THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the
printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Computing

GPU Accelerated Hot Term Extraction from User

Generated Content

CHENG MING FUNG

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Philosophy

December 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

GPU Accelerated Hot Term Extraction form User Generated Content

CERTIFICATE OF ORIGINALTIY

| hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it reproduces no material previously published or written, nor
material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

(Signature)

Cheng Ming Fung (Name)

GPU Accelerated Hot Term Extraction form User Generated Content

Abstract

This thesis aims at developing and investigating an efficient approach to hot term
extraction. In the Web 2.0, the user generated content (UGC) is increased
dramatically in different Consumer Generated Media (CGM) such as forums and
blogs. People easily search their knowledge and opinions in CGM as well as generate
Word Of Mouth (WOM) in different online channels. Facing the huge amount of data,
it is not easy to find the useful information even using a search engine. Having a good
hot term extraction algorithm can reveal hidden information to users and also
provide an indicator in the search results, so that users can easily know which terms

are popular in the search results.

In this thesis, a GPU based hot term extraction algorithm is presented. Graphics
Processing Units (GPUs) is designed for data-parallel computations. Comparing to
running a single program with multiple data in CPU, GPU can have faster execution.
The hot term is defined as a word that appears frequently in the search result. We
assume that the greater the frequency of appearance of a term, the more the
relevancy of the term to the users. As there are lots of terms in the searched results,
processing them is time-consuming. The proposed GPU based hot term extraction

algorithm can achieve a fast performance and works well in real-time applications.

GPU Accelerated Hot Term Extraction form User Generated Content

Acknowledgement

I would like to express my gratitude and thanks for the support and advice given to
me by my supervisor, Dr. Chung Fu-lai (Korris), without which it would have been

far more difficult to bring my project to a successful conclusion.

| also thank Dr. Fu Tak Chung and those management team of Well Synergy Limited

to give me a chance to participate this Teaching Company Scheme.

My special thanks are extended to my supervisor in Well Synergy Limited, Dr. Chuang
Siu Nam, for spending much time on the research guidance and technical support.

Without those invaluable supports, | would never have finished my research.

Finally, | would like to thank my parents and friends who have provided me lots of

encouragements and supports in tangible and intangible ways.

GPU Accelerated Hot Term Extraction form User Generated Content

Table of Contents

Y o 1] 4 1o RPN 3
ACKNOWIEAZEMENT ..ottt e s e e e e s e e s e esatae e e snareeeeen 4
I o] (Sl o)l @o T (=] o | £ USRI 5
LIST OF FIBUIES «.eveieiieiiiee ettt ettt e e st e e e e s e e e e s bt e e e s s anaeeeesaseeeeenannes 7
[o) B - o] L= PSPPSR 9
Chapter 1 INtrodUCTION.coiiiiie et e e s e e e s nbaeeee s 10
1.1 Problem and Motivationccooeciieiiiniiiee e 10

R 0] o} [=Tot 1Y SRR 15

1.3 Outling Of the TheSiSuiiiiiiiiiee e e 16
Chapter 2 Parallel and GPU COMPULINGoeviriiiiiieiiiie et 17
B2 R 1Y o Yo U Tt d o o ISP UPRPPPPPN 17

2.2 GPU Performance and Hardware Architecture........ccccceeveceeeiivcciieneeccieeee s 18

2.3 CUDA for GPU COMPULING...ccvvieeeiciieeeeeieee e esiitee e st e e ssveeeeeseaee e e s sanneeeennns 21
P20 79 B [31 d ¢ Yo [0 4 o o TP URRRUPPPN 21

2.3.2 CUDA Programming MoOdel.......cccuveeiiiiuiieieeiiieee e esieee e esieeee e 24

2.3.3 CUDA MemMOry MOAEl...ccciieiiiei e ectee e e e e e e e 27

2.4 Review Of GPU COMPULING....c.uiiiiiiiiee ettt 29
2.4.1 Parallel Scan OpPeration......cc.ueeeceeiee e e 31
R A W g=T-] ¢ d W @] 0101 o =Tt (o o SN 33

2.5 CONCIUSION ..ttt ettt e st e st e s bt e e st e e sabeeesaneeeas 35
Chapter 3 Borrow-Bit Sorting Algorithm........cccovvveeeiieiieiee e, 36
3.1 INErOAUCTION et e e 36
3.1.1 Practical Background in GPU SOrtingcccceveeeeeeieiccinrveeeee e, 36

3.2 BOrrOW-Bit SOMtiNG .ovvveeeii i e e 38
3.2, 1 INtrOAUCKION .ottt s 38

3.2.2 CPU BOrrow-Bit SOrting......coovviiiieieiiieeeeecce e 41

3.2.3 CPU Borrow-Bit Extend SOrting.........ccoecvvvrerieeeeeieiiiireeeeee e, 43

3.3 CUDPP Borrow-Bit RadiX SOIt ...cc.eeiiiiiiiiiiiiieeieeeieceteceee et 45

3.4 EXPerimental RESUITS........cooeiiiiieieiie ettt e e e e esaarrreeeeeeeeeeannes 49

3.5 CONCIUSION ettt ettt ettt e st e e s bt e e sabeeesabeessanee e e 53
Chapter 4 Hot Term Extraction ANalysiscoccvvveveeiieiieiiiiiieeeeee e e 54
i oY i oo [N o1 o o [TP PPP PP 54

4.2 Social medial tools iN INAUSTIYcoccvviiieiiie e 56

4.3 Review of Hot Term EXtractioncccoceeeriieeniiieeniieeniieesiee e 58

4.4 Hot Term EXtraction - PreproCesSiNg......ccce i e e eeeeiiiiie et e e 63

4.5 CPU Based Hot Term EXEractioncoccveeriieeniiieeniieenieeesieeeriee e 64

GPU Accelerated Hot Term Extraction form User Generated Content

4.5.0 AIZOTTERIM et eseanes 64

T A [T == I Y] PP PPPPPPPPPPR 68

4.6 GPU Based Hot Term EXtractionccceeveeieeeiniiieeeeiiieee e seiieee e sieeee s 70
0 S =0T 1 oV SRR 70

4.6.2 Experimental RESUILoovieiii i 79

(00T o] =1 g T o] o Vol [0 1] o o IR 86
5.1 CoNtrBULION c.ceiiiiiie e e s e e 86

5.2 FUBUIE WOTK ..ttt ettt e e s e e s ee s e 87

AN 01T T Lol <=3 91
A. K-Matrix Cl REPOrt — PCCW.....ccuviiiiiiiiiiiiieieieiereeereseresererereseseseseresesesemerms 91

B. Data Collection — CGMcciiiiiiiiiiiiee ettt e e 93

271 oY [T T=4 =T o1 1 /225 SR 98

GPU Accelerated Hot Term Extraction form User Generated Content

List of Figures

Figure 1.1 — Example of PUDCIOUd [9]...ciiiviiiiiiiiiee e 13
Figure 2.1 - Floating-Point Operations per Second for CPU and GPU [12] 19
Figure 2.2 - Memory Bandwidth per Second for CPU and GPU [12]cccccuueen.. 19
Figure 2.3 - The GPU Devotes More Transistors to Data Processing [12]................. 21
Figure 2.4 - NVIDIA Tesla GPU with 112 Streaming Processor Cores [13]............... 23
Figure 2.5 — Execution of @ CUDA program [11]cccevcuieeiviiieeeeniieeecrieeeeesiieeenn 24
Figure 2.6 — The hierarchy structure of CUDA thread [11]cccccevivieviiriiieeeniineenn. 26
Figure 2.7 — The hierarchy structure of CUDA thread with two-dimensional block
and three-dimensional thread [11].....ccccceieeiiiiiiiiiieeeee e 26
Figure 2.8 — Overview of the CUDA device memory model [11].....ccccceeeeevecnnnnnnenn. 28
Figure 2.9 — Example of inclusive segmented SCan.........ccceecveeeerciieeecnciiee e 33
Figure 2.10 — Example of stream compactionccccecueeeiiiiieeeenciiee e 34
Figure 3.1 — Data structure of I1ongValueccoccviiiiieiiii i 42
Figure 3.2 — Splitting key and value from longValue.........cccccceeviviieeiiniieeeccieeen 42
Figure 3.3 — Example of longValue (4 bits of value borrow from key)cccccu.c.... 44
Figure 3.4 — Example of CUDPP Borrow-Bit RadiX SOrt.........cccccevvevivriiniiieeecniieenn, 48
Figure 3.5 — Execution time in Arrays.sort, PigeonHole Sort, CPU Borrow-Bit
Sorting and CUDPP RAdiX SOtccvviieiiiiiieieiiee ettt e 50
Figure 3.6 — Execution time in CPU Borrow-Bit Extend Sorting and CUDPP
BOrroW-Bit RAdiX SOIt.......viiiiiiieiiieeiieeeeeeete et s 51

Figure 3.7 — Execution time in CPU Borrow-Bit Sorting with different number of
elements and different random rangesoooccvvvveeeeeeeeecccciireeeee e 52
Figure 3.8 — Execution time in CUDPP Radix Sort with different number of

elements and different random rangesoooecvvveeeeeeeeeeicciiireeee e 52
Figure 4.1 — MapReduce programming modelccccvveeeeeiiiiiiiciineeeeee e, 61
Figure 4.2 — Flow of CPU based hot term extraction.......ccccccceevvevvveeeeeeeeeeccnnnnnen, 66
Figure 4.3 — Example of CPU based hot term extraction.........cccccevvveeeeeeeeirccnnnnnenn. 67
Figure 4.4 — Example Of MEIrge SOocccciiiieeiee ittt eererrree e e e e e e 68
Figure 4.5 — Example of filtering term id and doc id.......cccceeeviviicinvveeeeeeeeeeeineee, 72
Figure 4.6 — Example of key-value pair sorting on filtered term idcccccouvvneeee. 73
Figure 4.7 — Example of segmentFlag and compactFlag........ccccoeevvvvevereieeiicinnnnnen. 75
Figure 4.8 — Example of counting term freqUENCY......cccveeeeieeiieicciireeeeeeeee e, 76
Figure 4.9 — Example of sorting term frequency list........ccccceevericinvveeeeee e, 77
Figure 4.10 — Example of retrieving hot termsooccovvvveeeeiieiiiiicireeeeec e, 77

Figure 4.11 — Performance of Hot Term Extraction with different number of

GPU Accelerated Hot Term Extraction form User Generated Content

Figure 4.12 — Processing time breakdown with different number of terms............ 83
Figure 4.13 — Processing time breakdown in 32 million of termsccccceeeunneee. 83
Figure 4.14 — Example of top 30 hot terms with different keyword searching 85
Figure 5.1 — Example of hot term clustering.......ccccceeeecveieeccciee e 88

Figure 5.2 — Cosmetic Industry Example in hot term clustering........ccccceevennnnneen. 90

GPU Accelerated Hot Term Extraction form User Generated Content

List of Tables

Table 2.1 — Coding of stream compaction in sequential algorithmcccceeennn. 33
Table 3.1 — Coding of using Arrays.sort for key-value pairs (order by value) 38
Table 3.2 — Pseudo-code of Borrow-Bit SOrtingcccceveiveiieiiiiiieeiiiieee i 41
Table 3.3 — Pseudo-code of Borrow-Bit Extend SOrting.........cccevcveeveviiieeeiniiieeenns 44
Table 3.4 — Pseudo-code of CUDPP Borrow-Bit RadiX SOrt.........ccccevevviiieeiniiieennns 46
Table 4.1 — Pseudo-code of CPU based hot term extraction algorithm................... 64
Table 4.2 — Pseudo-code of MErge SOItcoivvciiiiiiiiiiiee e 69
Table 4.3 — Pseudo-code of GPU based hot term extraction algorithm 70
Table 4.4 — Coding of GPU_BINArySEarchccccceeeuveeiieiiiee e eeieeeesveee e 72
Table 4.5 — Coding of segMEeNtFIagcoccuvrvieieiii i, 74
Table 4.6 — Coding of COMPACLFIAEvvveieiiiiiiiiiie e 75

GPU Accelerated Hot Term Extraction form User Generated Content

Chapter 1

Introduction

1.1 Problem and Motivation

With the rapid development of the Web, people have a convenient and effective
platform to share things in a public environment. For example, sharing knowledge in
Wikipedia, sharing videos in YouTube and sharing opinions in blogs. These kinds of

channels can be grouped as social media.

Nowadays, social media has been increasing dramatically. This fast growing trend has
provided resourceful ways for information collection. It is important for people to
discover hidden knowledge by mining through plain textual data. Thus, it offers
unprecedented opportunities and challenges to researchers of many different work
sectors. The social media textual data analysis has a unique characteristic that the
content is written in free format with human readable language, which is also called
user generated content (UGC). If a customer uses search engines to find some
opinions on a certain brand of mobile phone, the search engines cannot answer
guestions like on what features of mobile phone that consumers have discussed the
most. This is because the free format textual data cannot be processed easily by
machines. In general, it is impossible for people to find out the exact information
they want every time by browsing different websites. In some cases, the information
they want is even hidden. This is the reason why text mining on web applications has

become popular.

10

GPU Accelerated Hot Term Extraction form User Generated Content

In order to explore more useful information from the search results by using search
engines, scholars have proposed heuristics algorithms from fields like information
retrieval, text mining and machine learning. In text mining, Feldman et al. [1] used
association rule mining to find the patterns across terms in documents. The
relationships of terms are found and then the documents can be represented by a
set of terms. Furthermore, the documents can be organized in a hierarchical

taxonomy structure.

Apart from using association rule mining in text mining, Larsen and Aone [2]
presented a document clustering algorithm that implements the k-means algorithm
and determines a good initial clustering. By clustering text documents, documents
about similar topics will be grouped together. Typically, a search engine returns a
long list of searched documents. However, users are limited to view all the
documents. Document clustering effectively categorizes the documents so that users

can easily find the interested information in those clusters.

There is a clustering search engine called “Carrot Search” which is implemented by
Weiss and Osinski [3]. The search results of Carrot Search are clustered with different
topics. With the fancy web interface, users can easily select the clusters with
corresponding topics to view the search results. The clustering algorithm helps
search engines effectively list out the search results for users and hence, users can

easily find those clusters they are interested in.

With the concept of text clustering, finding relevant keywords in searched results is

beneficial to users. According to the query in search engine, the searched results

11

GPU Accelerated Hot Term Extraction form User Generated Content

must contain the searched keyword and users may also be interested in other terms

that appear frequently in the searched results.

To analyze hot terms which are defined as the words that appear frequently in the
searched results, one of the easiest ways is to directly convert the document into a
bag of words (BOW) representation and then count the frequency of each term. We
assume that the greater the frequency of appearance of a term, the more the
relevancy of the term to the users. There are different algorithms for finding the
frequent terms in document collections. For example, Ahonen [4] presented an
algorithm to find the frequent word sequences. Given a document collection and
frequency threshold o, if a sequence appears in more than o times, the sequence is
considered as frequent. This algorithm is to find the word sequences rather than only
limited to a single word. However, finding word sequence is time consuming, it is not

fast enough in real time applications. The details will be discussed in Chapter 4.

Hot term extraction is an important feature of social media tools in the social media
industry. K-Matrix Cl [5, 6] is one of the social media tools that provide a monitoring
platform for customers to discover the word of mouth (WOM) knowledge in the
CGM. Users can type the query and select the time period, and the K-Matrix Cl can
real-time return the related results which come from CGM sources. For example,
searching “pccw” from 2010-01-01 to 2010-12-31, there are more than 100K posts
returned, the search report is shown in Appendix A. One of the analyses in the report
is hot topic listing among the searched results. The hot topic listing shows the topics
that consist of the most matched posts. However, the hot topic listing is not deep

enough to mention what terms are popular as well as lots of discussion on them. The

12

GPU Accelerated Hot Term Extraction form User Generated Content

hot term extraction can enhance this limitation. This is the reason why the hot term

extraction is important in the social media tools.

The hot term extraction is also useful in academic area. PubMed [7] is a database
which collects millions of biomedical publications. PubMed is also a part of National
Center for Biotechnology Information (NCBI) which provides a search function to
search documents from PubMed database. Kou et al. [8] developed an application
called PubCloud whose function is to summarize the search results from PubMed. An
example of PubCloud is shown in Figure 1.1 [9] which shows the terms that are
extracted from the top 200 results of “genes” query. Font size and font color

indicates frequency and recency of the results respectively.
PubMed Query: genes
Cloud Type: abstract
Cloud Option: Most relevant 200 articles

Date range from 2009 to 2010
Show/Hide all 200 PubMed ID(s)

Figure 1.1 — Example of PubCloud [9]

13

GPU Accelerated Hot Term Extraction form User Generated Content

In the algorithms of text mining [1, 2, 4], they are not capable of executing in real
time application as the processing time is not fast enough. Although the Carrot
Search [3] runs very fast with the processing time is around one second, it just
processes 200 documents each time. Also, the PubCloud can only process at most
200 documents each time. The quantity of documents is not large enough in the

current practical usage.

From the documents collected by the K-Matrix Digital Intelligence Ltd., each
document contains on average 40 unique words. If there are 50K documents in the
searched results, it contains around 2 million words. This is a challenge in processing
hot term extraction. As there are lots of terms in the searched results, finding the

most frequent terms is time consuming and thus a fast algorithm is needed.

To achieve a fast algorithm for hot term extraction, we propose to implement the
algorithm with Graphic Processing Unit (GPU). Generally, GPUs can be regarded as
high performance many-core processors with 10x faster computation than CPUs.
GPUs was designed for games and graphics applications, but now GPUs can be used
as a general-purpose parallel processors with support programming languages such
as CUDA [10]. Therefore, it is possible for the developers who lack of the knowledge

of the graphics rendering pipeline but could write GPU programs properly.

However, there are at least two challenges in developing GPU based hot term
extraction.

1) As hot terms are terms that appear at a certain frequency, key-value sorting

is needed for extracting the most frequent terms where the key is term id

and the value is frequency. In view of the large number of terms in the
14

GPU Accelerated Hot Term Extraction form User Generated Content

searched results, term id is a long type integer (64-bit). However, up to now,
not all the programming libraries support GPU based sorting algorithm for
sorting 64-bit key-value pairs.

2) A hot term extraction algorithm has some core functions such as sorting,
filtering and counting. As GPU programming lacks support for some basic
functions, it is a difficult task to design a GPU based framework for hot term

extraction.

1.2 Objectives

In view of the two problems mentioned in section 1.1, the objectives of this project

are set as follows.

(i) To develop a flexible GPU based sorting algorithm for processing key-value pairs

whose key and value are not restricted to 32-bit integer type.

Recently, the latest version of CUDA supports GPU based sorting algorithm for
sorting 64-bit key-value pairs. However, the JAVA binding library which is called
JCUDA has not yet supported 64-bit. Both the key and the value are restricted to
32-bit integer. We make an attempt to address this issue and propose a flexible way

that the key or value can be more than 32-bit.

(ii) To propose a GPU based hot term extraction framework that all core functions are

implemented with GPU and the extraction task is efficient in our current practice.

In accomplishing this objective, we can help users to find some hidden information

15

GPU Accelerated Hot Term Extraction form User Generated Content

by extracting hot terms in the searched results. Comparing the performance with

that of CPU, GPU based hot term extraction framework could run at faster speed.

1.3 Outline of the Thesis

In this thesis, a GPU based hot term extraction framework is proposed. The thesis is
divided into five chapters. In addition to the introduction in Chapter 1, a literature
review on GPU computing is provided in Chapter 2. Chapter 3 introduces a flexible
sorting algorithm called Borrow-Bit Sorting. Chapter 4 introduces a GPU based hot
term extraction algorithm and Chapter 5 concludes the results and summarizes

recommendations for future study.

16

GPU Accelerated Hot Term Extraction form User Generated Content

Chapter 2

Parallel and GPU Computing

2.1 Introduction

Traditionally, most of the applications are implemented as sequential programs with
a processor executing the instructions one by one. As the speed of sequential
programs running on a single processor is limited, in order to raise the execution
speed of the software applications, software developers now rely on the advances in
the corresponding hardware and hence they have more and more expectations on
each new generation of processors. However, the enhancement of the speed of
processors faces different challenges due to the energy-consumption and
heat-dissipation issues. Thus, processor vendors have switched to develop other
models where multiple processor units, referred to as processor cores, are used in

each chip to increase the processing power [11].

Multi-core processors have led to a tremendous impact on the IT industry. Multiple
instructions can be parallel executed in multi-core processors, so that the multi-core
processors are much faster than a single processor. The multi-core model began as
two-core processors, and up to now, Intel Core i7 has four processor cores and
supports hyper-threading with two hardware threads designed to maximize the

execution speed of sequential programs.

Besides the development of multi-core processors to increase the execution speed,
the graphics processing unit (GPU) is a new trend for software developers to write

parallel programs for achieving higher execution speed. GPU is the processor
17

GPU Accelerated Hot Term Extraction form User Generated Content

typically embedded on the graphics card in a computer. The GPU was originally
developed to enhance the performance of 3D computation in game or video.
Recently, some software developers have turned to use the GPU for general-purpose
computation (GPGPU), in order to take the advantage of GPU which is characterized
by Single Instruction Multiple Data (SIMD) architecture, i.e. data can be processed in
parallel. The GPU is a fast and parallel processor and it can support parallel programs

for artistic renderings and mathematical calculations.

2.2 GPU Performance and Hardware Architecture

Nowadays, the market is seeking for real-time processing, high-definition 3D graphics,
and GPU has evolved into a highly parallel, multi-threaded, many-core processor
model with very high computational power and memory bandwidth. Comparing the
performance of CPU, GPUs have better performance in floating-point calculation as
shown in Figure 2.1 and Figure 2.2 [12]. With the exploitation of GPU in
general-purpose computation, the performance of GPU has been shown with large
performance improvement. For example in 2009 as in Figure 2.1, the ratio between
NVIDIA GPUs and Intel multi-core CPUs for peak floating-point calculation

throughput can be about 10 to 1.

18

GPU Accelerated Hot Term Extraction form User Generated Content

Theoretical
GFLOP/s
1750
GeForceGTX 5
s MWIDLA GPU Single Predision
1500 s Y1 DLA GPL Double Predision S ——
=g |ritel CPU Single Predsion FETOrCes &
st M2l CPU Double Predision
1250
1000
GeFo
750
eFo Tesla C2050
500
yeForce 7800 GTX
250
GeForce 6800 U
eForceFX 580 WuaclcrestTESlamﬂm

0 - Harpertown
Sep-01PEM4ys jun04 0ct-05 Mar-07 Jul-08 Dec-09

Figure 2.1 - Floating-Point Operations per Second for CPU and GPU [12]

Theoretical GB/s
200

180

o CPL
160

e GPU
140

120

100

GE u---_-z'err:T/ West
40 estmere

Bloomfield

ceHX 5900 Woodcrest
20 Prescott

Harpertown
Forthwood ' ' ' ' ' T 1
2003 2004 2005 2006 2007 2008 2009 2010

Figure 2.2 - Memory Bandwidth per Second for CPU and GPU [12]

19

GPU Accelerated Hot Term Extraction form User Generated Content

The architecture of CPU and GPU can be compared with the help of Figure 2.3 [12].
GPU has more transistors devoted to data processing while CPU has more transistors
dedicated to data caching and flow control. The architecture of CPU was designed to
optimize sequential code’s performance. It makes use of control logic to allow
instructions from a single thread of execution to execute in parallel or even out of
their sequential order while maintaining the appearance of sequential execution [11].
To maintain the high speed of execution, large amount of cache memories are used
to reduce the instruction and data access latencies in large complex applications. On
the other hand, the GPU was originally designed for graphics rendering and it has
evolved as a highly compute intensive and highly parallel computation system. As the
GPU is designed for data-parallel computations, a single program can be executed on
many data elements in parallel, and hence more transistors are placed into
arithmetic operations rather than memory operation. With a concept of SIMD, every
ALU processor must execute the same instruction at the same time, and only the

data may different.

In parallel programs, data elements can be mapped into multiple threads, thus
facilitating different threads cooperating with each other to complete the work faster.
When applications have to process large data sets, using a data-parallel program can

speed up the computations.

20

GPU Accelerated Hot Term Extraction form User Generated Content

Control ALU ALU
=

ALU ALV =

i
11 A
EEEEE
I
EEEEE
EEEEE
EEEEE
B A

CPU GPU

Figure 2.3 - The GPU Devotes More Transistors to Data Processing [12]

2.3 CUDA for GPU Computing

2.3.1 Introduction

CUDA is defined as “compute unified device architecture”. It was introduced by
NVIDIA at the end of 2006. CUDA is a general purpose parallel computing
architecture. It allows users to use extensions to the C and C++ programming

languages to develop applications for parallel computing on GPUs.

In NVIDIA G80 and its successor chips, all of them support CUDA which provides
general-purpose parallel programming interface. Figure 2.4 shows the architecture of
a NVIDIA Tesla GPU with 112 Streaming Processor Cores [13]. It is organized into a
number of highly threaded streaming multiprocessors (SMs) and there has a number
of streaming processors (SPs) in each SM. The SM is mainly responsible for managing,
scheduling and executing threads in groups of 32 parallel threads called warps. And
the main function of SP is to share control logic and instruction cache. In NVIDIA

GPUs, different GPUs have different number of SMs and SPs in a building block.
21

GPU Accelerated Hot Term Extraction form User Generated Content

The memory in Figure 2.4 is the DRAM of GPU but not the DRAM of CPU. In CUDA,
the GPU is called device while the CPU is called host. The device cannot access the
host’s memory and it can only access the memory located on the device itself.
Therefore, data have to move from the host’s memory to the device’s global memory
when executing a program in device. The data is then split into smaller parts for

GPU’s multiprocessors to process them in parallel.

22

GPU Accelerated Hot Term Extraction form User Generated Content

jun nun
21Nixal 21N}xXa)l

340/A38U UO1]1D3UL0DIS]UL
_— freme 5 ==

11 %=1 17 X=23 17 %21

jun N un
2IN1%3] 21NXa) 21N1xa)

171 X=23
1un Jun
21NIXa] 31N1X3]

uonnqLisip
ydora andwod

uonnquIsip
ydorA 1axid

uonNquIsIp
v_._Os.a XallaA

3)quiasse ndut

Figure 2.4 - NVIDIA Tesla GPU with 112 Streaming Processor Cores [13]

23

GPU Accelerated Hot Term Extraction form User Generated Content

2.3.2 CUDA Programming Model

The CUDA programming environment allows programmers to write a C function to be
executed in the device, and it is called kernel. A kernel is executed as single program
multiple data model (SPMD) and it is executed N times in parallel by N different
CUDA threads, where the number of threads (N) can be defined by users. The
execution of a CUDA program is illustrated in Figure 2.5 [11]. The CUDA programming
model separates the memory between host and device, therefore the execution
starts with host (CPU) execution. Since, the host and device have separate memory
spaces, the data in the host memory have to transfer to the device memory. When a
kernel is launched, the execution is moved to the device. According to how the user
defines the number of threads in the host, the threads are generated when the
kernel is launched and collected into a grid. The execution of two grids of threads is
shown in Figure 2.5. When all threads in a grid complete their executions, the grid

terminates, and the execution is moved to the host until another kernel is launched.

CPU serial code %

GPU llel k |-K | A o 22 22 = s
paleeme et N T | T | 7 | 7o

CPU serial code %

GPU llel k |- K I B P i = P
peleeme NS | T | T | 7 | 7o

Figure 2.5 — Execution of a CUDA program [11]

24

GPU Accelerated Hot Term Extraction form User Generated Content

Figure 2.6 [11] and Figure 2.7 [11] show the hierarchical structure of CUDA threads.

Threads can be organized to form a one-dimensional, two-dimensional or

three-dimensional thread block. Multiple thread blocks can be organized to form a

one-dimensional or two-dimensional grid. During the launching of a kernel, the

CUDA runtime system generates the corresponding grid of threads and all of the

threads are executed in the same kernel. In order to distinguish between one and

other, a unique ID is assigned and it also helps identifying the proper portion of the

processing data. The unique ID is represented by coordinates which combine with

block index and thread index. For a three-dimensional thread block with size (D, D,

D,), a thread ID is defined as (x, vy, z), and using the size of a block can retrieve its

thread index .In this example, the index of thread ID (x, y, z) is (x + y Dy + z Dx D).

Since all threads of a block share the limited memory, there is a limitation to the

number of threads per block. The maximum size of a block, Dxx Dyx D, is limited to

1024 threads in the latest GPU specification.

25

GPU Accelerated Hot Term Extraction form

% Thread

=

User Generated Content

Thread Block

| | T | |

|| T | |

Grid of
thread blocks

Figure 2.6 — The hierarchy structure of CUDA thread [11]

(0,0,1) (1,

Thread Thread

Thread Thread

0,1) (2,0,1)

Thread Thread
(O, 0, 0) (1, 0, 0) (2,0, 0) (3,0, 0)

Thread Thread
(0, 1, 0) (1, 1, 0) (2,1, 0) (3,1, 0)

(3,0,1)

Figure 2.7 — The hierarchy structure of CUDA thread with two-dimensional block and

three-dimensional thread [11]

26

GPU Accelerated Hot Term Extraction form User Generated Content

There is a resource limitation on thread assignment in different GPUs. For example,
NVIDIA GeForce GTX 470 has 14 streaming multiprocessors (SMs), up to 32 blocks
can be assigned to each SM. The maximum number of threads limited on each SM is
1024. Therefore, the thread assignment can be in the form of 4 blocks of 256 threads
each, 8 blocks of 128 threads each, etc. Since there are 14 SMs in GTX 470, up to

14,336 threads can be simultaneously residing in the SMs for execution.

After defining the number of threads in a block, the block is assigned to a SM. The
block is further divided into 32-thread units called warp, it is the unit of thread
scheduling in SMs. If each block has 1024 threads, there are 1024/32 = 32 warps per
SM. A warp executes a common instruction at a time, so peak performance is
reached when all 32 threads of a warp agree on the instruction path. If one thread of
a warp wants to execute a branch instruction, the warp serially executes the diverged
instruction and disables the threads which are not on that path. When all paths

complete, the thread converges back to the same instruction path [12].

2.3.3 CUDA Memory Model

Before executing a kernel by a large amount of threads, the data have to transfer
from the host to the device memory. In CUDA memory model, there are several
types of memory that can be used to achieve high execution speeds in the kernel.
The overview of CUDA device memories is shown in Figure 2.8 [11]. At the bottom of
the figure, there are global memory and constant memory. These are the memories
that the host code can transfer data to and from the device. Constant memory allows
read-only access by the device code. Threads on the device have their local memory
called register, and each thread can only access its own registers. Shared memory is

allocated to thread blocks, and each block can only access its own shared memory.
27

GPU Accelerated Hot Term Extraction form User Generated Content

Threads in the same block can cooperate by sharing their input data and the
intermediate results of the work. However, threads cannot cooperate with different
blocks. Variables that reside in register and shared memory can be accessed at a very

high speed at the same time.

In summary, CUDA has a good design of programming model and memory model, so
that kernel can be executed at high speed and in a parallel manner. Software
programmers can specifically define the size of block and grid, and skillfully use

different types of device memory to archive high performance.

Block(0, 0) Block(1, 0)

Shared Memory Shared Memory

Registers Registers Registers Registers

Thread (0,0) Thread (1,0) Thread (0,0) Thread (1,0)

Global
Memory

Host

Constant Memory

Figure 2.8 — Overview of the CUDA device memory model [11]

28

GPU Accelerated Hot Term Extraction form User Generated Content

2.4 Review of GPU Computing

Since the GPGPU developed, a wide variety of applications implemented with
GPGPU have obtained significant performance speedup. The following gives a review

of GPU computing in different areas.

Linear algebra: Kriiger and Westermann [14] presented a framework for solving
linear algebra problems on GPU, which proposed a stream model for arithmetic
operations on vectors and matrices. Gallapo et al. [15] presented an algorithm to
efficiently solve dense linear systems using GPU. They stored the data as
two-dimensional representation corresponding to the data layout on the GPU, and
also supporting parallel data transfer of row and column swapping. With the fast
development of GPU, developers can build a multiple GPUs for implementing the
software applications. Quintana-Orti et al. [16] implemented highly efficient matrix
factorizations by multiple GPUs systems. Their experimental results showed the

performance speedup by using four NVIDIA G80 GPUs.

Graph algorithm: Harish and Narayanan [17] used the CUDA to implement parallel
algorithm for accelerating a large graph algorithm which involves millions of vertices.
Bulug et al. [18] implemented a recursive block Floyd-Warshall algorithm on GPU for
solving path problems. Another computationally expensive operation such as graph
component labeling is also implemented with CUDA to get the advantage of parallel

model [19, 20].

Pattern analysis: Vincent and Eric [21] proposed a speedy and parallel k nearest

neighbor (kNN) search implementation using a GPU. Traditionally, the kNN search is
29

GPU Accelerated Hot Term Extraction form User Generated Content

slow because it requires many operations on calculating the distance between two
points. They implemented the algorithm with CUDA and showed the computation
time being much decreased, up to 120x faster than without CUDA implementation.
Catanzaro et al. [22] used the GPU for Support Vector Machines (SVM) classification
and training which archives up to 138x speedup over LIBSVM. Recently, Chiosa and
Kolb [23] proposed a GPU based framework for solving clustering problems. They
presented an efficient parallel algorithm, Multilevel mesh clustering, implemented

on GPU and provided high quality clustering results.

Sequence alignment: In genomics research, sequence alignment is used to analyze
genes and genomes. Trapnell et al. [24] implemented MUMmerGPU, a parallel
sequence alignment program, on GPU. They showed that using GPU has a better
performance than CPU in memory-intensive applications. After that, Trapnell and
Schatz [25] implemented MUMmerGPU 2.0 which used a suffix tree based algorithm
on GPUs and archived 13x performance speedup compared with the CPU

counterpart.

Other applications have also shown significant performance speedup, such as
differential equations [26, 27, 28], molecular modeling and simulation [29, 30],
biomedical image analysis [31] and AES encryption [32]. A detail GPU survey has

been done by Owens et al. [33] in 2007.

Recently, Senguta et al. [34] focused on developing sets of parallel primitives for the
development of GPGPU applications. They developed a set of scan primitives
implemented with CUDA. Using the scan primitives, they showed the performance

speedup of quicksort and spare matrix-vector multiply. Later, they provided a
30

GPU Accelerated Hot Term Extraction form User Generated Content

powerful parallel primitives library called CUDPP [35]. As the implementation of GPU
based hot term extraction is mainly based on CUDPP. The following subsection
shows the details of scan operation and stream compaction and the other CUDPP

details will be discussed in the next chapter.

2.4.1 Parallel Scan Operation

The prefix-sum operation, also known as scan operation, is widely used in parallel
applications with complex access requirements. There are two types of scan, namely,
inclusive scan and exclusive scan. A new array is generated by the inclusive scan
where each element j is the sum of all elements up to and including j; whereas the
exclusive scan generates a new array where right shifting the inclusive scan result by

one element and inserting the identity for the first element.

Definition: The inclusive scan operation takes a binary associative operator &, and an
array of n elements

[ao, a1, ..., An1l,
and returns the array

[a0, (a0 @ a1), ..., (A0 D a1 D ... D an1)].

For example, if @ is addition, then the inclusive scan operation on the array

[2051382],
returns

[2278111921].

Definition: The exclusive scan operation takes a binary associative operator @ with
31

GPU Accelerated Hot Term Extraction form User Generated Content

identity I, and an array of n elements

[aOI all ey an-l];

and returns the array

[Ir do, (aO @ al)l ey (ao@ ai ®..D an—Z)]-

For example, if @ is addition, then the exclusive scan operation on the array

[2051382],
returns

[022781119].

On the GPU, the earliest implementation of scan was used for “non-uniform stream
compaction” [36] which is a part of a collision detection application. And then,
Hensley et al. [37] improved the implementations and applied to summed-area table
generation, but the time complexity was O(nlogn). Recently, Harris et al. [38]
introduced CUDA based implementation of scan and then Sengupta et al. [34]
developed the CUDA based implementation of segmented scan by reduce and

down-sweep steps with the overall work complexity as O(n).

Beside the scan operation, segmented scan plays an important role in GPU based hot
term extraction framework. Segmented scan operates as parallel scans on arbitrary
partitions (“segments”) of the input vector. Considering a stream with 1/0 flag where
1 represents the first element of a segment, and then the scan is performed in each
segment. An example is shown in Figure 2.9, an inclusive opertaion is selected to

perform in the segmented scan.

32

GPU Accelerated Hot Term Extraction form User Generated Content

Input Vector

2 3 5 3 4 2 1 1

Segment Flag

1 0 1 0 0 0 1 0
Output
2 5 5 8 12 14 1 2

Figure 2.9 — Example of inclusive segmented scan

2.4.2 Stream Compaction

Stream compaction, also known as stream reduction, is an important parallel
primitive in a variety of general-purpose applications, such as GPU-based collision
detection [39] and sparse matrix compression. Stream compaction can be used to
remove unwanted elements in sparse data. It allows highly parallel algorithms to
maintain performance over further processing steps and reduces overall memory

usage.

In single processor machine, the implementation of stream compaction is a
sequential algorithm. The algorithm is shown in Table 2.1, with the valid element of

input moved to output.

Int j=0;
for (int i=0; i<N; i++){
if (input[i] is valid){
output[j] = inputli];

j++;

7

Table 2.1 — Coding of stream compaction in sequential algorithm

33

GPU Accelerated Hot Term Extraction form User Generated Content

The efficiency of parallel algorithms is much better than sequential algorithms. The
implementation of parallel algorithms is based on performing a parallel exclusive
prefix sum operation [40]. Considering a stream with 1/0 flag where 1 represents a
valid input and O represents an invalid input, the prefix sum is performed on the
stream and the result is used to move each valid input to the new location of output.

The detail is shown in Figure 2.10.

A B C D E F G H
@ Generate 1/0 flag, 1 = valid, 0 = invalid
1 0 1 1 0 0 1 0
{} Perform exclusive prefix sum
0 1 1 2 3 3 3
D E F G
| |
l l Scatter/Gather valid input to output
A C D G

Figure 2.10 — Example of stream compaction

Horn [36] implemented stream compactions without scatter steps, since the GPUs in
2005 lack the support for random write access to memory (scattering). Therefore, a
solution was to use gathering where a binary search is performed to find the valid
input corresponding to output. The gathering operation was fairly expensive and

required more memory usage, making the overall complexity as O(N logN).

Recently, GPUs support scattering, so that it can be used to replace the gathering

operation [36]. CUDPP library provides the implementation of this approach and the

stream compaction can achieve the overall complexity of O(N).

34

GPU Accelerated Hot Term Extraction form User Generated Content

2.5 Conclusion

In this chapter, the graphics processing unit (GPU) is reviewed. GPU is designed as a
parallel architecture for executing a huge amount of data. As the parallel architecture
brings a significant performance speedup compared with CPU, many researchers
successfully attained higher performance by implementing different algorithms on
GPU. Moreover, NVIDIA introduced the CUDA which has a good design of
programming model and memory model. Programmers can easily write CUDA
programs and define the size of block and grid for running kernel on the GPU. On the
other hand, an open source — CUDPP provides a powerful parallel primitives library.
Programmers can easily use the library to perform scan operation, stream

compaction and other operations.

35

GPU Accelerated Hot Term Extraction form User Generated Content

Chapter 3

Borrow-Bit Sorting Algorithm

3.1 Introduction

Sorting is a general research problem in computer science. It is a core part of
numerous algorithms whose performance depends on the efficiency of the sorting
algorithm. For example, some of the clustering algorithms use sorting for finding the
closest k™ elements. Sorting has been used in different areas of computer
applications and it is an internal database operation. Therefore, any application can
use the database benefiting from an efficient sorting algorithm. Other applications
such as computer graphics, search engine, computational biology also involve

sorting.

In this chapter, a Borrow-Bit sorting approach is introduced. It aims at speeding up
the processing time of sorting key-value pairs by using the function provided in Java
called Arrays.sort. Also, it has a flexible design for sorting key-value pair. Both keys
and values are not limited to unsigned integer type (32-bit). In other words, either
keys or values can be more than 32-bit. The principle of this approach is that the sum

of bits in each pair of key and value must be within 64-bit.

3.1.1 Practical Background in GPU Sorting

NVIDIA has provided different CUDA toolkit version for developers. From CUDA 3.0
version, it supports CUDPP version 1.1.1 which was released in April 2010. However,
the radix sort [41] in CUDPP version 1.1.1 only supports 32-bit key-value pairs sorting.

The programming language in CUDPP and CUDA uses C/C++, and JCUDA [42] which is

36

GPU Accelerated Hot Term Extraction form User Generated Content

a Java binding for NVIDIA CUDA and CUDPP. Therefore, java programmers can use

JCUDA to implement the program in GPU.

In May 2011, CUDA 4.0 was released but it does not support CUDPP anymore.
Instead, another high-level interface for GPU programming called Thrust [43] was
used. Thrust is also written in C++ programming language. Moreover, the radix sort
[44] implemented in Thrust is much faster than the radix sort in CUDPP. The CUDPP
was updated to version 2.0 in August 2011. CUDPP now uses the radix sort of Thrust
and it can also support 64-bit key-value pairs sorting. However, up till now, the JUDA
has not been updated. Therefore, the JCUDA users are still not able to use the

enhanced GPU sorting.

In the next chapter, the GPU based hot term extraction algorithm will be introduced.

The algorithm is implemented with JCUDA. Since the JCUDA does not support 64-bit

key-value sorting, the Borrow-Bit sorting algorithm can help to solve this limitation.

37

GPU Accelerated Hot Term Extraction form User Generated Content

3.2 Borrow-Bit Sorting

3.2.1 Introduction

Java provides a sorting function, Arrays.sort, for sorting a specified range of array into
ascending numerical order. Using a specified comparator, Arrays.sort can sort a
specified array of objects. This sorting algorithm is a modified mergesort and offers
guaranteed n*log(n) performance [45]. To use Arrays.sort for sorting key-value pairs
order by value, the array of objects can be set as key-value pairs and the comparator
is set to do the comparison order by value. Detailed coding is shown in Table 3.1.

However, this sorting method is inefficient.

Arrays.sort(inputSequence, new Comparator<ExampleObject>()){
public int compare(ExampleObject 01, ExampleObject 02)

{

return (ol.getValue() - 02.getValue ());

N;

Table 3.1 — Coding of using Arrays.sort for key-value pairs (order by value)

Adrian Marriott [46] demonstrated that the Arrays.sort was not fast enough and
presented a stable sorting algorithm, Pigeon-Hole Sort, which got a better
performance. Pigeon-Hole Sort passes through the input sequence for four times
which take a time proportional to O(n) and the overall time complexity proportional

to O(n+k) where k is the maximum value of input sequence.

38

GPU Accelerated Hot Term Extraction form User Generated Content

In order to improve the performance of Arrays.sort for sorting key-value pairs, a
Borrow-Bit Sorting approach is presented. Borrow-Bit Sorting can give a better
performance, in term of speed, than Arrays.sort and Pigeon-Hole Sort. The
computational complexity of Borrow-Bit Sorting is O(nlogn). In the Borrow-Bit Sorting
approach, bitwise and bit shifts operations are mainly used. Bitwise operation
operates one or more bit patterns of the numerals’ individual bits. The bitwise
operations include AND, OR, NOT and XOR, AND and OR operations to be used in the

Borrow-Bit Sorting approach.

Bitwise AND operates in two equal length of binary numerals and performs the
logical AND operation on each pair of corresponding bits. The result is 1 if both bits

are 1 in a pair of bits, otherwise the result is 0.

1101
AND 0101

= 0101

Bitwise OR operates in two equal length of binary numerals and performs the logical
OR operation on each pair of corresponding bits. The result is 0 if both bits are 0 in a

pair of bits, otherwise the result is 1.

1001
OR 0101

1101

39

GPU Accelerated Hot Term Extraction form User Generated Content

Bit shifts operation operates one or more bit patterns with left-shift or right-shift on

the binary representation of integer value.

00101001 Left-shift 1 bit

01010010

00101001 Right-shift 1 bit

00010100

40

GPU Accelerated Hot Term Extraction form User Generated Content

3.2.2 CPU Borrow-Bit Sorting

The Java based Borrow-Bit Sorting approach aims to use Arrays.sort(long [] input) to
sort the key-value pairs order by value. The main idea is firstly, to combine two
unsigned integer types (32-bit) of key and value into an unsigned long type (64-bit) of
variable; then to use the Arrays.sort to sort the long type variable; and lastly, to split
the long type variable into sorted value and the corresponding key. The pseudo-code

of the Borrow-Bit Sorting approach is shown in Table 3.2.

Function BorrowBitSort(){
Input:
Integer Array value, Integer Array key
Result:
Integer Array with sorted value and Integer Array with corresponding key
Begin:
Create a Long type array longValue, which array size is same as value
Loop {
Assign value to the left most 32-bit of longValue
Assign the corresponding key to the right most 32-bit of longValue
}
Call Arrays.sort to sort longValue
For each longValue {
Split right most 32-bit and then assign to key

Right-shift 32-bit of longValue and then assign to value

End;

Table 3.2 — Pseudo-code of Borrow-Bit Sorting

There are three main steps in the Borrow-Bit Sorting approach. Firstly, it is to assign
value to the leftmost 32-bit of the longValue and to assign the corresponding key to

the rightmost 32-bit of the longValue. The structure of the longValue is shown in

41

GPU Accelerated Hot Term Extraction form User Generated Content

Figure 3.1. Secondly, it is to use Arrays.sort to sort the longValue array into ascending

numerical order.

longValue

o/0/0}j2j2/0¢../0j2 /0|00 f2../0|0|0O 21210
_ NG J
\/ Y

32-bit of value 32-bit of key

Figure 3.1 — Data structure of longValue

As the value is placed on the first 32-bit of longValue, the ascending numerical order
of longValue is sorted according to the value. Lastly, it is to split the longValue and
then assign back with respective key and value. In splitting longValue to form the key,
bitwise AND operation is used. Creating a 31-bit integer where each bit is 1 and then
using bitwise AND operation with the longValue, the result gets the 32-bit of key, the
step is shown in Figure 3.2. On the other hand, in splitting longValue to form the

value, right-shift operation is used. Simply right-shift 32-bit of longValue can form

the value.
longValue
oflofof1]r1fo].]of1]ofofof1].|o]o]o]1]1]o
Bitwise AND
olofofofofo|.]ofofofo 21|]2 |1]a]2]1]1
o |olofo|olo|.|o]o]o|ofo]z]|.]o]o]o]1]1]o
N A
R
32 bit of key
longValue
0 Jofof1]z]o | Jo]1]olofo]1].]ofoo]1]1]o
Right-shift 32 bits
o ofofofofo].]o]o|o]oJo]o 1]z o] Jo]z]o
— i
N

32 bit of value

Figure 3.2 — Splitting key and value from longValue
42

GPU Accelerated Hot Term Extraction form User Generated Content

3.2.3 CPU Borrow-Bit Extend Sorting

The Borrow-Bit Sorting approach can sort the key-value pairs order by value.
However, both the key and value must be unsigned integer type, which is thus 32-bit.
The extended approach can sort key-value pairs where both key and value can be
more than 32-bit. Different from the Borrow-Bit Sorting approach, this extended
approach uses an index which starts from one and the increment is one by one to
form a key. After finishing the sorting process, the original key can be retrieved by
the sorted index. The main idea of this approach is the unsigned key does not occupy
all 32 bits which also means the total number of key-value pairs is less than 2%, so
that value can be borrowed from the unoccupied bits. The prerequisite of this
approach is that the key must have enough bits for being lent to value. Thus, the
total number of key-value pairs are smaller than 2**and the key has enough bit lent
to the value. The advantage of this approach is the capability to sort by value which is
more than 32 bits, and the value of key can also be more than 32 bits as it does not
pass into the function by using an index to represent the key. The computational
complexity of Borrow-Bit Extend Sorting is O(nlogn). The pseudo-code of the
Borrow-Bit Extend Sorting approach is stated in Table 3.3. Figure 3.3 demonstrates an

example with the value borrows 4 bits from the key.

43

GPU Accelerated Hot Term Extraction form User Generated Content

Function BorrowBitExtendSort(){
Input:
Long Array value, Integer x (indicate how many bits of value have to borrow from key)
Result:
Integer Array with sorted value and Integer Array with sortOrder
Begin:
Create a Long type array longValue, which size is same as value
Create a Integer type array sortOrder, which size is same as value
Initialize an integer variable index, start from one.
Loop {
Assign index to longValue which occupy the right most (32-x) bit
Assign value to longValue which occupy the left most (32+x) bit
Increment index by one
}
Call Arrays.sort to sort longValue
For each longValue {
Split right most (32-x) bits and then assign to sortOrder

Right shift (32-x) bits of longValue and then assign to value

}
End;
}
Table 3.3 — Pseudo-code of Borrow-Bit Extend Sorting
36-bit value
ofo}o,00j0{..]0 2 /0}j0|042}../0 0|02 |21]O0
28-bit key
o|jojoj}oj}oj|oj|..0 j0f0OfOJO 12 |..10 |0 |0 |21 21 |0
longValue
o|jojojoj1}0}{..i0}2 /0002 |../0|01Jj0 1|12 10
— I =7
< <l
36-bit of value 28-bit of key

Figure 3.3 — Example of longValue (4 bits of value borrow from key)

44

GPU Accelerated Hot Term Extraction form User Generated Content

3.3 CUDPP Borrow-Bit Radix Sort

In the CUDPP version 1.1.1, the CUDPP radix sort does not provide a function to sort
a long type value. It can only sort the unsigned integer type of key-value pairs. The
Borrow-Bit sorting algorithm can be applied to the CUDPP radix sort. CUDPP
Borrow-Bit Radix Sort can sort key-value pairs where both key and value can be more

than 32 bits.

Figure 3.4 shows the example of CUDPP Borrow-Bit Radix sort that the value has to
borrow 4 bits from key. The core part of CUDPP Borrow-Bit Radix Sort is to firstly
generate key and value; and then to sort the key-value pairs order by the key first,
followed by the value; finally, to recover the key and value. The pseudo-code of
CUDPP Borrow-Bit Radix Sort is shown in Table 3.4. One important point is that only
one time of transferring the input data from host CPU to GPU memory is required in
the first cudppSort() function. In the second cudppSort(), it just uses the GPU
memory data so that it does not need to transfer the result of first cudppSort() from

GPU memory to CPU and then from CPU back to GPU memory.

45

GPU Accelerated Hot Term Extraction form User Generated Content

Function CUDPPBorrowBitRadixSort(){
Assumption:
The key have enough bits lend to value.
Input:
Long Array value, Integer x (indicate how many bits of value have to borrow from key)
Result:
Integer Array with sorted value and Integer Array with index
Begin:
Create an Integer type array index which size is same as value
Initialize an integer array index, starting from 1, each value is incremented by 1.
intValue = keyValueGenerator(index, value);
cudppSort(index, intValue);
cudppSort(intValue, index);
value = recover(index, intValue);

End;

function keyValueGenerator(index, value){
Create an Integer type array intValue which size is same as value.
For each value{
Split right most x bits and then replace the bits in index (start from left Z"d)
Right shift x bits of value assign to intValue

}

return intValue;

function recover(index, intValue){
Create an long type array longValue which size is same as intValuen
For each intValue{
Assign intValue into longValue and then left shift x bits
Get x bits of index (start from left Z"d)‘ and then assign to the right most x bits of longValue

}

return value;

Table 3.4 — Pseudo-code of CUDPP Borrow-Bit Radix Sort

46

GPU Accelerated Hot Term Extraction form User Generated Content

Original key-value pair

Key

Value

00000000000000000000000000000001

011101010011111010100111110101001010

00000000000000000000000000000010

001101110011011010100111110101004110

(0000000000000000000000000000001 1

011111110011111010100111110101000000

00000000000000000000000000000100

010001110011001010100111110101000100

(00000000000000000000000000000101

010011100011111010100111110101000001

00000000000000000000000000000110

011000111111111010100111110101000110

00000000000000000000000000000111

01110001001111101010011111010101 1001

00000000000000000000000000001000

0001011100111110101001111101010001 11

(00000000000000000000000000001001

010011110000111010100111010101004100

(00000000000000000000000000001010

01100001001111101010011111010101 1001

keyValueGenerator

Key

Value

01010000000000000000000000000001

01110101001111101010011111010100

01110000000000000000000000000010

00110111001101101010011111010100

00000000000000000000000000000011

01111111001111101010011111010100

00100000000000000000000000000100

01000111001100101010011111010100

00002000000000000000000000000101

01001110001111101010011111010100

00110000000000000000000000000110

01100011111111101010011111010100

01001000000000000000000000000111

01110001001111101010011111010101

00111000000000000000000000001000

00010111001111101010011111010100

01100000000000000000000000001001

01001111000011101010011101010100

01001000000000000000000000001010

01100001001111101010011111010101

CUDPP sort by key

Key

Value

00000000000000000000000000000011

01111111001111101010011111010100

00001000000000000000000000000101

01001110001111101010011111010100

00100000000000000000000000000100

01000111001100101010011111010100

00110000000000000000000000000110

01100011111111101010011111010100

00111000000000000000000000001000

00010111001111101010011111010100

01001000000000000000000000000111

01110001001111101010011111010101

01001000000000000000000000001010

01100001001111101010011111010101

01010000000000000000000000000001

01110101001111101010011111010100

01100000000000000000000000001001

01001111000011101010011101010100

47

GPU Accelerated Hot Term Extraction form User Generated Content

01110000000000000000000000000010

00110111001101101010011111010100

CUDPP sort by Value

Key

Value

00111000000000000000000000001000

00010111001111101010011111010100

01110000000000000000000000000010

00110111001101101010011111010100

00100000000000000000000000000100

01000111001100101010011111010100

00001000000000000000000000000101

01001110001111101010011111010100

01100000000000000000000000001001

01001111000011101010011101010100

01001000000000000000000000001010

01100001001111101010011111010101

00110000000000000000000000000110

01100011111111101010011111010100

01001000000000000000000000000111

01110001001111101010011111010101

01010000000000000000000000000001

01110101001111101010011111010100

00000000000000000000000000000011

01111111001111101010011111010100

Final Step - recover

Key

Value

00000000000000000000000000001000

000101110011111010100111110101000111

00000000000000000000000000000010

001101110011011010100111110101001110

00000000000000000000000000000100

010001110011001010100111110101000100

00000000000000000000000000000101

010011100011111010100111110101000001

00000000000000000000000000001001

010011110000111010100111010101001100

00000000000000000000000000001010

011000010011111010100111110101011001

00000000000000000000000000000110

011000111111111010100111110101000110

00000000000000000000000000000111

011100010011111010100111110101011001

00000000000000000000000000000001

011101010011111010100111110101001010

00000000000000000000000000000011

011111110011111010100111110101000000

Figure 3.4 — Example of CUDPP Borrow-Bit Radix Sort

48

GPU Accelerated Hot Term Extraction form User Generated Content

3.4 Experimental Results

In this section, various experimental results obtained by using different sorting
approaches for key-value pairs are reported. The experimental platform is an AMD
Athlon™ 64 Processor 3000+ 2.29GHz machine with 3GB of memory and the graphic
card is GeForce GT 240, which has 12 multiprocessors and 96 CUDA cores with 1 GB
memory. The programming implementation uses the version of CUDA 3.2, CUDPP

1.1.1 and JCDUA 0.3.2a.

In order to compare the CPU and GPU sorting in real and practical case, the
experimental results show the execution time of key-value pairs sorting with CPU and
GPU. The GPU execution time includes the time of transferring input data from host

CPU to GPU’s on-board memory.

Figure 3.5 shows the execution time of sorting key-value pairs, both keys and values
are unsigned integer type (32-bit), by Arrays.sort, PigeonHole Sort, CPU Borrow-Bit
sorting and CUDPP radix sort. The input values were randomly generated and the size
ranged from 1K to 50M. By comparing the sorting result run by CPU (Arrays.sort,
PigeonHole Sort and CPU Borrow-Bit sorting), the processing time of CPU Borrow-Bit
sorting is the fastest and the memory usage is the smallest. Out of memory will occur
if the total number of elements is larger than 2 million in Arrays.sort and PigeonHole
Sort. By comparing the sorting results using CPU and GPU, the execution time of CPU
borrow-bit sorting is the fastest if the total number of elements is less than 10K. It is
acceptable that the overhead of GPU is large when transferring the input data from

host CPU to GPU’s on-board memory. The performance of CUDPP radix sort is much

49

GPU Accelerated Hot Term Extraction form User Generated Content

better than other CPU’s sorting approaches if the total number of element is large

enough. GPU is 12x faster than CPU when the total number of element is 50 million.

40,000
35,000 /r
30,000 /
— 25,000
w
E /
£ 20,000 J / - =m=Arrays.sort
" 15,000 / —o—PigeonHole Sort
10,000 CPU Borrow-Bit Sorting
5 000 / === CUDPP Radix Sort
0 _#I T T T T 1

Number of elements

Figure 3.5 — Execution time in Arrays.sort, PigeonHole Sort, CPU Borrow-Bit Sorting
and CUDPP Radix Sort

Figure 3.6 shows the execution time of sorting key-value pairs by CPU Borrow-Bit
Extend Sorting and CUDPP Borrow-Bit radix sort. In this experiment, each value
borrows 4 bits from the corresponding key. As a result, CUDPP Borrow-Bit radix sort

is 4x faster than CPU Borrow-Bit Extend Sorting.

50

GPU Accelerated Hot Term Extraction form User Generated Content

30000

25000

20000 / pd
15000

10000 /’/, CPU Borrow-Bit Extend

5000 / Sorting
// s (| DPP Borrow-Bit Radix

Sort

Times (ms)

O ©® O © & O ©
S & §&F §&F &F&F & &
S Yo O O O
NS S SR DU DU S ¥
b Q\ Q by ()1 Q\ Q\
AN AR S S w9

Number of elements

Figure 3.6 — Execution time in CPU Borrow-Bit Extend Sorting and CUDPP Borrow-Bit
Radix Sort

Figure 3.7 and Figure 3.8 report the execution time of sorting key-value pairs where
both keys and values are unsigned integer type (32-bit) by CPU Borrow-Bit Sorting
and CUPDD radix sort with different number of input elements as well as different
random ranges in generating input elements. In different random ranges of input
elements, we can measure the performance in different sparsity of data. CPU
Borrow-Bit Sorting approach requires more execution time for sorting larger random
ranges of value. On the other hand, the execution time is steady in CUDPP radix sort.

Therefore, CUDPP radix sort has a more stable performance.

51

GPU Accelerated Hot Term Extraction form User Generated Content

12000
Random Range
10000 —p ——1,000
= 8000 10,000
€
-E ==e=1,000,000
4000
=@==10,000,000
2000
=e=20,000,000
0 - —#—30,000,000
==0==40,000,000
50,000,000
Number of elements

Figure 3.7 — Execution time in CPU Borrow-Bit Sorting with different number of

elements and different random ranges

1400
1200 Random
1,000
1000 '#—f <> % s <> =
- 10,000
800
:E; ‘__m—‘/‘\‘/‘\r—-i e 100,000
£ o00 SO —e—1,000,000
400 —¥=10,000,000
e S — 4
200 20,000,000
0 | =t | =#=30,000,000
O © O & & &©® & & & © ©
SO LS LSS S SS 4= 40,000,000
N NQ \ @0 000 A QQQ \ 000 000 A 000 Al QQQ Al
\ \ S ‘ S ‘ 50,000,000
DT DT TS P

Number of elements

Figure 3.8 — Execution time in CUDPP Radix Sort with different number of elements

and different random ranges

52

GPU Accelerated Hot Term Extraction form User Generated Content

3.5 Conclusion

In this chapter, the Borrow-Bit sorting approach is presented. Applying Borrow-Bit
sorting approach into Arrays.sort for sorting key-value pairs is much better than the
original Arrays.sort which uses Comparator. Although the Borrow-Bit sorting
approach may not cover all the sorting problems, it can speed up the processing time

of users who simply use the Java’s Arrays.sort in their program implementations.

Also, using the Borrow-Bit sorting approach, we can solve the limitation of the
CUDPP 1.1.1 version by using CUPDD Borrow-Bit radix sort to sort the key-value pairs
where both key and value can be more than 32-bit. For the prerequisites, the total
number of key-value pairs should be smaller than 2*' and the key should have
enough bits lent to the value. Although, the latest version of CUDPP provides a
complete sorting implementation which supports 64-bit key-value pairs, the JCUDA
does not support it, therefore some JAVA programmers cannot benefit from the
latest version of CUDPP while the CUDPP Borrow-Bit radix sort can still contribute to

some practical cases.

53

GPU Accelerated Hot Term Extraction form User Generated Content

Chapter 4

Hot Term Extraction Analysis

4.1 Introduction

Nowadays, social media has become part of our life. People can easily share their
knowledge and opinions on the Web through different channels such as forums,
blogs, online news and newsgroups, which are called Consumer Generated Media
(CGM). CGM is the major source of digital Word of Mouth (WOM). There is no
standard format for the content of CGM. Users freely type in their opinions on the

Web.

WOM refers to oral communication and the transferring of information from one
person to another [47]. From the marketing view point, Word of Mouth Marketing
(WOMM) refers to people who use WOM to promote their business. In digital
marketing, WOM s like a personal recommendation that customers share their
satisfaction or dissatisfaction over the product or service in CGM, which will affect
other users’ decision when they search the related information in CGM. In a recent
WOM study conducted by Google [48], 94% of WOM conversations are predominant

and the search activity impacts more than 15% WOM conversations.

People usually search information by web search engines. When they input a query,
usually a list of ranked documents according to the keyword of the query will appear.
It is not easy for the users to figure out the most relevant information among the

long list of search results. Besides, some hidden keywords not included in the query

54

GPU Accelerated Hot Term Extraction form User Generated Content

may also be useful to the users. Hot term extraction can list out the most relevant

terms and thus can provide WOM insight to users.

In this chapter, a hot term is defined as a word or a bi-gram Chinese character
appearing in at least a certain percentage of documents. Based on the frequency of
the term occurring in the documents which are searched by query, we can say that
the more frequent the term appears, the more related it is to the query. Some
hidden information may also be useful for users. In view of the huge amount of
search results in a real time application, a fast hot term extraction approach is
required. By taking the advantage of the parallelism characteristic of GPU, a GPU

based hot term extraction framework will be presented in the following sections.

Since WOMM is closely related to social media, some social media tools have been
developed in the IT industry. The tools can help clients to gain marketing benefits and
insights from digital WOM. An overview of the social medial tools in the industry will

be presented in the next section.

55

GPU Accelerated Hot Term Extraction form User Generated Content

4.2 Social medial tools in industry

There exist some companies which develop social medial analysis tools to provide a
WOM monitoring platform. Some of the functions provided by the tools include:
® CGM search engine - users can type in keywords to search the related CGM
posts.
® Sentiment analysis - giving positive, negative or neutral score of each post.
® Hot topic discovery - showing the hottest topic in the search results.
® Charting - showing the distribution of posts in CGM and the daily post
trend within the search period.
® Dashboard — showing insights and analytics summary.

® Hot Term Analysis — showing the most frequent term.

K-Matrix Digital Intelligence Ltd. [5]: It is a digital intelligence solution company. It
provides comprehensive solutions to assist companies in adapting to the fast growing
Internet and gaining the most digital communication and marketing benefits and

insights from the digital community [5].

k-matrix Cl is one of the self developed applications by K-Matrix Digital Intelligence
Ltd. It is a web based application providing real time intelligence and monitoring
platform of WOM in CGM. k-matrix Cl collects around 3 million posts daily from
different CGM web sites, including blogs, micro-blogs, forums, online news and
newsgroup. Up to July 2011, the database of k-matrix Cl has collected 2.1 billion
posts. Having a huge amount of data, k-matrix Cl can help clients to monitor the
WOM of their brand or enterprise. It can also give insights to the consumers to take a

faster step in managing their digital marketing.
56

GPU Accelerated Hot Term Extraction form User Generated Content

CIC [49]: It is a social business intelligence company. CIC enables businesses to fully
leverage the power of social media and Internet word of mouth (IWOM) intelligence
across the organization [49]. It provides solutions to assist companies in meeting
their needs for social media marketing and social business. IWOMmaster is a web
based application developed by CIC. It focuses on the IWOM in the Mainland and
provides a monitoring platform to clients. According to the CIC official website, it
collects over 100 million posts every month from different CGM websites in the

Mainland and currently it has already collected over 1 billion consumer comments.

Visible Technologies [50]: It is a social media solution company. It provides both
software and services to assist companies in getting benefits from social
communities. Visible InteIIigenceT'\’I is a social media platform which helps clients to
navigate the social web, engage with dynamic communities and discover insights [50].
It provides different types of data source such as social networking sites (e.g.
Facebook), micro blogs (e.g. Twitter), video sites (e.g. YouTube), forums, blogs, news

and etc.

Since WOM is important for business marketing, many companies have been

developing social media monitoring tools [51, 52, 53, 54]. However, only a few of

them include the hot term analysis feature.

57

GPU Accelerated Hot Term Extraction form User Generated Content

4.3 Review of Hot Term Extraction

There are some similar related works about hot term extraction algorithms. Also,

there are various extraction methods and purposes in different algorithms.

Frequent word sequence extraction

The frequent word sequence extraction discovers some interesting sequences by
finding maximal frequent sequences in the document collection. According to
Ahonen-Myka et al. [4, 55, 56, 57, 58], there are some definitions as regards maximal

frequent sequence.

Definition 1: A sequence with length k, p = w;... wy, is a subsequence of a sequence q
if all the words w;, 1 <i <k, occur in g and they occur in the same order as in p. If a

sequence p is a subsequence of a sequence q, we can also say that p occurs in q.

Definition 2: A sequence p is frequent in a set of sentences S if p is a subsequence of

at least o,,,, sentences of S, where o is a given minimum frequency threshold.

Definition 3: A sequence p is a maximal frequent sequence in a set of sentences S if
there does not exist any sequence p’ in S such that p is a subsequence of p’ and p’ is

frequent in S.

Given a document collection and frequency threshold o, if a sequence appears for
more than o times, the sequence is considered as frequent. Furthermore, a sequence

is maximal if there is no other frequent sequences contain this sequence. The
58

GPU Accelerated Hot Term Extraction form User Generated Content

following sentences are used in the example stated in [57]. If the minimum frequency
threshold is set as 2, the maximal frequent sequence can be found as “congress

retaliation against foreign unfair trade practices”.

1. The Congress subcommittee backed away from mandating specific retaliation against
foreign countries for unfair foreign trade practices.

2. He urged Congress to reject provisions that would mandate U.S. retaliation against
foreign unfair trade practices.

3. Washington charged France West Germany the U.K. Spain and the EC Commission with

unfair practices on behalf of Airbus.

This extraction method is pretty flexible. Users can set different value of frequency
threshold to find the frequent sequences. And also, the maximal frequent sequences
can provide the most informative summarization to users. However, the main
objective of this extraction method does not focus on the speed issue. The

processing time of this extraction method is not fast enough in real time applications.

Text Clustering

Text clustering is one of the text mining techniques which can help users to organize
document collections effectively. By applying text clustering to the search engine, the
document results can be grouped into a number of clusters. Documents having high
similarity with each other will be put in the same cluster. Users can easily browse the

clustered documents which are related to the users’ query [3].

Beil et al. [59] introduced a text clustering approach which used frequent item (term)
59

GPU Accelerated Hot Term Extraction form User Generated Content

sets. They presented two algorithms for frequent term-based text clustering, with
one aimed for flat clustering while the other aimed for hierarchical clustering. As the
general problems of text clustering are the large document size and high
dimensionality of data, using the frequent term sets can reduce the dimensionality of
the document vector space. They have used the technique of association rule mining
to find the frequent term sets. Terms that appear in a certain number of common
documents are formed into clusters. Therefore, documents which are grouped
together into a cluster are about the same topic. Furthermore, P.
Ponmuthuramalingam et al. [60] presented an effective term-based text clustering.
They presented four algorithms which had higher F-measure value and better

clustering quality than [59].

Yanjun et al. [61] proposed a text clustering algorithm named Clustering based on
Frequent Word Sequences (CFWS). They used the suffix tree method to extract
frequent word sequences and then used the frequent word sequences to perform
clustering. They proved that it was more effective to use frequent word sequences in

clustering than those algorithms which ignored the word sequences in documents.

Word Count

Recently, Google has introduced a software framework named MapReduce [62]
which supports distributed computing on large scale data processing on clusters of
computers. MapReduce provides highly efficient execution time on distributed
computing and the scale of data is at least 1TB. The MapReduce programming model
consists of two primitives which are map operation and reduce operation. The map

operation takes input key-value pairs and produces a set of intermediate key-value
60

GPU Accelerated Hot Term Extraction form User Generated Content

pairs. It groups all intermediate values with the same intermediate key and passes
them to the reduce operation. The reduce operation collects the results in groups
and merges together with the values of each group to form a possibly smaller set of

values. Figure 4.1 shows the MapReduce programming model.

ﬂ Reduce |
Reduce |
>ﬂ

Figure 4.1 — MapReduce programming model

Word counting is a typical example of MapReduce. Given a set of words, the input
key-value pairs represent the word and counter. The word is a key and the value is 1.
The map operation groups all the input pairs which have the same key and the
reduce operation sums up all the values of each group. Therefore, the frequency of
each word is counted. The full example can be found in the tutorial provided by

Hadoop [63].

Word Cloud

Word cloud or tag cloud is a visual representation of summarizing the content of
websites or text documents. Typically, the font size of the words in word cloud

represents the word frequency while the font color indicates other information. For

61

GPU Accelerated Hot Term Extraction form User Generated Content

example, PubCloud [9] summarizes the search results from PubMed and the font size
of the words indicates the word frequency and the font color indicates the recency of
publications. Recently, Cui et al. [64] have presented a dynamic word cloud
visualization method which aims to preserve the semantic coherence and spatial
stability of the cloud. Since word cloud emphasizes the visualization of

representation, it provides an effective representation for summarizing text content.

62

GPU Accelerated Hot Term Extraction form User Generated Content

4.4 Hot Term Extraction - Preprocessing

The preprocessing phase aims to transform documents into a representation that can
be used by our hot term extraction algorithm. As all the documents are assumed
from CGM, there is no standard format for the contents which mainly include
Chinese Characters, words, numbers, and punctuation. A term is defined as an
English word or bi-gram Chinese Characters. The preprocessing phase is important as
some frequent terms are useless and invalid and the hot term extraction algorithm
can be made faster by filtering those terms. Therefore, some rules are set for
defining a term. To ensure the validity of the Chinese term, a term must have two
valid Unicode Chinese Characters which starts with the character code 4E00 [65]. In
English term, the maximum length of pure alphabet terms is 30 characters [66]. For
terms with numeric characters, the maximum length is 8 characters. Furthermore, if
the documents are in some html formats or Bulletin Board Code [67] which is widely
used in forums, all the tags have to be removed. Lastly, the minimum length of terms

is 2 characters.

Before applying the hot term extraction algorithm, we need to give a unique term id
to each term. All terms are saved in the database with a unique term id. At the same
time, the frequency of each term is counted, so that the global term frequency is
recognized. After the global frequency is recognized, most frequent terms and least
frequent terms can be treated as stop words. Filtering of these terms is needed. By
removing the stop words, the result will be more accurate and the processing time

will be shortened.

63

GPU Accelerated Hot Term Extraction form User Generated Content

4.5 CPU Based Hot Term Extraction

4.5.1 Algorithm

Function Main(){
Input:
String of Keyword
Output:
A List of Hot Term <Term Id, Frequency> with corresponding Doc Id List <Long>
Begin:
List of Stop Word = Call Get_StopWord();
Filtered Term Id and Filtered Doc Id = Call Search(Keyword)
Sorted Index = Call Sorting(Filtered Term Id)
Boundary = Call FindBoundary(Sorted Term Id)
List of Term Frequency = Call TermFrequency(Boundary)
Sorted List of Term Frequency = Call Sorting(List of Term Frequency)
Output = Call Get_HotTerm();
End;
}

Table 4.1 — Pseudo-code of CPU based hot term extraction algorithm

Table 4.1 shows the pseudo-code of the CPU based hot term extraction algorithm.
The CPU based hot term extraction algorithm aims to find the most frequent terms
and the corresponding documents. When a user inputs a query, the search engine
will return the related documents and each document will have different number of
terms. Collecting all the terms and then calculating the term frequency, the number
of most frequent terms can be found. In this algorithm, the calculation of term
frequency is performed by sorting and finding boundary processes. The use of this
approach for finding term frequency is mainly due to the huge number of terms. It

can reduce memory usage and may not need to create an additional counter to

64

GPU Accelerated Hot Term Extraction form User Generated Content

calculate all term frequencies. Moreover, since there is no counting method provided
by GPU, using this approach can avoid finding term frequency in GPU based hot term
extraction. With the use of the same approach in both CPU and GPU based hot term

extraction algorithm, the experiment result can then be compared.

The CPU based hot term extraction algorithm consists of seven major steps. Firstly,
getting stop words from database, it is used for filtering the terms after the search
documents are produced. According to the query, the search engine will return
related documents and any useless terms will be filtered at the same time. Thus,
there remain the filtered term ids and the corresponding document ids. It then
requires the counting of the term frequency and sorting of the filtered term ids. After
the term ids are sorted, we have to find the boundary index of each term id. The
boundary index refers to the last position of each sorted and unique term id. As the
boundary index of each term is known, it is easy to find the term frequency of each
term and they can be assigned to a list which contains an index and frequency of
each term. After sorting the list in descending order by frequency, the most frequent
terms are sorted on the top of the list. Lastly, the terms can be retrieved by using the
index of the sorted list. The flow chart and an example of the CPU based hot term

extraction algorithm are shown in Figure 4.2 and Figure 4.3 respectively.

65

GPU Accelerated Hot Term Extraction form User Generated Content

Stop Word List Filtered Term Ids Filtered Doc Ids

v

A 4

Input Query Get Stop Word Search Query

Sorted Term Index

Sorted Term Ids

Sort Filtered Term Ids

\ 4

Find Boundary

Boundary

Term Frequency Counter

Term Frequency List

w
Descending Sort Term N>a| Sorted Term Frequency
Frequency kesgoon = e

l Sorted Term Frequency
Get Hot Term Index

m

Figure 4.2 — Flow of CPU based hot term extraction

GPU Accelerated Hot Term Extraction form User Generated Content

Filtered Term Id Filtered Doc Id

jan | may | tom | jan | jan | zoe | tom 001 | 005 | 002 | 004 | 003 | 006 | 007
Sorted Term Id l Sorted Term Index

jan | jan | jan !tom tom | zoe 0 3 4 !2 6 5
Boundary

A 4

Term Frequency List |
3 1 2 1

Descending sorted Term Frequency Sorted Term Frequency Index

Sorted Term Id[Boundary[Sorted Term Frequency Index[i]]]

Hot Term Id

jan tom zoe

l

y = Boundary[Sorted Term Frequency Index[i]] - Descending sorted Term

Frequency[i]+1 to Boundary[Sorted Term Frequency Index]i]]

Filtered Doc Id [Sorted Term Index[y]]

Doc Id l

001 | 004 | 003 | 002 | 007 006

Figure 4.3 — Example of CPU based hot term extraction

67

GPU Accelerated Hot Term Extraction form User Generated Content

4.5.2 Merge Sort

The CPU based hot term extraction algorithm has several steps. In the whole process,
the stage of sorting filtered term ids occupies most of the processing time. In order
to shorten the processing time, we may use the merge sort and multi-core processor

characteristics to implement the sorting.

A multi-core processor has two or more independent processors that read and
execute program instructions. Just like parallel programming, each processor
executes instructions concurrently, which makes it more efficient than a single

processor.

Merge sort was invented by John von Neumann [68]. It is based on a divide and
conquer algorithm which divides the unsorted list into two sub-lists each at about
half of the total size. The merge sort is then recursively applied to sort each sub-list.
Lastly, the two sub-lists are merged into one sorted list. An example is shown in

Figure 4.4.

[]2]3]a]7 |8]

Figure 4.4 — Example of Merge Sort
68

GPU Accelerated Hot Term Extraction form User Generated Content

In our hot term extraction algorithm, the filtered term ids are returned after
searching the keyword. Depending on the number of cores of the processor, we can
divide the term id list into N sub-lists with each at approximately equal size. Each
sub-list independently runs Arrays.sort on a core of the processor. After all the
sub-lists are sorted, they are merged into a sorted list. The implementation of merge
part is the same as that of merge sort. The elements of 2 sub-lists are compared and

a sorted list is then generated. The pseudo-code is shown in Table 4.2.

public static int[] merge(int[] numberl, int[] number2) {
long[] number3 = new long[numberl.length + number2.length];

inti=0,j=0,k=0;
while(i < numberl.length && j < number2.length) {
if(numberl[i] <= number2[j])
number3[k++] = numberl[i++];
else
number3[k++] = number2[j++];

while(i < numberl.length)
number3[k++] = numberl[i++];

while(j < number2.length)
number3[k++] = number2[j++];

return number3;

Table 4.2 — Pseudo-code of merge sort

69

GPU Accelerated Hot Term Extraction form User Generated Content

4.6 GPU Based Hot Term Extraction

4.6.1 Algorithm

Function Main(){
Input:
String of Keyword
Output:
A List of Hot Term <Term Id, Frequency> with corresponding Doc Id List <Long>
Begin:
Term Id and Doc Id = Call Search(Keyword)
List of Stop Word = Call Get_StopWord();
Filtered term Id = Call GPU_FilterTermlId(term id, Stop Word Flag)
Sorted Index = Call GPU_Sort(Filtered term id)
Boundary = Call GPU_FindBoundary(Sorted Term Id)
List of Term Frequency = Call GPU_TermFrequency(Boundary)
Sorted List of Term Frequency = Call GPU_Sort(List of Term Frequency)
Output = Call Get_HotTerm();
End;
}

Table 4.3 — Pseudo-code of GPU based hot term extraction algorithm

Table 4.3 depicts the pseudo-code of our GPU based hot term extraction algorithm.
Although its flow is the same as that of the CPU based counterpart, the
implementation is designed for running on GPU. The computational complexity of
GPU based hot term extraction is O(nlogn). The algorithm consists of four main GPU
functions: binary search, parallel scan operation, stream compaction and sorting. The
binary search and stream compaction can be used to filter the useless term id in
GPU_FilterTermld function; by using parallel scan operation and stream compaction,
the boundary and term frequency in GPU_FindBoundary and GPU_TermFrequency

can be find out; GPU sorting is respectively performed for sorting the term id and

70

GPU Accelerated Hot Term Extraction form User Generated Content

term frequency.

In the stage of filtering the stop words (GPU_FilterTermld), binary search and stream
compaction are used. Given a raw term id and stop word id, we can use binary
search to find out which term id corresponds to a stop word and mark it as 1. After
generating a 1/0 flag, we can filter out all stop words marked as 1 by using stream
compaction. As the CUDPP library provides stream compaction APl which is called
cudppCompact, it is easy to filter out the stop words. However, the CUDPP library
does not provide any search API, we have to develop on our own. Luckily, binary

search can be easily mapped onto the GPU.

As binary search works only on a sorted list of elements, the stop word id is sorted in
CPU before passing onto the GPU. With a sorted list of id, all term ids are prepared
to fit into the uniform-grid data structure so that it can perform several sequential
binary searches at the same time. Each grid cell initiates a search for itself in the
sorted list and the search assigns 1/0 in the output for every grid cell. The outputis a
list of 1/0 flag where the index of the list is the location of term id and O represents
that the term is a stop word. The coding of GPU based binary search is shown in

Table 4.4. Also, an example of the whole process is shown in Figure 4.5.

__global wvoid GPU BinarySearch(int *output, int *termId, int*
stopWord, int last, int gridx)
{

int i = threadIdx.x+blockDim.x*blockIdx.x;

int in = it+blockIdx.y*blockDim.x*gridx;

int first = 0;
output[in] =1;
while (first<=last) {

int mid= (first+last)/2;

71

GPU Accelerated Hot Term Extraction form User Generated Content

if(termId[in] > stopWord[mid]) {
first = mid+1;
}else if (termId[in] < stopWord[mid]) {

last = mid-1;

}else(
output[in] = 0;
break;
1}
Table 4.4 — Coding of GPU_BinarySearch
Documentld

10 |11 |12 (13 |14 |15 |16 |17 |18 |19 |20

Term Id Stop Word Id

bird | cat | egg |guy |cat |dog |jan |cat |[ant |van |ant guy |jan |van

GPU_BinarySearch

1 1 1 0 1 1 0 1 1 0 1

CudppCompact
Filtered term Id
bird | cat |egg |cat |dog |cat [ant |ant

Filtered doc id
10 |44, |12 |14 |45 |17 |18 |20

Figure 4.5 — Example of filtering term id and doc id

Now we have a list of filtered term id, the next stage is to sort the filtered term id list.
In this stage, if all the term ids are 32-bit positive integers, the algorithm can directly
use key-value pair sort which is provided by CUDPP library. However, if the term ids
are more than 32 bits positive integer, the algorithm has to use the CUDPP
Borrow-Bit radix sort which has been introduced in Chapter 3. For simplicity, we now
assume that all the term ids are 32-bit positive integers. By performing a key-value
pair sorting, the key is an index of filtered term id which starts from 1 to the total
number of filtered term id and the value is the filtered term id. An example of this

stage is shown in Figure 4.6.

72

GPU Accelerated Hot Term Extraction form User Generated Content

Filtered TermId(value), A

bird cat egg cat dog cat ant ant

Index of filtered term id (key)

1 2 3 4 5 6 7 8

Sorted TermId (value) @ Cudpp Sort

ant ant bird cat cat cat dog €88

Sorted index (key), 8

7 8 1 2 4 6 5 3

Figure 4.6 — Example of key-value pair sorting on filtered term id

After sorting the filtered term id, we can bring the sorted term id to the next stage in
order to find the boundary index which aims to calculate the term frequency. The

sorted index is used for retrieving the term id at the last stage.

There are two objectives in the boundary finding stage. The first one is to find the
first position of each unique term id. It aims to prepare the list of 1/0 flag for
counting frequency in the next stage. The second one is to find the last position of
each unique term id. It aims to prepare the list of 1/0 flag for getting the term

frequency in the next stage.

Since the program works on GPU, it needs a parallel data structure program instead
of a sequential program. Same as the GPU binary search function, the sorted term
ids are prepared to fit into a uniform-grid data structure so that it can perform
several sequential programs in parallel. The function for finding the first position of
each unique term id is called segmentFlag whose program code is shown in Table 4.5.
If the input[i] is not equal to input[i-1], it means that the element of index i is the first

term which has a different term id, so the output is marked as 1. However, if the

73

GPU Accelerated Hot Term Extraction form User Generated Content

input[i] equals to input[i-1], it means that the index i is not the first element, so the

output is marked as 0.

__global void segmentFlag(int *d out, int *d in, int clength,

gridx)

{

int 1 = threadIdx.x+blockDim.x*blockIdx.

int in = it+blockIdx.y*blockDim.x*gridx;

if (in==0) {
d_out[0]=1;

Jelse if(d in[in] != d in[in-1]) {
d out[in]=1;

Jelse if(d in[in] == d in[in-1]) {

d out[in]=0;

int

Table 4.5 — Coding of segmentFlag

The function for finding the last position of each unique term id is called compactFlag,

whose program code is shown in Table 4.6. If the input[i] equals to input[i+1], it

means that the element of index i is not the last term which has the same term id of

index i+1 , so the output is marked as 0. However, if the input[i] does not equal to

input[i+1], it means that the index i is the last element, so the output is marked as 1.

After the GPU_FindBoundary stage, we will have segmentFlag and compactFlag. An

example is shown in Figure 4.7.

74

GPU Accelerated Hot Term Extraction form User Generated Content

__global void compactFlag(int *d out, int *d in, int clength, int

gridx)

{
int i = threadIdx.x+blockDim.x*blockIdx.x;
int in = i+blockIdx.y*blockDim.x*gridx;

if (in==clength-1) {

d out[clength-1] = 1;
return;

}

if(d in[in] == d in[in+1]) {

d out[in]=0;
lelse(

d out[in]=1;

Table 4.6 — Coding of compactFlag

Sorted TermId

ant ant bird cat cat cat dog egg

‘ GPU_FindBoundary
SegmentFlag

1 0 1 1 0 0 1 1

CompactFlag

0 1 1 0 0 1 1 1

Figure 4.7 — Example of segmentFlag and compactFlag

After the segmentFlag and compactFlag are prepared, we can count the term
frequency. There are three steps in the GPU_TermFrequency stage. Firstly, an input
list whose size is the same as the sorted term id and the value of each elementis 1 is
prepared. Then, a segmented scan with segmentFlag is performed. The largest value
or index of each segment is the frequency of a term. Secondly, a stream compaction

with compactFlag to generate the term frequency list is performed. Finally, a scan

75

GPU Accelerated Hot Term Extraction form User Generated Content

with the term frequency list is performed. It aims to generate an index of each

unique term id in the sorted term id list. An example is shown in Figure 4.8.

Sorted TermId

ant ant bird cat cat cat dog egg
1 1 1 1 1 1 1 1
SegmentFlag

] 0 1 1 0 0 1 1

; Cudpp Segmented Scan

1 2 1 2 3 1 1

CompactFlag

0 1 1 0 1 1 1

Cudpp Compact
Term frequency list PP P

Cudpp Scan
Index of unique termid, €

1
0
¥
2 1 3 1 1
D
2 3 6 7 8

Figure 4.8 — Example of counting term frequency

After the GPU_FindBoundary stage, we have a term frequency list. In order to know
which term is hot, sorting of the term frequency list is necessary. Again, cudppSort is
used to perform key-value sorting of the term frequent list. An example is shown in

Figure 4.9.

76

GPU Accelerated Hot Term Extraction form User Generated Content

Term frequency list

2 1 3 1 1
’ Cudpp Sort

Sorted Term frequency list

1 1 1 2 3

Sorted Index, D

2 - 5 1 3

Figure 4.9 — Example of sorting term frequency list

The final stage is to get the hot terms and related documents. Using the list of A, B, C
and D, the highlighted labels in the above figures are used to retrieve the hot term
and the related documents. Figure 4.10 below shows the process of getting hot
terms. To illustrate, the hottest term — “cat” which is shown in grey in the figure can
be obtained by firstly using the last value D to find the index of C. Then the value of C
is used to find the index of B and finally, the value of B is used to find the hot term in

A.

Filtered TermId m

bird cat dog cat ant ant

Sorted index (key) m

7 8 1 2 4 6 5

Unique term id index E

2 3 6 7

Sorted Index m

2 4
Figure 4.10 — Example of retrieving hot terms

This stage is performed on CPU, even it is a GPU based hot term extraction. To get
the hot terms and related documents, a lot of intermediate results such as the

77

GPU Accelerated Hot Term Extraction form User Generated Content

aforementioned list of A, B, C and D are needed. Due to the memory limitation of
GPU devices, more memory will be used if the intermediate results are kept in the
last stage. If more memory has been used on the intermediate results, it will
decrease the number of terms handled by the hot term extraction algorithm.
Therefore, we should free up the memory right after transferring any intermediate

results from device memory to host memory.

78

GPU Accelerated Hot Term Extraction form User Generated Content

4.6.2 Experimental Result

The experimental results of CPU and GPU based hot term extraction on different size
of search results are reported in this section. The experimental platform is an Intel®
Xeon® Processor X3450 with 2.66GHz machine with 16GB of memory and the
graphic card is GeForce GTX 470 that has 14 multiprocessors and 448 CUDA cores
with 1280 MB memory. Due to the limitation of memory in GeForce GTX470, it only

supports up to around 32 million terms in the GPU based hot term extraction.

The experimental data was collected by the K-Matrix Digital Intelligence Ltd. The
data collection period was between 25" March 2010 and 13" April 2010. There are
around 19 billion terms with 10 million unique terms distributed in 50 million
documents. The documents are collected from different forums in various regions

(Hong Kong, Macau and China). Details of the forums are listed in Appendix B.

Cost Analysis

The prices of GPU and CPU that used in the experiment are similar. In CPU, the price
of Intel® Xeon® Processor X3450 is around HKD $2,500. In GPU, the price of GeForce
GTX 470 is around HKD $2,800. Since the prices are similar, using the GPU to perform

hot term extraction is worth if the performance of GPU is better than CPU.

Speed Experiment

Figure 4.11 reports the processing time of the hot term extraction in CPU and GPU

with different number of term ids. In CPU, we use the merge sort characteristic to
79

GPU Accelerated Hot Term Extraction form User Generated Content

divide the term id into approximately half size and then perform the sort into each
core processor. Lastly, the sort results are merged. There are 4 cores with
multi-threading in Intel® Xeon® Processor X3450. We can fully utilize 8 cores in the
program. Obviously, the performance of single core is the worst, and the
performance of three to eight cores are very close. It proves that the merge sort
applied in multi-core processors has a better performance than running a sorting in a
single processor. Moreover, the performance trends are converged by adding CPUs.
The memory architecture of CPU is different from GPU. GPU has more arithmetic
logic units devoted to data processing while CPU has more control units dedicated to
data caching and flow control. The architecture of CPU was designed to optimize the
performance of sequential code. It makes use of control logic to allow instructions
from a single thread of execution to execute in parallel or even out of their
sequential order while maintaining the appearance of sequential execution [69]. To
maintain the high speed of execution, the merge sort process requires large amount
of cache memories for reducing instruction and data access latencies, so that the
performance is limited. Nevertheless, the merge sort brings around 5x performance
speed up when the number of term is 32 million. The best performance is still in GPU.
Comparing with the CPU based hot term extraction, the GPU based hot term
extraction has around 1.7x performance speed up when the number of term is 32
million. Although the processing time difference is just around a second, it is very

important in the real time systems.

80

GPU Accelerated Hot Term Extraction form User Generated Content

10000

9000

8000

7000

6000

5000

Processing Time (ms)

4000

3000

2000

1000

=== 1 CPU
=@—2 CPU
=3 CPU

=4 CPU

O=——

1000000

2000000 4000000 8000000 16000000 32000000
Number of Terms

=i=5 CPU
w6 CPU
=7 CPU
==e=8 CPU
==l=GPU

Figure 4.11 — Performance of Hot Term Extraction with different number of terms

81

GPU Accelerated Hot Term Extraction form User Generated Content

Processing Time Occupation

Figure 4.12 and Figure 4.13 show the occupation of processing time in hot term
extraction with CPU and GPU. They demonstrate two important facts: (1) sorting
process occupies more than 80% processing time in CPU based hot term extraction;
(2) the process time of transferring data from host to device and from device to host

occupies about 12% in GPU based hot term extraction.

With a view to fact (1), hot term extraction spends most of the time in sorting
process. In Chapter 3, we proved that the GPU sorting is much faster than CPU
sorting. Therefore, the GPU based hot term extraction can get a better performance
with using GPU sorting. According to fact (2), the overhead in transferring data from
host memory to device memory or vice versa is the tradeoff of using GPU device to
perform programming. Therefore, a well designed algorithm is important in a way

that avoids the unnecessary overhead and waste of resources.

Another important point is that the process of getting hot term list is running on CPU,
even in the GPU based hot term extraction. In order to get the hot term list in the
last step, lots of intermediate results are required. Since the memory is limited in the
GPU device, for providing more memory to support more number of terms in the
algorithm, the intermediate results are immediately transferred from device memory

to host memory.

82

GPU Accelerated Hot Term Extraction form User Generated Content

100%
90%
80%
70%
 Transfer from Device to Host
60%
M Get Hot Term List (run on CPU)
50%
W Sort Term Frequency
409
% M Calculate Term Frequency
30% H FindBoundary
20% H Sort Term ID
10% B Transfer from Host to Device
0%
GPU CPU GPU CPU

32000000 1000000
Number of Terms

Figure 4.12 — Processing time breakdown with different number of terms

2000
1800
1600
1400 .
_ i Transfer from Device to Host
w
3 1200 M Get Hot Term List (run on CPU)
()
£ M Sort Term Frequency
=
v 1000
< M Calculate Term Frequency
w
(7]
§ 800 - M FindBoundary
a H Sort Term ID
600 - .
M Transfer from Host to Device
400 -
200 -
O .

GPU CPU

Figure 4.13 — Processing time breakdown in 32 million of terms

83

GPU Accelerated Hot Term Extraction form User Generated Content

Hot Term Extraction

Figure 4.14 shows three examples of searching different keywords with return of top
30 hot terms. To quote the query of “smartone” as an example, there are 1,565
documents returned with 63K terms in those documents. Among these 63K terms,
28.49% of them are “smartone”. The second hot term is “plan” which has 8.43%. And
the third hot term is “iphone” of 8.30%. The term “iphone” is highly related to
“smartone” because Smartone was selling iphone during the searching period and

many people were discussing the iphone plan and Smartone.

Regarding the query of “pccw” example, there are 4165 documents returned with
185K terms in those documents. Among these 185K terms, 33% of them are “pccw”
and the second hot term is “_F4g” of 5.06%. Other hot terms are also relevant to the
keyword searched. It proves that people were concerning those hot terms during the

searching period.

As illustrated in the query of “E ", the second hot term is “F#{—". Since there was a

football match “EH% vs F£{—” on 31* March,2010, and some people discussed in

the forums and frequently mentioned these two hot terms.

The hot term extraction is beneficial to different users. For the example of “smartone”
query, if the user is a Smartone staff, he may want to know the comment of users. So
some terms such as “[HRH”, “IE4F” are useful to him. If the user is in a role of
marketing, he may want to know something about competitors. Terms such as
“pcew”, “csl”, “BES” are useful to him. If the user is a customer, he may want to

know the features about Smartone. Terms such as “plan”, “_E4d”, “3g”, "&&=L", “wifi”

84

GPU Accelerated Hot Term Extraction form User Generated Content

are useful and “iphone” may also attract to him.

Keyword: smartone Keyword: pccw Keyword: < it
Documents: 1565 Documents: 4165 Documents: 80228
Terms: 63947 Terms: 185575 Terms: 3124117
smartone | 28.49% pCCW 33.00% S | 23.32%
plan 8.43% i 5.06% T | 6.38%
iphone 8.30% plan 4.53% Vs 5.14%
£ 5.50% B|iE | 4.33% Bt | 441%
3g 3.50% mobile | 4.04% =Y | 441%
mobile 3.44% discuss 3.62% HEm | 3.94%
Bk 3.31% [eIRE 3.32% =22 | 3.86%
felRE 3.04% wifi 3.18% & | 3.86%
discuss 2.87% HiE 2.99% —F | 3.82%
% 2.80% E)E 2.90% discuss | 3.26%
vodafone 241% 3g 2.67% 45 3.26%
3gs 2.37% EHE 2.65% W | 3.23%
DCCW 2.36% 30m 2.51% BtEE | 3.05%
F& 2.34% msn 2.44% HE | 2.34%
R 2.30% —{& 2.14% ENEF | 2.28%
phone 2.28% hkbn 2.14% BFaT | 2.26%
RE 2.25% 5 2.05% BrEE | 2.24%
EE] 2.02% % 2.00% ¥ | 1.90%
sms 1.93% A% 1.98% iE | 1.89%
BHAE 1.91% HE 1.94% HiF | 1.88%
&)z 1.80% forum 1.89% uwants | 1.86%
—{& 1.77% NG| 1.77% B | 1.72%
HigE 1.67% AR 1.77% 61 1.66%
HeE 1.47% iphone 1.73% EE | 1.64%
E4F 1.44% hotmail | 1.68% & | 1.64%
wifi 1.36% Fr 1.66% EAE | 1.61%
csl 1.31% router 1.58% BH | 1.58%
Ho 1.25% BT 1.56% KEE | 1.56%
T 1.25% K 1.42% 19 1.49%
GiLEy 1.23% hkepc 1.32% WEE | 1.46%

Figure 4.14 — Example of top 30 hot terms with different keyword searching

85

GPU Accelerated Hot Term Extraction form User Generated Content

Chapter 5

Conclusion

5.1 Contribution

In this thesis, we have proposed a flexible key-value pair sorting algorithm and a GPU
based hot term extraction algorithm. The proposed algorithms have been tested on
different web forums as listed in Appendix B and demonstrated by various

experimental results, which indicate that they are efficient.

To the best of our knowledge, this is the first attempt to perform hot term extraction
in search results with GPU and a preliminary version of this work will be reported in

[70]. The contributions of this thesis include:

1) A flexible key-value pair sorting algorithm called Borrow-Bit sorting: The
Borrow-Bit sorting can flexibly set the number bits in key and value, as long as the
sum of key and value is within 64-bit. In the experiment results, we show that the
Borrow-Bit approach provides flexible and efficient sorting. In addition to addressing
the limitation on CPU, it also works on GPU. It provides a faster key-value pairs
sorting when using JAVA. Moreover, it provides a method to use CUDPP Radix Sort

for sorting key-value pairs where both key and value are more than 32 bits.

2) A fast hot term extraction method using GPU: In the convenient digital world,
users always use the search engine to find what they want. Among the huge amount
of search results, the hot term extraction results can provide hidden information to

users. We can enjoy the advantage of parallel characteristics by implementing the
86

GPU Accelerated Hot Term Extraction form User Generated Content

hot extraction with GPU, it is much more efficient to get the most frequent terms in
the search results. Comparing the processing time with the CPU based hot term

extraction, the GPU based method can archive around 1.7x speed up.

5.2 Future Work

Due to the limited time of conducting this research, there are some potential

enhancement areas in hot term extraction.

1) N-Gram preprocessing

In the proposed hot term extraction algorithm, bi-gram is used to define a term.
Since each document consists of many words, using n-gram to get all the
combination of various terms is inefficient. Therefore, we use the bi-gram as the
basic unit of term. To make the result more accurate, we would like to apply n-gram
in the top N hot term lists. Firstly, the location of each word in document is stored.
After generating the top N hot term lists, we can combine the terms which are

located in consecutive sequences.

On the other hand, in order to reduce the memory usage in the hot term extraction,
we have to minimize the redundant terms in the pre-processing step. Named entity
recognition can be chosen to help identify terms like people, locations and
organizations. For example, if the dictionary consists of the term “EE{ZIF}”, the
named entity recognition can help reduce three bi-gram terms including “E&Ez}\”, “&

£1” and “EKIF1”. The named entity recognition helps to reduce the number of terms

and improve the accuracy in the hot term extraction.

87

GPU Accelerated Hot Term Extraction form User Generated Content

2) Hot Term Clustering

In hot term extraction, we can treat the resulted listing as a cluster of searching
qguery. We can form a link to another cluster which is searched by another query if
two clusters have the same hot terms. Figure 5.1 shows the example of “smartone”
cluster and “pccw” cluster. In the cluster, the hot terms are shown in different colors
and different font sizes in Figure 5.1. The font size is proportional to the term
frequency, so that the hotter terms may have a larger font size. There are some hot
terms which are the same in these two clusters, so we can form a linkage between
these two clusters. Each link between the two clusters can perform another search
with AND operation. Users can click the link to perform another search to find the
results they are interested in and the corresponding hot term lists. For example, if a
user clicks the link of “iphone”, another search query is formed to have “smartone
AND pccw AND iphone”. The search will automatically find the documents which

consist of “smartone”, “pccw” and “iphone”, and then list out the corresponding hot

term lists.

lpl]one hl 2pC

plan

smartone

i

smartone cluster pcew cluster

Figure 5.1 — Example of hot term clustering

88

GPU Accelerated Hot Term Extraction form User Generated Content

In practice, the hot term clustering is very useful. We can find the WOM of different
features or products in different brands easily. Figure 5.2 shows an example in the
cosmetic industry. There are four clusters searched by different keywords, namely
“biotherm”, “shiseido”, “shu uemura” and “fancl”. The hot term “ZE[4” appears in
these four clusters. Users can easily find the WOM of “Z£[4” between these four
brands and the hot term clustering can let users know that this hot term is important
in the cosmetic industry. In addition, the appearance of the hot term - “BEF" in the
hot term lists of the “biotherm” cluster and “shiseido” cluster reveals that this term
has more WOM in these two brands than “shu uemura” and “fancl”. In other words,

this term attracts interests from more people and may also be meaningful to the

user.

Since the hot term clustering widely reuses the hot term extraction algorithm, a fast

algorithm is important. The GPU can help to achieve faster performance than CPU.

3) Multiple GPUs

In this thesis, the proposed GPU based hot term extraction only uses a single GPU. To
enhance the processing time of hot term extraction, we can implement the algorithm
with multiple GPUs. In CPU based hot term extraction, we use multiple cores to
perform merge sort for sorting term id. It is proved that the processing time of using
merge sort in multiple cores is much faster than sorting in only a single core. By
applying this idea to GPU, we can carry out the merge sort in multiple GPUs and

achieve a better performance.

On the other hand, the overhead in transferring data from host memory to device
89

GPU Accelerated Hot Term Extraction form User Generated Content

memory or vice versa in GPU is a bottleneck. Using multiple GPUs can reduce of this
overhead. From a single GPU, it is sequentially transfer data from host memory to
device memory or vice versa. However, using multiple GPUs can asynchronous
transfer the data which means that multiple transfer the data at the same time. As a

result, we can coordinate works across multiple GPUs to archive faster processing

time.
Keyword: Keyword: Keyword: Keyword:
biotherm shiseido shu uemura fancl
biotherm shiseido shu fancl
Bk chanel uermnura g
L] | |] EES
=K A N3E dhc
BR | | s
¥ BEE YR HE
HE fik i base AT
kiehl armani ba HEE
skin L BE | VI B
R 552 uv Myt
| A] K& ki BREA
A& #2u A2z HR{E
clinique mac HE =
origing brown mac RE
x5 bobbi 65g R
fancl EW jiz1lis E—
RS =T P JE7N
B giorgio HEFE B
el /NEE P =%
F=&h 3 < L=
KE FO/) el TR
i Ja3r RE N
lancome EF0 T f=AA
sample EZ 1PN 2% =
F5 2% B s
e TF i Ea
food B % bLegias)
Yot white cream EH
base HiE H =t
e ez EX= [#m |

Figure 5.2 — Cosmetic Industry Example in hot term clustering
90

GPU Accelerated Hot Term Extraction form User Generated Content

Appendices

A. K-Matrix CI Report - PCCW

k-matrix

k-matrix €l Analytics Summary 1o’ i |

{_~ Profile Information

Export Date |2011—09-02 15:54:48
Profile Hame M/A
Keyward peew
Time Range 2019-01-01_to 2019-12-31
Region Hong Kong, Macau, Mainland, Taiwan
Source Type Blog, Forum and @A, Mewsgroup, Hews
Exposure & Mentioning Trend (01/01/2010 to 31/12/2010) -@- Weekly Unique Post -e= Weekly Unique View
— Weekly Unique Sentiment
2500 400,000
350,000
£ 2000 §
2 300,000 2
g 250,000 &'
5 2
£ 1000 200,000 =
500 150,000
40%
3 0% 7
= |
L \
E
£ _20%
v
-40%

1/10(19/28 6 /15/24 |5 [14(23(1 (1019128 7 [16/25/3 [12/2130) 9 |18/27| 5 /14(23/ 1 |10/19/28| 7 [16/25| 3 (122130 9 |18
Jan 2010 | Feb 2010 | Mar 2010 | Apr2010 | May 2010 | Jun 2010 | Jul 2010 | Aug 2010 | Sep 2010 | Oct 2010 | Nov 2010 |Dec 2010

\ﬂ Summary Analysis

34, 663 people have shared their opinions in 25, 447 topics / 100,529 posts on 160 Websites.
The sentiment index is 26.3%. More than 152, 322, 629 people have viewed these apinions.

GaM Hows Analysis
100, 350 Pasts 179 Posts 43.2% Websites Coverage
92 852 Hew Posts 12 Websites 17. 2% Posts Spread
25, 268 Tapics 31 Boards 275.4 Pasts per Day
24,624 Hew Tapics 189.7 Authors per Day
148 Websites 118.2 Topics per Day
2114 Boards 1.9 Websites per Day
34, 654 Authors 619 Boards per Day
152, 122, 829 All View Count A 25.3% Sentiment Index v.2.0
25, 416 Sentiment Score

{E: Region Distribution

Hong Kong 98,146
5 Macau |48
S P
& Mainland |jjj1-652
Taiwan ||73
0 20,000 40,000 60,000 80,000 100,000 120,000

Number Of Posts

91

GPU Accelerated Hot Term Extraction form User Generated Content

k-matrix»

k—matrix €1 Analytics Summary

'\! Source Typs Distribution

| Forum and GBA || Homa

Blog

| Distribution (&] 97.4 0.2

{& Hot Topic Liat (Top 10}

onien e e R
PCCW S i phoneddREIE Uwants ATHEE U196 % 1.5% 94.5 %
#iti$eon. BE0S100/2 . -

1 create dusba. seeshel |, peach. neo. candy. barbie. mimo. alisa 3boys2eirls R ek D33k
———=> §E{8Pplan (PCONEIARIE, REHIE, Wifi SR\ <——— E#itaE U 9.9% 0.9% 9.2 %
%J&P&sw 133?‘%’&%?000 SRITHENA: #3, 859 Keitin 8 a1ax 0.9% 100.9 %
[Fi#] % % % §l- % % * (SERFHABMOLE | 550 0) [FENE o g

BRER B, BRARAR] 214 Earo [EHEASE il 2 || sl
AT o) MAFsusid+ ST T 4800 Bk W& 6] UG A AFEEFD SHS! 3boys2girls v 08% 9.6% 19.0 %
%%_;gﬁcqu%)\ﬁ‘r (1) R IET 8 CW 100%REAL-HEN, . B EINKEZIE 3boys2girls o oos 0.5 % 9.5 %
FpeewBEplan. . HEFKET FHMHE o 73w 0.5% 96.4 %
[SHTE] pceni@IE/ S E FEmBAHE B 3% 0.5% 100.0 %
[E7] % % % % % @FEFLLDAY! | ARCHEEx * * * * 2000FUN#RIE v 300% 0.4% 87.1 %

. Top Site List (Top 10)

Tobs | tes Sentiment Index (0 Contribution %) Post Count Tople Count Unlque Auther
FHHHE L 26.8 24.6 24737 7018 9848
Uwants FTEEE L) 28.5 17.9 18002 5406 4808
FEmEITHE L 15.2 14.1 14208 2412 5044
RAEEEE HKEPS Hardware e 23.9 13.3 13406 2330 3024
3boyslgirls 44 39.4 8.3 8364 1699 1833
#HRIIHME L 22.2 3.4 3441 408 901
AV100FuniTiE £ 32.6 2:8 2353 325 239
2000F UK 1B) 21.9 2.3 2278 303 &01
HTIE ¥ 33.6 2.2 2175 536 1083
yahoo EN3H “ 37.9 1.5 1463 981 998
" Top Author List (Top 10}
Authors Sentiment Index (%) Comtribution (%) Poxt Gounrt Topio Count Most Active Board
Jo'Y el o 21.4 1.0 1939 25 3boys2girls — (KA R/ BRecon
Jacky_Hsu L4 1.4 0.8 850 4 FHERIE - $P RRER
i_am_up_post =% 90.0 a9.6 440 % JboysZgirls — AT R/ BRcon
ThaKT 2 95.9 a6 438 10 3boys2girls — HALA &/ BRcon
Bab!i&] 0.0 0.6 438 1 Jboys2girls — TEREMIAT
mE R 4 1.1 0.4 445 392 Uwants FTHIE - HYE A
BT L 13.1 0.4 443 235 RAE B HKEPE Hardware — HBIRHYE
NMaykhera w 4.2 0.4 400 8 WPIRBHE - [RHHEE]
ha_97 o 8.4 a.3 336 17 EHIHME - FH LR
b9 N o4 1.1 0.3 332 136 RAGEHE HKEPE Hordware — MBS

92

GPU Accelerated Hot Term Extraction form User Generated Content

B. Data Collection - CGM

Online news (Hong Kong)

Blog (Hong Kong):

PN

KA

G

5 H#H

SOEH

#hi H ¥

AR H

sina.com.hk ©& &
HEPE 2 AR

SER BT

KR BT]

The Standard - Breaking News
The Standard - Sections

HA s BT [

HKEJ instant news
GRFRAE - BIEEE R

Reuters

news.newsgroup.com.hk
news.nntp.hk
my.newsgroup.la
news.3home.net
news.balabu.net
news.hkux.net
news.wonderspace.net
news.wonderfuland.net
news.hkpcug.org
news.idsam.com
news.ourrice.com

news.sporthk.net

93

GPU Accelerated Hot Term Extraction form User Generated Content

Forum (China)

SRR ERRIR OFFICE F58e{H RS
RGPt HHEH e R
BTG pEriasE N}

NG AR RIRIE Gy _E NG Prieis
AR SRR Hhitina
ARG XU 4 X

IR R BTt in IR T X
e Wit th[E AR
e iein Hh E B

B NEERISIE HRENT HEiGIR
ERHr SOt is it 51e1x

e ST PR ST BRERR R G
(EaERTEY o P

LD TRt EHICIA

FHEL H S HhAEE NI
R EREERA ISR fef R iR
PEFMEIRhR AR
(AFELZE KARIEIE

—2 NBA HEM USRIt
ZIERHEE) ==3ite

Fok NBA IS EIRED
HERIL Gl SN eN

A ERTHX
CN-KIX TR

i shERkEEIR IR TN E IR
1626 JEEIX i E R8I
TBBA {5EkiEIE oh [E oM i e ER
WIS CASIN=RiiNibeon
TEAmE HHAERIGIR

S HIE ERINT IR
HE=S N tEL NI IR
[XPUB fZARHX rRAER_RHGER
7DNetChina &1 37+ X T
ChinaByte itz FGLADY A\ ARiGiz
51CTO Rtz FEN ER it
IT 51 IR Y YidzY VX
TR KIFEICER

94

GPU Accelerated Hot Term Extraction form User Generated Content

ChinaUnix.net

1T L4868 =-1T 11X

YOKA K[itin
i i in
X

ITPUB itz
IT168 %5
T168 FMAHEE IR
IT168 ZXH LI
IT168DIY kékr 4=
BEZh e

T T ARSI
TOM X
HrRIC

| NI
Ry

R AR A VR
IRANRE A

) E K
R U oA
R Z NI
VEEFTT

ISEFE MRS
VOGUE s &
NG IR
ChinaRen X
D1CN # X

slwy=g iR
EiRicis
RABIRIR(T HI8IE)
NEETE 2%

Py EZE T
REZR
PSR
Eihicis
TR X

L P P 42 B P 1C IR

HETEY) e A-PET86
(R Zam =PI

& LMieIs
PR FE =M (EILRIR)
FAFAPR 11X
Paditiza

T e i

HEitin

IR T

PEfAlSHE X

i e PR AR R
POCO iz

R SRATE RIS IR M X
[E LED Wittn
k22 Eibin
PRI AFGER
DA
AR

51.Com

FRIeIE

CHE168

BRI A

rPEE KGR
M

I 2 R (B LU+ X)
CSDN #1IX
REZR

ELLE

MU=y

R ENIE 25
R

OnlyLady itz
HEACZL AT
NN

22

19 B

IEFREE

BT R

95

GPU Accelerated Hot Term Extraction form User Generated Content

Forum (Hong Kong)

Forum (Macau)

PoRE TalimE
T AR i
Uwants =&lm
R s i
s O gk
NG
web4share
ARG
GoalGoalGoal ER 7K KB EE
SIS R i T
LA SEE, HKEPC Hardware
PDA User Message Board
I
s = A
PRHYET i
P20 5T A
Hk-kicks

A A
she.com
2000FUN Zpig
esdlife
3boys2girls
MY903
Geoexpat
(B
Asiaxpat
Shemom

H e i
HD-DC

i P
¥/

HKCUG

dcfever

yahoo #1:5%
BeautyExchange
OpenRice

o A

BB
IS
I
B

96

GPU Accelerated Hot Term Extraction form User Generated Content

Blog (China)

Blog (Hong Kong)

X S
HREE
IR
22]
TR
BRIEE
i) e
FIREE
poco.cn

17 i oA
EEAT (k=
HHEEE A HE

Blogger

Xanga

Sina Blog HK
Yahoo Blog HK

97

GPU Accelerated Hot Term Extraction form User Generated Content

10.
11.

12.

13.

14.

15.

16.

Bibliography

R. Feldman, M. Fresko, Y. Kinar, Y. Lindell, O. Liphstat, M. Rajman, Y. Schler, and O.
Zamir, “Text mining at the term level,” In Principles of Data Mining and
Knowledge Discovery, Lecture Notes in Computer Science, vol. 1510, pp. 65-73,
1998.

B. Larsen and C. Aone, “Fast and Effective Text Mining Using Linear-time
Document Clustering,” Proc. KDD 99, pp. 16-22, 1999.

Carrot Search. http://search.carrotsearch.com/carrot2-webapp/search

H. Ahonen, “Knowledge discovery in documents by extracting frequent word
sequences,” Library Trends, vol.48, issue 1, pp. 160-181, 1999.
K-Matrix Digital Intelligence Ltd. http://www.kmatrixonline.com

K-Matrix Cl. http://ci.kmatrixonline.com

J. McEntyre and D. Lipman, “PubMed: bridging the information gap,” Cmaj, vol.
164, no. 9, pp. 1317-1319, 2001.

B. Y.-L. Kuo, T. Hentrich, B. M. Good, and M. D. Wilkinson, “Tag clouds for
summarizing web search results,” In WWW '07: Proc. of the Int. World Wide
Web Conf., pp. 1203-1204, 2007.

PubCloud.
http://dev.biordf.net/PubCloud/gc.ijsp?query=genes&type=abstract&startYear=2
009&endYear=2010&option=most recent&recent=200&percent=10

NVIDIA CUDA. http://developer.nvidia.com/category/zone/cuda-zone

Kirk, D. B. & Hwu, W.-m. W., “Programming Massively Parallel Processors: A
Hands-on Approach,” Morgan Kaufmann, Boston, Massachusetts, USA, 2010.
NVIDIA, "NVIDIA CUDA C Programming Guide v.4.0," 2011.

J. Nickolls, I. Buck, M. Garland and K. Skadron, “Scalable parallel programming with
CUDA,” ACM Queue, vol. 6, no.2, pp. 40-53, 2008.

J. Kriger and R. Westermann, “Linear algebra operators for GPU
implementation of numerical algorithms,” ACM Transactions on Graphics, vol.
22, no. 3, pp. 908 - 916, 2003.

N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha, “LU-GPU: Efficient
algorithms for solving dense linear systems on graphics hardware,” in Proc.
ACMY/IEEE Conf. Supercomput., pp. 3, 2005,.

G. Quintana-Orti, F. D. Igual, E. S. Quintana-Orti, and R. van de Geijn, “Solving
dense linear algebra problems on platforms with multiple hardware
accelerators,” in Proc. of the 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 2009.

98

http://search.carrotsearch.com/carrot2-webapp/search
http://www.kmatrixonline.com/
http://ci.kmatrixonline.com/
http://dev.biordf.net/PubCloud/gc.jsp?query=genes&type=abstract&startYear=2009&endYear=2010&option=most_recent&recent=200&percent=10
http://dev.biordf.net/PubCloud/gc.jsp?query=genes&type=abstract&startYear=2009&endYear=2010&option=most_recent&recent=200&percent=10
http://developer.nvidia.com/category/zone/cuda-zone

GPU Accelerated Hot Term Extraction form User Generated Content

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

P. Harish and P. J. Narayanan, “Accelerating Large Graph Algorithms on the GPU
Using CUDA,” In HiPC, pp. 197 - 208, 2007.

A. Buluc, J. R. Gilbert and C. Budak, “Solving Path Problems on the GPU,”
Parallel Computing, vol. 36, 2010.

K.A. Hawick, A. Leist and D.P. Playne, “Parallel graph component labelling with
GPUs and CUDA,” Parallel Computing, vol.36, issue 12, pp. 655 — 678, 2010.

O. Kalentey, A. Rai, S. Kemnitz and R. Schneider, “Connected component labeling
on a 2D grid using CUDA,” Journal of Parallel and Distributed Computing, vol. 71,
issue 4, pp. 615 —-620, 2011.

V. Garcia, E. Debreuve, and M. Barlaud, “Fast k Nearest Neighbor Search Using
GPU,” Proc. CVPR Workshop Computer Vision on GPU, 2008.

B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector machine
training and classification on graphics processors,” Proceedings of the 25th
International Conference on Machine Learning, pp. 104 - 111, 2008.

I. Chiosa and A. Kolb, “GPU-based Multilevel Clustering,” IEEE Transactions on
Visualization and Computer Graphics (TVCG), vol. 17, no. 2, pp. 132 — 145, 2011.
M. Schatz, C. Trapnell, A. Delcher and A. Varshney, “High-throughput sequence
alignment using Graphics Processing Units,” BMC Bioinformatics, vol. 8, no. 1,
p.474, 2010.

C. Trapnell and M. Schatz, “Optimizing data intensive GPGPU computations for
DNA sequence alignment,” Parallel Computing, 2009.

J. Kriiger, P. Kipfer, P. Kondratieva, and R. Westermann, “A particle system for
interactive visualization of 3D flows,” IEEE Transactions on Visualization and
Computer Graphics (TVCG), vol. 11, pp. 744 - 756, 2005.

J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, “Sparse matrix solvers on the
GPU: Conjugate gradients and multigrid” ACM Transactions of Graphics., vol. 22,
no. 3, pp. 917 - 924, Jul. 2003.

A. E. Lefohn, “A streaming narrow-band algorithm: Interactive computation and
visualization of level-set surfaces,” Master’s thesis, University of Utah, Dec.
2003.

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K.
Schulten, “Accelerating molecular modeling applications with graphics
processors, Journal of Computational Chemistry,” J. Comp. Chem., vol. 28, pp.
2618 - 2640, 2007.

J. A. van Meel, A. Arnold, D. Frenkel, S. F. P. Zwart, and R. G. Belleman,
“Harvesting graphics power for MD simulations, Molecular Simulation,” vol. 34,
pp. 259 - 266, 2008.

T. D. R. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon,

99

GPU Accelerated Hot Term Extraction form User Generated Content

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.
44,

45.

46.

47.

“Biomedical image analysis on a cooperative cluster of gpus and multicores,” in
ICS '08: Proceedings of the 22nd Annual International Conference on
Supercomputing, New York, NY, USA, ACM, pp. 15 - 25, 2008.

S. A. Manavski, “CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography,” In ICSPC 2007: Proc. of IEEE Int’l Conf. on Signal Processing
and Communication, pages 65 - 68, 2007.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn, and T.
Purcell, “A survey of general-purpose computation on graphics hardware,”
Comput. Graph. Forum, vol. 26, no. 1, pp. 80 - 113, 2007.

S. Sengupta, M. Harris, Y. Zhang and J.D. Owens, “Scan primitives for GPU
computing,” in: Proc. of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, 2007.

CUDPP. http://code.google.com/p/cudpp/

D. Horn, “Stream reduction operations for GPGPU applications,” In GPU Gems 2,
Pharr M., (Ed.). Addison Wesley, chapter 36, pp. 573 - 589, Mar. 2005.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh and A. Lastra, “Fast

summed-area table generation and its applications,” Computer Graphics Forum,
vol. 24, issue 3, pp. 547 — 555, September 2005.

M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan) with CUDA,”
In H. Nguyen, editor, GPU Gems 3, Addison Wesley, chapter 39, pp. 851 — 876,
Aug. 2007.

A. GreR, M. Guthe and R. Klein, “GPU-based collision detection for deformable
parameterized surfaces,” Computer Graphics Forum, vol. 25, issue 3, pp. 497 —
506, September 2006.

G. E. Blelloch, “Prefix sums and their applications,” Technical Report, 1990.

N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algorithms for
manycore GPUs,” In IPDPS, pp. 1-10, 2009.

JCUDA. http://www.jcuda.org/

Thrust. http://code.google.com/p/thrust/

D. Merrill and A. Grimshaw, “High Performance and Scalable Radix Sorting: A
case study of implementing dynamic parallelism for GPU computing,” Parallel
Processing Letters, vol. 21, no. 2, pp. 245-272, 2011.

Java Arrays.sort.
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.

Object[])

A. Marriott, “Maximizing Performance with Bespoke Programming,” Logos

Software.
Word of Mouth. http://en.wikipedia.org/wiki/Word of mouth

100

http://code.google.com/p/cudpp/
http://www.jcuda.org/
http://code.google.com/p/thrust/
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.Object[])
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.Object[])
http://en.wikipedia.org/wiki/Word_of_mouth

GPU Accelerated Hot Term Extraction form User Generated Content

48.

49,
50.
51.
52.
53.
54.
55.

56.

57.

58.

59.

60.

61.

62.

63.

64

65.

Google/KellerFay, Word of Mouth and the Internet Study, June 2011.
http://www.gstatic.com/ads/research/en/2011 Word of Mouth Study.pdf
CIC. http://www.cicdata.com/

Visible Technologies. http://www.visibletechnologies.com/

Radian6. http://www.radian6.com/

Alterian. http://www.alterian.com/socialmedia/products/

Collect Intellect. http://www.collectiveintellect.com/

Lithium Social Media Monitoring. http://www.scoutlabs.com

H. Ahonen-Myka, “Finding all maximal frequent sequences in text,” in:
Proceedings of ICML-99 Workshop on Marchine Learning in Text Data Analysis,
pp. 11-17, 1999.

H. Ahonen-Myka, “Discovery of frequent word sequences in text,” in:
Proceedings of the ESF Exploratory Workshop on Pattern Detection and
Discovery in Data Mining, 2002, pp. 16—19.

H. Ahonen-Myka, “Mining all Maximal Frequent Word Sequences in a Set of
Sentences,” Proceedings of the 14th ACM International Conference on
Information and Knowledge Management, pp. 255-256, 2005.

H. Ahonen-Myka and A.Doucet, “Data mining meets collocations discovery,” In
Inquiries into Words, Constraints and Contexts, Festschrift for Kimmo
Koskenniemi, pp. 194-203. CSLI Publications, University of Stanford, 2005.

F. Beil, M. Ester and X. Xu, “Frequent term-based text clustering,” in:
Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 436-442, 2002.

P. Ponmuthuramalingam and T. Devi, “Effective Term Based Text Clustering
Algorithms,” (IJCSE) International Journal on Computer Science and Engineering
vol. 02, no. 05, pp. 1665-1673, 2010.

Y. Li, S.M. Chung and J.D. Holt, “Text document clustering based on frequent
word meaning sequences,” Data and Knowledge Engineering, vol. 64, issue 1, pp.
381-404, 2008.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Operating Systems Design and Implementation, pp. 137-149, 2004.
Word Count Example.
http://hadoop.apache.org/common/docs/current/mapred tutorial.html

W. Cui, Y. Wu, S. Liu, F. Wei, M. Zhou, and H. Qu. “Context-preserving, dynamic

word cloud visualization,” Computer Graphics and Applications, IEEE, vol. 30,
issue 6, pp. 42-53, 2010.
Unicode Chinese Characters.

http://www.khngai.com/chinese/charmap/tbluni.php?page=0

101

http://www.gstatic.com/ads/research/en/2011_Word_of_Mouth_Study.pdf
http://www.cicdata.com/
http://www.visibletechnologies.com/
http://www.radian6.com/
http://www.alterian.com/socialmedia/products/
http://www.collectiveintellect.com/
http://www.scoutlabs.com/
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://www.khngai.com/chinese/charmap/tbluni.php?page=0

GPU Accelerated Hot Term Extraction form User Generated Content

66.
67.
68.
69.

70.

Longest word in English. http://en.wikipedia.org/wiki/Longest word in English
Bulletin Board Code. http://en.wikipedia.org/wiki/Bulletin Board Code
Merge Sort. http://en.wikipedia.org/wiki/Merge sort

Kirk, D. B. & Hwu, W.-m. W., “Programming Massively Parallel Processors: A
Hands-on Approach,” Morgan Kaufmann, Boston, Massachusetts, USA, 2010.
M.F. Cheng, F.L Chung, S.N. Chuang, “GPU Accelerated Hot Term Extraction from
User Generated Content”, 2012 26th International Conference on Advanced
Information Networking and Applications Workshops, WAINA, pp.851-856,
2012.

102

http://en.wikipedia.org/wiki/Longest_word_in_English
http://en.wikipedia.org/wiki/Bulletin_Board_Code
http://en.wikipedia.org/wiki/Merge_sort

