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Abstract

Spaceborne  Interferometric  Synthetic  Aperture  Radar  (InSAR)  has  been  proven  very  useful  in 

assessing  remotely  ground  displacements.  InSAR  measurements  have  contributed  to  better  

understanding of the processes and mechanisms of geohazards such as earthquakes, volcanoes 

and landslides. There are two major error sources in InSAR measurements, i.e., decorrelation due 

to temporal and geometric effects and phase errors introduced by spatial and temporal variations of  

the atmosphere. The error sources can in extreme cases render the InSAR technology useless.

To reduce the errors in InSAR measurements, a relatively new technique, multi-temporal (MT) SAR 

interferometry, was proposed in the late 1990s. The technique has since then evolved into three 

categories. The first is commonly referred to as Persistent Scatterers InSAR (PSInSAR or PSI) and it  

deals with a time series of interferograms generated based on a single-master image. The second 

makes use of multi-master interferograms including the stacking analysis method and the Small  

BAseline Subset (SBAS) approach.  The last  category  is  an integration  of the single-  and multi-  

master interferogram analysis methods. Over the past ten years  multi-temporal  InSAR has been 

widely  applied  for  monitoring  ground  deformation  in  urban  and  rural  areas  and  for  monitoring 

infrastructures  such  as  dams,  buildings,  motorways,  and  pipelines.  However  one  important  

limitation  in  current  MT-InSAR  methods  is  the  difficulty  in  estimating  correctly  the  phase 

ambiguities.  Besides,  the  lack  of  methods to  evaluate  the  accuracy  of  MTInSAR results  when 

external data (e.g., levelling and GPS observations) are unavailable is also an issue of concern.

A  novel  InSAR  data  analysis  method  termed  Temporarily  Coherent  Point  InSAR  (TCPInSAR)  is 

proposed in the thesis. The method can estimate deformation parameters reliably by avoiding the 

process of phase ambiguity estimation. The method arises from the fact that for a set of  multi-
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master interferograms with short baselines , there are usually a sufficient number of arcs on 

which the double-difference phase components due to topographic errors and atmospheric artifacts 

are  very  small  and the  relative  deformation  rates  between  pairs  of  connected points  are  low.  

Therefore,  the  double-difference  phase  components  of  many  such  arcs  are  free  from  phase  

ambiguities. If only these arcs are taken as observations in estimating DEM errors and deformation  

rates, the complexity of parameter estimation can be reduced significantly.  Included in the method 

are a series of innovations. To improve the density of TCPs, especially in areas with a small set of  

SAR images, we have developed a new TCP identification method based on offset statistics in range  

and  azimuth  directions.  To  make  sure  the  selected  TCPs  can  be  connected  extensively  with  

relatively short arcs we have proposed an efficient point connection strategy that performs Delaunay  

triangulation locally. To retrieve the deformation rates reliably we have designed a least squares  

estimator with an outlier detector that can remove the arcs with phase ambiguities efficiently. To  

better consider the quality of individual interferograms we have improved the method of variance 

covariance estimation under the framework of least squares.

After  validating  TCPInSAR  technique  using  simulated datasets,  we  have  applied  the  TCPInSAR 

method to  the Los Angeles basin in southern California where  structurally active faults  such as 

Newport-Inglewood  fault  are  believed  capable  of  generating  damaging  earthquakes.  Both  the  

estimated  long-term  average  subsidence  and  seasonal  deformation  in  the  basin  are  in  good 

agreement with GPS observations from the Southern California Integrated GPS Network (SCIGN),  

indicating that  the  TCPInSAR method is  effective for the retrieval of ground motions  especially in 

areas where abundant multi-temporal SAR data  are available and dense coherent points can be 

isolated. To demonstrate the performance of TCPInSAR method on changing landscapes where both 

the persistently  and  partially  coherent  points are available, we also applied the method to the  

southern part of Macau which is undergoing fast redevelopment.
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 1   Introduction

1 Introduction

“Discovery  conceits  in  seeing  what  everyone  else  has  
seen  and  thinking  what  no  one  else  has  thought.” 
--Albert Szent-Gyorgi

The study of  Earth's surface deformation has made some major  breakthroughs in  the  last 

century  with  the  development  of  space-based  observation  techniques.  An  important 

breakthrough has been the advent of satellite interferometric synthetic aperture radar (InSAR) 

that has revealed details  of  crustal deformation fields despite the many problems that the 

technique still has. This research considers the development of a robust multi-temporal  (MT) 

InSAR  analysis  method  and  its  applications to  the retrieval  of  deformation  parameters  in 

tectonically active areas.    

1.1 Background

Interferometric  synthetic  aperture  radar  (InSAR)  techniques exploit  the  phase  differences 

between  two  temporally  separated  SAR  images  over  an  area,  providing  measurements of 

deformation  along  the  radar  line  of  sight  (LOS)  with  centimeter  to  millimeter  level  of 

accuracy[Gabriel et al., 1989]. Since the launch of the ERS-1 satellite by the European Space 

Agency (ESA) in 1991, high quality SAR images of the Earth have become increasingly available 

which contributed greatly to the success of radar interferometry. InSAR has been widely applied 

to investigate single deformation events, for example, earthquakes  [e.g.,  Massonnet et al., 

1993; Zebker et al., 1994; Zhang et al., 2008; Feng et al., 2010] , volcano eruptions [e.g., Lu, 

1998; Amelung et al., 2000; Lu et al., 2003] , and glacier changes [e.g., Mattar et al., 1998; 

Strozzi et al., 2008]. In most of these applications the coherence of the interferograms is high 

and  nuisance components  of  phases  can  either  be  modeled  independently  or  practically 

ignored. However noise effects arising from the temporal and spatial decorrelation [Zebker and 
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 1   Introduction

Villasensor, 1992] as well as the atmospheric fluctuation [Zebker and Rosen, 1996 ; Ding et 

al.,  2008;  Li  et  al.,  2010]  commonly  exist  in  interferograms,  often  greatly  limiting  the 

application of InSAR technique.

The multi-temporal SAR data analysis methods (also called advanced InSAR methods)  have 

ushered in a new era of advanced radar remote sensing because of their emphasis on reducing  

or even eliminating the limitations in the conventional InSAR technique, thereby improving the 

precision of InSAR measurements. Since Usai  [1997] first suggested that useful information 

can be retrieved from points that keep high coherence for a long time, an enormous amount of 

efforts has been expended on the development of robust algorithms and applications of the 

technique to detect time varying deformation patterns in urban and non-urban areas. Technical 

progresses can be seen from two aspects (1) phase-coherent point identification [e.g.,  Ferretti 

et  al.,  2001;  Werner  et  al.,  2003;  Hooper,  2004;  Adam and Bamler,  2005;  Shanker  and 

Zebker, 2007]; and (2) parameter (i.e., DEM error, deformation time series) estimation [Ferretti 

et al., 2000; Usai, 2000; Berardino et al., 2002; Kampes and Hanssen, 2004; Lanari et al.,  

2004; Hooper and Zebker, 2007; Hooper, 2008; Adam and Parizzi, 2009; Liu et al., 2009;] . 

Indeed by exploring the coherent  points  in  SAR images  (e.g.,  Fig.  1.1) and analyzing their 

2

Fig. 1.1: A simulated illustration indicating that extracted coherent points from highly decorralated 

area can be used to determine reliable deformation. In the left figure the phase noise at a large  

number of pixels hinder us extracting reliable deformation signal while if the coherent points are  

well isolated, shown in the right figure, the extraction of deformation signal becomes rather easy.



 1   Introduction

phases as a function of time and space, one can precisely estimate the long-term time varying 

patterns of deformation signals  at an expense of losing considerable spatial resolution. The 

unique capability of multi-temporal SAR data analysis methods has given rise to new tools for  

studying dynamic processes of  geophysical and engineering activities. 

1.2 Motivation

When applying the multi-temporal  InSAR (MT-InSAR) methods in real cases, we  have  realized 

that  reliable results can only be achieved with a solid understanding  of the core  processing 

algorithms and the parameters that need to set (e.g., the threshold for coherent point selection 

is often  set based  on  experience).  The  estimation  of  phase  ambiguities  that is  usually 

performed in  the  spatial  and/or temporal  domain  is  a  vital  step for  all  current  MT-InSAR 

methods,  however  the  success  of  phase  ambiguity  estimation  cannot be  guaranteed  in 

practice. In many cases there are often pixels or areas that are placed on the wrong multiple of 

2 , and it is difficult to identify these points without additional information.  The limitations 

motivate  the  search  for  advanced  algorithms  for retrieving deformation  parameters  more 

reliably. 

1.3 Contributions

The  aim  of  this  study is  to  develop  a  reliable  MT-InSAR analysis  method  for  estimating 

displacement  parameters  more efficiently  and reliably.  It  is comprised of the following  five 

principal components.

Temporarily  Coherent  Point  (TCP) identification  and  coregistration.   The reliability 

of current coherent point selection methods depends on the amount of SAR data  and their 

temporal resolution, the characteristics of the deformation and  the  threshold used.   In this 
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study we propose an effective method which can identify coherent points from a small set of 

SAR images based on the spatial statistics of offsets in azimuth and range direction at the 

step of coregistration. We call the selected points “temporarily coherent points (TCPs)” that do 

not need to  be coherent during the whole time span  of the data series.  Moreover since the 

starting point of current MT-InSAR methods is the coregistered SAR images, there is no special  

emphasis on the coregistration of coherent points. However the method that employs evenly  

distributed  patches over the whole interested area to estimate a polynomial to resample the 

slave images may not be optimal for  coregistering  coherent points.  This is mainly due to the 

fact that the standard deviation of the estimated offsets at scatterers with low coherence is  

higher than those from high-coherent points.  Here as a by-product of TCP selection the offsets 

at  TCPs  are  used  for  coregistering  themselves.   By  coregistering  the  coherent  points 

improvement  in the interferometric coherence of these points can be observed especially in 

heavily decorrelated areas.

TCP  Networking. How to connect the TCPs  to form a spatial network is vital for efficient 

estimation of deformation parameters as well as DEM errors. Since Delaunay triangulation has 

no control on the edge length of the triangles, global Delaunay triangulation over the interested 

area will result in unnecessarily  long arcs  which for  areas undergoing fast deformation,  may 

cause a large amount of arcs having phase ambiguities. Although arcs with lengths longer than 

the  threshold  can  be  removed  after  the  network  construction,  the  density  of  the  network 

sometimes can  not be  ensured.  In  this  study  we  propose  to  perform the  triangulation  in 

distributed patches  of  the area  with  limited sizes which can connect  the TCPs extensively 

without increasing the computational complexity.

TCP  Parameter  estimation  with no  need  of  phase  ambiguity  estimation. With the 

help of dense TCPs and TCP pairs, the estimation of deformation parameters becomes rather 
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simple. Since we only select the interferograms with short spatial and temporal baselines as 

observations, a sufficient number of the phase differences at arcs will not have ambiguities. If 

we only focus on these arcs the estimation of  the  phase ambiguities can be avoided and 

thereby the reliability and efficiency of the algorithm can be improved. In this study we take the 

deformation parameter estimation as a linear inversion problem and design a phase ambiguity 

detector based on the examination of least squares residuals to eliminate the effects of arcs 

that have phase ambiguities.

TCP  variance  component  estimation . Kampes  and Hanssen[2004] first introduced the 

variance component estimation (VCE) for their single-master based persistent scatterer InSAR 

technique to better consider the quality of the interferograms and to evaluate the precision of 

the  estimated  parameters.  In  this  study  we  integrate  VCE  into  the multi-master  based 

TCPInSAR technique with an emphasis on a reliable and efficient estimating strategy. Since it is 

not necessary to estimate the phase ambiguities in our method, the efficiency of VCE can be 

significantly improved.

TCP orbital  error  correction. Due to inaccurate determination of the satellite orbits, orbital 

contributions to interferograms commonly exist. For obvious orbital fringes, previous studies 

usually estimate them an interferogram by an interferogram [Wright et al., 2004]. However this 

approach is  time  consuming  and the  results  are easily  distorted  by  atmospheric  artifacts 

and/or phase unwrapping errors. In this study we propose to determine the orbital errors after 

the parameter estimation since in the estimated deformation map, the atmospheric component 

is  rather  limited  (the effect  of  atmospheric  delay  has  been  largely  suppressed  during  the 

parameter  estimation  procedure) and  the  orbital  error  can  still  be  modeled  by a  simple 

polynomial. 
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1.4 Outline

The rest of this thesis is organized as follows. In Chapter 2  we will review the state of the art 

of the methods for coherent point selection and parameter estimation to provide motivation for 

undertaking  a  fresh effort  to develop a novel MT-InSAR technique. The theory and algorithm 

needed  for  identifying  TCP  are  the  subject  matter  of  Chapter  3,  and  Chapter  4  lays  the 

theoretical  foundations for our least squares estimator  used in the TCPInSAR method. The 

algorithms as well as  the study of correcting orbital errors under the framework of TCPInSAR 

are  also validated  with simulated data in this chapter, while the practical issues  that  need 

addressed  for robust  implementation  of  TCPInSAR  are  considered  in  Chapter  5 where  a 

comparison between the result from  the TCPInSAR method and that from GPS observations 

over  Los  Angeles  basin  is  also  performed  to  enable  a  quantitative  assessment  of  the 

performance of TCPInSAR method. In chapter 6 we demonstrate the performance of TCPInSAR 

method on changing landscapes by applying the method to the southern Macau, China. Finally 

in chapter  7 we summarize the contribution of the thesis and suggest some directions for 

future research.
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 2   Multi-Temporal InSAR

2 Multi-Temporal InSAR

Since the late 1990's, there has been a growing interest in understanding the properties 

of coherent points in SAR interferometric images  and their applications. This has been 

mainly motivated by the realization that coherent points are extremely useful in estimating 

long-term and time-varying  deformation patterns.  The employed  techniques  are termed 

multi-temporal  InSAR  (MT-InSAR)  which  involves  joint processing  of  multiple  SAR 

acquisitions. In the following we will give a brief review of the MT-InSAR approaches where 

two lines of  efforts  placed on  the current  MT-InSAR methods for  the identification of 

coherent points (2.1) and parameter estimation (2.2) are introduced respectively.

2.1 Coherent point identification

2.1.1 Introduction

Coherent  points  are  pixels  that  can  keep  high phase  quality  in  a  certain  time  span.  The 

identification  of coherent points is usually the first step and plays an important role in MT-

InSAR  analysis  since  the  quality  and  density  of  coherent  points  affects  the  parameter 

estimation.  Over  the years  several  criteria  have been proposed and the selected coherent 

points are  coined interchangeably as permanent scatterer  [Ferretti  et al., 2001], persistent 

scatterers [Adam, 2004], coherent point targets [Mora et al., 2003] et al. 

2.1.2 Coherence stabil ity

Coherence has long been used to evaluate the quality of interferograms, and can be used as  a 

criterion for selecting coherent points from which signals of interest can be estimated precisely. 
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The complex coherence of two zero-mean complex signals s1  and s2 is defined as (Hanssen, 

2001)

=
E s1 s2

∗


E∣s1∣
2
 E∣s2∣

2


 (2.1)

where E x  is the expected value of x . Under the assumption that the processes involved in 

Eq. (2.1) are ergodic, the maximum likelihood estimator of the coherence magnitude ∣∣ over 

an estimation window of n×m (range,azimuth)pixels can be expressed as

∣∣=
∣ ∑

i=1, j=1

n , m

s1i , j  s2
∗i , j ∣

 ∑
i=1, j=1

n ,m

s1i , j  s1
∗
i , j  ∑

i=1, j=1

n , m

s2i , j  s2
∗
i , j 

 (2.2)

The coherence criterion is used for example by short baseline (SB) MT-InSAR techniques[e.g., 

Berardino  et  al.,  2002;  Mora  et  al.,  2003;  Usai,  2003]. After  eliminating  the  phase 

components related to topography and flat  earth,  the magnitude of  the coherence of each 

pixels ( ∣ i∣ ) in selected interferograms can be estimated. A mean coherence map can then be 

generated by 

mean=
1
N
⋅∑

i= 0

N−1

∣ i∣  (2.3)

where N is the number of interferograms.  All pixels with a mean coherence over a selection 

threshold are accepted as coherent point candidates. Mora [2003] suggested a minimum value 

of mean coherence of 0.25 for coherence maps estimated by a window of 4 by 16 or 5 by 20 

(range by azimuth) with C-band ERS-1/2 and Envisat/ASAR data. It is worth noting that since 

the interferometric combinations might share identical images, the estimated coherence might 

be correlated which should should not be ignored during the calculation of the mean coherence 

map.
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2.1.3 Amplitude dispersion index

The amplitude dispersion index was first introduced by Ferretti  and  his  colleagues for their 

patented  Permanent  Scatterer  (PS)  InSAR  technique  which  employs  the  single- master 

interferogram stacks without considering the baseline limitations. Since interferograms can be 

highly  effected  by  spatial  decorrelation  it  is  impossible  to  use  the  spatially  estimated 

coherence criterion to select pixels with good phase quality. With the PSInSAR technique, the 

phase dispersion (  ) of pixels can be estimated starting from the amplitude dispersion which 

is defined in [Ferretti et al., 2001] as 

≃
A

mA

=D A  (2.4)

where mA and A are the temporal mean and the standard deviation of the amplitude at a 

pixel.  Simulation  test  indicates  that  the  amplitude  dispersion  index  ( DA )  is  a  good 

approximation for phase dispersion of pixels with high signal to noise ratio (SNR) [Ferretti 

et  al.,  2001].  With  enough  radiometrically  calibrated  SAR images (>30)  the points  are 

selected  as  PS  candidates  if DA is  below  a  threshold  (e.g.,  0.25).  Compared  with 

coherence stability, the amplitude dispersion index does not average the data inside  an 

estimation window, enabling the monitoring of localized deformation at the highest  spatial 

resolution.

In  order  to  identify  sufficiently  dense coherent  points  in  non-urban areas where scatterers 

usually have low signal to noise ratio (SNR), Hooper [2004] proposed a new  selection method 

based on the phase stability which first relies on an identification via the amplitude dispersion. 

Phase stability  is analyzed under the assumption that deformation is spatially correlated. The 
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phase observations of neighboring PS candidates are averaged, and those with lowest residual 

noise  are selected. Given  a  set  of  topographically  corrected interferograms,  a measure of 

phase stability can be defined as

 x=
1
N ∣∑i=1

N

exp { j  int , x ,i−int , x ,i−
, x , i}∣  (2.5)

where N is  the  number  of  interferograms, int , x , i is  the  differential  phase  of  the xth

interferogram and int ,x , i is  the  mean  phase  of  all  PS  candidates  within  a  circular  patch 

centered on pixel x with radius L and  , x , i is the estimated phase component contributed by 

DEM errors.  For calculating the mean phase of patches efficiently, PS candidates  selected 

based  on  amplitude  dispersion  using  a  high  threshold  value  can  be  taken  as  an  initial 

selection.  With this approach the threshold value of  x is selected in a probabilistic fashion 

assuming  that  the  coherence  with  values  less  than  0.3  corresponds  to  noisy  non-PS 

pixels[Shanker, 2010].

2.1.4 Signal-to-clutter ratio

The signal-to-clutter  ratio  (SCR)  approach was  first  suggested by  Adam to  select  coherent 

points  for  their  Persistent  Scatterer  InSAR (PSI)  processor.  With  an assumption that  a  PS 

observation consists of a deterministic signal that is disturbed by random circular Gaussian 

distributed clutter, the SCR can be estimated by computing the ratio of the power of a PS 

candidate over that of its immediate neighboring pixels. The relationship between the SCR and 

the phase standard variance(  ) can be defined as[Adam, 2004]:

=
1

2⋅SCR
,SCR=

s2

c2  (2.6)
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Where s represents  the  amplitude  of  the  dominant  scatterer  and c the  clutter  in  the 

surroundings.  Eq. (2.5) can be used to determine a reasonable  threshold  of SCR. For 

example, if a phase standard variance of 0.5 rad2 is desired, the minimum of SCR value is 

2. It is shown in (Adam et al., 2004) that both the SCR and DA  are based on the same 

signal model for a dominant point scatterer surrounded by incoherent background clutter,  

and a direct relationship between them can be expressed as:

DA=
1

2⋅SCR
 (2.7)

Since the SCR estimation  can be performed with  a single  SAR image,  compared  with 

amplitude dispersion index the SCR threshold  has far less requirement on the size of  

datasets. A pixel with a high SCR at each acquisitions is selected as a PS candidate.

2.1.5 Summary

Although  the  approaches  for  coherent  point  identification  mentioned  earlier  have  been  widely 

adopted by current MT-InSAR techniques,  there are limitations of current methods as summarized 

below:

(1) The settings of the threshold values as well as patch sizes heavily depend on experiences. 

In other words it is difficult to know the optimized value of these settings  that can balance the 

phase quality and spatial density of the selected points. For example, Figure 2.1 shows the location 

maps of coherent point candidates over Macau area selected by coherence stability and amplitude 

dispersion index with different threshold values respectively.  A total of 41 Envisat/ASAR images 

covering a time span from 20030406 to 20100926 are used.  It is clear that the density of  the 

coherent point candidates is quite different, which  largely depends on the thresholds. This  might 

raise  confusion  to  the  users. Another  example  is  that  with  the  method  of  phase  stability  the 

11
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selection of the patch size for calculating the mean phase is not an easy task, especially in areas 

undergoing spatially complex deformation.

(2) Coherent  points  are not  coregistered with  special  consideration.  The starting  points  of  

current MT-InSAR methods are the interferograms or resampled SLC images resulted from a global 

coregistration procedure for the whole slave images. However this global coregistration procedure  

which  employs  the  offsets  estimated  from  distributed  windows  over  the  images to  determine 

polynomials for resampling the slaves is not  necessarily optimal for the coherent points.  This  is 

mainly  due to  the  fact  that  the  standard  deviation  of  the  estimated offsets  at  the  distributed 

scatterers is larger than that of strong scatterers. Therefore coregistration especially designed for 

the coherent points should be developed.

12

Fig. 2.1: Coherent point selection with coherent stability and amplitude dispersion index for Macau  

area. (a) coherence threshold=0.5;(b) coherence threshold=0.3; (c) amplitude dispersion index less  

than 0.4; (d) amplitude dispersion index less than 0.6. The green dots are the selected coherent  

points using different thresholds.
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To overcome these limitations, it  is necessary to develop an algorithm capable of  identifying the 

coherent points reliably from a small set of images where no parameter needs to be set based on 

experience, which is the focus of the Chapter 3. 

2.2 Parameter estimation

After the identification of coherent points, the deformation parameters as well as DEM errors can be  

estimated from them. To date several effective algorithms have been proposed, each with its own 

advantages and potential disadvantages. Broadly speaking, these algorithms may be classified into 

the following two categories:

Algor ithms  with  single-master  interferograms ----  The algorithms stimate the deformation 

parameters  from  interferograms  without  considering  the  limitation  of  critical  baselines,  e.g.,  

PSInSAR  [Ferretti  et  al.,  2000;  Colesanti  et  al.,  2003],  STUN  [Kampes  and  Hanssen,  2004], 

StaMPS [Hooper and Zebker, 2007], IPTA [Werner et al., 2003]. 

Algorithms  with  multi -master  interferograms ----  The algorithms  estimate the deformation 

parameters from short baseline interferograms in which the spatial decorrelaton is relatively small, 

e.g., Usai's algorithm [Usai, 2003], SBAS [Berardino et al., 2002] and Mora's algorithm  [Mora et 

al., 2003].

The starting point of all the algorithms is the wrapped differential phase which contains the phase 

components contributed by deformation, DEM error, atmospheric artifacts, orbital error,   Doppler 

centroid difference and noise.  We will  introduce  below  two typical  algorithms i.e.,  PSInSAR and 

13
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SBAS with emphasis on how these algorithms deal with the phases  of the coherent points.  The 

shortcomings of the  methods will also be discussed.

2.2.1 PSInSAR

Since the PSInSAR algorithm has been patented, the details of the algorithm are not always 

clear. The description here is based on [Ferretti et al., 2000; Colesanti et al., 2003].

Differential interferogram formation with single -master

With N1 SAR images, a reference digital elevation model (DEM) and precise orbit data, we 

can obtain N full-resolution differential interferograms with respect to the same master image. 

For a permanent scatterer candidate (PSC) ( x ) in the ith interferogram with temporal baseline 

t i , the differential phase k can be written as

x , t i=W {topo x , tidefo x , t iatmo x , t inoise x , t i }

i=1⋯N
 (2.8)

where W {⋅} represents the wrapping operator, topox , ti is the phase caused by DEM error,

defox , ti is the phase due to displacement of the point, atmo x , t i is the phase raised by 

atmospheric  delay, noise x , t i is  decorrelation  noise.  The  topographic  phase  is  a  linear 

function of the perpendicular baseline, i.e.,

topox , ti=x , ti⋅ hx  (2.9)

where  x , t i is the height-to-phase conversion factor, and hx is the DEM error at the point. 

The deformation phase can be separated into two terms, i.e.,

defox , ti=
4

⋅v x ⋅t iNLx ,t i  (2.10)
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where v x  is the mean deformation rate of target x ,  is the wavelength of the radar signal, 

and NLx , ti is the phase component due to non-linear motion. The interferometric phase at 

point x can be finally written as

x , t i=W {x , t i⋅hx
4

⋅v x ⋅t ix , ti}

i=1⋯N
 (2.11)

where x ,t i is  the phase sum of three contributions, atmospheric delay, noise and non-

linear motion.

Considering  two  neighboring  PSCs x and y ,  the  phase  difference  between  them  can  be 

expressed as

x , y , t i=W {x , ti⋅ hx, y
4

⋅v x , y ⋅tii}  (2.12)

where hx , y is the difference of  the  DEM errors at the two points,   v x , y  is the velocity 

difference;  and i is the difference of  the  residual phase, which is assumed to be small, 

since  all  its  components(i.e.,  differential atmospheric  signal,  non-linear  deformation  and 

random noise) are small.

Preliminary estimation

In the PSInSAR technique  the estimation of the parameters from the observed wrapped phase 

pairs is performed by a search through the solution space. Under the condition

∣i∣  (2.13)

the absolute value of the complex ensemble coherence

x , y=∣ 1
N
∑
i=1

N

e j i∣  (2.14)
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can be adopted as a reliable norm [Ferretti et al., 2000]. The coherence value lies in the range 

[0,1]. A high coherence value implies a good estimation of the differential DEM errors and the 

differential  velocity. In practice  the coherence is  maximized by sampling  the  two-dimensional 

solution space with a certain resolution and up to certain bounds, each time evaluating the 

norm [Kampes, 2006].  It should be noted that Eq. (2.13) is satisfied under the assumption 

that the differential atmospheric effect between the two neighboring points is small, the relative 

non-linear deformation is small and phase noise at points is also small.  If the condition i.e., 

Eq.  (2.1.3)  is  wrongly  assumed,  the  parameters  estimated  from  Eq.  (2.1.4)  are  no  more 

reiliable.

After obtaining the maximum coherence values for all the arcs, a threshold is needed to remove 

the  unreliable  arcs.  Unfortunately  the  determination  of  this  threshold  is  not  practically 

straightforward. In other words, users have to select the threshold based on experience. AS a 

reference, 0.75 was used in Ferretti et al.  [2000]. The parameters (DEM error and the mean 

deformation  rate) at  PSCs  can  then  be  obtained  by  integrating  the  DEM  error  and  rate 

differences between all pairs of PSCs with respect to a reference point.

Atmospheric phase

After removing the phase components contributed by DEM errors and linear motions on arcs, 

the residual phase at the PSCs can be unwrapped by a weighted least-squares integration. The 

residual phase contains the components due to atmospheric delays, the non-linear motion and 

random noise. Under the assumption that the atmospheric signal behaves randomly in time 

and is correlated in space, it can be isolated from other components by low-pass filtering in the 

spatial domain and high-pass filtering in the temporal domain.
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First  a  mean  value( x  )  of  the  residual  phase  is  calculated  for  each  arc,  which  is  an 

estimation for  the atmospheric  phase  in the master  acquisition.  Since  this  master-related 

atmospheric phase will not pass the high-pass filter, it should be subtracted from the residual 

phase.

 ' x ,t i=x , ti− x   (2.15)

Then the temporal high-pass filtering is performed to remove the possible temporally correlated 

displacement  from  the  residual  phase.  Finally  a  spatial  low-pass  filter  is  applied  to  the 

temporally filtered residuals to remove the random noise component[Kampes, 2006]. Note that 

the order of the filtering steps can  be   interchangeable.  The estimated atmospheric phase (

atmo x , t i ) at a point ( x ) in the ith  interferogram can be expressed symbolically as

atmo x , t i=[ [ ' x , ti]HP−time ]LP−space[ x  ]LP− space  (2.16)

In the implementation of the filters, to make it simple, Ferretti [2000] used a triangular window 

with the length of 300 days for the temporal filter and a 2×2 km2 averaging window for the 

spatial  filter  for  a  data  set  containing  41  ERS  SAR  images  acquired  from  19920617  to 

19990116.

Final estimation

After the estimation of  the  atmospheric phase at  the  PSCs, the full  resolution atmospheric 

component can be determined by Kriging interpolation, which is referred to as “atmospheric 

phase screen” (APS) [Ferretti et al., 2000]. From the differential interferograms without APSs, 

the DEM errors and displacement can be estimated on a pixel by pixel basis. More PS can now 

be identified.  The time series deformation can be estimated by the low-pass temporal filtering 

mentioned earlier.
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2.2.2 SBAS

The  Small  Baseline  Subset  (SBAS)  algorithm[Berardino  et  al.,  2002] is  a post-processing 

method to determine the deformation parameters as well as DEM error from a set of multi-

master  differential  interferograms  with  short  spatial  baselines.  Compared  with  PSInSAR 

technique, this algorithm can be easily implemented. Since the starting point of SBAS method 

is the unwrapped phases, one of the main error sources is the phase unwrapping error. In this 

section we  will review the key issues behind the algorithm. More technical details  about the 

algorithm can be found in [Berardino et al., 2002; Lanari et al., 2004; Casu et al., 2006]

The algorithm starts from a set of N1 coregistered single look complex (SLC) SAR images 

acquired at the ordered times( t 0 ,⋯, tN ). Assuming that each image can be involved in at least 

one  interferogram,  a  number  of  differential  interferograms  can  be  generated.  In  order  to 

mitigate  the  decorrelation  phenomena,  M interferograms  with  small  spatial  and  temporal 

baseline as well as small Doppler centroid differences are selected as observations. It should 

be  noted  that  SAR  images  involved  in  the  interferograms  might  be  grouped  in  several 

independent  small  baseline  subsets  that  must  be  properly  combined  to  retrieve  the 

deformation time series.

Since the SBAS algorithm relies on the  absolute phase values of high coherent points, the 

interferometric phase in all the M interferograms restricted to the interval of ( − , ] must b 

unwrapped.  Minimum Cost  Flow  (MCF)  based  unwrapping  method  proposed  by  Constantini 

[1998] is most widely used for spatially sparse data. As noted in Berardino et al. [2002], other 

2D unwrapping method [Agram and Zebker, 2009]can also be adopted to retrieve the absolute 
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values  from  single  interferograms.  After  phase  unwrapping,  a  best  fit  plane  is  commonly 

derived to remove the possible phase component caused by imprecise satellite orbit.

Once the phase signal  of  each unwrapped interferogram with  the same reference point  is  

available,  the  SBAS algorithm  can  be  performed  as  a  follow-up  procedure.  Considering  a 

generic  interferogram j generated  from  SAR  images  acquired  at  times  t B and t A ,  the 

interferometric signal for a coherent pixel located at ( x ,r ) coordinates can be expressed as

 jx , r =tB , x , r −t A , x , r 

≈
4


[d  tB , x , r −d t A , x ,r  ] j , x , r  z j , atmx ,r n j

∀ j=1,⋯,M

 (2.17)

where tB , x , r  and t A , x , r  are  the  phases  acquired  at t B and t A respectively, 

d  tB , x , r  and d  tA , x , r  are the LOS cumulative deformation at tB and t A with respect to the 

first  scene(i.e., t 0 ).   j , x , r  and  z are  the  height-to-phase  conversion  factor  and  the 

topography error which are the same as in PSInSAR technique. Phase differences caused by 

the dispersion of the atmosphere at t B and t A are included in the term  j , atm x , r  . The last 

term n j stands for the phase component contributed by possible decorrelation effects and 

other noise sources.

Retrieval of low pass deformation and DEM error 

InBerardino et al. [2002], the so-called low pass (LP) deformation can be expressed by a cubic 

model.

d  ti , x , r =v⋅t i− t0
1
2
a⋅ti−t 0

2


1
6
a⋅t i− t0

3
 (2.18)
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where v , a and a are the unknowns. Hence Eq. (2.14) can be rewritten as

 jx , r =M jPN j  (2.19)

where M j is  the  design  vector  containing  the  coefficients corresponding  to  the  unknown 

parameters (i.e., the mean velocity, the mean acceleration, the mean acceleration variation and 

topography error) and P is the parameter vector having the following form

PT
=[v ,a ,a , z ]  (2.20)

N j contains  phase  components  contributed  by  the  non-modeled  displacement,  

atmospheric signals as well as other noise. Considering M interferograms, the system of 

observations for a generic coherent point can be written as

=M P N  (2.21)

where  represents the unwrapped and ramp removed phase vector, M is an M×4 design 

matrix  corresponding  to  the  parameters  in P ,  and  N is  the  non-modeled  phase  vector. 

Assuming  N behaves randomly  in  temporal  space,  Eq.  (2.18)  can  be  solved  under  the 

framework of least squares.  

It is important to  note that in SBAS technique the LP displacement model no matter a cubic 

pattern or a linear model is only used for the estimation of the DEM error. In other words, the 

estimated LP displacement component(s) will not be used in the following displacement time 

series analysis. 

Preliminary estimation of displacement time series
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To simplify the phase unwrapping procedure, the estimated LP phase component as well as the 

topographic error are subtracted from the wrapped input interferograms. The remaining phase 

can be easily unwrapped since the  fringe rate has been reduced significantly. The LP phase 

component is then added back to the unwrapped phase  forming the phase observations that  

can be expressed as

 j= ∑
k= IS j1

IE j 4

 tk−t k−1vkN ' j

∀ j=1,⋯, M

 (2.22)

where v k is the mean motion velocity between time-adjacent acquisitions, and N ' j represents 

the phase related to atmospheric artifacts and noise. Accordingly a system of M equations in

N unknown can be organized as

=Bv N '  (2.23)

where B is  an M×N matrix  corresponding  to  the  unknown  vector v .  Once  again  the 

parameters corresponding to the velocities can be resolved by least squares. Unfortunately at 

this stage the matrix B has a risk to be rank deficient since it represents the cumulative time 

between  each  interferometric  pair  and  depends  on  the  combination  of  SLC  images  for 

interferograms.  To  overcome  this  problem,  the  pseudoinverse  of B is  used,  which  can  be 

calculated by singular value decomposition (SVD) (see[Berardino et al., 2002] for details). The 

displacement  time  series  can  be  directly  achieved  according  to  the  velocities  and  time 

intervals. However it should be noted here that the assumption that the atmospheric artifacts 

and decorrelation noise follow Gaussian distribution in temporal domain does not always hold 

in real cases. Therefore the estimated displacement time series contains possible atmospheric 

errors and needs to be further processed.
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Final displacement time series estimation

In the SBAS technique the mitigation of atmospheric effect is performed by a filtering operation 

which is derived by Ferretti [2001] for the PS technique (see section 2.2.1 for the details). After 

removing the undesired atmospheric signal, the displacement time series is finally achieved 

from the remained phases based on the minimum norm least squares. 

2.2.3 Summary

The aforementioned algorithms for deformation parameter estimation in MT-InSAR techniques 

are quite classical and have been successfully applied to numerous real cases. However there 

is still room for improvement. Phase unwrapping, a vital step in both algorithms, currently can 

not be always reliably performed no matter by searching through the solution space or by 2D 

spatial methods. Kampes [2006] first proposed a stochastic model for single-master MT-InSAR 

system and described the precision of the estimated parameters by the full variance-covariance 

(VC)  matrix,  however  there  is  a  lack  of  similar  work  for  multi-master  MT-InSAR  system. 

Moreover  since  the SBAS technique takes the phase components at pixels  rather than the 

phase  differences  between  two  neighboring  pixels  as  observations,  the effect  of  the 

atmospheric artifacts on parameter estimation can be more serious.  For these reasons, the 

work  presented  in  Chapter  4  is  geared towards the development  of  innovative  processing 

algorithms  aimed at  estimating  deformation  parameters  from  a  multiple  master  MT-InSAR 

system without phase unwrapping and providing the VC matrix for precision evaluation.
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3 Temporarily Coherent Point

In this chapter an approach is presented for identifying and extracting temporarily coherent 

points (TCP) that exist between two SAR acquisitions which can be applied for such as ground 

settlement monitoring. TCP are identified based on the spatial characteristics of the range and 

azimuth offsets of coherent radar scatterers. A method for coregistering TCP based on the 

offsets of TCP is also given to reduce the coregistration errors at TCP. The proposed algorithms 

are validated using a test site in Hong Kong. The test results show that the algorithm works 

satisfactorily  for  various  ground  features  and is a  plausible  candidate  of  methods for  the 

identification of coherent points based on a small number of SAR data.

3.1 Introduction

As mentioned in Chapter 1 temporal decorrelation is a major limitation for the application of 

interferometric  synthetic  aperture radar  (SAR)  (InSAR)  [e.g.,  Zebker  and Villasensor,  1992]. 

Persistent  Scatterer (PS) Interferometry (PSI),  an extension to the conventional InSAR, is  a 

proven  effective  technique  for  measuring  displacement  in  areas  of  low  correlation.  Since 

Ferretti  [2000] first suggested an algorithm to exploit PS pixels, similar algorithms have been 

developed by various groups. These methods identify PS from a time-series of interferograms 

either using a temporal functional model [Ferretti et al., 2000; Colesanti et al., 2003; Werner 

et al., 2003] or spatial correlation of phase measurements [Hooper et al., 2004]. However all 

these methods can only obtain reliable deformation measurements in regions with enough SAR 

acquisitions.  In  areas  where  the  number  of  interferograms  does  not  meet  the  minimum 

requirement, the methods usually fail to identify a dense network of PS pixels. Signal-to-Clutter  

Ratio (SCR) [Adam, 2004] is another type of method for PS identification that requires a spatial 
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estimation  window  around  a  point  scatterer.  The  method  does  not  need  to  calibrate  the 

amplitude data to estimate the SCR and it does not require many SAR images,  however  the 

method also has its disadvantages when multiple point scatterers are present in nearby pixels. 

Although  accurate  coregistration  of  PS  is  critical  in  PSI,  there  is  usually  no  special 

consideration for precise PS coregistration in current PSI methods. All the slave SAR images 

are typically  coregistered to a  common  SAR image based on range and azimuth offsets of 

distributed windows over the images. However, since the majority (typically 90% or more) of the 

pixels in the images are distributed scatterers (non-PS pixels)  [Kampes, 2006] and errors in 

their estimated offsets are in general larger than those in the estimated offsets of the PS, the 

coregistration  accuracy  of  PS  has  a  potential  risk  of  being  affected  by  the  less  optimal 

coregistration methods.  Although the results from the conventional coregistration method are 

usually  verified  by  rigorous  testing,  the   errors  in  the  offsets  estimated  from  distributed 

scatterers  have  effects  on  the  estimated  coregistration  polynomials.  In  other  words,  the 

coregistration polynomials are only optimal for the overall samples but not necessarily optimal 

for each sample.

In  this  chapter a  new InSAR  analysis  approach  is  presented.  It  includes  algorithms  for 

identifying and coregistering coherent points, named as temporarily  coherent points (TCPs). 

Under the framework of MTInSAR, the TCPs stand for the points that do not necessarily keep  

coherent  during  the  whole  observation  time  span,  therefore  the  TCPs  include  both  the 

persistently coherent points and partially coherent points. The identification of TCPs is based 

on the standard deviation of the estimated offsets derived by Bamler [2000] and the fact that 

the  offsets  estimated  from  strong  scatterers  are  less  sensitive  to  the  window  size  and 
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oversampling factor used than those from distributed scatterers. The approach is  validated 

using a test site located in Hong Kong.

3.2 Methodology

3.2.1 Offset estimation

Estimation of offsets between two SAR images with an accuracy of better than 0.1 pixel is 

critical  in  interferogram generation to  avoid  significant  loss  of  phase  coherence  [Hanssen, 

2001]. Several factors contribute to image offsets, including different timing along the satellite  

orbit,  baseline variation, pulse repetition frequency (PRF)  variation, ground deformation and 

varying satellite velocity  [Ferretti et al., 2007]. Offsets between a pair of SAR images can be 

typically described by such geometric changes between the two images as range and azimuth  

shifts, range and azimuth stretches, and range and azimuth skews. The effects of stretch and 

skew are limited for ERS and Envisat data [Gatelli et al., 1994]. In theory the offsets are also 

related to local ground elevation although the offsets from this effect are insignificant for ERS 

and Envisat data due to the limited bandwidth of the data [Arikan et al., 2007]. 

The commonly used methods for estimating offsets between two SAR images are based either 

on cross-correlation between the two amplitude images [Gray et al., 1998; Rott et al., 1998; 

Michel and Ftignot, 1999] or on fringe visibility (also referred to as coherence optimization) 

algorithm  [Lin et al., 1992] that is mainly suitable for images of high coherence. For image 

pairs  with  long  baselines  the  geometrical  approach  aided  by  a  reference  DEM  and  orbit 

information [Fornaro and Manunta, 2005] can also be considered. In the amplitude correlation 

method, the estimation of the local image offsets is reliable only when the features in the two  

SAR image patches are identical  [Strozzi et al.,  2002]. Therefore unstable features usually 
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make  the  offsets  vary  randomly.  This  property  will  be  used  in  the  algorithm  for  TCP 

identification to be presented below.

3.2.2 Identif ication of TCP

For areas undergoing gentle deformation the offsets estimated from patches of images with 

stable ground features should be nearly  identical.  For  image patches with unstable ground 

features, on the other hand, the location of the correlation peak varies, leading to random 

changes in the estimated offsets. Figure 3.1 shows the estimated offset vectors for an area 

over the Hong Kong Airport. It is clear that after removing the initial offsets estimated based on 

the satellite orbits the remaining offsets in the sea and in the mountainous areas appear very  

random due to  the low correlation which result in  errors in the estimated offsets while the 

offsets of the strong scatterers are very consistent (red dots without apparent offset vectors). It  

is  therefore  possible  to  distinguish  stable  image  patches  (coherent  scatterers)  from  the 

unstable ones (distributed targets) based on the offset information. 

The estimated offsets  of  points  with  high coherence are  less sensitive  to  the size  of  the 

patches and to the oversampling factor. This property can also be verified theoretically [Bamler, 

2000]. When estimating the offsets with the cross-correlation method, the standard deviation 

of an estimated offset ( r ,a )  (in range or azimuth) for a homogenous image patch is

r , a= 3
2N
⋅1−2




3
2  (3.1)

where  is the standard deviation expressed as a fractional number of pixels; N is the number 

of samples in a patch;  is the coherence of the patch that is also related to N
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∣∣=
∣ ∑

i=1, j=1

n , m

s1i , j  s2
∗
i , j ∣

 ∑
i=1, j=1

n ,m

s1i , j  s1
∗
i , j  ∑

i=1, j=1

n , m

s2i , j  s2
∗
i , j 

 (3.2)
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Fig. 3.1: Offset vectors over the area of Hong Kong Airport as determined by the method of cross  

correlation 

Fig. 3.2: The standard deviation of the measured offset as a function of the number of samples in a  

patch and the coherence of the patch (unit: pixel). See Eq. (3.1).
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N=m×n ,and  is the oversampling factor. In Eq. (3.1), considering the  as a constant, we 

plot the  as a function of N and  (Fig. 3.2). We can find that the standard deviation of the 

measured offset varies obviously in the areas with low coherence (i.e. unstable patches) when 

the number of samples changes, whereas it remains relatively stable in high coherence areas.  

Therefore coherent scatterers can be identified by calculating and examining the offsets while 

changing the size of the image patches. Compared with the conventional coherence threshold, 

the proposed method can be applied more reliably. This is mainly because the conventional 

coherence estimator itself is biased (especially under low coherence conditions the estimator 

is shown to be significantly biased [Touzi et al., 1999]) and its performance depends on the 

window size,  the threshold and the assumption of  ergodicity  within the estimation window. 

Theoretically the bias B in the coherence magnitude is derived as [Touzi et al., 1999]

B=
N  11/2
 N1 /2

× F23 3 /2, N , N ; N1/2 ;1;2×1−2N−  (3.3)

 where ⋅ is the gamma function and F pq is the generalized hypergeometric function. Figure 

3.3 presents the bias in the coherence magnitude as a function of independent samples for

=0.1,0 .5,0 .8 respectively together with the corresponding offset standard deviations with 

fixed oversampling factor.

28

Fig. 3.3: The relationship between independent samples with coherence bias (left) and offset  

standard deviation (right) for difference coherence magnitude. Red line:0.1;Green:0.5;Blue:0.8.
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It  is  clear  that in  areas with low coherence,  improper  window size  used by the coherence 

estimator will result in large bias. In real cases it is quite often to see that due to the biased 

estimation of coherence, even in non-coherent areas (like water body) there are still  points 

mistakenly selected. It indicates that when using the conventional coherence map to select the 

coherent points, the window size and threshold should be carefully selected, which currently is 

largely based on experience.  However it is worth noting that since Fig. 3.3 shows a similar 

pattern between the coherence bias and offset standard deviation with changing samples,the 

strategy to be presented, i.e., estimation with different window sizes, can also be applied on 

the coherence map to enhance its reliability. 

After calculating the initial image offsets based on satellite orbits, the proposed method for  

identifying TCP starts first by dividing the scene into a set of large patches (e.g., 256×256 ) 

and the range and the azimuth offsets of each of the patches are estimated and used to 

determine the coefficients of an offset polynomial. Second, the estimated offsets are used as 

initial inputs and the method of cross-correlation is implemented at every pixel using smaller  

patches (e.g., 5×5 ). An offset matrix can be obtained from the estimated offset values.

O l×m=[
o1,1 o1,2 ⋯ a1,m

o2,1 o2,2 ⋯ a2,m

⋮ ⋮ ⋮
o l ,1 o l ,2 ⋯ ol ,m

]  (3.4)

where o i , j ,i=1,2,⋯, l ; j=1,2,⋯,m is  the  offset  of  pixel  ( i , j )  which  contains  the  offset 

components in both the azimuth and the range directions. The pixels with identical offsets are 

selected as TCP candidates using a 2-D histogram.

oc=peak {hist 2dOl×m}

∣oi , k−oc∣A
 (3.5)
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where A is the tolerance interval. To ensure most of the strong scatterers to be selected as  

TCP candidates, A can be set to 1 pixel or larger. The 2-D histogram gives a statistics on the 

consistency of the offsets with a tolerance threshold value determined based on the quickhull 

algorithm  [Barber  et  al.,  1996] that  improves  the  computational  efficiency  significantly 

compared with the iteration searching method. Third, the TCP candidates are further evaluated 

by changing the size of the image patches in cross-correlation estimation (e.g.,from 4×4 to

64×64 ) and the oversampling factor to find sub-pixel offsets. A fixed oversampling factor can 

be used for simplicity. A set of offsets can be obtained accordingly for any given TCP candidate 

( j ).  The TCP candidates whose offset standard deviations are smaller than 0.1 pixels are 

selected.

OT j= [ot j1 ot j2 ⋯ ot jN ]  (3.6)

Fourth,  the  offsets  of  the  TCP  candidates  are  fit  to  a  smooth  polynomial  and  the  TCP 

candidates  whose  offsets  do  not  fit  the  polynomial  well  are  discarded.  The  remaining 

candidates are finally selected as TCP. A 6-point truncated sinc interpolator kernel [Hanssen, 

2001] is employed to resample TCP in the slave image based on the polynomial determined. A 

block diagram showing the procedure of selecting TCP is given in Fig. 3.4.

30

Fig. 3.4: Block diagram of the proposed method for coherent point identification. 
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It is important to note that in the above process, since the cross-correlation is estimated each 

time from an image patch and a strong scatterer  within a patch may dominate the cross-

correlation estimation in several neighbouring patches, pixels near a stable scatterer may be 

mistakenly identified as TCP candidates. Although such errors should have been considerably 

reduced at the stage of sub-pixel  offset estimation using very small  image patches, pixels 

seriously affected by side lobes of strong scatterers may still be wrongly identified. The phase 

components of these points should mainly be from the neighboring stable pixels so that they 

can be considered as one pixel. In addition, for the time series data analysis these points can 

be further removed based on the least squares residuals during the parameter estimation (i.e., 

DEM error and deformation rates) if the phases contain large bias [Zhang et al., 2011b].
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3.3 Experiments

3.3.1 Validation of the method for TCP identif ication

The proposed TCP selection method is validated with two corner reflectors (CRs), two buildings,  

and two  regions of  distributed scatterers in Hong Kong  (see Fig.3.5).  The locations of the 

objects in radar coordinate system are carefully determined and the proposed method is then 

applied. For simplicity, when calculating the offsets of the points a fixed oversampling factor of 

2 is used and the window size is changed gradually from 5×5 to 125×125 . The offsets of the 

points in the azimuth direction are shown in Fig. 3.6, where the offsets of the CRs as well as 

the two buildings appear to be consistent on a pixel  level but considerable dispersion within 

one pixel can also be observed, indicating that the quality of the coherent points are different. 

On  the  other  hand,  due  to  the  change  in  the  surface  features  between  the  two  SAR 

acquisitions, offsets estimated for the point in the sea and that on the hill fluctuate randomly  

for up to 60 pixels. The results from these typical scatterers have shown that the proposed 

method can identify coherent points successfully. 

32

Fig. 3.5: The location map of corner reflectors together with other 4 test points superimposed on  

the Google Earth map.
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3.3.2 Comparison of point selection methods

The SCR threshold [Adam, 2004], the coherence threshold [e.g., Berardino et al., 2002; Mora 

et  al.,  2003] and the  newly  proposed method  (referred  to  as  offset  method  hereafter  for 

simplicity) are used for identifying coherent scatterers in the study area. For the offset method 

the range and the azimuth offsets at every pixel are estimated using image patch size of 3×15  

. The 2-D histogram of the estimated offsets is shown in Fig. 3.6, indicating that the consistent 

range  and  azimuth  offsets  are  -8  pixels  and  -5310  pixels  respectively.  After  multilooking 

operation with  a factor  of 1×5 ,  5613 TCP are finally  selected (Fig.  3.8A).  When the SCR 

method is used, 7355 points are selected with the threshold value set to be SCR>2 (Fig. 

3.8B). 12153 points are selected with the coherence method (Fig. 3.8C), when the threshold is 

set to 0.4. 

33

Fig. 3.6: Estimated azimuth offsets of two CR and other types of scatterers. The window size varies  

from 5-by-5 to 125-by-125 in the offset estimation. (A) CR1; (B) CR2; (C) Building point 1; (D)  

Building point 2; (E) Hill point; (E) Sea point.
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It can be seen from the results that all the three methods work well with strong scatterers. The  

number  of  points  wrongly  identified  however  varies  considerably  among  the  methods. 

Apparently the offset method works best in such areas as  open water as no points is wrongly 

selected.

34

Fig. 3.7: 2D histogram of offsets at all pixels estimated using a window size of 3×15. The colour  

indicates the number of pixels whose offsets in range and azimuth direction locate in the  

corresponding intervals.
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3.3.3 TCP Coregistration

The identified TCP are resampled according to the polynomial determined based on the offsets  

of the TCP (referred to as TCP polynomial for simplicity). Errors in the polynomial will introduce 

phase noise as the polynomial gives the location of the TCP in the slave image where the  

interpolation  kernel  will  be  applied.  For  comparison,  we  also  determine  a  polynomial  with 

offsets from evenly distributed windows over the whole image and resampled the TCP with this 

polynomial (referred to as global polynomial for simplicity). It is found that the interferometric  

phases of the resampled TCP from the two polynomial approaches are different (Fig. 3.9A). The 

phase differences have a mean of 0.25 rad and a standard deviation of 2.3 rad. Since the 

global polynomial was estimated from offsets on distributed windows over the whole image 

where most of the pixels are distributed scatterers, the offsets from the distributed scatterers 

are unreliable and can affect the polynomial determination, resulting errors in the polynomial 

and phase noises. Fig. 3.9B shows the improvement in coherence when the TCP polynomial is 

used.  It should be noted here that since the coherence estimator is biased, the estimated 

coherence is not as precise as expected, which is shown just for reference. 
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Fig. 3.8: Coherent scatterers identified with three different methods: (A) 5613 TCP identified with  

the offset method; (B) 7355 point identified with the SCR method when SCR>2; and (C) 12153  

points identified with coherence method when the coherence threshold = 0.4 (coherence estimation  

window: 5×20 ).
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3.3.4 TCP in MT-InSAR System

Since the TCPs are identified an interferogram by an interferogram, both the points that keep 

coherent in the whole time span of the observations and the points that only keep coherent in a 

subset of observation time span can be picked up. In areas undergoing rapid development, the 

number of points that keep coherent consistently is usually limited and the deformation pattern 

over the study area sometimes is hard to be fully reflected by these sparse points. Therefore it 

is  necessary  to  explore  points  that  only  are  coherent in  a  subset  of  the  SAR  data.  The 

identification  of  such  partially  coherent  points  by  the  method  proposed  earlier  is 

straightforward.  Fig.  3.10 shows  a  location  map  of  TCPs  that  appeared  in  at  least  42 

interferograms over Macau area. In this case a total of 81 interferograms with baselines less 

than 150m and 250 days respectively  were generated from 38 Envisat/ASAR images.  The 

details on the parameter estimation from these TCPs can be found in chapter 6.
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Fig. 3.9:  (A) Phase differences between interferograms coregistered with different polynomials  

(unit: radian); and (B) Improvement in the coherence of the selected TCP when using the proposed  

coregistration strategy
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3.4 Conclusion

A method for identifying temporarily coherent points (TCP) that exist between at least two SAR 

acquisitions has been presented in this chapter. The method is useful in areas where there are 

not enough SAR images to perform PSI analysis. The major advantage of the method is that it 

can identify coherent scatterers from a subset of interferograms without the need of setting the 

threshold based on operator's experience. The increased density  of TCPs can reflect  more 

deformation details especially in areas that undergo fast development. Moreover, an improved 

method for  coregistering  TCP has  also  been proposed by  estimating  the offset  polynomial 

based on the TCP offsets only. The proposed algorithms have been validated using test  data 

sets. 
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Fig. 3.10: TCPs that appeared in at least 42 interferograms over Macau area. The color shows in  

how many interferograms the points keep coherent.
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4 Deformation Parameter Estimation 

After retrieving the phase components of the coherent points, MT-InSAR technique is required 

to estimate the deformation parameters.  A careful literature  survey has revealed that phase 

unwrapping is a vital step in all current MT-InSAR techniques.  However the success  in doing 

this can  never  be  guaranteed.  The  performance  of  any  MT-InSAR  technique  will  be 

compromised if the phase ambiguities are wrongly estimated.  Furthermore there is  a lack of 

research on evaluating the precision of the estimated parameters in multiple master MT-InSAR 

system.  For  these  reasons,  it  is  desirable to  develop  an  algorithm capable  of  estimating 

deformation  patterns  with  no need  of  determining  phase  ambiguities and  of  providing  the 

variance-covariance matrix of the estimated parameters.  The algorithm to be presented in this 

chapter has the salient features:

» Multi-master interferograms with short spatial and temporal baselines are taken as 

basic observations

» The algorithm focuses on phase differences at TCP pairs (arcs) densely constructed 

by local triangulation.

» A  phase ambiguity detector is proposed for removing arcs with phase ambiguities 

according to least squares residuals. 

» Variance components of SLC images are estimated for evaluating the precision of 

deformation parameters.
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4.1 Introduction

The emergence of techniques for analyzing multi-temporal SAR images has enhanced the ability 

of  deformation  mapping  with  InSAR  [Lu  et  al.,  2007].  Multi-temporal  InSAR  techniques, 

involving  the  processing  of  multiple-temporal  InSAR  images,  provide  a  means  to  address 

issues in conventional InSAR techniques such as decorrelation and atmospheric artifacts. Over 

recent  years, a multitude of approaches has been proposed in this domain, which can be 

broadly classified into two categories, permanent scatterers (PS) (or persistent scatterers as 

used in some literature) methods [Colesanti et al., 2003; Ferretti et al., 2000; Hooper, 2004; 

Shanker and Zebker, 2010; Werner et al.,  2003] and small  baseline subset (SBAS) InSAR 

methods  [Berardino et al.,  2002; Usai,  2003].  Since both  types of  techniques require the 

reliable estimation of phase ambiguities which is still a tough problem in the InSAR field, errors 

induced from phase unwrapping will make current MTInSAR techniques fail to correctly estimate 

the  parameters  (deformation,  DEM  error,  and  atmospheric  delay)  from  a  stack  of 

interferograms.

 

How to reduce or avoid errors on the estimation of phase ambiguities is therefore a challenge 

that all multi-temporal InSAR methods need to overcome. In applying such techniques we have 

found that for a set of multi-master interferograms with short baselines, there are usually a 

sufficient number of arcs in which the double-difference phase components are immune from 

phase ambiguities provided that the selected coherent points are densely connected. Especially 

considering  that  fact  that  the  high-resolution  SAR  data  with  rather  short  repeating  cycles 

acquired by modern SAR sensors (such as TerraSAR-X, COSMO-SkyMed, and Radarsat-2) are 

increasingly available, the dense arcs without phase ambiguities can be largely ensured even 

for  areas with  rapid  ground deformation.  If  only  these  arcs  are  taken  as  observations  for 
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estimating the DEM errors and deformations, the complexity of parameter estimation can be 

reduced significantly since there is no need of estimating phase ambiguities anymore. In this 

chapter we  propose  a  least  squares  based  method  that  can  identify arcs  without  phase 

ambiguities  (or  on  which  the  phase  ambiguity  equals  to  zero) and  resolve  reliably  the 

deformation  parameters  (linear  or  non-linear)  at  coherent  points.  We  first  use  a  network 

construction  strategy  that  performs  Delaunay  triangulation  locally  to  ensure  that  coherent 

points  can  be  connected  as  much  as  possible  while  not  significantly  increasing  the 

computational  complexity.  A  least  squares  based  model  is  then  proposed  for  parameter 

estimation during which an phase ambiguity detector is used to identify and remove arcs with 

phase ambiguities according to the least squares residuals. Considering the stochastic nature 

of SAR observations, we introduce a weighting scheme for the interferometric phases at arcs by 

applying the law of variance propagation [Koch, 1988; Teunissen, 2000; Kampes, 2006]. The 

parameters  at  the coherent  points  are  then estimated by  applying  a  least  squares  model  

constrained by reference points. The proposed approach is tested with a set of simulated SAR 

data to ensure the proposed method functions as expected under controlled circumstances. 

4.2 Modeling SAR interferograms

4.2.1 TCP network

Once the TCP are identified, a network is constructed to connect pairs of TCPs where each 

connected pair is termed an arc as in PSInSAR terminology. Delaunay triangulation has been 

widely used for this purpose. However Delaunay triangulation defines a triangular network under 

the  condition  that  the  circumcircles  of  all  the  triangles  in  the  network  are  empty  without 

considering the lengths of the arcs (see Fig. 4.1(a)). Although arcs longer than a certain length 

can be removed in the final step, the points are not connected densely enough. If only points in 
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a small region (i.e. 1500 m×1500 m) are connected, the problem of arc length can be solved  

without increasing significantly the computational complexity and the density of arcs can also 

be improved. Fig. 4.1(c) shows a local Delaunay triangulation where a grid with 100 m spacing 

is placed over an interferogram and points in a circle with a radius of 750 m centered at each 

grid node are selected and connected. It should be noted that high density of arcs is important 

for the parameter estimation to be presented in the following section, since denser network 

ensures at more arcs the phase ambiguity is zero. 

4.2.2 Multi-master Interferogram stacking

Considering J1 SAR  images  acquired  in  an  ordered  time  sequence,  we  generate   I

interferograms with short baselines (say, less than 150 m). In each interferogram i , the line-of-

sight (LOS) displacement of TCP ( l , m ) can be described by a linear combination of the mean 

deformation  rate   between  the  acquisitions  and  the  corresponding  time  span.  Given  two 

acquisitions, one is the master ( M ) image and the other is the slave ( S ) image and M is 

acquired later than S , i.e., tM i
t Si

. The LOS deformation ( r l , m
i ) during this time period can 

be expressed as 

rl , m
i
=r t M i

, l ,m−r t Si
, l ,m=∑

k=1

C i−1

t k−t k−1v k  (4.1)

Where ( l ,m ) are the pixel coordinates of the TCP; r  tM i
, l ,m and r  tSi

,l ,m  are the slant 

range distances from the master and the slave sensors respectively to the target; and C i is the 

number of SLC acquisitions in the time sequence from S i to M i   (including M i and S i ).
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As Eq. (4.1) is a combination of LOS deformation estimates at the full time resolution, there is 

a risk of over-parameterization in the equation, which should be carefully dealt with in a real 

application. If  a linear deformation rate ( v )  during the whole time span is  assumed, then

v 1=⋯=v k=⋯=v . Eq. (4.1) can also be tailored as any combination of deformation rates 

and  time  intervals  in  order  to  compare  with  field  measurements  that,  for  example,  are 

performed annually. The corresponding phase is
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Fig. 4.1: (a) Global Delaunay triangulation network of coherent points; (b) Network after removing  

arcs with phase ambiguities detected from (a); (c) Local Delaunay triangulation network of coherent  

points; (d) Network after removing arcs with phase ambiguities detected from (c).
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defo ,l , m
i

=−
4
 ∑k=1

C i−1

t k−t k−1v k=iV  (4.2)

where  is  the radar wavelength;  V is  a vector  of deformation rates;  i is  the coefficient 

corresponding to the unknown deformation rates that can be expressed as i=−4/T i  

and T i is a vector of time combinations whose elements correspond to the deformation rates 

within the respective time intervals .

T i=[ t1−t 0 t 2−t 1 ⋯ t k− tk−1 ⋯ t J− t J−1 ] I× J  (4.3)

The wrapped phase of a TCP with a pixel coordinate ( l ,m ) can be written as

l ,m
i
=W {topo ,l , m

i
defo ,l , m

i
atmo ,l , m

i
orbit ,l , m

i
dop , l ,m

i
noise, l ,m

i
}  (4.4)

where W {⋅} represents  the  wrapping  operator, topo, l ,m
i is  the  phase  related  to  the 

topographic error; atmo, l ,m
i is the phase due to the differential atmospheric delays between 

the  acquisitions; orbit , l ,m
i is  the  phase  due  to  the  orbit  errors; dop ,l , m

i is  the  phase 

component  due  to  azimuth  Doppler  centroid  difference  between  the  acquisitions;  and

noise, l ,m
i is the noise term that includes potentially the thermal noise, processing errors  

and decorrelation errors. The topo, l ,m
i term has a direct relationship with the height error

hl ,m

topo, l ,m
i

=−
4


B perp ,l , m
i

r l , m
i sinl ,m

i hl , m= l ,m
i
h l ,m  (4.5)

where Bperp ,l ,m
i is the local perpendicular baseline; rl , m

i is the slant range distance from the 

master sensor to the target; l ,m
i is the local incidence angle.
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The phase difference between two TCPs located at ( l , m ) and ( l ' ,m' )  is given by

l , m ,l ' , m '
i

=W {l , m ,l ' , m '
i

h l ,m ,l ' ,m'iVl ,m , l ' , m '
i

}

l ,m , l ' ,m'
i

=atmo ,l ,m ' l ' ,m '
i

orbit ,l , m ,l ' , m '
i

dop ,l , m,l ' , m '
i

noise ,l , m,l ' ,m '
i  (4.6)

where V=[v l ,m, l ' ,m '
1

 v l , m,l ' , m '
2

⋯  v l , m ,l ' , m '
I ]

T
.  Since the atmospheric  artifacts are 

strongly correlated in space, the differential atmospheric contributions between a pair of nearby 

TCP are exptected to be small [Li et al., 2006; Williams et al., 1998]). The differential orbital 

component generally  has a similar characteristic.  Since the differencing operation can also 

significantly reduce the effects of Doppler centroid differences, the magnitude of dop ,l , m ,l ' , m '
i

should be very small.  Moreover, if neither of the two connected TCPs is significantly affected 

by  decorrelation,   noise, l ,m ,l ' ,m '
i will  also show a low variance.  Therefore l ,m , l ' ,m'

i can be 

safely taken as a random variable with an expectation E l , m, l ' , m '
i =0 . For  a given  arc, the 

system of observation equations can be written as

 = A[
h l ,m ,l ' ,m '

 V
K ]W

 = [l ,m, l ' ,m '
1

l , m,l ' ,m '
2

⋯ l ,m ,l ' ,m '
I ]

T

A = [  2 ]

 = [l , m
1

 l ,m
2

⋯  l ,m
I ]

T

 = [1 2 ⋯ I ]
T

W = [l ,m , l ' ,m '
1

l , m,l ' ,m '
2

⋯ l ,m ,l ' ,m'
I ]

T

 (4.7)

where  is a vector containing the phase differences between two adjacent pixels in a total 

of I interferograms; A is  the design matrix  including  height-to-phase conversion factors,  the 

time combination matrix and 2  ;  K is the integer vector containing the number of phase 

ambiguities and W is a stochastic vector. 
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4.3 Least squares solution

Assuming that at all  arcs the phase ambiguity  equals to zero, i.e.,  K=0 ,  the system of 

observations can be simplified as

 = A[h l ,m ,l ' ,m '

 V ]W                                                (4.8)

Where A=[  ] .  The functional and the stochastic models of the system of observations 

can be expressed as

E { } = A[hl , m,l ' , m '

V ]
D { } = Qarc

 (4.9)

where ( E { } ) and ( D { } ) are operators for expectation and dispersion respectively, 

and Q arc is  an I×I covariance  matrix  of  differential  phases  at  arcs.  This functional  model 

reflects  the  linear  or  linearized  relationship  between  the  observations  and  the  unknown 

parameters while the stochastic model describes the  precision of the observations and the 

correlation between them. In this section a weighted least squares estimator is used to resolve 

the parameters in Eq. (4.8) and (4.9).

4.3.1 Priori variance components

In  the  conventional  MT-InSAR  analysis  techniques,  all  pixels or  the double  difference 

observations are assumed to have equal weights. This assumption may not be valid since SAR 

images  are  acquired  under  different  conditions  with  which  the  atmospheric  artifacts  and 

random noises vary. For the SAR images considered, the VC matrix of the random noises (

Qnoise ) can be expressed as
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Qnoise=[
noise0

2

⋱

 noiseJ0

2 ]
J1 ×J1

 (4.10)

where  it  is  assumed  that  the  noise  of  TCPs  not  including the  atmospheric  artifacts is 

uncorrelated and equals to the average noise level of the SLC images . When I interferograms 

are  formed  from  the J1 images,  the  VC  matrix  of  the  interferogams  ( Qnoise
in ) is  given 

according to the law of variance propagation

Qnoise
in
=DQnoise D

T  (4.11)

where D is a combination matrix indicating which pair of SLC images are used to generate the 

interferograms. The combination matrix has the following form.

D=[
−1 0 1 ⋯ 0
0 −1 ⋯ 1 0
⋮ ⋱
0 0 −1 ⋯ 1

]
I×J1

 (4.12)

Since  the  phase  differences  at  a  given  arc  is  the  observations  of  the  model,  in  the ith

interferogram the VC matrix of the phase difference is strictly given as

Qi
arc
=1 −1 [ l , m ,i

2
 l ,m, l ' ,m ' i

 l ,m , l ' ,m' i l ' , m ' ,i
2 ] 1

−1  (4.13)

Where l , m, i
2 and l ' , m ' , i

2 are  the  variance  component  of  the  points l ,m and l ' ,m'  ;

l , m, l ' , m ' i is their corresponding covariance component. It is clear that the two points at the 

ends of the arc are correlated due to the signals caused by the atmospheric delay and orbital 

inaccuracy. Here we assume that for an arc with short distance, spatially correlated signals at 

the two ends are the same, i.e., l , m , l ' , m ' i=0 . In addition, for the seek of simplicity, we follow 

the assumption raised by Kampes [2006] that all points in an interferogram have the same 
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inherent  noise  level,  i.e., l , m,i
2
=l ' , m ' ,i

2
= noise ,i

2 . The  VC  matrix  of  the  double-difference 

phases then reduces

Q arc
=2Qnoise

in
=2DQnoise D

T  (4.14)

It is worth noting that this simplicity is not strictly correct, however it is helpful to estimate the 

average noise level of the whole coherent points  (i.e., Qnoise  ) [Kampes, 2006]  (rather than 

each  single  point)  at  an acceptable  precision without  much  computational  complexity.  The 

weights ( Parc ) of the double-difference phases can be obtained by taking the inverse of the VC 

matrix. Since it is possible that the VC matrix is singular, a pseudo inverse of the VC matrix,  

i.e., Parc
=Qarc


+ ,  can be obtained by singular value decomposition (SVD)  [Rao and Mitra, 

1971].

4.3.2 Initial estimation

The least squares solution of the observation equations is

[ hl , m,l ' , m '

 V ] = AT Parc A−1 AT Parc


  = AAT Parc A−1 AT Parc


w = −AAT P arcA−1 AT Parc


 (4.15)

where the circumflex ⋅ denotes estimated quantities; and w is the least squares residuals. The 

corresponding VC matrices of the estimated quantities are

D {[ hl ,m ,l ' ,m '

 V ]} = AT Parc A−1

D {  } = A AT ParcA−1 AT

D { w } = Qarc−AAT Parc A−1 AT

 (4.16)
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4.3.3 Phase ambiguity detection

A basic assumption of least squares estimation is that all the gross errors and systematic 

effects have been eliminated before the adjustment computation is performed. However during 

the initial least squares estimation we assume that at all arcs phase ambiguity equals to zero, 

which is absolutely wrong for arcs with non-zero ambiguities. Therefore it is necessary to detect 

the arcs  with  non-zero  phase ambiguities  and remove them from the solution.  Since  it  is 

observed that phase ambiguities can result in abnormally large residuals during least squares,  

they can be taken as “outliers”.  Methods based on statistical tests of the estimated least 

squares residuals are often used for the detection of oultiers [Koch, 1988]. However, they are 

inefficient as statistical testing should be carried out for each of the iterative least squares 

solutions. Because double difference phases with phase ambiguities ( N⋅2 ,N∈ℤ ) render 

the magnitude of the corresponding residuals to increase significantly as shown in Fig.4.2. It is 

obvious that  the abnormally  large residuals  can be used to isolate the arcs  having phase 

ambiguities. In addition since we are just interested in whether the arcs have ambiguities or not 

and  there  is  no  need  to  detect  exactly  which  interferograms  have  ambiguities,  we  use  a 

simplified phase ambiguity detector [Jia, 1984]

Max ∣ wi∣c Max  Qarc ii 2Max  Q   ii   (4.17)

48

Fig. 4.2: Residuals arose from least squares at an arc without phase ambiguity (left) and the one  

with ambiguities (right)
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where Max ⋅ means the maximum value in a vector or matrix. According to  [Jia, 1984] the 

constant can be 3 or 4. When the threshold value in Eq. (4.17) is reached, the i-th observation 

is considered an outlier at 95% confidence level. It should be noted that since currently only the 

priori VC matrix is  available, the detector  should be performed in a conservative manner by 

setting a small constant c to ensure arcs with phase ambiguities can be removed.  Once the 

precise VC matrix is obtained based on the method to be introduced in the next section, we will  

perform the detection again. As an alternative, since the arcs possessing phase ambiguities 

can  introduce  large  residuals,  they  can  also  be  removed  according  to  the  histogram  of 

residuals.  It should also be noted that in areas where there are not abundant SAR data and 

the deformation undergoes rapidly  the removing of arcs might result in a set of sub-networks 

which will  bring difficulties to the integration operation from arcs to points. To overcome this 

problem  we  can  increase  the  density  of  arcs  and/or remove  the  image  pairs  with  large 

deformation signal. We can  also employ the robust method (like L1 norm) to estimate the 

parameters. As shown in (Zhang et al., 2011c), with a robust estimator,  parameters can be 

resolved without removing arcs.

4.3.4 Variance component estimation

During  the initial  estimation since the stochastic  model  for  the observation system is  not 

known  adequately,  we  simply  assumed  a  priori  model  under  the  assumption  that  the 

interferometric phase error for TCPs is expected to be below a certain value (say, 20° [Kampes, 

2006])   to  estimate  the  parameters  in  the  context  of  least  squares.  However  optimal 

estimation  can  never  be  achieved  without  a  correct  stochastic  model.  In  this  Section  an 

approach of variance component estimation (VCE) is  proposed for  the multiple master  MT-

InSAR system aiming to precisely describe the qualities of the measurements and to reliably 

evaluate the precision of the estimated parameters. The following derivation of VCE is based on 
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(Li,  2009),  which,  compared with  the  quadratic  norm  based  method,  is  easier  to  be 

implemented.

The residual  expression in  Eq.  (4.15)  which  is  the fundamental  equation  for  VCE,  can be 

rewritten as

w = R

R = I I−A AT
Qarc


+ A 

−1
AT
Qarc


+  (4.18)

where I I is the I×I identity matrix, and R is an idempotent matrix satisfying

RR=R , RA=0, RT Q arc+=Qarc+R
tr R=rk R=r

 (4.19)

where tr ⋅ and rk ⋅ are operators for computing the trace and rank of a matrix, and r is the 

redundancy of the system of observations. Based on the LS residuals, the equation for VCE can 

be established as

RQarc RT=RE WW T RT=E  w wT   (4.20)

 where E ⋅ represents the expectation of a variable. It should be noted that the VCE has to be 

preformed iteratively and an initial covariance matrix Q0
arc (which can be determined based on 

the priori  standard errors of SLC images)must be given. The fundamental  equation for  the 

iterative VCE becomes

R0Q
arc R0

T
= w0 w0

T

R0=I I−A AT
Q0

arc


+ A 
−1
AT
Q0

arc

+

 (4.21)

where w0=R0 . The linear relationship between Q arc and its elements can be expressed 

as

Q arc=U 1
arc1

arcU 2
arc2

arc⋯U m
arcm

arc=∑
i=1

m

U i
arci

arc  (4.22)
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where i
arc is the ith unknown variance or covariance of interferometric phase and U i

arc is the 

given definite matrix for the variance component of i
arc  having the form as

U i
arc
=[

0 0 0
0 1i ,i 0
0 0 0] ik ; U i

arc
=[

0 0 0 0 0
0 0 0 1 j ,l 0
0 0 0 0 0
0 1l , j 0 0 0
0 0 0 0 0

] kim   (4.23)

Under  the assumption  that  the  first k elements  are  variance  components  and  the m−k 

elements are covariance components. Since w0 w0
T is a matrix, Eq. (4.21) can be transformed 

into a vector form as

vec R0Q
arc R0

T =vec  w0 w0
T   (4.24)

where vec ⋅ denotes the vector operator that converts a matrix t a column by stacking one 

column of this matrix underneath the previous one. It should be noted the number of residuals 

for  a  given  arc  is I while  the  number  of  variance  and  covariance  elements  of Q arc is 

I  I1/2 indicating that the residuals cannot provide enough information for the estimation 

of VC-matrix of double difference observations. Since there is a simplified relationship between 

VC-matrix of double difference observations and the variance matrix of the SLC images shown 

in section 4.3.1, according to the variance propagation, we can estimate the variance matrix of 

the SLC images instead, which can be expressed as

Qnoise=U 11U 22⋯U J1J1=∑
j=1

J1

U j j  (4.25)

Where  j is  the  variance  component  of  the jth unknown  parameter.  According  to  the 

relationship between Qnoise and Q arc shown in Eq.(4.12), we have

Q arc=∑
i=1

m

U i
arci

arc=∑
j=1

J1

U j
slc j  (4.26)
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where U j
slc
=2DU j D

T .Let Q0
arc
 be  the  initial  VC-matrix  of  double-difference  observations. 

The corresponding weight matrix Q0
arc


+ can be expanded as

Q0
arc+=Q0

arc+ Q0
arcQ0

arc+=Q0
arc+∑

j=1

J1

U j
slc j

0Q 0
arc+=∑

j=1

J1

P j j
0  (4.27)

where P j=Q0
arc


+U j
slc
Q0

arc

+ . Considering Eq. (4.19), we have

Q0
arc


+R0Q
arc R0

T
=Q0

arc


+
w0 w0

T  (4.28)

Substituting Eq. (4.26) and Eq. (4.27) into Eq. (4.28), we have

∑
j=1

J1

P j R0Q
arc R0

T=∑
j=1

J1

P j w0 w0
T  (4.29)

By taking the trace of both sides of Eq. (4.29), a linear system of observation equations with

J1 unknown variance components arises as

[
tr R0

T P1 R0U1  ⋯ tr R0
T P1R0U J1 

⋮ ⋱ ⋮

tr R0
T P J1 R0U 1  ⋯ tr R0

T P J1R0U J1  ][
1

⋮
J1

]=[
w 0

T P1 w0

⋮

w0
T PJ1 w0

]  (4.30)

The vector of variance components of the SLC images can be directly estimated from Eq. (4.30) 

by least squares. The  reasons that we estimate the variance components of the SLC images 

instead of the variance and covariance of interferograms are (1) interferograms are the linear 

combination of SLC images; (2) the number of components to be estimated for SLC images is 

far fewer than that for interferograms; (3) the number of residuals (i.e., the observations for  

VCE) is not enough for the estimation of unknown VC components of interferograms.

Here  we  adopted  a  similar  strategy  used  in  [Kampes,  2006] for  variance  component 

estimation. First we construct arcs from the TCPs ensuring each TCP is used only once. Then 
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we estimate the parameters with the a priori variance components for these arcs and remove 

arcs having phase ambiguities by the outlier detector presented in the  previous Section. Finally 

we use the LS residuals of all the remaining arcs to perform the VCE.   

4.3.5 Final estimation

With the estimated variance components of the SLC images, the least squares estimator can 

be performed again for all the arcs constructed by local triangulation and the outlier detector 

can also be updated to remove the arcs with phase ambiguities using the estimated VC matrix. 

Compared with the integer least squares estimator and the method based on maximization of  

the ensemble coherence, the proposed method determines more efficiently and reliably the 

DEM errors and the differential deformation rates along the arcs since there is no need to 

perform a search of phase ambiguities in the solution space. Once the parameters along the 

arcs are determined, parameters at the points can be obtained by spatial integration, which can 

also be performed under a least squares framework. The arcs and the points can be linked by a  

design matrix U

L=U X0  (4.31)

where L is the parameters at the arcs, and X 0 is the parameters at the points

X0 = [x1 x2 ⋯ x i−1 x i x i1 ⋯ xH ]
T

x i = [hi V i ]

U = [
1 −1 0 0 ⋯ 0
1 0 −1 0 ⋯ 0
⋮
0 0 1 −1 ⋯ 0
⋮

0 0 0 ⋯ 1 −1
]
G×H

 (4.32)
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where G is  the number of arcs and H is  the number of points.  U is  built  according to the 

records of the starting and the ending point for each arc during network construction. We set 1 

for the starting point,-1 for the stopping point and 0 otherwise in the matrix U . The rank of the 

design matrix U is always one less than the number of the TCPs. As a result, the system must 

be solved relative to a reference point at which the parameters are known. Let the ith point be 

the reference point with known parameters ( Ri ), and its corresponding column in U is S i  . By 

introducing LL  with LL=L−Si Ri  , we obtain

LL=UU X  (4.33)

where UU is an updated design matrix in which the ith column has been removed and X is the 

parameter matrix for all the points except the reference point. The least squares solution is

X= UU
T PU U 

−1
U U

T P LL  (4.34)

where P is the weight matrix  which can be determined according to the VC-matrix of arcs. It 

should  be noted that  when determining  the VC-matrix  of  arcs,  the correlation among arcs 

should  be  considered.  For  example  given  two  adjacent  arcs, l ,m, l ' ,m'  and

l ' ,m' , l ' ' ,m' '  the VC-matrix of these two arcs has the form as

D [ l ,m ,l ' ,m '

l ' , m ' ,l ' ' , m ' '
]=[ Q l ,m, l ' ,m '

arc Q l ,m, l ' ,m ' ,l ' , m ' ,l ' ' , m ' ' i

Ql ,m , l ' ,m ' ,l ' , m ' , l ' ' , m' ' i Ql ' , m ' ,l ' ' , m ' '
arc ]  (4.35)

When the noise level  of  the TCPs  is  available,  the VC-matrix  of  arcs  can  be conveniently 

generated based on the network construction matrix ( U )according to the variance prorogation 

law. If more than one reference points (say N , N2 ,) are available, the parameters can be 

solved by adding constraints

C
N−1, h

X
H , 1
M x

N−1,1

=0  (4.36)
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where C is a design matrix indicating the positions of the N−1 reference points; and M x are 

the known parameters at the N−1  reference points. The solution is

X= N BB
−1
−N BB

−1 CT NCC
−1 C N BB

−1 Z−NBB
−1CT NCC

−1 M x  (4.37)

 where NBB=UU
T PU U , Z=UU

T P LL , and NCC=C N BB
−1CT .

4.4 Validation with simulated data

A  dataset  consisting  of  21  simulated  C-band  images  are  used  to  validate  the  proposed 

approach. The advantage of using simulated data is that the estimated parameters can be 

compared with their true values that are often not known in case of real datasets [Kampes, 

2006]. During the simulation, we adopt the similar noise and atmospheric parameters used by 

Kamples (2006) for the test of the STUN method. Namely, the  mean of the random phase 

noise is set to 15° with a standard deviation of 5° for all the SLC images and within each SLC 

image  the  noise  follows  the  norm distribution. The  atmospheric  phase  is  simulated  using 

fractal surfaces with a dimension of 2.67. More details about the simulation can be found in 

[Kampes, 2006] and [Hanssen, 2001]. 

An  example  of  the  simulated  noise  and  atmospheric  signal  is  shown  in  Fig.  4.3.   44 

interferograms with perpendicular and temporal baselines shorter than 150 m and two years, 

respectively, are produced from the 21 images (Fig.  4.4). 1,500 TCPs are selected within an 

area of  5×5 km2.  The simulated DEM errors  at  the TCP  that  follow a uniform distribution 

between  -10m and  10m  are  shown in  Fig.  4.5(a).  Both  linear  and  non-linear  deformation 

models are simulated to test the robustness of the proposed method.
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56

Fig. 4.3: Examples of simulated signals. (a) Simulated noise in an SLC image, and (b) simulated  

atmospheric artifact. The unit is rad.

Fig. 4.4: (a) Perpendicular baselines and (b) temporal baselines of the 44 simulated interferograms
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4.4.1 Estimation of l inear deformation signal

Linear deformation rates with a maximum magnitude of 72 mm/year whose spatial pattern is 

shown in Fig.4.5 (b) are first simulated to test the performance of the proposed method. The 

phase contributions from the DEM errors, deformation, noise, atmospheric artifacts and orbital 

inaccuracy are shown in Fig.  4.6. For testing purpose, we first connect the 1500 TCP by a 

global  Delaunay  triangulation  network  (Fig.  4.1(a)).  After  removing  the  arcs  with  phase 

ambiguities by the outlier detector, it is found that the network constructed by the remaining 

arcs  is  too sparse to estimate the parameters at  all  the points.  We then adopt  the local  

triangulation strategy as described in Section 4.2.1 to generate a network of 20091 arcs (Fig. 

4.1(c)). The longest arc has a distance of 1454 m. 
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Fig. 4.5: (a) Simulated DEM errors, and (b) simulated linear deformation rates. The red cross  

indicates the position of the reference point



 4   Deformation Parameter Estimation 

A histogram of the absolute residuals from the first least squares estimation is shown in Fig.  

4.7(a). 9711 arcs are detected as outliers by applying the outlier detector and removed from 

the network. The actual number of arcs with phase ambiguities is 9535, all of which have been 

successfully identified. This also means that 176 arcs have been misidentified. After removing 

the detected arcs,  the least  squares estimator  is  performed again.  Fig.  4.7(b)  shows  the 

updated histogram of the residuals at the remaining arcs.

Using the a priori VC matrix for the double-difference phase observations, the VC matrix of the 

estimated parameters (the differential DEM error and the differential deformation rate)  is (see 

Eq. (4.14))
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Fig. 4.6:The simulated wrapped phase at coherent points in the 44 interferograms. Phase values  

contain components corresponding to DEM errors, deformation, atmospheric artifacts and random  

noise. The unit is rad 
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Q h , v=[ 2.7 −0.09
−0.09 0.02 ]  (4.38)

Here,  the  DEM error  (first  parameter)  is  in  meters  and  the  deformation  rate  (the  second 

parameter)  is  in  millimeters/year.  It  is  seen  therefore  from  Eq.  (4.33)  that  the  standard 

deviations of the estimated parameters are 1.6 m and 0.14 mm/year respectively.

Table 1. Statistics of errors in the estimated parameters

Min Max Mean Std

DEM error (m) -8.1 2.4 -2.6 1.72(1.64)

Linear defo. rate (mm/y) -0.45 0.41 -0.01 0.164(0.137)

Once the double difference parameters at the arcs  are determined, the parameters at the 

points can be obtained by spatial integration (when one reference point is assumed). Fig. 4.8 

shows the errors in the estimated DEM and the deformation rates at the TCP, i.e., difference 

between the estimated and the true values. A statistics of the errors is given in Table 4.1. It 
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Fig. 4.7: (a) Histogram of least squares residuals for all observations. (b) Histogram of least  

squares residuals after removing arcs with ambiguities
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can be seen from the results that the estimated DEM accuracy is not as high as that typically 

estimated with PSInSAR. This is  mainly  due to the fact  that only  interferograms with short 

baselines are used in the solution.

4.4.2 Estimation of non-linear deformation signal

Non-linear deformation signal is simulated to assess the performance of the proposed method 

in  areas  experiencing  complex  deformation.  The model  for  ground deformation in  the LOS 

direction takes the following form

d T =−15T3T2
0.2T3  (4.39)

The coefficients to be estimated at the TCP are shown in Fig. 4.9 (a)-(c). By updating the design 

matrix, i.e.,  in Eq. (4.7), the least squares model can be used directly for non-linear parameter 

estimation. The errors in the estimated coefficients (compared with the simulated input) are 

shown in Fig.4.8 (e)-(f). A statistics of the errors at the TCP is given in Table  4.2. It is seen 

from the results that the proposed method works well with the non-linear deformation signal  

although the estimation accuracy is not as high as in the case of the linear signals. This is 

mainly due to the limited number of observations available, i.e., interferograms. In order to get  

more  accurate  estimation  of  complex  deformation  signals,  more  interferograms  should  be 

used.
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Table 4.2. Statistics of errors in the estimated coefficients

Coefficient Min Max Mean Std

Linear term (mm/y) -6.58 2.63 -1.94 1.43(1.25)

Quadratic term (mm2/y2 -0.91 1.46 0.35 0.35(0.31)

Cubic term (mm3/y3) -0.09 0.07 -0.02 0.024(0.021)
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Fig. 4.8: (a) Errors in the estimated DEM at the TCP; (b) Errors in the estimated deformation rate at  

the TCP
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4.4.3 Comparison with unweighted LS solution

A least squares solution is derived without using the weight matrix to assess the impact of  

applying the weight matrix. It is found from the results obtained that the standard deviation of 

the estimated deformation rates is degraded from 0.16 mm/year to 0.41 mm/year (Table 4.3) 

when no weight matrix  is  used. The results also become worse for  the case of non-linear  

deformations. This indicates that a proper weighting scheme is important and should be used 

for modeling multiple SAR acquisitions.

Table 4.3. Comparison between errors in estimated deformation rates using weighted and non  
weighted models

Min Max Mean Std

Linear defo. rate 

(mm/y)

With weight -0.45 -0.41 -0.01 0.16

No weight -1.14 1.49 0.04 0.41

4.4.4 VCE validation

In the previous Section the LS estimator is performed with a priori variance matrix of the SLC 

images. Although the quality of the estimated parameters is  good, their precision can not be 
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Fig. 4.9: (a)-(c): Coefficients to be estimated at each TCP, linear term, quadratic term and cubic  

term respectively. (d)-(f): Corresponding errors in the estimated coefficients
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reliably evaluated with no presence of a proper stochastic model. The values in Eq. (4.33) and 

in the parentheses of Table  4.1 and Table  4.2 are actually meaningless if the noise level of 

SLC acquistions is not adequately known. We verified here the VCE algorithm with simulated 

data sets having larger and more fluctuated noises for the multi-master MT-InSAR system.

As stated in  Section 4.3.4, the starting point of VCE is the LS residuals of  the isolated arcs 

(see Fig. 4.10). The variance components of SLC images are estimated iteratively with an initial 

weight matrix  where the noise level of each SLC image is set equally to 12°.  The results are 

shown in Fig.  4.11.  In general the estimated variance components are consistent  with the 

simulated  noise,  implying  that  the  proposed  VCE  algorithm  is  valid.  There  are  however 

noticeable differences on several images which are caused by the existence of the atmospheric 

artifacts and the assumption that the two points at the ends of the arc share the same noise 

varaince.   The  VC-matrix  of  the  estimated  parameters  in  this  case  is  obtained  by  error 

propagation using the estimated variance factors of the stochastic model.
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Fig. 4.10: An example of LS residuals at arcs for VCE. There are a total of 701 arcs for the  

estimation.



 4   Deformation Parameter Estimation 

Q h , v=[ 4.5650 −0.1713
−0.1713 0.0347 ]  (4.40)

A comparison of deformation rates with a priori variance components and estimated variance 

components is shown in Table 4.4.

Table 4.4. deformation rate determined with a priori VC and an estimated VC

Min Max Mean Std

Linear  defo. 

rate (mm/y)

With a priori VC -0.88 0.71 0.07 0.2 (0.137)

With an estimated VC -0.75 0.68 0.03 0.17 (0.186)

It is clear from the results that the precision of the parameters estimated in this case is not 

improved greatly after the implementation of the VCE. However the VC-matrix of the estimated 

parameters is more realistic which can be used to evaluate the precision of the results.
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Fig. 4.11: Estimated variance components of SLC acquisitions with the presence of atmospheric  

signals.
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4.4.5 Orbital error refinement

The  satellite  orbital errors can be modeled by a low-order polynomial in spatial domain and 

usually taken as random noise (at arcs) in temporal domain. Current methods for orbital error  

correction are usually performed interferogram by interferogram, which obviously will reduce the 

processing  efficiency  for  a large set  of  data.  More importantly,  single  interferogram based 

methods can be effected by the atmospheric artifacts. Our simulation test has indicated that 

the stacking of interferograms in temporal domain will not change the spatial feature of the 

orbit errors. In other words the stacked orbital errors can still  be modeled by a best-fitting 

phase ramp. Therefore, it is possible to remove the orbit error by the ground truth (e.g., GPS 

data) after the application of  the proposed LS estimator.  Orbital errors shown Fig.4.12 have 

been added into the simulated data to test the performance of this strategy. 

After  removing  the  arcs  with  phase  ambiguities,  the  deformation  parameters at  arcs  are 

estimated (see Fig.4.13). An example of  the  LS residuals at  the  arcs is shown in Fig. 4.14, 
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Fig. 4.12: Wrapped orbital errors used in the simulation test (unit: rad).
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which  indicates  that  the differential  orbital  error  at  arcs  does  not  contribute  much  to  the 

residuals due to its feature of high spatial correlation.
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Fig. 4.13: Estimated rate differences at arcs (unit:mm/y)

Fig. 4.14: LS residual at arcs of the first interferogram (unit: rad)
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The  estimated  deformation  rates  of  TCPs  are  shown  in  Fig.  4.15.  Assuming  that  ground 

measurements are available over a study area or it is known that some parts of the area are 

stable, we can select several points to model a best-fit polynomial for the deformation rate 

map. We employ in this simulation 8 ground points to fit a low order polynomial as follows

V orb=axbycxyd  (4.41)

Where V orb is the velocity difference between the estimated and the ground measurement, x

and y are the pixel  location of the given ground point.  Again under the framework of least 

squares, the coefficiencies of the linear function (i.e., a ,b , c , d ) can be estimated, resulting in 

a rate map contributed by the orbital error (Fig. 4.16).

Once the velocity  map  caused by  orbital  errors  is  determined,  the final  estimates  can be 

achieved  by  subtracting  this  component  directly  from  the  results shown  in  Fig  4.15.  The 

residuals compared with the “true”  deformation rates are presented in Fig. 4.17, indicating that 

the  proposed  approach  is  adequate  for  eliminating  the  orbital  effects  on  the  deformation 
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Fig. 4.15: Estimated deformation rates from data with orbital errors
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parameter  estimation and can  be performed  efficiently.  Since  the effect  of  the differential 

atmospheric signals at arcs that behave randomly in the temporal domain can be successfully 

suspended during the LS estimation, their contributions to the estimated mean rates are rather 

limited. Under this circumstance, the orbital error can be precisely modeled by a low order 

polynomial, leading to a  better estimation of the parameters. 
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Fig. 4.16: Velocity map caused by orbital errors (unit: mm/y)
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4.5 Conclusions

As a core  component of the TCPInSAR technique,  a parameter estimation approach with no 

need of estimating phase ambiguities is presented in this chapter. To increase the density of 

arcs without phase ambiguities we triangulate the TCP on distributed and overlapped patches 

over a study area.  To remove arcs occasionally having phase  ambiguities, an phase ambiguity 

detector  based  on the  LS  residuals is  designed.   To  better  consider  the  quality  of  the 

interferograms and to evaluate the precision of the estimated parameters, a VCE approach is 

proposed  for  multi-master  MT-InSAR system.  To  deal  with  SAR  data  acquired  from poorly 

determined orbits, a simple and reliable method for eliminating orbital errors is suggested. All 

the methods have been validated by the simulated data where the estimated parameters are 

accurate in a qualitative sense. It should be noted that although during the simulated test only 

the modeled deformation (e.g. linear or polynomial) is used, the proposed method also can be 
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Fig. 4.17: Final errors of the estimated deformation rates compared with their true values (unit:  

mm/y)
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potentially  used  for  estimating the  full-resolution  deformation  time  series  as  long  as  the 

atmospheric  component  in  the LS  residuals  have  been  filtered  properly,  which  is  in  fact 

commonly  performed  in  all  current  InSAR  time  series  estimators.  In  next  Chapter   the 

deformation time series in Los Angeles basin will be presented.
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5 Long  Term  Deformation  in  Los  Angeles 
Basin from TCPInSAR 

In  this  Chapter  we  will  apply  the proposed TCPInSAR method to  the  Los Angeles basin in 

southern California where several faults, such as Newport-Inglewood fault, are still structurally 

active and are believed capable of generating damaging earthquakes. The analysis is based on 

55 interferograms from 32 ERS-1/2 images acquired during  Oct.  1995 to  Dec.  2000. To 

evaluate the performance of TCPInSAR on a small  set  of observations, a test  with half  of 

interferometric pairs is also performed. 

5.1 Introduction

The Los Angeles basin, a polyphase Neogene basin within the San Andreas transform system, 

has been developed as a result of regional crustal extension associated with the opening of the 

California Borderlands and the rotation of the Transverse Ranges (Fig.5.1)  [Hauksson, 1990; 

Shaw and Shearer, 1999]. Since the early Pliocene, the basin has been deformed by numerous 

decoupled strike-slip and thrust motions within several active fault zones that are capable of  

generating moderate to large earthquakes. Studies of historic earthquakes including the 1933 

Long Beach (Mw=6.4), 1971 San Fernando (Mw=6.7), 1987 Whittier Narrows (Mw=6.0), and 

1994 Northridge (Mw=6.7) (Fig.1) revealed that both surface and blind thrust faults represent a 

significant threat to the Los Angeles metropolitan area (Hauksson, 1987; Hauksson and Jones, 

1989; Davis et al., 1989; Hauksson et al, 1995;  Shaw and Shearer, 1999; Bawden et al., 

2001; Mellors et al.,  2004). Hence, understanding the seismotectonic  motions in the Los 

Angeles basin is important for assessing and mitigating earthquake hazards.
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The  TCPInSAR method is  applied to  study the Los Angeles basin where moderate tectonic 

movements and minimum image decorrelation make it very suitable for testing novel InSAR 

techniques  [Bawden  et  al.,  2001;  Watson  et  al.,  2002  ;  Lanari  et  al.,  2004].  The data 

processing procedure involved is discussed in this Chapter. Technical issues are addressed to 

deal with the problem of phase jumps at interferometric fringe edges as well as the effect of 

long and short arcs on estimating the spatially complex deformation. Moreover the estimation 

of  deformation  time  series  without  a  priori  model  is  also  performed.  To  evaluate  the 

performance of InSAR modeling with smaller datasets, we have applied the TCPInSAR approach 

with half of the original interferometric observations. The estimated line-of-sight (LOS) linear 
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Fig. 5.1: Shaded relief map of Los Angeles basin. Faults appear as gray lines (data source: (U. S.  

Geological Survey 2010)) . The black box outlines the studied area covered by  ERS-1/2 SAR data  

(track 170,frame 2925). The triangles indicate the location of GPS sites and the corespoinding  

colors show the overlap time with the SAR data (unit: year). The black stars represent the  

moderate-size earthquakes occurred in the basin.
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deformation  rate  is  consistent  with  the  one  estimated  from  the  full  dataset.  Quantitative 

comparisons have confirmed the validity of the results achieved from the TCPInSAR method, 

indicating  the  TCPInSAR  has  the  potential  to  provide  ground  motion  data  for  fault  stress 

inversion and seismic hazard evaluation with significantly  reduced computational complexity 

even in areas without abundant SAR images.

5.2 TCPInSAR analysis

5.2.1 Data selection

We wish to reduce the phase contribution related to topography residuals, atmospheric artifacts 

as much as possible so that phase differences at a large number of arcs in a limited time span 

will not have phase ambiguities. To this end, we will only select image pairs with perpendicular 

spatial baseline less than 300m and temporal baseline less than 2.5yr (Fig. 5.2). In addition, 

the Doppler centriod frequency differences in the selected pairs are limited to 300Hz allowing 

us to model the phase difference between two neighboring points caused by the azimuth sub-

pixel position of the two points as a random component in a large set of interferograms. We 

further remove the interferograms that are obviously affected by the rather localized bubble-like 

atmospheric errors. Finally we select 55 interferograms from 32 ERS-1/2 images (track 170,  

frame 2925) as the basis of TCPInSAR processing.
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5.2.2 TCP identif ication and coregistration

As discussed previously, temporarily coherent points (TCPs) are points in the interferograms 

that  maintain  coherent  during  one  or  several  intervals  of  SAR  acquisitions.  The  detailed 

description of the method for the identification of TCPs can be found in Chapter 2. Here we 

propose an improved processing strategy which can accelerate the TCP selection significantly. 

Using  the  master  image,  we  first  identify  the  points  that  can  keep  almost  the  same 

backscattering intensity when processed with different looks with fractional azimuth and range 

bandwidth as the TCP candidates. Second, the points that have been identified in the last step 

are considered as the TCP candidates  and  are further evaluated by changing the size of  the 

patches and oversampling factor in  estimating the image cross-correlation. For the sake of 

simplicity, a fixed oversampling factor can be used. A set of offsets of a given TCP candidate 

can then be obtained. The TCP candidates whose standard  offset errors are less than 0.1 

pixels  are  then  selected.  Third,  a  high-order  polynomial  is  used  to  fit  the  offsets  of  TCP 
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Fig. 5.2: Perpendicular baselines and temporal intervals of the selected InSAR image pairs.
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candidates and the final TCPs are selected by discarding the pixels whose offsets do not well 

fit the polynomial.

The precise offsets at TCPs are actually the by-product of TCP identification. If we coregister the 

slave images based on the polynomial determined from TCP offsets, the coregistration quality  

can  be  improved  compared  with  the  conventional  coregistration  method  that  uses  offsets 

estimated from evenly distributed windows over the whole image.  Especially in areas where the 

TCPs are surrounded by distributed scatterers, like the airport reclaimed from the sea (Zhang, 

et  al.,  2011a)  and long cross-sea bridges,  the improvement  of   interferometric  coherence 

resulted from TCP coregistration procedure is apparent. Over Los Angeles basin, an average 

improvement of 0.05 with a standard deviation of 0.04 in interferometric coherence has been 

gained from TCP coregistration. It should be noted that since a TCP is selected based on image 

pairs, it can represent two types of point. If it keeps coherent in all image pairs, it can be called 

a persistently coherent point, while if it only keeps coherent in a subset of image pairs, it is a 

partially coherent point (Biggs et al., 2007, 2009). In this work we only use the TCPs that are  

persistently  coherent  during  the  whole  time  span  in  order  to  retrieve  the  full  resolution 

deformation time series. The application of  TCPInSAR on changing  landscapes where both 

persistently and partially coherent points are present can be found in (Zhang et al., 2011c).

5.2.3 TCP network and phase jump

Phase differences at arcs constructed from two neighboring pixels are the basic observations 

for the least squares estimator described in the previous Chapter. In order to ensure that TCP 

are connected extensively we construct the network by local Delaunay triangulation that places 

small regular patches over the image and connects the TCPs in each patch if the number of the 
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TCPs in the patch is larger than 3. A factor should be addressed here is the length of arcs 

which  is  vital  to  reduce  the  atmospheric  artifact  and  model  the  relative  motion  at  arcs 

especially in the areas where the deformation pattern is spatially complex.  GPS observations 

and hydrological study in the area suggested that the deformation pattern in Los Angeles basin 

is rather complex which includes the tectonic motion as well as the variations in the elevation 

of the water table[Argus, 2005]. The identified coherent points in this study area are abundant 

and can be connected extensively with short arcs. It has been found that the sensitivity of 

phase difference to seasonal fluctuations is less at shorter arcs than longer arcs (Fig.5.3).  

Using this procedure we have identified 201,778 TCPs and constructed 1,176,922 arcs of less 

than 500m for this study.  

When determining the phase difference at the arcs in the network, we should pay attention to 

the so-called “phase jumps” at the interferometric fringe edges, which are caused by the fact 

that the observed interferometric phase is limited to the range of  − ] .  Considering two 

nearby points those phase values of and are near the interferometric fringe edge as indicated  

in Eq. (5.1), the direct phase difference between these two points should be −212 , 

which  falls  outside  of − ] .  Therefore  a  wrapping  operation  should  be  performed  to 

eliminate this artificial error. 

1, true = −1

2, true = −−2

1, true−2, true = 12∈− ]
1, observed = 1,true

2, observed = −2

1, observed−2, observed = −212

wrap 1,observed−2,observed = 1,true−2, true=12

 (5.1)
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Fig. 5.3:The top figure shows the spatial location of TCPs. The rest figures show the phase  

differences at short arcs (A-B-C-D-E-F-G) and a long arc (AH) in 55 selected interferograms.



 5   Long Term Deformation in Los Angeles Basin from TCPInSAR 

78

Fig. 5.4: (Top) An InSAR image of  19960406-19971018 and (bottom) phase jumps near the  

interferometric fringe edges.
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The bottom plot in Fig. 5.4 shows the difference between the phase and the wrapped phase at 

the arcs.  The values are represented at the middle points  of the arcs. It is clear that all  the 

phase jumps occur at the arcs near the interferometric fringe edges.

5.2.4 TCP Least squares estimator

By selecting interferograms with relatively short spatial and temporal baselines and connecting 

TCPs with short arcs there will  be no phase ambiguity at  a large number of the  arcs. The 

deformation  rate  can  then  be  easily  estimated  under  the  framework  of  least  squares  as 

discussed in  Chapter 4.  It should be noted that  TCPInSAR does not rely on the assumption 

that the true (i.e. unwrapped) phase gradient at all arcs are within − ]  Therefore even for 

areas with  rapid  subsidence,  as  long  as  there  are  enough  coherent  points,  we  can  apply 

TCPInSAR to retrieve deformation signals. There is also no reason to conclude that TCPInSAR 

technique requires higher point density compared with other multi-tempoal InSAR techniques. In 

other words, in the areas where other MTInSAR techniques can be successfully applied, the 

TCPInSAR technique  can  also  work  well. After  constructing  a  dense  network  by  the  local 

Delaunay triangulation, we can estimate the parameters from arcs and remove arcs having 

phase ambiguities. In addition, considering the fact new sensors (e.g. TerraSAR-X and COSMO-

Skymed, and future Sentinel-1) can acquire data in rather short repeat intervals, the estimation 

of phase ambiguities is becoming less necessary in multi-temporal InSAR techniques.

After the LOS linear deformation rate has been resolved from a network with dense and short  

arcs,  we  only  need focus on retrieving  the non-linear  components  from the least  squares 

residuals in order to determine the full-resolution time series deformation. Since there is no 

phase ambiguity at the remaining arcs, it is safe to integrate the residuals with respect to a 
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reference point to get the absolute phase residuals. To mitigate the effects of atmospheric 

errors,  it  is  necessary  to  apply  a  spatial  and  temporal  filtering  on  these  phase  residuals  

(Ferretti et al., 2000; Berardino et al., 2001; Mora et al., 2003; Blanco et al., 2008). However  

when designing the filter, the selection of optimized window length (i.e., the triangular window 

length for the temporal filter and the averaging window length for the spatial filter) is never an  

easy  task,  which largely  depends on operator’s  experience.  Once the phase  residuals  are 

filtered, the basic observation function for non-linear rate estimation can be written as

 res= vnonw res  (5.2)

where  res is  the  phase  residual  vector,  is the  design  matrix, vnon is  the  non-linear  rate 

vector  containing non-linear  rates between time-adjacent  acquisitions, and w res is  the  noise 

vector in the phase residuals. The non-linear rates are still resolved by least squares.  For a  

given TCP, the final full resolution deformation rates  ( vfull ) is the sum of linear deformation 

rate ( v linear ) and non-linear deformation rates ( vnon ) i.e.,

vfull=v linearv non  (5.3)

As a summary the steps involved in the TCPInSAR processing are shown in Fig. 5.5
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Fig. 5.5: Flow diagram of the TCPInSAR processing chain.
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5.3 Results

5.3.1 Linear deformation

The line-of-sight (LOS) linear deformation rate of TCP (Fig. 5.6) was first calculated. To make a 

visualized comparison with the result estimated by SBAS method , we also select the GPS site  

ELSC from SCIGN as the reference point. The overall pattern of the estimated deformation rate 

map is consistent with the results presented in (Casu et al., 2006; Lanari et al., 2004), both of 

which were resolved from unwrapped phase measurements. The deformation rate map also 

confirms the conclusion reached by Bawden et al. (2001).  In Los Angeles basin long-term 

deformation rate ranges roughly from 2 mm/yr to 16 mm/yr. Several factors, such as oil and 

gas extraction, changes in groundwater storage, unrecoverable inelastic compaction as well as 

the  movement  of  active  faults,  are  known  to  contribute  to  the  deformation  (Argus  et  al., 

2005;Bawden et al., 2001). The largest linear deformation rate (up to 16 mm/yr) occurred in 

the Wilmington oil field which is the largest oil field in the Los Angeles Basin (Fig.  5.6).  The 

contrast in displacement rate (Fig.  5.7) is apparent at two sides of Newport-Inglewood fault 

(NIF) which forms the western margin of the Los Angeles basin and has been identified as an 

active fault zone capable of generating damaging earthquakes.  The focal mechanisms and the 

results of the stress inversion  indicate that stress fields along the north and south segments  

of NIF are different which may be related to an increase in both north-south and east-west 

horizontal stresses (Hauksson, 1987; Shaw and Suppe, 1996; Yeats, 1973). The increase in 

horizontal stress can cause uplift along the fault  which is confirmed by the high density of 

measurements of LOS uplift rates ranging from 0.4 to 2.4mm/yr along the west side of NIF 

(Fig. 5.7). However it should be noticed that since deformation within the Los Angeles basin is 

complicated by anthropogenic contribution to the overall tectonic signal (Bawden et al., 2001). 

Using GPS and InSAR measurements jointly to determine the tectonic contraction across Los 
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Angeles,  Bawden  et  al.  (2001)  conclude  that  much  of  the  deformation  near  the  NIF  is 

associated with groundwater pumping rather than slip.        

5.3.2 Short Arc vs. Long Arc

As  mentioned  previously,  shorter  arcs  have  better  performance  when  modeling  areas  with 

complex deformation.  To understand the effect of arc length on the estimated deformation rate 

we have conducted here a comparison between the results from longer arcs and short ones. 

During the network construction, we relax the patch size from 500 m to 1500 m and then 

perform  the  local  Delaunay  triangulation.  About  4.9%  arcs  are  longer  than  500  m.  The 

difference of deformation rates estimated from these two networks is shown in Fig.  5.8. We 
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Fig. 5.6:The long-term deformation rate estimated by TCPInSAR technique. The white triangle  

stands for the reference point and the white dots are the GPS sites used for validation. The white 

saquares are TCPs located in oilfieds. The inset shows the deformation rate in the black 

rectangular area. Deformation rate across profile A-B is also shown. The white box outlines an area  

in NIF.
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can find that generally the results from network with longer arcs underestimate the subsidence. 

Especially in the Wilmington oil field that suffers large subsidence, the longer arcs can result in 

an underestimate of  subsidence by  ~6 mm/yr.  This  underestimation is  mainly  due to  the 

seasonal  deformation  of  the  Los  Angeles  basin,  which  results  from  periodic  groundwater 

extraction and replenishment (Bawden et al., 2001). The larger seasonal oscillation can be 

seen at longer arcs (Fig. 5.3), which can bias the least squares estimation. Therefore, in areas 

with complex spatial-temporal deformation patterns, it is recommended to use relatively short 

arcs for linear deformation rate estimation.

5.3.3 Solution with smaller dataset

Since the TCPs can be identified interferogram by interferogram, it provides us an opportunity to 

estimate  the  deformation  parameters  with  a  smaller  set  of  images.  This  is  important  for  

estimating ground surface deformation in areas lacking abundant SAR data. Considering the 

seasonal  oscillation  within  the  Los  Angeles  basin,  we  subsample  the  interferometric 

observations by a factor of two, resulting in 27 interferograms. The linear deformation rate map 

estimated from these evenly subsampled interferograms (Fig.  5.9) is in good agreement with 

the one from all of the selected interferograms. The discrepancy, with a mean of 0.14 mm/yr  

and  a  standard  deviation  of  0.31  mm/yr,  suggests  that  the  TCPInSAR  approach  is  also 

adequate for retrieving deformation signal from a small set of SAR images.
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Fig. 5.8:The difference between deformation rates estimated with short-arc network and long-arc  

network.

Fig. 5.7:Deformation rates at two sides of Newport-Inglewood fault (the orange line). The scope of  

the area is shown as in Fig.5.6
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5.3.4 Deformation time series

After the mean (linear) deformation rate has been  resolved from a network with dense short 

arcs, we only need to focus on retrieving the non-linear components from the LS residuals. To 

determine the full-resolution deformation time series. Space-time filtering is usually performed 

to suppress the possible effect of  the atmospheric delays  before estimating the deformation 

time series. However considering the fact that short arcs have constructed and the periodical 

deformation pattern in Los Angeles basin is relatively complex, no filtering operation is carried 

out in this case. The non-linear deformation can be resolved by updating the design matrix and 

observations in the least squares model.  It should be noted that since the GPS observations 

on the ELSC site started from 1999 only, the time overlap with the selected SAR data is rather 

limited raising difficulties of unifying the GPS and the TCPInSAR measurements based on this 

reference site. Therefore when transferring the differential linear and non-linear components at 
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Fig. 5.9:The  LOS linear rate map estimated from half sampled interferograms. The inset shows the 

histogram of deforamtion rate discrepancies compared with those from all the interferograms.
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arcs to the parameters at TCPs we select another GPS site USC1 with observations starting 

from  1994  as  the  reference  site.  The  final  deformation  rates  between  all  time-adjacent 

acquisitions can be obtained by combining the mean and the non-linear deformation rates and 

the time series of deformation can be obtained according to the deformation rates. 

We select 8 GPS sites from the SCIGN network most of which were also used in [Lanari et al., 

2004] to  validate the  estimated result. The GPS measurements have been calculated with 

respect to the USC1 site. We have calculated the standard deviation of the differences between 

the TCPInSAR measurements and the corresponding LOS-projected GPS time series (Fig. 5.10). 

We have selected 32 GPS sites  over  the study area, all  of  which have more than 1 year 

overlapping time with the SAR data (Fig. 5.1). The average standard deviation of the differences 

is 4.6mm, indicating a good agreement between TCPInSAR-derived time series deformation 

measurements and daily GPS solutions. Moreover, the deformation at each SAR acquisition 

time is also compatible with the results presented in [Lanari et al., 2004].  It should be noted 

that although the InSAR result we estimated is more consistent with GPS observations than 

that from SBAS method, the improvement has nothing to do with phase unwrapping errors and 

we believe it mainly comes from the fact that TCPInSAR uses point pairs (arcs) as observations 

while SBAS uses points. It is clear that point pairs constructed by neighboring TCPs can better  

suppress the effect of spatially correlated components of atmospheric errors.  Besides the GPS 

sites, we also select 4 TCPs (Fig.  5.6) with large linear deformation rates to investigate their 

time varying deformation patterns. TCP1 locates near the Inglewood oilfield in Baldwin Hills and 

shows an upward ground motion due to hydrocarbon recovery effort (Bawden et al., 2001).  

Uplift trend can also be observed on TCP2 in the Santa Fe Springs oilfield, where fluctuations in 

surface  elevation  result  from  changes  in  injection  rates  and  declining  oilfield  operations 
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(California  Department  of  Conservation,  Oil  and  Gas  Statistics,  Annual  Report, 

http://www.conservation.ca.gov).   TCP3  and  TCP4  are  in  the  Wilmington  oilfield  and 

experienced  an  elevation  loss  of  about  60 millimeter  from Oct.1995 to  Dec.  2000.   The 

deformation time series at TCP3 and TCP4 also indicate that their LOS subsidence rates were 

occasionally mitigated during the observation time span which might be caused by increasing 

and realigning water injection (California Department of Conservation, Oil and Gas Statistics,  

Annual Report, http://www.conservation.ca.gov).

5.4 Conclusions

A multi-temporal TCPInSAR technique, including TCP identification, TCP network and TCP least 

squares estimator, has been presented in this paper. The technique provides a more reliable 
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Fig. 5.10:Comparison between TCPInSAR-derived time series deformation and GPS daily  

observations as well as time varying deformation patterns at 4 TCPs shown in Fig. 5.6. The GPS 

measurements are first projected onto the LOS direction according to the unit look vector [0.41,  

-0.09, 0.91] (east, north, up); and then two sets of measurements (InSAR and GPS) are shifted with  

respect to the same spatial reference point (USC1) and the reference time (i.e., the green lines).  

The standard deviation of the discrepancies between InSAR and GPS measurements is also  

reported. 



 5   Long Term Deformation in Los Angeles Basin from TCPInSAR 

way to retrieve ground deformation signals with no need of phase unwrapping.  Based on the 

offset deviation and sub-band SAR image processing, our approach can identify dense coherent 

points from one image pair only, reducing significantly the requirement on a minimum number 

(about 20 to 30) of SAR images in most PSInSAR processing methods.  With local triangulation 

network, the selected TCPs can be connected extensively with short arcs. Under the framework 

of least squares the deformation rate can be estimated from a set of wrapped interferograms. 

A special attention in TCPInSAR processing is to select proper threshold for the arc length. In  

areas undergoing complex deformation, if coherent points are densely selected, shorter arcs 

will render more reliable solutions. However using too short arcs has a risk of separating the 

network into several blocks, preventing the solution with one reference point.  According to the 

density  of  TCP  and  the  phase  gradient  in  the  interferograms  an  adaptive  arc  connection 

strategy might be a better choice. Finally, we have applied the TCPInSAR technique to retrieve 

the long-term ground motion in Los Angeles basin. The performance of our method has been 

examined by the comparison with GPS observations and the previous InSAR results that utilized 

unwrapped interferograms. 

The TCPInSAR measurements, including the linear deformation rate as well as deformation time 

series, indicate that the deformation pattern in the Los Angeles basin is dominated by the 

motion  associated  with  seasonal  oscillation  of  ground  water  table,  and  the  long  term 

anthropogenic deformation related to activities such as oil pumping, water withdrawal and re-

injection as well  as tectonic motion of both surface and blind thrust faults.  The estimated 

deformation  maps  with  high  spatial  resolution  are  expected  to  be  helpful  to  assess  the 

earthquake hazards for metropolitan Los Angeles. 
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6 Deformation  Rate  Estimation  on  Changing  
Landscapes 

In areas undergoing large scale redevelopments like the cities in most developing countries 

there are abundant scatterers that are only partially coherent in the observation period.  In fact  

these scatterers still carry high-quality phase information at least in a subset of interferograms  

allowing us to estimate the deformation rates from them. Here the partially coherent scatterers 

as well  as the persistently  coherent scatterers  are termed as Temporarily  Coherent  Points 

(TCPs). In this chapter we demonstrate the performance of the proposed TCPInSAR method on 

the retrieval of deformation rates from both persistently and partially coherent points.

6.1 Introduction

There are many urban areas especially in developing countries, undergoing surprisingly rapid 

development. Urbanization makes the appearance of these areas change frequently, raising 

difficulties to identify abundant persistently coherent scatterers and thereby hampering us to 

make better risk assessment over these areas. In fact on these changing landscapes although 

many scatterers can not keep consistently coherence during the whole observation time span, 

they still carry high-quality phase signals at least in a certain period, which can be used  for 

deformation  estimation.  The  coherent  points  on  changing  landscapes  can  basically  be 

classified into two types. One type is the persistently coherent scatterers (e.g., PS) and the 

other  type  is  partially  coherent  points.  Both  of  these  points  hereafter  are  referred  to  as 

Temporally Coherent Points (TCPs).  Since the coherent point selection method proposed in 

Chapter 3 can be performed on a single image pairs, under the multi-temporal framework it can  

be conveniently used to select the TCPs. In this chapter the TCPInSAR method is applied to the  
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retrieval of deformation rate over the southern part of Macao SAR China (Fig. 6.1) which has 

experienced rapid development in the past ten years.

6.2 Data selection

Over the test site we selected 81 interferograms from 38  Envisat/ASAR images acquired in 

the period of 2003-2010 with a maximum spatial baseline of 300m, a maximum temporal 

baseline  of  250  days.  From  the  generated  interferograms,  the  temporal  evolution  of  the 

landscapes can be clearly seen. For example, Fig. 6.2 shows two interferograms generated by  

two image pairs acquired in 2003 and 2009 respectively. In 2003 the land indicated by the 

black box was just occupied by grass and sands, maintaining very low coherence (i.e., there is 
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Fig. 6.1: Coverage of the SAR data. The area indicated by the red dots is the test site.
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no visible signal in the interferometric phase). In the flowing years many buildings have been 

put up in that area resulting in a rather high coherence in 2009. 

6.3 TCP selection

Based on the method presented in Chapter 3, the coherent points in an image pair can be 

identified.  Considering  a  set  of  SAR images,  we  can  identify  the  coherent  points  in  each 

selected image pairs and we also get the exact information on  in  which image pairs these 

points keep coherent. Therefore it is not difficult to identify the points that are coherent in more 

than a certain percent (say,60%) of image pairs. By doing this, more points can be picked up 

for  deformation  rate estimation  compared  with  the  conventional  multi-temporal  InSAR 

techniques where only the persistently coherent points are employed.  It should be noted that 

since  some of  TCPs  keep coherent  in  a subset  of  images,  it  is  impossible  to  get  a  full-

resolution deformation time series on them. Instead we just take the deformation rate as the 
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Fig. 6.2: Interferograms generated by image pairs acquired in 2003 (left) and 2009(right). The area  

included in the box shows an improvement of interferometric quality duo to the renewal of the land.
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parameter to be estimated. Over the test site the TCPs selected by the offset deviation method 

that keep coherent in more than 42 (~52%) out of 81 interferograms are shown in Fig.6.3 (A).  

As a comparison, the points selected based on coherence map are shown in Fig. 6.3(B). As 

mentioned before since we exactly know in which interferograms these points keep coherent, 

we can build up a coherence index for the selection of interferograms where two points at the 

given arc keep coherent simultaneously. The selection of interferograms is illustrated in Fig. 

6.4.

6.4 Deformation rate estimation

Once the observation vector is obtained for a given arc, the parameters can be estimated by 

the method presented in Chapter 4. The retrieved LOS linear deformation rate is shown in 

Fig.6, which has been validated by the ground measurements provided by DSCC of Macau.
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Fig. 6.3: The location of TCPs selected by offset derivation (A) and coherence threshold (B). 
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Fig. 6.4: Illustration of interferogram selection for an arc before the parameter estimation

Fig. 6.5: LOS deformation rate over southern part of Macau estimated by least squares with  

ambiguity detector.
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6.5 Conclusions

On changing landscapes, there are  abundant scatterers that are not consistently  coherent. 

However these scatterers still carry high quality phases in a subset of interferograms which can 

be used for the retrieval of deformation rates. In order to identify both the persistently coherent 

points and partially coherent points and reliably estimate the deformation rate at these points, 

before the application of the approach presented in Chapter 4, a coherent index should be first 

generated to select proper interferometric pairs. The method has been applied to the southern 

part  of  Macau and the estimated deformation rate map has been validated by the ground 

measurements.
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7 Conclusions and Recommendations

MT-InSAR has proven to be useful in estimating the long term deformation rate and time varying 

deformation patterns in tectonically active areas as well as urban areas. The existing MT-InSAR 

algorithms  have  however  some  deficiencies  that  often  limit  their  applications.  First,  the 

temporarily coherent points, as the basic observations of all MT-InSAR algorithms, cannot be 

reliably identified based on a small set of SAR data. Second, phase unwrapping is required to 

estimate the deformation parameters, while the success  of phase unwrapping can  hardly be 

guaranteed.  Finally the current MT-InSAR algorithms cannot deal with orbital errors efficiently.

The  goals  of  this  dissertation  are thus  two-fold,  to  provide  an  alternative  approach for 

identifying coherent points that are not necessarily to be coherent during the whole time span 

of observations and  to develop an efficient algorithm to estimate the deformation parameters 

with no need of phase unwrapping.

7.1 Contributions

Since only coherent points carry useful information for MT interferometric analysis, an effective 

algorithm for identifying these coherent points  is a prerequisite for  any MT-InSAR  methods. 

While several algorithms for this purpose are available, there currently exits no algorithm that 

works  effectively for a small set of SAR data.

An algorithm for identifying temporarily coherent points has been developed in Chapter 3. The 

proposed algorithm has a number of important features. First, statistical information on  the 

range and the azimuth offsets of InSAR pairs is used for separating the coherent points from 

the  distributed  ones.  Second,  coregistration  of  TCPs is  optimized  to  achieve  better 
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coregistration accuracy. Third, the parameters used for TCP selection can be easily determined 

and without relying heavily on experience. Finally, the algorithm can be  reliably performed with 

a small set of SAR data (as few as two).

The development of  the new algorithms for  estimating the deformation parameters  efficiently 

from phases  of TCPs is the central theme of the thesis and represents the most significant 

contribution of the research. To improve the efficiency and reliability of parameter estimation by 

avoiding  phase unwrapping,  the algorithm focuses on neighboring  point  pairs  (arcs)  in  the 

interferograms with short spatial and temporal baselines. To increase the density of arcs  the 

triangulation  of  the TCPs is  performed locally.  During  the parameter  estimation,  an outlier 

detector is designed to remove arcs that have phase ambiguities according to the LS residuals. 

When SAR data have obvious orbital errors, a simple but more precise method for eliminating 

the effects of orbital error on parameter estimation is proposed, which is almost immune from 

the effects of the atmospheric artifacts and phase unwrapping errors. All the algorithms have 

been verified by simulated data sets.  Note that  the  algorithms  presented in Chapter 4  for 

parameter estimation can be employed by other MT-InSAR methods (e.g. PSI).

Finally we applied the TCPInSAR technique to determine the long term linear deformation rate 

and  deformation  time  series  over  Los  Angeles  basin.  The  results  obtained are  in good 

agreement with  those published ones as well as GPS results from the SCIGN, indicating the 

effectiveness of the TCPInSAR in retrieving deformation signals from muti-temporal SAR data.
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7.2 Recommendations for future research

There are several  possible areas for further research  based  on this topic. They may include 

efforts aimed at:

1. Improving  the  efficiency  of  network  construction.  Local triangulation is quite 

easy to be performed but not efficient, since for each grid node, the TCPs located in a circle  

with a radius of certain length have to be searched. Take the case of Los Angeles for example,  

the construction of 1,176,922 arcs from 201,778 TCPs takes about 5 hours using a laptop 

with Intel core2 duo CPU (T9600 @ 2.8GHz 2.8GHz) and 4 GB memory.  We notice that there is 

usually too much redundancy in the constructed arcs. If we only connect the TCP with its N

nearest TCPs, the redundant computations might be reduced.

2. Precise  VCE.  During the variance component estimation in the TCPInSAR technique, 

we only  estimated one variance for each image. This is  obviously inadequate to describe the 

noise feature of the image. With the rather abundant arcs, more variance components can be 

estimated. The appropriate number of variance components to be estimated for an image with 

due consideration of  the quality  of  the stochastic  model  and the computation burden still  

requires further research. 

3. Robust  TCPInSAR.  In our original TCPInSAR technique, we employ the LS technique 

to estimate the deformation parameters and design an outlier detector to remove arcs having 

phase ambiguities. One drawback of this strategy is the density of arcs might be reduced which 

will possibly result in isolated sub-networks. The criterion used for choosing high quality arcs is 

rather strict and can be relaxed to some extent.  It has been noticed that given an arc with a 

series of observations, even though some of observations contain large errors (e.g., phase 

ambiguities and/or orbital error) it  is  still  possible to estimate the right parameters with a 

proper  estimator.  The  least  absolute  deviation  (LAD) based  estimator  may be  a  potential 
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choice. LAD or L1 method is widely known as an alternative to the classical least squares (LS) 

or  the L2 method for statistical analysis of linear  models. Instead of minimizing the sum of 

squared errors,  it  minimizes  the sum of  the  absolute  values  of  the  errors.  Unlike  the LS 

method, the LAD method is not sensitive to outliers and produces robust estimates. In fact L-1 

method has already been used to improve the SBAS technique to reduce the effect of phase 

unwrapping errors [Lauknes et al., 2011].

4. Atmospheric  signals.  All current solutions for deformation time series depend on 

the filtering of atmospheric artifacts. When the “true” atmospheric signal fails to meet the basic 

assumptions  of  the filter  and/or  the deformation pattern is  complex,  the time series of 

deformation estimated from the filtered residuals may not be optimized and precise. Therefore 

how to estimate the atmospheric signals accurately still deserves further investigation. 
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