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Abstract

The penalty function method is one of the most fundamental and useful tools in the

modern optimization and has developed into a major research field since 1950s. The

study of penalty functions has proliferated in many interesting areas within mathe-

matical optimization society. Nowadays, researchers in optimization fields still pur-

sue unremittingly new breakthroughs in theoretical and algorithmic aspects of penalty

function methods. However, it should be mentioned that the currently existing exact

penalty functions have a disadvantage that the evaluation of the merit function either

needs Jacobian (e.g., augumented Lagrangian penalty functions) or is no longer smooth

(l1 or l∞ penalty functions).

“It would be a major theoretic breakthrough in nonlinear programming if a sim-

ple continuously differentiable function could be exhibited with the property that any

unconstrained minimum is a solution of the constrained problem.”—Evans, Gould and

Tolle [21].

So far, to some extent, the breakthrough of the above quotation has been achieved.

Recently, Huyer and Neumair in [38] proposed a new exact and smooth penalty function

through adding an auxiliary variable ε to deal with equality constrained minimization

problem. The proposed new penalty function enjoys several good properties: (1) good

smoothness and exactness properties; (2) bounded below under reasonable conditions;

(3) combination of regularization with penalty techniques, which are not possessed by

the classical simple and exact penalty functions. Moreover, the new penalty function

only involves the information of objective function and constraints function rather than

the one of gradient and Hessian matrix. Nevertheless, the new exact penalty function

is different from the definition of traditional penalty function, namely, the values of

penalty terms are zero on the feasible set and positive outside the feasible set. In spite

II



of significant differences between the new penalty function and the classical simple and

exact penalty functions, naturally, a question arises: What’s on earth the relationship

between them?

In this thesis, motivated by Huyer and Neumair’s work [38], we extend the norm

function term of the exact penalty function in [38] to a class of convex functions with

a unified framework for some barrier-types and exterior-type penalty functions. We

characterize necessary and sufficient conditions for the exact penalty property. Inter-

estingly, we also explore the equivalence between this class of penalty functions and

the traditional simple exact penalty functions in the sense of exactness property. These

results clarify that this class of penalty functions not only have exactness property as

the classical simple penalty function, but also possess the smoothness property, which is

not shared by the latter. Furthermore, since the class of penalty functions are bounded

below, a revised penalty function method is established. In addition, we verify that,

under certain conditions, the proposed algorithm terminates at the optimal solution of

the primal problem after finitely many iterations; while in the absence of these con-

ditions, a perturbation theorem for this algorithm can be derived. As a corollary, the

global convergence property is presented−namely, every accumulation point of the se-

quence generated by the algorithm is an optimal solution of the primal problem. The

numerical outputs verify the correctness of our developed theory as desired.

We propose a new exact and smooth penalty function for semi-infinite programming

problems. The main feature of our penalty function is that we only need to add one

variable ε to handle infinitely many constraints. The merit function is considered as

a function of x and ε simultaneously which has good smoothness and exactness prop-

erties, without involving gradient and Jacobian matrices. We derive another useful

property that the minimizer (x?, ε?) of the penalty problem satisfies ε? = 0 if and only

if x? solves semi-infinite programming problem. This property demonstrates that the

introduced new variable ε can be viewed as an indicator variable of a local (global)

minimizer of semi-infinite programming problem. Alternatively, under some mild con-

ditions, the local exactness proof is shown. The numerical results demonstrate that it is

an effective and promising approach for solving constrained semi-infinite programming

problems. Similarly, we also apply a new exact penalty function to tackle the min-max

programming problem and establish necessary and sufficient conditions for the exact-
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ness property. In addition, we characterize the second-order sufficient conditions for

the local exactness property.

We model and explore the search-based advertising auction as a large scale integer

programming problem with more realistic situations, e.g., multiple slots, advertisers

with choice behavior and the popular generalized second price mechanism etc.. And

then, we apply the new penalty function to this proposed integer programming. In

addition, we give numerical simulations to address managerial insights on both opera-

tional and theoretical aspects and compare the numerical performances with currently

existing algorithms for search engine advertising problems.
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Chapter 1

Introduction

In this chapter, we mainly present literature review and backgrounds of nonlinear pro-

gramming problems, semi-infinite programming problems, min-max programming prob-

lems and search engine advertisements problems, respectively. Finally, motivations and

outlines of this thesis are presented.

1.1 Nonlinear Programming Problems and Penalty

Function Methods

Consider the nonlinear programming problem

(NLP) min f(x)

s.t. gi(x) ≤ 0, ∀ i = 1, · · · ,m,

hj(x) = 0, ∀ j = m + 1, · · · ,m + q, (1.1.1)

where the functions f : Rn → R, gi(x) : Rn → R, i = 1, 2, · · · ,m and hj(x) : Rn →
R, j = m + 1, · · · ,m + q are continuously differentiable.

Nonlinear programming problem (NLP) with equality and inequality constraints is

an important type of constrained optimization problems. It received much attention in

past decades as an important branch of operations research and has wide applications

in the fields of finance, economics, medicine science, engineering optimization and man-
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agement science [2]. There exist a great number of methods in the literature for the

NLP such as various feasible direction methods including the method of Zoutendijk [80],

the gradient projection method of Rosen [63] and some penalty and barrier function

methods such as Lagrangian and augmented Lagrangian penalty methods proposed by

Hestenes [33] and Powell [59]. In addition, another important efficient method for the

NLP is the sequential quadratic programming (SQP) algorithm (see Ref. [25]).

Among the numerous algorithms for the NLP, the penalty function method is typical

and effective. The basic principle of the penalty function method is to augment the

objective function utilizing penalty terms for constraint violations in order to transform

constrained optimization problems into unconstrained optimization ones. Therefore, by

means of penalty functions, we could directly apply kinds of algorithms for tackling the

unconstrained optimization problems to solve the primal problem. As the penalty

parameter appropriately updated, minimizers of the penalty functions converge to the

optimal solutions set of the primal problem. On the other hand, the penalty functions

play important roles in exploring novel algorithms. For example, in the sequential

quadratic programming method, the penalty functions are usually considered to be the

merit functions to make a decision on whether or not accept a test point. In addition,

barrier penalty functions form part of the foundation for interior point algorithms for

linear programming and semi-definite programming problems.

The penalty function method is one of the most fundamental and useful tools in

the modern optimization and has developed into a major research field since 1950s.

The original use of the penalty function to solve constrained nonlinear programming

problems is generally attributed to Camp [8], whereas significant progress in solving

practical problems by the use of penalty functions follows the classical work of Zang-

will [76]. The barrier penalty function approach was first proposed by Carroll [10] and

used to solve nonlinear inequality constrained problems by Box et al. [5]. Nevertheless,

the ill-conditioness usually occurs as the penalty parameter tends to infinity. In order

to overcome the difficulties associated with ill-conditioness as the penalty parameter

tends to infinity or barrier term approaches zero, Zangwill [76] proposed a nonsmooth

absolute value penalty function in which a single unconstrained optimization problem,

with a finite threshold penalty parameter, can yield an optimum solution to the pri-

mal problem. As a matter of fact, it is the l1 exact penalty function that we often
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said. It should be noticed that, though the l1 penalty function is exact, the mini-

mization of the l1 penalty function is made difficult by its nonsmoothness property.

Another kind of smooth and exact penalty function, which incorporates both a La-

grangian multiplier term and a penalty function term in the auxiliary function is said

to be the augumented Lagrangian penalty function or the multiplier penalty function

proposed independently by Hestenes [33] and Powell [59]. Furthermore, Rockefellar [61]

generalized the augumented Lagrangian penalty function to the inequality constrained

optimization problems.

Although the penalty function method is one of the popular methods for the NLP, it

also has some disadvantages. For example, if the penalty function is exact and smooth,

then it is not necessarily simple; on the other hand, if the penalty function is simple and

smooth, then it is not necessarily exact. Here, the referred word “simple” means that

the penalty function includes only the objective and constraints functions of the NLP

rather than involves any gradients or Hessian matrices information. To address this

issue, take the aforementioned three classes of penalty functions for example. It is well

known that the l1 penalty function is a nonsmooth simple and exact penalty function;

the quadratic penalty function is a smooth and simple penalty function, but it is not

exact; though the augumented Lagrangian penalty function is smooth and exact, it is

not simple, because as a matter of fact, the multiplier term contains the gradients of

the objective and constraint functions.

“It would be a major theoretic breakthrough in nonlinear programming if a sim-

ple continuously differentiable function could be exhibited with the property that any

unconstrained minimum is a solution of the constrained problem.”—Evans, Gould and

Tolle [21].

In the sprit of the quotation, a considerable amount of researchers devoted to de-

signing improved l1 exact penalty functions or kinds of new penalty functions which

tackle nonlinear programming problems both from the theoretical and computational

perspectives. So far, to some extent, the breakthrough of the above quotation has been

achieved. For example, Huyer and Neumair in the literature [38], via adding a new

variable, proposed a new continuously differentiable and exact penalty function to deal

with equality constrained minimization problem. We observe that, the new established

penalty function only includes the information of the objective and constraint functions

3



of the primal problem besides its exactness and smoothness properties. In addition, it

is worth noting that, in this newly established penalty function, the norm function term
∆(x,ε)

1−q∆(x,ε)
plays a role as a barrier term which prevents feasible iterates from moving too

close to the boundary of the feasible region.

1.2 Semi-Infinite Programming Problems

A semi-infinite programming problem (SIP) is an optimization problem with finitely

many variables x ∈ Rn and infinitely many constraints. In general, the semi-infinite

programming problem can be formulated as

(SIP) min f(x)

s.t. g(x, v) ≤ 0, ∀ v ∈ V, (1.2.2)

where f : Rn → R and g : Rn+m → R are continuously differentiable functions. V is an

infinite compact index set.

The origins of the semi-infinite programming problem are related to Chebyshev

approximation. The term “semi-infinite programming” stems from [11], where Charnes,

Cooper and Kortanek introduced the dual of the Haar problem. The semi-infinite

programming problem has wide applications in the real life such as the design of the

flutter of aircraft wings [65], the design of multi-input multi-output control system [57]

and economic equilibria [39].

The most prominent feature of the semi-infinite programming problem is that it has

finitely many variables but infinitely many constraints, which brings great difficulties

in designing effective numerical methods. Due to its wide applications, nowadays, the

study on the theory and numerical methods has been a very active research area in

applied mathematics.

On the theoretical aspect, Krabs [42] obtained Karush-Kuhn-Tucker optimality con-

dition for the semi-infinite programming problem under Slater’s constraint qualification.

Based on reduction assumptions, second order necessary and sufficient optimality con-

ditions for (SIP) were first derived by Hettich and Jongen [34]. Bonnans and Shapiro

[4] derived a zero duality gap of the convex semi-infinite programming problems and
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its Lagrangian dual problem under Slater’s constraint qualification.

On the algorithmic aspect, in recent years, lots of effective methods have been pro-

posed for solving the semi-infinite programming problem, which can be separated into

four categories, namely, exchange methods (Hettich and Kortanek [35]), discretization

methods (Reemtsen [60], Still [67]), local reduction methods (Goh and Teo [28]) and

homotopy methods (Liu [45]). For a thorough study of this subject, refer interested

readers to [35].

1.3 Min-Max Programming Problems

Many applications in engineering design, for example, computer-aid design, circuit de-

sign, optimal control, risk management in economy etc., give rise to the min-max pro-

gramming problem in the form:

min max
1≤i≤q

fi(x),

where fi : Rn → R, i = 1, 2, · · · , q are continuously differentiable functions.

Since the objective function contains the “max” operator, it is continuous but non-

differentiable even when fi(x), i = 1, 2, · · · , q are all differentiable. Nowadays, there

are several different types of algorithms that have been commonly taken to solve the

min-max programming problem.

• Nonsmooth optimization techniques

Take the min-max programming problem as a constrained nonsmooth optimiza-

tion problem and directly utilize the general nonsmooth optimization technologies,

e.g., subgradient methods, bundle methods and cutting plane methods (see Refs.

[56, 26]).

• Smooth optimization techniques

Take the specific structure of nondifferentiability into account so as to make use

of certain smooth optimization methods, e.g., the most widely used regularization

techniques (see Refs. [74, 58]). The main advantage of smooth techniques lies in

5



the fact that the min-max programming problems can be converted into smooth

unconstrained optimization ones solved by a standard unconstrained optimization

solver. For example, Polak et al. [58] proposed the following approximation

problem

min
x∈Rn

Fp(x) =
1

p
log

q∑
i=1

epfi(x),

where p > 0 is a smooth precision parameter. This approximation can be derived

through Jayne’s maximum entropy principle and thus, could also be referred as

an exponential penalty function as follows

Fp(x) = f(x) +
1

p
log

q∑
i=1

ep(fi(x)−f(x)).

• Equivalently transformed problem

Another approach is to transform the min-max programming problem into a stan-

dard nonlinear programming through an auxiliary variable denoted as follows.

min
(x,α)∈Rn+1

{α|fj(x)− α ≤ 0, j = 1, 2, · · · , q}. (1.3.3)

This method has been explored in Refs. [78, 54]. Zhou et al. [78] proposed that

successive quadratic programming algorithms for solving the min-max program-

ming problems based on the above programming problem (1.3.3). Di Pillo et al.

[54] established a smooth penalty function for the transcribed problem (1.3.3).

1.4 An Introduction on Search Engine Advertising

Problems

Internet search engines provide a service where sponsored links will be displayed in the

front page in addition to search results after a user has searched for a specific term.

Keyword advertising, also known as “sponsored links”, is a form of targeted online

advertising in which the placement of advertisements is triggered by keywords that

internet users search or by keywords embedded in online content. Sponsored links offer

advertisers a more targeted method of advertising than traditional forms of advertising

such as TV commercials, because they are customized. Just for its conveniences, since
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its inception on search engines in the late 1990s, sponsored links has quickly grown into

a leading form of search-based advertising (SA) which has become a principal source of

revenue for search engines such as Yahoo and Google. Industrial reports have estimated

that the total revenues from SA will reach US $17.6 billion in the U.S. by 2012 (see

Ref. [41]).

The major search engines use auctions to sell positions for sponsored links. For

this reason, it is also named as the position auction by Varian [71]. Advertisers’ bids

determine which advertisers’ sponsored links are listed and in which order. When

an internet user clicks on the advertisement link associated with the keyword, the

advertiser is charged by the search engines. The number of advertisements that the

search engine can show to a user is limited, and different positions on the search results

page have different desirabilities for advertisers. For instance, an advertisement shown

at the top of a page is more likely to be clicked than an advertisement shown in the

bottom. In another word, different advertising positions have different Click-Through-

Rate (CTR for short), the ratio of the number of clicks on the advertisements to the

number of appearances of the advertising web links. Therefore, search engines need a

system for how to allocate the positions to advertisers and what price to be charged

to each advertiser. Auction mechanism is a natural choice, and it is widely-used in the

electricity markets .

For the search-based advertising auctions, some of the features that have been con-

sidered include: equilibrium properties [19, 48]; algorithm design [64, 15]; mechanism

design [18, 20]; parametric estimate [17], incorporating budgets or not, and pay per

click or pay per impression schemes. Subsequently, we review some most representative

ones as follows.

In the theoretical aspect, Edelman et al. [19] found that generalized second price

auction generally does not have equilibrium in dominant strategies, and truth-telling is

not an equilibrium strategy. They defined the locally envy free equilibrium, which shows

that there exists some position for each advertiser where the advertiser cannot be better

off by swapping bids with the advertiser ranked one position above him. Through the

definition of locally envy free equilibrium, Feng et al. [22] further presented a pricing

model and derive the optimal reserve price for sponsored search advertising from the

standpoint of search engine.
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In the algorithmic aspect, Rusmevichientong and Williamson [64] developed an

adaptive algorithm to show how to determine the bid price to select profitable keywords

from the advertisers’ point of view. Moreover, Devanur and Hayes [15] demonstrated

how an online learning algorithm with the budgeted advertisers can achieve a competi-

tive ratio of 1−ε under random permutations without the assumption of bidders’arrival

distribution. Nevertheless, they all consider this simplified problem without the require-

ments of multiple slots and the second price payment. When the actual situations are

considered, the model and the resulting optimization problem are much more complex

yet challenging.

1.5 Motivations and Outlines

To a great extent, this thesis is mainly motivated by Huyer and Neumaier’ s work

[38]. The proposed new exact barrier penalty function in [38] has significant differ-

ences with traditional definitions of penalty functions, which motivates us to explore

whether in some sense, the equivalence between the new exact penalty function and

traditional penalty functions can be established. On the other hand, the new exact

barrier penalty function enjoys exactness, smoothness and lower-bounded properties

which are not all shared by the commonly used penalty functions. Based on these

good properties, the new exact penalty function motivates us to make an extension to

a more general representation with unified framework for some exterior-type penalty

functions and barrier-type penalty functions. In addition, it also enlightens us to inves-

tigate the scope of the applicability to semi-infinite programming problems, min-max

programming problems and some other practical problems encountered in our life.

In Chapter 2, some preliminaries about basic definitions, optimality conditions of

nonlinear programming problems and categories of general penalty functions are pre-

sented.

In Chapter 3, noticing the fact that the barrier term in the proposed exact penalty

function in [38] makes computing interior points of a feasible region essential, we first

generalize it to a class of convex functions so that the established penalty functions

present a unified framework for some barrier type and exterior type penalty functions.
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Subsequently, necessary and sufficient conditions for exact penalty property are devel-

oped. We prove that, the optimal solution takes the form (x, ε) with ε = 0 without

requirement of conditions that the penalty parameter tends to infinity. In particular,

in spite of great differences, we characterize the equivalence between the new class of

exact penalty function and the traditional simple exact penalty functions in the sense of

exactness. We end up Chapter 3 with a feasible and revised penalty function algorithm.

The finite termination property and convergence analysis are presented associated with

numerical experiments.

As important extensions, inspired by [38], we propose a new exact and smooth

penalty function for the semi-infinite programming problem in Chapter 4. The main

feature is that, we only need to add one variable ε to handle infinitely many constraints.

We show that, under some constraint qualification, a local optimal solution has the ex-

pression of (x?, 0). In addition, we derive a useful property that the minimum (x?, ε?) of

the penalty problem satisfies ε? = 0 if and only if x? solves the original the semi-infinite

programming problem. This property tells us ε can be viewed as an indicator variable of

the local (global) minimizer of the semi-infinite programming problem. For the specific

structure of the semi-infinite programming, we derive the error bound assumptions as

sufficient conditions that ensure local exactness property of the proposed exact penalty

function. In the end, we make numerical experiments so as to verify the developed

theory correct and compare numerical performances with existing algorithms for the

semi-infinite programming problem.

Chapter 5 introduces a new exact and smooth penalty function to tackle the equality

constrained min-max programming problem. Like what previously mentioned, the new

penalty function method proposed in this chapter can be categorized into equivalently

transformed techniques for solving the min-max programming problems. Since our

proposed new exact penalty function has good smoothness, it could be dealt by any

smooth unconstrained optimization methodologies. Similar to Chapter 4, we show

that, under some constraint qualification, a local optimal solution has the expression

of (x?, θ?, 0). In addition, we derive a useful property that the minimum (x?, θ?, ε?)

of the penalty problem satisfies ε? = 0 if and only if x? solves the original min-max

programming problem and θ? is the optimal objective function value. Furthermore,

we provide that, under some constraint qualification, the penalty function possesses

9



the exactness property, and especially, the local exactness proof is shown, where the

objective and constraint functions are not necessarily smooth. In this case, ε may

control both the weight of the penalty terms and the regularization of the nonsmooth

terms. In the end of Chapter 5, we characterize the second-order sufficient conditions

for the local exactness property.

As applications, we utilize the newly proposed exact and smooth penalty functions to

an increasingly popular search engine advertising problem in Chapter 6. We model and

formulate the search-based advertising problem into a large-scale integer programming

problem based on more realistic situations,which are not yet explored in the current

literature. For example, (1) multiple slots; (2) generalized second price mechanism;

(3) advertisers with their own choice behaviors; (4) quality score factor; (5) reserve

price and (6) more than one keyword can match the query. In view of the established

integer programming model, in the beginning of Chapter 6, we apply the proposed exact

and smooth penalty functions to nonlinear mixed discrete programming. As a special

case, we apply the new penalty function to solve search engine advertising problems.

Furthermore, we provide numerical simulations to address managerial problems on both

operational and theoretical aspects and compare numerical performances with currently

existing algorithms for solving search engine advertising problems.

This thesis ends with some conclusions and thoughts on future research directions.
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Chapter 2

Preliminaries

This chapter focuses on some basic definitions and existing theoretical results on non-

linear programming problems and penalty functions.

2.1 Nonlinear Programming Problems

Associated with the NLP defined in (1.1.1), the Lagrange function L : Rn×Rm+q → R
is defined as

L(x, λ) := f(x) +
m∑

i=1

λigi(x) +

m+q∑
j=m+1

µjhj(x).

For simplicity in exposition, denote the feasible set

Ω =

{
x ∈ Rn

∣∣∣∣∣
gi(x) ≤ 0, i = 1, · · · ,m;

hj(x) = 0, j = m + 1, · · · ,m + q

}
(2.1.1)

and assume it to be compact. For x? ∈ Ω, if f(x?) ≤ f(x) for all feasible point x 6= x?, x?

is said to be a global minimum of the NLP. Accordingly, f(x?) is said to be the optimal

objective function value. Furthermore, if f(x?) < f(x) holds for all x ∈ Ω, x 6= x?. x? is

said to be a strict global minimum. Assume that x? ∈ Ω, if there exists a δ-neighborhood

of x?, N(x?, δ), where δ > 0, such that for all x ∈ N(x?, δ)∩Ω, f(x) ≤ f(x?), then x? is

said to be a local minimum. If f(x?) < f(x) for x ∈ N(x?, δ)∩Ω, x 6= x?, x? is called a

strict local minimum.
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In what follows, we introduce constraint qualifications and optimality conditions of

the NLP.

A Karush-Kuhn-Tucker (KKT for short) triplet for the NLP is a triplet (x̄, λ̄, µ̄) ∈
Rn × Rm × Rq

∇f(x̄) +
m∑

i=1

λ̄i∇gi(x̄) +
m+q∑

j=m+1

µ̄j∇hj(x̄) = 0,

λ̄igi(x̄) = 0, i = 1, 2, · · · ,m,

λ̄i ≥ 0, i = 1, 2, · · · ,m,

where x̄ is said to be a KKT point for the NLP and (λ̄, µ̄) is said to be the Lagrange

multipliers vector.

As stated in [2], the Karush-Kuhn-Tucker conditions may not hold at a local mini-

mum of the NLP if some regularity conditions are not satisfied. By regularity conditions,

we refer to various conditions imposed on the problem data, some of which may only

depend on the constraints, while some of which may depend on the objective function

in addition to the constraint functions. When regularity conditions are independent

of the objective functions, they are well known as the constraint qualifications in the

literature. For various constraint qualifications appeared in the literature, we refer

readers to the text book [2]. In what follows, we list some frequently appeared in most

literature.

For any x ∈ Rn, we define the index sets:

I0(x) := {i = 1, 2, · · · ,m|gi(x) = 0},
I+(x) := {i = 1, 2, · · · ,m|gi(x) ≥ 0},
I−(x) := {i = 1, 2, · · · ,m|gi(x) < 0}.

The linear independence constraint qualification ([23]) (LICQ) holds at x ∈ Rn if

the gradients ∇gi(x), i ∈ I0(x),∇hj(x), j = m + 1, · · · ,m + q are linearly independent.

The Mangasarian-Fromovitz constraint qualification ([47]) (MFCQ) holds at x ∈ Rn

if the set of equality constraint gradients ∇hj(x), j = m + 1, · · · ,m + q are linearly

independent and there exists a vector w ∈ Rn \ {0} such that

∇gi(x)>w < 0, i ∈ I0(x);

∇hj(x)>w = 0, j = m + 1, · · · ,m + q.
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It is well known [27] that MFCQ is equivalent to boundedness of the set of Lagrange

multiplier vectors for which the KKT conditions hold. As stated in [23], LICQ implies

that the set of Lagrange multiplier vectors consists of a unique vector, and so is trivially

bounded. In addition, it should be noticed from [52] that the LICQ implies the MFCQ.

Constraint qualifications play important roles in establishing optimality conditions.

Subsequently, first-order necessary and sufficient optimality conditions of the NLP are

presented.

With the help of a cone of feasible directions, the first-order sufficient condition for

the NLP was shown in [2]. Let us recall definitions of the cone of feasible directions

and the cone of descent directions.

Definition 2.1.1 ([2]) Let S be a nonempty set in Rn, and let x̄ ∈ clS. The cone of

feasible directions of S at x̄, denoted by D, is given by

D = {d ∈ Rn|d 6= 0, and x̄ + λd ∈ S for all λ ∈ (0, δ) for some δ > 0}.

Each nonzero vector d ∈ D is called a feasible direction. Likewise, define F0 = {d ∈
Rn|∇f(x̄)>d < 0} as the cone of a descent direction. At x̄ ∈ clS, F0 ∩ D = ∅ implies

that there is no improved feasible direction, and thus x̄ is a local minimum of f . The

condition F0 ∩D = ∅ can be taken as the first-order sufficient condition.

It was shown in [50, Theorem 12.1] that if the conditions that x? is a local minimum

of the NLP and the LICQ holds at x?, then the KKT condition holds. The conditions

defined in this theorem are called first-order necessary conditions.

So far, we have recalled first-order optimality conditions which demonstrate that

how the first-order derivatives of the objective f and the active constraints are related

to each each other at solution x?. In addition, it was investigated in [50, Theorem 12.6]

that what roles the second-order derivatives of the objective function and constraint

functions play in the optimality conditions.

Lemma 2.1.1 ([50]) Suppose that for some feasible point x? ∈ Rn there exists a La-

grange multiplier vector λ? such that the KKT conditions are satisfied. In addition,
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suppose that

w>∇2
xxL(x?, λ?, µ?)w > 0, ∀ w ∈ D(x?, λ?, µ?)\{0}.

Then x? is a strict local minimum of the NLP. Here, D(x?, λ?, µ?) is a set of directions,

defined as follows:

D(x?, λ?, µ?) =





d ∈ Rn

∣∣∣∣∣∣∣∣

d>∇hj(x) = 0, j = m + 1, · · · ,m + q,

d>∇gi(x) = 0, i ∈ I0(x) with λ?
i > 0,

d>∇gi(x) ≤ 0, i ∈ I0(x) with λ?
i = 0.





(2.1.2)

The above lemma tells us that second-order sufficient optimality conditions ensure

that x? is a local minimum of the NLP without the requirement of the constraint

qualifications.

Furthermore, a necessary condition involving the second-order derivative was also

shown in [50, Theorem 12.5]. That is to say, suppose that x? is a local solution of the

NLP, LICQ condition is satisfied and in addition, let (λ?, µ?) be the Lagrange multi-

plier vector for which the KKT conditions are satisfied, then w>∇2
xxL(x?, λ?, µ?)w ≥

0, for all w ∈ D(x?, λ?, µ?)\{0}.

Originated from the practical implementation and numerical considerations of iter-

ative methods for the NLP, the study of error bounds has grown and proliferated in

many interesting areas within mathematical programming, for instance, the researches

on the exact penalization and optimality conditions. In what follows, we introduce the

definition of the error bound condition and an important lemma which is later used.

Definition 2.1.2 ([51]) Denote the constraint system

{
gi(x) ≤ 0, i = 1, · · · ,m;

hj(x) = 0, j = m + 1, · · · ,m + q

as the set Ω. This system is said to satisfy a local error bound at x?, if there exist

positive constants k > 0 and δ > 0 such that

dist(x |Ω) ≤ k(
m∑

i=1

‖gi(x)+‖+

m+q∑
j=m+1

‖hj(x)‖)

holds, for all x ∈ x? + δB, where B is unit closed ball in Rn.
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[51, Theorem 3] illustrates the relationship between the error bound condition and

the exactness property.

Lemma 2.1.2 [51] For the NLP, if f(x) is Lipschitz continuous and the error bound

condition holds for the constraint system, then there exist a neighborhood N0 of x? and

a constant τ > 0 such that

f(x) ≥ f(x?)− τ(
m∑

i=1

‖gi(x)+‖+

m+q∑
j=m+1

‖hj(x)‖)

holds for all x ∈ N0.

2.2 Several Classes of Penalty Functions

In this subsection, we present the categories of penalty functions in detail and recall

some existing theoretical results.

We first introduce a general class of nonsmooth penalty functions.

The conclusion that nonsmooth penalty functions enjoy exactness property has been

derived by Zangwill in [76]. In this subsection, we consider the class of nonsmooth

penalty functions defined as

Jq(x; σ) := f(x) + σ‖[max(0, g(x)), h(x)]‖q

where 1 ≤ q ≤ ∞. In particular, we have

Jq(x; σ) = f(x) + σ[
m∑

i=1

(max(0, gi(x)))q +

m+q∑
j=m+1

|hj(x)|q] 1
q ,

for 1 ≤ q < ∞, and

J∞(x; σ) = f(x) + σ[max(0, g1(x)), · · · , max(0, gm(x)), |hm+1(x)|, · · · , |hm+q(x)|].

J1(x; σ) and J∞(x; σ) are the most frequently considered l1 and l∞ exact penalty func-

tions in the literature. Here, the penalty function Jq(x; σ) is said to be exact at a local

minimum x̄ of the NLP as shown in [52], if x̄ is an unconstrained local minimum of

Jq(x; σ) for all sufficiently large but finite penalty parameter σ. For short, this property

is referred to be exact penalization.
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Han and Mangasarian presented that, under suitable assumptions on the NLP, the

function J1(x; σ) has exactness property in [31, Theorem 4.4].

Lemma 2.2.1 ([31]) Suppose that x? is a local solution of the NLP, at which the first-

order necessary conditions are satisfied with Lagrange multiplier vector (λ?, µ?). Then,

there exists a threshold penalty parameter σ? such that σ ∈ [σ?,∞), x? is a local mini-

mizer of J1(x; σ), where

σ? = ‖[λ?, µ?]‖∞ = max
1≤i≤m,m+1≤j≤m+q

{|λ?
i |, |µ?

j |}.

If in addition, the second-order sufficient conditions of Lemma 2.1.1 hold for all σ ∈
[σ?,∞), then x? is a strict local minimizer of J1(x; σ).

Exact penalty functions not only play important roles in practical algorithm because

of finite termination property, but also perform key roles in the theory of mathematical

programming. The fact that calmness implies the existence of an exact penalty param-

eter was established in Clarke [12], while the converse implication was first established

by Burke [6, 7].

As discussed previously, J1(x; σ) and J∞(x; σ) are not differentiable at some x be-

cause of the presence of the the absolute value and max operators functions. Sub-

sequently, let us consider replacing a constrained optimization problem by a continu-

ously differentiable penalty function. The simplest penalty function of this type is the

quadratic penalty function as shown in [50], in which the penalty terms are the square

of the constraint violations.

The quadratic penalty function for the NLP can be expressed as follows

J(x; σ) = f(x) + σ
m∑

i=1

(max(0, gi(x)))2 + σ

m+q∑
j=m+1

(hj(x))2, (2.2.3)

where σ > 0 the penalty parameter. By driving σ → ∞, the constraint violations

are penalized with increasing severity. It is natural to consider a sequence of values

{σk} with σk → ∞ as k → ∞, and to seek the approximate minimum xk of (2.2.3)

for each k. Since the penalty terms in (2.2.3) are smooth, unconstrained optimization

techniques can be used to search for xk. [50, Theorem 17.1] illustrates that with the

penalty parameter σk → ∞, every limit point x? of the sequence {xk} is a locally
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optimal solution of the NLP, and moreover, the sequence {σkφσ(xk)} converges to 0,

where the function φσ(x) is the penalty term defined by

φσ(x) =
m∑

i=1

(max(0, gi(x)))2 +

m+q∑
j=m+1

(hj(x))2.

Although the quadratic penalty function has good smoothness property, it requires

the penalty parameter σ tends to infinity to achieve the optimal solution of the NLP.

As well known, the penalty parameter tending to infinite may be encountered with

ill-conditioness, which brings great difficulties in the practical calculation. Therefore,

it is natural to raise a question whether we could establish a penalty function that

not only obtain an exact optimum for finite penalty parameter but also enjoys the

smoothness. Based on the combination of Lagrange function and the quadratic penalty

function, Hestenes [33] and Powell [59] independently proposed the augumented La-

grangian penalty functions for equality constrained problem, also known as multiplier

penalty functions as follows:

J(x, µ, σ) = f(x) +

m+q∑
j=m+1

µjhj(x) + σ

m+q∑
j=m+1

(hj(x))2, (2.2.4)

which is one such exact penalty function. The reason why it is called the augumented

Lagrangian penalty function is that (2.2.4) is the ordinary Lagrangian function au-

gumented by the quadratic penalty term. Alternatively, (2.2.4) is considered as the

inclusion of a multipliers term in the quadratic penalty objective function, thus it is

also called a multiplier penalty function. In view of the second-order sufficient condi-

tions of unconstrained problems, that is, the gradient value of the objective function

at the optimum is zero and the Hessian matrix positive definite. For the constrained

problem, according to second-order sufficient conditions, the gradient value of Lagrange

function at the minimum is zero, but the positive definiteness of the associated Hessian

matrix is defined on the critical cone at the minimums. Naturally, in order to make the

Hessian matrix of Lagrange function positive definite at the minimums, the critical cone

should be taken into consideration. The augumented Lagrangian functions that enjoy

exactness properties have been investigated in [2, Theorem 9.3.3] for equality constraint

problems.
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Chapter 3

A New Class of Exact Penalty

Functions and Penalty Algorithms

3.1 Introduction

A typical approach to solve nonlinear programming problems is to augment objective

function or the corresponding Lagrangian function using penalty or barrier terms to

take account of the constraints. The resulting merit functions are optimized by uti-

lizing either standard unconstrained (or bound constrained) optimization software or

sequential quadratic programming (SQP) techniques, etc. Independently of the tech-

nique used, the merit function always depends on a small parameter ε (or a large

parameter ρ = ε−1); for example, minimizers of the merit function converge to the set

of minimizers of the primal problem, provided that ε approaches to 0. In particular, in

some SQP approaches, one utilizes exact penalty functions to produce exact optimiz-

ers when ε is sufficiently small. Nevertheless, it should be mentioned that these exact

penalty functions have a disadvantage that the evaluation of the merit function either

needs Jacobian (see [24, 32, 44, 46, 55]) or is no longer smooth (for instance, see l1 or

l∞ penalty functions [1, 6, 13, 37, 53, 69, 77]). In addition, for all kinds of penalty

functions, there may not exist optimal solutions even if the constrained programming

problem has optimal solutions, which may make it difficult or impossible to locate a

minimizer.

18



In this section, we are mainly concerned with the following nonlinear programming

problem

(P ) min f(x)

s.t. F (x) = 0, x ∈ [u, v],

where [u, v] = {x ∈ Rn|u ≤ x ≤ v}, u ∈ ({−∞} ∪ R)n, v ∈ ({+∞} ∪ R)n and

int[u, v] 6= ∅. The functions f : D → R and F : D → Rm are continuously differentiable

on an open set D satisfying [u, v] ⊆ D. We always assume that the feasible region is

nonempty and that the function f is bounded below on D; because otherwise f can be

replaced by ef(·).

Let ω ∈ Rm be fixed. The problem (P ) can be written equivalently as

min f(x)

s.t. F (x) = εω,

x ∈ [u, v], ε = 0.

For this problem, a new exact penalty function was proposed in [38]

fσ(x, ε) =





f(x), if ε = 4(x, ε) = 0;

f(x) + 1
2ε

4(x,ε)
1−q4(x,ε)

+ σβ(ε), if ε > 0,4(x, ε) < q−1;

+∞, otherwise,

(3.1.1)

where q > 0 is a given positive constant, σ > 0 is a penalty parameter, β : [0, ε] → [0,∞)

is continuous on [0, ε] and continuously differentiable on (0, ε] with β(0) = 0 (here, a

positive constant ε > 0 is given in advance). The term ∆(x, ε) measures the violation

of the constraints, i.e.,

∆(x, ε) = ‖F (x)− εω‖2 =
m∑

j=1

(Fj(x)− εωj)
2.

The corresponding penalty problem is

(Pσ) min fσ(x, ε)

s.t. (x, ε) ∈ [u, v]× [0, ε].

Let Dq = {(x, ε) ∈ D × (0, ε]|∆(x, ε) < q−1}. Then fσ is continuously differentiable on

Dq. The main contributions in [38] are to explore the exact penalty property of (Pσ) for

the smooth and nonsmooth problem (P ), respectively. For the smooth problem (P ),

sufficient conditions are developed for exact penalty property of (Pσ) or equivalently,
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F (·) is level-bounded and every point in the level set satisfies Mangasarian-Fromovitz

constraint qualification as in [38, Theorem 2.1]. For the nonsmooth case of (P ), through

the standard smoothing approximation techniques, sufficient conditions are derived for

the local exactness property of the penalty problem (Pσ)(see [38, Theorem 5.3]).

The reason why the new penalty function has significant differences with the classical

simple exact penalty functions is that fσ has good smoothness property which is not

shared by classical simple and exact penalty functions (see [2, 31]). Furthermore, by

the definition of classical penalty functions ([2]), the values of the penalty term are zero

on the feasible set of (P ) and positive outside the feasible set, which is not the case for

the penalty term of fσ.

In spite of significant differences between the new penalty function and the classical

simple and exact penalty functions, interestingly, the equivalence is shown in the sense

of the exactness property in this section.

In this work, we restrict our focus primarily on the case of (P ) being smooth.

It can be further extended to the nonsmooth case by using the standard smoothing

approximation techniques. Our main results are as follows.

We notice that the norm function term ∆(x,ε)
1−q∆(x,ε)

in the penalty function (3.1.1)

proposed in [38] plays a role as a barrier term, which means computing the interior

points of Dq is an essential component in the practical applications. This motivates us

to extend the norm function term of (3.1.1) to a class of convex functions so that the

corresponding penalty functions constructed by this class of convex functions present a

unified framework for some barrier-type and exterior-type penalty functions, in which

the latter are smooth on [u, v] × (0, ε] and have larger smooth area than the former.

The extended penalty function class provides several alternatives for designing penalty

function algorithms. In the remainder of the present work, we make further researches

on this extended penalty function class.

Based on the extended penalty function class, we establish a class of corresponding

penalty problems for (P ). Sufficient conditions for the exact penalty property are

primarily obtained for the penalty problem, without requirements that F (·) is level-

bounded or every point in the level set satisfies the classical Mangasarian-Fromovitz

constraint qualification. We show that the local optimal solution must take the form of
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(x, ε) with ε = 0 for all sufficiently large penalty parameters, where x is a local optimal

solution of the primal problem (P ) (see Theorem 3.3.1). Here, it is merely required

that a local optimal solution sequence with finite optimal values satisfies the extended

Mangasarian-Fromovitz constraint qualification and the gradient ∇f(·) is bounded on

the level set. As a corollary, [38, Theorem 2.1] can be derived.

As two new results of this section, necessary conditions for exact penalty property are

obtained (see Theorem 3.3.2). Alternatively, we derive that these necessary conditions

are also necessary and sufficient conditions for the local exactness property (see Theorem

3.4.1), followed by a series of meaningful corollaries can be derived from Theorem 3.4.1,

including [38, Theorem 5.3].

In particular, using Theorem 3.4.1, it is recognized explicitly that this new class

of simple exact penalty functions is equivalent to the classical simple exact penalty

functions in the sense of exactness property. Therefore, these conclusions demonstrate

that this class of penalty functions not only have good exactness property as the classical

simple penalty functions, but also possess the smoothness property, which is not shared

by the classical simple exact penalty functions.

At the beginning of this section, we have mentioned that some exact penalty func-

tions may have no optimal solutions even if the optimal solutions of the primal problem

exist. For this case, it is impossible to obtain optimal solutions through the penalty

function algorithm. There is also no exception for general smooth penalty functions

with lower bound. Here, we take the penalty function proposed in [30] for example,

which is smooth and lower-bounded. Although the proposed penalty function algo-

rithm in [30] has good convergence properties, there exists an example to show that,

the penalty function has no optimal solutions for any appropriate penalty parameter

even if optimal solutions of the primal problem exist. In this environment, the penalty

function algorithm proposed in [30] and its revised version included are naturally infea-

sible. In addition, the sequences generated by several penalty function algorithms with

their own specialities only converge to FJ points or KKT points.

Motivated by this observation, in order to avoid the above mentioned cases, we

present a class of revised penalty function algorithms based on this class of extended

penalty functions proposed in this section. The main feature of the algorithm is that,
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if the optimal solution of the penalty problem does not exist at every iteration, then

we turn to solve δ−optimal solution of the penalty problem. Since this class of penalty

functions have lower bound, the δ−optimal solution always exists. Thus, the revised

penalty function algorithms are always feasible. Moreover, utilizing the exact penalty

property and structural features of this class of penalty functions, we clarify that under

certain conditions, the proposed algorithm terminates at the optimal solution of the

primal problem after finitely many iterations; while without these conditions, a pertur-

bation theorem for this algorithm can be derived. As a corollary, the global convergence

property is presented−namely, every accumulation point of the sequence generated by

the algorithm is an optimal solution of the primal problem. In addition, some significant

conclusions are also developed based on the perturbation theorem.

The organization of this chapter is as follows. In Section 3.2, we extend the penalty

function (3.1.1) to a class of penalty functions, establish corresponding penalty problems

and introduce a notion of extended Mangasarian-Fromovitz constraint qualification.

The necessary and sufficient conditions for exact penalty property are developed in

Section 3.3. In Section 3.4, necessary and sufficient conditions for the local exactness

property are established. We also characterize the equivalence between this new class

of penalty functions and the classical simple exact penalty function in the sense of

exactness property. In Section 3.5, a feasible and revised penalty function algorithm

is presented. The finite termination property and global convergence property of the

proposed algorithm are analyzed. Finally, in Section 3.6, promising numerical results

are reported.

3.2 A Class of Exact Penalty Functions

In this section, we extend the term ∆(x,ε)
1−q∆(x,ε)

in (3.1.1) to a class of convex functions. The

corresponding penalty functions class present a unified framework for some barrier-type

and exterior-type penalty functions.

Given a ∈ (0, +∞], let a function φ : [0, a) → [0, +∞) satisfy

(i1) φ is convex and continuously differentiable on [0, a) with φ(0) = 0.

(i2) φ′(t) > 0 for all t ∈ [0, a).
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Many functions satisfy the properties (i1), (i2), for example

φ1(t) = t
(1−qt)α (a = q−1, α ≥ 1);

φ2(t) = tan(t) (a = π
2
);

φ3(t) = − log(1− tα) (a = 1, α ≥ 1);

φ4(t) = t (a = +∞);

φ5(t) = et − 1 (a = +∞);

φ6(t) = 1
2
(
√

t2 + 4 + t)− 1 (a = +∞).

Utilizing φ(·), a penalty function, defined on D × [0, ε], is given by

f̃σ(x, ε) =





f(x), if ε = 4(x, ε) = 0,

f(x) + 1
2ε

φ(∆(x, ε)) + σβ(ε), if ε > 0,4(x, ε) < a,

+∞, otherwise.

(3.2.2)

It is easy to see that f̃σ is continuously differentiable on Da = {(x, ε) ∈ D×(0, ε]|∆(x, ε) <

a}. The barrier-type penalty functions correspond to the case of a < +∞, and the

exterior-type one correspond to the case of a = +∞.

In the remainder of this section, we mainly consider the following penalty problem

(P̃σ) min f̃σ(x, ε)

s.t. (x, ε) ∈ [u, v]× [0, ε].

Consider a constraint system

{
F (z) = 0,

g(z) ≤ 0,
(3.2.3)

where g : D → Rl is continuously differentiable, and F is defined as before. Denote by

∇F (·) the Jacobian of F .

Definition 3.2.1 For constraint system (3.2.3), we say that the Mangasarian-Fromovitz

constraint qualification holds at z?, if

(1) rank(∇F (z?)) = m;

(2) there exists some p ∈ Rn such that ∇F (z?)>p = 0 and ∇gj(z
?)>p < 0 for all

j ∈ J(z?), where J(z?) = {j ∈ J |gj(z
?) = 0} and J = {1, 2, · · · , l}.
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Now we introduce an extension of the standard Mangasarian-Fromovitz constraint

qualification from a single point to a sequence. More precisely, given K ⊆ {1, 2, · · · }
and {zk}k∈K , denote

J+(K) = {j ∈ J | lim sup
k∈K,k→∞

gj(zk) ≥ 0},

J−(K) = {j ∈ J | lim sup
k∈K,k→∞

gj(zk) < 0}.

Definition 3.2.2 For constraint system (3.2.3), we say that the extended Mangasarian-

Fromovitz constraint qualification holds for {zk}k∈K, if there exist a matrix ∇F ? and

an infinite subset K0 ⊆ K such that

(1) lim
k∈K0,k→∞

∇F (zk) = ∇F ? and rank(∇F ?) = m;

(2) there exists some p ∈ Rn such that (∇F ?)>p = 0 and lim sup
k∈K0,k→∞

∇gj(zk)
>p < 0 for

all j ∈ J+(K0).

The reason why the extended Mangasarian-Fromovitz constraint qualification is

introduced is that the sequence generated by the unconstrained minimization algorithm

may not converge to a problem solution, or may be unbounded. Note that in Definition

3.2.2 the sequence zk is not required to satisfy g(zk) ≤ 0. Thus, this extended version of

Mangasarian-Fromovitz constraint qualification is applicable to sequences generated by

many infeasible algorithms (including penalty function methods), even if the sequence

is unbounded (see Example 3.2.1 below). By definition, we have

Proposition 3.2.1 Let {zk}k∈K ⊂ Rn. If the standard Mangasarian-Fromovitz con-

straint qualification holds for some accumulation point, then the extended Mangasarian-

Fromovitz constraint qualification holds for {zk}k∈K.

The following example shows that the unbounded and infeasible sequence satisfies

the extended Mangasarian-Fromovitz constraint qualification.
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Example 3.2.1 Consider the constraint system





F (z) = z1 + z2 + z2
3 = 0,

g1(z) = z1 − z2 ≤ 0,

g2(z) = z1 − z2 − z2
3 ≤ 0.

It is easy to see that the extended Mangasarian-Fromovitz constraint qualification

holds for the unbounded sequence {zk} = {(k + 1
k
, k, 1 + 1

k
)>}.

The final part of this section is devoted to the discussion of the extended Mangasarian-

Fromovitz constraint qualification in more detail. By virtue of Definition 3.2.1, Def-

inition 3.2.2 and Example 3.2.1, we generalize the Mangasarian-Fromovitz constraint

qualification for a single point z? satisfying g(z?) ≤ 0 to the extended Mangasarian-

Fromovitz constraint qualification for an infinite sequence {zk}k∈K , which may be

unbounded and not necessarily satisfy g(zk) ≤ 0, (namely, zk may be infeasible).

Therefore, the extended Mangasarian-Fromovitz constraint qualification can be used

to weaken some assumptions for the exactness property in some existing literature.

To a great extent, it mainly refers to remove the level-bounded assumption. For in-

stance, as stated in [38, Theorem 2.1], the exact penalty property of the penalty func-

tion fσ(z, ε) is developed under conditions that the level set D
′
is bounded and every

point z ∈ D
′
satisfies Mangasarian-Fromovitz constraint qualification. The above men-

tioned assumptions in [38] imply that as {σk}k∈K → +∞, the corresponding sequence

{zk}k∈K is bounded and every accumulation point satisfies Mangasarian-Fromovitz con-

straint qualification, where (zk, εk) is a local optimal solution of the penalty problem

(P̃σ) and the value of f̃σ(zk, εk) is finite. Additionally, based on Proposition 3.2.1,

the extended Mangasarian-Fromovitz constraint qualification thus holds for the infi-

nite sequence {zk}k∈K . Therefore, the penalty function fσ(z, ε) is also proven to be

exact (see Theorem 3.3.1) merely with requirements that the sequence {zk}k∈K satisfies

the extended Mangasarian-Fromovitz constraint qualification and the gradient ∇f(·) is

bounded on the level set instead of the assumptions stated earlier in [38] (see assump-

tions (A1) and (A2)). It is demonstrated that [38, Theorem 2.1] is just a special case

in our work.
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3.3 Exact Penalty Property

This section deals mainly with the “exact” property of the penalty functions defined in

(3.2.2). In particular, [38, Theorem 2.1] is generalized by using the extended Mangasarian-

Fromovitz constraint qualification, instead of the standard Mangasarian-Fromovitz con-

straint qualification. Define the level set

DF = {x ∈ [u, v]|‖F (x)‖ ≤ √
a + ε‖ω‖},

where a ∈ (0, +∞]. Clearly, DF = [u, v] in the case of a = +∞. Before proceeding, we

need the following assumption.

Assumption (A):

(A1) ∇f(·) is bounded on DF ;

(A2) For constraint system of (P ), when σk → +∞(k →∞), the extended Mangasarian-

Fromovitz constraint qualification holds for the sequence {xk}, where (xk, εk) is

the optimal solution of (P̃σk
) with finite value.

Lemma 3.3.1 Suppose that there exists β1 > 0 such that β′(ε) ≥ β1 for all ε ∈ (0, ε].

If (x, ε) is a KKT point of (P̃σ) with ε > 0, then

2β1φ
′(0)σε2 1

φ′(∆)2
≤ ‖F (x)‖2,

where we use ∆ to denote ∆(x, ε) for simplification.

Proof. If (x, ε) is a KKT point of (P̃σ) with ε > 0, then by the construction of f̃σ,

there exist λ, η ∈ Rn
+, λn+1 ≥ 0, and ηn+1 ≥ 0 such that

∇f(x) +
1

ε
φ′(∆)∇F (x)T (F (x)− εω) = λ− η,

inf(λi, xi − ui) = inf(ηi, vi − xi) = 0, i = 1, 2, · · · , n,

− 1

2ε2
φ(∆)− 1

ε
φ′(∆)(F (x)− εω)T ω + σβ′(ε) = λn+1 − ηn+1, (3.3.4)

λn+1 = inf(ηn+1, ε− ε) = 0. (3.3.5)

It follows from (3.3.4) and (3.3.5) that

− 1

2ε2
φ(∆)− 1

ε
φ′(∆)(F (x)− εω)T ω + σβ′(ε) ≤ 0,
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from which and the fact that φ′(∆) > 0 we have

− 1

φ ′(∆)
φ(∆)− 2ε(F (x)− εω)T ω + 2ε2σβ′(ε)

1

φ ′(∆)
≤ 0. (3.3.6)

Rearranging (3.3.6) yields

− 1

φ′(∆)
φ(∆) + ∆ + ε2‖ω‖2 + 2ε2σβ′(ε)

1

φ′(∆)
≤ ‖F (x)‖2. (3.3.7)

The convexity of φ and the fact φ(0) = 0 ensure

−∆ ≤ (φ(0)− φ(∆))
1

φ′(∆)
= −φ(∆)

1

φ′(∆)
. (3.3.8)

Combining (3.3.7) and (3.3.8) yields

2ε2σβ′(ε)
1

φ′(∆)
≤ ‖F (x)‖2.

Noticing that β′(ε) ≥ β1 and the monotonicity of φ′, the above inequality implies that

2β1φ
′(0)σε2 1

φ′(∆)2
≤ ‖F (x)‖2.

Lemma 3.3.2 Suppose that there exists β1 > 0 such that β′(ε) ≥ β1 for all ε ∈ (0, ε].

If (x?, ε?) is a local optimal solution of (P̃σ) with finite optimal value, then x? is a local

optimal solution of (P ) if and only if ε? = 0.

Proof. Since constraint functions of (P̃σ) are all linear, then (x?, ε?) is a KKT point

of (P̃σ). If x? is a local optimal solution of (P ), then F (x?) = 0. According to Lemma

3.3.1, we must have ε? = 0. Conversely, if ε? = 0, taking account of the finiteness of

f̃σ(x?, 0) and the construction of f̃σ, we have F (x?) = 0, and hence x? is a local optimal

solution of (P ).

Lemma 3.3.3 Suppose that there exists β1 > 0 such that β′(ε) ≥ β1 for all ε ∈ (0, ε].

If (xk, εk) is a KKT point of (P̃σk
) with εk > 0, then for σk → +∞(k →∞), we have

lim
k→∞

1

εk

φ′(∆k)
√

∆k = +∞.

where we use ∆ to denote ∆(x, ε) for simplification.
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Proof. Lemma 3.3.1 implies that

lim
k→∞

1

εk

φ′(∆k)‖F (xk)‖ = +∞.

Note that
1

εk

φ′(∆k)‖F (xk)‖ ≤ φ′(∆k)(
1

εk

√
∆k + ‖ω‖).

Therefore,

lim
k→∞

φ′(∆k)(
1

εk

√
∆k + ‖ω‖) = +∞,

which, together with the monotonicity of φ′, yields

lim
k→∞

1

εk

φ′(∆k)
√

∆k = +∞.

Theorem 3.3.1 Suppose that Assumptions (A1) and (A2) hold, and that there exists

β1 > 0 such that β′(ε) ≥ β1 for all ε ∈ (0, ε]. When σ > 0 is sufficiently large, if (x?, ε?)

is a local optimal solution of (P̃σ) with finite optimal value, then ε? = 0. Furthermore,

x? is a local optimal solution of (P ).

Proof. We first show that ε? = 0. Suppose on the contrary that there exist σk → +∞ as

k →∞ and a sequence of local optimal solutions (xk, εk) of (P̃σk
) with finite f̃σk

(xk, εk)

and εk > 0. Since all constraint functions are linear, then (xk, εk) is a KKT point of

(P̃σk
), that is, there exist λk, ηk ∈ Rn

+ such that

∇f(xk) +
1

εk

φ′(∆k)∇F (xk)
T (F (xk)− εkω) = λk − ηk, (3.3.9)

inf(λk
i , x

k
i − ui) = inf(ηk

i , vi − xk
i ) = 0, i = 1, 2, · · · , n. (3.3.10)

Since the index set {1, · · · , n} is finite, then there exists an infinite subset K ⊆
{1, 2, · · · } such that for k ∈ K,

xk
i = ui, i ∈ I1, (3.3.11)

xk
i = vi, i ∈ I2, (3.3.12)

ui < xk
i < vi, i ∈ I3, (3.3.13)

where

I1 ∪ I2 ∪ I3 = {1, 2, · · · , n}, Ii ∩ Ij = ∅, if i 6= j.
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Invoking Assumption (A2), there exist an infinite subset K0 ⊆ K and p ∈ Rn such

that

lim
k∈K0,k→∞

∇F (xk) = ∇F ?, rank(∇F ?) = m, ∇F ?p = 0, (3.3.14)

pi

{
> 0, i ∈ I1,

< 0, i ∈ I2.
(3.3.15)

Putting (3.3.9)-(3.3.13) together yields

∂f(xk)

∂xi

+
1

εk

φ′(Mk)
(∇F (xk)

T (F (xk)− εkω)
)

i





≥ 0, i ∈ I1,

≤ 0, i ∈ I2,

= 0, i ∈ I3,

(3.3.16)

where ∂f(x)
∂xi

denotes the partial derivative of f with respect to xi. Let

hk =
1

εk

φ′(∆k)(F (xk)− εkω), qk =
hk

‖hk‖ .

Lemma 3.3.3 implies

lim
k∈K0,k→∞

‖hk‖ = +∞. (3.3.17)

Since ‖qk‖ = 1 is bounded, we can assume, without loss of generality, that

lim
k∈K0,k→∞

qk = q̃ 6= 0. (3.3.18)

It then follows from (3.3.16) that

∂f(xk)

∂xi

1

‖hk‖ + (∇F (xk)
T qk)i





≥ 0, i ∈ I1,

≤ 0, i ∈ I2,

= 0, i ∈ I3.

From Assumption (A1), (3.3.14), (3.3.17), and (3.3.18), taking limits in the above for-

mula yields

(
(∇F ?)T q̃

)
i





≥ 0, i ∈ I1,

≤ 0, i ∈ I2,

= 0, i ∈ I3.

(3.3.19)

Combining this with (3.3.14) implies

0 = pT (∇F ?)T q̃ =
∑
i∈I1

pi(
(∇F ?)T q̃

)
i
+

∑
i∈I2

pi(
(∇F ?)T q̃

)
i
,

which, together with (3.3.15) and (3.3.19) yields (∇F ?)T q̃ = 0, and hence q̃ = 0 since

∇F ? has full row rank by (3.3.14). This leads to a contradiction to q̃ 6= 0 in (3.3.18).

Therefore, the desired result follows from Lemma 3.3.2.
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Corollary 3.3.1 Suppose that

(1) the set DF is bounded,

(2) the standard Mangasarian-Fromovitz constraint qualification holds at each point

of DF ,

(3) there exists β1 > 0 such that β′(ε) ≥ β1 for all ε ∈ (0, ε].

Then, whenever σ > 0 is large enough, every local optimal solution (x?, ε?) of (P̃σ) with

finite value must satisfy ε? = 0. Furthermore, x? is a local optimal solution of (P ).

Proof. The validity of Assumption (A1) comes from the condition (1), while Assump-

tion (A2) is due to the conditions (1), (2), and Proposition 3.2.1.

In particular, Theorem 2.1 in [38] is obtained by taking φ(t) = t
1−qt

in Corollary

3.3.1. Inspired by [38], a necessary condition for exact penalty property is given below.

Toward this end, consider a class of functions Φ : [0, a) → [0, +∞), where a > 0,

satisfying

(j1) Φ is continuous and increasing on [0, a) with Φ(0) = 0,

(j2) there exists a′ ∈ (0, a) such that Φ(t) ≥ t for all t ∈ [0, a′].

Such a class of functions includes several important functions as special cases, for

example

Φ1(t) = tα, t ∈ [0, +∞), α ∈ (0, 1];

Φ2(t) = − log(1− tα), t ∈ [0, 1), α ∈ (0, 1];

Φ3(t) = et − 1, t ∈ [0, +∞).

Assumption (B) Let x? be a feasible point of (P ). There exist γ > 0 and a neighbor-

hood N(x?) such that

f(x)− f(x?) + γΦ(‖F (x)‖) ≥ 0, ∀x ∈ N(x?) ∩ [u, v], (3.3.20)

where Φ satisfies the conditions (j1) and (j2).
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Theorem 3.3.2 Suppose that β(ε) = Φ(ε) for ε > 0 sufficiently small. If (x?, 0) is a

local optimal solution of (P̃σ0) with finite value for some σ0 > 0 (i.e., x? is a local optimal

solution of (P )), then Assumption (B) holds at x? for Φ with γ ≥ σ0 + φ′(0)(1 + ‖ω‖)2.

Proof. Let γ = σ0 + φ′(0)(1 + ‖ω‖)2. Suppose on the contrary that there exists a

sequence xk ∈ [u, v] converging to x? such that

f(xk)− f(x?) + γΦ(‖F (xk)‖) < 0. (3.3.21)

Since (x?, 0) is a local optimal solution of (P̃σ0) and the corresponding optimal value is

finite, it follows from the construction of f̃σ that x? is feasible (cf.(3.2.2)). Hence x? is

a local optimal solution of (P ). This, together with the continuity of F , implies that

‖F (xk)‖ > 0, lim
k→∞

‖F (xk)‖ = 0.

Let εk = ‖F (xk)‖, i.e., εk > 0 and εk → 0 as k →∞. Notice that

∆k = ‖F (xk)− εkω‖2 ≤ ε2
k(1 + ‖ω‖)2. (3.3.22)

Thus,

lim
k→∞

∆k ≤ lim
k→∞

ε2
k(1 + ‖ω‖)2 = 0.

So,

φ ′(∆k) ≤ 2φ′(0), (3.3.23)

whenever k is sufficiently large, since φ′ is continuous and φ′(0) > 0. Note that (x?, 0)

is a local optimal solution. Therefore, for k large enough we have

0 ≤ f(xk)− f(x?) +
1

2εk

φ(∆k) + σ0β(εk)

= f(xk)− f(x?) +
1

2εk

φ(∆k) + σ0Φ(εk) by Assumption β(ε) = Φ(ε)

<
1

2εk

φ(∆k) + σ0Φ(εk)− γΦ(‖F (xk)‖) by (3.3.21)

≤ 1

2εk

φ′(∆k)∆k + σ0Φ(εk)− γΦ(εk), by the convexity of φ and φ(0) = 0

≤ εkφ
′(0)(1 + ‖ω‖)2 + (σ0 − γ)Φ(εk) by (3.3.22) and (3.3.23)

≤ Φ(εk)[φ
′(0)(1 + ‖ω‖)2 + σ0 − γ], by condition (j2)

≤ 0, since γ ≥ σ0 + φ ′(0)(1 + ‖ω‖)2

which leads to a contradiction.
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3.4 Local Exactness Property

In this section, we shall show that, if x? is a local optimal solution of (P ), then As-

sumption (B) introduced in Section 3.3 is a necessary and sufficient condition for (x?, 0)

to be a local optimal solution of (P̃σ). Based on Theorem 3.3.2, we further character-

ize the equivalence between this new class of exact penalty functions and the classical

simple and exact penalty functions in the sense of “exact penalty property”. Neverthe-

less, it is well known that the classical simple exact penalty function lacks smoothness.

Therefore, our results clarify that this class of penalty functions not only have exact-

ness property as the classical simple penalty function, but also possess the smoothness

property.

Theorem 3.4.1 Let x? be a local optimal solution of (P ). The following statements

hold:

(1) If Assumption (B) holds at x? for Φ, and β(ε) ≥ Φ(
√

ε) for ε > 0 sufficiently

small, then (x?, 0) is a local optimal solution of (P̃σ) for all σ ≥ γ;

(2) Let β(ε) = Φ(ε) for ε > 0 sufficiently small. If there exists σ0 > 0 such that

(x?, 0) is a local optimal solution of (P̃σ) for all σ ≥ σ0, then Assumption (B)

holds at x? for Φ with γ ≥ σ0 + φ′(0)(1 + ‖ω‖)2.

Proof. We resort to show the validity of part (1), since part (2) follows from The-

orem 3.3.2. Suppose on the contrary that for some σ ≥ γ, there exist (xk, εk) ∈
[u, v]× (0, ε], xk → x?, and εk → 0 as k →∞ such that

f(x?) = f̃σ(x?, 0) > f̃σ(xk, εk),

that is,

0 > f(xk)− f(x?) +
1

2εk

φ(∆k) + σβ(εk)

≥ f(xk)− f(x?) +
1

2εk

φ′(0)∆k + σβ(εk), (3.4.24)

where we have used the gradient inequality of convex functions, i.e., φ(∆k) ≥ φ(0) +

φ′(0)∆k = φ′(0)∆k. Taking limits on both sides of (3.4.24) yields lim
k→∞

1
εk

∆k = 0, which
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means that √
∆k ≤ 1

2

√
εk,

√
εk ≤ 1

2‖ω‖+ 1

whenever k is sufficiently large. So,

‖F (xk)‖ ≤
√

∆k + εk‖ω‖
≤ (

1

2
+
√

εk‖ω‖)√εk

≤ √
εk. (3.4.25)

Since εk → 0, then by hypothesis, for k large enough,

β(εk) ≥ Φ(
√

εk). (3.4.26)

Therefore, we conclude that for k sufficiently large,

0 > f(xk)− f(x?) +
1

2εk

φ′(0)∆k + σβ(εk)

≥ f(xk)− f(x?) + σβ(εk) by the nonnegativity of φ′

≥ σβ(εk)− γΦ(‖F (xk)‖) by Assumption (B)

≥ σΦ(
√

εk)− γΦ(‖F (xk)‖) by (3.4.26)

≥ Φ(
√

εk)(σ − γ) by the monotonicity of Φ and (3.4.25)

≥ 0, since σ ≥ γ

which leads to a contradiction.

For the primal problem (P ), the mapping H takes the following special form:

Define

H(x) =

(
F (x)

xI? − x?
I?

)
, p = m + |I?| ≤ n,

where |I?| signifies the number of elements in I? = I?
1 ∪ I?

2 , I?
1 and I?

2 are, respectively,

the active index sets of u ≤ x? and x? ≤ v, i.e.,

I?
1 = {i|ui = x?

i } and I?
2 = {i|vi = x?

i }.

The definition of regular zero as described in [38, Definition 4.1], together with

Theorem 3.4.1, allows us to derive the following corollary.
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Corollary 3.4.1 Let x? be a local optimal solution of (P ) and β(ε) ≥ √
ε for all ε

sufficiently small. If x? is a regular zero of H, then there exists γ > 0 such that (x?, 0)

is a local optimal solution of (P̃σ) for all σ ≥ γ.

Proof. Since x? is a regular zero of H, it then follows from [38, Lemmas 5.1 and 5.2]

that Assumption (B) holds at x? for Φ(t) = t. Combining this and Theorem 3.4.1 yields

the desired result.

In particular, [38, Theorem 5.3] is obtained by taking φ(t) = t
1−qt

in f̃σ.

Corollary 3.4.2 Let x? be a strict local optimal solution of (P ) and β(ε) ≥ √
ε for

ε > 0 sufficiently small. If the Mangasarian-Fromovitz constraint qualification holds at

x?, then there exists γ > 0 such that (x?, 0) is a local optimal solution of (P̃σ) for all

σ ≥ γ.

Proof. Since the Mangasarian-Fromovitz constraint qualification holds at x?, it then

follows from [31, Theorem 4.4] that Assumption (B) holds at x? for Φ(t) = t. Therefore,

the desired result follows from Theorem 3.4.1.

Actually, these two sufficient conditions given in Corollaries 3.4.1 and 3.4.2 are

different. To illustrate this point, we consider the following simple constraint system.

Example 3.4.1

F (x) = x1 − x2 = 0,

x = (x1, x2) ∈ [0, +∞)× [0,∞).

It is easy to see that the Mangasarian-Fromovitz constraint qualification holds at

x? = (0, 0), while x? is not a regular zero of H.

We now show that the second-order sufficient conditions guarantee the validity of

Assumption (B) as well. Recall that the second-order sufficient conditions as stated in

Lemma 2.1.1 are said to hold at x? if

(a) x? is a KKT point, i.e., there exist λ?, η? ∈ Rn
+, and µ? ∈ Rm such that

∇f(x?)− λ? + η? +∇F (x?)T µ? = 0, (3.4.27)

inf(λ?
i , x

?
i − ui) = inf(η?

i , vi − x?
i ) = 0, i = 1, 2, · · · , n. (3.4.28)
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(b) the matrix ∇2
xxL(x?, µ?) is positive definite on the cone {d 6= 0|∇F (x?)d = 0, di =

0, as λ?
i > 0, or η?

i > 0}, where L(x, µ) = f(x) + µT F (x).

The following example shows that the second-order sufficient conditions are inde-

pendent of the Mangasarian-Fromovitz constraint qualification and regular zero of H̃.

Example 3.4.2

min f(x) = x2
1 + x2

2

s.t. F (x) = x1 − x2 = 0,

x = (x1, x2) ∈ [0, +∞)× (−∞, 0].

It is easy to check that at x? = (0, 0), the second-order sufficient conditions hold,

while the Mangasarian-Fromovitz constraint qualification and regular zero of H̃ do not

hold true.

Corollary 3.4.3 If β(ε) ≥ √
ε for all ε > 0 sufficiently small and the second-order

sufficient conditions hold at x?, then there exists γ > 0 such that (x?, 0) is a local strict

optimal solution of (P̃σ) for all σ ≥ γ.

Proof. Since the second-order sufficient conditions hold at x?, it then follows from [31,

Theorem 4.6] that Assumption (B) is valid for Φ(t) = t with the inequality being strict.

The desired result follows from Theorem 3.4.1.

In what follows, we propose a new condition, which also guarantees the validity of

Assumption (B).

Proposition 3.4.1 Let x? be a local optimal solution of (P ). If x? is a KKT point and

lim
x∈[u,v]→x?

F (x) 6=0

1

Φ(‖F (x)‖)
∫ 1

0

(∇xL(x?+s(x−x?), µ?)−∇xL(x?, µ?))T (x−x?)ds = 0, (3.4.29)

where λ?, η? ∈ Rn
+, µ? ∈ Rm are the corresponding Lagrangian multipliers, then As-

sumption (B) holds at x? for Φ with γ = 1 + ‖µ?‖.

Proof. We need to show the existence of a neighborhood of x?, say N(x?), such that

f(x)− f(x?) + γΦ(‖F (x)‖) ≥ 0, x ∈ N(x?) ∩ [u, v]. (3.4.30)
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Since x? is a local optimal solution of (P ), then there exists a neighborhood of x?, say

Ñ(x?), such that (3.4.30) holds true for all x ∈ Ñ(x?) ∩ [u, v] with F (x) = 0. Now

consider the case of x ∈ Ñ(x?) ∩ [u, v] with F (x) 6= 0. Putting (3.4.27), (3.4.28), and

(3.4.29) together yields

f(x)− f(x?) = ∇f(x?)T (x− x?) +

∫ 1

0

(∇f(x? + s(x− x?))−∇f(x?))T (x− x?)ds

=
∑

i∈I?
1

λ?
i (xi − x?

i )−
∑

i∈I?
2

η?
i (xi − x?

i )− µ∗T∇F (x?)(x− x?)

+

∫ 1

0

(∇f(x? + s(x− x?))−∇f(x?))T (x− x?)ds

≥ −µ∗T∇F (x?)(x− x?) +

∫ 1

0

(∇f(x? + s(x− x?))−∇f(x?))T (x− x?)ds

= −µ∗T F (x) +

∫ 1

0

µ∗T (∇F (x? + s(x− x?))−∇F (x?))(x− x?)ds

+

∫ 1

0

(∇f(x? + s(x− x?))−∇f(x?))T (x− x?)ds

= −µ∗T F (x) +

∫ 1

0

(∇xL(x? + s(x− x?), µ?)−∇xL(x?, µ?))T (x− x?)ds

= −µ∗T F (x) + o(Φ(‖F (x)‖)). (3.4.31)

This guarantees the existence of a neighborhood N(x?) ⊆ Ñ(x?) of x? such that

1

Φ(‖F (x)‖) |o(Φ(‖F (x)‖))| ≤ 1

2
, (3.4.32)

whenever x ∈ N(x?) ∩ [u, v] with F (x) 6= 0. Therefore,

f(x)− f(x?) + γΦ(‖F (x)‖) ≥ γΦ(‖F (x)‖)− µ∗T F (x) + o(Φ(‖F (x)‖)) by (3.4.31)

≥ γΦ(‖F (x)‖)− ‖µ?‖‖F (x)‖+ o(Φ(‖F (x)‖))
≥ Φ(‖F (x)‖)(γ − ‖µ?‖) + o(Φ(‖F (x)‖)) by Φ(t) ≥ t

= Φ(‖F (x)‖) + o(Φ(‖F (x)‖)) by γ = 1 + ‖µ?‖
≥ 1

2
Φ(‖F (x)‖) by (3.4.32)

> 0.

This yields the inequality as desired.

It should be emphasized that the condition (3.4.29) is independent with the other

conditions used in the previous discussions, which is illustrated by the following exam-

ple.
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Example 3.4.3

min f(x) = −|x| 32
s.t. F (x) = x2 = 0,

x ∈ (−∞, +∞).

By a simple calculation, we know that, at x? = 0, the condition (3.4.29) holds when

Φ(t) =
√

t, while the Mangasarian-Fromovitz constraint qualification, the second-order

sufficient conditions, and regular zero of F do not hold at x?. In addition, the condition

(3.4.29) is also true for Example 3.4.2 when Φ(t) = t.

Direct applications of Theorem 3.4.1 and Proposition 3.4.1 yields the following corol-

lary.

Corollary 3.4.4 Let x? be a local optimal solution of (P ) and β(ε) ≥ Φ(
√

ε) for all

ε > 0 sufficiently small. If the condition (3.4.29) holds at x?, then (x?, 0) is a local

optimal solution of (P̃σ) for σ ≥ 1 + ‖µ?‖.

We end this section by addressing the relationship between this new class of exact

penalty functions and the classical simple penalty functions in the sense of “exactness”

property. Define

fγ(x) = f(x) + γΦ(‖F (x)‖),
where Φ satisfies (j1) and (j2). Clearly, fγ(·) is a classical simple and exact penalty

function. The associated penalty problem is

(Pγ) min fγ(x)

s.t. x ∈ [u, v].

In the present case, the condition (3.3.20) given in Assumption (B) means that x? is a

local optimal solution of (Pγ). Assume that x? is a local optimal solution of (P ) and

according to Theorem 3.4.1, the relationship between (P̃σ) and (Pγ) is summarized as

follows:

(1) Suppose that for sufficiently small ε > 0, β(ε) ≥ Φ(
√

ε) holds. If there exists

γ > 0 such that x? is a local optimal solution of the penalty problem (Pγ), then

(x?, 0) is a local optimal solution of the penalty problem (P̃σ) when σ > 0 is

sufficiently large.
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(2) Suppose that for sufficiently small ε > 0, β(ε) = Φ(ε) holds. If there exists σ > 0

such that (x?, 0) is a local optimal solution of the penalty problem (P̃σ), then x?

is a local optimal solution of the penalty problem (Pγ) when γ > 0 is sufficiently

large.

3.5 Penalty Function Methods

In this section, we present a revised penalty function algorithm based on f̃σ(·, ·). Since

f̃σ(·, ·) is lower-bounded, the algorithm is always feasible. It should be noted that the

parameter ε in f̃σ(·, ·) plays a key role in the framework of the algorithm. It follows from

the Assumption (A) and Theorem 3.3.1 that the proposed algorithm terminates at the

optimal solutions of (P ) after finitely many iterations (see Theorem 3.5.1). We further

analyze the case without requirement of the Assumption (A). Under mild conditions,

we present a perturbation theorem about the algorithm (see Theorem 3.5.2). As a

corollary of this perturbation theorem, global convergence property of the algorithm

can be derived (see Corollary 3.5.1).

Assumption (C) The function β satisfies inf
ε≥ε0

β(ε) > 0 for all ε0 > 0.

It is clear that the function β given in previous discussion satisfies this assumption.

In the rest, for simplicity in exposition, we denote by argmin(P̃σk
) the optimal solutions

set of the penalty problem (P̃σk
).

Algorithm 3.5.1 Let α ∈ (0, 1) be sufficiently small number, δ0 > 0, σ0 ≥ 1, and

k := 0;

Step 1. Solve (P̃σk
) and let (xk, εk) be the optimal solution obtained and then go to Step

2. Otherwise, find a δ-optimal solution (xk, εk) such that

f̃σk
(x, ε) ≤ inf{f̃σk

(x, ε)|(x, ε) ∈ [u, v]× [0, ε]}+ δk,

and go to Step 3;

Step 2. If εk = 0, stop. Otherwise, go to Step 4;

Step 3. If εk = 0 and δk ≤ α, stop;
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Step 4. Let δk+1 = 1
2
δk and

σk+1 =

{
σk, if εk = 0,

2σk, otherwise.

Step 5. Let k := k + 1 and go back to step 1.

This algorithm is always feasible, since the existence of δ-optimal solution is ensured

by the lower-boundedness of f̃σ(·, ·) over D× [0, ε]. In addition, due to the smoothness

of f̃σk
(·, ε) on DF , many descent algorithms can be used to find (xk, εk). Given η ≥ 0,

define a perturbation function of (P ) as follows

θ(η) = inf{f(x)|x ∈ [u, v], ‖F (x)‖ ≤ η}.

Clearly, θ(η) is a non-increasing function with θ(0) equal to the optimal value of (P ).

Since f(x) is lower-bounded on [u, v], then the limit of θ as η approaches to 0+ exists

and

lim
η→0+

θ(η) ≤ θ(0),

i.e., θ is upper semi-continuous at zero.

Theorem 3.5.1 Under the assumptions of Theorem 3.3.1, let {(xk, εk)} be a sequence

generated by Algorithm 3.5.1 and (xk, εk) ∈ argmin(P̃σk
). Then there exists k0 such that

when σk ≥ σk0, εk = 0, i.e., xk is an optimal solution of (P ).

Proof. From Theorem 3.3.1, there exists k0 such that when σk ≥ σk0 , εk = 0. It

follows from the fact of finite value f̃σk
(xk, 0) and the definition of f̃σ that F (xk) = 0,

namely, f̃σk
(xk, 0) = f(xk) holds. Furthermore, (xk, 0) ∈ argmin(P̃σk

) yields that xk ∈
argmin(P ).

Lemma 3.5.1 Let β satisfy Assumption (C), and {(xk, εk)} be an infinite sequence

generated by Algorithm 3.5.1. Then there exists k0 such that εk > 0 for all k ≥ k0, and

(1) lim
k→∞

εk = 0;

(2) lim
k→∞

F (xk) = 0.
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Proof. Since {(xk, εk)} is an infinite sequence, at least one of the conditions in Step 3

fails to hold for all k. This, along with the reduction of δk in Step 4, implies that there

exists k0 such that εk > 0 for all k ≥ k0. Then, by the condition for the update of σk

in Step 4, we have

lim
k→∞

σk = ∞. (3.5.33)

From Step 1, we have

f(xk) +
1

2εk

φ(∆k) + σkβ(εk) ≤ inf{f̃σk
(x, ε)|(x, ε) ∈ [u, v]× [0, ε]}+ δk

≤ f(x) + δk, (3.5.34)

where x is a feasible point of (P ). Note that f is lower-bounded on D and φ is nonneg-

ative. It readily follows from (3.5.33) and (3.5.34) that lim
k→∞

β(εk) = 0, which, together

with Assumption (C), further implies that

lim
k→∞

εk = 0. (3.5.35)

Similarly, according to the nonnegativity of β, we get from (3.5.34) and (3.5.35) that

lim
k→∞

φ(∆k) = 0, and hence

lim
k→∞

∆k = 0, (3.5.36)

where we have used the gradient inequality of convex function φ, i.e., φ(∆k) ≥ φ′(0)∆k ≥
0. Since ‖F (xk)‖ ≤

√
∆k + εk‖ω‖, putting (3.5.35) and (3.5.36) together yields

lim
k→∞

‖F (xk)‖ = 0 as claimed.

The global convergence property of Algorithm 3.5.1 is given below.

Theorem 3.5.2 Let β satisfy Assumption (C). The following statements hold:

(1) Assume Algorithm 3.5.1 stops after k iterations, if k belongs to Step 2, then xk

is an optimal solution of (P ), and if k belongs to Step 3, then xk is α-optimal

solution of (P ).

(2) If an infinite sequence is generated, then

lim
k→∞

f(xk) = lim
η→0+

θ(η),

and

lim
k→∞

inf{f̃σk
(x, ε) | (x, ε) ∈ [u, v]× [0, ε]} = lim

η→0+
θ(η).
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Proof. (1) Suppose the algorithm stops after the k-th iteration, then εk = 0. Since

f̃σk
(xk, 0) is finite, then F (xk) = 0, and f̃σk

(xk, 0) = f(xk) must hold according to the

definition of f̃σ. Therefore, if k belongs to Step 2, it further follows from Step 1 that

xk is an optimal solution to (P ); if k belongs to Step 3, then it follows from Step 3 that

xk is α-optimal solution of (P ).

(2) If the algorithm does not stop after the k-th iteration, then we must have

lim
k→∞

σk = +∞. By Lemma 3.5.1, there exists k0 such that εk > 0 for all k ≥ k0,

since one of the termination conditions δk ≤ α is always true as k sufficiently large.

Because f̃σk
(xk, εk) is finite, then

f̃σk
(xk, εk) = f(xk) +

1

2εk

φ(∆k) + σkβ(εk).

The continuity of β and the fact β(0) = 0 guarantee the existence of ε̄ ≥ εk > 0 such

that lim
k→∞

εk = 0 and

lim
k→∞

σkβ(εk) = 0. (3.5.37)

Indeed, for each k, we can choose εk such that β(εk) ≤ 1
σ2

k
. Choose another sequence

ξk > 0 satisfying lim
k→∞

ξk = 0. According to the definition of infimum in θ, there exists

yk ∈ [u, v] such that ‖F (yk)‖ ≤ εk, and

f(yk) ≤ θ(εk) + ξk. (3.5.38)

Let ∆k = ‖F (yk)− εkω‖2. Since ‖F (yk)‖ ≤ εk, then

∆k ≤ ε2
k(1 + ‖ω‖)2, (3.5.39)

from which and the fact lim
k→∞

εk = 0, we get ∆k < a (cf. (3.2.2)) for all k sufficiently

large. Thus, fσk
(yk, εk) is finite by (3.2.2). Lemma 3.5.1 implies that, for any η, we

have ‖F (xk)‖ ≤ η as k large enough. Hence, θ(η) ≤ f(xk) holds by the definition of θ.
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Therefore,

θ(η) ≤ f(xk)

≤ f(xk) +
1

2εk

φ(∆k) + σkβ(εk)

= f̃σk
(xk, εk)

≤ inf{f̃σk
(x, ε)|(x, ε) ∈ [u, v]× [0, ε]}+ δk

≤ f̃σk
(yk, εk) + δk

= f(yk) +
1

2εk

φ(∆k) + σkβ(εk) + δk

≤ θ(εk) + ξk +
1

2εk

φ′(∆k)∆k + σkβ(εk) + δk

≤ θ(εk) + ξk +
1

2
φ′(∆k)εk(1 + ‖ω‖)2 + σkβ(εk) + δk,

where the fifth inequality comes from (3.5.38) and the convexity of φ as before, and the

last inequality is due to (3.5.39). The desired result follows by taking limits on both

sides of above inequality and using (3.5.37).

Corollary 3.5.1 Let β satisfy Assumption (C), and {(xk, εk)} be an infinite sequence

generated by Algorithm 3.5.1. The following statements hold.

(1) lim
k→∞

f(xk) = θ(0) if and only if θ is lower semi-continuous at zero.

(2) If x? is an accumulation point of {xk}, then x? is a global optimal solution of (P ).

Proof. (1) This follows from statement 2 of Theorem 3.5.2, since θ is always upper

semicontinuous at zero.

(2) If x? is an accumulation point, then F (x?) = 0 by Lemma 3.5.1, i.e., x? is

feasible. According to statement 2 of Theorem 3.5.2, we have

lim
η→0+

θ(η) = lim
k→∞

f(xk) = f(x?) ≥ θ(0),

which means the lower continuity of θ at zero. This, together with statement (1), yields

lim
k→∞

f(xk) = θ(0), i.e., f(x?) = θ(0), which means that x? is a global optimal solution

of (P ).
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3.6 Numerical Results

To give some insight into the behavior of our proposed algorithm presented in this

section, numerical tests are performed on four nonlinear programming problems with

equality constraints obtained from [36]. It is implemented in Matlab 7.8.0 and runs are

made on Intel Core 2 CPU 2.39 GHz with 1.99 GB memory. Tables 3.1-3.5 show the

computational results for the corresponding problems with the following items:

φi(t) (i = 1, 2, . . . , 6) as defined in Section 3.2,

σk the penalty parameter,

xk, εk the final iterate,

∆(xk, εk) the violation of the constraint,

f̃σk
(xk, εk) the value of penalty function f̃σ(x, ε) at the final (xk, εk)

when the penalty parameter σk,

Example 3.6.1 ([36])

min f(x) = −x1

s.t. F1(x) = x2 − x3
1 − x2

3 = 0,

F2(x) = x2
1 − x2 − x2

4 = 0.

Then, the point x̄ = (1, 1, 0, 0)> is a minimizer with the optimal objective function

value -1.0000 .

Example 3.6.2 ([36])

min f(x) = (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
4 + (x4 − x5)

4

s.t. F1(x) = x1 + x2
2 + x3

3 − 3 = 0,

F2(x) = x2 − x2
3 + x4 − 1 = 0.

The point x̄ = (1, 1, 1, 1, 1)> is a (global) minimizer with the optimal objective

function value 0.
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Table 3.1: Numerical results of Example 3.6.1

φi(t) σk xk εk ∆(xk, εk) f̃σk
(xk, εk)

φ1(t) 1 (1.0242, 1.0620, -0.0033, 0.0214) 0.0060 5.3129e-004 -0.9024

= t
1−0.1t 2 (0.9955, 0.9884, 0.0445, 0.0494) 5.7578e-0052.0030e-008 -0.9801

4 (1.0000, 1.0000, -5.7647e-004,0.0032)1.7402e-0075.2608e-010 -0.9968

φ4(t) = t 1 (0.9994, 0.9984, -0.0252, -0.0157) 0.0014 3.7181e-006 -0.9600

2 (1.0001, 1.0004, 0.0185, -0.0047) 1.3967e-0042.7711e-007 -0.9755

4 (0.9999, 0.9999, 0.0003, -0.0022) 2.6207e-0079.9595e-010 -0.9960

φ6(t) 1 (1.0064, 1.0296, 0.0860, -0.0031) 0.0028 2.9153e-004 -0.9274

= 1
2(
√

t2 + 4 + t)− 1 2 (0.9953, 0.9878, 0.0439, -0.0528) 5.4413e-0074.8769e-009 -0.9919

4 (0.9998, 0.9993, 9.3599e-004, 0.0152)8.6056e-0091.3469e-011 -0.9990

Example 3.6.3 ([36])

min f(x) = (4x1 − x2)
2 + (x2 + x3 − 2)2 + (x4 − 1)2 + (x5 − 1)2

s.t. F1(x) = x1 + 3x2 = 0,

F2(x) = x3 + x4 − 2x5 = 0,

F3(x) = x2 − x5 = 0.

Then, the point x̄ = (− 33
349

, 11
349

, 180
349

,−158
349

, 11
349

)> is a minimizer with the optimal

objective function value 1859
349

.

Example 3.6.4 ([36])

min f(x) =
10∑

j=1

xj(cj + ln
xj

x1+···+x10
)

s.t. F1(x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0,

F2(x) = x4 + 2x5 + x6 + x7 − 1 = 0,

F3(x) = x3 + x7 + x8 + 2x9 + x10 = 0,

xi ≥ 0, i = 1, 2, · · · , 10.

where c1 = −6.089, c2 = −17.164, c3 = −34.054, c4 = −5.914, c5 = −24.721, c6 =

−14.986, c7 = −24.100, c8 = −10.708, c9 = −26.662, c10 = −22.179. Then, the point
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Table 3.2: Numerical results of Example 3.6.2

φi(t) σk xk εk ∆(xk, εk) f̃σk
(xk, εk)

φ1(t) 1 (1.0026, 1.0019, 0.9979, 0.9936, 0.9971) 6.4899e-008 2.5015e-007 0.0100

= t
1−0.1t 2 (0.9997, 0.9908, 1.0062, 1.0216, 1.0003) 5.6659e-008 2.3655e-011 0.0010

4 (0.9972, 1.0071, 0.9962, 0.9852, 1.0028) 1.3359e-008 8.6253e-012 0.0010

φ4(t) 1 (0.9915, 0.9905, 1.0090, 1.0272, 1.0084) 6.4169e-005 2.1140e-007 0.0100

2 (1.0034, 1.0016, 0.9978, 0.9941, 0.9966) 1.2454e-006 6.8508e-009 0.0050

4 (0.9979, 1.0006, 1.0003, 0.9999, 1.0021) 1.0000e-006 6.5704e-011 0.0040

φ6(t) 1 (0.9835, 0.9875, 1.0135, 1.0397, 1.0163) 3.7318e-005 4.7781e-007 0.0100

2 (1.0221, 1.0006, 0.9922, 0.9840, 0.9784) 1.5117e-006 1.2133e-008 0.0050

4 (1.0083, 1.0038, 0.9947, 0.9856, 0.9917) 8.8059e-007 6.7950e-010 0.0040

x̄ = (0.1083, 0.9438, 0, 0.0004, 0.4978, 0.0040, 0, 0, 0, 0)> is a (but not unique) local min-

imizer with the optimal objective function value -30.581215.

We make numerical tests using different choices of the function φi, i = 1, 4, 6 de-

fined in Section 3.2, where φ1(t) is barrier-type penalty function and φ4(t), φ6(t) are

exterior-type penalty functions. Here, β(ε) in (3.2.2) is set as
√

ε. The data in Tables

3.1-3.5 illustrate the practical behavior of the algorithm proposed in this paper. The

algorithm starts with σ0. The penalty problem is (approximately) solved by any uncon-

strained smooth minimization techniques (for instance, trust-region methods, Newton-

type methods and conjugate gradient methods) since the proposed penalty function

has good smoothness property. We can thus denote by (x0, ε0) the optimal solution

when the penalty parameter is σ0. Once the iterate point ε0 6= 0, set σ1 = 2σ0 and the

algorithm runs over again. As the penalty parameter gradually increases, the indicator

variable εk, the constraints violation measure value ∆(xk, εk) and the penalty function

value f̃σk
(xk, εk) decrease as desired. Additionally, it is not difficult to observe that the

minimizers can be obtained without requirements of large penalty parameters for the

kinds of choices of the functions φi considered here. Numerical performances verify the

correctness of the developed theory as desired. For example, as illustrated in Tables

3.1-3.5, the iterates (xk, εk) are already quite close to the point (x̄, 0), where x̄ is a min-

imizer of the original problem. Just as stated in Theorem 3.3.1, the optimal solution
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Table 3.3: Numerical results of Example 3.6.3

φi(t) σk Iters xk εk ∆(xk, εk) f̃σk
(xk, εk)

φ1(t) 10 62 ( -0.1083, 0.0360, 0.5365, -0.4644,0.0360) 1.3508e-006 7.7016e-006 5.3317

= t
1−0.01t 20 52 (-0.0935, 0.0311, 0.5130, -0.4506,0.0311) 1.0000e-006 6.0195e-011 5.3266

40 57 (-0.0936, 0.0312, 0.5130,-0.4505,0.0312) 1.0000e-006 5.7181e-011 5.3266

φ4(t) 10 47 (-0.0701, 0.0551, 0.7457, -0.1994,0.2297) 0.0299 0.0475 3.5825

20 57 (-0.0936, 0.0312, 0.5124, -0.4499,0.0312) 1.0515e-006 5.8772e-011 5.3266

40 57 (-0.0944, 0.0315, 0.5126, -0.4495,0.0315) 1.1337e-006 9.8943e-011 5.3265

φ6(t) 10 41 (-0.0365, 0.0864, 1.0685, 0.1549,0.5093) 0.0588 0.2727 1.7232

20 62 (-0.0997, 0.0332, 0.5246, -0.4583,0.0332) 1.0000e-006 5.7256e-008 5.3280

40 54 (-0.0942, 0.0314, 0.5149, -0.4521,0.0314) 1.0626e-006 3.6097e-006 5.3265

Table 3.4: Numerical results of Example 3.6.4

φi(t) σkIters xk

φ1(t) 1 66 (0.1191,0.9396,7.7552e-005, 0.0028, 0.4978,0.0015, 0, 0, 0, 0)

= t
1−0.01t 4 60 (0.9749, 0.5096, 0.0002, 0.0054, 0.4945, 0.0053, 0, 0, 0, 0)

16 70 (0.0998,0.9482,1.2600e-005,0.0014,0.4975,0.0035,0,7.4320e-005,0,0.0002)

φ4(t) 2 42 (0.1002,0.9487,2.3861e-004,0.0013,0.4985,0.0017,6.7980e-007,7.7881e-007,0,1.2701e-005)

4 53 (0.1013, 0.9480, 0, 0.0011,0.4981,0.0025,5.370e-007, 0, 0, 0)

8 44 (0.1083, 0.9438, 1.3200e-006, 2.6780e-004, 0.4978, 0.0040, 0, 0, 0, 0)

φ6(t) 1 43 (0.1003,0.9486,0.0003,0.0013,0.4985,0.0017,1.1820e-006,2.1168e-006,0,2.5201e-005)

4 49 (0.1003,0.9486,0.0003,0.0013,0.4985,0.0018,4.3192e-006,1.5402e-006,0,1.4780e-005)

16 64 (0.1059, 0.9458, 2.9000e-007, 0.0011, 0.4982, 0.0023, 0, 0, 0, 0)
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Table 3.5: Numerical results of Example 3.6.4

φi(t) εk ∆(xk, εk) f̃σk
(xk, εk)

φ1(t) 1.5441e-006 3.8468e-008 -30.5591

= t
1−0.01t 1.1971e-006 2.5382e-007 -29.1162

9.7000e-006 1.2211e-007 -30.5731

φ4(t) 1.0000e-005 2.5026e-012 -30.5803

1.0000e-008 3.8461e-013 -30.5826

1.0000e-008 8.8444e-008 -30.5815

φ6(t) 1.0000e-005 2.1877e-007 -30.5873

1.0000e-005 2.1907e-007 -30.5778

1.0000e-008 2.7457e-013 -30.5813

of the penalty problem must take the form of (xk, εk) with εk = 0 for sufficiently large

penalty parameters, which means xk is a local optimal solution of the primal problem

(P ). In summary, our numerical experiments on four classical nonlinear programming

problems with equality constraints confirm the efficiency of the proposed algorithm. As

shown in Tables 3.1-3.5, the numerical outputs for the different choices for the functions

φi, i = 1, 4, 6 seem to have no significant differences, which demonstrates the class of

convex functions presenting an integrated representation for both barrier- and exterior-

type functions are effective for solving nonlinear programming problems. Neverthe-

less, there exists a little difference in the algorithm implementation process for solving

exterior-type penalty functions and barrier-type penalty functions. For barrier-type

penalty functions, we must consider the additional constraint ∆(x, ε) < a compared

with exterior-type penalty functions. Here, for example, a = q−1 for φ1(t), a = π
2

for

φ2(t) and a = 1 for φ3(t).
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Chapter 4

On an Exact Penalty Function

Method for Semi-Infinite

Programming Problems

4.1 Introduction

In the context of this chapter, we consider the following semi-infinite programming

problem:

(Q) min f(x)

s.t. g(x, v) ≤ 0 ∀ v ∈ V,

where V is a nonempty compact set and f : Rn → R, g : Rn+m → R are continuously

differentiable functions with respects to x and v.

The semi-infinite programming problem has attracted much attention due to its

various applications. It is encountered in optimal control problems, the design of the

flutter of aircraft wings and economic equilibria, etc. It has become an active field

of research in applied mathematics. The most prominent feature of the semi-infinite

programming problem is that it has a finite number of variables but infinitely many

constraints, which brings great difficulties in designing efficient algorithms. Never-

theless, in recent years, many effective methods have been proposed for solving the

semi-infinite programming problem such as exchange methods, discretization methods
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local reduction methods etc. In particular, some researchers also develop penalty func-

tion algorithms for the semi-infinite programming problem. For instance, Conn and

Gould developed an exact penalty function based on a generalization of the l1 exact

rather than smooth penalty function in [14] for a class of semi-infinite programming

problems, which makes smoothing optimization methods inapplicable. In addition, it

involves restrictive assumptions, such as linearly independent constraint qualification

in semi-infinite programming and strong (convexity) assumptions. Nevertheless, to our

knowledge, the reference [14] is the first article to introduce an exact penalty function

for solving semi-infinite programming.

Motivated by [38], in this section, we propose a new exact and smooth penalty

function for the semi-infinite programming problems. The main feature of our penalty

function is that we only need to add one variable ε to handle infinitely many constraints.

The merit function is considered as a function of x and ε simultaneously which has good

smoothness and exactness properties, without involving gradient and Jacobian matri-

ces. It remains bounded below whenever f(x) is bounded below on S, which is not

shared by the l1 exact penalty function. It is well-known that the ill-conditioness intro-

duced by a large penalty parameter may be detrimental. Therefore, for the new exact

penalty function algorithm, we require to increase the penalty parameter gradually by

adding a relatively small constant in order to keep the penalty parameter as small as

possible avoiding ill-conditioness to occur, which is illustrated in the comparison with

l1 exact penalty function in Section 4.5. We will also present the result that, if a local

optimal solution to the penalty problem satisfies the extended Mangasarian-Fromovitz

constraint qualification, then the minimizer has the expression of (x?, 0). In addition,

we derive another useful property that the minimizer (x?, ε?) of the penalty problem

satisfies ε? = 0 if and only if x? solves the original problem (Q). This property demon-

strates that the introduced new variable ε can be viewed as an indicator variable of a

local (global) minimizer of primal problem (Q). Besides the above properties, we show

that the penalty problem possesses exact penalty property or equivalently, for suffi-

ciently large penalty parameter, the minimizer of penalty problem is the minimizer of

original problem. Alternatively, under some mild conditions, the local exactness proof

is shown.

The rest of this chapter is organized as follows. In Section 4.2, we introduce an exact
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and smooth penalty function for the semi-infinite programming problems. In Section

4.3, a penalty function algorithm and convergence analysis are presented. In Section

4.4, we discuss local exactness property of this exact penalty function. Some numerical

tests are reported in Section 4.5.

4.2 A New Exact and Smooth Penalty Function for

Semi-Infinite Programming Problems

For the semi-infinite programming problem,

min
x∈S

f(x), S = {x ∈ Rn : g(x, v) ≤ 0 ∀ v ∈ V } 6= ∅. (4.2.1)

We introduce a new variable ε into the constraint function such that

Sε = {(x, ε) ∈ Rn × R+ : g(x, v) ≤ εγw ∀ v ∈ V },

where γ is a positive number. We make some assumptions:

(1) There exists the global minimizer of the problem (Q), this means that f(x) is

bounded below on S;

(2) Let L(Q) denote the set of local minimizers of the problem (Q). If x? ∈ L(Q),

then Lx? = {x ∈ L(Q) : f(x) = f(x?)} is a compact set.

In order to construct the penalty function for the semi-infinite programming problem,

the integral function technique is employed for the constraint set. Denote

∆(x, ε) =

∫

V

(max(0, g(x, v)− εγw))2dµ(v) =

∫

V +(x,ε)

(g(x, v)− εγw)2dµ(v),

where V +(x, ε) = {v ∈ V : g(x, v) − εγw ≥ 0} and µ(v) is a given measure on V .

The term ∆(x, ε) measures the total constraint violation at (x, ε). Clearly, for any

x ∈ Rn, ∆(x, ε) ≥ 0. Then the penalty function fσ(x, ε) can be formulated as follows.

(Qσ) min
(x,ε)∈Rn×(0,ε̄)

fσ(x, ε),
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fσ(x, ε) =





f(x), if ε = 0, x ∈ S,

f(x) + ε−α∆(x,ε)
1−ε−2δ∆(x,ε)

+ σεβ, if ε > 0, 0 < 1− 2ε−2δ∆(x, ε) < 1,

+∞, otherwise,

where α, β, δ, γ are positive numbers, and β > 1. Denote

D = {(x, ε) ∈ Rn × (0, ε̄) | ε > 0, 0 < 1− 2ε−2δ∆(x, ε) < 1}.

For ε = 0, x ∈ S and (x, ε) ∈ D,

fσ(x, ε) = f(x) +
ε−α∆(x, ε)

1− ε−2δ∆(x, ε)
+ σεβ ≥ f(x) = fσ(x, 0), if g(x, v) ≤ 0,∀v ∈ V.

Also, fσ(x, ε) is bounded below on Rn × [0, ε̄] whenever f(x) is bounded below on the

set

D
′
= {x ∈ Rn|‖g(x, v)‖ ≤

( 1

2m(V )

) 1
2
ε̄δ + ε̄γ‖w‖,∀v ∈ V },

whenever f(x) is bounded below on the set D
′
, in which m(V ) represents the measure

of the set V . This is a reasonable condition since when f is bounded below on the

feasible set, ε̄ is small enough. To illustrate the boundedness property, in what follows,

we consider a simple semi-infinite programming example.

Example 4.2.1

min x3
1x

3
2,

s.t. x2
1 + x2

2 − v ≤ 0 ∀ v ∈ [1, 2].

There are two global minimizers x?
1 = (

√
2

2
,−

√
2

2
) and x?

2 = (−
√

2
2

,
√

2
2

) with f(x?
1) =

f(x?
2) = −1

8
. If we use the traditional penalty function, we have the following conclu-

sions:

• The l1 penalty function:

l1(x) = x3
1x

3
2 +

1

εα

( ∫ 2

1

(x2
1 + x2

2 − v)+du(v)
)

is unbounded below for any ε > 0. Because when x = (−m,m)>,m → +∞,

l1(x) → −∞.
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• The quadratic penalty function:

l2(x) = x3
1x

3
2 +

1

εα

( ∫ 2

1

(x2
1 + x2

2 − v)+du(v)
)2

is unbounded below for any ε > 0. Because when x = (−m,m)>,m → +∞,

l2(x) → −∞.

For this new penalty function, choosing w = 1, we have

fσ(x, ε) =





x3
1x

3
2, if ε = ∆(x, ε) = 0,

x3
1x

3
2 + ε−α∆(x,ε)

1−ε−2δ∆(x,ε)
+ σεβ, if ε > 0, 0 < 1− 2ε−2δ∆(x, ε) < 1,

+∞, otherwise,

where ∆(x, ε) =
∫ 2

1
(max(0, x2

1 + x2
2 − v − 0.5εγ))2du(v). Since fσ(x, ε) = +∞, if

‖x‖ ≥
√

2 + 0.5εγ +
√

2
2

εδ for ε > 0. When ‖x‖ <
√

2 + 0.5εγ +
√

2
2

εδ, the boundedness

below of this new penalty function is easily to be verified, which is not shared by l1

penalty and quadratic penalty functions.

In what follows, we shall show that, fσ(x, ε) is continuously differentiable with

continuous limits on the part of the boundary with finite values.

Proposition 4.2.1 Let x → x? ∈ S, 0 < ε → ε? = 0. Suppose that




γ > δ > α > 0,

−α− 1 + 2δ > 0,

β > 1,

(4.2.2)

then lim
ε → ε? = 0

x → x? ∈ S

fσ(x, ε) = fσ(x?, 0) = f(x?), lim
ε → ε? = 0

x → x? ∈ S

∇xfσ(x, ε) = ∇f(x?) and

lim
ε → ε? = 0

x → x? ∈ S

∂fσ(x,ε)
∂ε

= 0.

Proof. From the fact that ε 6= 0, 0 < 1 − 2ε−2δ∆(x, ε) < 1, we have ∆(x, ε) = O(ε2δ)

and lim
ε → ε? = 0

x → x? ∈ S

1−ε−2δ∆(x, ε) = c? ∈ [1
2
, 1] when ε → ε? = 0 and x → x? = 0. Through the

Cauchy inequality, it yields that
∫

V
max(0, g(x, v)− εγw)dµ(v) = O(εδ) as ε → ε? = 0.

As specified in (4.2.2), we know 2δ > α and β > 1. This yields

lim
ε → ε? = 0

x → x? ∈ S

fσ(x, ε) = lim
ε → ε? = 0

x → x? ∈ S

f(x) +
ε−α∆(x, ε)

1− ε−2δ∆(x, ε)
+ σεβ = f(x?).
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Notice that fσ(x, ε) is continuously differentiable in the set D. The gradient of fσ(x, ε)

at (x, ε) can be easily derived as follows.

∇(x,ε)fσ(x, ε) =
(
∇xfσ(x, ε),

∂fσ(x, ε)

∂ε

)
,

where the derivation of fσ(x, ε) with respect to x,

∇xfσ(x, ε) = ∇f(x) + ε−α( ∂x∆(x,ε)
1−ε−2δ∆(x,ε)

+ ∆(x, ε) ε−2δ∂x∆(x,ε)
(1−ε−2δ∆(x,ε))2

)

= ∇f(x) + ε−α ∂x∆(x,ε)(1−ε−2δ∆(x,ε))+∆(x,ε)ε−2δ∂x∆(x,ε)
(1−ε−2δ∆(x,ε))2

= ∇f(x) + ε−α ∂x∆(x,ε)
(1−ε−2δ∆(x,ε))2

= ∇f(x) +
2ε−α

∫
V max(0,g(x,v)−εγw)

∂g(x,v)
∂x

dµ(v)

(1−ε−2δ∆(x,ε))2
,

(4.2.3)

and the derivation of fσ(x, ε) with respect to ε,

∂fσ(x, ε)

∂ε

= −αε−α−1 ∆(x,ε)
1−ε−2δ∆(x,ε)

+ ε−α
(

∂ε∆(x,ε)
1−ε−2δ∆(x,ε)

+ ∆(x,ε)(−2δε−2δ−1∆(x,ε)+ε−2δ∂ε∆(x,ε))
(1−ε−2δ∆(x,ε))2

)

+σβεβ−1

= −αε−α−1 ∆(x,ε)
1−ε−2δ∆(x,ε)

+ ε−α(∂ε∆(x,ε)(1−ε−2δ∆(x,ε)))−2δε−2δ−1∆2(x,ε)+ε−2δ∂ε∆(x,ε)∆(x,ε)
(1−ε−2δ∆(x,ε))2

+σβεβ−1

= −αε−α−1 ∆(x,ε)
1−ε−2δ∆(x,ε)

+ ε−α ∂ε∆(x,ε)−2δε−2δ−1∆2(x,ε)
(1−ε−2δ∆(x,ε))2

+ σβεβ−1

= ε−α−1

(1−ε−2δ∆(x,ε))2
[−α∆(x, ε)(1− ε−2δ∆(x, ε))− 2γεγw

∫
V

max(0, g(x, v)− εγw)dµ(v)

−2δε−2δ∆2(x, ε)] + σβεβ−1.

(4.2.4)

Combining with (4.2.2), (4.2.3) and (4.2.4) yields lim
ε → ε? = 0

x → x? ∈ S

∇xfσ(x, ε) = ∇f(x?)

and lim
ε → ε? = 0

x → x? ∈ S

∂fσ(x,ε)
∂ε

= 0. This yields the conclusion as desired.

In the next section, we proceed to introduce the penalty function algorithm and

present the corresponding convergence analysis.

4.3 Algorithm

Step 1. Choose ε̃, ε̄ > 0 , η > 0 arbitrarily small, σ0 > 0, ρ > 0 and (x0, ε0) ∈ Rn×(0, ε̄),

set k := 0.
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Step 2. For the semi-infinite programming, we construct the following penalty function

fσ(x, ε) =





f(x), if ε = 0, x ∈ S,

f(x) + ε−α∆(x,ε)
1−ε−2δ∆(x,ε)

+ σεβ, if ε > 0, 0 < 1− 2ε−2δ∆(x, ε) < 1,

+∞, otherwise,

where ∆(x, ε) =
∫

V
(max(0, g(x, v) − εγw))2dµ(v) =

∫
V +(x,ε)

(g(x, v) − εγw)2dµ(v), w ∈
(0, 1), α, β, γ, δ satisfy (4.2.2). Compute (xk, εk) such that

(xk, εk) ∈ argmin
(x,ε)∈Rn×(0,ε̄)

fσk
(x, ε)

and denote the solution (xk, εk) of the penalty problem (Qσk
).

Step 3. If |εk| ≤ ε̃, ‖∇(x,ε)fσk
(xk, εk)‖ ≤ η, then stop. The point obtained xk is an

approximation solution of (Q). Otherwise, choose σk+1 = σk + ρ.

Step 4. Set k := k + 1 and return to Step 2.

Here, it should be mentioned that, the unconstrained optimization problem in Step

2 can be solved by some unconstrained optimization methods, for instance, trust-region

method, newton method and conjugate gradient method. Subsequently, the conver-

gence properties analysis are presented.

Lemma 4.3.1 If (xk, εk) ∈ L(Qσk
) generated by the algorithm with finite fσk

(xk, εk)

and εk > 0, then (xk, εk) 6∈ Sεk
.

Proof. By (xk, εk) ∈ L(Qσk
) with finite fσk

(xk, εk), εk > 0, then ∂fσ(xk,εk)
∂ε

= 0, we have

∂fσ(xk, εk)

∂ε

=
ε−α−1
k

(1−ε−2δ
k ∆(xk,εk))2

[−α∆(xk, εk)(1− ε−2δ
k ∆(xk, εk))

−2γεγ
kw

∫
V

max(0, g(xk, v)− εγ
kw)dµ(v)− 2δε−2δ

k ∆2(xk, εk)] + σkβεβ−1
k

= 0.

(4.3.5)

If (xk, εk) ∈ Sεk
, then the left hand of the above equals to σkβεβ−1

k > 0. This is a

contradiction. Hence (xk, εk) 6∈ Sεk
.

Remark 4.3.1 In fact, the following result is true: if ∇(x,ε)fσk
(xk, εk) = 0 with finite

fσk
(xk, εk) and εk > 0, then (xk, εk) 6∈ Sεk

.
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Now we introduce the definition of the extended Mangasarian-Fromovitz constraint

qualifications for the semi-infinite programming problem.

Definition 4.3.1 ([40]) It is said that the extended Mangasarian-Fromovitz constraint

qualifications holds at (x?, v), for all v ∈ V +(x?, ε?), if there exists a vector h ∈ Rn such

that

∇xg(x?, v)>h < 0,∀ v ∈ V +(x?, ε?).

For convenience, we refer to the notation “(xk, εk)
k−→ (x?, ε?)” as when k sufficiently

large, the point sequence (xk, εk) tends to (x?, ε?).

Lemma 4.3.2 If (xk, εk) ∈ L(Qσk
) generated by the algorithm with finite fσk

(xk, εk)

and εk > 0, (xk, εk)
k−→ (x?, ε?) and ∇xg(x?, v),∀ v ∈ V +(x?, ε?) satisfying the extended

Mangasarian-Fromovitz constraint qualifications, then ε? = 0, x? ∈ S.

Proof. As the preceding discussion, denote

V +(xk, εk) = {v ∈ V |g(xk, v) ≥ εγ
kw}.

We first show that ε? = 0. By Lemma 4.3.1, since εk > 0, we have (xk, εk) 6∈ Sεk
.

Therefore, V +(xk, εk) 6= ∅. From (xk, εk) ∈ L(Qσk
), one has

∇xfσk
(xk, εk) = ∇f(xk) +

2ε−α
k

∫
V +(xk,εk)

(g(xk, v)− εγ
kw)∇xg(xk, v)dµ(v)

(1− ε−2δ
k ∆(xk, εk))2

= 0, (4.3.6)

and

∂fσk
(xk, εk)

∂ε

=
ε−α−1
k

(1−ε−2δ
k ∆(xk,εk))2

[
− α∆(xk, εk)(1− ε−2δ

k ∆(xk, εk))

−2γεγ
kw

∫
V +(xk,εk)

(g(xk, v)− εγ
kw)dµ(v)− 2δε−2δ

k ∆2(xk, εk)
]

+ σkβεβ−1
k

= 0.

(4.3.7)

Rearranging (4.3.7), we have

−αε2δ
k ∆(xk, εk)(1− ε−2δ

k ∆(xk, εk))− 2γεγ+2δ
k w

∫
V +(xk,εk)

(g(xk, v)− εγ
kw)dµ(v)

−2δ∆2(xk, εk) + (1− ε−2δ
k ∆(xk, εk))

2σkβεα+β+2δ
k = 0.

(4.3.8)

55



Taking σk → +∞, by (4.3.8), the first term to the third term tend to finite. From the

construction of the penalty function fσ(x, ε), one has

lim
k→+∞

1− ε−2δ
k ∆(xk, εk) 6= 0. (4.3.9)

It holds that lim
k→+∞

εk = ε? = 0. We proceed to prove x? ∈ S. Together with (4.3.6),

we can obtain

εα
k (1− ε−2δ

k ∆(xk, εk))
2∇f(xk) + 2

∫

V +(xk,εk)

(g(xk, v)− εγ
kw)∇xg(xk, v)dµ(v) = 0.

(4.3.10)

Let k → +∞. Clearly,
∫

V +(x?,ε?)

(g(x?, v)− (ε?)γw)∇xg(x?, v)dµ(v) = 0. (4.3.11)

From the condition that ∇xg(x?, v) satisfy the extended Mangasarian-Fromovitz con-

straint qualifications, for all v ∈ V +(x?, ε?), and hence g(x?, v) = (ε?)γw. It is obvious

that

∆(x?, ε?) =

∫

V

(max(0, g(x?, v)−(ε?)γw))2dµ(v) =

∫

V +(x?,ε?)

(g(x?, v)−(ε?)γw)2dµ(v) = 0.

(4.3.12)

Thus, for all v ∈ V , we obtain

g(x?, v) ≤ (ε?)γwj = 0,

i.e., x? ∈ S. The proof is completed.

Theorem 4.3.1 Suppose that (xk, εk) ∈ L(Qσk
) generated by the algorithm with fi-

nite fσk
(xk, εk). For any accumulation point (x?, ε?), ∇xg(x?, v) satisfy the extended

Mangasarian-Fromovitz constraint qualification for all v ∈ V +(x?, ε?), then x? is a local

optimal solution of (Q).

Proof. From the conditions of Theorem 4.3.1, we know there exists subsequence

{(xk, εk)}ℵ such that (xk, εk)
k−→ (x?, ε?), It then follows from Lemma 4.3.2 that ε? = 0

and x? is feasible point of the problem (Q). Therefore, there exists a neighbor o(x?, 0)

and consider an arbitrary point (x, 0) ∈ o(x?, 0)∩(S×{0}), by the definition of (xk, εk),

one has

f(x?) = fσ(x?, 0) ≤ fσ(x, 0) = f(x).

Therefore, x? is a local optimal solution of (Q). The proof is completed.
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Corollary 4.3.1 Suppose that every local minimizer (x?, ε?) of the penalty problem

(Qσ) with finite fσ(x?, ε?) and ∇xg(x?, v) satisfy the extended Mangasarian-Fromovitz

constraint qualification for all v ∈ V +(x?, ε?), then x? is local minimizer of the primal

problem (Q) if and only if ε? = 0.

Proof. If x? is local minimizer of the primal problem (Q), then g(x?, v) ≤ 0 for all

v ∈ V , ∆(x?, ε) = 0 for any ε ∈ R. Using proof by contradiction, from Lemma 4.3.2, we

have ε? = 0. Alternatively, if ε? = 0, in view of the construction of fσ(x, ε), g(x?, v) ≤ 0

holds for all v ∈ V . x? is a feasible point of (Q). From the hypothesis that (x?, 0) is

optimal solution of (Qσ), x? is a local minimizer of the primal problem (Q).

Remark 4.3.2 Corollary 4.3.1 demonstrates another advantage of this penalty func-

tion is that ε can be regarded as an indicator variable of a local (global) minimizer. In

other words, under fairly general conditions, ε? = 0 is equivalent to x? is an optimal

solution of (Q).

The next theorem explores that the exactness property of the penalty function

fσ(x, ε). Through this conclusion, the optimal solutions of primal problem (Q) can be

achieved within finite steps.

Theorem 4.3.2 If (xk, εk) ∈ L(Qσk
) generated by the algorithm with finite fσk

(xk, εk),

(xk, εk)
k−→ (x?, ε?) and ∇xg(x?, v),∀ v ∈ V +(x?, ε?) satisfy the extended Mangasarian-

Fromovitz constraint qualifications. α, β, γ, δ satisfy

−α− β + 2δ ≥ 0 and γ > δ, (4.3.13)

then there exists k0 > 0, when k ≥ k0, we have εk = 0, xk ∈ L(P ).

Proof. We prove this theorem by contradiction. Assume the theorem is not true, then

there exists a subsequence {(xnk
, εnk

)}ℵ ⊆ {(xk, εk)} such that for any k0 > 0, when

nk ≥ k0, (xnk
, εnk

) ∈ L(Qnk
) with finite fσnk

(xnk
, εnk

) and εnk
> 0 and the conditions

of Theorem 4.3.2 hold for such subsequence. From the statement of Lemma 4.3.1,
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(xnk
, εnk

) 6∈ Sεnk
holds. From (4.2.4), we know

∂fσnk
(xnk

, εnk
)

∂ε

=
ε−α−β
nk

(1−ε−2δ
nk

∆(xnk
,εnk

))2
[−α∆(xnk

, εnk
)(1− ε−2δ

nk
∆(xnk

, εnk
))− 2γεγ

nk
w

∫
V +(xnk

,εnk
)
(g(xnk

, v)− εγ
nk

w)dµ(v)− 2δε−2δ
nk

∆2(xnk
, εnk

)] + σnk
β

= 0.

(4.3.14)

From Lemma 4.3.2, we derive εnk
→ ε? = 0, xnk

→ x? ∈ S. Combing with εnk
> 0, 0 <

1− 2ε−2δ
nk

∆(xnk
, εnk

) < 1, we have lim
εnk

→ ε? = 0

xnk
→ x? ∈ S

1− ε−2δ
nk

∆(xnk
, εnk

) = c? ∈ [1
2
, 1].

Let −α − β + 2δ ≥ 0,−α − β + δ + γ ≥ 0. The first term of (4.3.14) tends to 0

and the second term tends to infinity, which leads to contradiction. It implies that such

subsequence cannot exist. Therefore, there exists k0 > 0, when k ≥ k0, εk = 0, (xk, 0) ∈
L(Qσk

). Thus, by (xk, 0) ∈ L(Qσk
), there exists a neighbor o(xk, 0) at (xk, 0), σk > 0,

for all (x, 0) ∈ o((xk, 0), σk) ∩ (S × {0}), it holds

f(xk) = fσk
(xk, 0) ≤ fσk

(x, 0) = f(x).

Thus, xk ∈ L(Q). The proof is completed.

4.4 Local Exactness Property

As previously stated, since the penalty function approach is an attempt to solve a con-

strained problem by minimization of an unconstrained minimization problem, it is of

great interest the study of converse properties, which ensure that local (global) mini-

mum points of the constrained problem are also local (global) solutions of the penalty

function. Therefore, in this section, we shall show that, under a regular condition,

(x?, 0) is a local optimal solution of penalty problem (Qσ) if x? is a local minimizer of

the original problem (Q).

Now, we first introduce the conception of the error bound of semi-infinite program-

ming and sufficient conditions for the existence of error bound for semi-infinite program-

ming. The semi-infinite programming problem can be formulated as a cone constrained
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problem. As before, the feasible set S of the semi-infinite programming problem is

S = {x ∈ Rn : g(x, v) ≤ 0 ∀ v ∈ V }.

The distance function of g(x, v) to R− can be described as

dist(g(x, v) |R−) = ‖g(x, v)− g(x, v)−‖V = ‖g(x, v)+‖V = max
v∈V

g(x, v)+.

Thus, the error bound for semi-infinite programming can be described as below: there

exists a positive number k > 0 such that

dist(x |S) ≤ k max
v∈V

g(x, v)+.

We can regard the error bound condition as a regularity condition. The definition of

regularity for semi-infinite programming can be given as follows.

Definition 4.4.1 For a system

{x ∈ Rn : g(x, v) ≤ 0 ∀ v ∈ V },

it is said that the error bound condition holds at a solution x? if there exist positive

constants k > 0 and δ > 0 such that

dist(x |S) ≤ k max
v∈V

g(x, v)+

for all x ∈ x? + δB, where S = {x ∈ Rn : g(x, v) ≤ 0,∀ v ∈ V } and B is unit closed ball

in Rn.

In what follows, we present the conditions that guarantee the error bound condition.

By [62], we represent

h(x) = max
v∈V

g(x, v)+, T (x) = argmax
v∈V

g(x, v)+

and

∂h(x) = conv{∇xg(x, v̄)|v̄ ∈ T (x)}

From Theorem 2.2 of [73], we know if there exists 0 < δ, µ < ∞, for all ξ ∈ ∂h(x),

x ∈ B(x?, δ) and each ‖ξ‖ ≥ µ−1, then S = {x ∈ Rn|g(x, v) ≤ 0,∀v ∈ V } is nonempty

and the error bound condition for semi-infinite programming holds. Furthermore, we

make the following assumption.
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(H1) f(x) is Lipschitz continuous with Lipschitz constant L.

Combining with [51, Theorem 3] (Lemma 2.1.2), we obtain the following conclusion.

Lemma 4.4.1 If (H1) and error bound conditions for semi-infinite programming hold,

there exist a neighborhood N0 of x?, and a constant τ > 0 (in fact, τ ≥ kL)such that

f(x) ≥ f(x?)− τ max
v∈V

g(x, v)+.

Now we present an important theoretical result for the local exactness. Before

proving this result, one more assumption is given as follows.

(H2) δ, β, γ are positive numbers and satisfy δ ≥ β and γ ≥ β.

Based on the above hypothesis, we can prove the main results in this section.

Theorem 4.4.1 Suppose the above assumptions of Lemma 4.4.1 and (H2) hold, for

sufficiently large σ, there are a neighborhood N ⊆ N0 of x? and sufficiently small

0 < ε
′
<< 1 such that

fσ(x, ε) > fσ(x?, 0) = f(x?) for all (x, ε) ∈ N × (0, ε
′
].

In particular, (x?, 0) is a local minimizer of fσ(x, ε).

Proof. Let the neighborhood N ⊆ N0 of x? be sufficiently small such that

sup
x∈N

{f(x?)− f(x)} ≤ 1,

and assume that the penalty parameter

σ ≥ τ(R0 + 2‖w‖).

We divide into two cases for further analysis.

(i) ∆(x, ε) ≥ ε2δ;
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(ii) ∆(x, ε) < ε2δ,

for x ∈ N, ε ∈ (0, ε
′
].

Case (i). By the definition of penalty function, fσ(x, ε) = +∞. Therefore, fσ(x, ε) >

fσ(x?, 0).

We proceed to analyze case (ii). For case (ii), ∆(x, ε) < ε2δ, we denote

( max
v∈V +(x,ε)

(g(x, v)− εγw))2 = ‖g(x, v)− εγw‖2
L∞(V )

and ∫

V +(x,ε)

(g(x, v)− εγw)2dµ(v) = ‖g(x, v)− εγw‖2
L2(V ).

By interpolation theorem of Riesz-Thorin [16], this yields

1

R2
0

( max
v∈V +(x,ε)

(g(x, v)− εγw))2 ≤
∫

V +(x,ε)

(g(x, v)− εγw)2dµ(v) < ε2δ,

where I : L2(V ) → L∞(V ) is an identity functional operator and ‖I‖L2(V )→L∞(V ) =

R0 > 0. Furthermore,

max
v∈V +(x,ε)

(g(x, v)− εγw) < R0ε
δ.

We note that

max
v∈V +(x,ε)

g(x, v)− εγ‖w‖ ≤ max
v∈V +(x,ε)

(g(x, v)− εγw).

Thus,

max
v∈V +(x,ε)

g(x, v) < R0ε
δ + εγ‖w‖.

It is worth noting the fact

| max
v∈V +(x,ε)

g(x, v)− max
v∈V +(x,0)

g(x, v)| ≤ εγ‖w‖.

This assertion can be easily verified as follows.

• When there exists at least a (x, v) ∈ Rn+m such that g(x, v) ≥ εγw, that is,

V +(x, ε) is nonempty, then the argmax
v∈V

g(x, v) belongs to V +(x, ε) from the def-

initions of V +(x, ε) and V +(x, 0) and the fact V +(x, ε) ⊆ V +(x, 0). Therefore

max
v∈V +(x,ε)

g(x, v) and max
v∈V +(x,0)

g(x, v) have the same value;
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• Suppose for any (x, v) ∈ Rn+m, g(x, v) < εγw, i.e., V +(x, ε) = ∅, if V +(x, 0) = ∅,
therefore, x is feasible point. For this case, we reformulate as max

v∈V +(x,ε)
g(x, v) =

max
v∈V +(x,0)

g(x, v) = 0. If V +(x, 0) 6= ∅, the maximum difference between max
v∈V +(x,ε)

g(x, v)

and max
v∈V +(x,0)

g(x, v) at most is εγ‖w‖.

This yields the assertion as desired. Therefore, it implies

max
v∈V +(x,0)

g(x, v) ≤ max
v∈V +(x,ε)

g(x, v) + εγ‖w‖.

Furthermore, combining with Lemma 4.4.1 and assumption (H2), one has

f(x?) ≤ f(x) + τ max
v∈V +(x,0)

g(x, v)

≤ f(x) + τ( max
v∈V +(x,ε)

g(x, v) + εγ‖w‖)

< f(x) + τ(R0ε
δ + εγ‖w‖) + τεγ‖w‖

≤ f(x) + τ(R0 + 2‖w‖)εβ

≤ f(x) + σεβ.

Therefore, f(x?) < f(x) + σεβ ≤ fσ(x, ε). This yields the inequality as desired.

4.5 Numerical Examples

To give some insight into the behavior of the algorithm presented in this section, we

demonstrate the method by a few examples. They are implemented in Matlab 7.8.0 ex-

ecuted on Intel Core 2 CPU 2.39 GHz with 1.99 GB memory. We use ‖∇(x,ε)fσ(x, ε)‖ ≤
10−6 as stopping criteria. Tables 4.1-4.7 show the computational result for the corre-

sponding problem with the following items:

Iter-numbers of iterations of penalty function algorithm,

σk − the penalty parameter,

xk, εk − the final iterate,

f(xk)− the function value of f(x) at the final xk,

∆(xk, εk)− the total constraint violation at (xk, εk).
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Example 4.5.1

min 1.21 exp(x1) + exp(x2),

s.t. v − exp(x1 + x2) ≤ 0 ∀ v ∈ [0, 1],

where, in order to make α, β, γ, δ satisfy (4.2.2) and (4.3.13), in this example, the

parameters used in this algorithm are set as α = 0.5, β = 2, γ = 6, δ = 3 and ρ = 5.

The optimal solution and optimal value are x? = (−0.0953, 0.0953) and f(x?) = 2.2000.

We choose initial point x0 = (0, 0), ε0 = 1. This problem can also be solved by the l1

exact penalty function in 13 iterations, with a final value of the penalty parameter

of 104, optimal solution (−0.0954, 0.0952) and optimal value 2.1999. The figure of

constraint is depicted in Table 4.1 at the final iteration of penalty function algorithm.

Table 4.1: Numerical results of Example 4.5.1

Iter σk xk εk f(xk) ∆(xk, εk)

17 5 (-0.1256, 0.1256) 0.0110 2.2016 1.7838e-012

12 10 (-0.0430, 0.0429) 0.0158 2.2054 1.5537e-011

11 15 (-0.0304, 0.0304) 0.0079 2.2056 2.3998e-013

18 20 (-0.0953, 0.0953) 0.0019 2.2000 4.6960e-017
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Figure 1: constraint function g(x,v)

g

Figure 4.1: Constraint function values of Example 4.5.1
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Example 4.5.2

min 2.25 exp(x1) + exp(x2),

s.t. v − exp(x1 + x2) ≤ 0 ∀ v ∈ [0, 1],

where, the parameters used in this algorithm are set as α = 0.5, β = 2, γ = 6, δ = 3. The

optimal solution and optimal value are x? = (−0.4050, 0.4050) and f(x?) = 3.0000. We

choose initial point x0 = (0, 0), ε0 = 1. This problem can also be solved by the l1 exact

penalty function in 14 iterations, with a final value of the penalty parameter of 104,

optimal solution (−0.4055, 0.4054) and optimal value 2.9999. The figure of constraint

is depicted in Table 4.2 at the final iteration of this example.

Table 4.2: Numerical results of Example 4.5.2

Iter σk xk εk f(xk) ∆(xk, εk)

16 5 (-0.4000, 0.3998) 0.0202 3.0017 6.9094e-011

30 10 (-0.4004, 0.4004) 0.0117 3.0013 2.5273e-012

19 15 (-0.5450, 0.5430) 0.0413 3.0514 4.9619e-009

16 20 (-0.5614, 0.5591) 0.0434 3.0704 6.7490e-009

19 25 (-0.4053, 0.4053) 0.0008 3.0000 4.7190e-020
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Figure 2: constraint function g(x,v)

g

Figure 4.2: Constraint function values of Example 4.5.2
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Example 4.5.3

min 2x1 + x2,

s.t. −v2 + v − vx1 + (v − 1)x2 ≤ 0 ∀ v ∈ [0, 1],

the parameters used in this algorithm are set as α = 0.5, β = 3.2, γ = 4, δ = 3 and ρ = 5.

The optimal solution and optimal value are x? = (0.1111, 0.4444) and f(x?) = 0.6660.

We choose initial point x0 = (0, 0), ε0 = 1. This problem can also be solved by the l1

exact penalty function in 24 iterations, with a final value of the penalty parameter of

103, optimal solution (0.1111, 0.4445) and optimal value 0.6667. The figure of constraint

is depicted in Table 4.3 at the final iteration of penalty function algorithm.

Table 4.3: Numerical results of Example 4.5.3

Iter σk xk εk f(xk) ∆(xk, εk)

27 5 (0.0115, 0.3448) 0.3736 0.6011 0.0022

50 10 (0.1006, 0.4339) 0.1503 0.6590 1.0982e-005

49 15 (0.1080, 0.4414) 0.0904 0.6644 5.3225e-007

52 20 (0.1098, 0.4432) 0.0631 0.6657 6.2273e-008

52 25 (0.1105, 0.4450) 0.0291 0.6664 6.1025e-010

79 30 (0.1104, 0.4448) 0.0367 0.6664 2.4221e-009
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Figure 3: constraint function g(x,v)

g

Figure 4.3: Constraint function values of Example 4.5.3

65



Example 4.5.4

min
1

2
x>x,

s.t. 3 + 4.5 sin
(4.7π(v − 1.23)

8

)
−

n∑
i=1

xiv
i−1 ≤ 0 n = 10 ∀ v ∈ [0, 1],

the parameters used in this algorithm are set as α = 0.5, β = 2, γ = 4, δ = 3 and ρ = 1.

The optimal solution and optimal value are (0.1147, 0.1147, 0.1147, 0.1147, 0.1147,

0.1147, 0.1147, 0.1147, 0.1147, 0.1147) and f(x?) = 0.0657, respectively. We choose ini-

tial point x0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ε0 = 0.8. This problem can also be solved by

the l1 exact penalty function in 12 iterations, with a final value of the penalty parameter

of 103, the optimal solution and the optimal value are (0.1147, 0.1147, 0.1147,

0.1146, 0.1146, 0.1146, 0.1146, 0.1146, 0.1146, 0.1146) and 0.0657 respectively. The figure

of constraint is depicted in Table 4.4 at the final iteration of this example.

Table 4.4: Numerical results of Example 4.5.4

Iterσk xk εk f(xk) ∆(xk, εk)

12 1 (0.1138,0.1150,0.1149,0.1148,0.1148,0.1147,0.1147,0.1146,0.1146,0.1146) 0.0016 0.0657 1.9163e-017

22 2 (0.1156,0.1152,0.1150,0.1149,0.1147,0.1145,0.1144,0.1142,0.1141,0.1139) 0.0008 0.0657 2.2739e-019

29 3 (0.1111,0.1150,0.1150,0.1150,0.1150,0.1151,0.1151,0.1151,0.1151,0.1151) 0.0001 0.0657 9.7293e-024

28 4 (0.1145,0.1145,0.1145,0.1146,0.1146,0.1147,0.1147,0.1148,0.1148,0.1149) 0.0000 0.0657 0
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Figure 4.4: Constraint function values of Example 4.5.4
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Example 4.5.5

min x1 + (x2 − 3)2,

s.t. x2 − 2 + x1 sin(
v

x2

− 0.5) ≤ 0 ∀ v ∈ [0, 10],

where, the parameters used in this algorithm are set as α = 0.5, β = 2.2, γ = 6, δ = 3

and ρ = 5. The optimal solution and optimal value are x? = (0, 2) and f(x?) = 1.0000.

We choose initial point x0 = (3, 3), ε0 = 1.4. This problem can also be solved by the l1

exact penalty function in 14 iterations, with a final value of the penalty parameter of

10, optimal solution (0.0000, 2.0000) and optimal value 1.0000. The figure of constraint

is depicted in Table 4.5 at the final iteration of penalty function algorithm.

Table 4.5: Numerical results of Example 4.5.5

Iter σk xk εk f(xk) ∆(xk, εk)

37 10 (0.0849, 1.9131) 0.0000 1.2662 0

28 15 (0.0746, 1.9255) 0.0291 1.2355 6.1114e-010

28 20 (0.0304, 1.9696) 0.0107 1.0930 1.5615e-012

39 25 (0.0004, 1.9992) -0.0000 1.0019 0
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Figure 4.5: Constraint function values of Example 4.5.5
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Example 4.5.6

min x2
1 + x2

2 + x2
3,

s.t. x1(v1 + v2
2 + 1) + x2(v1v2 − v2

2) + x3(v1v2 + v2
2 + v2) + 1 ≤ 0 ∀ v ∈ [0, 1]× [0, 1],

the parameters used in this problem are set as α = 0.5, β = 2, γ = 6, δ = 3 and ρ = 2.

The optimal solution and optimal value are x? = (−1, 0, 0) and f(x?) = 1.0000. Choose

initial point x0 = (2, 3, 2), ε0 = 1.6. This problem can also be solved by the l1 exact

penalty function in 13 iterations, with a final value of the penalty parameter of 104,

optimal solution (−0.9998, 0.0023,−0.0053) and optimal value 0.9999. The figure of

constraint is depicted in Table 4.6 at the final iteration of penalty function algorithm.

Table 4.6: Numerical results of Example 4.5.6

Iter σk xk εk f(xk) ∆(xk, εk)

25 2 (-0.7391, 0.0128, -0.1203) 0.3532 0.8266 0.8266

41 4 (-0.9081, 0.0071, -0.0793) 0.1842 0.9687 3.7390e-005

63 6 (-0.9850, 0.0017, -0.0342) 0.0715 1.0022 1.3282e-007

31 8 (-0.9985, 0.1873, -0.0407) 0.0259 1.0392 3.0057e-010

101 10 (-1.0000, -0.0009, 0.0113) 0.0000 1.0001 0
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Figure 4.6: Constraint function values of Example 4.5.6

Example 4.5.7

min x2
1 + x2

2 + x2
3,

s.t. x1 + x2 exp(x3v1) + exp(2v2)− 2 sin(4v1) ≤ 0 ∀ v ∈ [0, 1]× [0, 1],

where, the parameters used in this algorithm are set as α = 0.5, β = 2, γ = 6, δ = 3 and

ρ = 10. The optimal solution and optimal value are (−3.6812,−3.7079, 0.3423) and

f(x?) = 27.4166 respectively. Choose initial point x0 = (0, 0, 0), ε0 = 1.5. This problem

can also be solved by the l1 exact penalty function in 15 iterations, with a final value of

the penalty parameter of 104, optimal solution (−3.5731,−3.6581, 0.3763) and optimal

value 26.5236. The figure of constraint function is depicted in Table 4.7 at the final

iteration of penalty function algorithm.

Numerical outputs verify the correctness of the developed theory as desired. From

the above numerical examples, it is observed that we obtain the optimal solution without
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Table 4.7: Numerical results of Example 4.5.7

Iter σk xk εk f(xk) ∆(xk, εk)

32 10 (-1.5281, -2.0117, 1.1691) 0.7777 14.4864 0.1622

43 20 (-2.1202, -2.4145, 0.9567) 0.6183 19.3066 0.0478

51 30 (-2.5632, -2.7488, 0.7858) 0.4978 22.4085 0.0139

55 40 (-2.8948, -3.0168, 0.6563) 0.3996 24.4160 0.0038

94 50 (-3.1384, -3.2230, 0.5612) 0.3192 25.7039 0.0010

25 60 (-3.6920, -3.6988, 0.3427) 0.0010 27.4293 1.4191e-018

the requirement of a large penalty parameter σ. Tables 4.1-4.7 demonstrate that the

minimizers obtained by this new exact penalty function method are all feasible points.

The introduced new variable ε is zero or quite close to zero after a finite number of

iterations. From the result of Corollary 4.3.1, ε can completely be regarded as an

indicator variable for the minimizer. Numerical results show this new smooth and

exact penalty function is reasonable and well-behaved.
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Chapter 5

On a New Exact Penalty Function

for Solving Constrained Finite

Min-Max Programming Problems

5.1 Introduction

In the context of this chapter, we primarily restrict our attention to the following

constrained min-max programming problem with equality constraints

(R̄)





min max
1≤j≤q

fj(x)

s.t. Fj(x) = 0 ∀j = q + 1, . . . , m,

x ∈ Rn,

where fj : Rn → R, j = 1, 2, · · · , q and Fj : Rn → R, j = q + 1, · · · ,m are continuously

differentiable functions.

Since the objective function f(x) contains the max operator, it is continuous but

non-differentiable even when fj(x), j = 1, 2, . . . , q are all differentiable. Thus, uncon-

strained optimization algorithms with the use of derivatives cannot be applied directly.

There are several algorithms proposed for solving the min-max programming prob-

lems. They can be divided into three categories. The problem (R̄) can be viewed as a

constrained nonsmooth optimization problem. Therefore, we can use the general meth-
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ods of solving nonsmooth optimization problems, such as subgradient methods, bundle

methods and cutting plane methods (see Refs. [26, 56]). Another type of method is to

consider the special structure of its nondifferentiability in order to make use of certain

smooth optimization methods. These include regularization techniques based on the

max function by means of a smooth function (see Refs. [54, 75]). Among them, Ye

et al. [75] proposed a smooth trust-region Newton-CG algorithm by an exponential

penalty function approximation method. Di Pillo et al. [54] firstly extended the exact

penalty approach to the case of constrained min-max programming problems. There are

also some other approaches based on the following equivalent nonlinear programming

problem through introducing a new variable θ ∈ R,

(R)





min θ,

s.t. fj(x) ≤ θ ∀j = 1, 2, · · · , q,

Fj(x) = 0 ∀j = q + 1, · · · ,m,

x ∈ Rn.

For example, Zhou et al. [79] SQP algorithms for solving the min-max programming

problems based on the above programming problem (R), advantageously exploiting the

special structure. Based on this nonlinear programming formulation (R) and the con-

struction of a continuously differentiable exact barrier penalty function, it was shown

that the minimizers are also the optimal solutions to the constrained min-max pro-

gramming problems for finite values of the penalty parameter.

Motivated by the idea in [38], in this section, we propose a new exact and smooth

penalty function for min-max programming problems. The main feature of our penalty

function is that we only need to add a single variable ε for whatever constraints. The

merit function is considered as a function of x and ε simultaneously which has good

smoothness and exactness properties even without involving gradient and Jacobian

matrices. It remains bounded below whenever f(x) is bounded below on S, which is

not shared by the l1 exact penalty function. It is well-known that the ill-conditioness

introduced by a large penalty parameter may be detrimental. Therefore, for the com-

putational algorithm, we only require the penalty parameter to increase by adding a

relatively small constant in order to keep the penalty parameter as small as possible,

avoiding ill-conditioness occurring. We present the result that, if a local optimal solu-

tion to the penalty problem satisfies the linearly independent constraint qualification,

then the minimizer has the expression of (x?, θ?, 0). In addition, we derive a quite use-
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ful conclusion that the minimizer (x?, θ?, ε?) of the penalty problem satisfies ε? = 0 if

and only if x? solves the original problem (R) and θ? is the optimal objective function

value. This property demonstrates that the introduced new variable ε can be viewed as

an indicator variable of a local (global) minimizer of primal problem (R). Besides the

above properties, we provide that the penalty problem possesses exactness property.

Furthermore, under the mild conditions, the local exactness proof is shown, where the

objective and constraint functions are not necessarily smooth.

The rest of the chapter is organized as follows. In Section 5.2, we introduce a smooth

and exact penalty function for constrained min-max programming problems. In Section

5.3, a penalty function algorithm and convergence analysis are presented. In Section

5.4, we discuss local exactness property of this new exact and smooth penalty function.

Section 5.5 establishes the second-order sufficient optimality conditions for the local

exactness property. Some numerical performances are reported in Section 5.6.

5.2 A New Exact and Smooth Penalty Function

As stated above, we convert the min-max programming problem into the following

optimization problem by adding a variable θ:

min
(x,θ)∈S

θ, S = {(x, θ) ∈ Rn+1 : fj(x)− θ ≤ 0 ∀j = 1, 2, · · · q; (5.2.1)

Fj(x) = 0 ∀j = q + 1, · · ·m}.

This is equivalent to

min
(x,θ,ε)∈S0

θ, S0 = {(x, θ, ε) ∈ Rn+2 : fj(x)− θ ≤ εγwj ∀j = 1, 2, · · · , q;

Fj(x) = εγwj ∀j = q + 1, · · · ,m, ε = 0}.

where wj ∈ (0, 1), j = 1, 2, · · · ,m. Likewise, we denote

Sε = {(x, θ, ε) ∈ Rn+2 : fj(x)− θ ≤ εγwj ∀j = 1, 2, · · · , q;

Fj(x) = εγwj ∀j = q + 1, · · · ,m}.

It implies that solving the min-max programming problem (R̄) is equivalent to solving

the problem (R).

We make some assumptions in the following:
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(1) There exists the global minimizer of (R), this means that f(x) is bounded below

on S;

(2) If x? ∈ L(R), then Lx? = {x ∈ L(R) : f(x) = f(x?)} is a compact set, where

L(R) denotes the set of local minimizers of the problem (R).

We construct the penalty function for the min-max programming problem as follows,

fσ(x, θ, ε) =





θ, if ε = 0, (x, θ) ∈ S,

θ + ε−α∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ σεβ, if ε 6= 0, 0 < 1− 2ε−2δ∆(x, θ, ε) < 1,

+∞, otherwise,

(5.2.2)

where ∆(x, θ, ε) =
q∑

j=1

(max(fj(x)− θ − εγwj, 0))2 +
m∑

j=q+1

(Fj(x)− εγwj)
2 and α, β, γ, δ

are positive even numbers. The corresponding penalty problem (Rσ) is

(Rσ) min
(x,θ,ε)∈Rn+1×(−ε̄,ε̄)

fσ(x, θ, ε).

For ε 6= 0, 0 < 1− 2ε−2δ∆(x, θ, ε) < 1, we have

fσ(x, θ, ε) = θ +
ε−α∆(x, θ, ε)

1− ε−2δ∆(x, θ, ε)
+ σεβ ≥ θ, if Fj(x) = 0 ∀j = q + 1, · · · ,m.

Therefore, fσ(x, θ, ε) is bounded below on Rn+1×[−ε̄, ε̄] whenever fj(x),∀j = 1, 2, · · · , q

are bounded below on the set

D
′
= {x ∈ Rn|‖F (x)‖ ≤

√
2

2
ε̄δ + ε̄γ‖w‖}.

This is a reasonable condition since when fj(x), j = 1, 2, · · · , q are bounded below on

the feasible set, ε̄ is small enough. In what follows, we shall show that, under some

mild conditions, fσ(x, θ, ε) is continuously differentiable with continuous limits on the

part of the boundary with finite values.

Proposition 5.2.1 Let (x, θ) → (x?, θ?) ∈ S, 0 6= ε → ε? = 0. Suppose that





γ > δ > α > 0,

−α− 1 + 2δ > 0,

β > 1,

(5.2.3)
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then

lim
ε → ε? = 0

(x, θ) → (x?, θ?) ∈ S

fσ(x, θ, ε) = fσ(x?, θ?, 0) = θ?, lim
ε → ε? = 0

(x, θ) → (x?, θ?) ∈ S

∇xfσ(x, θ, ε) = 0,

lim
ε → ε? = 0

(x, θ) → (x?, θ?) ∈ S

∂fσ(x,θ,ε)
∂ε

= 0, lim
ε → ε? = 0

(x, θ) → (x?, θ?) ∈ S

∂fσ(x,θ,ε)
∂θ

= 1

Proof. From the fact that ε 6= 0, 0 < 1 − 2ε−2δ∆(x, θ, ε) < 1, we have ∆(x, θ, ε) =

O(ε2δ), |fj(x) − θ − εγwj| = O(εδ) ∀j = 1, 2, · · · , q; |Fj(x) − εγwj| = O(εδ) ∀j =

q + 1, · · · ,m and lim
ε → ε? = 0

(x, θ) → (x?, θ?) ∈ S

1− ε−2δ∆(x, θ, ε) = c? ∈ [1
2
, 1].

As specified in (5.2.3), we know 2δ > α and β > 1. This yields

lim
ε → ε? = 0

(x, θ) → (x?, θ?) ∈ S

fσ(x, θ, ε) = lim
ε → ε? = 0

(x, θ) → (x?, θ?) ∈ S

θ +
ε−α∆(x, θ, ε)

1− ε−2δ∆(x, θ, ε)
+ σεβ = θ?.

Note that fσ(x, θ, ε) is continuously differentiable when (x, θ, ε) satisfies ε 6= 0, 0 <

1− 2ε−2δ∆(x, θ, ε) < 1, the gradient of fσ(x, θ, ε) at (x, θ, ε) is

∇(x,θ,ε)fσ(x, θ, ε) =
(
∇xfσ(x, θ, ε),

∂fσ(x, θ, ε)

∂θ
,
∂fσ(x, θ, ε)

∂ε

)
,

where

∇xfσ(x, θ, ε) = ε−α( ∂x∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ ∆(x, θ, ε) ε−2δ∂x∆(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

)

= ε−α ∂x∆(x,θ,ε)(1−ε−2δ∆(x,θ,ε))+∆(x,θ,ε)ε−2δ∂x∆(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

= ε−α ∂x∆(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

=
2ε−α[

q∑
j=1

(max(fj(x)−θ−εγwj ,0)∇fj(x)+
m∑

j=q+1
(Fj(x)−εγwj)∇Fj(x)]

(1−ε−2δ∆(x,θ,ε))2
,

(5.2.4)

∂fσ(x,θ,ε)
∂θ

= 1 + ε−α( ∂θ∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ ∆(x, θ, ε) ε−2δ∂θ∆(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

)

= 1 + ε−α ∂θ∆(x,θ,ε)(1−ε−2δ∆(x,θ,ε))+∆(x,θ,ε)ε−2δ∂θ∆(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

= 1 + ε−α ∂θ∆(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

= 1−
2ε−α

q∑
j=1

max(fj(x)−θ−εγwj ,0)

(1−ε−2δ∆(x,θ,ε))2

(5.2.5)
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and

∂fσ(x,θ,ε)
∂ε

= −αε−α−1 ∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ ε−α
(

∂ε∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ ∆(x,θ,ε)(−2δε−2δ−1∆(x,θ,ε)+ε−2δ∂ε∆(x,θ,ε))
(1−ε−2δ∆(x,θ,ε))2

)

+βεβ−1σ

= −αε−α−1 ∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ ε−α(∂ε∆(x,θ,ε)(1−ε−2δ∆(x,θ,ε)))−2δε−2δ−1∆2(x,θ,ε)+ε−2δ∂ε∆(x,θ,ε)∆(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

+βεβ−1σ

= −αε−α−1 ∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ ε−α ∂ε∆(x,θ,ε)−2δε−2δ−1∆2(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

+ βεβ−1σ

=

−αε−α−1∆(x,θ,ε)(1−ε−2δ∆(x,θ,ε))−2γε−α+γ−1[
q∑

j=1
max(fj(x)−θ−εγwj ,0)wj+

m∑
j=q+1

(Fj(x)−εγwj)wj ]

(1−ε−2δ∆(x,θ,ε))2

−2δε−α−2δ−1∆2(x,θ,ε)
(1−ε−2δ∆(x,θ,ε))2

+ βεβ−1σ

= ε−α−1

(1−ε−2δ∆(x,θ,ε))2
[−α∆(x, θ, ε)(1− ε−2δ∆(x, θ, ε))− 2γεγ(

q∑
j=1

max(fj(x)− θ − εγwj, 0)wj

+
m∑

j=q+1

(Fj(x)− εγwj)wj)− 2δε−2δ∆2(x, θ, ε)] + βεβ−1σ. (5.2.6)

By (5.2.3), (5.2.4), (5.2.5) and (5.2.6), we have lim
ε→ε?=0,

(x,θ)→(x?,θ?)∈S

∇xfσ(x, θ, ε) = 0,

lim
ε→ε?=0,

(x,θ)→(x?,θ?)∈S

∂fσ(x,θ,ε)
∂ε

= 0, lim
ε→ε?=0,

(x,θ)→(x?,θ?)∈S

∂fσ(x,θ,ε)
∂θ

= 1 for any σ > 0.

5.3 Algorithm

Step 1. Choose ε̄, ε̃ > 0, η > 0 arbitrarily small, σ > 0, ρ > 0 and (x0, θ0, ε0) ∈
Rn+1 × (−ε̄, ε̄), ε0 6= 0, set k := 0.

Step 2. For the problem (R), we construct the simple penalty function

fσ(x, θ, ε) =





θ, if ε = 0, (x, θ) ∈ S,

θ + ε−α∆(x,θ,ε)
1−ε−2δ∆(x,θ,ε)

+ σεβ, if ε 6= 0, 0 < 1− 2ε−2δ∆(x, θ, ε) < 1,

+∞, otherwise,

where

∆(x, θ, ε) =

q∑
j=1

(max(fj(x)−θ−εγwj), 0)2+
m∑

j=q+1

(Fj(x)−εγwj)
2, wj ∈ (0, 1), j = 1, 2, · · · ,m.

Using any unconstrained optimization algorithms to solve

min
(x,θ,ε)∈Rn+1×(−ε̄,ε̄)

fσ(x, θ, ε)
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and denote (xσ, θσ, εσ) the solution to (Rσ).

Step 3. If |εσ| ≤ ε̃, ‖∇(x,θ,ε)fσ(x, θ, ε)‖ ≤ η > 0, then stop. (xσ, θσ) is an approximate

solution to (R). Otherwise, σ := σ + ρ, go back to Step 2.

Lemma 5.3.1 If (xk, θk, εk) ∈ L(Rσk
) with finite fσk

(xk, θk, εk) and εk 6= 0, then

(xk, θk, εk) 6∈ Sεk
.

Proof. By (xk, θk, εk) ∈ L(Rσk
) with finite fσk

(xk, θk, εk), εk 6= 0, we have

∂fσ(xk,θk,εk)
∂ε

=
ε−α−1
k

(1−ε−2δ
k ∆(xk,θk,εk))2

[
− α∆(xk, θk, εk)(1− ε−2δ

k ∆(xk, θk, εk))

−2γεγ
k

( q∑
j=1

max(fj(xk)− θk − εγ
kwj, 0)wj +

m∑
j=q+1

(Fj(xk)− εγ
kwj)wj

)

−2δε−2δ
k ∆2(xk, θk, εk)

]
+ βεβ−1

k σk = 0.

If (xk, θk, εk) ∈ Sεk
, then the left-hand side of the above equals to σkβεβ−1

k 6= 0. This is

a contradiction. Hence (xk, θk, εk) 6∈ Sεk
.

Remark 5.3.1 In fact, this result is true: if ∇(x,θ,ε)fσk
(xk, θk, εk) = 0 with finite

fσk
(xk, θk, εk) and εk 6= 0, then (xk, θk, εk) 6∈ Sεk

.

Lemma 5.3.2 If (xk, θk, εk) ∈ L(Rσk
) with finite fσk

(xk, θk, εk), εk 6= 0, (xk, θk, εk)
k−→

(x?, θ?, ε?) and ∇Fj(x
?), j = q+1, · · · ,m are linearly independent, then, ε? = 0, (x?, θ?) ∈

S.

Proof. We first show that ε? = 0. From εk 6= 0, and Lemma 5.3.1, we have (xk, θk, εk) 6∈
Sε. According to the definition of (xk, θk, εk) ∈ L(Rσk

),

∇xfσk
(xk, θk, εk) =

2ε−α

[
q∑

j=1
(max(fj(xk)−θk−εγ

kwj ,0)∇fj(xk)+
m∑

j=q+1
(Fj(xk)−εγ

kwj)∇Fj(xk)

]

(1−ε−2δ
k ∆(xk,θk,εk))2

= 0,

(5.3.7)

∂fσk
(xk,θk,εk)

∂θ
= 1−

2ε−α
k

q∑
j=1

max(fj(xk)−θk−εγ
kwj ,0)

(1−ε−2δ
k ∆(xk,θk,εk))2

= 0 (5.3.8)
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and

∂fσk
(xk,θk,εk)

∂ε
=

ε−α−1
k

(1−ε−2δ
k ∆(xk,θk,εk))2

(
− α∆(xk, θk, εk)(1− ε−2δ

k ∆(xk, θk, εk))

− 2γεγ
k(

q∑
j=1

max(fj(xk)− θk − εγ
kwj, 0)wj

+
m∑

j=q+1

(Fj(xk)− εγ
kwj)wj)2δε

−2δ
k ∆2(xk, θk, εk)

)
+ βεβ−1

k σk

= 0.

(5.3.9)

From (5.3.9), we obtain

−α∆(xk, θk, εk)(ε
2δ
k −∆(xk, θk, εk))− 2γε2δ+γ

k (
q∑

j=1

max(fj(xk)− θk − εγ
kwj, 0)wj

+
m∑

j=q+1

(Fj(xk)− εγ
kwj)wj)− 2δ∆2(xk, θk, εk) + β(1− ε−2δ

k ∆(xk, θk, εk))
2εα+β+2δ

k σk = 0.

(5.3.10)

Let k → +∞, by (5.3.10), the first term to the third term tend to finite limits. From

the construction of the penalty function fσ(x, θ, ε), one has

lim
k→+∞

1− ε−2δ
k ∆(xk, θk, εk) 6= 0.

It holds that

lim
k→+∞

εk = ε? = 0. (5.3.11)

We proceed to prove (x?, θ?) ∈ S. By (5.3.8), we can obtain

εα
k (1− ε−2δ

k ∆(xk, θk, εk))
2 − 2

q∑
j=1

max(fj(xk)− θk − εγ
kwj, 0) = 0. (5.3.12)

Let k → +∞, we obtain

q∑
j=1

max(fj(x
?)− θ? − (ε?)γwj, 0) = 0.

Therefore,

fj(x
?)− θ? ≤ (ε?)γwj,∀j = 1, 2, · · · q. (5.3.13)

Furthermore, from (5.3.7), we know

q∑
j=1

(max(fj(xk)− θk − εγ
kwj, 0)∇fj(xk) +

m∑
j=q+1

(Fj(xk)− εγ
kwj)∇Fj(xk) = 0.

Let k → +∞, by (5.3.13), it is thus immediate that

m∑
j=q+1

(Fj(x
?)− (ε?)γwj)∇Fj(x

?) = 0.
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From the condition of theorem, we know ∇Fj(x
?),∀j = q + 1, · · ·m are linearly inde-

pendent. We obtain

Fj(x
?)− (ε?)γwj = 0, ∀j = q + 1, · · ·m. (5.3.14)

It is immediate that

∆(x?, θ?, ε?) =

q∑
j=1

(max(fj(x
?)− θ? − (ε?)γwj, 0))2 +

m∑
j=q+1

(Fj(x
?)− (ε?)γwj)

2 = 0.

Thus, one has

fj(x
?)− θ? ≤ 0 ∀j = 1, 2, · · · , q,

Fj(x
?)− (ε?)γwj = Fj(x

?) = 0 ∀j = q + 1, · · · ,m,

namely, (x?, θ?) ∈ S.

Theorem 5.3.1 Suppose that (xk, θk, εk) ∈ L(Rσk
) with finite fσk

(xk, θk, εk), εk 6= 0.

For any accumulation point (x?, θ?, ε?), ∇Fj(x
?), j = q + 1, · · ·m satisfying linearly

independent constraint qualification, then (x?, θ?) is a local optimal solution to (R) and

θ? is the associated optimal objective function value.

Proof. From the conditions of Theorem 5.3.1, it is thus immediate that there exists

subsequence {(xnk
, θnk

, εnk
)}ℵ ⊆ {(xk, θk, εk)} such that (xnk

, θnk
, εnk

)
k−→ (x?, θ?, ε?).

It then follows from Lemma 5.3.2 that ε? = 0 and (x?, θ?) is feasible point of the

problem (R) satisfying fj(x
?) ≤ θ?,∀j = 1, 2, · · · , q. Therefore, there exists a neigh-

bor o(x?, θ?, 0) and consider an arbitrary point (x, θ, 0) ∈ o(x?, θ?, 0) ∩ (S × {0}), in

particular, θ = max
j=1,2,··· ,q

fj(x). Then, by the definition of (xk, θk, εk), one has, for any

j = 1, 2, · · · q,
fj(x

?) ≤ θ? = fσ(x?, θ?, 0) ≤ fσ(x, θ, 0) = θ.

Therefore, (x?, θ?) is a local optimal solution to (R) and θ? is the optimal value. In

fact, θ? = max
1≤j≤q

fj(x
?). The proof is completed.

Corollary 5.3.1 Suppose that every local minimizer (x?, θ?, ε?) of the penalty problem

(Rσ) with finite fσ(x?, θ?, ε?) and ∇Fj(x
?), j = q+1, · · · ,m satisfy linearly independent

constraint qualification, then (x?, θ?) is local minimizer of the primal problem (R) if and

only if ε? = 0.
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Proof. If (x?, θ?) is local minimizer of the primal problem (R), then fj(x
?) ≤ θ?, j =

1, 2, · · · , q and Fj(x
?) = 0, j = q+1, · · · ,m. Using proof by contradiction, from Lemma

5.3.2, we have ε? = 0. Alternatively, if ε? = 0, in view of the construction of fσ(x, θ, ε),

then (x?, θ?) ∈ S, i.e., fj(x
?) ≤ θ? and Fj(x

?) = 0, j = q + 1, · · · ,m. (x?, θ?) is a

feasible point of (R). From the hypothesis that (x?, θ?, 0) is optimal solution to (Rσ),

then (x?, θ?) is a local minimizer of the primal problem (R).

The next theorem explores that the finite termination property of the penalty func-

tion fσ(x, θ, ε). Through this conclusion, the optimal solutions of primal problem (R)

can be achieved within finite steps.

Theorem 5.3.2 If the conditions of Theorem 5.3.1 hold and α, β, γ, δ satisfy

−α− β + 2δ ≥ 0, γ > δ, (5.3.15)

then there exists k0 > 0, when k ≥ k0, we have εk = 0, xk ∈ L(R).

Proof. We prove this theorem by contradiction. Assume the theorem is not true, then

there exists a subsequence {(xnk
, θnk

, εnk
)}ℵ ⊆ {(xk, θk, εk)} such that for any k0 > 0,

when nk ≥ k0, (xnk
, θnk

, εnk
) ∈ L(Rσnk

) with finite fσnk
(xnk

, θnk
, εnk

) and εnk
6= 0

and the conditions of Theorem 5.3.2 hold for such subsequence. From Lemma 5.3.1,

(xnk
, θnk

, εnk
) 6∈ Sεnk

holds. Therefore,

∂fσnk
(xnk

, θnk
, εnk

)

∂ε
= 0,

or equivalently,

ε−α−β
nk

(1−ε−2δ
nk

∆(xnk
,θnk

,εnk
))2

[−α∆(xnk
, θnk

, εnk
)(1− ε−2δ

nk
∆(xnk

, θnk
, εnk

)

−2γεγ
nk

(
q∑

j=1

max(fj(xnk
)− θnk

− εγ
nk

wj, 0)wj +
m∑

j=q+1

(Fj(xnk
)− εγ

nk
wj)wj)

−2δε−2δ
nk

∆2(xnk
, θnk

, εnk
)] + βσnk

= 0.

(5.3.16)

From Lemma 5.3.2, we derive εnk
→ ε? = 0, (xnk

, θnk
)

k−→ (x?, θ?) ∈ S. Combining with

εnk
6= 0, 0 < 1 − 2ε−2δ

nk
∆(xnk

, θnk
, εnk

) < 1, we have lim
εnk

→ ε? = 0

xnk
→ x? ∈ S

1 − ε−2δ
nk

∆(xnk
, θnk

, εnk
) =

c? ∈ [1
2
, 1].

Let −α − β + 2δ ≥ 0,−α − β + δ + γ ≥ 0, the first term of (5.3.16) tends to

finite, and the second term tends to infinite which leads to contradiction. Therefore,
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there does not exist such subsequence. There exist k0 > 0, when k ≥ k0, we have

εk = 0, (xk, θk, 0) ∈ L(Rσk
), where xk, θk satisfy

fj(xk) ≤ θk, j = 1, 2, · · · , q;

Fj(xk) = 0, j = q + 1, · · · ,m.

Thus, by (xk, θk, 0) ∈ L(Rσk
), there exists a neighbor o(xk, θk, 0) at (xk, θk, 0), σk > 0,

for all (x, θ, 0) ∈ o((xk, θk, 0)) ∩ (S × {0}), in particular, θ = max
1≤j≤q

fj(x), we have

θk = fσk
(xk, θk, 0) ≤ fσk

(x, θ, 0) = θ.

Thus, (xk, θk) ∈ L(R).

5.4 Local Exactness Property

In this section, we shall show that, under fairly general conditions and some additional

hypothesis, (x?, θ?, 0) is a local optimal solution to penalty problem (Rσ) if (x?, θ?) is a

local minimizer of the original problem (R) for sufficiently large penalty parameter σ.

We now consider the nonsmooth case. Assume fj(x), j = 1, 2, · · · , q and Fj(x), j =

q + 1, · · · ,m are nonsmooth functions. In order to regularize fj, j = 1, 2, · · · , q and

Fj, j = q + 1, · · · ,m, we embed fj(x), j = 1, 2, · · · , q and Fj(x), j = q + 1, · · · ,m into

the smoothing function fj(x, ε), Fj(x, ε) by introducing the above variable ε. Therefore,

the introduced additional variable ε plays a critical role in solving the problem (R). The

variable ε has active actions not only in perturbation for constraint system no matter

how many constrained functions, but also in regularization of the nonsmooth case.

After regularization, the regularized functions fj(x, ε) j = 1, 2, · · · , q and Fj(x, ε) j =

q + 1, · · · ,m are continuously differentiable in (x, ε), when ε 6= 0 and satisfy

fj(x) = fj(x, 0) = lim
ε→0

fj(x, ε), j = 1, 2, · · · , q,

Fj(x) = Fj(x, 0) = lim
ε→0

Fj(x, ε), j = q + 1, · · · ,m.

We consider the following system

min
θ∈R

θ

s.t. fj(x, ε) ≤ θ ∀j = 1, 2, · · · , q,

Fj(x, ε) = 0 ∀j = q + 1, · · · ,m.

(5.4.17)
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Let hj(x, θ, ε) = fj(x, ε)− θ, ∀j = 1, 2, · · · , q, then (5.4.17) can be also formulated as

(Rε) min
θ∈R

θ

s.t. hj(x, θ, ε) ≤ 0 j = 1, 2, · · · , q,

Fj(x, ε) = 0 j = q + 1, · · · ,m.

In what follows, the conditions that the error bound for the programming problem (Rε)

exists are considered. We make some assumptions:

(H3) The Managasarian-Fromovitz constraint qualification holds at (x?, θ?, 0) for (Rε),

i.e., ∇Fj(x
?, 0), j = q+1, · · · ,m are linearly independent and there exists a vector

s ∈ Rn such that

(s, 1)>
( ∇xhj(x

?, θ?, 0)
∂hj(x

?,θ?,0)

∂θ

)
> 0,∀j ∈ I(x?, θ?); s>∇Fj(x

?, 0) = 0,∀j = q+1, · · · ,m,

where I(x?, θ?) = {j = 1, 2, · · · , q |hj(x
?, θ?, 0) = 0}. According to the results reported

in Ref. [7], we know the assumption (H3) guarantees the error bound condition holds.

Furthermore, combining with [51, Theorem 3] (Lemma 2.1.2), we obtain the following

conclusion.

Lemma 5.4.1 If the error bound condition holds, then there exist a neighborhood N0

of (x?, θ?) and a constant τ > 0 such that

θ ≥ θ? − τ(

q∑
j=1

‖hj(x, θ, 0)+‖+
m∑

j=q+1

‖Fj(x, 0)‖)

holds for (x, θ) ∈ N0.

Subsequently, we present an important theoretical result of the local exactness prop-

erty. Before proving this result, some more assumptions are first given as follows.

(H4) δ, β, γ are positive even numbers and satisfy δ ≥ β and γ ≥ β;

(H5) For sufficiently small 0 < ε′ << 1,

‖hj(x, θ, ε)− hj(x, θ, 0)‖ ≤ Kεβ,∀j = 1, 2, · · · , q, ε ∈ [−ε′, 0) ∪ (0, ε′],

‖Fj(x, ε)− Fj(x, 0)‖ ≤ Kεβ,∀j = q + 1, · · · ,m, ε ∈ [−ε′, 0) ∪ (0, ε′].
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Theorem 5.4.1 Suppose the above assumptions that (H3), (H4) and (H5) hold, for

sufficiently large σ, there are a neighborhood N ⊆ N0 of (x?, θ?) and sufficiently small

0 < ε′ << 1 such that

fσ(x, θ, ε) > fσ(x?, θ?, 0) = θ? for all (x, θ, ε) ∈ N × [−ε′, 0) ∪ (0, ε′].

In particular, (x?, θ?, 0) is a local minimizer of fσ(x, θ, ε).

Proof. Assume that the penalty parameter

σ ≥ mτ(K + 2).

We divide into two cases for further analysis: (i) ∆(x, θ, ε) ≥ ε2δ and (ii) ∆(x, θ, ε) < ε2δ

for (x, θ) ∈ N, ε ∈ [−ε′, 0) ∪ (0, ε′].

Case (i). By the construction of penalty function, fσ(x, θ, ε) = +∞. Therefore,

fσ(x, θ, ε) > fσ(x?, θ?, 0).

Case (ii). ∆(x, θ, ε) < ε2δ, i.e.,

q∑
j=1

(max(hj(x, θ, ε)− εγwj, 0))2 +
m∑

q+1

(Fj(x, ε)− εγwj)
2 < ε2δ,

this yields that

‖Fj(x, ε)‖ ≤ εγ|wj|+ ‖Fj(x, ε)− εγwj‖ < εγ|wj|+ εδ,∀j = q + 1, · · · ,m;

‖hj(x, θ, ε)‖ ≤ εγ|wj|+ ‖hj(x, θ, ε)− εγwj‖ < εγ|wj|+ εδ,∀j ∈ J+(x, θ, ε).

where J+(x, θ, ε) = {j = 1, 2 · · · , q|hj(x, θ, ε) ≥ εγwj}. Furthermore, together with

Lemma 5.4.1 and assumptions (H4) and (H5),

θ? ≤ θ + τ(
q∑

j=1

‖hj(x, θ, 0)+‖+
m∑

j=q+1

‖Fj(x, 0)‖)

= θ + τ(
∑

j∈J+(x,θ,0)

‖hj(x, θ, 0)‖+
m∑

j=q+1

‖Fj(x, 0)‖)

≤ θ + τ(
∑

j∈J+(x,θ,0)

‖hj(x, θ, ε)‖+
∑

j∈J+(x,θ,0)

Kεβ +
m∑

j=q+1

‖Fj(x, ε)‖+
m∑

j=q+1

Kεβ)

< θ + τ(
q∑

j=1

εγ|wj|+ qεδ + Kqεβ +
m∑

j=q+1

εγ|wj|+ (m− q)εδ + K(m− q)εβ)

≤ θ + mτ(K + 2)εβ

≤ θ + σεβ.
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The second inequality and the fourth inequality follow immediately from the assump-

tions (H5) and (H4), respectively. Therefore,

fσ(x?, θ?, 0) = θ? < θ + σεβ ≤ fσ(x, θ, ε), for all (x, θ, ε) ∈ N × [−ε′, 0) ∪ (0, ε′].

(x?, θ?, 0) is a local minimizer of fσ(x, θ, ε). This yields the inequality as desired.

5.5 Second-Order Sufficient Conditions for Local Ex-

actness Property

In this section, let fj : Rn → R, j = 1, 2, . . . , q and Fj : Rn → R, j = q + 1, . . . , m be

twice continuously differentiable functions. Motivated by Theorem 4.4 of [31] (Lemma

2.2.1), similar to the l1 exact penalty function, we also establish the second-order suf-

ficient optimality conditions of the exactness property for the proposed exact penalty

function in this section. We present that, under the second-order sufficient conditions,

(x?, θ?, 0) is a local minimizer of fσ(x, θ, ε) when (x?, θ?) is a local minimizer of the pro-

gramming problem (R). Compared with the first-order sufficient condition mentioned

above, here, the second-order sufficient condition need not require any constraint qual-

ifications. For the problem (R), define hj(x, θ) = fj(x) − θ, j = 1, 2, . . . , q. Therefore,

from the hypothesis, hj(x, θ), j = 1, 2, . . . , q are also twice continuously differentiable.

Thus, the programming problem (R) can also be expressed as follows



min θ

s.t. hj(x, θ) ≤ 0 ∀j = 1, 2, . . . , q,

Fj(x) = 0 ∀j = q + 1, . . . , m,

x ∈ Rn.

For simplicity in exposition, let z = (x, θ)>, thus z? = (x?, θ?)>. Define I(z) = {j =

1, 2, . . . , q|hj(z) = 0}. For λj ∈ R+, j = 1, 2, · · · , q, µj ∈ R, j = q + 1, · · · ,m, as shown

in preliminaries section, we set the Lagrangian function as follows

L(z, λ, µ) = θ +

q∑
j=1

λjhj(z) +
m∑

j=q+1

µjFj(x)

and divide I(z) into sets J(z) = {j ∈ I(z)|λj > 0} and M(z) = {j ∈ I(z)|λj = 0}.

Based on [50, Theorem 12.6] (Lemma 2.1.1), the second-order conditions of the

problem of (R) are defined as follows.
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Second-Order Sufficient Conditions

z? is an optimal solution to the problem (R). λ?
j , j = 1, 2, · · · , q and µ?

j , j = q+1, · · · ,m

are KKT multipliers at z? and satisfy

d>∇2
zzL(z?, λ?, µ?)d > 0,

where for all d ∈ D(z) \ {0}. D(z) is set of directions is defined as follows:

D(z) = {d ∈ Rn+1|∇hj(z)>d ≤ 0,∀j ∈ M(z),∇hj(z)>d = 0,∀j ∈ J(z),
(
∇Fj(x)

0

)>

d = 0, j = q + 1, · · · ,m}.

Theorem 5.5.1 Suppose that the assumption (H4) and the second-order sufficient con-

dition hold at z?. When σ ≥ 2‖µ?‖+ 2,(z?, 0) is a local minimizer of (Rσ).

Proof. We prove this conclusion by the contradiction. Assume that (z?, 0) is not a

local minimizer of the penalty problem (Rσ). Therefore, there exist a neighborhood N

of (z?, 0), 0 < ε̄k << 1 and a sequence {(zk, εk)} ⊂ Rn+1 × [−ε̄k, 0) ∪ (0, ε̄k] such that

θ? = fσ(z?, 0) ≥ fσ(zk, εk), for all (zk, εk) ∈ N × [−ε̄k, 0) ∪ (0, ε̄k].

From the above expression and the definition of penalty function, we have

0 ≥ fσ(zk, εk)− fσ(z?, 0)

= θk − θ? +
ε−α
k ∆(zk,εk)

1−ε−2δ
k ∆(zk,εk)

+ σεβ
k

≥ θk − θ? + ∆(zk,εk)
εα
k

+ σεβ
k . (5.5.18)

Therefore, from (5.5.18), one has lim
k→∞

∆(zk,εk)
εα
k

= 0. When k is sufficiently large, we

have ∆(zk, εk) < εα
k . From the parameters settings, we know 0 < α < δ, and thus

ε2δ
k < εδ

k < εα
k . By the construction of the penalty function, we know ∆(zk, εk) < ε2δ

k ,

otherwise, fσk
(zk, εk) = +∞. Therefore, this yields that

‖hj(zk)‖ ≤ εγ
k|wj|+ ‖hj(zk)− εγ

kwj‖ < εγ
k|wj|+ εδ

k < 2εβ
k ,∀j = 1, 2, · · · , q.

The second inequality comes from Assumption (H4). Likewise,

‖Fj(xk)‖ ≤ εγ
k|wj|+ ‖Fj(xk)− εγ

kwj‖ < εγ
k|wj|+ εδ

k < 2εβ
k ,∀j = q + 1, · · · ,m.
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Therefore, (5.5.18) yields that

0 ≥ θk − θ? + ∆(zk,εk)
εα
k

+ σεβ
k .

≥ θk − θ? + σεβ
k

= L(zk, λ
?, µ?)− L(z?, λ?, µ?)− ∑

j∈I(z?)

λ?
j(hj(zk)− hj(z

?))−
m∑

q+1

µ?
jFj(xk)

+σεβ
k

=
1
2
(zk − z?)>∇2

zzL(z?, λ?, µ?)(zk − z?) + o(‖zk − z?‖2)− ∑
j∈I(z?)

λ?
j∇hj(ζk)

>(zk − z?)

−µ?>F (xk) + σεβ
k

≥ 1
2
(zk − z?)>∇2

zzL(z?, λ?, µ?)(zk − z?) + o(‖zk − z?‖2)− ∑
j∈I(z?)

λ?
j∇hj(ζk)

>(zk − z?)

−‖µ?‖‖F (xk)‖+ σεβ
k

>
1
2
(zk − z?)>∇2

zzL(z?, λ?, µ?)(zk − z?) + o(‖zk − z?‖2)− ∑
j∈I(z?)

λ?
j∇hj(ζk)

>(zk − z?)

−‖µ?‖‖F (xk)‖+ σ
2
‖F (xk)‖

≥ 1
2
(zk − z?)>∇2

zzL(z?, λ?, µ?)(zk − z?) + o(‖zk − z?‖2)

− ∑
j∈I(z?)

λ?
j∇hj(ζk)

>(zk − z?) + ‖F (xk)‖

≥ 1
2
(zk − z?)>∇2

zzL(z?, λ?, µ?)(zk − z?) + o(‖zk − z?‖2)− ∑
j∈I(z?)

λ?
j∇hj(ζk)

>(zk − z?)

+‖∇F (ξk)
>(zk − z?)‖, (5.5.19)

where the second equality comes from the mean value theorem where ξk, ζk ∈ (zk, z
?),

the third inequality stems from Cauthy-Schwarz inequality and the fifth inequality

comes from the assumption σ ≥ 2‖µ?‖+2. Divided by ‖zk−z?‖2 both sides of (5.5.19),

we have

0 >
1

2
dk>∇2

zzL(z?, λ?, µ?)dk + o(1)−
∑

j∈I(z?)

λ?
j

∇hj(ζk)
>dk

‖zk − z?‖ + ‖∇F (ξk)
> dk

‖zk − z?‖‖,

(5.5.20)

where dk = zk−z?

‖zk−z?‖ . Since for all k, ‖dk‖ = 1, thus without loss of generality, dk → d?

when k → ∞. Obviously, d? 6= 0. It follows from (5.5.20) and continuously differen-

tiable property of F (·) that

lim
k→∞

∇F (ξk)
>dk = ∇F (z?)>d? = 0.
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Therefore, (
∇Fj(x

?)

0

)>

d? = 0, j = q + 1, · · · ,m.

Furthermore, as k → ∞, then zk → z?, εk → 0 and lim
k→∞

hj(zk) ≤ 0. Therefore, when

j ∈ M(z?), zk → z? as k →∞, thus,

lim
k→∞

∇hj(ζk)
>dk = ∇hj(z

?)>d? ≤ 0.

Similarly, when j ∈ J(z?),

lim
k→∞

∇hj(ζk)
>dk = ∇hj(z

?)>d? = 0.

Therefore, according to the second-order optimality condition, we have

0 ≥ 1

2
d?>∇2

zzL(z?, λ?, µ?)d? > 0,

which leads to a contradiction. This yields the contradiction as desired.

5.6 Numerical Examples

To give some insight into the behavior of the method presented in this section, the

algorithm is implemented in Matlab 7.8.0 and executed on Intel Core 2CPU 2.39GHz

with 1.99GB memory. We use ‖∇(x,θ,ε)fσ(x, θ, ε)‖ ≤ 10−6 as stopping criteria. Tables

5.1-5.5 show the penalty parameter σk, xk, θk, εk of the final iterate and f(xk) the

function value of f at the final xk for the corresponding problem.

Example 5.6.1

Let
f1(x) = 10(x2 − x2

1),

f2(x) = −10(x2 − x2
1),

f3(x) = 1− x1,

f4(x) = 1 + x1,

F1(x) = 100x2
1 + x2

2 − 101,

F2(x) = 80x2
1 − x2

2 − 79.
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In order to make α, β, γ, δ satisfy (5.2.3) and (5.3.15), in this example, the parameters

used in this algorithm are set as α = 6, β = 8, γ = 10, δ = 8. The optimal solution

and optimal value are x? = (1, 1) and f(x?) = 0. We choose the initial point x0 =

(2,−1), θ0 = −5, ε0 = 2.

Table 5.1: Numerical results of Example 5.6.1

σk xk θk εk fσk
(xk, θk, εk)

2 (1.0000, 1.0000) 0.0000 0.2266 1.7559e-005

4 (1.0000, 1.0000) 0.0000 0.2991 2.8779e-004

6 (1.0000, 1.0000) 0.0000 0.2655 1.5005e-004

8 (1.0000, 1.0000) 0.0000 0.3041 6.0927e-004

10 (1.0000, 1.0000) 0.0004 0.0515 5.7905e-004

Example 5.6.2

Let
f1(x) = 1

2
(x1 + 10x1

x1+0.1
+ 2x2

2),

f2(x) = 1
2
(−x1 + 10x1

x1+0.1
+ 2x2

2),

f3(x) = 1
2
(x1 − 10x1

x1+0.1
− 2x2

2),

F1(x) = x2
1 + x2

2 + x1x2,

F2(x) = −x1 + x2
2.

Here, the parameters used in this algorithm are set as α = 6, β = 8, γ = 10, δ = 8. The

optimal solution and optimal value are x? = (0, 0) and f(x?) = 0. We choose the initial

point x0 = (2, 1), θ0 = −1, ε0 = 2.

Table 5.2: Numerical results of Example 5.6.2

σk xk θk εk fσk
(xk, θk, εk)

2 (-0.0000, 0.0003) 0.0000 0.1938 5.2922e-006

4 (-0.0000, 0.0000) 0.0001 0.2210 9.8229e-005

6 (-0.0002, -0.0149) 0.0082 0.4125 0.0158

8 (0.0000, 0.0022) 0.0002 0.2259 2.7298e-004

10 (0.0000, 0.0020) 0.0002 0.2377 3.7813e-004
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Example 5.6.3

Let
f1(x) = x2

1 + x2
2,

f2(x) = (2− x1)
2 + (2− x2)

2,

f3(x) = 2 exp(x2 − x1),

F1(x) = x1 + x2 − 2,

F2(x) = −x2
1 − x2

2 + 2.25.

The parameters used in this algorithm are set as α = 6, β = 8, γ = 10, δ = 8. The

optimal solution and optimal value are x? = (1.35355, 0.64645) and f(x?) = 2.25. We

choose the initial point x0 = (0, 0), θ0 = 1, ε0 = 2.

Table 5.3: Numerical results of Example 5.6.3

σk xk θk εk fσk
(xk, θk, εk)

2 (1.0071, 1.0771) 2.1347 0.7886 2.5227

4 (1.3536, 0.6464) 2.2500 0.1803 2.2500

6 (1.3536, 0.6464) 2.2500 0.2064 2.2500

8 (1.3536, 0.6464) 2.2500 0.1603 2.2500

10 (1.3535, 0.6465) 2.2500 0.2401 2.2501

Example 5.6.4

Let
f1(x) = exp

(
x2
1

1000
+ (x2 − 1)2

)
,

f2(x) = exp
(

x2
1

1000
+ (x2 + 1)2

)
,

F1(x) =
x2
1

1000
+ x2

2 + x1x2,

F2(x) = −x1 + x2
2.

The parameters used in this algorithm are set as α = 6, β = 8, γ = 10, δ = 8. The

optimal solution and optimal value are x? = (0, 0) and f(x?) = 2.71828. We choose the

initial point x0 = (0, 0), θ0 = 1, ε0 = 2.

Example 5.6.5

90



Table 5.4: Numerical results of Example 5.6.4

σk xk θk εk fσk
(xk, θk, εk)

2 (-0.0000, -0.0000) 2.7183 0.1773 2.7183

4 (0.0000, 0.0000) 2.7183 0.2325 2.7183

6 (0.0000, 0.0000) 2.7183 0.2260 2.7184

Let
f1(x) = x2

1 + x2
2 + 2x2

3 + x2
4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10F1(x),

f3(x) = f1(x) + 10F2(x),

f4(x) = f1(x) + 10F3(x),

F1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8,

F2(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 9,

F3(x) = x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5.

The parameters used in this algorithm are set as α = 6, β = 8, γ = 10, δ = 8. The

optimal solution and optimal value are x? = (0, 0, 2,−1) and f(x?) = −44. We choose

the initial point x0 = (−1, 1.5, 1.8,−1), θ0 = −50, ε0 = 2.

Table 5.5: Numerical results of Example 5.6.5

σk xk θk εk fσk
(xk, θk, εk)

2 (-0.0068, 1.0008, 2.0046, -0.9942) -43.9998 0.3791 -43.9988

10 (0.0434, 0.9945, 1.9699, -1.0360) -43.9854 0.3967 -43.9788

18 (0.0309, 0.9961, 1.9787, -1.0258) -43.9930 0.0073 -43.9786
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Chapter 6

On an Exact Penalty Function

Method for Nonlinear Mixed

Discrete Programming Problems

and Its Applications in Search

Engine Advertising Problems

6.1 Introduction

In the context of this section, we firstly apply a novel exact and smoothing penalty

function to a general class of nonlinear mixed discrete programming problems and then

solve the new popular search engine advertising problem by utilizing the new proposed

penalty function.
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We consider a mixed discrete nonlinear programming problem given below

(Ū)





min f(x, y)

s.t. hl(x, y) = 0 ∀l = 1, 2, · · · , L1,

g`(x, y) ≤ 0 ∀` = 1, 2, · · · , L2.

x = [x1, x2, · · · , xn]> ∈ Rn,

y = [y1, y2, · · · , ym]> ∈ D1 ×D2 · · · ×Dm,

where L1 and L2 are non-negative integers. The functions hl, l = 1, 2, · · · , L1 and

g`, ` = 1, 2, · · · , L2 are continuously differentiable with respect to all their arguments.

For i = 1, 2, · · · ,m, Di = {ai,1, ai,2, · · · , ai,Ji
} is a discrete points set with Ji elements,

where ai,j, j = 1, 2, · · · , Ji are given discrete values.

Many practical optimum design problems in the engineering and finance manage-

ment fields can be formulated as nonlinear mixed discrete programming problems. For

example, in the stocks trade marketing, a stock holder is merely requested to buy or

sell integer number stocks with others. Thus, in order to maximize stock holders’ total

revenues, a mixed discrete programming problem should be considered.

Nowadays, available approaches to nonlinear mixed discrete programming problems

are the cutting plane method [29] and the Branch-and-Bound method [43]. In both of

the methods, a mixed discrete programming problem is first solved ignoring any discrete

restrictions. These two methods have their drawbacks themselves. In particular, the

former normally requires a large number of cuts and for the latter, as stated in Ref.

[68], if the number of discrete variables is large, the number of codes created in the

branching process becomes quite large, and consequently, the computational cost, as

well, computers storage consuming will be quite a bit high. Another difficult associated

with these methods is that they often fail to yield the global optimum.

In this section, nonlinear mixed programming problems is considered to be equiv-

alently transformed into a continuous nonlinear programming problem. Each of the

discrete variables is first represented by a set of new variables vi,j, i = 1, 2, · · · ,m, j =

1, 2, · · · , Ji with a linear constraint, each of which takes value 0 or 1. The new dis-

crete variables are then relaxed by introducing an auxiliary function, which constitutes

a quadratic constraint, so that the new employed discrete variables become continu-

ous on the interval [0, 1]. Consequently, the mixed discrete programming problem is

transformed into a continuous nonlinear programming problem. It is shown that, from
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Theorem 3.1 in [72], under the linear and quadratic constraints, the transformed contin-

uous optimization problem is equivalent to the mixed discrete programming problem.

Unlike some of the existing literature, the new constraints introduced in this formula-

tion are at most quadratic, and hence will not increase the number of local optima of

a given problem. And then, we establish a novel exact and smooth penalty function to

tackle this transcribed nonlinear continuous optimization problem.

Subsequently, we apply the proposed penalty function to search engine advertising

problems. Internet search engines such as Google and Yahoo! provide a service where

after a user has searched a specific term, sponsored links may be displayed in the front

page in addition to search results. Sponsored links offer advertisers a more targeted

method of advertising than traditional forms of advertising such as TV commercials,

because they are customized. Search-based advertising has become a principal source

of revenue for search engines. In the later section, the goal is to maximize the search

engine revenue by choosing the optimal advertisers’ bidding position. Motivated by

the industrial practice and the reviewed literatures, we model the search engine ad-

vertisement auction problem as a large scale 0-1 integer programme. The constructed

model is based on more realistic situations, e.g., (1) multiple slots, (2) generalized sec-

ond price mechanism, (3) advertisers with their own choice behaviors, (4) quality score

factor, (5) more than one keyword can match the query, which are not yet explored

in the existing literature. Undoubtedly, the large number of variables would lead to

computational challenges. The optimal strategies are quite computationally expensive.

Here, we utilize the proposed exact and smooth penalty function for the formulated 0-1

integer programming, which is a special case of nonlinear mixed discrete programming

problems. Finally, numerical experiments are conducted to verify that our method is

effective and practical.

6.2 Equivalent Continuous Optimization Problems

To transform Problem (Ū) into a constrained optimization problem with continuous

variable, for each i = 1, 2, · · · ,m, introduce a transformation

yi =

Ji∑
j=1

vi,jai,j, ∀i = 1, 2, · · · ,m,
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where ai,j ∈ Di for j = 1, 2, · · · , Ji and vi := (vi,1, vi,2, · · · , vi,Ji
) is a set of new variables

and satisfy the following formulations

vi,j = 0 or 1, j = 1, 2, · · · , Ji

Ji∑
j=1

vi,j = 1.

Therefore, with this transformation, Problem (Ū) is transformed into another equivalent

mixed discrete optimization problem:




min f(x, v)

s.t. hl(x, v) = 0 ∀l = 1, 2, · · · , L1,

g`(x, v) ≤ 0 ∀` = 1, 2, · · · , L2,
Ji∑

j=1

vi,j − 1 = 0, i = 1, 2, · · · ,m,

vi,j = 0 or 1, i = 1, 2, · · · ,m,

x = [x1, x2, · · · , xn]> ∈ Rn.

(6.2.1)

Furthermore, in order to use the existing algorithm for continuous constrained opti-

mization problem, we define an auxiliary function as follows.

Q(vi) =

Ji∑
j=1

j2vi,j − (

Ji∑
j=1

jvi,j)
2,∀i = 1, 2, · · · ,m.

The following theorem derived by Wang et al. [72] shows that Q(vi) is non-negative

and the solutions to Q(vi) = 0 under the constraint vi,j = 1 for only one j and vi,j = 0

for all other j.

Theorem 6.2.1 ([72]) Let Q(v) be the quadratic polynomial defined by

Q(vi) =

Ji∑
j=1

j2vi,j − (

Ji∑
j=1

jvi,j)
2,∀i = 1, 2, · · · ,m.

If vi,j ≥ 0 for j = 1, 2, · · · , Ji, i = 1, 2, · · · ,m and

Ji∑
j=1

vi,j = 1,∀i = 1, 2, · · · ,m,

then,

(1) for all i = 1, 2, · · · ,m, Q(vi) ≥ 0 and

(2) Q(vi) = 0 if and only if vi,j = 1 for one j and vi,j = 0 for all other j.
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Therefore, based on Theorem 6.2.1, we next consider the following continuous con-

strained programming problem, which is referred to as follows.

(U)





min f(x, v)

s.t. Hl(x, v) = 0 ∀l = 1, 2, · · · ,M,

G`(x, v) ≤ 0 ∀` = 1, 2, · · · , N,

where
Hl(x, v) = hl(x, v), l = 1, 2, · · · , L1,

Hl+L1(x, v) =
Jl∑

j=1

vi,j − 1, l = 1, 2, · · · ,m,

Hl+L1+m(x, v) = Q(vl), l = 1, 2, · · · ,m,

G`(x, v) = g`(x, v), ` = 1, 2, · · · , L2,

G`+j+L2(x, v) = v`,j − 1, ` = 1, 2, · · · ,m, j = 1, 2, · · · , J`,

G
`+j+

m∑
`=1

J`+L2

(x, v) = −v`,j, ` = 1, 2, · · · ,m, j = 1, 2, · · · , J`,

where M = L1 + 2m and N = L2 + 2
m∑

`=1

J`.

Theorem 6.2.1 indicates that for each i = 1, 2, · · · ,m, yi can only take a discrete

value from the set Di. It implies that the mixed discrete Problem (Ū) is transformed

into an equivalent nonlinear programming problem (U) with continuous variables.

6.3 An Exact and Smooth Penalty Function for Equal-

ity and Inequality Constrained Minimization Prob-

lem

We reformulate the feasible region as a set S as follows:

S = {(x, v) ∈ Rr : Hl(x, v) = 0, l = 1, · · · ,M, G`(x, v) ≤ 0, ` = 1, · · · , N} 6= ∅,

where r = n +
m∑

i=1

Ji. We introduce a new variable ε into the constraint function such

that

Sε = {(x, v, ε) ∈ Rr+1 : Hl(x, v) = εγwl,∀l = 1, · · · ,M, G`(x, v) ≤ εγw`,∀` = 1, · · · , N},

where wl ∈ (0, 1), l = 1, 2, · · · ,M . w` ∈ (0, 1), ` = 1, 2, · · · , N . In particular, when

ε = 0, Sε = S. We make some assumptions for (U):
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(1) There exists the global minimizer of (U), this means that f(x, v) is bounded below

on S;

(2) Let L(U) be the set of local minimizers of problem (U). If (x?, v?) ∈ L(U), then

L(x?,v?) = {(x, v) ∈ L(U) : f(x, v) = f(x?, v?)} is a compact set.

The penalty function fσ(x, v, ε) and the associated penalty problem (Uσ) can be for-

mulated as follows

(Uσ) min
(x,v,ε)∈Rr×(−ε̄,ε̄)

fσ(x, v, ε).

fσ(x, v, ε) =





f(x, v), if ε = 0, (x, v) ∈ S,

f(x, v)− εα ln
(
1− ε−2δ∆(x, v, ε)

)
+ σεβ,

if ε 6= 0, 0 < 1− 2ε−2δ∆(x, v, ε) < 1,

+∞, otherwise,

(6.3.1)

where α, β, δ, γ are positive even numbers and β > 1, in particular, γ > δ throughout

this section. σ > 0 is a penalty parameter. Denote the summation of constraint

violation as follows

∆(x, v, ε) =
M∑
l=1

(Hl(x, v)− εγwl)
2 +

N∑
`=1

(max(0, G`(x, v)− εγw`))
2

=
M∑
l=1

(Hl(x, v)− εγwl)
2 +

∑
`∈I+(x,v,ε)

(G`(x, v)− εγw`)
2,

where I+(x, v, ε) = {` = 1, 2, · · · , N |G`(x, v) ≥ εγw`}.

For convenience, let z = [x, v]> ∈ Rr. Hereafter, we replace the variables vector

(x, v) with the vector z.

Similar to previous statements in Chapter 5, the finite termination property can

be obtained by a certain constraint qualification and appropriate parameters settings.

So we omit the proof. Nevertheless, compared with aforementioned results, the proof

of local exactness property has some differences. Therefore, for this proposed penalty

function in this section, we arrive at the local exactness proof as follows.
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6.4 Local Exactness Property

In this section, we shall show that, under fairly general conditions and some additional

hypothesis, (z?, 0) is a local optimal solution to penalty problem (Uσ) if z? is a local

minimizer of the original problem (U) for sufficiently large penalty parameter σ.

We now consider the nonsmooth case. Assume f(z) and Hl(z), l = 1, 2, · · · ,M , and

G`(z), ` = 1, 2, · · · , N are nonsmooth functions. In order to regularize f, H and G,

we embed f(z), Hl(z), l = 1, 2, · · · ,M and G`(z), ` = 1, 2, · · · , N into the smoothing

function f(z, ε), Hl(z, ε),∀l = 1, 2, · · · ,M and G`(z, ε),∀` = 1, 2, · · · , N by introducing

the above variable ε. Therefore, the introduced additional variable ε play critical roles in

solving the problem (U). The variable ε has active actions not only in perturbation for

constraint system no matter how many constrained functions, but also in regularization

of the nonsmooth case. After regularization, the regularized functions f(z, ε), Hl(z, ε)

and G`(z, ε) are continuously differentiable in (z, ε), when ε 6= 0 and satisfy

f(z) = f(z, 0) = lim
ε→0

f(z, ε),

Hl(z) = Hl(z, 0) = lim
ε→0

Hl(z, ε),∀l = 1, 2, · · · ,M,

G`(z) = G`(z, 0) = lim
ε→0

G`(z, ε),∀` = 1, 2, · · · , N.

We consider the following system

(Uε) min
(z,ε)∈Rr+1

f(z, ε)

s.t. Hl(z, ε) = 0, ∀l = 1, 2, · · · ,M,

G`(z, ε) ≤ 0, ∀` = 1, 2, · · · , N.

In the following part, the conditions that the error bound for (Uε) exists are consid-

ered. We make some assumptions:

(H6) f(·, 0) is Lipschitz continuous with Lipschitz constant L;

(H7) The Managasarian-Fromovitz constraint qualification holds at (z?, 0), i.e.,∇Hl(z
?, 0),

l = 1, · · · ,M are linearly independent and there exists nonzero vector s ∈ Rn such

that

s>∇Hl(z
?, 0) = 0, l = 1, 2, · · · ,M ; s>∇G`(z

?, 0) > 0, ` ∈ I(z?, 0),
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where I(z?, 0) = {` = 1, 2, · · · , N |G`(z
?, 0) = 0}. According to the results reported in

[7], we know the assumption (H7) guarantees the error bound condition holds. Further-

more, from [51, Theorem 3] (Lemma 2.1.2), we obtain the following conclusion.

Lemma 6.4.1 Suppose that assumptions (H6) and (H7) hold, there exist a neighbor-

hood N0 of z?, and a constant τ > 0 such that

f(z, 0) ≥ f(z?, 0)− τ(
M∑

l=1

‖Hl(z, 0)‖+
N∑

`=1

‖G`(z, 0)+‖)

holds for z ∈ N0.

Now we present an important theoretical result of the local exactness proof. Before

proving this result, some more assumptions are first given as follows.

(H8) For sufficiently small 0 < ε
′
<< 1,

‖G`(z, ε)−G`(z, 0)‖ ≤ Kεβ,∀` = 1, 2, · · · , N, ε ∈ [−ε
′
, 0) ∪ (0, ε

′
],

‖Hl(z, ε)−Hl(z, 0)‖ ≤ Kεβ,∀l = 1, 2, · · · ,M, ε ∈ [−ε
′
, 0) ∪ (0, ε

′
];

(H9) |f(z, ε)− f(z, 0)| ≤ Kεβ, the domain of ε as (H8).

Theorem 6.4.1 Suppose the above assumptions that (H4), (H6)− (H9) hold, for suffi-

ciently large σ, there are a neighborhood N ⊆ N0 of z? and sufficiently small 0 < ε
′
<< 1

such that

fσ(z, ε) > fσ(z?, 0) = f(z?) for all (z, ε) ∈ N × [−ε
′
, 0) ∪ (0, ε

′
].

In particular, (z?, 0) is a local minimizer of fσ(z, ε).

Proof. Assume that the penalty parameter

σ ≥ K + τ(K + 2)(M + N).

We divide into two cases for further analysis, namely, (i) ∆(z, ε) ≥ ε2δ and (ii) ∆(z, ε) <

ε2δ for z ∈ N, ε ∈ [−ε
′
, 0) ∪ (0, ε

′
].
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Case (i). By the construction of penalty function, fσ(z, ε) = +∞. Therefore,

fσ(z, ε) > fσ(z?, 0).

For case (ii), ∆(z, ε) < ε2δ, i.e.,

M∑

l=1

(Hl(z)− εγwl)
2 +

∑

`∈I+(z,ε)

(G`(z)− εγw`)
2 < ε2δ,

which yields

‖Hl(z, ε)‖ ≤ εγ|wl|+ ‖Hl(z, ε)− εγwl‖ < εγ|wl|+ εδ,∀l = 1, 2, · · · ,M ;

‖G`(z, ε)‖ ≤ εγ|w`|+ ‖G`(z, ε)− εγw`‖ < εγ|w`|+ εδ,∀` ∈ I+(z, ε).

Furthermore, together with Lemma 6.4.1 and assumptions (H4), (H8), (H9), one has

f(z?, 0) ≤ f(z, 0) + τ(
M∑
l=1

‖Hl(z, 0)‖+
∑

`∈I+(z,0)

‖G`(z, 0)‖)

≤ f(z, ε) + Kεβ + τ(
M∑
l=1

‖Hl(z, ε)‖+
M∑
l=1

Kεβ +
∑

`∈I+(z,0)

‖G`(z, ε)‖+
∑

`∈I+(z,0)

Kεβ)

< f(z, ε) + Kεβ + τ(
M∑
l=1

εγ|wl|+ εδM + KεβM +
N∑

`=1

εγ|w`|+ εδN + KεβN)

≤ f(z, ε) + Kεβ + τ(K + 2)(M + N)εβ

= f(z, ε) + [τ(K + 2)(M + N) + K]εβ

≤ f(z, ε) + σεβ.

where M,N denote the dimension of equality constraint and inequality constraint of the

programming problem (Uε), respectively. The second inequality follows from (H8) and

(H9). The fourth inequality follows immediately from the assumption (H4). Therefore,

f(z?, 0) < f(z, ε) + σεβ ≤ fσ(z, ε).

This yields the inequality as desired.

6.5 Numerical Examples

To give some insight into the behavior of the algorithm presented in this section.It is

implemented in Matlab 7.8.0 and runs are made on Intel Core 2CPU 2.39GHz with

1.99GB memory. We use ‖∇(x,ε)fσ(x, ε)‖ ≤ 10−6 as stopping criteria. Tables 6.1-6.2
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show the computational results for the corresponding problem with the following items:

the penalty parameter σk, xk, εk of the final iterate and f(xk) the function value of f

at the final xk, and the constraint violation measure ∆(xk, vk, εk).

Example 6.5.1

min 5x1x2x3 − 1
2
x2

1 + 10(x1 − 1)2 − 2x2x3 − x3 − 3
2
x2

2 − x2
3

s.t. −x2
1 − x2

3 − x1 − 2x2 − x3 + 2 = 0,

x1 + 3
4
≥ 0,

(x1 − x3)
2 + x3

2 − 0.1x1 + 0.05x2
1 + 1.05 ≥ 0,

xi ∈ Di = {−3,−2,−1, 0, 1, 2, 3}, i = 1, 2, 3.

The parameters used in this algorithm are set as α = 6, β = 8, γ = 10, δ = 8 and ρ = 5.

We choose x0 = (0, 0, 0), ε0 = 20 as initial point. The optimal solution and optimal

value are x? = (1,−1, 1) and f(x?) = −7.0000 of the above example. This problem can

also be solved by the l1 exact penalty function in 74 iterations, with a final value of the

penalty parameter of 103, optimal solution (0.9996,−1.0006, 1.0011) and optimal value

-7.0038.

Table 6.1: Numerical results of Example 6.5.1

Iter σk xk εk f(xk) ∆(xk, vk, εk)

29 10 (1.0650, -1.1281, 0.4050) 0.0714 -4.4556 0

31 15 (1.0002, -0.8388, 0.8880) -0.0000 -5.4674 0

30 20 (1.1504, -1.0034, 0.8353) 0.0370 -6.5850 2.5619e-009

30 25 (0.9910, -0.9937, 1.0048) 0.0112 -6.9315 1.8309e-012

66 30 (1.0000, -1.0002, 0.9964) 0.0000 -6.9913 0

Example 6.5.2

min x2
1 + x1x2 + 2x2

2 − 6x1 − 14x2 − 12x3

s.t.

x1 + x2 + x3 = 20;

−x1 + 2x2 ≤ 30;

xi ∈ Di = {0.5(j − 1), j = 1, 2, · · · , 30}, i = 1, 2, 3.
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The parameters are set as α = 6, β = 8, γ = 10, δ = 8 and ρ = 5. x0 = (7, 7, 7), ε0 = 2

as initial point. The optimal solution and optimal value are x? = (0, 0.5, 19.5) and

f(x?) = −240.5. This problem can also be solved by l1 exact penalty function in

38 iterations, with a final value of the penalty parameter of 104, optimal solution

(−0.0003, 0.5012, 19.4997) and optimal value -240.5047.

Table 6.2: Numerical results of Example 6.5.2

Iter σk xk εk f(xk) ∆(xk, vk, εk)

38 10 (-0.0326, -0.0207, 20.0408) 0.2763 -239.2208 0.0016

53 15 (-0.0093, 0.4979, 19.5078) 0.1591 -240.1362 9.8269e-005

95 20 (-0.0001, 0.5000, 19.5000) 0.1310 -240.1991 3.7044e-005

6.6 Search Engine Advertising Problems

In the search engine advertising problem, most search engines use auctions to sell po-

sitions for sponsored links. For this reason, it is also named as the position auction by

Varian [71]. A separate auction is run for each search term. Advertisers’ bids determine

which advertisers’ sponsored links are listed and in which order. When an internet user

clicks on the advertisement link associated with the keyword, the advertiser is charged

by the search engines. The number of advertisements that the search engine can show

to a user is limited, and different positions on the search results page have different

desirabilities for advertisers. For instance, an advertisement shown at the top of a page

is more likely to be clicked than an advertisement shown in the bottom. In another

word, different advertising positions have different Click-Through-Rate (CTR), defined

as the ratio of the number of clicks on the advertisements to the number of appearances

of the advertising links. Therefore, search engines employ an auction system to allocate

the positions to advertisers and determine the charging price.

The most common sealed-bid auctions are the first price and second price auctions.

In 1997, the search engines introduced the generalized first price (GFP) auction (see

Edelman et al. [19] for more detail). As we know, the key roles of auction for the search

engine advertising problems are to determine how to allocate positions for advertisers

and what price the search engine should charge. The principle of GFP is when an
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internet user clicks on the advertisement link associated with a keyword, advertisers are

allocated positions from high to low by their bidding price and pay the search engine

with what they bid. However, Edelman and Ostrovsky [18] showed that there is no

pure strategy equilibrium for the GFP. Furthermore, the GFP mechanism encourages

insufficient investment and results in volatile bidding prices. To remedy the inefficiency,

Edelman et al. [19] introduced a new system called the generalized second-price (GSP)

auction mechanism for multiple slots. Before stating GSP, we first introduce the concept

of standard second price auction. The standard second price auction is a type of sealed-

bid auction, where a bidder submits written bidding price without knowing the bidding

prices of the other bidders in the auction, and in which the highest bidder wins, but the

actual price paid is the second-highest bid. Likewise, when the advertisers are sorted

for different positions, the GSP mechanism stipulates that an advertiser in position i

pays a price per click that equals the bidding price of the advertiser in position i + 1.

In particular, if only one advertising slot is provided by search engine in the “per result

page”, GSP is equivalent to the standard second price auction.

Regarding to the rank of advertisers, the two main search engines, Google and

Yahoo!, adopt different ranking mechanism. Yahoo! ranks advertisers in the descending

order of their bid prices directly. Google’s ranking mechanism is more complicated than

Yahoo!’s. Google uses the “rank number” as ranking criterion, resulted by multiplying

each advertiser’s bid price with his “quality score”. In the late 2008, Google revealed

that quality score was used to determine which advertisement it would show in the

sponsored link. There are many factors in determining quality score and the most

important factor is CTR that we discussed earlier. Thus, Google ranks advertisers in

the descending order of each advertiser’s “rank number”.

For the search-based advertising auctions, some of the features that have been con-

sidered in the literature include: equilibrium properties [22]; algorithm design [15, 64];

mechanism design [19, 20]; parametric estimate [17], incorporating budgets or not, and

pay per click or pay per impression schemes. Subsequently, we review some most rep-

resentative ones in the following. Edelman et al. [19] found that GSP auction generally

does not have equilibrium in dominant strategies, and truth-telling is not an equilibrium

strategy. They define the locally envy free equilibrium, which shows that there exists

some position for each advertiser where the advertiser cannot be better off by swapping
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bids with the advertiser ranked one position above him. Through the definition and

formulation of locally envy free equilibrium, Feng et al. [22] further presented a pricing

model and derive the optimal reserve price for sponsored search advertising from the

standpoint of search engine. In the algorithm aspect, most algorithms are designed for

the budgeted advertisers. The optimization objective of the budget optimization prob-

lem is on the problem of a search engine trying to assign a sequence of search keywords

matched with the users’ queries to a set of competing bidders, each with a spending

budget. Rusmevichientong and Williamson [64] developed an adaptive algorithm to

show how to determine the bid price for selecting profitable keywords from the adver-

tisers’ point of view. Devanur and Hayes [15] demonstrated how an online learning

algorithm with the budgeted advertisers can achieve a competitive ratio of 1− ε under

random permutations without the assumption of bidders’ arrival distribution. However,

they all consider the simplified problem without the requirements of multiple slots and

the second price payment. When the actual situations are considered, the model and

the resulting optimization problem are much more complex. As we all know, there are

thousands of queries received by a search engine every day. For every query, there exists

an uncertain number of advertisers with budget constraints to bid for the advertisement

position. However, it is obvious that there are only a finite number of slots to show these

advertisements. As a result, for the search engine, it is critical to answer the question

on how to select the profitable advertisers to maximize the revenue of search engine.

Meanwhile, the advertisers’ budget constraints are satisfied. On the other hand, every

advertiser may be interested in more than one keyword and has different preference

weights for different keywords.

In this section, our model’s optimization objective is to maximize the search engine

revenue by choosing the optimal advertisers’ bidding position. Motivated by the indus-

trial practice and the reviewed literatures, we model the search engine advertisement

auction problem as a 0−1 integer programme. The constructed model is based on more

realistic situations, e.g., (1) multiple slots, (2) generalized second price mechanism, (3)

advertisers with their own choice behaviors, (4) quality score factor, (5) more than

one keyword can match the query, which are not yet explored in the current literature

[15]. We apply new exact and smooth penalty function to tackle general scale search

engine advertising problems. Undoubtedly, the large number of variables would lead to

computational challenges. The optimal strategies are quite computationally expensive.
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Therefore, on the other hand, we present an effective approach based on Lagrangian

relaxation coupled with subgradient algorithm and column generation methodology to

solve large scale search engine advertising problems. Furthermore, we provide numerical

simulations to address managerial insights on both operational and theoretical aspects

and compare numerical performances with currently existing algorithms for solving

search engine advertising problems.

6.6.1 Problem Formulation and Model Description

In this section, we model the SA auction. The list of notation used in the section is

given as follows:

t : query t;

j : bidder (advertiser) j;

bj: bidder j’s budget;

λk: the probability of an arriving advertiser belongs to market segment k;

N : total keywords set for all queries;

St : the keywords set for query t for auction;

b`t
j : bidding price of bidder j for keyword ` ∈ St, where St is a specified keywords

set for the query t;

L` : {jp : p = 1, 2, · · · , P`}, where the index jp is sorted by the bidding price, P` is

the number of bidders for the keyword of ` ∈ St;

|I`t| : the slot capacity of a keyword ` corresponding to a query t;

Q`t
jp

: the quality scores of bidder j in position p for a keyword ` corresponding to a

query t;

n`t
jp

: the expected number of clicks by search engine users for the advertiser j in

position p for a keyword ` corresponding to a query t.
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For every keyword, we take a GSP auction among those advertisers who are inter-

ested in these keywords, denoted as ∪
l∈St

Ll. It is possible that an advertiser has interests

in more than one keywords for the same query. So an internet user may see the same

advertiser appears more than one time but for different keywords associated the same

query.

Given an offer set S ⊂ N of available keywords is the search engine’s offer set, an

arriving advertiser j chooses a keyword ` ∈ S with a probability P `
j (S), where P `

j (S) = 0

if ` 6∈ S. We denote the no-purchase probability as P 0
j (S), and we have

∑
`∈S

P `
j (S) +

P 0
j (S) = 1. Advertisers belong to different market segments k = 1, 2, · · · , L and each

segment is characterized by one consideration set Ck ⊂ N . As is generally the case

in the choice behavior related revenue management literature, these probabilities will

be based on the multinomial logit (MNL) model (e.g., see [3] for a detailed description

of the MNL model). Under the MNL model, the choice probability that an advertiser

j belongs to a segment k is defined by a preference vector vk ≥ 0, that indicates the

advertiser preference weight for each keyword contained in Ck. This vector, together

with the no-purchase preference vk0, determines an advertiser’s choice probabilities as

follows: if we let P k
`j(S) denote the probability that an advertiser j from Ck chooses

advertisement keyword ` ∈ Ck ∩ S, when S is offered, then P k
`j(S) = vk`∑

h∈Ck∩S
vkh+vk0

.

If ` 6∈ Ck ∩ S or ` 6∈ Ck, then vk` = 0 and hence P k
`j(S) = 0. Noting that from

search engine’s perspective, the keywords set of an advertiser is not distinguishable,

and the probability that an arriving advertiser j chooses a keyword ` ∈ S is given by

P `
j (S) =

L∑
k=1

λkP
k
`j(S), where |L| ≤ 2|S| − 1 and

L∑
k=1

λk = 1.

To illustrate the choice behavior of advertisers, let’s consider a specific example.

Suppose that a customer enters “household electrical appliances ” into the search engine

“Google”. Google may assign, for example, “washing machine”, “TV set”, “refrigera-

tor” (see Table 6.3), as keywords for bidders to bid. There are five household electrical

appliances producers who want to bid for these keywords. However, among these house-

hold electrical appliances producers, there are one all-round type, three producers may

have expertise in some two kinds of products, and one producer chooses only one prod-

uct keyword as follows.

As illustrated in Table 6.4, advertisers are divided into five different segments, which
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Table 6.3: Keywords Products

Product Keyword(s)

1 washing machine

2 TV set

3 refrigerator

are characterized by consideration sets, i.e., a subset of the advertisement keywords

provided by the search engine. In this section, we consider general version of this model,

in which advertisers may belong to overlapping segments. The second column of Table

6.4 demonstrates the probability of each arriving advertiser belonging to a particular

segment. The third column describes the advertisers’ corresponding consideration set.

As stated above, the consideration sets from different segments may be overlapping

(such as segments 1 and 2). The fourth column shows the preference values for each

product in the consideration set, and the preference values for the no purchase weight

(last coordinate in the vector), as shown in Table 6.4. Therefore, the probability of an

advertiser choosing the first keyword “washing machine” is

p = 0.2· 6

6 + 1
+0.2· 5

5 + 8 + 1
+0.25· 6

6 + 5 + 2
+0.25· 9

9 + 5 + 2
+0.1· 9

9 + 3 + 6 + 2
= 0.4032.

Next, we show the detail formulation. Define “rank number = bidding price ×
quality score”, where quality score is mainly based on CTR, relevancy of the keyword

pertaining to the advertiser’s business and other factors. Thus, by the definition of rank

number, b`t
jp

Q`t
jp

denotes the rank number of the pth advertiser assigned to keyword `

for query t. So, for the search engine, before assigning which advertisers to match the

keywords, the calculations of quality scores of the participated advertising bidders for

associated keywords should be done. Therefore, through the second price mechanism,

the actual cost per click of the advertiser j in position p is
b`t
jp+1

Q`t
jp+1

Q`t
jp

.
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Table 6.4: The Segment Definition

Segment λk ConsiderationPreference Producers

Set Vector Description

1 0.2 {1} (6, 1) Only expertise in washing machine

2 0.2 {1, 2} (5, 8, 1) Non all-round type, more expertise in TV set

compared with washing machine

3 0.25 {1, 3} (6, 5, 2) Non all-round type, expertise both

in washing machine and refrigerator

4 0.25 {2, 3} (9, 5, 2) Non all-round type, more expertise in TV set

compared with refrigerator

5 0.1 {1, 2, 3} (9, 3, 6, 2)All-round type, especially for washing machine





max
∑
j

∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)x`t
jp

s.t.
∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)x`t
jp
≤ bj ∀j,

∑
j

x`t
jp
≤ |I`t| ∀`, t,

x`t
jp
∈ {0, 1},

(6.6.1)

where j`t
p ∈ Lt

` and

x`t
jp

=





1, bidder j in the position p choosing keyword ` ∈ St, where St

is offer set given by the search engine for query t is selected out;

0, otherwise.

The objective function is to maximize the total revenue of the search engine under

the second price mechanism. In particular, the MNL model is also introduced. For this

purpose, x`t
jp

, as the controlled variable, is introduced to determine which advertisers,

with their own advertisements preference, will be chosen for displaying. The first con-

straint means that the advertising cost cannot exceed the advertiser’s limited budget.

The second constraint shows that one advertiser cannot display his advertisement more

than one time for the same keyword and the amount of displayed advertisers cannot

exceed the slot capacity of every keyword ` ∈ St for some query t. Note that under the

108



second price mechanism, the actual cost per click is related to the next bidder’s rank

number. Specifically, we set the advertiser who is in the last position to pay for the

reserve price predetermined by the search engine when the number of bidder is less than

the permissible capacity slots. In view of the advertisers’ choice behavior, we introduce

the MNL criterion P k
`j(S

t) = vk`∑
h∈Ck∩St

vkh+vk0
into the optimization problem, which yields





max
∑
j

∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

L∑
k=1

λk
vk`∑

h∈Ck∩St
vkh+vk0

x`t
jp

s.t.
∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

L∑
k=1

λk
vk`∑

h∈Ck∩St
vkh+vk0

x`t
jp
≤ bj ∀j,

∑
j

x`t
jp
≤ |I`t| ∀`, t,

x`t
jp
∈ {0, 1}.

By Theorem 6.2.1, the integer programming can be transformed into a general

nonlinear programming.





max
∑
j

∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

L∑
k=1

λk
vk`∑

h∈Ck∩St
vkh+vk0

x`t
jp

s.t.
∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

L∑
k=1

λk
vk`∑

h∈Ck∩St
vkh+vk0

x`t
jp
≤ bj ∀j,

∑
j

x`t
jp
≤ |I`t| ∀`, t,

x`t
jp

(x`t
jp
− 1) = 0 ∀j, `, t.

Based on the previous developed new exact penalty function method, we could deal

with this nonlinear programming problem.

6.6.2 Simulation Results

In this simulation section, our purpose is to verify the efficiency of penalty function

algorithm for solving the search engine advertising auction problem. Here, simulation

results between our integer programming model and the greedy algorithm are investi-

gated. The main idea of greedy algorithm is to allocate the slots to advertisers based

on the bidding price from high to low for every keyword, regardless of another possi-

ble bidding price on the another keyword if this advertiser has more than one bidding

keywords.
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Table 6.5: Revenues Comparisons Between Penalty Function Method, Greedy Algo-

rithm and Linear Programming Relaxation

Type Slots Penalty function Greedy Linear programming εk ∆(xk, εk)

method algorithm relaxation

(i) 2 987 592 1092 0.0500 3.4943e-005

5 1071 765 1146 0.0544 6.8094e-015

(ii) 2 1231 886 1331 0.0500 4.6082e-005

5 1469 1060 1624 0.0434 4.0000e-012

(iii) 2 2162 1208 2339 0.2000 0.0800

5 3018 1506 3081 0.1630 0.0806

(iv) 2 1484 1361 1760 0.0300 0.0442

5 2344 1221 2720 0.9580 0.8425

We generate the bidding price of every advertiser for several keywords, which follows

the uniform distribution in the interval [0, 1]. We assume that the advertisers’ quality

scores are independently and identically drawn from a uniform distribution in the in-

terval [0, 10]. Thus, the advertiser’s rank number is the product of his bidding price

and corresponding quality score. For convenience of numerical results, we assume the

number of advertisement position provided by the search engine for every keyword is 2

and 5, respectively. The reserve price is setted to be 0.1. The click through rates of ad-

vertisement slots follow the uniform distribution in the interval [0, 100] in the decreasing

sequence. Moreover, budget of every advertiser follows the uniform distribution in the

interval [1000, 1200]. In order to simulate the MNL model, we consider the case when

the keyword number that every advertiser in a certain segment can bid is less than 5

and there exist different preference weights for different keywords. Every advertiser’s

preference weights for his choosing keywords follow a unform distribution in the interval

of [0, 10].

For different numbers of slots, we compare the numerical results for the following

four cases, (i) 10 advertisers for bidding 4 keywords, (ii) 10 advertisers for bidding 5

keywords, (iii) 10 advertisers for bidding 8 keywords, (iv) 10 keywords for bidding 10

keywords, respectively.
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It is not difficult to find that the constraint violations of the penalty function method

is quite small. This demonstrate that the obtained solutions by the penalty function

method are feasible solutions. On the other hand, it is easily observed from Table 6.5

that the numerical behaviors of integer programming model show significant improve-

ments in the revenue of search engine compared to the greedy algorithm for every case.

However, it is should be noticed that in the simulation test, the cases shown in the

Table 6.5 are not large scale. For the general scale search engine advertising problem,

penalty function algorithm is effective and practical. For the large scale search engine

advertising problem, in consideration of practical calculation confinement such as ac-

cumulative errors factor, there still exists some difficulties need to get over. Therefore,

this is our future research issue that we are engaged in.

6.6.3 A Lagrangian-based method for search engine advertis-

ing problem

As well known, the numbers of users’ queries and the corresponding advertisers every

day are quite large. Therefore, it results in a large scale 0-1 integer programming.

Considering that numerical behavior of penalty function algorithm is low efficiency

in the large scale search engine advertising problem, we design a Lagrangian-based

method to tackle with large scale problems. We present an extension to the sub-gradient

algorithm based on Lagrangian relaxation coupled with column generation method in

order to improve the dual Lagrangian multipliers and accelerate its convergence.

Dantzig-Wolfe decomposition as applied to an integer program is a specific form of

problem reformulation that aims at providing a tighter linear programming relaxation

bound, which is a well established methodology in large-scale integer programming.

Now we show that the Dantzig-Wolfe decomposition principle of linear programming

has its equivalence in 0-1 integer programming.

From the well known theorem of Minkowski and Weyl [66], we obtain the result

that X ⊆ {0, 1}n,∀x ∈ X can be expressed as the convex combination of a finite set of

extreme points x =
∑
i∈Q

ωix̂i, where x̂i, i = 1, 2, · · · , |Q| are extreme points of conv(X),

the index set Q is finite and
∑
i∈Q

ωi = 1, ωi ∈ {0, 1}.
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Motivated by this fact, in our model, we let

X =
{

x`t
jp
∈ {0, 1}

∣∣∣
∑

t

∑

`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)x`t
jp
≤ bj

}
.

If X is finite, we replace X by conv(X) and there exist finite extreme points {x̂i}i∈Q ∈
conv(X) such that





max
∑
j

∑
t

∑
`∈St

b`
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)(
∑
i

ω`t
ijp

x̂i)

s.t.
∑
j

∑
i

ω`t
ijp

x̂i ≤ |I`t| ∀`, t,
∑
i

ω`t
ijp

= 1 ∀j, `, t,
0 ≤ ω`t

ijp
≤ 1.

Here, we relax ω`t
ijp
∈ {0, 1} as 0 ≤ ω`t

ijp
≤ 1. Therefore, the obtained optimal objective

function value of the above linear programming provides the upper bound value from

Dantzig-Wolfe decomposition. We now investigate the relationship between Lagrangian

relaxation and Dantzig-Wolfe decomposition. We introduce the Lagrangian relaxation

function of (6.6.1) as follows.

L(u) = min
x`t

jp
∈X
−

∑
j

∑
t

∑

`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)x`t
jp

+
[ ∑

t

∑

`∈St

ut
`(

∑
j

x`t
jp
− |I`t|)

]
.

The Lagrangian function L(u) is concave for all u ≥ 0. It is piecewise linear and

only sub-differential in its breakpoints. The Lagrangian dual problem is denoted as

£ := max
u≥0

L(u). The optimality of u? implies that ut?
` (

∑
j

x`t
jp
− |I`t|) = 0 which is based

on the complementary slackness property.
∑
j

x`t
jp
≤ |I`t| (feasibility) must be verified

to prove optimality. Once this condition is violated, the primal-dual pair (x, u?) is not

optimal. Let

v = min
x`t

jp
∈X

∑
j

∑
t

∑

`∈St

(
ut

` − b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)
)
x`t

jp
−

∑
t

∑

`∈St

ut
`|I`t|

and replace X by conv(X). We know x`t
jp
∈ X is an extreme point x̂i, i ∈ Q of the set

conv(X).





max v

s.t.
∑
t

∑
`∈St

(|I`t| −
∑
j

x`t
jp

)ut
` + v ≤ −∑

j

∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)x̂i,

ut
` ≥ 0 ∀`, t,
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where x̂i, i ∈ Q are extreme points of the set conv(X). The dual problem of the above

model is 



max
∑
j

∑
t

∑
`∈St

∑
i

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

(ω`t
jp

)iP
`
jp

(St)x̂i

s.t.
∑
j

∑
i

(ω`t
jp

)ix̂i ≤
∑
i

(ω`t
jp

)i|I`t| ∀`, t,
∑
i

(ω`t
jp

)i = 1,

(ω`t
jp

)i ≥ 0.

This result shows the upper bound obtained from Dantzig-Wolfe decomposition is the

same as the Lagrangian bound.

6.6.4 Algorithm

Motivated by [9], we propose an approach based on Lagrangian relaxation with subgra-

dient optimization for solving SA auction problem. Our scheme is based on dual infor-

mation associated with the widely-used Lagrangian relaxation. Define the Lagrangian

relaxation problem as follows:




min −∑
j

∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)x`t
jp

+
[ ∑

t

∑
`∈St

zt
`(

∑
j

x`t
jp
− |I`t|)

]

+
∑
j

yjp(
∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

αt
`,jp

P `
jp

(St)x`t
jp
− bj)

s.t. x`t
jp
∈ {0, 1},

where j`t
p ∈ Lt

`, zt
` and yjp are Lagrangian multipliers associated to the constraints

∑
j

x`t
jp
− |I`t| ≤ 0 and

∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)x`t
jp
≤ bj ∀j, respectively. The above

Lagrangian relaxation problem has the integrality property, any optimal Lagrangian

multipliers to the dual of the linear programming relaxation of this integer programming

problem are also an optimal solution to the Lagrangian problem.

zt
` + (yjp − 1)b`t

jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

αt
`,jp

P `
jp

(St) < 0

is the Lagrangian cost associated with the advertiser j for bidding the keyword ` ∈ St.

In our computational experience, we can produce “good” multipliers in a few iterations.

Compared to computing an optimal multiplier vector, solving a linear programming is

typically computationally expensive for large scale problems. A commonly used ap-

proach for finding a near-optimal multiplier vector and giving a reasonable upper bound
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with a relatively small effort, is to use the sub-gradient algorithm. This procedure is

attractive because of its low computational cost. For this reason, we decide to use the

sub-gradient algorithm as a“filter” to improve the multipliers before they are sent to

the subproblems. An outline of the algorithm is given as follows.

Algorithm:

Step 1: Initialization

Construct the initial points for the primal problem given the initial Lagrangian dual

multipliers vectors.

Step 2: Computation of Lagrangian dual multipliers

Solve a Lagrangian dual problem with sub-gradient method and compute the La-

grangian dual function value. If (i) the gap between this value and the upper bound of

the optimal value is sufficiently small or (ii) a predetermined fixed number of iterations

is reached, go to Step 3.

Step 3: Generation of profitable bidders

Compute the Lagrangian cost in the set of the currently not yet assigned bidders set.

Select the most profitable bidders from the negative Lagrangian cost and add them to

the selected bidders set until a maximum number of bidders have been added.

In the remainder of this section, we discuss Steps 1-3 in details.

Initialization

Similar to Vanderbeck [70], the generalized simplex algorithm used to tackle the column

generation formulation must be started with a feasible primal solution. To find the

feasible primal solution, we employ the versatile method based on [70], and it can

be constructed heuristically. Alternatively, we can introduce artificial columns. The

artificial columns are defined by their cost, constraint coefficient, and upper bound

(c, a, µ). In this paper, we set the upper bound as 1, because it can reduce the possibility

of degeneracy in the primal and multiple optimal solutions in the dual problem and

hence stabilize the column generation procedure. Dual methods need not start with a

primal feasible solution but they can benefit anyway from a warm start. Observe that

using simplex re-optimization after adding a column can bring some form of stabilization

towards the primal solution. Therefore, for the online advertising auction problem, we

propose the following method to generate the feasible primal solution. For the query
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` ∈ St, given the Lagrangian dual multipliers vectors z0, y0 ≥ 0 (see [70, 49] for the

details of estimate), we wish to find argmin
j∈Lt

`k

{
z0+(y0−1)b`t

jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)
}

and record

the best primal solution found if it has a negative Lagrangian cost where Lt
`k ⊆ Lt

`. This

is because an explicit expression of Lt
` may be computationally impossible when |Lt

`|
is huge. In practice, one works with a reasonably small subset Lt

`k ⊆ Lt
` of columns

with a restricted subproblem. The subset Lt
`k maintains the same order as Lt

`. The

corresponding columns are introduced into the subproblem.

Sub-gradient Phase

In order to find the near-optimal multiplier vectors within a short computing time,

we use the sub-gradient vectors. Clearly, an optimal solution to the above Lagrangian

relaxation problem takes the following form:

x`t
jp

= 1, if zt
` + (yjp − 1)b`t

jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St) < 0,

x`t
jp

= 0, if zt
` + (yjp − 1)b`t

jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St) ≥ 0.

Set uk
j`t = (ztk

` , yk
jp

)>. For uk
j`t, we can get the optimal (xk, L(uk

j`t)) from the above

subproblem, where L(uk
j`t) represents the optimal value at xk. For any j, compute

vk
j`t =




|I`t| −
∑
j

(x`t
jp

)k

bj −
∑
t

∑
`∈St

b`t
jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)(x`t
jp

)k


 .

This approach generates a sequence vk
j`t. From the definition of multipliers, a pos-

sible choice consists of using the following updating formula uk+1
j`t = max

{
uk

j`t +

λ
UB−L(uk

j`t)

‖v‖2 vk
j`t, 0

}
, where UB is an upper bound on (6.6.1) and 0 ≤ λ ≤ 2. One

can iterate this procedure until the gap between UB and L(uk
j`t) is small enough or for

a predetermined number of iterations.

Remark 6.6.1 Let m be the expected query number and |St| be the expected number of

keywords for any query. Similarly, |Lt
`| is the expected number of bidders for the keyword

` ∈ St. Each iteration of the sub-gradient phase requires (a) computing the Lagrangian

costs associated with the current multiplier vector, which is done in O(|Lt
`|) time; (b)

computing the sub-gradient in O(|Lt
`| log |Lt

`|+ |Lt
`|) time and (c) updating the multiplier
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vector in O(m|St|) time. Since the maximum number of sub-gradient iteration allowed

is O(m|St|), the overall time complexity of this phase is O(m|St|(|Lt
`| log |Lt

`|+ |Lt
`|)).

Column Generation Phase

For the (near) optimal Lagrangian multipliers u?, we compute the score function ranking

the columns according to their likelihood to be selected in an optimal solution through

the column generation algorithm:

1. We call T ⊆ Lt
` to be the set of the currently not yet assigned bidders set for

keyword ` of the corresponding query t, and M be the selected bidders set.

2. A column corresponding to one bidder jp of Lt
` can be profitably introduced into

the model if

z?
`t + (y?

jp
− 1)b`t

jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St) < 0 ∀j`t
p ∈ Lt

`, ` ∈ St. (6.6.2)

For each keyword ` ∈ St, we seek to find

j? = argmin
j

{
z?

`t + (y?
jp
− 1)b`t

jp+1

Q`t
jp+1

Q`t
jp

n`t
jp

P `
jp

(St)
}

overall Lt
`\M . This term is also called the column generator. If a bidder is found

such that (6.6.2) is satisfied, its variable and corresponding column are introduced.

3. T := T\{j?},M := M ∪ {j?} return to Step 2.

4. Until M is not modified.

For the bidders from M , we define (x`t
jp

)? = 1. Our aim is to obtain the better

respective columns of bidders, who may be the most profitable one in the optimal

solution, i.e., the scheme assigns a score to the chosen columns fixes to 1 the variables

associated with the best-scored columns and re-optimizes the subproblem.

6.6.5 Numerical Results

In this section, our purpose is to verify the efficiency of the Lagrangian relaxation al-

gorithm for solving the search engine advertising auction problem. We compare the
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numerical results between the Lagrangian relaxation and the linear programming re-

laxation. Furthermore, the numerical comparisons between the Lagrangian relaxation

method and greedy algorithm for the search engine advertising auction problem are also

investigated. The main idea of greedy algorithm is to allocate the slots to advertisers

based on the bidding price from high to low for every keyword, regardless of another

possible bidding price on the another keyword if this advertiser has more than one

bidding keywords.

Table 6.6: Iterations Comparisons Between Linear Programming Relaxation and La-

grangian Relaxation Algorithms

TypeReservelinear programmingLagrangian relaxation

price relaxation (Iters) algorithm (Iters)

1 r = 0.2 18 29

r = 0.5 27 12

r = 0.8 31 32

2 r = 0.2 29 35

r = 0.5 43 35

r = 0.8 38 32

3 r = 0.2 29 39

r = 0.5 30 34

r = 0.8 61 31

4 r = 0.2 43 19

r = 0.5 33 37

r = 0.8 28 32

5 r = 0.2 48 38

r = 0.5 50 37

r = 0.8 62 37

6 r = 0.2 55 38

r = 0.5 62 36

r = 0.8 27 12

We generate the bidding price of every advertiser for several keywords, which follows
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the uniform distribution in the interval [0, 1]. We assume that the advertisers’ quality

scores are independently and identically drawn from a uniform distribution in the inter-

val [0, 10]. Thus, the advertiser’s rank number is the product of his bidding price and

corresponding quality score. We assume the number of advertisement position provided

by the search engine for every keyword is 10. The click through rates of advertisement

slots follow the uniform distribution in the interval [0, 100] in the decreasing sequence

from slot 1 to slot 10. Moreover, budget of every advertiser follows the uniform distri-

bution in the interval [10000, 12000]. In order to simulate the MNL model, we consider

the case when the keyword number that every advertiser in a certain segment can bid

is less than 10 and there exist different preference weights for different keywords. Every

advertiser’s preference weights for his choosing keywords follow a unform distribution

in the interval of [0, 10]. During the sub-gradient phase, we set the step-size λ to be

1.5. As illustrated in Figure 6.1, we compare the numerical results for the following

six cases, (i) 40 advertisers for bidding 25 keywords, (ii) 100 advertisers for bidding 50

keywords, (iii) 200 advertisers for bidding 50 keywords, (iv) 200 keywords for bidding

100 keywords, (v) 500 advertisers for bidding 100 keywords, (vi) 1000 advertisers for

bidding 100 keywords, respectively. It is not difficult to find that the Lagrangian-based

method shows significant improvements in the revenue of search engine compared to

the greedy algorithm for every case. Figure 6.1 demonstrates that the revenue of search

engine gained from the greedy algorithm is monotonically decreasing as the reserve

price increases. Moreover, from Figure 6.1, we also observe the fact that the optimal

reserve price is neither too high nor too low. The optimal reserve price also varies with

the number of advertisers and the bidding prices of advertisers.

Table 6.6 demonstrates that taking the reserve prices 0.2, 0.5 and 0.8 as examples,

the Lagrangian relaxation algorithm needs much fewer iterations than linear program-

ming relaxation. As illustrated in Table 6.7, taking “1000 advertisers for bidding 100

keywords” for example, with optimal reserve price 0.84, the search engine can increase

its revenue by 76.15% relative to the case with a zero reserve price. The search engine

can improve its revenue by 118.18% when using the Lagrangian relaxation algorithm

instead of greedy algorithm.

Remark 6.6.2 In the simulation process, for simplicity in exposition, we assume that

the parameters follow uniform distribution. In fact, the numerical results are basically
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Figure 6.1: Comparisons between the Lagrangian relaxation method and the greedy

algorithm
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Table 6.7: Optimal Reserve Price, Percent Increase in Search Engine (SE) Revenue

when Search Engines Set Optimal Prices

Type Optimal % Incr in SE compared % Incr in SE from Lagrangian relaxation

Reserve Price with zero reserve price method compared with greedy algorithm

1 0.65 57.14% 150%

2 0.52 52.94% 132.14%

3 0.85 40% 100%

4 0.56 41.46% 110.91%

5 0.75 68.42% 102.53%

6 0.84 76.15% 118.18%

similar even if we try other sets of parameters such as Gaussian distribution, exponential

distribution.
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Chapter 7

Conclusions and Future Work

In this thesis, primarily inspired by the literature [38], for nonlinear programming prob-

lems, we propose a new class of smooth exact penalty functions, which includes a unified

framework both barrier-type and exterior-type penalty functions as special cases. We

develop necessary and sufficient conditions for exact penalty property and local exact-

ness properties, respectively. Furthermore, utilizing these conditions, we characterize

the equivalence between the class of penalty functions and the classical simple exact

penalty functions in the sense of exactness property. Based on the class of penalty

functions, a class of feasible penalty function algorithms are presented. Under certain

conditions, we present that the proposed algorithm terminates at the optimal solution

to the primal problem after finite iterations and while under mild assumptions, the

algorithm possesses globally convergent property. In addition, we design and apply

new smooth and exact penalty functions for tackling the semi-infinite programming

problems and the min-max programming problems. Here, the merit function is consid-

ered as a function of x and ε simultaneously which has good smoothness and exactness

properties, without involving gradient and Jacobian matrices. We derive another useful

property that the minimizer (x?, ε?) of the penalty problem satisfies ε? = 0 if and only

if x? solves the original problem. This property demonstrates that the introduced new

variable ε can be viewed as an indicator variable of a local (global) minimizer of primal

problem. For the semi-infinite programming and min-max programming problems, the

local exactness proofs are also shown. Furthermore, the second-order sufficient condi-

tions for the local exactness properties are characterized for the proposed exact and
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smooth penalty function. As important applications, we solve an increasingly popular

search engine advertising problem which stems from the online advertising auction via

the new proposed penalty function.

Beyond these positive results and contributions, there are many other issues that

are needed to deal with in the future work.

Applying our proposed exact penalty functions for solving large scale programming

problems will be our main future research issue. In addition, we have characterized

the equivalence between the new established class of penalty functions and the classical

simple exact penalty functions in the sense of exactness property. Therefore, further

investigation on the potential and hidden properties of the new exact and smooth barrier

function could be also an interesting research topic in the future.

122



Bibliography

[1] T. Antczak. Exact penalty functions method for mathematical programming prob-

lems involving invex functions. European Journal Operational Research, 198: 29-36,

2009.

[2] M. S. Bazaraa, H. D. Sherali and C. M. Shetty. Nonlinear Programming. John

Wiley and Sons, 2006.

[3] M. Ben-Akiva and S. Lerman. Discrete Choice Analysis: Theory and Applications

to Travel Demand. The MIT Press, Cambrige, MA, 1994.

[4] J. K. Bonnans and A. Shapiro. Perturbation analysis of optimization problems.

Springer-Verlag, Berlin, 2000.

[5] M. J. Box, D. Davies and W. H. Swann. Nonlinear optimization techniques. I. C.

I. Monograph, Oliver and Boyd, Edinburgh, 1969.

[6] J. V. Burke. Calmness and exact penalization. SIAM Journal on Control and Op-

timization, 29(2): 493-497, 1991.

[7] J. V. Burke. An exact penalization viewpoint of constrained optimization. SIAM

Journal on Control and Optimization, 29(4): 968-998, 1991.

[8] G. D. Camp. Inequality-constrained stationary-value problems. Operation Re-

search, 3: 548-550, 1955.

[9] A. Caprara, M. Fischetti, P. Toth. A heuristic method for the set covering problem.

Operations Research, 47(5): 730-743, 1999.

[10] C. W. Carroll. The created response surface technique for optimizing nonlinear

restrained systems. Operation Research, 9: 169-184, 1961.

123



[11] A. Charnes, W. W. Cooper, K. O. Kortanek. Duality, Haar programs and finite

sequence spaces. Proceedings of the National Academy of Science, 48: 783-786,

1962.

[12] F. H. Clarke. A new approach to Lagrange multipliers. Mathematics of Operations

Research, 1(2): 165-174, 1976.

[13] R. Cominetti and J. P. Dussault. Stable exponential-penalty algorithm with super-

linear convergence. Journal of Optimization Theory and Applications, 83: 285-390,

1994.

[14] A. R. Conn and N. I. M. Gpild. An exact penalty function for semi-infinite pro-

gramming. Mathematical Programming, 37: 19-40, 1987.

[15] N. R. Devanur and T. P. Hayes. The adwords problem: Online keyword matching

with budgeted bidders under random permutations. In EC ′09: Proceedings of the

10th ACM conference in Electronic commerence, 71-78, 2009.

[16] R. DeVore and G. Lorentz. Constructive Approximation. Springer Verlag, New

York, 1993.

[17] J. P. Dube, G. J. Hitsch and P. Manchanda. An empirical model of advertising

dynamic. Quantitative Marketing and Economics, 3: 107-144, 2005.

[18] B. Edelman and M. Ostrovsky. Strategic bidder behavior in sponsored search auc-

tions. Decision Support Systems, 43(1): 192-198, 2007.

[19] B. Edelman, M. Ostrovsky and M. Schwarz. Internet advertising and the general-

ized second-price auction: selling billions of dollars worth of keywords. American

Economic Review, 97(1): 242-259, 2007.

[20] B. Edelman and M. Schwarz. Optimal auction design and equilibrium selection in

sponsored search auctions. American Economic Review, 100(2): 597-602, 2010.

[21] J. P. Evans, F. J. Gould and J. W. Tolle. Exact penalty functions in nonlinear

programming. Mathematical Programming, 4(1): 72-97, 1973.

[22] Y. Feng, B. Xiao, and W. Yang. Optimal reserve price in sponsored search adver-

tising. The Chinese University of Hong Kong, Working paper, 2009.

124



[23] A. V. Fiacco and G. P. McCormick. Nonlinear programming: sequential uncon-

strained minimization techniques. Wiley, New York., 1968.

[24] R. Fletcher. An exact penalty function for nonlinear programming with inequali-

ties. Mathematical Programming, 5(1): 129-150, 1973.

[25] R. Fletcher. Practical Methods of Optimization (second edition). John Wiley and

Sons, New York, 1987.

[26] M. Gaudioso and M. F. Monaco. A bundle type approach to the unconstrained

minimization of convex nonsmooth functions. Mathematical Programming, 23: 216-

226, 1982.

[27] J. Gauvin. A necessary and sufficient regularity condition to have bounded multi-

pliers in nonconvex programming. Mathematical Programming, 12: 136-138. 1977.

[28] C. J. Goh and K. L. Teo. Alternative algorithms for solving nonlinear function and

functional inequalities. Applied Mathematics and Computation, 41: 159-177, 1991.

[29] R. E. Gomory. An algorithm for integer solutions to linear programs, in Recent

Advances in Mathematical Programming,eds. Graves and Wolfe. McGraw Hill,

1963.

[30] C. C. Gonzaga and R. A. Castillo. A nonlinear programming algorithm based on

non-coercive penalty functions. Mathematical Programming, 96: 87-101, 2003.

[31] S. P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear program-

ming. Mathematical Programming, 17(1): 251-269, 1979.

[32] S. P. Han and O. L. Mangasarian. A dual differentiable exact penalty function.

Mathematical Programming, 25(3): 293-306, 1983.

[33] M. R. Hestenes. Multiplier and gradient method. Journal of Optimization Theory

and Applications, 4(5): 303-320, 1969.

[34] R. Hettich and H. T. Jongen. Semi-infinite programming: conditions of optimality

and applications, in optimization techniques (Proc. 8th IFIP conference Wrzburg,

1977), Part 2, Lecture Notes in Control and Information Science, Springer, Berlin,

7: 1-11, 1978.

125



[35] R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods and

applications. SIAM Review, 35: 380-429, 1993.

[36] W. Hock, K. Schittkowski. Test examples for nonlinear programming codes.

Springer-Verlag, New York, 1981.

[37] T. Hoheisel, C. Kanzowa, J. Outrata. Exact penalty results for mathematical pro-

grams with vanishing constraints. Nonlinear Anal., 72: 2514-2526, 2010.

[38] W. Huyer and A. Neumair. A New Exact Penalty Function. SIAM Journal on

Optimization, 13: 1141-1159, 2003.

[39] B. Jerez. General equilibrium with asymmetric information: A dual approach.

Journal of Economic Theory, in press.

[40] H. T. Jongen, F. Twilt and G. W. Weber. Semi-infinite optimization: structure

and stability of the feasible set. Journal of Optimization Theory and Application,

72: 529-552, 1992.

[41] Z. Katona and M. Sarvary. The race for sponsored links: Bidding patterns for

search advertising. INSEAD, Working paper, 2008.

[42] W. Krabs. Optimization and Approximation. John Wiley and Sons, Chichester,

New York, Brisbane, Toronto, 1979.

[43] A. H. Lan and A. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28: 497-520, 1960.

[44] W. Li, J. Peng. Exact penalty functions for constrained minimization problems via

regularized gap function for variational inequality. Journal of Global Optimization,

37: 85-94, 2007.

[45] G. X. Liu. A homotopy interior point method for semi-infinite programming prob-

lems. Journal of Global Optimization, 37: 631-646, 2007.

[46] S. Lucidi, New results on a continuously differentiable exact penalty function.

SIAM Journal on Optimization, 2: 558-574, 1992.

[47] O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality condi-

tions in the presence of equality and inequality constraints. Journal of Mathemat-

ical Analysis and Applications, 17(1): 37-47, 1967.

126



[48] G. Martin-Herrana, O. Rubelb and G. Zaccourc. Competing for consumer’s atten-

tion. Automatica, 44: 361-370, 2008.

[49] M. Mourgaya and F. Vanderbeck. Column generation based heuristic for tacti-

cal planning in multi-period vehicle routing. European Journal of Operational Re-

search, 183(3): 1028-1041, 2007.

[50] J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, 1999.

[51] J. S. Pang. Error bound in Mathematical Programming. Mathematical Program-

ming, 79: 299-332, 1997.

[52] G. Di Pillo. Exact penalty methods, in: E. Spedicato Ed.Algorithms for Continuous

Optimization: the State of the Art. Boston: Kluwer Academic Press, 209-253, 1994.

[53] G. D. Pillo, L. Groppo. An exact penalty function method with global convergence

properties for nonlinear programming problems. Mathematical Programming, 36:

1-18, 1986.

[54] G. Di Pillo, L. Grippo and S. Lucidi. A smooth method for the finite minimax

problem. Mathematical Programming, 60: 187-214, 1993.

[55] G. D. Pillo, S. Lucidi. An augmented Lagrangian function with improved exactness

properties. SIAM Journal on Optimization, 12: 376-406, 2001.

[56] E. Polak, D. H. Mayne and J. E. Higgins, Superlinearly convergent algorithm for

min-max problems. Journal of Optimization Theory and Applications, 69: 407-439,

1991.

[57] E. Polak, D. Q. Mayne and D. M. Stimler. Control system design via semi-infinite

optimization: a review. Proceedings of the IEEE, 72(12): 1777-1794, 1984.

[58] E. Polak, J. O. Royset and R. S. Womersley. Algorithms with adaptive smoothing

for finite minimax problems. Journal of Optimization Theory and Applications,

119(3): 459-484, 2003.

[59] M. J. D. Powell. A method for nonlinear constraints in minimization problem, in

Optimization ed. by R. Fletcher, Academic Press, New York, 283-298, 1969.

127



[60] R. Reemtsen. Some outer approximation methods for semi-infinite optimization

problems. Journal of Computational and Applied Mathematics, 53: 87-108, 1994.

[61] R. T. Rockafellar. A dual approach to solving nonlinear programming problems by

unconstrained optimization. Mathematical Programming, 5(1): 354-373, 1973.

[62] R. T. Rockafellar and R. J-B Wets. Variational Analysis. Grundlehren der Math.

Wissenschaften 317, Springer Verlag, 1997.

[63] J. B. Rosen. The gradient projection methods for nonlinear programming, Part

I-linear constraints. SIAM Journal of Applied Mathematics, 8: 181-217, 1960.

[64] P. Rusmevichientong and D. P. Williamson. An adaptive algorithm for selecting

profitable keywords for search-based advertising services. In EC ′06: Proceedings

of the 7th ACM conference in Electronic commerence, 260-269, 2006.

[65] E. W. Sachs. Semi-infinite programming in control, in R. Reemtsen and J.-

J. Ruckmann (Eds.), Semi-Infinite Programming, Kluwer Academic Publishers,

Boston, MA, 389-411, 1998.

[66] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons,

Chichester, 1986.

[67] G. Still. Discretization in semi-infinite programming: The rate of convergence.

Mathematical Programming, 91: 53-69, 2001.

[68] H. Taha. Integer programming. Academic Press, Orlando, 1975.

[69] P. Tseng, D. P. Bertsekas. On the convergence of the exponential multiplier method

for convex programming. Mathematical Programming, 60: 1-19, 1993.

[70] F. Vanderbeck. Implementing mixed integer column generation, in G. Desaulniers,

J. Desrosiers, and M. M. Solomon, editors. Column Generation, Kluwer Academic

Publishers, Boston, MA, 2005.

[71] H. R. Varian. Position auctions. International Journal of Industrial Organization,

25(6): 1163-1178, 2007.

[72] S. Wang, K. L. Teo and H. W. J. Lee. A new approach to nonlinear mixed discrete

programming problems. Enginerring Optimization, 30: 249-262, 1998.

128



[73] Z. L. Wu and J. J. Ye. First-order and second-order conditions for error bounds.

SIAM Journal on Optimization, 14: 621-645, 2003.

[74] S. Xu. Smoothing method for minimax problems. Computational Optimization and

Applications, 20: 267-279, 2001.

[75] F. Ye, H. Liu, S. Zhou and S. Liu. A smoothing trust-region Newton-CG method

for minimax problem. Applied Mathematics and Computation, 199(2): 581-589,

2008.

[76] W. Zangwill. Non-linear programming via penalty functions. Management Science,

13: 344-358, 1967.

[77] A. J. Zaslavski. Existence of exact penalty for constrained optimization problems

in Hilbert spaces. Nonlinear Analysis, 67: 238-248, 2007.

[78] J. L. Zhou and A. L. Tits. Nonmonotone line search for minimax problems. Journal

of Optimization Theory and Applications, 76: 455-476, 1993.

[79] J. L. Zhou and A. L. Tits. An SQP algorithm for finely discretized continuous

minimax problems and other minimax problems with many objective functions.

SIAM J. Optimization, 6(2): 461-487, 1996.

[80] G. Zoutendijk. Methods of feasible directions. Elsevier, Amsterdam, 1960.

129




