

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

Department of Computing

GPU Accelerated Hot Term Extraction from User

Generated Content

CHENG MING FUNG

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Philosophy

December 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

GPU Accelerated Hot Term Extraction form User Generated Content

2

CERTIFICATE OF ORIGINALTIY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written, nor

material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

______________________________ (Signature)

Cheng Ming Fung (Name)

GPU Accelerated Hot Term Extraction form User Generated Content

3

Abstract

This thesis aims at developing and investigating an efficient approach to hot term

extraction. In the Web 2.0, the user generated content (UGC) is increased

dramatically in different Consumer Generated Media (CGM) such as forums and

blogs. People easily search their knowledge and opinions in CGM as well as generate

Word Of Mouth (WOM) in different online channels. Facing the huge amount of data,

it is not easy to find the useful information even using a search engine. Having a good

hot term extraction algorithm can reveal hidden information to users and also

provide an indicator in the search results, so that users can easily know which terms

are popular in the search results.

In this thesis, a GPU based hot term extraction algorithm is presented. Graphics

Processing Units (GPUs) is designed for data-parallel computations. Comparing to

running a single program with multiple data in CPU, GPU can have faster execution.

The hot term is defined as a word that appears frequently in the search result. We

assume that the greater the frequency of appearance of a term, the more the

relevancy of the term to the users. As there are lots of terms in the searched results,

processing them is time-consuming. The proposed GPU based hot term extraction

algorithm can achieve a fast performance and works well in real-time applications.

GPU Accelerated Hot Term Extraction form User Generated Content

4

Acknowledgement

I would like to express my gratitude and thanks for the support and advice given to

me by my supervisor, Dr. Chung Fu-lai (Korris), without which it would have been

far more difficult to bring my project to a successful conclusion.

I also thank Dr. Fu Tak Chung and those management team of Well Synergy Limited

to give me a chance to participate this Teaching Company Scheme.

My special thanks are extended to my supervisor in Well Synergy Limited, Dr. Chuang

Siu Nam, for spending much time on the research guidance and technical support.

Without those invaluable supports, I would never have finished my research.

Finally, I would like to thank my parents and friends who have provided me lots of

encouragements and supports in tangible and intangible ways.

GPU Accelerated Hot Term Extraction form User Generated Content

5

Table of Contents

Abstract .. 3

Acknowledgement ... 4

Table of Contents ... 5

List of Figures ... 7

List of Tables ... 9

Chapter 1 Introduction ... 10

1.1 Problem and Motivation .. 10

1.2 Objectives ... 15

1.3 Outline of the Thesis .. 16

Chapter 2 Parallel and GPU Computing ... 17

2.1 Introduction ... 17

2.2 GPU Performance and Hardware Architecture .. 18

2.3 CUDA for GPU Computing .. 21

2.3.1 Introduction .. 21

2.3.2 CUDA Programming Model ... 24

2.3.3 CUDA Memory Model ... 27

2.4 Review of GPU Computing ... 29

2.4.1 Parallel Scan Operation ... 31

2.4.2 Stream Compaction .. 33

2.5 Conclusion .. 35

Chapter 3 Borrow-Bit Sorting Algorithm .. 36

3.1 Introduction ... 36

3.1.1 Practical Background in GPU Sorting .. 36

3.2 Borrow-Bit Sorting ... 38

3.2.1 Introduction .. 38

3.2.2 CPU Borrow-Bit Sorting ... 41

3.2.3 CPU Borrow-Bit Extend Sorting ... 43

3.3 CUDPP Borrow-Bit Radix Sort .. 45

3.4 Experimental Results .. 49

3.5 Conclusion .. 53

Chapter 4 Hot Term Extraction Analysis .. 54

4.1 Introduction ... 54

4.2 Social medial tools in industry ... 56

4.3 Review of Hot Term Extraction .. 58

4.4 Hot Term Extraction - Preprocessing.. 63

4.5 CPU Based Hot Term Extraction ... 64

GPU Accelerated Hot Term Extraction form User Generated Content

6

4.5.1 Algorithm .. 64

4.5.2 Merge Sort .. 68

4.6 GPU Based Hot Term Extraction .. 70

4.6.1 Algorithm .. 70

4.6.2 Experimental Result .. 79

Chapter 5 Conclusion ... 86

5.1 Contribution ... 86

5.2 Future Work ... 87

Appendices ... 91

A. K-Matrix CI Report – PCCW .. 91

B. Data Collection – CGM ... 93

Bibliography ... 98

GPU Accelerated Hot Term Extraction form User Generated Content

7

List of Figures

Figure 1.1 – Example of PubCloud [9] .. 13

Figure 2.1 - Floating-Point Operations per Second for CPU and GPU [12] 19

Figure 2.2 - Memory Bandwidth per Second for CPU and GPU [12] 19

Figure 2.3 - The GPU Devotes More Transistors to Data Processing [12] 21

Figure 2.4 - NVIDIA Tesla GPU with 112 Streaming Processor Cores [13] 23

Figure 2.5 – Execution of a CUDA program [11] .. 24

Figure 2.6 – The hierarchy structure of CUDA thread [11] 26

Figure 2.7 – The hierarchy structure of CUDA thread with two-dimensional block

and three-dimensional thread [11] .. 26

Figure 2.8 – Overview of the CUDA device memory model [11] 28

Figure 2.9 – Example of inclusive segmented scan .. 33

Figure 2.10 – Example of stream compaction ... 34

Figure 3.1 – Data structure of longValue ... 42

Figure 3.2 – Splitting key and value from longValue .. 42

Figure 3.3 – Example of longValue (4 bits of value borrow from key) 44

Figure 3.4 – Example of CUDPP Borrow-Bit Radix Sort .. 48

Figure 3.5 – Execution time in Arrays.sort, PigeonHole Sort, CPU Borrow-Bit

Sorting and CUDPP Radix Sort ... 50

Figure 3.6 – Execution time in CPU Borrow-Bit Extend Sorting and CUDPP

Borrow-Bit Radix Sort ... 51

Figure 3.7 – Execution time in CPU Borrow-Bit Sorting with different number of

elements and different random ranges ... 52

Figure 3.8 – Execution time in CUDPP Radix Sort with different number of

elements and different random ranges ... 52

Figure 4.1 – MapReduce programming model .. 61

Figure 4.2 – Flow of CPU based hot term extraction ... 66

Figure 4.3 – Example of CPU based hot term extraction ... 67

Figure 4.4 – Example of Merge Sort ... 68

Figure 4.5 – Example of filtering term id and doc id .. 72

Figure 4.6 – Example of key-value pair sorting on filtered term id 73

Figure 4.7 – Example of segmentFlag and compactFlag .. 75

Figure 4.8 – Example of counting term frequency ... 76

Figure 4.9 – Example of sorting term frequency list .. 77

Figure 4.10 – Example of retrieving hot terms .. 77

Figure 4.11 – Performance of Hot Term Extraction with different number of

terms .. 81

GPU Accelerated Hot Term Extraction form User Generated Content

8

Figure 4.12 – Processing time breakdown with different number of terms............ 83

Figure 4.13 – Processing time breakdown in 32 million of terms 83

Figure 4.14 – Example of top 30 hot terms with different keyword searching 85

Figure 5.1 – Example of hot term clustering .. 88

Figure 5.2 – Cosmetic Industry Example in hot term clustering 90

GPU Accelerated Hot Term Extraction form User Generated Content

9

List of Tables

Table 2.1 – Coding of stream compaction in sequential algorithm 33

Table 3.1 – Coding of using Arrays.sort for key-value pairs (order by value) 38

Table 3.2 – Pseudo-code of Borrow-Bit Sorting ... 41

Table 3.3 – Pseudo-code of Borrow-Bit Extend Sorting ... 44

Table 3.4 – Pseudo-code of CUDPP Borrow-Bit Radix Sort 46

Table 4.1 – Pseudo-code of CPU based hot term extraction algorithm 64

Table 4.2 – Pseudo-code of merge sort ... 69

Table 4.3 – Pseudo-code of GPU based hot term extraction algorithm 70

Table 4.4 – Coding of GPU_BinarySearch .. 72

Table 4.5 – Coding of segmentFlag .. 74

Table 4.6 – Coding of compactFlag .. 75

GPU Accelerated Hot Term Extraction form User Generated Content

10

Chapter 1

Introduction

1.1 Problem and Motivation

With the rapid development of the Web, people have a convenient and effective

platform to share things in a public environment. For example, sharing knowledge in

Wikipedia, sharing videos in YouTube and sharing opinions in blogs. These kinds of

channels can be grouped as social media.

Nowadays, social media has been increasing dramatically. This fast growing trend has

provided resourceful ways for information collection. It is important for people to

discover hidden knowledge by mining through plain textual data. Thus, it offers

unprecedented opportunities and challenges to researchers of many different work

sectors. The social media textual data analysis has a unique characteristic that the

content is written in free format with human readable language, which is also called

user generated content (UGC). If a customer uses search engines to find some

opinions on a certain brand of mobile phone, the search engines cannot answer

questions like on what features of mobile phone that consumers have discussed the

most. This is because the free format textual data cannot be processed easily by

machines. In general, it is impossible for people to find out the exact information

they want every time by browsing different websites. In some cases, the information

they want is even hidden. This is the reason why text mining on web applications has

become popular.

GPU Accelerated Hot Term Extraction form User Generated Content

11

In order to explore more useful information from the search results by using search

engines, scholars have proposed heuristics algorithms from fields like information

retrieval, text mining and machine learning. In text mining, Feldman et al. [1] used

association rule mining to find the patterns across terms in documents. The

relationships of terms are found and then the documents can be represented by a

set of terms. Furthermore, the documents can be organized in a hierarchical

taxonomy structure.

Apart from using association rule mining in text mining, Larsen and Aone [2]

presented a document clustering algorithm that implements the k-means algorithm

and determines a good initial clustering. By clustering text documents, documents

about similar topics will be grouped together. Typically, a search engine returns a

long list of searched documents. However, users are limited to view all the

documents. Document clustering effectively categorizes the documents so that users

can easily find the interested information in those clusters.

There is a clustering search engine called “Carrot Search” which is implemented by

Weiss and Osinski [3]. The search results of Carrot Search are clustered with different

topics. With the fancy web interface, users can easily select the clusters with

corresponding topics to view the search results. The clustering algorithm helps

search engines effectively list out the search results for users and hence, users can

easily find those clusters they are interested in.

With the concept of text clustering, finding relevant keywords in searched results is

beneficial to users. According to the query in search engine, the searched results

GPU Accelerated Hot Term Extraction form User Generated Content

12

must contain the searched keyword and users may also be interested in other terms

that appear frequently in the searched results.

To analyze hot terms which are defined as the words that appear frequently in the

searched results, one of the easiest ways is to directly convert the document into a

bag of words (BOW) representation and then count the frequency of each term. We

assume that the greater the frequency of appearance of a term, the more the

relevancy of the term to the users. There are different algorithms for finding the

frequent terms in document collections. For example, Ahonen [4] presented an

algorithm to find the frequent word sequences. Given a document collection and

frequency threshold σ, if a sequence appears in more than σ times, the sequence is

considered as frequent. This algorithm is to find the word sequences rather than only

limited to a single word. However, finding word sequence is time consuming, it is not

fast enough in real time applications. The details will be discussed in Chapter 4.

Hot term extraction is an important feature of social media tools in the social media

industry. K-Matrix CI [5, 6] is one of the social media tools that provide a monitoring

platform for customers to discover the word of mouth (WOM) knowledge in the

CGM. Users can type the query and select the time period, and the K-Matrix CI can

real-time return the related results which come from CGM sources. For example,

searching “pccw” from 2010-01-01 to 2010-12-31, there are more than 100K posts

returned, the search report is shown in Appendix A. One of the analyses in the report

is hot topic listing among the searched results. The hot topic listing shows the topics

that consist of the most matched posts. However, the hot topic listing is not deep

enough to mention what terms are popular as well as lots of discussion on them. The

GPU Accelerated Hot Term Extraction form User Generated Content

13

hot term extraction can enhance this limitation. This is the reason why the hot term

extraction is important in the social media tools.

The hot term extraction is also useful in academic area. PubMed [7] is a database

which collects millions of biomedical publications. PubMed is also a part of National

Center for Biotechnology Information (NCBI) which provides a search function to

search documents from PubMed database. Kou et al. [8] developed an application

called PubCloud whose function is to summarize the search results from PubMed. An

example of PubCloud is shown in Figure 1.1 [9] which shows the terms that are

extracted from the top 200 results of “genes” query. Font size and font color

indicates frequency and recency of the results respectively.

Figure 1.1 – Example of PubCloud [9]

GPU Accelerated Hot Term Extraction form User Generated Content

14

In the algorithms of text mining [1, 2, 4], they are not capable of executing in real

time application as the processing time is not fast enough. Although the Carrot

Search [3] runs very fast with the processing time is around one second, it just

processes 200 documents each time. Also, the PubCloud can only process at most

200 documents each time. The quantity of documents is not large enough in the

current practical usage.

From the documents collected by the K-Matrix Digital Intelligence Ltd., each

document contains on average 40 unique words. If there are 50K documents in the

searched results, it contains around 2 million words. This is a challenge in processing

hot term extraction. As there are lots of terms in the searched results, finding the

most frequent terms is time consuming and thus a fast algorithm is needed.

To achieve a fast algorithm for hot term extraction, we propose to implement the

algorithm with Graphic Processing Unit (GPU). Generally, GPUs can be regarded as

high performance many-core processors with 10x faster computation than CPUs.

GPUs was designed for games and graphics applications, but now GPUs can be used

as a general-purpose parallel processors with support programming languages such

as CUDA [10]. Therefore, it is possible for the developers who lack of the knowledge

of the graphics rendering pipeline but could write GPU programs properly.

However, there are at least two challenges in developing GPU based hot term

extraction.

1) As hot terms are terms that appear at a certain frequency, key-value sorting

is needed for extracting the most frequent terms where the key is term id

and the value is frequency. In view of the large number of terms in the

GPU Accelerated Hot Term Extraction form User Generated Content

15

searched results, term id is a long type integer (64-bit). However, up to now,

not all the programming libraries support GPU based sorting algorithm for

sorting 64-bit key-value pairs.

2) A hot term extraction algorithm has some core functions such as sorting,

filtering and counting. As GPU programming lacks support for some basic

functions, it is a difficult task to design a GPU based framework for hot term

extraction.

1.2 Objectives

In view of the two problems mentioned in section 1.1, the objectives of this project

are set as follows.

(i) To develop a flexible GPU based sorting algorithm for processing key-value pairs

whose key and value are not restricted to 32-bit integer type.

Recently, the latest version of CUDA supports GPU based sorting algorithm for

sorting 64-bit key-value pairs. However, the JAVA binding library which is called

JCUDA has not yet supported 64-bit. Both the key and the value are restricted to

32-bit integer. We make an attempt to address this issue and propose a flexible way

that the key or value can be more than 32-bit.

(ii) To propose a GPU based hot term extraction framework that all core functions are

implemented with GPU and the extraction task is efficient in our current practice.

In accomplishing this objective, we can help users to find some hidden information

GPU Accelerated Hot Term Extraction form User Generated Content

16

by extracting hot terms in the searched results. Comparing the performance with

that of CPU, GPU based hot term extraction framework could run at faster speed.

1.3 Outline of the Thesis

In this thesis, a GPU based hot term extraction framework is proposed. The thesis is

divided into five chapters. In addition to the introduction in Chapter 1, a literature

review on GPU computing is provided in Chapter 2. Chapter 3 introduces a flexible

sorting algorithm called Borrow-Bit Sorting. Chapter 4 introduces a GPU based hot

term extraction algorithm and Chapter 5 concludes the results and summarizes

recommendations for future study.

GPU Accelerated Hot Term Extraction form User Generated Content

17

Chapter 2

Parallel and GPU Computing

2.1 Introduction

Traditionally, most of the applications are implemented as sequential programs with

a processor executing the instructions one by one. As the speed of sequential

programs running on a single processor is limited, in order to raise the execution

speed of the software applications, software developers now rely on the advances in

the corresponding hardware and hence they have more and more expectations on

each new generation of processors. However, the enhancement of the speed of

processors faces different challenges due to the energy-consumption and

heat-dissipation issues. Thus, processor vendors have switched to develop other

models where multiple processor units, referred to as processor cores, are used in

each chip to increase the processing power [11].

Multi-core processors have led to a tremendous impact on the IT industry. Multiple

instructions can be parallel executed in multi-core processors, so that the multi-core

processors are much faster than a single processor. The multi-core model began as

two-core processors, and up to now, Intel Core i7 has four processor cores and

supports hyper-threading with two hardware threads designed to maximize the

execution speed of sequential programs.

Besides the development of multi-core processors to increase the execution speed,

the graphics processing unit (GPU) is a new trend for software developers to write

parallel programs for achieving higher execution speed. GPU is the processor

GPU Accelerated Hot Term Extraction form User Generated Content

18

typically embedded on the graphics card in a computer. The GPU was originally

developed to enhance the performance of 3D computation in game or video.

Recently, some software developers have turned to use the GPU for general-purpose

computation (GPGPU), in order to take the advantage of GPU which is characterized

by Single Instruction Multiple Data (SIMD) architecture, i.e. data can be processed in

parallel. The GPU is a fast and parallel processor and it can support parallel programs

for artistic renderings and mathematical calculations.

2.2 GPU Performance and Hardware Architecture

Nowadays, the market is seeking for real-time processing, high-definition 3D graphics,

and GPU has evolved into a highly parallel, multi-threaded, many-core processor

model with very high computational power and memory bandwidth. Comparing the

performance of CPU, GPUs have better performance in floating-point calculation as

shown in Figure 2.1 and Figure 2.2 [12]. With the exploitation of GPU in

general-purpose computation, the performance of GPU has been shown with large

performance improvement. For example in 2009 as in Figure 2.1, the ratio between

NVIDIA GPUs and Intel multi-core CPUs for peak floating-point calculation

throughput can be about 10 to 1.

GPU Accelerated Hot Term Extraction form User Generated Content

19

Figure 2.1 - Floating-Point Operations per Second for CPU and GPU [12]

Figure 2.2 - Memory Bandwidth per Second for CPU and GPU [12]

GPU Accelerated Hot Term Extraction form User Generated Content

20

The architecture of CPU and GPU can be compared with the help of Figure 2.3 [12].

GPU has more transistors devoted to data processing while CPU has more transistors

dedicated to data caching and flow control. The architecture of CPU was designed to

optimize sequential code’s performance. It makes use of control logic to allow

instructions from a single thread of execution to execute in parallel or even out of

their sequential order while maintaining the appearance of sequential execution [11].

To maintain the high speed of execution, large amount of cache memories are used

to reduce the instruction and data access latencies in large complex applications. On

the other hand, the GPU was originally designed for graphics rendering and it has

evolved as a highly compute intensive and highly parallel computation system. As the

GPU is designed for data-parallel computations, a single program can be executed on

many data elements in parallel, and hence more transistors are placed into

arithmetic operations rather than memory operation. With a concept of SIMD, every

ALU processor must execute the same instruction at the same time, and only the

data may different.

In parallel programs, data elements can be mapped into multiple threads, thus

facilitating different threads cooperating with each other to complete the work faster.

When applications have to process large data sets, using a data-parallel program can

speed up the computations.

GPU Accelerated Hot Term Extraction form User Generated Content

21

Figure 2.3 - The GPU Devotes More Transistors to Data Processing [12]

2.3 CUDA for GPU Computing

2.3.1 Introduction

CUDA is defined as “compute unified device architecture”. It was introduced by

NVIDIA at the end of 2006. CUDA is a general purpose parallel computing

architecture. It allows users to use extensions to the C and C++ programming

languages to develop applications for parallel computing on GPUs.

In NVIDIA G80 and its successor chips, all of them support CUDA which provides

general-purpose parallel programming interface. Figure 2.4 shows the architecture of

a NVIDIA Tesla GPU with 112 Streaming Processor Cores [13]. It is organized into a

number of highly threaded streaming multiprocessors (SMs) and there has a number

of streaming processors (SPs) in each SM. The SM is mainly responsible for managing,

scheduling and executing threads in groups of 32 parallel threads called warps. And

the main function of SP is to share control logic and instruction cache. In NVIDIA

GPUs, different GPUs have different number of SMs and SPs in a building block.

GPU Accelerated Hot Term Extraction form User Generated Content

22

The memory in Figure 2.4 is the DRAM of GPU but not the DRAM of CPU. In CUDA,

the GPU is called device while the CPU is called host. The device cannot access the

host’s memory and it can only access the memory located on the device itself.

Therefore, data have to move from the host’s memory to the device’s global memory

when executing a program in device. The data is then split into smaller parts for

GPU’s multiprocessors to process them in parallel.

GPU Accelerated Hot Term Extraction form User Generated Content

23

Figure 2.4 - NVIDIA Tesla GPU with 112 Streaming Processor Cores [13]

GPU Accelerated Hot Term Extraction form User Generated Content

24

2.3.2 CUDA Programming Model

The CUDA programming environment allows programmers to write a C function to be

executed in the device, and it is called kernel. A kernel is executed as single program

multiple data model (SPMD) and it is executed N times in parallel by N different

CUDA threads, where the number of threads (N) can be defined by users. The

execution of a CUDA program is illustrated in Figure 2.5 [11]. The CUDA programming

model separates the memory between host and device, therefore the execution

starts with host (CPU) execution. Since, the host and device have separate memory

spaces, the data in the host memory have to transfer to the device memory. When a

kernel is launched, the execution is moved to the device. According to how the user

defines the number of threads in the host, the threads are generated when the

kernel is launched and collected into a grid. The execution of two grids of threads is

shown in Figure 2.5. When all threads in a grid complete their executions, the grid

terminates, and the execution is moved to the host until another kernel is launched.

Figure 2.5 – Execution of a CUDA program [11]

GPU Accelerated Hot Term Extraction form User Generated Content

25

Figure 2.6 [11] and Figure 2.7 [11] show the hierarchical structure of CUDA threads.

Threads can be organized to form a one-dimensional, two-dimensional or

three-dimensional thread block. Multiple thread blocks can be organized to form a

one-dimensional or two-dimensional grid. During the launching of a kernel, the

CUDA runtime system generates the corresponding grid of threads and all of the

threads are executed in the same kernel. In order to distinguish between one and

other, a unique ID is assigned and it also helps identifying the proper portion of the

processing data. The unique ID is represented by coordinates which combine with

block index and thread index. For a three-dimensional thread block with size (Dx, Dy,

Dz), a thread ID is defined as (x, y, z), and using the size of a block can retrieve its

thread index .In this example, the index of thread ID (x, y, z) is (x + y Dx + z Dx Dy).

Since all threads of a block share the limited memory, there is a limitation to the

number of threads per block. The maximum size of a block, Dx x Dy x Dz, is limited to

1024 threads in the latest GPU specification.

GPU Accelerated Hot Term Extraction form User Generated Content

26

Figure 2.6 – The hierarchy structure of CUDA thread [11]

Figure 2.7 – The hierarchy structure of CUDA thread with two-dimensional block and

three-dimensional thread [11]

GPU Accelerated Hot Term Extraction form User Generated Content

27

There is a resource limitation on thread assignment in different GPUs. For example,

NVIDIA GeForce GTX 470 has 14 streaming multiprocessors (SMs), up to 32 blocks

can be assigned to each SM. The maximum number of threads limited on each SM is

1024. Therefore, the thread assignment can be in the form of 4 blocks of 256 threads

each, 8 blocks of 128 threads each, etc. Since there are 14 SMs in GTX 470, up to

14,336 threads can be simultaneously residing in the SMs for execution.

After defining the number of threads in a block, the block is assigned to a SM. The

block is further divided into 32-thread units called warp, it is the unit of thread

scheduling in SMs. If each block has 1024 threads, there are 1024/32 = 32 warps per

SM. A warp executes a common instruction at a time, so peak performance is

reached when all 32 threads of a warp agree on the instruction path. If one thread of

a warp wants to execute a branch instruction, the warp serially executes the diverged

instruction and disables the threads which are not on that path. When all paths

complete, the thread converges back to the same instruction path [12].

2.3.3 CUDA Memory Model

Before executing a kernel by a large amount of threads, the data have to transfer

from the host to the device memory. In CUDA memory model, there are several

types of memory that can be used to achieve high execution speeds in the kernel.

The overview of CUDA device memories is shown in Figure 2.8 [11]. At the bottom of

the figure, there are global memory and constant memory. These are the memories

that the host code can transfer data to and from the device. Constant memory allows

read-only access by the device code. Threads on the device have their local memory

called register, and each thread can only access its own registers. Shared memory is

allocated to thread blocks, and each block can only access its own shared memory.

GPU Accelerated Hot Term Extraction form User Generated Content

28

Threads in the same block can cooperate by sharing their input data and the

intermediate results of the work. However, threads cannot cooperate with different

blocks. Variables that reside in register and shared memory can be accessed at a very

high speed at the same time.

In summary, CUDA has a good design of programming model and memory model, so

that kernel can be executed at high speed and in a parallel manner. Software

programmers can specifically define the size of block and grid, and skillfully use

different types of device memory to archive high performance.

Figure 2.8 – Overview of the CUDA device memory model [11]

GPU Accelerated Hot Term Extraction form User Generated Content

29

2.4 Review of GPU Computing

Since the GPGPU developed, a wide variety of applications implemented with

GPGPU have obtained significant performance speedup. The following gives a review

of GPU computing in different areas.

Linear algebra: Krüger and Westermann [14] presented a framework for solving

linear algebra problems on GPU, which proposed a stream model for arithmetic

operations on vectors and matrices. Gallapo et al. [15] presented an algorithm to

efficiently solve dense linear systems using GPU. They stored the data as

two-dimensional representation corresponding to the data layout on the GPU, and

also supporting parallel data transfer of row and column swapping. With the fast

development of GPU, developers can build a multiple GPUs for implementing the

software applications. Quintana-Ortí et al. [16] implemented highly efficient matrix

factorizations by multiple GPUs systems. Their experimental results showed the

performance speedup by using four NVIDIA G80 GPUs.

Graph algorithm: Harish and Narayanan [17] used the CUDA to implement parallel

algorithm for accelerating a large graph algorithm which involves millions of vertices.

Buluç et al. [18] implemented a recursive block Floyd-Warshall algorithm on GPU for

solving path problems. Another computationally expensive operation such as graph

component labeling is also implemented with CUDA to get the advantage of parallel

model [19, 20].

Pattern analysis: Vincent and Eric [21] proposed a speedy and parallel k nearest

neighbor (kNN) search implementation using a GPU. Traditionally, the kNN search is

GPU Accelerated Hot Term Extraction form User Generated Content

30

slow because it requires many operations on calculating the distance between two

points. They implemented the algorithm with CUDA and showed the computation

time being much decreased, up to 120x faster than without CUDA implementation.

Catanzaro et al. [22] used the GPU for Support Vector Machines (SVM) classification

and training which archives up to 138x speedup over LIBSVM. Recently, Chiosa and

Kolb [23] proposed a GPU based framework for solving clustering problems. They

presented an efficient parallel algorithm, Multilevel mesh clustering, implemented

on GPU and provided high quality clustering results.

Sequence alignment: In genomics research, sequence alignment is used to analyze

genes and genomes. Trapnell et al. [24] implemented MUMmerGPU, a parallel

sequence alignment program, on GPU. They showed that using GPU has a better

performance than CPU in memory-intensive applications. After that, Trapnell and

Schatz [25] implemented MUMmerGPU 2.0 which used a suffix tree based algorithm

on GPUs and archived 13x performance speedup compared with the CPU

counterpart.

Other applications have also shown significant performance speedup, such as

differential equations [26, 27, 28], molecular modeling and simulation [29, 30],

biomedical image analysis [31] and AES encryption [32]. A detail GPU survey has

been done by Owens et al. [33] in 2007.

Recently, Senguta et al. [34] focused on developing sets of parallel primitives for the

development of GPGPU applications. They developed a set of scan primitives

implemented with CUDA. Using the scan primitives, they showed the performance

speedup of quicksort and spare matrix-vector multiply. Later, they provided a

GPU Accelerated Hot Term Extraction form User Generated Content

31

powerful parallel primitives library called CUDPP [35]. As the implementation of GPU

based hot term extraction is mainly based on CUDPP. The following subsection

shows the details of scan operation and stream compaction and the other CUDPP

details will be discussed in the next chapter.

2.4.1 Parallel Scan Operation

The prefix-sum operation, also known as scan operation, is widely used in parallel

applications with complex access requirements. There are two types of scan, namely,

inclusive scan and exclusive scan. A new array is generated by the inclusive scan

where each element j is the sum of all elements up to and including j; whereas the

exclusive scan generates a new array where right shifting the inclusive scan result by

one element and inserting the identity for the first element.

Definition: The inclusive scan operation takes a binary associative operator ⊕, and an

array of n elements

[a0, a1, …, an-1],

and returns the array

[a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-1)].

For example, if ⊕ is addition, then the inclusive scan operation on the array

[2 0 5 1 3 8 2],

returns

[2 2 7 8 11 19 21].

Definition: The exclusive scan operation takes a binary associative operator ⊕ with

GPU Accelerated Hot Term Extraction form User Generated Content

32

identity I, and an array of n elements

[a0, a1, …, an-1],

and returns the array

[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

For example, if ⊕ is addition, then the exclusive scan operation on the array

[2 0 5 1 3 8 2],

returns

[0 2 2 7 8 11 19].

On the GPU, the earliest implementation of scan was used for “non-uniform stream

compaction” [36] which is a part of a collision detection application. And then,

Hensley et al. [37] improved the implementations and applied to summed-area table

generation, but the time complexity was O(nlogn). Recently, Harris et al. [38]

introduced CUDA based implementation of scan and then Sengupta et al. [34]

developed the CUDA based implementation of segmented scan by reduce and

down-sweep steps with the overall work complexity as O(n).

Beside the scan operation, segmented scan plays an important role in GPU based hot

term extraction framework. Segmented scan operates as parallel scans on arbitrary

partitions (“segments”) of the input vector. Considering a stream with 1/0 flag where

1 represents the first element of a segment, and then the scan is performed in each

segment. An example is shown in Figure 2.9, an inclusive opertaion is selected to

perform in the segmented scan.

GPU Accelerated Hot Term Extraction form User Generated Content

33

Figure 2.9 – Example of inclusive segmented scan

2.4.2 Stream Compaction

Stream compaction, also known as stream reduction, is an important parallel

primitive in a variety of general-purpose applications, such as GPU-based collision

detection [39] and sparse matrix compression. Stream compaction can be used to

remove unwanted elements in sparse data. It allows highly parallel algorithms to

maintain performance over further processing steps and reduces overall memory

usage.

In single processor machine, the implementation of stream compaction is a

sequential algorithm. The algorithm is shown in Table 2.1, with the valid element of

input moved to output.

Int j=0;

for (int i=0; i<N; i++){
 if (input[i] is valid){

 output[j] = input[i];

 j++;

}

}

 Table 2.1 – Coding of stream compaction in sequential algorithm

GPU Accelerated Hot Term Extraction form User Generated Content

34

The efficiency of parallel algorithms is much better than sequential algorithms. The

implementation of parallel algorithms is based on performing a parallel exclusive

prefix sum operation [40]. Considering a stream with 1/0 flag where 1 represents a

valid input and 0 represents an invalid input, the prefix sum is performed on the

stream and the result is used to move each valid input to the new location of output.

The detail is shown in Figure 2.10.

Figure 2.10 – Example of stream compaction

Horn [36] implemented stream compactions without scatter steps, since the GPUs in

2005 lack the support for random write access to memory (scattering). Therefore, a

solution was to use gathering where a binary search is performed to find the valid

input corresponding to output. The gathering operation was fairly expensive and

required more memory usage, making the overall complexity as O(N logN).

Recently, GPUs support scattering, so that it can be used to replace the gathering

operation [36]. CUDPP library provides the implementation of this approach and the

stream compaction can achieve the overall complexity of O(N).

GPU Accelerated Hot Term Extraction form User Generated Content

35

2.5 Conclusion

In this chapter, the graphics processing unit (GPU) is reviewed. GPU is designed as a

parallel architecture for executing a huge amount of data. As the parallel architecture

brings a significant performance speedup compared with CPU, many researchers

successfully attained higher performance by implementing different algorithms on

GPU. Moreover, NVIDIA introduced the CUDA which has a good design of

programming model and memory model. Programmers can easily write CUDA

programs and define the size of block and grid for running kernel on the GPU. On the

other hand, an open source – CUDPP provides a powerful parallel primitives library.

Programmers can easily use the library to perform scan operation, stream

compaction and other operations.

GPU Accelerated Hot Term Extraction form User Generated Content

36

Chapter 3

Borrow-Bit Sorting Algorithm

3.1 Introduction

Sorting is a general research problem in computer science. It is a core part of

numerous algorithms whose performance depends on the efficiency of the sorting

algorithm. For example, some of the clustering algorithms use sorting for finding the

closest kth elements. Sorting has been used in different areas of computer

applications and it is an internal database operation. Therefore, any application can

use the database benefiting from an efficient sorting algorithm. Other applications

such as computer graphics, search engine, computational biology also involve

sorting.

In this chapter, a Borrow-Bit sorting approach is introduced. It aims at speeding up

the processing time of sorting key-value pairs by using the function provided in Java

called Arrays.sort. Also, it has a flexible design for sorting key-value pair. Both keys

and values are not limited to unsigned integer type (32-bit). In other words, either

keys or values can be more than 32-bit. The principle of this approach is that the sum

of bits in each pair of key and value must be within 64-bit.

3.1.1 Practical Background in GPU Sorting

NVIDIA has provided different CUDA toolkit version for developers. From CUDA 3.0

version, it supports CUDPP version 1.1.1 which was released in April 2010. However,

the radix sort [41] in CUDPP version 1.1.1 only supports 32-bit key-value pairs sorting.

The programming language in CUDPP and CUDA uses C/C++, and JCUDA [42] which is

GPU Accelerated Hot Term Extraction form User Generated Content

37

a Java binding for NVIDIA CUDA and CUDPP. Therefore, java programmers can use

JCUDA to implement the program in GPU.

In May 2011, CUDA 4.0 was released but it does not support CUDPP anymore.

Instead, another high-level interface for GPU programming called Thrust [43] was

used. Thrust is also written in C++ programming language. Moreover, the radix sort

[44] implemented in Thrust is much faster than the radix sort in CUDPP. The CUDPP

was updated to version 2.0 in August 2011. CUDPP now uses the radix sort of Thrust

and it can also support 64-bit key-value pairs sorting. However, up till now, the JUDA

has not been updated. Therefore, the JCUDA users are still not able to use the

enhanced GPU sorting.

In the next chapter, the GPU based hot term extraction algorithm will be introduced.

The algorithm is implemented with JCUDA. Since the JCUDA does not support 64-bit

key-value sorting, the Borrow-Bit sorting algorithm can help to solve this limitation.

GPU Accelerated Hot Term Extraction form User Generated Content

38

3.2 Borrow-Bit Sorting

3.2.1 Introduction

Java provides a sorting function, Arrays.sort, for sorting a specified range of array into

ascending numerical order. Using a specified comparator, Arrays.sort can sort a

specified array of objects. This sorting algorithm is a modified mergesort and offers

guaranteed n*log(n) performance [45]. To use Arrays.sort for sorting key-value pairs

order by value, the array of objects can be set as key-value pairs and the comparator

is set to do the comparison order by value. Detailed coding is shown in Table 3.1.

However, this sorting method is inefficient.

Table 3.1 – Coding of using Arrays.sort for key-value pairs (order by value)

Adrian Marriott [46] demonstrated that the Arrays.sort was not fast enough and

presented a stable sorting algorithm, Pigeon-Hole Sort, which got a better

performance. Pigeon-Hole Sort passes through the input sequence for four times

which take a time proportional to O(n) and the overall time complexity proportional

to O(n+k) where k is the maximum value of input sequence.

Arrays.sort(inputSequence, new Comparator<ExampleObject>()){

 public int compare(ExampleObject o1, ExampleObject o2)

 {

 return (o1.getValue() - o2.getValue ());

 }

});

GPU Accelerated Hot Term Extraction form User Generated Content

39

In order to improve the performance of Arrays.sort for sorting key-value pairs, a

Borrow-Bit Sorting approach is presented. Borrow-Bit Sorting can give a better

performance, in term of speed, than Arrays.sort and Pigeon-Hole Sort. The

computational complexity of Borrow-Bit Sorting is O(nlogn). In the Borrow-Bit Sorting

approach, bitwise and bit shifts operations are mainly used. Bitwise operation

operates one or more bit patterns of the numerals’ individual bits. The bitwise

operations include AND, OR, NOT and XOR, AND and OR operations to be used in the

Borrow-Bit Sorting approach.

Bitwise AND operates in two equal length of binary numerals and performs the

logical AND operation on each pair of corresponding bits. The result is 1 if both bits

are 1 in a pair of bits, otherwise the result is 0.

 1101

AND 0101

 = 0101

Bitwise OR operates in two equal length of binary numerals and performs the logical

OR operation on each pair of corresponding bits. The result is 0 if both bits are 0 in a

pair of bits, otherwise the result is 1.

1001

OR 0101

 1101

GPU Accelerated Hot Term Extraction form User Generated Content

40

Bit shifts operation operates one or more bit patterns with left-shift or right-shift on

the binary representation of integer value.

 00101001 Left-shift 1 bit

= 01010010

 00101001 Right-shift 1 bit

= 00010100

GPU Accelerated Hot Term Extraction form User Generated Content

41

3.2.2 CPU Borrow-Bit Sorting

The Java based Borrow-Bit Sorting approach aims to use Arrays.sort(long [] input) to

sort the key-value pairs order by value. The main idea is firstly, to combine two

unsigned integer types (32-bit) of key and value into an unsigned long type (64-bit) of

variable; then to use the Arrays.sort to sort the long type variable; and lastly, to split

the long type variable into sorted value and the corresponding key. The pseudo-code

of the Borrow-Bit Sorting approach is shown in Table 3.2.

Function BorrowBitSort(){

Input:

Integer Array value, Integer Array key

Result:

 Integer Array with sorted value and Integer Array with corresponding key

Begin:

 Create a Long type array longValue, which array size is same as value

 Loop {

 Assign value to the left most 32-bit of longValue

 Assign the corresponding key to the right most 32-bit of longValue

}

Call Arrays.sort to sort longValue

For each longValue {

 Split right most 32-bit and then assign to key

 Right-shift 32-bit of longValue and then assign to value

}

End;

}

Table 3.2 – Pseudo-code of Borrow-Bit Sorting

There are three main steps in the Borrow-Bit Sorting approach. Firstly, it is to assign

value to the leftmost 32-bit of the longValue and to assign the corresponding key to

the rightmost 32-bit of the longValue. The structure of the longValue is shown in

GPU Accelerated Hot Term Extraction form User Generated Content

42

Figure 3.1. Secondly, it is to use Arrays.sort to sort the longValue array into ascending

numerical order.

Figure 3.1 – Data structure of longValue

As the value is placed on the first 32-bit of longValue, the ascending numerical order

of longValue is sorted according to the value. Lastly, it is to split the longValue and

then assign back with respective key and value. In splitting longValue to form the key,

bitwise AND operation is used. Creating a 31-bit integer where each bit is 1 and then

using bitwise AND operation with the longValue, the result gets the 32-bit of key, the

step is shown in Figure 3.2. On the other hand, in splitting longValue to form the

value, right-shift operation is used. Simply right-shift 32-bit of longValue can form

the value.

Figure 3.2 – Splitting key and value from longValue

GPU Accelerated Hot Term Extraction form User Generated Content

43

3.2.3 CPU Borrow-Bit Extend Sorting

The Borrow-Bit Sorting approach can sort the key-value pairs order by value.

However, both the key and value must be unsigned integer type, which is thus 32-bit.

The extended approach can sort key-value pairs where both key and value can be

more than 32-bit. Different from the Borrow-Bit Sorting approach, this extended

approach uses an index which starts from one and the increment is one by one to

form a key. After finishing the sorting process, the original key can be retrieved by

the sorted index. The main idea of this approach is the unsigned key does not occupy

all 32 bits which also means the total number of key-value pairs is less than 231, so

that value can be borrowed from the unoccupied bits. The prerequisite of this

approach is that the key must have enough bits for being lent to value. Thus, the

total number of key-value pairs are smaller than 231 and the key has enough bit lent

to the value. The advantage of this approach is the capability to sort by value which is

more than 32 bits, and the value of key can also be more than 32 bits as it does not

pass into the function by using an index to represent the key. The computational

complexity of Borrow-Bit Extend Sorting is O(nlogn). The pseudo-code of the

Borrow-Bit Extend Sorting approach is stated in Table 3.3. Figure 3.3 demonstrates an

example with the value borrows 4 bits from the key.

GPU Accelerated Hot Term Extraction form User Generated Content

44

Function BorrowBitExtendSort(){

Input:

Long Array value, Integer x (indicate how many bits of value have to borrow from key)

Result:

 Integer Array with sorted value and Integer Array with sortOrder

Begin:

 Create a Long type array longValue, which size is same as value

 Create a Integer type array sortOrder, which size is same as value

 Initialize an integer variable index, start from one.

 Loop {

 Assign index to longValue which occupy the right most (32-x) bit

 Assign value to longValue which occupy the left most (32+x) bit

 Increment index by one

 }

Call Arrays.sort to sort longValue

For each longValue {

 Split right most (32-x) bits and then assign to sortOrder

 Right shift (32-x) bits of longValue and then assign to value

}

End;

}

Table 3.3 – Pseudo-code of Borrow-Bit Extend Sorting

Figure 3.3 – Example of longValue (4 bits of value borrow from key)

GPU Accelerated Hot Term Extraction form User Generated Content

45

3.3 CUDPP Borrow-Bit Radix Sort

In the CUDPP version 1.1.1, the CUDPP radix sort does not provide a function to sort

a long type value. It can only sort the unsigned integer type of key-value pairs. The

Borrow-Bit sorting algorithm can be applied to the CUDPP radix sort. CUDPP

Borrow-Bit Radix Sort can sort key-value pairs where both key and value can be more

than 32 bits.

Figure 3.4 shows the example of CUDPP Borrow-Bit Radix sort that the value has to

borrow 4 bits from key. The core part of CUDPP Borrow-Bit Radix Sort is to firstly

generate key and value; and then to sort the key-value pairs order by the key first,

followed by the value; finally, to recover the key and value. The pseudo-code of

CUDPP Borrow-Bit Radix Sort is shown in Table 3.4. One important point is that only

one time of transferring the input data from host CPU to GPU memory is required in

the first cudppSort() function. In the second cudppSort(), it just uses the GPU

memory data so that it does not need to transfer the result of first cudppSort() from

GPU memory to CPU and then from CPU back to GPU memory.

GPU Accelerated Hot Term Extraction form User Generated Content

46

Function CUDPPBorrowBitRadixSort(){

Assumption:

 The key have enough bits lend to value.

Input:

Long Array value, Integer x (indicate how many bits of value have to borrow from key)

Result:

 Integer Array with sorted value and Integer Array with index

Begin:

 Create an Integer type array index which size is same as value

 Initialize an integer array index, starting from 1, each value is incremented by 1.

 intValue = keyValueGenerator(index, value);

 cudppSort(index, intValue);

 cudppSort(intValue, index);

 value = recover(index, intValue);

End;

function keyValueGenerator(index, value){

 Create an Integer type array intValue which size is same as value.

 For each value{

 Split right most x bits and then replace the bits in index (start from left 2
nd

)

 Right shift x bits of value assign to intValue

 }

 return intValue;

}

function recover(index, intValue){

 Create an long type array longValue which size is same as intValuen

 For each intValue{

 Assign intValue into longValue and then left shift x bits

 Get x bits of index (start from left 2
nd

)` and then assign to the right most x bits of longValue

}

return value;

}

}

Table 3.4 – Pseudo-code of CUDPP Borrow-Bit Radix Sort

GPU Accelerated Hot Term Extraction form User Generated Content

47

Original key-value pair

Key Value

00000000000000000000000000000001 011101010011111010100111110101001010

00000000000000000000000000000010 001101110011011010100111110101001110

00000000000000000000000000000011 011111110011111010100111110101000000

00000000000000000000000000000100 010001110011001010100111110101000100

00000000000000000000000000000101 010011100011111010100111110101000001

00000000000000000000000000000110 011000111111111010100111110101000110

00000000000000000000000000000111 011100010011111010100111110101011001

00000000000000000000000000001000 000101110011111010100111110101000111

00000000000000000000000000001001 010011110000111010100111010101001100

00000000000000000000000000001010 011000010011111010100111110101011001

keyValueGenerator

Key Value

01010000000000000000000000000001 01110101001111101010011111010100

01110000000000000000000000000010 00110111001101101010011111010100

00000000000000000000000000000011 01111111001111101010011111010100

00100000000000000000000000000100 01000111001100101010011111010100

00001000000000000000000000000101 01001110001111101010011111010100

00110000000000000000000000000110 01100011111111101010011111010100

01001000000000000000000000000111 01110001001111101010011111010101

00111000000000000000000000001000 00010111001111101010011111010100

01100000000000000000000000001001 01001111000011101010011101010100

01001000000000000000000000001010 01100001001111101010011111010101

CUDPP sort by key

Key Value

00000000000000000000000000000011 01111111001111101010011111010100

00001000000000000000000000000101 01001110001111101010011111010100

00100000000000000000000000000100 01000111001100101010011111010100

00110000000000000000000000000110 01100011111111101010011111010100

00111000000000000000000000001000 00010111001111101010011111010100

01001000000000000000000000000111 01110001001111101010011111010101

01001000000000000000000000001010 01100001001111101010011111010101

01010000000000000000000000000001 01110101001111101010011111010100

01100000000000000000000000001001 01001111000011101010011101010100

GPU Accelerated Hot Term Extraction form User Generated Content

48

01110000000000000000000000000010 00110111001101101010011111010100

CUDPP sort by Value

Key Value

00111000000000000000000000001000 00010111001111101010011111010100

01110000000000000000000000000010 00110111001101101010011111010100

00100000000000000000000000000100 01000111001100101010011111010100

00001000000000000000000000000101 01001110001111101010011111010100

01100000000000000000000000001001 01001111000011101010011101010100

01001000000000000000000000001010 01100001001111101010011111010101

00110000000000000000000000000110 01100011111111101010011111010100

01001000000000000000000000000111 01110001001111101010011111010101

01010000000000000000000000000001 01110101001111101010011111010100

00000000000000000000000000000011 01111111001111101010011111010100

Final Step - recover

Key Value

00000000000000000000000000001000 000101110011111010100111110101000111

00000000000000000000000000000010 001101110011011010100111110101001110

00000000000000000000000000000100 010001110011001010100111110101000100

00000000000000000000000000000101 010011100011111010100111110101000001

00000000000000000000000000001001 010011110000111010100111010101001100

00000000000000000000000000001010 011000010011111010100111110101011001

00000000000000000000000000000110 011000111111111010100111110101000110

00000000000000000000000000000111 011100010011111010100111110101011001

00000000000000000000000000000001 011101010011111010100111110101001010

00000000000000000000000000000011 011111110011111010100111110101000000

Figure 3.4 – Example of CUDPP Borrow-Bit Radix Sort

GPU Accelerated Hot Term Extraction form User Generated Content

49

3.4 Experimental Results

In this section, various experimental results obtained by using different sorting

approaches for key-value pairs are reported. The experimental platform is an AMD

Athlon™ 64 Processor 3000+ 2.29GHz machine with 3GB of memory and the graphic

card is GeForce GT 240, which has 12 multiprocessors and 96 CUDA cores with 1 GB

memory. The programming implementation uses the version of CUDA 3.2, CUDPP

1.1.1 and JCDUA 0.3.2a.

In order to compare the CPU and GPU sorting in real and practical case, the

experimental results show the execution time of key-value pairs sorting with CPU and

GPU. The GPU execution time includes the time of transferring input data from host

CPU to GPU’s on-board memory.

Figure 3.5 shows the execution time of sorting key-value pairs, both keys and values

are unsigned integer type (32-bit), by Arrays.sort, PigeonHole Sort, CPU Borrow-Bit

sorting and CUDPP radix sort. The input values were randomly generated and the size

ranged from 1K to 50M. By comparing the sorting result run by CPU (Arrays.sort,

PigeonHole Sort and CPU Borrow-Bit sorting), the processing time of CPU Borrow-Bit

sorting is the fastest and the memory usage is the smallest. Out of memory will occur

if the total number of elements is larger than 2 million in Arrays.sort and PigeonHole

Sort. By comparing the sorting results using CPU and GPU, the execution time of CPU

borrow-bit sorting is the fastest if the total number of elements is less than 10K. It is

acceptable that the overhead of GPU is large when transferring the input data from

host CPU to GPU’s on-board memory. The performance of CUDPP radix sort is much

GPU Accelerated Hot Term Extraction form User Generated Content

50

better than other CPU’s sorting approaches if the total number of element is large

enough. GPU is 12x faster than CPU when the total number of element is 50 million.

Figure 3.5 – Execution time in Arrays.sort, PigeonHole Sort, CPU Borrow-Bit Sorting

and CUDPP Radix Sort

Figure 3.6 shows the execution time of sorting key-value pairs by CPU Borrow-Bit

Extend Sorting and CUDPP Borrow-Bit radix sort. In this experiment, each value

borrows 4 bits from the corresponding key. As a result, CUDPP Borrow-Bit radix sort

is 4x faster than CPU Borrow-Bit Extend Sorting.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Ti
m

e
 (

m
s)

Number of elements

Arrays.sort

PigeonHole Sort

CPU Borrow-Bit Sorting

CUDPP Radix Sort

GPU Accelerated Hot Term Extraction form User Generated Content

51

Figure 3.6 – Execution time in CPU Borrow-Bit Extend Sorting and CUDPP Borrow-Bit

Radix Sort

Figure 3.7 and Figure 3.8 report the execution time of sorting key-value pairs where

both keys and values are unsigned integer type (32-bit) by CPU Borrow-Bit Sorting

and CUPDD radix sort with different number of input elements as well as different

random ranges in generating input elements. In different random ranges of input

elements, we can measure the performance in different sparsity of data. CPU

Borrow-Bit Sorting approach requires more execution time for sorting larger random

ranges of value. On the other hand, the execution time is steady in CUDPP radix sort.

Therefore, CUDPP radix sort has a more stable performance.

GPU Accelerated Hot Term Extraction form User Generated Content

52

Figure 3.7 – Execution time in CPU Borrow-Bit Sorting with different number of

elements and different random ranges

Figure 3.8 – Execution time in CUDPP Radix Sort with different number of elements

and different random ranges

0

2000

4000

6000

8000

10000

12000

Ti
m

e
 (

m
s)

Number of elements

1,000

10,000

100,000

1,000,000

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

Random Range

0

200

400

600

800

1000

1200

1400

Ti
m

e
 (

m
s)

Number of elements

1,000

10,000

100,000

1,000,000

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

Random

GPU Accelerated Hot Term Extraction form User Generated Content

53

3.5 Conclusion

In this chapter, the Borrow-Bit sorting approach is presented. Applying Borrow-Bit

sorting approach into Arrays.sort for sorting key-value pairs is much better than the

original Arrays.sort which uses Comparator. Although the Borrow-Bit sorting

approach may not cover all the sorting problems, it can speed up the processing time

of users who simply use the Java’s Arrays.sort in their program implementations.

Also, using the Borrow-Bit sorting approach, we can solve the limitation of the

CUDPP 1.1.1 version by using CUPDD Borrow-Bit radix sort to sort the key-value pairs

where both key and value can be more than 32-bit. For the prerequisites, the total

number of key-value pairs should be smaller than 231 and the key should have

enough bits lent to the value. Although, the latest version of CUDPP provides a

complete sorting implementation which supports 64-bit key-value pairs, the JCUDA

does not support it, therefore some JAVA programmers cannot benefit from the

latest version of CUDPP while the CUDPP Borrow-Bit radix sort can still contribute to

some practical cases.

GPU Accelerated Hot Term Extraction form User Generated Content

54

Chapter 4

Hot Term Extraction Analysis

4.1 Introduction

Nowadays, social media has become part of our life. People can easily share their

knowledge and opinions on the Web through different channels such as forums,

blogs, online news and newsgroups, which are called Consumer Generated Media

(CGM). CGM is the major source of digital Word of Mouth (WOM). There is no

standard format for the content of CGM. Users freely type in their opinions on the

Web.

WOM refers to oral communication and the transferring of information from one

person to another [47]. From the marketing view point, Word of Mouth Marketing

(WOMM) refers to people who use WOM to promote their business. In digital

marketing, WOM is like a personal recommendation that customers share their

satisfaction or dissatisfaction over the product or service in CGM, which will affect

other users’ decision when they search the related information in CGM. In a recent

WOM study conducted by Google [48], 94% of WOM conversations are predominant

and the search activity impacts more than 15% WOM conversations.

People usually search information by web search engines. When they input a query,

usually a list of ranked documents according to the keyword of the query will appear.

It is not easy for the users to figure out the most relevant information among the

long list of search results. Besides, some hidden keywords not included in the query

GPU Accelerated Hot Term Extraction form User Generated Content

55

may also be useful to the users. Hot term extraction can list out the most relevant

terms and thus can provide WOM insight to users.

In this chapter, a hot term is defined as a word or a bi-gram Chinese character

appearing in at least a certain percentage of documents. Based on the frequency of

the term occurring in the documents which are searched by query, we can say that

the more frequent the term appears, the more related it is to the query. Some

hidden information may also be useful for users. In view of the huge amount of

search results in a real time application, a fast hot term extraction approach is

required. By taking the advantage of the parallelism characteristic of GPU, a GPU

based hot term extraction framework will be presented in the following sections.

Since WOMM is closely related to social media, some social media tools have been

developed in the IT industry. The tools can help clients to gain marketing benefits and

insights from digital WOM. An overview of the social medial tools in the industry will

be presented in the next section.

GPU Accelerated Hot Term Extraction form User Generated Content

56

4.2 Social medial tools in industry

There exist some companies which develop social medial analysis tools to provide a

WOM monitoring platform. Some of the functions provided by the tools include:

 CGM search engine - users can type in keywords to search the related CGM

posts.

 Sentiment analysis - giving positive, negative or neutral score of each post.

 Hot topic discovery - showing the hottest topic in the search results.

 Charting - showing the distribution of posts in CGM and the daily post

trend within the search period.

 Dashboard – showing insights and analytics summary.

 Hot Term Analysis – showing the most frequent term.

K-Matrix Digital Intelligence Ltd. [5]: It is a digital intelligence solution company. It

provides comprehensive solutions to assist companies in adapting to the fast growing

Internet and gaining the most digital communication and marketing benefits and

insights from the digital community [5].

k-matrix CI is one of the self developed applications by K-Matrix Digital Intelligence

Ltd. It is a web based application providing real time intelligence and monitoring

platform of WOM in CGM. k-matrix CI collects around 3 million posts daily from

different CGM web sites, including blogs, micro-blogs, forums, online news and

newsgroup. Up to July 2011, the database of k-matrix CI has collected 2.1 billion

posts. Having a huge amount of data, k-matrix CI can help clients to monitor the

WOM of their brand or enterprise. It can also give insights to the consumers to take a

faster step in managing their digital marketing.

GPU Accelerated Hot Term Extraction form User Generated Content

57

CIC [49]: It is a social business intelligence company. CIC enables businesses to fully

leverage the power of social media and Internet word of mouth (IWOM) intelligence

across the organization [49]. It provides solutions to assist companies in meeting

their needs for social media marketing and social business. IWOMmaster is a web

based application developed by CIC. It focuses on the IWOM in the Mainland and

provides a monitoring platform to clients. According to the CIC official website, it

collects over 100 million posts every month from different CGM websites in the

Mainland and currently it has already collected over 1 billion consumer comments.

Visible Technologies [50]: It is a social media solution company. It provides both

software and services to assist companies in getting benefits from social

communities. Visible IntelligenceTM

 is a social media platform which helps clients to

navigate the social web, engage with dynamic communities and discover insights [50].

It provides different types of data source such as social networking sites (e.g.

Facebook), micro blogs (e.g. Twitter), video sites (e.g. YouTube), forums, blogs, news

and etc.

Since WOM is important for business marketing, many companies have been

developing social media monitoring tools [51, 52, 53, 54]. However, only a few of

them include the hot term analysis feature.

GPU Accelerated Hot Term Extraction form User Generated Content

58

4.3 Review of Hot Term Extraction

There are some similar related works about hot term extraction algorithms. Also,

there are various extraction methods and purposes in different algorithms.

Frequent word sequence extraction

The frequent word sequence extraction discovers some interesting sequences by

finding maximal frequent sequences in the document collection. According to

Ahonen-Myka et al. [4, 55, 56, 57, 58], there are some definitions as regards maximal

frequent sequence.

Definition 1: A sequence with length k, p = w1 … wk, is a subsequence of a sequence q

if all the words wi, 1 ≤ i ≤ k, occur in q and they occur in the same order as in p. If a

sequence p is a subsequence of a sequence q, we can also say that p occurs in q.

Definition 2: A sequence p is frequent in a set of sentences S if p is a subsequence of

at least σmin sentences of S, where σmin is a given minimum frequency threshold.

Definition 3: A sequence p is a maximal frequent sequence in a set of sentences S if

there does not exist any sequence p’ in S such that p is a subsequence of p’ and p’ is

frequent in S.

Given a document collection and frequency threshold σ, if a sequence appears for

more than σ times, the sequence is considered as frequent. Furthermore, a sequence

is maximal if there is no other frequent sequences contain this sequence. The

GPU Accelerated Hot Term Extraction form User Generated Content

59

following sentences are used in the example stated in [57]. If the minimum frequency

threshold is set as 2, the maximal frequent sequence can be found as “congress

retaliation against foreign unfair trade practices”.

1. The Congress subcommittee backed away from mandating specific retaliation against

foreign countries for unfair foreign trade practices.

2. He urged Congress to reject provisions that would mandate U.S. retaliation against

foreign unfair trade practices.

3. Washington charged France West Germany the U.K. Spain and the EC Commission with

unfair practices on behalf of Airbus.

This extraction method is pretty flexible. Users can set different value of frequency

threshold to find the frequent sequences. And also, the maximal frequent sequences

can provide the most informative summarization to users. However, the main

objective of this extraction method does not focus on the speed issue. The

processing time of this extraction method is not fast enough in real time applications.

Text Clustering

Text clustering is one of the text mining techniques which can help users to organize

document collections effectively. By applying text clustering to the search engine, the

document results can be grouped into a number of clusters. Documents having high

similarity with each other will be put in the same cluster. Users can easily browse the

clustered documents which are related to the users’ query [3].

Beil et al. [59] introduced a text clustering approach which used frequent item (term)

GPU Accelerated Hot Term Extraction form User Generated Content

60

sets. They presented two algorithms for frequent term-based text clustering, with

one aimed for flat clustering while the other aimed for hierarchical clustering. As the

general problems of text clustering are the large document size and high

dimensionality of data, using the frequent term sets can reduce the dimensionality of

the document vector space. They have used the technique of association rule mining

to find the frequent term sets. Terms that appear in a certain number of common

documents are formed into clusters. Therefore, documents which are grouped

together into a cluster are about the same topic. Furthermore, P.

Ponmuthuramalingam et al. [60] presented an effective term-based text clustering.

They presented four algorithms which had higher F-measure value and better

clustering quality than [59].

Yanjun et al. [61] proposed a text clustering algorithm named Clustering based on

Frequent Word Sequences (CFWS). They used the suffix tree method to extract

frequent word sequences and then used the frequent word sequences to perform

clustering. They proved that it was more effective to use frequent word sequences in

clustering than those algorithms which ignored the word sequences in documents.

Word Count

Recently, Google has introduced a software framework named MapReduce [62]

which supports distributed computing on large scale data processing on clusters of

computers. MapReduce provides highly efficient execution time on distributed

computing and the scale of data is at least 1TB. The MapReduce programming model

consists of two primitives which are map operation and reduce operation. The map

operation takes input key-value pairs and produces a set of intermediate key-value

GPU Accelerated Hot Term Extraction form User Generated Content

61

pairs. It groups all intermediate values with the same intermediate key and passes

them to the reduce operation. The reduce operation collects the results in groups

and merges together with the values of each group to form a possibly smaller set of

values. Figure 4.1 shows the MapReduce programming model.

Figure 4.1 – MapReduce programming model

Word counting is a typical example of MapReduce. Given a set of words, the input

key-value pairs represent the word and counter. The word is a key and the value is 1.

The map operation groups all the input pairs which have the same key and the

reduce operation sums up all the values of each group. Therefore, the frequency of

each word is counted. The full example can be found in the tutorial provided by

Hadoop [63].

Word Cloud

Word cloud or tag cloud is a visual representation of summarizing the content of

websites or text documents. Typically, the font size of the words in word cloud

represents the word frequency while the font color indicates other information. For

GPU Accelerated Hot Term Extraction form User Generated Content

62

example, PubCloud [9] summarizes the search results from PubMed and the font size

of the words indicates the word frequency and the font color indicates the recency of

publications. Recently, Cui et al. [64] have presented a dynamic word cloud

visualization method which aims to preserve the semantic coherence and spatial

stability of the cloud. Since word cloud emphasizes the visualization of

representation, it provides an effective representation for summarizing text content.

GPU Accelerated Hot Term Extraction form User Generated Content

63

4.4 Hot Term Extraction - Preprocessing

The preprocessing phase aims to transform documents into a representation that can

be used by our hot term extraction algorithm. As all the documents are assumed

from CGM, there is no standard format for the contents which mainly include

Chinese Characters, words, numbers, and punctuation. A term is defined as an

English word or bi-gram Chinese Characters. The preprocessing phase is important as

some frequent terms are useless and invalid and the hot term extraction algorithm

can be made faster by filtering those terms. Therefore, some rules are set for

defining a term. To ensure the validity of the Chinese term, a term must have two

valid Unicode Chinese Characters which starts with the character code 4E00 [65]. In

English term, the maximum length of pure alphabet terms is 30 characters [66]. For

terms with numeric characters, the maximum length is 8 characters. Furthermore, if

the documents are in some html formats or Bulletin Board Code [67] which is widely

used in forums, all the tags have to be removed. Lastly, the minimum length of terms

is 2 characters.

Before applying the hot term extraction algorithm, we need to give a unique term id

to each term. All terms are saved in the database with a unique term id. At the same

time, the frequency of each term is counted, so that the global term frequency is

recognized. After the global frequency is recognized, most frequent terms and least

frequent terms can be treated as stop words. Filtering of these terms is needed. By

removing the stop words, the result will be more accurate and the processing time

will be shortened.

GPU Accelerated Hot Term Extraction form User Generated Content

64

4.5 CPU Based Hot Term Extraction

4.5.1 Algorithm

Function Main(){

Input:

String of Keyword

Output:

A List of Hot Term <Term Id, Frequency> with corresponding Doc Id List <Long>

Begin:

List of Stop Word = Call Get_StopWord();

Filtered Term Id and Filtered Doc Id = Call Search(Keyword)

Sorted Index = Call Sorting(Filtered Term Id)

Boundary = Call FindBoundary(Sorted Term Id)

List of Term Frequency = Call TermFrequency(Boundary)

Sorted List of Term Frequency = Call Sorting(List of Term Frequency)

Output = Call Get_HotTerm();

End;

}

Table 4.1 – Pseudo-code of CPU based hot term extraction algorithm

Table 4.1 shows the pseudo-code of the CPU based hot term extraction algorithm.

The CPU based hot term extraction algorithm aims to find the most frequent terms

and the corresponding documents. When a user inputs a query, the search engine

will return the related documents and each document will have different number of

terms. Collecting all the terms and then calculating the term frequency, the number

of most frequent terms can be found. In this algorithm, the calculation of term

frequency is performed by sorting and finding boundary processes. The use of this

approach for finding term frequency is mainly due to the huge number of terms. It

can reduce memory usage and may not need to create an additional counter to

GPU Accelerated Hot Term Extraction form User Generated Content

65

calculate all term frequencies. Moreover, since there is no counting method provided

by GPU, using this approach can avoid finding term frequency in GPU based hot term

extraction. With the use of the same approach in both CPU and GPU based hot term

extraction algorithm, the experiment result can then be compared.

The CPU based hot term extraction algorithm consists of seven major steps. Firstly,

getting stop words from database, it is used for filtering the terms after the search

documents are produced. According to the query, the search engine will return

related documents and any useless terms will be filtered at the same time. Thus,

there remain the filtered term ids and the corresponding document ids. It then

requires the counting of the term frequency and sorting of the filtered term ids. After

the term ids are sorted, we have to find the boundary index of each term id. The

boundary index refers to the last position of each sorted and unique term id. As the

boundary index of each term is known, it is easy to find the term frequency of each

term and they can be assigned to a list which contains an index and frequency of

each term. After sorting the list in descending order by frequency, the most frequent

terms are sorted on the top of the list. Lastly, the terms can be retrieved by using the

index of the sorted list. The flow chart and an example of the CPU based hot term

extraction algorithm are shown in Figure 4.2 and Figure 4.3 respectively.

GPU Accelerated Hot Term Extraction form User Generated Content

66

Figure 4.2 – Flow of CPU based hot term extraction

GPU Accelerated Hot Term Extraction form User Generated Content

67

Filtered Term Id Filtered Doc Id

jan may tom jan jan zoe tom 001 005 002 004 003 006 007

Sorted Term Id Sorted Term Index

jan jan jan may tom tom zoe 0 3 4 1 2 6 5

Boundary

2 3 5 6

Term Frequency List

3 1 2 1

Descending sorted Term Frequency Sorted Term Frequency Index

3 2 1 1 0 2 1 3

Sorted Term Id [Boundary[Sorted Term Frequency Index[i]]]

Hot Term Id

jan tom may zoe

y = Boundary[Sorted Term Frequency Index[i]] - Descending sorted Term

Frequency[i]+1 to Boundary[Sorted Term Frequency Index[i]]

Filtered Doc Id [Sorted Term Index[y]]

Doc Id

001 004 003 002 007 005 006

Figure 4.3 – Example of CPU based hot term extraction

GPU Accelerated Hot Term Extraction form User Generated Content

68

4.5.2 Merge Sort

The CPU based hot term extraction algorithm has several steps. In the whole process,

the stage of sorting filtered term ids occupies most of the processing time. In order

to shorten the processing time, we may use the merge sort and multi-core processor

characteristics to implement the sorting.

A multi-core processor has two or more independent processors that read and

execute program instructions. Just like parallel programming, each processor

executes instructions concurrently, which makes it more efficient than a single

processor.

Merge sort was invented by John von Neumann [68]. It is based on a divide and

conquer algorithm which divides the unsorted list into two sub-lists each at about

half of the total size. The merge sort is then recursively applied to sort each sub-list.

Lastly, the two sub-lists are merged into one sorted list. An example is shown in

Figure 4.4.

Figure 4.4 – Example of Merge Sort

GPU Accelerated Hot Term Extraction form User Generated Content

69

In our hot term extraction algorithm, the filtered term ids are returned after

searching the keyword. Depending on the number of cores of the processor, we can

divide the term id list into N sub-lists with each at approximately equal size. Each

sub-list independently runs Arrays.sort on a core of the processor. After all the

sub-lists are sorted, they are merged into a sorted list. The implementation of merge

part is the same as that of merge sort. The elements of 2 sub-lists are compared and

a sorted list is then generated. The pseudo-code is shown in Table 4.2.

public static int[] merge(int[] number1, int[] number2) {

 long[] number3 = new long[number1.length + number2.length];

 int i = 0, j = 0, k = 0;

 while(i < number1.length && j < number2.length) {

 if(number1[i] <= number2[j])

 number3[k++] = number1[i++];

 else

 number3[k++] = number2[j++];

 }

 while(i < number1.length)

 number3[k++] = number1[i++];

 while(j < number2.length)

 number3[k++] = number2[j++];

 return number3;

}

Table 4.2 – Pseudo-code of merge sort

GPU Accelerated Hot Term Extraction form User Generated Content

70

4.6 GPU Based Hot Term Extraction

4.6.1 Algorithm

Function Main(){

Input:

String of Keyword

Output:

A List of Hot Term <Term Id, Frequency> with corresponding Doc Id List <Long>

Begin:

Term Id and Doc Id = Call Search(Keyword)

List of Stop Word = Call Get_StopWord();

Filtered term Id = Call GPU_FilterTermId(term id, Stop Word Flag)

Sorted Index = Call GPU_Sort(Filtered term id)

Boundary = Call GPU_FindBoundary(Sorted Term Id)

List of Term Frequency = Call GPU_TermFrequency(Boundary)

Sorted List of Term Frequency = Call GPU_Sort(List of Term Frequency)

Output = Call Get_HotTerm();

End;

}

Table 4.3 – Pseudo-code of GPU based hot term extraction algorithm

Table 4.3 depicts the pseudo-code of our GPU based hot term extraction algorithm.

Although its flow is the same as that of the CPU based counterpart, the

implementation is designed for running on GPU. The computational complexity of

GPU based hot term extraction is O(nlogn). The algorithm consists of four main GPU

functions: binary search, parallel scan operation, stream compaction and sorting. The

binary search and stream compaction can be used to filter the useless term id in

GPU_FilterTermId function; by using parallel scan operation and stream compaction,

the boundary and term frequency in GPU_FindBoundary and GPU_TermFrequency

can be find out; GPU sorting is respectively performed for sorting the term id and

GPU Accelerated Hot Term Extraction form User Generated Content

71

term frequency.

In the stage of filtering the stop words (GPU_FilterTermId), binary search and stream

compaction are used. Given a raw term id and stop word id, we can use binary

search to find out which term id corresponds to a stop word and mark it as 1. After

generating a 1/0 flag, we can filter out all stop words marked as 1 by using stream

compaction. As the CUDPP library provides stream compaction API which is called

cudppCompact, it is easy to filter out the stop words. However, the CUDPP library

does not provide any search API, we have to develop on our own. Luckily, binary

search can be easily mapped onto the GPU.

As binary search works only on a sorted list of elements, the stop word id is sorted in

CPU before passing onto the GPU. With a sorted list of id, all term ids are prepared

to fit into the uniform-grid data structure so that it can perform several sequential

binary searches at the same time. Each grid cell initiates a search for itself in the

sorted list and the search assigns 1/0 in the output for every grid cell. The output is a

list of 1/0 flag where the index of the list is the location of term id and 0 represents

that the term is a stop word. The coding of GPU based binary search is shown in

Table 4.4. Also, an example of the whole process is shown in Figure 4.5.

__global__ void GPU_BinarySearch(int *output, int *termId, int*

stopWord, int last, int gridx)

{

 int i = threadIdx.x+blockDim.x*blockIdx.x;

 int in = i+blockIdx.y*blockDim.x*gridx;

 int first = 0;

 output[in] =1;

 while(first<=last){

 int mid= (first+last)/2;

GPU Accelerated Hot Term Extraction form User Generated Content

72

 if(termId[in] > stopWord[mid]){

 first = mid+1;

 }else if (termId[in] < stopWord[mid]){

 last = mid-1;

 }else{

 output[in] = 0;

break;

 }}}

Table 4.4 – Coding of GPU_BinarySearch

Figure 4.5 – Example of filtering term id and doc id

Now we have a list of filtered term id, the next stage is to sort the filtered term id list.

In this stage, if all the term ids are 32-bit positive integers, the algorithm can directly

use key-value pair sort which is provided by CUDPP library. However, if the term ids

are more than 32 bits positive integer, the algorithm has to use the CUDPP

Borrow-Bit radix sort which has been introduced in Chapter 3. For simplicity, we now

assume that all the term ids are 32-bit positive integers. By performing a key-value

pair sorting, the key is an index of filtered term id which starts from 1 to the total

number of filtered term id and the value is the filtered term id. An example of this

stage is shown in Figure 4.6.

GPU Accelerated Hot Term Extraction form User Generated Content

73

Figure 4.6 – Example of key-value pair sorting on filtered term id

After sorting the filtered term id, we can bring the sorted term id to the next stage in

order to find the boundary index which aims to calculate the term frequency. The

sorted index is used for retrieving the term id at the last stage.

There are two objectives in the boundary finding stage. The first one is to find the

first position of each unique term id. It aims to prepare the list of 1/0 flag for

counting frequency in the next stage. The second one is to find the last position of

each unique term id. It aims to prepare the list of 1/0 flag for getting the term

frequency in the next stage.

Since the program works on GPU, it needs a parallel data structure program instead

of a sequential program. Same as the GPU binary search function, the sorted term

ids are prepared to fit into a uniform-grid data structure so that it can perform

several sequential programs in parallel. The function for finding the first position of

each unique term id is called segmentFlag whose program code is shown in Table 4.5.

If the input[i] is not equal to input[i-1], it means that the element of index i is the first

term which has a different term id, so the output is marked as 1. However, if the

GPU Accelerated Hot Term Extraction form User Generated Content

74

input[i] equals to input[i-1], it means that the index i is not the first element, so the

output is marked as 0.

__global__ void segmentFlag(int *d_out, int *d_in, int clength, int

gridx)

{

 int i = threadIdx.x+blockDim.x*blockIdx.x;

 int in = i+blockIdx.y*blockDim.x*gridx;

 if(in==0){

 d_out[0]=1;

 }else if(d_in[in] != d_in[in-1]){

 d_out[in]=1;

 }else if(d_in[in] == d_in[in-1]){

 d_out[in]=0;

 }

}

Table 4.5 – Coding of segmentFlag

The function for finding the last position of each unique term id is called compactFlag,

whose program code is shown in Table 4.6. If the input[i] equals to input[i+1], it

means that the element of index i is not the last term which has the same term id of

index i+1 , so the output is marked as 0. However, if the input[i] does not equal to

input[i+1], it means that the index i is the last element, so the output is marked as 1.

After the GPU_FindBoundary stage, we will have segmentFlag and compactFlag. An

example is shown in Figure 4.7.

GPU Accelerated Hot Term Extraction form User Generated Content

75

__global__ void compactFlag(int *d_out, int *d_in, int clength, int

gridx)

{

 int i = threadIdx.x+blockDim.x*blockIdx.x;

 int in = i+blockIdx.y*blockDim.x*gridx;

 if(in==clength-1){

 d_out[clength-1] = 1;

 return;

 }

 if(d_in[in] == d_in[in+1]){

 d_out[in]=0;

 }else{

 d_out[in]=1;

 }

}

Table 4.6 – Coding of compactFlag

Figure 4.7 – Example of segmentFlag and compactFlag

After the segmentFlag and compactFlag are prepared, we can count the term

frequency. There are three steps in the GPU_TermFrequency stage. Firstly, an input

list whose size is the same as the sorted term id and the value of each element is 1 is

prepared. Then, a segmented scan with segmentFlag is performed. The largest value

or index of each segment is the frequency of a term. Secondly, a stream compaction

with compactFlag to generate the term frequency list is performed. Finally, a scan

GPU Accelerated Hot Term Extraction form User Generated Content

76

with the term frequency list is performed. It aims to generate an index of each

unique term id in the sorted term id list. An example is shown in Figure 4.8.

Figure 4.8 – Example of counting term frequency

After the GPU_FindBoundary stage, we have a term frequency list. In order to know

which term is hot, sorting of the term frequency list is necessary. Again, cudppSort is

used to perform key-value sorting of the term frequent list. An example is shown in

Figure 4.9.

GPU Accelerated Hot Term Extraction form User Generated Content

77

Figure 4.9 – Example of sorting term frequency list

The final stage is to get the hot terms and related documents. Using the list of A, B, C

and D, the highlighted labels in the above figures are used to retrieve the hot term

and the related documents. Figure 4.10 below shows the process of getting hot

terms. To illustrate, the hottest term – “cat” which is shown in grey in the figure can

be obtained by firstly using the last value D to find the index of C. Then the value of C

is used to find the index of B and finally, the value of B is used to find the hot term in

A.

Figure 4.10 – Example of retrieving hot terms

This stage is performed on CPU, even it is a GPU based hot term extraction. To get

the hot terms and related documents, a lot of intermediate results such as the

GPU Accelerated Hot Term Extraction form User Generated Content

78

aforementioned list of A, B, C and D are needed. Due to the memory limitation of

GPU devices, more memory will be used if the intermediate results are kept in the

last stage. If more memory has been used on the intermediate results, it will

decrease the number of terms handled by the hot term extraction algorithm.

Therefore, we should free up the memory right after transferring any intermediate

results from device memory to host memory.

GPU Accelerated Hot Term Extraction form User Generated Content

79

4.6.2 Experimental Result

The experimental results of CPU and GPU based hot term extraction on different size

of search results are reported in this section. The experimental platform is an Intel®

Xeon® Processor X3450 with 2.66GHz machine with 16GB of memory and the

graphic card is GeForce GTX 470 that has 14 multiprocessors and 448 CUDA cores

with 1280 MB memory. Due to the limitation of memory in GeForce GTX470, it only

supports up to around 32 million terms in the GPU based hot term extraction.

The experimental data was collected by the K-Matrix Digital Intelligence Ltd. The

data collection period was between 25th March 2010 and 13th April 2010. There are

around 19 billion terms with 10 million unique terms distributed in 50 million

documents. The documents are collected from different forums in various regions

(Hong Kong, Macau and China). Details of the forums are listed in Appendix B.

Cost Analysis

The prices of GPU and CPU that used in the experiment are similar. In CPU, the price

of Intel® Xeon® Processor X3450 is around HKD $2,500. In GPU, the price of GeForce

GTX 470 is around HKD $2,800. Since the prices are similar, using the GPU to perform

hot term extraction is worth if the performance of GPU is better than CPU.

Speed Experiment

Figure 4.11 reports the processing time of the hot term extraction in CPU and GPU

with different number of term ids. In CPU, we use the merge sort characteristic to

GPU Accelerated Hot Term Extraction form User Generated Content

80

divide the term id into approximately half size and then perform the sort into each

core processor. Lastly, the sort results are merged. There are 4 cores with

multi-threading in Intel® Xeon® Processor X3450. We can fully utilize 8 cores in the

program. Obviously, the performance of single core is the worst, and the

performance of three to eight cores are very close. It proves that the merge sort

applied in multi-core processors has a better performance than running a sorting in a

single processor. Moreover, the performance trends are converged by adding CPUs.

The memory architecture of CPU is different from GPU. GPU has more arithmetic

logic units devoted to data processing while CPU has more control units dedicated to

data caching and flow control. The architecture of CPU was designed to optimize the

performance of sequential code. It makes use of control logic to allow instructions

from a single thread of execution to execute in parallel or even out of their

sequential order while maintaining the appearance of sequential execution [69]. To

maintain the high speed of execution, the merge sort process requires large amount

of cache memories for reducing instruction and data access latencies, so that the

performance is limited. Nevertheless, the merge sort brings around 5x performance

speed up when the number of term is 32 million. The best performance is still in GPU.

Comparing with the CPU based hot term extraction, the GPU based hot term

extraction has around 1.7x performance speed up when the number of term is 32

million. Although the processing time difference is just around a second, it is very

important in the real time systems.

GPU Accelerated Hot Term Extraction form User Generated Content

81

Figure 4.11 – Performance of Hot Term Extraction with different number of terms

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000000 2000000 4000000 8000000 16000000 32000000

P
ro

ce
ss

in
g

Ti
m

e
 (

m
s)

Number of Terms

1 CPU

2 CPU

3 CPU

4 CPU

5 CPU

6 CPU

7 CPU

8 CPU

GPU

GPU Accelerated Hot Term Extraction form User Generated Content

82

Processing Time Occupation

Figure 4.12 and Figure 4.13 show the occupation of processing time in hot term

extraction with CPU and GPU. They demonstrate two important facts: (1) sorting

process occupies more than 80% processing time in CPU based hot term extraction;

(2) the process time of transferring data from host to device and from device to host

occupies about 12% in GPU based hot term extraction.

With a view to fact (1), hot term extraction spends most of the time in sorting

process. In Chapter 3, we proved that the GPU sorting is much faster than CPU

sorting. Therefore, the GPU based hot term extraction can get a better performance

with using GPU sorting. According to fact (2), the overhead in transferring data from

host memory to device memory or vice versa is the tradeoff of using GPU device to

perform programming. Therefore, a well designed algorithm is important in a way

that avoids the unnecessary overhead and waste of resources.

Another important point is that the process of getting hot term list is running on CPU,

even in the GPU based hot term extraction. In order to get the hot term list in the

last step, lots of intermediate results are required. Since the memory is limited in the

GPU device, for providing more memory to support more number of terms in the

algorithm, the intermediate results are immediately transferred from device memory

to host memory.

GPU Accelerated Hot Term Extraction form User Generated Content

83

Figure 4.12 – Processing time breakdown with different number of terms

Figure 4.13 – Processing time breakdown in 32 million of terms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GPU CPU GPU CPU

32000000 1000000

Number of Terms

Transfer from Device to Host

Get Hot Term List (run on CPU)

Sort Term Frequency

Calculate Term Frequency

FindBoundary

Sort Term ID

Transfer from Host to Device

0

200

400

600

800

1000

1200

1400

1600

1800

2000

GPU CPU

P
ro

ce
ss

in
g

Ti
m

e
 (

m
s)

 Transfer from Device to Host

Get Hot Term List (run on CPU)

Sort Term Frequency

Calculate Term Frequency

FindBoundary

Sort Term ID

Transfer from Host to Device

GPU Accelerated Hot Term Extraction form User Generated Content

84

Hot Term Extraction

Figure 4.14 shows three examples of searching different keywords with return of top

30 hot terms. To quote the query of “smartone” as an example, there are 1,565

documents returned with 63K terms in those documents. Among these 63K terms,

28.49% of them are “smartone”. The second hot term is “plan” which has 8.43%. And

the third hot term is “iphone” of 8.30%. The term “iphone” is highly related to

“smartone” because Smartone was selling iphone during the searching period and

many people were discussing the iphone plan and Smartone.

Regarding the query of “pccw” example, there are 4165 documents returned with

185K terms in those documents. Among these 185K terms, 33% of them are “pccw”

and the second hot term is “上網” of 5.06%. Other hot terms are also relevant to the

keyword searched. It proves that people were concerning those hot terms during the

searching period.

As illustrated in the query of “曼聯”, the second hot term is “拜仁”. Since there was a

football match “曼聯 vs 拜仁” on 31st March,2010, and some people discussed in

the forums and frequently mentioned these two hot terms.

The hot term extraction is beneficial to different users. For the example of “smartone”

query, if the user is a Smartone staff, he may want to know the comment of users. So

some terms such as “問題”, “唔好” are useful to him. If the user is in a role of

marketing, he may want to know something about competitors. Terms such as

“pccw”, “csl”, “轉台” are useful to him. If the user is a customer, he may want to

know the features about Smartone. Terms such as “plan”, “上網”, “3g”, ”電話”, “wifi”

GPU Accelerated Hot Term Extraction form User Generated Content

85

are useful and “iphone” may also attract to him.

Figure 4.14 – Example of top 30 hot terms with different keyword searching

GPU Accelerated Hot Term Extraction form User Generated Content

86

Chapter 5

Conclusion

5.1 Contribution

In this thesis, we have proposed a flexible key-value pair sorting algorithm and a GPU

based hot term extraction algorithm. The proposed algorithms have been tested on

different web forums as listed in Appendix B and demonstrated by various

experimental results, which indicate that they are efficient.

To the best of our knowledge, this is the first attempt to perform hot term extraction

in search results with GPU and a preliminary version of this work will be reported in

[70]. The contributions of this thesis include:

1) A flexible key-value pair sorting algorithm called Borrow-Bit sorting: The

Borrow-Bit sorting can flexibly set the number bits in key and value, as long as the

sum of key and value is within 64-bit. In the experiment results, we show that the

Borrow-Bit approach provides flexible and efficient sorting. In addition to addressing

the limitation on CPU, it also works on GPU. It provides a faster key-value pairs

sorting when using JAVA. Moreover, it provides a method to use CUDPP Radix Sort

for sorting key-value pairs where both key and value are more than 32 bits.

2) A fast hot term extraction method using GPU: In the convenient digital world,

users always use the search engine to find what they want. Among the huge amount

of search results, the hot term extraction results can provide hidden information to

users. We can enjoy the advantage of parallel characteristics by implementing the

GPU Accelerated Hot Term Extraction form User Generated Content

87

hot extraction with GPU, it is much more efficient to get the most frequent terms in

the search results. Comparing the processing time with the CPU based hot term

extraction, the GPU based method can archive around 1.7x speed up.

5.2 Future Work

Due to the limited time of conducting this research, there are some potential

enhancement areas in hot term extraction.

1) N-Gram preprocessing

In the proposed hot term extraction algorithm, bi-gram is used to define a term.

Since each document consists of many words, using n-gram to get all the

combination of various terms is inefficient. Therefore, we use the bi-gram as the

basic unit of term. To make the result more accurate, we would like to apply n-gram

in the top N hot term lists. Firstly, the location of each word in document is stored.

After generating the top N hot term lists, we can combine the terms which are

located in consecutive sequences.

On the other hand, in order to reduce the memory usage in the hot term extraction,

we have to minimize the redundant terms in the pre-processing step. Named entity

recognition can be chosen to help identify terms like people, locations and

organizations. For example, if the dictionary consists of the term “電訊盈科”, the

named entity recognition can help reduce three bi-gram terms including “電訊”, “訊

盈” and “盈科”. The named entity recognition helps to reduce the number of terms

and improve the accuracy in the hot term extraction.

GPU Accelerated Hot Term Extraction form User Generated Content

88

2) Hot Term Clustering

In hot term extraction, we can treat the resulted listing as a cluster of searching

query. We can form a link to another cluster which is searched by another query if

two clusters have the same hot terms. Figure 5.1 shows the example of “smartone”

cluster and “pccw” cluster. In the cluster, the hot terms are shown in different colors

and different font sizes in Figure 5.1. The font size is proportional to the term

frequency, so that the hotter terms may have a larger font size. There are some hot

terms which are the same in these two clusters, so we can form a linkage between

these two clusters. Each link between the two clusters can perform another search

with AND operation. Users can click the link to perform another search to find the

results they are interested in and the corresponding hot term lists. For example, if a

user clicks the link of “iphone”, another search query is formed to have “smartone

AND pccw AND iphone”. The search will automatically find the documents which

consist of “smartone”, “pccw” and “iphone”, and then list out the corresponding hot

term lists.

Figure 5.1 – Example of hot term clustering

GPU Accelerated Hot Term Extraction form User Generated Content

89

In practice, the hot term clustering is very useful. We can find the WOM of different

features or products in different brands easily. Figure 5.2 shows an example in the

cosmetic industry. There are four clusters searched by different keywords, namely

“biotherm”, “shiseido”, “shu uemura” and “fancl”. The hot term “美白” appears in

these four clusters. Users can easily find the WOM of “美白” between these four

brands and the hot term clustering can let users know that this hot term is important

in the cosmetic industry. In addition, the appearance of the hot term - “睫毛” in the

hot term lists of the “biotherm” cluster and “shiseido” cluster reveals that this term

has more WOM in these two brands than “shu uemura” and “fancl”. In other words,

this term attracts interests from more people and may also be meaningful to the

user.

Since the hot term clustering widely reuses the hot term extraction algorithm, a fast

algorithm is important. The GPU can help to achieve faster performance than CPU.

3) Multiple GPUs

In this thesis, the proposed GPU based hot term extraction only uses a single GPU. To

enhance the processing time of hot term extraction, we can implement the algorithm

with multiple GPUs. In CPU based hot term extraction, we use multiple cores to

perform merge sort for sorting term id. It is proved that the processing time of using

merge sort in multiple cores is much faster than sorting in only a single core. By

applying this idea to GPU, we can carry out the merge sort in multiple GPUs and

achieve a better performance.

On the other hand, the overhead in transferring data from host memory to device

GPU Accelerated Hot Term Extraction form User Generated Content

90

memory or vice versa in GPU is a bottleneck. Using multiple GPUs can reduce of this

overhead. From a single GPU, it is sequentially transfer data from host memory to

device memory or vice versa. However, using multiple GPUs can asynchronous

transfer the data which means that multiple transfer the data at the same time. As a

result, we can coordinate works across multiple GPUs to archive faster processing

time.

Figure 5.2 – Cosmetic Industry Example in hot term clustering

GPU Accelerated Hot Term Extraction form User Generated Content

91

Appendices

A. K-Matrix CI Report – PCCW

GPU Accelerated Hot Term Extraction form User Generated Content

92

GPU Accelerated Hot Term Extraction form User Generated Content

93

B. Data Collection – CGM

Online news (Hong Kong) Blog (Hong Kong):

太陽報 news.newsgroup.com.hk

大公報 news.nntp.hk

成報 my.newsgroup.la

星島日報 news.3home.net

文滙報 news.balabu.net

都市日報 news.hkux.net

蘋果日報 news.wonderspace.net

sina.com.hk 體育 news.wonderfuland.net

雅虎香港新聞 news.hkpcug.org

蘋果動新聞 news.idsam.com

經濟通新聞 news.ourrice.com

The Standard - Breaking News news.sporthk.net

The Standard - Sections

明報即時新聞

HKEJ instant news

頭條網 - 即時新聞

Reuters

GPU Accelerated Hot Term Extraction form User Generated Content

94

Forum (China)

绿茶股票论坛 OFFICE 精英俱乐部
天易投资论坛 中国时尚论坛
银江论坛 走进中关村
通吃岛证券论坛 易购网上购物论坛
海涛股票论坛 都市论坛
理想论坛 凤网社区
鼎砥投资论坛 上海热线互动社区
福建飞狐论坛 中国孕育网
現金流投资论坛 中国早教网
包卜篮球论坛 中国灯具论坛
詹姆斯中文论坛 北方论坛
克里斯·保罗中文网 照明技术论坛
街盟论坛 摇篮网
潮流长安论坛 建筑论坛
科比中文网 中华室内设计网
环球鞋网论坛 阿里巴巴论坛
虎扑论坛版 汉网论坛
街頭籃球 大众论坛
一起 NBA 泡泡网论坛
爱死科比 西岸论坛
我乐 NBA 海运俱乐部
我爱科比 赛迪网论坛
鞋帮 车天下社区
CN-KIX 聚友社区
触动球鞋论坛 宁波百姓论坛
1626 活动区 中国网和平论坛
TBBA 篮球论坛 中国女性时尚论坛
新新球鞋论坛 外企白领论坛
天涯論壇 中华网论坛
百度知道 合众外贸论坛
都市客论坛 福步外贸论坛
IXPUB 技术社区 中华网_科技论坛
ZDNetChina 中文社区 太平洋亲子网
ChinaByte 论坛 FGLADY 风尚伊人网论坛
51CTO 技术论坛 特价王网上购物论坛
IT 世界网论坛 丫丫论坛丫丫社区
计世网论坛 大洋论坛

GPU Accelerated Hot Term Extraction form User Generated Content

95

ChinaUnix.net 中国宠物论坛-PET86
中国 IT 实验室-IT 社区 好孩子育儿网
YOKA 时尚论坛 育儿网论坛
时尚论坛 我爱北京交友聚会网(爱北论坛)
搜狐社区 拍拍网社区
ITPUB 论坛 西陆论坛
IT168 数码影人 年轻 e 族
IT168 办公维修论坛 篱笆论坛
IT168 家电论坛 麻辣社区
IT168DIY 烧友会 西祠胡同社区
网易论坛 东南网-榕树大院
丁丁网生活论坛 POCO 论坛
TOM 社区 中关村在线论坛_游戏社区
新浪论坛 中国 LED 网论坛
广州妈妈 粉丝网主论坛
西安妈妈 中关村软件论坛
大众点评网 成龙汽车网
广州论坛 汽车画报
淘宝帮派 51.Com
太平洋电脑网 和讯论坛
新浪亲子女人论坛 CHE168
淘宝打听 愛卡汽車網
太平洋女性网论坛 中国站长论坛
VOGUE 时尚网 易车网社区
校内网论坛 电脑之家(宽带山社区)
ChinaRen 社区 CSDN 社区
21CN 社区 汽车之家
北青网论坛 ELLE
腾讯论坛 妆点网
京华论坛(千龙论坛) 中国证券网
小熊在线 海报社区
网上车市 OnlyLady 论坛
汽车之友 花花女人社区
搜城论坛 爱丽女性社区
瑞丽论坛 时空网
慧聪网 19 楼
无垠社区 证券大智慧
电脑商网经销商论坛 新华网

GPU Accelerated Hot Term Extraction form User Generated Content

96

Forum (Hong Kong) Forum (Macau)

鈴聲之王討論區 澳門流動社區

香港討論區 澳門互動社區

Uwants 討論區 澳門凸區論壇

大眾論壇 澳門討論區

香港互聯網站

失敗論壇

web4share

香港製造論壇

GoalGoalGoal 球迷大聯盟

數碼天地論壇

電腦領域 HKEPC Hardware

PDA User Message Board

親子王國

香港高登討論區

我的討論區

跑步舍討論區

Hk-kicks

香港運動網

she.com

2000FUN 論壇

esdlife

3boys2girls

MY903

Geoexpat

信報論壇

Asiaxpat

Shemom

明報討論區

HD-DC

攝出中國

奧林派

HKCUG

dcfever

yahoo 知識

BeautyExchange

OpenRice

香港人网

GPU Accelerated Hot Term Extraction form User Generated Content

97

Blog (China) Blog (Hong Kong)

网易博客 Blogger

新浪博客 Xanga

腾讯博客 Sina Blog HK

百度空间 Yahoo Blog HK

天涯博客

聚友博客

瑞丽博客

和讯博客

poco.cn

博尚网

同学网微博客

中国教育人博客

GPU Accelerated Hot Term Extraction form User Generated Content

98

Bibliography

1. R. Feldman, M. Fresko, Y. Kinar, Y. Lindell, O. Liphstat, M. Rajman, Y. Schler, and O.

Zamir, “Text mining at the term level,” In Principles of Data Mining and

Knowledge Discovery, Lecture Notes in Computer Science, vol. 1510, pp. 65–73,

1998.

2. B. Larsen and C. Aone, “Fast and Effective Text Mining Using Linear-time

Document Clustering,“ Proc. KDD 99, pp. 16-22, 1999.

3. Carrot Search. http://search.carrotsearch.com/carrot2-webapp/search

4. H. Ahonen, “Knowledge discovery in documents by extracting frequent word

sequences,” Library Trends, vol.48, issue 1, pp. 160–181, 1999.

5. K-Matrix Digital Intelligence Ltd. http://www.kmatrixonline.com

6. K-Matrix CI. http://ci.kmatrixonline.com

7. J. McEntyre and D. Lipman, “PubMed: bridging the information gap,” Cmaj, vol.

164, no. 9, pp. 1317-1319, 2001.

8. B. Y.-L. Kuo, T. Hentrich, B. M. Good, and M. D. Wilkinson, “Tag clouds for

summarizing web search results,” In WWW '07: Proc. of the Int. World Wide

Web Conf., pp. 1203–1204, 2007.

9. PubCloud.

http://dev.biordf.net/PubCloud/gc.jsp?query=genes&type=abstract&startYear=2

009&endYear=2010&option=most_recent&recent=200&percent=10

10. NVIDIA CUDA. http://developer.nvidia.com/category/zone/cuda-zone

11. Kirk, D. B. & Hwu, W.-m. W., “Programming Massively Parallel Processors: A

Hands-on Approach,” Morgan Kaufmann, Boston, Massachusetts, USA, 2010.

12. NVIDIA, "NVIDIA CUDA C Programming Guide v.4.0," 2011.

13. J. Nickolls, I. Buck, M. Garland and K. Skadron, “Scalable parallel programming with

CUDA,” ACM Queue, vol. 6, no.2, pp. 40-53, 2008.

14. J. Krüger and R. Westermann, “Linear algebra operators for GPU

implementation of numerical algorithms,” ACM Transactions on Graphics, vol.

22, no. 3, pp. 908 - 916, 2003.

15. N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha, “LU-GPU: Efficient

algorithms for solving dense linear systems on graphics hardware,“ in Proc.

ACM/IEEE Conf. Supercomput., pp. 3, 2005,.

16. G. Quintana-Ortí, F. D. Igual, E. S. Quintana-Ortí, and R. van de Geijn, “Solving

dense linear algebra problems on platforms with multiple hardware

accelerators,” in Proc. of the 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 2009.

http://search.carrotsearch.com/carrot2-webapp/search
http://www.kmatrixonline.com/
http://ci.kmatrixonline.com/
http://dev.biordf.net/PubCloud/gc.jsp?query=genes&type=abstract&startYear=2009&endYear=2010&option=most_recent&recent=200&percent=10
http://dev.biordf.net/PubCloud/gc.jsp?query=genes&type=abstract&startYear=2009&endYear=2010&option=most_recent&recent=200&percent=10
http://developer.nvidia.com/category/zone/cuda-zone

GPU Accelerated Hot Term Extraction form User Generated Content

99

17. P. Harish and P. J. Narayanan, “Accelerating Large Graph Algorithms on the GPU

Using CUDA,” In HiPC, pp. 197 - 208, 2007.

18. A. Buluc, J. R. Gilbert and C. Budak, ”Solving Path Problems on the GPU,”

Parallel Computing, vol. 36, 2010.

19. K.A. Hawick, A. Leist and D.P. Playne, “Parallel graph component labelling with

GPUs and CUDA,” Parallel Computing, vol.36, issue 12, pp. 655 – 678, 2010.

20. O. Kalentev, A. Rai, S. Kemnitz and R. Schneider, “Connected component labeling

on a 2D grid using CUDA,” Journal of Parallel and Distributed Computing, vol. 71,

issue 4, pp. 615 – 620, 2011.

21. V. Garcia, E. Debreuve, and M. Barlaud, “Fast k Nearest Neighbor Search Using

GPU,” Proc. CVPR Workshop Computer Vision on GPU, 2008.

22. B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector machine

training and classification on graphics processors,” Proceedings of the 25th

International Conference on Machine Learning, pp. 104 - 111, 2008.

23. I. Chiosa and A. Kolb, “GPU-based Multilevel Clustering,” IEEE Transactions on

Visualization and Computer Graphics (TVCG), vol. 17, no. 2, pp. 132 – 145, 2011.

24. M. Schatz, C. Trapnell, A. Delcher and A. Varshney, “High-throughput sequence

alignment using Graphics Processing Units,” BMC Bioinformatics, vol. 8, no. 1,

p.474, 2010.

25. C. Trapnell and M. Schatz, “Optimizing data intensive GPGPU computations for

DNA sequence alignment,” Parallel Computing, 2009.

26. J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann, “A particle system for

interactive visualization of 3D flows,” IEEE Transactions on Visualization and

Computer Graphics (TVCG), vol. 11, pp. 744 - 756, 2005.

27. J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse matrix solvers on the

GPU: Conjugate gradients and multigrid” ACM Transactions of Graphics., vol. 22,

no. 3, pp. 917 - 924, Jul. 2003.

28. A. E. Lefohn, “A streaming narrow-band algorithm: Interactive computation and

visualization of level-set surfaces,” Master’s thesis, University of Utah, Dec.

2003.

29. J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K.

Schulten, “Accelerating molecular modeling applications with graphics

processors, Journal of Computational Chemistry,” J. Comp. Chem., vol. 28, pp.

2618 - 2640, 2007.

30. J. A. van Meel, A. Arnold, D. Frenkel, S. F. P. Zwart, and R. G. Belleman,

“Harvesting graphics power for MD simulations, Molecular Simulation,” vol. 34,

pp. 259 - 266, 2008.

31. T. D. R. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon,

GPU Accelerated Hot Term Extraction form User Generated Content

100

“Biomedical image analysis on a cooperative cluster of gpus and multicores,” in

ICS '08: Proceedings of the 22nd Annual International Conference on

Supercomputing, New York, NY, USA, ACM, pp. 15 - 25, 2008.

32. S. A. Manavski, “CUDA compatible GPU as an efficient hardware accelerator for

AES cryptography,” In ICSPC 2007: Proc. of IEEE Int’l Conf. on Signal Processing

and Communication, pages 65 - 68, 2007.

33. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T.

Purcell, “A survey of general-purpose computation on graphics hardware,”

Comput. Graph. Forum, vol. 26, no. 1, pp. 80 - 113, 2007.

34. S. Sengupta, M. Harris, Y. Zhang and J.D. Owens, “Scan primitives for GPU

computing,” in: Proc. of the ACM SIGGRAPH/EUROGRAPHICS Conference on

Graphics Hardware, 2007.

35. CUDPP. http://code.google.com/p/cudpp/

36. D. Horn, “Stream reduction operations for GPGPU applications,” In GPU Gems 2,

Pharr M., (Ed.). Addison Wesley, chapter 36, pp. 573 - 589, Mar. 2005.

37. J. Hensley, T. Scheuermann, G. Coombe, M. Singh and A. Lastra, “Fast

summed-area table generation and its applications,” Computer Graphics Forum,

vol. 24, issue 3, pp. 547 – 555, September 2005.

38. M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan) with CUDA,”

In H. Nguyen, editor, GPU Gems 3, Addison Wesley, chapter 39, pp. 851 – 876,

Aug. 2007.

39. A. Greß, M. Guthe and R. Klein, ”GPU-based collision detection for deformable

parameterized surfaces,” Computer Graphics Forum, vol. 25, issue 3, pp. 497 –

506, September 2006.

40. G. E. Blelloch, “Prefix sums and their applications,” Technical Report, 1990.

41. N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algorithms for

manycore GPUs,” In IPDPS, pp. 1–10, 2009.

42. JCUDA. http://www.jcuda.org/

43. Thrust. http://code.google.com/p/thrust/

44. D. Merrill and A. Grimshaw, “High Performance and Scalable Radix Sorting: A

case study of implementing dynamic parallelism for GPU computing,” Parallel

Processing Letters, vol. 21, no. 2, pp. 245-272, 2011.

45. Java Arrays.sort.

http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.

Object[])

46. A. Marriott, “Maximizing Performance with Bespoke Programming,” Logos

Software.

47. Word of Mouth. http://en.wikipedia.org/wiki/Word_of_mouth

http://code.google.com/p/cudpp/
http://www.jcuda.org/
http://code.google.com/p/thrust/
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.Object[])
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html#sort(java.lang.Object[])
http://en.wikipedia.org/wiki/Word_of_mouth

GPU Accelerated Hot Term Extraction form User Generated Content

101

48. Google/KellerFay, Word of Mouth and the Internet Study, June 2011.

http://www.gstatic.com/ads/research/en/2011_Word_of_Mouth_Study.pdf

49. CIC. http://www.cicdata.com/

50. Visible Technologies. http://www.visibletechnologies.com/

51. Radian6. http://www.radian6.com/

52. Alterian. http://www.alterian.com/socialmedia/products/

53. Collect Intellect. http://www.collectiveintellect.com/

54. Lithium Social Media Monitoring. http://www.scoutlabs.com

55. H. Ahonen-Myka, “Finding all maximal frequent sequences in text,” in:

Proceedings of ICML-99 Workshop on Marchine Learning in Text Data Analysis,

pp. 11–17, 1999.

56. H. Ahonen-Myka, “Discovery of frequent word sequences in text,” in:

Proceedings of the ESF Exploratory Workshop on Pattern Detection and

Discovery in Data Mining, 2002, pp. 16–19.

57. H. Ahonen-Myka, “Mining all Maximal Frequent Word Sequences in a Set of

Sentences,” Proceedings of the 14th ACM International Conference on

Information and Knowledge Management, pp. 255-256, 2005.

58. H. Ahonen-Myka and A.Doucet, “Data mining meets collocations discovery,” In

Inquiries into Words, Constraints and Contexts, Festschrift for Kimmo

Koskenniemi, pp. 194–203. CSLI Publications, University of Stanford, 2005.

59. F. Beil, M. Ester and X. Xu, “Frequent term-based text clustering,” in:

Proceedings of ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pp. 436–442, 2002.

60. P. Ponmuthuramalingam and T. Devi, “Effective Term Based Text Clustering

Algorithms,” (IJCSE) International Journal on Computer Science and Engineering

vol. 02, no. 05, pp. 1665-1673, 2010.

61. Y. Li, S.M. Chung and J.D. Holt, “Text document clustering based on frequent

word meaning sequences,” Data and Knowledge Engineering, vol. 64, issue 1, pp.

381– 404, 2008.

62. J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters,” Operating Systems Design and Implementation, pp. 137–149, 2004.

63. Word Count Example.

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html

64 W. Cui, Y. Wu, S. Liu, F. Wei, M. Zhou, and H. Qu. “Context-preserving, dynamic

word cloud visualization,” Computer Graphics and Applications, IEEE, vol. 30,

issue 6, pp. 42–53, 2010.

65. Unicode Chinese Characters.

http://www.khngai.com/chinese/charmap/tbluni.php?page=0

http://www.gstatic.com/ads/research/en/2011_Word_of_Mouth_Study.pdf
http://www.cicdata.com/
http://www.visibletechnologies.com/
http://www.radian6.com/
http://www.alterian.com/socialmedia/products/
http://www.collectiveintellect.com/
http://www.scoutlabs.com/
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://www.khngai.com/chinese/charmap/tbluni.php?page=0

GPU Accelerated Hot Term Extraction form User Generated Content

102

66. Longest word in English. http://en.wikipedia.org/wiki/Longest_word_in_English

67. Bulletin Board Code. http://en.wikipedia.org/wiki/Bulletin_Board_Code

68. Merge Sort. http://en.wikipedia.org/wiki/Merge_sort

69. Kirk, D. B. & Hwu, W.-m. W., “Programming Massively Parallel Processors: A

Hands-on Approach,” Morgan Kaufmann, Boston, Massachusetts, USA, 2010.

70. M.F. Cheng, F.L Chung, S.N. Chuang, “GPU Accelerated Hot Term Extraction from

User Generated Content”, 2012 26th International Conference on Advanced

Information Networking and Applications Workshops, WAINA, pp.851-856,

2012.

http://en.wikipedia.org/wiki/Longest_word_in_English
http://en.wikipedia.org/wiki/Bulletin_Board_Code
http://en.wikipedia.org/wiki/Merge_sort

