autonomously.

6) Application environment. Most Internet telerobotic systems need to know

environmental knowledge in advance for path planning or localization. Our system is

realized to fully address the Internet-based teleoperation of a remote robot that

explores unknown and dynamic environments.

7) Sensors. Most online robots are equipped with many sonar sensors at 360

degree angles, even more advanced sensors such as laser, compass and so on, in order

to detect the environment more accurately. Our robot is only equipped with eight

forward sonars, which weakens the robot’s capability of detecting obstacles, such as

smooth walls, chairs, human feet.

Furthermore, we discuss the scalability of the proposed approaches in this thesis

to larger interactions, more complex tasks, and multirobots.

1) Scalability to larger interaction. The proposed telecommanding has provided

a multimodal and multifunctional framework, enabling human operator to more

actively participate in remote robot’s task completion and environmental exploration.

The predefined events and response functions enable the robot to respond expected

events and feedback information to human operator. For scalability to a larger

interaction, the key issues are how to realize the proposed response functions and how

CHAPTER 9. Conclusions and Future Work

 149

to send both joystick and linguistic commands. For example, to design a response

function, we let the robot feedback force or haptic information according to distance

to obstacles. Or human operator uses a real joystick device to send joystick commands,

or uses human language or voices to send linguistic commands.

2) Scalability to more complex tasks. The proposed telecommanding is able to

take advantage of human’s intelligence through multiple joystick or linguistic

commands and their working parameters, in order to help remote robot complete more

complex tasks. In addition, the behavior-based navigation framework proposed in

Chapter 4 provides good scalability, which can make navigational logic easily

extensible. Fuzzy logic makes it easy to realize the desired behavior characteristics by

explicitly expressing linguistic rules using a common natural language. The work in

Chapter 7 to address the local minimum problem is an example for our approach

scaling to more complex tasks.

3) Scalability to multirobots. The proposed navigation method in this thesis is

only suitable for a single robot. We do not consider the key issues of multirobots

application: cooperation and communication. For scalability of the proposed

telecommanding, the key point is how to design a command function associated with

a linguistic command in order to decompose a task and let multirobots cooperate to

complete.

8.2 Research impact

The developed Internet telerobotic system (its name is PolyUiBot) was demonstrated

to the public four times. Our robot received very positive responses from audiences,

and especially it was reported by two magazines and one newspaper in Hong Kong

during the period of International ICT Expo (see Appendix B). We have obtained a

certain degree of research impact.

In order to enhance our research impact while to observe that whether or not

potential students or related researchers could be attracted by our research, we have

built a website to introduce the developed system since March 2004. We shared some

contents about our research on the website, in which some experiments were recorded

as video movies (see Appendix C). The visitors are able to freely download or online

playback these video movies. The details can be accessed on the website:

http://www4.comp.polyu.edu.hk/~csnkliu/polyuibot . In order to make statistics for

CHAPTER 9. Conclusions and Future Work

 150

website visitors, the webpage records the visitor’s IP address and its date. In this

section, we take statistics based on the visitor’s information from April 2004 to

October 2005. There were 805 visitors in total.

Hongkong
64%

Japan
2%

Chinese
Mainland

10%

Singapore
1%

Others
7%

USA
8%

Canada
3%

Taiwan
2%

Australia
2%

England
1%

Figure 8.2: Statistics of countries or regions where the visitors come from.

First, we take statistics of countries or regions where the visitors came from,

which we obtained by localizing their IP address. The result is shown in Figure 8.2.

The visitors from Hong Kong win the most visits (64% of the total 805 visits), in

which most visitors came from the author’s university, The Hong Kong Polytechnic

University (PolyU), and some visitors came from other universities in Hong Kong.

We believe that some visitors from PolyU were postgraduate and undergraduate

students, and that the others were the academic researchers worldwide among related

fields (e.g. artificial intelligence or robotics). This is the reason that we distribute the

website address to the public mainly through two ways: (1) teaching materials for

students; (2) publications and presentation for international conferences. The Chinese

mainland and the USA are the countries that have relatively most visits, 10% and 8%

respectively. The other visitors came from the following countries or regions: Canada,

Japan, Australia, Taiwan, Singapore, England, Indonesia, Vietnam, South Korea,

Germany, Brazil, Philippines, Macao, Norway, French, Malaysia, Thailand, Ukraine,

Russia, Mexico, and so on. Some of the visitors visited our website through the

recommendation of their friends or colleagues. We know that because some persons

have sent emails to us for enquiring research methods. The statistics result shows that

CHAPTER 9. Conclusions and Future Work

 151

a number of related researchers worldwide are interested in our research. In addition,

the research has attracted a number of potential research students.

Next we take statistics of the visit quantity for every month, from April 2004 to

October 2005. The result is shown in Figure 8.3. It shows an average of 43 visits

every month. There were a quite large amount of visitors during the first three months

(i.e. April, May, June) in 2004. This was the reason that the website is initially built

and we distribute the website address to the public during Demo Day and

International ICT Expo. The website attracted the visitors, including the staffs and

research students from PolyU. There were relatively small amount of visits in July

and August. This could be due to a long academic holiday. During October 2004 to

February 2005, we distributed the teaching materials and published some conference

papers that possibly led to the increase of visit quantity in these months. The visit

quantity peaked in April 2005 soon after we had updated the website contents.

58

75

58

33 33
28

33
40 38

48 48

30

98

28

42

25

40

23
27

0

20

40

60

80

100

120

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sep Oct

Figure 8.3: Statistics of the visit quantity for every month.

CHAPTER 9. Conclusions and Future Work

 152

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In the thesis we have developed a telerobotic system that supports Internet-based

teleoperation for robot navigation. Any inexperienced users are able to remotely

control a mobile robot through the Internet in order to explore unknown and dynamic

(i.e. with moving humans) environments.

The video transmission over the Internet has been investigated and implemented.

It is a prerequisite to develop a practical teleoperation system, which allows that the

Internet users can see the remote robot’s surroundings through the images captured

from an onboard camera. Traditional approach is via the picture transmission (e.g.

JPEG or GIF), which leads to a very poor quality of service (QoS) because of the high

latency of the Internet, such as long time delay, data error or restricted bandwidth.

The thesis investigates and develops an existing streaming technology based approach

for streaming video transmission. The streaming video improves the QoS by

producing a more stable system, higher image resolution, and smoother image streams,

even though it is used over a low-bandwidth Internet (e.g. 33.6Kbps dial-up modem).

Moreover, it has better extensibility to integrate more multimedia information, and it

allows that any client users can watch the continuous image streams simultaneously

without reducing the QoS or increasing network bandwidth. But the time delay for

streaming video is still large (over 10 seconds) since both the encoder buffer and the

decoder buffer are used to guarantee the QoS. The time delay makes it necessary to

equip a mobile robot local intelligence to perform some tasks autonomously.

Thus a framework for autonomous robot navigation using fuzzy logic has been

proposed, which includes goal determination, preprocessing, behavior design,

behavior arbitration, and command fusion. The traditional framework for autonomous

navigation is SMPA (Sense-Model-Plan-Act) approach, which is inadequate for

dealing with unknown and dynamic real world. The behavior-based approach can act

in real-time and has good robustness in such environments. The behaviour-based

navigation is not a fresh idea or concept. The thesis focuses on the development of a

simple and practical navigation framework that can be easily realized to build robust

CHAPTER 9. Conclusions and Future Work

 153

control programs. The preprocessing module is used to reduce the complexity of input

space by introducing a limited number of intermediate variables. The elementary

behavior is designed using fuzzy logic controller or a precise analytic algorithm. A

behavior arbitration module is used to calculate the crisp weighting factors of each

elementary behavior. The final robot motion output is obtained by the command

fusion for a weighting combination of all elementary behaviors. Fuzzy logic is indeed

a good tool, which allows that we can easily realize the desired behavior

characteristics by explicitly expressing the linguistic rules using a common natural

language.

A new teleoperation approach is proposed to provide an interactive control

interface and a complete framework for control management and command

processing. The traditional direct control reduces the stability of control loop because

the controlled robot has no local intelligence and it needs to maintain continuous

connection. The existing supervisory control methods are inadequate mainly in that

they fail to provide human-robot interactivity. The proposed approach, namely

telecommanding, involves two different but complementary commands: joystick

command (e.g. LEFT, RIGHT, UP, and DOWN) and linguistic command (e.g.

MOVE, TURN, GOTOEND, WANDER, COORDINATE, and MAPPING). Each

command is designed to perform an independent task, which is defined with multiple

events (non-time action references) and the corresponding response functions. The

approach allows the robot to deliberately respond to expected events while to

reactively respond to unexpected events. Thus the reliability for teleoperation is

improved by equipping local intelligence of the robot even though the user’s

commands are lost or mistaken due to the unreliable Internet. Telecommanding

provides human operators hands-on control, giving them a strong experience of

interaction with the robot. Any inexperienced users can easily use the joystick

commands or linguistic commands to remotely control a mobile robot.

A map learning approach, namely memory grid mapping, has been proposed for

the mobile robot to model a priori unknown environment autonomously. The robot

builds a map based on robot’s sensory information and actively explores the unknown

environment. The approach includes a map model, a map update method, an

exploration method, and a map postprocessing method. The map adopts a grid-based

representation. A so-called obstacle memory dot (OMD) matrix is designed to record

CHAPTER 9. Conclusions and Future Work

 154

the frequency values which measure the confidence that a cell is occupied by an

obstacle. A so-called trajectory memory dot (TMD) matrix is designed to record the

trajectory traversed by the robot in order to facilitate the online path planning. Two

behaviors, path-exploring behavior and environment-detecting behavior, are

coordinated to make the robot exploring a least known environment. The increase of

the learned map scale or environmental complexity has little influence on the

computational time of our path planning method (i.e. exploration). This is the reason

that the robot makes the path plan based on a small range of map information and

sensory data. Thus our approach is a candidate for real-time implementation on

mobile robots. It is verified that the 100mm×100mm cell size is a good compromise

between map accuracy and space requirement of map storage. In addition, the

proposed map postprocessing method, including a threshold operation, a template

operation, and an insert operation, is able to improve the map representation accuracy

from the original error index e = 17.4% to e = 2.6%.

For a teleoperated mobile robot that is exploring unknown indoor environments, it

is desired that the robot is able to autonomously arrive at a given goal location, even

though the environments involve all kinds of complex situations with local minima.

The thesis has proposed a new navigation method, namely minimum risk method, to

realize such function. The method makes use of the proposed memory grid map.

When a mobile robot is performing the goal-oriented navigation, it updates a memory

grid map in real-time. A novel path-searching behavior is developed to use the map

information and to recommend a safest regional direction that can enable the robot to

detect potential local minima and escape from them. The method is experimentally

demonstrated to give global convergence to a given goal location, even though it is

used in the long-wall, large concave, recursive U-shape, unstructured, cluttered,

maze-like, or dynamic (i.e. with moving human) environments. Compared with the

existing boundary-following or virtual-subgoal approach, the proposed method can

deal with more complex environments and is able to find the nearest exit to escape

from local minimum. The method is particularly suitable for the applications of short

path navigation between waypoints in complex environments with possible local

minima. The Internet-based teleoperation falls into this kind of application where the

human operator can give a number of subgoals to enable the remote robot exploring

unknown environments.

CHAPTER 9. Conclusions and Future Work

 155

The developed Internet telerobotic system has been demonstrated to the public

successfully, while it has been used by remote inexperienced users overseas (e.g.

Canada, Singapore, Chinese Beijing, Shanghai, Xiamen). It turns out to be practical

and be feasible to provide the service of Internet-based teleoperation at university

campus or exhibition center.

9.2 Future work

It is impossible for a thesis to cover many issues about Internet telerobotics. We have

implemented a primary prototype system for Internet-based robot teleoperation.

Further research is required. Some of the possible problems and direction of solutions

are given in the following.

1) Develop a localization technique that is suitable for telerobotic purpose.

The self-localization technique using dead-reckoning data from odometry is

inadequate, which would lead to serious odometric errors in a large space area. To

engineer the environment where the robot works is one possible means. For example,

all the walls are orthogonal and the environments have not any unstructured objects.

Such environments make it possible to permit local map matching and efficient

correction of the robot’s position estimate. But this means is not suitable for the

practical use.

Another way is to adopt perception-based localization techniques, in which firstly

the sensors detect an artificial or natural landmark in the environment and estimate the

relative position of this landmark with respect to the robot. Then a robot’s location is

estimated by matching the detected characteristics of landmarks with those stored in a

model of the environment. The artificial landmark (e.g. specific objects or colors)

detection methods are well developed and have proved to be reliable, but natural

landmark detection methods are not yet sufficiently developed [Meyer & Filliat,

2003].

Integrated localization techniques [Meyer & Filliat, 2003] are possible solution

and make the telerobotic system usable in real world. They are absolute positioning

methods which require external absolute references (e.g. artificial beacons, GPS) to

estimate robot’s position and orientation.

2) Develop techniques for scalability to more interaction between human

operator and teleoperated robot.

CHAPTER 9. Conclusions and Future Work

 156

One idea is to develop techniques to realize the predefined response functions

associated with both joystick and linguistic commands. For example, to design a

response function, we let the robot feedback force or haptic information according to

distance to obstacles. A good example is seen in literature [Lo and Liu et al, 2004].

They developed a system that enables multiple operators at different sites to

cooperatively control multiple robots with real-time force reflecting via the Internet.

Another idea is to develop techniques to enable that human operator uses a real

joystick device to send joystick commands, or uses human language or voices to send

linguistic commands.

3) Develop the image-based or vision-based robot navigation approach,

which makes use of the images captured from onboard camera.

At least four research directions can be done.

a. Using the images for goal recognition and identification, which enhance the

robot capability for goal seeking behavior;

b. Using the images for detecting and avoiding obstacles, which complement the

inaccurate sonar sensors;

c. Using the images to identify the artificial or natural landmarks in order to

localize the robot’s position;

d. Using the images to identify and track the human body in order to interact more

with people.

REFERENCES

 157

REFERENCES

[1] Araujo R., Almeida AT. (1999), “Learning sensor-based navigation of a real mobile robot

in unknown worlds”, IEEE Trans. On SMC, Part B, Vol.29, No.2, pp.164-178

[2] Arkin R.C. (1998), Behavior-Based Robotics. MIT Press, Cambridge, MA

[3] Arleo A., Millan J.D.R., Floreano D. (1999), “Efficient learning of variable-resolution

cognitive maps for autonomous indoor navigation”, IEEE Trans. on Robotics and

Automation, Vol.15, No.6, pp.990-1000

[4] Backes P.G., Tso K.S., Norris J.S., Tharp G.K. (2002), “Internet-based Ground

Operations for Mars Lander and Rover Missions”, In K.Goldberg and R.Siegwart, eds, An

Introduction to Online Robots, The MIT Press, Cambridge, Massachusetts, London,

England, pp.227-240

[5] Barbera H.M., Izquierdo M.A.Z., Skarmeta A.F.G. (2001), “Web-based supervisory

control of mobile robots”, Proceeding 10th IEEE International Workshop on Robot and

Human Interactive Communication, pp.256-261

[6] Baruch J.E.F., Cox M.J. (1996) “Remote control and robots: an Internet solution”, IEE

Computing Contr. Eng.J., pp.39-44

[7] Beom H.R., Cho H.S. (1995), “A sensor-based navigation for a mobile robot using fuzzy

logic and reinforcement learning”, IEEE Transactions on Systems, Man and

Cybernetics,Vol.25, Iss.3, pp.464-477

[8] Beom H.R., Cho H.S. (2000), “Sonar-based navigation experiments on a mobile robot in

indoor environments”, Proceedings of the 2000 IEEE International Symposium on

Intelligent Control, pp.395-401

[9] Borenstein J., Koren Y. (1991), “Histogramic in-motino mapping for mobile robot

obstacle avoidance”, IEEE Trans. on Robotics and Automation, Vol.7, No.4, pp.535-539

[10] Bourhis G., Agostini Y. (1998), “Man-machine cooperation for the control of an

intelligent powered wheelchair”, Journal of Intelligent and Robotic Systems, Vol.22,

pp.269-287

[11] Brady K., Tarn T.J. (2001), “Internet-Based Teleoperation”, Proc. Of the 2001 IEEE

International Conference on Robotics & Automation, Korea, vol. 1, pp.644-649

[12] Brady K., Tarn T.J. (2002), “Handling latency in Internet-based teleoperation”, In

K.Goldberg and R.Siegwart, eds, An Introduction to Online Robots, The MIT Press,

Cambridge, Massachusetts, London, England, pp.171-192

[13] Braunl T., Tay N. (2001), “Combining configuration space and occupancy grid for robot

navigation”, International Journal of Industrial Robot, Vol.28, No.3, pp.233-241

REFERENCES

 158

[14] Brooks R. A. (1986), “A robust layered control system for a mobile robot,” IEEE Journal

of Robotics and Automation., vol. RA-2, no. 1, pp. 14–23

[15] Burgard W., Schulz D. (2002), “Robust Visualization for Online Control of Mobile

Robots”, In K.Goldberg and R.Siegwart, eds, An Introduction to Online Robots, The MIT

Press, Cambridge, Massachusetts, London, England, pp.241-258

[16] Cang Ye, Danwei Wang (2000), “A novel behavior fusion method for the navigation of

mobile robots”, IEEE International Conference on Systems, Man, and Cybernetics, Vol.5,

pp.3526-3531

[17] Cang Ye, Yung N.H.C., Danwei Wang (2003), “A fuzzy controller with supervised

learning assisted reinforcement learning algorithm for obstacle avoidance”, IEEE

Transactions on Systems, Man and Cybernetics, Part B, Vol.33, Iss.1, pp.17- 27

[18] Chatterjee R., Matsuno F. (2001), “Use of single side reflex for autonomous navigation of

mobile robots in unknown environments”, Robotics and Autonomous Systems, Vol.35,

pp.77-96

[19] Chen L.H.; Chiang C.H; John Yuan, 2001] “New approach to adaptive control

architecture based on fuzzy neural network and genetic algorithm”, 2001 IEEE

International Conference on Systems, Man, and Cybernetics, Vol.1, pp.347-352

[20] Cheng G., Zelinsky A. (2001), “Supervised autonomy: a framework for human-robot

systems development”, Autonomous Robots, Vol.10, pp.251-266

[21] Choi B., Kuc T.Y., Choi H. (1997), “Adaptive learning of teleoperating robotic motion”,

in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol.3, pp.2752-2757

[22] Chong K.S., Kleeman L.(1999), ”Feature-based mapping in real, large scale environments

using an ultrasonic array”, International Journal Robotics Research, Vol 18, No.1, pp.3-19

[23] Chung J. H., Ahuja N. (1998), “An analytical tractable potential field model of free space

and its application in obstacle avoidance,” IEEE Trans. Syst., Man, Cybern. B, Vol. 28,

pp.729–736

[24] Chung J., Ryu B.S., Yang H.S. (1998), “Integrated control architecture based on behavior

and plan for mobile robot navigation”, Robotica, Vol.16, pp.387-399

[25] Cohn D.A. (1996), “Neural network exploration using optimal experiment design”,

Neural Network, Vol.9, pp.1071-1083

[26] Dalton B. (2002) “A distributed framework for online robots”, In K.Goldberg and

R.Siegwart, eds, An Introduction to Online Robots, The MIT Press, Cambridge,

Massachusetts, London, England, pp.37-59

[27] Dieguez A.R., Sanz R., Lopez J. (2003), “Deliberative on-line local path planning for

autonomous mobile robots”, Journal of Intelligent and Robotic Systems, Vol.37, pp.1-19

REFERENCES

 159

[28] Dongbing Gu; Huosheng Hu; Spacek, L. (2003), “Learning fuzzy logic controller for

reactive robot behaviours”, 2003 IEEE/ASME Conference on Advanced Intelligent

Mechatronics, Vol.1, pp. 46- 51

[29] Dongbing Gu; Huosheng Hu; Reynolds, J.; Tsang, E. (2003), “GA-based learning in

behaviour based robotics”, Proceedings. 2003 IEEE International Symposium on

Computational Intelligence in Robotics and Automation, Vol.3, pp.1521- 1526

[30] Dudek G., Jenkin M. (2000), Computational Principles of Mobile Robotics, Cambridge

University Press, United Kingdom

[31] Edson, Idiart M.A.P., Trevisan M., Engel P. (2004), “Autonomous Learning Architecture

for Environmental Mapping”, Journal of Intelligent and Robotics System, Vol.39, pp.243-

263

[32] Elfes A. (1987), “Sonar-based real-world mapping and navigation”, IEEE Trans. on

Robotics and Automation, Vol.3, pp.249-265

[33] Elhajj I., Ning Xi, et al. (2003), “Supermedia-enhanced Internet-based telerobotics”,

Proceedings of the IEEE, Vol.91, Iss.3, pp.396- 421

[34] Fabrizi E., Oriolo G., Ulivi G. (2000), “Accurate Map Building via Fusion of and

Ultrasonic Range Measures”. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic

Techniques for Autonomous Vehicle Navigation, Physica- Verlag, Heidelberg, New York,

2000, pp.257-280

[35] Fernandez J.L., Sanz R., Benayas J.A., Dieguez A.R. (2004), “Improving collision

avoidance for mobile robots in partially known environments: the beam curvature

method”, Robotics and Autonomous Systems, Vol.46, pp.205-219

[36] Filliat D., Meyer J.A. (2003), “Map-based navigation in mobile robots: I. A review of

localization strategies”, Cognitive Systems Research, Vol.4, pp.243-282

[37] Freirer E., Teodiano B.F., et al. (2004), “A new mobile robot control approach via fusion

of control signals”, IEEE Trans. on SMC, Part B, Vol.34, No.1, pp.419-429

[38] Fiorini P., Oboe R. (1997), “Internet-based telerobotics: problems and approaches”, 8th

International Conference on Advanced Robotics, pp.765-770

[39] Fong T., Thorpe C., Baur C. (2003), “Robot, asker of questions”, Robotics and

Autonomous Systems, Vol.42, Iss.3-4, pp.235-243

[40] Fung W.K., Ning Xi, Lo W.T., Liu Y.H. (2002), “Improving efficiency of Internet based

teleoperation using network QoS”, IEEE International Conference on Robotics and

Automation (ICRA '02), Vol.3, pp.2707-2712

[41] Fusiello A., Caprile B. (1997), “Synthesis of indoor maps in presence of uncertainty”,

Robotics and Autonomous Systems, Vol.22, pp.103-114

REFERENCES

 160

[42] Gasos J., Rosetti A. (1999), “Uncertainty representation for mobile robots: perception,

modeling and navigation in unknown environments”, Fuzzy Sets and Systems, Vol.107,

pp.1-24

[43] Gasos J. (2000), “Integrating linguistic descriptions and sensor observations for the

navigation of autonomous robots”. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic

Techniques for Autonomous Vehicle Navigation, Physica-Verlag, Heidelberg, New York,

pp.313-340

[44] Gat E. (1998), “Three-layer architectures”, In R.P. Bonasso D. Kortenkamp and R. Mur-

phy, editors, Artificial intelligence and mobile robots, MIT Press, Cambridge, MA,

pp.195-210

[45] Godjevac J., Steele N. (2000), “Neuro fuzzy control for basic mobile robot behaviours”.

In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for Autonomous Vehicle

Navigation, Physica-Verlag, Heidelberg, New York, pp.98-118

[46] Goertz R., Thompson R. (1954), “Electronically controlled manipulator”, Nucleonics

[47] Goldberg K., Santarromana J., et al. (1995), “The Telegarden”, in Proc. ACM

SIGGRAPH, pp135

[48] Goldberg K., Chen B., Solomon R., et al. (2000), “Collaborative teleoperation via the

Internet”, in Proc. IEEE Int. Conf. Robotics and Automation, Vol.2, pp.2019-2024

[49] Goldberg K., Gentner S., Sutter C., Wiegley J. (2000), “The Mercury Project: a feasibility

study for Internet robots”, IEEE Robotics & Automation Magazine, 7(1), pp.35-40

[50] Goldberg K., Gentner S., Sutter C., Wiegley J., Farzin B. (2002), “The Mercury Project:

A Feasibility Study for Online Robots”, In K.Goldberg and R.Siegwart, eds, An

Introduction to Online Robots, The MIT Press, Cambridge, Massachusetts, London,

England, pp.17-36

[51] Goldberg K., Siegwart R. (2002), “Introduction”, In K.Goldberg and R.Siegwart, eds, An

Introduction to Online Robots, The MIT Press, Cambridge, Massachusetts, London,

England, pp.XV-XXi

[52] Golfarelli M., Maio D., Rizzi S. (2001), “Correction of dead-reckoning errors in map

building for mobile robots”, IEEE Trans. on Robotics and Automation, Vol.17, No.1,

pp.37-47

[53] Goodridge S. G., Kay M. G. (2000), “Multi-layered fuzzy behavior fusion for reactive

control of autonomous robots”. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic

Techniques for Autonomous Vehicle Navigation, Physica- Verlag, Heidelberg, New York,

pp.179-204

REFERENCES

 161

[54] Guangyu Lian; Jinshi Cui, et al. (2001), “Telemanipulation via Internet based on human-

robot cooperation”, International Conferences on Info-tech and Info-net, Beijing. Vol.4,

pp.256-262

[55] Habert O., Pruski A. (1997), “Cooperative construction and maintenance of maps for

autonomous navigation”, Robotics and Autonomous Systems, Vol.21, pp.341-353

[56] Hagras H., Callaghan V., Colley M. (2000), “Online learning of fuzzy behaviour co-

ordination for autonomous agents using genetic algorithms and real-time interaction with

the environment”, The Ninth IEEE International Conference on Fuzzy Systems, Vol.2,

pp.853-858

[57] Hagras H., Callaghan V., Collry M. (2001), “Outdoor mobile robot learning and

adaptation”, IEEE Robotics & Automation Magazine, Vol.8, Iss.3, pp.53-69

[58] Halme A., Suomela J., Savela M. (1999), “Applying telepresence and augmented reality

to teleoperate field robots”, Robotics and Autonomous Systems, Vol. 26, pp.117-125

[59] Han K.H., Kim S., Kim Y.J., Kim J.H (2001), “Internet control architecture for Internet-

based personal robot”, Autonomous Robots, Vol.10, pp.135-147

[60] Hashimoto H., Ando N., Lee J.H. (2002), “The performance of mobile robots controlled

through the Web”, In K.Goldberg and R.Siegwart, eds, An Introduction to Online Robots,

The MIT Press, Cambridge, Massachusetts, London, England, pp.137-154

[61] Hoffmann F. (2000), “The role of fuzzy logic control in evolutionary robotics”. In

D.Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for Autonomous Vehicle

Navigation, Physica-Verlag, Heidelberg, New York, pp.119-148

[62] Huang H.P., Lee P.C. (1992), “A real-time algorithm for obstacle avoidance of

autonomous mobile robots”, Robotica, Vol.10, pp.217-227

[63] Huh D. J., Park J.H., Huh U. Y., Kim H.I. (2002), “Path planning and navigation for

autonomous mobile robot”, IEEE 28th Annual Conference of the Industrial Electronics

Society, Vol.2, pp.1538- 1542

[64] HuaNan Yu; JiaMin Zhao; YuRu Xu (2002), “Tuning of neuro-fuzzy controller by real-

coded genetic algorithm with application to an autonomous underwater vehicle control

system”, International Conference on Machine Learning and Cybernetics, Vol.2, pp.735-

738

[65] Huosheng Hu, Lixiang Yu, Pui Wo Tsui, Quan Zhou (2001), “Internet-based Robotic

Systems for Teleoperation”, International Journal of Assembly Automation, Vol. 21, No.

2, pp.1-10

[66] Ismail I.I., Nordin M.F. (2002), “Reactive navigation of autonomous guided vehicle using

fuzzy logic”, Student Conference on Research and Development, pp.153- 156

REFERENCES

 162

[67] Jinshi Cui, Sun Zengqi; Li Ping (2002), “Visual technologies in shared control mode of

robot teleoperatioin system”, Proceedings of the 4th World Congress on Intelligent

Control and Automation, Vol.4, pp.3088- 3092

[68] Kaelbling L.P., Littman M.L. (1996), “Reinforcement Learning: A Survey”, Journal of

artificial intelligence research, iss.4, pp.237-285

[69] Kamon I., Rivlin E. (1997), “Sensory-based motion planning with global proofs”, IEEE

Transactions on Robotics and Automation, Vol.13, Iss.6, pp.814-822

[70] Kawanaka H., Yoshikawa T., Tsuruoka S. (2000), “Acquisition of fuzzy control rules for

a mobile robot using genetic algorithm”, Proceedings. 6th International Workshop on

Advanced Motion Control, pp.507-512

[71] Kiendl H., Ruger J. J. (1995), “Stability analysis of fuzzy control systems using facets

functions”. Fuzzy Sets and Systems, Vol.70, pp.275-285

[72] Kikuchi J., Takeo K., Kosuge K. (1999), “Teleoperation system via computer network for

dynamic environment”, in Proc. IEEE Int. Conf. Robotics and Automation, Vol. 4,

pp.3534-3539

[73] Kim J.W., Choi B.D., Park S.H., et al. (2002), “Remote control system using real-time

MPEG-4 streaming technology for mobile robot”, International Conference on Consumer

Electronics, pp.200- 201

[74] Kortenkamp D., Bonasso R.P., Murphy R. (1998), Artificial Intelligence and Mobile

Robots, AAAI Press/The MIT Press, California, Cambridge, London, England

[75] Krishna K.M., Kalra P.K. (2001), “Perception and remembrance of the environment

during real-time navigation of a mobile robot”, Robotics and Autonomous Systems,

vol.37, pp.25-51

[76] Kuipers B. J. (2000). “The spatial semantic hierarchy”. Artificial Intelligence,

Vol.119,pp.191-233

[77] Lam S.K., Srikanthan T. (2001), “High-speed environment representation scheme for

dynamic path planning”, Journal of Intelligent and Robotic Systems, Vol.32, pp.307-319

[78] Lee T.L., Wu C.J. (2003), “Fuzzy motion planning of mobile robots in unknown

environments”, Journal of Intelligent and Robotic Systems, Vol.37, pp.177-191

[79] Lee Y.G.; Zak S.H. (2002), “Genetic fuzzy tracking controllers for autonomous ground

vehicles”, Proceedings of the 2002 American Control Conference, Vol.3, pp.2144- 2149

[80] Lim J.H., Cho D.W. (1998), “Sonar based systematic exploration method for an

autonomous mobile robot operating in an unknown environment”, Robotica, Vol.16,

pp.659-667

REFERENCES

 163

[81] Lin I.S., Wallner F., Dillmann R. (1996), “Interactive control and environment modelling

for a mobile robot based on multisensor perceptions”, Robotics and Autonomous

Systems, Vol.18, Iss.3, pp.301-310

[82] Liu P.X., Meng M., et al. (2002), “An UDP-based protocol for Internet robots”,

Proceedings of the 4th World Congress on Intelligent Control and Automation, Vol.1,

pp.59- 65

[83] Lo W.T., Liu Y.H., Elhajj, I.H.; et al, (2004), ” Cooperative teleoperation of a multirobot

system with force reflection via Internet”, IEEE/ASME Transactions on Mechatronics,

Vol.9, Iss.4, pp.661-670

[84] Luger G.F., Stubblefield W. A. (2002), “Artificial Intelligence: Structures and Strategies

for Complex Problem Solving”, 4th Edition, Addison Wesley

[85] Luo R.C., Chern M.Y., Hwang K.S., et al. (1998), “Development of intelligent electrical

wheelchair for hospital automation”, in Proc. IEEE/ASME Int. Conf. Mechatronics

(ICMT’98), pp.417-422

[86] Luo R.C., Chen T.M. (2000), “Development of a multi-behavior based mobile robot for

remote supervisory control through the Internet”, IEEE/ASME Transactions on

Mechatronics, Vol.5, Iss.4, pp.376-385

[87] Luo R.C., Su K.L., et al. (2003), ”Networked intelligent robots through the Internet:

issues and opportunities”, Proc. of the IEEE, Vol.91, Iss.3, pp.371- 382

[88] Maaref H., Barret C. (2002), “Sensor-based navigation of a mobile robot in an indoor

environment”, Robotics and Autonomous Systems, Vol.38, pp.1-18

[89] Mack S. (2002), Streaming Media Bible, New York, Hungry Minds Inc

[90] Maeyama S., Yuta S., Harada A. (2001), “Remote viewing on the Web using multiple

mobile robotic avatars”, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,

Vol.2, pp.637-642

[91] Makatchev M., Tso S.K. (2000), “Human-robot interface using agents communicating in

an XML-based markup language”, Proceedings. 9th IEEE International Workshop on

Robot and Human Interactive Communication, pp.270-275

[92] Malinowski A., Booth T., et al. (2001), “Real time control of a robotic manipulator via

unreliable Internet connection”, The 27th Annual Conference of the IEEE (IECON’01) on

Industrial Electronics Society, Vol.1, pp.170-175

[93] Meyer J.A., Filliat D. (2003), “Map-based navigation in mobile robots: II. A review of

map-learning and path-planning strategies”, Cognitive Systems Research, Vol.4, pp.283-

317

[94] Min B.K., Cho D.W., et al. (1997), “Sonar mapping of a mobile robot considering

position uncertainty”, Robotics & Computer-Integrated Manufacturing, Vol.13, pp.41-49

REFERENCES

 164

[95] Minguez J., Montano L. (2004), “Nearness diagram (ND) navigation: collision avoidance

in troublesome scenarios”, IEEE Trans. on Robotics and Automation, Vol.20, pp.45-59

[96] Moravec H.P., Elfes A. (1985), “High resolution maps from wide angle sonar”, IEEE

Conference on Robotics and Automation, USA, pp.116-121

[97] Moravec H.P. (1988), “Sensor fusion in certainty grids for mobile robots”, AI Magazine,

Vol.9, pp.61-73

[98] Murphy R. R. (2000), “Fuzzy logic for fusion of tactical influences on vehicle speed

control”. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for Autonomous

Vehicle Navigation, Physica-Verlag, Heidelberg, New York, pp.73-98

[99] Mut V., Postigo J., Slawinski E., Kuchen B. (2002), “Bilateral teleoperation of mobile

robots”, Robotica, Vol.20, pp.213-221

[100] Na Y.K., Oh S.Y. (2003), “Hybrid control for autonomous mobile robot navigation

using neural network based behavior modules and environment classification”,

Autonomous Robots, Vol.15, pp.193-206

[101] Nehmzow N. (2000), “Mobile robotics: a practical introduction”, Springer-Verlag,

London

[102] Niemeyer G., Slotine J.J.E. (2002), “Toward Bilateral Internet Teleoperation”, In

K.Goldberg and R.Siegwart, eds, An Introduction to Online Robots, The MIT Press,

Cambridge, London, England, pp.193-213

[103] Ning Xi, Tarn T.J. (2000), “Stability analysis of non-time referenced Internet-based

telerobotic systems”, Robotics and Autonomous Systems, Vol.32, Iss.2-3, pp.173-178

[104] Nojima Y., Kojima F., Kubota N. (2003) “Local episode-based learning of multi-

objective behavior coordination for a mobile robot in dynamic environments”, The 12th

IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03, Vol.1, pp.307- 312

[105] Ollero A., Ferruz J., Sanchez O., Heredia G. (2000), “Mobile robot path tracking and

visual target tracking using fuzzy logic”. In D. Driankov and A. Saffiotti, eds, Fuzzy

Logic Techniques for Autonomous Vehicle Navigation, Physica- Verlag, Heidelberg,

New York, pp.51-72.

[106] Oh J.S., Choi Y.H., Park J.B., Zheng Y.F. (2004), “Complete coverage navigation of

cleaning robots using triangular-cell-based map”, IEEE Trans. on Industrial Electronics,

Vol.51, No.3, pp.718-726

[107] Oriolo G., Ulivi G., Vendittelli M. (1997), “Fuzzy maps: a new tool for mobile robot

perception and planning”, Journal of Robotic Systems, Vol.14, Iss.3, pp.179-197

[108] Oriolo G., Ulivi G., Vendittelli M. (1998), “Real-time map building and navigation

for autonomous robots in unknown environments”, IEEE Trans. on Systems, Man and

Cybernetics, Vol.28, No.3, pp.316-333

REFERENCES

 165

[109] Overholt J.L., Cheok K.C. (2001), “Hierarchical systems control using threshold

fuzzy systems”, 2001 IEEE International Conference on Systems, Man, and Cybernetics,

Vol.4, pp.2257-2262

[110] Park J.M., Lee J.M. (2001), “Transmission modelling and simulation for Internet-

based control”, IECON '01 on Industrial Electronics Society, Vol.1, pp.165-169

[111] Passino K.M., Yurkovich S. (1998), “Fuzzy control”, Addison-Wesley Longman, Inc.,

California, USA.

[112] Paulos E., Canny J. (2002), “Personal Tele-Embodiment”, In K.Goldberg and

R.Siegwart, eds, An Introduction to Online Robots, The MIT Press, Cambridge,

Massachusetts, London, England, pp.155-167

[113] Pin F., Watanabe Y. (2000), “Resolving conflict between behaviors using suppression

and inhibition”. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for

Autonomous Vehicle Navigation, Physica-Verlag, Heidelberg, New York, pp.151-178

[114] Pin F.G., Bender S.R. (1999), “Adding memory processing behavior to the fuzzy

behaviorist approach: Resolving limit cycle problems in mobile robot navigation”,

Intelligent Automation and Soft Computing, Vol.5, Iss.1, pp.31-41

[115] Ping Li, Wenjuan Lu (2002), “Implementation of an event-based Internet robot

teleoperation system”, Proceedings of the 4th World Congress on Intelligent Control and

Automation,Vol.2, pp.1296- 1300

[116] Pirjanian P., Mataric M. (2000), “Multiple objective vs. fuzzy behavior coordination”.

In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for Autonomous Vehicle

Navigation, Physica-Verlag, Heidelberg, New York, pp.235-254

[117] Poncela A., Perez E.J., Bandera A., et al. (2002), “Efficient integration of metric and

topological maps for directed exploration of unknown environments”, Robotics and

Autonomous Systems, Vol.41, pp.21-39

[118] Pradalier C., Hermosillo J., Koike C., et al. (2005), “The CyCab: a car-like robot

navigating autonomously and safely among pedestrians”, Robotics and Autonomous

Systems, Vol.50, pp.51-67

[119] Quoy M., Moga S., Gaussier P. (2003), “Dynamical neural networks for planning and

low-level robot control”, IEEE Transactions on Systems, Man and Cybernetics, Part A,,

Vol.33, Iss.4, pp.523- 532

[120] Raschke, Borenstein (1990), “Comparison of grid-type map-building techniques by

index of performance”, International Conference on Robotics and Automation, pp.1828-

1832

REFERENCES

 166

[121] Ruan J.H, Song R., Li Y.B (2002), “Design for intelligent motion controller of

unmanned vehicle”, Proceedings of the 4th World Congress on Intelligent Control and

Automation, Vol.2, pp.1643- 1646

[122] Rusu P., Petriu E.M., Whalen T.E., et al. (2003), “Behavior-based neuro-fuzzy

controller for mobile robot navigation”, IEEE Transactions on Instrumentation and

Measurement, Vol.52, Iss.4, pp.1335- 1340

[123] Rybski P.E., Stoeter S.A., et al. (2002), “Sharing control [multiple miniature robots]”,

IEEE Robotics & Automation Magazine, Vol.9, Iss.4, pp.41-48

[124] Ryu B.S., Yang H.S. (1999), “Integration of reactive behaviors and enhanced

topological map for robust mobile robot navigation”, IEEE Trans. on SMC, Part A,

Vol.29, No.5, pp.474-485

[125] Saffiotti A., Ruspini E. H., Konolige K. (1995), "A Multivalued Logic Approach to

Integrating Planning and Control," Artificial Intelligence, vol. 76, no. 1-2, pp 481-526

[126] Saffiotti A., Ruspini E. H., Konolige K. (1999), “Using fuzzy logic for mobile robot

control”, in H.J.Zimmermann, Kluwer, eds, Practical Applications of Fuzzy Technologies,

Academic Publishers, Norwell, Massachusetts, USA, pp.185-206

[127] Saffiotti A. (2000), “Fuzzy Logic in Autonomous Navigation”, In D.Driankov and

A.Saffiotti, eds, Fuzzy Logic Techniques for Autonomous Vehicle Navigation, Physica-

Verlag, Heidelberg, New York, pp.3-22

[128] Salichs M.A., Moreno L. (2000), “Navigation of mobile robots: open questions”,

Robotica, Vol.18, pp.227-234

[129] Saucy P., Mondada F. (2000), “KhepOnTheWeb: open access to a mobile robot on

the Internet”, IEEE Robotics & Automation Magazine, Vol.7, Iss.1, pp.41-47

[130] Saucy P., Mondada F. (2002), “KhepOnTheWeb: one year of access to a mobile robot

on the Internet”, In K.Goldberg and R.Siegwart, eds, An Introduction to Online Robots,

The MIT Press, Cambridge, Massachusetts, London, England, pp.99-115

[131] Sayers C. P., Paul R. P., et al. (1998) “Teleprogramming for subsea teleoperation

using acoustic communication”, IEEE Journal of Oceanic Engineering, Vol.23, Iss.1,

pp.60-71

[132] Sayers C. P. (1999), Remote Control Robotics, Springer-Verlag, New York, Inc.

[133] Sayers C.P. (2002), “Fundamentals of Online Robots”, In K.Goldberg and R.Siegwart,

eds, An Introduction to Online Robots, The MIT Press, Cambridge, Massachusetts,

London, pp.3-16

[134] Schulz D., Burgard W., Cremers A.B. (1998), “Predictive simulation of autonomous

robots for teleoperation system using the World Wide Web”, in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems, pp.31-36

REFERENCES

 167

[135] Schulz D., Burgard W., Cremers A.B. (1999), “Robust visualization of navigation

experiments with mobile robots over the Internet”, IEEE/RSJ International Conference on

Intelligent Robots and Systems, Vol.2, pp.942-947

[136] Schulz D., Burgard W., Fox D., Thrun S., Cremers A.B. (2000), “Web interfaces for

mobile robots in public places”, IEEE Robotics & Automation Magazine, Vol.7, Iss.1,

pp.48-56

[137] Seraji H., Howard A. (2002), “Behavior-based robot navigation on challenging terrain:

A fuzzy logic approach”, IEEE Transactions on Robotics and Automation, Vol.18, Iss.3,

pp.308-321

[138] Sheridan T.B. (1992), “Telerobotics, automation, and human supervisory control”,

The MIT Press, London, England

[139] Sheridan T.B. (2002), Forword, In K.Goldberg and R.Siegwart, eds, An Introduction

to Online Robots, The MIT Press, Cambridge, Massachusetts, London, England, pp.VIIII-

Xi

[140] Siegwart R., Saucy P. (1999), ”Interacting Mobile Robots on the Web”, ICRA’99,

Detroit, MI, USA

[141] Siegwart R., Goldberg K. (2000), “Robots on the web”, IEEE Robotics & Automation

Magazine, Vol.7, Iss.1, pp.4

[142] Siegwart R., Balmer P., Portal C., et al. (2002), “RobOnWeb: A Setup with Mobile

Mini-Robots on the Web”, In K.Goldberg and R.Siegwart, eds, An Introduction to Online

Robots, The MIT Press, Cambridge, Massachusetts, London, England, pp.117-135

[143] Simmons R., Fernandez J.L., et al. (2000), “Lessons learned from Xavier”, IEEE

Robotics & Automation Magazine, Vol.7, Iss.2, pp.33-39

[144] Simmons R., Goodwin R., et al. (2002), “Xavier: An Autonomous Mobile Robot on

the Web”, In K.Goldberg and R.Siegwart, eds, An Introduction to Online Robots, The

MIT Press, Cambridge, Massachusetts, London, England, pp.81-97

[145] Song K.T., Chen C.C. (1996), “Application of heuristic asymmetric mapping for

mobile robot navigation using ultrasonic sensors”, Journal of Intelligent and Robotic

Systems, Vol.17, pp.243-264

[146] Song K.T., Chang C.C. (1999), “Navigation integration of a mobile robot in dynamic

environments”, Journal of Robotic Systems, Vol.16, Iss.7, pp.387-404

[147] Stein M.R. (2002), “One Year of Puma Painting”, In K.Goldberg and R.Siegwart, eds,

An Introduction to Online Robots, The MIT Press, Cambridge, Massachusetts, London,

England, pp.277-293

[148] Stein M.R. (2003), “The PumaPaint Project”, Autonomous Robots, Vol.15, pp.255-

265

REFERENCES

 168

[149] Surmann H., Peters L. (2000), “MORIA - a robot with fuzzy controlled behaviour”.

In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for Autonomous Vehicle

Navigation, Physica-Verlag, Heidelberg, New York, pp.343-366

[150] Tan K.C., Tan K.K., Lee T.H., et al. (2002), “Autonomous robot navigation based on

fuzzy sensor fusion and reinforcement learning”, Proceedings of the 2002 IEEE

International Symposium on Intelligent Control, pp.182- 187

[151] Taylor K., Trevelyan J. (1995), “Australia’s telerobot on the Web”, in Proc. 26th Int.

Symp. Industrial Robots, pp.39-44

[152] Thongchai S., Kawamura K. (2000), “Application of fuzzy control to a sonar-based

obstacle avoidance mobile robot”, Proceedings of the 2000 IEEE International

Conference on Control Applications, pp.425-430

[153] Thongchai S., Suksakulchai S., Wilkes D.M., Sarkar, N. (2000), “Sonar behavior-

based fuzzy control for a mobile robot”, IEEE International Conference on Systems, Man,

and Cybernetics, Vol.5, pp.3532-3537

[154] Thongchai S. (2002), “Behavior-based learning fuzzy rules for mobile robots”,

Proceedings of the 2002 American Control Conference, Vol.2, pp.995-1000

[155] Thrun S. (1992), “The role of exploration in learning control”, in Handbook of

Intelligent Control: Neural, Fuzzy and Adaptive Approaches, D.A.White and D.A.Sofge,

Eds., New York

[156] Thrun S. (1998a), “A probabilistic approach to concurrent mapping and localization

for mobile robots”, Autonomous Robots, Vol.5, pp.253-271

[157] Thrun S. (1998b), “Learning metric-topological maps for indoor mobile robot

navigation”, Artificial Intelligence, Vol.99, pp.21-71

[158] Thrun S., Bennewitz M., et al. (1999), “MINERVA: a second-generation museum

tour-guide robot”, IEEE International Conference on Robotics and Automation, Vol.3,

pp.1999-2005

[159] Thrun S. (2003), “Learning occupancy grid maps with forward sensor models”,

Autonomous Robots, Vol.15, pp.111-127

[160] Tomatis N., Nourbakhsh I., Siegwart R. (2003), “Hybrid simultaneous localization

and map building: a natural integration of topological and metric”, Robotics and

Autonomous Systems, Vol.44, pp.3-14

[161] Tsourveloudis N.C., Valavanis K.P., Hebert T. (2001), “Autonomous vehicle

navigation utilizing electrostatic potential fields and fuzzy logic”, IEEE Trans. on

Robotics and Automation, Vol.17, No.4, pp.490-497

REFERENCES

 169

[162] Tunstel E., Jamshidi M. (1994), "Fuzzy Logic and Behavior Control Strategy for

Autonomous Mobile Robot Mapping," in FUZZ-IEEE World Congress on Computional

Intelligence, Orlando, Florida, pp. 514-517

[163] Tunstel E. (2000), “Fuzzy-behavior synthesis, coordination, and evolution in an

adaptive behavior hierarchy”. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic

Techniques for Autonomous Vehicle Navigation, Physica- Verlag, Heidelberg, New York,

pp.205-234

[164] Victorino A.C., Rives P., Borrelly J.J. (2003), “Safe navigation for indoor mobile

robots. Part II: exploration, self-localization, and map building”, The International Journal

of Robotics Research, Vol.22, pp.1019-1039

[165] Vieira W.J., Matos M.L.C, Castolo L.O. (2001), “Fitting autonomy and mobile

agents”, IEEE Conference on Emerging Technologies and Factory Automation, Portugal,

Vol.2, pp.471-480

[166] Volpe R., Estlin T., et al. (2000), “Enhanced Mars rover navigation techniques”,

IEEE International Conference on Robotics and Automation, USA, vol.1, pp.926-931

[167] Wallner F., Dillmann R. (1994), “Efficient mapping of dynamic environment by use

of sonar and active stereo-vision”, International Symposium on Intelligent Robotics

Systems, France, pp.1-13

[168] Wang X.C., Yang X. (2003), “A neuro-fuzzy approach to obstacle avoidance of a

nonholonomic mobile robot”, 2003 IEEE/ASME conference on advanced intelligent

mechatronics (AIM 2003), pp.29-34

[169] Wang X.G., Moallem M., Patel R.V. (2003), “An Internet-based distributed multiple-

telerobot system”, IEEE Transactions on Systems, Man and Cybernetics, Part A, vol.3,

iss.5, pp.627-634

[170] Watanabe H., Dettloff W., Yount E. (1990), “A VLSI fuzzy logic inference engine

for real-time process control”, IEEE Journal of Solid State Circuits, Vol.25, Iss.2, pp.376-

382

[171] Xiang Guoliang; Yun-Hui Liu, et al. (2002), “An Internet based pulse palpation

system for Chinese medicine”, IEEE/RSJ International Conference on Intelligent Robots

and System, Vol.2, pp.1481-1486

[172] Xu W.L. (2000), “A virtual target approach for resolving the limit cycle problem in

navigation of a fuzzy behavior-based mobile robot”, Robotics and Autonomous Systems,

Vol.30, Iss.4, pp.315-324

[173] Xu W.L., Tso S.K. (1999), “Sensor-based fuzzy reactive navigation for a mobile

robot through local target switching”, IEEE Transactions on Systems, Man and

Cybernetics, Vol.29, No.3, pp.451-459

REFERENCES

 170

[174] Yamada S. (2005), “Evolutionary behavior learning for action-based environment

modeling by a mobile robot”, Applied Soft Computing, Vol.5, pp.245-257

[175] Yamauchi B., Schultz A., Adams W. (1998), “Mobile robot exploration and map-

building with continuous localization”, IEEE Conference on Robotics and Automation,

pp.3715-3720

[176] Yang S.X., Meng M.Q.H (2003), “Real-time collision-free motion planning of a

mobile robot using a Neural Dynamics-based approach”, IEEE Transactions on Neural

Networks, Vol.14, Iss.6, pp.1541-1552

[177] Ye X.F.; Meng M.Q., et al. (2002), “Statistical analysis and prediction of round trip

delay for Internet-based teleoperation”, IEEE/RSJ Conference on Intelligent Robots and

System, Vol.3, pp.2999- 3004

[178] Zadeh L.A., (1965), “Fuzzy sets”, Information and Control, vol.8, pp.353-383

[179] Zhang J., Knoll A. (2000), “Integrating deliberative and reactive strategies via fuzzy

modular control”. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for

Autonomous Vehicle Navigation, Physica-Verlag, Heidelberg, New York, pp.367-387

[180] Zhuang X.D.; Meng Q.C; Yang S.J. (2002), “Mobile robot control in dynamic

environments based on hybrid intelligent system”, IEEE Conference on SMC, Vol.3, pp.6

APPENDIX

 171

Appendix A. The robotic programming

In general, a robot control program is one that takes the robot’s sensory input,

processes it, and decides what motor actions the robot will perform. But the mapping

between inputs and outputs is a very complex one, and the control task requires some

decomposition into simpler elements to make it workable. In recent years there have

been some convergences on an architecture (see Figure A.1) for autonomous mobile

robots. The bottom control layer is a controller that implements some form of motion

control for the robot. The second execution layer initiates and monitors behaviors,

taking care of temporal aspects of coordinating behaviors. The top planning layer

makes long-term deliberative planning, with the results being passed down to the

second layer for execution.

Figure A.1: A hybrid control architecture

We make the robotic programming based on the Saphira development environment

(http://www.activrobots.com). The Saphira is an object-oriented, C++ language-based

robotic development environment for creating software that intelligently and

autonomously control a mobile robot. The Saphira clients work through ARIA

(ActivMedia Robotics' Interface for Applications) software to send commands to the

robot server, gather information from the robot’s sensors, and package them for

display in a graphical window-based user interface. ARIA handles the lowest-level

details of client-server interactions, including serial communications, command and

server-information packet processing, cycle timing, and multithreading, as well as a

variety of accessory controls, such as for the PTZ robotic camera. It is possible to call

Saphira from any high-level language that has a foreign-function loading facility,

LISP and PROLOG, for example. For this thesis, we take use of Visual C++ 6.0 to

write and compile the robotic programs based on the Saphira API functions.

APPENDIX

 172

Here gives an example of main body programs to realize a WANDER task.

#include "PolyUiBot.h"
#include "header.h"

SFEXPORT void // define interface to Colbert here
sfLoadInit ()
{
 draw(); // set up drawing object
 mycamera_init();
 SfFrame *ff = (SfFrame *)SfFRAME; // add menu item, button and key handlers
 ff->Win()->AddButtonHandler(button_fn); // do the mouse thing
 ff->Win()->AddKeyHandler(key_fn); // do the key thing
 sfAddEvalAction("Wander", (void *)SfWanderAction::invoke, 0);
 sfAddEvalFn("WANDER", (void *)wanderCommand, sfVOID, 0);
}

///
// First obstacle avoidance behavior with wander task using Fuzzy logic controller
//

class SfWanderAction : public ArAction, public SfArtifact
{
 public:
 SFEXPORT SfWanderAction(); // constructor
 virtual ~SfWanderAction() { FuzzyUnload(); }; // nothing doing
 SFEXPORT virtual ArActionDesired *fire(ArActionDesired currentDesired);
 static SfWanderAction *invoke(); // interface to Colbert
 int FuzzyLoad();
 int FuzzyUnload();
 int FuzzyOutput(double dfront, double dleft, double dright, double goal_error);

 protected:
 ArActionDesired myDesired; // what the action wants to do
FIS *fis;
DOUBLE **fisMatrix, **outputMatrix;
int data_row_n, data_col_n, fis_row_n, fis_col_n;

 DOUBLE
dataMatrix[OA_NEW_INPUT_NUMBER][OA_NEW_INPUT_VECTOR];
};

// This constructor is a model for all actions. Chains to the basic ArAction class
SFEXPORT
SfWanderAction::SfWanderAction(): ArAction("Wander")
{

FuzzyLoad();
}

APPENDIX

 173

// What the action does
// Returns and ArActionDesired pointer, containing what the action wants to do

SFEXPORT ArActionDesired *
SfWanderAction::fire(ArActionDesired d)
{

 // reset the actionDesired (must be done)
 myDesired.reset();

 if(bSTOP) return &myDesired; // return the desired controls

 double d0, d1, d2, d3, d4, d5, d6, d7;
SfSonarDevice *sd = Sf::sonar(); // get the device
if (!sd)

 d3 = d4 = 5000; // large value, no obstacle ahead
else
{
d0 = SfROBOT->getSonarRange(0); d1 = SfROBOT-

>getSonarRange(1);
d2 = SfROBOT->getSonarRange(2); d3 = SfROBOT-

>getSonarRange(3);
d4 = SfROBOT->getSonarRange(4); d5 = SfROBOT-

>getSonarRange(5);
d6 = SfROBOT->getSonarRange(6); d7 = SfROBOT-

>getSonarRange(7);
}
///////////////// to reduce the distance input dimension /////////////////
double dfront = MIN(d2,d3);
dfront = MIN(dfront, d4);
dfront = MIN(dfront, d5);
double dleft = MIN(d0,d1);
double dright = MIN(d7,d6);

 // convert from .mm to .cm
dfront = dfront/10.; dleft = dleft/10.; dright = dright/10.;

// take the input variable into fuzzy domain

 if(dfront<0 || dfront > MAX_OBSTACLE_DISTANCE) dfront =
MAX_OBSTACLE_DISTANCE; // for FLC normalization
 if(dleft <0 || dleft > MAX_OBSTACLE_DISTANCE) dleft =
MAX_OBSTACLE_DISTANCE;
 if(dright <0 || dright > MAX_OBSTACLE_DISTANCE) dright =
MAX_OBSTACLE_DISTANCE;

/////////////// to calculate OA behavior output ///////////////
FuzzyOutput(dfront, dleft, dright);
double speedVal = outputMatrix[0][0]; // robot speed
double angleVal = outputMatrix[0][1]; // robot angle turn

APPENDIX

 174

 myDesired.setHeading(SfROBOT->getTh()+angleVal); //control the heading
 myDesired.setVel(speedVal); // moderate speed

 return &myDesired; // return the desired controls
}

///
// Interface to Colbert
//
// This static function returns a behavioral action object,
// with arguments that can be set from Colbert
//
SfWanderAction * SfWanderAction::invoke()
{

return new SfWanderAction();
}

//
void wanderCommand()
{
 SfActTask *task;
 SfWanderAction *a;
 task = SfActRegister::getAct("Wander"); // this is the default name
 if (task != NULL)
 {
 a = (SfWanderAction *)(task->action); // get the action object from the task shell
 a->activate(); // activate the behavior action

 SfROBOT->clearDirectMotion(); // lets behavioral actions through
bSTOP = false; // true = running, false = no running

 }
}

APPENDIX

 179

Appendix D. Streaming technologies

Streaming media technologies were introduced in 1995 [Mack, 2002]. Streaming

offers a whole new approach to media on the Internet. Instead of waiting for the

whole file to be downloaded to a user’s computer before playback begins, streaming

media playback occurs as the file is being transferred. The data travels across the

Internet, is played back and then discarded. Streaming media also offers the user

control over the stream during playback, something not possible with a web server.

One of the problems that streaming media systems have to deal with is the

stochastic nature of bandwidth on the Internet. It fluctuates wildly between zero and

some maximum rate. To deal with this, streaming media player utilizes a buffer. The

first few seconds of the file are stored in the computer’s memory before playback

begins. This gives the media player a reserve of bits to fall back on when the user’s

bandwidth becomes constricted.

Streaming
media encoder

Media
storage

Streaming
media server

Streaming
media player #3

Streaming
media player #2

Streaming
media player #1

camera

Internet

Figure D.1: Basic components of a streaming media system

Streaming media (e.g. video, audio, flash, script, etc.) is made possible by

different pieces of software that communicate on a number of different levels. A basic

streaming media system has three components [Mack, 2002]. The basic components

of a streaming media system are shown in Figure D.1.

• Player. The software that viewers use to watch or listen to streaming media.

• Server. The software that delivers streams to audience members.

• Encoder. The software that converts raw audio and video files into a format

that can be streamed.

These components communicate with each other using specific protocols (e.g.

RTSP, MMS), and exchange files in particular formats (e.g. RM, WMV, MOV, MP4).

APPENDIX

 180

Some files contain data that has been encoded using a particular codec (e.g. MPEG4,

Windows Media Video, Real Video, Sorenson Video), which is an algorithm designed

to reduce the size of files. Typical architecture of streaming server and client is

shown in Figure D.2.

G.723.1 MPEG-4Compression
Layer

SynchronizationSync Layer Synchronization

Multiplexing (FlexMUX)

RTP / RTCP
Delivery Layer

G.723.1 MPEG-4

Demultiplexing (FlexMUX)

RTP / RTCP

Audio Video Audio Video

Data capturing Presentation

Streaming Server Streaming Client

The Internet (TCP / IP)
Figure D.2: Typical architecture of streaming server and client

RTSP (Real Time Streaming Protocol) is an application-level protocol developed

by IETF (Internet Engineering Task Force) that is used to control the delivery of data

with real-time properties [Mack, 2002]. RTSP provides a framework to enable the

controlled, on-demand delivery of real-time data, such as audio and video. Sources of

data can include both live data feeds and media on-demand. This protocol is intended

to control multiple data delivery sessions; provide a means for choosing delivery

channels such as UDP, Multicast UDP, and TCP; and provide a means for choosing

delivery mechanisms based on Real Time Protocol (RTP). QuickTime and

RealSystem use the RTSP protocol. Microsoft uses its own MMS (Microsoft Media

System) protocol. Both RTSP and MMS contain a control mechanism to handle

client’s requests, such as Play, Stop, Fast Forward, or Rewind. Both protocols ensure

that media packets arrive in a format recognized by the player. Control requests are

always carried over TCP, and data packets are carried over UDP, TCP, or HTTP

(HTTP resolves the firewall issues). A growing number of vendors use RTSP for the

development of new technologies that deliver streaming content to mobile devices.

APPENDIX

 181

The Unicast and Multicast are two methods used to deliver streaming content

across networks to end-users. A unicast stream has a one-to-one client-server

relationship. When a user makes a request to stream media, the server acts on the

request and sends a unique individual stream to that client, one steam for each request.

This method maximizes the ability to compensate for lost data and to deliver a better

experience to end-users. A multicast stream is more like the experience of watching

television. The media server generates one single stream that allows multiple player-

clients to connect to it. Users watch the content from the time they join the broadcast.

The client connects to the stream, but not to the server. During a multicast stream, the

player-client cannot request for the replacement of lost packets. This method saves

network bandwidth and is mostly used for live broadcasts.

Appendix E. A brush-up of fuzzy system theory

The theory of fuzzy logic has its roots back in 1965 when Zadeh presented his ideas

of fuzzy sets [Zadeh, 1965]. An overview of some of the fundamental concepts in

fuzzy systems has been presented here to provide background knowledge used in this

thesis. Most of the definitions given in this section have been paraphrased from

[Passino & Yurkovich, 1998].

A fuzzy system is shown in Figure E.1, which is static nonlinear mapping between

inputs and outputs. The inputs are ui∈Ui, where i=1,2,…,n, and outputs yi∈Yi, where

i=1,2,…,m. The outputs and inputs are crisp that is real numbers, not fuzzy sets. These

crisp inputs are mapped into fuzzy sets by the fuzzification block, in order to activate

rules which are in terms of linguistic variables. The variables have fuzzy sets

associated with them. The inference mechanism produces conclusions using fuzzy

rules in the rule-base. Crisp outputs are obtained from the defuzzification block.

Universe of Discourse

The crisp sets Ui and Yi are called the universe of discourse for ui and yi

respectively. Generally the universes of discourse are simply the set of real numbers

or some interval or subset of real numbers.

APPENDIX

 182

Fuzzification

Inference
Mechanism

Rule base
D

efuzzification

Fuzzified
inputs

Fuzzy
conclusions

Crisp
inputs

Crisp
outputs

u1

un

u2

y1

y2

yn

Figure E.1: Fuzzy system.

In classical set theory, an element of any universe can be either a member of the

set or not. Fuzzy sets, however, are characterized by the fact that an element of the

universe of discourse has a so-called degree of membership, determined by a

membership function, i.e. an element can not only belong or not belong to a set, but

belong more or less to it. This fuzziness is also characteristic for human beings when

they are asked to classify certain elements. The procedure of determining the degree

of membership of a crisp input, which is an element of a universe of discourse, is

called fuzzification.

Linguistic Variables

These are variables whose values are not number but words or sentences in a

natural or artificial language to describe fuzzy system inputs and outputs. Where iu is

the linguistic variable that describes the inputs ui. Similarly iy is the linguistic

variable that describes the output yi .

Linguistic Values

Linguistic variables iu and iy take on linguistic values that describe the

characteristics of the variable. The set of linguistic values { : 1, 2, , }j
i i iA A j N= =

where j
iA denotes the jth linguistic value of the linguistic variable iu . Similarly

{ : 1,2, , }k
i i iB B k M= = , where k

iB denotes the kth linguistic value of the linguistic

variable iy .

APPENDIX

 183

Linguistic Rules

A set of condition→ action rules, or in modus ponens (If-Then) rule maps the

inputs to the outputs

 If antecedent Then consequent

Usually, the inputs to the fuzzy system are associated with the antecedent, and the

outputs are associated with the consequent, for the multi-input single-output (MISO)

the standard rule form is

If 1 1 2 2 ,j j j
n nu is A and u is A and u is A Then p

q qy is B

This can be in the form of multi-input multi-output (MIMO). Generally the rules

in the rule-base are distinct.

Membership Functions

The membership functions ()iuµ are subjectively specified in an ad hoc (heuristic)

manner, they are associated with the terms that appear in the antecedent and

consequent. Many shapes of the membership function are possible (e.g., triangular,

trapezoidal shapes), each will provide a different meaning for the linguistic variable.

Fuzzy Sets

Simply a fuzzy set is a crisp set of elements of the universe of discourse paired

and coupled with their associated membership value.

 {(, ()) : }µ= ∈j
i

j
i i i i iA

A u u u U

Fuzzification

Fuzzification transforms ui to a fuzzy set defined on the universe of discourse *
iU .

This transformation is produced by operator f defined by

 *: i if U U→

Where () fuz
i if u A= , fuz

iA is the fuzzy set.

Quite often singleton fuzzification is used. Any fuzzy set with the following form

for its membership function is called a singleton.

fuz
i

i
A

1 x = u
(x)

0 otherwise
µ

⎧
= ⎨
⎩

APPENDIX

 184

Fuzzy Intersection (AND)

Two methods to define the membership function that represents the intersection of
1
iA and 2

iA .

1) Minimum, 1 2 1 2min{ (), () : }
i i i i

i i i iA A A A
u u u Uµ µ µ

∩
= ∈

2) Algebraic Product, 1 2 1 2{ () () : }
i i i i

i i i iA A A A
u u u Uµ µ µ

∩
= ∈

Fuzzy Union (OR)

Two methods to define the membership function that represents the union of 1
iA

and 2
iA .

1) Maximum, 1 2 1 2max{ (), () : }
i i i i

i i i iA A A A
u u u Uµ µ µ

∪
= ∈

2) Algebraic Sum, 1 2 1 2 1 2{ () () () () : }
i i i i i i

i i i i i iA A A A A A
u u u u u Uµ µ µ µ µ

∪
= + − ∈

Fuzzy Implications

It is the fuzzy quantification of the linguistic rule. The implication method shapes

the consequent based on the antecedent. The terms in the antecedent and consequent

of the If-Then rule are fuzzily quantified to make a fuzzy implication (a fuzzy relation).

Aggregation

It is combining the output fuzzy sets into a single fuzzy set in preparation for

defuzzification.

Defuzzification

It is a means to choose a crisp output based on the implied fuzzy sets. The most

popular defuzzification method is the “centroid” calculation, which returns the center

of area under the curve. In the centroid a crisp output is chosen based on the implied

fuzzy sets and the point of maximum for each output membership function.

 1

1

[()]

[()]
j

j

M j j
j A R

M j
j A R

y y
y

y

µ

µ
=

=

∑
=

∑

Where jA R is a single implied fuzzy set for the jth fuzzy implication, and jy is

the consequent portion of the linguistic rule Rj.

	theses_copyright_undertaking
	b20593053

