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ABSTRACT 

Internet-based robot teleoperation obviates the need for dedicated networks and 

devices, reduces costs, extends operating distances, and allows precious resources 

sharing for public education or academic research. Except for operating in hazardous 

environments, Internet telerobotics has opened up a new range of real-world 

applications, involving tele-manufacturing, tele-training, tele-surgery, museum guide, 

space exploration, disaster rescue, and health care. There are many problems on 

Internet-based teleoperation that need to be addressed, such as data transmission over 

uncertain time-delay and unreliable Internet, teleoperation by inexperienced users, 

short of interactivity, and so on. Moreover, Internet robots require a much higher 

degree of autonomy than traditional teleoperation so that the robots are able to ensure 

safe operations and perform some tasks autonomously. 

In this thesis, we aim at developing a practical robotic system for the target 

application: the inexperienced Internet users can remotely control a wheeled robot 

which is able to perform some complex tasks autonomously (e.g. active map learning, 

goal-oriented navigation) or to interact with human operator in order to explore 

unknown and dynamic environments. The experiments are based on a Pioneer robot 

that is equipped with an onboard camera and eight forward ultrasonic sensors. The 

control commands transfer through radio Ethernet devices. To help realize such 

robotic system, the research is conducted on the following aspects: 

1) The video transmission via the low-bandwidth Internet is investigated and 

implemented so that the robot’s surroundings can be seen by any remote operators 

through the images captured from an onboard camera. It is a prerequisite to develop a 

practical teleoperation system. Traditional approach is via the picture transmission 

(e.g. JPEG or GIF), which leads to a very poor quality of service (QoS) because of the 

high latency of the Internet, such as long time delay, data error or restricted bandwidth. 

The thesis investigates and develops a streaming technology based approach for 

streaming video transmission. Two video compression algorithms (WMV9 and 

MPEG4) under different bandwidth, two video encoding methods (CBR and Quality-

based VBR) as well as the transmission stability and time delay have been 

investigated. 
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2) A framework for autonomous navigation using fuzzy logic is proposed. This 

work is a base for the subsequent designs of intelligent control programs so that the 

mobile robot is able to autonomously perform some complex tasks amid various 

degrees of uncertainties. The proposed framework involves goal determination, 

preprocessing, behavior design, behavior arbitration, and command fusion. 

Traditional framework for autonomous navigation is SMPA (Sense-Model-Plan-Act) 

approach, which is inadequate for dealing with unknown and dynamic real world. The 

behavior-based approach can act in real-time and has good robustness in such 

environments. The preprocessing module is used to reduce the complexity of input 

space by introducing a limited number of intermediate variables. The elementary 

behavior can be designed using fuzzy logic controller or an analytic algorithm. A 

behavior arbitration module is used to calculate the crisp weighting factors of each 

elementary behavior. The final robot motion output is obtained by the command 

fusion for a weighting combination of all elementary behaviors. A goal-oriented 

navigation task, combined with obstacle-avoidance (OA) and goal-seeking (GS) 

behaviors, is implemented as an example of the proposed framework. 

3) A new teleoperation approach so called telecommanding is proposed to 

provide an interactive control interface and a complete framework for control 

management and command processing. The traditional direct control reduces the 

stability of control loop because the controlled robot has no local intelligence and it 

needs to maintain continuous connection. The existing supervisory control methods 

are inadequate mainly in that they fail to provide human-robot interactivity. The 

proposed approach involves two different but complementary commands: joystick 

command (e.g. LEFT, RIGHT, UP, and DOWN) and linguistic command (e.g. 

MOVE, TURN, GOTOEND, WANDER, COORDINATE, and MAPPING). Each 

command is designed to perform independent task, which is defined with multiple 

events (non-time action references) and corresponding response functions. Simulated 

and real world experiments have been conducted to test the use of both joystick 

commands and linguistic commands for Internet-based robot teleoperation. The 

advantages and disadvantages as well as stability of telecommanding are analyzed. 

4) To model a priori unknown environment (i.e. a MAPPING linguistic 

command), a new map learning approach called memory grid mapping is proposed. 

The robot builds a map based on robot’s sensory information and actively explores 

the unknown environment. The approach includes a map model, a map update method, 
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an exploration method, and a map postprocessing method. The map adopts a grid-

based representation. A so-called obstacle memory dot (OMD) matrix is designed to 

save the frequency values which measure the confidence that a cell is occupied by an 

obstacle. A so-called trajectory memory dot (TMD) matrix is designed to save the 

trajectory traversed by the robot in order to facilitate the online path planning. Two 

behaviors, path-exploring behavior and environment-detecting behavior, are 

coordinated to make the robot exploring a least known environment.  The map 

postprocessing method includes a threshold operation, a template operation, and an 

insert operation. The efficiency of map learning is investigated. The map accuracy 

under different cell sizes and different map postprocessing is investigated as well. 

Experiments are done for the map learning in different simulation environments. 

5) For a teleoperated mobile robot that is exploring unknown indoor 

environments, it is desired that the robot is able to autonomously arrive at a given goal 

location (i.e. an enhanced COORDINATE linguistic command), even though the 

environments involve all kinds of complex situations with local minima. The thesis 

proposes a new navigation method, namely minimum risk method, to realize such 

function. The method makes use of the proposed memory grid map. When a mobile 

robot is performing the goal-oriented navigation, it updates a memory grid map in 

real-time. A novel path-searching (PS) behavior is developed to use the map 

information and to recommend a safest regional direction that can enable the robot to 

detect potential local minima and escape from them. The final command outputs are 

obtained by coordinating the behaviors: PS, OA, and GS. Fuzzy logic controllers are 

used to implement behavior design and coordination. The method is experimentally 

demonstrated to give global convergence to a given goal location, even though it is 

used in the long-wall, large concave, recursive U-shape, unstructured, cluttered, 

maze-like, or dynamic (i.e. with moving human) environments. 

The developed telerobotic system has been demonstrated to be feasible to provide 

the service of Internet-based teleoperation in university campus and exhibition center. 

The tests have been performed successfully through the Internet remotely from 

overseas places (e.g. Canada, Singapore, Chinese Beijing, Shanghai, Xiamen) to 

Hong Kong.  
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CHAPTER 1.  INTRODUCTION 

1.1 Background 

1.1.1 The history and development of Internet telerobotics 

A new field, “Internet telerobotics” technologies for online robot teleoperation 

through the Internet, is emerging in the recent decade. Online Robots (or Internet 

Robots) are the robots that can be accessible from any computer on the Internet 

[Goldberg & Siegwart, 2002]. In the late 1950s and early 1960s, engineers began 

dreaming of remote manipulation where the operator and the manipulation task 

environment were distance apart and visual feedback was via TV. This kind of 

operation, to operate a vehicle or manipulator over a distance, is called teleoperation. 

The human is the operator, who monitors the operated machine and makes the needed 

control actions. The first "remote-manipulators" were developed for handling 

radioactive materials during 1950s. Outstanding pioneers were Raymond Goertz and 

his colleagues at the Argonne National Laboratory outside of Chicago, and Jean 

Vertut and his engineers at a counterpart nuclear engineering laboratory near Paris 

[Goertz & Thompson, 1954]. Their first system allowed human operators to stand 

outside of radioactive "hot cells," peer through leaded glass radiation barriers, and 

grip "master" arms coupled to "slave" arms and hands inside the cells, which in turn 

grasped the remote objects. The Internet's key advantage is the flexibility of where the 

operator can gain access to communication. With the rapid growth of the Internet, 

more and more intelligent devices or systems have been embedded into it for service, 

security and entertainment, including distributed computer systems, surveillance 

cameras, telescopes, manipulators and mobile robots. Moreover, recent advances in 

computer technology and software engineering and the development of inexpensive 

sensory equipment have allowed the development of not just local spot robot 

applications, but of Internet-based, distant-controlled telerobotics. 

The Internet has opened the door to a much wider audiences. Some types of 

remote access technologies on the Internet have broadly used in our daily life. The 

computer network services, such as FTP, Telnet, the World Wide Web (WWW or the 

Web), e-mail, etc., provide us convenient tools and devices to transmit remote 
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information. Most people, however, continue to think of the Internet as a means of 

sending e-mail and getting information from remote databases. They remain unaware 

that another huge class of operations lies just ahead, namely the ability to control 

physical objects remotely over the Internet. What kinds of things? Anything one can 

imagine what an Internet robot can do. When away from home, for example, one 

could turn up the heat, start the preparation of a meal, feed the cat, put out the garbage, 

examine the mail, or check whether someone cuts the grass. An office or factory 

manager could inspect the work of others or ready a product for shipping. A student 

could inspect some ancient ruins in a museum, perform an experiment on the ocean 

floor, shake hands or participate in an experiment or athletic activity with students in 

another country. 

      Although the field of Internet telerobotics is relatively new and still in its infancy, 

it has captured the huge interest of many researchers worldwide in the last decade. In 

1994 the “Mercury Project” was one of the earliest implementations of telerobotics 

over the Internet [Goldberg & Gentner et al., 2000], with Australia’s Telerobot 

[Taylor & Trevelyan, 1995] coming online at almost the same time. Since then, about 

forty such systems have been put online by research teams around the world. In the 

Mercury project, a remotely controlled industrial robot arm was used to explore a 

sandbox filled with buried artifacts (See Figure 1.1(a)). The systems used the HTTP 

protocol and browser interface. A four-axis IBM robot with camera and air nozzle 

was set up over a sandbox so that remote viewers could excavate for buried objects by 

positioning a mouse and clicking from any web browser. Each operation was atomic 

(self-contained) and the application was designed so that singularities and collisions 

cannot occur. The system was designed to be operated by nonspecialists and to 

operate reliably twenty-four hours a day. Telegarden [Goldberg, et al., 1995] replaced 

the Mercury robot in 1995. The Telegarden system additionally used CAD drawings 

to animate the state of the manipulator, and allowed the Web users to remotely control 

an Adept 6 DOF arm to dig and water the plants. Australia's Telerobot on the web 

[Taylor & Trevelyan, 1995] gives web users the opportunity to build complex 

structures from toy blocks (See Figure 1.1(b)).  
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                     (a)                                                                     (b) 

Figure 1.1: Earliest systems of Internet telerobotics. (a) Mercury robot, 

camera, and air nozzle above workspace [Goldberg, et al., 2000]. (b) 

Australia's Telerobot, enables web users to build complex structures from 

toy blocks [Taylor & Trevelyan, 1995]. 

 

The 1st generation of Internet robots is mainly based on robotic arms or simple 

mobile robots that are directly controlled by human operators. In other words, a 

human is in the control loop. These online robots operate within a well-structured 

environment with little uncertainty, and have no local intelligence such as obstacle 

avoidance. Stein developed an interesting application of an Internet robot: the 

PumaPaint project [Stein, 2002]. The project is a Web robot that allows any user to 

control a PUMA 760 robot to paint through the Internet. The robot is equipped with 

four paintbrushes (red, green, blue, and yellow paint) and two color cameras. Users 

can select a color and paint on the virtual canvas; the motion will be transformed into 

sequential commands to the remote robot to apply paint to the real canvas. The 

Mechanical Gaze system [Paulos & Canny, 1996], developed at Berkeley University, 

allows remote WWW users to control a robot arm with an attached camera to explore 

remote objects. Another example is the Bradford Robotic Telescope [Baruch & Cox, 

1996]. The WWW users can look at an image taken from an observation with the 

telescope and compare it with one taken from a star database held at NASA. In The 

Swiss Federal Institute of Technology, The KhepOnTheWeb [Saucy et al, 2000] 

system consists of a mobile robot that moves in a wooden maze (see Fig.1.2). The 

Web users, using clickable images obtained from an onboard camera, can control the 

robot's movements and orientation. This system was available from May 1997 to May 

1998. Although KhepOnTheWeb provides a satisfactory user experience, it has a 
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major drawback: the direct control of the robot is difficult under important delays 

without help, so that the system does not scale to real world environments. 

 
(a)                                                                  (b) 

Figure 1.2: The KhepOnTheWeb system. (a) mobile robot with its on-board video 

camera in a 65×90cm maze;   (b) the Web control interface [Saucy et al, 2000]. 

 

In contrast, research on the 2nd generation of Internet robots has begun to focus on 

autonomous mobile robots that navigate in a dynamic and uncertain environment, 

including the Xavier -- an office exploring robot at CMU [Simmons, et al, 2000], and 

the museum tour-guide robot RHINO and MINERVA [Thrun, et al, 1999; Schulz et al, 

2000]. Xavier (See Figure 1.3) was probably the first mobile robot to operate in a 

populated office building controlled through the web. Xavier can be advised by web 

users to move to an office and to tell a “knock-knock” joke after arrival. The robot 

collects the requests both off-line and on-line and processes them during special 

working hours. After the successful execution of the mission, Xavier informs the web 

user via e-mail. Xavier’s web interface relies on client-pull and server-push 

techniques to provide images taken by the robot. Furthermore, it provides a map of 

the environment and indicates the robot’s current position in regular intervals. RHINO 

and MINERVA (See Figure 1.4) not only can enable Internet users to remote control 

the robot through the Internet for museum visit, but also can provide a control 

interface for the local people in the museum. The key features of this generation of 

Internet robotic projects are their autonomy and reactive behaviours which enable 

them to navigate and cope with uncertainty in the real world. Supervisory control is 

the main teleoperation paradigm in building this generation of Internet robots. 

Unfortunately, this paradigm has a real negative impact on web-based interaction: 

commanding at a high level is not as interactive as teleoperation using direct control. 
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Figure 1.3:  Xavier (left) and its web control interface (right) [Simmons, et al, 2000] 

 
(a)                         (b)                                      (c) 

Figure 1.4: Autonomous tour-guide robots (a) RHINO (b) MINERVA (c) 

MINERVA in the museum [Thrun, et al, 1999; Schulz et al, 2000] 

 

In general, there are four kinds of control architecture for Internet robots: one to 

one, one to many, many to one, and many to many. 

A. One to One. This is the common control architecture for most Internet 

telerobotic systems to provide one user control of one robot (one-one). The examples 

are Mercury, PumaPaint, KhepOnTheWeb, Xavier, RHINO and MINERVA and so 

on, which were introduced in the above paragraphs. Another one important example 

is the NASA’s WITS (Web Interface for Telescience), which has been developed to 

provide Internet-based distributed ground operations for planetary lander and rover 

missions [Volpe et al., 2000]. The user gets the software through a HTML page and 

then stops using HTML, as the Java applet is then in charge of accessing the user’s 
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local WITS database and the WITS server. The user generates a sequence of actions 

locally, using the FIDO simulator to check the results. When finished, the user sends 

the sequence to the WITS server. It is checked using a sequence integration and 

verification module and then the full sequence is sent to the rover. The user accesses 

the data received through the downlink into the remote WITS database. This data 

includes the robot position and images from the navigation stereo cameras, the 

panoramic stereo cameras and other sensors.  

B. One to Many. Some Internet telerobotic systems permit one user control for 

multiple robots (one-many). As an example, Luo has designed an automatic guided 

intelligent wheelchair system for hospital automation through the Internet [Luo et al., 

1998]. Each mobile robot and the intelligent wheelchairs are individual agents in the 

hospital automation system. When the human operate orders a command to help one 

user/wheelchair, the control center starts to broadcast a message to all agents to look 

for a server agent for completing this task. 

C. Many to One. Few researchers propose that multiple users control a single 

robot (many-one). One example is that Goldberg et al. [2000] propose the 

collaborative teleoperation system. The system allows many users to simultaneously 

teleoperate an industrial robot arm through the Internet. Their idea is that many 

people are working together to control a robot, and each user monitors different 

sensors and submits control inputs based on the different sensor information. Finally, 

all control inputs must be combined to a single control signal for the robot. 

D. Many to Many. Several researchers have devoted efforts to the multiple-users-

control-multiple-robots system (many-many). For example, Lo and Liu et al [2004] 

developed a system that enables multiple operators at different sites to cooperatively 

control multiple robots with real-time force reflecting via the Internet. The operator in 

China helped the operator in the U.S. to grasp the object by controlling the mobile 

cameras serve as “mobile eyes” for the operator in the U.S.   

Internet-based telerobotics has also attracted interests among researchers in Hong 

Kong and on the Chinese mainland. The Chinese University of Hong Kong (CUHK), 

jointly with the universities from the United States, Japan and Chinese mainland, has 

developed Internet-operated, supermedia-enhanced telerobotic systems that includes 

the bilateral control of mobile manipulators [Elhajj, et al.,2003; Lo et al, 2004]. 

CUHK also designed an Internet-based Pulse Palpation system for Chinese medicine 
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[Xiang, et al., 2002]. The City University of Hong Kong has exploited a human-robot 

interface that uses agent communication with an XML-based markup language 

[Makatchev, et al., 2000], as well as investigating dynamic Internet performance and 

establishing an Internet-based control transmission model. On the mainland, 

Tsinghua University (TU) has combined an event-based direct control method with a 

graphic predictive simulation to achieve an Internet-based multi-operator dual-arm 

teleoperation system [Jinshi Cui, et al., 2002] as well as a robot arm that can be 

teleoperated through the Internet to write Chinese characters. The Harbin Engineering 

University (HEU) investigated the round trip delay (RTT) of Internet-based 

teleoperation [Ye, et al., 2002] and a UDP-based protocol for data transmission [Liu 

et al., 2002].  

Apart from for operating in hazardous environments that are traditional 

telerobotic areas, Internet telerobotics has opened up a new range of real-world 

applications, involving tele-manufacturing, tele-training, tele-surgery, museum guide, 

space exploration, disaster rescue, house cleaning, and health care. 

On 17th Sep. 2002, the “Pyramid Rover” robot entered the queen’s tomb in the 

ancient Egypt pyramid to explore beyond a long-unopened door. This robot was 

controlled by the traditional direct control of an operator through the reliable cable 

connection. Worldwide, people watched the event via a live satellite television 

broadcast. However, if you explore the pyramids by yourself over the Internet, how is 

your feeling! 

 

1.1.2 Research problems on Internet telerobotics 

Internet-based robot teleoperation obviates the need for dedicated networks, devices, 

and operators, reduces costs, extends operating distances, allows precious resources 

sharing for public education or academic research, and is accessible from any node 

on the Internet. Although the Internet provides a cheap and readily available 

communication channel for teleoperation, there are still many problems that need to 

be addressed. Figure 1.5(a) shows one example of traditional teleoperation. Figure 

1.5(b) shows one example of Internet-based teleoperation.  
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(a) 

 
(b) 

Figure 1.5: (a) Traditional teleoperation.  The human operator has most of 

the time straight visual contact to the controlled target. Control commands 

are sent electronically through wire or radio; (b) Internet-based 

teleoperation. The human operator holds a haptic device attached to the 

local computer, a robot controlled by the remote computer, and both 

computers communicating via the Internet. 

 

Internet-based teleoperation differs from traditional teleoperation on several 

aspects. These differences are also research problems on Internet telerobotics as 

follows. 

• There is much latency on the Internet: restricted bandwidth, uncertain time delay, 

packet lost, and data error, which is unlike traditional teleoperation where the 

interfaces have fixed delays and guaranteed services. 

• Internet telerobotics must ensure safe operations even if communication breaks 

down. With communication as unpredictable as it is on the Internet, online robots 

require a much higher degree of autonomy than traditional teleoperation. 

• Internet robots require local intelligence (e.g. obstacle avoidance, path planning, 

map learning, objective recognition, etc.) to sense the exploring environments and 

to deal with uncertainties derived from both real world and robots themselves. 
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Human operators provide such intelligence in traditional teleoperation.  

• Internet users require high-quality feedback from remote robots in order to obtain 

satisfactory experience for virtual tele-presence. Traditional teleoperation 

provides human operator direct feedback on the spot. 

• Internet telerobotics requires a mechanism to provide human operators reliable 

hands-on control and other high level commands in order to obtain more 

interactive experience. This is easy for traditional teleoperation without the 

Internet latency.  

• Internet telerobotics requires an intuitive and easy-to-use teleoperation interface 

because Internet robots are typically remotely controlled by many people with 

little expertise and few skills. In contrast, traditional teleoperation are handled by 

trained operators. 

In addition, we compare Internet-based teleoperated robots with autonomous and 

interactive robots. The key difference is the communication between human operators 

and robots. The latter can real-time communicate with humans while humans are able 

to easily know robot’s current surroundings and working status. The former is more 

difficult because the Internet leads to uncertain and unreliable information 

transmission between human operators and teleoperated robots. 

1.2 Research objective and outline 

The research objective of the thesis is to develop a practical telerobotic system for the 

target application: inexperienced Internet users can remotely control a mobile robot to 

perform some complex tasks autonomously (e.g. active map learning, goal-oriented 

navigation) or to interact with human operators in order to explore unknown and 

dynamic environments. To help realize such robotic system, we mainly do research 

on the following aspects: 

1) To investigate and implement the video transmission via the low-bandwidth 

Internet so that the robot’s surroundings can be seen by any remote operators through 

the images captured from an onboard camera.  

2) To develop a new teleoperation approach that can provide interactive control 

interface so that inexperienced operators have better robot teleoperation experiences. 

3) To develop and realize some high-level control commands for the use of 

Internet-based robot teleoperation to navigate the mobile robot that explores 
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unknown environments. 

4) To develop a map learning approach for autonomous robot to actively explore 

unknown indoor environments and build a map based on robot’s sensory information. 

5) To develop a new behavior-based navigation method for mobile robot to 

autonomously search the path and finally arrive at a given goal within unknown and 

dynamic indoor environments which involve local minima (i.e. dead ends). 

There are three phases for the above research. Figure 1.7 shows the design flow 

diagram of our research.  

 
Figure 1.6: The design flow of research outline. 

 

In the first phase, we do the investigations of image transmission over the Internet 

at first, and implement it based on the streaming technology. This work is a 

prerequisite to develop a practical Internet-based teleoperation system so that any 
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authorized users can see the remote robot’s surroundings through the images captured 

from an onboard camera. The robotic programming (see Appendix A) is not an 

important research work, but it is indeed a basic programming work for subsequent 

robotic development. Next a framework for autonomous robot navigation is 

investigated. The framework includes the steps of goal determination, preprocessing, 

behavior design, behavior arbitration, and command fusion. This work is a base for 

the subsequent designs of intelligent control programs so that the mobile robot is able 

to autonomously perform some complex tasks in spite of the uncertainties derived 

from real world and robot itself. 

In the second phase, we implement an interactive teleoperation interface through 

the Internet. A novel teleoperation approach so called telecommanding is proposed.  

Telecommanding involves two different but complementary commands: joystick and 

linguistic commands. Each joystick or linguistic command is defined with multiple 

events (non-time action references) and the corresponding response functions. In this 

phase, we define and realize four joystick commands (UP, DOWN, LEFT, and 

RIHGT) and five linguistic commands (MOVE, COORDINATE, TURN, 

GOTOEND, and WANDER). Another one linguistic command (MAPPING) is 

realized in the third phase. 

In the third phase, we propose a new map learning approach called memory grid 

mapping (i.e. MAPPING linguistic command) to model a priori unknown indoor 

environments. The approach includes a map model, a map update method, an 

exploration (i.e. online path planning) method, and a map postprocessing method. 

Finally, we propose a new behavior-based navigation method called minimum risk 

method to realize an enhanced COORDINATE linguistic command. The method is 

an application of the proposed memory grid map. It is developed to give global 

convergence to a given goal in different indoor environments, including long-wall, 

large concave, recursive U-shape, unstructured, cluttered, maze-like, and dynamic 

environments. 

For each phase, we perform evaluations by specified experiments. In addition, 

public demos and real teleoperation of remote users overseas are performed 

throughout the research period. Another encouraging observation is that we provide a 

website about our telerobotic research during the second phase. From the statistics of 

website visitors, we are able to know the impact of our research to related academic 
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researchers. 

The experiments of the thesis are based on a mobile robot (vehicle) shown in 

Figure 1.6. The robot uses a multifunctional Hitachi H8S-based microcontroller, and 

has a 44cm x 38cm x 22cm aluminum body and a ring of eight forward sonars. The 

control commands are transferred through radio Ethernet devices, and the video/audio 

data is fed back through a set of 2.4GHz frequency A/V transmitter-receivers from a 

pan-tilt-zoom camera mounted on the robot deck.  

 
Figure 1.7:  The Pioneer robot and its accessories. The robot has eight 

forward ultrasonic sensors and an onboard pan-tilt-zoom camera. 

 

1.3 Organization of the thesis 

This chapter introduces the background and research problems of Internet 

telerobotics, proposes the research objective and outline, and states the main 

contributions of the thesis. 

Chapter 2 reviews the related literatures. Section 2.1 introduces a time-delay 

model of Internet-based teleoperation as well as investigations about round-trip time 

and packet lost rate of data transmission via the Internet. Section 2.2 introduces the 

existing teleoperation paradigm: direct control and supervisory control. Section 2.3 

describes two approaches for autonomous robot navigation: SMPA and behavior-

based approach. Section 2.4 introduces the related approaches for real-time map 

building and exploration, and Section 2.5 the related approaches for goal-oriented 

navigation in known and unknown environments. 

Chapter 3 implements a streaming technology based approach for video 

transmission. Two video compression algorithms (WMV9 and MPEG4) under 
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different bandwidth, two video encoding methods (CBR and Quality-based VBR) as 

well as the transmission stability and time delay have been investigated. A test of real 

robot teleoperation using direct control via a 33.6Kbps (modem) Internet connection 

has been done successfully. Finally we compare the performances of different 

approaches for image transmission. 

Chapter 4 proposes a framework of autonomous navigation using fuzzy logic. A 

goal-oriented navigation task, combining with obstacle-avoidance and goal-seeking 

behaviors, is implemented and tested as an example of the proposed framework. 

Finally we discuss pros and cons of the use of fuzzy logic controller as well as 

machine learning technique. 

Chapter 5 proposes a new teleoperation approach so called telecommanding. 

Experiments have been done to test the use of both joystick commands and linguistic 

commands for Internet-based simulated and real robot teleoperation. The advantages 

and disadvantages as well as stability of telecommanding are analyzed. The 

comparisons with direct control and supervisory controls are made as well. 

Chapter 6 proposes a new map learning approach to model a priori unknown 

indoor environment. The efficiency of map learning is investigated. The map 

accuracy under different cell sizes and different map postprocessing is investigated as 

well. Experiments are done for the map learning in different simulation environments.  

Chapter 7 proposes a new navigation method to navigate the robot to a given goal 

within an unknown environment with local minima. Performances of the proposed 

method in long-wall, large concave, recursive U-shape, unstructured, cluttered, maze-

like, and dynamic indoor environments are experimented. A detailed comparison 

with both boundary-following and virtual-subgoal approaches is made. 

Chapter 8 evaluates the research results of the thesis. Public demos and 

teleoperation of authorized users overseas verify the developed telerobotic system. 

The advantages and limitations of the research are discussed. In addition, we provide 

an interesting statistics of our website which has been built to introduce our 

telerobotic system. The results of this statistics are analyzed to show the impact of 

our research. 

Chapter 9 concludes the thesis and suggests possible future researches. 

Appendix A describes the related robotic programming. Appendix B shows one 

newspaper and two magazines, which reported our telerobotic system to the public in 
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Hong Kong. Appendix C gives the snapshots of our website. Appendix D introduces 

the emerging streaming technologies for media transmission through the Internet. 

Appendix E gives a brief introduce of related fuzzy system theory that would be used 

in this thesis. 

1.4 List of contributions 

This section states the contributions of the work in the thesis.  

• Chapter 5 proposes a new teleoperation approach so called telecommanding in 

order to provide an interactive control interface and a complete framework for 

control management and command processing. This work is one of our major 

contributions. Telecommanding involves two different but complementary 

commands: joystick and linguistic commands. It gives more experience of 

interactivity and functionality compared with the existing direct control and 

supervisory control methods. Under the framework of telecommanding, we 

extend our system by realizing more linguistic commands. 

• Chapter 6 proposes a new map learning approach called memory grid mapping in 

order to model a priori unknown indoor environment. This work is one of our 

major contributions. The approach includes a map model, a map update method, 

an exploration method, and a map postprocessing method. The work has 

addressed an important topic in robotics, and has contributed some useful ideas 

such as simple map model, exploration method and map postprocessing method.  

• Chapter 7 proposes a new behavior-based navigation method called minimum risk 

method in order to address local minimum problem faced by goal-oriented robot 

navigating in unknown indoor environments. This work is another major 

contribution. The method is experimentally demonstrated to give global 

convergence to a given goal location, even though it is used in the long-wall, 

large concave, recursive U-shape, unstructured, cluttered, maze-like, or dynamic 

(i.e. with moving human) environments. Compared with the existing boundary-

following or virtual-subgoal approach, the proposed method can deal with more 

complex environments and is able to find the nearest exit to escape from local 

minimum.  

• In addition, the developed prototype system for Internet-based teleoperation turns 
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out to be practical and be feasible to provide the service at university campus or 

exhibition center. 

• Chapter 3 presents a streaming technology based approach for streaming video 

feedback from remote robots. This work is a less important part. But the work is 

beneficial for the researchers in the field of Internet telerobotics to adopt similar 

techniques in order to improve image transmission and make the Internet-based 

teleoperation usable. 

• Chapter 4 proposes a framework for autonomous robot navigation using fuzzy 

logic. This framework involves goal determination, preprocessing, behavior 

design, behavior arbitration, and command fusion. The work in this chapter 

focuses on the development of a simple and practical navigation framework that 

is useful for easy realization of building robust control programs. Although this 

work is a less important part, it is a base for the subsequent research to implement 

some complex tasks. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Time delay and data lost of the Internet 

Different from traditional teleoperation systems using private transmission media, 

Internet telerobotics uses the Internet, which is a public transmission media on which 

unknown numbers of end users share the bandwidth concurrently. Internet robots 

encounter the uncertain transmitting time-delay and data-loss problems, which 

always makes the remote control becoming unstable or failing. A diagram of typical 

Internet-based teleoperation is drawn in Figure 2.1 [Luo and Chen, 2000]. The total 

time of performing a teleoperation per cycle is t1 + t2+ t3 + t4, where the four types 

of time delay are:  

1) t1: time delay of transmitting the remote information (e.g., images, sensory 

data, robot’s status data) from the robot to the operator;  

2) t2: time delay of making control decision by the operator;  

3) t3: time delay of transmitting a command from the operator side to the robot;  

4) t4: execution time of the robot to perform a command. 

 
Figure 2.1: The diagram of a typical Internet-based teleoperation. [Luo and Chen, 

2000] 

 

Assume “m” is the degree of robot’s autonomy, the higher the “m” degree 

representing the higher degree of autonomy (i.e., to simplify the problem, operator 

sends one command and the robot performs “m” nonredundant actions to complete it), 

and m=1 representing that the robot has no autonomy (i.e., one command and one 

primitive action). If we assume that each of the four delays is always a constant, and 
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the desired task requires the robot to perform “n” primitive actions (i.e., complexity is 

n) to complete it, the total time spent for completing a task is (n/m)*(t1+t2+t3)+n*t4.  

As a result, the task completion time is inversely proportional to m. 

Unfortunately, communication through the Internet t1 and t3 are usually 

unpredictable. The latency of the Internet usually contains the uncertain round trip 

delay and the data loss rate. Luo and Chen [2000] have repeatedly tested the 

transmitting efficiency of the network by sending 64 bytes data every time from their 

Web server in laboratory to different remote Web servers. The resulting statistics of 

round-trip time and data-lost rate are shown in Table 2.1, where Min. represents the 

minimum round trip delay, Max. is the maximum, and Avg. is the average delay of 

total tests. It can be seen that the latency of the Internet not only contains the serious 

and uncertain round-trip delays but also the data-loss rate.  

In the TCP/IP protocol, once the data is lost, the remote site will require a 

retransmission. This leads to a longer delay of total transmission time. Assume the 

data-lost rate is “ p” and the average round-trip delay is “R” s; the expected time of 

transmitting a control command with 64 bytes can be roughly estimated by 

R/2*(1+p+p2+p3+…) = R/(2*(1-p)) second. In a local area network (LAN) this value 

(several ms) is small, but for transmission across the Internet, it cannot be guaranteed. 

Teleoperation of a “puppet like” robot via the high latency Internet is not suitable, but 

most of the existing systems do this. The long transmission delay may result in the 

failure of remote controls in a complex task or, more seriously, endanger the robot 

and its workspace. 

TABLE 2.1:  Round-trip time and data lost rate of transmitting data between 

internal Web server and remote others. [Luo and Chen, 2000] 

Web Address Min. (ms) Avg.(ms) Max.(ms) Loss Rate 

www.ccu.edu.tw (South R.O.C) 1 4 20 < 1% 

www.ncku.edu.tw (South R.O.C) 3 4 19 2% 

www.ntu.edu.tw (South R.O.C) 11 17 50 20% 

www.ncsu.edu (NCSU) 331 375 1616 46% 

www.cmu.edu (CMU) 336 358 1461 50% 

www.ynu.ac.jp (Japan) 440 493 2576 69% 

www.cam.ac.uk (UK) 436 772 4468 51% 

www.fu-berlin.de (Germany) 446 860 5505 42% 
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2.2 Teleoperation paradigm 

In general, the teleoperation paradigms of Internet telerobotics can be divided into 

two types: direct control, supervisory control. Most of Internet-based teleoperation 

systems are basic extensions of these two paradigms. 

A. Direct Control 

In the direct control paradigm, the human operator can control the mobile robot 

directly by sending the primitive commands (e.g. force or velocity commands) and 

necessary parameters continuously through the Internet. The robot will execute the 

commands without any intelligence, and it maintains continuous connection with the 

remote controller. Direct control has obvious drawbacks such as reduced stability of 

the control loops due to uncertain long delay of the Internet. To alleviate the 

problems derived from the Internet latency, three main approaches are developed. 

1) Predictive aiding approach. With time delay, received remote information may 

be invalid to represent the current remote situation. The predictive aiding approach is 

developed to extrapolate forward environmental information and manipulator states 

in time by stochastic predictors for displaying on the operator’s monitor.  [Kikuchi, et 

al., 1999; Schulz, et al., 1998]. 

2) Simulating and planning display approach.  This approach is developed to use 

local simulated manipulator in order to assist the human operator to control the 

remote robot more intuitively. The operator can control the simulated manipulator 

directly, and the computer stores the sample state-command pairs in the memory 

buffer. When the operator has finished a task by a local simulated device, the queued 

data will be sent to the actual manipulator to execute. The time and position clutching 

method [Conway, et al., 1990] is such an example of this approach. 

3) Event-based approach. The general idea of non-time based control is to model 

the system and the trajectory as functions of a non-time based variable, which is 

called motion reference or action reference. It is also usually denoted as and called 

the event-based action reference. The stability of teleoperation systems with non-time 

based motion reference is guaranteed if their local robot controllers are stable and the 

non-time based motion reference is a non-decreasing function of time. Such non-time 

based reference is usually related directly to real time sensor measurements or the 

task. The advantage of this approach, which differentiates it from the other 
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approaches in the literature, is that stability is proven independently of the specific 

human operator or the statistics of time delay [Xi & Tarn, 2000].  

B. Supervisory Control 

In supervisory control paradigm, the remote robot operates in a large autonomous 

mode and only interacts with the human operator until the robot encounters a 

situation it cannot handle. The robot requires only specifying its new desired 

destination or state. Therefore, there is no need for high speed continuous 

communication. Because of the latency of the Internet and the requirement for safety 

of a mobile robot, the supervisory control is essential for the Internet application. 

Many researchers establish the local intelligence of mobile robots, such as collision 

avoidance, path planning, self-referencing, object recognition, and so on. The RHINO 

and MINERVA [Thrun, et al., 1999] tour guide robots are operated at this level. 

Internet users can control the robots to visit an exhibition position via the Web by 

clicking the marked position on the map. Therefore, the communication content from 

the user to the robot only consists of the goal command, and the sensory information 

of the remote environment is not really necessary when the robot is executing the task.  

2.3 Autonomous robot navigation 

In general, robots can be categorized as two types: mobile manipulators with haptic 

feedback and mobile vehicles for navigation. This thesis only addresses the Internet-

based teleoperation of wheeled robot for navigation. Although human intelligence is 

important in robot teleoperation systems, it is essential for local robot to have 

autonomous capabilities to handle unexpected events and dynamic environmental 

changes.  

The goal of autonomous mobile robotics is to build physical systems that can 

move purposefully and without human intervention in real world. On the one hand, 

traditional robots lack the ability to provide flexibility and autonomy: typically, 

perform preprogrammed sequences of operations in highly constrained environments, 

and are not able to operate in new environments or to face unexpected situations. On 

the other hand, there is a clear emerging market for truly autonomous robots. Possible 

applications include intelligent service robots for offices, hospitals, and factory floors; 

maintenance robots operating in hazardous or inaccessible areas; domestic robots for 
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cleaning or entertainment; autonomous and semi-autonomous vehicles for help to the 

disabled and the elder and so on. 

Any approach to control a dynamic system needs to use some knowledge, or 

model, of the system to be controlled. In the case of a robot, this system consists of 

the robot itself plus the environment in which it operates. Unfortunately, while a 

model of the robot on its own can normally be obtained, these environments are 

characterized by the ubiquitous presence of uncertainty, and we are often not able to 

precisely model or quantify this uncertainty. First, the uncertainty induced by the 

presence of people. People move around, and they may change the position of objects. 

Additionally, results of the robot's movement and sensing actions are influenced by a 

number of environmental conditions, which are hardly accounted for. For example, 

the error in the robot's motion may change as a result of a wet floor; and the 

reliability of distance measured by a sonar sensor is influenced by the geometry and 

the reflectance properties of the objects in the environment. 

A common strategy to cope with this large amount of uncertainty is to abandon 

the idea of completely modeling the environment at the design phase, and to endow 

the robot with the capability of building this model by itself on-line. This strategy 

leads to the so-called SMPA(Sense-Model-Plan-Act) approach [Saffiotti, 2000] (see 

Figure 2.2(a)). The robot uses exteroceptive sensors, like a camera or a sonar sensor, 

to observe the state of the environment; it uses proprioceptive sensors, like a compass 

or shaft encoders on the wheels, to monitor the state of its own body parts. By using 

the exteroceptive sensors, the robot acquires a model of the workspace as it is during 

the moment when the task must be performed. From this model, a planning program 

builds a plan that will perform the given task in the given environment. This plan is 

then passed to a lower-level control program for execution.  

But there are a number of problems using the SMPA approach to deal with real-

world environments. The model acquired by the robot is incomplete and inexact, due 

to the uncertainty in perception. Moreover, this model is likely to rapidly become out 

of date in a dynamic environment, and the plan built from this model will then turn 

out to be inadequate for the environment actually encountered during execution. The 

fact that the modeling and planning processes are usually computationally complex 

and time consuming exacerbates this problem, because the feedback loop with the 

environment must pass through all these processes "Sense-Model-Plan-Act" [Cang 
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Ye, et al., 2000]. 

 
                              (a)                                                     (b) 

Figure 2.2:  (a) SMPA approach architecture; (b) Behavior-based approach 

architecture. The lower layer uses perception to dynamically adapt plan 

execution to the environmental contingencies. The execution module must 

simultaneously consider demands coming from the plan and from the 

environment. 

 

A modern approach, so-called behavior-based approach [Arkin, 1998], is shown 

in Figure 2.2(b). The general feeling is that planning should make as few assumptions 

as possible about the environment actually encountered during execution; and that 

execution should be sensitive to the environment, and adapt to the contingencies 

encountered. To achieve this, perceptual data has to be included into the executive 

layer. This apparently simple extension has two important consequences. First, it 

makes robot's interaction with the environment much tighter, since the environment is 

now included in a closed-loop with the (usually fast) execution layer. Second, the 

complexity of the execution layer has to be greatly increased, since this needs now to 

consider multiple objectives: pursuing the tactical goals coming from the planner, and 

reacting to the environmental events detected by perception.  

In behavior-based approach, each behavior fully implements a control policy for 

one specific sub-task, like following a path, avoiding sensed obstacles, or crossing a 

door way. Simple behaviors are combined in order to produce a complex strategy 

able to pursue the strategic goals of the agent, while effectively reacting to 

contingencies. 
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Fuzzy logic controllers provide a means of transforming linguistic control 

strategy based on expert knowledge into an automatic control strategy. It appears to 

be very useful for handling problems that are too complex to be analyzed by 

conventional quantitative techniques or when the available sources of information 

provide qualitative, approximate, or uncertain data. Reactive navigation of a mobile 

robot falls into this class of problems that fuzzy control system copes well. 

2.4 Map building and exploration 

To efficiently carry out complex missions in indoor environments, autonomous 

mobile robots must be able to acquire and maintain models of their environments. The 

problem of acquiring models is difficult and far from being solved. The following 

impose practical limitations on a robot’s ability to learn and use accurate models. 

1) Sensors. Sensors often are not capable of directly measuring the quantity of 

interest. For example, ultrasonic sensors measure the distance to obstacles, 

whereas for navigation one might be interested in assertions such as “there is a 

door in front of the robot”. 

2) Perceptual limitations. The perceptual range of most sensors (e.g. ultrasonic 

sonars, cameras) is limited to a small range around the robot. To acquire global 

information, the robot has to actively explore its environment. 

3) Sensor noise. Sensor measurements are typically corrupted by noise. Often, the 

distribution of this noise is not known. 

4) Drift/slippage. Robot motion is inaccurate since odometric errors accumulate over 

time. For example, even the smallest rotational errors can have huge effects on 

subsequent translational errors when estimating the robot’s position. 

5) Complexity and dynamics. Robot environments are complex and dynamic, making 

it impossible to maintain exact models and to give prediction accurately. 

6) Real-time requirements. Time requirements often demand that internal models 

must be simple and easily accessible. For example, accurate fine-grain CAD 

models of complex indoor environments are often inappropriate if actions have to 

be generated in real-time. 

There are two major representations for mapping indoor environments [Victorino 

et al, 2003; Meyer & Filliat, 2003]: topological and grid-based. Topology maps 

permit efficient path planning and have low space complexity, but it is often difficult 
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to learn and maintain accurate and consistent topology maps in large-scale 

environments, particularly if sensor information is ambiguous [Thrun, 1998]. Grid-

based maps have the disadvantage of being space-consuming, but they can tolerate 

uncertainties in sensory data and are easier to build and maintain, providing more 

opportunities to satisfy the requirements of real-time path planning and execution. 

The grid-based map model represents the robot’s work area by a two-dimensional 

array of square elements denoted as cells. Each cell contains a certainty value to 

measure the confidence that an obstacle exists within the cell area. Certainty values 

are updated by a function that takes into account the characteristics of the sensors.  

In robotics, there are several different grid-based representations to be used to 

represent the environment. The main difference among them is the function used to 

update the cells, for example: probability [Thrun, 1998b; Yamauchi et al., 1998; 

Wallner & Dillmann, 1994; Dieguez et al., 2003; Song & Chang, 1999; etc.], fuzzy 

possibility [Oriolo et al., 1998], frequency [Borenstein & Koren, 1991; Edson et al. 

2004] and so on. 

Probability values are commonly used in grid-based maps.  The first grid-based 

method to use probability values to measure the spatial uncertainty generated by 

sonar sensors was Occupancy grid [Moravec & Elfes, 1985; Elfes, 1987; Moravec, 

1988]. Thrun [1998] used an occupancy-grid framework to implement an incremental 

mapping scheme. The probability of each cell being occupied is updated using the 

Bayes rule. This probability is computed using a neural network that has been trained 

by back-propagation in a known environment. Thrun makes the additional hypothesis 

that walls are orthogonal. Such a hypothesis limits the estimation error in the robot’s 

direction to values that permit local map-matching and efficient correction of the 

robot’s position estimate. Thrun also resorts to an exploration scheme that allows the 

robot to drive towards unexplored areas. Yamauchi et al. [1998] provide a similar 

scheme but without using the orthogonal walls assumption. Their computation of 

occupancy probabilities is based on the combination of laser-scans and sonar-sensor 

values. This combination is designed to simultaneously avoid the use of spurious 

measurements from the sonar-sensors, and to filter too high laser-scan values that 

arise when the laser ray is targeted above the obstacles. The exploration is directed 

toward the closest frontier between explored and unexplored areas. Wallner and 

Dillmann [1994] construct local certainty grids around new detected obstacles. The 
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methods allow the combination of a parametric description of known obstacles with 

grid-based mapping. Grid probabilities result from the information obtained from 

ultrasonic range sensors and an active stereo-vision system. This approach combines 

cyclic path replanning and grid refinement.  

Oriolo et al. [1997; 1998] proposed a grid-based map that was defined as the 

fuzzy set of unsafe cells whose membership function quantifies the possibility for 

each cell occupied by some obstacles. Fuzzy set operators are used to process 

ultrasonic sensor data, producing a grey-level bitmap that provides risk information 

for each cell. On a fuzzy map, A*-based path planning is performed by searching for 

optimal paths from the current robot location to the desired goal. 

Koren & Borenstein [1991] used frequency values to indicate the measurement of 

confidence that a cell is occupied by an obstacle. Their histogramic in-motion 

mapping approach uses a very simple metric sonar model that assumes that a single 

point in the sonar’s direction is detected at the distance measured by the sonar. The 

frequency value of the cell containing at that point is simply increased, while the 

frequency values of the cells between the robot and that point are accordingly 

decreased by a smaller value. Edson et al. [2004] adopted a similar scheme. This 

approach has the advantage of highly efficient computation.  

2.5 Goal-oriented navigation in unknown environment with 

local minimum 

The goal-oriented autonomous navigation is a robot task that is commonly required in 

Internet-based teleoperation systems such as the office-exploring robot Xavier and 

museum tour-guide robots RHINO and MINERVA. This task calls for a robot to be 

given a goal position and for the robot then to arrive at the goal autonomously while 

to avoid any static or dynamic obstacles in its path. One suggested solution is to use 

an approach that combines both global path planning and path tracking [Huh et al, 

2002; Ryu & Yang, 1999; Meyer & Filliat, 2003]. This approach guarantees global 

convergence to the goal. We call this scheme “heuristic goal-oriented navigation”. 

The key precondition of heuristic goal-oriented navigation is to obtain the requisite 

environmental knowledge in advance. 

Unfortunately, the characteristics of real world applications have created a 
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number of difficulties in applying an approach that uses heuristic goal-oriented 

navigation. First, in general, prior knowledge about an environment may be 

incomplete, uncertain, imprecise, and perhaps even entirely unavailable. Second, the 

dynamics of real-world environments are typically complex and unpredictable. A 

third difficulty is created by the fact that robot tasks (e.g. Mars exploration) are often 

real-time and non-repetitive.  

An alternative scheme is one that we call “myopic goal-oriented navigation”. By 

“myopic” we mean that the robot is moving in an environment but without prior 

knowledge about it. The popular control strategy for autonomous navigation, an 

advance on the early SMPA (Sense-Model-Plan-Act) approach, takes a so-called 

behavior-based approach [Arkin, 1998]. Local path-planning behaviors use local 

sensory information in a largely reactive fashion. They are much simpler to 

implement since they typically map the sensor readings directly to actions. Specific 

examples include potential-field methods [Tsourveloudis et al., 2001] and neural-

fuzzy approaches [Rusu et al., 2003; Godjevac and Steele, 2000]. None of these 

examples, however, guarantee global convergence to the goal because they are 

susceptible to get trapped in local minima (or dead ends) of the environments. 

In the literatures [Maaref & Barret, 2002; etc.], the local minimum problem, also 

called the deadlock, dead end or limit-cycle problem, has been addressed using what 

we categorize as two types of approach: the boundary-following approach, and the 

virtual subgoal approach. Boundary-following approaches [Huang & Lee, 1992; 

Kamon & Rivlin, 1997; Lim & Cho, 1998; Krishna & Kalra, 2001; Maaref & Barret, 

2002; Chatterjee & Matsuno, 2001] have a common control structure. Initially the 

robot moves directly toward the goal using a normal navigation module. When the 

robot judges that the context is satisfying a detection criterion (e.g. an obstacle is hit), 

it follows the obstacle boundary until an escape criterion is satisfied. In order to 

detect and escape from the local minimum, boundary-following approaches flexibly 

change the navigation module by judging the detection and escape criterion. Virtual 

subgoal approaches [Pin & Bender, 1999; Xu, 2000; Xu & Tso, 1999] have only one 

navigation module. When a detection criterion is satisfied, a new subgoal is set to 

guide the robot in escaping from the local minimum. When an escape criterion is 

satisfied, the original goal is recovered. 
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CHAPTER 3. VIDEO TRANSMISSION USING A 

STREAMING TECHNOLOGY BASED APPROACH 

This chapter investigates and implements video transmission through the Internet 

from the robot server to user clients.  This work is a prerequisite to develop a practical 

Internet-based teleoperation system so that any authorized Internet users any where 

are able to see the remote robot’s surroundings through the images captured from an 

onboard camera. It is desired that the client users under different Internet bandwidth 

can receive stable and continuous video images with high resolution. Emerging 

streaming technologies (e.g. MPEG4, RTP, MMS) make it possible to transfer 

multimedia perception information with good quality of service (QoS) through the 

Internet. 

3.1 Introduction 

The most intuitive and informative way to obtain remote robot’s surroundings and 

improve the user experience of virtual tele-presence is via vision feedback. 

Researchers have approached this problem in a variety of ways. Early researchers 

used a picture transmission scheme (e.g. JPEG or GIF) or hybrid image and virtual 

reality [Goldberg et al, 2000; Simmons et al, 2000; Thrun et al, 1999; Schulz et al, 

2000; etc.]. The drawback of picture transmission is the very low frame rate and large 

time delay (over 10-20s). A more serious problem is that Internet performance 

degrades, such as reductions in bandwidth, may cause service-stop errors. Researchers 

[Barbera et al, 2001; Safaric et al, 2003] have now begun to use video conferencing 

systems instead of picture transmissions, but the crucial video coding algorithms of 

these systems are obsolete (e.g. H.261, H.263). The best current candidates for 

transferring multimedia perception information with the best quality of service (QoS) 

through the Internet are emerging streaming technologies such as MPEG4, RTP, and 

MMS [Mack, 2002]. 

The rest of this chapter is organized as follows. Section 3.2 proposes and 

implements an approach that uses the emerging streaming technology for video 

transmission. Section 3.3 shows the experimental results, involving the real robot 
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teleoperation over a low-bandwidth Internet connection. Section 3.4 makes a 

comparison with some techniques used by other telerobotic systems. The final section 

summarizes the chapter. 

3.2 A streaming technology based approach  

This section proposes a streaming technology based approach for Internet-based robot 

teleoperation as shown in Figure 3.1.  Internet users (clients) remotely control a robot 

in response to live streaming video captured by the camera mounted on the robot. The 

robot server connects the robot and camera over a wireless channel, obviating the 

problems associated with cables. The streaming server captures and encodes the real-

time video from the camera on the robot under the instructions of the robot server. 

The compressed video images are streamed to transfer to the master client and slave 

clients. The service of robot server and streaming server can be distributed from the 

same computer to the Internet. 

 
Figure 3.1:  Internet-based robot teleoperation using streaming 

technology for video transmission. 

 

Only one master client dominates the full control privilege to interact with the 

robot server through the Internet. The robot server interprets and activates the 

intelligent robot navigation algorithms, as well as the low-level motion control of the 

robot via the wireless channel. The remote control includes the pan-tilt-zoom 

commands of the camera on the robot. The other slave clients can simultaneously 

watch the streaming video using the streaming player, but have no control privilege 

unless the master client hands over his privilege to another one client.  
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Two stream transmission schemes can be adopted: "push" and "pull". In a push 

scheme, the streaming server actively pushes the encoded stream media to the clients. 

If the clients do not work, this scheme has the potential to consume lots of network 

resources. As a result, we have adopted the pull scheme where the streaming server 

listens to a predefined port, and transfers the stream video after it receives a request 

from the clients. 

There are two video encoding methods that can be applied to a live broadcast, 

Constant Bit Rate (CBR) encoding and Quality-based Variable Bit Rate (VBR) 

encoding. CBR encoding allows us to specify the average bit rate that we want to 

maintain and to then set the size of the buffer. The bit rate will fluctuate across the 

stream, but the fluctuations are constrained by the buffer size.  Quality-based VBR 

allows us to specify a desired quality level (from 0 to 100), then during encoding the 

bit rate fluctuates according to the complexity of the stream. A higher bit rate is used 

for intense detail or high motion, and a lower bit rate is used for simple content. We 

compare the two encoding methods in the experiment, and choose the CBR encoding 

method. 

Microsoft provides a complete series of software development kits (SDKs), the 

Windows Media Series SDK [http://www.microsoft.com/windows/windowsmedia/]. 

The SDK helps researchers to develop their streaming applications based on Windows 

Media Series 9. Using the SDK, we have implemented a prototype system. 

3.3 Experimental results 

This section reports the experiments. Section 3.3.1 investigates the compression 

performance of two video codec under different network bandwidth. Section 3.3.2 

investigates the transmission performance of two video encoding methods under 

different network bandwidth. Section 3.3.3 investigates the transmission stability and 

time delay. Section 3.3.4 shows a real robot teleoperation through a low-bandwidth 

Internet connection via a telephone line.  

3.3.1 Compression performance of two video codec 

We investigate the compression performance of two video codec WMV9 and MPEG4.  

WMV9 denotes Windows Media Video 9 which is involved in windows media 

encoder V9 [http://www.microsoft.com/windows/windowsmedia/].  MPEG4 implies 



CHAPTER 3.  Video Transmission Using a Streaming Technology Based Approach
 

 

 29

ISO MPEG4 video codec [ISO, 2002], which is implemented using QuickTime Player 

Pro [http://www.apple.com/mpeg4/]. We have used these two video codec to 

compress a 19-second video clip, operating under different network bandwidths. 

Table 3.1 gives the compression results. In Table 3.1, we categorize the potential 

audiences into five types with capacities ranging from a 28kbps dial-up modem to a 

150kbps LAN or DSL audience. Note that the actual stream media should be lower 

than the theoretical network bandwidth. For example, in order to ensure stable 

performance, a 50kbps media stream is provided for a 64kbps Single ISDN audience. 

 

TABLE 3.1: Network Bandwidth versus Video Codec.  Note: fps means 

frame per second.  * means there is no way to produce a stream at 20kbps. 

The 19-second video clip simulates the rapid movement of the robot in the 

campus. The source resolution is 320×240, the frame rate is 25 fps, and the 

data size of uncompressed RGB24 format is 110MB. 

 WMV9 MPEG4 

20 kbps (28k dial-up modem, 3 fps) 50 KB * 

34 kbps ( 56k dial-up modem, 12 fps) 92 KB 183 KB 

50 kbps (64k Single ISDN, 15 fps) 131 KB 193 KB 

100 kbps (128k Dual ISDN, 15 fps) 240 KB 260 KB 

150 kbps (150k LAN or DSL, 15 fps) 384 KB 378 KB 
 

The results of Table 3.1 show that at a low bandwidth (< 100kbps) WMV9 is 

more effective than MPEG4, while at a higher bandwidth, over 100kbps, their 

performance is similar.  More importantly, it is feasible to highly compress the video 

images for streaming, which is discussed further in the following.  

3.3.2 Transmission performance of two video encoding methods 

We investigate the transmission performance of two video encoding methods, i.e. 

CBR and Quality-based VBR. We conducted the experiment, using WMV9 as the 

video codec and using MMS (TCP) as the streaming protocol at the side of streaming 

server, with CBR and Quality-based VBR encoding methods at different bandwidth. 

The source data was a 19-second campus video clip, broadcast ten times for a total of 

190 seconds. We measured the actual receiving bit rate every second at the side of the 
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streaming client. Figure 3.2 shows an early user interface of streaming client. The 

experimental results are shown in Figure 3.3. 

 
Figure 3.2: An early user interface of streaming client. 

 

Quality-based VBR performs well at a high bandwidth but poor at a lower 

bandwidth. The curve as seen in Figure 3.3(a) is well-regulated. This is the reason that 

Quality-based VBR maintains a consistent quality across all streams at a high 

bandwidth (over 2.5Mbps). The wave crest and trough represent the repeated scene 

details. At a lower bandwidth (about 100kbps), however, playback performance is 

poor as seen in Figure 3.3(b). The advantage of Quality-based VBR encoding is that 

the quality remains consistent across all streams for which the specified quality setting 

(i.e. quality level ranging from 0 to 100) is the same. The disadvantage is that we 

cannot predict the file size or bandwidth requirements of the encoded content. We 

conclude that Quality-based VBR is not suitable for the live broadcast on Internet-

based teleoperation.  
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(a) Quality based VBR, quality level 100 
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      (b) Quality based VBR, quality level 50 
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(c) CBR, 100kbps (campus Internet), 15fps  

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180

Time (s)

B
it

ra
te

 (
kb

ps
)

 
 (d)CBR, 20kbps (33.6kbps modem), 5fps 

Figure 3.3: Transmission performance of two video encoding methods (CBR 

and Quality-based VBR). The source data was a 19-second campus video clip, 

broadcast ten times for a total of 190 seconds. Note that different frame rate 

in (c) and (d) is used to ensure the transmission stability. 
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CBR encoding method performs well under 100kbps (see Figure 3.3(c)) and 

20kbps bandwidth (Figure 3.3(d)). The content quality fluctuates to ensure that the 

buffer does not overflow or underflow. The advantage of CBR encoding is that the bit 

rate and size of the content are known before encoding, so we can predict the final 

size and bandwidth requirements of the encoded content. Of course, when content 

varies in complexity, the encoding quality is not constant. Using CBR encoding on 

Internet-based teleoperation ensures that the video images are streamed smoothly. 

3.3.3 Transmission stability and time delay 

We investigate the transmission stability and time delay under different Internet 

bandwidth by adjusting the video codec parameters. A campus video (320×240 

resolution) broadcasts live from the streaming server to the client for playback about 5 

minutes per test. Two typical bit rates (100kbps and 20kbps) are the encoded rates for 

different Internet connection. At the streaming server, WMV9 is used as the video 

codec, MMS is used as the streaming protocol, and CBR method is used for video 

encoding. The time delay is estimated for communication between the streaming 

server and the streaming client. The results are given in Table 3.2. 

Whatever the Internet bandwidth is, increasing the codec buffer or decreasing the 

number of key frames can improve the system performance of transmission stability. 

The time delay is caused mainly by the buffer time of both encoder and player, which 

is used to guarantee the quality of service (QoS). Currently, most Internet users in the 

world use dial-up modem, ISDN, DSL or LAN and so on. The speed varies from 

28kbps to 3Mbps or more. The results in Table 3.2 show that it is possible for all 

kinds of users to remotely monitor the robot surroundings via the video feedback.  



CHAPTER 3.  Video Transmission Using a Streaming Technology Based Approach
 

 

 33

Table 3.2: Transmission stability and time delay under different Internet 

bandwidth. Encoder buffer 5s means that the streaming server needs to cache 

5 seconds video data for transmission. Player buffer 5s means that the 

streaming client needs to cache 5 seconds video data for playback. Key frame 

1s means that the interval of two key frames is 1 second. Buffering counts 7 

means that the streaming client may buffer 7 times during 5 minutes playback, 

which represents an unstable transmission. Buffering counts 1 means that the 

streaming client only buffers once at the beginning, which represents a stable 

transmission without obvious interruption.    

Video codec parameters Stability & time delay 

100Kbps(campus Internet), Encoder buffer 
3s, Player buffer 3s, key frame 8s 

Buffering Counts: 7 
Performance: unstable 
Time Delay: 10 s 

100Kbps(campus Internet), Encoder buffer 
5s, Player buffer 5s, key frame 8s 

Buffering Counts: 1 
Performance: stable 
Time Delay: 12 s 

100Kbps(campus Internet), Encoder buffer 
3s, Player buffer 3s, key frame 1s 

Buffering Counts: 1 
Performance: stable 
Time Delay: 10 s 

20Kbps(33.6kbps modem), Encoder buffer 
3s, Player buffer 3s, key frame 1s 

Buffering Count: 15 
Performance: unstable 
Time Delay: 10 s 

20Kbps(33.6kbps modem), Encoder buffer 
5s, Player buffer 5s, key frame 1s 

Buffering Count: 13 
Performance: unstable 
Time Delay: 12 s 

20Kbps(33.6kbps modem), Encoder buffer 
5s, Player buffer 5s, key frame 4s 

Buffering Counts: 1 
Performance: stable 
Time Delay: 12 s 

 

3.3.4 Robot teleoperation through low-bandwidth Internet 

We set up a real robot teleoperation through a low-bandwidth Internet connection. 

The robot server and streaming server (see Figure 3.1) are connected to our campus 

Internet. The master client (human operator) is connected to the Internet via a 

telephone line using a 33.6Kbps dial-up modem. With the streaming video feedback, 

the human operator can see the remote robot's surroundings for global information. 
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The operator is able to remotely control the robot to explore areas of interest, and also 

able to observe details via the camera pan-tilt-zoom movement. Although there is a 

large time delay (about 12 seconds), we did succeed in remotely controlling the robot, 

using direct control to navigate in a complicated hall with many desks and walls (See 

Figure 3.4). Recently, a latest teleoperation from Canada (a user made connection to 

the Internet via a 56kbps dial-up modem) to Hong Kong has further demonstrated the 

feasibility of the use of streaming technology on the Internet telerobotics.  

    

    
Figure 3.4:  The robot to be remotely controlled to navigate in a complicated hall. 

 

3.4 Comparison with other approaches for image feedback 

We compare the projects of Internet telerobotics according to their approaches to 

image feedback. Table 3.3 gives the comparison result.   

There are a number of advantages of streaming technology based approach 

compared with other approaches for image feedback. Some of them are as follows: 

• Better Quality of Service: Streaming technology, based on WMV9 or MPEG4 

compression algorithms, can greatly improve the quality of service over a low-

bandwidth and uncertain Internet transmission channel, producing a more stable 

system, higher image resolution, and smoother image streams. 

• Multicast: Streaming technology allows many Internet users to monitor the remote 

robot’s surroundings simultaneously, without reducing quality of service or 

increasing network bandwidth. This function is derived from an attractive feature 

of streaming technology: Multicast. When using multicast streams, the streaming 

server generates one single stream that allows multiple player-clients to connect 
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with it. Users watch the content from the time they join the broadcast. The client 

is connected to the stream rather than to the server.  

• Extensibility: Streaming technology can incorporate multiple types of data into a 

single transmission stream. This function will be an advantage if future 

applications of Internet telerobotics need more multimedia information feedback, 

such as audio. 

 

TABLE 3.3:  Comparison using different approaches for image feedback 

Project name Test 
environment Technology Image size Efficiency 

Mercury (1994) 14.4K Modem 
Internet GIF client pull 192 × 165 1 frame every 60 

seconds 

Xavier (1995) 
Lowest 

bandwidth 
Internet 

GIF server push Low 
resolution 

1 frame every 20 
seconds 

EPFL (1998) LAN GIF or JPEG 
server push 200 × 150 10-15fps 

BGen (2001) Internet Video conference 
using H.261 176 × 144 7.5 frames per 

second (fps) 

Essex (2001) Internet JPEG server push 200 × 150 7-8 fps/ 
total 50 frames 

VLAB (2003) Internet Video 
conferencing unknown 3-4 fps 

Our system 
(2003) 

33.6K Modem 
Internet 

Streaming 
technology using 

WMV9 or MPEG4 
320 × 240 5 fps /total 25 

frames 

 

The disadvantage of the use of streaming technology is that the buffer time causes 

a large time delay (over 10 seconds). That’s really difficult for the human operator to 

have enough experience of interactivity with the robot. Therefore, it is desirable for 

the robot server to feedback more timely information about robot to human operator. 

Chapter 5 will describe a compensation means to visualize the robot’s local 

information, such as sonar readings or trajectory data.  

3.5 Summary 

This chapter presents a streaming technology based approach for Internet-based robot 

teleoperation. The streaming video is used to transmit the images captured by the 

robot’s onboard camera so that remote Internet users can see the robot’s surroundings 

to obtain global information. In Internet telerobotics, few literatures have discussed 
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the techniques or performances of image transmission over the Internet in details. 

That’s why we investigate the video streaming in this chapter. We indeed do not go to 

the depth of streaming technology itself to improve its video compression and 

transmission. It is more of an investigation and implementation of the existing 

streaming technology, to see that which techniques about video codec or video 

encoding etc are feasible for Internet telerobotics and how their performance are. The 

work in this chapter is beneficial for the researchers of Internet telerobotics to adopt 

similar techniques in order to improve image transmission and make the Internet-

based teleoperation usable.  

It is experimentally shown that the streaming technology, using WMV9 or 

MPEG4 algorithm as well as CBR video encoding method, can produce a more stable 

system, higher image resolution, and smoother image streams. It is also demonstrated 

to be feasible for real robot teleoperation through a low-bandwidth Internet 

connection. 
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CHAPTER 4.  A FRAMEWORK OF AUTONOMOUS 

NAVIGATION USING FUZZY LOGIC 

Chapter 3 presents a real robot teleoperation by using direct control. The robot is like 

a puppet without autonomous capability for sensing the environment and dealing with 

unexpected events such as moving objects. It is dangerous for such robot to be 

remotely control through the Internet since the time delay of transmitting images is 

large. A robot, which is able to sense the environment and perform some tasks 

autonomously, is highly desired. This chapter proposes a framework of autonomous 

navigation using fuzzy logic. This work is a base for the subsequent chapters to 

implement some complex tasks, such as active map learning, goal-oriented navigation. 

4.1 Introduction 

The main challenge of today's autonomous robotics is to build robust control 

programs that reliably perform complex tasks in spite of the uncertainties derived 

from environments and robots themselves. Despite the recent advances in the field of 

autonomous robotics, there are some problems that have to be addressed in order to 

exhibit truly autonomous navigation [Saffiotti, 2000]. First, prior knowledge about the 

environment is, in general, incomplete, uncertain, and approximate. For example, 

maps typically omit some details and temporary features, spatial relations between 

objects may have changed since the map was built, and the metric information may be 

imprecise and inaccurate. Second, perceptually acquired information is usually 

unreliable. The limited range, combined with the effect of environmental features 

(e.g., occlusion) and of adverse observation conditions (e.g., poor lighting), leads to 

noisy and imprecise data; and errors in the measurement interpretation process may 

lead to incorrect beliefs. Third, real-world environments typically have complex and 

unpredictable dynamics: objects can move, other agents can modify the environment, 

and relatively stable features may change with time (e.g., seasonal variations). Finally, 

the effect of control actions is not completely reliable: wheels may slip, and a gripper 

may lose its grasp on an object. 

Traditional work in robotics has tried to overcome these difficulties by carefully 
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designing the robot mechanics and sensors, or engineering the environment, or both. 

Engineering the robot or the environment, however, increases costs, reduces robot's 

autonomy, and cannot be applied to all domains. If we want to build easily available 

robots that inhabit our homes, offices, or factory floors, the platform cannot be overly 

sophisticated, and the environment should not be modified.  

Since Brooks [1986] proposed the behavior control architecture, the idea has been 

adopted to solve the navigation problem in an unknown environment. Unlike the 

traditional navigation architecture [Saffiotti, 2000] which decomposes the navigation 

task using a sense-model-plan-act (SMPA) framework and connects each module 

serially, the behavior control method decomposes the navigation system into special 

task-specific behavior modules, e.g., obstacle avoidance, goal seeking, etc., which are 

connected directly to sensors and actuators and operate in parallel. Simple behaviors 

are then combined in order to produce a complex strategy able to pursue the strategic 

goals while effectively reacting to any contingencies. Therefore, this architecture can 

act in real-time and has good robustness. As the behavior control architecture tackles 

the navigation problem in an on-line manner and requires no environment model, it is 

efficient in dealing with navigation in an unknown environment. 

In the behavior control architecture, behavior modules are usually constructed as 

reactive systems, which map the perceived situations to the correct actions. Fuzzy 

logic method [Lee & Wu, 2003; Seraji & Howard, 2002; Saffiotti et al, 1999; etc.] is 

an efficient way of representing this mapping relationship as it is able to represent 

human expert’s knowledge and requires no mathematical model. 

This chapter proposes a framework for a behavior-based navigation strategy of 

autonomous robots.  The framework includes the steps of goal determination, 

preprocessing, behavior design, behavior arbitration, and command fusion. It is 

practical and has been shown experimentally to be reliable. 

The rest of this chapter is organized as follows. Section 4.2 proposes the 

framework of behavior-based autonomous navigation. Section 4.3 describes an 

example of the proposed framework. Section 4.4 makes the experiments. Section 4.5 

discusses the proposed framework. The last section summarizes the chapter. 
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4.2 A framework of behavior-based autonomous navigation  

A framework of a behavior-based autonomous navigation is proposed as shown in 

Figure 4.1. It is independent of robotic development platform. In every robot control 

cycle, the robot’s reasoning system outputs the next set of motor control commands 

by performing an inference process I.  This inference process can be defined as a 

relationship between the input space U and the output space Y. The input space U is 

multidimensional, with each dimension corresponding to a particular input data mode, 

e.g., distance to front obstacle, direction to the goal. Similarly, the output space Y is 

multidimensional, with each dimension corresponding to a particular type of output, 

which normally includes motor speed and delta turn angle. Thus it is expressed by: 

         1 2 i n 1 2 j mI : U(u ,u , , u , , u ) Y(y , y , , y , , y )→      

 

Goal ?Preprocessing

Behavior
Arbitration

Behavior n

Behavior 1
Stop or

next goal

Command
Fusion

...U Y
motor

commands
no

yes

 
Figure 4.1:  A framework of behavior-based autonomous navigation 

 

4.2.1 Preprocessing 

In the preprocessing module, the input space U, including the exteroception and 

proprioception sensing data, should be gathered and updated. The robot uses 

exteroceptive sensors, like a camera or a sonar or laser sensors, to observe the state of 

the environment. It uses proprioceptive sensors, like a compass or shaft encoders on 

the wheels, to monitor the state of its own body.  

If the input space U is too large, the computational complexity should be 

controlled by reducing the number of dimensions. A common way to do this is to use 

a “situation clustering” approach [Goodridge & Kay, 2000] in which the complexity 

of the input space is reduced by introducing a limited number of intermediate 
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variables. These variables classify the different "perceptual situations" relevant to the 

robot's behavior. Possible intermediate variables are statements such as 

"facing_obstacle" or "distance_to_left_obstacle". These variables are then used by the 

consequent behavior design. Typical example is provided in Section 4.3. 

4.2.2 Goal determination 

In our view, a task possesses two types of goal determination: a determined goal and a 

non-determined goal.  

When a goal is determined, its exact coordinate is given. A typical example is the 

task for goal-oriented navigation, in which the robot must move to a given target 

while autonomously avoid any static or dynamic obstacles in its path. The robot 

succeeds only if it arrives at the goal without any collisions. 

When a goal is non-determined, it does not have an exact coordinate location. 

Instead, the goal is defined by a termination criterion. An example is the task for 

GOTOEND, in which the robot is required to avoid any lateral obstacles and to stop 

only if the distance to front obstacle is less than a threshold. Another example is the 

task for WANDER. The robot is required to wander randomly without exact goal 

location. A possible termination criterion is that the total distance of wandering is 

over a given value.  

4.2.3 Behavior design 

A complex task can be decomposed into multiple simpler behaviors which can 

subsequently be coordinated. The framework allows multiple individual behaviors 

and the module of behavior arbitration to be executed in parallel. This makes full use 

of precious computational resources and results in the best real-time efficiency. 

Classically, robot behaviors are of two types: global (e.g., path-tracking and goal-

seeking) and local (e.g., obstacle-avoidance, wall-following, door-crossing, and light-

reaching). For example, to realize a mobile robot’s path-tracking behavior, a 

controller is given a path in some internal reference frame, and it generates motor 

commands in order to follow the path as closely as possible. Local behaviors are 

actually sensor-based behaviors, which implement a control strategy based on 

external sensing. 
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There are three common ways to design a behavior. One is to use an analytic 

algorithm with a determined model (see the example in Section 4.3). The second way 

uses a machine learning technique based on supervised learning or reinforcement 

learning [Godjevac & Steele, 2000; HuaNan Yu et al, 2002; Hagras et al, 2001; Na & 

Oh, 2003; etc.]. We will discuss it in Section 4.5. The third way uses a pure fuzzy 

logic controller [Seraji & Howard, 2002; etc.]. Since the critical problem for behavior 

design is to guarantee robust operation in the presence of uncertainty, we focus on the 

way using fuzzy logic controller in the following paragraphs.  

In our fuzzy logic controller, reasoning is embodied in the rules operating on 

linguistic input and output variables, as in  

   If 1 1 2 2 n nu is A and u is A and and u is A  

      Then 1 1 2 2 m my is B and y is B and and y is B  

Where the uis are input linguistic variables taking linguistic values Ai , each 

linguistic value being defined by a membership function ( )
iA iuµ ; the yis are output 

linguistic variables taking linguistic values Bi , each linguistic value being defined by 

a membership function ( )
iB iyµ .  

Given two linguistic values A and B defined on the same universe of discourse, 

the AND and OR operation are defined respectively as Eq. (4.1) and Eq. (4.2). 

     min( ( ), ( ))A B A Bu U
u uµ µ µ∩ ∈

=                                               (4.1) 

     max( ( ), ( ))A B A Bu U
u uµ µ µ∪ ∈

=                                              (4.2) 

The best well-known Centroid method is chosen as the defuzzification method. 

For the continuous output space, we obtain  

      Y*

Y

y (y)dy
y

(y)dy

⋅µ
=

µ
∫
∫

                                                          (4.3) 

where ∫ is the classical integral. So this method determines the center of the area 

below the combined membership function. 

Algorithm 4.1 shows the fuzzy inference process. The examples of behavior 

design are presented in Section 4.3. 

 

Algorithm 4.1 (fuzzy inference process): 

Input:  uis  = crisp numerical values of the input variables. 
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Output:  yis  = crisp numerical values of the output variables. 

BEGIN: 

Step 1:  Fuzzification of the input variables uis; 

Step 2: Application of the fuzzy operator (AND or OR) as Eqs.(4.1)-(4.2) in the 

antecedent of the rules; 

Step 3:  Implication from the antecedent to the consequent using the AND 

operation as Eq. (4.1); 

Step 4:  Aggregation of the consequents across the rules using the OR operation 

as Eq.(4.2); 

Step 5:  Defuzzification into output variables yis using Eq.(4.3). 

END Algorithm 4.1 

 

4.2.4 Behavior arbitration and command fusion 

As suggested by Figure 4.2, behavior coordination problems can be approached as 

two conceptually different problems: (i) how to decide which behavior, obstacle-

avoidance (OA) or goal-seeking (GS) for example, should be activated at each 

moment - and, possibly, to what extent; and (ii) how to combine the results from 

different behaviors into one command to be sent to the robot's motors - possibly, 

taking weightings into account. These sub-problems are, respectively, called the 

behavior arbitration and the command fusion problems [Saffiotti, 2000]. 

Behavior 1

Behavior 2

Behavior arbitration

Command fusion

exteroception

proprioception

speed

turn
angle...

Behavior N

 
Figure 4.2:  Behavior coordination problem decomposing into two 

subproblems: behavior arbitration and command fusion. 

 

Some [Gat, 1998; etc.] of the behavior arbitration methods adopt High-Priority-

Take-All or Winner-Take-All selection strategies but these strategies come with two 

disadvantages: their performance in certain situations is inefficient, and the 
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desirability of each behavior cannot vary from situation to situation. Other strategies 

have employed fusion methodologies in which each behavior is allowed to affect the 

final output based on the situational context. One such strategy is context-dependent 

blending (CDB) [Saffiotti et al, 1999] in which fuzzy logic is applied so that a 

decision between behaviors can be made in a prevailing situation.  

Our behavior arbitration strategy is similar to the CDB approach. It uses fuzzy 

context rules to express a behavior arbitration strategy. When the obstacle is close, 

both OA and GS behaviors are partially activated. Each behavior is assigned a 

weighting factor, and these factors are adjusted dynamically according to the fuzzy 

weight rules. The weighting factors determine the degree of influence of each 

behavior on the final motion command. The weight rules continuously update the 

behavior weighting factors during robot motion.  

The strategy adopted in our approach is simpler than that of the CDB approach. 

The CDB approach uses a fuzzy preference combination to carry out command fusion 

but we first use a behavior arbitration module to calculate the defuzzified weight 

factors of all behaviors, and then carry out command fusion directly using these 

weight factors in Eqs. (4.4) and (4.5). One advantage of this coordination strategy is 

that the defuzzified weight factors can be visualized (refer to Section 7.6.1 in Chapter 

7). As a result, the tuning of the fuzzy logic controller is easier because the 

contributions by different behaviors are clearly visualized. 

                          
i

ii

w
wv

∑
⋅∑

=ν                                                            (4.4)                      

                          i i

i

w
w

θθ ∑ ⋅
=

∑
                                                          (4.5) 

where, v and θ  are the desired final speed and the delta turn angle values 

respectively while vi and iθ are the speed and angle preference values suggested by 

each individual behavior respectively. wi is the defuzzified weight factors that are 

output by the behavior arbitration module.  

4.3 An example of behavior-based autonomous navigation 

In this section, an example (i.e. goal-oriented navigation) of behavior-based 

autonomous navigation is given using the proposed framework. The goal-oriented 

navigation is a common robot navigation task. It calls for a robot to be given a goal 
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location and for the robot to then reach the goal autonomously. Here we assume that: 

1) the robot is located in an environment but without prior knowledge about it; 2) the 

robot knows the coordinates of current location and goal location; 3) the robot senses 

the environment depending on its ultrasonic sensors (i.e. sonars). 

We decompose the task of goal-oriented navigation into two elementary behaviors: 

obstacle-avoidance (OA) and goal-seeking (GS). The OA behavior is a sensor-based 

local behavior which implements a control strategy based on external sensing. It is 

activated if obstacles are close. The GS behavior is a global behavior which does not 

rely on external sensory data, but seeks for the globally exact goal location. The two 

behaviors are coordinated to select the final motor control values that steer away from 

the obstacle while maintaining the goal direction. 

In the preprocessing module, we reduce the complexity of input space by 

grouping the robot’s sonar readings into three sectors (left, front, right). For example, 

our robot has a ring of eight forward ultrasonic sonars that produce a set of obstacle 

distances {d0, d1, d2, d3, d4, d5, d6, d7}. We obtain three groups of obstacle 

distances by the following equations. 

        dleft = min(d0, d1);                                                 (4.6) 

        dfront = min(d2, d3, d4, d5);                                   (4.7) 

        dright = min(d6, d7).                                               (4.8) 

The OA behavior is designed using fuzzy logic controller in order to deal with 

uncertainties from sonar readings. The obstacle distance of each sector is represented 

by three linguistic fuzzy sets {VERYNEAR, NEAR, FAR}, with the membership 

functions shown in Figure 4.3 (a). The weight of OA behavior woa is represented by 

three linguistic fuzzy sets {SMALL, MEDIUM, LARGE} with the membership 

functions shown in Figure 4.3 (b). The motion control variables of the mobile robot 

are the translational speed and the rotational turn angle. The robot speed is 

represented by three linguistic fuzzy sets {STOP, SLOW, FAST}, with the 

membership functions shown in Figure 4.3 (c). The robot delta turn angle is 

represented by five linguistic fuzzy sets {NB, NS, ZE, PS, PB}, with the membership 

functions shown in Figure 4.3 (d), where NB is negative-big, NS negative-small, ZE 

zero, PS positive-small, and PB positive-big. The positive and negative terms stand 

for the robot turning to the left and right, respectively. 
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Figure 4.3: Membership functions for (a) obstacle distance;  (b) weight;   

  (c) speed;  (d) delta turn angle.  

 

The OA navigation rules are presented below. The turn rules for the OA behavior 

are summarized in Table 4.1. The rules exhibit such a behavior characteristic: if the 

obstacle distance in any sector is VERYNEAR, the robot should turn away to find a 

safer direction. For instance, the (1,3) element of the bottom layer in Table 4.1 can be 

written out as the rule:  

      IF dfront is FAR AND dleft is FAR AND dright is VERYNEAR, THEN θoa is PS. 

Note that when the three sectors have the same VERYNEAR obstacle distance as 

shown in the (3,3) element of the top layer in Table 4.1, a large left turn (PB) angle is 

recommended. This turn rule enables the robot to escape from its current embarrassed 

situation. 

 



CHAPTER 4.  A Framework of Autonomous Navigation Using Fuzzy Logic
 

 

 46

Table 4.1: Turn rules for the OA behavior. 

rightd

PS PB

NS PS

NB NS PB

frontd
leftd

far near verynear
far

near

verynear

PS PS

NS ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

ZE ZE PS

ZE ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

PS
PS

ZE

 
 

 

Table 4.2: Move rules for the OA behavior. 

rightd

STOP

STOP STOP

STOP STOP STOP

frontd
leftd

far near verynear
far

near

verynear

SLOW SLOW

SLOW SLOW SLOW

SLOW SLOW SLOW

frontd
rightd

leftd
far near verynear

far

near

FAST SLOW SLOW

SLOW SLOW SLOW

SLOW SLOW SLOW

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

STOP
STOP

SLOW

STOP

 
 

The move rules of the OA behavior is summarized in Table 4.2. The rule enables 

the robot to decrease its speed when an obstacle is approaching. In fact, the elements 

of the bottom layer in Table 4.2 can be written out as two rules: 

1) IF dfront is FAR AND dleft is FAR AND dright is FAR, THEN voa is FAST. 
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2) IF dfront is FAR AND (dleft is VERYNEAR OR  dleft is NEAR OR dright is VERYNEAR OR 

dright is NEAR), THEN voa is SLOW. 

Table 4.3 summarizes the weight rules of the OA behavior. The weight is derived 

directly from obstacle distances in the three sectors.  

Note that the fuzzy logic navigation and weight rules developed in this chapter 

can be applied to any mobile robot, regardless of robot characteristics such as wheel 

size. These characteristics are reflected only in the definition of the membership 

functions used in the fuzzy rules. 

 

Table 4.3: Weight rules for the OA behavior. 

rightd

large large large

large large large

large large large

frontd
leftd

far near verynear
far

near

verynear

medium large large

large large large

large large large

frontd
rightd

leftd
far near verynear

far

near

small small large

small medium large

large large large

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

 
 

The GS behavior is designed using a precise analytical model. We first assume 

that the GS behavior does not influence the speed of the robot, and contributes only to 

the rotational turn angle. Second, we use a very simple analytical model rather than a 

set of fuzzy logic navigation rules. So,  

             vgs = 0                                                 (4.9) 

             θgs = φ1                                               (4.10) 

where, vgs and θgs are the speed and delta turn angle respectively recommended by 

the GS behavior. φ1 is the heading error between the current robot heading and goal 

direction as shown in Figure 4.4. Thus, the value domain of θgs is (-1800, 1800]. 

Similarly, the positive and negative terms have implied that the robot turns to the left 
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and right respectively. The calculation of φ1 requires that we take into account all 

situations in a system of coordinates, in which the robot and the goal are located in 

different quadrants. 

Robot
1ϕ( 0, 0, 0)x y ϕ

( 1, 1)x y
Goal

X

Y

0ϕ

 
Figure 4.4:  Heading error between the current robot heading and goal direction. 

 

There are only three rules for the weight of the GS behavior. The weight wgs is 

derived directly from the weight woa of the OA behavior.  

1) IF woa is SMALL, THEN wgs is LARGE. 

2)   IF woa is MEDIUM, THEN wgs is MEDIUM. 

3)   IF woa is LARGE, THEN wgs is SMALL. 

Algorithm 4.2 gives the control algorithm for the task of goal-oriented navigation. 

  

Algorithm 4.2: (Goal-oriented navigation) 

Input:  (x1, y1) = goal location;   (x0, y0) = current robot location;  

           φ0 = current robot heading angle; 

           (d0, d1, d2, d3, d4, d5, d6, d7) = sonar readings. 

Output: (v, θ) = speed and delta turn angle 

BEGIN: 

Step 1. To update sensory data including (x0, y0), φ0 and (d0, d1, d2, d3, d4, d5, 

d6, d7); 

Step 2. To preprocess the sonar readings using Eqs. (4.6), (4.7), and (4.8); 

Step 3. IF the distance from current robot location to goal location is less than a 

predefined threshold (i.e. distance tolerance), THEN the goal is reached and the 

robot is stopped, OTHERWISE go to the Step 4; 
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Step 4. To calculate voa and θoa recommended by the OA behavior using 

Algorithm 4.1 and the turn rules as in Table 4.1, the move rules as in Table 4.2; 

Step 5. To calculate vgs and θgs recommended by the GS behavior using Eqs. (4.9) 

and (4.10); 

Step 6. To calculate the weight woa of the OA behavior using Algorithm 4.1 and 

the weight rules as in Table 4.3; 

Step 7. To calculate the weight wgs of the GS behavior using Algorithm 4.1 and the 

three weight rules of the GS behavior; 

Step 8. To calculate (v, θ) by the command fusion using Eqs. (4.4) and (4.5); 

Step 9. To execute the motor control commands  (v, θ), and go to the Step 1 again. 

END Algorithm 4.2 

 

4.4 Experimental results 

4.4.1 Experiment for goal-oriented navigation 

First we perform the simulated experiments for goal-oriented navigation in unknown 

environment. Two methods are implemented to complete the task of goal-oriented 

navigation for comparison. The first one is “exclusive OA+GS” that we name. In this 

method, the task is decomposed into two behaviors: obstacle-avoidance (OA) and 

goal-seeking (GS). But the OA behavior is designed using a precise mathematic 

model (threshold control) instead of fuzzy logic controller. Moreover, the OA and GS 

behavior are exclusive each other since only one behavior is activated in a situation. 

The second method is implemented using Algorithm 4.2. We call it “OA+GS” method. 

Figure 4.5 shows the experimental results for comparison. 
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(a)                 (b) 

Figure 4.5: Performance comparison for goal-oriented navigation in 

unknown environment. The continuous curve is the actual trajectory of the 

robot movement. (a) Exclusive OA+GS, 22s;  (b) OA+GS, 19s. 

 

The performance (i.e. time efficiency and trajectory) of the “OA+GS” approach is 

superior to that of the “Exclusive OA+GS” approach. Starting from A, the robot is 

required to reach the goal B. Two methods consume 22 seconds and 19 seconds 

respectively. The differences in the performance arise from the process in which the 

robot avoids the obstacles and looks for the safe path. The performance of the 

“Exclusive OA+GS” approach is poor. When the robot is very close to the obstacles, 

the OA behavior is activated under a threshold control and replaces the GS behavior. 

When the OA behavior is in operation, the GS behavior can not make a contribution. 

This is why the turn angle of the trajectory is large and the time efficiency is low. The 

“OA+GS” method outperforms the “Exclusive OA+GS” method. Because the weights 

of the two behaviors are being adjusted in real time, both the OA and GS behaviors 

can be activated simultaneously. Moreover, fuzzy logic provides a good means for 

mobile robot to handle uncertainties derived from sensory data.  

 

4.4.2 Experiment for robot wander 

Next we perform the experiment for robot wandering in a real world. The robot’s 

wander is implemented only using an elementary behavior: obstacle-avoidance (OA). 

The OA behavior is designed using fuzzy logic controller as described in Section 4.3. 

Figure 4.6 shows a series of pictures captured from a camera during the experiment. 

The experiment involves allowing the robot to wander within a small circular area 

A 

B 

A

B
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provided with both static obstacles (e.g. boxes and walls) and dynamic obstacle (e.g. 

moving human). Figure 4.7 shows the variations of robot’s speed and turn angle 

during wandering. From the Figure 4.7(a) and (b), we know that the robot would 

decrease its speed and turn a degree of angle for safety when it is closing to obstacles. 

Note that the robot always turns left because the obstacles are always approaching on 

its right. The experiment demonstrates that the robot’s wandering based on the 

reactive OA behavior using fuzzy logic is feasible and reliable, even in a dynamic 

environment (i.e. with moving humans).  

 
Figure 4.6:  Robot wandering in a circular small area set with static obstacles 

and moving human. 
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Figure 4.7: The speed and turn angle of mobile robot during wandering.  

(a) speed;  (b) delta turn angle. Positive degree implies turning left. 
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4.5 Discussion 

The success of fuzzy logic controller is owed in a large part to the ability of 

technology which can convert qualitative linguistic descriptions into complex 

mathematical functions. It appears very useful when the processes are too complex for 

analysis by conventional quantitative techniques or when the available sources of 

information are interpreted qualitatively, inexactly, or uncertainly, which is the case 

with mobile robots. Given the uncertain and incomplete information an autonomous 

robot has about the environment, fuzzy rules provide an attractive means for mapping 

sensor data to appropriate control actions in real time. However, fuzzy logic controller 

does not have the self-learning capability and is difficult to tune. Also, as the number 

of input variables increases (which is the case with mobile robots), the number of 

rules increases exponentially, which creates much difficulty in determining large 

numbers of rules. 

Therefore, the machine learning techniques, such as neural network or neuro-

fuzzy controller, are used to design a behavior or a whole robotic system in recent 

years [Chen et al, 2001; Na & Oh, 2003; Yang & Meng, 2003; etc.]. The arbitrary 

determination of the structure and initial weight of neural network have great impact 

on the performance of neural network controller. As an alternative, neuro-fuzzy 

controllers [Rusu et al., 2003], which combine the learning ability of the neural 

network with the advantage of the rule-based structure of fuzzy logic, have been 

extensively studied. In many cases of neuro-fuzzy control, the back-propagation 

algorithm has been widely used. However, being a gradient descent method, such 

algorithm has many drawbacks, which include slow convergence, local minimum, and 

so on. The evolutionary algorithm [Yamada, 2005], for example Genetic Algorithm 

(GA), is another well-accepted technique to design fuzzy controllers. Unfortunately, 

most of the work using evolutionary algorithm were undertaken using simulation as it 

takes a large number of iterations to develop a good controller in conventional GA. 

Thus, it is not feasible for a simple GA to learn online and adapt in real time. The 

situation is worsen by the fact that most evolutionary methods developed so far 

assume that the solution space is fixed (i.e. the evolution takes place within a 

predefined problem space, not in a dynamically changing and open one), thus 

preventing them from being used in real-time applications. 

From another perspective, reinforcement learning and supervised learning [Tan et 
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al, 2002; Cang Ye et al, 2003; Kaelbling & Littman, 1996] are commonly used to 

construct the neural or neuro-fuzzy controller automatically. Reinforcement learning 

method seems quite promising as it requires no training data. However, it usually 

leads to a heavy learning phase as the gradient information is not provided explicitly. 

For example, due to the large number of the input space for learning obstacle 

avoidance, the search space becomes too large and the performance evaluation surface 

becomes too complex to allow efficient learning. Therefore, it is not easy to apply the 

reinforcement structural and parameter learning methods to learn obstacle avoidance, 

since it is difficult to tell that an incorrect response is due to a mismatch antecedent 

part or due to an incorrect consequent part. Furthermore, the phenomenon of 

premature convergence (e.g., trap situation) and ill behavior (e.g., circumnavigate 

around an obstacle closely and slowly) further undermines the practicality of these 

methods. On the contrary, supervised learning method has the advantages of fast 

convergence and is suitable for structure and parameter learning. However, it is very 

difficult to obtain sufficient training data, which contain no conflict input/output pairs. 

Insufficient training data may result in an incomplete fuzzy rule base, while the 

conflicts among the training data may cause incorrect fuzzy rules. 

In this thesis, we construct fuzzy logic controllers using a “trial-and-error” 

approach by human designer to tune the parameters and fuzzy rules. Because the 

complexity of input space is greatly reduced by introducing a limited number of 

intermediate variables (e.g. dleft , dfront , dright ), we can easily guarantee the consistency 

and completeness of the fuzzy rule base. Moreover, it is highly desirable that we can 

easily realize the desired behavior characteristics by explicitly expressing the 

linguistic rules using a common natural language.  More examples can be seen in the 

behavior designs in Chapter 6 and Chapter 7.  

The fuzzy control approaches for robot navigation have been widely used in 

literatures. The main difference between our approach and the existing ones is that 

they have different fuzzy-rule based inference model (e.g. Mamdani model or Takagi-

Sugeno-Kang model), defuzzification method (e.g. Centroid or Maximum 

defuzzification), membership functions (e.g. triangular or Gaussian), or fuzzy rules. 

Fuzzy logic is just a tool for the proposed framework to design a behavior or make 

behavior arbitration.  
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The following summarizes the key attributes of the proposed framework for 

behavior-based autonomous navigation.  

a) Linguistic representation: The framework allows the capture of human 

commonsense knowledge, intuitive reasoning and decision making. The 

navigational logic uses linguistic terms from a common natural language. 

b) Uncertainty Management: Fuzzy logic provides a systematic framework for 

dealing with imprecise and uncertain information. Thus errors arising from 

sensor noise are effectively handled by the navigation system.  

c) Reliability: Fuzzy logic can deal with imprecise and uncertain sensing 

information. While one behavior may produce unreasonable control outputs, it 

can be made more reliable by coordinating multiple behaviors. 

d) Parallelity: A complex navigation task can be divided into multiple 

independent behaviors. Each individual behavior can be executed in parallel. 

e) Computational Efficiency: The fuzzy logic controller can be implemented 

using series of min- and max-gates in hardware, with all rules operating in 

parallel [Watanabe et al., 1990]. Other calculations, such as command fusion, 

are computationally efficient as well. All these facilitate their use on a real-

time mobile robot. 

f) Extensibility: The behavior-based approach makes it easy to add new modules 

that represent additional behaviors to the navigation system. The framework 

makes the navigation logic easily extensible while it does not rely on any 

specific robotic development platform. 

 

4.6 Summary 

This chapter proposes a framework of autonomous navigation for mobile robot. Note 

that the behaviour-based navigation is not a fresh idea or concept. The work in this 

chapter focuses on the development of a simple and practical navigation framework 

that can be easily realized to build robust control programs.  

The framework includes the preprocessing, goal determination, behavior design, 

behavior arbitration, and command fusion. A complex task can be decomposed into 

multiple simpler behaviors for coordination. The intermediate variables are introduced 

in the preprocessing module in order to reduce the complexity of input space, so that 
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fuzzy logic controller can be easily constructed to implement the behavior design and 

behavior arbitration. Section 4.5 has discussed why we choose fuzzy logic as one of 

the tools to construct a controller for robot navigation. An example, goal-oriented 

navigation in unknown environment, is realized to demonstrate that the proposed 

framework is practical and feasible. The framework has several desirable attributes, 

including linguistic representation, uncertainty management, reliability, parallelity, 

computational efficiency, and extensibility.  

We think that the proposed framework is simple and practical. For example, as 

mentioned in Section 4.2.4, we first use a behavior arbitration module to calculate the 

defuzzified weight factors of all behaviors, and then carry out command fusion 

directly using these weight factors. As a result, the tuning of fuzzy logic controller is 

easier because the contributions by different behaviors are clear by visualizing the 

defuzzified weight factors in the tests. 
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CHAPTER 5.  TELECOMMANDING: A NEW 

INTERACTIVE TELEOPERATION APPROACH 

Chapter 3 presents an Internet-based robot teleoperation using direct control. The 

direct control could only support some simple tasks for mobile robot teleoperation, 

because this kind of control mode makes the teleoperation very inefficient and 

dangerous due to the high latency of the Internet, such as restricted bandwidth and 

uncertain time delay. An interactive teleoperation approach, which is able to provide 

sufficient functionality and easy-to-use user interface, is highly desired. This chapter 

proposes a new teleoperation approach, which implements an interactive control 

interface and a complete framework for control management and command 

processing. 

5.1 Introduction 

Robots can now not only make basic motions but can also closely interact with people. 

Internet robots can provide many different remote services with potential applications 

in many areas: consumer home pet services, entertainment, telemedicine, distance 

learning, and the sharing of laboratory resources, as well as industry automation, 

military and security applications [Luo et al, 2003]. On the other hand, the Internet 

also entails a number of limitation and difficulties, such as restricted bandwidth, 

arbitrarily large transmission delays, and packet lost or error, all of which influence 

the performance of Internet-based telerobotics systems [Brady & Tarn, 2002; Luo et 

al, 2003].  

Existing online robots are of two types: mobile manipulators with haptic or force 

feedback [Taylor & Trevelyan, 1995; Goldberg et al, 2000; Elhajj et al, 2003; Stein, 

2003; Li & Lu, 2002], and mobile vehicles used for navigation [Simmons et al, 2000; 

Thrun et al, 1999; Saucy & Mondada, 2000; Siegwart &Saucy, 1999; Huang et al, 

2001]. Because manipulated robots and wheeled robots have different characteristics, 

in the context of Internet-based teleoperation, they call for different control paradigms. 

The manipulated robots are often located in a limited or known workspace. Direct 

control is the popular control paradigm for Internet-based manipulated robot 
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teleoperation. To alleviate the problem of uncertain time delay, three approaches [Luo 

& Su, 2003] are often used in such systems: the predictive aiding approach, the 

simulating and planning display approach [Sayers, 2002; etc.], and the event-based 

approach [Elhajj et al, 2003]. Our focus is on the field of wheeled robot teleoperation.  

For Internet-based wheeled mobile robot teleoperation, some systems have used 

direct control [Han et al, 2001; etc.]. The typical example is the KhepOnTheWeb 

system [Saucy & Mondada, 2000], in which Web users, via clickable images fed back 

from a camera, are able to control the robot's movements as it moves within a small 

wooden maze. Obviously, the direct control is not suitable for Internet-based mobile 

robot teleoperation because of the high latency derived from the Internet, such as 

restricted bandwidth, uncertain time delay, packet lost or error, and so on.  

Supervisory control paradigm is commonly used for Internet-based mobile robot 

teleoperation [Luo & Chen, 2000; Simmons et al, 2000; etc.]. In this case, problems 

derived from the Internet are alleviated by giving the robot local intelligence. 

Unfortunately, most such systems lack adequate interaction between human operator 

and robot. We refer to this type of control paradigm as passive supervisory control. 

Passive supervisory control is inadequate in four ways: (1) The control interface is 

only able to provide single or limited available control methods (e.g. using a mouse to 

click a map); (2) The human operator can issue only very high-level instructions to 

the robot, and it is difficult to obtain the robot’s running status or information about 

the events the robot has encountered; (3) The robot has considerable autonomy but 

lacks the interaction with the human operator; (4) It is often needed to let the robot 

know some environmental knowledge in advance for path planning or self-

localization, which causes that it is difficult to be applied in an unknown and highly 

dynamic environment. The typical examples are Xavier, an office-exploring robot at 

CMU [Simmons et al, 2000], and the museum tour-guide robot RHINO and 

MINERVA [Thrun et al, 1999]. They allow Web users to take the goal control, but 

the robots must know some global environment knowledge in advance. The control 

mode used on the Mars lander [Backes et al, 2002] can also be categorized as passive 

supervisory control. The human operators on earth use a Web-based tool to specify 

multiple waypoints as the navigation subgoals in 3D views of the landing site. These 

waypoints were generated from images obtained using stereo cameras on the lander. 
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One important characteristic between human and robot is interactivity. Simmon et 

al summarized their lessons from the 5 year (Dec. 1994 – Dec. 1999) public Xavier 

experiment as follows [Simmons et al, 2000]. 

 

“Autonomy can help in reducing the bandwidth requirements for control but this 

introduces problems of its own, particularly in the area of interactivity. People seem 

to prefer ‘hands on’ control. ….. The only real negative impact of autonomy on web-

based interaction is that commanding at a high level is not as interactive as 

(conventional) teleoperation.” 

 

Saucy et al also pointed out the significance of interactivity over the 1 year (May 

1997 – May 1998) KhepOnTheWeb system that was accessible to the public [Saucy 

& Mondada, 2000]. 

 

“Another problem is obviously the delay that prevents people from having a good 

interaction and from taking interests in the site. That’s one reason why users do not 

come back.”  

 

Researchers are attempting to add more interaction between humans and robots 

[Chung et al, 1998; etc.], such as behavior-programming control [Luo & Chen, 2000], 

supervised autonomy [Cheng & Zelinsky, 2001], shared control [Rybski & Stoeter, 

2002], cooperative control [Bourhis & Agostini, 1998], collaborative control [Fong et 

al, 2003], and fitting autonomy [Vieira et al, 2001]. We refer to these control modes 

as active supervisory control or interactive control. Section 5.6 provides a detailed 

analysis and comparison of these control modes. The main deficiencies of these 

control modes are: (1) They lack a complete framework to process the commands that 

can be sent continuously from human operator; (2) They are difficult to evaluate the 

online running performance and provide the corresponding response actions; (3) Their 

components are interdependent, which means that one poor component may cause 

multiple tasks fail; (4) The interfaces are not sufficiently human-friendly and they 

cannot provide a multi-modal control interface. In this chapter, we attempt to address 

the problems faced by the existing passive supervisory control and interactive control 
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methods by proposing a new interactive control approach, telecommanding, for 

Internet-based mobile robot teleoperation.  

The rest of the chapter is organized as follows. Section 5.2 proposes the theoretic 

framework of telecommanding. Section 5.3 introduces our teleoperation experimental 

platform. Section 5.4 presents the simulation and real world experiments. Section 5.5 

gives a comparison between telecommanding and other approaches.  Section 5.6 

summarizes the chapter. 

5.2 The proposed teleoperation approach 

The section describes in detail a proposed teleoperation approach: telecommanding. 

Section 5.2.1 proposes a theoretic framework of telecommanding, which involves two 

different but complimentary teleoperation commands: joystick commands and 

linguistic commands. Section 5.2.2 describes the design of joystick commands, and 

Section 5.2.3 the design of linguistic commands. 

5.2.1 The framework of telecommanding 

Central to the telecommanding framework is its use of two kinds of control 

commands: joystick commands and linguistic commands. Imagine a complex 

navigational task guided by a human. It may be, for example, to guide a bewildered 

person out of a maze (see Figure 5.1) from the start A to the goal D. The human guide 

may use three possible methods. One is that the guide directly guides the person step 

by step.  The second method is that the guide may simply give directions, just like 

someone giving instructions on how to reach the nearby post office: “Turn right and 

move forward 50 meters, then turn right and go to the end. Next take a right, move 

forward 100 meters. And there’s the post office.”  The third method is to use a map 

and point out the coordinates of three waypoints (B, C and D) or only the coordinate 

of goal D with respect to the start A. We call the instructions used in the first method 

“joystick commands”, and the instructions used in both the second and third methods 

“linguistic commands”. 
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Figure 5.1: The robot in a maze. A is the start, D is the goal. 

 

Figure 5.2 illustrates the framework of robot telecommanding with its multimodal 

(joystick/linguistic) control interface. Beginning on the left, we can see that the 

remote human operator issues joystick commands either via the computer keyboard or 

a real joystick device. As in our example in the preceding paragraph, linguistic 

commands may be issued in two ways: via an interactive command window in a 

graphical display interface (words) or via a computer mouse by clicking in the graphic 

window of a display interface (a map). The display interface shows visual feedback 

from a camera mounted on the robot, the history and current status, as well as the 

visualized pose and the obstacles. The Command Parser is responsible for parsing the 

joystick or linguistic commands from the local computer, then transferring them to the 

corresponding Command Processor for further command processing and to be passed 

on for execution at the Command Executor. The Sensing Update Module captures raw 

exteroception and proprioception sensory data from the robot’s sensors. The 

Command Executor, the robot, and the Sensor Update Module form a reaction loop 

which enables the robot to react rapidly to unexpected events. Expected events are 

detected by the Sensing Transformation Module, which transforms raw sensing data 

into high-level data (e.g. total distance travelled). These expected events provide data 

from which the command processor can autonomously make a deliberative plan, 

allowing the robot to respond to the current situation. The Command Processor, 

Command Executor, Robot, Sensing Update, and Sensing Transformation Modules 

together constitute a deliberative loop. The larger loop, which includes the human 

operator, forms a complete telecommanding system. 
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Figure 5.2: The framework of Telecommanding 

 

Joystick commands and linguistic commands are exclusive. When the human 

operator sends a joystick command, all previous linguistic commands are discarded. 

Similarly, linguistic commands invalidate previous joystick commands. Linguistic 

commands, however, can be sent continuously, are stored in an ordered command 

queue and applied according to a FIFO (first-in-first-out) policy.  

In every robot control cycle (e.g. 100 ms in our robotic system), the deliberative 

loop executes an inference process to output the next set of low-level motor controls. 

The inference process I can be defined as a relationship between the input space U 

and the output space Y. The input space U is multidimensional, with each dimension 

iu corresponding to a particular input data mode derived from the sensing 

transformation module, e.g., distance to front obstacle, direction to the goal, the total 

moving distance, or distance to the goal. Similarly, the output space Y is 

multidimensional, with each dimension corresponding to a particular type of output, 

normally motor speed v  and delta turn angle ω . This is expressed by 

1 2 i nI : U(u ,u , , u , , u ) (v, )→Υ ω  

We define some terms in the following, which will be used in the design of both 

joystick and linguistic commands.  

 

Definition 5.1 (Event): Let ie  be a subset of input space 1 2 j nU(u , u , , u , , u ) , 

i ∈{ 1, 2, …m }, and mi eeeeU ∪∪∪∪= 21 , so ie  is called an event. 

 

Definition 5.2 (Event occurs): Let ie  be an event, and tx  an input vector at the 

time t, t 1 2 i nx U(u ,u , ,u , , u )∈ .  If it ex ∈ , so the event ie  occurs, otherwise the 

event ie  does not occur. 
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Definition 5.3 (Response function): Let ie  be an event. When the event ie  occurs, 

the robot should output the response actions ty  according to a function 
ie t t 1f (x , y )− , 

where tx  is the input vector at the current time t, t 1 2 i nx U(u ,u , , u , , u )∈ , t 1y −  is 

the output vector at the time t-1,  t 1y Y(v, )− ∈ ω , so 
ie t t 1f (x , y )−  is called the response 

function of the event ie . 

 

Definition 5.4 (Command function): Let N be a joystick or linguistic command. 

The corresponding command execution function N t t 1f (x , y )−  is called the command 

function associated with the command N, where tx  is the input vector at the current 

time t, t 1 2 i nx U(u ,u , ,u , , u )∈ , and yt-1 the output vector at the time t-1, 

t 1y Y(v, )− ∈ ω . 

 

For example, suppose 1u  is an input variable, denoting the distance between the 

robot and the frontal obstacle. An event ie  can be defined as 

}15.0|),,{( 11 <≤= uuue ni . If it ex ∈ , the event ie  occurs, whose physical mean 

is such that if the distance between the robot and the frontal obstacle is in a range of 

0.5 to 1.0 meters, the robot should not respond to the command from the human 

operator but should autonomously calculate the motor outputs in accordance with the 

response function −ie t t 1f (x , y ) . For instance, a response function is simply defined as 

tv = −ie t t 1f (x , y )= t 1v − -100, where t 1v −  is the speed of the robot at the time t-1. This 

response function does not affect the turn angle of the robot.  

 

5.2.2 Telecommanding using joystick commands 

Telecommanding using joystick commands is in some ways similar to what we find in 

a car driven by a human. Like a driver using a steering wheel, the human operator 

uses <Left and Right> joystick commands to steer the robot. Like the driver using the 
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accelerator and brake, the operator uses <Up and Down> joystick commands to 

accelerate or decelerate, even to stop or to reverse the robot.  

In other ways, the use of joystick commands substantially differs from the use of a 

human driving a car with the principal difference being that the latter applies a 

traditional direct control: the driver receives environmental information in real-time 

through the human vision and through the car instrument, and from this 

simultaneously builds a real world model; the driver can respond immediately to any 

contingency and the driver's actions are immediately effective; the car typically lacks 

autonomous intelligence and relies on the driver to handle unexpected events. In short, 

a human driver must continuously provide input about steering or acceleration. But 

given issues such as restricted bandwidth, uncertain time delay in Internet-based 

teleoperation, it is desirable that human operators send the remote control as few 

commands as possible and that the robot should have an autonomous capability to 

respond some expected events as well as to react rapidly to contingencies, so that 

human operators do not need to handle the control details. 

In the telecommanding, joystick commands enable the human operator to send as 

few commands as possible since the robot uses local intelligence. As the robot would 

continue to execute a joystick command until otherwise instructed, the operator sends 

such commands only if necessary. This greatly reduces the number of commands an 

operator must issue. In addition, the robot may autonomously make judgments about 

situations. If it becomes aware of some impending danger, for example, nearby 

obstacles, the robot autonomously decreases the speed to a reasonable value while 

turning toward a safer direction. If the danger is immediate (e.g. someone suddenly 

blocks the path), the robot stops. In such situations, the internal autonomous behavior 

of the robot dominates the control privilege. Potentially, the robot may not respond to 

the human’s joystick commands until it thinks the current danger has passed or unless 

the joystick command makes it safe. 

In the implementation of our telerobotic system, we define four joystick 

commands (UP, DOWN, LEFT, RIGHT) and the corresponding joystick command 

functions as the Eqs. (6.1)-(6.4). 

t 1 t max
t UP t t 1

max

v , if v v
v f (x , y )

v ,otherwise
−

−

+ ∆ν <⎧
= = ⎨

⎩
            (6.1) 
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t 1 t min
t DOWN t t 1

min

v , if v v
v f (x , y )

v ,otherwise
−

−

− ∆ν >⎧
= = ⎨

⎩
        (6.2) 

t LEFT t t 1f (x , y )−ω = = ∆θ                                              (6.3) 

t RIGHT t t 1f (x , y )−ω = = −∆θ                                          (6.4) 

where, tv ,  tω  are the output variables at the current time t, respectively denoting 

the speed and delta turn angle of the robot. maxv  and minv  are respectively the minimum 

and maximum bounds of the speed. Because our robot does not have rear sensors, we 

set minv =0, meaning that the robot is not allowed to reverse. ν∆  is a constant 

parameter (mm/s), and θ∆  is a constant parameter (degree/s). The joystick commands 

UP and DOWN affect the speed of the robot while LEFT and RIGHT affect only the 

robot’s steering angle.  

In addition, we need to define the corresponding joystick events and response 

functions associated with these four joystick commands. For example, we define 

several joystick events associated with UP as },,{ 1 UkU ee , and the corresponding 

joystick response functions as 
U1 Uke e{f , , f } , where ∅=∩ UjUi ee , i, j ∈{ 1, 2, …, 

k }, which guarantees that there is only one joystick event associated with a joystick 

command that occurs. 

 1 3 4 5 3 4 5{( , , , , , ) | ((0.15 0.5) (0.15 0.5)) ( 0)}U ne u u u u u u u= ≤ < ∨ ≤ < ∧ > ,  

 2 3 4 5 3 4 5{( , , , , , ) | ((0 0.15) (0 0.15)) ( 0)}U ne u u u u u u u= ≤ < ∨ ≤ < ∧ > ,  

where 3u  is a distance value (meter) to front obstacle, 4u  is a distance value to 

lateral obstacle, and 5u  is a currently actual speed of the robot. Obviously, 

1 2U Ue e∩ =∅ . Correspondingly, we simply define two joystick response functions as 

the Eq.(6.5).  

          U1

U 2

e t t 1 t U1
t

e t t 1 t U2

vf (x , y ) , if x e
v 2

f (x , y ) 0, if x e

−

−

∆⎧ = ∈⎪= ⎨
⎪ = ∈⎩

                         (6.5) 

      In the actual implementation of joystick response function, we define such 

functions that enable the robot to autonomously decrease the speed to a reasonable 

value while to turn toward a safer direction. 
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In every robot control cycle, Algorithm 5.1 is called once. In this algorithm, we 

ignore the feedback of the running events but they should be displayed on the display 

interface of human operator’s monitor. 

 
Algorithm 5.1: JOYSTICKCOMMANDPROCESSOR( ) 

Input:     t 1 2 i nx (u ,u , , u , , u ) ,  t 1 t 1 t 1y (v , )− − −ω  

Output:  t t ty (v , )ω  

BEGIN: 

Step1.  IF there is a new joystick command, THEN 

     To calculate t N t t 1y f (x , y )−=  according to the corresponding Eqs.(6.1)-(6.4); 

    ELSE  

     t t 1 tv v ; 0;−= ω =       /* maintain the previous robot speed */ 

    END IF 

Step2. Detect and respond the joystick events associated with joystick command UP: 

    IF 1Ut ex ∈  , THEN 
U1t e t t 1v f (x , y )−= ;   /* execute the response function */ 

    … … 

    IF Ukt ex ∈  , THEN 
Ukt e t t 1v f (x , y )−= ; 

Step3. Detect and respond to the joystick events associated with joystick commands 

DOWN, LEFT and RIGHT, similar to Step 2. 

Step4. IF no events occur AND there is no joystick command, THEN 

     To maintain the current status of the robot; 

    ELSE 

     Output the low-level motor command t t ty (v , )ω ; 

    END IF 

END Algorithm 5.1 

 

5.2.3 Telecommanding using linguistic commands 

By telecommanding using linguistic commands, human operators do not care about 

the low-level control details. As an example in Section 5.2.1, a person gives a stranger 

a series of high level instructions to guide him to the nearby post office. The robot 

must follow these instructions (“linguistic commands”) while at the same time 

autonomously handle unexpected events and avoid any static or dynamic obstacles 

(e.g. humans) in its path. Therefore, telecommanding using linguistic command can 

reduce the influence of the high latency of the Internet. 
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Robotics researchers are able to design any variety of linguistic commands and 

integrate them into the telecommanding framework to be adapted to specific tasks. In 

our research examples, we have designed linguistic commands (MOVE, TURN, 

WANDER, GOTOEND, COORDINATE, and MAPPING) to realize specific tasks. 

The human operator is able to continuously input these commands from the 

interactive command window, or by clicking on the special command 

COORDINATE in the graphical window, without the need of having to wait until the 

previous linguistic command is finished. If the command is correct and there are no 

exceptional events, the robot may follow these commands to reach the goal state. 

Otherwise, the robot enters the command exception handle module automatically.  

Every linguistic command is stored in an ordered command queue that adopts the 

policy of FIFO (first-in-first-out). This command queue is a two dimensional array: 

commandQueue[M][N], where 

• m : denotes the mth command.  m M [0, )∈ = +∞      

• n : denotes the nth parameter of the mth command.  n ∈ N = { 0, 1, 2, 3, 4} 

• commandQueue[m][0] : the index number of this command type. E.g. 

MOVE_INDEX, or COORDINATE_INDEX.   

• commandQueue[m][1], commandQueue[m][2]: two working parameters of this 

command, e.g. (x, y) coordinate. The parameters are set to adapt flexibly to the 

real world model.  

• commandQueue[m][3], commandQueue[m][4]: two performance evaluation 

parameters of this command. Using the two parameters, the robot can evaluate the 

performance (success or failure) of execution result of current command, in order 

to make a decision to enter either the command exception handle module or the 

next command execution module.  

For the design of linguistic commands, we define the following terms. 

 

Definition 5.5 (Target event): Let Te  be an event associated with a linguistic 

command N. If the event Te occurs, the robot has reached the goal state. So Te is 

called a target event associated with the linguistic command N. 
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Definition 5.6 (Overrun event): Let Oe  be an event associated with a linguistic 

command N, and Te  a target event associated with N. If the event Oe  occurs and Te  

does not occur, the robot has met an overrun exception. So Oe  is called an overrun 

event associated with the linguistic command N. 

 

Definition 5.7 (Underrun event): Let Ue  be an event associated with a linguistic 

command N, and Te  a target event associated with N. If both the events Ue  and Te  

occur, the robot has met an underrun exception. So Ue  is called an underrun event 

associated with the linguistic command N. 

 

In fact, each linguistic command can be defined as a seven-element tuple {N, Te , 

Oe , Ue , 
Oef ,

Uef , Nf }. N is the definition of this linguistic command, involving its 

name and parameters. The target event Te  is determined by two working parameters 

(commandQueue[m][1], commandQueue[m][2]) of the linguistic command. The 

underrun event Ue is determined by the first performance evaluation parameter 

commandQueue[m][3]. The overrun event Oe is determined by the second 

performance evaluation parameter commandQueue[m][4]. 
Oef and 

Uef are the 

corresponding overrun and underrun response functions respectively. 

We explain the physical mean of these events using a linguistic command 

GOTOEND. When the linguistic command GOTOEND is running and the actual 

moving distance of the robot has already exceeded the expected maximum distance, 

the overrun event occurs. This means that the robot has received an incorrect 

command or encountered an exception (e.g., the goal is too far away or it is not 

reachable). When the command GOTOEND is finished because of satisfying the 

target event but the actual moving distance does not exceed the expected minimum 

distance, the underrun event occurs. This means that the robot has also encountered an 

incorrect command or an exception (e.g. someone suddenly blocks the path). In such 

two situations, the robot should then enter the command exception handle module to 

execute the corresponding overrun or underrun response function. 
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For the purpose of presenting how to design a linguistic command in terms of {N, 

Te , Oe , Ue , 
Oef ,

Uef , Nf }, we will make use of a linguistic command MOVE. The 

formal definition of the linguistic command MOVE in our telerobotic system is as 

follow:  

MOVE(double Distance, double minDistanceScale = 0.5, double 

maxDistanceScale =1.5) 

If the human operator does not input minDistanceScale and maxDistanceScale, 

the default values are used. MOVE is a complex linguistic command. Its function is 

to enable the robot to arrive at a goal lying ahead of the current location, and to avoid 

any static or dynamic obstacles (e.g. box and human). MOVE is converted into the 

following style in the command queue for execution. 

commandQueue( MOVE_INDEX, Distance, 0,  minDistanceScale, maxDistanceScale). 

      The current location of the robot in the robot internal coordinate can be 

represented as a vector ),,( 000 ϕyx , where 0ϕ  denotes the current absolute heading 

angle. The command goal location is ),,( TTT yx ϕ . The current location of the robot is 

)',','( ϕyx . The expected minimum and maximum moving distance are respectively 

mind  and 
maxd  . Therefore, 

 mind = minDistanceScale ×  Distance;    

maxd = maxDistanceScale ×  Distance; 

 += 0xxT Distance )cos( 0ϕ× ;   

+= 0yyT Distance )sin( 0ϕ× ; 

 0ϕϕ =T  

So a target event 
Te can be defined as )}()(|),,,,{( 21321 βλ <∧<= uuuuuue nT

, 

where 1u is the distance between current location of the robot and the goal, and 

T 2 T 2
1u (x ' x ) (y ' y )= − + − .  

2u  is the angle difference between current heading angle of 

the robot and the heading angle of the goal. T
2u | ' |= ϕ − ϕ  . λ  is a constant that 

denotes the minimum tolerance for 1u . β  is a constant that denotes the minimum 

tolerance for 
2u . An underrun event 

Ue can be defined as 

}|),,,,{( min3321 duuuuue nU <= . An overrun event 
Oe can be defined as 

}|),,,,{( max3321 duuuuue nO >= , where 
3u  is the actual moving distance of the robot. 
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The overrun and underrun response function (i.e.
Oef and

Uef ) can be simply designed 

to enable the robot to cancel all subsequent linguistic commands in the command 

queue while to stop the movement of the robot. A more sophisticated strategy is to 

enable the robot to reschedule the command queue. The command function Nf  is the 

most important element of a linguistic command. The command function of MOVE is 

implemented to realize a goal-oriented navigation. The main idea of such function is 

to decompose the task into two behaviors (i.e. goal-seeking, and obstacle-avoidance) 

and navigate the robot to the goal location through the coordination of the two 

behaviors. The details about goal-oriented navigation are previously described in 

Section 4.3 of Chapter 4.  

In every robot control cycle, Algorithm 5.2 is called once. 

 
Algorithm 5.2: LINGUISTICCOMMANDPROCESSOR( ) 

Input: t 1 2 i nx (u ,u , ,u , ,u ),  t 1 t 1 t 1y (v , )− − −ω  

Output:  t t ty (v , )ω  

BEGIN: 

Step1.   

IF a target event 
Te of current linguistic command occurs, THEN 

    IF an underrun event 
Ue occurs, THEN 

       
Ut e t t 1y f (x , y )−= ;         /* execute the underrun response function */ 

    ELSE 

        IF the next linguistic command can be obtained from the command queue 

via FIFO, THEN 

            To set the 
Te ,

Ue Oe  of this command, and go to the Step 1 again; 

        ELSE 

            t tv 0; 0;= ω =       /* stop the robot */ 

        END IF 

   END IF 

ELSE 

   IF an overrun event 
Oe occurs, THEN 

      
Ot e t t 1y f (x , y )−= ;         /* execute the overrun response function */ 

   ELSE 

      t N t t 1y f (x , y )−= ;         /* execute the linguistic command function */ 

   END IF 



CHAPTER 5.  Telecommanding: A New Interactive Teleoperation Approach 
 

 

 70

END IF 

Step2. Output the low-level motor command t t ty (v , )ω . 

END Algorithm 5.2 

 

Each linguistic command should be designed to autonomously perform an 

independent task. More linguistic commands, such as light-seeking, door-crossing, 

wall-following, can be designed to perform more complex tasks. The linguistic 

command MOVE has been described in the above paragraphs. The definitions of 

other linguistic commands in our telerobotic system are as follows: 

 TURN(double deltaAngle) 

 GOTOEND(double minDistance = 0, double maxDistance = INFINITE) 

 WANDER(double totalDistance, double minDistanceScale=0.5, double 

maxDistanceScale=1.5) 

 COORINDATE(double x, double y, double minDistanceScale=0.5, double 

maxDistanceScale=1.5) 

MAPPING(double totalDistance, double minDistanceScale=0.5, double 

maxDistanceScale=1.5) 

TURN is a simple linguistic command, whose function is to enable the robot to 

rotate. GOTOEND is an interesting linguistic command that enables the robot to 

reach the end of a routeway (e.g. corridor end) while to avoid any lateral obstacles. 

Three types of routeway shown in Figure 5.3 are particularly suitable for the use of 

this linguistic command. The linguistic command WANDER enables the robot to 

wander randomly without collision with any obstacles. It is simply realized using an 

obstacle-avoidance behavior. Fuzzy logic is used for the behavior design. 

COORDINATE is a complex linguistic command that enables the robot to move from 

the current location to a given goal location. The robot does not have any a priori 

known environmental knowledge. As it happens, MOVE and COORDINATE share 

the same linguistic command function as presented in Section 4.3 of Chapter 4. 

Unfortunately, such realization of goal-oriented navigation makes it easy that the 

robot gets trapped in a dead end, which is the local minimum problem encountered by 

autonomous robots in unknown environments. Chapter 7 will present a new 

navigation method (i.e. an enhanced COORDINATE linguistic command) to address 

this problem. MAPPING is a complex linguistic command that enables the robot to 
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autonomously explore unknown environment and build a map based on robot’s 

sensory information. We will present the implementation of MAPPING in Chapter 6. 

 
Figure 5.3:  Three types of routeway that are suitable for the use of 

linguistic command GOTOEND. A is the start, B is the end. 

 

5.3 Teleoperation platform 

A platform for Internet-based teleoperation using telecommanding is shown in Figure 

5.4. The research is tested on a mobile robot with eight forward ultrasonic sensors. 

The control commands transfer through radio Ethernet devices, and the video data is 

feedback through a set of A/V transmitter-receiver from a pan-tilt-zoom camera 

mounted on the robot deck. The work style and the use of streaming video are 

previously presented in Section 3.2 of Chapter 3. 

 

Figure 5.4: A platform for Internet-based teleoperation using telecommanding 
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The data visualization (e.g. sonar reading visualization, virtual trajectory display) 

is developed to complement the video transmission technique. The streaming video 

provides global environment feedback, and truly improves the quality of services over 

the low-bandwidth and unreliable Internet, producing a more stable system, higher 

image resolution, and smoother images. On the other hand, the video transmission 

time delay is large (about 8 seconds through the campus Internet, and about 12 

seconds through the 33.6 Kbps Internet connection over a telephone line). This time 

delay is caused mainly by the encoder and decoder buffers, which are used to 

guarantee quality of service.  Therefore we develop the data visualization using sonar 

readings and dead reckoning data in order to obtain more timely perceptual feedback 

(less than 1 second to transfer in our campus Internet). The human operator can obtain 

the robot’s global context information through the video feedback, and obtain the 

local context information through the data visualization. This enables the operator to 

easily predict the next control command, and improves the efficiency of teleoperation. 

 
Figure 5.5: The display and control interface. Joystick commands are sent via 

the computer keyboard; linguistic commands are sent via the bottom 

command window or clicking in the graphic window. The commands and 

sensory information are transferred via the VNC Web service, and video 

images are transferred based on streaming technology. 
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      Currently, unlike the other existing Internet telerobotics projects [Taylor & 

Trevelyan, 1995; etc.], we have not built our own Web-based data transmission 

system. Instead, we use an Ultr@VNC service [http://ultravnc.sf.net] for 

simplification of development workload, which is a reliable and convenient way for 

Web users to connect with the robot server. The display and control interface is 

shown in Figure 5.5. On the other hand, the VNC service is not an efficient 

teleoperation service since it consumes extra bandwidth for unnecessary data 

transmission. Moreover, through this service, the human operator actually dominates 

the control privilege of the robot server so that it is not safe for real public application. 

5.4 Experimental results 

In this section, we perform the simulated and real world experiments to test the 

performance of the proposed telecommanding approach.  In Section 5.4.1 Internet-

based teleoperation uses joystick commands in both the simulation and the real world. 

In Section 5.4.2, teleoperation applies linguistic commands. Section 5.4.3 presents a 

robot teleoperation over a long distance. Section 5.4.4 provides a performance and 

stability analysis. 

5.4.1 Teleoperation using joystick commands 

We conducted a simulation to test the performance of joystick commands as shown in 

Figure 5.6(a). To make the robot move from the start A to the goal H, the human 

operator uses the joystick commands <UP, DOWN, LEFT, RIGHT>. The trajectory is 

indicated by a chain of black circles. The program draws a circle once every 0.5 

second. A denser concentration of circles (e.g. B to C in Figure 5.6(a)) thus indicates 

that the robot is traveling more slowly. Figure 5.6(b) shows the relationship of the 

robot speed, the robot turn and the joystick command <UP>. The robot begins to 

increase its speed from location A. Every time the robot receives an <UP> joystick 

command (see Figure 5.6(b) 1st, 2nd, 3th,  4th, etc. <UP> command), the speed increases 

100 mm/s until it reaches the predefined maximum bound (400mm/s). When the robot 

is approaching obstacles, it may not respond to the <UP> command from the human 

operator and may autonomously decrease its speed to a reasonable value 100mm/s 

and turn in a safer direction (see B to G in Figure 5.6(a) and (b)). When the robot is 

very close to obstacles, its speed is autonomously set to 0 mm/s (see B and H in 
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Figure 5.6). For simplicity of implementation, in this test, we simply define the 

joystick events and corresponding joystick response functions. 
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(b) 

Figure 5.6: Teleoperation simulation using joystick command. (a) the robot is 

moved from the start A to the goal H. (b) The relation of the robot speed, 

robot turn and joystick command <UP>. Each peak (*) in the curve 

represents an <UP> joystick command. Each peak (•) in the curve represents 

a turn action that is automatically produced by the control program. There 

are 17 <UP> commands in total. (A-H) correspond to the locations in (a).  

 

Next we test the Internet-based teleoperation in our department corridor using 

joystick commands (see Figure 5.7). A remote human operator controlled a real robot 

through the campus Internet. The remote operator used the experimental platform and 

control interface discussed in Section 5.3 and found it convenient to control the robot 

using joystick commands. The operator did not need any robotic expertise as it is just 
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doing like playing a game using the keyboard’s <Up, Down, Left, Right> keys. The 

task is completed in about 180 seconds. The maximum speed was 400mm/s. The 

actual average speed of the robot was 45000/180 = 250mm/s. During the process, the 

robot autonomously decelerates and turns in a safer direction if it is approaching an 

obstacle, and stops if danger is imminent (e.g. someone suddenly blocks the path). As 

a result, the robot was able to avoid collisions with obstacles (e.g. walls, desks, boxes, 

and humans), even though we purposely disconnected the network cable in order to 

lose the Internet connection for a period. 

 
Figure 5.7: Joystick commands for use in Internet-based teleoperation. The 

robot moves in our department corridor under remote control. The corridor is 

about 45 meters long and contains two corners and a number of obstacles. 

 

5.4.2 Teleoperation using linguistic commands 

First we conduct a simulation experiment to demonstrate how to control a robot so 

that it can navigate in a complex and unknown space using linguistic commands. As 

shown in Figure 5.8(a), the remote operator guides the robot by continuously sending 

a series of linguistic commands. The instructions are to first move forward (MOVE) 

to the location B; then take a right turn 450 (TURN) and go to the end C (GOTOEND); 

next turn right 900 (TURN) and go to the end D (GOTOEND); turn right 450 (TURN) 

and move forward (MOVE) to the location E; finally turn right 450 (TURN) and go to 

the end (GOTOEND) to reach the final goal F. Those commands are stored in a 

command queue and allowed to execute only after completion of the previous 

command. This test was successful without any occurrence of overrun or underrun 

events. By storing all of those linguistic commands in the robotic system, we obtain a 

new linguistic command GOTO_ROOM_F. The learned linguistic command 

GOTO_ROOM_F was reissued from location A again as shown in Figure 5.8(b). 

Because the sensing data are not identical with data of the previous test, the trajectory 

of the robot was a little different. When the command GOTOEND( ) is running from 

location C, the target event does not occur at location D, but occurs at location E. The 
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subsequent MOVE(1000) is wrong because it causes the robot to move toward 

location G, which is not reachable. This leads to an overrun event when the robot tries 

to move around to reach location G. This triggers the corresponding command 

exception handle module. In our telerobotic system, the robot is simply stopped 

autonomously so that the human can send further commands. 

Those linguistic commands reduce the length and complexity of the command list, 

making it suitable for Internet-based teleoperation. For example, the robot is expected 

to move forward three meters from location A to location B. But a corner blocks its 

path (see Figure 5.8). Our MOVE command provides a convenient way to reach the 

goal. To avoid the obstacle, the operator needs only send the command MOVE(3000) 

instead of a lot of low-level commands. The linguistic commands are particularly 

useful in the dynamic real world. 

  
(a)                                                                   (b)  

Figure 5.8:  Simulation using linguistic commands from the start A to the goal F. 

(a) GOTO_ROOM_F= {MOVE(3000),TURN(-45),GOTOEND(),TURN(-90), 

GOTOEND(),TURN(-45),MOVE(1000),TURN(-45),GOTOEND()}; (b) Learned 

linguistic command GOTO_ROOM_F is executed. An overrun event occurs 

when MOVE(1000) is running at the location E. 

 

Next we test an Internet-based teleoperation in real world using linguistic 

commands to navigate a robot in a complex house (see Figure 5.9). The remote 

operator observes the robot’s surroundings through the streaming video feedback. The 

perceptual data visualization provides more timely local information. The remote 

operator sends a series of linguistic commands to let the robot move to the end of the 
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path, return to the cross, then turn and go to the final goal. As the robot is highly 

autonomous, its maximum speed is set at 200mm/s. The experimental task took about 

100 seconds without any collisions, and the trajectory was about 13 meters long, 

making the average speed 13000/100 = 130mm/s. We ran the same Internet-based 

teleoperation test using direct control without robot intelligence. The task took over 

300 seconds and on several occasions the robot collided with walls or doors because 

of the large time delay derived from the video feedback.  

 
Figure 5.9: The use of linguistic commands in real world for Internet-based 

teleoperation. The remote operator sends a series of linguistic commands: 

{GOTOEND(), TURN(180), GOTOEND(), TURN(40), MOVE(2000), TURN(90),  

MOVE(1000), TURN(50), MOVE(3000)} 

 

Finally we conduct the experiments to demonstrate the COORDINATE linguistic 

command. As shown in Figure 5.10, the robot does not have a priori knowledge about 

the map of a maze. It is required to move from the start S to the goal T. By clicking a 

mouse, the human operator is able to send the COORDINATE command. The 

simplest way to do this is to continuously give out three COORDINATE commands 

(see Figure 5.10(a)). This allows the robot to pass by the waypoints A and B from the 

start S to the goal T, thereby escaping from the dead ends. Another way is using an 

enhanced COORDINATE command to simply point out the final goal location T. The 

robot is able to autonomously look for the safest regional direction and escape from 

the dead end. The experimental results are encouraging. The robot autonomously 

finds the correct path out of the maze (see Figure 5.10(b)). More tests are shown in 

Figure 5.11. 
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(a) 

  
                                                    (b) 

Figure 5.10: The goal-oriented navigation in a maze from the start S to the goal T.  

(a) Three COORDINATE command (S->A->B->T) by the use of the command 

queue; (b) One enhanced COORDINATE command (S->T). The robot 

autonomously searches the solution path by coordinating three behaviors: path 

searching, obstacle avoidance, and goal seeking behaviors. 
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(a) 

 
(b) 

Figure 5.11: The goal-oriented navigation using one enhanced 

COORDINATE command. (a) in a structured environment. (b) in a cluttered 

and unstructured environment. 
 

5.4.3 Robot teleoperation over a long distance 

We tested the Internet-based teleoperation using telecommanding over a long distance 

from Beijing to Hong Kong (over 1500 kilometers). A remote human operator 

(located in Beijing) connects with the robot server (located at our department in Hong 

Kong) through the VNC service, and observes the robot’s surroundings (our 

department corridor) through streaming video (50Kbps). Combining the graphical 

control interface and local perceptual data visualization, the remote operator can 

determine and send the telecommanding commands. The experiment has tested the 

use of joystick commands and linguistic commands. The operator has no robotic 

expertise and he is told the teleoperation commands only at the beginning of the test. 

The test demonstrates that the telecommanding is interactive, effective, and easy to 
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use. The telerobotic system was publicly demonstrated and was well received at the 

Hong Kong Convention and Exhibition Center in April, 2004. Here are some video 

clips shown in Figure 5.12.  

 
Figure 5.12: The robot is navigating by telecommanding in the Hong Kong 

Convention and Exhibition Center. Some audiences think the robot is “alive” and 

they are interested in testing the response of the robot by blocking its path ahead. 

 

5.4.4 Performance and stability analysis 

As shown in the above real-world tests, telecommanding using joystick commands is 

easy to use and is reliable even in a crowded exhibition center. Joystick commands 

provide the human operator ‘hands-on’ control, giving the operator a strong feeling of 

interaction with the robot. On the other hand, the human operator does have to spend 

more effort on the control details if joystick commands are used in the highly dynamic 

environment. It should also be noted that joystick commands are not suitable for 

carrying out some more skilful tasks (e.g. finding and entering a door located in the 

lateral wall of the corridor) if an uncertain or long time delay exists (e.g. through the 

Internet or the space).   

Telecommanding using linguistic commands compensates for the disadvantages 

of using joystick commands. Moreover, it can evolve and obtain more high-level 

linguistic commands by learning the linguistic commands queue from the human 

operator. Each linguistic command can be designed and used independently. This 

means that one poor linguistic command may not affect the performance of others. 

The use of linguistic commands is easy to be accepted by inexperienced users so that 

it does not require expertise. Linguistic commands are suitable for the use in the 

environments affected by uncertain or long time delays. The disadvantages of 

telecommanding using linguistic commands are that a linguistic command function 

involves quite complicated design and that we currently lack an explicit standard to 

define exception detection and responses.  
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The stability of Internet-based telerobotic system is affected by the uncertain time 

delay that results in the loss of synchronization of time based action references. In the 

telerobotic system by telecommanding, the predefined events, e.g. the distances to 

obstacles, are non-time-based action references that are non-decreasing functions to 

time. These events are independent of the uncertain time delay, and drive the robot to 

output actions in accordance with predefined response functions. Xi & Tarn [2000] 

have previously proven the theoretical stability of non-time referenced Internet-based 

telerobotic systems, and now it has been demonstrated via our tests in simulation and 

in the real world.  

5.5 Comparison with other control approaches 

It is obvious that the direct control is unsatisfactory for use in Internet-based mobile 

robot teleoperation because of the high latency derived from the Internet such as 

restricted bandwidth and uncertain time delay. Passive supervisory control is 

unsatisfactory mainly in that it fails to provide adequate human-robot interactivity. 

Table 5.1 provides a comparison of these approaches with the telecommanding. 

 

Table 5.1:  Comparison of related systems under various teleoperation approaches 

 Direct control 
Passive supervisory 

control 

Telecommanding 

(interactive 

control)  

Command type 
low-level speed & 

angle 

determined goal 

coordinate 

joystick & linguistic 

commands 

Command send Continuous One by one Both 

Command level Low High High 

Task efficiency Low High High 

Semi-autonomy None High High 

Stationary environment Feasible Feasible Feasible 

Dynamic environment Dangerous Feasible Feasible 

Internet connection lost Dangerous Safe Safe 

Complex task Difficult Feasible Feasible 

Human-robot interactivity Good Poor Good 

Real world applicability Good Poor Good 

Easy to use Easy Easy Easy 
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Researchers are attempting to add more human-robot interaction in the form of 

behavior-programming control, fitting autonomy, supervised autonomy, shared 

control, cooperative control, collaborative control, and so on. We refer to these 

strategies as active supervisory control or interactive control. Chung et al [1998] 

propose a control strategy consisting of three major parts: behaviors, planner, and 

coordinator. The coordinator produces a wake-up table that contains all behaviors 

which should be scheduled by a real-time robotic system. Each task action must be 

defined with three conditions: pre_activate, fire_condition, and post_activate. These 

conditions respectively denote a group of behaviors that must be activated at the 

corresponding time. This kind of control strategy is too complex and the running 

performance of the robotic system is difficult to evaluate. One poor behavior could 

lead to the failure of multiple tasks. The human operator also finds it difficult to 

provide suggestions for action via the command parameters. Similar problems arise in 

the behavior-programming control mode proposed by Luo et al [2000]. In behavior-

programming control mode, the event derived from a motion assistant is used on the 

robot to select a behaviour that is suitable in the encountered situation. Vieira et al 

[2001] proposed a concept of fitting autonomy, which allows the mobile agents to 

adapt its high level abstract plan to the exact environment it finds in remote places 

and to execute the adapted plan including execution monitor and error recovery. This 

concept is evaluated in the field of mobile manipulator teleoperation. 

Gordon Cheng et al. [2001] propose a teleoperation paradigm: supervised 

autonomy. This allows some qualitative instructions (e.g. Go Forward, Go Toward, 

Go Between, or Keep To) to be implemented using a vision-based approach. These 

instructions are slightly similar to our linguistic commands, but they lack the 

performance evaluation and it allows instructions to be sent only one at a time. More 

importantly, this paradigm does not have a complete framework for command 

processing and event response. The shared control in literature [Lin et al, 1996] is 

similar to our joystick command, but it is rather simple and lacks the corresponding 

events definition and response functions. Bourhis and Agostini [1998] used 

cooperative control to control an intelligent wheelchair. This allows, at certain times, 

both the robot and the human to become the supervisor. Three types of behaviors are 

defined: skill-based, rule-based, and knowledge-based behaviors. The collaborative 

control in [Fong et al, 2003] is a model based on human-robot dialogue. Both the 
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cooperative control and collaborative control are difficult to apply in Internet-based 

mobile robot teleoperation because the Internet causes uncertain time delays and the 

robot cannot obtain timely suggestions from the human operator. 

In summary, the differences between the proposed telecommanding and the 

existing passive or active supervisory control methods (including the event-based 

control) are as follows. 

First, the proposed telecommanding can provide a complete framework to process 

different types of commands (e.g. joystick commands or linguistic commands) and 

allow these commands to be sent continuously.  Most of other control methods are 

only able to provide single or limited available control commands (e.g. using a mouse 

to click a map).  

Second, in most existing Internet telerobotic systems, the robots have considerable 

autonomy but lack the interaction with the human operator. For example, the operator 

is only able to send very high-level commands to the robot, without the capability of 

using the running parameters to influence the robot’s execution process. Also, it is 

difficult to obtain the robot’s running status or information about the events the robot 

has encountered. The proposed telecommanding provides such linguistic commands 

with flexible working parameters, and allows that the robot can respond and feedback 

predefined expected events as well as react to unexpected events. 

Third, most robots under passive supervisory control need to know environmental 

knowledge in advance for path planning or localization, which cause that it is difficult 

to be applied in an unknown and dynamic environment. The proposed 

telecommanding is proposed to fully address the teleoperation of remote robot that 

explores unknown and dynamic environments. 

5.6 Summary 

This chapter proposes a new teleoperation approach namely telecommanding, which 

involves two different but complementary commands: joystick commands and 

linguistic commands. The commands are designed to perform different independent 

tasks. Each joystick or linguistic command is defined with multiple events (non-time 

action references) and the corresponding response functions. Some events (e.g. 

overrun event or underrun event) are used to evaluate the performance of the task 

when the robot is executing a linguistic command. The approach allows the robot to 
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deliberately respond to expected events while to reactively respond to unexpected 

events. Telecommanding ensures the safety of Internet robot that is navigating in an 

unknown and highly dynamic real world, and alleviates the problems of arbitrary 

network delays and restricted bandwidth. Moreover, it eases the work load of the 

human operator, reduces the operation sequence and its complexity in the command 

queue, and improves the interactivity and reliability of Internet telerobotics. The 

experiments have demonstrated the promising performance and the advantages of 

telecommanding over direct control and passive supervisory control. 
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CHAPTER 6.  REAL-TIME MAP BUILDING AND 

ACTIVE EXPLORATION 
 

Chapter 5 presents a new teleoperation approach, which provides a complete 

framework of control management and command processing. Both joystick and 

linguistic commands are designed to help human operators remotely control the 

mobile robot to explore unknown environments. One of the linguistic commands is 

MAPPING, which allows a mobile robot to be able to actively explore the unknown 

environment and to build a map autonomously. This chapter realizes such command 

function by proposing a new map learning approach. 

6.1 Introduction 

To perform fully autonomous tasks, it is necessary for mobile robots to model an a 

priori unknown environment. The optimal way to do this is for the mobile robot to 

actively explore the environment and construct a map based on its sensory 

information. This is the problem of active map learning [Arleo et al., 1999], which is 

a little different from the SLAM (Simultaneous Localization And Mapping) problem 

[Filliat & Meyer, 2003; Chong & Kleeman, 1999]. The former focuses more on the 

active exploration strategy for sensing the environment, while the latter focuses more 

on the localization strategy for estimating robot’s accurate position. This chapter 

addresses the problem of active map learning. 

There are some practical limitations on a robot’s ability to learn accurate map 

models including the perceptual limitations of most sensors (e.g. ultrasonic sensors, 

cameras), sensor noise, drift or slippage, environmental complexity and dynamics, as 

well as real-time requirements [Thrun, 1998b]. In addition, two fundamental 

requirements must be satisfied for effective active map learning: first, the robot must 

have an efficient map model for representing the environment, and second, the robot 

must incorporate a fast path-planning algorithm based on this representation for 

actively exploring the environment. 

There are a variety of map learning approaches, as described in Chapter 2. They 

use different grid-based map models to represent the environments, and update a map 
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based on probability [Thrun, 1998b; Yamauchi et al., 1998; Wallner & Dillmann, 

1994; Dieguez et al., 2003; Song & Chang, 1999; etc.], fuzzy possibility [Oriolo et al., 

1998], or frequency concept [Borenstein & Koren, 1991; Edson et al. 2004]. Some 

active exploration methods are developed to navigate a mobile robot to least known 

environments. Almost all of these methods adopt the strategy of global path planning 

and path tracking, typically belonging to a SMPA (Sense-Model-Plan-Act) approach 

[Saffiotti, 2000]. In these methods, a target representing least known environment is 

selected at first based on an already modelled environment, then an optimal path from 

current robot position to the selected target is obtained by global search, finally the 

robot follows the planned path to reach the target and chooses another target again. 

One drawback of such exploration approach is that the computational complexity of 

path planning rapidly increases as the environmental complexity or the scale of 

learned map increases, making real-time computation in practical applications 

infeasible. Moreover, this approach encounters the problem that the plan built from 

the modelled map will be inadequate to the environment actually faced during 

execution, particularly in a dynamic environment.  

This chapter proposes a new approach called “memory grid mapping” for active 

map learning in unknown indoor environments. The proposed map model adopts a 

grid-based representation and uses frequency values to measure the confidence that a 

cell is occupied by obstacle. The map model allows that more information about the 

environment and the robot’s history of experience (e.g. its trajectory) can be kept in a 

map. The exploration strategy adopts a behavior-based approach as previously 

presented in Chapter 4. In each control period, the proposed exploration method 

recommends a direction that provides minimum risk in a predetermined region in 

order to drive the robot greedily moving toward less visited environment. This 

minimum risk involves both minimum collision risk with obstacles and minimum 

iteration risk toward previously visited area. The proposed map postprocessing 

method, including a threshold operation, a template operation, and an insert operation, 

is useful to improve the accuracy of learned map. The approach makes no 

assumptions about environmental complexity or the shape or size of obstacles, but we 

assume in this chapter that the robot obtains an accurate position by localization 

without odometric errors.  

The rest of the chapter is organized as follows. Section 6.2 proposes a new map 
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learning approach, involving a grid-based map model and a framework for real-time 

map building and active exploration. Section 6.3 presents a map update method, 

Section 6.4 an exploration method, and Section 6.5 a map postprocessing method. 

Section 6.6 provides the results of our simulations experiments. Section 6.7 gives 

some discussions. Section 6.8 summarizes the chapter. 

6.2 The proposed approach 

6.2.1 The model of memory grid map 

The proposed map represents an environment by using evenly-spaced grid cells. A 

map shown in Figure 6.1 can be defined as a vector GridHead GridHeadV(x , y ,M, N, ) , 

where (xGridHead, yGridHead) is  the coordinate of the top-left-corner cell in the internal 

coordinate systems of the robot; (M, N) are respectively the rows and columns;  is a 

constant denoting the length of the cell size. Coordinate mapping is a transform 

process from the internal coordinate (x , y )′ ′ of the robot to the coordinate (m ,n )′ ′  of 

the grid cell. By using a coordinate mapping, current physical position of the robot is 

mapped into a position of the grid-based map so that corresponding information can 

be saved in a map.  
),( GridHeadGridHead yx N

M

),( nm ′′

),( yx ′′

 
Figure 6.1: A memory grid map and its coordinate mapping 

 

The equations of coordinate mapping are as follows. 

ˆy , if 0 y 0.5
m

ˆy 1, if 0.5 y 1
≤ <⎧′ = ⎨ + ≤ <⎩

                              (6.1) 
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ˆx , if 0 x 0.5
n

ˆx 1, if 0.5 x 1
≤ <⎧′ = ⎨ + ≤ <⎩

                                 (6.2) 

where,   
GridHeadx ' xx Int( )−

=                       GridHead GridHeadx ' x x ' xx̂ Int( )− −
= −  

GridHeady y 'y Int( )−
=                       GridHead GridHeady y ' y y 'ŷ Int( )− −

= −  

We call the proposed map memory grid map because each grid cell of the map 

contains two kinds of memorized information that we call memory dot. One is 

Obstacle Memory Dot (OMD). The other is Trajectory Memory Dot (TMD). The 

OMD’s value ( , )OMDV i j  indicates the measure of confidence that an obstacle exists 

within the cell (i, j) area, where i = 1, 2, …, M, and j=1, 2, …, N. The TMD’s value 

( , )TMDV i j  indicates the number of occurrence, i.e. how many times the robot traverses 

the cell (i, j) area. The TMD is designed to record the previously traversed trajectory 

as well as the time consumed by the robot that traverses the cell area. The information 

about TMD can be used for robot online path-planning. The information saved in the 

map appears as matrix, such as OMD matrix OM×N and TMD matrix TM×N. Every 

control period (100ms in our robotic system), we update OM×N and TM×N. The update 

algorithm is described in Section 6.3. 

6.2.2 A framework of map building and active exploration 

A framework of the proposed approach is shown in Figure 6.2 for map building and 

active exploration. In this approach, a memory grid map is built based on robot’s 

sensory information, so that we call the approach memory grid mapping. The 

approach includes three modules: map update, environmental exploration, and map 

postprocessing. This section provides a short description of their design ideas. 

Map
Update

Environment
Exploration

Map
Postprocessing

 
Figure 6.2: A framework of the proposed approach 

 

1) Map update  

The module of map update is to interpret the sensor readings and integrate them 

over time into a map that models the environment. In this module, the sonar readings 

are mapped into frequency values (i.e. OMD’s values) which represent the confidence 



CHAPTER 6.  Real-time Map Building and Active Exploration
 

 

 89

of the cells where they are occupied by obstacles or not. These values are integrated 

over time to yield a single, combined estimate of occupancy in a map (i.e. OMD 

matrix OM×N) by simple addition or subtraction of frequency values. For the update of 

TMD matrix TM×N, only one cell where the robot is currently located is incremented 

in each control period. The detail is presented in Section 6.3. 

2) Environmental exploration  

The module of environmental exploration is to make online path planning in order 

to actively explore the least known environment. In this module, the path planning 

method adopts a strategy of multi-behavior coordination, in which a novel regional 

path-exploring behavior is developed to recommend the regional direction toward less 

visited environment, and a local environment-detecting behavior is developed to 

detect the environment details while to avoid obstacles. The TMDs in the memory 

grid map are used by the path-exploring behavior to evaluate the risk whether or not 

the robot is iterating the previously visited areas. Each behavior is assigned a 

weighting factor, and these factors are adjusted dynamically by weighting functions 

during robot motion. The weighting factors determine the degree of influence of each 

behavior on the final motion command. The final command output is obtained by 

coordinating these two behaviors using a command fusion equation. The detail is 

presented in Section 6.4. 

3) Map postprocessing 

The module of map postprocessing is to filter the learned map offline in order to 

remove some misclassified cells and to obtain a more consistent and complete 

environment map. At first we use a threshold operation in order to remove some 

misclassified cells from the perspective of cell’s intensity (i.e. magnitude of OMD 

value).  Next we use a template operation in order to remove most misclassified cells 

from the perspective of neighboring correlation. Finally we use an insert operation in 

order to add some undetected cells. The detail is presented in Section 6.5. 

6.3 The map update 

The map update is done real time in order to build a map based on robot’s sensory 

information. In general, a map is updated in two steps. First, sensor readings are 

interpreted to draw a local map (i.e. a map that only keeps the obstacle information 



CHAPTER 6.  Real-time Map Building and Active Exploration
 

 

 90

derived from current sensor readings). Then the local map is integrated into a global 

map (i.e. a map that keeps global obstacle information throughout the entire control 

period) and the corresponding cells are updated. Thrun’s method [1998b] trains an 

artificial neural network using Back-Propagation to map sonar readings to occupancy 

values. Multiple sonar interpretations are then integrated over time using Bayes rule 

to form a global metric grid. This approach requires many calculations. Arleo et al 

[1999] use a similar neural network technique to obtain the local grid-based map, but 

this local map is subsequently used only to identify obstacle boundaries in order to 

build a variable-resolution partitioning map. Song and Chang’s method [1999] 

extends from heuristic asymmetric mapping (HAM) [Song & Chen, 1996], in which a 

sonar reading indicates the probabilities of multiple cells that correspond to physical 

occupied region and empty region. The probability of each cell is then integrated into 

a global grid map through a first-order digital filter to generate a certainty value from 

-1 to 1. Oriolo et al. [1997; 1998] provide a fuzzy reasoning method to update the map. 

Borenstein and Koren [1991] uses a simple metric sonar model that increases the cell 

value measured by the sonar and decreases the cells corresponding to free areas. 

The update method of the proposed memory grid map involves two parts: one is to 

update the OMD matrix OM×N, another is to update the TMD matrix TM×N. Initially, 

both OM×N and TM×N are set to zero matrixes. The details are as follows.  

The update method of OMD matrix OM×N increments only one cell for each range 

reading. At the same time it decrements those cells that represent “empty” areas in 

this range reading. This design makes the update algorithms simple and fast. For 

sonar sensors as shown in Figure 6.3, the incremental cell is the one Sd that 

corresponds to the measured distance d and lies on the acoustic axis of the sonar S0.  

The incremental cell is updated by Eq. (6.3) 

OMD OMD O MAX
OMD

O MAX

V (i, j) I , If V (i, j) V
V (i, j)

V Otherwise

+
−

−

⎧ + <
= ⎨
⎩

                   (6.3) 

where, VOMD(i, j) is the OMD value of grid cell (i, j), i = 1, 2, …, M, and j=1, 

2, …, N, VO-MAX is a constant for a grid cell’s maximum OMD value. The increment 

I+ is 3 and VO-MAX is 25, experimentally determined in our robotic system. 

The decremental cells are located on the line of the acoustic axis except the 

incremental cell Sd. They are upated by Eq. (6.4). 
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OMD OMD O MIN
OMD

O MIN

V (i, j) I , If V (i, j) V
V (i, j)

V Otherwise

−
−

−

⎧ − >
= ⎨
⎩

                    (6.4) 

where VO-MIN is a constant for a grid cell’s minimum OMD value. The decrement 

I- is 1 and VO-MIN is 0. These values are determined experimentally. Note that I- must 

be smaller than I+ because only one cell is incremented whereas multiple cells are 

decremented for one reading.  

Finally, we only update the cells that are located inside a circular sector of radius 

centered at the sonar position. This circular sector is called the “confidence sector”. 

The radius rc of this sector is 1 metre, which is an acceptable value that we have 

confidence to obtain the correct sonar readings in our robotic system. This reduces 

artifacts produced by sonar noises (e.g. noises from false reflections). Because of this 

update strategy, a likelihood distribution of occupancy is actually obtained by 

continuously and rapidly sampling each sensor as the robot is moving, in which high 

values are obtained in cells close to the actual location of the obstacle.   

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 +3

Obstacle

Sonar
S0

Sd
Increment = +3
Decrement = -1

 
Figure 6.3: The update of OMD matrix in a memory grid map. The 

incremental cell Sd, corresponding to measured distance d, is incremented 

by I+, and other decremental cells between S0 and Sd are decremented by I−. 

 

The update method of the TMD matrix TM×N is very simple. Only one cell where 

the robot is currently located is incremented in each control cycle.  

TMD TMD T MAX
TMD

T MAX

V (i, j) 1, If V (i, j) V
V (i, j)

V Otherwise
−

−

+ <⎧
= ⎨
⎩

                   (6.5) 

where VTMD(i, j) is the TMD value of grid cell (i, j), i = 1, 2, …, M, and j=1, 2, …, 

N, VT-MAX is a constant for a grid cell’s maximum TMD value. This maximum value 

is 50, experimentally determined in our robotic system. There is no decrement for 
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TMD matrix, which means that the trajectory experienced by the robot might not be 

forgotten.  

During every control cycle (100ms in our robotic system), Algorithm 6.1 is called 

once to update a memory grid map. 

 

Algorithm 6.1: MAPUPDATE( ) 

Input:  (x0, y0) = current robot location;     φ0 = current robot heading angle; 

           di (i = 0, 1, …, 7) = sonar readings from eight forward sonars. 

Output:  OM×N = The OMD matrix;   TM×N = The TMD matrix. 

BEGIN: 

Step 1. Update the TMD matrix TM×N. 

Step 1.1. Do the coordinate mapping to transform current robot coordinate 

(x0, y0) into coordinate (m0, n0) of memory grid map by Eqs. (6.1) and 

(6.2); 

Step 1.2. Update the TMD value VTMD(m0, n0) of corresponding cell (m0, n0) 

in TM×N By Eq. (6.5); 

Step 2. Update the OMD matrix OM×N. 

    FOR every sonar Si (i=1 to 8), Do the same jobs as the following: 

        IF the sonar reading di is less than the radius rc of confidence sector, THEN 

Step 2.1. Calculate the coordinate (xSd, ySd) of incremental cell Sd as in 

Figure 6.3 based on the sonar’s coordinate (xS0, yS0) and sonar 

reading di; 

Step 2.2. Do the coordinate mapping to transform (xSd, ySd) into grid 

coordinate (mSd, nSd) by Eqs. (6.1) and (6.2); 

Step 2.3. Increment the OMD value VTMD(mSd, nSd) of cell (mSd, nSd) in 

OM×N By Eq. (6.3); 

Step 2.4. Calculate the grid coordinates of all decremental cells between 

S0 and Sd; 

Step 2.5. Decrement the OMD value of all decremental cells in OM×N By 

Eq. (6.4); 

             OTHERWISE 

                    Step 2.6. Calculate the grid coordinates of all decremental cells within 

confidence sector between S0 and Sd; 
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                    Step 2.7. Decrement the OMD value of all decremental cells in OM×N By 

Eq. (6.4); 

             END IF 

   NEXT FOR 

END Algorithm 6.1. 

 

6.4 The environmental exploration 

The environmental exploration methods are developed for the mobile robot to actively 

explore the least known environment. Thrun [1998b] resorts to an exploration scheme 

that allows the robot to drive towards unexplored areas, i.e. areas where cell 

probabilities have never been updated. For each cell, this scheme updates a value 

representing the distance to the closest unvisited cell area using a value-iteration 

algorithm, so that performing a gradient descent on these values leads to unexplored 

areas. Instead of using value-iteration, Yamauchi et al. [1998] implement the 

exploration by directing the robot toward the closest frontier between explored and 

unexplored areas. The path to this frontier is computed using a depth-first search in 

known open-areas. Arleo et al. [1999] develops a technique called counter-based 

exploration with decay [Thrun, 1992], in which a counter keeps track of the number 

of occurrences for each partition (i.e. how many times that partition has been visited). 

The counter is multiplied by a decay factor in order to take into account when a 

partition has been visited. The exploration is directed toward the partitions that have 

been less often and less recently visited.  

ED Behavior

PE Behavior

Command
fusion

exteroception

proprioception

memory grid

speed

turn
angle

,PE PEwθ

,θED EDw

 
Figure 6.4: The proposed exploration method by ED and PE behavior coordination.  

 

The proposed exploration method adopts a strategy of multi-behavior coordination 

as shown in Figure 6.4, which comprises two elementary behaviors, path-exploring 

(PE) behavior and environment-detecting (ED) behavior. The PE behavior’s role is to 



CHAPTER 6.  Real-time Map Building and Active Exploration
 

 

 94

navigate a mobile robot to a less visited region. This region is among the LEFT, 

RIGHT, FRONT regional sectors as shown in Figure 6.5(a), which we call “turn 

detection region”.  The total values of OMDs of a turn detection region would 

represent the risk that the robot could collide with obstacles in this region. Similarly, 

the total values of TMDs of a turn detection region would represent the risk that the 

robot is moving to its previously visited areas. Therefore, the region with minimum 

risk is the one with the minimum values of both TMDs and OMDs. Such regional 

direction is the best choice for the robot in trying to avoid both obstacles and previous 

trajectory, and consequently safely explore new environment. The local ED behavior 

is a sensor-based behavior, which detects the environment while making the robot 

safe without collision with obstacles. It’s desired that the ED behavior enables the 

robot to follow the boundary of obstacles as near as possible in order to detect more 

environmental details. 

                   
(a)                                                                      (b) 

Figure 6.5: Detection regions for the PE behavior. (a) Arc-shaped turn 

detection regions (i.e. LEFT, FRONT, RIGHT).  (b) Square-shaped weight 

detection region. The center is the robot location. 

 

In each control period, the final motion command is obtained by fusing two 

behaviors’ weighting output. The rotational turn angle θ and the speed v are obtained 

by Eqs. (6.6) and (6.7) respectively.  

PE PE ED ED

PE ED

w w
w w
⋅θ + ⋅θ

θ =
+

                                (6.6) 

v = vc                                                              (6.7) 

where, θED and θPE are respectively the delta turn angle recommended by the ED 

and PE individual behavior. wED and wPE are respectively the weighting factor of the 

ED and PE behavior. vc equals to 100mm/s in our robotic system. The robot’s speed v 
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is set to this small constant value so that the robot has enough time to detect the 

environment. We shall describe the design of two behaviors in the following. 

To calculate the turn angle and weight of the PE behavior, we define the following 

terms at first.  

 

Definition 6.1 (Iteration Risk):  Iteration Risk (IR) of a region A is defined as 

TMD
(i, j) A

(A) V (i, j)
∈

α = ∑  , where A is an arc-shaped turn detection region (see Figure 

6.5(a) left, front, right regions), ( , )TMDV i j  is the TMD’s value of the cell (i, j) 

involved in the region A.  

 

In fact, Iteration Risk is defined as the total values of TMDs saved in a turn 

detection region. Similarly, we define the following terms. 

 

Definition 6.2 (Collision Risk):  Collision Risk (CR) of a region A is defined as 

OMD
(i, j) A

(A) V (i, j)
∈

β = ∑  , where A is an arc-shaped turn detection region (see Figure 

6.5(a). left, front, right regions), ( , )OMDV i j  is the OMD’s value of the cell (i, j) 

involved in the region A.  

 

Definition 6.3 (Trajectory Dot Intensity): Trajectory Dot Intensity (TDI) of a 

region B is defined as 
 TMD

(i, j) B
(B) V (i, j)

∈

κ = ∑  , where B is a square-shaped weight 

detection region (see Figure 6.5(b)), ( , )TMDV i j  is the TMD’s value of the cell (i, j) 

involved in the region B.   

 

TDI and IR have different detection regions. We call the region B weight detection 

region as shown in Figure 6.5(b).  The regions available for robot traversal (i.e. turn 

detection regions) are three circular side sectors as shown in Figure 6.5(a). The radius 

of the circular sector is the robot’s regional perception range, i.e. the distance at 

which we wish the robot to react to the regional risk features. The size of the radius is 

1 metre in our robotic system since the robot updates the OMD’s value only in those 

cells that are located inside a circular sector of 1 metre in radius. These regional 

sectors are labelled left, front, and right, and have the central angular values of +60 ° , 
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0 ° , - 60°  respectively. The weight detection region is no directionality (i.e. it is same 

whatever angle the robot’s heading is). This design makes the computation of TDI 

very simple and fast. In our robotic system, the size of this squared region is 2m×2m 

(i.e. a half of the side is 1 metre) so that it is similar with the size of the turn detection 

region. 

Algorithm 6.2 is used to calculate the turn angle of the PE behavior. The output 

only contains three angle values {600, 00, -600} that respectively correspond to the 

LEFT, FRONT and RIGHT regional direction. 

 

Algorithm 6.2: (Calculate the turn angle of PE behavior) 

Input:  OM×N = The OMD matrix;   TM×N = The TMD matrix. 

Output:  θPE = delta turn angle of the PE behavior,  θPE ∈{600, 00, -600} 

BEGIN: 

Step 1. Update the iteration risk and collision risk of all turn detection regions, 

including α(Afront), α(Aleft), α(Aright), β(Afront), β(Aleft), and β(Aright); 

Step 2. Find out all turn detection regions (among Aleft, Afront, Aright regions) whose 

collision risk β(A) are less than a threshold T1. IF so, THEN the corresponding 

regions are reserved and go to Step 3, OTHERWISE the weight of PE behavior is 

forced to zero (i.e. wPE =0) and RETURN; 

Step 3. IF the front region is one of the reserved regions AND its iteration risk 

α(Afront) is less than a threshold T2, THEN the direction toward front region is 

recommended to move (i.e. θPE = 0) and RETURN, OTHERWISE go to Step 4; 

Step 4. The regional direction, whose iteration risk α(A) is minimum among the 

reserved regions, is chosen as the recommended turn angle θPE , and RETURN. 

END Algorithm 6.2 

 

The purpose of Step 2 is to guarantee that the recommended regional direction has 

minimum CR. Because of the uncertainty from sensor errors, it is reasonable to 

assume that the region is safe when it has a small CR value less than the threshold T1. 

This threshold (25 in our robotic system) is mainly determined by the size of turn 

detection region. Similarly, we assume that the region has a safe IR if its value is less 

than the threshold T2. This threshold (30 in our robotic system) is mainly determined 

by the size of turn detection region and robot’s speed. The Step 3 guarantees that the 
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front region that has a safe IR is recommended as the moving direction, in spite of 

that the left or right region has smaller IR than that of front region. This step allows 

the robot to avoid frequent variations of the turn angle in order to decrease the 

odometric error. The Step 4 guarantees that the PE behavior recommends a less 

visited region (i.e. with minimum IR). 

The weight of the PE behavior is calculated by Eq. (6.7). 

PE

0, if (B) T3
w (B) T3, if T3 (B) T3 100

100, if (B) T3 100

κ ≤⎧
⎪= κ − < κ ≤ +⎨
⎪ κ > +⎩

                (6.7) 

where, k(B) is the TDI of the weight detection region B.  T3 is a threshold that 

represents how many times the region B has been visited by the mobile robot. The PE 

behavior is activated only when k(B) is larger than T3 (200 in our robotic system).  

Note that, in Step 2 of Algorithm 6.2, when all turn detection regions whose CR are 

not less than the threshold T1, the weight wPE of PE behavior is forced to zero. At this 

time, the robot depends on the ED behavior to escape from this puzzle. 

The ED behavior is designed using fuzzy logic controllers as presented in Chapter 

4 in order to deal with uncertainties from sonar readings. The sonar readings of the 

robot are grouped into three sectors (left, front, right). It is similar as represented by 

Eqs. (4.6) (4.7) (4.8) in Chapter 4. The obstacle distance of each sector is represented 

by three linguistic fuzzy sets {VERYNEAR, NEAR, FAR}. The robot turn angle is 

represented by five linguistic fuzzy sets {NB, NS, ZE, PS, PB}, where NB is 

negative-big, NS negative-small, ZE zero, PS positive-small, and PB positive-big. 

The weight of ED behavior wED is represented by three linguistic fuzzy sets {SMALL, 

MEDIUM, LARGE}. The membership functions of obstacle distance, turn angle, and 

weight are referred to the Figure 4.4 in Chapter 4.  

Table 6.1 summarizes the turn rules of the ED behavior. For instance, the (1,1) 

element of the top layer in Table 6.1 can be written as the rule:  

IF dfront is VERYNEAR  AND dleft is FAR AND dright is FAR, THEN θED  is PS.   

The turn rules of the ED behavior govern the following behavior characteristics: if 

the obstacle is not very near, the robot still keeps moving forward (i.e. turn angle is 0), 

otherwise the robot only turns left or right a small angle to avoid the obstacle. Note 

that, when the three sectors have the same VERYNEAR obstacle distance as shown in 

the (3,3) element of the top layer in Table 6.1, a large left turn (PB) angle is 
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recommended. This turn rule enables the robot to escape from its current embarrassed 

situation. 

Table 6.2 summarizes the weight rules of the ED behavior. The weight is derived 

directly from obstacle distances in the three sectors. Note that the weight’s range is 0 

to 100, same with that of the weight of PE behavior. On the other hand, the 

defuzzified minimum weight of the ED behavior is a small non-zero value. As a result, 

when the weight of the PE behavior is zero, the ED behavior might dominate the final 

motion output although its weight possibly is small. 
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Table 6.1: Turn rules for the ED behavior. 

rightd

PS PS

NS PS

NS NS PB

frontd
leftd

far near verynear
far

near

verynear

ZE PS

ZE ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

ZE ZE PS

ZE ZE PS

NS NS ZE

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear

PS
PS

ZE

 
 

 

Table 6.2: Weight rules for the ED behavior. 

rightd

large large large

large large large

large large large

frontd
leftd

far near verynear
far

near

verynear

medium large large

large large large

large large large

frontd
rightd

leftd
far near verynear

far

near

small small large

small medium large

large large large

frontd
rightd

leftd
far near verynear

far

near

verynear

near

far

verynear

verynear
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For every control cycle, Algorithm 6.3 is called once for environmental 

exploration.  

 

Algorithm 6.3: ENVIRONMENTEXPLORATION( ) 

Input:  (x0, y0) = current robot location;    φ0 = current robot heading angle; 

           (d0, d1, d2, d3, d4, d5, d6, d7) = sonar readings. 

Output: (v, θ) = speed and delta turn angle of the robot 

BEGIN: 

Step 1. To preprocess the sonar readings using Eqs. (4.6), (4.7), and (4.8) in 

Chapter 4; 

Step 2. IF the total distance the robot travels is greater than a given threshold OR 

the robot receives a STOP command, THEN the robot is stopped and RETURN, 

OTHERWISE go to the Step 3; 

Step 3. To calculate the weight wPE  of the PE behavior using Eq. (6.8); 

Step 4. To calculate the delta turn angle θPE recommended by the PE behavior 

using Algorithm 6.2; 

Step 5. To calculate the delta turn angle θED recommended by the ED behavior 

using Algorithm 4.1 in Chapter 4, and using the turn rules as in Table 6.1; 

Step 6. To calculate the weight wED  of the ED behavior using Algorithm 4.1 in 

Chapter 4, and using the weight rules as in Table 6.2; 

Step 7. To calculate (v, θ) by the command fusion using Eqs. (6.6) and (6.7); 

Step 8. To execute the motor control commands (v, θ). 

END Algorithm 6.3 

 

6.5 The map postprocessing 

The purpose of map postprocessing method is to filter the constructed map offline in 

order to remove noises and obtain a more consistent and complete environment map. 

In histogramic in-motion mapping [Borenstein & Koren, 1991], the permanent map is 

obtained by simple threshold comparison. The certainty values of the cells are set to 

zero if they are less than a predetermined threshold, otherwise they are reserved in the 

permanent map. In Edson’s method [2004], cells have three states: occupied, free 
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space, and not explored. Cells are changed to occupied if their immediate neighbors 

on both sides are occupied, and cells classified as not explored are changed to free 

space if most of their neighboring cells are explored (either free space or occupied). 

Dieguez et al. [2003] developed a mechanism called propagation to increase or 

decrease the confidence value of each cell according to the total values of this cell’s 

neighbors.  

This chapter proposes a method for map postprocessing as shown in Figure 6.6. 

The final map is obtained after the raw learned map (i.e. the OMD matrix OM×N) is 

orderly processed by the modules of a threshold operation, a template operation, and 

an insert operation.  

Threshold
Operation

Insert
Operation

Template
Operation

Raw map Final map

 
Figure 6.6: A framework of the proposed method for map postprocessing 

 

First the threshold operation eliminates some misclassified cells from the 

perspective of cell’s intensity (i.e. magnitude of OMD’s value). Note that the cells 

belonging to free area (whose OMD value is zero) are called free cells, and the cells 

occupied by obstacles (whose OMD value is non-zero) are called occupied cells. The 

misclassified cells are those free cells but they are mistakenly classified as occupied 

cells because of the errors of sonar readings. By threshold operation, the OMD’s 

value of each cell is set to zero if it is not larger than a threshold T4, otherwise it is set 

to the maximum value VO-MAX (25 in our robotic system, see Section 6.3). This 

threshold T4 in our robotic system is 3, which implies that each occupied cell is 

eligible to reserve in the final map only if the cell’s area is detected at least twice by 

any of robot’s sensors.  

Next the template operation eliminates most of the misclassified cells from the 

perspective of neighboring correlation. The nature of this operation is to realize the 

following heuristic rule: Isolated cells (i.e. cells whose neighbors are not occupied as 

they have small frequency values) come mostly from erroneous sonar readings. We 

have defined eight templates shown in Figure 6.7. Every cell of the processed map is 

matched with the eight templates. For example, the first template (see Figure 6.7(1)) 

is used to match. If all neighboring cells are occupied (i.e. the OMD’s values are 

larger than zero in these neighboring cells), this template is matched successfully, 
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otherwise it fails. The OMD’s value of the cell is maintained in the final map if any 

one template is matched successfully. If all templates fail to match, the OMD’s value 

of the cell is set to zero (i.e. a free cell). 

 
                                      (1)              (2)               (3)              (4) 

 
                         (5)                       (6)                        (7)                        (8) 

Figure 6.7:  Eight templates for map postprocessing. (1-8) The black dot in 

template center is the cell that is being matched. The other black dots are 

neighboring cells of the matched cell.  

 

Finally the insert operation adds some undetected cells. The undetected cells are 

those occupied cells that are mistakenly classified as free cells because the sonars 

miss those cell areas due to the robot moving. The purpose of this operation is to 

realize the following heuristic rule: the cells, whose neighbors on both sides are 

occupied, should be also occupied. The insert operation makes use of the former four 

templates (see Figure 6.7(1-4)) to match every cell of the processed map. If any 

template is matched successfully, the OMD value of the matched cell is set to the 

maximum value VO-MAX, otherwise its value is maintained. 

In summary, Algorithm 6.4 gives the process of map postprocessing. 

 

Algorithm 6.4: MAPPOSTPROCESSING( ) 

Input:     OM×N = The OMD matrix 

Output:  OM×N = The OMD matrix 

BEGIN: 

Step 1. Do the threshold operation. 

 FOR every cell (i, j) in OM×N, i = 1, 2, …, M, and j=1, 2, …, N, DO 

       IF  VOMD(i,  j) > T4,  THEN 

                  VOMD(i,  j) = VO-MAX 
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            ELSE 

                  VOMD(i,  j) = VO-MIN 

END IF 

 NEXT FOR 

Step 2. Copy OM×N into O’
M×N , then do the template operation. 

 FOR every cell (i, j) in O’
M×N, i = 1, 2, …, M, and j=1, 2, …, N, DO 

       IF  all templates as in Figure 6.7(1-8) are failed to match,  THEN 

                  Update the cell (i, j) in OM×N  using VOMD(i,  j) = VO-MIN 

END IF 

 NEXT FOR 

Step 3. Copy OM×N into O’
M×N , then do the insert operation. 

 FOR every cell (i, j) in O’
M×N, i = 1, 2, …, M, and j=1, 2, …, N, DO 

       IF  any one template as in Figure 6.7(1-4) is successful to match,  THEN 

                  Update the cell (i, j) in OM×N  using VOMD(i,  j) = VO-MAX 

END IF 

 NEXT FOR 

END Algorithm 6.4 

 

6.6 Experimental results 

Section 6.6.1 shows a simulation test to analyze the robot’s exploration process and to 

evaluate the learning efficiency of the proposed approach. Section 6.6.2 evaluates the 

map accuracy after map postprocessing. Section 6.6.3 evaluates the map accuracy if 

the size of cells is different. Section 6.6.4 will give the simulation tests in more 

complex environment. 

6.6.1 Performance analysis of exploration process 

The purpose of this simulation experiment is to analyze the exploration process in 

which how the robot makes decision to explore unknown environment. At the 

beginning of map learning, the values of all TMDs and OMDs in a memory grid map 

are initialized to zero. The memory grid map is updated by Algorithm 6.1. The cell 

size is 100mm×100mm.  When the robot begins to explore unknown environment 
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(see Figure 6.8(1)), the weight of PE behavior is zero because the TDI in weight 

detection region B is smaller than the threshold T3. At this moment, the ED behavior 

makes dominant contribution to the final motion output. When the robot closes to 

obstacles (see Figure 6.8(2)(3)), the weight of ED behavior becomes larger. The ED 

behavior recommends a small turn angle to make the robot following the boundary of 

obstacles in order to detect more environmental details. When the weight of PE 

behavior becomes larger with the increase of TDI (see Figure 6.8(4)), both behaviors 

coordinate to drive the robot moving toward less visited and safe area. When the robot 

is far away from obstacles, the weight of ED behavior becomes smaller. The PE 

behavior is dominant with the increase of TDI (see Figure 6.8(5)(6)(7)), which 

enables the robot to avoid visiting previously traversed area and to move toward less 

visited environment. We manually stop the map learning when the result is acquired 

as shown in Figure 6.8(7). Observe that the learned map (here only the OMD matrix 

OM×N is taken into consideration) contains a number of misclassified cells that are 

derived from sensor errors. It is necessary to post process the learned map. Figure 

6.8(8) shows the simulation interface and the result of map postprocessing, in which 

many misclassified cells are removed. Section 6.6.2 will analyze the performance of 

map postprocessing. In addition, observe that some corners in the environment are not 

modelled. The main reason is that our robot only gets equipped with eight forward 

sonar sensors but without backward sensors. When the robot turns at the corners, the 

forward sensors do not have enough time to detect the environmental details. To 

install some backward sonars will effectively improve the robot’s detection capability. 
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                       (1)                                       (2)                                         (3) 

      
                   (4)                                           (5)                                          (6) 

  
                           (7)                                                                     (8) 

Figure 6.8: Real-time map building and active exploration in unknown indoor 

environment. Note that to exhibit the different contributions to the final 

control output provided by the different behaviors, data visualization is 

developed. Each behavior produces a turn angle recommendation while its 

weight represents the degree of influence on the final angle output. The 

different lines “a” and “b”, drawn automatically by the control program, 

respectively represent the turn angles recommended by the ED, PE behaviors. 

The length of each line represents the weight value of each behavior. The 

trajectory is indicated by the chain of circles. The program draws the circle 

once every 0.5 second. (1-7) exploration process;  (8) simulation interface. 
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In order to evaluate the learning efficiency, we define the following utility 

function: 

( )( ) ( ) ( )

O tU t d t O t
=

+
 

where, O(t) is the total number of cells whose OMD values are not zero, which 

represents how much environmental knowledge the robot has already known. d(t) is 

the actual total distances(mm) the robot has already travelled.  is the length of cell 

size (mm). It is desired that the robot could obtain the environmental knowledge as 

much as possible while it travels the distance as short as possible. As a result, the 

larger the value of U(t), the better the learning efficiency is. Figure 6.9 compares the 

performances of the active exploration and of a random exploration during the map 

learning process within the environment shown in Figure 6.8. The diagram shows the 

active exploration outperforms the random walk. The main reason is that the robot 

randomly walking is easier to get trapped in local minima and it often visits previous 

traversed areas. If the test environment contains more complex local minima, the 

active exploration would obtain much better learning efficiency than the random 

exploration.  
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Figure 6.9: Performance comparison between active exploration and random 

exploration. (a) active exploration; (b) random exploration. 
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6.6.2 Performance of map postprocessing 

In order to evaluate the map accuracy after map postprocessing, we define a simple 

index e to measure the misclassified cells (i.e. free cells that are misclassified as 

occupied cells) of total classified cells. Let Ae be the total number of misclassified 

cells, and Atot be total number of cells whose OMD values are not zero. The error e is:  

e

tot

Ae
A

= , 

Figure 6.10 shows the simulation results of map postprocessing. Obviously, the 

processed map has higher accuracy compared with the unprocessed map. The 

template operation is particularly useful to greatly eliminate misclassified cells. On 

the one hand, the insert operation adds some undetected occupied cells. On the other 

hand, it adds some misclassified cells as well. These misclassified cells are often close 

to the correct occupied cells. From the perspective of acquiring the environmental 

knowledge as much as possible, the insert operation is useful. 

   
                     (a) e=17.4%;                                                     (b) e=13.9%; 

      
                     (c) e=2.6%;                                                     (d) e=2.9%. 

Figure 6.10: Map postprocessing. (a) unprocessed map (100mm×100mm cell 

size);  (b) map after threshold operation; (c) map after template operation; (d) 

the final map after insert operation. 
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6.6.3 Performance of map with different cell sizes 

In order to evaluate the map accuracy when the size of cells (i.e. granularity) is 

different, we adopt the Index of Performance (IOP) proposed by Raschke and 

Borenstein [1990]. The purpose of this index is to quantitatively express the quality of 

matching between a learned map and a reference map.  

min[ ( , ) ( , )]
( , )

D i j CV i j
IOP

CV i j
⋅

= ∑
∑

 

where, Dmin(i,j) is the distance (millimetre) from cell (i,j) to the nearest occupied 

cells, and CV(i,j) is the certainty value of cell (i,j) in learned map. Here, when the 

cell’s OMD value is zero, the certainty value of the cell is equal to 0, otherwise it is 

equal to 1. The meaning of this index is the average error distance between the 

represented and the actual obstacles. It is independent of the cell size, the adopted 

map representation, and the environment range. The smaller the IOP is, the smaller 

the error between a learned map and a reference map will be. In other words, the 

learned map has higher accuracy. 

Figure 6.11 shows the results of map postprocessing with different cell sizes. In 

this test, the IOP of former two are close, and the IOP of latter one is relatively larger. 

We think that the 100mm×100mm cell size is a good compromise between map 

accuracy and space requirement of map storage.  
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(a) IOP = 4.98mm; 

 
(b) IOP = 4.93mm; 

 
 (c) IOP = 17.08mm. 

Figure 6.11: Maps with different cell size. (a) map with 40mm×40mm cell size;   

(b) map with 100mm×100mm cell size; (c) map with 200mm×200mm cell size. 
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6.6.4 Performance in complex environments 

We perform the simulation tests of active map learning in more complex 

environments. Figure 6.12 shows the learned results, which demonstrates that the 

proposed memory grid mapping approach is able to model not only structured 

environments but also unstructured even cluttered environment. The approach does 

not need any assumption with the environmental complexity or obstacle’s shape or 

size. Note that some corners in the environment are not modelled because our robot is 

only equipped with eight forward ultrasonic sonar sensors as described in Section 

6.6.1. 

  
(a) 

 
(b) 

Figure 6.12:  Map learning in complex environments. (a) Structured office-

like environment; (b) Unstructured and cluttered environment. 
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6.7 Discussion 

Here we discuss the proposed map learning approach and compare it with existing 

approaches in literatures from the following several aspects. 

1) Map model. The idea of obstacle memory dot (OMD) of the proposed memory 

grid map is similar to the map of histogramic in-motion mapping approach proposed 

by Koren & Borenstein [1991], which uses frequency values to indicate the 

measurement of a confidence that a cell is occupied by obstacles. The update of 

frequency values is simple and fast, different from the most ones based on probability 

[Moravec, 1988; Thrun, 1998; Dieguez et al., 2003]. One special of the proposed map 

is that the trajectory memory dot (TMD) is designed to record previously traversed 

trajectory and the time consumed by the robot that traverses the cell area. In a short, 

the proposed map itself is not a novel idea, but it is suitable for our online path 

planning (i.e. exploration) method, making it possible that the proposed approach has 

a low time complexity. 

2) Time complexity. Almost all of others adopt the strategy of global path 

planning and path tracking in order to find an optimal exploration path and guarantee 

global convergence. The drawback of such approach is that the time complexity of 

both path planning and map update rapidly increases as the environmental complexity 

or the scale of learned map increases, making real-time computation in a large scale 

practical application infeasible. Our mapping approach takes use of a small range of 

sensory data and map information, making the time complexity of both map update 

and exploration algorithms low. The limitation of the proposed exploration method is 

that it is difficult to guarantee global convergence because the decision is based on 

local information.  

3) Learning efficiency and map accuracy. Since it is short of standard test map 

and standard robotic hardware configuration in the field of robotics, it is quite difficult 

to compare the mapping efficiency and accuracy among different map learning 

approaches. Our robot is only equipped with eight forward inaccurate sonar sensors. It 

is difficult to compare the mapping performance with those robots that are equipped 

with more advanced sensors such as laser. Possibly those robots are better suited for 

the type of mapping application. 

4) Granularity (i.e. different cell size) evaluation. Most mapping approaches 
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have adopted the cell size 100mm×100mm, but they do not explain why this cell size 

is chosen. We have experimentally evaluated the map accuracy under different cell 

sizes (e.g. 40mm×40mm, 100mm×100mm, 200mm×200mm), which quantitatively 

obtains the result that the 100mm×100mm cell size is a good compromise between 

map accuracy and space requirement of map storage. 

5) Performance of map postprocessing method. Few literatures have proposed 

the techniques of map postprocessing or evaluated their performance. We have 

quantitatively evaluated the map representation accuracy when different map 

postprocessing technique is used. The proposed map postprocessing method is able to 

improve the representation accuracy from the original error index e = 17.4% to e = 

2.6%. 

6) Exploration of dynamic environment. Almost all of other exploration 

methods typically belong to a SMPA (Sense-Model-Plan-Act) approach. This 

approach encounters the problem that the plan built from the modelled map will be 

inadequate to the environment actually faced during execution, particularly in a 

dynamic environment. The proposed exploration method is based on real-time 

behavior coordination, enabling the robot to explore a dynamic environment (i.e. with 

humans) safely. 

7) Localization. One short of the proposed approach is that we assume that an 

ideal localization technique can estimate robot’s position accurately. However, it is 

unrealistic for real robot. The self-localization technique using odometry data is not 

enough, which results in serious odometric errors in a large space area. Our robot 

cannot do the accurate map learning in a real world at this stage because of two 

reasons: (1) The accumulated odometric errors have not been corrected. Especially 

our test environments (e.g. corridor and office) are covered with carpets, making the 

errors worse. (2) The robot’s sonar sensors often obtain wrong sonar readings in our 

test environments with smooth walls.  On the other hand, it is more difficult to find a 

suitable localization technique for teleoperated mobile robots, especially which can be 

applied in structured and unstructured even outdoor environments. Possibly, to limit 

the environment the teleoperated robot works or to equip with more advanced sensors 

such as laser, compass, or GPS, might help improve the accuracy of localization. 
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6.8 Summary 

This chapter proposes a new map learning approach namely memory grid mapping. 

The approach includes a map model, a map update method, an exploration method, 

and a map postprocessing method. The map adopts a grid-based representation and 

uses frequency value to measure the confidence that a cell is occupied by an obstacle. 

The fast map update and path planning (i.e. the exploration method) make the 

approach a candidate for real-time implementation on mobile robots. The proposed 

map postprocessing method, including a threshold operation, a template operation, 

and an insert operation, is useful to improve the accuracy of the learned map. 
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CHAPTER 7. GOAL-ORIENTED NAVIGATION IN 

UNKNOWN ENVIRONMENT WITH LOCAL 

MINIMUM 

Chapter 4 has realized a goal-oriented navigation by coordinating two elementary 

behaviors: obstacle-avoidance (OA) and goal-seeking (GS).  Such navigation method 

makes it easy that the mobile robot gets trapped in a local minimum (i.e. dead end) of 

the environment. This is the reason that the OA behavior is trying to get away from 

the local minimum while the GS behavior is making the robot to move back toward 

the goal. For a teleoperated mobile robot that is exploring unknown indoor 

environments, it is desired that the robot is able to autonomously arrive at a given goal 

location, even though the environments involve all kinds of complex situations, such 

as long-wall, large concave, recursive U-shape, unstructured, cluttered, maze-like, or 

dynamic (i.e. with moving human) environments. This chapter realizes this function, 

which is an enhanced COORDINATE linguistic command.  

7.1 Introduction 

For the goal-oriented navigation in unknown environments, it is difficult to apply the 

approach of global path planning and path tracking because it is short of a prior 

known knowledge for global environment. Moreover, the dynamics of real-world 

environments are typically complex and unpredictable, making a planned path rapidly 

out of date.  Other approaches, such as potential-field [Tsourveloudis et al., 2001] or 

neural-fuzzy approach [Rusu et al., 2003; Godjevac & Steele, 2000], however, are 

difficult to guarantee global convergence to the goal because the mobile robots are 

susceptible to get trapped in local minima (or dead ends) of the environments. 

Two types of approaches, i.e. boundary-following and virtual subgoal approach as 

described in Chapter 2, are specially developed to address the local minimum problem 

in the literatures [Huang & Lee, 1992; Kamon & Rivlin, 1997; Lim & Cho, 1998; 

Krishna & Kalra, 2001; Maaref & Barret, 2002; Chatterjee & Matsuno, 2001; Pin & 

Bender, 1999; Xu, 2000; Xu & Tso, 1999]. Section 7.7 provides a detailed 
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comparison of these approaches. Unfortunately, they are still difficult to guarantee 

global convergence in complex environments. The following, a-f, are just some of the 

difficulties that have to be overcome in solving local minimum problem. (a) When the 

goal is always at the side of the wall, a long-wall environment (Figure 7.1(a)) may 

cause a robot to be trapped in a wrong boundary-following direction. (b) Unstructured 

and cluttered environments (Figure 7.1(b)) invalidate methods that recognize typical 

landmarks. (c) A dynamic environment may lose preserved information, resulting in 

an inability to satisfy detection or escape criterion. (d) Recursive U-shape or maze-

like environments (Figure 7.1(b)) may cause a robot to regress into the old local 

minimum. (e) Inaccurate localization estimation derived from the odometry drift 

problem may result in an inability to satisfy detection or escape criterion. (f) The 

sensing capability (e.g. sonar sensors) and sensing noises make it difficult to 

determine the size or location of obstacles when this information is required for the 

escape criterion. 

             
                                       (a)                                                           (b) 

Figure 7.1: Two environment maps. S is the start of the robot, T is the goal location.  

(a) long-wall environment; (b) unstructured, cluttered, and maze-like environment  

 

This chapter proposes a new navigation method that we call minimum risk method 

to address local minimum problem for goal-oriented robot navigation in unknown 

environments. The method is an application of the memory grid map proposed in 

Chapter 6. The key of the method is to design a novel regional Path-Searching (PS) 

behavior that complements the local OA and global GS behaviors commonly used in 

behavior-based navigation systems. The framework of behavior-based navigation 

using fuzzy logic proposed in Chapter 4 is used in this method. The mobile robot is 

required to reach a given goal by coordinating three elementary behaviors: PS, OA, 

and GS.  

The rest of the chapter is organized as follows. Section 7.2 describes the design of 



CHAPTER 7.  Goal-oriented Navigation in Unknown Environment With Local Minimum
 

 

 116

our path-searching behavior, Section 7.3 obstacle-avoidance behavior, and Section 7.4 

goal-seeking behavior.  Section 7.5 provides a detailed discussion about global 

convergence, the complexity of the method as well as the performance influenced by 

the localization technique. Section 7.6 shows the experimental results for both our 

simulated and real world tests. Section 7.7 categorizes and compares the existing 

methods with the proposed method. The final section summarizes this chapter. 

7.2 The regional path searching behavior 

This section designs a regional Path-Searching (PS) behavior that navigates a mobile 

robot to the safest (i.e. minimum risk) region in order to move away from the local 

minima. This region is among the LEFT, RIGHT, FRONT turn detection regions as 

shown in Figure 6.5 of Chapter 6.  The region with minimum risk is the one with 

minimum values of both TMDs and OMDs in a memory grid map (The definitions are 

referred to Section 6.2.1). This map is updated every control cycle based on robot’s 

sensory information as described in Section 6.3. Such regional direction with 

minimum risk is the best choice for the robot in trying to avoid both obstacles and 

previous trajectory, and consequently escape from the local minima. That’s why we 

call our navigation method minimum risk method.  

The use of a memory grid map for the PS behavior is similar to the use for the 

path-exploring (PE) behavior as described in Chapter 6, but the two behaviors are 

different at least on two aspects. First, the PE behavior is activated only at the time the 

robot is visiting its previously traversed areas so that the robot is driven to explore 

less visited environment. However, it is desired that the PS behavior is activated as 

long as the robot encounters the obstacles so that the robot can detect potential dead 

ends and escape from them. Therefore, the calculation of the PS behavior’s weight 

must take the obstacle dot intensity (we define it in the following) into consideration. 

Second, the output space (i.e. turn angle) of the PE behavior only contains three crisp 

angle values {600, 00, -600} that respectively correspond to LEFT, FRONT and 

RIGHT three regional direction. It is desired, however, that the output space of the PS 

behavior is continuous within the range (-900, 900] so that the robot turns smoother. 

Therefore, we design the PS behavior using fuzzy logic controller rather than using an 

analytic algorithm like the design of the PE behavior.  

To realize such PS behavior, we do at first by inferring a Risk Index for each turn 
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detection region. Then we develop the PS behavior’s fuzzy turn rules based on the 

Risk Index, and develop a complementary algorithm. Finally, we develop a fuzzy 

logic to obtain the weight of the PS behavior. The details are as follows. 

When the robot begins to move, it constructs a so-called memory grid map based 

on sensory information. During every control period, the OMD matrix OM×N and the 

TMD matrix TM×N are updated to represent the current environmental obstacles and 

the previously traversed trajectory. At the same time, advanced data features, i.e. 

iteration risk (IR), collision risk (CR), trajectory dot intensity (TDI), and obstacle dot 

intensity (ODI), are extracted from OM×N and TM×N for each turn and weight detection 

regions in order to aid the robot in making decision to turn next. In fact, the minimum 

risk means the minimum IR and CR. The IR and CR are used to infer the Risk Index 

for the fuzzy navigational rules of PS behavior. The TDI and ODI are used in 

combination with fuzzy logic to calculate the weight of the PS behavior. We have 

defined IR, CR, and TDI in the Definitions 6.1, 6.2, 6.3 respectively in Chapter 6. 

Now we define the ODI. 

 

Definition 7.1 (Obstacle Dot Intensity): Obstacle Dot Intensity (ODI) of a region 

B is defined as 
 OMD

(i, j) B
(B) V (i, j)

∈

τ = ∑  , where B is a square-shaped weight detection region 

(see Figure 6.5(b) in Chapter 6), OMDV (i, j)  is the OMD’s value of the cell (i, j) 

involved in the region B.  

 

The magnitude α of IR is converted into three linguistic fuzzy sets {LOW, 

MEDIUM, HIGH}, with the membership functions shown in Figure 7.2(a). The 

magnitude β of CR is converted into three linguistic fuzzy sets {LOW, MEDIUM, 

HIGH} with the membership functions shown in Figure 7.2(b). The magnitude κ of 

TDI is converted into three linguistic fuzzy sets {SMALL, MEDIUM, BIG} with the 

membership functions shown in Figure 7.2(c). The magnitude τ of ODI is converted 

into three linguistic fuzzy sets {SMALL, MEDIUM, BIG} with the membership 

functions shown in Figure 7.2(d). 
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Figure 7.2: Membership functions (a) for iteration risk.  (b) for collision risk. 

(c) for trajectory dot intensity.  (d) for obstacle dot intensity. 

 

7.2.1 Regional Risk Index 

The Fuzzy Rule-Based Risk Index combines the two regional risk parameters into a 

single indicator of how safe it is for the mobile robot to traverse the region. The Risk 

Index r is represented by three linguistic fuzzy sets {DANGEROUS, UNCERTAIN, 

SAFE} with the membership functions shown in Figure 7.3(a). The Risk Index r is 

defined in terms of both the iteration risk α and the collision risk β by a set of simple 

intuitive fuzzy logic relations as Table 7.1. For instance, the (3, 3) element of Table 

7.1 can be written as one rule:  IF α is LOW AND β is LOW, THEN r is SAFE. Naturally, 

we define that the region with minimum risk is the region that has a “SAFE” Risk 

Index. The Risk Indices for three turn detection regions, rleft , rfront and rright, are 

inferred using the fuzzy rules of Risk Index. 

 

Table 7.1: Fuzzy rules of regional Risk Index r 

α         β  HIGH MEDIUM LOW 

HIGH DANGEROUS DANGEROUS DANGEROUS 

MEDIUM DANGEROUS DANGEROUS UNCERTAIN 

LOW DANGEROUS UNCERTAIN SAFE 
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Note that multiple rules can be active at the same time and the fuzzy classes have 

overlaps. Hence, the Risk Index can have, for instance, both 0.5 UNCERTAIN and 

0.5 SAFE membership values. The multivalued nature of the proposed fuzzy logic 

representation of regional risk offers significant robustness and tolerance to the large 

amount of uncertainty and imprecision inherent in sonar sensing of a region. This 

robustness is due to the fact that the output of a rule-based system depends on the 

fuzzy values of the input variables.  
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Figure 7.3: Membership function. (a) for Risk Index.  (b) for turn angle.     

(c) for goal location.  (d) for behavior weight. 

7.2.2 Turn rules 

Here the Risk Index is used to develop a fuzzy turn rules of the PS behavior. The 

motion control variables of the mobile robot are the translational speed v and the 

rotational turn angle θ. The robot’s safety is influenced mainly by the OA behavior 

that is able to detect the environmental obstacles real time. Therefore we assume that 

the robot speed v is determined only by the OA behavior rather than by the PS or GS 

behavior. In addition, we assume that the robot can move only in the forward 

direction (i.e., reverse motion is not considered) because our robot does not have 

backward sensors. The robot turn angle θ is represented by five linguistic fuzzy sets 

{NB, NS, ZE, PS, PB}, with the membership functions shown in Figure 7.3(b), where 

NB is negative-big, NS negative-small, ZE zero, PS positive-small, and PB positive-

big. The positive and negative terms have implied that the robot turns to the left and 
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right, respectively.  

The turn rules of the PS behavior are summarized in Table 7.2. The rules have a 

tendency to select the direction that is closest to the forward direction, so that the 

robot does not make unnecessary rotations. As shown in Table 7.2, when the robot 

needs to turn but the left and right sectors have the same Risk Indices, then the 

recommended turn angle θps is GOAL, where GOAL implies that the recommended 

turn angle should be toward the direction close to the goal location. For instance, the 

(3, 3) element of the top layer in Table 7.2 denotes two rules:  

IF rfront is DANGEROUS AND rleft is SAFE AND rright is SAFE AND ε  is LEFT, THEN 

θps  is PS; 

IF rfront is DANGEROUS AND rleft is SAFE AND rright is SAFE AND ε  is RIGHT, THEN 

θps is NS; 

where, ε  is the goal location, with the membership functions shown in Figure 

7.3(c).  

Another important note: a turn maneuver is not initiated when the three sectors 

have the same dangerous risk indices as shown in the (1, 1) element of the top layer in 

Table 7.2. The turn rule does not force the robot to arbitrarily choose between left and 

right, but maintain the turn angle at zero at this stage. The final selection will be made 

using a complementary algorithm introduced in the following.  

   

Table 7.2: Turn rules for the path-searching behavior. 
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The fuzzy turn rules proposed above can work well in most of possible situations 

so as to make recommendation for the region with the minimum risk. On the other 

hand, when the robot is located in an extreme situation (e.g. three turn detection 

regions have the same HIGH iteration risk), the fuzzy turn rules cannot judge the 

region with real minimum iteration risk. We know that the region with HIGH 

collision risk cannot be recommended, but under such extreme situation the robot can 

choose a region that has a HIGH iteration risk but its value is minimum among the 

three turn detection regions (i.e. left, front and right regions). 

The kernel idea of the complementary algorithm as seen in Algorithm 7.1 is that if 

the turn regional direction recommended by the turn rules does not have a SAFE Risk 

Index (by threshold comparison), the collision risk and iteration risk of all three 

sectors are compared again (by threshold comparison) so as to recommend a regional 

direction that has a safe collision risk and a minimum iteration risk. The thresholds for 

IR and CR are α1 and β1 as shown in Figure 7.2(a) and (b) respectively. The 

complementary algorithm is exact, not fuzzy. Both the turn rules and the 

complementary algorithm are comprised of a complete framework for calculating the 

turn angle of PS behavior as shown in Figure 7.4. Figure 7.5 shows the architecture of 

the fuzzy logic controller whose details are described in Chapter 4. Therefore, the turn 

angle recommended by the PS behavior can prevent the robot from iterating its 

previous trajectory as few as possible, so that the robot chooses to explore a new 

region as a means of escaping from the local minimum.  

 

Algorithm 7.1: (A complementary algorithm for turn rules) 

Input:    θps = original crisp turn angle output by turn rules of the PS behavior; 

α(Afront), α(Aleft), α(Aright) = IR values of LEFT, FRONT, and RIGHT turn 

detection regions respectively; 

β(Afront), β(Aleft), β(Aright) = CR values of LEFT, FRONT, and RIGHT turn 

detection regions respectively; 

Output:  θps = final turn angle of the PS behavior 

BEGIN:  

Step 1:  IF the turn region recommended by the turn rules has a lower IR value 

than the threshold α1, THEN maintain the original turn angle and RETURN; 

OTHERWISE go to Step 2; 
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Step 2:  To check whether or not there are regions that have a lower CR value 

than the threshold β1. IF not, THEN maintain the original turn angle and RETURN; 

OTHERWISE go to Step 3. 

Step 3:  IF only one region that has a lower CR value than the threshold β1 

exists, THEN this region is recommended as the turn direction and its turn angle is 

returned; OTHERWISE go to Step 4. 

Step 4:  The region, which has a minimum IR value, is recommended and its 

turn angle is returned. 

END Algorithm 7.1 
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Figure 7.4: The determination of the turn angle recommended by the PS 

behavior using both Turn Rules and a complementary algorithm. 

 

Fuzzifier Inference
Engine

Fuzzy Logic
Controller (FLC)

Defuzzfier

Knowledge
Base

 
Figure 7.5:  Architecture of fuzzy logic controller (FLC). 

 

7.2.3 Weight rules 

The weighting factor wps represents the strength by which the PS behavior 

recommendation is taken into account to compute the final motion command. The 

weight of PS behavior is represented by three linguistic fuzzy sets {SMALL, 

MEDIUM, LARGE} with the membership functions shown in Figure 7.3(d), and is 

derived directly from both the TDI and ODI (see Section 3.1) of a square-shaped 
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region (i.e. weight detection region), using the rule sets as in Table 7.3. For instance, 

the (1,1) element of Table III represents one rule:   

IF κ  is BIG  AND τ  is BIG, THEN wps is LARGE.  

 

Table 7.3:  Fuzzy weight rules of the PS behavior 

κ        τ  BIG MEDIUM SMALL 

BIG LARGE LARGE LARGE 

MEDIUM LARGE LARGE MEDIUM 

SMALL LARGE MEDIUM SMALL 

 

7.3 The local obstacle avoidance behavior 

The local Obstacle-Avoidance (OA) behavior is a sensor-based behavior which makes 

the robot safe without collision with obstacles. It is activated if obstacles are 

approaching. We design the OA behavior using fuzzy logic controller, almost the 

same as that of the OA behavior in Section 4.3 of Chapter 4. The difference is only 

the turn rules.  

In this navigation method, the turn rules for the OA behavior are summarized in 

Table 7.4. When the robot needs to turn, but the left and right sectors have the same 

obstacle distance, then the recommended turn angle is GOAL, where GOAL implies 

that the recommended turn angle should be toward the direction close to the goal 

location. This is similar to the turn rules for PS behavior. For example, the (1, 1) 

element of the top layer in Table 7.4 represents two rules:  

IF dfront is VERYNEAR AND dleft is FAR AND dright is FAR AND ε  is LEFT, THEN θoa is 

PS; 

IF dfront is VERYNEAR AND dleft is FAR AND dright is FAR AND ε  is RIGHT, THEN θoa is 

NS; 

where, ε  is the goal location.  
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7.4 The global goal seeking behavior 

The Goal-Seeking (GS) behavior is a global behavior which does not rely on external 

sensing data, but seeks for the exact goal location. The calculation of the speed and 

turn angle recommended by the GS behavior is same as that of the GS behavior in 

Section 4.3 of Chapter 4. But their weight rules are different.  

The weight wgs of the GS behavior here is based on the weights of both OA and 

PS behaviors. Figure 7.6 shows the weight determination of three behaviors. Table 7.5 

summarizes the weight rules of the GS behavior.  

 

Table 7.5:  Fuzzy weight rules of the GS behavior 

woa    wps   LARGE MEDIUM SMALL 

LARGE SMALL SMALL SMALL 

MEDIUM SMALL SMALL SMALL 

SMALL SMALL SMALL LARGE 

 

Importantly, the weight of GS behavior is suppressed and is small when any 

Table 7.4: The turn rules of the OA behavior. 
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weight of the OA or PS behaviors is not SMALL. When the weights of both OA and 

PS are SMALL, the GS behavior can make a dominant contribution to the final 

control command. Although the GS behavior is usually suppressed, the GOAL factor 

is reflected in the turn rules of both OA and PS behaviors (see Tables 7.2 and 7.4). It 

is an important factor for our minimum risk method to ensure global convergence. 

This point is analyzed in Section 7.5. 

FLC

FLC

frontd

leftd

rightd

κ
τ

oaw

psw
FLC gsw

 
Figure 7.6: Weight determination of OA, PS, GS behaviors. 

 

For every control cycle, Algorithm 7.2 is called once to perform the goal-oriented 

navigation by coordinating three behaviors in our minimum risk method. 

 

Algorithm 7.2: (Goal-oriented navigation by minimum risk method) 

Input:  (x1, y1) = goal location;   (x0, y0) = current robot location; 

           φ0 = current robot heading angle; 

           (d0, d1, d2, d3, d4, d5, d6, d7) = sonar readings. 

Output: (v, θ) = speed and delta turn angle 

BEGIN: 

Step 1. Update sensory data including (x0, y0), φ0 and (d0, d1, d2, d3, d4, d5, d6, 

d7); 

Step 2. IF the distance from current robot location (x0, y0) to goal location (x1, y1) 

is less than a predefined threshold (i.e. distance tolerance), THEN the goal is reached 

and the robot is stopped, OTHERWISE go to the Step 3; 

Step 3. Preprocess the sonar readings using Eqs. (4.6), (4.7), and (4.8); 

Step 4. Update the OMD matrix OM×N  and the TMD matrix TM×N  using Algorithm 

6.1;  

Step 5. Update the IR and CR of three turn detection regions, including α(Afront), 

α(Aleft), α(Aright), β(Afront), β(Aleft), and β(Aright); 

Step 6. Update the TDI’s value κ(B) and ODI’s value τ(B) of weight detection 

region B; 
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Step 7. Calculate the Risk Index of three turn detection regions, including r(Afront), 

r(Aleft), r(Aright) using Algorithm 4.1 and the fuzzy rules as in Table 7.1; 

Step 8. Calculate the turn angle θps recommended by the PS behavior using 

Algorithm 4.1 and the turn rules as in Table 7.2; 

Step 9. Calculate the final turn angle θps recommended by the PS behavior using 

the complementary Algorithm 7.1, and set the speed of the PS behavior to zero; 

Step 10. Calculate the weight wps  of the PS behavior using Algorithm 4.1 and the 

weight rules as in Table 7.3; 

Step 11. Calculate the speed voa and the turn angle θoa recommended by the OA 

behavior using Algorithm 4.1 and the turn rules as in Table 7.4,  the move rules as in 

Table 4.2; 

Step 12. Calculate the weight woa of the OA behavior using Algorithm 4.1 and the 

weight rules as in Table 4.3; 

Step 13. Calculate the speed vgs and the turn angle θgs recommended by the GS 

behavior using Eqs. (4.9) and (4.10); 

Step 14. calculate the weight wgs of the GS behavior using Algorithm 4.1 and the 

weight rules as in Table 7.5; 

Step 15. To calculate (v, θ) by the command fusion using Eqs. (4.4) and (4.5); 

Step 16. To execute the motor control commands (v, θ). 

END Algorithm 7.2 

 

7.5 Performance Analysis 

7.5.1 Convergence analysis 

When there exists a region with minimum risk in the turn detection regions (i.e. left, 

right, and front regions), the PS behavior can be guaranteed to recommend it. The 

reasons are the following. First, the Risk Index rules guarantee that if a region (among 

LEFT, FRONT, and RIGHT regional sectors) contains both LOW Collision Risk (CR) 

and LOW Iteration Risk (IR), it might be labeled as “SAFE” region. The turn rules of 

PS behavior guarantee that the direction toward a region with “SAFE” Risk Index 

must be recommended if such a region exists. Second, when no region that has a 

“SAFE” Risk Index exists, a complementary algorithm is triggered. The 
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complementary algorithm guarantees that if regions that have a safe CR (less than the 

threshold β1) exist, a region that has a safe CR and a minimum IR must be 

recommended by the exact threshold comparison. 

Consequently if a solution path exists for a goal-oriented navigation task in 

unknown environment, the minimum risk method can guarantee global convergence 

to the given goal location. This is the reason that the solution path always contains 

minimum collision risk and iteration risk (i.e. SAFE Risk Index), while the method 

guarantees that such region with minimum risk can be recommended by the PS 

behavior so as to escape from potential local minima and the global goal is sought by 

coordinating three behaviors (i.e. PS, OA, ad GS).  

Even though the robot is located in a dynamic environment (e.g. moving humans 

exist), the minimum risk method can guarantee global convergence if a solution path 

exists. This is the reason that the robot may detect the environmental change in real-

time and update a memory grid map accordingly. Based on the continuously updated 

memory grid map, the PS behavior can choose the safest direction to escape from 

potential local minima. At the same time, the OA behavior keeps the robot safe, 

which is able to respond to any contingency and to avoid the collision with any 

possible stationary or dynamic obstacles.  

7.5.2 Trial-and-return phenomenon 

Now we introduce an interesting and important behavioral phenomenon of the robot. 

We call it “trial-and-return” phenomenon, as shown in Figure 7.7. The robot is 

required to move from the start S to the goal T. At first, the robot moves toward the 

goal along a straight line, chiefly guided by the GS behavior. When obstacles are 

encountered, the robot follows the boundary of the obstacles. But the underlying 

mechanism of this boundary following is totally different from that of other methods 

[Huang & Lee, 1992; Krishna & Kalra, 2001; Maaref & Barret, 2002]. It is not the 

result of a single behavior, but of the coordination of the OA, GS, and PS behaviors. 

Although the weight of the GS behavior is small, the influence of the GOAL is 

represented in the turn rules of OA and PS behaviors (see Tables 7.2 and 7.4). As 

indicated in Table 7.4 the OA behavior may recommend a turn angle in order to turn 

away from the lateral obstacle. Just as shown in Figure 7.7(a), the robot tries to turn 

right so as to keep itself away from the wall boundary, but the GOAL factor leads the 
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OA and PS behaviors to recommend the robot to turn left toward the wall because the 

goal T is at the side of the wall. The robot exhibits the action of following the wall 

until it moves to the location A as seen in Figure 7.7(a). At location A, the goal error 

angle between the current robot heading and the goal direction is very large. When the 

OA behavior tries to turn the robot far away from the wall boundary, this goal error 

angle increases beyond 180˚, which causes the goal T to change from the left side of 

the robot to the right side. Thus the GOAL factor enables the robot to turn backward 

and return, instead of following the wall boundary again. At this time, the PS behavior 

makes a dominant contribution to enable the robot to move closing to the previous 

trajectory instead of moving in the same trajectory. The location B is the nearest exit, 

where the robot might continue to move and reach the goal T under the dominant 

influence of GS behavior. At location A of the Figure 7.7(b), the goal T is quickly 

changed from the left side of the robot to the right side because of the forward wall 

obstacle. Then the robot returns and moves to the location B. A similar situation 

occurs at the location B. Thus the robot returns again and moves to location C. This 

kind of “trial-and-return” behavioral phenomenon is maintained until the robot arrives 

at the nearest exit D.  

   
                                    (a)                                                                (b) 

Figure 7.7: “trial-and-return” behavior phenomenon. S is the start of the 

robot. T is the goal location. 

 

Obviously, if there is no obstacle blocking the nearest exit, the “trial-and-return” 

behavior phenomenon enables the robot to find the exit and escape from the local 

minimum. It is verified by the experiments in Section 7.6. This property is particularly 

useful in the local minimum problem. Although sometimes the “trial-and-return” 

behavior phenomenon looks stupid in an environment such as that in Figure 7.7(b), it 

is a smart strategy for all kinds of environmental situations because it guarantees that 

the robot is never trapped in a wrong boundary-following direction. Most of local 
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minimum problems have a nearer exit to escape from the dead ends. The “trial-and-

return” phenomenon thus improves the efficiency of the minimum risk method. More 

importantly, it guarantees global convergence. 

7.5.3 Complexity analysis 

A) Space complexity 

The minimum risk method requires a fixed memory space to save a memory grid map 

if the goal location is determined. Importantly, this space requirement does not change 

with the navigational time or environmental complexity. The map should cover the 

physical areas that include the start, the goal and the solution path. When the cell size 

of the map is determined, the size of the whole memory grid map is determined. 

Assume that the length of the cell size is λ, so that an M×N grid map covers a physical 

space whose area is M×λ×N×λ. For example, if λ= 0.2 metre (in our robotic system), 

a 1000×50 grid map may cover an actual space whose area is (1000×0.2) × (50×0.2) = 

2000 m2.  

If the memory space of a robot is really not enough or the goal is too distant, a 

dynamic memory grid technique can be used to obviate the need for a large memory. 

Note that only those cells that are located inside a circular sector are updated in each 

control period, and the decision is determined only based on a small range of map 

information and sensory data. Therefore, the robot needs to save only the necessary 

memory grid map information into the working memory while other map information 

is saved in the hard disk. If necessary, the other map information is switched to the 

working memory. Using the dynamic memory grid technique, it is possible to control 

the memory space requirement into an acceptable range. 

B) Time complexity 

The computational time of the minimum risk method is fixed and efficient. As 

discussed in A), the decision is determined based on a small range of map information 

and sensory data. Hence, the calculations of four features (iteration risk, etc.) involve 

very few addition operations. In addition, the fuzzy rule-based navigation algorithm is 

computationally fast and efficient [Heraji & Howard, 2002]. Other calculations such 

as command fusion are some simple equations or threshold comparison.  
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7.5.4 The performance influenced by localization technique 

There are two classic problems in robotics: Where is the robot, and how does the 

robot reach the goal? These two problems correspond respectively to localization 

[Victorino et al, 2003] and path-planning problems [Meyer & Filliat, 2003]. The self-

localization using dead reckoning data is widely used, but it tends to inaccurately 

estimate the robot’s location because of the well-known odometry drift problem 

caused by wheel slippage, gear backlash and so on. Long-distance movement makes 

this error even worse. This problem can be improved by adopting global or external 

localization techniques or special devices [Filliat & Meyer, 2003; Golfarelli et al, 

2001]. Although many researchers have addressed this problem, it is still difficult to 

be fully solved. The localization technique is not our focus in this chapter. We here 

address only the path-planning problem in terms of the goal-oriented navigation 

within an unknown indoor environment with local minimum. 

The minimum risk method can guarantee global convergence if an ideally 

accurate localization of the robot exists. It can also work if a self-localization 

technique using dead-reckoning data is adopted. Consider that the local minimum 

often occurs in a small space (e.g. within 10 m2), the accumulated data error from 

odometry drift is not serious. The memory grid map uses a value of TMD or OMD to 

save the information of the whole cell area, and the PS behavior uses the information 

of a whole detection region to make decision, which naturally can tolerate a certain 

degree of data error. On the other hand, the foundation of fuzzy logic is the 

representation of, and reasoning with, imprecise information. Fuzzy logic provides a 

systematic framework for dealing with imprecise and uncertain information. 

Therefore, the odometry drift problem has little influence on the minimum risk 

method if it is used in a small space. This point is verified by the simulation and real 

world tests in Sections 7.6.4, 7.6.5 and 7.6.6. In fact, the main influence of an 

inaccurate localization technique is that the robot misses the goal’s exact location and 

it arrives at another nearby location. This problem, however, is a matter related to the 

localization technique, which is beyond the scope of this chapter. 
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7.6 Experimental results 

To exhibit the different contributions to the final control output provided by the 

different behaviors, we use data visualization. Each behavior produces a turn angle 

recommendation while its weight represents the degree of influence on the final angle 

control output. Thus the different lines, drawn automatically by the control program, 

respectively represent the final turn angle and the turn angles recommended by the 

OA, PS, and GS behaviors. The length of each line represents the weight value of 

each behavior. The trajectory is indicated by the chain of circles. The program draws 

the circle once every 0.5 second. A denser concentration of circles thus indicates that 

the robot is travelling more slowly. 

7.6.1 Performance analysis in long-wall environments 

The purpose of this experiment is to analyze the decision-making process when the 

robot adopts our minimum risk method. The robot is required to move from the start S 

to the goal T. When the robot starts to move at a normal (maximum) speed, the OMD 

and TMD values saved in the memory grid map are SMALL, so that the TDI and ODI 

are SMALL. The weight of the PS behavior is thus small. At this time the weight of 

the OA behavior is small too because the front obstacle is distant. Consequently, at 

this time the GS (line c) behavior makes the dominant contribution to the final motion 

output (Figure 7.8(1)). When in response to a nearby obstacle the robot decreases its 

speed, the number of memory dots increases and the TDI or ODI becomes MEDIUM 

or LARGE. Consequently, the weight of PS behavior increases, and the PS behavior 

(line b) is activated in these cases (see (2)(3)(4)(5)(6) in Figure 7.8); When the robot 

is approaching the obstacles, the weight of OA behavior (line a) becomes large (see 

(2)(4)(6) in Figure 7.8); When the OA or PS behaviors are dominant, the GS behavior 

is suppressed and its weight is small (see (2)(3)(4)(5)(6) in Figure 7.8). When the 

robot is far from the obstacles and is approaching the goal T at a normal speed, the 

weight of both OA and PS behavior is small and only the GS behavior is dominant 

(Figure 7.8(7)). Figure 7.8(9) shows the underlying memory grid map, drawn as 

horizontal and vertical lines. Figure 7.8(9) also shows our control and display 

interface. The labels A, B, C, D, E, F, S, and T represent the robot locations, as shown 

in Figure 7.9(a-d) and Figure 7.8(8).  

Figure 7.9 (a) shows the turn angles recommended by different behaviors. The 
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turn angles recommended by OA and PS behavior are consistent during most of the 

entire task period. At the locations B, C, and D, the goal T is switched from the left of 

the robot to the right, or from the right to the left. This is why the robot leaves the 

wall at location D and turn toward location E. This “trial-and-return” property enables 

the robot to avoid being trapped in a wrong boundary-following direction.  

Figure 7.9 (b) shows the weight values of different behaviors. The weight of GS 

behavior is suppressed and small when the weight of either OA or PS is larger. Figure 

7.9 (c) shows the relation between memory dot intensity and the PS behavior’s weight. 

The TDI and ODI determine the weight of PS behavior (refer to Section 7.2.3). Figure 

7.9 (d) shows the robot’s speed during the task period. The speed may decrease when 

the robot is approaching to an obstacle.  
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                      (1)                                        (2)                                    (3) 

   
                      (4)                                        (5)                                    (6) 

  
                           (7)                                                     (8) 

 
(9) 

Figure 7.8: Minimum risk method to the long-wall environment with local 

minimum.  (1-8) S is the start, T the goal target. OA is the line “a”, PS is the line 

“b”, GS is the line “c”.  (9) Underlying memory grid map is shown by the spaced 

horizontal and vertical lines; The obstacle memory dots (OMD) are drawn as the 

squares of different sizes. The larger is the square’s size, the higher the possibility 

of the obstacle is; The trajectory memory dots (TMD) are drawn as the circles of 

different sizes. The bigger is the circle, the larger the TMD value is. 
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Figure 7.9: (a) Turn angles recommended by different behaviors. For the 

display, the GS turn angle is a half.  (b) Weight values suggested by different 

behaviors. (c) The relation among the memory dot intensity and PS behavior 

weight. (d) The speed of the robot during the task period. 
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7.6.2 Comparison of performance in concave environments 

We firstly compare our minimum risk method with the virtual target method [Xu & 

Tso, 1999; Xu, 2000], Krishna and Kalra’s method [2001], and Maaref and Barret’s 

method [2002]. All of them are applied to a large concave and recursive U-shape 

environment. As shown in Figure 7.10(a), the virtual target method detects the local 

minimum by using an abrupt change in the goal orientation with respect to current 

robot heading. Upon detection, the robot continues to navigate using a new virtual 

goal orientation T1 at the location “a” until it finds an opening. But the robot detects a 

new local minimum at the locations “b” and “c”. As a result, the robot is trapped in a 

dead cycle as it seeks both T1 and another new virtual target T2. The virtual target 

method fails to reach the goal in this kind of recursive U-shape environment. A 

modified strategy proposed by Krishna et al. [2001] can improve the virtual target 

method, but is still not suitable for complex environments. Figure 7.10(b) shows the 

result of Krishna and Kalra’s method. This method detects the local minimum by 

recognizing a landmark encountered in the previous navigation. The robot then 

follows the wall boundary until it goes outside a configured bounding rectangle. This 

method highly depends on landmark recognition and exact coordination localization. 

In addition, as discussed in the next paragraph, it is difficult to choose a correct 

boundary-following direction. Figure 7.10(c) shows the result of our minimum risk 

method. The robot exhibits a typical “trial-and-return” phenomenon, which helps the 

robot find the nearest exit to escape from the local minimum and guarantee global 

convergence. This is further demonstrated in Figure 7.11(c). Maaref and Barret’s 

method fails to reach the goal in this large concave environment because it detects the 

local minimum using a restricted criterion that all sensors must give small distances to 

obstacles at the same time. 
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                   (a)                                          (b)                                            (c) 
Figure 7.10:  In a large concave and recursive U-shape environment. (a) virtual 

target method. (b) Krishna and Kalra’s method. (c) our minimum risk method. 

 

We next compare our minimum risk method with Krishna and Kalra’s method 

[2001], Huang and Lee’s method [1992], Distbug [Kamon & Rivlin, 1997; Lim & 

Cho, 1998], and Virtual-target-side method [Chatterjee et al., 2001]. Figure 7.11(a) 

shows the result of Huang and Lee’s method. This method detects the local minimum 

by comparing a large difference in rotation of the robot over successive control 

periods. The robot then follows the wall boundary until an escape criterion is satisfied. 

As seen in Figure 7.11 (a), when the detection point a, the escape point b and the goal 

c are collinear and b is between a and c, the robot leaves the wall boundary and seeks 

for the goal again. This conservative escape criterion produces a longer path than 

other methods that adopt the boundary-following strategy. Figure 7.11 (b) shows the 

result of Krishna and Kalra’s method. This method has a better escape criterion but it 

is still difficult to choose the correct boundary-following direction. Similar problems 

occur using the Distbug method and Virtual-target-side method. The main difference 

between both is that they have different detection and escape criteria. Figure 7.11 (c) 

shows our minimum risk method. It finds the nearest exit to reach the goal. 

   
                    (a)                                           (b)                                          (c) 

Figure 7.11: In a concave environment. (a) Huang and Lee’s method. (b) 

Krishna and Kalra’s method. (c) our minimum risk method. 



CHAPTER 7.  Goal-oriented Navigation in Unknown Environment With Local Minimum
 

 

 137

Finally, we compare our minimum risk method with the virtual obstacle method 

[Pin & Bender, 1999]. Figure 7.12 (a) shows the result of the virtual obstacle method. 

This method finds the local minimum when the robot twice visits the same location 

with the same orientation. This detection criterion is so difficult to satisfy that the 

unnecessary iteration is caused. Upon detection, this method sets a virtual obstacle 

that involves all traversed path, and sets a new subgoal that is located outside the 

virtual obstacle. When this subgoal is reached, the robot recovers the original goal. In 

this process, the robot has to memorize all traversed trajectories and this requires a 

very large memory. This method produces the longest path of all referred methods. 

Figure 7.12 (b) shows the result of our minimum risk method. Clearly, it is simple and 

efficient. 

                    
(a)                                                   (b) 

Figure 7.12: In a recursive U-shape environment. 

(a) virtual obstacle method. (b) our minimum risk method. 

7.6.3 Performance in complex environments 

We tested our minimum risk method in unknown complex environments. Figure 7.13 

(a), (b), (c) show the results for, respectively, circular, unstructured and cluttered, and 

maze-like environments. Figure 7.13 (d) shows the result for a highly complex 

environment that is unstructured, cluttered, recursive U-shape, and maze-like. The 

underlying mechanism of the results has been analyzed in Sections 7.5 and 7.6.1. 

              
(a)                                                          (b) 
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(c)                                                          (d) 

Figure 7.13: (a) in circle-shape environment. (b) in unstructured and cluttered 

environment. (c) in maze-like environment. (d) in highly complex environment. 

7.6.4 Performance in simulation with odometry drift 

This section considers the performance influenced by the odometry drift problem. 

Odometry drift produces inaccurate location estimation, which is reflected by the 

obstacle memory dots as seen in Figure 7.14. Figure 7.14 (a) and (b) show the results 

without and with odometry drift respectively. As discussed in Section 7.5.4, the use of 

the memory grid map and fuzzy logic makes our minimum risk method tolerant of the 

uncertainty and errors derived from sensor noise and self-localization. Ultimately, the 

robot reaches the desired goal. 

               
(a)                                                          (b) 

Figure 7.14:  In a recursive U-shape environment. (a) without odometry drift. 

(b) with odometry drift. 

 

7.6.5 Performance in real world with odometry drift 

In this section, we describe a real world test conducted in a corridor located in our 

department. Most related methods do not adequately consider the performance 
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influenced by the odometry drift problem, and are little tested in the real world. Here 

we simply use the dead-reckoning data for self-localization. Figure 7.15 (a) shows a 

series of pictures captured during robot movement. Figure 7.15 (b) shows the actual 

trajectory and the OMD. Figure 7.15 (c) shows the memory grid map that saves the 

TMD and OMD. The result has verified that there is little influence from the 

odometry drift problem if our minimum risk method is applied in a small space (e.g. 

less than 10m2) where the local minimum occurs. To address the local minimum 

problem in a large space, the other localization techniques have to be used to 

compensate for the drift error.  

 

 
(a) 

    
(b)                                                            (c) 

Figure 7.15: Performance in real world with local minimum 

 

7.6.6 Performance in real world with dynamic environment 

Here we exhibit a real world test in a dynamic environment (i.e. moving human 

exists). Figure 7.16 (a) shows a series of pictures of the test. One person first blocks 

the exit “A” (Figure 7.16 (b)), which forces the robot to turn around in order to look 

for another exit. Then the person moves to the location “B” where he is approaching 
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the robot but leaving the exit “A” clear. When the robot avoids the person and it is 

approaching to the exit “A” again, the OMD in “A” is updated to decrement its value 

so that “A” becomes a safest regional direction with minimum collision risk and 

iteration risk. Consequently, the robot finds the exit “A” while avoiding the moving 

obstacle (i.e. the person). Figure 7.16 (b) shows the actual trajectory and the OMD. 

Figure 7.16 (c) shows the memory grid map that records the TMD and OMD. 

 

 
(a) 

  
(b)                                                         (c) 

Figure 7.16: Performance in dynamic real world. 

 

7.7 Categorization and comparison with related methods 

The literatures [Araujo et al, 1999; Seraji & Howard, 2002; etc.] address the robot 

navigational problem using machine learning or fuzzy behaviors approaches. They do 

not focus on local minimum problem in unknown indoor environments. As a result, 

they at most handle very simple environment with local minimum, and cannot go to 

the goal location in more complex environments with local minima. 

For the related methods [Huang & Lee, 1992; etc.] that focus on local minimum 

problem, we have categorized them as three types of approach: boundary following, 
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virtual subgoal, and behavior arbitration. Most of related methods belong to the 

boundary-following approach. Figure 7.17 (a)(b)(c) show the flowcharts of three 

different approaches. Table 7.6 compares how these methods address the local 

minimum problem in unknown indoor environments. 
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Figure 7.17: The flowchart of the approaches for local minimum problem. 

(a) boundary following. (b) virtual subgoal. (c) behavior arbitration. 
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Table 7.6: Comparison of related methods that address local minimum problem. 
 Methods Detection and escape criterion, and comments 

Detection criterion: When a large difference in rotation of the robot 
between successive control periods is detected. 

Escape criterion: When the detection point a, the escape point b, and the 
goal c are collinear and b is between a and c.  Huang and Lee  

Comments: Because of empiric detection it is easy to produce 
wrong classification of the local minimum. The 
conservative escape criterion creates a long path. 

Detection criterion: When an obstacle is encountered. 
Escape criterion: When the goal is visible, or the nearest obstacle toward 

the goal is closer to the goal than the current obstacle 
followed. 

Distbug  

Comments: Escape criterion is dependent on maximal sensor range. 
Detection criterion: When a large differential change of the goal angle is 

detected, the obstacle boundary is followed with a 
virtual goal side. 

Escape criterion: When the current goal distance is below the minimum 
distance attained prior to the trap detection, the real 
target side is used again for navigation. 

Virtual-target-
side  

Comments: A better strategy derived from a virtual target side, but 
still a long path. 

Detection criterion: When all sensors detect the small obstacle distances. 
Escape criterion: When the three sensors measure big distances and the 

goal is not at the side of the obstacle followed by the 
robot. 

Maaref and 
Barret  

Comments: Fails to detect most local minima. 
Detection criterion: When the robot recognizes the landmarks experienced 

by previous navigation in a similar environment at the 
same position. 

Escape criterion: When the robot reaches a location outside the bounding 
rectangle where the goal and obstacle are on the same 
side of the robot. 
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y 
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Krishna and 
Kalra 

Comments: Detects using spatial and temporal reasoning. Depends 
on landmark recognition and exact coordinate 
localization.  

Detection criterion: When an abrupt change in robot’s turning tendency 
occurs due to a change in goal orientation. 

Escape criterion: When an opening in the obstacle is detected. Virtual target 
Comments: Regresses into the same infinite loop it tries to avoid, 

and is unsuitable for recursive U-shape environments. 
Detection criterion: When the robot twice visits the same location with the 

same orientation. 
Escape criterion: When the subgoal created is reached. 

V
irt

ua
l 

su
bg

oa
l a

pp
ro

ac
h 

Virtual 
obstacle Comments: Very large memory requirements. Long corridor may 

create many virtual obstacles that lead to the longest 
path. Has difficulties detecting the local minimum. 

Detection criterion: When the obstacle or trajectory dot intensity is not 
small, the weight of path-searching behavior becomes 
higher. 

Escape criterion: When both the obstacle and trajectory dot intensities 
are small, the weight of path-searching behavior is low. 
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Our Minimum 
Risk method Comments: Multiple weighted behaviors coordination, and global 

convergence guaranteed in all local minimum 
situations. Able to find the nearest exit to escape from 
the local minimum. 

 



CHAPTER 7.  Goal-oriented Navigation in Unknown Environment With Local Minimum
 

 

 143

Now we describe the general problems of the existing related methods. The 

differences among the boundary-following methods [Huang & Lee, 1992; Kamon & 

Rivlin, 1997; Lim & Cho, 1998; Krishna & Kalra, 2001; Maaref & Barret, 2002; 

Chatterjee & Matsuno, 2001] are that they have different detection and escape criteria. 

There is not any method that can be proved to obtain a shorter path. More importantly, 

they have no way to choose the nearest exit, and they possibly choose a wrong 

boundary-following direction leading to a rather inefficient path. Virtual-subgoal 

methods [Pin & Bender, 1999; Xu, 2000; Xu & Tso, 1999] encounter difficulties in 

dealing with unstructured or cluttered environments. Moreover, when used in 

recursive U-shape or more complex environments they may overproduce virtual 

subgoals, leading to a dead cycle arising from conflict subgoals. In addition, the 

problem must be taken into account whether or not the subgoal is located in an 

unreachable place. The above methods adopt an analytical model for detection and 

escape criteria. These, however, are not suitable for dealing with the uncertainties 

produced by sensors and the real world, and especially by the odometry drift problem. 

7.8 Summary 

This chapter proposes a new behavior-based navigation method called “minimum risk 

method”. The method is an application of the memory grid map, which addresses the 

local minimum problem for goal-oriented robot navigation in unknown indoor 

environments. This method is experimentally demonstrated to give global 

convergence to a given goal location even in long-wall, large concave, recursive U-

shape, unstructured, cluttered, maze-like, and dynamic indoor environments. One of 

the future works is to improve and formulate the method as well as to theoretically 

prove global convergence. 

The proposed minimum risk method for the goal-oriented navigation is not 

suitable for a long-distance navigation at this stage because the accumulated 

odometric errors have not been corrected.  The method is currently particularly 

suitable for the applications of short path navigation between waypoints in complex 

environments with local minima. The Internet-based teleoperation falls into this kind 

of application where the human operator can give a number of subgoals to enable the 

remote robot exploring unknown environments. The minimum risk method has not 

been tested in outdoor environments because of the serious odometric errors as well 
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as a short wireless communication distance between the robot and the control 

computer. However, the ideas involved in the memory grid map and navigational 

algorithm can be applied in outdoor environments as well. 
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CHAPTER 8.  EVALUATIONS AND RESEARCH 

IMPACT 

8.1 Evaluations 

We have performed the Internet-based teleoperation for robot navigation by 

inexperienced users remotely from places overseas (e.g. Canada, Singapore, Chinese 

Beijing, Shanghai, Xiamen) to Hong Kong. The authorized remote human operators 

(e.g. located in Canada) connect with the robot server (located at our department in 

Hong Kong) through the VNC service, and observe the robot’s surroundings (our 

department corridor) through streaming video. The authorized users commonly have 

no robotic expertise and they learn the joystick and linguistic commands only at the 

beginning of the teleoperation. By using the telecommanding, the remote users are 

able to control the real robot to explore areas of interest, and also able to observe 

details via the camera movement.  

The first public show of this Internet telerobotic system was on March 19th to 20th, 

2004 during our departmental Demo Day (see Figure 8.1 (a). It was then publicly 

demonstrated at the International ICT Expo (see Figure 8.1 (b)), which was held at the 

Hong Kong Convention and Exhibition Center on April 14-17th, 2004. The latest 

public services were done in our campus during the university’s Info Day on 9th 

October 2004 (see Figure 8.1(c)), and on 8th October 2005 (see Figure 8.1(d)), 

respectively.  

All the remote user operations and public demonstrations have adopted a same 

teleoperation platform mentioned in Section 5.3, in which the VNC service is used as 

the interface between human operator and the robot server, the streaming video is 

transferred to help human operator obtain remote robot’s surroundings, and the 

proposed telecommanding provides both joystick and linguistic commands to human 

operator in order to control the remote robot. The difference among the different 

evaluation scenarios is the number of linguistic commands we had completed. In the 

early period of open evaluations, we have completed four joystick commands and 

four linguistic commands (i.e. MOVE, COORDINATE, TURN, GOTOEND). During 
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the next period, we progressively add WANDER, MAPPING, and enhanced 

COORDINATE linguistic commands. 

The remote user operations and public demonstrations show that, our Internet 

telerobotic system is practical and is feasible to provide the service of Internet-based 

teleoperation for robot navigation in order to interact with people and to explore 

unknown environments.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.1: Public demonstration of Internet-based robot teleoperation.  

(a) Demo Day in our department, March 19th -20th, 2004; (b) International ICT 

Expo at the Hong Kong Convention and Exhibition Center, April 14-17th, 2004; 

(c) Info Day in our university campus, Oct. 9th, 2004; (d) Info Day in our 

university campus, Oct. 8th, 2005 

 

In the following, we draw our lessons and limitations of the developed Internet 

telerobotic system in this thesis compared with other existing systems in literature. 

1) Interactivity. Most of existing Internet robots have considerable autonomy but 

lack the interaction with human operator. For example, the operator is only able to 
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send very high-level commands to the robot without intermediate feedback. However, 

the interactivity is an important factor to attract Internet users’ interests. Our system 

can provide more interaction between human operator and online robot through the 

telecommanding. For instance, the use of joystick commands particularly gives 

human operator a strong experience of hands-on control. In addition, human operator 

is able to continuously send linguistic commands with flexible working parameters to 

influence the robot’s execution process, and online robot can respond and feedback 

predefined expected events to human operator as well as react to unexpected events. 

The limitation of the proposed telecommanding is that joystick commands are not 

suitable to handle more skilful tasks and linguistic commands need quite complicated 

design of a linguistic command function. 

2) Video transmission. Other Internet telerobotic systems often adopt the 

techniques of picture transmission or video conference system to transfer the images 

about online robot’s surroundings. Our system has adopted the latest streaming video 

technology that provides better quality of service (QoS) and extensibility. The 

limitation of streaming video is that the codec buffer leads to a long time delay (over 

10s). Moreover, our streaming video transmission is developed based on Windows 

operational system. The client must have installed the Windows Media Player to 

receive the streaming video. These prevent the developed telerobotic system being 

remotely controlled by mobile devices (e.g. mobile phones or PDA). 

3) Usability. There are two factors that mainly influence the usability of our 

telerobotic system: wireless connection, and battery recharging. Other existing 

Internet mobile robots have encountered the same problem. The robot server is a 

computer which directly controls the mobile robot and provides the Internet 

connection. The distance of wireless connection between the robot and the robot 

server is too short. For example, the distance that can provide a good quality 

communication is less than 50 metres in our robotic system. In addition, the batteries 

of the robot are only able to support the robot moving continuously for a limited few 

hours. The two factors highly influence the mobility of a mobile robot and the 

continuous teleoperation service to the public. In the last public demonstration during 

Info Day (see Figure 8.1(d)), we tried to place the robot server computer onboard the 

robot via the cable connection. This configuration of the telerobotic system is still 
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restricted by the wireless connection to the Internet, but it is useful for the mobile 

robot to perform some autonomous tasks.  

4) Data transmission. Most Internet telerobotic systems have developed a private 

Web-based client interface for command and status data transmission. At this stage, 

we do not spend much time on the development of Web-based data transmission for 

workload simplification. We make use of an existing tool, i.e. the VNC service, for 

the Web users to send control commands and receive the information transferred from 

the robot server. The VNC service is indeed a convenient way for Web users to 

connect with the robot server, but it is inefficient because it consumes extra 

bandwidth for unnecessary data transmission. 

5) Time delay. All Internet telerobotic systems have encountered the time delay 

problem caused by the Internet. Although it has been addressed in literatures, it is still 

the most difficult problem that influences the practical use of an Internet telerobotic 

system. Our research allows that a long and uncertain time delay exists. The solution 

is that the mobile robot is equipped local intelligence to handle expected events while 

to react to unexpected events, or to perform some tasks autonomously. 

6) Application environment. Most Internet telerobotic systems need to know 

environmental knowledge in advance for path planning or localization. Our system is 

realized to fully address the Internet-based teleoperation of a remote robot that 

explores unknown and dynamic environments. 

7) Sensors. Most online robots are equipped with many sonar sensors at 360 

degree angles, even more advanced sensors such as laser, compass and so on, in order 

to detect the environment more accurately. Our robot is only equipped with eight 

forward sonars, which weakens the robot’s capability of detecting obstacles, such as 

smooth walls, chairs, human feet.  

Furthermore, we discuss the scalability of the proposed approaches in this thesis 

to larger interactions, more complex tasks, and multirobots. 

1) Scalability to larger interaction.  The proposed telecommanding has provided 

a multimodal and multifunctional framework, enabling human operator to more 

actively participate in remote robot’s task completion and environmental exploration. 

The predefined events and response functions enable the robot to respond expected 

events and feedback information to human operator. For scalability to a larger 

interaction, the key issues are how to realize the proposed response functions and how 
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to send both joystick and linguistic commands. For example, to design a response 

function, we let the robot feedback force or haptic information according to distance 

to obstacles. Or human operator uses a real joystick device to send joystick commands, 

or uses human language or voices to send linguistic commands.  

2) Scalability to more complex tasks. The proposed telecommanding is able to 

take advantage of human’s intelligence through multiple joystick or linguistic 

commands and their working parameters, in order to help remote robot complete more 

complex tasks. In addition, the behavior-based navigation framework proposed in 

Chapter 4 provides good scalability, which can make navigational logic easily 

extensible. Fuzzy logic makes it easy to realize the desired behavior characteristics by 

explicitly expressing linguistic rules using a common natural language. The work in 

Chapter 7 to address the local minimum problem is an example for our approach 

scaling to more complex tasks. 

3) Scalability to multirobots. The proposed navigation method in this thesis is 

only suitable for a single robot. We do not consider the key issues of multirobots 

application: cooperation and communication. For scalability of the proposed 

telecommanding, the key point is how to design a command function associated with 

a linguistic command in order to decompose a task and let multirobots cooperate to 

complete.  

8.2 Research impact 

The developed Internet telerobotic system (its name is PolyUiBot) was demonstrated 

to the public four times. Our robot received very positive responses from audiences, 

and especially it was reported by two magazines and one newspaper in Hong Kong 

during the period of International ICT Expo (see Appendix B). We have obtained a 

certain degree of research impact.  

In order to enhance our research impact while to observe that whether or not 

potential students or related researchers could be attracted by our research, we have 

built a website to introduce the developed system since March 2004. We shared some 

contents about our research on the website, in which some experiments were recorded 

as video movies (see Appendix C). The visitors are able to freely download or online 

playback these video movies. The details can be accessed on the website: 

http://www4.comp.polyu.edu.hk/~csnkliu/polyuibot . In order to make statistics for 
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website visitors, the webpage records the visitor’s IP address and its date. In this 

section, we take statistics based on the visitor’s information from April 2004 to 

October 2005. There were 805 visitors in total. 
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Figure 8.2: Statistics of countries or regions where the visitors come from. 

 

First, we take statistics of countries or regions where the visitors came from, 

which we obtained by localizing their IP address. The result is shown in Figure 8.2. 

The visitors from Hong Kong win the most visits (64% of the total 805 visits), in 

which most visitors came from the author’s university, The Hong Kong Polytechnic 

University (PolyU), and some visitors came from other universities in Hong Kong. 

We believe that some visitors from PolyU were postgraduate and undergraduate 

students, and that the others were the academic researchers worldwide among related 

fields (e.g. artificial intelligence or robotics). This is the reason that we distribute the 

website address to the public mainly through two ways: (1) teaching materials for 

students; (2) publications and presentation for international conferences. The Chinese 

mainland and the USA are the countries that have relatively most visits, 10% and 8% 

respectively. The other visitors came from the following countries or regions: Canada, 

Japan, Australia, Taiwan, Singapore, England, Indonesia, Vietnam, South Korea, 

Germany, Brazil, Philippines, Macao, Norway, French, Malaysia, Thailand, Ukraine, 

Russia, Mexico, and so on.  Some of the visitors visited our website through the 

recommendation of their friends or colleagues. We know that because some persons 

have sent emails to us for enquiring research methods. The statistics result shows that 
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a number of related researchers worldwide are interested in our research. In addition, 

the research has attracted a number of potential research students.  

Next we take statistics of the visit quantity for every month, from April 2004 to 

October 2005. The result is shown in Figure 8.3. It shows an average of 43 visits 

every month. There were a quite large amount of visitors during the first three months 

(i.e. April, May, June) in 2004. This was the reason that the website is initially built 

and we distribute the website address to the public during Demo Day and 

International ICT Expo. The website attracted the visitors, including the staffs and 

research students from PolyU. There were relatively small amount of visits in July 

and August. This could be due to a long academic holiday. During October 2004 to 

February 2005, we distributed the teaching materials and published some conference 

papers that possibly led to the increase of visit quantity in these months. The visit 

quantity peaked in April 2005 soon after we had updated the website contents. 
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Figure 8.3: Statistics of the visit quantity for every month. 
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CHAPTER 9.  CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

In the thesis we have developed a telerobotic system that supports Internet-based 

teleoperation for robot navigation. Any inexperienced users are able to remotely 

control a mobile robot through the Internet in order to explore unknown and dynamic 

(i.e. with moving humans) environments.   

The video transmission over the Internet has been investigated and implemented. 

It is a prerequisite to develop a practical teleoperation system, which allows that the 

Internet users can see the remote robot’s surroundings through the images captured 

from an onboard camera. Traditional approach is via the picture transmission (e.g. 

JPEG or GIF), which leads to a very poor quality of service (QoS) because of the high 

latency of the Internet, such as long time delay, data error or restricted bandwidth. 

The thesis investigates and develops an existing streaming technology based approach 

for streaming video transmission. The streaming video improves the QoS by 

producing a more stable system, higher image resolution, and smoother image streams, 

even though it is used over a low-bandwidth Internet (e.g. 33.6Kbps dial-up modem). 

Moreover, it has better extensibility to integrate more multimedia information, and it 

allows that any client users can watch the continuous image streams simultaneously 

without reducing the QoS or increasing network bandwidth. But the time delay for 

streaming video is still large (over 10 seconds) since both the encoder buffer and the 

decoder buffer are used to guarantee the QoS. The time delay makes it necessary to 

equip a mobile robot local intelligence to perform some tasks autonomously.  

Thus a framework for autonomous robot navigation using fuzzy logic has been 

proposed, which includes goal determination, preprocessing, behavior design, 

behavior arbitration, and command fusion. The traditional framework for autonomous 

navigation is SMPA (Sense-Model-Plan-Act) approach, which is inadequate for 

dealing with unknown and dynamic real world. The behavior-based approach can act 

in real-time and has good robustness in such environments. The behaviour-based 

navigation is not a fresh idea or concept. The thesis focuses on the development of a 

simple and practical navigation framework that can be easily realized to build robust 
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control programs. The preprocessing module is used to reduce the complexity of input 

space by introducing a limited number of intermediate variables. The elementary 

behavior is designed using fuzzy logic controller or a precise analytic algorithm. A 

behavior arbitration module is used to calculate the crisp weighting factors of each 

elementary behavior. The final robot motion output is obtained by the command 

fusion for a weighting combination of all elementary behaviors. Fuzzy logic is indeed 

a good tool, which allows that we can easily realize the desired behavior 

characteristics by explicitly expressing the linguistic rules using a common natural 

language. 

A new teleoperation approach is proposed to provide an interactive control 

interface and a complete framework for control management and command 

processing. The traditional direct control reduces the stability of control loop because 

the controlled robot has no local intelligence and it needs to maintain continuous 

connection. The existing supervisory control methods are inadequate mainly in that 

they fail to provide human-robot interactivity. The proposed approach, namely 

telecommanding, involves two different but complementary commands: joystick 

command (e.g. LEFT, RIGHT, UP, and DOWN) and linguistic command (e.g. 

MOVE, TURN, GOTOEND, WANDER, COORDINATE, and MAPPING). Each 

command is designed to perform an independent task, which is defined with multiple 

events (non-time action references) and the corresponding response functions. The 

approach allows the robot to deliberately respond to expected events while to 

reactively respond to unexpected events. Thus the reliability for teleoperation is 

improved by equipping local intelligence of the robot even though the user’s 

commands are lost or mistaken due to the unreliable Internet. Telecommanding 

provides human operators hands-on control, giving them a strong experience of 

interaction with the robot. Any inexperienced users can easily use the joystick 

commands or linguistic commands to remotely control a mobile robot. 

A map learning approach, namely memory grid mapping, has been proposed for 

the mobile robot to model a priori unknown environment autonomously. The robot 

builds a map based on robot’s sensory information and actively explores the unknown 

environment. The approach includes a map model, a map update method, an 

exploration method, and a map postprocessing method. The map adopts a grid-based 

representation. A so-called obstacle memory dot (OMD) matrix is designed to record 
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the frequency values which measure the confidence that a cell is occupied by an 

obstacle. A so-called trajectory memory dot (TMD) matrix is designed to record the 

trajectory traversed by the robot in order to facilitate the online path planning. Two 

behaviors, path-exploring behavior and environment-detecting behavior, are 

coordinated to make the robot exploring a least known environment. The increase of 

the learned map scale or environmental complexity has little influence on the 

computational time of our path planning method (i.e. exploration). This is the reason 

that the robot makes the path plan based on a small range of map information and 

sensory data. Thus our approach is a candidate for real-time implementation on 

mobile robots. It is verified that the 100mm×100mm cell size is a good compromise 

between map accuracy and space requirement of map storage. In addition, the 

proposed map postprocessing method, including a threshold operation, a template 

operation, and an insert operation, is able to improve the map representation accuracy 

from the original error index e = 17.4% to e = 2.6%. 

For a teleoperated mobile robot that is exploring unknown indoor environments, it 

is desired that the robot is able to autonomously arrive at a given goal location, even 

though the environments involve all kinds of complex situations with local minima. 

The thesis has proposed a new navigation method, namely minimum risk method, to 

realize such function. The method makes use of the proposed memory grid map. 

When a mobile robot is performing the goal-oriented navigation, it updates a memory 

grid map in real-time. A novel path-searching behavior is developed to use the map 

information and to recommend a safest regional direction that can enable the robot to 

detect potential local minima and escape from them. The method is experimentally 

demonstrated to give global convergence to a given goal location, even though it is 

used in the long-wall, large concave, recursive U-shape, unstructured, cluttered, 

maze-like, or dynamic (i.e. with moving human) environments. Compared with the 

existing boundary-following or virtual-subgoal approach, the proposed method can 

deal with more complex environments and is able to find the nearest exit to escape 

from local minimum. The method is particularly suitable for the applications of short 

path navigation between waypoints in complex environments with possible local 

minima. The Internet-based teleoperation falls into this kind of application where the 

human operator can give a number of subgoals to enable the remote robot exploring 

unknown environments. 
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The developed Internet telerobotic system has been demonstrated to the public 

successfully, while it has been used by remote inexperienced users overseas (e.g. 

Canada, Singapore, Chinese Beijing, Shanghai, Xiamen). It turns out to be practical 

and be feasible to provide the service of Internet-based teleoperation at university 

campus or exhibition center.  

9.2 Future work 

It is impossible for a thesis to cover many issues about Internet telerobotics. We have 

implemented a primary prototype system for Internet-based robot teleoperation. 

Further research is required. Some of the possible problems and direction of solutions 

are given in the following. 

1) Develop a localization technique that is suitable for telerobotic purpose.  

The self-localization technique using dead-reckoning data from odometry is 

inadequate, which would lead to serious odometric errors in a large space area. To 

engineer the environment where the robot works is one possible means. For example, 

all the walls are orthogonal and the environments have not any unstructured objects. 

Such environments make it possible to permit local map matching and efficient 

correction of the robot’s position estimate. But this means is not suitable for the 

practical use.  

Another way is to adopt perception-based localization techniques, in which firstly 

the sensors detect an artificial or natural landmark in the environment and estimate the 

relative position of this landmark with respect to the robot. Then a robot’s location is 

estimated by matching the detected characteristics of landmarks with those stored in a 

model of the environment. The artificial landmark (e.g. specific objects or colors)  

detection methods are well developed and have proved to be reliable, but natural 

landmark detection methods are not yet sufficiently developed [Meyer & Filliat, 

2003].  

Integrated localization techniques [Meyer & Filliat, 2003] are possible solution 

and make the telerobotic system usable in real world. They are absolute positioning 

methods which require external absolute references (e.g. artificial beacons, GPS) to 

estimate robot’s position and orientation.  

2) Develop techniques for scalability to more interaction between human 

operator and teleoperated robot. 
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One idea is to develop techniques to realize the predefined response functions 

associated with both joystick and linguistic commands. For example, to design a 

response function, we let the robot feedback force or haptic information according to 

distance to obstacles. A good example is seen in literature [Lo and Liu et al, 2004]. 

They developed a system that enables multiple operators at different sites to 

cooperatively control multiple robots with real-time force reflecting via the Internet. 

Another idea is to develop techniques to enable that human operator uses a real 

joystick device to send joystick commands, or uses human language or voices to send 

linguistic commands. 

3) Develop the image-based or vision-based robot navigation approach, 

which makes use of the images captured from onboard camera.  

At least four research directions can be done.  

a. Using the images for goal recognition and identification, which enhance the 

robot capability for goal seeking behavior;  

b. Using the images for detecting and avoiding obstacles, which complement the 

inaccurate sonar sensors;  

c. Using the images to identify the artificial or natural landmarks in order to 

localize the robot’s position;  

d. Using the images to identify and track the human body in order to interact more 

with people. 
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Appendix A.  The robotic programming 

In general, a robot control program is one that takes the robot’s sensory input, 

processes it, and decides what motor actions the robot will perform. But the mapping 

between inputs and outputs is a very complex one, and the control task requires some 

decomposition into simpler elements to make it workable. In recent years there have 

been some convergences on an architecture (see Figure A.1) for autonomous mobile 

robots. The bottom control layer is a controller that implements some form of motion 

control for the robot. The second execution layer initiates and monitors behaviors, 

taking care of temporal aspects of coordinating behaviors. The top planning layer 

makes long-term deliberative planning, with the results being passed down to the 

second layer for execution.  

 
Figure A.1: A hybrid control architecture 

 

We make the robotic programming based on the Saphira development environment 

(http://www.activrobots.com). The Saphira is an object-oriented, C++ language-based 

robotic development environment for creating software that intelligently and 

autonomously control a mobile robot. The Saphira clients work through ARIA 

(ActivMedia Robotics' Interface for Applications) software to send commands to the 

robot server, gather information from the robot’s sensors, and package them for 

display in a graphical window-based user interface. ARIA handles the lowest-level 

details of client-server interactions, including serial communications, command and 

server-information packet processing, cycle timing, and multithreading, as well as a 

variety of accessory controls, such as for the PTZ robotic camera.  It is possible to call 

Saphira from any high-level language that has a foreign-function loading facility, 

LISP and PROLOG, for example. For this thesis, we take use of Visual C++ 6.0 to 

write and compile the robotic programs based on the Saphira API functions.  
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Here gives an example of main body programs to realize a WANDER task. 

 
#include "PolyUiBot.h" 
#include "header.h" 
 
SFEXPORT void   // define interface to Colbert here  
sfLoadInit () 
{ 
  draw();                  // set up drawing object 
  mycamera_init(); 
  SfFrame *ff = (SfFrame *)SfFRAME;  // add menu item, button and key handlers 
  ff->Win()->AddButtonHandler(button_fn); // do the mouse thing 
  ff->Win()->AddKeyHandler(key_fn); // do the key thing 
  sfAddEvalAction("Wander", (void *)SfWanderAction::invoke, 0); 
  sfAddEvalFn("WANDER", (void *)wanderCommand, sfVOID, 0); 
} 
 
/////////////////////////////////////////// 
// First obstacle avoidance behavior with wander task using Fuzzy logic controller 
//////////////////////////////////////////// 
 
class SfWanderAction : public ArAction, public SfArtifact 
{ 
 public: 
  SFEXPORT SfWanderAction(); // constructor 
  virtual ~SfWanderAction() { FuzzyUnload(); }; // nothing doing 
  SFEXPORT virtual ArActionDesired *fire(ArActionDesired currentDesired);  
  static SfWanderAction *invoke(); // interface to Colbert 
  int FuzzyLoad(); 
  int FuzzyUnload(); 
  int FuzzyOutput(double dfront, double dleft, double dright, double goal_error); 
 
 protected: 
  ArActionDesired myDesired; // what the action wants to do 
FIS *fis; 
DOUBLE **fisMatrix, **outputMatrix; 
int data_row_n, data_col_n, fis_row_n, fis_col_n; 

  DOUBLE 
dataMatrix[OA_NEW_INPUT_NUMBER][OA_NEW_INPUT_VECTOR];  
}; 
 
// This constructor is a model for all actions. Chains to the basic ArAction class 
SFEXPORT 
SfWanderAction::SfWanderAction(): ArAction("Wander")  
{ 

FuzzyLoad(); 
} 
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// What the action does 
// Returns and ArActionDesired pointer, containing what the action wants to do 
 
SFEXPORT ArActionDesired * 
SfWanderAction::fire(ArActionDesired d) 
{ 
 
  // reset the actionDesired (must be done) 
  myDesired.reset(); 
 
  if(bSTOP)   return &myDesired;  // return the desired controls 
 
  double d0, d1, d2, d3, d4, d5, d6, d7; 
SfSonarDevice *sd = Sf::sonar(); // get the device 
if (!sd)  

 d3 = d4 = 5000;  // large value, no obstacle ahead 
else 
{ 
d0 = SfROBOT->getSonarRange(0);  d1 = SfROBOT-

>getSonarRange(1); 
d2 = SfROBOT->getSonarRange(2);  d3 = SfROBOT-

>getSonarRange(3); 
d4 = SfROBOT->getSonarRange(4);  d5 = SfROBOT-

>getSonarRange(5); 
d6 = SfROBOT->getSonarRange(6);  d7 = SfROBOT-

>getSonarRange(7);  
} 
///////////////// to reduce the distance input dimension ///////////////// 
double dfront = MIN(d2,d3);   
dfront = MIN(dfront, d4); 
dfront = MIN(dfront, d5); 
double dleft = MIN(d0,d1); 
double dright = MIN(d7,d6); 
 
 // convert from .mm to .cm  
dfront = dfront/10.;      dleft = dleft/10.;        dright = dright/10.; 

 
// take the input variable into fuzzy domain  

 if(dfront<0 || dfront > MAX_OBSTACLE_DISTANCE) dfront = 
MAX_OBSTACLE_DISTANCE; // for FLC normalization 
 if(dleft <0 || dleft > MAX_OBSTACLE_DISTANCE) dleft = 
MAX_OBSTACLE_DISTANCE; 
 if(dright <0 || dright > MAX_OBSTACLE_DISTANCE) dright = 
MAX_OBSTACLE_DISTANCE; 
 
/////////////// to calculate OA behavior output /////////////// 
FuzzyOutput(dfront, dleft, dright); 
double speedVal = outputMatrix[0][0];   // robot speed 
double angleVal = outputMatrix[0][1];   // robot angle turn  
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  myDesired.setHeading(SfROBOT->getTh()+angleVal);     //control the heading 
  myDesired.setVel(speedVal); // moderate speed 
  
  return &myDesired;  // return the desired controls 
} 
 
 
/////////////////////////////////////////////////////////////// 
// Interface to Colbert 
//  
// This static function returns a behavioral action object,  
// with arguments that can be set from Colbert 
// 
SfWanderAction * SfWanderAction::invoke() 
{   

return new SfWanderAction();  
} 
 
////////////////////////////////////////////////////////////////// 
void wanderCommand()  
{ 
  SfActTask *task; 
  SfWanderAction *a; 
  task = SfActRegister::getAct("Wander"); // this is the default name 
  if (task != NULL)  
    { 
      a = (SfWanderAction *)(task->action); // get the action object from the task shell 
      a->activate(); // activate the behavior action 

  SfROBOT->clearDirectMotion(); // lets behavioral actions through 
bSTOP = false;   // true = running, false = no running 

    }  
} 
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Appendix D.  Streaming technologies 

Streaming media technologies were introduced in 1995 [Mack, 2002]. Streaming 

offers a whole new approach to media on the Internet. Instead of waiting for the 

whole file to be downloaded to a user’s computer before playback begins, streaming 

media playback occurs as the file is being transferred. The data travels across the 

Internet, is played back and then discarded. Streaming media also offers the user 

control over the stream during playback, something not possible with a web server.  

One of the problems that streaming media systems have to deal with is the 

stochastic nature of bandwidth on the Internet. It fluctuates wildly between zero and 

some maximum rate. To deal with this, streaming media player utilizes a buffer. The 

first few seconds of the file are stored in the computer’s memory before playback 

begins. This gives the media player a reserve of bits to fall back on when the user’s 

bandwidth becomes constricted. 

Streaming
media encoder

Media
storage

Streaming
media server

Streaming
media player #3

Streaming
media player #2

Streaming
media player #1

camera

Internet

 
Figure D.1:  Basic components of a streaming media system 

 

Streaming media (e.g. video, audio, flash, script, etc.) is made possible by 

different pieces of software that communicate on a number of different levels. A basic 

streaming media system has three components [Mack, 2002]. The basic components 

of a streaming media system are shown in Figure D.1. 

• Player. The software that viewers use to watch or listen to streaming media. 

• Server. The software that delivers streams to audience members. 

• Encoder. The software that converts raw audio and video files into a format 

that can be streamed. 

These components communicate with each other using specific protocols (e.g. 

RTSP, MMS), and exchange files in particular formats (e.g. RM, WMV, MOV, MP4). 
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Some files contain data that has been encoded using a particular codec (e.g. MPEG4, 

Windows Media Video, Real Video, Sorenson Video), which is an algorithm designed 

to reduce the size of files.  Typical architecture of streaming server and client is 

shown in Figure D.2. 

G.723.1 MPEG-4Compression
Layer

SynchronizationSync Layer Synchronization

Multiplexing (FlexMUX)

RTP / RTCP
Delivery Layer

G.723.1 MPEG-4

Demultiplexing (FlexMUX)

RTP / RTCP

Audio Video Audio Video

Data capturing Presentation

Streaming Server Streaming Client

The Internet  (TCP / IP)  
Figure D.2:  Typical architecture of streaming server and client 

 

RTSP (Real Time Streaming Protocol) is an application-level protocol developed 

by IETF (Internet Engineering Task Force) that is used to control the delivery of data 

with real-time properties [Mack, 2002]. RTSP provides a framework to enable the 

controlled, on-demand delivery of real-time data, such as audio and video. Sources of 

data can include both live data feeds and media on-demand. This protocol is intended 

to control multiple data delivery sessions; provide a means for choosing delivery 

channels such as UDP, Multicast UDP, and TCP; and provide a means for choosing 

delivery mechanisms based on Real Time Protocol (RTP). QuickTime and 

RealSystem use the RTSP protocol. Microsoft uses its own MMS (Microsoft Media 

System) protocol. Both RTSP and MMS contain a control mechanism to handle 

client’s requests, such as Play, Stop, Fast Forward, or Rewind. Both protocols ensure 

that media packets arrive in a format recognized by the player. Control requests are 

always carried over TCP, and data packets are carried over UDP, TCP, or HTTP 

(HTTP resolves the firewall issues). A growing number of vendors use RTSP for the 

development of new technologies that deliver streaming content to mobile devices. 
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The Unicast and Multicast are two methods used to deliver streaming content 

across networks to end-users. A unicast stream has a one-to-one client-server 

relationship. When a user makes a request to stream media, the server acts on the 

request and sends a unique individual stream to that client, one steam for each request. 

This method maximizes the ability to compensate for lost data and to deliver a better 

experience to end-users. A multicast stream is more like the experience of watching 

television. The media server generates one single stream that allows multiple player-

clients to connect to it. Users watch the content from the time they join the broadcast. 

The client connects to the stream, but not to the server. During a multicast stream, the 

player-client cannot request for the replacement of lost packets. This method saves 

network bandwidth and is mostly used for live broadcasts.  

 

Appendix E.  A brush-up of fuzzy system theory 

The theory of fuzzy logic has its roots back in 1965 when Zadeh presented his ideas 

of fuzzy sets [Zadeh, 1965]. An overview of some of the fundamental concepts in 

fuzzy systems has been presented here to provide background knowledge used in this 

thesis. Most of the definitions given in this section have been paraphrased from 

[Passino & Yurkovich, 1998]. 

A fuzzy system is shown in Figure E.1, which is static nonlinear mapping between 

inputs and outputs. The inputs are ui∈Ui, where i=1,2,…,n, and outputs yi∈Yi, where 

i=1,2,…,m. The outputs and inputs are crisp that is real numbers, not fuzzy sets. These 

crisp inputs are mapped into fuzzy sets by the fuzzification block, in order to activate 

rules which are in terms of linguistic variables. The variables have fuzzy sets 

associated with them. The inference mechanism produces conclusions using fuzzy 

rules in the rule-base. Crisp outputs are obtained from the defuzzification block. 

 

Universe of Discourse 

The crisp sets Ui and Yi are called the universe of discourse for ui and yi 

respectively. Generally the universes of discourse are simply the set of real numbers 

or some interval or subset of real numbers. 
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Figure E.1:  Fuzzy system. 

 

In classical set theory, an element of any universe can be either a member of the 

set or not. Fuzzy sets, however, are characterized by the fact that an element of the 

universe of discourse has a so-called degree of membership, determined by a 

membership function, i.e. an element can not only belong or not belong to a set, but 

belong more or less to it. This fuzziness is also characteristic for human beings when 

they are asked to classify certain elements. The procedure of determining the degree 

of membership of a crisp input, which is an element of a universe of discourse, is 

called fuzzification. 

 

Linguistic Variables 

These are variables whose values are not number but words or sentences in a 

natural or artificial language to describe fuzzy system inputs and outputs. Where iu  is 

the linguistic variable that describes the inputs ui. Similarly iy  is the linguistic 

variable that describes the output yi . 

 

Linguistic Values 

Linguistic variables iu and iy take on linguistic values that describe the 

characteristics of the variable. The set of linguistic values { : 1, 2, , }j
i i iA A j N= =    

where j
iA  denotes the jth linguistic value of the linguistic variable iu . Similarly 

{ : 1,2, , }k
i i iB B k M= = , where k

iB  denotes the kth linguistic value of the linguistic 

variable iy  . 
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Linguistic Rules 

A set of condition→ action rules, or in modus ponens (If-Then) rule maps the 

inputs to the outputs 

        If antecedent Then consequent 

Usually, the inputs to the fuzzy system are associated with the antecedent, and the 

outputs are associated with the consequent, for the multi-input single-output (MISO) 

the standard rule form is  

If 1 1 2 2 ,j j j
n nu is A and u is A and u is A  Then p

q qy is B  

This can be in the form of multi-input multi-output (MIMO). Generally the rules 

in the rule-base are distinct. 

 

Membership Functions 

The membership functions ( )iuµ  are subjectively specified in an ad hoc (heuristic) 

manner, they are associated with the terms that appear in the antecedent and 

consequent. Many shapes of the membership function are possible (e.g., triangular, 

trapezoidal shapes), each will provide a different meaning for the linguistic variable.  

 

Fuzzy Sets 

Simply a fuzzy set is a crisp set of elements of the universe of discourse paired 

and coupled with their associated membership value.  

        {( , ( )) : }µ= ∈j
i

j
i i i i iA

A u u u U  

 

Fuzzification 

Fuzzification transforms ui to a fuzzy set defined on the universe of discourse *
iU  . 

This transformation is produced by operator f  defined by  

         *: i if U U→  

Where  ( ) fuz
i if u A= , fuz

iA  is the fuzzy set. 

Quite often singleton fuzzification is used. Any fuzzy set with the following form 

for its membership function is called a singleton. 

fuz
i

i
A

1 x = u
(x)

0 otherwise
µ

⎧
= ⎨
⎩
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Fuzzy Intersection (AND) 

Two methods to define the membership function that represents the intersection of 
1
iA  and 2

iA . 

1) Minimum, 1 2 1 2min{ ( ), ( ) : }
i i i i

i i i iA A A A
u u u Uµ µ µ

∩
= ∈  

2) Algebraic Product, 1 2 1 2{ ( ) ( ) : }
i i i i

i i i iA A A A
u u u Uµ µ µ

∩
= ∈  

 

Fuzzy Union (OR) 

Two methods to define the membership function that represents the union of 1
iA  

and 2
iA . 

1) Maximum, 1 2 1 2max{ ( ), ( ) : }
i i i i

i i i iA A A A
u u u Uµ µ µ

∪
= ∈  

2) Algebraic Sum, 1 2 1 2 1 2{ ( ) ( ) ( ) ( ) : }
i i i i i i

i i i i i iA A A A A A
u u u u u Uµ µ µ µ µ

∪
= + − ∈  

 

Fuzzy Implications 

It is the fuzzy quantification of the linguistic rule. The implication method shapes 

the consequent based on the antecedent. The terms in the antecedent and consequent 

of the If-Then rule are fuzzily quantified to make a fuzzy implication (a fuzzy relation). 

 

Aggregation 

It is combining the output fuzzy sets into a single fuzzy set in preparation for 

defuzzification. 

 

Defuzzification 

It is a means to choose a crisp output based on the implied fuzzy sets. The most 

popular defuzzification method is the “centroid” calculation, which returns the center 

of area under the curve. In the centroid a crisp output is chosen based on the implied 

fuzzy sets and the point of maximum for each output membership function. 

         1

1

[ ( )]

[ ( )]
j

j

M j j
j A R

M j
j A R

y y
y

y

µ

µ
=

=

∑
=

∑
 

Where jA R  is a single implied fuzzy set for the jth fuzzy implication, and jy  is 

the consequent portion of the linguistic rule Rj. 

 


	theses_copyright_undertaking
	b20593053



