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Abstract

Ermakov-Ray-Reid systems have recently attracted much attention due to their

novel invariant of motion, nonlinear superposition principles and extensive physical

applications. In this thesis, our main concern is with integrable structure underlying

certain models in nonlinear continuum mechanics and optics via reduction to such

Ermakov-type systems.

The main contributions of this thesis are as follows :

In hydrodynamics, a shallow water system with a circular paraboloidal bottom

topography is investigated via the elliptic vortex procedure. Key theorems analogous

to those of Ball and Cushman-Roisin et al are generalised and used to construct the

analytical vortex solutions in terms of an elliptic integral function. In particular, a class

of typical pulsrodon solutions with a breather-type free boundary oscillation is isolated

and its behaviour is simulated.

In nonlinear optics, a coupled 2+1-dimensional optics model is studied via a varia-

tional approach. Three distinct reductions to integrable Ermakov systems are set down.

The underlying Hamiltonian structures render their complete integration. It is shown

that integrable Hamiltonian Ermakov systems likewise arise in a 3+1-dimensional op-

tics model. In particular, an Ovisannikov-Dyson type reduction is obtained wherein the

eigenmode of the solution explains a remarkable flip-over effect observed experimentally.

Integrable Ermakov-Ray-Reid structure is shown to arise out of a 2+1-dimensional
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modulated Madelung system with logarithmic and Bohm quantum potentials via an

exponential-type elliptic vortex ansatz. In addition, exact analytical solutions of the

original system are obtained in terms of an elliptic integral representation.

In magnetogasdynamics, a power-type elliptic vortex ansatz and two-parameter

pressure-density relation are introduced into a 2+1-dimensioanl magnetogasdynamic

system and a finite dimensional nonlinear dynamical system is thereby obtained. The

latter admits integrable Hamiltonian Ermakov structure and a Lax pair formulation

when the adiabatic index γ = 2. Exact solutions of the magnetogasdynamic systems

are constructed which describe a rotating elliptic plasma cylinder bounded by a vacuum

state.
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Chapter 1

Introduction

Nonlinear coupled dynamical systems of Ermakov-Ray-Reid type introduced in 1979

[89] have been subsequently shown to arise in a variety of physical contexts, most

notably in nonlinear optics (see, e.g. [22, 40–42, 127, 129]). In this thesis, our main

goal is to analyse Ermakov-Ray-Reid structure not only in nonlinear optics but also in

hydrodynamics and magnetogasdynamics. We commence the thesis with a short review

of some relevant literature which has motivated this research.

1.1 Literature Review

The analysis of the coupled nonlinear ordinary equations known as Ermakov-Ray-Reid

systems originated in the work of Steen in 1874 [124] together with independent results

of Ermakov published in 1880 [30]. In the latter paper, a time-dependent oscillator

with variable frequency

q̈ + ω2(t)q = 0 (1.1.1)

was considered in conjunction with the nonlinear oscillation equation [124]

ρ̈ + ω2(t)ρ = ρ−3 . (1.1.2)
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On elimination of ω2(t) and integration, a first integral is obtained, namely

I =
1

2
[(ρq̇ − ρ̇q)2 + (q/ρ)2]. (1.1.3)

This is commonly called the Ermakov-Lewis invariant after H Ralph Lewis who ’re-

discovered’ it in a study of the motion of charged particles moving in magnetic fields

with Kruskal’s asymptotic method in 1966 [64]. This invariant is associated with the

conservation of angular momentum [29] and has subsequently been the subject of much

literature (see e.g. [34, 45, 53, 65, 68]). It was shown in the work of Steen [124] that,

remarkably, the general solution of the nonlinear oscillator equation (1.1.2) may be

expressed as a nonlinear superposition of linearly independent solutions of the linear

oscillator equation (1.1.1).

In 1979, Ray and Reid [89] introduced an important generalisation of the ’Ermakov

pair’ (1.1.1) and (1.1.2), namely the coupled nonlinear system





ẍ + ω2(t)x =
1

x2y
f(y/x),

ÿ + ω2(t)y =
1

xy2
g(x/y),

(1.1.4)

where f and g are arbitrary functions of their indicated arguments. This admits a novel

integral of motion, namely the Ray-Reid invariant

I =
1

2
(xẏ − ẋy)2 +

∫ y/x

f(u)du +

∫ x/y

g(v)dv. (1.1.5)

Moreover, the system (1.1.4) admits a novel nonlinear superposition principles [90,91]

which may be regarded as generalising that of Ermakov pair (1.1.1) and (1.1.2). Linear

structure underlying the Ermakov-Ray-Reid system (1.1.4) was isolated in [8] while sta-

bility and periodicity were subsequently discussed for a special subclass by Athorne [6].

Particular 2+1-dimensional Ermakov-Ray-Reid systems were constructed in [103] while

Ermakov-Ray-Reid systems of arbitrary order and dimension which admit a Ray-Reid

type invariant and associated nonlinear superposition principles were presented in [112].

Multi-component Ermakov systems were introduced in [108] and application made to

an N -layer fluid model. The algebraic structure underlying these multi-component

Ermakov systems was subsequently analysed in [7]. There are also a number of theo-
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retical studies mainly on Lie symmetry structures of Ermakov-Ray-Reid systems (see,

e.g. [38,62,92]).

In terms of the applications, Ermakov systems arise most notably in nonlinear optics

where they occur in the description of elliptic Gaussian beams [22, 40–42, 44, 127, 129].

In nonlinear elasticity, the nonlinear oscillation equation (1.1.2) arises in the analysis

of the radial oscillation of hyperelastic tubes [99, 120, 121]. In hydrodynamics, such

systems arise out of both a single-layer and two-layer shallow water theory [96, 100].

In molecular structures, Ermakov pairs occur in the description of soliton behaviour in

the vicinity of impurities [37,46]. Ermakov pairs also arise in time-dependent quantum

problems [47,93,95,119] as well as in cosmology [11,48,113].

The possession of a novel integral of motion and concomitant nonlinear superposition

principles in combination with their established physical relevance has motivated the

present extensive investigation into Ermakov-Ray-Reid systems in this thesis.

1.2 Motivation and Objectives

1.2.1 Hydrodynamics

The study of hydrodynamics is of great importance, in particular, in oceanography

and geophysics, notably in the analysis of tidal oscillations and vortex structures in the

upper ocean [61]. In the latter context, shallow water systems derived via the 3+1-

dimensional Euler equations [84] incorporating a Coriolis force play an important role

and have received considerable attention in the literature (vide §2.1).

A fundamental contribution to the analysis of shallow water systems relevant to

the present thesis was made by Ball [9]. Important theorems concerning the time evo-

lution physical quantities such as moments of inertia were presented therein. It was

subsequently shown, remarkably, that these theorems can be readily constructed by a
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Lie-group analysis [97]. In [96], the f -plane shallow water model of Cushman-Roisin was

investigated via introduction of an elliptic vortex ansatz. Thereby, an eight-dimensional

dynamical system which admits a general analytical solution as well as particular pul-

srodons corresponding to pulsating elliptic warm-core eddies was isolated. The applica-

tion of the Ball-type theorems proved key to the construction of the complete solution.

It is natural to inquire as to whether the Ball-type theorems can be similarly employed

when the shallow water system has bottom topographies of a circular paraboloidal or

elliptical paraboloidal type when there is also privileged underlying Lie-group struc-

ture [66]. This will be the subject of the opening chapter.

1.2.2 Nonlinear Optics

In a pioneering paper, Wagner et al [127], starting from Maxwell’s equations, de-

rived dynamical equations for the envelope of the self-trapping field via the paraxial

approximation. Subsequently, a coupled pair of nonlinear dynamical equations for the

evolution of the transverse radii of elliptical beams in a polarized medium was set down.

This pair turns out to be an integrable Ermakov-Ray-Reid system [30,90,91]. Remark-

ably, such systems have subsequently been shown to arise in both self-trapping and

self-focusing nonlinear optics contexts [22,40–42,44]. In particular, the evolution of the

size and shape of a light spot and wave front in an elliptical Gaussian beam described

by such Ermakov-Ray-Reid systems [22, 40]. The Ermakov-Ray-Reid invariant in con-

junction with the Hamiltonian may be employed to reveal the underlying properties of

such nonlinear optics.

The nonlinear Schrödinger equation (NLS) and its variants are ubiquitous as models

in nonlinear optics [2, 56]. Thus, the coupled NLS may be employed to study the co-

propagation of two optical pulses in a nonlinear planar waveguide [85]. On the other

hand, the logarithmic NLS originally introduced by Bialynicki-Birula and Mycielski

[12–14] in quantum mechanics and notable for admitting analytical Gaussons, may be

applied to investigate the propagation of Gaussian beams in a saturable medium [123].
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However, there has been but little investigation into nonlinear optical models based

on their underlying Ermakov-Ray-Reid structure. The analysis of Ermakov-Ray-Reid

systems that arise through variational approximation will be the subject of Chapter 3.

1.2.3 Madelung-Type Hydrodynamic Systems

The classical Madelung transformation [69] associates a nonlinear Schrödinger equa-

tion with a hydrodynamic system. Madelung systems involving logarithmic terms or

Bohm quantum potentials have most notably arisen in plasma physics and nonlinear

optics [27,63,72,82,83,106,109,127].

In [100], Rogers and An showed that the rotating shallow water system subject to a

circular paraboloidal basin admits an underlying integrable structure of Ermakov-Ray-

Reid type. In particular, in the case of irrotational motion and ignoring the Coriolis

force, connection was made to a NLS equation with a Bohm quantum potential via the

Madelung transformation. That is to say, the Ermakov structure was derived for the

equivalent NLS system via the elliptic vortex ansatz introduced in [96].

In Chapter 4, we investigate nonlinear integrable reduction of Ermakov-Ray-Reid

type which arises out of NLS equations incorporating both Bohm and logarithmic type

quantum potentials. The construction of exponential-type elliptic vortex ansatz and

concomitant Ball-type theorems proves crucial to the exact solution of these dynamical

systems.

1.2.4 Magnetogasdynamics

The analysis of the motion of electrically conducting fluids and plasmas as described

by Lundquist magnetogasdynamic system is of considerable importance in astrophysics,

geophysics and engineering applications (see, e.g. [16, 88, 122]). In general, analytical
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solutions are not available due to the inherent nonlinearity of the governing Lundquist

system.

In a series of papers on magnetogasdynamics [75–77], Neukirch et al introduced a

novel solution procedure wherein the nonlinear acceleration terms in the Lundquist mo-

mentum equation either vanish or, are assumed to be conservative. In recent work [111],

Rogers and Schief showed that a 2+1-dimensional magnetogasdynamic system with a

parabolic gas law admits exact elliptic vortex reduction to an integrable Hamiltonian

Ermakov system. An important extension to more general gas laws and elliptic vortex

ansatz is examined in Chapter 5.
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Chapter 2

A Shallow Water System with

Paraboloidal Bottom Topography:

An Integrable Sub-System

2.1 Background

In recent years, much attention has been paid to oceanic warm-core eddies (rings),

which consist of rotating isolated water masses (see, e.g. [23,31,58,59,117]). Such eddies

play an important role in large scale oceanic circulation and can profoundly affect the

transfer of physical, chemical, and biological properties across frontal zones and exert a

substantial contribution to the horizontal and vertical mixing of different water masses

[80]. The physical importance of warm-core eddies explains the number of observational,

experimental, numerical and analytical investigations that have been carried out to

elucidate different aspects of their dynamics (see, e.g. [24,25,54,55,73,96,114,115]).

The reduced gravity shallow water model has been widely used in the theoretical

study of warm-core eddies (see, e.g. [24, 25, 54, 96]). Although the model excludes
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relevant oceanic processes such as wave radiation toward the exterior ocean or baroclinic

instabilities, it has proved an model which produces many fundamental characteristics

of eddy dynamics. Indeed, laboratory experiments on warm-core eddies evolution by

Rubino and Brandt [114] have established that this evolution is consistent with known

analytic solutions describing the dynamics of warm-core eddies of the nonlinear, reduced

gravity shallow water equations evolving on an f -plane (see, e.g. [24,96]).

Interest in shallow water systems goes back to work of Goldsbrough [39] who, in a

study of tidal oscillations in an elliptic basin obtained a class of exact elliptical vortex

solutions whose velocity components are linear and height field is a quadratic function of

the horizontal coordinates. The latter work, in turn, is related to that of Kirchoff [60] on

vortex structures in the classical 2+1-dimensional Euler system (in which the velocity

components are linear and the pressure is quadratic). Subsequently, Ball [9,10] obtained

key results on the time evolution of moments of inertia and invariance properties of the

rotating shallow water system. Using this system, Thacker [126] investigated the tidal

oscillations in elliptical basins whose depth profile is parabolic. With the oceanic warm-

core eddies in mind, Cushman-Roisin et al [24, 25] obtained two canonical solutions

of the reduced gravity shallow water system. One solution corresponds to a steady

clockwise rotation of an unchanging elliptical eddy and the other to a pulsating circular

eddy. The former has been termed a rodon and the latter a pulson. Ripa [94] later

showed that the rodon-type solution was Lyapunov stable to disturbances within the

class of elliptical solutions.

Important contributions to the study of the rotating shallow water equation were

made by Young [128], who employed the theorems of Ball and the invariants of the

rotating shallow system to reduce the nonlinear elliptical vortex dynamics to quadra-

tures. Rogers [97] and later Levi et al [66] subjected the rotating shallow water system

with elliptic and circular cylindrical bottom topographies to a Lie-group analysis and

a variety of group-invariant solutions were isolated. Importantly, it was shown in [97]

that the invariance theorems of Ball have a group-theoretic origin. Rogers [96] sub-

sequently obtained the complete solution of an eight-dimensional nonlinear dynamical
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system resulting from the introduction of an elliptical-vortex ansatz into the reduced

gravity shallow water system. A new subclass of so-called pulsrodon solutions which

correspond to pulsating, rotating elliptical eddies was obtained. The application of a

Ball-type moment of inertia theorem set down in [9] proved key to the construction

of such solutions. The shallow water system in the case of plane bottom topography

was subsequently investigated in an elegant Lagrangian treatment using Hamiltonian

dynamics by Holm [52]. In particular, it was shown that the canonical exact solutions

namely the rodon, pulson and pulsrodon (which rotates and pulses periodically) are or-

bitally Lyapunov stable to perturbations within the class of elliptical vortex solutions.

In this chapter, the elliptical vortex procedures of [96] are applied to the case of a

rotating shallow water system with a circular paraboloidal bottom topography. Impor-

tantly, key theorems analogous to those of Cushman-Roisin et al [25] are generalised and

used to solve the resulting eight-dimensional dynamical system. In particular, a class of

pulsrodon solutions is derived and its behavior is displayed via numerical simulations.

Additionally, such exact pulsrodons are also used to show the efficiency of numerical

pulsrodons obtained in [3]. It was established by Rogers and An [100] that, remarkably,

the nonlinear dynamical system admits underlying integrable structure of Ermakov-

Ray-Reid type. This system, which describes the time evolution of the semi-axes of the

elliptical moving shoreline on the paraboidal basin, is also Hamiltonian.

2.2 The Rotating Shallow Water Model

The rotating shallow water system governing the motion of an incompressible fluid

and considered in the present chapter takes the form

∂h

∂t
+ div(h q) = 0 ,

∂q

∂t
+ q · ∇q + f k× q +∇(Z + h) = 0 .

(2.2.1)
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Here, f is the Coriolis parameter, q = ui + vj is the velocity vector and (i, j,k) is the

usual orthonormal basis. In the above,

z = Z(x, y) (2.2.2)

is the equation of the basin surface underlying the liquid while

z = η(x, y, t) = Z + h(x, y, t) . (2.2.3)

denotes the upper free surface. The geometric configuration is as below in Fig 2.1.

Fig. 2.1: The Basin Geometry.

This classical rotating shallow system may be readily derived ab initio via a hydro-

static approximation and incorporates the relevant kinematic and boundary conditions

in a manner reviewed, in detail, in the work of Rogers [97]. Therein, it was established

that the system (2.2.1) admits privileged Lie group symmetries when the underlying

basin is either a circular or an elliptical paraboloid. Accordingly, attention in the sub-

sequent sections is restricted to the same case with

Z = A∗x2 + B∗y2 . (2.2.4)

2.3 Elliptical Vortices in the Rotating Shallow Wa-

ter Model

Here, the elliptical vortex procedures described in [96] in connection with the hydro-

dynamic f -plane system are extended to the case of a paraboloidal bottom topography

10



of the type (2.2.4). Key to this extension will be the generalisation of results originally

obtained in the f -plane context concerning the time-evolution of important physical

quantities.

2.3.1 An Integrable Nonlinear Dynamical Sub-system

Exact solutions of the rotating shallow system (2.2.1) are now sought via an elliptical-

vortex ansatz (Rogers and An [100])

q = L(t)x + M(t) ,

h = xTE(t)x + h0(t) ,

x =


 x− q(t)

y − p(t)


 (2.3.1)

where

L =


 u1(t) u2(t)

v1(t) v2(t)


 , M =


 q̇(t)

ṗ(t)


 ,

E =


 a(t) b(t)

b(t) c(t)


 .

(2.3.2)

The presence of the terms in p(t), q(t), ṗ(t) and q̇(t) corresponds to an underlying Lie

group invariance of the system (2.2.1) when augmented by the geometric constraint

(2.2.4)(see [97]). It is required that the eddy edge h = 0 be closed so that

4 = ac− b2 > 0 . (2.3.3)

In general, the eddy’s rim is an ellipse, which degenerates to a circle if a = c and b = 0.

Insertion of the ansatz (2.3.1) into the continuity equation (2.2.1)1 produces




ȧ

ḃ

ċ


 +




3u1 + v2 2v1 0

u2 2(u1 + v2) v1

0 2u2 u1 + 3v2







a

b

c


 = 0 (2.3.4)

together with

ḣ0 = −(u1 + v2)h0 . (2.3.5)
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Substitution of (2.3.1) into the momentum equation (2.2.1)2 now gives




u̇1

u̇2

v̇1

v̇2




+




LT −fI

fI LT







u1

u2

v1

v2




+ 2




a

b

b

c




+ 2




A∗

0

0

B∗




= 0 (2.3.6)

augmented by

p̈ + f q̇ + 2B∗p = 0 ,

q̈ − fṗ + 2A∗q = 0 .

(2.3.7)

It is noted below that when A∗ = B∗, relations obtain which are key to the subsequent

development. These may be established by direct appeal to the system (2.3.4)-(2.3.6)

and are recorded in the following theorem.

Theorem 2.3.1 If

R∗ = v1 − u2 + f , 4 = ac− b2 > 0 ,

M∗ = a (u2 − f

2
) + b (v2 − u1)− c (v1 +

f

2
) ,

Q∗ = −a (u2
2 + v2

2) + 2b (u1u2 + v1v2)− c (u2
1 + v2

1) + 44− 2A∗(a + c)

(2.3.8)

then the following relations hold:

ḣ0 = −(u1 + v2)h0

4̇ = −4(u1 + v2)4

Ṙ∗ = −(u1 + v2) R∗

Ṁ∗ = −3(u1 + v2)M
∗

Q̇∗ = −3(u1 + v2) Q∗

(2.3.9)

These relations constitute analogous of those derived in the context of plane bottom

topography in [25, 96]. The quantities h0, ∆, R∗, M∗ and Q∗ are related to physical

12



invariants as follows:

(i) volume =

∫∫
h dxdy =

1

2
πh2

04− 1
2 ,

(ii) energy =

∫∫
1

2
h

[
h + (u2 + v2)

]
dxdy

=
1

24
πh3

04− 3
2 Q∗ ,

(iii) potential vorticity =

∫∫
h

(
vx − uy + f

h

)
dxdy (2.3.10)

= πh04− 1
2 R∗ ,

(iv) angular momentum =

∫∫
h

[
(xv − yu) +

f

2
(x2 + y2)

]
dxdy

=
1

12
πh3

04− 3
2 M∗ .

In the sequel, attention is restricted to the case A∗ = B∗ corresponding to an

underlying circular paraboloidal topography. Accordingly, the above relations (2.3.9)

are valid.

It proves convenient to proceed in terms of new variables as employed in [96], namely

G = u1 + v2 , GR =
1

2
(v1 − u2) ,

GS =
1

2
(v1 + u2) , GN =

1

2
(u1 − v2) ,

B = a + c , BS = b , BN =
1

2
(a− c) .

(2.3.11)

Here, G and GR represent, in turn, the divergence and spin of the velocity field, while

GS and GN denote shear and normal deformation rates. The geometry of the moving

shoreline boundary h = 0 is now determined by B, BS and BN together with h0.

In terms of the new variables, the last two important relations in Theorem 2.3.1

adopt the form

Ṁ∗ = −3GM∗

Q̇∗ = −3G Q∗
(2.3.12)
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implying the integral of motion

M∗/Q∗ = const . (2.3.13)

The nonlinear dynamical equations (2.3.4)-(2.3.6) reduce in extenso to the equivalent

generalized Kirwan-Liu system:

ḣ0 + h0G = 0 ,

Ḃ + 2[ BG + 2(BNGN + BSGS) ] = 0 ,

ḂS + 2BSG + GSB − 2BNGR = 0 ,

ḂN + 2BNG + GNB + 2BSGR = 0 ,

Ġ +
1

2
G2 + 2(G2

N + G2
S −G2

R)− 2fGR + 2B + 2(A∗ + B∗) = 0 ,

ĠR + GGR +
1

2
fG = 0 ,

ĠS + GGS + fGN + 2BS = 0 ,

ĠN + GGN − fGS + 2BN + A∗ −B∗ = 0 .

(2.3.14)

If we set

Ω = 1/(GR +
f

2
)1/2 , GR +

f

2
6= 0 (2.3.15)

then (2.3.14)6 shows that

G = 2Ω̇/Ω . (2.3.16)

The precluded irrotational case GR +
f

2
= 0 is dealt with at the end of next section.

Relation (2.3.14)1 together with (2.3.16) gives, in turn,

h0 = CI/ Ω2 (2.3.17)

where CI is an arbitrary constant of integration.

New modulated variables are now introduced as in the f -plane study, viz

B̄ = Ω4B , B̄S = Ω4BS , B̄N = Ω4BN ,

ḠS = Ω2GS , ḠN = Ω2GN

(2.3.18)
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whence the system (2.3.14) reduces to

˙̄B + 4 (B̄NḠN + B̄SḠS)/Ω2 = 0 ,

˙̄BS + (B̄ ḠS − 2B̄N)/Ω2 + fB̄N = 0 ,

˙̄BN + (B̄ ḠN + 2B̄S)/Ω2 − fB̄S = 0 ,

˙̄GN − fḠS + 2B̄N/Ω2 + (A∗ −B∗)Ω2 = 0 ,

˙̄GS + fḠN + 2B̄S/Ω2 = 0

(2.3.19)

together with a nonlinear equation for Ω, namely,

Ω3Ω̈ + f 2Ω4/4− 1 + Ḡ2
N + Ḡ2

S + B̄ + Ω4(A∗ + B∗) = 0 . (2.3.20)

In what follows, we proceed only with the circular paraboloidal case when A∗ = B∗.

The system (2.3.19) remarkably reduces to exactly that of the f -plane analysis in [96].

The presence of a circular paraboloidal bottom topography is only made manifest in

the nonlinear equation (2.3.20) obtained from the corresponding f -plane (plane bottom

topography) equation via the replacement f 2 → f 2 + 8A∗. Accordingly, the analytical

procedures used in [96] are directly applied to solve the system (2.3.19)-(2.3.20). These

are summarised in the next sub-section.

2.3.2 Parametrisation and Solution

It is shown that when A∗ = B∗, the dynamical system (2.3.19) admits the three

integrals of motion (cf. Rogers and An [100])

B̄2
S + B̄2

N −
1

4
B̄2 = CII ,

Ḡ2
S + Ḡ2

N − B̄ = CIII ,

B̄ + 2
(
B̄SḠN − B̄NḠS

)
= CIV

(2.3.21)

the relevance of which are described below. Here CII , CIII and CIV are constants of

integration. It is noted that (2.3.21)1 shows

4 = −CII/Ω
8 (2.3.22)

15



whence the condition (2.3.3) requires that CII < 0 .

The integrals of motion (2.3.21)1,2 are parametrised, in turn, according to

B̄S = −
√

CII +
1

4
B̄2 cos φ(t) , B̄N = −

√
CII +

1

4
B̄2 sin φ(t) ,

ḠS = −
√

CIII + B̄ sin θ(t) , ḠN = +
√

CIII + B̄ cos θ(t) ,

(2.3.23)

where signs are adopted compatible with the subsequent construction of pulsrodon-type

solutions.

Substitution of the parametrisation (2.3.23) into (2.3.19)1 yields

˙̄B +
4

Ω2

√
CII +

1

4
B̄2

√
CIII + B̄ sin(θ − φ) = 0 . (2.3.24)

Conditions (2.3.19)2,3 reduce to a single relation, viz.
√

CII +
1

4
B̄2

[
φ̇ +

2

Ω2
− f

]
− B̄

Ω2

√
CIII + B̄ cos(θ − φ) = 0 . (2.3.25)

Similarly, conditions (2.3.19)4,5 produce another single requirement

√
CIII + B̄

[
f − θ̇

]
− 2

Ω2

√
CII +

1

4
B̄2 cos(θ − φ) = 0 . (2.3.26)

It is seen that insertion of (2.3.16) into (2.3.12)1 results, on integration, in:

M∗ =
[−B̄ + 2

(
B̄NḠS − B̄SḠN

)]
Ω−6 = CIV Ω−6 (2.3.27)

whence, by appeal to the particular parametrisation (2.3.23),

B̄ = −CIV + 2

√
(CII +

1

4
B̄2)(CIII + B̄) cos(θ − φ) . (2.3.28)

It is readily validated that (2.3.28) satisfies (2.3.24). Elimination of θ − φ between

(2.3.28) and (2.3.25), (2.3.26), in turn, yields

φ̇ = f +
2

Ω2

[ −1 + B̄(B̄ + CIV )/(4CII + B̄2)
]

,

θ̇ = f − 1

Ω2
(B̄ + CIV )/(B̄ + CIII) .

(2.3.29)

Bearing the construction of exact solutions in mind, we turn to consider the second-

order nonlinear equation (2.3.20), namely,

Ω3Ω̈ + (f 2 + 8A∗) Ω4/4 + CIII + 2B̄ − 1 = 0 . (2.3.30)
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The latter, as it stands, is intractable unless B̄ = λ + µ Ω4, (λ, µ εR) when it reduces

to the classical Steen-Ermakov-Pinney equation [30, 86, 124]. However, in general, it

readily leads to an important relation which is shown in the following theorem:

Theorem 2.3.2 If M∗ and Q∗ are given by (2.3.8), then

( ¨Ω2 B̄) + (f 2 + 8A∗)Ω2B̄ = −2(Q∗ + fM∗) Ω6

= −2(CV + fCIV )

(2.3.31)

This result constitutes a generalisation of the well-known result which corresponds to

plane bottom topography given in [25,96] and states that

Ïε + Iε =
1

6
π4−3/2h3

0(Q + M) (2.3.32)

where Iε is the moment of inertia given by

Iε =

∫∫

ε

(x2 + y2)h dx dy = − π

12
h3

0 4− 3
2 (a + c) = − π

12

[
CI

(−CII)1/2

]3

Ω2B̄ (2.3.33)

with the double integral being taken over the eddy ε. In the more general circular

paraboloidal basin geometry under present consideration, the moment of inertia equa-

tion embodied in (2.3.31) corresponds to a result originally obtained by Ball [9] and

subsequently derived by Rogers via a Lie group approach [97]. Here, it proves key

to the completion of our construction of the general solution of the eight-dimensional

dynamical system (2.3.14).

It is noted that in the present circular paraboloidal case, the integral of motion

İ2
ε + (f 2 + 8A∗)I2

ε −
1

3
π4−3/2h3

0(Q
∗ + fM∗)Iε (2.3.34)

involving the moment of inertia Iε provides an additional invariant of the rotating

shallow water system.

On integration of (2.3.31), we obtain

Ω2B̄ = CV I cos
√

f 2 + 8A∗ t + CV II sin
√

f 2 + 8A∗ t− 2(CV + fCIV )/(f 2 + 8A∗) ,

(f 2 + 8A∗ 6= 0)

(2.3.35)
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where CV I and CV II are additional integration constants. While on elimination of θ−φ

and Ω in (2.3.24) via the relations (2.3.28) and (2.3.35), it is seen that B̄ is given by

∫ B̄

CV III

dB̄∗

B̄∗
√

(B̄∗2 + 4CII)(B̄∗ + CIII)− (B̄∗ + CIV )2

= −2

∫ t

0

dt∗

CV I cos(
√

f 2 + 8A∗ t∗) + CV II sin(
√

f 2 + 8A∗ t∗)− 2(CV + fCIV )/(f 2 + 8A∗)

( B̄ 6= const)

(2.3.36)

where B̄|t=0 = CV III . The elliptic integral of B̄ can be readily treated by classical

methods described in Ref. [18].

The generalisation of the elliptic vortex approach of [96] to circular paraboloidal

basins is now completed. Thus, the corresponding shallow water velocity components

are given by

u1 =
Ω̇

Ω
+

1

Ω2

√
CIII + B̄ cos θ(t) , v1 = − 1

Ω2

√
CIII + B̄ sin θ(t) +

1

Ω2
− f

2
,

u2 = − 1

Ω2

√
CIII + B̄ sin θ(t)− 1

Ω2
+

f

2
, v2 =

Ω̇

Ω
− 1

Ω2

√
CIII + B̄ cos θ(t) ,

(2.3.37)

while the elliptic moving shoreline parameters are

a =
1

Ω4

[
1

2
B̄ −

√
CII +

1

4
B̄2 sin φ(t)

]
, b = − 1

Ω4

√
CII +

1

4
B̄2 cos φ(t) ,

c =
1

Ω4

[
1

2
B̄ +

√
CII +

1

4
B̄2 sin φ(t)

]
,

h0 =
CI

Ω2
.

(2.3.38)
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The Precluded Case

GR + f
2 = 0

It is recalled that the parametrisation in terms of Ω in the above proceeded provided

(cf.(2.3.15))

GR +
f

2
6= 0 (2.3.39)

and thereby solutions of the rotating shallow water system in the generic case has been

obtained via (2.3.37)-(2.3.38). If GR +
f

2
= 0, that is

v1 − u2 + f = 0 (2.3.40)

and the parametrisation (2.3.23) is again introduced. Then it is readily shown that an

analogous reduction applies mutatis mutandis. Therefore, the resulting parametrisation

becomes (cf.(2.3.37))

u1 =
Ω̇

Ω
+

1

Ω2

√
CIII + B̄ cos θ(t) , v1 = − 1

Ω2

√
CIII + B̄ sin θ(t)− f

2

u2 = − 1

Ω2

√
CIII + B̄ sin θ(t) +

f

2
, v2 = − 1

Ω2

√
CIII + B̄ cos θ(t) +

Ω̇

Ω

(2.3.41)

and the elliptic moving shoreline parameters are given by the relations (2.3.38).

It is interesting to remark that the constraint (2.3.39) corresponds to a privileged

class of motions which may be connected to irrotational shallow water motions with

f = 0. Thus, Chesnokov [21] recently used Lie-group analysis to establish a novel

connection between the rotating shallow water system (2.2.1) with Z = 0 and an

associated non-rotating system with f = 0. The general Lie-group analysis of [66] may

be readily adduced to extend this result to elliptic paraboloidal bottom topographies.
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2.3.3 The Pulsrodon: Circular Paraboloidal Bottom Topogra-

phy

It is noted that elliptical integral expression (2.3.36) is only valid if B̄ 6= const.

Here, we consider the reduction when B̄ is constant. In this case, (2.3.19)1 reduces to

B̄NḠN + B̄SḠS = 0 . (2.3.42)

If we set

B̄N = αḠS , B̄S = −αḠN . (2.3.43)

then the system (2.3.19) is reducible to the linear coupled equations

˙̄GN = (f − 2α

Ω2
) ḠS , ˙̄GS = (

2α

Ω2
− f) ḠN (2.3.44)

where

B̄ = 2α(1− α) , α̇ = 0 . (2.3.45)

The general solution of the system (2.3.44) is

ḠN = G̃0 sin η , ḠS = G̃0 cos η (2.3.46)

where

η = ft− 2α

∫
1

Ω2
dt . (2.3.47)

It is emphasized that the three integrals of motion set down in (2.3.21) are valid, in

particular, for the case of B̄ = const.

Insertion of (2.3.45) and (2.3.46) into (2.3.20) results in the general Steen-Ermakov

equation [30,124]

Ω̈ +

(
1

4
f 2 + 2A∗

)
Ω =

1− G̃2
0 − 2B̄

Ω3
. (2.3.48)

The latter, which originated in the work of Steen [124], arises in a wide range of areas

of physical importance, most notably in quantum mechanics, optics, and nonlinear

elasticity (see, e.g. [33,74,121]). Another avatar of this equation has appeared recently

in a study of pulsons by Sutyrin [125]. It is distinguished by its admittance of a nonlinear
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superposition principle which was derived by Lie group considerations [107]. Therein,

the Steen-Ermakov equation was derived in another manner in the context of moving

shoreline analysis in a rotating shallow water system with circular paraboloidal bottom

topography.

The general solution of (2.3.48) is given by

Ω =
√

δ1Ω2
1 + 2δ2Ω1Ω2 + δ3Ω2

2 (2.3.49)

where Ω1, Ω2 are independent solutions of the associated linear oscillator equation

Ω̈L +

(
f 2

4
+ 2A∗

)
ΩL = 0 (2.3.50)

with unit Wronskian, that is

W (Ω1, Ω2) = Ω1Ω̇2 − Ω2Ω̇1 = 1 (2.3.51)

and the constants δi (i = 1, 2, 3) are constrained by the relation

δ1δ3 − δ2
2 = (1− G̃2

0 − 2B̄) := δ0 . (2.3.52)

If we choose Ω1, Ω2 as

Ω1 = cos ωt , Ω2 =
1

ω
sin ωt , ω =

√
f 2/4 + 2A∗ (2.3.53)

then, the general solution of the Steen-Ermakov equation (2.3.48) is determined by

Ω =
√

δ4 cos(2ωt + θ) + δ5 (2.3.54)

where the constants δ4, δ5 and θ are related by

ω2(δ2
4 − δ2

5) + δ0 = 0 , θ = arctan
2δ2ω

δ3 − δ1ω2
. (2.3.55)

The reality constraints associated with the relations (2.3.45), (2.3.52) and (2.3.55) re-

quire that

δ5 > δ4 ≥ 0 , α(1− α) < 0 , 2α2 − 2α + 1 > G̃2
0 (2.3.56)

without loss of generality.
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A subclass of analytical solutions of the rotating shallow water system is now ob-

tained, namely

u1 =
Ω̇

Ω
+

G̃0

Ω2
sin η , u2 =

G̃0

Ω2
cos η − 1

Ω2
+

f

2
,

v1 =
G̃0

Ω2
cos η +

1

Ω2
− f

2
, v2 =

Ω̇

Ω
− G̃0

Ω2
sin η ,

a =
α

Ω4
(1− α + G̃0 cos η) , b = −αG̃0

Ω4
sin η ,

c =
α

Ω4
(1− α− G̃0 cos η) , h0 =

C1

Ω2
.

(2.3.57)

This subclass corresponds to the pulsrodons of elliptic warm-core eddy theory that were

originally constructed in the case of plane bottom topography (A∗ = 0) by Rogers [96].

Pulsrodons and their duals were later derived by Holm [52] via an elegant Lagrangian

formulation.

Below, the exact solution for the moving shoreline h = 0 is used to exhibit typical

eddy boundary evolution. Fig 2.2 shows the time evolution of a small eccentricity

elliptical eddy. From the figure, one can see that the clockwise rotation of the elliptical

mode is successive but irregular, being faster when the eddy is expanded (wider rim) and

slower when the eddy is contracted (smaller rim). A plausible explanation is as follows:

for a given eccentricity, the larger the eddy, the greater the radius of curvature at the

extremities compared to the radius of inertia, and the lesser the inertial tendency for a

particle to overshoot the rim’s curve at its point of maximum curvature. In Fig 2.3, the

eccentricity of the eddy is increased and the same behavior is displayed. Interestingly,

this evolution of the upper free surface for such a typical pulsrodon coincides with an

oscillating ”breather-type” motion.

2.3.4 Pulsrodons: Numerical Treatment

In this subsection, our main concern is with the construction of pulsrodons of the

shallow water system via a numerical treatment [3]. The approach to be adopted here
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Fig 2.2: The temporal evolution of a small eccentricity elliptical eddy.

Fig 2.3: The temporal evolution of a large eccentricity elliptical eddy.

is the homotopy perturbation method [50, 67]. With this method, it is seen that series

representations of pulsrodon which rapidly converge to the exact ones are obtained.

To employ the homotopy procedure, it proves convenient to rewrite the rotating
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shallow system (2.2.1) with a circular paraboloidal basin in the operator form :




Lh + (uh)x + (vh)y = 0 ,

Lu + uux + vuy + hx − fv + 2A∗x = 0 ,

Lv + uvx + vvy + hy + fu + 2A∗y = 0

(2.3.58)

where L = ∂
∂t

with inverse L−1 =
∫ t

0
(·)ds. With the construction of pulsrodons in

mind, we set the initial values as (cf.(2.3.57)) :

u(x, y, 0) = (
τ0

ω0

+
g0

ω2
0

sin η0)x + (
f

2
− 1

ω2
0

+
g0

ω2
0

cos η0)y ,

v(x, y, 0) = (
1

ω2
0

− f

2
+

g0

ω2
0

cos η0)x + (
τ0

ω0

− g0

ω2
0

sin η0)y , (2.3.59)

h(x, y, 0) =
C1

ω2
0

+
α(1− α)

ω4
0

(x2 + y2) +
αg0

ω4
0

(cos η0x
2 − 2 sin η0xy − cos η0y

2)

where C1, α, τ0, ω0, g0 and η0 are constants to be determined.

Now, a homotopy : Ω× [0, 1] → R is constructed, which satisfies




H1(u, v, h, p) = Lh + p [(uh)x + (vh)y] = 0 ,

H2(u, v, h, p) = Lu + p (uux + vuy + hx − fv + 2A∗x) = 0 ,

H3(u, v, h, p) = Lv + p (uvx + vvy + hy + fu + 2A∗y) = 0

(2.3.60)

where p ∈ [0, 1] is an embedding parameter. It is observed that when p = 0, the

homotopy model (2.3.60) reduces to a linear system




H1(u, v, h, 0) = Lh = 0 ,

H2(u, v, h, 0) = Lu = 0 ,

H3(u, v, h, 0) = Lv = 0

(2.3.61)

which may be readily solved. On the other hand, when p = 1, this model corresponds

to the original problem (2.3.58), namely




H1(u, v, h, 1) = Lh + (uh)x + (vh)y = 0 ,

H2(u, v, h, 1) = Lu + uux + vuy + hx − fv + 2A∗x = 0 ,

H3(u, v, h, 1) = Lv + uvx + vvy + hy + fu + 2A∗y = 0 .

(2.3.62)

24



In topology, the continuous deformation from Hi(u, v, h, 0) to Hi(u, v, h, 1) , (i = 1, 2, 3)

is commonly termed homotopic.

According to the perturbation theory of [50, 67], the solution of (2.3.58) can be

expressed by an infinite-series involving the homotopy parameter p, namely

u =
+∞∑
i=0

piui , v =
+∞∑
i=0

pivi , h =
+∞∑
i=0

pihi. (2.3.63)

Substitution of the series solution ansatz (2.3.63) into (2.3.58), produces a set of alge-

braic equations of pi. Balancing the terms of pi, produces an over-determined differential

system with the unknown variables ui, vi and hi (i = 0, 1, · · · ) :

O(p0) : Lu0 = 0, Lv0 = 0, Lh0 = 0,

O(p1) : Lh1 + u0,xh0 + u0h0,x + v0,yh0 + v0h0,y = 0,

Lu1 + u0u0,x + v0u0,y + h0,x − fv0 + 2A∗x = 0,

Lv1 + u0v0,x + v0v0,y + h0,y + fu0 + 2A∗y = 0,

O(p2) : Lh2 + (u0h1 + u1h0)x + (v0h1 + v1h0)y = 0,

Lu2 + (u0u1)x + v0u1,y + v1u0,y + h1,x − fv1 = 0,

Lv2 + (v0v1)y + u0v1,x + u1v0,x + h1,y + fu1 = 0, (2.3.64)

· · · · · · · · ·

O(pi) : Lhi +
i−1∑

k=0

(ukhi−k−1)x +
i−1∑

k=0

(vkhi−k−1)y = 0, i > 2 ,

Lui +
i−1∑

k=0

uk,xui−k−1 +
i−1∑

k=0

vkui−k−1,y + hi−1,x − fvi−1 = 0,

Lvi +
i−1∑

k=0

vk,yvi−k−1 +
i−1∑

k=0

ukvi−k−1,x + hi−1,y + fui−1 = 0,

· · · · · · · · ·

With the aid of symbolic computation of Maple, one can readily obtain the solutions
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of the above system :

u0 = F0(x, y), u1 = F1(x, y) + tF̄1(x, y),

v0 = G0(x, y), v1 = G1(x, y) + tḠ1(x, y),

h0 = H0(x, y), h1 = H1(x, y) + tH̄1(x, y),

u2 = F2(x, y) + tF̄2(x, y) +
1

2
t2F̄3(x, y), (2.3.65)

v2 = G2(x, y) + tḠ2(x, y) +
1

2
t2Ḡ3(x, y),

h2 = H2(x, y) + tH̄2(x, y) +
1

2
t2H̄3(x, y),

· · · · · · · · ·

where

Fi(x, y) = ui(x, y, 0),
∞∑
i=0

Fi(x, y) = u(x, y, 0),

Gi(x, y) = vi(x, y, 0),
∞∑
i=0

Gi(x, y) = v(x, y, 0),

Hi(x, y) = hi(x, y, 0),
∞∑
i=0

Hi(x, y) = h(x, y, 0),

F̄1(x, y) = fF0 − F0F0x −G0F0y −H0x − 2A∗x ,

Ḡ1(x, y) = −fF0 − F0G0x −G0G0y −H0y − 2A∗y ,

H̄1(x, y) = −F0xH0 − F0H0x −G0yH0 −G0H0y ,

F̄2(x, y) = fG1 − (F0F1)x −G0F1y −G1F0y −H1x , (2.3.66)

Ḡ2(x, y) = −fF1 − (G0G1)y − F0G1x − F1G0x −H1y ,

H̄2(x, y) = −(F0H1 + F1H0)x − (G0H1 + G1H0)y ,

F̄3(x, y) = fḠ1 − (F0F̄1)x −G0F̄1y − Ḡ1F0y − H̄1x ,

Ḡ3(x, y) = −fF̄1 − (G0Ḡ1)y − F0Ḡ1x − F̄1G0x − H̄1y ,

H̄3(x, y) = −(F0H̄1 + F̄1H0)x − (G0H̄1 + Ḡ1H0)y

· · · · · · · · ·

Therefore, the preceding gives series representations for u, v and h associated with
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pulsrodons, namely,

u(x, y, t) = lim
p→1

+∞∑
i=0

piui = u0 + u1 + u2 + u3 + · · ·

=
∞∑
i=0

Fi(x, y) + (F̄1 + F̄2)t +
1

2
F̄3t

2 + · · ·

= (
τ0

ω0

+
g0

ω2
0

sin η0)x + (
f

2
− 1

ω2
0

+
g0

ω2
0

cos η0)y + (F̄1 + F̄2)t +
1

2
F̄3t

2 + · · ·

v(x, y, t) = lim
p→1

+∞∑
i=0

pivi = v0 + v1 + v2 + v3 + · · ·

=
∞∑
i=0

Gi(x, y) + (Ḡ1 + Ḡ2)t +
1

2
Ḡ3t

2 + · · ·

= (
1

ω2
0

− f

2
+

g0

ω2
0

cos η0)x + (
τ0

ω0

− g0

ω2
0

sin η0)y + (Ḡ1 + Ḡ2)t +
1

2
Ḡ3t

2 + · · ·

h(x, y, t) = lim
p→1

+∞∑
i=0

pihi = h0 + h1 + h2 + h3 + · · ·

=
∞∑
i=0

Hi(x, y) + (H̄1 + H̄2)t +
1

2
H̄3t

2 + · · · (2.3.67)

=
α(1− α)

ω4
0

(x2 + y2) +
αg0

ω4
0

(cos η0x
2 − 2 sin η0xy − cos η0y

2)

+
C1

ω2
0

+ (H̄1 + H̄2)t +
1

2
H̄3t

2 + · · ·

It is recalled that the exact pulsrodons derived previously (cf.(2.3.57)) are given by

u(x, y, t) = (
Ω̇

Ω
+

G̃0

Ω2
sin η)x + (

f

2
− G̃0

Ω2
cos η − 1

Ω2
)y,

v(x, y, t) = (
1

Ω2
− G̃0

Ω2
cos η − f

2
)x + (

Ω̇

Ω
− G̃0

Ω2
sin η)y, (2.3.68)

h(x, y, t) =
α

Ω4
(1− α + G̃0 cos η)x2 − 2αG̃0

Ω4
sin ηxy +

α

Ω4
(1− α− G̃0 cos η)y2 +

CI

Ω2

where g0 = G̃0, Ω|t=0 = ω0, Ω̇|t=0 = τ0 and η0 = η − ft + 2α
∫ t

0
1

Ω2 dt.

Comparison of the approximate solution {φu
n, φv

n, φh
n} = {∑n

i=0 ui,
∑n

i=0 vi,
∑n

i=0 hi}
(n = 2) and exact solution {u, v, h} is presented in Table 1-3. There, the parameters

are selected as C1 = 0.1, f = 2, A∗ = 1.5, α = 2, g0 = 1, τ0 = 1.2, ω0 =
√

2.
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Table 1

Comparison of φu
2 and u(x, y, t) given by (2.3.67)1 and (2.3.68)1 at y = 20.

x t φu
2 u(x, y, t) |u(x,y,t)−φu

2

u(x,y,t)
|

-10 0.001 3.859493490 3.860046388 1.432361025e-4

-10 0.002 3.862990452 3.864096535 2.862462130e-4

-10 0.003 3.866486986 3.868146548 4.290328661e-4

-5 0.001 5.907544349 5.907820757 4.678679523e-5

-5 0.002 5.910367379 5.910920281 9.353907238e-5

-5 0.003 5.913189881 5.914019358 1.402560509e-4

-1 0.001 7.545985034 7.546040254 7.317745220e-6

-1 0.002 7.548268919 7.548379279 1.462035702e-5

-1 0.003 7.550552193 7.550717607 2.190705687e-5

Table 2

Comparison of φv
2 and v(x, y, t) given by (2.3.67)2 and (2.3.68)2 at y = 10.

x t φv
2 v(x, y, t) |v(x,y,t)−φv

2

v(x,y,t)
|

10 0.001 16.14297293 16.14186708 6.850818400e-5

10 0.002 16.13774623 16.13553390 1.371091910e-4

10 0.003 16.13252045 16.12920102 2.058025066e-4

15 0.001 12.38448015 12.38337430 8.930118506e-5

15 0.002 12.37911357 12.37690128 1.787434472e-4

15 0.003 12.37374804 12.37042867 2.683310408e-4

20 0.001 8.625987356 8.624881528 1.282137032e-4

20 0.002 8.620480922 8.618268656 2.566949452e-4

20 0.003 8.614975643 8.611656335 3.854436209e-4
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Table 3

Comparison of φh
2 =

∑2
i=0 hn and h(x, y, t) given by (2.3.67)3 and (2.3.68)3 at y = 2.

x t φh
2 h(x, y, t) |h(x,y,t)−φh

2

h(x,y,t)
|

10 0.001 -4.095304769 -4.095304749 4.883641444e-9

10 0.002 -4.095143892 -4.095144182 7.081557745e-8

10 0.003 -4.094984520 -4.094984934 1.010992731e-7

20 0.001 -26.19910546 -26.19910580 1.297754216e-8

20 0.002 -26.18715621 -26.18715739 4.506025539e-8

20 0.003 -26.17521065 -26.17521323 9.856653229e-9

30 0.001 -150.7431809 -150.7431825 1.061407868e-8

30 0.002 -150.6848556 -150.6848623 4.446365678e-8

30 0.003 -150.6265550 -150.6265694 9.560066366e-8

From Table 1-3, it can be seen that the numerical solutions provided by the homo-

topy method closely approximate the the exact solutions for the pulsrodons. General

aspects of the convergence of series solutions derived the homotopy method to the exact,

one can refer to [50].
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Chapter 3

Ermakov-Ray-Reid Systems in

Nonlinear Optics: A Variational

Approach

3.1 Background

In this chapter, our concern is with Ermakov-Ray-Reid systems which arise in

nonlinear optical models [30, 90, 91, 104, 108, 112]. Firstly, we consider a coupled 2+1-

dimensional nonlinear Schrödinger (NLS) system which incorporates that investigated

by Pietrzyk [85] in an analysis of the co-propagation of two optical pulses in a Kerr-type

planar wave guide. A variational approach elucidated by Anderson and Bonnedal [5] is

adopted and thereby a 4-component nonlinear dynamical system is isolated as in [106].

The latter admits three classes of reductions to Ermakov-Ray-Reid subsystems. The

underlying Hamiltonian structure of these systems makes them completely integrable

[106].

Secondly, we investigate a modulated 3+1-dimensional NLS equations incorporating

both a de Broglie-Bohm and Bialynicki-Birula logarithmic potential term as well as a
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harmonic trap [105]. It is remarked that a de Broglie-Bohm potential [17, 19] arises in

the pioneering work of Wagner et al [127] while a NLS equation involving a logarithmic

potential was originally studied in a nonlinear optics context by Snyder and Mitchell

[123] in connection with the propagation of Gaussian beams in a saturable medium. The

logarithmic Schrödinger equation was originally introduced by Bialynicki-Birula and

Mycielski [12–14] in a quantum-mechanical context and is noteworthy for its admittance

of Gausson-type solutions. In the present chapter, on application of the variational

approximation to the 3+1-dimensional modulated NLS equations is shown to result in

a coupled nonlinear system for the beam widths. A reduction to Hamiltonian Ermakov

system is obtained. In particular, an Ovsiannikov-Dyson reduction [28, 35, 36, 81] is

discussed wherein the eigenmode of the solution explains a kind of flip-over effect that

was experimentally observed in a model descriptive of an asymmetric expansion of laser

induced plasmas into vacuum [43].

3.2 A 2+1-Dimensional Coupled Nonlinear Schrödinger

System

This section is devoted to the investigation of a coupled nonlinear Schrödinger

system with a harmonic trap which incorporates that investigated in [85] in an analysis

of two-pulse interaction in a Kerr medium. In what follows, we shall indicate how the

variational approach is applied to the model as in [5], leading to a nonlinear dynamical

system describing the evolution of the basic parameters of the beam. The latter admits

three distinct reductions to Ermakov-Ray-Reid system of integrable Hamiltonian type

[106].
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3.2.1 The Nonlinear Optics System

The coupled 2+1-dimensional nonlinear Schrödinger system considered here adopts

the form of (Rogers, Malomed, Chow and An [106]):

i
∂Ψ1

∂ζ
+

σ1

2

∂2Ψ1

∂τ 2
+

1

2

∂2Ψ1

∂ξ2
+ (|Ψ1|2 + 2|Ψ2|2)Ψ1 + ω2

1(ζ)(ξ2 + τ 2)Ψ1 = 0 ,

i
∂Ψ2

∂ζ
+

σ2

2

∂2Ψ2

∂τ 2
+

µ

2

∂2Ψ2

∂ξ2
+ r(|Ψ2|2 + 2|Ψ1|2)Ψ2 + ω2

2(ζ)(ξ2 + τ 2)Ψ2 = 0 .

(3.2.1)

In the absence of the terms corresponding to a harmonic trap, namely those involves

ω1(ζ) and ω2(ζ), the system is that investigated by Pietrzyk [85] in an analysis of the

co-propagation of two optical pulses in a nonlinear Kerr-type planar wave guide.

It is observed that the coupled nonlinear Schrödinger system can be derived from

the variational principle δS = 0 with action 1

S =

∫
Ldξdτ dζ (3.2.2)

where L is the Lagrangian density given by

L =
i

2
(Ψ∗

1

∂Ψ1

∂ζ
−Ψ1

∂Ψ∗
1

∂ζ
) +

i

2r
(Ψ∗

2

∂Ψ2

∂ζ
−Ψ2

∂Ψ∗
2

∂ζ
)− 1

2
|∂Ψ1

∂ξ
|2

− σ1

2
|∂Ψ1

∂τ
|2 − µ

2r
|∂Ψ2

∂ξ
|2 − σ2

2r
|∂Ψ2

∂τ
|2 + ω2

1(ζ)(ξ2 + τ 2)|Ψ1|2 (3.2.3)

+ ω2
2(ζ)(ξ2 + τ 2)|Ψ2|2 +

1

2
|Ψ1|4 + 2|Ψ1|2|Ψ2|2 +

1

2
|Ψ2|4

and the asterisk denotes the complex conjugation.

It is emphasized that variational formulations constitute an important approach

to construct approximate solutions in certain nonlinear optics contexts (see, Malomed

[70,71]).

1It is important to note that there are limits to the applicability of variational procedures in

nonlinear optics (see e.g. [26])
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3.2.2 The Variational Approach: Reduction to A Nonlinear

Dynamical System

According to the variational principle [5, 70], one needs to find appropriate Ψj

(j = 1, 2) such that the action S an extremum within a set of trial functions. A natural

choice for the trial functions Ψj is the 12-parameter Gaussian ansatz, namely:

Ψj(ζ, ξ, τ) = Aj(ζ) exp{−1

2

τ 2

ωτj(ζ)
− 1

2

ξ2

ωξj(ζ)
} exp{ i

2
τ 2Cτj(ζ)+

i

2
ξ2Cξj(ζ) } (3.2.4)

j = 1, 2

In the nonlinear optics context of [85], A∗
j are complex amplitudes, ωτj, ωξj are tem-

poral and spatial widths while Cτj and Cξj are temporal and spatial chirps. All these

quantities are ζ-dependent.

Substitution of the Gaussian function (3.2.4) into (3.2.3), we obtain :

〈L〉 =
1

2
{i(Ȧ1A

∗
1 − A1Ȧ∗

1)− |A1|2(τ 2Ċτ1 + ξ2Ċξ1)− ξ2|A1|2(C2
ξ1 +

1

ω2
ξ1

)

− σ1τ
2|A1|2(C2

τ1 +
1

ω2
τ1

) + 2ω2
1|A1|2(ξ2 + τ 2)} exp{− τ 2

ωτ1

− ξ2

ωξ1

}

+
1

2r
{i(Ȧ2A

∗
2 − A2Ȧ∗

2)− |A2|2(τ 2Ċτ2 + ξ2Ċξ2)− µξ2|A2|2(C2
ξ2 +

1

ω2
ξ2

)

− σ2τ
2|A2|2(C2

τ2 +
1

ω2
τ2

) + 2rω2
2|A2|2(ξ2 + τ 2)} exp{− τ 2

ωτ2

− ξ2

ωξ2

}

+
1

2
|A1|4 exp{−2τ 2

ωτ1

− 2ξ2

ωξ1

}+
1

2
|A2|4 exp{−2τ 2

ωτ2

− 2ξ2

ωξ2

}

+ 2|A1|2|A2|2 exp{− τ 2

ωτ1

− ξ2

ωξ1

− 2τ 2

ωτ2

− 2ξ2

ωξ2

} (3.2.5)

In the above and the sequel, the dots denote derivatives with respect to ζ.
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Integration of (3.2.5) with respect to ξ and τ , produces the reduced Lagrangian

〈L〉 =

+∞∫

−∞

Ldξdτ =
π

4

√
ωτ1ωξ1{|A1|4 + 2i(Ȧ1A

∗
1 − A1Ȧ∗

1)− |A1|2(Ċτ1ωτ1 + Ċξ1ωξ1)

− ωξ1|A1|2(C2
ξ1 +

1

ω2
ξ1

)− σ1ωτ1|A1|2(C2
τ1 +

1

ω2
τ1

) + 2ω2
1|A1|2(ωξ1 + ωτ1)}

+
π

4r

√
ωτ2ωξ2{|A2|4 + 2i(Ȧ2A

∗
2 − A2Ȧ∗

2)− |A2|2(Ċτ2ωτ2 + Ċξ2ωξ2)

− µωξ2|A2|2(C2
ξ2 +

1

ω2
ξ2

)− σ2ωτ2|A2|2(C2
τ2 +

1

ω2
τ2

) + 2ω2
2|A2|2(ωξ2 + ωτ2)}

+ 2|A1|2|A2|2
√

ωξ1ωξ2

ωξ1 + ωξ2

√
ωτ1ωτ2

ωτ1 + ωτ2

. (3.2.6)

The latter, in turn, results in the equivalent Euler-Lagrange equations :

∂〈L〉
∂p

− d

dζ

∂〈L〉
∂ṗ

= 0 ,

p = { Aj, A∗
j , ωξj, ωτj, Cξj, Cτj, j = 1, 2} ,

(3.2.7)

which embodies the following 12-dimensional nonlinear dynamical system :

∂〈L〉
∂A1

− d

dζ

∂〈L〉
∂Ȧ1

= 0 :

=⇒ −iȦ∗
1 −

1

4
A∗

1[(Ċτ1ωτ1 + Ċξ1ωξ1) + ωξ1(C
2
ξ1 +

1

ω2
ξ1

) + σ1ωτ1(C
2
τ1 +

1

ω2
τ1

)

− 2ω2
1(ωξ1 + ωτ1)] +

1

2
A∗

1[|A1|2 − i

2

d

dζ
ln(ωξ1ωτ1)

+ 4|A2|2√ωξ2ωτ2

√
1

(ωξ1 + ωξ2)(ωτ1 + ωτ2)
] = 0 , (3.2.8)

∂〈L〉
∂A∗

1

− d

dζ

∂〈L〉
∂Ȧ∗

1

= 0 :

=⇒ iȦ1 − 1

4
A1[(Ċτ1ωτ1 + Ċξ1ωξ1) + ωξ1(C

2
ξ1 +

1

ω2
ξ1

) + σ1ωτ1(C
2
τ1 +

1

ω2
τ1

)]

− 2ω2
1(ωξ1 + ωτ1)] +

1

2
A1[|A1|2 +

i

2

d

dζ
ln(ωξ1ωτ1)

+ 4|A2|2√ωξ2ωτ2

√
1

(ωξ1 + ωξ2)(ωτ1 + ωτ2)
] = 0 , (3.2.9)
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∂〈L〉
∂A2

− d

dζ

∂〈L〉
∂Ȧ2

= 0 :

=⇒ − i

r
Ȧ∗

2 −
1

4r
A∗

2[(Ċτ2ωτ2 + Ċξ2ωξ2) + µωξ2(C
2
ξ2 +

1

ω2
ξ2

) + σ2ωτ2(C
2
τ2 +

1

ω2
τ2

)]

− 2rω2
2(ωξ2 + ωτ2) +

1

2
A∗

2[|A2|2 − i

2r

d

dζ
ln(ωξ2ωτ2)

+ 4|A1|2√ωξ1ωτ1

√
1

(ωξ1 + ωξ2)(ωτ1 + ωτ2)
] = 0 , (3.2.10)

∂〈L〉
∂A∗

2

− d

dζ

∂〈L〉
∂Ȧ∗

2

= 0 :

=⇒ i

r
Ȧ2 − 1

4r
A2[(Ċτ2ωτ2 + Ċξ2ωξ2) + µωξ2(C

2
ξ2 +

1

ω2
ξ2

) + σ2ωτ2(C
2
τ2 +

1

ω2
τ2

)

− 2rω2
2(ωξ2 + ωτ2) +

1

2
A2[|A2|2 +

i

2r

d

dζ
ln(ωξ2ωτ2)

+ 4|A1|2√ωξ1ωτ1

√
1

(ωξ1 + ωξ2)(ωτ1 + ωτ2)
] = 0 , (3.2.11)

∂〈L〉
∂Cξ1

− d

dζ

∂〈L〉
∂Ċξ1

= 0 :

=⇒ d

dζ
(|A1|2ωξ1

√
ωξ1ωτ1)− 2|A1|2Cξ1ωξ1

√
ωξ1ωτ1 = 0 , (3.2.12)

∂〈L〉
∂Cξ2

− d

dζ

∂〈L〉
∂Ċξ2

= 0 :

=⇒ d

dζ
(|A2|2ωξ2

√
ωξ2ωτ2)− 2µ|A2|2Cξ2ωξ2

√
ωξ2ωτ2 = 0 , (3.2.13)

∂〈L〉
∂Cτ1

− d

dζ

∂〈L〉
∂Ċτ1

= 0 :

=⇒ d

dζ
(|A1|2ωτ1

√
ωξ1ωτ1)− 2σ1|A1|2Cτ1ωτ1

√
ωξ1ωτ1 = 0 , (3.2.14)

∂〈L〉
∂Cτ2

− d

dζ

∂〈L〉
∂Ċτ2

= 0 :

=⇒ d

dζ
(|A2|2ωτ2

√
ωξ2ωτ2)− 2σ2|A2|2Cτ2ωτ2

√
ωξ2ωτ2 = 0 , (3.2.15)
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∂〈L〉
∂ωξ1

− d

dζ

∂〈L〉
∂ω̇ξ1

= 0 :

=⇒ i(Ȧ1A
∗
1 − A1Ȧ∗

1)−
1

2
|A1|2[(Ċτ1ωτ1 + 3Ċξ1ωξ1) + (3C2

ξ1ωξ1 + σ1C
2
τ1ωτ1)

+ (
σ1

ωτ1

− 1

ωξ1

)− 2ω2
1(ωτ1 + 3ωξ1)− |A1|2]

+ 4|A1|2|A2|2
√

ωτ2

ωξ2

√
ωξ1 + ωξ2

ωτ1 + ωτ2

ω2
ξ2

(ωξ1 + ωξ2)2
= 0 , (3.2.16)

∂〈L〉
∂ωξ2

− d

dζ

∂〈L〉
∂ω̇ξ2

= 0 :

=⇒ i

r
(Ȧ2A

∗
2 − A2Ȧ∗

2)−
1

2r
|A2|2[(Ċτ2ωτ2 + 3Ċξ2ωξ2) + (3µC2

ξ1ωξ2 + σ2C
2
τ2ωτ2)

+ (
σ2

ωτ2

− µ

ωξ2

)− 2rω2
2(ωτ2 + 3ωξ2)− |A2|2]

+ 4|A1|2|A2|2
√

ωτ1

ωξ1

√
ωξ1 + ωξ2

ωτ1 + ωτ2

ω2
ξ1

(ωξ1 + ωξ2)2
= 0 , (3.2.17)

∂〈L〉
∂ωτ1

− d

dζ

∂〈L〉
∂ω̇τ1

= 0 :

=⇒ i(Ȧ1A
∗
1 − A1Ȧ∗

1)−
1

2
|A1|2[(3Ċτ1ωτ1 + Ċξ1ωξ1) + (C2

ξ1ωξ1 + 3σ1C
2
τ1ωτ1)

− (
σ1

ωτ1

− 1

ωξ1

)− 2ω2
1(ωξ1 + 3ωτ1)− |A1|2]

+ 4|A1|2|A2|2
√

ωξ2

ωτ2

√
ωτ1 + ωτ2

ωξ1 + ωξ2

ω2
τ2

(ωτ1 + ωτ2)2
= 0 , (3.2.18)

∂〈L〉
∂ωτ2

− d

dζ

∂〈L〉
∂ω̇τ2

= 0 :

=⇒ i

r
(Ȧ2A

∗
2 − A2Ȧ∗

2)−
1

2r
|A2|2[(3Ċτ2ωτ2 + Ċξ2ωξ2) + (µC2

ξ2ωξ2 + 3σ2C
2
τ2ωτ2)

− (
σ2

ωτ2

− µ

ωξ2

)− 2rω2
2(ωξ2 + 3ωτ2)− |A2|2]

+ 4|A1|2|A2|2
√

ωξ1

ωτ1

√
ωτ1 + ωτ2

ωξ1 + ωξ2

ω2
τ1

(ωτ1 + ωτ2)2
= 0 . (3.2.19)

Multiplication of (3.2.8) and (3.2.10) by A1 and A2 respectively and subtracting the

complex conjugates yields :

d

dζ
(|Aj|2√ωξjωτj) = 0 , j = 1, 2 (3.2.20)
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whence

|Aj|2√ωξjωτj = Tj = const . (3.2.21)

It is interesting to notice that relations of (3.2.21) imply the energy conservation of

motion which may be directly obtained via

∫ +∞

−∞
|Ψ(ζ, ξ, τ)|2dξdτ = π|Aj|2√ωξj ωτj = const . (3.2.22)

Similarly, multiplication of (3.2.8) and (3.2.10) by A1 and A2, respectively, and addition

of complex conjugates, produces :

i(Ȧ1A
∗
1 − A1Ȧ∗

1)−
1

2
|A1|2[(Ċτ1ωτ1 + Ċξ1ωξ1) + (C2

ξ1ωξ1 + σ1C
2
τ1ωτ1) +

σ1

ωτ1

+
1

ωξ1

−2ω2
1(ωξ1 + ωτ1)] + |A1|4 + 4|A1|2|A2|2√ωξ2ωτ2

√
1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
= 0

(3.2.23)

and

i

r
(Ȧ2A

∗
2 − A2Ȧ∗

2)−
1

2r
|A2|2[(Ċτ2ωτ2 + Ċξ2ωξ2) + (µC2

ξ1ωξ2 + σ2C
2
τ2ωτ2) +

σ2

ωτ2

+
µ

ωξ2

−2rω2
2(ωξ2 + ωτ2)] + |A2|4 + 4|A1|2|A2|2

√
ωτ1

ωξ1

√
1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
= 0 .

(3.2.24)

Substitution of (3.2.21) into (3.2.12) and (3.2.14), delivers, in turn

Cξ1 =
1

2

d

dζ
ln(ωξ1) , Cτ1 =

1

2σ1

d

dζ
ln(ωτ1) (3.2.25)

while combination of (3.2.21) with (3.2.13) and (3.2.15), yields :

Cξ2 =
1

2µ

d

dζ
ln(ωξ2) , Cτ2 =

1

2σ2

d

dζ
ln(ωτ2) . (3.2.26)

On subtraction of (3.2.23) from (3.2.16) and (3.2.18), one can readily obtain two

important relations:

1

ωξ1

− Ċξ1ωξ1 − C2
ξ1ωξ1 + 2ω2

1ωξ1 − 1

2
|A1|2

− 4|A2|2 ωξ1

ωξ1 + ωξ2

√
ωξ2ωτ2

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
= 0 (3.2.27)
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and

σ1

ωτ1

− Ċτ1ωτ1 − σ1C
2
τ1ωτ1 + 2ω2

1ωτ1 − 1

2
|A1|2

− 4|A2|2 ωτ1

ωτ1 + ωτ2

√
ωξ2ωτ2

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
= 0 . (3.2.28)

In a similar manner, from (3.2.17) and (3.2.19), one can derive the further two

relations:

µ

r

1

ωξ2

− 1

r
Ċξ2ωξ2 − µ

r
C2

ξ2ωξ2 + 2ω2
2ωξ2 − 1

2
|A2|2

− 4|A1|2 ωξ2

ωξ1 + ωξ2

√
ωξ1ωτ1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
= 0 (3.2.29)

and

σ2

r

1

ωτ2

− 1

r
Ċτ2ωτ2 − σ2

r
C2

τ2ωτ2 + 2ω2
2ωτ2 − 1

2
|A2|2

− 4|A1|2 ωτ2

ωτ1 + ωτ2

√
ωξ1ωτ1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
= 0 . (3.2.30)

Insertion of the relations of Tj, Cξj, Cτj given by (3.2.21), (3.2.25) and (3.2.26),

results in a 4-component nonlinear system:

ω̈ξ1 =
2

ωξ1

+
ω̇2

ξ1

2ωξ1

+ 4ω2
1ωξ1 − T1√

ωξ1ωτ1

− 8T2ωξ1

ωξ1 + ωξ2

√
1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
,

ω̈τ1 =
2σ2

1

ωτ1

+
ω̇2

τ1

2ωτ1

+ 4σ1ω
2
1ωτ1 − σ1T1√

ωξ1ωτ1

− 8σ1T2ωτ1

ωτ1 + ωτ2

√
1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
,

ω̈ξ2 =
2µ2

ωξ2

+
ω̇2

ξ2

2ωξ2

+ 4rµω2
2ωξ2 − rµT2√

ωξ1ωτ1

− 8rµT1ωξ2

ωξ1 + ωξ2

√
1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
,

ω̈τ2 =
2σ2

2

ωτ2

+
ω̇2

τ2

2ωτ2

+ 4rσ2ω
2
2ωτ2 − rσ2T2√

ωξ2ωτ2

− 8rσ2T1ωτ2

ωτ1 + ωτ2

√
1

(ωτ1 + ωτ2)(ωξ1 + ωξ2)
.

(3.2.31)

If we now set

Ω1 =
√

ωτ1, Ω2 =
√

ωξ1, Ω3 =
√

ωτ2, Ω4 =
√

ωξ2 (3.2.32)
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then the system (3.2.31) reduces to the form

Ω̈1 − 2σ1ω
2
1Ω1 =

Ω1

Ω4
2

[
σ2

1

(
Ω2

Ω1

)4

− σ1T1

2

(
Ω2

Ω1

)3
]
− Ω1

Ω4
4

4σ1T2

∆3
13∆24

,

Ω̈2 − 2ω2
1Ω2 =

Ω2

Ω4
1

[(
Ω1

Ω2

)4

− T1

2

(
Ω1

Ω2

)3
]
− Ω2

Ω4
4

4T2

∆13∆3
24

,

Ω̈3 − 2rσ2ω
2
2Ω3 =

σ2
2

Ω3
3

+
Ω3

Ω4
4

[
−rσ2T2

2

(
Ω4

Ω3

)3

− 4rσ2T1

∆3
13∆24

]
,

Ω̈4 − 2rµω2
2Ω4 =

1

Ω3
4

[
µ2 − µrT2

2

(
Ω4

Ω3

)
− 4T1µr

∆13∆3
24

]
,

∆13 =

[(
Ω1

Ω4

)2

+
(

Ω3

Ω4

)2
]1/2

and ∆24 =

[
1 +

(
Ω2

Ω4

)2
]1/2

.

(3.2.33)

It is this nonlinear dynamical system that will be the subject of the subsequent

analysis. It is noted that in the absence of terms in ω1, ω2 corresponding to the

harmonic traps, the system (3.2.33) coincides with that set down in [85].

3.2.3 Three Distinct Ermakov-Ray-Reid Reductions

Here, we return to the un-modulated optics system wherein ω2
1 = ω2

2 = 0 as originally

investigated in the context of two-pulse propagation in Kerr-type planar wave guides

in [85]. Therein, it was asserted that it is only in the special case of σ1 = σ2 = 1, T2 = 0

will an analytic solution, namely

ωξj(ζ) = ωτj(ζ) =

[
1 + ζ2

(
1− kj

2

)]1/2

(3.2.34)

be available. That is not actually the case to be established below, where three dis-

tinct situations are described which lead to complete analytic solution via integrable

Hamiltonian Ermakov-Ray-Reid systems.
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Case I

Ω1 = Ω3 , Ω2 = Ω4

In this case, wherein

ωτ1 = ωτ2 , ωξ1 = ωξ2 (3.2.35)

with the choice of parameters

σ1 = σ2 , r = 1 , µ = 1 , T1 = T2 (3.2.36)

the nonlinear optics system (3.2.33) reduces to the Ermakov-Ray-Reid system

Ω̈1 =
σ2

1

Ω3
1

−
(

3T1σ1

2

)
1

Ω2
1Ω2

,

Ω̈2 =
1

Ω3
2

−
(

3T1σ1

2

)
1

Ω1Ω2
2

(3.2.37)

with the Ray-Reid invariant

I1 =
1

2

[(
Ω̇1Ω2 − Ω1Ω̇2

)2

+

(
Ω1

Ω2

)2

+ σ2
1

(
Ω2

Ω1

)2

− 3T1σ1

(
Ω1

Ω2

+
Ω2

Ω1

)]
(3.2.38)

It is seen that the system (3.2.37) has previously been derived in other nonlinear

optics contexts in [20,22,44,129].

Case II

Ω1 = Ω4 , Ω2 = Ω3

In this case

ωτ1 = ωξ2 , ωτ2 = ωξ1 (3.2.39)

and if we set

σ1 = µr , σ2
2 = 1 , r = 1/σ2 , T1 = T2 (3.2.40)

then the system (3.2.33) reduces to the Ermakov-Ray-Reid system

Ω̈1 =
1

Ω2
1Ω2


σ2

1

(
Ω2

Ω1

)
− σ1T1

2
− 4T1σ1

(
Ω1

Ω2

)3

/

(
1 +

(
Ω1

Ω2

)2
)2


 ,

Ω̈2 =
1

Ω1Ω2
2


Ω1

Ω2

− T1

2
− 4T1

(
Ω1

Ω2

)
/

(
1 +

(
Ω1

Ω2

)2
)2




(3.2.41)
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with the integral of motion

I2 =
1

2

[(
Ω̇1Ω2 − Ω1Ω̇2

)2

+

(
Ω1

Ω2

)2

+ σ2
1

(
Ω2

Ω1

)2

− T1

2

(
Ω1

Ω2

)
− σ1T1

2

(
Ω2

Ω1

)
− 4T1σ1

1 + (Ω1

Ω2
)2
− 4T1

1 + (Ω1

Ω2
)2

]
. (3.2.42)

Case III

Ω1 = Ω2 , Ω3 = Ω4

Here,

ωτ1 = ωξ1 , ωτ2 = ωξ2 (3.2.43)

and if we set

σ1 = 1 , σ2 = µ (3.2.44)

then the system (3.2.33) reduces to the Ermakov-Ray-Reid system

Ω̈1 =
1

Ω2
1Ω4


Ω4

Ω1

(
1− T1

2

)
− 4T2

(
Ω1

Ω4

)3

/

(
1 +

(
Ω1

Ω4

)2
)2


 ,

Ω̈4 =
1

Ω2
4Ω1


Ω1

Ω4

(
σ2

2 −
rσ2T2

2

)
− 4T1σ2r

(
Ω1

Ω4

)
/

(
1 +

(
Ω1

Ω4

)2
)2




(3.2.45)

and the Ray-Reid integral of motion is given by

I3 =
1

2

[(
Ω̇1Ω4 − Ω1Ω̇4

)2

− 4T1rσ2

1 + (Ω1

Ω4
)2
− 4T2

1 + (Ω1

Ω4
)2

+

(
1− T1

2

)(
Ω4

Ω1

)2

+

(
σ2

2 −
rσ2T2

2

)(
Ω1

Ω4

)2
]

. (3.2.46)

3.2.4 The Hamiltonian Ermakov Systems and Integrals of Mo-

tion

Hamiltonian Ermakov systems have been discussed by Goncharenko et al in the

study of elliptic Gaussian beams in nonlinear optics [40, 41] and recently shown by
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Rogers and An to arise in a rotating shallow water model with circular paraboloidal

bottom topography [100]. Thus, if a Ermakov-Ray-Reid system

α̈ + ω2α =
1

α2β
F (β/α) ,

β̈ + ω2β =
1

αβ2
G(β/α)

(3.2.47)

adopts the form of

α̈ = −∂H

∂α
, β̈ = −∂H

∂β
(3.2.48)

then, such system has associated Hamiltonian

H =
1

2
(α̇2 + β̇2) +

1

2
ω2(α2 + β2) + V (α, β) (3.2.49)

where V (α, β) is the potential function of α and β.

Interestingly, it is noticed, in the present Cases I - III established above, that the

Ermakov-Ray-Reid systems indeed possess the Hamiltonian form (3.2.48). The associ-

ated Hamiltonians are as follows :

Case I : (Ω1 = Ω3 , Ω2 = Ω4)

H1 =
1

2

[
Ω̇2

1 + Ω̇2
2 +

σ2
1

Ω2
1

+
1

Ω2
2

− 3T1σ1

Ω1Ω2

]
. (3.2.50)

Case II : (Ω1 = Ω4 , Ω2 = Ω3)

H2 =
1

2

[
Ω̇2

1 + σ1Ω̇
2
2 +

σ2
1

Ω2
1

+
σ1

Ω2
2

− σ1T1

Ω1Ω2

− 4σ1T1

(Ω2
1 + Ω2

2)

]
. (3.2.51)

Case III : (Ω1 = Ω2 , Ω3 = Ω4)

H3 =
1

2

[
rσ2T1Ω̇

2
1 + T2Ω̇

2
4 +

rσ2T1

Ω2
1

(
1− T1

2

)
+

σ2T2

Ω2
4

(
σ2 − rT2

2

)
− 4rσ2T1T2

(Ω2
1 + Ω2

4)

]
.

(3.2.52)

Additionally, it is observed that if ω2
1 and ω2

2 are constant, then the system (3.2.33)
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shows that

λ̄ Ω̇1Ω̈1 + µ̄ Ω̇2Ω̈2 + ν̄ Ω̇3Ω̈3 + ζ̄ Ω̇4Ω̈4

= λ̄

[
2σ1ω

2
1Ω1Ω̇1 +

σ2
1Ω̇1

Ω3
1

− σ1T1

2

Ω̇1

Ω2Ω2
1

− 4T2σ1Ω1Ω̇1

(Ω2
1 + Ω2

3)
3/2(Ω2

2 + Ω2
4)

1/2

]

+ µ̄

[
2ω2

1Ω2Ω̇2 +
Ω̇2

Ω3
2

− T1

2

Ω̇2

Ω1Ω2
2

− 4T2Ω2Ω̇2

(Ω2
1 + Ω2

3)
1/2(Ω2

2 + Ω2
4)

3/2

]

+ ν̄

[
2rσ2ω

2
2Ω3Ω̇3 +

σ2
2Ω̇3

Ω3
3

− σ2T2rΩ̇3

2Ω2
3Ω4

− 4σ2T1rΩ3Ω̇3

(Ω2
1 + Ω2

3)
3/2(Ω2

2 + Ω2
4)

1/2

]

+ ζ̄

[
2rµω2

2Ω4Ω̇4 +
µ2Ω̇4

Ω3
4

− 1

2

µT2rΩ̇4

Ω2
4Ω3

− 4T1µrΩ4Ω̇4

(Ω2
1 + Ω2

3)
1/2(Ω2

2 + Ω2
4)

3/2

]
.

(3.2.53)

On setting

λ̄ : µ̄ : ν̄ : ζ̄ =
rT1

σ1

: rT1 :
T2

σ2

:
T2

µ

and integrating (3.2.53) with respect to time t, now produces the general Hamiltonian

integral of motion

H =
1

2

[
rT1

σ1

Ω̇2
1 + rT1Ω̇

2
2 +

T2

σ2

Ω̇2
3 +

T2

µ
Ω̇2

4

]

− rT1ω
2
1Ω

2
1 − rT1ω

2
1Ω

2
2 − rT2ω

2
2Ω

2
3 − rT2ω

2
2Ω

2
4

+
1

2

[
(rσ1T1)

1

Ω2
1

+ (rT1)
1

Ω2
2

+ (T2σ2)
1

Ω2
3

+ (T2µ)
1

Ω2
4

]
(3.2.54)

+
r

2

(
T 2

1

Ω1Ω2

+
T 2

2

Ω3Ω4

)
+

4rT1T2

(Ω2
1 + Ω2

3)
1/2(Ω2

2 + Ω2
4)

1/2
.

It is emphasized that the existence of integrals of motion (namely the Ray-Reid

invariant and Hamiltonian invariant) for the three particular reductions of (3.2.33)

allows their complete integration. Analytical solutions of these Hamiltonian Ermakov

systems may be readily constructed via the procedure of [100,106].

Here, we perform some numerical simulations of the solutions (3.2.4) descriptive of

beam propagation. Since, the Hamiltonian Ermakov system obtained in Case II is more

generalised than that in Case I and III, so we take it as example to exhibit the numerical
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results (see Fig 3.1-3.3). Fig 3.1 shows the time evolutions of the pulse widths. Fig

3.2 depicts the approximate theoretical shape of the optical beam obtained via the

variational approach. Fig 3.3 exhibits the contour of corresponding beam propagation

in Fig 3.2.

Fig 3.1: Time evolutions of pulse widths: (a) is for temporal width ωτ1 = Ω2
1, (b) is for

spacial with ωξ1 = Ω2
2.

Fig 3.2: Theoretical eigenmodes |Ψj | of the beams given by (3.2.4). Fig (a) is for |Ψ1| and

Fig (b) for |Ψ2|.

Fig 3.3: Contour plots of the theoretical modes |Ψj | corresponding to Fig 3.2. Fig (a) is for

|Ψ1| and Fig (b) for |Ψ2|.
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3.3 A 3+1- Dimensional Modulated Nonlinear Schrödinger

Equation

In this section, the application of the variational approximation is extended to

investigate a 3+1-dimensional modulated NLS equation. A multi-parameter Gaus-

sian ansatz is introduced which results in a coupled nonlinear system for the beam

widths. Particular reductions to integrable subsystems of Ermakov-Ray-Reid type and

Ovsiannikov-Dyson type are obtained.

3.3.1 The Governing Equations

The modulated 3+1-dimensional nonlinear Schrödinger equation considered here

adopts the form of (Rogers, Malomed and An [105])

i
∂u

∂t
+ [

1

2
(

∂2

∂x2
+

∂2

∂y2
+ ζ(t)

∂2

∂z2
)− s

∇2|u|
|u|

+ δ(t) ln |u|+ ε(t)|u|2n − 1

2
ω2(t)(x2 + y2 + z2)] u = 0 (3.3.1)

which incorporates a Bialynicki-Birula logarithmic and de-Broglie Bohm-type quantum

potential term in ∇2|u|/|u| together with a harmonic trap. It is noted that when

s < 1/2, the term of Bohm-type quantum potential may be removed via an analogous

transformation introduced by Rogers et al in [106].

In the sequel, our task is to isolate the competing effects of modulation and nonlin-

earity via the variational approximation method of the type that has been employed in

the preceding section.

It is seen that the NLS equation (3.3.1) can be readily derived via the Euler-Lagrange

equation

δL =
∂L
∂u∗

− d

dt

∂L
∂u∗t

− d

dx

∂L
∂u∗x

− d

dy

∂L
∂u∗y

− d

dz

∂L
∂u∗z

= 0 (3.3.2)
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where

L =

∫ ∫ ∫ ∫
L(u, u∗, ut, u

∗
t , ux, u

∗
x, uy, u

∗
y, uz, u

∗
z) dxdydz dt (3.3.3)

and L is the Lagrangian density given by

L =
i

2
(u∗ut − uu∗t )−

1

2
|ux|2 − 1

2
|uy|2 − 1

2
ζ(t)|uz|2 − 1

2
δ(t)|u|2

+ δ(t)|u|2 ln |u|+ ε(t)

n + 1
|u|2n+2 +

s

2
(|ux|2 + |uy|2 + |uz|2) (3.3.4)

+
s

4

u∗

u
(u2

x + u2
y + u2

z) +
s

4

u

u∗
(u∗x

2 + u∗y
2 + u∗z

2)− 1

2
ω2(t)(x2 + y2 + z2)|u|2 ,

(n 6= −1) .

The multi-parameter Gaussian wave ansatz

u(x, y, z, t) = A(t) exp

{
iφ(t)− 1

2
[

x2

W 2(t)
+

y2

V 2(t)
+

z2

T 2(t)
] +

i

2

[
b(t)x2 + c(t)y2 + β(t)z2

]}

(3.3.5)

is introduced as a trial function. Substitution of (3.3.5) into (3.3.3) produces

L =
1

2
{ i(A∗Ȧ− AȦ∗)− 2|A|2φ̇− |A|2[ x2(ḃ + b2) + y2(ċ + c2) + z2(β̇ + ζ(t)β2) ]

− δ(t)|A|2 − ω2(t)|A|2(x2 + y2 + z2)− |A|2(1− 2s)(
x2

W 4
+

y2

V 4
+

ζ(t)z2

T 4
)

− δ(t)|A|2( x2

W 2
+

y2

V 2
+

z2

T 2
− 2 ln |A|) } exp(− x2

W 2
− y2

V 2
− z2

T 2
)

+
ε(t)

n + 1
|A|2n+2 exp[−(n + 1)(

x2

W 2
+

y2

V 2
+

z2

T 2
) ] . (3.3.6)

with associated reduced Lagrangian

〈L〉 =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
L dxdydz

= π
3
2 WV T { i

2
(A∗Ȧ− AȦ∗)− |A|2φ̇ + δ(t)|A|2 ln |A| − 5

4
δ(t)|A|2 (3.3.7)

− 1

4
|A|2[ (ḃ + b2 + ω2(t))W 2 + (ċ + c2 + ω2(t))V 2 + (β̇ + ζ(t)β2 + ω2(t))T 2 ]

+
s

2
|A|2( 1

W 2
+

1

V 2
+

1

T 2
)− 1

4
|A|2( 1

W 2
+

1

V 2
+

ζ(t)

T 2
) +

ε(t)

(n + 1)
5
2

|A|2n+2 } .

The corresponding Euler-Lagrange equations

∂〈L〉
∂p

− d

dt

∂〈L〉
∂ṗ

= 0 , p = {A,W, V, T, b, c, β} (3.3.8)
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lead to the integral of motion

|A|2 WV T = const ≡ N (3.3.9)

together with the relations

b = Ẇ/W , c = V̇ /V , β = Ṫ /ζ(t)T (3.3.10)

and ultimately the following nonlinear system for {W,V, T}:

Ẅ + ω2(t)W =
1− 2s

W 3
− δ(t)

W
− 2nε(t)|A|2n

W (n + 1)
5
2

=
1− 2s

W 3
− δ(t)

W
− 2n

(n + 1)
5
2

ε(t)Nn

W n+1V nT n
,

V̈ + ω2(t)V =
1− 2s

V 3
− δ(t)

V
− 2nε(t)|A|2n

V (n + 1)
5
2

=
1− 2s

V 3
− δ(t)

V
− 2n

(n + 1)
5
2

ε(t)Nn

W nV n+1T n
,

(
Ṫ /ζ(t)

).

+ ω2(t)T =
ζ(t)− 2s

T 3
− δ(t)

T
− 2nε(t)|A|2n

T (n + 1)
5
2

=
ζ(t)− 2s

T 3
− δ(t)

T
− 2n

(n + 1)
5
2

ε(t)Nn

W nV nT n+1
.

(3.3.11)

In general, the above system is analytically intractable. However, for certain classes

of modulations {δ(t), ε(t)} , it can be reduced to consideration of an integrable Ermakov-

Ray-Reid system [105].

3.3.2 Associated Reductions of the Nonlinear Dynamical Sys-

tem

In the sequel, two distinct associated reductions of the nonlinear dynamical system

(3.3.11) are to be discussed. One is the Ermakov-Ray-Reid type and the other is the

Ovsiannikov-Dyson type.
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I. A Ermakov-Ray-Reid Reduction

If the modulations {δ(t), ε(t)} are chosen the form of

δ(t) =
1

WV
Ω

(
W

V

)
, ε(t) =

1

WV |A|2n
Λ

(
W

V

)
(3.3.12)

then (3.3.11) reduces to a Ermakov-Ray-Reid type system

Ẅ + ω2(t)W =
1

W 2V

[
(1− 2s)

V

W
+ Ψ

(
W

V

)]
,

V̈ + ω2(t)V =
1

WV 2

[
(1− 2s)

W

V
+ Ψ

(
W

V

)] (3.3.13)

augmented by (
Ṫ

ζ(t)

).

+ ω2(t)T =
ζ(t)− 2s

T 3
+

1

WV T
Ψ

(
W

V

)
(3.3.14)

where

Ψ

(
W

V

)
= −Ω

(
W

V

)
− 2n

(n + 1)3/2
Λ

(
W

V

)
. (3.3.15)

In the absence of a de-Broglie-Bohm potential so that s = 0, then on introduction

of the new independent variable t∗ according to

dt∗ = ζ(t)dt (3.3.16)

if the modulation ζ(t) adopts the form

ζ(t) = k T−2 , k ∈ R (3.3.17)

and ω(t) = 0, then (3.3.14) reduces to the classical Steen-Ermakov equation [30,124]

Tt∗t∗ − 1

kWV
Ψ

(
W

V

)
T =

1

T 3
. (3.3.18)

The latter has general solution constructed by the nonlinear superposition principle

[90,100,107]

T =
√

λ T 2
1 + 2µ T1T2 + ν T 2

2 (3.3.19)

where T1 and T2 are linearly independent solutions of

Tt∗t∗ − 1

kWV
Ψ

(
W

V

)
T = 0 (3.3.20)
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with unit Wronskian and

λν − µ2 = 1 . (3.3.21)

Thus,

ζ(t) =
k

λ T 2
1 + 2µ T1T2 + ν T 2

2

(3.3.22)

and

t =
1

k

∫ [
λ T 2

1 + 2µ T1T2 + ν T 2
2

]
dt∗ (3.3.23)

so that T (t) is given parametrically in terms of t∗ via the relations (3.3.22) and (3.3.23).

Likewise T (t) is given parametrically in terms of t∗ through (3.3.19) and (3.3.23).

In particular, the Ermakov-Ray-Reid system (3.3.13) adopts the Hamiltonian form

Ẅ = − ∂Ω̄

∂W
, V̈ = −∂Ω̄

∂V
(3.3.24)

iff Ψ = const = C in which case, the Ermakov-Ray-Reid system (3.3.13) reduces

Ẅ =
(1− 2s)

W 3
+

C
W 2V

,

V̈ =
(1− 2s)

V 3
+

C
V 2W

.

(3.3.25)

This system arises in a variety of other nonlinear optics contexts via the paraxial ap-

proximation [20, 22, 44, 129]. The availability of two integrals of motion, namely the

Ray-Reid invariant and the Hamiltonian readily allows its integration [100,106].

In light of the above analysis, we perform a numerical integration of the original

problem described by (3.3.1). The initial conditions of governing equations (3.3.25)

and (3.3.20) are chosen by (W (0), V (0), T (0)) = (0.1, 0.2, 0.3) and C = 2. The results

are exhibited in Fig 3.4-3.6. Fig 3.4 shows the approximate theoretical mode shape

obtained from the variational theory in xy-plane. Fig 3.5 and 3.6 depict the theoretical

eigenmode shapes in xz- and yz- plane, respectively.
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Fig 3.4: (a) Theoretic eigenmode |u| at xy-plane. (b) Contour plot of the

theoretic eigenmode |u| in Fig 3.4(a).

Fig 3.5: (a) Theoretic eigenmode |u| at xz-plane. (b) Contour plot of the

theoretic eigenmode |u| in Fig 3.5(a).

Fig 3.6: (a) Theoretic eigenmode |u| at yz-plane. (b) Contour plot of the

theoretic eigenmode |u| in Fig 3.6(a).

II. An Ovsiannikov-Dyson Type Reduction

If ζ(t) = 1, ω2(t) = 0, s = 1/2 and the modulations

δ(t) =
λ

(WV T )γ−1
, ε(t) =

µ

(WV T )γ−1
(3.3.26)
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then, on appropriate scaling, the system (3.3.11) reduces to the form

WẄ = V V̈ = T T̈ =
C

(WV T )γ−1
. (3.3.27)

The latter has origin in work of Ovsiannikov [81] and Dyson [28] on spinning clouds

in anisentropic gasdynamics. Importantly, it was established by Gaffet [35, 36] via a

Painlevé test that the system (3.3.27) is integrable in the case of an ideal monoatomic

gas with adiabatic index γ = 5/3. It is of particular interest to notice that when γ = 5/3,

the theoretical eigenmode ln |u| (with u given by (3.3.5)) exhibits a flip-over phenomena.

In order to shed some light on the behaviours of the flip-over effect, we choose the ini-

tial data (W (0), V (0), T (0)) = (0.1, 0.25, 0.5) and (W (0), V (0), T (0)) = (0.5, 0.25, 0.1),

respectively. Fig 3.7 shows that the eigenmode ln |u| changes its shape from verti-

cally elongated (cigar-like shape) to horizontally elongated (pancake-like shape) as it

expands and vice versa (see Fig 3.8). Such flip-over effect has recently been experimen-

tally observed by Gornushkin in a model that describes an asymmetric expansion of

laser induced plasma into a vacuum [43].
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Fig 3.7: Time evolutions of the ellipsoid given by ln |u|=const. The initial asymmetry ratios

is 0.1:0.25:0.5.

It is noted that in [28], Dyson considered the large-time asymptotics of the special

case of (3.3.27) with W = V so that the system becomes

Ẅ =
C WT

(W 2T )γ
,

T̈ =
C W 2

(W 2T )γ
.

(3.3.28)
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Fig 3.8: Time evolutions of the ellipsoid given by ln |u|=const. The initial asymmetry ratios

is 0.5:0.25:0.1.

Here, we observe that this system adopts Ermakov-Ray-Reid form iff γ = 5/3 in which

case it becomes

Ẅ =
C

W 2T

(
T

W

)1/3

,

T̈ =
C

WT 2

(
T

W

)1/3

,

(3.3.29)

with the Ray-Reid invariant

I =
1

2
(WṪ − ẆT )2 +

3C
4

[(
T

W

)4/3

+ 2

(
W

T

)2/3
]

. (3.3.30)
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Chapter 4

On A 2+1-Dimensional Madelung

System with Logarithmic and Bohm

Quantum Potentials

4.1 Introduction

Here, our concern will be with a 2+1-dimensional modulated Madelung system with

logarithmic and Bohm quantum potentials. Early work on systems with a logarithmic

potential goes back to Bialynicki-Birula and Mycielski [14], who introduced a nonlinear

Schrödinger (NLS) equation of the type

i
∂ Ψ

∂t
+∇2Ψ− (ε ln |Ψ|+ V (r, t))Ψ = 0

in the context of quantum mechanics. Since then there has been an extensive literature

devoted to the analysis of this type equation (see, inter alia [13–15,32,49,51,57,116]).

Particular interest in such systems centres around its admittance of Gaussian shaped

soliton-like solutions [14]. In [74], Nassar set down a general class of NLS equations

incorporating both logarithmic and Bohm quantum potential terms and made connec-

tion to hydrodynamic type systems via a Madelung transformation. Madelung systems
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containing Bohm quantum potential terms arise in both plasma physics theory and non-

linear optics [74,127]. In particular, in the case of a logarithmically nonlinear saturable

medium, the Madelung system as derived via Maxwell’s equations in a nonlinear optics

context by Wagner et al in [127] involves both Bohm and Bialynicki-Birula quantum

potential contributions.

In this chapter, a modulated versions of 2+1-dimensional Madelung system with log-

arithmic and Bohm quantum potentials is investigated. Introduction of an exponential-

type elliptic vortex ansatz as originally introduced in the context of elliptic warm core

eddy theory in [96] into the Madelung system results in an eight-dimensional nonlinear

dynamical system which admits exact analytical solutions in terms of an elliptic integral

representation. This eight-dimensional dynamical system has an underlying integrable

Hamiltonian structure. Novel integrals of motion render its complete integration.

4.2 The Governing Equations

The 2+1-dimensional Madelung system to be considered here adopts the form (Rogers

and An [101])
∂h

∂t
+∇( h∇Φ ) = 0 , (4.2.1)

∂Φ

∂t
+

1

2
(∇Φ )2 − 2(s− 1)

∇2h1/2

h1/2
+ ε(t) ln h + 2ω2(t)(x2 + y2) = 0 . (4.2.2)

This incorporates a modulated logarithmic quantum potential together with a Bohm

quantum potential term and harmonic trap contribution. It is noted that a Madelung

system of the above type with a Bohm quantum potential, but in the absence of a

harmonic trap term and for a general nonlinear optical medium has been derived by

Wagner et al in [127].

Introduction of the Madelung transformation [69]

Ψ = h1/2 exp

(
iΦ

2

)
(4.2.3)
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shows that the nonlinear coupled system (4.2.1)-(4.2.2) may be encapsulated in the

logarithmic NLS type equation

i
∂Ψ

∂t
+∇2Ψ−

[
s
∇2|Ψ|
|Ψ| + ε(t) ln |Ψ|+ ω2(t)(x2 + y2)

]
Ψ = 0 . (4.2.4)

incorporating the Madelung-Bohm quantum potential type term ∇2|Ψ|/|Ψ|. The latter

has its origin in de-Broglie-Bohm quantum theory [17,19].

If we now set

q = ∇Φ (4.2.5)

then the Madelung hydrodynamic system equivalent to (4.2.1)-(4.2.2) becomes

∂h

∂t
+ div ( hq ) = 0 , (4.2.6)

∂q

∂t
+ q · ∇q− 2(1− s)

∇(∇2h1/2)

h1/2
+ ε(t)∇ ln h + 2ω2(t)∇(x2 + y2) = 0 (4.2.7)

augmented by the irrotational condition

∇× q = 0 . (4.2.8)

It is the Madelung hydrodynamic system (4.2.6)-(4.2.7) incorporating the harmonic

trap that will be the subject of the present chapter.

4.3 A Class of Exact Analytical Solutions of the

Madelung System

This section is devoted to investigations on the Madelung system incorporating the

logarithmic and Bohm quantum potentials (4.2.6)-(4.2.7) via an exponential-type ellip-

tic vortex ansatz wherein an eight-dimensional nonlinear dynamical system is isolated.

Appropriate choice of the modulated physical variables and construction of a represen-

tation that analogous to Ball-type moment of inertia theorem in [96] proves key to the

construction of solutions of the dynamical system.
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4.3.1 An Exponential-Type Elliptic Vortex Ansatz

Integrable substructure of the Madelung system (4.2.6)-(4.2.7) is now sought via the

exponential-type elliptic vortex ansatz (Rogers and An [101])

q = L(t)x + M(t) ,

h = σ(t) exp (xT E(t)x ) ,

x =


 x− q(t)

y − p(t)


 (4.3.1)

where

L =


 u1(t) u2(t)

v1(t) v2(t)


 , M =


 q̇(t)

ṗ(t)


 ,

E =


 a(t) b(t)

b(t) c(t)


 .

(4.3.2)

At this stage, we proceed without the irrotationality constraint (4.2.8) which may

be imposed ‘a posteriori’.

Insertion of the ansatz (4.3.1)-(4.3.2) into (4.2.6)-(4.2.7) produces an eight-dimensional

nonlinear dynamical system

u̇1 = −u2
1 − u2v1 + 4(1− s)(a2 + b2)− 2aε(t)− 4ω2 ,

u̇2 = −u1u2 − u2v2 + 4(1− s)(ab + bc)− 2bε(t) ,

v̇1 = −u1v1 − v1v2 + 4(1− s)(ab + bc)− 2bε(t) ,

v̇2 = −u2v1 − v2
2 + 4(1− s)(b2 + c2)− 2cε(t)− 4ω2 ,

ȧ = −2u1a− 2v1b ,

ḃ = −u2a− b(u1 + v2)− v1c ,

ċ = −2u2b− 2v2c ,

σ̇ = −(u1 + v2)σ

(4.3.3)

augmented by the linear oscillator equations

p̈ + 4ω2p = 0 , q̈ + 4ω2q = 0 . (4.3.4)
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In what follows, it proves convenient to introduce new variables as previously adopted

in the shallow water context in [96,100], namely

G = u1 + v2 , GR =
1

2
(v1 − u2) ,

GS =
1

2
(v1 + u2) , GN =

1

2
(u1 − v2) ,

B = a + c , BS = b , BN =
1

2
(a− c) .

(4.3.5)

Thus, G and GR represent, in turn, the divergence and spin of the Madelung velocity

field, while GS and GN represent shear and normal deformation rates.

Two relations which are key to the subsequent development and which may be es-

tablished by appeal to the original system (4.3.3) are now recorded. They may be

validated by symbolic computation and are embodied in the following theorem:

Theorem I

Ṁ∗ = −2GM∗

Q̇∗ = −2GQ∗
(4.3.6)

where

M∗ = au2 + b(v2 − u1)− cv1 , 4 = ac− b2 ,

Q∗ = −a(u2
2 + v2

2) + 2b(u1u2 + v1v2)− c(u2
1 + v2

1)

−4ω2(a + c) + 44− 4(1− s)4(a + c)− 44
∫

ε(t)G dt .

(4.3.7)

Corollary

It is seen that the relations (4.3.6) imply the integral of motion

M∗/Q∗ = const . (4.3.8)

Remarkably, the relations (4.3.6) are analogous to those obtained in the context of

elliptic warm core eddy theory in [96] and in a rotating shallow water setting in [100].

57



However, here the parameter s and time modulated variable ε(t) are involved. It proves

that the selection of these two variables are crucial to the calculations established below.

Substitution of (4.3.5) into the system (4.3.3), delivers the nonlinear system

σ̇ + Gσ = 0 ,

Ḃ + BG + 4(BNGN + BSGS) = 0 ,

ḂS + BSG + GSB − 2BNGR = 0 ,

ḂN + BNG + BGN + 2BSGR = 0 ,

ĠR + GGR = 0 ,

ĠS + GGS + 2 εBS − 4(1− s)BBS = 0 ,

ĠN + GGN + 2 εBN − 4(1− s)BBN = 0 ,

Ġ +
1

2
G2 + 2(G2

S + G2
N −G2

R) + 2 εB + 8ω2 − 8(1− s)(
1

4
B2 + B2

N + B2
S) = 0 .

(4.3.9)

It is seen that the spacial structure of the original model has been removed and only

time dependent terms remain. In the sequel, focus will be on the construction of the

analytical solution of the above nonlinear dynamical system.

If we now introduce Ω via

G =
2Ω̇

Ω
(4.3.10)

then (4.3.9)6 and (4.3.9)1 yield, in turn

GR = c0 Ω−2 , σ = cI Ω−2 . (4.3.11)

The irrotational case corresponds to GR = 0 .

New Ω-modulated variables are now introduced via

B̄ = Ω2B , B̄S = Ω2BS , B̄N = Ω2BN ,

ḠS = Ω2GS , ḠN = Ω2GN

(4.3.12)
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whence, the residual six equations of the nonlinear system (4.3.9) reduce to

˙̄B + 4(B̄NḠN + B̄SḠS)/Ω2 = 0 ,

˙̄BS + (B̄ḠS − 2c0B̄N)/Ω2 = 0 ,

˙̄BN + (B̄ḠN + 2c0B̄S)/Ω2 = 0 ,

˙̄GS + 2 εB̄S − 4(1− s)B̄B̄S/Ω2 = 0 ,

˙̄GN + 2 εB̄N − 4(1− s)B̄B̄N/Ω2 = 0 ,

(4.3.13)

together with

Ω3Ω̈− c2
0 + Ḡ2

S + Ḡ2
N + εB̄ Ω2 − (1− s)(B̄2 + 4B̄2

S + 4B̄2
N) + 4ω2Ω4 = 0 (4.3.14)

It is the seven-dimensional dynamical system (4.3.13) and (4.3.14) and its various

avatars will be analysed in detail with a view to construct the explicit solutions to

the original Madelung system.

4.3.2 First Integrals and Analytical Solutions

It is readily verified that combination of (4.3.13)2 and (4.3.13)3 together with use of

(4.3.13)1 produces the integral of motion

B̄2
S + B̄2

N −
B̄2

4
= cII , (4.3.15)

while, similarly, combination of (4.3.13)4 and (4.3.13)5 yields

Ḡ2
S + Ḡ2

N + (1− s)B̄2 −
∫

ε(t) ˙̄B Ω2 dt = 0 . (4.3.16)

It is seen that when B̄ = const or ε(t) =
k

Ω2
a second explicit integral of motion is

obtained. In the sequel, we shall proceed with the latter case first.

Case I: B̄ 6= 0 and ε(t) =
k

Ω2

It is observed that if B̄ 6= 0 and the modulation is chosen as

ε(t) =
k

Ω2
(4.3.17)
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then (4.3.16) produces the second integral of motion, namely

Ḡ2
S + Ḡ2

N + (1− s)B̄2 − kB̄ = cIII (4.3.18)

The integrals of motion (4.3.15) and (4.3.18) may be conveniently parametrised

according to

B̄S = ±
√

cII +
1

4
B̄2 cos φ(t) , B̄N = ±

√
cII +

1

4
B̄2 sin φ(t),

(4.3.19)

ḠS = ±
√

cIII + kB̄ − (1− s)B̄2 sin θ(t) , ḠN = ±
√

cIII + kB̄ − (1− s)B̄2 cos θ(t).

In order to illustrate the subsequent procedure, we proceed with the specific parametri-

sation

B̄S = −
√

cII +
1

4
B̄2 cos φ(t) , B̄N = −

√
cII +

1

4
B̄2 sin φ(t) ,

(4.3.20)

ḠS = −
√

cIII + kB̄ − (1− s)B̄2 sin θ(t) , ḠN = +
√

cIII + kB̄ − (1− s)B̄2 cos θ(t) ,

whence

B̄SḠS + B̄NḠN =

√
cII +

1

4
B̄2

√
cIII + kB̄ − (1− s)B̄2 sin(θ − φ) , (4.3.21)

B̄NḠS − B̄NḠS =

√
cII +

1

4
B̄2

√
cIII + kB̄ − (1− s)B̄2 cos(θ − φ) . (4.3.22)

Accordingly, (4.3.13)1 yields

˙̄B +
4

Ω2

√
cII +

1

4
B̄2

√
cIII + kB̄ − (1− s)B̄2 sin(θ − φ) = 0 . (4.3.23)

Conditions (4.3.13)2,3 reduce to a single condition, namely

√
cII +

B̄2

4

(
φ̇ +

2c0

Ω2

)
− B̄

Ω2

√
cIII + kB̄ − (1− s)B̄2 cos(θ − φ) = 0 , (4.3.24)

while, in a similar manner, (4.3.13)4,5 reduce to another single condition

θ̇
√

cIII + kB̄ − (1− s)B̄2 + 2

[
ε− 2B̄(1− s)

Ω2

]√
cII +

1

4
B̄2 cos (θ − φ) = 0 (4.3.25)
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that is, in the case of the modulation ε given by (4.3.17),

θ̇
√

cIII + kB̄ − (1− s)B̄2 +
2

Ω2

[
k − 2B̄(1− s)

]√
cII +

1

4
B̄2 cos (θ−φ) = 0 . (4.3.26)

The relation (4.3.6) may now be used to obtain the explicit solution of (4.3.23).

Thus, (4.3.6) together with (4.3.10) implies, on integration, that

M∗ =
[−c0B̄ + 2

(
B̄NḠS − B̄SḠN

)]
Ω−4 = cIVΩ−4 (4.3.27)

whence, on use of (4.3.22) it is seen that

c0B̄ = −cIV + 2

√
cII +

1

4
B̄2

√
cIII + kB̄ − (1− s)B̄2 cos(θ − φ) . (4.3.28)

Elimination of cos(θ − φ) in (4.3.24) and (4.3.26) by means of (4.3.28) now yields, in

turn

φ̇ =
2

Ω2

[
B̄(c0B̄ + cIV)

B̄2 + 4cII

− c0

]
(4.3.29)

and

θ̇ =
2

Ω2

[
B̄(1− s)− k

2

]
c0B̄ + cIV

cIII + kB̄ − (1− s)B̄2
. (4.3.30)

A second key result is embodied in :

Theorem II

¨(Ω2B) + 16ω2(Ω2B̄) = −2(Q∗ − 44)Ω4 (4.3.31)

where, substitution of (4.3.10) into (4.3.6) and integration yields

Q∗ = cvΩ
−4 (4.3.32)

so that

¨(Ω2B) + 16ω2(Ω2B̄) + 2(cV + 4 cII) = 0 (4.3.33)

Interestingly, it is noticed that the Ball-type theorem established here is associated

with Q∗ and 4. While the relation obtained in the hydrodynamic context in [96, 100]

is represented by Q∗ and M∗.
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If we proceed with ω = const 6= 0, then (4.3.33) yields

Ω2B̄ = cVI cos(4ωt) + cVII sin(4ωt)− (cV + 4 cII)

8ω2
(4.3.34)

while elimination of θ − φ between (4.3.23) and (4.3.28) together with use of (4.3.34)

now delivers B̄ via the elliptic integral relation

B̄∫

cVIII

dσ

σ
√

(σ2 + 4 cII) (cIII + kσ − (1− s)σ2)− (c0σ + cIV)2

= ±2

t∫

0

dτ

cVI cos 4ωτ + cVII sin 4ωτ − (cV + 4cII)

8ω2

(4.3.35)

where B̄|t=0 = cVIII. The elliptic integral in (4.3.35) can be treated by standard methods

described in [18]. Once B̄ has been obtained then Ω is given by (4.3.34), while φ and θ

are then determined by integration, in turn, of (4.3.29) and (4.3.30). It is noted that,

in the irrotational case pertinent to the construction via the Madelung transformation

of exact wave packet solutions of the NLS equation (4.2.4), it is required to take c0 = 0.

The original matrices L(t) and M(t) in (4.3.1) are given by

L =
1

Ω2




ΩΩ̇ +
√

cIII + kB̄ − (1− s)B̄2 cos θ −(c0 +
√

cIII + kB̄ − (1− s)B̄2 sin θ)

c0 −
√

cIII + kB̄ − (1− s)B̄2 sin θ ΩΩ̇−
√

cIII + kB̄ − (1− s)B̄2 cos θ




(4.3.36)

and

E =
1

Ω2




B̄

2
−

√
1

4
B̄2 + cII sin φ −

√
cII +

1

4
B̄2 cos φ

−
√

cII +
1

4
B̄2 cos φ

B̄

2
+

√
1

4
B̄2 + cII sin φ


 (4.3.37)

while σ is given by (4.3.11)2 and p, q by (4.3.4). The intruded terms p, q, ṗ, q̇ in the

class of exact solutions corresponds to invariance of the system (4.2.6) - (4.2.7) under

a Lie group transformation. It is recalled that the preceding analysis has been carried

out with the modulation (4.3.17).
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Case II: B̄ = const

When B̄ = const, then mutatis mutandis, an analogous parametrisation procedure

may be employed. In the present case, the second integral of motion adopts the form

Ḡ2
S + Ḡ2

N = c∗III (4.3.38)

which may be parametrised via

ḠS = −√
c∗III sin θ(t) , ḠN = +

√
c∗III cos θ(t) (4.3.39)

whence,

B̄SḠS + B̄NḠN =

√
c∗III (cII +

1

4
B̄2) sin(θ − φ) , (4.3.40)

and

B̄NḠS − ḠN B̄S =

√
c∗III (cII +

1

4
B̄2) cos(θ − φ) . (4.3.41)

Insertion of (4.3.40) in (4.3.13)1 shows that if c∗III 6= 0, cII+
1

4
B̄2 6= 0 then θ = φ+nπ.

If we proceed with θ = φ then (4.3.41) reduces to

B̄NḠS − ḠN B̄S =

√
c∗III (cII +

1

4
B̄2) = const . (4.3.42)

Conditions (4.3.13)2,3 reduce to the single condition

φ̇ =
1

Ω2

[
B̄

√
c∗III/(cII +

1

4
B̄2) − 2c0

]
(4.3.43)

while (4.3.13)4,5 lead to the single condition

θ̇ =
2

Ω2

[
2B̄ (1− s)− ε Ω2

]√
(cII +

1

4
B̄2)/c∗III . (4.3.44)

Interestingly, with θ = φ, consistency of (4.3.43) and (4.3.44) in the present case

B̄ = const again requires the modulation ε(t) to be of the type (4.3.17) in which case

the constant B̄ is determined by the relation

B̄

√
c∗III/(cII +

1

4
B̄2)− 2c0 = 2

[
2B̄ (1− s)− k

]√
(cII +

1

4
B̄2)/c∗III (4.3.45)
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Moreover, (4.3.14) reduces to a classical Steen-Ermakov equation [30,124]

Ω̈ + 4 ω2Ω = K/Ω3 , (4.3.46)

where

K = c2
0 − c∗III + 2(1− s)(B̄2 + 2cII)− kB̄ . (4.3.47)

It is readily checked that (4.3.46) is consistent with (4.3.33) modulo a relation between

B̄ and the residual arbitrary constants.

The Madelung-type hydrodynamic variables q and h are again given by (4.3.1)-

(4.3.2) but now with

L =
1

Ω2




ΩΩ̇ +
√

c∗III cos θ −( c0 +
√

c∗III sin θ )

c0 −
√

c∗III sin θ ΩΩ̇−√
c∗III cos θ


 (4.3.48)

and

E =
1

Ω2




B̄

2
−

√
1

4
B̄2 + cII sin θ −

√
cII +

1

4
B̄2 cos θ

−
√

cII +
1

4
B̄2 cos θ

B̄

2
+

√
1

4
B̄2 + cII sin θ


 (4.3.49)

where

Ω =
√

λΩ2
1 + 2µΩ1Ω2 + νΩ2

2 , (4.3.50)

with Ω1, Ω2 linearly independent solutions of

Ω̈ + 4ω2Ω = 0 (4.3.51)

with unit Wronskian and λν − µ2 = K. In the above, the angle θ = φ is given

by integration of (4.3.43). In the irrotational case c0 = 0, associated wave-packet

solutions of periodically modulated 2+1-dimensional NLS equations of the type (4.2.4)

incorporating logarithmic and Bohm quantum potentials are now readily constructed

via the Madelung transformation.

64



4.4 Ermakov-Ray-Reid Connection and Integrabil-

ity

Here, it is shown that, remarkably, the nonlinear dynamical system (4.3.3), namely

Ė + 2EL− Λσ1 = 0

L̇ + L2 − 4(1− s)E2 + 2ε E + 4ω2I = 0

(4.4.1)

where σ1 is

σ1 =


 0 1

−1 0


 (4.4.2)

and Λ = au2 + bv2 − bu1 − cv1, admits an underlying integrable structure of Ermakov-

Ray-Reid type as obtained by Rogers and An in the context of a rotating shallow water

equation with a circular paraboloidal bottom topography in [100].

With construction of Ermakov-Ray-Reid system in mind, we now turn to the rela-

tions (4.3.7)2 and (4.3.32). It is seen that combination of them leads to the expression

− B̄

Ω2

[
Ḡ2

S + Ḡ2
N − 4cII(1− s)

]− B̄ Ω2 (G2
R + 4 ω2 + G2/4)

+2 G(B̄SḠS + B̄NḠN) + 2 (GR + c0B̄)− 4kcII

Ω2
= cV + 4cII .

(4.4.3)

While conditions (4.3.23) and (4.3.28), by virtue of the first integral (4.3.18), imply

that

Ḡ2
S + Ḡ2

N =
Ω4 ˙̄B2 + 4(c0B̄ + cIV)

4(B̄2 + 4cII)
(4.4.4)

whence, (4.4.3) is reformulated in terms of Ω and B̄, namely

−B̄

B̄2 + 4cII

[
˙̄B2Ω2

4
+

B̄(c0B̄ + cIV)2

Ω2

]
+

B̄

Ω2
[ c2

0 + 4(1− s)cII ]

+
2

Ω2
[ c0cIV − 2kcII ]− Ω̇(B̄Ω̇ + ˙̄BΩ)− 4ω2B̄Ω2 = cV + 4cII .

(4.4.5)

Remarkably, the integral of motion (4.4.5) turns out to be the Hamiltonian invariant

of the Ermakov-Ray-Reid system to be established blow. Indeed, if, for instance, in the
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case of cI > 0 and B̄ < 0 < −4cII < B̄2, we adopt the physical variables

Φ = Ω

√
cI

2cII

(B̄ −
√

B̄2 + 4cII) , Ψ = Ω

√
cI

2cII

(B̄ +
√

B̄2 + 4cII) (4.4.6)

then, up to irrelevant constant, (4.4.5) assumes the ’symmetric form’

H =
1

2
(Φ̇2 + Ψ̇2) + 2ω2(Φ2 + Ψ2) +

1

ΦΨ
J(Φ/Ψ) (4.4.7)

where

H =
cI(cV + 4cII)

2cII

(4.4.8)

and

J(ξ) =
c2
I

4c2
II

[
(cIV + 2c0

√−cII)
2 ξ

(ξ + 1)2
+ (cIV − 2c0

√−cII)
2 ξ

(ξ − 1)2

+8c2
II(1− s)(ξ +

1

ξ
)− 8kcII

√−cII

]
.

(4.4.9)

It is established that, remarkably, the two physical variables Φ and Ψ given by (4.4.6)

are governed by the Ermakov-Ray-Reid system, namely (cf. Rogers and An [101])

Φ̈ + 4ω2Φ =
1

Φ2Ψ
F (Ψ/Φ) =

1

Φ2Ψ

[
J(Φ/Ψ)− Φ

Ψ
J ′(Φ/Ψ)

]

Ψ̈ + 4ω2Ψ =
1

ΦΨ2
G(Φ/Ψ) =

1

ΦΨ2

[
J(Φ/Ψ) +

Φ

Ψ
J ′(Φ/Ψ)

] (4.4.10)

Moreover, one may readily verify that the associated Ermakov-Ray-Reid system has

additional property of adopting a Hamiltonian form

Φ̈ = −∂H
∂Φ

, Ψ̈ = −∂H
∂Ψ

(4.4.11)

that is

Φ̈ + 4ω2Φ =
1

Φ2Ψ

d

d(Ψ/Φ)

[
Ψ

Φ
J(Φ/Ψ)

]
,

Ψ̈ + 4ω2Ψ =
1

ΦΨ2

d

d(Φ/Ψ)

[
Φ

Ψ
J(Φ/Ψ)

]
.

(4.4.12)

Here H is the Hamiltonian invariant given by (4.4.7) and J is determined by (4.4.9).

Accordingly, the system (4.4.10) is integrable and analytical solution may be explicitly

obtained via the procedure described in [100].
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Chapter 5

A Rotating Magnetogasdynamic

System: Integrable Hamiltonian

Ermakov Reduction

5.1 Introduction

The purpose of this chapter is to study a 2+1-dimensional magnetogasdynamic

system incorporating rotation with a view of isolation integrable dynamical substruc-

ture. The Lundquist equations of magnetogasdynamics are intrinsically nonlinear and

in general, are analytically intractable. However, under certain physically acceptable

assumptions, analytical progress has been achieved. In [75–77], particular classes of

time-dependent two-dimensional solutions were derived by Neukirch et al via a proce-

dure in which the nonlinear acceleration terms in the Lundquist momentum equation

either vanish or, are conservative. On the other hand, in [78, 79, 87], exact solutions

were constructed by Lie group analysis and magnetogasdynamic substitution princi-

ples. By contrast, in recent work [98, 102, 111], an elliptic vortex-type ansatz has been

introduced in 2+1-dimensional magnetogasdynamic contexts and underlying integrable
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Ermakov-Ray-Reid structure has been isolated.

In this chapter, a novel two-parameter pressure-density ansatz which extends that

assumed in [77, 98, 111, 118] is introduced to analyse a non-isothermal rotating magne-

togasdynamic system. A novel power-type elliptic vortex procedure and two-parameter

pressure-density ansatz are introduced and thereby, via elimination of the spatial de-

pendence, reduction obtains to a finite-dimensional nonlinear dynamical system in time

together with adjoined algebraic conditions. Time-modulated physical variables are in-

troduced to derive analytical solutions of the original magnetogasdynamic system. It

is demonstrated that the nonlinear dynamical system admits an underlying integrable

Hamiltonian Ermakov structure and as well as a Lax pair representation analogous to

that in [110] .

5.2 The Magnetogasdynamic System

Here, we consider a anisentropic magnetogasdynamic system incorporating rotation,

namely,
∂ρ

∂t
+ div(ρq) = 0 , (5.2.1)

ρ

[
∂ q

∂t
+ (q · ∇)q + f k× q

]
− µ curl H×H +∇p = 0 , (5.2.2)

div H = 0 , (5.2.3)

∂H

∂t
= curl (q×H) , (5.2.4)

∂S

∂t
+ q · ∇S = 0 (5.2.5)

where the velocity q and magnetic field H are given by

q = ui + vj , (5.2.6)

H = ∇A× k + hk (5.2.7)

and a polytropic gas law is assumed, namely

S = − ln ρ +
1

γ − 1
ln T , γ 6= 1 . (5.2.8)
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together with

p = ρR T . (5.2.9)

In the above, the magneto-gas density ρ(x, t), pressure p(x, t), entropy S(x, t), tem-

perature T (x, t) and magnetic flux A(x, t) are all assumed to be dependent only on

x = xi + yj and time t.

Insertion of the representation (5.2.7) into Faraday’s law (5.2.4) produces the con-

vective constraint
∂A

∂t
+ q · ∇A = 0 (5.2.10)

together with
∂h

∂t
+ div(hq) = 0 . (5.2.11)

By virtue of the continuity equation (5.2.1), the latter holds automatically if we set

h = λρ , λ ∈ R . (5.2.12)

In the sequel, a novel two-parameter (m, n) pressure-density ansatz is introduced

via

p = ε0(t)ρ
2 + ε1(t)ρ

n + ε2(t)ρ
m (5.2.13)

It is recalled that the the relation p ∼ ρ was previously adopted in [77] and p ∼ ρ2

arisen in astrophysical contexts in [118], while recently, the parabolic pressure-density

law p = p0 + p1ρ + p2ρ
2 has been employed in [111].

Insertion of the two-parameter (m, n) ansatz (5.2.13) into (5.2.9), it is seen that

the compatibility of (p, ρ, T ) relation yields

T = ε0(t)ρ + ε1(t)ρ
n−1 + ε2(t)ρ

m−1 (5.2.14)

whence, on use of (5.2.8), it is required that the entropy distribution adopt the form

S = − ln ρ +
1

γ − 1
ln(ε0(t)ρ + ε1(t)ρ

n−1 + ε2(t)ρ
m−1) . (5.2.15)

The energy equation (5.2.5) now requires that

(ρt+q·∇ρ)

[
ε0 + (n− 1)ε1ρ

n−2 + (m− 1)ε2ρ
m−2

(γ − 1)(ε0ρ + ε1ρn−1 + ε2ρm−1)
− 1

ρ

]
+

ε̇0ρ + ε̇1ρ
n−1 + ε̇2ρ

m−1

(γ − 1)(ε0ρ + ε1ρn−1 + ε2ρm−1)
= 0
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whence, on use of the continuity equation (5.2.1)

− div q
[
(2− γ)ε0ρ + (n− γ)ε1ρ

n−1 + (m− γ)ε2ρ
m−1

]
+ ε̇0ρ + ε̇1ρ

n−1 + ε̇2ρ
m−1 = 0

(5.2.16)

that is

1

γ − 1

Ṫ

T

[
(2− γ)ε0ρ + (n− γ)ε1ρ

n−1 + (m− γ)ε2ρ
m−1

]
+ ε̇0ρ + ε̇1ρ

n−1 + ε̇2ρ
m−1 = 0 .

(5.2.17)

On substitution of (5.2.7) and (5.2.13) into the momentum equation (5.2.2), it is

seen that

∂ q

∂ t
+ (q · ∇)q + f k× q +

1

ρ

[
µ(∇2A)(∇A) + ε1∇ρn

]
+ (µλ2 + 2ε0)∇ρ +

ε2

ρ
∇ρm = 0

(5.2.18)

together with

Ayρx − Axρy = 0 (5.2.19)

whence

A = A(ρ, t) . (5.2.20)

Attention here is restricted to the separable case

A = Φ(ρ)Ψ(t) (5.2.21)

whence, on substitution into (5.2.10) and use of the continuity equation (5.2.1), yields

Ψ̇(t) =
ρ Φ′(ρ)

Φ(ρ)
Ψ(t) div q . (5.2.22)

Here, we proceed with

Φ = ρn (5.2.23)

where n is the parameter involving in the relation (5.2.14), so that

Ψ̇ = nΨ div q (5.2.24)

and

A = ρnΨ(t) . (5.2.25)
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Hence, as in the case of the spinning non-conducting gas cloud analysis of Ovsian-

nikov [81] and Dyson [28], the divergence of the velocity is dependent only on time.

Moveover, the relation (5.2.16) shows that

− 1

n

Ψ̇

Ψ

[
(2− γ)ε0ρ + (n− γ)ε1ρ

n−1 + (m− γ)ε2ρ
m−1

]
+ ε̇0ρ + ε̇1ρ

n−1 + ε̇2ρ
m−1 = 0

and it is observed that this condition holds identically with

ε0 = α0Ψ
2−γ

n , ε1 = α1Ψ
n−γ

n , ε2 = α2Ψ
m−γ

n , (5.2.26)

where αi (i = 1, 2, 3) are arbitrary constants of integration.

In addition, the isentropic condition (5.2.5) together with the polytropic gas law

(5.2.8) and the continuity equation (5.2.1) show that

div q =
1

1− γ

Ṫ

T
(5.2.27)

whence, on use of (5.2.14),

(2− γ) div q =
ε̇0

ε0

, (n− γ) div q =
ε̇1

ε1

, (m− γ) div q =
ε̇2

ε2

. (5.2.28)

It is seen that in view of (5.2.24), the final results of εi given by (5.2.28) coincide with

that given by (5.2.26).

In summary, the magnetogasdynamic system now reduces to consideration of the

nonlinear coupled system
∂ρ

∂t
+ div(ρq) = 0 ,

Ψ̇ = nΨ div q , (5.2.29)

∂ q

∂ t
+(q ·∇)q+f k×q+

1

ρ

(
µΨ2∇2ρn + ε1

)∇ρn +(µλ2 +2ε0)∇ρ+
ε2m

m− 1
∇ρm−1 = 0 .

together with the additional algebraic conditions (5.2.26). It is this reduced system

(5.2.29) that will be the subject of the subsequent sections. The inherent nonlinearity

of the system (5.2.29) remains a major impediment to analytic progress. It is noted that

this system is overdetermined since (5.2.29)3 is implicitly constrained by the requirement

that div q be a function of t only.
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5.3 Analytical Solutions of the Magnetogasdynamic

System

In this section, an important extension of the elliptic vortex procedure of [96] which

involves the pressure-density parameter m is introduced into the reduced magnetogas-

dynamic system (5.2.29). The choices of the two pressure-density parameters involved

in the pressure term and time modulated variables are key to the construction of the

exact analytical solution.

5.3.1 Removal of Spacial Dependence

An integrable nonlinear dynamical sub-system is now sought via a power-type elliptic

vortex ansatz involving a pressure-density parameter m (An, Rogers and Schief [4])

q = L(t)x + M(t) ,

ρ = (xT E(t)x + ρ0)
m−1 , (m 6= 1)

x =


 x− q̄(t)

y − p̄(t)


 (5.3.1)

where

L(t) =


 u1(t) u2(t)

v1(t) v2(t)


 , E(t) =


 a(t) b(t)

b(t) c(t)


 , M(t) =




˙̄q(t)

˙̄p(t)


 . (5.3.2)

It is emphasized that the precluded case with the parameters m = 1 and n = 0 coincides

with what has been discussed in [111]. Here, we proceed with the general case m 6= 1

and n 6= 0.

Insertion of (5.3.1) into the continuity equation (5.2.29)1 yields




ȧ

ḃ

ċ




+




2u1 + (m− 1)(u1 + v2) 2v1 0

u2 m(u1 + v2) v1

0 2u2 2v2 + (m− 1)(u1 + v2)







a

b

c




= 0

(5.3.3)
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together with

ρ̇0 + ρ0(m− 1)(u1 + v2) = 0 . (5.3.4)

In order to reduce the system (5.2.29) to a amenable form, we proceed with

n = m− 1 (5.3.5)

and

2ε0 + µλ2 = 0 ,

ε1 + 2µΨ2(a + c) = 0 ,

(5.3.6)

so that the two terms ∇ρ and ∇ρn vanish and the momentum equation (5.2.29)3 is

reducible to
∂ q

∂ t
+ (q · ∇)q + f k× q +

ε2m

m− 1
∇ρm−1 = 0 . (5.3.7)

It is observed that the consistency of (5.3.6)1 with (5.2.26)1 requires the adiabatic index

γ = 2.

Substitution of (5.3.1) into (5.3.7) now gives



u̇1

u̇2

v̇1

v̇2




+


 LT −fI

fI LT







u1

u2

v1

v2




+ 2
ε2m

m− 1




a

b

b

c




= 0 (5.3.8)

augmented by the linear auxiliary equations

¨̄p + f ˙̄q = 0 , ¨̄q − f ˙̄p = 0 . (5.3.9)

At this stage, it is noted that the spacial dependence of the original magnetogasdynamic

system has been removed. Hence, the solution of the magnetogasdynamic system is

encoded in the seven-dimensional time-dependent nonlinear system (5.3.3) and (5.3.8).

Once the solution of the latter is known, the quantities ρ0 and Ψ are obtained via

integration of (5.3.4) and (5.2.29)2, that is

Ψ̇ = (m− 1)(u1 + v2)Ψ . (5.3.10)

However, the conditions (5.2.26) and (5.3.6) remain. The admissibility of these con-

straints on the dynamical system will be examined in the sequel.
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5.3.2 Canonical Variables

In what follows, it proves convenient to proceed in terms of new variables as previously

employed in a hydrodynamics context in [96,100], namely

G = u1 + v2 , GR =
1

2
(v1 − u2) ,

GS =
1

2
(v1 + u2) , GN =

1

2
(u1 − v2) , (5.3.11)

B = a + c , BS = b , BN =
1

2
(a− c) .

Here, G and GR correspond, in turn, to the divergence and spin of the velocity field,

while GS and GN represent shear and normal deformation rates.

On use of the expressions (5.3.11), the system (5.3.3)-(5.3.4) together with (5.3.8)

produce the eight-dimensional nonlinear dynamical system

ρ̇0 + (m− 1)ρ0G = 0 ,

Ḃ + mBG + 4 ( BNGN + BSGS ) = 0 ,

ḂS + mBSG + BGS − 2BNGR = 0 ,

ḂN + mBNG + BGN + 2BSGR = 0 ,

Ġ +
1

2
G2 + 2 ( G2

N + G2
S −G2

R )− 2fGR + 2
ε2m

m− 1
B = 0 ,

ĠN + GGN − fGS + 2
ε2m

m− 1
BN = 0 ,

ĠS + GGS + fGN + 2
ε2m

m− 1
BS = 0 ,

ĠR + GGR +
1

2
fG = 0

(5.3.12)

together with

Ψ̇ = (m− 1)ΨG . (5.3.13)

It is observed that the introduction of the pressure-density parameters m and ε2 leads to

a generalisation of the nonlinear dynamical systems obtained in other various contexts

in [96,100–102,110,111].
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The form of (5.3.12)4 suggests introducing a function Ω via

G =
2Ω̇

Ω
(5.3.14)

so that (5.3.12)1 and (5.3.12)8 show that

ρ0 =
cI

Ω2(m−1)
(5.3.15)

and

GR =
c0

Ω2
− 1

2
f . (5.3.16)

The relation (5.3.13) produces

Ψ = ν Ω2(m−1) (5.3.17)

where, in the above, c0, cI and ν are arbitrary constants of integration.

Two conditions which are key to the subsequent development and which may be es-

tablished by appeal to the original system (5.3.12) are now recorded. They are readily

validated by symbolic computation and are embodied in the following theorem:

Theorem I

Ṁ∗ + (m + 1)GM∗ = 0

Q̇∗ + (m + 1)GQ∗ = 0
(5.3.18)

where

M∗ = 2(BNGS −BSGN)−B(GR +
f

2
) , 4 =

1

4
B2 −B2

S −B2
N ,

Q∗ = −B(G2
S + G2

N + G2
R +

1

4
G2) + 4GR(BNGS −BSGN)

+2G(BSGS + BNGN) + 4
ε2m

m− 1
4− 4

m

m− 1
4Ωm−1

∫
ε̇2Ω

1−m dt .

(5.3.19)

It is seen that the relation (5.3.19) in Theorem I generalises the results obtained

in [96,100–102].

75



New Ω-modulated variables involving the pressure-density parameter m are now

introduced according to

B̄ = Ω2mB , B̄S = Ω2mBS , B̄N = Ω2mBN ,

ḠS = Ω2GS , ḠN = Ω2GN

(5.3.20)

whence the system (5.3.12) reduces to

˙̄B +
4 (B̄NḠN + B̄SḠS)

Ω2
= 0 ,

˙̄BS + fB̄N +
B̄ḠS − 2c0B̄N

Ω2
= 0 ,

˙̄BN − fB̄S +
B̄ḠN + 2c0B̄S

Ω2
= 0 ,

˙̄GS + fḠN +
2ε2m

m− 1

B̄S

Ω2(m−1)
= 0 ,

˙̄GN − fḠS +
2ε2m

m− 1

B̄N

Ω2(m−1)
= 0

(5.3.21)

augmented by the relations (5.3.15) and (5.3.16) together with a nonlinear equation for

Ω, namely

Ω3Ω̈ +
1

4
f 2Ω4 + Ḡ2

N + Ḡ2
S − c2

0 +
ε2m

m− 1

B̄

Ω2(m−2)
= 0 . (5.3.22)

The seven-dimensional dynamical system (5.3.21), (5.3.22) together with the time-

modulated constraints given by (5.2.26) and (5.3.6) will be analysed in detail in the

following.

5.3.3 The Constraints and First integrals

We now consider the algebraic conditions of εi, (i = 1, 2, 3) given by (5.2.26) and

(5.3.6). It is seen that the consistency of ε0 requires the adiabatic index γ = 2. Com-

parison of the two expressions for ε1 in (5.2.26)2 with (5.3.6)2, namely

α1Ψ
n−2

n + 2µΨ2(a + c) = 0 (5.3.23)

from the relations (5.3.5), (5.3.17) and (5.3.20)1, shows that

α1ν
m−3
m−1 + 2µν2Ω2B̄ = 0 (5.3.24)
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whence

ν = 0 or Ω2B̄ = −α1

2µ
ν

1+m
1−m := δ . (5.3.25)

In the former case, the magnetic flux A vanishes so that the magnetic field H is purely

transverse and the nonlinear dynamical system (5.3.21)-(5.3.22) is unconstrained. In the

latter case, the equation (5.3.21)1 implies that the dynamical system (5.3.21)-(5.3.22)

is constrained by

B̄NḠN + B̄SḠS − δΩ̇/Ω = 0 . (5.3.26)

When it comes to consider the condition ε2, on use of (5.3.17), the relation (5.2.26)3

shows that

ε2 = α2ν
m−2
m−1 Ω2(m−2) (5.3.27)

that is

ε2 =
α(m− 1)

m
Ω2(m−2) . (5.3.28)

In summary, under the constraint of (5.3.28), the nonlinear dynamical system (5.3.21)

admits four integrals of motion, namely

B̄2
S + B̄2

N −
B̄2

4
= cII , (5.3.29)

Ḡ2
S + Ḡ2

N − αB̄ = cIII , (5.3.30)

2(B̄NḠS − B̄SḠN)− c0B̄ = cIV , (5.3.31)

2(GR+c0B̄)+2G(B̄SḠS+B̄NḠN)+4αcIIΩ
−2m− 1

m− 3
−B̄Ω2

(
Ḡ2

S + Ḡ2
N

Ω4
+

G2

4
+ G2

R

)
= cV ,

(5.3.32)

where cII, cIII, cIV and cV are constants of integration.

5.3.4 A Parametrisation

The integrals of motion (5.3.29) and (5.3.30) may be conveniently parametrised, in

turn, according to

B̄S = −
√

cII +
1

4
B̄2 cos φ(t) , B̄N = −

√
cII +

1

4
B̄2 sin φ(t) ,

ḠS = −
√

cIII + B̄ sin θ(t) , ḠN = +
√

cIII + B̄ cos θ(t) .

(5.3.33)
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Substitution of the parametrisation (5.3.33) into (5.3.21)1 yields

˙̄B +
4

Ω2

√
( cII + B̄2/4 )( cIII + αB̄ ) sin(θ − φ) = 0 (5.3.34)

while conditions (5.3.21)2,3 reduce to a single relation, namely

(
φ̇− f +

2c0

Ω2

) √
cII +

B̄2

4
− B̄

Ω2

√
cIII + αB̄ cos(θ − φ) = 0 (5.3.35)

and similarly, (5.3.21)4,5 produce another single requirement

(
f − θ̇

) √
cIII + αB̄ +

2α

Ω2

√
cII +

B̄2

4
cos(θ − φ) = 0 . (5.3.36)

Substitution of (5.3.33) into (5.3.31) yields

c0B̄ = −cIV + 2
√(

cII + B̄2/4
) (

cIII + αB̄
)

cos(θ − φ) . (5.3.37)

Elimination of θ − φ in (5.3.35) and (5.3.36) respectively, yields

φ̇ = f +
2

Ω2

(
δ(c0δ + cIVΩ2)

δ2 + 4cIIΩ4
− c0

)
(5.3.38)

and

θ̇ = f − α

Ω2

(
c0δ + cIVΩ2

αδ2 + cIIIΩ2

)
. (5.3.39)

It remains to consider the nonlinear equation (5.3.22) for Ω, namely

Ω3Ω̈ +
f 2

4
Ω4 + cIII − c2

0 +
ε2m

m− 1

B̄

Ω2(m−2)
= 0

whence, by virtue of (5.3.25)2 and (5.3.28), produces to a generalised Steen-Ermakov

equation

Ω̈ +
1

4
f 2Ω =

c2
0 − cIII

Ω3
− 2αδ

Ω5
. (5.3.40)

On use of Theorem I, it is readily shown that

¨(Ω2B) + f 2 Ω2B̄ = −2(Q∗ + fM∗)Ω2(m+1) = −2(cV + fcIV) (5.3.41)

whence

Ω2B̄ =





cVI cos ft + cVII sin ft− 2(cV + fcIV)/f2 , f 6= 0

−cVt2 + cVIt + cVII , f = 0 .

(5.3.42)
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On elimination of θ − φ and Ω in (5.3.34) via the relations (5.3.37) and (5.3.42) it is

seen that, if B̄ 6= const then B̄ obeys the elliptic integral relation

∫ B̄

cVIII

dB̄∗

B̄∗
√

(B̄∗2 + 4cII) (cIII + αB̄∗)− (c0B̄∗ + cIV)2

=





−2

∫ t

0

dt∗

cVI cos ft∗ + cVII sin ft∗ − 2(cV + fcIV)/f2
, if f 6= 0

−2

∫ t

0

dt∗

−cV t∗2 + cVI t∗ + cVII

, if f = 0

(5.3.43)

where B̄|t=0 = cVIII. In the present case, when the gas law (5.2.9) prevails, it is seen

that (5.3.41) holds automatically by virtue of (5.3.25)2 with

Ω2B̄ = δ =




−2(cV + fcIV)/f2 , f 6= 0

cVII , f = 0 .

(5.3.44)

We now turn to consider the compatibility of the nonlinear equation (5.3.40) and

(5.3.44) with the elliptic integral expression involving B̄.

It is observed that the first integral of (5.3.40) is

Ω̇2 +
1

4
f 2Ω2 +

(c2
0 − cIII)

Ω2
− αδ

Ω4
+ k = 0 (5.3.45)

where k is a constant of integration. While the elliptic integral relation (5.3.43) shows

˙̄B2 +
4

Ω4
(c0B̄ + cIV)2 =

4

Ω4
(4cII + B̄2)(cIII + αB̄) (5.3.46)

whence, on use of (5.3.44),

δ2Ω̇2 +
(c2

0 − cIII)δ
2

Ω2
+ (c2

IV − 4cIIcIII)Ω
2 − αδ3

Ω4
+ 2c0cIV − 4αcIIδ = 0 . (5.3.47)

Thus, compatibility requires that

δ2f 2 = 4(c2
IV − 4cIIcIII) (5.3.48)

and

kδ2 = 2c0cIV − 4αcIIδ . (5.3.49)
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To conclude, if B̄ = δΩ−2 is determined explicitly by the elliptic integral representa-

tion (5.3.43), then Ω is given by the relation (5.3.44) and the angles φ and θ are obtained

by integration, in turn, of (5.3.38) and (5.3.39). Thus, a multi-parameter class of exact

solutions of the original 2+1-dimensional magnetogasdynamic system is generated with

the velocity components u1, u2, v1, v2 and the quantities a, b, c in the density relation

given, in turn, by

u1 =
Ω̇

Ω
+

1

Ω3

√
αδ + cIIIΩ2 cos θ(t) , v1 =

c0

Ω2
− f

2
− 1

Ω3

√
αδ + cIIIΩ2 sin θ(t),

u2 = − c0

Ω2
+

f

2
− 1

Ω3

√
αδ + cIIIΩ2 sin θ(t) , v2 =

Ω̇

Ω
− 1

Ω2

√
αδ + cIIIΩ2 cos θ(t)

(5.3.50)

together with

a =
1

2Ω2(m+1)

[
δ −√4cIIΩ4 + δ2 sin φ(t)

]
, b =

1

2Ω2(m+1)

√
4cIIΩ4 + δ2 cos φ(t) ,

c =
1

Ω2(m+1)

[
δ +

√
4cIIΩ4 + δ2 sin φ(t)

]
,

ρ0 =
cI

Ω2(m−1)
.

(5.3.51)

The magnetic flux A is given by

A = νρm−1Ω2(m−1) = ν
[
a(x− q̄)2 + 2b(x− q̄)(y − p̄) + c(y − p̄)2 + ρ0

]
Ω2(m−1)

(5.3.52)

and the entropy distribution is given by

S = ln(T/ρ) (5.3.53)

where T is determined via

T = ε0ρ
2 + ε1ρ

m−1 + ε2ρ
m . (5.3.54)

5.4 Hamiltonian Ermakov Structure

It is now demonstrated that the nonlinear dynamical system (5.3.12) may also be re-

formulated in terms of a Ermakov-Ray-Reid system which turns out to be Hamiltonian,
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leading to an additional hidden first integral.

Here, it proves convenient to proceed with p̄(t) = q̄(t) = 0 in the ansatz (5.3.1).

However, the terms are readily re-introduced by use of a Lie group invariance of the

magneto-gasdynamic system.

The semi-axes of the time-modulated ellipse

a(t)x2 + 2b(t)xy + cy2 + h0(t) = 0

(ac− b2 > 0)

(5.4.1)

are given by

Φ =

√
2ρ0√

(a− c)2 + 4b2 − (a + c)
(5.4.2)

and

Ψ =

√
2ρ0

−
√

(a− c)2 + 4b2 − (a + c)
(5.4.3)

Substitution of the relation (5.3.51) delivers

Φ =

√
− cI

2cII

√
−δ −

√
4cIIΩ4 + δ2 (5.4.4)

Ψ =

√
− cI

2cII

√
−δ +

√
4cIIΩ4 + δ2 (5.4.5)

where it is required that

cI > 0, cII < 0, δ < 0, δ2 + 4cIIΩ
4 > 0 . (5.4.6)

It is readily established that the semi-axes Φ, Ψ of the ellipse (5.4.1) are governed

by a Ermakov-Ray-Reid system, namely

Φ̈ +
1

4
f 2Φ =

1

Φ2Ψ

[
ZZ ′

1 + ( Ψ/Φ )2
−

(
Ψ

Φ

)
(Z2 + k/4 )

[ 1 + ( Ψ/Φ )2 ]2

]

Ψ̈ +
1

4
f 2Ψ =

1

ΦΨ2

[
− ZZ ′

1 + ( Ψ/Φ )2
−

(
Φ

Ψ

)
(Z2 + k/4 )

[ 1 + (Φ/Ψ)2 ]2

] (5.4.7)

81



where

Z = Z(Φ/Ψ) = ΨΦ̇− Ψ̇Φ =
2cI

Ω
√−cII

√
(δ2 + 4cIIΩ4)(αδ + cIIIΩ2)− Ω2(c0δ + cIVΩ2)2

δ2 + 4cIIΩ4

(5.4.8)

and Ω is given in terms of the ratio of the semi-axes via the relation

Ω =

(
− δ2

cII

)1/4 (
Ψ

Φ
+

Φ

Ψ

)−1/2

. (5.4.9)

In the above, k is the constant of integration given by

k =

(
cI

cII

)2 (
f 2(c2

IV + c2
VII)−

4

f 2
(cV + fcIV)2

)
, (f 6= 0) . (5.4.10)

In addition, the Ermakov-Ray-Reid system (5.4.7) is seen to be Hamiltonian with

invariant

H =
1

2
(Φ̇2 + Ψ̇2)− 1

2(Φ2 + Ψ2)

[
Z2 − f 2

4
(Φ2 + Ψ2)2 +

k

4

]
, (5.4.11)

and accordingly, integrable in the manner described in [100].

It is established, in the above, that semi-axes Φ and Ψ of the time modulated ellipse

associated with the density in (5.3.1) are governed by a Ermakov-Ray-Reid system,

albeit of some complexity. In the sequel, it is shown that a Ermakov-Ray-Reid system

may also be associated with the velocity components, at least, in a particular reduction.

Attention is restricted, as in the work of Dyson [28] on non-conducting gas clouds, to

irrotational motions in the absence of a Coriolis term.

Thus, we set

L =




˙̄α(t)/ᾱ(t) 0

0 ˙̄β(t)/β̄(t)


 , E =


 ā(t) 0

0 c̄(t)


 (5.4.12)

in (5.3.2) corresponding to the subclass of exact solutions in (5.3.50) with θ = 0, φ =

π/2 and

˙̄α

ᾱ
=

Ω̇

Ω
+

1

Ω2

√
cIII +

αδ

Ω2
,

˙̄β

β̄
=

Ω̇

Ω
− 1

Ω2

√
cIII +

αδ

Ω2
,

ā =
1

2Ω2(m+1)

[
δ −√4cIIΩ4 + δ2

]
, c̄ =

1

2Ω2(m+1)

[
δ +

√
4cIIΩ4 + δ2

]
.

(5.4.13)

82



In the present case, the continuity equation, via (5.3.3), yields

˙̄a

ā
+

˙̄α

ᾱ
(m + 1) +

˙̄β

β̄
(m− 1) = 0 ,

˙̄c

c̄
+

˙̄α

ᾱ
(m− 1) +

˙̄β

β̄
(m + 1) = 0 (5.4.14)

whence

ā = c̄Iᾱ
−(m+1)β̄1−m , c̄ = c̄IIᾱ

1−mβ̄−(m+1) . (5.4.15)

Moreover, (5.3.4) shows that

ρ0 = c̄III(ᾱβ̄)1−m = c̄∗IIIΩ
2(1−m) . (5.4.16)

In the above, c̄I, c̄II, c̄III and c̄∗III are arbitrary non-zero constants of integration. The

momentum equation gives

¨̄α + 2ε2(t)
m

m− 1
āᾱ = 0 , ¨̄β + 2ε2(t)

m

m− 1
c̄β̄ = 0 . (5.4.17)

together with

¨̄p = 0 , ¨̄q = 0 . (5.4.18)

Insertion of the expressions (5.4.15) into (5.4.17) gives

¨̄α + 2ε2(t)
m

m− 1

c̄I

ᾱ2β̄
(ᾱβ̄)2−m = 0 , (5.4.19)

¨̄β + 2ε2(t)
m

m− 1

c̄II

ᾱβ̄2
(ᾱβ̄)2−m = 0 . (5.4.20)

whence, in view of the constraint (5.3.28), we obtain the canonical Ermakov-Ray-Reid

system

¨̄α =
c̄∗I

ᾱ2β̄
, ¨̄β =

c̄∗II
ᾱβ̄2

. (5.4.21)

with the Ray-Reid invariant

I =
1

2
( ˙̄αβ̄ − ᾱ ˙̄β)2 + c̄∗I

β̄

ᾱ
+ c̄∗II

ᾱ

β̄
(5.4.22)

where

c̄∗I = −2αc̄I

(
c̄∗III
c̄III

)m−2
m−1

, c̄∗II = −2αc̄II

(
c̄∗III
c̄III

)m−2
m−1

. (5.4.23)

It is observed that the system (5.4.21) is also Hamiltonian with the associated integral

of motion

H =
1

2
(c̄I

˙̄β2 + c̄II ˙̄α2) +
c̄∗I c̄

∗
II

ᾱβ̄
(5.4.24)
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In conclusion, the existence of Ermakov-Ray-Reid systems, not only for density

parameters but also for velocity components, emphasizes the importance of such systems

in the study of the 2+1-dimensional magnetogasdynamic system.

5.5 A Lax Pair Formulation

In light of the above analysis, we now turn to the original magnetogasdynamic

system and find, in the manner of [110], that the nonlinear dynamical system admits

an associated Lax pair representation [1].

It is seen that the eight-dimensional nonlinear dynamical equations (5.3.3) together

with (5.3.8) arising from the ansatz (5.3.1) and (5.3.2) may be rewritten into the com-

pact matrix form as :

Ė + EL + LTE + (m− 1)E trL = 0 ,

L̇ + L2 + f PL + 2ε2(t)
m

m− 1
E = 0

(5.5.1)

where L,E are given by (5.3.2)1,2 and

P =


 0 −1

1 0


 . (5.5.2)

Moreover, the relations (5.3.4) and (5.3.9) yield

ρ̇0 + (m− 1)ρ0trL = 0 (5.5.3)

and

Ṁ + fPM = 0 . (5.5.4)

Here, it proves convenient to proceed with the gauge transformation according to

[110]

L̃ = DLD−1 +
1

2
fP , Ẽ = DED−1 (5.5.5)
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where

D = exp

(
1

2
Pft

)
. (5.5.6)

whence (5.5.1) yields

˙̃E + ẼL̃ + L̃T Ẽ + (m− 1)Ẽ trL̃ = 0 ,

˙̃L + L̃2 +
1

4
f 2I + 2ε2(t)

m

m− 1
Ẽ = 0 .

(5.5.7)

On application of the Cayley-Hamilton identity

L̃2 − (trL̃)L̃ + (detL̃)I = 0 (5.5.8)

the matrix equation (5.5.7)2 becomes

˙̃L + (trL̃)L̃− (detL̃)I +
1

4
f 2I + 2ε2(t)

m

m− 1
Ẽ = 0 . (5.5.9)

Moreover, on introduction of a new trace-free matrix Q̃ via

Q̃ = PẼ (5.5.10)

and on use of the identity

PHP = HT − (trH) I (5.5.11)

valid for any matrix H, the system (5.5.7)2 results in

˙̃Q + [Q̃, L̃] + m(trL̃)Q̃ = 0 . (5.5.12)

Since trL = trL̃ = 2Ω̇/Ω, it is natural to introduce the scaling

L̄ = L̃Ω2 , Ē = ẼΩ2m , Q̄ = Q̃Ω2m (5.5.13)

so that (5.5.9) and (5.5.12) reduce, in turn, to

˙̄Q + Ω−2 [Q̄, L̄] = 0 ,

˙̄L− Ω−2(detL̄)I +
f 2

4
Ω2I + 2ε2(t)

m

m− 1
Ω2(1−m)Ē = 0 .

(5.5.14)

At this stage, it is noticed that (5.5.14)1 may be reformulated in terms of two trace-free

matrixes Q̄ and L̄∗, namely

˙̄Q + Ω−2 [Q̄, L̄∗] = 0 , (5.5.15)
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where L̄∗ denotes the trace-free part of L̄. Further, (5.5.14)2 may be decomposed into

the trace-free part

˙̄L∗ + ε2(t)
m

m− 1
Ω2(1−m)[Q̄, P] = 0 , (5.5.16)

together with the trace part

tr ˙̄L− 2Ω−2(detL̄∗)− 1

2
Ω−2(trL̄)2 +

1

2
f 2Ω2 + 2ε2(t)

m

m− 1
Ω2(1−m)(trĒ) = 0 .

(5.5.17)

In view of the constraint (5.3.28) with α scaling to unity, the systems (5.5.16) and

(5.5.17) become

˙̄L∗ + Ω−2[Q̄, P] = 0,

tr ˙̄L− 2Ω−2(detL̄∗)− 1

2
Ω−2(trL̄)2 +

1

2
f 2Ω2 + 2Ω−2(trĒ) = 0 .

(5.5.18)

In general, the matrix system (5.5.15) and (5.5.18) are coupled via the relation

ρ̇0 + (m− 1)ρ0trL̃ = 0 . (5.5.19)

A new time variable τ is now introduced via

dτ = Ω−2dt (5.5.20)

whence the equations (5.5.15) and (5.5.18)1 reduce to

Q̄′ + [Q̄, L̄∗] = 0 , L̄∗
′
+ [Q̄ , P] = 0 . (5.5.21)

It is now seen that the matrix system (5.5.21) constitutes the compatibility condition

M′(λ) + [M(λ) , L(λ)] = 0 (5.5.22)

associated with the linear pair

Ψ ′ = L(λ)Ψ , µΨ = M(λ)Ψ (5.5.23)

where

L(λ) = L̄∗ + λ P , M(λ) = Q̄ + λ L̄∗ + λ2P (5.5.24)
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and µ is an arbitrary constant. L and M represent Lax matrices for the nonlinear

matrix system (5.5.21).

In addition, it is observed that if we set

Σ = Ω−1 (5.5.25)

then the relation (5.5.18)2 reduces to a classical Steen-Ermakov type equation [30,124]

Σ ′′ + (detL̄∗ − trĒ)Σ =
f 2

4Σ3
. (5.5.26)

Analogous results have been obtained in the case of non-isothermal spinning magneto-

gasdynamic system by Rogers and An in [102] and rotating gas clouds by Rogers and

Schief in [110], respectively.
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Chapter 6

Conclusions and Suggestions for

Future Research

In this thesis, integrable structure underlying certain models in nonlinear continuum

mechanics and optics has been sought which is associated with reduction to Ermakov-

Ray-Reid systems. The latter admit a novel integral of motion. Numerical simulations

have been performed to depict the physical behaviours exhibited by solutions obtained

by means of the reductions. The details are as follows:

In Chapter 2, we investigated a 2+1-dimensional rotating shallow water system

with a circular paraboloidal bottom topography via an elliptic vortex. Key theorems of

Ball-type concerning the evolution of moment of inertia and invariants of the shallow

water model were generalised and employed to construct exact solutions. In particular,

important pulsrodon-type solutions were isolated and their behaviour was simulated.

In Chapter 3, we studied two nonlinear optical models via a variational approach :

one was a coupled 2+1-dimensional NLS system and the other was a 3+1-dimensional

NLS equation incorporating both logarithmic and Bohm quantum potential terms.

Three distinct reductions to Ermakov systems of Hamiltonian-type were set down.

The Ray-Reid invariant and associated Hamiltonian invariant combined to allow their
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complete integration. Such integrable Ermakov structure also arose in the latter 3+1-

dimensional optical model. Aspects of an Ovisannikov-Dyson type reduction were in-

vestigated wherein the eigenmode of the solution exhibits a remarkable flip-over effect

that has been experimentally observed by Gornushkin et al in the model descriptive of

an asymmetric expansion of laser induced plasmas into vacuum.

In Chapter 4, we discussed a Madelung-type hydrodynamic system with logarith-

mic and Bohm quantum potential terms. Appropriate choice of exponential-type el-

liptic vortex ansatz and modulated physical variables results in the generalised eight-

dimensional nonlinear dynamical system, which admits exact analytical solutions in

terms of elliptic integrals. The latter, again, possess integrable Ermakov structure of

Hamiltonian-type.

In Chapter 5, we considered a magnetogasdynamic system with a polytropic gas

law. Introduction of a power-type elliptic vortex ansatz and two-parameter pressure-

density relation was shown to lead to a finite dimensional nonlinear dynamical system.

The latter admits an integrable Hamiltonian Ermakov structure when the adiabatic

index γ = 2 and a Lax pair formulation may be constructed. Exact solutions of the

magnetogasdynamic systems were thereby obtained which describe a rotating elliptic

plasma cylinder bounded by a vacuum state.

Nevertheless, there is still a series of interesting and challenging problems that need

consideration:

1. The generalised theorems of Ball-type established in Chapter 2 were obtained

when the shallow water system has a circular paraboloidal bottom topgraphy (A∗ = B∗).

In view of the importance of these theorems for construction of analytical solutions and

associated Ermakov systems, it is natural to enquire whether analogous theorems exist

for other geometries (A∗ 6= B∗), in particular, for elliptical paraboloidal basins?

2. In light of the limitations inherent in the variational approximation employed in

Chapter 3, it would be of interest to investigate whether alternative approaches result
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in a reduction to integrable Ermakov-Ray-Reid structure?

3. Based on the different forms of elliptic vortex ansatz adopted in this thesis,

it is conjectured that more general forms may exist which lead to Ermakov-Ray-Reid

reduction.

4. It is noted that the general N -component Ermakov system introduced by Rogers

and Schief in an N -layer hydrodynamic context admits an iterative reduction to a

system of N − 2 linear equations augmented by the canonical 2-component Ermakov

system. The latter has been widely used in various physical areas. Hence, it is antici-

pated that N -component Ermakov-type systems might also have such extensive physical

applications.
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