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Abstract

This dissertation is devoted to an atomistic understanding of the dielectric properties of

oxide perovskites. I shall concentrate on the long-known barium titanate (BTO) and

strontium titanate (STO), although other related materials will also be discussed.

The BTO is known as a ferroelectric, which undergoes a series of polar structural phase

transitions as temperature goes down. In the work presented here, the focus is placed on

the tetragonal-cubic transition that occurs about 410K. A lot of theoretical work have

been invested to clarify the transition mechanism, which pertains basically to the behaviors

of the static dielectric constant and hence to the lowest frequency phonon mode. Those

work were largely based on First-priciples computations or models whose origin need be

revealed. Despite their usefulness, they shed little light upon the modes other than the

lowest frequency one and their inter-relations. This situation may be partly due to the

difficulty in establishing an atomistic model that is amenable to intuitive analysis. In this

dissertation, I try to fill this gap and show how such a model can actually be achieved. In

doing so, insights into other problems are obtained.

A central issue concerns the identity of the observed peaks in the imaginary part of the

dielectric function. The assignment of these peaks are accomplished by comparison with

the said model. Accordingly, the peaks around 180cm−1 and 510cm−1 are considered

to correspond to O vibrations along and normal to the Ti-O-Ti bonds, respectively. The

perceived anistropy is found to arise from the strong Ti-O covalent bonding. All remaining
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peaks are considered to correspond to Ti motions. These motions are highly anharmonic.

As a result, these peaks are prone to temperature changes and spectrual weight transfer

has to happen between them. Based on the model, one can explain (1) the huge ratio εa
εc

and (2) the polar chain formation in the cubic phase.

STO, on the contrary, is only an incipient ferroelectric. The model is equally applicable

to this compound. The O vibrations are found at similar but slightly shifted frequencies.

Such shifts are comprehensible by this model. In this compound, a key issue relates to the

correlations between a zone boundary mode and a zone center mode. Both display soften-

ing behaviors. However, the softening with the latter is incomplete. The physics behind

this incompleteness has been a matter for debate. In this dissertation, it is attributed to

the inter-relations between these two modes. I explore this idea from both a vibronic and

a phenomenological point of view. A fingerprint is found.

Ferroelectricity can be induced in STO by replacing O16 with O18. The isotope effect

is remarkable: the transition temperature can be as high as 24K. Different views have

appeared to explain the effects. Based on the aforementioned model, I put forth a different

idea, which states that, the main effects of the isotope substitution are to suppress the Ti

zero-point fluctuations. This is signified by a decrease in the Ti tunneling frequency.

In addition, I discuss the implications for cuprate superconductors.
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Chapter 1

INTRODUCTION

1.1 Preamble

In this thesis, I try to convey a unified, clear and tractable atomistic picture for understand-

ing the lattice dynamics of perovskites and their variants. My focus will be on properties

that are governed by the dielectric function. The obtained picture is applied to two well

known compounds, barium titanate (BaTiO3 or BTO) and strontium titanate (SrT iO3 or

STO). The experimental data of them are rich but perplexing and uneasy sometimes. It

is just these uneasy aspects that motivate my work recorded in the present thesis. There-

fore, it is paramount to explain these facts in the first place, which is the task of this

introduction chapter. I will begin with a description of the crystal structrue and then

move to talk about the electronic structure. Appreciation of these structures are essential

in reaching the physical picture. Thereafter, I briefly review the basics of lattice dynamics

and mention some preliminary concepts and often used models (a detailed discussion will,

however, be postponed to the next chapter). I also discuss how to experimentally inves-

tigate the lattice dynamics. Then I turn to introducing structural phase transitions in

terms of correlation functions. Basic machineries are then discussed. I proceed to reivew
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the phenomenological aspects of both BTO and STO. These are accompanied by critical

remarks, in order to reveal the gap of understanding.

1.2 Crystal Structures

A pure perovskite compound has a general formula as ABX3, with A and B being metal

elements while X often being (and hereafter restricted to) oxygen. A variety of choices can

be adopted by A and B. In the present thesis, I shall be largely referring to BaTiO3 (BTO)

and SrT iO3 (STO), although our discussions are actually very general. Despite their

seemingly simple chemical formulations, incredibly rich phenomena on both the atomistic

and electronic scale have been found in these substances[10, 12, 71, 151]. Properties relate

to structure. A perovskite compound can usually befall in a bunch of crystal structures,

depending on ambient conditions such as pressure and temperature[10]. However, every

structure can be somewhat deemed as slight deviations from a parent one: the ideal cubic

structure, whose unit cell is depicted in FIG.1.1 and the postitions of each site are listed

in TABLE 1.1. In this unit cell, the A atoms occupy the corners of a cube, the B atom

takes up the center and the O’s are placed at the face centers surrounding the B atom,

thus making the so-called BO6 cluster. Another way to draw the unit cell is to reverse the

positions of A and B while at the same time positing the O atoms at the edge centers. It

is useful to note that an O atom in this structure is also caged by two B atoms and four

A atoms.

The geometrically ideal structure is not neccesarily the physically stable one. A crude

way to quantify the stability is via the so-called tolerance factor t, which is defined as[14]

t = tAO + 1√
2(tBO + 1)

(1.1)

where tBO = rB
rO

and tAO = rA
rO
, with rO,A,B being the radii of corresponding ions. Although
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being empirical and ambiguious in determination of the radii, it can often serve as a

preliminary indicator of stability. For example, from the numbers given by Shannon[15],

the value of t for STO is around 1.02, quite close to that for the ideal cubic structure

(in which case t = 1). This implies STO in the vicinity of criticality and its properties

sensitive to changes in external parameters, as analyzed by Itoh et al[16]. When replacing

Sr with Ba, the unit cell becomes bigger and the Ti ion can not be in good touch with

all O ions. The way out is to have Ti ions off-center shifted so as to touch some of the O

ions, thus resulting in polarization.

The mass ratio of BO3 to A seems also an interesting quantity. Denote the mass of the

former and the latter by m1 and m2, respectively. Take ATiO3 for instance. It was found

that, polar structural instability appears only for m2 > 100. Since m1 ≈ 95.9, this finding

suggests the instability condition m2/m1 > 1[16].

Table 1.1: Atomistic positions in a perovskite unit cell
Site Location Coordinates

A cation (2a) (0,0,0)
B cation (2a) (1/2,1/2,1/2)
O(apical) (6b) (1/2,1/2,0)
O(planar) (6b) (1/2,0,1/2);(0,1/2,1/2)

1.3 Electronic Structure

The relevant electronic orbitals (which are those close to the Fermi level) on B sites are

of d-wave symmetry while those on the A sites are of s-wave symmetry and those on the

O sites are of p-wave symmetry (see Ref.[17, 19] and FIG.1.2-1.4 for details). The five

d-orbitals fall in two multiplets due to crystal field, the triplet t2g = {dxy, dyz, dzx} and the

doublet eg = {dx2−y2 , d3z2}. Strong covalent bonds of σ-type are expected to form between

the Bdx2−y2 and the planar Op’s and between the Bd3z2 and the apical Op’s. Such bonds
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Figure 1.1: Unit cell of ideal perovskite structure. The Ti, O and A ions are represented
by the yellow, red and blue spheres respectively.
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may play important role in perovskite structure formation, especially in the formation of

the BO6 octehedra, which is perfect for this bonding if all eg orbitals are empty. On the

contrary, in compounds where d3z2 is filled, for example in high-Tc superconductors[151],

a degraded structure happens that can simply be regarded as obtained by stacking BO2

layers.

First-principles computations have been done on ATiO3 and other compounds[19, 20].

The charge density map obtained for BT and ST from such computations shows that the

charges about the Ti ions and O ions are linked into a net, suggesting covalent bonding

between these ions (see FIG.1.5). On the other hand, the charges around the Ba or Sr ions

are nearly spherically distributed and detached from the Ti-O charge net, suggesting that

these ions can be taken as simple charges. Roughly, to have an intuition about the crystal

formation energy, one may think these perovskite compounds are formed like this: strong

covalent Ti-O bonding makes the linked TiO6 skeleton, which is further corroborated by

adding Ba or Sr ions via ionic bonding.

For PbT iO3, the situation is a little different: the Pb sites have lone electron pairs, which

can be shared with partially filled O sites. This is reflected in the charge density map

as well[19]. Such lone pairs can have important effects on the crystal structure, which

however is beyond the scope of this thesis[21].

Throughout this thesis, the configuration denoted by As0Bd0Op6 will be used as the

reference for considering electronic excitations.

1.4 Lattice Dynamics: An Overview

1.4.1 Rigid Ion Model

In this model, every ion is treated as a rigid sphere with certain charges[23]. They are

assumed to interact with one another via a potential energy. Let us write down the
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Figure 1.2: Atomic level structure of perovskites. Reproduced with permission from[17]

Figure 1.3: Bonding in perovskites. Reproduced with permission from[22]
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Figure 1.4: Band structure of perovskites from Γ to X. Reproduced with permission
from[18]
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Figure 1.5: Electronic density map. Reproduced with permission from[19]
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displacement vector of the κ-type ion belonging to the l-th unit cell as ~ulκ = ~rlκ − ~Rlκ,

where ~Rlκ labels the corresponding ideal cubic structure site and ~rlκ the instantaneous

position of that ion. The potential energy can then be written as V ({~ulκ}). Assuming

that these displacements are minute in comparison with the lattice constants and that the

potential reaches its minimum (at least local) at vanising displacements, the equations of

motion for the ions can be solved through harmonic approximation. In this case, one ends

up with a system of normal modes each labelled by a wavevector ~q and a branch tag j

with frequency ω~qj. One can write[24]

~ulκ =
∑
j~q

(NMκ)−1/2~e(κ, j~q)Q(j~q)ei~q·~Rlκ , (1.2)

with N being the number of unit cells of the crystal, Mκ the mass of the κ atom while

~e(κ, j~q) being the normalized eigenvector and Q(j~q) the canonical coordinates. Since ~ulκ

is real, one must have Q∗(j, ~q) = Q(j,−~q). In terms of these variables, the Hamiltonian

in the harmonic approximation can be couched as

H2 = 1
2
∑
j~q

[Q̇(j, ~q)Q̇(j,−~q) + ω2(j~q)Q(j, ~q)Q(j,−~q)] (1.3)

The system will be stable if all ω(j~q) are positive, as assumed by the harmonic approxi-

mation. Further, under this approximation, all these frequencies will be simply constants

and have no dependence on temperature.

1.4.2 Core-Shell Model

The rigid ion model presumes that each ion can be regarded as a rigid entity. However,

in reality, ions, in particular anions, can be polarized relatively easily. In anions, the

outermost shell electrons are usually loosely attached. To take into account this aspect,
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the shell model was forwarded[25, 26, 27], whose basic idea is to divide an ion into a core

and a shell. The core consists of the rigid part of the ion: the nuclei plus the inner-

shell electrons. The shell represents the outermost-shell electrons as a whole, namely the

valence electrons. An interaction is introduced between these two components. Denote

the displacement of the core by ~ulκ and that of the shell by ~wlκ. The interaction is then

written as U({~ulκ}, {~wlκ}). There are also interactions between the shells, U ′({~wlκ}) and

between the cores V ′({~ulκ}). Applying Newton’s law, one then obtains a set of coupled

equations.

Mκ~̈ulκ = −[ ∂

∂~ulκ
(U + V ′)] (1.4)

M ′
κ ~̈wlκ = −[ ∂

∂ ~wlκ
(U + U ′)] = 0 (1.5)

whereM ′
κ stands for the effective mass of the κ shell. In the adiabatic limit, one postulates

M ′
κ = 0 and hence obtains the second equation in the second line, which amounts to the

requirement that ~wlκ instaneously minimize the potentials U + U ′ involving the shell

variables.

Eq.(1.5) can be formally solved to get ~w in terms of ~u, which governs how the ion is de-

formed. This is then substituted into eq.(1.4) to obtain a closed set of equations involving

only the cores. One can write

V ({~ulκ}) = V ′ + U [{~u}, {~wlκ({~ulκ})}]

analogous to the potential used in the rigid ion model. One sees that, the effect of defor-

mation on the motions of cores in the adiabatic limit is to simply alter the potential in

which the cores find themselves, V ′ ⇀ V . The eigen frequencies ωj~q can then be found

with V under harmonic approximation.
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Usually, one assumes a linear relation between ~u and ~w, that is, ~ulκ = ∑
l′κ′ Z(lκ, l′κ′)~wl′κ′ ,

with Z being a proper matrix. As simple as it is, this linear relation appeared inadequate

in describing some aspects of perovskites, as emphasized in the work of Migoni et al.[28].

Therefore, non-linear relations have appeared in studying the lattice dynamics of these

compounds[28, 29].

1.4.3 Spin Model

Occasionally, the above simple phonon picture may not be the best starting point in

describing lattice dynamics. In fact, there will be interactions among these normal modes

and interactions with other degrees of freedom of the system. In the best case, such

interactions may be taken into account by adding a self-energy to ω(j~q)[30], namely,

they will be renormalized to be ω̃2(j~q) = ω2(j~q) + ∆(j~q), where ∆(j~q) denotes the self-

energy. This quantity is generally complex, ∆(j~q) = ∆′(j~q) + i∆′′(j~q) and is a function

of temperature. Now that after renormalization the normal mode depends on time as

Q(j~q) ∝ exp(iω̃(j~q)t), one sees that the imaginary part of ∆(j~q) gives rise to damping of

the j~q mode while its real part makes a correction and directly shifts the frequecy from

ω(j~q) to
√
ω2(j~q) + ∆′(j~q). In particular, if the correction is negative, the frequency will

decrease (i.e., soften). Moreover, if as a function of temperature or other knobs one or

several of the renormalized frequencies soften all the way down crossing zero, the system

will be destablized and structural phase transitions will be in store[31].

Worsely, the harmonic approximation may fail in the presence of significant anharmonicity,

for example when the potetial energy is a maximum surrounded by a set of local minima

in vicinity for vanishing ~ulκ[22]. In such case, some of the ω(j~q) will turn out to be

imaginary, indicating the instability of the ideal structure. Nevertheless, as we will discuss

in later chapters, the phonon concept may still apply under certain conditions. When

these conditions are not met, the situation becomes intricate and novel phenomena can
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occur. Under these circumstances, it turns out more suitable to start with a pseudospin

description[10], in which one relates the displacement vector to spin-type variable, ~ulκ =

u0Slκ. The specifics of S depend on how many local minima exist. Often, not all degrees of

freedom are better off with spin characters. Some remain as simple phonons. And usually,

there are interactions between the spins and phonons, leading to the so-called spin-phonon

model[32, 33, 34, 88, 36].

1.4.4 The Sources of Effective Inter-ion Interactions

As indicated by the shell model, the effective potential energy V for the cores contains

two portions: the direct interaction energy V ′ and that due to interactions with the shells.

Since the cores have small radii and can hardly get into touch with one another, their

direct interactions should mainly stem from the electrostatic forces, which vanishes to the

first order by virtue of symmetry and gives rise to the dipolar energy up to the second

order in dispalcements. Thus, one can write

V ′ =
∑
lκ,l′κ′

zlκzl′κ′

2|~Rlκ,l′κ′ |5
[3(~ulκ,l′κ′ · ~Rlκ,l′κ′)2 − |~ulκ,l′κ′|2|~Rlκ,l′κ′|2] (1.6)

where the summation is taken over pairs and zlκ denotes the effective charge carried by the

core lκ in response to point charges, and ~ulκ,l′κ′ = ~ulκ−~ul′κ′ as well as ~Rlκ,l′κ′ = ~Rlκ− ~Rl′κ′ .

As regards the interactions of cores with the shells, we expect two types in nature. One is

due to Pauli’s exclusion principle, which prohibits two electrons to occupy the same state.

This means that when the core carries its electrons getting close to the shell, it will feel

a strong repulsion as a result of the rise in electronic density and hence in kinetic energy.

This repulsion is short range and serves to confine the cores[23]. In the present thesis we

12



model it by a quartic axial on-site potential, i.e.,

γρ,lκu
4
ρ,lκ

where ρ = x, y, z and uρ,lκ stands for the ρ−th component of ~ulκ. Obviously, in the shell

model this term should be lumped into V ′.

The other type arises from the conventional electron-phonon interactions. It is just this

part that is taken as the ion deformation energy U [{~ulκ}, ~w({~ulκ})] in the shell model.

To evaluate it, one usually resorts to the adiabatic approximation, observing that the

frequency associated with the motions of electrons is much higher than that with the

cores due to their small mass ratio. In next chapter we shall propose a way to calculate

this term in the specific case of perovskite compounds. Such calculations shall prove

important in identifying the character of dielectric responses.

1.4.5 Symmetry Analysis

Suppose the elementary lattice excitations can be well-described as phonons. For any per-

ovskite, there are in total 15 phonon branches, out of which three are acoustic and the rest

are optic. It is useful to classify the zone-center optical branches by irreducible represen-

tations of the underlying symmetry group. For ideal cubic structure, these branches fall in

two categories with 3T1u and T2u symmetry, respectively. Each is a triplet with repective

frequency. Crystal distortions lower the symmetry and these triplets have to be split (see

FIG.1.6). In particular, under tetragonal deformation (in which case the symmetry group

becomes C4v), each T1u splits into an E plus an A1 while T2u into an E plus a B1. The

symmetry properties play important part in scattering experiments and are regardeless of

dynamic details. Throughout our thesis, the T2u and its decendents (E +B1) zone center

modes receive little attention for the reason that, they are either optically inactive or their
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Figure 1.6: Symmetry analysis. Reproduced with permission from[37, 38]

signals are extremely weak[37, 38].

1.5 Experimental Probes

There is a wide spectrum of techniques to probe lattice vibrations. In the present thesis,

we are mainly concerned with the long wavelength (zone center) polar variables of the

lattice. The fundamental quantity is the dielectric function, which is often studied by

optical methods (infrared reflectivity and Raman-Stokes scattering) and diffuse X-ray

scattering, in addition to direct capacitance measurement. Neutron scattering is often

used in determining the phonon spectrum, but will not be described here.
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1.5.1 Capacitance Measurement

This is the direct way to measure the dielectric function. One just fills the substance to

be measured in a plate capacitor and connects the whole in a circuit driven by a votage,

U(t), which may be alternating at frequency ω. Let the impedance be Z(ω) and the

capacitance at ω = 0 be C0. Now let the polarization induced by the voltage across the

capacitor be P (t). Assuming the electric field E(t) inside the material is uniform, one

then has E(t) = U(t)/D, where D is the spacing between the capacitor plates. Within

linear response theory, one relates P (t) to E(t) as P (t) =
∫ t
−∞ χ(t − t′)E(t′)dt′, with

χ(t − t′) being the susceptibility function. The current I(t) can now be obtained via a

generic relation I(t) = SṖ (t), where S is the plate area. After Fourier transform, one

finds χ(ω) = i
Z(ω)ω ·

D
S
. The susceptibility function can be utilized to find the dielectric

function: ε(ω) = ε∞ + 4πχ(ω).

1.5.2 IR Reflectivity

In the IR method, one measures the reflectance, R, of a beam of light impinging upon

a crystal. Suppose the light ray propagates in the [1, 0, 0] direction. The electric field

it carries is therefore in the perpendicular direction, let’s say, [0, 0, 1]. The reflectance is

related to the 33−component of the cystal’s dielectric tensor, εc, which is a function of

temperature (T) and the light frequency ω. Let the light ray travel along [0, 0, 1] and the

εa will be involved. One has

Ra,c(ω) = |

√
εa,c(ω)− 1√
εa,c(ω) + 1

|2 (1.7)

At ω = 0, εa,c should be real. In general they are complex, εa,c = ε′a,c + iε
′′
a,c. Due

to analyticity, Kramers-Kronig relation holds between their real and imaginary parts.

Usually, the dielectric function has two contributions respectively from the lattice and the
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valence electrons. As long as ω is not high, the contribution from the latter (denoted by ε∞)

can be neglected. Actually, in many compounds, ε∞ ∼ 5. In short, from reflectivity one

can infer the dielectric function, which contains clean information about lattice dynamics.

1.5.3 Raman Scattering

In Raman-Stokes scattering, a photon with frequency ωi is absorbed and then emitted at a

different frequency ωf by the crystal. The coupling responsible for such events is embodied

as −∑αβ ÊαP̂αβÊβ, with P̂αβ being the αβ-component of the susceptibility tensor operator

and Ê is the electric field operator. The Raman intensity per unit solid angle is evaluated

as

I = I0
∑
i,f

ρi
∑
αβ

|〈f |P̂αβ|i〉eαi e
β
f |2δ̄(~Ω + εf − εi) (1.8)

where ~ei,f is the orientation vector in which the electric field of the incident and the

scattered wave is polarized and all subscripts take values from {x, y, z}. In addition, |i〉

(|f〉) is the initial (final) state of the crystal with energy εi (εf ) and Ω the frequency

change of the light. Here we use δ̄ to denote the Dirac function. Thermal effects are taken

care of by the Boltzman factor ρi. Up to the second-order perturbation, one can express

P̂αβ as follows,

(P̂αβ)fi = 1
~
∑
r

( 〈f |µα|r〉〈r|µβ|i〉
(εr − εi)/~− ωi − iΓr

+ 〈f |µβ|r〉〈r|µα|i〉
(εr − εf )/~− ωi + iΓr

) (1.9)

Here ~µ = ∑
lκ zlκ~ulκ denotes the dipole operator. For cubic or tetragonal structure, the

susceptibility tensor operator must be diagonal, P̂αγ ∝ δ̄αγ. Using fluctuation-dissipation

theorem, the above formula (for Stokes component) may be reduced to[39]

Ia,c = Ĩ0[n(Ω) + 1]ε′′a,c(Ω) (1.10)
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under proper circumstances. Here n(Ω) = 1
exp( ~Ω

kBT
)−1 is the Bose-Einstein population

factor.

Selection rules are expected to exist because of crystal symmetry. They are implicit in the

matrix element 〈i|P̂αγ|f〉. To be Raman active, they should not all vanish. Details about

these rules for cubic and tetragonal structure have been summarized in FIG.1.6 and in

Ref.[84], within harmonic approximation.

1.5.4 Diffuse X-ray Scattering

X-ray is with such a high frequency that the lattice can always be regarded as nearly

static and such a short wavelength that the atomistic structure can be uncovered. The

usual way to deal with this subject is embodied in the following formula that relates the

scattering intensity per unit solid angle to the direction change of the ray,

I = |
∑
lκ

f(κ~Q) exp(i ~Q · ~rlκ)|2

f(κ~Q) = f0(κ) exp(−Wκ~Q) (1.11)

where f0(κ) is the atomic scattering factor and Wκ~Q is the Debye-Waller factor for the

κ-type atom. Approximating ~rlκ with ~Rlκ ≡ ~Rl + ~Rκ and using that |∑l exp(i ~Q · ~Rl)|2 ≈

NvBZ
∑

~G δ̄( ~Q− ~G), where ~G denotes the reciprocal vectors, one can rewrite the above as

I = NvBZ
∑
~G

|F0(~G)|2δ̄( ~Q− ~G)

F0( ~Q) =
∑
κ

f0(κ) exp(i ~Q · ~Rκ), which is the structure factor (1.12)

This is no more than the formula for Bragg scattering.

Allowing the atoms to deviate from the crystallogrphic positions, one writes ~r = ~Rl +
~Rκ+~ulκ. To the first order in ~ulκ, one has for the scattering amplitude an additional term
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Figure 1.7: Diffuse x-ray scattering pattern. Reproduced with permission from[41]

that reads

i
∑
lκ

f(κ~Q) exp(i ~Q · ~rlκ) ~Q · ~ulκ (1.13)

Imagine that ~ulκ = ~U~qκ exp(i~q · ~Rlκ), which leads to a correction to the Bragg scattering

I ′ = NvBZ
∑
~G

|F ′(~G, ~q)|2δ̄( ~Q+ ~q − ~G) (1.14)

Here F ′ is not written explicitly. We see that new intensive areas should appear around

Bragg peaks (e.g., FIG.1.7), hence the name diffuse scattering[30].
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1.5.5 Resonance Methods

These methods are powerful in expoliting the local environment of some ion. Often

used include electron paramagnetic resonance (EPR)[42] and nuclear magnetic resonance

(NMR)[43]. The strategy is to investiagte the spectra of a local spin attached to certain

ion. Such spin can be the nuclear spin or the spin of some unpaired electron belonging to

the ion. As far as perovskites are concerned, these methods have been mainly employed

at the Ti site, which carries a nuclear spin of 5/2 or 7/2 depending on which Ti isotope is

spoken of. This spin can take on a few values. In the presence of a magnetic field B along

z-direction, these values come with different energies that rely on both the B and the

local environment. By studying radiation absorption, the energy structure and hence the

local environment can be unveiled. EPR goes with analogous procedures except that the

nuclear spin replaced by an electron spin which can be brought about through elemental

substitution. These methods are limited in temporal resolution (∼ 10−8s). The X-ray

absorption fine structure spectrscopy (XANS) provides a fast probe which can go to the

scale of 10−15s[44]. In this method, instead of spin’s levels, the atomic levels themselves

are directly used.

1.6 Mechanism of Structural Phase Transitions

Let’s introduce the spatial correlation function as follows

Cαβ(~Rlκ − ~Rl′κ′) = 〈uαlκu
β
l′κ′〉 (1.15)

which is related to the static susceptibility as χ0
αβ = (kBT )−1Cαβ (a form of fluctuation-

dissipation theorem). Here the 〈...〉 dictates the thermodynamic average. In high symme-

try phases one usually has 〈~ulκ〉 = 0, as assumed in the above expression. This function
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measures the response of the crystal at ~Rlκ to a stimuli at ~Rl′κ′ . Structrual phase transi-

tion takes place whenever one component of the correlation function does not vanish for

infinitely distant unit cells, that is, Cαβ(|~rlκ − ~rl′κ′| −→ ∞) 6= 0 for certain αβ. For cubic

or tetragonal crystal structures, we expect both C and χ0 to be diagonal. We here briefly

describe some often quoted mechanisms that can lead to such structural instability.

1.6.1 Soft Phonons

Provided the crystal can be taken as a collection of simple harmonic oscillators (after

renormalization) as described by Eq.(1.3), the correlation function can be easily obtained.

Actually, the response of a particular normal mode to a stimuli turns out to be inversely

proportional to its renormalized frequency squared, i.e., Cj~q ∝ kBT
ω̃2(j~q) . So the structural

transition happens when one of the ω̃2(j~q) vanishes. In the present thesis, we are mainly

concerned with the zone center mode, i.e., ~q = 0. Hereafter we denote the frequency of

the softening mode by ωs. Let Tc be the transition temperature and we expect ω2
s(Tc) =

0. For temperatures not much above Tc, we may approximate ω2
s around Tc as ω2

s =

A · (T − Tc), where A is a parameter. This leads to the Curie-Weiss law, χ0 ∼ (T −

Tc)−1. Usually, it’s thought that displacive transitions come in this description[30]. As

aforementioned, softening behaviors can arise from anharmonicity, interactions with other

degrees of freedom such as electrons[30].

1.6.2 Orientational Ordering

This mechanism applies to compounds where the spin description is more appropriate[10].

Let’s take a half spin for example. It is described by Pauli matrix, σz, which indicates

the orientation of the displacement vector. Assume a monatomic basis for the compound.

The displacements are then related to them as ul = u0σ
z
l , which couple to each other via

Kll′σ
z
l σ

z
l′ . Within mean-field theory, every spin finds itself coupled to a local molecular
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field, −hσz. Its dynamics is provided by thermal agitations. And the response is often

encapsulated by Glauber theory. The static susceptibility is then given by χ0 ∼ (T −

K(0)/kB)−1, which also agrees with the Curie-Weiss law with Tc = K(0)/kB. HereK(0) =∑
l′ Kll′ .

1.6.3 Lyddane-Sachs-Teller relationship

This relation has been the most common route to evaluating the dielectric constant ε(0)

from optical phonon frequencies. In line with it, the ε(0) is given by[45]

ε(0)
ε∞

=
∏
j

ω2(jl)
ω2(jt) (1.16)

where ω(jt) (ω(jl)) denotes the frequency of the j-th transverse (longitudinal) optical zone

center mode. We here give a brief derivation. The polarization of a compound couples

to the electric field of a light ray by −~P · ~E. One may decompose the polarization as
~P = ~Pt + ~Pl, with ~q · ~Pt = 0. Here ~q is the wave vector of the light. Now that ~q · ~E = 0, we

infer that only ~Pt couples to the light. ~Pt comes from transverse optical modes. Treating

these modes as harmonic oscillators, one obtains the dynamic dielectric function as

ε(ω) = ε∞ +
∑
j

Sj
ω2
jt − ω2 (1.17)

where Sj is termed the oscillator strength of the j-th mode. Note that ωjt appears as poles

of ε(ω). Now we argue that ωjl must appear as the zeros of ε(ω). From Maxwell theory,

the divergence of the electric displacement vector in a compound free from mobile charges

must vanish: ~q · ~D = 0, which leads to ε(ω)~q · ~E = 0. Therefore, for longitudinal mode
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(~q · ~E 6= 0) one must have ε = 0. Thus,

0 = ε∞ +
∑
j

Sj
ω2
jt − ω2

jl

(1.18)

which yields the desired relation.

1.6.4 Dynamic Responses

The best way to distinguish between the above mechanisms, apart from direct observations

with both spatially and temporarily high resolution spectroscopy, is perhaps to examine

the system’s dynamic response[46]. The dynamic response function is written as

Cαβ(~Rlκ − ~Rl′κ′ ; t− t′) = Θ(t)〈uαlκ(0)u̇βl′κ′(t− t′)〉/(kBT ) (1.19)

which is related to the imaginary part of the dynamic susceptibility function as

χ
′′

αβ(~Rlκ − ~Rl′κ′ ;ω) = − 1
kBT

∫ ∞
−∞

Cαβ(~Rlκ − ~Rl′κ′ ; t) exp(iωt) dt

= iω

kBT
〈uαlκ(−ω)uβl′κ′(ω)〉 (1.20)

In the above, the upper dot dictates a time derivative and Θ(t) is the step function. The

χ
′′ can be experimentally determined by several methods such as measuring scattering

intensity and capacitance, while the real part χ′ can be found through Kramers-Kronig

relation. The fundamental quantity discussed in the present thesis is the (relative) dynamic

dielectric tensor, which can be related to the dynamic susceptibility as

εij(ω) = ε∞δ̄ij + 4πχij(ω) (1.21)
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Figure 1.8: The dielectric constant of a damped oscillator. Reproduced from[47]

where ε∞ is a constant that is frequency and temperature independent. In the cubic

structure, it reduces to a simple form: εij = εδ̄ij; whereas in the tetragonal structure, it

becomes εij = diag[εa, εa, εc].

Consider a normal mode with frequency ω0 in the phonon scheme. It is easy to show that,

the χ′′ corresponding to this mode bears the following form,

χ
′′(ω) = χ0

ωΓ/ω2
0

[(ω/ω0)2 − 1]2 + (ωΓ/ω2
0)2

Γ→0→ χ0[δ̄(ω − ω0) + δ̄(ω + ω0)] (1.22)

where χ0 is the static susceptibility and Γ is included to acount for possible dissipation

effects (e.g., FIG.1.8). It features two Lorentzian resonance peaks at ±ω0, which can be

seen in e.g. raman spectra. Approaching transition, these peaks shift toward 0cm−1.

On the other hand, the dynamic response of a spin activated by a heat bath can be shown

to follow the Debye-type manner. In fact, it takes on the following form in the disordered

phase

χ(ω) = χ0

1− iωτ , χ
′′ = χ0ωτ

1 + ω2τ 2 (1.23)
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Figure 1.9: The dielectric constant of a relaxation mode. Reproduced from[47]

Here 1/τ is the spin flip rate, whose temperature dependence depends on the microscopic

flip regime. Note that, χ′′ also displays a peak around ω = τ−1. But this peak does not

fit the Lorentzian shape and is unusually broad (e.g., FIG.1.9). This is sometimes called

a relaxation peak, for the reason that χ in this case is in essentially the same form as that

for a Brownian particle. Similarly, it also shifts to 0cm−1 when approaching transition.

This implies τ goes to∞, a phenomena called critical slowing down (the relaxation process

takes infinite time).

Despite their apparent discrepancy, there is an intimate relation between the resonance

and relaxation regime. This relation is revealed when a harmonic oscillator experiences

very large friction. On such occasion with so large Γ, one can neglect the (ω/ω0)2 term

in the denominator of eq.(1.22). In this limit, by comparison with eq.(1.23), one finds an

effective relaxation time τ = Γ/ω2
0. Another aspect of this relation can be uncovered by

studying a spin in a transverse field, which will coherently flip this spin. Such coherent

flip mode behaves in exactly the same way as a simple hamonic oscillator. When in

contact with a heat bath, incoherent flip could also happen due to thermal activation.
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The competition between these two channels results in a soft frequency that has such a

form[30]: ~2ω2
s = 4ET [ET − J(0) tanh( ET

kBT
)], where ET/~ denotes the spin flip rate due to

the transverse field.

Because of the demonstrated closeness between these regimes, it is sometimes not easy to

identify the ture nature of a critical mode.

1.7 Phenomenology of BaTiO3

Structural phase transitions of this compound are summarized in FIG.1.10. Above around

405K, it is found in the cubic phase; when cooled below that temperature, it transits to a

tetragonal phase. Further cooling brings it to other phases that won’t be discussed in the

thesis. We are mainly interested in the modes that are optically active in these phases.

1.7.1 Cubic Phase: The Modes of ε

In this phase, the dielectric tensor is represented by a simple scalar ε(ω, T ). Extensive ex-

perimental studies have been conducted. We mention some typical results here. According

to early IR and RS as well as neutron scattering data as displayed in FIG.1.11-FIG.1.16,

three modes were usually said to be found in the spectral function[49, 50]. The two with

higher frequencies, which will be tagged as TO2 and TO4 by convention, were located

about 178cm−1 and 510cm−1, respectively. The TO4 was found negligible while the TO2

with barely discernible temperature dependence in terms of both line widths (which were

shown very small) and positions[50]. As regards the lowest frequency mode to be labelled

as TO1, some controversies exist between Raman and Infrared results[50, 51, 52]. Albeit

both found significant temperature dependence of this mode, they disagree on whether

its frequency vanishes as the cubic-tetragonal transition is approached. According to IR

data[50] exhibited in FIG.1.12, this mode levels off around 60cm−1 as the critical point is
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Figure 1.10: Phase diagram of BTO by first principles computation. Reproduced with
permission from[48]
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reached whereas according to Raman data[51] exhibited in FIG.1.14, it is a genuine soft

mode with vanishing frequency. The matter is further complicated by the fact that, this

mode when fitted with phonon theory has a very large damping (see FIG.1.13). Actually,

it’s overdamped. This leads to the one-mode-versus-two-mode dispute[53]. It was argued

that, this mode could be a merger of two close modes, one of which (denoted by TO1h)

levels off while the other (TO1l) really softens to zero (see FIG.1.15). The two-mode sce-

nario finds support from a latest work[54] based on ab initio calculations combined with

effective model construction (see FIG.1.16). Let’s see that, a soft mode seems desirable

to explain the discrepancy between the ε measured with capacitance technique and that

with L-S-T relation. Another point of worth is that, a feasible spectral weight transfer

between TO1h and TO2 were indicated by the temperature dependence of their oscillator

strengths[50]: that of the former decreases as that of the latter increases, in the course

of elevating temperature, as shown in FIG.1.12. This transfer was a clue to the coupling

between these two modes.

1.7.2 Tetragonal Phase: The Modes of εa

In this phase, we need two independent functions to characterize the dielectric tensor.

We thus in this subsection describe results pertaining to εa at first, leaving εc to next

subsection. As exhibited in IR and Raman spectra (FIG.1.17), also three modes were

supposed to exist[55, 56]. The modes with higher frequencies were found to sit at similar

frequencies as that for cubic phase, namely, they are situated about 182cm−1 (called f2)

and 482cm−1(called f4), respectively. The lowest-frequency mode f1, which was located

in between 0cm−1 and 35cm−1, was again argued to be overdamped when fitted with

phonon theory[56, 58]. It was shown to depend on temperature in an unexpected way (see

FIG.1.18): as the cubic-tetragonal critical point is approached (from below), its frequency

increases with temperature together with the damping rate[58], standing contrary to the
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Figure 1.11: Reflection spectra and dielectric modes of BTO. Reproduced with permission
from[49]
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Figure 1.12: Dielectric modes of BTO deduced from reflection spectra. Reproduced with
permission from[50]
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Figure 1.13: Damping rates of dielectric modes of BTO. Reproduced with permission
from[50]
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Figure 1.14: Raman spectra and the deduced modes of BTO. Reproduced with permission
from[51]
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Figure 1.15: One mode vs. Two mode. Reproduced with permission from[53]

behaviors of TO1, which was shown to be a genuine soft mode. Temperature dependence

of all three modes remain to be exploited yet. It is expected that the f2,4 modes are likely

to bear similar dependence as TO2,4.

1.7.3 Tetragonal Phase: The Modes of εc

Early IR and Raman experiments had disclosed three peaks (see FIG.1.11), which were

positioned around 180cm−1 (LM), 278cm−1 (SM) and 507cm−1 (AM), respectively[49, 55,

59]. For historical reasons, they are called the Last, Slater and Axe mode, respectively. All

but the SM were shown to have negligible temperature dependence. Both the SM’s position

and linewidth were found temperature dependent[59]. Moreover, it is this mode, instead

of the lower mode (LM), that was found to contribute most among the three to εc[58]. Not

till recently has a fourth mode (DM) been revealed[60]. A basic motivation for seeking

this mode is the discrepancy between the static dielectric constant by direct capacitance

measurement and that by optic mode parameters (through L-S-T relation)[55]. This long-
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Figure 1.16: Latest result on one-mode-two-mode behaviors of BTO. Reproduced with
permission from[54]
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Figure 1.17: The measured E-type modes of BTO. Reproduced with permission from (a):
[56] and (b), (c): [55]
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Figure 1.18: Measured temperature dependence of the lowest transverse E mode of BTO
(frequency ω0 and damping rate γ). Reproduced with permission from[58].
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Figure 1.19: The A-type modes of BTO seen in THz spectra. Reproduced with permission
from[60].

missing mode was shown to be relaxational in nature (see FIG.1.19 and FIG.1.20). Its

relaxation rate, ωD, as a function of temperature is displayed in FIG1.20. As temperature

goes down from Tc, ωD is seen increasing from about 28cm−1. Intriguingly, a strong

correlation between SM and DM was displayed: the spectral weight of SM flows quickly

toward DM as temperature increases toward Tc, and simultaneouly the SM somewhat

softens (FIG.1.19).
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Figure 1.20: The transverse relaxation mode and and its temperature dependence found
in tetragonal BTO. Reproduced with permission from[60].
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1.7.4 Local Environment of Ti Atoms

There is a long-lasting contest on the character of the structual phase transitions in per-

ovskites. A key ingredient concerns the potential surface in which the Ti atoms move. Is

the potential a minimum or a maximum at the crystallographic site? If it’s a minimum,

the transition should be of displacive type and can be adequately described by phonon

softening theory. Otherwise, the Ti atoms will be off-centered and the transition should

be of order-disorder type. First principles computations in the 1990s showed that, it is

the maximum case[48]. Early diffuse X-ray scattering pointed to the same[41]. Very re-

cently, resonance experiments have been performed to affirm the computations[42, 43, 61].

Experimental difficulty lies in the fact that, the off-center shift is in the order of a few

picometers and the Ti flutters among the off-center minima on the time scale of a few

nanoseconds. These experiments tell two things: (1) the model by Comes et al (hereafter

referred to as 8SM[62, 63, 64]) is largely correct, (2) the Ti fluttering is accompanied by

dynamical O cage distortions and (3) such distortions in turn pull the Ti off-center a bit

away from the magic directions like [1, 1, 1] but the shift magnitude remains little changed.

This angle deviation was found very small (0.1o) in the cubic phase but rapidly increasing

to about 12o toward the c-axis in the tetragonal phase. These facts have been utilized by

Stern to gain insights into the nature of the soft mode and the relaxion mode[65].

1.7.5 Critical Remarks

In view of phonon theory, in cubic phase one expects three T1u type IR active modes[37].

This would exclude the two-mode picture and would identify TO1 with TO1l (to get

the correct ε(ω = 0)). Let’s proceed with this thought. Now each T1u should split as

A1 + E when entering the tetragonal phase. An interesting question is, how do they

split? Note that, all the modes belonging to this set {TO2, f2, LM} have close frequencies
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around 170cm−1 while those in {TO4, f4, AM} have close frequencies around 500cm−1.

At the same time, the three modes in {TO1, f1, DM} resemble each other in terms of (1)

frequency, (2)temperature dependence and (3) line widths as well as (4) the magnitude of

osillator strength. This striking comparison naturally suggests that, the TO1, TO2 and

TO4 should split into f1 + DM , f2 + LM and f4 + AM , respectively. A conflict arises

in this assignment scheme: the TO1h and the SM cannot find their places, which hints

that the harmonic approximation in its simplest form misses something crucial: the strong

anharmonicity. Two things seem peculiar with TO2,4[49]: (1) the degeneracy within the

group corresponding to each of them seems barely lifted by the tetrgonal distortions(2)

the longitudinal conterparts of these modes have nearly the same frequencies. Both facts

indicate that these modes are likely to be local (like Einstein modes) in character.

There are also other questions that are theoretically interesting. Firstly, what is the nature

of TO1h and TO1l? According to Ponomareva et al.[54], the TO1l represents the true soft

phonon responsible for the cubic-tetragonal phase transition whereas TO1h signifies a

mode that is associated with the motions of a polar cluster. Their analysis shows that,

these clusters are formed due to strong short-range correlations along axial directions like

[1, 0, 0]. But why does the short-range correlations occur along axial directions? Which

aspect of the cluster dynamics could give rise to the TO1h? Is the TO1l a relaxation mode

or a resonance mode? There is an interesting indication which allows one to link the

TO1h with f1. This indication comes from the observation (see the data by Ponomareva

et al.[54] and Burns et al.[58]) that, f1 has the same frequency (which is about 70cm−1)

as TO1h at around 430K and that temperature dependence shows that f1 seems a smooth

continuation (on the tetragonal side) of the TO1h (on the cubic side), as can be seen in

e.g. FIG.1.18.

Secondly, where do SM and DM originate? Why do they strongly correlate with each

other? The SM seems culpable within the phonon frame, while the DM has not been
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exposed until recently[60]. The analysis by Hlinka et al. suggests that, both modes are

likely to be attached to the same polar variable (plausibly the Ti atoms). Specifically, they

argued that, the DM might be due to dynamic turnover of local dipole between prefered

and unpriviliged directions, consistent with the eight-corner model (8CM) forwarded by

Comes et al[62]. How about the SM? How is it related to this model? These authors did

not give an answer. Although simulations[66, 67, 68] have demonstrated the possibility to

have two modes from a single variable (see FIG.1.21), details about the intensity transfer

(especially its temperature dependence) and the impacts from the coupling to other modes

(LM and AM) have not been understood yet. Further, why is there a significant coupling

between the TO1 and TO2 but not between TO1 and TO4? Due to frequency mismatch?

One more interesting question pertains to the very large ratio of εa to εc, which was mea-

sured to be as large as 30 (see e.g. Z.Li et al.[69]). This ratio increases with decreasing

temperature. The reason seems unknown[69]. However, one may find a candidate answer

if pursuing the 8CM. In light of this model, in the tetragonal phase, the local dipoles are

ordered along c-direction but still random in ab-plane. This means that, polarization fluc-

tuations are stronger in the plane than along the c-direction. Considering the connection

between fluctuations and susceptibility as quantified through fluctuation-dissipation the-

orem (eq.(1.15)), we expect that εa is much bigger (and even bigger at low temperatures)

than εc. We’ll discuss this arguement in more details in later chapters.

1.8 Phenomenology of SrTiO3

Despite similarities to BTO, SrTiO3 does not possess any genuine polar strcutural phase

transitions unless modified. Usually it is thought that there are fierce quantum fluctuations

in this compound but not in BTO[71, 72], although the origin remains an open question.

On the other hand, STO has an interesting non-polar cubic-tetragonal transition taking
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Figure 1.21: Coextence of two modes as predicted in molecular dynamics simulations.
Reproduced with permission from[68].
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place about Ta = 105K, which is due to the condensation of a zone-boundary mode (the

R-mode)[73]. It involves the O cage tilting and therefore unit-cell doubling. The tilting

angle φ = φ(T ) was less than 2.2o and the resulting tetragonal distortion is rather minute,

c/a ∼ 1.0005[74]. This transition is almost of second order because the volume change

across the transition is rather small and φ does not display a seeable discontinuity. In

early times, no anomaly was found in the dielectric function accompanying this transition.

However, according to recent studies impacts obviously exist[75].

1.8.1 Quantum Paraelectricity

As said no ferroelectric transitions have been seen in STO. Regardless of this, this com-

pound resembles its ferroelectric counterpart in several aspects. First, the Curie-Weiss

law holds at all except extremely low temperatures, ε−1(0) = A(T − T0)[71]. Second, the

Curie constant 1/A is as large as 105, similar to that of most displacive ferroelectrics[71].

Third, a zone-center mode softens at all but extremely low temperatures[26, 76]. How-

ever, these ferroelectric-like behaviors get eventually interrupted below about 30K[71].

The ε(0) and the soft mode were found to saturate below 4K at 20000 and ∼ 10cm−1,

respectively[75]. Evidences exist that such stabilization may well be caused by zero-point

fluctuations. Hence, STO is often quoted as a quantum paraelectric.

Barret formula is often used to fit ε(0) of quantum paraelectrics. This formula reads[77]

εB = C
T1
2 coth( T1

2T )− T0
(1.24)

where T1 is usually called the quantum temperature while T0 is the extrapolated Curie

temperature and C the Curie constant. At high temperatures εB reduces to Curie-Weiss

law whereas at low temperatures it saturates at 2C
T1−2T0

. Quantum paraelectricity indicates

T1 > 2T0. When applied to STO, a snag was perceived by Muller et al decades back[71].
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It turns out that, εB could not give a satifactory fit unless an temperature dependent T1

was assumed. Then T1 would acquire different values at temperatures above ∼ 30K and

below ∼ 10K. The high temperature value T1h was supposed to be a little larger than

the low temperature one T1l[78]. Various mechanisms have been put forth to explain this

crossover[79], but the issue is still being debated.

We should mention another point in this regime. Muller et al. by EPR experiments

found an anomaly at 37K in STO, which they interpretted as a tranisition into a coherent

quantum state[80]. This finding renewed interest in this material. Viana et al. performed

careful dielectric spectroscopy and discovered several features[81]. Notably, they found

two peaks in ε′′ as a function of temperature, one around 10K and the other around 80K.

Definitely, these peaks could arise only due to changes in Hamiltonian. What is interesting

about these peaks is the remarkable dispersion with frequency, which was not seen at other

temperatures. Although these authors attempted to relate these features to the transition

claimed as Muller, it is still unclear what is the real nature. On the other hand, Arzel

et al. observed sample dependence of this anomaly, who then proposed that the anomaly

might be due to motions of dislocations[82].

1.8.2 Dielectric Modes

At all temperatures, three optically active modes (TO′1, TO′2 and TO′4) were observed[56],

in consistency with phonon theory (T1u modes). The TO′2 and TO′4 were located around

176cm−1 and 546cm−1, respectively. Little temperature dependence has been observed in

TO′4 but discernible softening was seen in TO′2[76], similar to what has been found in BTO

(see FIG.1.22). The TO′1 was found with frequency of 87cm−1 at room temperature and

softening all the way down to ∼ 10cm−1 at very low temperatures[137]. Although damped,

the damping rate is less than a half that of its frequency at all temperatures studied[137].

Throughout all temperatures, the mode was found well defined. This is in contrast with the
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Figure 1.22: The lineshapes of STO (lightly doped) at various temperatures as indicated
by the numbers inside the column. Reproduced with permission from[76].

TO1 in BTO, which was found overdamped at all temperatures and with a much smaller

frequency (see e.g.Ref.[56]). Below Ta, according to phonon theory, TO′1 splits into an

Eu-type mode f ′E and an A2u-type mode f ′A due to tetragonal deformations[137, 75]. The

splitting f ′A−f ′E > 0 increases as the system cools down from Ta, above which they merge

together, as seen in FIG.1.23. This splitting results in a small anisotropy εa/εc ∼ 4.2,

which is markedly smaller than for BTO (of 30).
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1.8.3 Correlations Between The 105K Transition and The Di-

electric Static Constant

Although the 105K transition is non-polar and the responsible mode is not optically active,

they have been demonstrated having subtle impacts on the dielectric response. In the first

place, as alreay said, this transition splits the soft mode TO′1 and therefore produces

anisotropic dielectric responses. Second, it was found crucial in stabilizing the instigated

ferroelectricity[75]. This was convincingly demonstrated by Yamanaka et al., who showed

that, the f ′E would vanish around 30K were not for the 105K transition. Close inspection

on the temperature dependences of TO′1 and f ′A,E reveals that, the transition not simply

splits TO′1 but reduces the softening rate, as can be seen in FIG.1.23. Third, as emphasized

by Vogt[137], to obtain a nice fit with Barret’s formula, one has to assume temperature

dependences of the fitting parameters. Especially, as he found, one may use

ω2
1(T ) = ω2

1(Ta)[1 + αφ2(T )] (1.25)

where ω1 was introduced by Vogt and roughly amounts to T1 in εB and α is a coefficient of

about 0.05deg−2. Recently, we have revisited this relation and attempted an interpretation

of it. Note that, this form of T1 is totally different from the form adopted[78, 79].

1.8.4 Isotope Effects: STO18

STO is a quantum paraelectric, but ferroelectricity can be induced by elemental substitu-

tion. Here we are mainly interested in O isotope effects. This kind of study was initiated by

Itoh et al.[16]. After O18 substitution, we write the stoichiometry as STOx = STO16
1−xO

18
x .

Itoh et al. found that STOx>xc∼0.33 is a ferroelectric with Tc ≈ 30K
√
x− xc. When x = 1,

Tc ≈ 24.5K occuring to STO18 = STOx=1. This is often cited to vindicate that STO is

a quantum paraelectric[16, 83].
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Figure 1.23: STO mode splitting due to the 105K transition. Reproduced with permission
from[75].
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Since its discovery, many investigations have appeared to clarify the nature of this induced

ferroelectric transition in STO18. Some interesting points are summarized here. Firstly,

the achieved state below Tc was found with orthohombic symmetry (C2v) and its sponta-

neuous polarization was argued to point toward the edge centers of the pseudocubic unit

cell[84, 85, 86]. Therefore, there is a symmetry change across Tc, from tetragonal to ortho-

hombic. However, this change was found resulting in little volume variations, suggesting a

continuous phase transition. Secondly, the TO′2 and TO′4 were discerned around 171cm−1

and 517cm−1[85], respectively, below Tc, close to but slightly (%3 and %5, respectively)

shifted downward from their positions (176cm−1 and 546cm−1, respectively) in ordinary

STO. These two modes are perhaps characteristic of O vibrations. If so, one expects

the frequency to be inversely proportional to the square root of the O mass. Thus, the

frequency change rate should be about 6% =
√

18
16 − 1, indeed compatible with observa-

tions. Downward shifts were also noticed in f ′A,E[84]. This might be due to more efficient

coupling with TO′2,4. Thirdly, the f ′E mode was found splitting into two modes below Tc

while at the same time the f ′A mode transforms into a new mode (almost continuously)

as a result of symmetry change[84]. The modes ensuing from f ′E will be labeled as f ′EA

and f ′EB, respectively. Fourthly, both f ′E and f ′A, with the latter all the time lying above

the former in frequency, were found softening all the way as the transition is approached

from above Tc[84]. One would then take f ′E as the soft mode. This would require the f ′EA

and f ′EB show similar softening behaviors when temperature rises up to Tc, at which point

they merge with f ′E, as indeed observed. Nevertheless, the f ′E mode was argued not really

responsible for the ferroelectric transition, because the symmetry of this mode does not

match the symmetry of the ferroelectric state and its softening was shown incomplete: its

frequency gets close to but not reaches zero at Tc[85]. Early Raman spectra on multido-

main single crystal STO18 exhibits two pronounced peaks (one about 20cm−1 and the

other 10cm−1) at extremely low temperatures below Tc, whose intensities diminish rapidly
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when warmed up[16]. In light of above knowledge, these peaks should simply correspond to

the f ′EA and f ′EB, which can be simultaneously detected in a multidomain sample in which

selection rules are not sharp. Fifthly, a quasi-elastic (central) mode of relaxational type

was unveiled near Tc, whose intensity was shown to develop rapidly as Tc is approached

(FIG.1.24). This mode was suggested to be the direct cause of the transition[85].

The nature of this central mode is still an active topic under debate. In one model it was

proposed pertaining to cluster ordering and relaxation[85]. In this scenario, the induced

transition is perhaps of percolation type, with the polar cluster size increasing with x and

eventually percolating through the whole sample at xc. Existence of such clusters seem

well advocated by both scattering and resonance experiments[86]. Nevertheless, how is

the mode related to which kind of cluster motion exactly?

1.8.5 Local Environment of Ti Atoms

The Ti local environment was demonstrated analogous to that in BTO, as shown by

similar experiments[61]. Namely, Ti atoms are off-center shifted. The difference is that,

the magnitude seems much small (< 5pm) in comparison with that of BTO (∼ 15pm).

Therefore, quantum tunneling must be much stronger in STO. This fact may be the origin

of a number of differences between BTO and STO. However, it is unclear on the atomistic

scale what is the effect of the 105K transition upon the Ti potential surface. There exist

abundant facts claiming that the TO′1 is likely to stem from Ti motions. One therefore

has to understand how the TO′1 splits into f ′A and f ′E and especially why f ′A > f ′E. If

the 8CM is used, one has to establish the connections between the TO′1 plus its offsprings

(f ′A,E) and the eigenstates of the 8CM.
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Figure 1.24: The quasi-elastic mode (indicated by the green line) in STO18 near Tc.
Reproduced with permission from[85].
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1.9 Other Related Materials

Although in the present thesis the discussions are directed explicitly at BTO and STO,

they may also be suitable for understanding the lattice dynamics of other perovskite

compounds. We mention a few candidates: (1) KNbO3, which behaves in qualitatively

the same way as BTO[87]; (2) KTaO3, a compound reminiscent of STO but free from

zone boundary structrual instability[137, 88]; (3)compositionally disordered perovskites

such as PbZrxTi1−xO3 and relaxor ferroelectrics[89]; (4) high-Tc supercondutors, which

can be ragrded as a distant relative of these compounds[151]. These materials will be

touched where appropriate.

The thesis is organized as follows. The next chapter is devoted to deriving the model and

making comparison with existing ones, followed by applications to BTO and STO in the

third and fourth chapter, respectively. The fifth chapter will see some applications to high

Tc superconductors. A summary will be given in the final chapter, where future directions

will also be mapped.

1.10 Summary of Key Issues

In ending this chapter, we summarize some of the key issues to be discussed in the rest

of this thesis. The basic question I am trying to answer is, what are the optically active

normal modes of the lattice motions in perovskite ferroelectrics and how are they man-

ifested in the dielectric spectra ? Due to the strong anharmonicity associated with the

lattice motions, this question turns out to be very challenging. Specifically, I consider the

following issues the most intereting and fundamental from the theoretical point of view:

• What is the nature of the observed peaks situated respectively about 180cm−1 and

500cm−1 in ε′′ ?
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• What is the nature of the cubic-tetragonal transition in BTO ? Why are there two

peaks below 150cm−1 in the cubic phase and what are their nature ?

• What causes the εa to be so much bigger than the εc in tetragonal BTO ? Why are

there four modes in εc and only three in εa and how are these modes interrelated ?

• How do the modes in cubic BTO evolve into the modes in tetragonal BTO ?

• Where comes the strong anisotropy that is responsible for the formation of stable

quasi-one dimensional chains seen in the dis-ordered phase of BTO? How does such

anisotropy reflect itself in the dielectric spectra ?

• Why is there strong quantum fluctuations in STO and how do such fluctuations

make a difference in the dielectric spectra ?

• What is the physics behind the so-called crossover in the Barret temperature T1 ?

• How does O isotope replacement induce ferroelectric instability in STO ?

• Are there any correlations between the Ti off-center shift and the O octehedra tilting

? If so, how are they manifested in the dielectric response ?

• On what occasions are the eight-well potential model indispensable ? Why is the

double-well potential model inadequate on such occasions ?

• Is there any simple criteria in expressing the competitions between quantum fluctu-

ations and ferroelectric ordering ?

Apart from the listed, one must add this question: what is the nature of the spectral

weight transfer that is seen in the dielectric spectra ? This question is evidently relevant

in revealing the anharmonic motions of Ti atoms. We shall provide answers (sometimes

partial) to these questions in later chapters. The answers will be based on both theoretical

and experimental cross-check.
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Chapter 2

THEORETICAL FRAME: MODELS

AND METHODS

2.1 Single-Body Potential Surfaces

As said in the last chapter, the dielectric response of a compound has two contributions

from valence electrons and the ion cores, respectively. The former part (i.e., ε∞) is small

and can be taken as a constant in the frequency regime under study. So, we are primarily

concerned with the latter part. In this section, we discuss the effective potential surface of

the ions (i.e., the cores). To this end, we pick up a particular ion, say lκ, and examine the

energy cost of displacing it by ~ulκ while holding all other ions. Denote the energy cost by

Vlκ. In the following subsections, we discuss this energy for each ion type in (Ba, Sr)TiO3.

2.1.1 VA

Each A ion coordinates with eight Ti ions and twelve O ions. The contributions to VA

in general come from the interactions with surrounding ions and with valence electrons.

We represent these two portions by V ii
A and V ie

A , respectively, so that VA = V ii
A + V ie

A .
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First principles computations demonstrated two interesting features about the vibrations

of the A ions[19]: (1) extremely weak mixing with the vibrations of Ti and O ions and (2)

small band width indicative of Einstein-type phonon. These features are most manifest

in the map of partial denisty of phonon states (PDOS, see FIG.2.1), which can be written

for any ion lκ as PDOS(ω|lκ) = ∑
~qj |A(lκ|~qj)|2δ̄(ω~qj − ω). Here A(lκ|~qj) stands for the

probability amplitude of finding the ion lκ in mode ~qj. The density of states is then given

by DOS(ω) = ∑
lκ PDOS(ω) = ∑

~qj δ̄(ω~qj − ω), implying ∑lκ |A(lκ|~qj)|2 = 1. One sees

in FIG.2.1 that, PDOS(Ba|ω) is centered about ω = 20cm−1 with a width of only about

5cm−1 and in the meanwhile both PDOS(Ti|ω) and PDOS(O|ω) identically vanish in

that frequency domain. In other words, there is negligible overlap between PDOS(A|ω)

and PDOS(Ti, O|ω) for any ω, PDOS(A|ω)·PDOS(Ti, O|ω) ∼ 0. In addition, we should

note that, the as-described traits are common not only to the cases with A = Ba, Sr but

also to that with A = Pb, regardless of the fact that Pb has lone electron pairs. For Ba

and Sr, the peak frequency are basically the same. For Pb, it is shifted downward. The

morphology of PDOS(A|ω) stands in sharp constrast with PDOS(Ti, O|ω). All these

indicate that, the vibrations of A ions can be treated separately from that of the Ti-O

subsystem. Hence, we may explicitly forget about the A ions, assuming that their main

effects are to renormalize the Ti-O subsystem. There is another reason for making such

approximation: we observe that, the dielectric response of the system comes mainly from

the Ti-O subsystem, especially when the structural instability is concerned. In compounds

like PbT iO3, this approximation is questionable, since the Pb-sublattice can be another

source of instability[21, 90].
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Figure 2.1: Total and partial density of phonon modes for ATiO3 from first principles
computations. Reproduced with permission from [19].

54



2.1.2 VTi

Contributions From Dipolar Interactions

Every Ti ion coordinates with eight A ions and six O ions. The O ions make an octehe-

dral cage surrounding the Ti ion that is inside the cage. As is clear in PDOS map, the

PDOS(Ti|ω) and PDOS(O|ω) occur in the same frequency region, alluding to strong

couping between these two types of ions. Similar to the case with A ions, one can divide

VT i in two terms, V ii
T i and V ie

T i. The V ii
T i encodes mainly the dipolar interactions with the

O ions and the A ions. Ti ions are neither in touch with O ions (i.e., cores) nor A ions

and hence no Born-Mayer type interactions could exist. For convenience, we can write V ii
T i

as

V ii
T i = fT i(θ, ϕ)u2, ~u = u(sin θ cosϕ, sin θ sinϕ, cos θ) = uû

fT i(θ, ϕ) = fTi−A(θ, ϕ) + fT i−O(θ, ϕ) + fT i−T i(θ, ϕ)

fT i−A(θ, ϕ) = zT izA
2

∑
all A sites

3(û · R̂l|A)2 − 1
R3
l|A

fT i−O(θ, ϕ) = zT izO
2

∑
all O sites

3(û · R̂l|O)2 − 1
R3
l|O

fT i−T i(θ, ϕ) = z2
T i

2
∑

all Ti sites than the original one

3(û · R̂l|T i)2 − 1
R3
l|T i

R̂l|A,T i,O = ~Rl|A,T i,O/Rl|A,T i,O, Rl|A,T i,O = |~Rl|A,T i,O| (2.1)

Here ~u signifies the displacement of the selected Ti ion. At first glance, we would think that

V ii
T i generally depends on the direction of ~u. However, it is not the case. In general, the

second order of the expansion of the Coulombic potential can be written as ∑ρρ′ Lρρ′uρuρ′ .

Cubic symmetry dictates that Lxy,yz,zx = 0 and Lxx = Lyy = Lzz. By comparison with

the dipolar coupling, one must have fT i(θ, ϕ) = Const = KT i|dip.
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Covalent Bonds

As for V ie
T i, it is convenient to cast this term further in two portions. To elucidate the

nature of these portions, we at first consider the valence electrons. As said in chapter

1, strong covalent bonds are expected to exist between the eg-type d-orbital and the p-

orbital. One should note that, the p orbitals can be organized by symmetries. Look at

the pz orbital along the c-axis for example. For any d3z2 orbital at ~Rl|T i, there are two

pz orbital at ~Rl|Oz and ~Rl|Oz − ~ec, respectively, sandwiching that d-orbital. Now instead

of pz|l, we construct another set of basis orbital which are symmetric about the d-orbital.

Write the new basis as

φ̄l|z = 1√
2

(pl|z − pl−|z) (2.2)

where the sign − in the subscript is used to label the pz orbital at ~Rl|Oz − ~ec. These new

basis orbital can be made orthogonal using Anderson ansatz[91]. The orthogonal basis

orbital can be formed as

φl|z =
∑
l′
λ∗z|l,l′φ̄l′|z, φ̄l|z =

∑
l′
λ(z|l, l′)φl′|z

λz|l,l′ = 1
N3

∑
~q∈1BZ

i
√cos qz

ei~q·[
~Rl−~Rl′ ] (2.3)

where N3 is the number of total unit cells. The λz|l,l′ has been shown to decay rapidly as

the distance between the l and the l′ unit cell increases (FIG.2.2). Now the d3z2 hybridizes

with φl|z, giving rise to a bonding band with energy

[εde + εp]/2−
√

∆2
e + t2z (2.4)

and an anti-bonding band with energy

[εde + εp]/2 +
√

∆2
e + t2z (2.5)
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Figure 2.2: The λz|l,l′ as calculated from Eq.(2.3). Vertical axis: λz|l,l′ ; horizontal axis:
|~Rl − ~Rl′|.

Here tz is the hybridization energy and ∆e = εde−εp is the energy gap between the eg-type

d orbital and the p orbital. Note that the dispersion has been neglected for simplicity. This

approximation is based on the fact that λz|l,l′ is a decaying function, as aforementioned.

Note that tz is twice as large as the hybridization energy between neighboring d3z2 and pz.

As for the dx2−y2 and planar p orbital, similar things can be done. Note that, in this case

a dx2−y2 couples essentially to such a symmetric combination (Zhang-Rice combination)

of p orbital[1, 92]:

φ̄l|xy = 1
2(plOx|x + plOy |y − pl−Ox|x − pl−Oy |y) (2.6)

Again, these new orbital are not orthogonal and can be orthogonalized to yield the fol-
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lowing

φl|xy =
∑
l′
λxy|l,l′φ̄l′|xy

λxy|l,l′ = 1
N3

∑
~q∈1BZ

1√
1− (cos qx + cos qy)/2

ei~q·[
~Rl−~Rl′ ] (2.7)

which hybridizes with dx2−y2 . Here again, λxy|l,l′ decays fast with increasing distance

between the l and l′[1]. Also a bonding and an anti-bonding state result, with energies of

[εde + εp]/2−
√

∆2
e + t2xy (2.8)

and

[εde + εp]/2 +
√

∆2
e + t2xy, (2.9)

respectively. The txy is the hybrdization energy between the dx2−y2 and φxy. The dispersion

has been ignored for the property of λxy. Incidentally, we mention that, apart from the

combination leading to φxy, there exists an anti-symmetric combination (denoted by φ′xy)

which leads to a non-bonding band[1].

As we see, in the covalent bonding described above, two p orbital, φz and φxy, have been

concocted with the eg-type d orbital. The resulting bonding band is mainly of p character

while the anti-bonding one of d character. In total one has nine p orbital, whence seven

of them should be non-bonding. Besides, all t2g-type d orbital are also non-bonding. All

the bonding bands and non-bonding p bands are occupied by electrons, but all the anti-

bonding and non-bonding d bands are empty. The bands close to Fermi level are then

the non-bonding bands: t2g d bands making up the conduction band while non-bonding

p bands the valence band. A gap of around 3ev separates the conduction band from the

valence band[19, 93].
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Contributions From Born-Mayer Interactions

As shown in the charge density map, Ti ions are besieged by valence electrons taking up

the valence band, like a wall confining a ball. When the ion is brought close to the wall, a

strong repulsion will be felt due to Pauli exclusion principle[23]: the core electrons of the

ion are prevented from penetrating the wall which has already been full of electrons. The

considerable band gap makes the wall very exclusive: to admit an external electron would

cost 3ev. It is just such short-range force that is ultimately responsible for the stability of

solids. As exclusive as it is, this wall can actually be deformed by the motion of the ion.

Henceforth, two sources of V ie
T i are expected: one due to Pauli exclusion and the other

due to the wall deformability. A few expressions have been proposed for the former. One

among them is the Born-Mayer repulsion[94], which adapted to the present need should

read

V ie
BM = V0 exp(−|u− u0|/r0) (2.10)

where u is defined as above while V0, u0 and r0 are parameters characterizing the potential.

In the present thesis, however, we prefer to adopt a simple power law,

V ie
T i|sri = γT i|sriu

4 +KT i|sriu
2 − αT i|sri(u2

xu
2
y + u2

yu
2
z + u2

zu
2
x), (2.11)

where γT i|sri, KT i|sri and αT i|sri are constants. The αT i|sri term takes care of the fact that

the surrounding electron cloud is not isotropic.

Vibronic Effects In Crystals

The other part of V ie
T i that is associated with the electronic wall deformability, on the

other hand, can be taken care of as follows. Such deformability is usually framed using

the electron-phonon theory. Electronic energy may be lowered due to level repulsion effects

(i.e., when two levels are coupled, the energy of the lower level can be further reduced)
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that can be created by phonons. We are not going to pay any heed to the non-bonding p

orbital, because they always have very little overlap with the conduction band even in the

presence of local lattice deformations. The orbital to be considered are the t2g d-orbital and

the pOx,y,z |x,y,z orbital. When ~u is zero, these orbital don’t mix, as prescribed by symmetry.

Upon displacing the Ti ion (i.e., creating phonons), however, electronic transitions between

these two bands can take place. The possible transition channels must be compatible with

the underlying symmetry. To illustrate this, we take the band stemming dxy for instance.

Look at dl|xy and the surrounding p orbital, plOx|x, pl−Ox|x, pl−Oy |y and pl−Oy |y. These two

kinds of orbital are endowed with different symmetries under reflection about the x − z

and y− z planes. The dxy changes sign under reflection with respect to either plane, while

p-orbital changes sign only under one of the two. Therefore, no transitions could take place

without phonons. Nevertheless, an electron can transit by simultaneously creating a local

deformation that breaks the symmetry. For example, to enable transitions between the

dl|xy and plOx|x, one can displace the Ti ion in the y-direction: the symmetry involved here

is the reflection about the x − z plane, under which dxy changes sign but pOx|x remains

the same. Now the displacement along the y-direction has the same symmetry as dxy,

thus conserving the associated parity. Formally, one writes for the one-phonon process

R̂xz(dxy ⊗ pOx|x ⊗ uy) = (−dxy) ⊗ pOx|x ⊗ (−uy) = dxy ⊗ pOx|x ⊗ uy. Here R̂xz signifies

the reflection operation. In the second quantization formalism, we can write down the

corresponding coupling like this: ξxyd†l|xyuyplOx|x+h.c., where ξxy is the coupling parameter.

In a similar fasion, we can write down for pl−Ox|x an analogous term: ξxyd†l|xyuyplOx|x+h.c.,

while for plOy |y and pl−Oy |y the same thing can be written down except for changing uy

to ux. To achieve a compact and symmetric form, we introduce the following symmetric
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orbital,

Φl|x,y,z =
∑
l′

Λ∗x,y,z|l,l′Φ̄l′|x,y, Φ̄l|x,y =
∑
l′

Λx,y|l,l′Φl′|x,y

Φ̄l′|x,y,z =
pl′−Ox,y,z |x,y,z + pl′Ox,y,z |x,y,z√

2

Λx,y,z|l,l′ = 1
N3

∑
~q∈1BZ

1
√cos qx,y,z

ei~q·[
~Rl−~Rl′ ] (2.12)

Here Λ(ρ|x, y, z) has similar property as λ(ρ|x, y, z): a fast decaying function. Now we

arrive at

HT i|xy =
√

2ξxy
∑
l

d†l|xy
∑
l′
{ul|yΛx|l,l′Φl′|x + ul|xΛy|l,l′Φl′|y}+ h.c. (2.13)

By cyclic permutations of the axis, we can obtain the electron-phonon couplings involving

dyz and dzx. They read

HT i|yz =
√

2ξyz
∑
l

d†l|yz
∑
l′
{ul|yΛz|l,l′Φl′|z + ul|zΛy|l,l′Φl′|y}+ h.c.

HT i|zx =
√

2ξzx
∑
l

d†l|zx
∑
l′
{ul|zΛx|l,l′Φl′|x + ul|xΛz|l,l′Φl′|z}+ h.c. (2.14)

Considering that Λx,y,z|l,l′ are fast decaying functions, we would like to take Λx,y,z|l,l′ ≈

Λδ̄l,l′ , where Λ ≈ 1.1348. This approximation allows one to focus on just a unit cell.

Dropping the label and taking into account the orbital energy, we arrive at

HT i = εdg[d†xydxy + d†yzdyz + d†zxdzx] + εp(Φ†xΦx + Φ†yΦy + Φ†zΦz)

+ ξ̃xyd
†
xy{uyΦx + uxΦy}+ ξ̃yzd

†
yz{uyΦz + uzΦy}

+ ξ̃zxd
†
zx{uzΦx + uxΦz}+ h.c., ξ̃xy,yz,zx =

√
2Λξxy,yz,zx (2.15)
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which takes exactly the same form as the Hamiltonian obtained by Bersuker for a single

TiO6 cluster[22]. It can be solved to produce six eigenvalues, ε1,2,...,6, which come in pairs:

ε1 −
εdg + εp

2 = εdg + εp
2 − ε2 =

√
∆2
gp/4 + ξ̃2

xy(u2
x + u2

y)

ε3 −
εdg + εp

2 = εdg + εp
2 − ε4 =

√
∆2
gp/4 + ξ̃2

yz(u2
y + u2

z)

ε5 −
εdg + εp

2 = εdg + εp
2 − ε6 =

√
∆2
gp/4 + ξ̃2

zx(u2
z + u2

x) (2.16)

After filling the lowest three levels with six electrons, we find (in the adiabatic approxi-

mation) an effective potential for the motions of Ti ions:

Kelasu
2 + 2(ε2 + ε4 + ε6) (2.17)

where we have included the aforementioned elastic term, Kelas = KT i|dip + KT i|sri. One

should see that, ifKT i is very small, this potential possesses four types of saddle points that

can be classified through a cube. When ξxy = ξyz = ξzx, they are as follows[22, 18, 95, 96]:

1. One maximum at the center of the cube ux = uy = uz = 0;

2. Eight minima at cube corners satifying |ux| = |uy| = |uz| 6= 0;

3. Twelve points at edge centers satisfying, e.g., |ux| = |uy| 6= 0, |uz| = 0;

4. Six points at face centers satisfying, e.g., |ux| = |uy| = 0, |uz| 6= 0.

For small ~u, one may approximate VT i as (after omitting an irrelevant constant)

VT i ≈ γ(u4
x + u4

y + u4
z + u2

xu
2
y + u2

yu
2
z + u2

zu
2
x)−K(u2

x + u2
y + u2

z) (2.18)

This constitutes the basis of the so-called 8CM[41, 62, 63], which we have mentioned in

chapter 1 and will discuss in more details later on in this chapter. It should be pointed out
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that, in comparison with a TiO6 cluster, the Ti off-center shift is expected to be enlarged

by a factor of λ2 in a crystal. Additionally, one should see that, in obtaining VT i, we did

not consider the impacts from the covalent bonding which involves the same p-orbital.

It is expected that, in comparison with the covalent bonding, the HT i|xy,yz,zx are just

perturbations. Henceforth, the p-character state taking part in the HT i should be replaced

by the bonding state discussed in earlier paragraphs of this subsection. Fortunately, such

replacement amounts to renormalizing the coupling coefficients ξxy,yz,zx. Finally, these

coefficients should not be all indentical if the crystal structure is not cubic.

2.1.3 VO

Contributions From Dipolar and Short-range Interactions

The O ions take up three distinct sites, Ox, Oy and Oz, respectively. Every O ion coor-

dinates with two Ti ions and four A ions. The two Ti ions sandwitch the O ion, making

a Ti-O-Ti bond pair. In comparison with the Ti ion, the A ions are much far from the O

ion and sit in a plane perpendicular to the bond. Similarly, the O potential should also

has three origins: the electrostatic interactions with other ions, the short-range repulsion

from the valence electrons due to Pauli exclusion principle and the electron-phonon in-

teractions. Consider a particular O ion, say the Ox in certain unit cell. The former two

should result in two terms that can be couched as

fO(θ, ϕ)u2 = KOt|dipu
2
x̄ +KOl|dipu

2
x (2.19)

where ~u denotes the displacement of the O ion under consideration and the symmetry has

been utilized to derive the second expression, and

γOt|sri(
∑
ρ̄

u2
ρ̄)2 +KOt|sriu

2
ρ̄ + γOl|sriu

4
ρ +KOl|sriu

2
ρ + αO|sri

∑
ρ̄

u2
ρu

2
ρ̄, (2.20)
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respectively.

Ti-O Bonding Effects

As for the electron-phonon interactions, there are several situations we have to ponder

over. The orbital under immediate influence of the motions of an O ion (core) should be

the p orbital centered on this ion. As is said in the last subsection, these p orbital have

close relations with both the eg- and t2g-type d orbital. But not only that, since the O

anion is often argued to boast of large polarizability, the admixing of its p orbital with its

3s orbital should be in addition included. All other O orbital such as 2s and deep-lying

orbital are obviously fulfilled and therefore inactive all the time.

First consider how the covalent bonding energy changes when an O ion is displaced.

Because of the directionality of covalent bonds, the displacement is expected to cost a

significant amount of energy when it is perpendicular to the bond direction. On the

other hand, what happens if it’s along the bond? Will it be hindered or previliged? If it is

hindered, the central positioning is stable; otherwise, the O may find itself instable against

motions along bond directions. Considering that the central point is of high symmetry,

some instability might well take place, as might happen to Jahn-Teller systems[97] and

Peierls transition systems[98].

To explore the physics, we analyze a simple Ti-O-Ti cluster lying along, say, the x-axis.

So the oxygen should be labelled as Ox, whose displacement is denoted by ~u as before.

The px orbital on it is simply written as p for the moment. The left and the right Ti ion

are to be tagged − and +, whence the dx2−y2 orbital on these ions are written as d− and

d+, respectively. A Hamiltonian can be written down to model the cluster,

Hcluster = ∆ep

2 [d†−d− + d†+d+ − p†p] + t−[d†−p+ h.c.] + t+[d†+p+ h.c.] (2.21)
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Here t− and t+ are real and denote the hopping integrals pertaining to the left and the

right bond, respectively. When the O is at the center, i.e., ~u = 0, one has −t− = t0 = t+,

with t0 > 0 being a real constant. In general, t± must depend on ~u. We write t− = δ−− t0

and t+ = δ+ + t0. We may expand them in powers of ~u. For ~u along the bond, i.e,

~u = (ux, 0, 0), one must have δ− ≈ aux and δ+ ≈ aux, where a is a positive coefficient. For

~u perpendicular to the bond, e.g., ~u = (0, uy, 0), the δ± must vanish in the first order of

uy by symmetry (the cluster is invariant under rotation about the x-axis). To the second

order, however, one has δ− = bu2
y and δ+ = −bu2

y, with b another positive coefficient. So,

generally, for ~u = (ux, uy, uz), we can write

t− = −t0 + aux + b(u2
y + u2

z)

t+ = t0 + aux − b(u2
y + u2

z) (2.22)

The model can be easily solved to yield a bonding state, an anti-bonding state and a

non-bonding state. To this end, we consider two new d-orbital that are taken to be

d = 1√
t2− + t2+

(t−d− + t+d+)

d̄ = 1√
t2− + t2+

(t−d− − t+d+) (2.23)

which are orthogonal. Now we see that the p admixes only with d, not with d̄. We arrive

at

Hcluster = ∆ep

2 [d†d− p†p] +
√
t2− + t2+(d†p+ p†d) + ∆ep

2 d̄†d̄ (2.24)

The energies of the non-bonding, bonding and anti-bonding states are εn = ∆ep

2 , εb =

−
√

∆2
ep/4 + t2− + t2+ and εa =

√
∆2
ep/4 + t2− + t2+, respectively. Now filling all non-bonding

states and the bonding state, we obtain an effective adiabatic potential as ε = 2εb. Keeping
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only the leading terms in ~u and dropping an irrelevant constant, we find

ε ≈ 8t0b
∆ep

u2
x̄ −

4a2

∆ep

u2
x, u2

x̄ = u2
y + u2

z (2.25)

This expression clearly confirms our anticipation: the O is prevented from moving to bend

the bond while it is instable against motions along the bond. This places the O ion at

a particular position: anisotropy can develop, as we will discuss later. Evidently, the

as-described covalent bonding effects should not be limited to O ions. They can equally

apply to Ti ions. The crucial difference between the Ti ions and O ions lies in the fact

that, the former are engaged simultaneously with three cross-linked bond pairs whereas

the latter is with just a single pair. The bond network does not favor a Ti ion moving

in any direction. Cubic symmetry suggests that, the three bond pairs capturing the Ti

ion should exactly have exactly the same effects in their respective orientations. To the

lowest non-vanishing order in the displacements, the potentials from these three bonds are

additive.

Let’s see that, the t0, a and b introduced above correspond to the zero-th, first and second

order effects, respectively. Denote the interactions between an electron and the O ion is

V (|~r − ~u|) ≈ V (|~r|) − ~u · ∇V (|~r|) + 1
2uν

∂2

∂rν∂rν′
uν′ + ..., where ~r is the electron position

vector relative to the O ion and ν, ν ′ = x, y, z. By virture of symmetry, we conclude that
∂V (|~r|)
∂ry,z

= 0. Therefore, these coefficients can be expressed as integrals as follows:

t0 =
∫

Ω
ψdx2−y2V (|~r|)ψp

a =
∫

Ω
ψdx2−y2

∂V (|~r|)
∂rx

ψp

b = 1
2

∫
Ω
ψdx2−y2

∂2V (|~r|)
∂r2

y

ψp (2.26)

The integral is over the space Ω where the atomic wave functions ψp,dx2−y2 (at the O and
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the right Ti ion sites) have significant overlap. Assuming Coulombic form of V (|~r|) ∼ 1
|~r| ,

we get

∂V (|~r|)
∂rx

∼ − 1
|~r|2

rx
|~r|

∂2V (|~r|)
∂r2

y

∼ 3
|~r|4

ry
|~r|
− 1
|~r|3

(2.27)

Now that the region Ω is concentrated in a small spot lying on the x-axis, we may approx-

imately take ~r ∼ (rx, 0, 0). Thus, we find

t0 ∼
∫

Ω
ψdx2−y2

1
rx
ψp ≈

1
rΩ

∫
Ω
ψdx2−y2ψp

a ∼
∫

Ω
ψdx2−y2

1
r2
x

ψp ≈
1
r2

Ω

∫
Ω
ψdx2−y2ψp

b ∼ 1
2

∫
Ω
ψdx2−y2

1
r3
x

ψp ≈
1
2

1
r3

Ω

∫
Ω
ψdx2−y2ψp (2.28)

where rΩ indcates a point inside the region Ω. From the above, we infer that

2t0b ∼ a2 (2.29)

This suggests that, ε ≈ 4a2

∆2
ep

(u2
x̄ − u2

x).

Now we provide some justifications for the cluster treatment used to derive ε. Look at a

−[Ti−O]N− chain. The original question is, what is the energy cost of displacing one of

the O ions in this chain? Very generically, such displacement should create an impurity

state[99], which may lie below the valence band, or above the conduction band or inside

the gap. Such state is often found localized in proximity of the impurity (i.e., the displaced

O ion). Therefore, its energy is primarily determined by ions close to the impurity. In

other words, a proper cluster should suffice for illustrating the physics.
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O Ion Polarizability Effects

We proceed to consider the effects from O shell polarizability. It engages the O 2p and 3s

orbital, which are separated in energy by ∆sp. If the O ion takes the central position, then

no mixing between these orbital can take place. Upon displacing this ion, the 3s becomes

hybridized with one of the 2p orbital, and the O shell is said to be polarized. No mixing

(in the one-phonon process) within 2p can occur, due to symmetry. Obviously, the model

can be written as

Hpolariz = ∆sp

2 (s†s−
∑

ν=x,y,z
p†νpν) + ā

∑
ν=x,y,z

(s†pν + p†νs)uν (2.30)

Here ā is a coefficient. This model can be solved in the same fasion as we deal with Hcluster.

One just needs to see that the 3s couples actually only to the following 2p orbital, which

is a linear combination of px,y,z,

P = 1√
u2
x + u2

y + u2
z

(uxpx + uypy + uzpz) = 1
u

∑
ν

uνpν (2.31)

One can construct two other p orbital by linear combinations that are mutually orthogonal

and orthogonal to P . Denote them by Pn and P ′n. The model then becomes

Hpolariz = ∆sp

2 (s†s− P †P ) + āu(s†P + P †s) + ∆sp

2 (P †nPn + P
′†
n P

′
n) (2.32)

This gives rise to two non-bonding states with energy ∆sp/2, one bonding state with

energy −
√

∆2
sp/4 + ā2u2 and one anti-bonding state with energy

√
∆2
sp/4 + ā2u2. Filling

all the non-bonding states and the bonding state, one obtains an effective potential as

−2
√

∆2
sp/4 + ā2u2 ≈ const− 2ā2

∆sp

u2 (2.33)
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Note that this potential is isotropic, in the sense that, it is regardless of the direction of ~u,

standing in sharp contrast with what ensues from Hcluster. Again, the O shell polarizability

effects should also be felt by Ti ions and similar potential should be generated, but there is

an essential difference: the potential becomes anisotropic, because the 3s−2p hybridization

due to displacing a Ti ion discriminates between the case when the displacement is along

and that when it is perpendicular to the bond. Besides, the polarizability effects should

be smaller on Ti ions than on O ions. Moreover, one should note that, such effects always

favor non-central positioning.

O Cage Tilting: A Vibronic Point of View

Now we turn to investigating the electronic origin of the O6 cage tilting phenomenon,

which has been observed in STO and LaAlO3 (LAO)[73, 100]. Here we show that such

tilting can be generated by phonon-aided electronic transitions among the same orbital that

have been shown to underlie the Ti off-center shifts. In this respect, we claim that the

O cage tilting and the Ti off-center shifts bear the same cause. The orbital are t2g-type

d orbital and the p orbital that take part in covalent bonding. Take dl|xy and plOx|x for

example. No transitions happen in the absence of phonons. The former is anti-symmetric

while the latter is symmetric under reflections about the x-z plane. Therefore, to enable

transitions through O phonons, one must displace the O ion along y direction, namely,

ulOx|y. The same logic applies to other p orbital sitting around the d orbital. In summary,

a Hamiltonian can be jotted down to account for this kind of process:

Htilting|z = h
∑
l

d†l|xy{pl−Oy |xul−Oy |x + plOy |xulOy |x + plOx|xulOx|y + pl−Ox|xul−Ox|y}+ h.c.(2.34)

where h is the coupling coefficient. Generally, to show any instability associated with

the phonon sub-system, one needs to evaluate the correlation function as prescribed in
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eq.(15) in chapter 1. However, here we are mainly interested in two cases. Writting

ulOx|y = uo exp(i~q ~Rl) and ulOy |x = uo exp(i~q ~Rl), the two cases correspond to ~q = (0, 0, 0)

and ~q = (π, π, 0), respectively. In the former, the O ions belonging to the same unit

cell are displaced toward each other, resulting in higher electrostatic energy and therefore

disfavored. The latter case corresponds to the O cage tilting and the electrostatic repulsion

is averted. We therefore consider only the ~q = (π, π, 0) case. Substituting the expression

in the above Hamiltonian, we find

Htilting|z = huo
∑
l

d†l|xy{plOy |x − pl−Oy |x + plOx|x − pl−Ox|x}+ h.c.

= 2huo
∑
l

d†l|xyφ̄l|xy + φ̄†l|xydl|xy

= 2huo
∑
l,l′
λxy|l,l′{d†l|xyφl′|xy + φ†l′|xydl|xy} (2.35)

where we have used the expressions of φ̄xy and φxy introduced in the last subsection.

Again, using the fact that λxy|l,l′ decays rapidly for l′ distant from l, we can neglect the

dispersion effects. Relating the uo to the tilting angle ϕ in terms of the lattice constant

a0 as uo = a0ϕ and focusing on a particular unit cell, we find

Htilting|z = 2ha0ϕλ(d†xyφxy + φ†xydxy) (2.36)

Now solving it together with the on-site energy, εdgd†xydxy + εpφ
†
xyφxy, we find a bonding

and an anti-bonding state with energies

εb = εdg + εp
2 −

√
∆2
gp/4 + 4h2a2

0ϕ
2 (2.37)

and

εa = εdg + εp
2 +

√
∆2
gp/4 + 4h2a2

0ϕ
2, (2.38)
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respectively. Now filling two electrons in the bonding state, we find an effective adiabatic

potential for the O cage tilting as 2εb, which can be expanded to yield

ε ≈ −8h2a2
0

∆gp

ϕ2 (2.39)

The physically irrelevant constant has been dropped. It is seen that, the electronic energy

is lowered for finite ϕ, indicating the tilting instability. Therefore, we have proved that,

the O cage tilting instability can be caused by electron-phonon interactions. The Htilting|z

described above accounts for the tilting about the z-axis. In exactly the same manner, one

can show that, the {dyz, pOy |y, pOz |z} leads to tilting around the x-axis and {dzx, pOz |z, pOx|x}

the tilting about the y-axis.

2.2 Two-Body Inter-ion Interactions

2.2.1 Dipolar Interactions

A term is called ’interaction’ if it engages simultaneously the variables of more than one

body. As usual, we only consider two-body interactions, which are defined as the two-

body part of the energy change that occurs when two ions are displaced simultaneously.

Such interactions can be mediated in several ways. In the first place, there are the dipolar

interactions. For two ions at lκ and l′κ′, respectively, this dipolar energy is given by

zlκzl′κ′

R3
lκ,l′κ′

{~ulκ~ul′κ′ − 3ulκul′κ′ cos θlκ cos θl′κ′}

= zlκzl′κ′ulκul′κ′

R3
lκ,l′κ′

{ûlκûl′κ′ − 3 cos θlκ cos θl′κ′} (2.40)

where cos θlκ = ûlκR̂lκ,l′κ′ . As expected, the dipolar interaction is anisotropic in the sense

that, it relies on the direction of ~ulκ,l′κ′ . Besides, it is marginally long range: it goes as
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R−3
lκ,l′κ′ . What is particularly complicated is that, it consists of two portions with opposite

effects: e.g., if zlκzl′κ′ > 0, the ûlκûl′κ′-term favors the ions being displaced in opposite

directions but the cos θlκ cos θl′κ′-term wants them to displace in the same manner along

the line joining them. Note that, an important quantity involved in dipolar interactions is

the effective charge, zlκ, whose definition and values vary from model to model[101, 102].

Despite such controversy, two basic facts have been recognized: (1) the O effective charges

should actually be represented as a tensor, instead of a scalar, as can be deduced from

the anisotropy seen in the O ions’ crystal environment; (2) these charges often deviate

from their nominal values signifcantly. Thus, one assigns an O ion the charge zt and zl

correponding respectively to the motions perpendicular to and along the Ti-O-Ti bond.

According to first principles studies, both are negative and with zl ≈ 2.8zt ≈ −5.71 in

units of elementary charge. The Ti and Ba charges are positive and can be represented as

a scalar, zT i ≈ 7.25 while zBa ≈ 2.77 and zSr ≈ 2.56[102].

Despite its claimed importance in driving structural phase transitions, we try to argue

that, the dipolar interactions may not be the crucial ingredient. First, we note that,

this kind of interactions between a Ti and its adjacent O ions would favor the Ti ion to

displace oppositely to apical O ions but in the same direction as the planar O ions. This

contradicts experiment: in the tetragonal phase of BTO, all O ions are shifted oppositely

to the central Ti ion[10]. Second, there is a reasoning that, lattice instability can not arise

from Coulombic interactions[96]. Thus, we make a major assumption: we include them

only between a Ti and its nearest O ions. With this assumption, the expression can be

simplified. Look at a Ti and the O on its right side (Ox). Their dipolar energy reads

βldip2uT i|xuOx|x + βtdipuT i|y,zuOx|y,z, (2.41)

where βldip = 8|zl|zTi
a3

0
> 0 and βtdip = −8|zt|zTi

a3
0

< 0. We have taken into account the tensor
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property of zO. See that these two coefficients bear opposite signs, which, as already said,

would have planar and apical O ions to be displaced differently but for other forces.

2.2.2 Electron-Mediated Interactions

In addition, inter-ion interactions can arise indirectly through coupling to valence electrons.

Electronic transitions could happen in the presence of two local phonons at lκ and l′κ′

and as a result, electronic energy changes. This change is not simply a sum of the changes

caused individually by phonons at these sites. Rather, there are interferences or say

cooperative effects that are manisfested as phonon-phonon interactions. The shell model

mentioned in chapter 1 can be used for illustration. Look again at a Ti−O− Ti cluster.

All three ions couple to the O shell (i.e., the valence electrons). Motions of the left Ti

ion exert influences on that of the shell, which then transmits the effects to the O and

the right Ti ion. The net effect appears as if interactions existed between these ions. Two

ions can be efficiently coupled only if they both contribute significantly to an electronic

transition. Therefore, the physics should be again local and may be studied on a Ti-O-Ti

cluster or a TiO6 cage. Let’s begin with the cluster. First note that interactions between

the O and a Ti and that between the Ti ions can be induced by polarizing the O ion (i.e.,

causing electronic transitions between the 2p and 3s orbital). It is easy to estimate the

strength of such couplings. To do this, one just needs replace the āuν in Hpolariz by the

following terms

āuν + aν(uν(+) + uν(−)) (2.42)

Here aν are coefficients satisfying ay = az and axay < 0 as well as āax > 0. The relations

about their signs can be easily checked by examing the symmetries of the atomic wave

functions and that of the local phonon as well as the sign of the electron-ion potential.
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After solving the resulting Hamitonian one finds the following couplings:

(1) : −8āaν
∆sp

uνuν(±) = βlpoluxux(±) + βtpol(uyuy(±) + uzuz(±))

(2) : 8a2
ν

∆sp

u(+)νu(−)ν

βlpol = −8āax
∆sp

< 0, βtpol = −8āay
∆sp

> 0 (2.43)

Clearly, (1) signifies a Ti-O coupling while (2) stands for a Ti-Ti coupling due to O

polarizability and is anti-ferroelectric in nature. Similarly, we can obtain an effective

potential from Hcluster with the following replacements of δ±

δ± =⇒ a[ux − ux(±)]± b[(uy − uy(±))2 + (uz − uz(±))2] (2.44)

This leads to the following Ti-O coupling

: βlcluuxux(±) + βtclu[uyuy(±) + uzuz(±)]

βlclu = 4a2√
∆2
ep + 8t20

> 0, βtclu = − 8t0b√
∆2
ep + 8t20

< 0 (2.45)

On the other hand, no Ti-Ti coupling has been found to the truncated order.

2.2.3 Summary: The Importance of Polarization Effects

Summarizing what’s presented above, one may conclude that, the effective Ti-O coupling

may be written as

VT i−O =
∑
l

ulT i|ρ{βl[ulOρ|ρ + ul−Oρ|ρ] + βt
∑
ρ̄

[ulOρ̄|ρ + ul−Oρ̄|ρ]} (2.46)
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Here βl = βldip + βlclu − |βlpol| and βt = βtpol − |βtdip| − |βtclu|. One can read the importance

of the O polarizability in these expressions: were not for it, one would have βt < 0,

which is not consistent with observations. The βtpol is crucial to have a Ti ion and its

neighboring planar O ions shifted oppositely in the tetragonal phase. It should be pointed

out that, the observed pattern of ion shifts in tetragonal phase can not be explained by

O-O repulsion, because of the symmetry of the O cage. Actually, O-O interactions have

been demonstrated very weak in general.

2.2.4 Correlations Between O Cage Tilting and Ti Off-Center

Shifts

The last element to be discussed in this subsection is the correlations between the off-center

Ti shift and the O cage tilting. We have already shown that, these two modes can arise from

a single origin: the phonon-assisted electronic transitions between the bonding p orbital

and the non-bonding t2g-type d-orbital. These transitions can be rendered by local phonons

on both the Ti and O sites. Previously, we had considered these two categories of phonons

separately and individually. When simultaneously input, correlations between them are

expected. This comes at the root of the correlations to be discussed between Ti off-center

shift (a polar mode) and O cage tilting (a non-polar mode). We shall neglect any possible

slight tetragonal distortions and therefore take ξxy = ξyz = ξzx ≡ ξ. It is instructive

to examine a TiO6 cluster for the moment, which has the same symmetry as the whole

crystal. Again look at the dxy for illustration. As we have discussed before, this orbital

can couple to pOx,y |x,y. Due to Ti phonon, the coupling reads
√

2ξd†(uyΦ̄x + uxΦ̄y) + h.c..

Due to O cage tilting, it reads
√

2ha0ϕd
†(φ̄x + φ̄y). Evidently, the φ̄ and Φ̄ have different

symmetries and have zero overlaps, hence leading to competition between the off-center
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shift and the tilting mode. To show this, we examine the following Hamiltonian

: ∆gp

2 (d†xydxy − φ̄†xφ̄x − φ̄†yφ̄y − Φ̄†xΦ̄x − Φ̄†yΦ̄y)

+
√

2ξd†(uyΦ̄x + uxΦ̄y) + h.c.+
√

2ha0ϕd
†(φ̄x + φ̄y) (2.47)

which has included both types of couplings and can be solved easily. One ends up with

the following adiabatic potential

KT i(u2
x + u2

y) +KOϕ
2 − 2

√
∆2
gp/4 + 2ξ2(u2

x + u2
y) + 2h2a2

0ϕ
2 (2.48)

We have included the elastic terms as headed byKT i andKO. The minima of this potential

occur either at ux = uy = ϕ = 0 or where

ξ2(u2
x + u2

y) + h2a2
0ϕ

2 = Const (2.49)

This Const is almost independent of ξ and h if both KT i and KO are sufficiently small.

From this equation, it is self-evident that, the O tilting competes with Ti off-center shift.

Our discussions are based on a single TiO6 cluster, however the conclusions should not

change even the whole crystal is considered. Using symmetric orbital, the crystal problem

boils down to the TiO6 problem, as we have shown many times before. Another concern

is that, we did not consider dyz and dzx, which are expected to affect the results but only

quantitatively.

Although the correlations between the polar Ti mode and the non-polar O tilting have

been demonstrated interesting, we will not consider them explicitely and they will only be

touched where necessary.
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2.3 The Model and Its Approximate Forms

2.3.1 Model Hamiltonian

After discussing the various channels of potentials regarding either the on-site or the inter-

site part, we are now at a stage to write down the full Hamiltonian for the Ti-O system.

Hereafter we denote the displacement of a Ti ion by ~u (with magnitude of u) while that

of an O ion by ~U (magnitude of U). Expectedly, we put

HTiO3
= KinT i +KinO + VT i + VO + VT i−O (2.50)

where KinT i,O give the kinetic energy

KinT i =
∑
l

P 2
l

2M , KinO =
∑
l,ρ

p2
l|Oρ

2m (2.51)

with Pl is the momentum of the l-th Ti ion of mass M and pl|Oρ of the momentum of the

as-labelled O ion of mass m.

Although the potential terms have already been discussed in the above, we here would

like to give a brief synopsis to recapture the logic. As for VT i ≡
∑
l Vl|Ti, the on-site term

for Ti ions, we can always assume the following form as accorded by the Ti symmetry,

Vl|T i = γu4
l + α(u2

l|xu
2
l|y + u2

l|yu
2
l|z + u2

l|zu
2
l|x)−Ku2

l (2.52)

According to our discussions in the last section, the coefficients of each term can be written

as

γ = γT i|sri + γ′, α = −γ′ − αT i|sri, K = K ′ −Kelas (2.53)

Here γ′ and K ′ are related to eq.2.17. By expansion, one may put γ′ ≈ 8ξ̃4

∆3
gp

and K ′ ≈ 4ξ̃2

∆gp
.

In the strong electron-phonon coupling case, one can have K > 0. This will be assumed
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from now on, as required by experiments and first-principles computations. Were not for

the short-range force, one would get γ + α = 0. First principles computations indicate

that, for a variety of compounds, this relation is approximately fulfilled: e.g., for STO,

γ + α ∼ 4%. Further, these computations show K > 0 and γ > 0. As long as these

inequalities are satisfied, one ends up with a set of minima located away from u = 0. If

α > 0, they are found along the axis, e.g., ux 6= 0 and uy = uz = 0; otherwise, along the

diagonals, as detailed before.

Similarly, the O symmetry accords the following form to VO = ∑
l,ρ VlOρ ,

VlOρ = γt(
∑
ρ̄

U2
lρ|ρ̄)2 +Kt

∑
ρ̄

U2
lρ|ρ̄ + γlU

4
lρ|ρ +KlU

2
lρ|ρ + αOU

2
lρ

∑
ρ̄

U2
lρ|ρ̄ (2.54)

Obviously, we have assumed rotational symmetry about the Ti-O-Ti bond. In previous

analysis it was shown that,

Kt = KOt|dip +KOt|sri + 8t0b
∆ep

− 2ā2

∆sp

(2.55)

Although this expression does not allow the evaluation of the value of Kt, we may safely

assume that Kt > 0. As we shall argue in next chapter, this assumption is compatible

with experiments. If so, we may neglect the fourth order term in Uρ|ρ̄ as well as the cross

term. Therefore, we may write

VlOρ ≈ Kt

∑
ρ̄

U2
lρ|ρ̄ + γlU

4
lρ|ρ +KlU

2
lρ|ρ (2.56)

We have

Kl = KOl|dip +KOl|sri −
4a2

∆ep

− 2ā2

∆sp

(2.57)
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It is interesting to see that in general Kt 6= Kl. Reasonably, we may take

Kt > Kl (2.58)

because (1) the short range potential mainly stems from the O shell, which is likely to gen-

erate isotropic repulsion, i.e., KOt|sri ∼ KOl|sri and (2) in the dipolar potential, by evaluat-

ing the leading terms of fO(θ, ϕ), it is likely thatKOt|dip > KOl|dip (see that |zT izO| > |zAzO|

and RT iO < RAO, where R denotes the corresponding distances).

Finally, some words are added on the VT i−O. The form as writen in eq.2.46 obviously has

left out the correlations between the O cage tilting and Ti off-center shifts. The latter,

by eq.2.48, comes from higher order Ti-O couplings. A complete handling is very difficult

and won’t be pursued in this thesis. Rather, we will only discuss some of its consequences

in the fourth chapter. Before that, we shall simply assume eq.2.48 for VT i−O.

A complete treatment of HT iO3 is just considerably difficult and we need various approx-

imate forms in practice. Before laying down these forms we write down the Hamiltonian

in the q-space:

HT iO3 = 1
2M

∑
~q

P (~q)P (−~q) + 1
2m

∑
~q

pOρ(~q)pOρ(−~q)

+ 1
N

∑
~q1,~q2,~q3,~q4;ρ,ρ′

υρρ′uρ(~q1)uρ(~q2)uρ′(~q3)uρ′(~q4)δ̄(~q1 + ~q2 + ~q3 + ~q4)

− K
∑
~q;ρ
uρ(~q)uρ(−~q) +

∑
~q;ρ

[KlUρ|ρ(~q)Uρ|ρ(−~q) +Kt

∑
ρ̄

Uρ|ρ̄(~q)Uρ|ρ̄(−~q)]

+ γl
1
N

∑
~q1,~q2,~q3,~q4;ρ

Uρ|ρ(~q1)Uρ|ρ(~q2)Uρ|ρ(~q3)Uρ|ρ(~q4)δ̄(~q1 + ~q2 + ~q3 + ~q4)

+
∑
~q;ρ
uρ(~q)[βl(~q)Uρ|ρ(−~q) +

∑
ρ̄

βt(~q)Uρ̄|ρ(−~q)] (2.59)

where P (~q), pOρ(~q), uρ(~q) and Uρ|ρ(~q) are the Fourier transforms of Pl, pl|Oρ , ul|ρ and Ulρ|ρ,
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respectively. In addition,

υρρ′ = (γ − α/2)δ̄ρ,ρ′ + α/2 (2.60)

and

βl(~q) = 2βl cos qρ2 , βt(~q) = 2βt cos qρ̄2 (2.61)

In what follows, we discuss several approximate forms of HT iO3 .

2.3.2 Anisotropic Rotor Model: ARM

This model was introduced in [2]. The main approximation comes at simplifying the

Ti on-site term Vl|T i + P 2
l

2M . It applies when the inter-well energy barrier in Vl|T i is very

high, which is the case with compounds like BTO and STO as experimentally suggested.

To illustrate the point, we for the moment assume α vanish so that the minima of VT i

comprises a sphere with radius of
√

K
2γ . Suppose the energy barrier is high enough. Thus,

low energy fluctuations perpendicular to this sphere should be heavily suppressed. Freezing

these fluctuations gives rise to a picture in which the Ti ion moves like a rotor. For non-

vanishing α, one ends up with a non-uniform sphere, where the rotor description still

works provided the non-uniformity is imposed. A formal derivation of the ARM is given

below.

To keep the notations clean, we drop the l-label. It is convenient to write ~u = u(n̂x, n̂y, n̂z) ≡

un̂, with which we have VT i = γ(n̂)u4−Ku2, where γ(n̂) = γ + α
2 [1− (n4

x + n4
y + n4

z)]. We

also split the kinetic energy as P 2

2M = −~2∇2

2M = ~2

2Mu2{Ω̂2− ∂
∂u
u2 ∂

∂u
}. Here ~Ω̂ is the angular

momentum. Now one takes the average of KinT i + VT i over the radial part of the wave

function, i.e.,

HARM ;T i ≡
∫ ∞

0
Ψ∗(u, n̂)(KinT i + VTi)Ψ(u, n̂)u2du (2.62)
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where Ψ(u, n̂) denotes the ground state wave function of [KinT i + VT i]α=0. Note that

Ψ(u, n̂) is variable separable and one arrives at

HARM ;T i = ~2

2I Ω̂2 − α̃(n4
x + n4

y + n4
z)

1
u2

0
= 〈 1

u2 〉, I = Mu2
0, α̃ = α

2 〈u
4〉 (2.63)

up to an irrelevant constant. Further, we write ~u ≈ u0n̂.

One may solve HARM ;T i numerically. To this end, we choose the spherical harmonics, |lm〉,

as the basis. In this representation, Ω̂2 is diagonal, 〈l′m′|Ω̂2|lm〉 =
√
l(l + 1)δ̄l,l′ δ̄m,m′ . To

compute the matrix element of n4
x,y,z, one may proceed in two ways. We here adopt the

most straightforward one, in which we just need the matrix elements of nx,y,z. They are

computed like this: we at first express nx,y,z in terms of Y m
l = 〈θ, ϕ|l,m〉 and then make

use of the Wigner 3-j symbols for the involved integrals. It is easy to show that

nx =
√

2π
3 (Y −1

1 − Y 1
1 ), ny = i

√
2π
3 (Y −1

1 + Y 1
1 ), nz =

√
2π
3 Y 0

1 (2.64)

Now the matrix element involves evaluating integrals of the following kind,

∫
(Y m1

l1 )∗ · Y m2
l2 · Y

m3
l3 = (−1)m1

∫
(Y −m1

l1 )∗ · Y m2
l2 · Y

m3
l3

= (−1)m1Cl1l2l3 ×W
l1,l2,l3
0,0,0 ×W l1,l2,l3

m1,m2,m3 (2.65)

Here Cl1l2l3 =
√

(2l1+1)(2l2+1)(2l3+1)
4π and W l

m represents the Wigner 3-j symbols[103]. The

integration is taken over the entire solid angle. After obtaining nx,y,z, the n4
x,y,z can be

found by self-multiplying them four times. Eventually, the HARM is established and can

be solved on a computer.
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To be complete, we need to add the following to HARM |T i so as to get the ultimate HARM ,

:
∑
l,ρ

p2
l|Oρ

2m + K̃l

∑
l,ρ

U2
lρ|ρ + K̃l

∑
l,ρ

∑
ρ̄

U2
lρ̄|ρ

+ u0nl|ρ[βl(Ulρ|ρ + Ul−ρ|ρ) + βt(Ulρ̄|ρ + Ul−ρ̄|ρ)] (2.66)

where we have assumed 〈u〉 ∼ u0.

2.3.3 Eight-Corner Model: 8CM

Assume α < 0 so that there are eight minima of the VT i situated at the corners of a small

cube with length of u0. The 8CM ensues from the ARM in the large |α̃| limit, where only

a few states about the trough are used. These states correpsond to the eight minima on

the sphere. One may write them as |ν〉, ν = 1, ..., 8. The HARM |T i then becomes

H8CM |T i =
∑
ν,ν′

tνν′|ν〉〈ν ′| (2.67)

where the sum is over pairs and tνν′ depends on the distance between the ν-th and ν ′-th

corners. We write t1 for the nearest pair. Evidently, t1 > 0 decreases as u0 increases. For

BTO, such quantum effects are often ignored. But for STO, it should be important[72].

One should note that, this model has exlcuded any intra-corner motions.

The H8CM |T i can be solved using permutation symmetry of the said cube. The resulting

eight eigenstates can be sorted in two groups, each with a singlet lying above a triplet

(since t1 > 0). This is shown in FIG. 2.3

2.3.4 Double-Well Approximation: DWA

This model focuses on motions along one axis, say, z and averages out other compo-

nents. It may be suitable for describing some basic aspects of phase transitions involving
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Figure 2.3: A sketch of the 8CM and its specturm.

axial ordering, such as the tetragonal-cubic, orthorhombic-tetragonal and rhombohedral-

orthorhombic transitions. Take the tetragonal-cubic transition for example. Suppose the

ordering occurs in z-direction. We then average out x- and y-components. This is attained

by handling VT i as follows:

VT i =⇒ γu4
z −Ku2

z + 〈γ(u4
y + u4

x)−K(u2
y + u2

x)〉+ (2γ + α)(u2
z〈[u2

x + u2
y]〉+ 〈u2

xu
2
y〉)

=⇒ VDWA = γu4
z − K̃u2

z, K̃ = K − (2γ + α)〈[u2
x + u2

y]〉 ≈ K − 2
3(2γ + α)u2

0

(2.68)

Here 〈...〉 indicates thermal average, whose temperature dependence depends on which

model is used. In BTO, a Ti ion has been experimentally demonstrated to be described

by the 8CM, in which u2
x,y can be deemed essentially as constants. Thus, with this model,

the averages are nearly temperaure independent. In this thesis, we shall adopt this picture.

Note that VDWA features two wells provided K̃ > 0.
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2.3.5 Pseudo-Spin Model: PSM

The PSM to DWA is as the 8CM to the HT iO3 . Take VDWA for instance. To motivate the

(pseudo)spin, let’s put uz = l0σ, where l0 =
√

K̃
2γ . Thus, the potential becomes

VDWA = K̃2

4γ (σ4 − 2σ2) (2.69)

which takes minimum at σ2 = 1. Although σ is not fixed at σz = ±1, fluctuations should

be small provided l0 is large and the temperature is low. In this limit, one may replace σ

with σz. We then interpret σz as the pseudospin. The σ is sometimes refered to as soft

spin. At the same time, the kinetic energy is effected as a transverse field that flips a spin

coherently, P 2
z

2M → ETσx. Here σz,x are Pauli matrice and ET is the spin flip energy.

2.3.6 Adiabatic Treatment

Considering that the O mass is a third of the Ti mass, i.e., m/M ∼ 0.3, one may decouple

their motions adiabatically. For bilinear interactions like VT i−O, such decoupling is quite

simple. Take ~ul as a slow variable and ~Ulρ as the fast one. Consider an Ox for illustration.

It couples to two Ti ions simultaneously. The impacts of VT i−O on its motions along x-axis

can be dealt like this:

KlU
2
x|x + βlUx|x(u−|x + u+|x) = KlŨ

2
x|x −

β2
l

4Kl

(u−|x + u+|x)2

Ũx|x = Ux|x + βl
2Kl

(u−|x + u+|x) (2.70)

Now replacing u±|x with their averages, the O-subsystem and Ti-subsystem become dis-

tangled. Clearly, three effects can arise from VT i−O from this perspective: (1) the O ion

is displaced by an amount of dl = βl
2Kl
〈u+|x + u−|x〉 and (2) a coupling between the two Ti

ions has been produced, i.e., − β2
l

2Kl
u−|xu+|x, which always favors ferro-type coupling, and
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(3) a self-energy comes about Ti ions, − β2
l

4Kl
u2
±|x.

Applying the above technique to HT iO3 , one ends up with two decoupled subsystems that

are governed by the following Hamiltonians, respectively,

HT i = KinT i + ṼT i −
∑

<l,l′>,ρ,ρ′
Jρ,ρ

′
ul|ρul′|ρ′

HO ≈ KinO + K̃lU
2
lρ|ρ +Kt

∑
ρ̄

U2
lρ|ρ̄ (2.71)

Here Jρ,ρ′ = δ̄ρ,ρ′J
ρ, with Jρ = β2

l

2Kl
≡ Jl if the line joining the l- and l′-th Ti ions lies

along the ρ direction and Jρ = β2
t

2Kt ≡ Jt if this line is perpendicular to that direction.

The K̃l = Kl + γl〈U2
ρ|ρ〉 denotes the effective elastic constant that is defined via a self-

consistent harmonic approximation to be expounded in the next subsection. The ṼT i has

taken into account the aforementioned self-energy. Conspicuously, HT i is no more than

the conventional φ4 model[104], which often serves to exemplify the basics of quantum

field theory and quantum phase transitions[142, 106].

2.3.7 Self-Consistent Harmonic Treatment

Considerable difficulty rests with dealing with the anharmonic terms, such as the quartic

terms in VT i and VO. Concerned with how the vibration frequencies are affected by such

anharmonic terms, one may employ the so-called self-consistent harmonic approximation

(SCHA)[107, 10]. Often it is used in handling double-well potential, such as the VDWA

shown above. In this method, one goes as follows, taking VDWA for example,

γu4
z − K̃u2

z =⇒ (γ〈u2
z〉 − K̃)u2

z ≡
1
2Mω2

SCHu
2
z (2.72)
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which defines the SCHA effective frequecy ωSCH as

ω2
SCH = 2

M
(γ〈u2

z〉 − K̃) (2.73)

The 〈u2
z〉 is then expressed in terms of ω as follows,

〈u2
z〉 = ~

2MωSCH
coth ~ωSCH

2kBT
(2.74)

These two equations make a closed set and can be solved numerically. At high temperature,

the classical limit is recovered. By equipartition law, one has 〈u2
z〉 ≈ kBT

Mω2
SCH

, which gives

rise to
Mω2

SCH

2 ≈ γkBT

Mω2
SCH

− K̃ (2.75)

Solve it to have

Mω2
SCH =

√
K̃2 + 2γkBT − K̃, (2.76)

from which one infers (1) if K̃ is very small, then 〈u2
z〉 ∼

√
T while (2) if K̃ is very large,

then 〈u2
z〉 ∼ constant. From an mean-field (MF) point of view, we can define a critical

temperature Tc at which χ0J0 = 1, where χ0 = (Mω2
SCH)−1 is the bare susceptibility and

J0 denotes the molecular field strength. Thus, case (1) results in Tc ≈ J2
0

2γkB and (2) leads to

Tc ≈ J0K̃
γkB

. Especially, we notice that, the MF susceptibility χ−1 = χ−1
0 −J0 = Mω2

SCH−J0

goes as
√
T −
√
Tc in case (1) but as T −Tc in case (2). Experimentally, it seems the latter

case that was observed in both BTO and STO.

This high temperature behavior is expected to break down at low temperatures. In fact, at

extremely low temperatures, the coth function approaches unity and the position fluctua-

tion is no more than that of a simple oscillator over its ground state. Thus, the frequency
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satifies the following equation,

M

2 ω2
SCH = ~γ

2MωSCH
− K̃ (2.77)

which always has a single positive solution inside [0, ~γ
2MK̃

]. Its exact form looks cubersome

and is not needed. We again look at two extreme cases. In (1) small K̃ case, the solution

is located about ( ~γ
M2 )1/3. On the other hand, in (2) large K̃ case, it is about ~γ

2K̃M . See

that the parameter K̃ actually controls the potential well separation and depth. Now the

〈u2
z〉 goes as 1

2( ~2

Mγ
)1/3 in (1) but as 2l20 with l0 =

√
K̃
2γ in (2).

Here we deduce a poor man’s criteria for ferroelectricity by comparing two temperature

scales. Let’s note that, the classical limit eq.2.76 suggests that, an instability is bound

to happen at any non-vanishing J0. However, as temperature goes down, departure from

this limit gradually dominates and eventually the quantum limit eq.2.77 sets in. Suppose

this crossover occurs at a temperature T ∗. If the classical temperature Tc introduced

above lies far below the T ∗, the instability can eventually be stabilized by quantum effects.

Therefore, the criteria is deciphered as Tc > T ∗. A rough estimate of T ∗ can be obtained by

considering an oscillator under increasing temperature. Thermal effects become discerbible

only for temperatures higher than that corresponding to the gap between the oscillator

ground state and the first excited state, which is ~ωSCH with ωSCH satifying eq.2.77. This

provides an expression for T ∗, i.e., T ∗ = ~ωSCH
kB

. Now, the criteria translates into the

following inequalities,

(1) : ~4γ4

M2 <
J6

0
8 , for small K̃

(2) : ~2

2MJ0
< 4l40, for huge K̃ (2.78)

Let’s note that this criteria actually summarizes the effects of quantum fluctuations on
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ferroelectricity. For case (2), it might be conventient to work with l4c ≡ ~2

8MJ0
. Therefore,

the condition becomes l0 > lc.

As useful as it is, the SCHA basically grabs only the coherent inter-well motions. Under

certain circumstances, the intra-well motions can become prevailing and take up most

time, while at the same time inter-well motions get incoherent. These features are missed

in SCHA. To have some feel for the applicability of SCHA, we derive some simple rules.

Let’s at first presume well-defined intra-well states. Expand the potential about, let’s say,

uz = l0 and one finds to the second order in δ = uz − l0 that 2K̃δ2 − K̃2

4γ . The motions

of δ can then be approximated as that of an oscillator with frequency ωwell =
√

4K̃
M
. Self-

consistency implied in the expansion requires 〈δ2〉 to be smaller than l20. For very smallM ,

a well cannot accommodate many states and quantum fluctuations dominate, and thus,

〈δ2〉 = ~
2Mωwell

= ~
4
√
K̃M

, which leads to M > ~2

16K̃l40
. For huge M , many states can be

admitted in a well, and thermal fluctuations are more relevant, giving rise to 〈δ2〉 = kBT
Mω2

well

and T <
4K̃l20
kB

. In the quantum case, for a well to accommodate at least one state, one

should have 1
2~ωwell <

K̃2

4γ . It follows that M > 4~2

K̃l40
. From a quantum point of view,

intra-well motions are reasonable only if at least two levels can be admitted within a well,

namely, 3
2~ωwell <

K̃2

4γ , or equivalently, M > 36 ~2

K̃l40
. Therefore, SCHA is likely to be valid

for temperatures above TSCHA = 4K̃l20
kB

and particle mass smaller than MSCHA = 36 ~2

K̃l40
.

2.4 Other Models

At this stage, it should be appropriate to give a brief overview of the models that have

engrossed certain amount of attention in studying ferroelectrics. We shall cover a few of

them below. They are chosen because of their intimacy with the model presented above.
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2.4.1 Vanderbilt Model

Considering that the most relevant degrees of freedom to ferroelectricity should be the

soft mode (transverse optical) and the strain (accoustic), Vanderbilt et al. developed an

ab-initio-type computational scheme to comprehend the instability physics[18, 48]. Their

model Hamiltonian Etot is expressed in terms of a local variable ~u, which is actually pro-

portional to the dipole associated with a unit cell, and strain variables η (following their

notation). The strain variables are split into their homogeneous part ηH and inhomoge-

neous one ηI . The Etot encapsulates a self-energy term of the local mode Eself , a dipolar

interaction term Edip representing the electrostatic energy and a short-range interaction

term Eshort taking care of the short-range interaction between the local variables, in ad-

dition to an elastic energy term Eelas due to strains and an interaction between the local

dipoles and the strains. In this model, Eself takes a form that coincides with that of VT i

in HT iO3 developed in the last section.

The Vanderbilt model has gained tremendous momentum in the past few years[108, 109],

because of its power in studying ground state properties. Although only one optical mode

plus the accoustic modes is included, the model is still too complicated for analytical study.

Therefore, its efficiency is largely based on computers. All parameters are obtained based

on density functional theory and then input in the model, which is further subjected to

molecular dynamics simulations or Monte Carlo study to extract useful information. This

model is basically the same as the one employed to explain NMR data regarding the Ti

off-center shifts. Note that, the local variable essetially amounts to the Ti displacement:

the local variable is a linear combination of the displacements of all the atoms in a unit cell,

with the weight predominantly centered on the Ti atom. Most work based on this model

focuses on ground state properties and static properties. Although qualitatively correct,

the transition temperatures are often underestimated in comparison with observations.

Obviously, since it captures only the lower frequency modes, it can not shed light on the
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complete optical spectrum.

An essential difference between the Vanderbilt model and the model developed in this

thesis is that, the former keeps only one optical mode in addition to all accoustic modes

and their couplings, whereas the latter includes all optical modes and their interactions.

That is why the latter can be used to study IR or Raman spectrum covering the entire

frequency regime but the former fails to do so.

2.4.2 Migoni-Bussmann Model

Motivated by the extraordinary activity of O anions in crystal environment, Migoni et al.

came up with a non-linear shell model that includes an intra-ionic coupling energy in the

relative displacement between the O core and its shell[28, 94]. In particular, this coupling

is tailored to be anisotropic: it is quartic along the O-Ti chain but quadratic in the O-

A plane. Such anharmonicity is anticipated to cause phonon softening and nano-cluster

(self-induced intrinsic inhomogeneity) relaxation phenonema[68, 112], as already exhibited

in early work[67, 110, 111]. Simplified and modified versions have appeared subsequent

to the orginal proposal, among which the most often used in recent years assumes that

the physics can be captured by a one-dimensional toy system[29]. This toy system is

comprised of a chain of TiO3 − A units. The TiO3 is treated as a core-shell object while

the A is simply a rigid ion. A harmonic nearest neighbor interaction between the A and

the TiO3 shell is assumed, in addition to a double-well-type anharmonic coupling between

the core and the shell within the same TiO3. No other but the nearest neighbor core-core

interactions are imposed. Explicitly, the energy reads (in their notations)

1
2
∑
n

[M1u̇
2
1n + m2u̇

2
2n + f ′(u1n+1 − u1n)2 + f(v1n − u2n)2

+ f(v1n+1 − u2n)2 + g2w
2
1n + 1

2g4w
4
1n] (2.79)
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where M1 and m2 denote the mass of the TiO3 core and that of the A ion, respectively,

while the w = v1n − u1u is the relative displacement between the core and the shell. The

shell is taken massless. The values of the introduced parameters are listed in TABLE2.1.

Note that, g4 > 0 and g2 < 0, resulting in an effective on-site double-well potential for the

core.

Table 2.1: Parameters for the Migoni-Bussmann model. Units: f , f ′, g2: 104gs−2; g4:
1022erg; m1, m2: 10−22g.

Compounds f f ′ g2 g4 m1 m2
STO16 14.41 1.27 -1.41 1.57 1.55 1.46
STO18 14.41 1.27 -1.41 1.57 2.17 1.46
KTaO3 4.07 0.58 -0.49 0.51 2.88 0.65

This model has been applied to a number of problems and produced many interesting

results[113, 114, 115, 116, 117, 118, 119], which may be surprising at first glance since it

does not explicitly specify the character of the Ti ions at all. It is widely believed that,

such character holds the key to ferroelectricity in perovskites. This puzzle may be resolved

by observing that, this model has actually similar mathematical structure to that of the

Vanderbilt model, which partly explains its success. Both contain two types of variables

coupled to each other, with one of which subjected to certain multi-well potential. They

differ in physical interpretations. In the Vanderbilt model, the anharmonicity is due to Ti

ions while in the Migoni-Bussmann model it is supposed to stem from O ions. The strains

in the former play the part of the A-sublattice variables in the latter. The former model

has very clear atomistic basis, while the latter is elusive, especially in its modified versions,

where the Ti and O have been lumped together. Despite all these, the Migoni-Bussmann

model can hardly explain the isotope exchange effect observed in STO system.

It should be noted that, the latest version of this model as sketched in eq.2.79 is similar

to HT iO3 in mathematical structure. In both models, multi-well potentials appear with

certain constituents (anharmonicity centers), which are coupled then to other phonon-type
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variables. However, they differ greatly in physical interpretations.

2.4.3 Girshbirg-Yacoby Model

This is a typical spin-phonon model, in which a spin component and a phonon component

are taken into account. Although it was instigated by Kobayashi[32, 120], its applications

to perovskites were only considered in the work of Girshberg et al.[33, 34, 88, 36, 83].

The basic impetus behind their work is to account for the apparent coexistence of the

so-called displacive and order-disorder phenomena. By ’displacive’, what is usually meant

is the observation of a mode whose frequency disperses to zero as the system approaches

transitions. By ’order-disorder’, one may have in mind either a robust multi-well potential

surface or a relaxation displaying critical slowing down (i.e., relaxation time tending to

infinity). Therefore, in their model, two types of degrees of freedom have been included,

namely, a soft phonon assumed to carry the displacive part and a pseudospin to take the

order-disorder part. The Hamiltonian in their notations then reads,

:
∑
~p

Υ(~p)σz~pσz−~p +
∑
i

Ω0σ
x
i +

∑
~q

ω(~q)b†~qb~q

+ 1√
N

∑
~k

f(~k)
ω0(~k)

√√√√ω0(~k)
2 (b~k + b†−~k)σ

z
−~k (2.80)

where σ denotes the Pauli matrice to describe the pseudospin, while b†~q (b~q) generates

(annihilates) a phonon with energy ω(~q). The zone center phonon is supposed to be

the soft phonon, whose frequency depends on temperature in a Barrett form. According

to these authors, ω(~q) and ω0(~q) correspond to the renormalized and bare frequencies,

respectively. Further, Ω0 is assumed to be the spin flip frequency. Obviosuly, they have

assumed that, the pseudospin encapsulates the Ti motions.

They have also attempted to construct a miscroscopic theory to interpret the origin of
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the psedugospin and the soft phonon[34, 88]. Their scenario is morally based on vibronic

(i.e., electron-phonon) interactions. They included both transverse and longitudinal opti-

cal phonons, which are then supposed to be strongly coupled to electrons. Coupling to the

former was held by them to produce interband (valence-conduction) electronic transitions

that would soften the transverse phonons, whereas coupling to the latter was assumed to

cause intraband transitions that would lead to small polaron formation and new equilib-

rium positions for the ions. Such a picture has several loopholes. Firstly, it contradicts

the idea that the Ti off-center shift should be due to inter-band transitions. Secondly,

the off-center shift predicted by them has a clear temperature dependence, which however

has not been observed. Perhaps, a more urgent question is, what is the nature of the soft

phonon in their model?

A striking similarity between this model and theH8CM can be noticed. A Ti ion is taken as

a spin in both the H8CM and the Girshberg-Yacoby model, but it is coupled to unidentified

phonons in the latter whereas O vibrations in the former. In comparison with HT iO3 , both

have ignored that, a Ti ion should in reality be a soft spin, instead of a regid one.

2.5 Summary

We have discussed meticulously the eight-well potential model as encapsulated in eq.

(2.59). The discussions were largely based on microscopic considerations. It is essential

to have experimenal evidences for the necessity of this model. As we will argue in the

coming two chapters, there are indeed many circumstances where this model provides the

crucial link in comprehending the observations. In such cases, the double-well potential

model turns out to be insufficient. Surely, there are cases where the latter model captures

the physics. It should be noted that, both the anisotropic rotor model and eight corner

model are no more than representatives of the eight-well potential model: they share the
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eight-well structure. The former two are easier to handle mathematically.
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Chapter 3

APPLICATIONS TO BTO

In this chapter, we discuss the dielectric properties of BTO in light of the model we set

up in the last chapter. We shall at first perform very general discussions on the relation

between ferroelectricity and the topograph of VT i. Then we go on to clarify the identity

of each observed transverse optic mode and show how such assignment could agree with

experiments, followed by considering several specific issues such as axial dispersions and

spectral weight transfer phenomena.

3.1 Preliminary Remarks

We begin with the equations of motions, which formally read

Ṗρ(~q) − Fρ(~q) = −∂[VTi + VT i−O + Vext]
∂uρ(−~q)

, u̇ρ(~q) = Pρ(~q)
M

ṗρ|ρ′(~q) − Fρ|ρ′(~q) = −∂[VO + VT i−O + Vext]
∂Uρ|ρ′(−~q)

, U̇ρ|ρ′(~q) = pρ|ρ′(~q)
m

(3.1)

Here the Vext signifies the coupling between the dipole

~dl = zT i~ul+(zlUlx|x+zt[Uly|x+Ulz|x], zlUly|y+zt[Ulx|y+Ulz|y], zlUlz|z+zt[Ulx|z+Uly|z]) (3.2)
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and an external electric field formed as ~El = ~E0 cos(~q ~Rl), namely, Vext = −∑l
~dl · ~El =

−[~d(~q)+ ~d(−~q)] · ~E0. The uniform susceptibility function then obtains for ~q ∼ 0, χρ,ρ′(ω) =
∂dρ(ω)

a3
0∂Eρ′ (ω) , where ~d(ω) and ~E(ω) are the Fourier tansforms of ~d(t) and ~E(t), respectively.

We write χzz = χc and χxx = χa for convenience. In addition, the F -forces are included

due to environment, which each can be split into a friction and a noise, as to be specified

where appropriate. Although the equations are written in classical forms, they should be

understood also as for the quantum mechanical case with proper interpretations of the

symbols.

As seen in the expression of HT iO3 eq. (2.59), the quartic terms give rise to scatterring

between phonons with different momenta, and therefore, in general ~q is not a good quantum

number and cannot be conserved. Throughout the thesis, we are mostly considering how

a compound responds to an external electric field that is either static or carried by long

wavelength electromagnetic waves. It is desirable to have an effective theory that involves

explicitly only the long wavelength phonons. To this end, approximations are in need. As

the first approxiamtion, we may assume as in section 2.3.5 that the quartic term in VO

can be either simply dropped or dealt with using SCHA, so that VO becomes harmonic in

effect. This approximation may be justified: (1) experimetally, the modes assigned to O

vibrations display little temperature dependence (see chapter 1 and the next section); (2)

the O mass is likely to be smaller than MSCHA, rendering the use of SCHA. In the second

approximation one may introduce a self energy to handle the quartic terms in VT i. This

consists of a single substituion,

: ∂

∂uρ(−~q)
∑

υρρ′uρ(1)uρ(2)uρ′(3)uρ′(4)δ̄(1 + 2 + 3 + 4)

=⇒
∑
ρρ′

∫ t

−∞
Σρρ′(~q; t− t′)uρ′(~q, t′) dt′ (3.3)

where Σρρ′(~q; t− t′) stands for the self energy term, which can be calculated only approxi-
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mately through e.g. diagramatic methods. It is often to neglect the frequency dependence

of such term, i.e., Σρρ′(~q; t − t′) ≈ Σρρ′(~q)δ̄(t − t′). Also, it is thought that Σρρ′ = Σρ′ρ.

With the above substitution, decoupling between different ~q modes have been achieved.

However, the above self-energy treatment can not be valid if the quartic terms are ex-

tremely anharmonic, which is the case with BTO. Despite this, this treatment shall prove

useful in dealing with certain aspect of such potential, as to be described below. Consid-

ering BTO is a prototypical ferroelectric, we shall postulate, in accord with observations

as carefully discussed in section 1.6, that K > 0 and K̃l > 0 as well as Kt > 0, all with

negligible temperature dependence in most cases. In addition, γ > 0 while α < 0, with

α + 3γ > 0 necessary for lattice stability. These inequalities allow us to have 8CM as

a starting point for discussions. Nevertheless, the 8CM has a defect: only inter-corner

motions are counted on.

There are circumstances where the intra-corner motions hold the key. To take into account

both types of motions, one may from the outset represent them separately by writing the

Ti displacement vector as ~u = l~S + ~D. Here ~S = (±1,±1,±1) give the positions of the

eight corners and can be deemed as spin-type variables, and ~D stands for the deviation

from a corner by definition. Obviously, the values of ~D must be consrained so that the

physical space remains the same as in the original representation. This constraint can

be automatically satisfied if the deviations are assumed small in comparison with l, as is

often the case with the low energy sector of a system’s phase space. Noting the symmetry

between the values of ~S, it might be convenient to write ~D = (SxYx, SyYy, SzYz). In terms

of this ~Y , one may expand up to quadratic terms the VT i as

a~Y 2 + b[YxYy + YyYz + YzYx], a = Mω2
cor = 2γ − α

3γ + α
K, b = 4γ + 2α

3γ + α
K (3.4)

Consider a Ti ion moving in this potential. The eigen-frequencies can be obtained by
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solving the following secular equation

∣∣∣∣∣∣∣∣∣∣∣∣

M(ω2 − ω2
cor) −b −b

−b M(ω2 − ω2
cor) −b

−b −b M(ω2 − ω2
cor)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.5)

which gives

M3(ω2 − ω2
cor)3 = 2b3 + 3b2M(ω2 − ω2

cor) (3.6)

Three solutions are expected to exist, since the matrix is hermitian. These solutions are

close to one another as long as b is not large in comparison with a, as is the case with

BTO (see next subsection). Basically this is because γ and α have opposite signs but

nearly equal in magnitude. Therefore, the intra-corner motions as described by ~Y can be

regarded as simple harmonic. As for the inter-corner motions, the 8CM can be employed.

Unsurprisingly, couplings between these two types of motions are bound to be induced by

those anharmonic terms not included in the above expansion in ~Y .

According to the arguments presented above, the degrees of freedom of the system can be

taken to be ~S and ~Y in addition to those ~U of the O ions. As we discussed, both ~Y and
~U describe harmonic oscillators, which involve three different frequencies ωcor, ωl ≡

√
2K̃l
m

and ωt ≡
√

2Kt
m

. On the other hand, the properties of ~S are not that clear. Actually,

the ~S and the ~Y are intimately correlated, as anticipated from the fact that they were

created from the same origin. An important consequence is that, their spectral intensities

put together have to be nearly conserved and hence, when the ~S roars in the spectrum,

the ~Y has to decline, and vice versa. Such phenomena are obviously in parallel with

the discussions on double-well potential, where the inter- and intra-well motions compete

in intensity. Analogous reasoning (section 2.3.6) applies here: as the fluctuations in ~Y

increase, more spectral intensity will be inhabited by ~S. We shall present quantitative
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discussions later on.

This preliminary analysis prescribed above is intended to guide us in identifying the char-

acter of the observed dielectric modes in BTO.

3.2 Length Scales: A Poor Man’s Criteria For Ferro-

electricity

The 8CM refers to a cube in describing the effective Ti states. This cube has an edge

length of 2l = 2
√

K
2(α+3γ) . In chapter 2, we have already seen how a SCHA treatment of a

double-well model could lead to a criteria for ferroelectric instability. There two important

length scales were introduced, l0 and lc. What is peculiar about these scales is that, l0

gives pure information about the landscape of the potential surface and has nothing to

do with the ion that moves in this potential while the lc characterizes sheerly this ion and

has nothing to do with the potenial. The derived criteria consists of a simple inequality,

l0 > lc, which looks very beautiful. We may establish an approximate relationship between

l0 and l like this: see that l0 =
√

K̃
2γ and K̃ ≤ K − 2(2γ + α)l2 according to eq.(2.68),

where we have used that u2
0 ≥ 3l2 by 8CM. Hence, one gets l0 ≥ l, which shows that l sets

a lower bound for l0. The quantity of l0 − l is small if K̃ is large but big otherwise.

According to eq.(2.78), lc is related to the molecular field strength J0 as lc = ~2

2MJ0
. In

the large K̃ limit, as supposed here, one can follow the route designed in section 2.3.4 to

reduce the double-well model to a PSM of Ising type. Applying MF theory to the PSM,

one can relate the J0 to the transition temperature Tc as J0l
2
0 = kBTc. The condition that

l0 > lc then becomes

~2

8MJ0
= ~2

8MkBTcl
−2
0

< l40, or equivalently, l20 > l̃2c ≡
~2

8MkBTc
(3.7)
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Using experimental values of Tc, l̃c can thus be evaluated. They are listed in TABLE.3.1 for

various ferroelectrics. Unfortunately, I have not come up with a reliable way of estimating

l0 and l. Note that, the lc for STO18 seems fairly large, indicating that l0 has to be as

great as ∼ 7pm. This may not contradict the observation that l might be less than 5pm,

for the reason that l0 ≥ l and that the K̃ may not be so large as required for the use of

the inequality l0 > lc.

Table 3.1: Estimated l̃c for various compounds.
Compounds BTO STO18 KNbO3 NaNbO3

Tc 405K 24K 708K 73K
l̃c 1.57pm 6.32pm 0.85pm 2.66pm

3.3 Character of The Dielectric Modes

3.3.1 Qualitative Discussions

We at first talk about the modes situated about 170cm−1 and 510cm−1. These modes were

given different names in the cubic phase and the tetragonal phase. In particular, they are

called TO2 and TO4 in cubic phase with dielectric function ε, but f2 and f4 in tetragonal

phase with εa while LM and AM also in tetragonal phase yet with εc. The characteristics

such as temperature dependences of line width and positions have been carefully discussed

in chapter 1. We give a brief summary here: they are

• observed in all phases (ε, εa and εc) with their characteristics essentially unchanged;

• likely of resonance type in the sense that they are sharp and underdamped, with

very small damping rate;

• essentially temperature independent;
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• not only found in BTO, but also in STO and with basically the same characteristics;

• about 4% downward shifted on average if O16 is exchanged for O18.

All these features point to insignificant anharmonicity associated with these modes. In our

model as explained at the beginning of this chapter, the only modes that are comparable

to these modes are those connected with O vibrations, which have frequencies of ωl and ωt,

respectively. As shown in chapter 2, ωl < ωt due to covalent bonding effects. Therefore,

we assert that the 170cm−1 mode should be primarily attached to the O vibrations along

the Ti-O-Ti direction while the 510cm−1 one to perpendicular O vibrations.

We proceed to other modes, which have contrasting properties in comparison with the O

modes assigned above. Consider in the first place εc in the tetragonal phase. As discussed

in chapter 1, εc displays two strongly correlated modes, apart from those O modes. They

have been denoted by DM and SM , respectively. Their most pertaining features are

summarized below:

• Both were seen very sensitive to temperatures;

• DM was firmly established as a relaxation mode;

• SM was found likely to be a resonance mode;

• Complete spectral intensity transfer has been found between them: as the tetragonal-

cubic transition is approached, all the intensity of SM has been found quickly trans-

fered to the DM; when the transition point is receding, however, the SM has been

found absorbing most intensity while the DM is nearly not discernible.

The last point crucially shows that, according to the model presented in the last chapter,

both DM and SM should originate from the Ti motions. They are expected to corre-

spond basically to the inter- and intra-corner motions, respectively. The anharmonicity

with Ti motions is compatible with the first point. Actually, computer simulations[60]
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also vindicate this assignment: the relaxation rate of DM was shown to be of the same

magnitude of the rate associated with local dipole reorientation between previlaged and

disfavored (due to molecular field built in the ordered phase) directions.

Let’s see how the proposed scenario interprets the modes perceived in ε and εa. Consider

εa at first, which quantifies the response to an external electric field applied along a-axis

(In the tetragonal phase, the spontaneous polarization ~Ps is supposed to be along the

c-direction, i.e., z-direction). It probes the Ux,y,z|x and ux = lSx + Dx. Note that, in

tetragonal phase, 〈ux〉 = 0. Within 8CM, this indicates that the previlaged corners (those

with Sz = 1) are equally populated regardless of Sx: no ordering in Sx. Henceforth,

differing from the case with εc, in which Sz contributes little (except near Tc) while Yz

overwhelms, the case with εa has Sx at work while Yx suppressed, for reasons similar to

those stated in discussing DWA and SCHA. We thus expect three peaks, among which two

should stem from O vibrations and are hence located around 170cm−1 (f2) and 510cm−1

(f4) while the third (f1) comes from thermal Ti motions among the four previlaged corners

(~S = (±,±, 1)). In this picture, f1 roughly meaures how fast a Ti ion hops among the

corners. The hopping rate obviously depends on temperature (e.g., Arrhenius’ law). As

temperature goes up, f1 is expected to increase, in consistency with observations[58]. In

fact, Burns et al. observed that f1 increases from about 35cm−1 at room temperature to

about 60cm−1 near Tc = 405K.

Now we divert to ε in the cubic phase. Obviously, the O vibrations should still manifest

themselves as two peaks about170cm−1 (TO2) and 510cm−1 (TO4), respectively. As re-

gards the Ti motions in this phase, one has to see that there is no previlaged corner in

the 8CM. In other words, intra-corner motions are again suppressed (vanishing spectral

weight) and only inter-corner motions can be detected. Imagine applying an electric field

in the z-direction. As in εa, the inter-corner hopping rate along z-axis, or say, the rate of

fliping Sz between 1 and −1 should depend on temperature in a similar way. Especially,
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as the phase transition gets closer, this rate is expected to decrease, a phenomenon known

as critical slowing down. Just at the transition, the flip period diverges and the rate

becomes zero. Such slowing down will show up in hyper-Raman scattering as a central

peak. Up till now, we have spoken of three peaks in ε. Surprisingly, there is an additional

peak, which could exist if robust nano-polar clusters were formed in the phase. Suppose

one-dimensional clusters, i.e., chains, can form in the cubic phase. Within each chain, the

Ti ions are each assumed to occupy preferentially four of the respective eight corners just

as in tetragonal phase, and the previleged fours for each ion are the same with respect

to the corresponding cube. In other words, each chain is ordered within itself, but no

ordering between chains. Such ordering must be stable, i.e., the chain size should not be

sensitive to temperatures. Since these chains are randomly oriented, there must be chains

lying perpendicular to c-axis. For such chains, the applied electric field probes actually

the f1 mode that is usually associated with εa. If such chains really exist, f1 should exist

around 60cm−1 at the critical point, where the Sz hopping rate vanishes. Indeed, the

as-prescribed scenario is compatible with experiments, as discussed in chapter 1.

In summary, we have explicated all the observed modes in terms of the model presented in

chapter 2. The explanation has employed two assumptions: (1) there is complete spectral

weight transfer between inter- and intra-corner motions and (2) chain formation. Point

(1) finds support from various existing simulations, while point (2) seems lacking sufficient

discussions in the literature. We’ll turn to them later. It is appropriate to stress that, no

other models have been capable of giving a picture as complete as the one presented above.

3.3.2 εc: The Dielectric Constant Along Polar Axis

We here discuss quantitatively εc, which characterizes the response of the polarization

in z-direction to an external electric field in the same direction. Since the tetragonal

phase is involved, we may focus on the dynamics along c-direction and forget about other
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directions. Therefore, we employ the DWA to do the work. Now the Hamiltonian relevant

to this case can be cast as

Hc =
P 2
j

2M + γZ4
j − K̃Z2

j +
p2
j|ρ

2m + 1
2mω

2
l Z

2
jz + 1

2mω
2
t (Z2

jx + Z2
jy)

+ Zj{βl(Zjz + Zj−z) + βt(Zjx + Zj−x + Zjy + Zj−y)} (3.8)

where we have written Zj = uj|z and Zjρ = Ujρ|z and the P as well as p refer to the

z-components. Summation over j is implicit.

The double-well potential on Ti ions can be dealt with following the afore-prescribed

recipe: if intra-well motions take up a negligible amount of intensity, then SCHA can be

invoked; other wise, one has to consider this type of motions in addition to the inter-well

motions. It is the latter case that is present with εc, as affirmed before. Thus, we put

Zj = l0σj + Dj, with σj incurring the inter-well dynamics and Dj the intra-well part.

Differing from the rigid spin variable ~S used in preceding discussions, the σ introduced

here is free from the restriction that σ2 = 1. Rather, it is allowed to fluctuate, which equals

to displacing the intra-well oscillator a bit. The required slightedness can be ensured in

the large l0 limit, which is realistic for BTO.

In terms of these variables, the double-well potential becomes

: K̃2

4γ (σ4
j − 2σ2

j ) +D2
j K̃(3σ2

j − 1) + 2DjσjK̃l0(σ2
j − 1)

+ higher order terms in Dj to be ignored (3.9)

Evidently, the first term just works to prevent σj from large fluctuations. Such fluctu-

tations disappear in the limit K̃2/γ → ∞. The following two terms represent couplings

between σj and Dj. Now that the fluctuations are small in σ2, we may safely replace

in these two terms the σ2 by its thermodynamic average 〈σ2
j 〉 = σ̄2, as done in Hartree
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approximation in electronic theory. In the large l0 limit, no coherent hopping between

σj = 1 and σj = −1 exists. Therefore, the inter-well dynamics are utterly incoherent.

On the other hand, the intra-well motions are that of a simple harmonic oscillator with

frequency ωwell =
√

2K̃(3σ̄2−1)
M

.

At the same time, the original Ti-O interaction terms give rise to couplings between σj

and Zjρ, which reads

l0σj{βl(Zjz + Zj−z) + βt(Zjx + Zj−x + Zjy + Zj−y)} (3.10)

and between Dj and Zjρ, which reads

Dj{βl(Zjz + Zj−z) + βt(Zjx + Zj−x + Zjy + Zj−y)} (3.11)

In obtaining the equations of motions, one has to treat σj separately from variables Dj and

Zjρ, because the former has no inherent dynamics and performs only incoherent motions

due to environment while the latter perform largely coherent motions that are governed

by their own properties through dynamical laws. According to these laws, we have

MD̈j = −Mω2
wellDj − {βl(Zjz + Zj−z) + βt(Zjx + Zj−x + Zjy + Zj−y)}

− 2K̃l0(σ̄2 − 1)σj + zT iEj −MΓwellḊj (3.12)

mZ̈jx = −mω2
tZjx − βt{l0(σj + σj+x) +Dj +Dj+x}+ ztEj −mΓtŻjx

mZ̈jy = −mω2
tZjy − βt{l0(σj + σj+y) +Dj +Dj+y}+ ztEj −mΓtŻjy

mZ̈jz = −mω2
l Zjz − βl{l0(σj + σj+z) +Dj +Dj+z}+ zlEj −mΓlŻjz

where we have included the external electric field Ej and friction terms Γwell,l,t to account

for line broadening and damping.

To establish the time dependence of σj, there have appeared a few ways. In one way,
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the dynamics of σj are described as stochastic process and master equations were used.

This can be exemplified in Glauber method, which is more suitable for discrete-valued

variables, but σj is contiuous. In another way, σj is construed as the cooridnate of certain

virtual particle with vanishing mass interacting with a subsystem of harmonic oscillators

that simulate the heat bath, so that the normal dynamical laws can be directly used; the

physical results are then obtained by letting the mass vanish. This method is microscopic

but cumbersome. We here employ a method based on Langevin descriptions that was

developed for massive Brownian particles and glassy dynamics[121, 122, 123]. In this

method, the heat bath is dealt with in a phenomenological way and assumed mainly

to bear two effects: producing noisy forces and causing dissipation. Thus, equations of

motion for σj are given as

Mσl0σ̈j = − ∂Hc

∂l0σj
−MσΓσl0σ̇j + ηj(t) + zσl0Ej (3.13)

where Mσ denotes the virtual mass to vanish later, zσl0 the effective charge associated

with inter-well motions (see that zσ does not have the dimension of charge but zσl0 does)

and ηj(t) a random Gaussion force satisfying the following statistical properties by virtue

of Einstein relation,

〈ηj(t)〉 = 0, 〈ηj(t)ηi(t′)〉 = 2kBTMσΓσ δ̄ij δ̄(t− t′) (3.14)

Now dividing both sides of eq.3.13 by (l0β)−1 = kBT/l0, we find

Mσl
2
0βσ̈j = −∂Heff

∂σj
−MσΓσβl20σ̇j + η̃j(t) + zσβl

2
0Ej (3.15)
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where Heff = βHc, and the η̃ satisfies

〈η̃j(t)〉 = 0, 〈η̃j(t)η̃i(t′)〉 = 2βl20MσΓσ δ̄ij δ̄(t− t′) (3.16)

Keep τ = βl20MσΓσ finite but let Mσ vanish to yield

τ σ̇j = −∂Heff

∂σj
+ η̃j(t) + z̃Ej, z̃ = zσβl

2
0 (3.17)

which provides the basis for discussing the σ dynamics. Explicitly, we have

τ σ̇j = r(σj − σ3
j )− βµl0Dj + η̃j(t) + z̃Ej

− βl0{βl(Zjz + Zj−z) + βt(Zjx + Zj−x + Zjy + Zj−y)} (3.18)

Here r = βr̄ = K̃2

γkBT
and µ = 2K̃(σ̄2 − 1).

Now we conduct Fourier tranforms to turn the equations of motion established above into

their frequency-momentum representation. Multiplying both sides of each equation by

exp(i{~q ~Rj − ωt}) and then integrating over the entire time domain as well as summing

over all unit cells, we arrive at



G−1
D µl0 βlCz βtCx βtCy

µl0 G−1
σ l0βlCz l0βtCx l0βtCy

βlCz βll0Cz G−1
l 0 0

βtCx βtl0Cx 0 G−1
x 0

βtCy βtl0Cy 0 0 G−1
y





D(~q, ω)

σ(~q, ω)

Zz(~q, ω)

Zx(~q, ω)

Zy(~q, ω)


=



zT iE(~q, ω)

zσl
2
0E(~q, ω) + β−1η̃(~q, ω)

zlE(~q, ω)

ztE(~q, ω)

ztE(~q, ω)


(3.19)

Note that, there is no entanglement between variables with different ~q. In the above, we
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have written Cρ = 2 cos qρ
2 and

G−1
D = M(ω2

well − ω2 − iΓDω), G−1
l = m(ω2

l − ω2 − iΓlω), G−1
x,y = m(ω2

t − ω2 − iΓtω)

G−1
σ = β−1{r[Σ(~q, ω)− 1]− iωτ}, X(~q, ω) =

√
1

2 N3

∑
j

∫ ∞
−∞

dt exp(i{~q ~Rj − ωt})Xj(t),

with X = σ,D, Zx,y,z, E, η̃ (3.20)

Note that inG−1
σ we have introduced a self-energy term (see the first subsection for details),

Σ(~q, ω), which is supposed to solve the following equation:

∑
j

∫ ∞
−∞

σ3
j (t)ei(~q

~Rj−ωt)dt = Σ(~q, ω)σ(~q, ω) (3.21)

Its frequecy dependence is often neglected, as to be done in what follows. Under such

approximation, the form of Gσ belongs to a relaxation mode with effective relaxation rate

r(Σ~q − 1)τ−1. More clearly, we rewrite it as

Gσ = β

r(Σ~q − 1) ·
1

1− iω τ
r(Σ~q−1)

(3.22)

Since we are mainly interested in the small ~q repsonses, we then look at when ~q = 0,

in which case Cρ = 2 regardless of ρ. Therefore, this case possesses a bigger symmetry.

Because of this symmetry, we construct two combinations from Zx(~q = 0, ω) and Zy(~q =

0, ω), namely,

Zt(ω) = Zx(~q = 0, ω) + Zjy(~q = 0, ω), Z̄(ω) = Zx(~q = 0, ω)− Zy(~q = 0, ω) (3.23)

It can be easily shown that, the mode Z̄ has no couplings to the external electric field

E(ω) = E(~q = 0, ω) and to all the rest variables such as Zl(ω) = Zz(~q = 0, ω), σ(ω) =

σ(~q = 0, ω) and D(ω) = D(~q = 0, ω) as well as Zt(ω). Therefore, this mode can be simply
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disregarded from now on, since it can be neither directly nor indirectly detected by E at

all. The dynamic equation (3.19) can then be reduced to exclude this mode. One finds,



G−1
D µ 2βl 2βt

µ G−1
σ 2βl 2βt

2βl 2βl G−1
l 0

2βt 2βt 0 G−1
t





D(ω)

l0σ(ω)

Zl(ω)

Zt(ω)


=



zwellE(ω)

zσl0E(ω) + (l0β)−1η̃(ω)

zlE(ω)

ztE(ω)


(3.24)

Here G−1
t = 1

2G
−1
x , G−1

σ is obtained through multiplying the G−1
σ in eq.3.19 by l−2

0 . We

have chosen zwell 6= zσl0. Hereafter, the 4 × 4 dynamical matrix, which captures all

the information regarding dielectric responses, is to be called Ξ(ω) = Ξ′(ω) + iΞ′′(ω)

containing a real part and an imaginary part. Now the dipole (z-component) is given as

d(ω) = zwell〈D(ω)〉 + zσl
2
0〈σ(ω)〉 + zl〈Zl(ω)〉 + zt〈Zt(ω)〉, with 〈...〉 indicating the average

over the entire noise configuration space. After inverting eq.3.34 and averaging out the

noise, the displacement column can be related to the charge colomn as

Z(ω) = Ξ−1(ω)zE(ω), Z(ω) = 〈



D(ω)

l0σ(ω)

Zl(ω)

Zt(ω)


〉, z =



zwell

zσl0

zl

zt


(3.25)

Whence one has d(ω) = z′Z = z′Ξ−1(ω)zE(ω), with the prime indicating the transpose.

Eventually, the susceptibility is reached as

χc(ω) = 1
a3

0

d(ω)
E(ω) = 1

a3
0
z′Ξ−1(ω)z (3.26)

From which the relative dielectric function is given as εc = ε∞ + χc
ε0
, where ε0 denotes the

vacuum permittivity.
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The explicit expression of Ξ−1 is very complex and won’t be used here. We let the

computer to do the inversion. Before that, however, it is useful to grip some qualitative

message. The structure of χc clearly shows that there are four modes that can be probed:

σ, D, l and t. There are couplings between these modes. The corresponding Green’s

function G... is of a prototypical Debye form for σ and of resonance form for others. It

is therefore expected that four peaks can be seen in the imaginary part of χc vs. ω,

in consistency with observations. The coupling between the σ and D is temperature

dependent, µ = 2K̃(σ̄2 − 1). Besides, the ωwell belonging to D also has a T dependence,

ω2
well = 2K̃M−1(3σ̄2−1). The mode that is responsible for the structural instability should

be the σ-mode, instead of the D-mode, because the latter’s frequency ω2
well, despite its

temperature dependence, is not likely to vanish at Tc, as long as σ̄2 is in the vicinity of

unity. It might be interesting to have some feel about the temperature dependence of σ̄2.

Note that it can be split into two portions: < σ >2 + < σ− < σ >>2. The first portion

may be written as ∼ λ1(1− T
T0

) while the second one is roughly equal to kBTGσ(ω = 0) ∼

λ2(1 − T
T0

)−1 by the fluctuation-dissipation theorem. At low temperatures, the first term

dominates and dictates softening behaviors of ω2
well. Although these expressions provide

an idea, they are never accurate. As regards the form of Σ0, we assume r(Σ0 − 1) ∼ 1

above Tc, so as to produce the mean-field Curie-Weiss law, while below Tc we lend to it

such a form: L1
T ∗

T
− L2, with L1,2 and T ∗ being parameters. This form is inferable from

eqs.(14) and (29) in Ref.[121]. In this thesis, we choose L1 ∼ L2 = L, whose values will

be discussed together with that of T ∗ later.

We have performed numerical computations to obtain εc. The parameters are listed in

TABLE3.2. We have used different charges for the σ- and D-variables, as noted before.

The results are displayed in FIG.3.1-FIG.3.3. Let’s derive some simple constraints re-

garding the choice of paramters. To obtain analytical results, we consider one further

simplication: the couplings between D and other modes are ignored. At first sight there
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is no justifications for this. We however see that, (1) the D-σ coupling as represented by

µ is small as long as σ̄2 is close to unity; (2) the coupling energy between D and l (also

t) should be much smaller than that between σ and l (also t), because 〈D〉 is likely to be

much smaller than l0. Under such approximation, the static dielectric constant is derived

to be

ε(0)− ε∞ = C

T · r(Σ0 − 1)− Tc
(3.27)

with Tc given as

kBTc = 4l20( 2β2
t

mω2
t

+ β2
l

mω2
l

) (3.28)

and the Curie constant C by

C = l20
kBa3

0ε0
(3.29)

× [(zσl0)2 +
z2
l kBTc·r(Σ0−1)

l20
− 4zlzσl0βl

mω2
l

+ 2
z2
t kBTc·r(Σ0−1)

l20
− 4ztzσl0βt

mω2
t

− 8(zlβt + ztβl)2

m2ω2
l ω

2
t

]

Making use of the expression for r(Σ0 − 1), we find on the high temperature side near Tc

ε(0)− ε∞ = Ch
T − Tc

(3.30)

with

Ch = l20
kBa3

0ε0
[(zσl0)2 +

z2
l kBTc
l20
− 4zlzσl0βl
mω2

l

+ 2
z2
t kBTc
l20
− 4ztzσl0βt
mω2

t

− 8(zlβt + ztβl)2

m2ω2
l ω

2
t

] (3.31)

while on the low temperature side near Tc

ε(0)− ε∞ = Cl
T ′c − T

, T ′c = T ∗ − Tc/L (3.32)
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where

Cl = l20
LkBa3

0ε0
(3.33)

× [(zσl0)2 +
z2
l kBL(T ∗−Tc)

l20
− 4zlzσl0βl

mω2
l

+ 2
z2
t kBL(T ∗−Tc)

l20
− 4ztzσl0βt

mω2
t

− 8(zlβt + ztβl)2

m2ω2
l ω

2
t

]

It was known experimentally that Ch ∼ 1.5 · 105K[10], Cl ∼ 4000K[60, 69], Tc ≈ 410K

and T ′c ≈ 420K[60]. From these, we conclude that, L ∼ Ch
Cl
∼ 38 and T ∗ ≈ 435K.

As for the charges, we take data from first principles computations[102], which give zσl0 ≈

7.5e, zl ≈ −6e and zt ≈ −3e. We expect zwell to be close to zσl0. In practice, we choose

it to be 6e. The value of l0 is chosen to be 14pm, as suggested by NMR probes. With

these inputs, we end up with two equations that lend us an estimate of βl and βt. As

for the temperature dependence of ωwell and Γwell as well as the effective relaxation rate

τ−1r(Σ0−1), we also use experimental results[59, 60]. In short, although many parameters

are engaged, they are mostly set by experiments.

Table 3.2: BTO parameters used in numerical results. µ = µ0

√
1− 0.4T−300K

410K , with
µ0 = 10Kgs−2

l0 a0 βl βt
10pm 400pm 20Kgs−2 12Kgs−2

zσl0 zl zt Γwell
7.5e −6.0e −3.0e 20cm−1 · [1 + 1.6 (T−300K)2

12100K2 ]
ωwell zwell τ−1r(Σ0 − 1) T ∗

280cm−1
√

1− 1.2T−300K
410K 6.0e 20cm−1 + 0.6cm−1K−1(Tc− T ) 430K

ωl ωt Γl/ωl Γt/ωt
180cm−1 510cm−1 0.001 0.05

3.3.3 Why is εa much bigger than εc?

In the tetragonal phase, in spite of the ordering in z-direction, the system is as disordered

as in the cubic phase in the perpendicular directions. Within the same DWA formalism
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Figure 3.1: ε′ of BTO

113



Figure 3.2: ε′′ of BTO
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Figure 3.3: Reflectivity of BTO

developed in the last subsection, this fact means negligible spectral intensity for intra-well

motions, which can therefore be left out here. The dynamical equation is then written as


G−1
σ 2βl 2βt

2βl G−1
l 0

2βt 0 G−1
t




l0σ(ω)

Xl(ω)

Xt(ω)

 =


zσl0E(ω) + (l0β)−1η̃(ω)

zlE(ω)

ztE(ω)

 (3.34)

which can be used to calculate the εa following the procedures prescribed before with

new parameters. The quantities are defined in a similar fasion as those with εc. Here

our main interest is to explain the significant discrepancy between the magnitudes of εa

and εc at zero frequency. As mentioned in chapter 1, the ratio εa/εc was measured to be

as big as 30. This has been a puzzle till now. In light of the argument presented with

εc, we should already have an idea why it is so. Basically, this can be understood via

the fluctuation-dissipation theorem, which states that larger fluctuations should lead to

larger susceptibility. In the present case, this theorem tranlates as χρρ ∼ β(〈d2
ρ〉 − 〈dρ〉2).
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Now that the low-ω contribution stems primarily from σ variables, we may simply put

dρ ≈ zsigmal0σρ; hence, χρρ ∼ βz2
σl

2
0(〈σ2

ρ〉−〈σρ〉2). At room temperature, in the z-direction

the spectral weight essentially rests with D; however, in the x-direction the weight goes

with σ, which explains why εc is much smaller than εa at room temperature. According

to this logic, the gap between εa and εc should turn even wider as temperature gets closer

the tetragonal-orthohombic transition, which has been seen in experiments[69].

We’d like to forward another perspective. Treating the dynamical equation in the same

manner as we did with εc, εa may be written down as

εa = C̃h

T − T̃c
, (3.35)

with T̃c being the tetragonal-orthohombic transition temperature ∼ 280K. See that here

C̃h should look the same as Ch but with its own l0 and Tc replaced with T̃c. Despite this,

it is reasonable to have C̃h ∼ Ch. Now by comparison with eq.3.32, we get

εa
εc

= Ch
Cl
· T
′
c − T
T − T̃c

(3.36)

which gives an easy huge ratio, as required in the experiments. It should be pointed out

that, such gap phenomena can be understood only with an order-disorder model (like the

8CM). For purely displacive compound such as PbT iO3, no gap has been found[69].

3.4 Spectral Weight Transfer

Although we have discussed a lot about spectral weight transfer and shown its definiteness,

the discussions were very qualitative. An unfortunate shortcoming of separating the inter-

well motions from the intra-well motions is the failure to account for the transfer. Without

the separation, the model would not be analytically tractable. As a way out there is
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computer simulations based on e.g. molecular dynamics, which have been performed by

several authors[68, 60]. The coexistence of both types of motions have been well confirmed

in their work. It might be appropriate to quote from (excerpt of the 14th paragraph in

Ref.[60]) the following

The need for both modes is obvious in the OD [order-disorder] case: a small-

amplitude intrawell vibrational mode has to coexist with large-amplitude in-

terwell hops.

Nevertheless, a detailed investigation of such spectral weight transfer is still wanting.

3.5 Anisotropy Responsible for Chain Formation

Over four decades ago, Comes et al. did diffuse X-ray scattering with BTO, which in their

opinion revealed a chain structure originating from correlations along < 100 > directions.

This structure was soon applied to explain the remarkably small entropy change upon

structural phase transitions in BTO and KNO. It turns out that, for 8CM model to

produce the correct entropy change, the correlation length should cover about 6 ∼ 20 unit

cells. Let us try to understand this by considering the cubic-tetragonal transition. The

entropy change per unit cell can be expressed as ∆S = kB log(Nc
Nt

), where Nc and Nt are the

total numbers of accessible microscopic configurations in the cubic and tetragonal phases,

respectively. Suppose every phase can be regarded as consisting of nearly independent

D-dimensional clusters. The size of each cluster is then ξD, comprised of [ ξ
a0

]D ≡ nD

unit cells. Simple considerations show that, Nc,t ∼ L
N

nD
c,t , which yields ∆S = kBN(n−Dc −

n−Dt ) logL. Here N denotes the total number of unit cells, while L is the number of

internal states. Since in tetragonal phase nt is infinity, one then simply has ∆S ∝ 1
nDc

. For

chain correlations, D = 1 and for planar correlations D = 2. Assuming zero correlations

in the cubic phase would produce ∆S ten times larger than the observed value, which
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means nc ∼ 10 for D = 1. This value agrees well with observations.

Now for finite-range correlations to occur in disordered phase, there must exist anisotropy

in inter-cell coupling strengths. Let us consider D = 1. Let J̄ be the average coupling

strength, which relates to transition temperature Tc = J̄
kB

. Let γ = J
J ′

represent the

anisotropy. Here J and J ′ stand for intra-chain and inter-chain coupling strengths, re-

spectively. If γ = 1, J̄ = J = J ′ and above Tc no finite correlations shall happen. But

if γ > 1, chain correlations shall take place even above Tc, since J > kBTc. One way to

estimate this is to treat the inter-chain interaction by mean-field method, which shall yield

χ3D = χchain
1−8J ′χchain

, where χ3D is the response function of the whole sample while χchain is

the exact response function of an isolated chain. The divergence of χ3D gives Tc, at which,

it can be shown that, correlations within a chain has already been well developed.

After the original proposal, more experiments employing probes such as neutrons have led

to similar conclusions. Recently, using picosecond soft x-ray laser speckle technique, Tai.

et al were able to image the chain structures in BTO directly[70]. They observed that,

the cluster’s mean distance, which is determined by J̄ , increases linearly with temperature

whereas the mean size, which is determined by J , of clusters does not change significantly.

This observation strongly advocates the chain picture. Nevertheless, an explicit atomistic

interpretation is still wanting.

According to the present model, we have J
J ′

= [ωt
ωl

]2 · [ βl
βt

]2, which generally deviates from

unity and thus entails anisotropy. Now that ωl is the only quantity that diminishes as

temperature goes down, we concluded that the anisotropy shall become more pronounced

at low temperatures.
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3.6 Displacive vs. Order-Disorder

There is some kind of confusion in the literature regarding the use of these concepts.

They may refer to different things depending on the context. Within the spin-phonon

scheme such as the one developed by Yacoby et al[83], the ’displacive’ is associated with

the softening phonon while the ’order-disorder’ concerns the spin variable. See that in

this scheme, although the spin variable has a definite character (the Ti displacement),

the nature of the softening phonon is elusive. On the other hand, within the Migoni-

Bussmann jargon[115], the ’order-disorder’ refers to the nano-size cluster dynamics and

the ’displacive’ again links to a soft mode. In the spectroscopic community, one associates

them with a soft mode and a central mode, respectively[60]. Despite apparent discords, it

is widely agreed that, the ’displacive’ indicates a softening resonant mode and the ’order-

disorder’ connects to a relaxation mode respecting Deybe’s law. However, as discussed in

section 1.6.4, the border is not always sharp, especially in the case of a critical mode.
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Chapter 4

APPLICATIONS TO STO

Differing from BTO, which is a ferroelectric, STO is often quoted as an incipient ferroelec-

tric or quantum paraelectric. It is believed that, this compound has already been on the

way toward ferroelectricity but somewhat thwarted by quantum fluctuations. Qualitative

discussions may be again performed within the SCHA that has been exemplified before

in chapter 2 and 3. According to section 2.3.6, quantum fluctuations are characterized

by l0 in the large K̃ limit or γ in the small K̃ limit. In the former, if l0 does not exceed a

critical value lc, then ferroelectricity will be suppressed. A rough estimation of lc for STO

gives ∼ 6.32pm, as shown in section 3.2, indicating l0 > 6.32pm. However, experiments

saw that l, the inter-corner separation, should not exceed 5pm. Thus, l0 seems not that

close to l, implying not big K̃ and therefore significant quantum fluctuations. In such

case, intra-well motions become ill-defined and SCHA should be sufficient in describing

the Ti motions.
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4.1 Dielectric Modes

4.1.1 Dynamical Matrix

In comparison with BTO, the dielectric modes of STO have a few distinct traits. Firstly,

in stead of four, only three modes have been observed across all temperatures in every

axial direction. This may be basically due to the disappearance of Ti intra-well modes.

Secondly, all modes seem of resonant nature and none relaxation behaviors have been

perceived. Actually, the damping rate of the lowest mode is no more than a half of the

mode frequency, while those of other two modes are nearly the same as that in BTO: less

than five percent of the corresponding mode frequencies. This feature is again consistent

with the disappearance of intra-well motions. Needless to say, the modes around 170cm−1

and 510cm−1 are obviously of O character, in line with the logic presented in preceding

chapters. On the other hand, the lowest mode is expected to be attached to Ti motions.

Since this mode is of resonant nature, we can assign to it a frequency ωs|ρ and damping

rate Γs|ρ, whose Green’s function should then be given as Gs|ρ(ω) = 1
M(ω2

s|ρ−ω
2−iωΓs|ρ) .

Henceforth, the dynamical equation for STO should look analogous to that belonging to

εa of BTO. It can then be written as


G−1
s|ρ 2βl 2βt

2βl G−1
l 0

2βt 0 G−1
t




uρ(ω)

Ul|ρ(ω)

Ut|ρ(ω)

 =


zT iE(ω)

zlE(ω)

ztE(ω)

 (4.1)

Here ρ indicates the axial directions. Above the oxygen cage tilting transition, the com-

pound is in cubic phase and thus the dynamical matrix should be regardless of the di-

rections. Below it, the tilting causes a tetragonal distortion and one has to distinguish

between the c-direction and ab-direction. This difference mainly enters through Gs|ρ and

occurs at ωs|ρ. Within DWA, the ωs can be calculated using SCHA or based on numerical
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methods. As we will discuss in subsequent sections, all these calculations can be captured

by the following form (drop the label ρ)

ω2
s = Ω2 coth T1

2T (4.2)

where Ω is the value of ωs at vanishing temperature and T1 is a parameter to be determined.

4.1.2 Dielectric Constant

The dielectric constant can be obtained similarly as we did with BTO. At ω = 0, it takes

the Barrett form as prescribed in eq.(1.24). Namely,

ε(0) = C
T1
2 coth T1

2T − T0
(4.3)

where the extrapolated Curie constant is given by

C = l21
kBa3

0ε0
(4.4)

× [z2
T i +

z2
l kBT1 coth T1

2T
2l21

− 4zlzT iβl
mω2

l

+ 2
z2
t kBT1 coth T1

2T
2l21

− 4ztzT iβt
mω2

t

− 8(zlβt + ztβl)2

m2ω2
l ω

2
t

]

and T0 has the same expression as for Tc in BTO,

kBT0 = 4l21( 2β2
t

mω2
t

+ β2
l

mω2
l

) (4.5)

In the above,

l1 =
√
kBT1

2MΩ2 (4.6)

is a length scale playing a similar role here as l0 in BTO.
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4.1.3 Parameters and The Origin of Isotope-Exchange Induced

Ferroelectricity

To pin down the parameters, one may utilize several facts. Look at T0 first. For pure

STO, T0 has been found to be around 38K. For STO18, however, it was shown to be

44K. Let’s emphasize that, such increase in T0 after isotope exchange can hardly be

explained by contrived decrease of mω2
l,t, which actually represent the force constants

associated with O vibrations. Except that Kt,l are extremely small or negative, we should

have mω2
l,t = Kl,t, which, as is clear from eq.(2.55) and (2.57), are not expected to change

in the course of isotope substitution. Therefore, we may conclude that, the increase of T0

should be attributed to the increase of l1. This leads us to the second fact: it was observed

that T1 could be enlarged by about 3K after isotope exchange: 84K and 87K for STO16

and STO18, respectively. According to eq.(4.6), one should have

T0

2T1
|STO16 = A

MΩ2
STO16

≈ 0.2262, T0

2T1
|STO18 = A

MΩ2
STO18

≈ 0.2529 (4.7)

where A = 2β2
t

mω2
t

+ β2
l

mω2
l
. We infer that Ω2 for STO18 is a little smaller than that for STO16.

According to eq.(4.3), the quantity 2T0
T1

may be used as an indicator of ferroelectricity,

which happens only when that quantity exceeds unity. The values obtained above for

STO16 and STO18 are in accord with this statement. One should see that, the main

difference between STO16 and STO18 comes from Ω2, rather than T1. In fact, even if

the T1 for STO16 were used, one would get T0 = 42.5K for STO18 provided Ω2
STO18 had

been in use. Such analysis hints that, the main consequence of O isotope substitution

seems to diminish qunatum fluctuations via decreasing the value of Ω2. This conclusion

stands in contrast with those by many other authors, who frequently ascribed the artificial

ferroelectricity induced in STO18 to a decrease in the O force constants.

To find out other parameters, we need to know Ω. To this end, we notice that, at room
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temperature ωs was found about 87.7cm−1 in pure STO[56]. Thus, we have 87.7cm−1 ≈

ΩSTO16

√
coth 84K

2∗300K , from which it follows that ΩSTO16 ≈ 32.7cm−1. Now from eq.(4.7),

one finds ΩSTO18 ≈ 30.9cm−1. It is very interesting to see that a small change in Ω could

result in dramatic changes in dielectric properties. The l1 is then estimated to be about

13.8pm for STO16. The third fact to be used is the value of C(T = 0), which is about

105K. With the knowledge of l1, T0, ωl = 178cm−1 and ωt = 546cm−1, equation (4.5)

translates into the following equation

0.6878 ≈ 0.0071β2
t + 0.0332β2

l (4.8)

where βl,t are taken in unit of Kgs−2. Similarly, knowing that zl = −5.73e, zT i = 7.26e

and zt = −2.15e, eq.(4.5) becomes

C

0.0062 ∗ 105K
≈ 52.7 + 3.3227 + 5.5317βl + 0.4412 ∗ βt (4.9)

Here again βl,t denote the numeric values in unit ofKgs−2. These equations can be roughly

satisfied if we choose βl = 4.4Kgs−2 and βt = 2.5Kgs−2, which give C ∼ 0.6 ∗ 105K. This

value is comparable to experimental data.

We have presented some dielectric properties as calculated with the parameters entabu-

lated in TABLE4.1. They are displayed in FIG.4.1 and FIG.4.2.

Table 4.1: STO parameters used in numerical results.
l1 a0 βl βt

13.8pm 400pm 4.4Kgs−2 2.5Kgs−2

zT i zl zt Γs
7.25e −5.7e −2.15e 0.5 ∗ ωs

Ω T1 Γl/ωl Γt/ωt
32.7cm−1 84K 0.03 0.05
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Figure 4.1: Reflectivity of STO

4.2 Quantum Paraelectricity

4.2.1 Introduction

In the last section, we have shown that the dielectric constant of STO should follow

basically the Barrett’s law, as embodied in eq.(4.3). Note that, the quantity C in this

equation has a temperature dependence that gets in through the factor coth T1
2T . This

makes that equation deviate from the standard Barrett’s formula, where the C is supposed

to be a constant. Nevertheless, the deviation is negligibly tiny: numerically, the fraction

taken by the temperature dependent terms in C is given by 3.3227 coth 42K
T

78.1425+3.3227 coth 42K
T

, which

is less than 17% as long as T < 200K. Henceforth, one may safely fix C at its zero

temperature value.

In this section, we try to address an issue that has been carefully portrayed in section
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Figure 4.2: ε′ of STO at various frequencies
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1.7.1: to fit the experimental data with Barrett’s formula, a contrived increase in T1

from a low temperature (below 3K) value to a high temperature one (in the range from

10K to 30K) seems in need. Similar crossover has been observed in a couple of other

experiments[126, 81, 127, 128] and modelled with a hyperbolic tangent engaging four pa-

rameters [78]. However, the reason for this temperature dependence is unveiled. Recently,

Marqués et al. came up with an explanation[79] that deciphers T1 as the quantum tem-

perature associated with some unidentified phonons[129, 130]. Assuming a special phonon

mode distribution, which itself requires justifications, they could find a good agreement

with experimental data. Fittings using generalized Barret formula[131] or in terms of the

so-called hard anti-phase boundaries[132, 82] have also appeared. In all these schemes,

certain extrinsic factors outside the Ti atoms have been invoked. In what follows, how-

ever, we show that the proposed T1 behaviors can be inherent to the double-well potential

(DWP) and a corollary of the tunneling between the excited intra-well states belonging

to different wells (see FIG.4.3).

4.2.2 Formalism

We employ the Hamiltonian Hc in eq.(3.8) to study εc within DWA. The O octehedral

rotation transition occuring at ∼ 105K is ignored here, whose impacts will be investigated

in the next section. This allows us to focus on the intrinsic behaviors of Ti ions within

DWA. After eliminating the O variables using the adiabatic methods prescribed in section

2.3.5, one arrives at a model that has also been studied in Ref.[133, 134, 135]

H =
∑
i

{− ~2

2M
∂2

∂Z2
i

+ b

4Z
4
i −

a

2Z
2
i } −

∑
<i,j>

JijZiZj (4.10)

Here we have set b = 4γ and a = 2K̃ and Jij = β2
l

mω2
l
for the pair < i, j > lying in the

z-direction while Jij = β2
t

mω2
t
for that in the xy-plane. It proves convenient to work with
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a dimensionless Hamiltonian. To reach this, we introduce ui = Zi√
2l0

, where l0 =
√
a/b

as before. At the same time, we write λ2 = ~2

2Ml20

4b
a2 = 2~2

Mal40
and Vij = 2Jijl20. The

dimensionless version of H is then given by

4b
a2H = −

∑
i

{−λ
2

2
∂2

∂u2
i

+ 4(u4
i − u2

i )} −
∑
<i,j>

Vijuiuj (4.11)

Now we treat the inter-site term via mean field theory. Thus we find a single-site model,

which reads

Hm = −λ
2

2
∂2

∂u2 + 4(u4 − u2)− V0〈u〉u (4.12)

where V0 = ∑
j Vij. Note that, the physics is controlled by two parameters, λ ∝ l−2

0 and

V0. The former controls the quantum fluctuations while the latter represents the strength

of the molecular field. The potential barrier (which is unity for Hm) separating the wells

serves as an intrinsic energy scale. The stability of the double-well potential requires that

V0 � 1. From now on we fix V0 = 0.1 and study the effects of quantum fluctuations.

Let χ0 be the susceptibility for V0 ≡ 0. For finite V0, the susceptibility can be obtained as

χ = χ0

1− V0χ0
(4.13)

Actually, by definition one has for disordered phase 〈u〉0 =
∫ E

0 χ0(E ′)dE ′, where E is the

external electric field, from which one has 〈u〉 =
∫ V0〈u〉+E

0 χ0(E ′)dE ′ ≈ χ0(V0〈u〉+E), and

thus χ = ∂〈u〉
∂E

obtains the form of the above equation. This shows that, all we need is χ0,

which shall be calculated numerically. To this effect, we introduce the ladder operators

that are defined by

u =
√
λ2

2ω0
(a+ a†)

−i ∂
∂u

= i

√
ω0

2λ2 (a† − a) (4.14)
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Here ω0 = 2
√

2λ is chosen so that the Hamiltonian is symmetric with respect to a and a†.

With this choice, the Hamiltonian becomes

Hm = λ2

8 (a+ a†)4 −
√

2λ(a2 + a†2)− g(a+ a†) (4.15)

where g =
√

λ
4
√

2V0〈u〉 signifies the molecular field. The computations are most conve-

niently conducted in the representation in which a†a is diagonal, namely, a†a|n〉 = n|n〉,

n = 0, 1, ..., Nc being non-negative integers. In actual computations, we need truncate

the Hilbert space by Nc. We choose Nc = 100. Now the matrix elements of a and a†

are am,n =
√
nδm,n−1 and a†m,n =

√
n+ 1δm,n+1, respectively. The bare susceptibility is

computed as χ0 = ∂〈u〉
∂g
|g=0, where 〈u〉 = Tr[exp(−Hm/T )u][Tr exp(−Hm/T )]−1. In con-

sistency with Ref.[135], at essentially zero temperature, there exists a critical value, λc,

separating the ordered ground state from the disordered one. For V0 = 0.1, λc was numer-

ically found of about 0.2. Since ST is para-electric, one must have λ > λc. On the other

hand, ST can be made ferroelectric with the replacement of O16 by O18[16], which means

an appropriate choice of λ for ST should not be far from λc. Therefore, we use λ = 0.3

for this compound.

4.2.3 Analysis

Exact Results

We have performed the computations for a series of λ from below λc to above. To try

the Barret fit with eq.(4.3), one has to input three parameters. Considering eq.(4.13),

it is natural to fix T0 = V0. In the meanwhile, C = limT→∞[χ(T )(T − T0)] and T1 =

2 limT→0[C/χ(T )+T0]. For all λ, we found C ≈ 1, as expected from eq.(4.13). However, the

as-obtained T1 shows strong temperature dependence. As exhibited in the inset of FIG.4.3,

T1 begins to rise rapidly at a temperature T ∗ after a short flat section, a universal feature
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Figure 4.3: Schematic of the DWP and the temperature dependence of T1.

for all λ. Moreover, the λ-dependence of T ∗ follows a simple linear behavior, T ∗ ∝ (∆−∆c).

Here ∆ = 4λ is the intra-wall oscillatory energy spacing, which is obtained by expanding

the potential around either well (see FIG.4.3). The intimate connections between T ∗ and

∆ implies that: beyond T ∗, higher energy intra-well states can be activated and should

contribute to the increase of T1.

Low Temperature Limit

It is noted that, small amplitude oscillations about either well are approximately harmonic

with an energy spacing ∆. As long as the ground state energy of this intra-well oscillator,
∆
2 , is much less than the barrier, intra-well states and energy levels of either well can
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Figure 4.4: Comparison between experimental and theoretical χ. Numerical: χ0 obtained
by numerically solving the MF Hamiltonian; Two Level: χ0 = χ2; Four Level: χ0 = χ4;
SPA: χ0 = χSPA. Experimental data has been rescaled as discussed in text.
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be defined univocally. Below a characterizing temperature T ∗, high energy states are

frozen and only the ground states are active[134]. Hence a two-level description should be

realistic. The Hamiltonian at g = 0 in this reduced sub-space takes on a simple form[83]:

H2 = Ω0σx, where Ω0 is the tunneling energy, which is a constant, and σx is the Pauli

matrix. The susceptibility by H2 is well known: χ2 = 1
Ω0

tanh(Ω0/T ). Plug this as χ0

in eq.(3) and one gets in the low temperature regime a susceptibility of exactly the same

form as χB, with Ω0 = T1/2.

High Temperature Limit

On the other hand, at temperatures much higher than T ∗, the tunneling scenario is ex-

pected to fail. In this case, the barrier becomes almost invisible in the presence of thermal

fluctuations, and the double-well architecture can be effected by a single-well one. The

effective oscillation frequency, ωs, can then be evaluated with the SCHA. As usual, two

equations can be obtained,

ω2 = 8λ2(〈u2〉 − 1)

〈u2〉 = λ2

2ω coth(ω/T ) (4.16)

The susceptibility of an oscillator can be related to its mass and frequency by χosi = λ2

ω2 .

Combining this with the above equations, we arrive at

1 = 4λχ3/2
osi coth(λχ

−1/2
osi

T
)− 8χosi (4.17)

which can be solved numerically. The as-found χosi is expected to be further affected by

anharmonic effects that are not included in SCHA[136]. We thus introduce a temperature

independent constant R to account for this, so that the final susceptibility reads χSPA =

R · χosi. Upon fitting χSPA with the exact χ, the R for small λ was numerically found
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around 0.2, but larger values needed for bigger λ. Inserting χSPA as χ0 in eq.(4.13) gives

χ in the high temperature regime.

Four Level Approximation

Here we consider an intermediate case between the two extremes discussed above. We

resort to a 4-level description, in which four levels, two (the ground (g) plus the first

excited (e) intra-well state) for each well, are considered. These four levels can be written

as |Lg〉, |Rg〉, |Le〉 and |Re〉, with L (R) referring to the left (right) well. Ignoring the

mixing between the e- and g-states from different wells, the Hamiltonian can be written

as H4 = Ωgσx + Ωeτx + ∆τ0, where Ωe (Ωg = Ω0 < Ωe) denotes the tunneling energy

between the e (g) states and σ and τ act upon the ground and excited states respectively.

We ignore the mixing because the said levels are not matched in energy and hence their

mixing is inefficient.

With the results obtained for the 2-level model, one can easily obtain the bare sus-

ceptibility as χ4 = pgχg + peχe, where χe,g = Ω−1
e,g tanh(Ωe,g

T
), pg = Zg

Zg+e−∆/TZe
, with

Ze,g = 2 cosh(Ωe,g
T

), and pe = 1− pg. For simplicity, we shall write pg ≈ 1
1+exp(−∆∗

T
) , which

defines ∆∗. The generalization to a many-level description is straightforward. Define an

effective frequency by Ω via χ4 = Ω−1 tanh(Ω
T

), and clearly this Ω plays the role of the

averaged frequency used in Ref.[79]. As T goes to zero, pg approaches unity and Ω tends

to Ωg. As T increases, Ω (and also T1) increases. At relatively low temperatures, where

the tanh function can be taken as unity, one finds 1
Ω ≈

∑
ν=e,g

pν
Ων , which can be rewritten

as Ω = 2ΩgΩe
Ω++Ω− tanh( ∆∗

2T ) . Here Ω± = 1
2(Ωg ± Ωe). As T goes to zero, it approaches Ωg; as T

goes to large, it approaches 4ΩgΩe
Ωg+Ωe . This behavior resembles that of the formula used in

Ref.[78]. In addition, if we include even more levels, the Ω should not saturate at all, but

should increase all the way instead.
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4.2.4 Conclusions

In light of the above analysis, we should anticipate a crossover from the 2-level mechanism,

which prevails at very low temperatures, to the SPA mechanism that dominates at high

temperatures. This is wonderfully confirmed in FIG.4.4, where we plot χ with various

χ0, together with the experimental data. It is seen that, with χ0 = χ2, the flat low-

temperature segment can be remarkably fitted, whereas the higher temperature part shows

a mismatch. On the other hand, with χ0 = χSPA, the high temperature section can be

fitted marvelously, whereas the flat part can not be tamed. Note that the numerical results

are in good agreement with experimental data over the entire region. This is somewhat

unexpected, in the sense that, only two paramters, λ and V0, are used as inputs and

their choices are tightly contrained by physical considerations, as discussed in previous

paragraghs.

The experimental data (between 1K and 100K) are taken from Ref.[71] and can be com-

pared with the present computation. The connections between the present calculations

and the data can be established by choosing a2

4b = 100K as the temperature conversion

factor and observing that the measured dielectric constant ε is related to the computed χ

via ε ≈ 8π( l0
a0

)3Q2

l0
· χ, where a0 is the lattice constant and Q is the effective charge. Let

the pre-factor be about 6.7× 105K and we find the results as displayed in FIG.4.4.

4.3 Repercussions of O Cage Tilting

4.3.1 Introduction

In the last subsection, we have shown that due to thermal activation of excited intra-

well levels the quantum temperature T1 cannot be a constant. Rather, within DWA,

it has to increase with temperature and thus offers an explanation of a long-standing
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inexplicable phenomenon as described therein. However, as we will argue below, this

picture is oversimplified: one more twist should be added to the story. Another purpose

here is to demonstrate the inadequacy of the DWA. The new anomaly to be revealed below

requires the presence of the 8CM or the ARM that were depicted in chapter 2.

This anomaly has to do with the O cage rotation transition. For a long time, people

have thought that there should be neligible correlations between this transition and the

quantum paraelectricity in STO. As we discussed in chapter 2, this picture is not true:

the incipient ferroelectricity and the O cage rotation can arise from the same vibronic

origin and there exists competitions between them as sketched in eq.(2.49). This equation

states that, the rotation will reduce the off-center shifts of Ti ions and therefore dimin-

ish the dielectric activity. Aside from this miscroscopic perspective, a phenomenological

investigation[137] based on Barrett’s formula (non-standard) has also disclosed clear traces

left on the dielectric constant by the rotation. In Vogt’s context and symbols, the sus-

ceptibility (the inverse of the squared frequency which is an average over the Eu and A2u

modes) is expressed as

χ(0) = 3−1~λ̃−1ω−1
1

~ω1
2 coth ~ω1

2kBT −
ṽ0−1
12λ̃ ~ω1

(4.18)

As regards the physical meanings of the involved parameters, the readers are refered to

Ref.[137]. What is needed right now is the ω1, which defines the quantum temperature

T1 = ~ω1
kB

. Interestingly, to obtain a good fit to observations, the ω1 was found to follow

the rotation angle in this pattern (see also section 1.7.3):

ω2
1(T ) = ω2

1(Ta)[1 + αϕ2
s(T )] (4.19)

which is the eq.(30) in Ref.[137]. Here ϕs(T ) denotes the rotation angle at temperature

T (see FIG.4.5) and Ta = 105K. So, according to this work, T1 is expected to decrease

as T approaches Ta from below. This decrease cannot be explained within DWA, unless a
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Figure 4.5: The O cage tilting angle as a function of temperature and the soft mode
frequency obtained with the tilting counted in. Reproduced with permission from [137].

contrived temperature dependence of ω1 as the above equation is used.

In light of the discussions on isotope exchange effects in preceding sections, we are also

led to the conclusion that subtle correlations exist. Actually, our previous analysis shows

that, the FE induced via O18 substitution is actually through decreasing the quantum

fluctuations on the Ti sites. Although the mass change is very small, the effects are

dramatic. There are a flurry of work[138, 139, 140, 141] focusing the quantum aspects of

the isotope effects, but few pay attention to such correlations.

Finally, we mention the experimental work by Yamanaka et al[75]. These authors per-

formed high-resolution hyper-Raman scattering (HRS) measurements on STO and the
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temperature dependences of the soft polar mode frequency, ω0, were determined. Al-

though above Ta the ω2
0 follows perfectly the Curie-Weiss’s law, it starts to split into two

branches (at ωa and ωc, respectively) and deviate from this law significantly after crossing

Ta. Then they put ω2
a,c as a sum of two terms, the first supposed to be the squared frequen-

cies that would result if the AFD did not take place and the second being proportional to

the square of the AFD order parameter. After determining the second term independently

via other methods, they were able to settle the first one, which actually softens to zero at

around 30K, indicating FE instability. However, this instability was eventually prevented

by the O rotation. They concluded that, QF alone could not suppress the FE and the

presence of O rotation is essential. In view of the analysis given below, we would say, the

actual role of O rotation is to enhance quantum fluctuations and therefore, it should not

be deemed as an independent cause.

4.3.2 The Importance of T1

We notice several reasons to focus on T1 instead of ε. Firstly, the behaviors of T1 are much

more revealing than that of ε. Apparent agreements with ε can be easily achieved, almost

regardless of how the T1 behaviors are postulated[71, 78, 79]. This can be appreciated by

noting that, the factor (T1/2) coth(T1/2T ) becomes unity regardless of T1 for T � T1/2.

Secondly, T1 may be regarded as an independent quantity with clear physical meanings,

rather than a simple fitting parameter. From a mean-field point of view, ε hinges on

temperature primarily through the bare electric susceptibility χ̃0, which is associated with

motions of the local mode ~u belonging to a single unit cell and proportional to the electric

dipole as defined in Ref.[18]. Different modeling of ~u leads to different χ0(T ). Often,

one may approximate the behaviors of ~u via a bistable system that is characterized by

a frequency kBT1
~ , at which the system rustles. In pseudo-spin modeling, T1 is simply a

constant and measures how fast the spin flips, whereas within DWA, T1 decreases with
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decreasing temperature and eventually saturates at low temperatures[3]. In such cases, one

easily derives Barrett formula in relating T1 to χ̃0. However, a broader meaning may be

assigned by noting that T1 actually indicates the low temperature stiffness of the system,

because, assuming the validity of Barrett formula, χ̃−1
0 ∝ T1 for T/T1 � 1. Thirdly, as

already mentioned, the behaviors of T1 are model dependent, implying they can serve as

fingerprints in identifying the nature of the local mode.

4.3.3 Experimental T1

The empirical T-dependence of T1 can be found by sloving the following equation,

T1

2 coth( T1

2T ) = T0 + A

ε− ε∞
(4.20)

with T0 and A−1 as well as ε (also ε∞) as inputs known experimentally. However, there

is certain subtleness: the high T section of the experimental 1
ε
seems broken into two or

three straight segments, as seen in FIG.4.6. Therefore slight variations may have occured

to A and T0, which can be caused by changes in e.g. the couplings between the local

modes belonging to different unit cells. Hence, the temperature dependence of 1
ε
may

be due to (A, T0) or T1 or both. One must isolate the latter (as due to T1) to pursue

genuine behaviors of T1. This is done by using segment-wise (A, T0), which are obtained

by the usual least-square fit method, to deduce T1. The final T1 is obtained by grafting

the segments together.

We have applied the procedures to not only STO but also two other incipient ferroelectrics:

KTaO3 and CaTiO3, so that a comparison can be made. The results are exhibited in

FIG.4.6. As we see, for STO, two segments can be seen, which are indicated by the red

and blue curves in panel (a) and (b), where the black curve stands for the result after

grafting. Similar annotations are given to other panels. In comparison with CaTiO3 and
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KTaO3, what is peculiar about ST is the huge dip of T1 around Ta ∼ 105K. It is natural

to ascribe the dip to the O rotation, which occurs at the same temperature. A meticulous

inspection on FIG.4 in Ref.[75] reveals more: the low T parts of ω2
0 and ω2

a,c take analogous

shapes that are characteristic of zero point fluctuations, the only distinction being that

the latter implies stronger such fluctuations. Hence, fluctuations become enhanced after

O rotation, consistent with previous analysis. We give a brief summary of the salient

features:

• In CaTiO3, T1 starts with a nearly flat section at low T , followed by a linear sec-

tion, where T1 increases monotonically without any discernible saturation at high T .

This is qualitatively compatible with the DWA. But quantitatively, we can’t fit the

behavior by this model. No DWA parameter could be found to fit both the flat and

the increaing part simultaneously;

• In STO, T1 does not simply increase with temperature. Rather, it at first diminishes

in a very smooth way down to zero around the AFD critical temperature Ta, and then

starts to rise up. Up to our knowledge, this dip behavior has never been reported

before. And it can’t be consistent with the DWA at all. Likely, it originates from

the O rotation;

• In KTaO3, a similar dip behavior is noticed. But here the dip is very weak and

narrow and almost not perceptible. Its nature is unidentified and its presence is

unexpected, since no structural instabilites in this compound around 35K has been

spotted;

• The T1 behaviors in all the materials under consideration can be understood using

an O(3) rotor model in the presence of some cubic intra-cell anisotropy (υ), namely

the ARM. It turns out that, two different υs are required for each of ST and KT ,

corresponding to the low-T and high-T sections, respectively.
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Figure 4.6: The experimental inverse dielectric constants, 1/ε and the extracted T1s by
the method described in the text, for STO (a,b), KTO (c,d) and CTO (e,f), respectively.
The black curves in the T1 panals are obtained by grafting relevant segments from the
colorful curves, as described in the text.
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4.3.4 Interpreting T1 via ARM

Ingredients of The ARM

We here recapitulate the basics of the anisotropic rotor model that was derived in chapter

2. Since the calculations will be performed in MFA, we just need to write it for a single

unit cell. The model reads

H̃ARM = ~2Ω̂2

2I + υ̃(n4
x + n4

y + n4
z);

1
u2

0
= 〈 1

u2 〉, I = Mu2
0, υ̃ = γ

2 〈u
4〉 (4.21)

There is an intrinsic energy scale ε0 = ~2

2I , by which we can define a dimensionless constant

υ = υ̃/ε0. Reasonably, we expect that 〈u〉 ≈ u0 ≈ l0.

Numerical Recipes

We have to calculate the susceptibility χ̃0 of an individual unit cell. Let Q be the Born

effective charge associated with the local mode ~u. The dipole moment is then given by
~P = Q~u, which is coupled to an external electric field ~E = (0, 0, Ẽ) via −PzẼ. Then

we have χ̃0 = ∂〈Pz〉
∂Ẽ

. For convenience, we also introduce a dimensionless susceptibility χ0

so that χ̃0 = Q2〈u〉2
a3ε0

χ0, where a denotes the lattice constant and χ0 = 〈nz〉
∂E

. Here E =

Q〈u〉Ẽ/ε0. Now expressing energies in unit of ε0, we obtain a dimensionless Hamiltonian

HARM = Ω̂2

2 + υ(n4
x + n4

y + n4
z)− Enz, HARM = H̃ARM

ε0

Here the external perturbation has been added explicitly. Note that 〈nz〉 = −〈∂HARM
∂E
〉.

Let εN(E) be the N-th eigenvalue of HARM , then 〈nz〉 = −∑N ρN
∂εN (E)
∂E

, where ρN =
exp(− εN

t
)∑

N′ exp(−
εN′
t

)
is the Boltzman factor. Similarly, χ0 = −∑N ρN

∂2εN (E)
∂E2 . Here all the deriva-

tives are taken at E = 0 and t = kBT
ε0

is the reduced temperature.
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Now we need to find out all the εN by solving the corresponding secular equation. This can

be done only numerically. The representation will be chosen to be the spherical harmonics

|l,m〉, namely, 〈θ, ϕ|l,m〉 = Y m
l (θ, ϕ). In practice, the Hilbert space must be truncated.

Presently, we truncate it at Lc = 12. Thus, in total L2
c eigenvalues will be obtained. Ω̂2

is diagonal in this repsentation, 〈l′,m′|Ω̂2|l,m〉 = δl,l′δm,m′l(l+ 1). To compute the matrix

elements of n4
x,y,z and nx,y,z, we express all these quantities in terms of Y m

l . It is easy to

check that

nx =
√

2π
3 (Y −1

1 − Y 1
1 ), ny = i

√
2π
3 (Y −1

1 + Y 1
1 )

nz =
√

4π
3 Y 0

1 (4.22)

n4
x + n4

y + n4
z =

√
π

1260(Y 4
4 + Y −4

4 ) + 4
√
πY 0

4
15 + 6

√
πY 0

0
5

Now the required matrix elements can all be built with the following quantity

∫
(Y m1

l1 )∗ · Y m2
l2 · Y

m3
l3 = (−1)m1

∫
Y −m1
l1 · Y m2

l2 · Y
m3
l3

= (−1)m1Cl1l2l3 ×W
l1,l2,l3
0,0,0 ×W l1,l2,l3

m1,m2,m3

Cl1l2l3 =
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π (4.23)

Here the integral is taken over the solid angle, the first line ensues from the property of

spherical harmonics and in obtaining the second line we have used Wigner 3-j symbols

W l
m[103]. Now plug the matrix forms of all quantities in HARM and the eigenvalues can

be found in a standard way. Then the χ0 can be computed with the prescription offered

above. All these have been mentioned in chapter 2.
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ARM Vs. Experimental

To make comparison with the experimental T1, we need establish the relation between T1

and χ0. From a mean-field point of view, one should have χ̃0 = Q2〈u〉2
a3ε0

· 1
χ−1

0 −v
, where v is

a dimensionless constant representing the molecular field strength that is pertains to T0.

Then the dielectric constant can be written as ε = ε∞+ χ0
ε0
≡ ε∞+ Ã

χ−1
0 −v

, where ε0 denotes

the vacuum permitivity and Ã = Q2〈u〉2
a3ε0ε0

. Now we expect that, to have the Curie-Weiss

law, χ−1
0 should follow a simple linear relation with t, namely, χ−1

0
for large t→ R(t) · t, with R

approaching a constant at high t. Numerically, we have computed R versus t at various

υ and found that, R approaches a seemingly universal constant R∗ ≈ 3 regardless of υ,

as illustrated in FIG.4.7. Making use of this knowledge, we may define T1 with χ0 by the

following equation
1

R∗χ0
= t1

2 coth( t12t), T1 = t1 ×
ε0

kB
(4.24)

which can be solved numerically for every t and then the as-found T1 can be compared with

that is extracted experimentally. This definition is compatible with the way of extracting

T0 and A prescribed in previous sections. In the present jargon, one recognizes that

A = Ã/R∗ and T0 = (v/R∗)× ε0
kB

. Note that the r.h.s of this equation is an even function

of and increases with t1 given t. It has a single minimum of t at t1 = 0. Therefore, if the

l.h.s is less than t, no real solution will exist. On such occasions, we always choose t1 = 0.

This trick also applies in solving eq.(4.20).

The comparison is summarized in FIG.4.8. The ε0/kB ≈ 175K, 267Kand 100K have

been chosen for ST, CT and KT, respectively. These ε0 correspond to u0 of the order

of 10pm. A single υ = 100 gives a rough fit for CaTiO3 over the entire temperature

range under consideration. For KTaO3, however, two different υs are required, namely,

υ ≈ 260 above the dip temperature and υ ≈ 40 below it. Analogously, two υs are also

required for STO, in which the same υ ≈ 40 can fit the data below the dip. We did not
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Figure 4.7: The behaviors of R vs. t at various υ. All curves fall on top of each other at
large t, indicating the universality of the high t limit of R.
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Figure 4.8: Comparison between the theoretical and experimental t1 against t, with R∗ =
R(t = 3000).
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try to fit the high temperature data of STO, because the data in this range are scarce

and inaccurate. Nevertheless, we believe that a different and bigger υ should be at work,

considering the case with KTaO3. Obviously, smaller υ means larger QF and vice versa.

Therefore, quantum fluctuations in STO and KTaO3 are stronger at low t than at high t.

This is consistent with the conclusion drawn in Ref.[75] and Ref.[137].

4.4 Correspondence Between ARM and 8CM

In the last section, we have discussed an anomaly seen in the T-dependence of T1 and

shown that it is explicable in terms of the ARM. On the other hand, it is noted that the

8CM can be taken as the large-anisotropy limit of the ARM. Therefore, it is expected

that, the anomaly should also submit to the 8CM. This is indeed the case, as displayed in

FIG.4.9. In this figure, we exhibit that the experimental data of STO can be fitted equally

well by the 8CM (with only the tunneling t0 between nearest corners), as indicated by

the red curve. Despite the apparent simpleness, there is a subtleness: although both the

broken (t0 < 0) and solid (t0) red curves give nice fit, the broken one seems overally better

and closer to the ARM curve (the green one). However, the broken line corresponds to an

ill-defined 8CM, because the large-anisotropy limit of the ARM should always correspond

to an 8CM with positive t0. This can be confirmed by solving the ARM and examining

the lowest four eigen-levels. There are two features that can be seen in the results: (1)

the lowest four states always group into a singlet and a triplet; (2)as long as υ > 300

(see the last section for υ), the singlet lies above the triplet, otherwise the structure is

inverted, as demonstrated in FIG.4.10. This means that, for large υ, the corresponding

t0 is always positive. Nevertheless, considering the peculiar singlet-triplet architechture,

one may relax the values of t0. Namely, one may allow t0 to acquire negative values. This

generalization allows a full correspondence between the low energy sector of the ARM and
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Figure 4.9: Experiment vs. theory (STO). Black dots: experimental extraction as in
FIG.4.6. Red solid curve: calculations at t0 = 5.02 with the 8SM. Red dotted curve:
calculations at t0 = −1.99 with the 8SM. Green solid curve: calculations at υ = 40 with
the ARM. Note that, the latter two curves almost coincide. Respective ε0 are placed in
the parentheses.

the 8CM: the 8CM with t0 < 0 maps onto an ARM with small υ whereas the 8CM with

t0 > 0 maps onto an ARM with big υ. One should note that, the Hilbert spaces of them

are also comparable, which is a prerequisite for the correspondence.
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Figure 4.10: The singlet-triplet structure (of the ARM) turns upside down when tuning
υ. Es: singlet energy; Et: triplet energy. The reversion happens around 300. Inset thick
(thin) line stands for the triplet (singlet). The kink in between 200 and 300 marks a
discontinuity in ∂|Es−Et|

∂υ
, implying a transition.
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4.5 Under Strong Electric Field

4.5.1 Introduction

Here we investigate what might happen to STO under a sufficiently strong external electric

field along, say, the z-direction. We hope the field is strong enough to suppress any

fluctuations along this direction, i.e., the variables in that direction are totally frozen.

Under such circumstances, out of the eight minima of VT i, only the four in the field

direction have to be included. To focus on the low energy physics, it might be appropriate

to consider a model that is morally similar to the ARM or 8CM but with reduced number

of variables. Actually we write the model as

H4SM =
∑
i,ν,ν′

tν,ν′|ν; i〉〈i; ν ′| −
∑
<i,j>

Jij~ni · ~nj (4.25)

We shall assume Jij vanishes except for the pair of adjacent sites, in which case it is a

positive constant J . Besides, tν,ν′ = t for nearest neighboring corners and tν,ν′ = t′ for

next nearest neighboring corners. The readers are referred to FIG.4.11 for the definitions

of the quantities involved in this Hamiltonian.

Conspicuously, the physics contained in H4SM are determined by two parameters: λ = t′/t

and g = t/J , in addition to the temperature T . As in HIM , the strength of the C4

anisotropy is reflected in t, which increases as the anisotropy becomes weaker. In what

follows, we will demonstrate that, an SO(2) symmetry can be approximately revived by

increasing both t and t′. This recovery is most complete for λ = 1, at which the gap

∆2 (see FIG.4.11) disappears. Now that the SO(2) represents a continuous symmetry,

by Nambu-Goldstone’s theorem[143], massless bosons (NGB) must show up in the phase

(actually a pseudo-phase, hereafrer referred to as the S-phase) where this symmetry is

spontaneously broken. Such bosons are indeed found and their energy dispersions are
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Figure 4.11: The schematic of the 4SM and the energy level structure of the H0. (A): the
O(2) rotor as indicated by the dashed circle and the cube mentioned in the text, whose
corners give the eigenstates of ~n; (B): the level structure of H0, characterized by two gaps,
∆1 and ∆2, separating the singlets from the doublet. In (A), beside each corner state,
|ν〉, with ν = 1, 2, 3, 4, the corresponding position vector ~Rν = (Xν , Yν) is displayed. In
(B), the non-vanishing matrix elements of nx and ny are visualized. In terms of ~k, one has
|e〉 = |(0, 0)〉, |g〉 = |(π, π)〉, |a〉 = |(0, π)〉 and |b〉 = |(π, 0)〉.
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shown to be the same as in the XY-model[144]. It is also shown that, by tuning λ, first-

order quantum phase transitions, which are quite rare in other systems[145], could happen.

The discontinuous nature of these transitions is argued to be a corrolary of the S-phase.

The phase diagram, which displays a pseudo-tri-critical point (PTC), is sketched based

on self-consistent mean field calculations.

4.5.2 Phase Diagram

We start with discussing the behaviors of the on-site term (hereafter referred to as H0) of

H4SM . It can be exactly solved due to the translatonal symmetry regarding a single cube.

Every eigenstate of H0 can be assigned a unique wave vector ~k = (kx, ky), where kx (and

ky) can be either π or 0. These ~k states are related to the ν states by Fourier transforms:

|~k〉 = 1
2
∑
ν exp(i~k · ~Rν)|ν〉. The resulting energy architecture is exhibited in FIG.4.11,

where one can see a doublet and two singlets. They are spaced by two gaps ∆1 = 2t(1+λ)

and ∆2 = 2t(1 − λ). Now suppose ∆1 is very big in comparison with both ∆2 and J , in

which case the low energy physics should be essentially independent of ∆1. We may then

ignore the top state |e〉 (see FIG.4.11), which has the highest energy among the ~k states.

Under this approximation, we argue that, the original SO(2) symmetry is fully restored.

To show this, we at first examine the mean-field (MFA) behaviors, which are governed by

this Hamiltonian, HSCMF = ∆2(|a〉〈a| + |b〉〈b|) − { |g〉√2(hx〈a| + hy〈b|) + h.c.}. Here ~h =

J(0)〈~n〉, with J(0) = zJ (z is the coordination number, which is 6 for cubic lattice) being

the molecular field strength. This HSCMF can be easily solved by a unitary transformation

that combines |a〉 and |b〉 like this: |A〉 = hx|a〉+hy |b〉√
~h2

and |B〉 = −hy |a〉+hx|b〉√
~h2

. With the new

basis, the Hamiltonian becomes HSCMF = ∆2(|A〉〈A|+ |B〉〈B|)− h√
2(|A〉〈g|+h.c.), where

h =
√
h2
x + h2

y. The three eigenvalues (in units with J(0) = 1) correspond to the non-

bonding ω0 = ∆2, the anti-bonding ω+ = ∆2+
√

∆2
2+2h2

2 and the bonding ω− = ∆2−
√

∆2
2+2h2

2 .

At T = 0, the self-consistent condition, 〈~n〉 = −∇~hω−, allows us to get the magnitude of
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the order parameter (OP, i.e., ns = |〈~n〉|) as

ns ≡ |〈~n〉| =
√

1−∆2
2

2 (4.26)

regardless of its direction. The fact that all ω here depend only on the length of the

OP implies the free energy density, F , also depends only on ns. Therefore, the SO(2)

symmetry is indeed fully restored. Clearly, this restoration hinges critically on the possi-

bility of decoupling |B〉 from |g〉, which would be impossible if the effects from |e〉 were

not negligible. To facilitate later discussions, the phase that results from a spontaneous

breaking of this approximate SO(2) symmetry shall be called the S-phase, whose OP is

just determined by eq.(4.26).

To gain more insight, we return to the exact H4SM . For simplicity, we focus on T = 0.

Apparently, for very small t, the effects from |e〉 are significant and the F should depend

on both the magnitude and direction of the OP in a fasion that observes C4 symmetry.

The phase that results from spontaneously breaking the C4 symmetry shall be called the

C-phase. As t increases, the direction dependences of F should be less and less visible.

Now the question is, does there exist a transition from the C- to the S-phase? We have

numerically solved the H4SM within the MF frame and found no sharp transition, but a

strong crossover is clearly discernible for λ close to 1. The results are shown in FIG.4.13

and FIG.4.12. By virture of C4 symmetry, exact MF solutions can exist in only three

types: the C-type with 〈~n〉 = nc√
2(1, 1) pointing to the cube corners, the M-type with

〈~n〉 = nm(1, 0) pointing to the edge centers and the third (O) a trivial one corresponding

to the disordered phase. The solutions with their F s as a function of t or λ are shown

in FIG.4.12 at T = 0. From FIG.4.12(A,B), the quantum phase transition at t = tc is

clear, separating the ordered phase from the disordered one. Expectedly, tc increases as λ

increases. The remarkable thing is that, tc can be precisely predicted with eq.(4.26), even
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though this equation is obtained ignoring |e〉. According to eq.(4.26), tc = 0.5
1−λ , which

gives tc = 0.5 at λ = 0 and tc = 5 at λ = 0.9, in complete agreement with numerical

computations. All these hint that, |e〉 is indeed negligible, at least around tc. Close

inspection on the differences between what happens with λ = 0 and λ = 0.9 reveals a

crossover in the latter, as manifested in the turning point seen around t = 0.3 in nc.

Crossing this point, there is a great drop in the |Fc − Fm|. We decipher this drop as the

signature of the aforementioned crossover from the C- to the S-phase. To support this

claim, we in FIG.4.13 plot the susceptibility of nc with respect to t. One can see two

downward peaks in ∂n
∂t
, one of which is broad while the other is very sharp. Obviously,

comparing with FIG.4.12(A,B), the sharp peak indicates a real transition while the broad

one alludes to a strong crossover. To demonstrate the invariance of F under SO(2) in

the S-phase, we have solved the MF equations for all OP directions and only very tiny

variations can be observed in F . Based on ∂n
∂t
, we have sketched a phase diagram in the

t-T plane in the inset of FIG.4.13. The foremost aspect is the existence of a point where

three phases meet, resembling the tri-critical point in the case of water, thence the name

PTC. That the S-phase occupies a large volume reminds its robustness.

In FIG.4.12(C,D) the results versus λ are shown. Surprisingly, first-order quantum phase

transitions, which are characterized by a discontinuity in the first derivative of F , are

found to occur at 0 < λc1 < 1 and λc2 > 1. In the region (λc1, λc2), one finds the ordered

phase while outside it the disordered phase exists. Obviously, such transitions are also

predicted by eq.(4.26). In line with our analysis, the ordered phase here should primarily

bear the characters of the S-phase. Generally, a first-order phase transition involves a

change in the number of total active freedom of degrees, which is believed also at work in

the present case. Across the transition from the S-phase to the disordered phase, the |e〉

state gets released. In other words, the disordered phase has four active states per site

but the S-phase has essentially only three, whence a change in the number of states.
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Figure 4.12: Numerical solutions at T = 0 of the MF equations of H4SM . The c-type
solution is written as 〈~n〉c = nc(1, 1)/

√
2 and the m-type as 〈~n〉m = nm(1, 0). All energies

are measured in units with J(0) = 1. (A) nc,m and (B) Fc,m vs. t; (C) nc,m and (D) Fc,m
vs. λ. As predicted by eq.(4.26), two phase transitions are seen as λ is tuned. At T = 0
and t = 1, both transitions are discontinuous. In the text, this is explained assuming that
the ordered phase is primarily the S-phase.
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Figure 4.13: The susceptibility of the nc,m with respect to t for λ = 0.9 at T = 0 and
T = 0.2. See text for the meanings of the peaks at t1 and t2, respectively. Inset: a
schematic of the MF phase diagram of H4SM , on which three phases are noted: the C-
phase, the S-phase and the disordered phase. The dashed boundary, which is based on
peak t1, indicates the strong crossover between the C- and S-phase, while the solid line
based on peak t2 signifies the real transition between the S- and the disordered phase.
These three phases meet at a single point, the pseudo-tri-critical point, as enclosed by the
red ellipse.
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4.5.3 Nambu-Goldstone Modes

After showing the legitimacy of ignoring the |e〉 and establising the recovery of the SO(2)

symmetry, we proceed to find out the NGB that must exist in the S-phase due to Nambu-

Goldstone’s theorem[143]. We at first construct explicitly the symmetry generator in terms

of the orientation operators. Notice that, in the reduced Hilbert space which excludes |e〉,

H0 up to a constant can be written asH0 = −∆2
∑
i(n̂i2x +n̂i2y ). Then the entire Hamiltonian

becomes

H = −∆2
∑
i

~̂n2
i −

∑
<i,j>

Jij
2
~̂ni · ~̂nj (4.27)

Under SO(2) rotation by an angle θ, n̂x,y are transformed to new vector n̂′x,y, which are

related as

n̂′x = cos(θ)n̂x + sin(θ)n̂y

n̂′y = − sin(θ)n̂x + cos(θ)n̂y (4.28)

This transformation obviosuly leaves H invariant. On the other hand, one must also have
~̂n′ = U †(θ)~̂nU(θ), where U(θ) is an element of SO(2) group. Being a contiuous group,

U(θ) = exp(iθT̂ ), where T̂ is hermitian and the generator of SO(2). It is easy to find out

T̂ by looking at small θ, in which case one has

n̂′x ≈ n̂x + iθ[n̂x, T̂ ]

n̂′y ≈ n̂y + iθ[n̂y, T̂ ] (4.29)

Here [..., ...] indicates a commutator. By comparison with eq.4.28, we arrive at i[n̂x, T̂ ] =

−n̂y and i[n̂y, T̂ ] = n̂x, which can be satisfied with T̂ = n̂m−n̂p√
2i . Here n̂p and n̂m = n̂†p are

defined by this algebra: (1) [n̂x, n̂p] = n̂p, (2) [n̂x, n̂m] = −n̂m, (3) [n̂p, n̂m] = n̂x and (4)

n̂y = 1√
2(n̂p+n̂m). The physical meanings of n̂p,m turns clear once it is recognized that, this
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algebra is also satisfied by the spin ladder operators S±. Explicitely, we write n̂p = |0〉〈−|−

exp(iφ)|+〉〈0|, where |0〉, |−〉 and exp(iφ)|+〉 are the eigenstates of n̂x. Here exp(iφ) is an

arbitrary global phase that is usually taken to be 1. Note that, we have dropped the site

index that are understood along with these quantities. The similarity between the H and

the spin-1 XY model[144] suggested by the algebra is striking. Obviously, the inter-site

term of H is basically identical to HXY .

Denote the ground state of the S-phase by |G〉 and its energy by εG. NGB represent

certain type of small fluctuations about |G〉. They are created by acting a local SO(2)

transformation, U({θi}), upon |G〉. Here U({θi}) = exp(i∑i θiT̂i) = ∏
i U(θi). Utilizing

the translational symmetry, we write the NGB state as |~q〉, whose energy is denoted by ε(~q)

relative to εG. The wave vector ~q plays role in that θi = θ~q exp(i~q · ~Ri) + θ∗~q exp(−i~q · ~Ri).

Let’s write H differently. Using that 2~̂ni · ~̂nj = ~̂n2
i + ~̂n2

j − (~̂ni − ~̂nj)2, one finds

H = −(∆2 + J(0)
4 )

∑
i

~̂n2
i + 1

4
∑
<i,j>

Ji,j(~̂ni − ~̂nj)2 (4.30)

Now the NGB energy is calculated as ε(~q) = 〈~q|H|~q〉 − εG. By the defintion of |~q〉, we

have 〈~q|H|~q〉 = 〈G|H ′|G〉, where H ′ = U †({θi})HU({θi}). Evidently, the first term of H

in eq.4.30 always commutes with U({θi}). And for small fluctuations, one has

U †(~̂ni − ~̂nj)U ≈ (~̂ni − ~̂nj) + i{θi[~̂ni, T̂i]− θj[~̂nj, T̂j]} (4.31)

Eventually, we obtain

H ′ = H + linear − terms− in− {θ}

+ 1
4
∑
<i,j>

Ji,j{θi[~̂ni, iT̂i]− θj[~̂nj, iT̂j]}2 (4.32)

Since εG is a saddle point in the energy of the system, the linear terms must vanish over
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|G〉. Further, since we are considering an ordered phase in which long-range correlations

exist, we may write 〈G|[~̂ni, iT̂i]2|G〉 = 〈G|[~̂nj, iT̂j]2|G〉 = 〈G|[~̂ni, iT̂i][~̂nj, iT̂j]|G〉. Finally,

ε(~q) ∝ (i~∇θ)2 = ~q2 (4.33)

where we have taken the long wavelength limit by replacing (θi−θj)2 (divided by the lattice

constant) with (~∇θ)2. Therefore, the NGB follow a quadratic dispersion, the same as in

ferromagnets[143]. For their vanishing mass, the NGB must dominate the slow dynamics

and the low temperature behaviors of the system. In particular, the specific heat should

follow the power law, Cv ∝ T η, where the exponent is 3
2 for quadratic dispersion[143].

In addition to the NGB, which are massless, there exist a spectrum of massive excitations

(ME), if ∆2 6= 0. To reveal them, we introduce a reference state, |vac〉, which has all sites

in |−〉, i.e., |vac〉 = ∏
i |−〉i. Assume |G〉 lies much close to |vac〉, so that ~̂nx can be nearly

regarded as a simple c-number in all the states under interest. Given this approximation,

one has [n̂p, n̂m] ≈ −1. Thus, we can carry out the Holstein-Primakoff transformation[146]

to express every quantity in terms of bosonic annihilation and generation operators, a and

a†. Specifically, we write n̂p = a†, n̂m = a, n̂x = a†a − 1 and n̂y = 1√
2(a + a†) as well as

T̂ = 1√
2i(a− a

†), from which we see that n̂y and T̂ are actually conjugates and that U(θ)

displaces n̂y by θ. The NGB would be revisited if the H0 were treated as a constant as

above. Relaxing this constraint, we get the ME. By substituting n̂2
x+n̂2

y ≈ 1
2(a†2+a2)−a†a

and n̂ixn̂jx ≈ −(a†iai + a†jaj) as well as n̂iyn̂jy = 1
2(a†ia

†
j + aiaj + a†iaj + a†jai) in eq.(4). Up

to a constant and after a Fourier transform, we find H ≈ ∑
~q(∆2 + J(0)

2 −
J(~q)

4 )(a†~qa~q +

a−~qa
†
−~q) + J(~q)−2∆2

4 (a†~qa
†
−~q +a−~qa~q). It can be diagonalized with a canonical transformation

C, which acts upon (a~q, a†−~q)tr. After C, one arrives at H = ∑
~q{εββ†~qβ~q + εαα

†
~qα~q}, where

(α~q, β†~q)tr = C(a~q, a†−~q)tr. Here tr takes care of the transpose. Notice that the ground

state |G〉 is the vacumn of α- and β-type quasi-particles, whereas |vac〉 is the vacumn of
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a-type ones, implying |G〉 6= |vac〉. Two branches result with energies εβ = ∆2+J(0)
2 and

εα = 3∆2
2 + ε(~q), respectively, where ε(~q) = J(0)−J(~q)

2 is simply the NGB energy.

4.5.4 Remarks

We add a few remarks to conclude this section. (1) In the Ising model, only massive

excitations can exist. In the XY model, only NGB exist. But in H, both species are

found. This unique feature comes from theH0. As the NGB is associated with a continuous

symmetry observed by H0, the massive excitations are rooted at the elimination of |e〉,

owed to which ~̂n2 becomes a q-number. Despite the existence of ME, the low temperature

description of H is evidently identical to that of the XY model, because only NGB are

relevant in the low temperatre limit. (2) As emphasized, the SO(2) symmetry, though

robust, is only approximate, which means the NGB should gain a very small mass[147]. In

other words, they are virtually pseudo-NGB[148, 149, 150]. (3) The as-conducted analysis

did not consider the effects of strains, which are expected to interact strongly with the

massless modes in real materials; thus, more work need be done to see if the S-phase can

occur in STO.
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Chapter 5

IMPLICATIONS FOR LIGHTLY

DOPED CUPRATE

SUPERCONDUCTORS

5.1 Introduction

In this chapter, we employ the insights garnered from previous chapters to examine high

temperature superconductors (HTC), whose representative is La2−xSrxCuO4 (LSCO).

Here x denotes the doping level. These compounds host a bunch of myths that have en-

grossed enormous efforts since their discovery[151]. What brings them close to perovskites

is the CuO2 plane, which is a reminiscence of the BO2 plane in a genuine perovskite ABO3.

We confine ourselfves to this particular issue: the influence of O phonon on the state of

an excess hole in that plane. In some HTC models, the O vibrations are even supposed

to be the main pairing channel[152, 153, 154].

Even in the insulating phase of HTC, the O vibrations can play an important role. Let

x and T stand for the concentration of doped holes and temperature, respectively. At
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low T and small x, these excess holes have been experimentally demonstrated to be ran-

domly quenched and localized[155]. A plenty of work have been done to address problems

regarding the nature of this localized state. No consensus has been reached, but such a

state is likely to be underlying the pseudogap phase and therefore can be of fundamental

importance in understanding the entire phase diagram of HTC[156]. In early works, an

excess hole was thought to be confined exactly on an O site[157]. However, this picture

does not respect the underlying lattice symmetry and disregards the formation of Zhang-

Rice-Singlets. In Ref.[1], any localized hole was proposed to simultaneously take up two

adjacent Zhang-Rice states[92] through tunneling. Such a complex state can be stable

if the O sublattic is distorted locally. A very similar idea[158] had been forwarded to

interpret the chekerboard pattern detected in the pseudogap phase[159].

Making use of the knowledge obtained in chapter 2 about O vibrations, we shall propose

a polaron state for excess holes in the low concentration regime. Such state turns out

to a mixture of Zhang-Rice singlet and O phonon. We state that, the VO established in

sections 2.1 and 2.3 should equally apply to the O vibrations in CuO2 plane. As is

clear from the derivation of VO, for it to be valid the only condition is the existence of

an effective 3dx2−y2 and an effective 2px, both partially filled and the former lying above

the latter in energy. In BaTiO3, these orbitals are no more than the usual Ti3dx2−y2

and the O2px. Nonetheless, when talking of the Cu2+ in cuprate superconductors, one

must take into account the Hubbard repulsion U . In case of large U , the dx2−y2 splits into

the upper and lower Hubbard orbitals. At half-filling, the lower orbital is nearly always

fulfilled while the upper one is empty. In the level structure, one should have the upper

Hubbard orbital lying at the highest, the lower Hubbard orbital the lowest while the O2p

in between. Therefore, the relevant orbital entering eq. (2.21) are essentially the O2px

and the upper Hubbard orbital. Since the latter is empty and the corresponding ∆dp is

positive, the form of E2 should still apply.

161



Figure 5.1: The polaron state as explained in the text. Solid circles denote the Cu sites,
empty ones the O sites, and the triangle the doped hole. A plaquette is made of a Cu
site and the O sites surrounding it. The dashed rectangle encloses the polaron, which is
supposed to be in a combination of the two low energy states |A〉 and |B〉, respectively.
Such states can be stable at low temperatures, as argued in text.

5.2 Assumptions

We shall consider a single CuO2 sheet, which is widely believed to be responsible for the

essential physics. A profound mystery lies with the pseudogap phase, which initiates with

a glassy-like state resulting from quenched holes[160]. It is characterized by a T ∗(x) line

on the lightly doped side in the x − T phase diagram. Experimentally, the electronic

excitations in this region were found extremely incoherent at small x prior to the onset of

superconductivity and gradually gaining coherence at increasing x[156]. The incoherence

is likely to originate from hole localization occuring at small x, as observed by STM

probes[161]. The nature of this localized hole state was recently hypothesized to represent a

compounded object comprising a doped hole, local magnons and local lattice distortion[1].

Here we elaborate on this picture and give a more quantitative analysis.

The undoped CuO2 sheet is an antiferromagnet configured as Cu3d9O2p6. Each Cu site

is furnished with a spin. Now we dope a very small number of holes into this sheet, which

are supposed to be randomly quenched and populate Zhang-Rice states[1, 92]. Their
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correlations may be ignored since their mean distance is large at small x. We therefore

focus on a single hole and imagine it falls on a Zhang-Rice state |1〉. What will happen

to it? First, it will interact strongly with the Cu spin ~S1 in the same plaquett, as first

proved in Ref.[92]. Second, it will tunnel to another Zhang-Rice state |2〉 in proximity

to minimize its kinetic energy[1]. Third, this tunneling allows it to interact also with

Cu spin ~S2. Fourth, it will pull the O sites around to maximize its interactios with Cu

spins, since the interaction strength K is sensitive to the overlap between the dx2−y2 and p

orbital, which in turn is a function of the Cu−O bond length. As reasoned in Ref.[1], the

localized state should be primarily determined by the interplay between the Zhang-Rice

states |i; i = 1, 2〉, the Cu spins ~S1,2 and the O distortion. The situation has been sketched

in FIG.1, where the dashed rectangle encloses the main part of the polaron under interest.

To make progress, we assume the validity of VO as expressed in eq.(2.54). This will

considerably simplify the analysis. According to that equation, we may safely neglect the

O vibrations perpendicular to the Cu−O bonds, since they are energetically infavorable.

As seen in FIG.5.1, there is an O atom ( whose displacement along the bond will be

denoted by x ) that is shared by both plaquettes. Among the remaining O atoms, the left

three form an aggregate to be referred as A1 while the right three form aggregate A2. For

each aggregate, when restricted to bond-direction vibrations only three eigenmodes can

exist and evidently, among them the one that couples most efficiently to the doped hole

and the Cu spins should have all the constituting O atoms moving in phase. Let’s denote

the coordinate of this mode by xi=1,2, where i = 1 and i = 2 correspond to A1 and A2,

respectively. All other modes are irrelevant and then omitted hereafter.

Further, we assume Kl < 0, which is possible if the covalent bond and the O polarizability

are strong enough. Thus, one ends up with a double-well potential. This allows us

to reduce the O Hilbert space by including only states in the vicinity of the potential

minima. In other words, merely two pairs of states need be considered: |O1〉 and |O2〉
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for the shared O atom while |Far, i〉 and |Near, i〉 for the aggregates. Here Far and

Near are referring to the distance of the potential minima from the corresponding Cu

site. Note that each of these states can approximately be regarded as the ground state of

the corresponding harmonic oscillator. Thus, the low energy sector of the O subsystem is

equivalent to a system of three pseudo-spins. The Hamiltonian can in general be couched

as HO = Ω∑i=1,2(|Far, i〉〈Near, i| + h.c.) + Ω′(|O1〉〈O2| + h.c.), where Ω and Ω′ denote

the tunneling energies and are expected to depend conversely on the well separation 2l0 =√
2|γ|
α
. We also expect Ω′ � Ω, because the aggregates are much heavier than a single O

atom. The eigenstates of HO are given by |sgnO〉 ⊗ |sgn1〉 ⊗ |sgn2〉 with energy Ω(sgn1 +

sgn2) + Ω′sgnO, where sgnO,1,2 = ±1 and |sgnO〉 = 1√
2(|O1〉 + sgnO|O2〉) as well as

|sgni〉 = 1√
2(|Far, i〉 + sgni|Near, i〉). Note that x and xi have vanishing average over

these states.

5.3 The Variational Form of A Polaron State

We proceed to conceive an approximate ground state by physical arguments. Let’s for

the moment forget about the kinetic energy (i.e., tunneling effects) of the hole and the

O atoms. We can then let the hole simply settle on, say, the left plaquette. The ground

state would then be simply the Zhang-Rice singlet (denoted by |ZRS1〉) with all O atoms

pulled into the potential wells closer to the Cu site, namely, |ZRS1〉 ⊗ |Near, 1〉 ⊗ |O1〉.

Now we relax the O atoms and render it tunnel. The O states are then expected to

be admixed and the ground state needs be modified. In general, we may write it as

|A〉 = |ZRS1〉 ⊗ |λ′, Near1〉 ⊗ |λ; 1〉 where |λ′;Near1〉 = 1√
1+λ′2

(|Near, 1〉 + λ′|Far, 1〉)

and |λ; 1〉 = 1√
1+λ2 (|O1〉+ λ|O2〉), with λ′ and λ being parameters that can be determined

via variational methods. Similarly, if the hole settles on the right plaquette, the state

should be |B〉 = |ZRS2〉 ⊗ |λ′, Near2〉 ⊗ |λ; 2〉 with analogous definitions of |λ′;Near2〉
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and |λ; 2〉. Finally, we allow the hole to tunnel at a rate of t0. This will mix |A〉 and |B〉

to yield the desired polaron state,

|P 〉 = 1√
2

(|A〉+ |B〉)

For comparison, we also write down the normal state as

|N〉 = 1√
2

(|ZRS1〉+ |ZRS2〉)

⊗ |sgnO = −1〉 ⊗ |sgn1 = −1〉 ⊗ |sgn2 = −1〉

in which no O lattice distortion is assumed. The polaron formation energy Ef is hence

given by the difference between the energies of |P 〉 and |N〉. In evaluating Ef , that λ′ ≈ 0

will be assumed. This is realistic considering t0 � Ω′ � Ω.

5.4 Polaron Formation Energy

To evaluate Ef , we need to build a Hamiltonian to model the polaron depicted in FIG.5.1.

Presuming localization, we may generally write it as

H = J ′~S1 · ~S2 + ~s · [K(x1, x)~S1 +K(x2, x)~S2]

− t0(|1〉〈2|+ h.c.) +HO +H ′ (5.1)

where J ′ denotes the coupling between ~S1,2, K(xi, x) signifies the Zhang-Rice coupling

between the hole spin ~s and the Cu spin ~Si and t0 represents the hole tunneling energy

between the Zhang-Rice states |i = 1, 2〉. Tunneling out of the rectangle is disfavored

because of the distorted O aggregates. In addition, H ′ stands for the interactions of ~S1,2

with all the rest Cu spins of the CuO2 layer, namely, H ′ = ∑
<i,j>,i=1,2 J(xi)~Si · ~Sj, with
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the pair < 1, 2 > excluded in the summation. In the presence of anti-ferromagnetic order,

one may write H ′ ≈ ∑
i=1,2 J(xi)Szi · (−1)iM0, where M0 is the average magnetization.

The spin-phonon interactions are manifested in J and K. They can be expanded as

J(xi) = J0 − x2
i | ∂

2J
2∂x2

i
| and K(xi, x) = K0 + (xi + x)∂K

∂xi
, where all derivatives are taken

at x = 0 and xi = 0, the linear term in J(xi) vanishes by virtue of symmetry and that
∂K
∂xi

= ∂K
∂x

> 0 has been assumed. Notice that both H ′ and the J ′-leading term vanish

when averaging over either |P 〉 or |N〉, since they vanish over |ZRS〉. The stability of

Zhang-Rice singlets indicates the dominance of the K-leading term over others.

Now we evaluate Ef and assess the stability of the polaron state. By definition, we have

Ef = 〈P |H|P 〉 − 〈N |H|N〉. It is useful to notice that both H ′ and the J ′-leading terms

vanish when averaging over |P 〉 and |N〉, since they vanish over |ZRS〉. Making use of

the fact that x = l0(|O2〉〈O2| − |O1〉〈O1|) and that xi = l0(|Neari〉〈Neari| − |Fari〉〈Fari|)

and after some algebra, we find

Ef = Ω + (Ω′ + t0
2 )(1− λ)2

1 + λ2 −
3g
4

1− λ2

1 + λ2 −
9g
4 (5.2)

where g = l0
∂K
∂x

. The first term in Ef is no more than the lattice energy cost of pulling the

aggregates while the last one is the energy lowering of ZRS due to that pulling. The energy

cost as expressed in the second term has two contributions: the increasing of the lattice

energy of off-center shifting the shared O atom and the increasing of the hole’s kinetic

energy when the hopping is impeded by that off-center shift. Meanwhile this shift lowers

the ZRS energy by the amount contained in the third term. Minimizing this expression,

we arrive at

λ =
√

1 + β2 − β, β = 3g
4Ω′ + 2t0

Substituting it back, the Ef can be found. When β � 1, one has λ ≈ 1− β. In this case,
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the stability condition that Ef < 0 translates into the following

Ω
g
<

9
4 (5.3)

which is independent of β. While if β � 1, one has λ ≈ 1
2β and the stability condition

becomes
Ω
g
< 3 (5.4)

For general values of β, we have plotted Ef vs. β in FIG.3, where it is exhibited that

for Ω/g < 3, that Ef < 0 is much likely to be gratified and the polaron picture is quite

plausible. In addition, it is seen that the main energy to be circumvented is that of pulling

the aggregates while the off-center shift always results in a lower total energy.

It is possible to make a realistic estimate. Notice that expression (4) involves four param-

eters: t0, Ω′, Ω and g. Let’s look at t0 and g first. From the expression of K as given in

Ref.[1], we learn that K ∼ V 2[ 1
∆ + 1

U−∆ ], where V is the overlap between the Cu dx2−y2

and O p orbital wave functions and U is the Hubbard repulsion on Cu sites whereas ∆

is the charge transfer gap. Assuming an exponetial dependence of V on the Cu-O bond

length variation δ, i.e., V ≈ V0 exp( δ
y0

), we obtain g ≈ V 2
0 [ 1

∆ + 1
U−∆ ]2l0

y0
. Taking V0 ∼ 1.3eV,

U ∼ 10.5eV, ∆ = 3.6eV and l0
y0
∼ 0.1, we would get g ≈ 100meV. Here y0 denotes the

average Cu-O bond length. Similarly, we have t0 ∼ V 2
0 [ 1

∆ −
1

U−∆ ] ∼ 0.2eV. On the other

hand, Ω′ and Ω should be much smaller, since they are lattice vibration energies. Actu-

ally, in perovskite compounds they are often found less than 200cm−1, amounting to about

20meV. Given such estimates, we obtain β ∼ 0.6, Ω
g
∼ 0.2 and Ef ≈ −2g ∼ −t0, which is

a very large portion of energy. Although very rough, the estimate, which is indicated by

the spot in FIG.3, shows that the polaron state can be very stable.
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Figure 5.2: The polaron formation energy Ef as a function of β for various Ω
g
. The spot

corresponds to an estimate given in the text.
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5.5 Discussions

A direct corollary of the two-plaquette picture is the spatial Cu-O bond length variations

at low dopings. According to this picture, a doped hole shall form a polaron with two

Cu spins by attaching the O atoms nearby. As a result, three pairs of anomalous Cu-O

bonds shall be created locally. With x being the doping level, we then anticipate that, the

fraction of these anomalous bonds amounts to about 1.5x. In Ref.[165], experiments aimed

at detecting local lattice distortions were performed on La0.75Sr0.15CuO4. The authors

indeed found enlongated Cu-O bonds, whose fraction was about 20% and close to the

expected value. Their experiments seemingly did not detect the shorter bonds, but this

may be due to limited resolution.

Locally, the electronic density distribution associated with the polaron state should be

bond-centered and look like a dipole, with the maxima occuring on the ends, thereby

breaking the four-fold rotational symmetry. Interestingly, this type of symmetry breaking

has already been discovered experimentally[162, 163]. In Ref.[163], the dipole pattern

seems clearly detected in the pseudogap phase and the onset temperature of the latter

seems tracking the pattern forming temperature.

The as-constructed polaron is magnetic in the sense that it carries a small but finite

magnetic moment, which has been demonstrated in Ref[1]. Largely, it is due to an unusual

double-exchange effect: the hole couples simultaneously via hopping to both Cu spins

and therefore acts to align the spins, thence generating finite magnetism and breaking

time-reversal symmetry. The moment for typical material parameters could be easily as

large as 0.1µB[1]. This should be seeable by e.g. Kerr rotation and neutron scattering.

Experiments have indeed observed unusual magnetic phenomena that are most pronounced

in the pseudogap phase of very underdoped materials[166, 167].

In view of all these appealing features, it is appropriate to speculate on the connections

of the polaron state with the pseudogap phase. As already said, they seem to have the
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same symmetries broken locally and the pseudogap onset seemingly synchronizes with the

appearance of these features. A more interesting evidence is discussed below.

Recently, simultaneous r- and k-space imaging techniques have revealed remarkable evo-

lutions in the nature of the electronic excitations when the doping tends toward zero[156].

Such evolutions seem to place the polaron state (maybe its variants) as a strong candidate

for the pseudogap state. As is well known, in underdoped samples two distinctive cate-

gories of electronic excitations can be seen at low energies and high energies, respectively.

Utilizing the imaging technique, Kohsaka et al. observed two classes of excitations: one is

well defined in k-space whereas the other localized in r-space[156]. The k-space excitations

were proved to be simply the Bogoliubov quasi-particles generated out of the supercon-

ducting phase. On the other hand, the r-space excitations were found with higher energies

and destroying aforementioned symmetries locally. They demonstrated that, these r-space

excitations are just the pseudogap excitations. Very intriguingly, upon decreasing doping

the phase volume occupied by the k-space excitations shrinks rapidly and the spectrual

weight is transfered to the r-space states. In light of our reasoning, one may conjecture

that, these r-space states could be intimately linked with the polaron states described

above. If so, one should have |Ef | ∼ T ∗.

In the present work, we have focused on the single-polaron aspects. Future work are

desired to investigate the inter-polaron correlations (which should be of importance to

superconductivity) and the inter-relations between polarons and the antiferromagnetic

background.
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Chapter 6

SUMMARY

In summary, some intriguing problems that were found with two old perovskite compounds

(BTO and STO) have been examined using an atomistic model. These two have similar

crystal and electronic structures but show distinct lattice dynamics. The model was

constructed in such a spirit: the relevant physics are primarily associated with the TiO3

sub-lattice, while the A sub-lattice is only secondary. Evidences have been discussed to

corroborate this spirit. The core of the model rests with the Ti sub-lattice, while the

O one also proves indispensable. The Bersuker calculation for a single TiO6 cluster has

been generalized to a crystal and it was found that, the latter tends to strengthen the

off-center shifts that would already exist in the former. As for the O vibrations, a strong

anisotropy has been found as a result of the covalent Ti-O bonding that is responsible for

the perovskite structure formation. This anisotropy states that, O vibrates much more

easily along the Ti-O-Ti bond than in the perpendicular direction. In this model, a linear

coupling has been assumed between adjacent Ti and O atoms. The coupling strengthes

(βl,t) also display anistropy and must be positive to be consistent with observations. The

positiveness can not be warranted unless the O ion polarization effects are taken into

account.
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Competitions between Ti off-center shifts (u) and O cage tilting (ϕ) have been discussed by

exploring electron-phonon interactions. The former mode tends to condense at zone center

while the latter at zone boundary, which is why the former is a polar mode (to result in

ferroelectricity) while the latter is non-polar. Although both were discovered many years

ago, they have been considered largely independent till very recently. Except for the work

by Yamanaka et al.[75] and Bussmann-Holder et al.[115], few have been attracted to such

possible competitions. What was found in this thesis is that, these two types of modes

actually germ out of the same electronic transitions between the pOρ|ρ orbital and t2g d

orbital. These transitions must be aided by phonons with proper symmetry, and these

phonons can be of O or/and Ti character corresponding to O cage tilting and Ti off-center

shifts, respectively. It turns out that, the amplitudes u and ϕ have to satisfy a simple

relation that gives rise to competitions between these modes. In other words, they are

adverse to each other. This finding should, at least partly, underlie the differences between

BTO and STO. In BTO, u is large and therefore ϕ should be suppressed. In STO, the

opposite takes place: the O cage tilting hinders ferroelectricity.

In light of the atomistic model, all observed dielectric modes (below 600cm−1) have been

assigned according to their characters. The modes located around 180cm−1 and 510cm−1,

which are very stable and insensitive to temperatures and survive all phases, are shown

to stem from O vibrations along and perpendicular to the Ti-O-Ti bonds, respectively.

These modes are essentially the same in both BTO and STO, with slight differences

explicable by our model. In comparison with BTO, the 180cm−1-mode was found at a bit

smaller frequency while the 510cm−1 at a little higher one in STO, in consistency with

the fact that the covalent bonding in this compound is a little stronger. The remaining

modes display characteristic temperature dependences and have been argued to originate

from Ti motions. These motions are highly anharmoic, as expected from the form of the

corresponding single-body potential. Every Ti ion has been subjected to a multi-valley

172



potential that is symmetric about the central position (crystallographic position). The

profile of this potenial determines the dielectric behaviors.

For BTO, the potential wells are deep and intra-well motions can exist in addition to

inter-well ones. However, since both modes are attached to the same coordinate, their

spectural weights together must conserve. As temperature changes, a transfer between

their weights is bound to happen. Qualitative arguements suggest that, the inter-well

mode would absorb most weights when intra-well fluctuations become great and conversely,

the intra-well mode would dominate. It is therefore expected that, at high temperatures

the intra-well mode is invisible, which is the reason why in the cubic phase BTO shows

only three modes1. Below the cubic-tetragonal transition, the compound enters a state

with Ti ordering (together with other sequela) along one axial direction, and intra-well

mode gradually gains weight. Therefore, in tetragonal phase, BTO exhibits four modes

in the ordering direction. As it cools down from the transition temperature, the weight is

gradually transfered from the inter-well mode (the lowest frequency mode) to the intra-well

mode (at about 270cm−1). According to our study, the inter-well mode follows Debye’s

law and represents a relaxation involving the previliged and disfavored potential wells.

One must see that, in the tetragonal phase, the Ti ordering is only partial. The motions

normal to the spontaneous polarization are still disordered and no intra-well motions can

be seen. That is why there are only three modes that have been found in εa. This idea

has been employed to resolve two longstanding issues: (1) the big discrepancy between

the magnitudes of εc and εa and (2) the one-mode-vs-two-mode puzzle as expounded in

sections 1.7.1, 1.7.5 and 3.3.1.

For STO, the potential wells are shallow and no intra-well motions can exist. In such

case, three modes show up, with the lowest frequency mode corresponding to Ti inter-well

motions. Differing from the incoherent thermal agitation in BTO, Ti motions in STO are
1Due to nano-size ferroelectric precursor formation, a fourth mode can also exist that levels off around

60cm−1 as the transition is approached.

173



very coherent and hence represent a resonance, whose position varies with temperature.

As aforementioned, the O cage tilting transition occuring at 105K should have discernible

impacts on this resonance. Especially, one anticipates that, across the transition 105K, the

potential well should become shallower, which means stronger zero-point fluctuations that

hinder ferroelectricity. Although Yamanaka et al.[75] had demonstrated such enhanced

fluctuations, direct evidence remains elusive. By studying the behaviors of the quantum

temperature T1, a direct evidence has been found. It appears as a broad dip around 105K

in the T1 − T curve. Clearly, were not for the dip, T1 would vanish at low temperatures

and ferroelectricity would occur. This dip shows the inadequacy of some models like the

PSM and DWA. It requires the presence of the 8CM or the ARM. In this sense, the T1−T

shape can serve as a fingerprint of the model.

As regards the O substitution induced ferroelectricity in STO18, a new and novel idea has

been forwarded. According to this idea, the effective Ti vibration frequency decreases after

isotope exchange, that is, the zero-point fluctuations on Ti sites are reduced. This consti-

tutes another advocate of the claim that O cage tilting impact Ti motions. Nevertheless,

how such impacts operate is not elucidated in the present thesis and might be matter for

future research. It is noted that, the idea contrasts those of other authors[83, 117, 164].
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