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Abstract 

Noise abatement and ventilation control are two important aspects in improving the 

indoor environmental comfort in buildings. The aims of this thesis were to achieve a 

better understanding of the broadband noise control and ventilation effects of 

Helmholtz resonators. 

 

Helmholtz resonator (or simply called resonator), a noise control device that has a 

resonance peak, is useful when noise centralized in a narrow frequency band. In this 

thesis, both the lumped- and distributed-parameter models of the Helmholtz 

resonator were considered. The latter model considering the multi-dimensional wave 

propagation inside its neck and cavity gave a better prediction of its resonance 

frequency. 

 

To obtain a boarder noise attenuation band, combing several resonators is a possible 

way. This thesis reported a theoretical study of sound propagation in a 

one-dimensional duct with identical side-branch resonators mounted periodically. 

Bloch wave theory and the transfer matrix method were used to investigate wave 

propagation in these spatially periodic resonators. Three types of stop-bands were 

discussed, and their bandwidths were predicted. The results predicted by the theory 
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fit well with the computer simulation using a three-dimensional finite element 

method and the experimental results. This study indicated that the wave coupling in 

this periodic system resulted in the distribution of the frequency band into the stop- 

and the pass-bands. The long-term significance is that periodic resonators may more 

effectively control noise in ducts by broadening the bandwidth they attenuate. 

 

This thesis also considered the disorder in the periodic duct-resonator system. Two 

cases were investigated: the disorder in periodic distance and the disorder in the 

geometries of Helmholtz resonators. The latter case was then compared to the 

traditional case of an array of differently tuned resonators without periodic mount. It 

was found that the analysis of the disorder in the geometries of resonators with 

periodic distance being kept unchanged provides a useful way for the design of such 

a system to achieve a relatively wide noise attenuation band and to track some 

narrow noise peaks within it. 

 

Apart from their extensive application on noise control, Helmholtz resonators were 

found to have the effect on ventilation. This thesis presented the results of a 

theoretical investigation of the airflow through the neck into the cavity of a 

side-branched Helmholtz resonator. It was found that the motion of the airflow in the 

opening may result in an air jet formed in the resonator that provided the fresh air 
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from the ventilation duct. This air jet was composed of the “escaped” air masses, and 

the “escaped” air masses resulted from the behavior of the airflow in the region of 

opening-enclosure interface that can be regarded a sink-jet model. This ventilation 

method can be considered as “AC” ventilation with the electrical analogy, which is 

far less understood than the traditional ventilation method.  

 

It is hoped that the present study can provide a stepping stone for investigation of 

both the acoustic and ventilation performance of Helmholtz resonators, and seeking 

their potential application in improving the indoor environmental comfort in 

buildings. 
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Nomenclature 
 

A   Cross sectional area of the opening 

0c   Sound speed (mean value) 

nc   Vector represents the wave component in the duct segment of the nth 

periodic element 

D   Periodic distance 

E   Ensemble average 

f   Periodic function 

0f   Resonance frequency  

nf   Resonance frequency of nth Helmholtz resonator 

0J   Bessel function of first kind and order zero 

1J   Bessel function of first kind and order one 

k   Wave number 

,r nk   Radial wave number of mode n 

,z nk   Axial wave number of mode n 

K   Damping force coefficient 

1l   Neck length of the circular concentric Helmholtz resonator 

2l   Cavity length of the circular concentric Helmholtz resonator 

'
1l   Effective neck length of the circular concentric Helmholtz resonator 

el   Effective length of flow through opening 
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beginL   Length of the duct before the first resonator 

endL   Length of the duct after the last resonator 

M   Characteristic function of the random “periodic” distance 

p   Probability density function 

P   Sound pressure 

1P   Sound pressure in the neck of the Helmholtz resonator 

2P   Sound pressure in the cavity of the Helmholtz resonator 

P   Matrix composed of the corresponding eigenvectors of [ ]E A  

q   Airflow rate 

Q   Strength of the sink/jet 

1r   Neck radius of the circular concentric Helmholtz resonator 

2r   Cavity radius of the circular concentric Helmholtz resonator 

nr   Reflection coefficient of nth Helmholtz resonator 

1S   Neck cross sectional area of the circular concentric Helmholtz 

resonator 

2S   Cavity cross sectional area of the circular concentric Helmholtz 

resonator 

dS   Duct cross sectional area 

ijt   Entry in the ith row and the jth column of T 

nt   Transmission coefficient of nth Helmholtz resonator 

T   Time-dependent term: exp( )j tω  

TL   Transmission loss 
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TL   Averaged transmission loss 

T   Periodic transfer matrix 

U   Centerline velocity of jet 

sv   Flow velocity along a streamline 

V   Volume of the enclosure 

1V   Particle velocity in z-direction in the neck of the Helmholtz resonator  

2V   Particle velocity in z-direction in the cavity of the Helmholtz 

resonator 

  Cavity volume of circular concentric Helmholtz resonator 

v   The eigenvector of the periodic transfer matrix 

  Flow velocity vector 

W   Width of the opening in z-direction 

nχ   The nth root of the function 0)('0 =nJ χ  

rZ   Acoustic impedance of the Helmholtz resonator 

dZ   Acoustic impedance of the duct 

'
rZ   Acoustic characteristic impedance of the Helmholtz resonator 

'
dZ   Acoustic characteristic impedance of the duct 

α   Reflection coefficient of the end termination of the duct 

  Entrainment coefficient 

β   Contraction ratio 

γ   Isentropic index 

tγ   Fraction of the momentum flux 

Γ   Diagonal matrix containing the eigenvalues of [ ]E A  



 XI

δ   Represents exp( 2 )jkD−  

nδ   Ratio of the positive- and negative-going characteristic wave types in 

the duct segment of the nth periodic cell 

2,1Δ   Stop-band boundaries 

BWΔ   Relative bandwidth 

κ   Ratio of the cavity’s volume to the duct’s volume in a periodic cell 

λ   Eigenvalue of the transfer matrix 

μ   Propagation constant 

  Ratio of area at vena contract and the opening area 

rμ   Attenuation constant 

iμ   Phase constant 

0ρ   Air density (mean value) 

'ρ   Instantaneous air density perturbation 

σ   Standard deviation 

φ   Velocity potential 

ψ   Streamline function 

0ω   Resonance circular frequency  

mω   Circular frequencies of Bragg reflection 
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Chapter 1   

Introduction  

1.1 Helmholtz Resonator 

Helmholtz resonators (or simply called resonators hereafter) are devices created in 

the 1850s by Hermann von Helmholtz.1 A classical Helmholtz resonator consists of 

a cavity and a hollow neck. It is useful to control noise centralized in a narrow 

frequency band. Many studies were conducted to accurately predict its resonance 

frequency. Initially, Rayleigh assumed Helmholtz resonator as a lumped-parameter 

system,2,3 in which the air in the neck acts as a mass piston and the air inside its 

cavity acts as a spring. To calculate its resonance frequency, the effective length of 

neck is introduced, which is derived by regarding the sound energy radiation from 

the neck as an additional “radiation mass” to the piston and leads to adding end 

corrections to the real length of the neck. In Rayleigh’s work, the interior and 

exterior end corrections are the same; despite the interior space and exterior space 

may be quite different. The work about a piston with different terminations was 

carried out by Ingard,4,5 and a more accurate end correction was then derived.5 

Different form previous works on the lumped-parameter model of Helmholtz 

resonator, Tang and Sirignano 6  derived a general model that considers 
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one-dimensional wave propagation inside both the neck and cavity. This work was 

subsequently improved upon by Panton and Miller7 by adding interior and exterior 

end corrections that include the influence of the resonator shape. However, all these 

models only work well when the Helmholtz resonator is with such an extremely thin 

geometry that only plane wave propagated inside. This model was then expanded by 

Monkewitz and colleagues 8  and Selamet and colleagues. 9 , 10  Their studies 

investigated two- and three-dimensional wave propagations in Helmholtz resonators. 

The distributed-parameter model is shown to fit the experimental results better than a 

lumped one.10 In addition to the previous researchers who focused on the 

symmetrical Helmholtz resonator, Chanaud 11  discussed the influence of 

asymmetrically placed orifice work and deriving an explicit interior end correction 

formula with an experimental verification12. 

 

Since a single resonator has a narrow resonance peak, combining several resonators 

is a possible way to obtain a broader band of noise attenuation. An array of 

differently tuned resonators was used in some previous works to attenuate broadband 

noise.13,14 The duct with multiple similar resonators that includes a duct with the 

boundary of a perforated or micro-perforated plate backed by air cavities was 

discussed.15,16 It is found that when resonators of similar resonance frequency are in 

close proximity, they can interact and lead to a decrease in the overall performance 
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compared to that of a single resonator.17 To avoid this interaction, the resonators at 

some distance between each other were considered in most of the works.15,16 

 

1.2 Periodic Structure 

A periodic structure is composed of a number of identical structural components that 

are joined together end-to-end and/or side-by-side to form a whole complex.18  

Periodic structures can be classified into three categories: (1) the periodic medium, 

(2) the periodically inhomogeneous medium, and (3) the periodically bounded 

medium.19 The study of Rayleigh20 on wave propagation in a stretched string with 

periodic density is an example of the first class of periodic structures, i.e. the 

periodic medium. Related work can be found on structure-borne sound, in particular, 

on sound propagation in one-, two-, and three-dimensional periodic structures, such 

as beams, 21 , 22 plates, 23 , 24 and shells 25 , 26 in various combinations and support 

conditions, or even with multiple layers27. An example of the second class is a fluid 

having a periodic variation in ambient density or sound speed.20 The work involving 

periodically inhomogeneous media is about the quantum theory of electrical 

conductivity.28 The third class of periodic structures is a system composed of a 

homogeneous medium with a periodically vary boundary. Related work can be found 

on air-borne sound, in particular, on sound propagation in a duct with periodically 
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varying cross section,29 a duct loaded periodically with quarter-wavelength tubes,19 

or a duct with periodic arrays of obstacles inside.30 A duct loaded with identical 

resonators investigated by Sugimoto and Horioka31 is found to be a new class of 

ultrasonic metamaterial32. 

 

A periodic structure is sometimes imperfect; it may contain defects or perturbations. 

A single disorder of an infinite periodic structure, which can be regarded as two 

semi-infinite periodic structures connecting through the disordered element33, was 

studied. It was found that defects in the perfect periodicity may lead to narrow 

frequency transmission bands (i.e. defect states) within the original stop-band 

gaps.34,35  

 

Sometimes the “defect” means the adiabatic variations of the geometries of some 

periodic elements in the whole system.36 The perturbations in the geometries of the 

“periodic” element are random and have some statistical properties. Wave 

propagation through a medium with random impurity modulation will cause the 

phenomenon of Anderson localization,37 which was originally discovered in the 

field of solid state physics and then introduced to the acoustic context.38 It has been 

found that even in the absence of any dissipation, the propagation of vibration in a 

structure which is not perfectly periodic is impeded by the irregularities, resulting in 
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an exponential decay in vibration level away from the driving point.38 In the 

presence of irregularities, the individual modes making up each pass-band change 

from being extended throughout the whole system in the periodic case to being 

localized in local areas. This can be interpreted as follows: if the nature modes of 

each periodic element of the structure are significantly different, the modes will be 

localized around the individual periodic element.39 When the random irregularity of 

the geometries of the “periodic” elements is small compared to its mean value, as a 

perturbation, this kind of system is sometimes called a near-periodic system.40 The 

study of vibration localization due to random disorder in near-periodic structures has 

been the subject of much recent research.41,42 

 

Sometimes the “defect” means the non-adiabatic variations of the geometries of the 

periodic element, which means that substantial geometric variations occur from one 

cell to another.36 The non-adiabatic local perturbation of the geometries affects the 

global characteristics of the whole system, which is then called quasi-periodic 

structure. 43  The quasi-periodic system can be described by the “quasi-Bloch” 

theory.44 The distinguishing behavior of sound propagation in a quasi-periodic 

system lies between the corresponding behavior in a periodic and a random disorder 

system. It has been found that the spectrum of a quasi-periodic structure is a discrete 

dense set with discontinuous spectral intensities, which clearly lie between a periodic 
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and a random disorder system.45 

 

1.3 Ventilation 

Ventilation is a process of providing sufficient quantities of outside fresh air into a 

building and diluting the concentration of pollution to achieve a higher indoor air 

quality.46 Methods for ventilating a building may be divided into mechanical and 

natural types.47 Natural ventilation refers to the ventilation that is driven by pressure 

difference due to the wind effect or/and temperature difference; 48  while the 

mechanical ventilation refers to the use of mechanical fans for supplying and/or 

extracting air.49  According to its characteristic, the airflow in ventilation can be 

divided into two types: laminar flow and turbulent flow. Laminar flow is a 

completely steady flow that at any fixed point, the velocity and pressure do not vary 

with time, which means the airflow is traveling in well-ordered layers (or lamina).50 

Generally, laminar flow exists in a situation with small ventilation opening, slow 

airflow speed and high flow viscosity. In fluid mechanics, this type of flow can be 

analyzed by simple steady-state methods, which is based on the equation for 

pressure drop across the opening. Such methods are recommended in current codes 

of practice.51 Turbulent flow is an unsteady flow with its velocity and pressure 

fluctuating irregularly, covering a wide range of amplitudes and frequencies.50 In the 
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description of the turbulent flow, the flow quantities are usually divided into two 

parts: a mean part and a fluctuating part. If the mean part is independent of time, the 

turbulent flow is statistically stationary, which is also called steady turbulent flow in 

spite of the instantaneous quantities of the flow are varying with time.49 In practice 

most ventilation flows through openings can be considered to be stationary, and the 

mean quantities are of main interest. If the mean quantities cannot be found, the 

turbulent flow is non-stationary, or called unsteady turbulent flow. In the literature 

on ventilation, the unsteady flows have received relatively little attention and are 

least well understood.49 In natural ventilation, it is difficult to analyze the unsteady 

flow through multiple openings of the building under the complex governing 

equations combined with complicated boundary conditions. For mechanical 

ventilation, most of mechanical ventilation systems operate with steady airflow.  

 

The acoustic and the ventilation performances of Helmholtz resonators are the two 

major aspects concerned in the thesis, both of which aim at the improving the indoor 

environmental comfort in buildings. When considering the ventilation of an 

enclosure through a single opening, where the enclosure with single opening can 

also be regarded as a Helmholtz resonator, the flow in the neck of resonator driven 

by the external pressure variation can be described by a non-linear oscillator 

equation.52,53,54 In both Ref. 53 and 54, the fundamental derivation of the non-linear 
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oscillator equation was discussed, different linearization processes were presented, 

and the corresponding experiment validations were carried out. 

  

1.4 Objective and Scope of Research 

This thesis aims at the improving the indoor environmental comfort in buildings by 

investigating the acoustic and the ventilation performances of Helmholtz resonators. 

The first objective of this thesis is to investigate the wave propagation in the duct 

with identical resonators mounted periodically. Compared with those studies21-27 on 

wave propagation in periodic solid structures, air-borne sound propagation in 

periodic systems, especially in periodic side-branched resonators array attracts less 

attention. Different from the previous works on resonators array,31,32 this thesis 

mainly considers the influence of the number of resonators on the noise reduction 

behavior of a finite periodic duct-resonator system, as well as the influence of the 

disorder in it. Meanwhile, the present study is different from the previous work of 

Seo and Kim15 by achieving a broad noise attenuation band using identical 

resonators that mounted periodically. Furthermore, although those previous works on 

a duct with the boundary of a perforated or micro-perforated plate backed by air 

cavities can be regarded as identical resonators mounted periodically,16,17 the 

distance between two nearby resonators considered in this thesis is much larger in 
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order to investigate the unusual attenuation of sound transmission in the periodic 

structure at low to medium frequencies. 

 

The second objective of this thesis is to investigate the ventilation effect of 

Helmholtz resonators. Although in building ventilation, the airflow in the single 

opening of an enclosure (can be regarded as the neck of a Helmholtz resonator) 

driven by the external pressure variation can be described by the non-linear oscillator 

equation,52-54 this does not provide any information about the actual ventilation 

performance of a single-opening enclosure since that may only describe the 

backward-forward motion of the “air piston” in the opening. The actual ventilation 

performance, if any, can be described by the air exchange between the external and 

the internal air of the enclosure through the opening. This thesis further looks into 

the air exchange mechanism of Helmholtz resonators.  

 

The current chapter covers a review of the existing knowledge on Helmholtz 

resonator and ventilation methods. In chapter 2, a single Helmholtz resonator is 

investigated, in both the lumped- and distributed parameter model. Chapter 3 

considers the case with multiple resonators and provides a theoretical study of sound 

propagation in a one-dimensional duct with identical side-branch resonators 

mounted periodically. Their noise reduction effect is investigated and compared with 
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the numerical simulation using finite element method and the experiment results. 

“Defects” of the periodicity in this duct-resonator system is discussed in Chapter 4, 

in which both the case of disorders in periodic distance between any two nearby 

resonators and in the geometries of Helmholtz resonators are considered. In Chapter 

5, the ventilation effect of a Helmholtz resonator is discussed. It is a mechanical 

ventilation method different from the traditional way using mechanical fans for 

supplying and/or extracting air. The final chapter, Chapter 6 provides a conclusion to 

all the findings in the thesis, as well as suggestions for future work. 
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Chapter 2  

Single Helmholtz Resonator  

In this chapter, the theoretical analysis of a single Helmholtz resonator is presented. 

Firstly, the lumped-parameter model is introduced; then, the distributed-parameter 

model is discussed; finally, these two models are compared with the numerical 

simulation based on the finite element method. It should be noted that both the 

lumped-parameter and distributed-parameter model described in this chapter come 

from the existing literature. Interested readers can find a detailed discussion of these 

two models in Ref. 5 and 10. However, for the sake of completeness, the description 

of these two models is incorporated into the thesis here, and the 

distributed-parameter model is rewritten here in terms of matrices. 

 

2.1 The Lumped-parameter Model  

In Chapter 2, 3 and 4, only circular concentric Helmholtz resonators in the lossless 

case are considered. As shown in Fig. 2-1, a resonator, with neck/cavity radius 1r / 2r , 

cross sectional area 1S / 2S  and length 1l / 2l  respectively, is mounted on a duct 

with cross sectional area dS  as a side branch. The volume of the cavity is 
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2
2 2 2V r lπ= . According to Ingard5, the acoustic impedance of the resonator rZ  is 

given as 

'
2 20 1

0
1

( )r
lZ j

S
ρ ω ω
ω

= −                                                (2.1) 

where 0ρ  is the air density, '
1l  is the length of the neck with end correction, and 

0ω  is the resonance circular frequency (i.e. '
0 0 1 1 2c S l Vω = , 0c  the speed of 

sound in the air). 
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Figure 2-1. A simple model of a side-branched Helmholtz resonator 

 

2.2 The Distributed-parameter Model 

When considering the multi-dimensional wave propagation in this circular 

concentric resonator as shown in Fig. 2-1, the sound pressure in the neck ( 1P ) and 
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cavity ( 2P ) can be expressed as10,55 
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in a cylindrical coordinate as the combination of inward-going planar waves (the 

first term), radial waves (the second term), outward-going planar waves (the third 

term), and radial waves (the fourth term), where the subscript or superscript q=1 

indicates that it is a parameter considered in the neck of the resonator; the subscript 

or superscript q=2 indicates that it is a parameter considered in the cavity of the 

resonator. Herein )(
0

qA , )(q
nA , )(

0
qB , and )(q

nB  are the complex constants related to 

the magnitude of the corresponding wave mode. 0J  is the Bessel function of first 

kind and order zero.56 k , )(
,
q
nrk , and )(

,
q
nzk  represent the wave number, the radial 

wave number of mode n, and the axial wave number of mode n (respectively), with 

the relation )2,1()()( 2)(
,

2)(
,

2 =+= qkkk q
nz

q
nr . In terms of the momentum equation, 

the particle velocity in z-direction can be obtained as 
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The wall of the resonator is assumed to be rigid without any absorption materials, so 

the boundary conditions 
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where nχ  is the nth root of the function56 0)('0 =nJ χ . 

 

At the neck-cavity interface of the resonator, the continuity conditions of sound 

pressure and particle velocity 
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where 1J  is the Bessel function of first kind and order one,56 and +∞= ,,2,1 …m  

in both Eqs. (2.10) and (2.12). 

 

The frequency range concerned in the present study is well below the cut-on 

frequency of the resonator neck and the duct. It means that the nonplanar waves 

excited at the discontinuity junction (the duct-neck interface) will decay 

exponentially. Therefore, only planar waves are assumed to exist in the duct-neck 

interface. This is an approximation, which helps us to develop a direct relation of the 

sound pressure in the duct and neck by ignoring the multi-dimension effect in this 

complex interface. However, this assumption will be the limitation of the distributed 

parameter model, which will be shown in the Section 2.2 and discussed in Section 

2.3. This indicates that the frequency concerned in this thesis should be low enough 

that not only below the cut-on frequencies of the duct and neck but also make the 

evanescence waves excited at the duct-neck interface decay rapidly enough to be 

ignored. Usually, the distributed model works well on the resonator with long and 

thin neck. Due to this assumption, )1(
nA  is set to zero. At the meantime, nonplanar 

waves can also be excited at the neck-cavity interface due to the sudden area 

discontinuity. This multi-dimension effect can no longer be ignored since it can be 
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considered as sounds radiate into a bigger space (cavity) and the frequency may not 

below the cut-on frequency of the cavity. However, the nonplanar waves excited at 

the neck-cavity interface traveling in the neck in negative-z direction will decay over 

the length of the neck (i.e., )1(
,nzk  should be imaginary). In this case, 1P  is assumed 

to be one-dimensional in the duct-neck interface and two-dimensional in the 

neck-cavity interface. So 1P  is no longer a variation of r  in the vicinity of 01 =z . 

At the duct-neck interface, the continuity conditions of sound pressure and volume 

velocity can be expressed as 

tzoi PPPP ==+
=01

1
                                              (2.13) 

1
1 10

0 0 0 0

i o t
d dz

P P PS V S S
c cρ ρ=

−
= +                                        (2.14) 

which give 

)1(
01

)1(
01 )5.0()5.0( BSSASSPS ddid −++=                              (2.15) 

 

Combining Eqs. (2.6), (2.9)-(2.12), and (2.15) yields an equation set that determines 

the complex coefficients )1(
0A , )1(

0B , )1(
nB , )2(

0A , )2(
0B , )2(

nA , and )2(
nB . Since 

higher-order harmonic components have a diminishing effect on the solution,10,57 we 

can use a finite number of terms instead of an infinite summation of all modes and 

still ensure that the solution is reasonably accurate. Assuming that 1P / 2P  is made of 

harmonic components up to order N/M respectively, the equation set can then be 

rewritten in terms of matrices, as 
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yUx =  or -1=x U y ,                                             (2.16) 

where x  and y  are both )24( MN ++ -dimensional vectors, which are given by 
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And U is a square matrix of dimension )24()24( MNMN ++×++ , which can be 

written as [ ]T4321 UUUUU = . Herein the )24(3 MN ++× -dimensional 

matrix 1U  is given by 
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where 0  denotes a zero matrix, with the subscript such as  N×1  indicating its 

dimension, and 
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2U  is a )24()1( MNM ++×+  matrix, as [ ])22()1()2()1(2 MMNM +×++×+= D0U , 

where 
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The )24( MNN ++× -dimensional matrix 3U  is given by 
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  (2.26) 

 

So the acoustic impedance of the Helmholtz resonator in the neck opening, can be 

derived by 
1

1 1 1 0
( )r z

Z P V S
=

= , where 1P  and 1V  are described in Eqs. (2.2) and 

(2.3). An example of the MATLAB codes of the distributed-parameter model of 

Helmholtz resonator is attached in the appendix. 

 

2.3 Numerical Simulation 

To compare the theoretical prediction of Helmholtz resonator using lumped- and 

distributed-parameter models, the three-dimensional finite element method (FEM) 

using the commercial software COMSOL Multiphysics® version 2009 is used in the 

thesis as a validation tool, which also offers an extensive interface to MATLAB and 

its toolboxes for a large variety of programming and postprocessing works. In this 

chapter, the following parameters are set in both theoretical calculation and 

numerical simulation: 0 344c =  m/s, 21.10 =ρ  kg/m3. To ensure accuracy, a fine 

mesh spacing of less than 01.0 m was used and the model was divided into more 

than 3600 elements for both two cases in Fig. 2-2. The geometries of the duct and 

resonator in Fig. 2-2(a) are: 1 2r =  cm, 2 8r =  cm, 1 5l =  cm, 2 12l =  cm; and 

those in Fig. 2-2(b) are: 1 2r =  cm, 2 5r =  cm, 1 5l =  cm, 2 7l =  cm. 
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2.4 Results and Discussion 

 

0 500 1000 1500
0

10

20

30

40

50

60

Frequency (Hz)

Tr
an

sm
is

si
on

 lo
ss

 (d
B

)

(a)

 

 
lumped parameter model
distributed parameter model
FEM simulation

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

Frequency (Hz)

Tr
an

sm
is

si
on

 lo
ss

 (d
B

)

(b)

 

 
lumped parameter model
distributed parameter model
FEM simulation

 

 
Figure 2-2. Transmission loss comparison between the lumped-parameter model, the 

distributed-parameter model, and FEM simulation of Helmholtz resonator.  

 

The comparison of HR transmission loss (TL) derived by the distributed-parameter 

model, the lumped-parameter model, and FEM simulation is shown in Fig. 2-2(a) 

and Fig. 2-2(b). It can be seen that the traditional lumped-parameter model does not 

agree well with the FEM simulation in both Figs. 2-2(a) and 2-2(b) particularly at 

the fundamental resonance frequency at around 160 Hz in Fig. 2-2(a) and 340 Hz in 

Fig. 2-2(b). Strictly speaking, this indicates that the lumped-parameter model has a 

bigger relative error with the FEM simulation than the distributed model. This 

deviation between the lumped distributed model and the FEM simulation is large 
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enough to lead to the misprediction of the fundamental resonance peak due to its 

narrow bandwidth, which is similar to that observed in Ref. 10. Compared with 

lumped-parameter model, the model of a distributed-parameter Helmholtz resonator 

agrees very well with the FEM simulation at most frequencies, including the 

fundamental resonance frequency at around 160 Hz in Fig. 2-2(a) and 340 Hz in Fig. 

2-2(b), and the second resonance frequency at around 1450 Hz in Fig. 2-2(a). This 

may indicate that the multidimensional effects in the neck-cavity interface 

considered in the distributed model have a more accurate description on the 

frequency characteristic of the Helmholtz resonator than the interior end correction 

in the lumped model in this case. However, it can also be observed in Fig. 2-2(b) that 

the discrepancy between the distributed-parameter and the FEM simulation increases 

as the frequency increases, especially, at around the second resonance peak of 

around 2500 Hz. It may be due to the assumption of the distributed model that the 

planar wave propagated in the neck-duct interface becomes invalid as the frequency 

increases to above 2000 Hz. It should be noted that this assumption (only planner 

wave exists in the duct-neck interface) comes from the mathematical difficulties on 

solving the non-planner waves in this complex interface. The discrepancy on the 2nd 

resonance peak shows the frequency limitation of this distributed-parameter model 

due to this assumption. In general, the comparison in both Fig. 2-2(a) and (b) show 

clearly that the model of distributed-parameter HR has a more accurate description 
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of the frequency characteristic of an HR in most frequencies provided that the planar 

wave propagation in the neck-duct interface can be ensured. 
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Chapter 3  

Periodic Helmholtz Resonators Array  

3.1 Wave Propagation in a Semi-infinite Duct Loaded 

Periodically with Resonators 

3.1.1 Theoretical Outline  

This section considers a semi-infinite duct loaded periodically with resonators, as 

shown in Fig. 3-1. Compared with the length of duct segment between two nearby 

resonators D, the diameter of the neck of the resonator is assumed to be negligible 

since the length D usually much larger than the diameter of the neck (as shown in the 

remainder part of the chapter). In other words, D also can be regarded as the periodic 

distance. 

 

 
Figure 3-1. Semi-infinite duct loaded periodically with resonators. 
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As shown in Fig. 3-1, a typical periodic cell consists of the duct segment and a 

resonator attached to the left side. As assumed in Chapter 2, only planar waves exist 

in the duct and the vicinity of the opening of the resonator. In the region of the nth 

periodic element, nDxDn ≤≤− )1( , the sound traveling in positive- and negative-x 

directions can be described with sound pressure ))1(()( Dnxjk
nn eCxP −−−++ =  and 

))1(()( Dnxjk
nn eCxP −−−− = , where +

nC  and −
nC  are complex constants related to the 

magnitude of positive- and negative-going planar waves in the nth duct segment 

respectively. In the region of the next cell, DnxnD )1( +≤≤ , the acoustic field has 

a similar form, with sound pressure )(
11 )( nDxjk

nn eCxP −−+
+

+
+ =  and 

)(
11 )( nDxjk

nn eCxP −−
+

−
+ = . Combining the continuity of sound pressure and volume 

velocity at the point nDx =  yields the relation between the nth cell and nth+1 cell in 

the form of matrix, called the periodic transfer matrix36 T, as 
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where the 22× -dimensional matrix T is given by 
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The entry in the ith row and the jth column of T is denoted as tij, and '
rZ is the acoustic 

characteristic impedance of the resonator, which can be derived by using the 

lumped-parameter model in Section 2.1 or the distributed-parameter model in 
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Section 2.2, as '
1/r rZ Z S= .  

 

Dynamic periodic systems are unlike static periodic systems, which can be described 

in terms of a periodic function )(xf , with the relation )()( xfLxf =+ , where L is 

the periodicity of the function. Instead, dynamic periodic systems (such as the sound 

field distribution in the periodic structure considered in this section) can be described 

by the function )()( xfeLxf μ=+ . This is called the Bloch wave theory.28 

Therefore, Eq. (3.1) can be rewritten in another form, as 

[ ] [ ]Tnn
T

nn CCeCC −+−
+

+
+ = μ

11                                         (3.3) 

Combining Eqs. (3.1) and (3.3), the analysis of a periodic resonator system boils 

down to an eigenvalue problem that involves finding the eigenvalue μλ e=  and the 

corresponding eigenvector [ ]Tvv −+=v  for the transfer matrix T. 

 
 

3.1.2 Nature of the Characteristic Wave Type 

μ  in Eq. (3.3) is called the propagation constant,22 which is a complex value 

composed of a real part rμ , called the attenuation constant, and an imaginary part 

iμ , called the phase constant ( ir jμμμ += ). In principle there are ranges of 

frequencies in which the solution contains the real part rμ . This result indicates that 

the energy gets attenuated when waves travel through each periodic cell, and those 

frequency ranges are called the stop-bands. In other frequency ranges, the solution 
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only contains the imaginary part iμ , which indicates that there is only a phase delay 

when a wave travels through each cell. These frequency ranges that the waves are 

allowed to propagate through are called the pass-bands. 

 

Combining Eqs. (3.1) and (3.3) yields the characteristic polynomial58 of T. Note 

that—for a passive system—the determinant of the matrix T is unity36 and 

01)()( 2211
2

211222112211
2 =++−=−++− μμμμ ettettttette                   (3.4) 

Consequently, we can write 
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11 22 '
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jkD jkD jkD jkD

d r

cSj t t e e e e
S Z

ρμ − −= + = + + −               (3.5) 

Eq. (3.5) indicates that μ  is a function of the frequency and other geometric 

parameters, such as periodic distance (D) and resonator acoustic characteristic 

impedance ( '
rZ ). In general, the eigenvalue μλ e=  describes the propagation 

property of a characteristic wave type, and the characteristic wave type is defined by 

its corresponding eigenvalue [ ]Tvv −+ , which represents the specific linear 

combination of positive- and negative-going planar waves. There are two solutions 

of μ  in Eq. (3.5) that occur in opposite pairs: )( ir jμμμ +±=  in the stop-bands, 

and ijμμ ±=  in the pass-bands. Assumed that 0>rμ  and πμ 20 <≤ i , 

)(1 ir jμμμ +−=  describes the propagation property of the “positive-going” 

characteristic wave type (or simply positive wave type), defined by the 

corresponding eigenvector [ ]Tvv −+= 111v . Similarly, ir jμμμ +=2  describes the 
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propagation property of the “negative-going” characteristic wave type (or simply 

negative wave type), defined by the corresponding eigenvector [ ]Tvv −+= 222v . It 

can be imagined that these two wave type are of the same characteristic wave type 

but traveling in opposite directions, and there are relations between two 

corresponding eigenvectors ( [ ]Tvv −+= 111v  and [ ]Tvv −+= 222v ) , as −+ = 21 vv , 

and +− = 21 vv .  

 

When planar waves travel in the semi-infinite duct with periodic resonators 

considered in this section, only the positive-going characteristic wave type 1v  

exists in duct segments of all periodic cells, as 
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where na  is a complex constant. By introducing Eq. (3.1), Eq. (3.6) can be 

expressed as 
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which gives 1
11

−= n
n aa λ  . Eq. (3.7) indicates that the positive- and negative-going 

planar waves in duct segments of all periodic cells have the same amplitude ratio 

−+
11 / vv  and decay at the same rate 1 /n na a+  (= re μ− ) when they pass through each 

periodic cell along the positive-x direction. In other words, they propagate as a whole 

in the positive-x direction, denoted as the positive-going characteristic wave type. 
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Let jqD−=1μ  ( jqDe−=1λ ), the sound pressure in the duct segment of nth periodic 

cell can be expressed as 

))1(())1(()( Dnxjk
n

Dnxjk
nn eCeCxP −−−−−−+ +=  

 
DnjqDnxjkDnxjk eevaeva )1())1((

11
))1((

11 ][ −−−−−−−−+ +=                        (3.8) 

Let us set Dnxxn )1( −−=  ( Dxn ≤≤0 ), which is a local variable. The exponential 

component of Eq. (3.8) (i.e. Dnjqe )1( −− ) represents net changes of the characteristic 

wave type from cell to cell in a positive-x direction. The terms in square bracket 

( nn jkxjkx evaeva −−+ + 1111 ) represent components of the characteristic wave type, and its 

behavior in a periodic cell. Besides, Eq. (3.8) indicates that the positive-going 

characteristic wave type 1v  contains the negative-going planer wave component 

−
1v . Moreover, Eq. (3.8) can be expressed as 

jqx
n

jqxxqkjxqkj
n exeevaevaxP nn −−+−−−+ Φ=+= )(][)( 1

)(
11

)(
11                    (3.9) 

It can be noted that the x in the exponential term jqxe−  is a global variable; Eq. (3.9) 

describes the sound pressure distribution in the whole duct. This is another 

expression of the positive-going characteristic wave type. It can be seen that q is the 

wave number of the wave type. 

 

Fig. 3-2 shows the distribution of the attenuation constant rμ , in terms of 

)(log20 10
reμ , and the phase constant iμ . Resonators, with neck radius 1r =1.7 cm, 

length 1l =4.55 cm and cavity radius 2r =4.7 cm, length 2l =4 cm, mounted on a 
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duct of cross sectional area dS =13.2 cm2 is selected here, with periodic distance 

D =40 cm. The positive-going characteristic wave type is seen to propagate without 

attenuation over the two broad bands of 0-240 Hz and 630-870 Hz with a phase 

change per cell iμ . A strong stop-band is found in the frequency range of 240-630 

Hz, with a phase inversion between two nearby periodic cells (i.e. πμ =i ). A sharp 

peak is observed at around 420 Hz, which is due to the resonance of the Helmholtz 

resonators. It should be noted that there is a sharp gap at around 425 Hz in the 

stop-band, which belongs to the phase inverse of a single resonator at its resonance 

frequency 0f . Basically, the frequency positions of the peak and gap of the 

stop-band are related to the 0f  of the single resonator, the bandwidth of which is 

controlled by the periodic distant D, as well as the geometries of both duct and 

resonators. The distribution of the frequency band into the stop- and pass-bands is 

due to wave coupling, which is similar to the waves that Yun and Mak27 observed 

propagating in a periodic structure. Different kinds of the stop-bands including their 

peaks and gaps will be discussed in detail further in Section 3.1.4. 
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Figure 3-2. Frequency variation of the real and imaginary parts of the propagation 
constant for the positive-going characteristic wave type in the semi-infinite duct with 

periodic resonators. 

 

Fig. 3-3 shows the ratio of negative- and positive-going planar wave components in 

the positive-going characteristic wave type in terms of +−
11 vv , ignoring the phase 

difference between them. The dimensions of duct, resonators and periodic distance 

used here maintain the same as those used in Fig. 3-2, i.e. 1r =1.7 cm, 1l =4.55 cm 

2r =4.7 cm, 2l =4 cm, dS =13.2 cm2 and D =40 cm. The stop- and the pass-bands are 

the same as shown in Fig. 3-2(a). It can be seen that even in the pass-bands of the 

positive-going characteristic wave type as shown in Fig 3-2(a), a small amount of 

negative-going planar wave component −
1v  exists, which means the “pass-band” is 

fully passed for the characteristic wave type, but not for the planar waves. In the 

situation of planar waves traveling though a single resonator, a full reflection only 
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occurs at the resonance frequency 0f  of the resonator. In contrast, a full reflection 

(i.e. 111 =+− vv ) is observed here in the whole stop-band (240-630 Hz and 870-940 

Hz) regardless of whether the characteristic wave type decays significantly or only 

slightly. 
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Figure 3-3. Frequency variation of the positive- and negative-going planar wave 
components of the positive-going characteristic wave types in the semi-infinite duct 

with periodic resonators. 

 

3.1.3 Response of a Semi-infinite Duct Loaded Periodically 

with Resonators 

This study also investigated a semi-infinite duct with periodic resonators responding 

to external excitation, which is a positive-going sound wave of pressure magnitude 

1=iP . The sound propagation can be described by the maximum sound pressure in 

the duct segments of the first five periodic cells. The maximum sound pressure in the 
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duct segment of the nth cell max,nP  can be calculated by finding the maximum59 of 

))1(())1(()()()( Dnxjk
n

Dnxjk
nnnn eCeCxPxPxP −−−−−−+−+ +=+=    5,,2,1 …=n       (3.10) 

The dimensions of the duct, resonators and periodic distance used in Fig. 3-4 

maintain the same as those used in Fig. 3-2, i.e. 1r =1.7 cm, 1l =4.55 cm 2r =4.7 cm, 

2l =4 cm, dS =13.2 cm2 and D =40 cm. Fig. 3-4 clearly shows the occurrence of the 

pass-bands and stop-bands that are associated with the corresponding propagation 

constant in Fig. 3-2(a). In the main stop-band of 240-630 Hz, the energy of the 

propagating waves drops at a rate of about 10 dB per periodic cell. It is also seen that 

the system has a strong attenuation peak at the natural frequency of a single 

resonator (i.e., around 415 Hz). 
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Figure 3-4. Frequency variation of the maximum sound pressure in duct segments of 

the first five periodic cells of the semi-infinite structure, n=1,2,…,5. 
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3.1.4 Bandwidth Discussion of the Characteristic Wave 

Type 

In this section, the stop-band width of the characteristic wave type is investigated. 

Although Eq. (3.5) describes the frequency characteristics of the characteristic wave 

type, it does not give an explicit expression about the position of the stop-bands, as 

well as their bandwidth. Furthermore, although the distributed-parameter model 

provides a more accurate prediction for the resonance frequency, only the 

lumped-parameter model is used here to give readers a clear and direct impression of 

the tendency of bandwidth to vary with the geometries of the resonators. The 

theoretical prediction of the bandwidth has been proposed by Sugimoto and 

Horioka31 for small resonators (compared to the geometries of the duct), and this 

section will expand their work to a wider applicable range by adding some 

modification. In general, three types of stop-bands result from either the resonance 

of the resonators or the Bragg reflection, or from both.31 Using the definitions of rZ  

(lumped-parameter model) and dZ , as 

'
2 20 1

0
1

( )r
lZ j

S
ρ ω ω
ω

= −  and dd ScZ /00ρ=                                (3.11) 

where dZ  is the acoustic impedance of the duct. Eq. (3.5) can be rewritten as 

2
2

0

cos( ) cos( ) sin( )
2 ( / ) 1d

V kqD kD kD
S ω ω

= +
⎡ ⎤−⎣ ⎦

                         (3.12) 
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When the right hand side of Eq. (3.12) is smaller than or equals to unity, the wave 

number of the characteristic wave type q is real; and the corresponding frequency 

range is the pass-band. At the meanwhile, when the right hand side of Eq. (3.12) is 

larger than unity, q is a complex number; and the corresponding frequency range is 

the stop-band. Therefore the position of the stop-band is determined by the stop-band 

boundary when the right hand side of Eq. (3.12) equals to unity. 

 

The first kind of stop-band (referred to as stop-band I) results from the resonance of 

the resonators. The stop-band is near 0ω , as Δ+=1/ 0ωω , where 1<Δ  is 

assumed. To differentiate it from the other two types of stop-bands, πmDk ≠0  here, 

where 0 0 0=k cω . When the modulus of Eq. (3.12) is equal to unity, the 

approximated stop-band boundary 2,1Δ  can be obtained, as 
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where κ  is the ratio of the cavity’s volume to the duct’s volume in a periodic cell 

( 2 / dV S Dκ = ), which is generally assumed to be smaller than unity ( 1<κ ).  The 

terms in the square bracket of Eq. (3.13)/(3.14) are the series expansion of the 

cotangent/tangent terms, respectively. The zero order corrections (the first terms in 

the square brackets) of Eqs. (3.13) and (3.14) give )2/cot(4/ 001 DkDk ⋅=Δ κ  and 
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)2/tan(4/ 002 DkDk ⋅−=Δ κ , with a relative bandwidth 

)2/cot()2/tan(2/ 000 DkDkDkBW +⋅=Δ κ . These are obtained from Sugimoto and 

Horioka’s examination of the issue,31 which also includes a general discussion of 

stop-band I. The bandwidth BWΔ  is of the order κ . Furthermore, BWΔ  reaches its 

minimum value when Dk0  is an odd number multiplied by 2/π , and becomes 

broader when it approaches multiples of π . However, this approximation has a 

significant deviation when 1.0|| >Δ . A more accurate result can be obtained by 

considering the first order corrections (the second terms in the square brackets) of 

Eqs. (3.13) and (3.14), or even the higher order corrections.                          

 

The second kind of stop-band (referred to as stop-band II) is the result of the Bragg 

reflection, which occurs when the periodic distance becomes a multiple of a 

half-wavelength of sound waves ( πmkD =  ,...2,1=m ).31 The stop-band is near 

Dcmm /0πω = , as Δ+=1/ mωω . To differentiate it from the third case, 0ωω ≠m  

here. In the frequency range of stop-band II, Eq. (3.12) can be approximated as 
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E  can be approximated as 2Δ−ΔG , where ]1)//[( 2
0 −= ωωκ mG , which gives 

01 =Δ  and ]1)//[( 2
02 −=Δ ωωκ m  with the relative bandwidth 

1)/(/ 2
0 −=Δ ωωκ mBW . This is derived by Sugimoto and Horioka.31 For 

stop-bands II where 0ωω <m , there is 1/]1)//[(1 2
0 ≤≤−+ mm ωωωωκ ; for others 

in higher frequency ranges where 0ωω >m , there is 

]1)//[(1/1 2
0 −+≤≤ ωωκωω mm . In general, mω  is always one stop-band boundary 

and the stop-band appears on either side of mω  only, which depends on the relative 

position of mω  and 0ω . The relative bandwidth BWΔ  is of the order κ , which 

becomes broader as it approaches the resonance frequency 0ω . Similarly, the 

approximation made above has a significant deviation when 1.0|| >Δ . A modified 

approximation can be obtained by rewriting Eq. (3.16) as 

2
22 12
)1(

Δ−
−+Δ
ΔΔ+

=
γγ

κE                                              (3.17) 

where 0/ωωγ m= . In addition to 01 =Δ , there are two other roots, as 

2

2222

3,2 4
8)1(1

γ
κγκγγκ +−−±−+

=Δ                               (3.18) 

For the stop-bands II of 1<γ , 2Δ  is in the range of (-1, 0), which is the physically 

reasonable root. For the stop-bands II of 1>γ , the 3Δ  in the range of (0, 1) should 

be selected.  

 

The third case (referred to as stop-band III) results from both the resonance of the 
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resonator and the Bragg reflection (i.e. 0ωω =m ). In the frequency range of 

stop-band III, Eq. (3.16) can be approximated as 22/ Δ−= κE , with 

2/2,1 κ±=Δ  and the relative bandwidth κ2=Δ BW . This is obtained from 

Sugimoto and Horioka.31 Compared with the previous two types, this stop-band is 

widened to be of the order κ . As D is in this case limited to 0/ kmπ  ( 0k D mπ= ), 

the relative bandwidth BWΔ  is at its maximum value when 1=m . Similarly, the 

approximation has a significant deviation when 1.0|| >Δ . Substituting 1/ 0 =ωωm  

into Eq. (3.16) gives 

02 23 =−Δ−Δ+Δ κκ                                               (3.19) 

The equation above has three roots,60 as 

)
3

cos(34
3
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3
2
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θκ+−−=Δ                                         (3.20) 
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3

sin(3)
3

[cos(
3

34
3
2

3,2
θθκ

±
+

+−=Δ                              (3.21) 

where )arccos(K=θ , ])34(2/[)916( 5.1κκ +−=K . As 11 −<Δ  is physically 

impossible, the other two roots 3,2Δ  are chosen. Compared to the results obtained 

by Sugimoto and Horioka,31 Eq. (3.21) indicates that 0f  is not exactly in the middle 

of the stop-band. 
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Figure 3-5. Three types of stop-bands. 

 

Fig. 3-5 shows an example of three types of stop-bands. For Fig 3-5(a), the 

geometries of resonators and duct are: 1 2r =  cm, 1 2.1l =  cm, 2 136.75V π= cm3,  

12=dS  cm2, 45=D cm; for Fig 3-5(b), 4.34=D  cm with others unchanged. 

 

Stop-bands I and II are shown in Fig. 3-5(a). The Sugimoto and Horioka’s 

approximation31 gives stop-band I at around 280-1280 Hz ( 43.01 −=Δ and 

55.12 =Δ ), and the first stop-band II at around -344-382 Hz (the prediction form Ref. 

31 gives a physically meaningless lower frequency boundary in this case with big 

Helmholtz resonators). The modified approximation using Eqs. (3.13) and (3.14) 

gives stop-band I at around 430-590 Hz ( 14.01 −=Δ  and 18.02 =Δ , the 

consideration is up to the first order corrections) and the first stop-band II using Eq. 
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(3.18) at around 210-382 Hz. Comparing the predicted stop-band I at 425-680 Hz 

with the first stop-band II ( π=kD ) at 210-380 Hz using implicit equation, Eq. (3.5), 

it is clear that the modified approximation derived from Eqs. (3.13), (3.14) and (3.18) 

shows better agreement with the theoretical prediction than that of Sugimoto and 

Horioka.  

 

Stop-band III is shown in Fig. 3-5(b). Sugimoto and Horioka’s approximation gives 

stop-band III at 185-815 Hz, while the modified approximation derived from Eq. 

(3.21) gives stop-band III at around 240-850 Hz. Comparing the predicted stop-band 

III at 240-820 Hz using implicit equation, Eq. (3.5), the modified approximation has 

a relative error of 17%, which is less than the 24% relative error in Sugimoto and 

Horioka’s approximation. The modified approximation makes only a slight 

improvement on the prediction, because the modified approximation on the cosine 

and sine terms of Eq. (3.15) has a relatively low accuracy as 5.0|| >Δ . 

 

3.2 Wave Propagation in a Finite-length Duct Loaded 

Periodically with N Resonators 

3.2.1 Theoretical Outline 

In the previous section, for a semi-infinite duct with periodic resonators, there is 
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only the positive-going characteristic wave type defined by the eigenvector 1v . This 

section considers a more general situation: a finite-length duct with N periodic 

resonators. In this case, the influence of the end boundary condition should be 

considered. This means in addition to the positive-going characteristic wave type, the 

negative one defined by the eigenvector 2v  needs to be considered, which can be 

regarded as the “reflected” characteristic wave type.  

 

Fig. 3-6 shows a duct loaded periodically with N side-branch resonators at an 

identical distance D between two nearby resonators. At the beginning of the duct 

there is a loudspeaker that oscillates at the magnitude of sound pressure 0P  at the 

distance Lbegin from the first resonator (the interested readers can also use a more 

realistic beginning boundary condition, a constant vibration velocity 0V , instead; 

and the right hand side of Eq. (3.25) becomes 0 0 0c Vρ ). At the end of the duct there 

is a material with reflection coefficient ∂  at the distance Lend from the Nth resonator.  
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Figure 3-6. Finite periodic Helmholtz resonators array. 
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Similar to Section 3.1, the sound pressure in the duct segment of the nth periodic cell 

can be described as ))1(())1(()( Dnxjk
n

Dnxjk
nn eCeCxP −−−−−−+ += , in which the magnitude 

of positive- and negative-going planar waves can be obtained by adding the part of 

negative-going characteristic wave type 2v  into Eq. (3.6), as 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+=⎥

⎦

⎤
⎢
⎣

⎡
−

+

−

+

−

+

2

2

1

1
21 v

v
b

v
v

aba
C
C

nnnn
n

n vv                                (3.22) 

where nb  is also a complex constant. By introducing Eq. (3.1) , Eq. (3.22) also can 

be expressed as 
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Combining Eqs. (3.22) and (3.23) gives 1
11

−= n
n aa λ  and 1

21
−= n

n bb λ . 

 

The pressure function in the Nth cell (as shown in Fig. 3-6) is also valid in the range 

endLDNxDN +−≤≤− )1()1( ; and the sound pressure in endLDNx +−= )1(  

matches the end boundary condition, as   
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Similarly, the pressure function in the 0th cell (as shown in Fig. 3-6) is also valid in 
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the range 0≤≤− xLbegin ; and the sound pressure in beginLx −=  matches the 

beginning boundary condition, as 

beginbegin Lx

DxjkDxjk
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eCeCxPxP
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So the complex constants a1 and b1 can be solved by combining the boundary 

conditions (Eqs. (3.24) and (3.25)), which means for a certain beginning- and 

end-boundary condition, the sound pressure in the duct segment of the nth periodic 

cell can be described by the specific combination of the positive- and negative-going 

characteristic wave types, as 21 vv 1n1n −− + 2111 λbλa . 

 

General speaking, in the finite-length duct with N periodic resonators, the 

positive-going planar waves can be divided into two parts (i.e., +++ += 21 vbvaC nnn ), 

the first part +
1van  decays at the rate nn aa /1+  (= 1λ ) with the other part +

2vbn  

increasing at the rate nn bb /1+  (= 2λ ). Due to the relation 21 1 λλ =  discussed in 

previous section, these two parts actually decay at the same rate but in opposite 

directions: one +
1van  as a component of the positive-going characteristic wave type 

with the other +
2vbn  belonging to the negative-going characteristic wave type. 

Similarly, the negative-going planar waves can also be divided into two parts (i.e. 

−−− += 21 vbvaC nnn ), with one −
1van  moving forward and the other −

2vbn  backward. 
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Similar to Eq. (3.9), the sound pressure field in the whole duct can be expressed as 

jqx
n

jqx
nn exexxP )()()( 21 Φ+Φ= −                                     (3.26) 

where  

nn xqkjxqkj evbevb )(
21

)(
212

+−−−+ +=Φ                                     (3.27) 

represents the components of the negative-going characteristic wave type. 

 

3.2.2 A Finite-length Duct-resonator System with Anechoic 

Termination 

Although the positive- and negative-going characteristic wave types belong to the 

same characteristic wave type, they propagate in opposite directions along the duct. 

Their relative ratio in the duct segment of the nth periodic cell can be expressed as 

nnn ab=δ , )0( Nn ≤≤ . 

 

Under the condition of a semi-infinite duct with periodic resonators, there is no 

negative-going characteristic wave type (i.e. 0=nδ ). In contrast, nδ  is a function 

of frequency in a finite-length duct with N periodic resonators. Fig. 3-7 shows the 

variation of nδ under anechoic termination in a finite-length duct with 10 resonators 

(N=10). The dimensions of duct, resonators and periodic distance used here maintain 

the same as those used in Fig. 3-3, so the stop- and the pass-bands are the same as 

shown in Fig. 3-3(a). It should be noted that although Fig. 3-3 only shows the stop- 
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and the pass-bands of the positive-going characteristic wave type, it can be imagined 

that the negative one has the same frequency band distribution since they are of the 

same characteristic wave type. In the stop-bands (240-630 Hz and 870-940 Hz), 

there are few waves of the negative wave type in the duct segment of the first 

periodic cell ( 0=nδ ). In addition, it can be seen in the stop-bands that the amount of 

the negative wave type continues to increase in the subsequent periodic cells, and 

finally reaches the same amount as the positive one ( 1=nδ ) in the last periodic cell 

(the Nth cell). In other words, nδ reaches its minimum value at the beginning (n=0) 

and its maximum value at the end (n=10).  It is interesting to see that even though 

“anechoic termination” does not reflect any planar waves, it is an absolutely “rigid” 

termination for the characteristic wave type in the stop-bands, since it fully reflects 

the positive wave type in the Nth cell, as the dotted line in Fig. 3-7 shows.  
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Figure 3-7. Frequency variation of the finite periodic structure under anechoic 
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termination, n=1,2,…,10.  

 

In the pass-bands (0-240 Hz, 630-870 Hz, and above 940 Hz), it can be seen that all 

the lines overlap. This means that the relative ratio of the positive- and 

negative-going characteristic wave types ( nδ ) has the same pattern in all periodic 

cells, as both the positive- and negative-going characteristic wave types propagate 

freely without any attenuation in the duct. In the pass-bands, the “anechoic 

termination” seems to be a partially reflective boundary for the characteristic wave 

type.  

 

It should be noted that the amount of negative wave type quickly increases at the 

pass-band and stop-band junctures, at frequencies around 240, 430, 640, 870, and 

940 Hz in all periodic cells. The system seems to respond strongly at these 

frequencies. It is more prominent in the gap of the stop-band, i.e., a sharp boundary 

at around 425Hz (as shown in Fig. 3-3(a)), because the characteristic wave type is 

fully reflected and the amount of negative wave type is nearly the same as that of the 

positive one. In general, unlike what it means to planar waves, anechoic termination 

cannot be regarded as “anechoic” to the characteristic wave type, and it can even be 

fully reflective at a particular frequency. 
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3.2.3 Estimating the Properties of the Characteristic Wave 

Type in an N-cell Duct-resonator Structure with Anechoic 

Termination 

First of all, Nδ  can be used to estimate the ratio of +−
11 vv  described in Section 

3.1 by rewriting Eq. (3.24) under anechoic termination as 

0212
1

211
1

11 =+=+ −−−−−− endendendend jkL
N

jkL
N

jkLNjkLN evbevaevbeva λλ              (3.28) 
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by using the relation −+ = 21 vv , which was discussed in Section 3.2. This can be 

verified by comparing Fig. 3-3 and the dotted line in Fig. 3-7. 

 

Furthermore, the averaged transmission loss TL  of this finite-length duct with N 

periodic resonators can be used to estimate the attenuation constant rμ in terms of 

)(log20 10
reμ . The averaged transmission loss TL  can be expressed as  
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Within the frequency range of stop-bands, there is  

,, 21
irir jj ee μμμμ λλ +−− ==           πμμ 20and0 <≤> ir             (3.31) 
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Because 11 <λ , when ∞→N , the first term in Eq. (3.28) approaches zero, so 

01 =b . Therefore, Eq. (3.30) can be rewritten as 
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Within the frequency range of pass-bands, there is  

ii jj ee μμ λλ == −
21 ,  ( πμ 20 <≤ i )                                    (3.33) 

and the Χ  in the Eq. (3.30) can be rewritten as 
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which can be regarded as the addition of the vectors +
10va  and +

20vb  divided by the 

addition of themselves with an iNμ  degree rotation of +
10va  in the clockwise 

direction and an iNμ  degree rotation of +
20vb  in the counter-clockwise direction. 

By substituting Eq. (3.34) into Eq. (3.30), TL  fluctuates over the pass-band since 

the phase constant iμ  is the function of frequency. On the other hand, TL  

decreases at the rate of 1/N and the fluctuation of TL  becomes smaller when the 

number of periodic cells (N) increases. Moreover, TL  approaches zero (i.e., is close 

to )(log20 10
reμ  with 0rμ = ) within the pass-band in the semi-finite duct with 

periodic resonators when N approaches to infinity, as shown in Fig. 3-2(a). 

 

Compared with the semi-infinite duct with periodic resonators discussed in Section 

3.1, this section investigates two cases: two ducts with 3 and 10 resonators 
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respectively under anechoic termination, as shown in Fig. 3-8. It is noted that the 

case N=1 is also investigated, which is the common condition that a duct with a 

single side-branch resonator. In addition, the attenuation constant rμ in terms of 

)(log20 10
reμ  in Fig. 3-2(a) is re-plotted in Fig. 3-8, which has been verified above 

that equals to TL  in the case N=∞. The dimensions of duct, resonators and periodic 

distance maintain the same as those used in Fig. 3-2, with the beginning and end 

conditions: 30=beginL  cm, 30=endL  cm, 10 =P  Pa and 0α = . When the case 

N=1 is compared to other 3 cases (N=3, 10 and ∞), one can have a clear impression 

of the difference brought by structural periodicity. In the frequency range of 150-240 

Hz and 640-860 Hz, different from a single resonator (N=1) providing slight 

attenuation of around 0.5-2 dB, planar waves propagate without any decay through 

the resonators array (N=∞). On the other hand, the combination of several identical 

resonators provides more averaged noise attenuation than the single resonator in the 

frequency range 240-380 Hz and 480-640 Hz of the main stop-band (N=∞). When 

the three cases of N=3, 10 and ∞ are compared, one can see that the averaged 

transmission loss TL  approaches the attenuation constant rμ in terms of 

)(log20 10
reμ  (i.e. the case N=∞) in the stop-bands as N increases. Similarly, as N 

increases, TL  approaches )(log20 10
reμ  with the ripple pattern of TL  decreasing 

in both cases of N=3 and 10 in the pass-bands. It should be noted that there is a 

undesirable dip in Fig. 3-8 at the Bragg reflection frequency (425 Hz). To eliminate 
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this dip, the resonance frequency of resonators should set accurately to this 

frequency; and this leads to a broad stop-band, i.e. stop-band III.  
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Figure 3-8. Using the averaged transmission loss TL  to estimate the attenuation 

constant rμ in terms of )(log20 10
reμ . 

 

 

3.3 Numerical Simulation Based on the Finite 

Element Method 

A three-dimensional finite element method (FEM) was used to verify the theoretical 

analysis of the finite-length duct with periodic resonators; investigate the influence 

of number of Helmholtz resonator on noise reduction characteristic, and compare 

with the experimental results in next section. The detailed description of this method 
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for time-harmonic acoustics in this thesis, which are governed by the Helmholtz 

equation, can be found in numerous sources.61 The commercial software COMSOL 

Multiphysics® version 2009 is used in the thesis as a validation tool, which also 

offers an extensive interface to MATLAB and its toolboxes for a large variety of 

programming and postprocessing works. The numerical model consisted of a duct 

with different number of identical side-branch resonators and an excitation from an 

oscillating sound pressure at fixed magnitude 10 =P . The end termination was set to 

be anechoic (i.e. 0/ =+∂∂ jkPxP ).62 To ensure accuracy, a fine mesh spacing of 

less than 5 cm was maintained for the models (compared to the wavelength of the 

upper frequency, i.e. 1000 Hz, considered in this chapter). For example, when 

considering the case used in Figs. 3-2 and 3-8 with N=5, the mesh divided the 

duct-resonator structure into more than 8,000 triangular elements; and the maximum 

element was observed in the duct with a side length of 4.8 cm; the minimum element 

was observed in the neck-duct interface with a side length of 1.7 mm.  

 

Fig. 3-9 shows the noise attenuation effect formed by the wave coupling in the 

periodic duct instead of the resonance of a single resonator ( 0 415f =  Hz), sound 

field distribution (pressure magnitude) on the sliced plane along the duct were 

examined at 500 Hz. In Fig. 3-9, the geometries of the duct-resonator system are the 

same as those used in Fig. 3-8, i.e. 1r =1.7 cm, 1l =4.55 cm 2r =4.7 cm, 2l =4 cm, 
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dS =13.2 cm2, D =40 cm, 30=beginL  cm, 30=endL  cm, 10 =P  Pa and 0α = . It 

can be seen from Fig. 3-9 that sound pressure dropped noticeably at a rate of around 

10 dB per cell, which agrees well with the theoretical analysis shown in Fig. 3-8 at 

500 Hz. 

 

 

Figure 3-9. Sound field (pressure magnitude) of the finite periodic structure. 

 

Secondly, FEM is used to investigate the influence of number of resonators in the 

periodic duct-resonator system, which results in an evolution of the noise attenuation 

from a single peak to the three different stop-band types; and the FEM simulation is 

compared with the theoretical analysis of the stop-band width developed in Section 

3.1.4, as shown in Figs. 3-10 and 3-11. The geometries of the duct-resonator system 

in Fig. 3-10/3-11 is the same as those used in Fig. 3-5(a)/(b) respectively, i.e. 1 2r =  

cm, 1 2.1l =  cm, 2 136.75V π= cm3,  12=dS  cm2, 45=D  cm for Fig. 3-10; 

4.34=D  cm with others unchanged for Fig. 3-11. 
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Figure 3-10. The averaged transmission loss TL  of the duct with N resonators (the 

solid lines represent the FEM simulation and the dotted lines represent the theoretical 
prediction).  

 



 53

0

5

10

15

20

25

TL
 (d

B
)

 

 

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

Frequency (Hz)

TL
 (d

B
)

 

 

0

10

20

30

40

TL
 (d

B
)

 

 0

10

20

30

40

50

TL
 (d

B
)

 

 

(a)

(b)

(c)

(d)

N=1

N=2

N=5

N= ∞
stop-band 

π=kD

Ⅲ

TL
TL

TL
TL

 

Figure 3-11. The averaged transmission loss TL  of the duct with N resonators (the 

solid lines represent the FEM simulation and the dotted lines represent the theoretical 
prediction).  

 

Compared to the geometries of the duct, the resonators used in Figs. 3-10 and 3-11 

are large. To ensure the validity of the lumped model, the interested frequency range 

is kept well below the cut-on frequency of the duct and neck. The deviation between 
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the theoretical prediction and the FEM simulation can be observed in Fig. 3-10(a) 

and Fig. 3-11(a), which is very similar to that observed in Fig. 2-2. However, 

although the distributed models will give a better prediction (as shown in Fig. 2-2), 

the lumped one helps in the discussion on the band types with the geometries of 

resonators. Moreover, the theoretical predictions in Fig. 3-10 and 3-11(a) diverge at 

the resonance frequency in this lossless case (TL →∞ ); and there is a truncation on 

the peak in these figures (dotted lines). Truncated the peaks can show clearly the 

main attenuation bands in thesis figures without considering the peaks that are 

unrealistic in practice. Due to the calculation error in the FEM simulation, sound 

pressure in the downstream duct can not accurately equal to zero at the resonance 

frequency, the resonance peak of solid lines will not diverge.  In Fig. 3-11(b), (c) 

and (d), the peaks of both dotted and solid lines are suppressed due to structural 

periodicity in the case 0ωω =m . 

 

In Figs. 3-10 and 3-11, when the cases N=1 are compared to other cases, there is a 

clear impression of the difference caused by structural periodicity. The cases N=2, 

shown in both Fig. 3-10(b) and Fig. 3-11(b), illustrate the rudiments of the frequency 

attenuation caused by structural periodicity; the original pattern of frequency 

attenuation begins to break down under the influence of the emerging structural 

periodicity. In the cases N=5, shown in Figs. 3-10(c) and 3-11(c), the width of the 
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stop-bands decreases and a ripple pattern is observed beside them. That pattern 

disappears when N=∞ , as can be seen in both Fig. 3-10(d) and Fig. 3-11(d). 

 

As the case shown in Fig. 3-11(c), beside the peak resulted from the resonance of a 

single resonator, the duct with five identical resonators provides an averaged 

transmission loss with a broadband around 240-820 Hz at the level of around 3-15 

dB; the overall transmission loss of this system is quintupling, providing around 

15-75 dB in this wide frequency range. 

 

3.4 Experiment   

Fig. 3-12 shows the experimental setup for the measurement of the sound pressure in 

a duct with an array of resonators. Similar to the numerical model shown in Fig. 3-9, 

the experimental apparatus consisted of a duct with five identical side-branch 

resonators and a loudspeaker mounted at the beginning. In the experiment, two 

replaceable end terminations were used. One is rigid end termination and one is a 

termination with absorptive materials. The transfer matrix method was used.63-64 

This method including the two-microphone technique63 is used to separate incident 

and reflected waves for calculation of the transmission loss by placing one pair of 

microphones before and another pair after the resonators array, and the two-load 
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method63 to yield strict anechoic end termination. A detailed description of the 

transfer matrix method can be found in Ref. 63. The testing apparatus consisted of 

four B&K ¼” type 4935 microphones, a B&K PULSE analyzer with four input 

channels and two output channels, and a B&K type 2706 power amplifier. The 

matching of the four microphones was carefully calibrated following Ref. 63. The 

calculated transmission loss is then divided by the number of resonators (N=5) as 

averaged transmission loss TL , that  can be regarded as an approximation of the 

attenuation constant rμ  in terms of )(log20 10
reμ , as discussed in Section IV. The 

dimensions of duct, resonators are the same as those used in Fig. 3-8, except now 

51 =l  cm and 47=D  cm (i.e. 1r =1.7 cm, 1l =5 cm 2r =4.7 cm, 2l =4 cm, 

dS =13.2 cm2, D =47 cm, 30=beginL  cm, 30=endL  cm, 10 =P  Pa and 0α = ). 

Furthermore, these dimensions of the duct and resonators are similar to that in Ref. 

10, which are selected to investigate nonplanar waves excited in the resonators 

neck-cavity interface and to ensure planar wave propagation in the duct and neck 

with higher-mode waves decay quickly. 
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Figure 3-12. The experiment setup for measurement. (a) schematic, (b) installment. 

 

3.5 Results and Discussion 

Fig. 3-13 shows the comparison of the average transmission loss TL  between the 

experiment, the theory using the distributed-parameter model, and the FEM 



 58

simulation for a duct with 5 identical side-branch resonators. It can be seen from Fig. 

3-13 that the changes in the geometry of the structure result in the difference of the 

range of the main stop-band, the position of the gap, and the peak of the main 

stop-band compared to Fig. 3-8. As shown in Fig. 3-13, the FEM simulation fits 

better with the experimental data than the theoretical predictions both in the 

stop-bands and in the ripple of the pass-bands. The deviation of the experiment data 

from other two methods at the sharp peak is probably due to the sensitivity of the 

microphones, which is similar to that observed in Ref. 32. However, instead of the 

sharp peak resulted from the resonance of a single resonator, the broad noise 

attenuation band from 210 to 570 Hz is a more important feature for this periodic 

structure because it can provide considerable noise attenuation in both magnitude 

and bandwidth. It can be seen from Fig. 3-13 that the averaged transmission loss TL  

in the main stop-band is about 3-15 dB, except the narrow gap at around 380 Hz and 

the sharp peak at around 400 Hz. In this finite-length duct with five identical 

resonators (i.e. N=5), the overall transmission loss TL  is about 15-75 dB (i.e. 5 × 

3-15 dB) in the stop-band except the gap and the peak.  



 59

100 200 300 400 500 600 700 800
-5

0

5

10

15

20

25

30

35

Frequency (Hz)

TL
 (d

B
)

 

 
theory
FEM
experiment

 

Figure 3-13. A comparison of TL  between experiment, the theory using 

distributed-parameter model and the FEM simulation for a duct loaded periodically 
with 5 identical resonators. 

 

3.6 Conclusion 

This chapter has presented a theoretical study of a periodic resonators array based on 

the distributed-parameter resonator model. When waves travel through each 

resonator, they produce reflected and transmitted waves. Those reflected and 

transmitted waves are then reflected and transmitted again by the previous and next 

resonators. This process is physically repeated in the periodic structure. In this 

situation, instead of dividing the sound pressure field in the duct simply into 

positive- and negative-going planar waves, it is more appropriate to decompose it 
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into positive- and negative-going characteristic wave types. Three types of 

stop-bands of the characteristic wave types have been discussed, and their 

bandwidths have been predicted theoretically. 

 

After introducing the characteristic wave type to describe the wave coupling in the 

periodic structure, both the semi-infinite duct with infinite periodic resonators and 

the finite-length duct with N periodic resonators have been discussed. The influence 

of the number of resonators has also been investigated. The predicted results using 

this theory fit well with the FEM simulation and the experimental results.  

 

As the case shown in Fig. 3-11(c), beside the peak resulted from the resonance of a 

single resonator, the duct with five identical resonators provides an averaged 

transmission loss with a broadband around 240-820 Hz at the level of around 3-15 

dB; the overall transmission loss of this system is quintupling, providing around 

15-75 dB in this wide frequency range. This study indicates that compared to a 

single resonator, the use of periodic resonators may provide a much broader sound 

attenuation band under carefully designed. 

 

In this chapter, the eigenvalue analysis on the periodic structure is the existing theory. 

However, as the original contribution, the duct with periodic resonators is found to 
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be an effective tool for broadband noise control. In particular, such as the influence 

of the number of resonators in the finite-length duct-resonator system and the 

modified bandwidth prediction are original works, so does the detailed analysis on 

the physical meanings of the characteristic wave types.  
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Chapter 4  

Disorder in a Periodic Helmholtz 
Resonators Array  

4.1 Theoretical Analysis 

As shown in Fig. 4-1, a “periodic” cell comprises a duct segment with a resonator 

attached to its left side. When considering the irregularity of the periodic distance 

between any two nearby resonators and the geometries of Helmholtz resonators, the 

system can no longer be represented by a single transmission matrix T and a single 

periodic distance D as it is in the pure-periodic case discussed in Chapter 3. Rather, 

we should specify each transmission matrix and “periodic” distance, noted as nT  

and Dn for 1, 2,...,n N= .  

 

 

Figure 4-1. A duct with N Helmholtz resonators. 

 

Similar to the pure-periodic case, the diameter of the resonator neck is assumed to be 
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negligible compared to the length of the duct segment between two nearby 

resonators, Dn. The frequency range considered is well below the cut-on frequency 

of the duct. In the duct segment of the nth cell, the sound traveling in positive- and 

negative-x directions can be described with sound pressure ( )( ) n njk x D
n nP x C e− −+ +=  

and ( )( ) n njk x D
n nP x C e −− −=  for 0 n nx D≤ ≤ , where +

nC  and −
nC  are complex 

constants and k is the wave number. If 
T

n n nC C+ −⎡ ⎤= ⎣ ⎦c  and 1 1 1

T

n n nC C+ −
+ + +⎡ ⎤= ⎣ ⎦c  

represent the wave component in the duct segment of the nth and nth+1 element of the 

“periodic” system, then it can be related through a wave transfer matrix 1n+T  as 

follows: 

1 1n n n+ +=c T c                                                       (4.1) 

As discussed in Chapter 3, the transfer matrix can be expressed as 

10
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n

jkD
n n

n jkD
n n

e
e

ξ ξ
ξ ξ

− − −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

T                                     (4.2) 

where / 2n d nZ Zξ = , where dZ / nZ  is the acoustic impedance of the duct/nth 

resonator respectively. Furthermore, the transfer matrix Tn can be rewritten in terms 

of the transmission and reflection coefficients, nt  and nr , as65 

*
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0
0 1
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njkD
nn

n jkD
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n n

r
te t
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t t

−
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T                                  (4.3) 

where the superscript * means conjugation. It follows immediately that 

* * *
1 1 1 1( )T T T

n n n n n n+ + + +=c c T c c T                                            (4.4) 
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where the superscript T means transposition; equation (4.4) can be rewritten in 

vector form as 

1 1n n n+ +=e A e                                                       (4.5) 

where * * * * T

n n n n n n n n nC C C C C C C C+ + + − − + − −⎡ ⎤= ⎣ ⎦e ; and the entries of the 4 4×  matrix 

nA  can be expressed in terms of the entries of nT . It should be noted that the final 

diagonal entry of the matrix nA  has the value 2(4,4) 1 | |n nt=A ,40 and thus 

knowledge of 1n+A  leads immediately to the modulus squared transmission 

coefficient between the nth and nth+1 “periodic” elements. Furthermore, for the 

whole system, there is 

1 0 0
1

N

N N n
n

+ −
=

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∏e A e Λe                                           (4.6) 

where nA  is the matrix derived from nT  and Λ  is the corresponding matrix of 

the whole system. 

 

4.1.1 Random Disorder 

If the periodic system subject to random disorder and the random variations in the 

properties of each “periodic” element are statistically independent, then Eq. (4.6)  

can be described by the ensemble average behavior of the system as40  

1
1

[ ] [ ]
N

N n
n

E E + −
=

=∏Λ A                                                (4.7) 

Here, E[ ] represents the ensemble average. If the random variations in the system 
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properties are homogeneous, so that the various “periodic” elements have the same 

probability distribution, then Eq. (4.7) can be reduced to  

[ ] [ ]NE E=Λ A                                                     (4.8) 

If the duct-resonator system is initially periodic, with periodic distance D and the 

transmission and reflection coefficients of a side-branched Helmholtz resonator t  

and r , the matrices nA  are all the same with the omission of the subscript n and 

take the form 

2 2 * 2 2 2

* *2 *2 *2 *2 * *2

2 2 2 2 2

2 2 2 * 2 2

1 | | | | | | | | | |

1
| | | | | | | | 1 | |

t r t r t r t
r t t r t r t
r t r t t r t

r t r t r t t

δ δ δ δ
δ δ δ δ

⎡ ⎤− −
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

A                            (4.9) 

where exp( 2 )jkDδ = − . The expected value of A  may be computed if the 

statistical properties of the system are known. For example, it is assumed that the 

Helmholtz resonators are identical while the periodic distance D  is allowed to vary 

in a random fashion with a probability density function ( )p D . In this case, the 

expected value of A  is given by Eq. (4.9), with the parameters δ  interpreted as 

average values, as 

2 ( ) ( 2 )jkDe p D dD M kδ
∞ −

−∞
= = −∫                                      (4.10) 

Here, ( )M θ  is the characteristic function of the random “periodic” distance. For a 

Gaussian distribution, ( )M θ  would be 2 2
0exp( / 2)jD θ σ θ− , where 0D  is the 

mean “periodic” distance and σ  is the standard deviation.  
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Eq. (4.8) can also be expressed in the form 

1[ ] NE −=Λ PΓ P                                                    (4.11) 

where Γ  is a diagonal matrix containing the eigenvalues of [ ]E A  and P  is a 

matrix whose columns are the corresponding eigenvectors. If N is allowed to tend to 

infinity and [ ]E Λ  has at least one real eigenvalue greater than unity, there is 

2
maxlim{ [1 | | ]} lnNN

E t N λ
→∞

=                                          (4.12) 

 

4.1.2 Man-made Disorder 

However, sometimes the disorder is not an imperfection but a man-made disorder to 

achieve a modified filter characteristic of the “periodic” system, which means the 

disorder in periodicity is no longer weak but significant. Furthermore, in practice, 

the duct-resonator system does not contain a large number of resonators that are 

suitable to be described by a statistical method, as discussed above. This case is 

considered in this section. As discussed above, the duct-resonator system can no 

longer be represented by the mean transmission matrix T and the mean periodic 

distance D. In other words, each transmission matrix and “periodic” distance should 

be specified as nT  and Dn for 1,2,...,n N= . As considered in this section, the finite 

“periodic” system only contains five side-branched Helmholtz resonators (i.e. N=5). 

Two cases are considered: (1) disorder in the periodic distance with the geometries 

of the resonators unchanged and (2) disorder in the geometries of the resonators with 
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the periodic distance remaining unchanged. So, the whole system can be described 

as 

5 0
5 4 3 2 1

5 0

C C
C C

+ +

− −

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
T T T T T                                            (4.13) 

By introducing Eq. (4.4), there is 

5

5 6 0 0
1

j
j

−
=

⎛ ⎞
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⎝ ⎠
∏e A e Λe                                             (4.14) 

It has been discussed that in the matrix Λ , the entry of (4,4)Λ equals the modulus 

squared transmission coefficient of the whole system totalt , that is 2(4, 4) 1 | |totalt=Λ . 

So, the average transmission loss of the whole system can be described as  

10
10 log ( (4,4))TL N= Λ ,   N=5                                     (4.15) 

 

4.2 Results and Discussion 

It is found that a periodic Helmholtz resonators array may provide a considerable 

broad noise attenuation band. To compare this with the case of disorder in periodicity, 

some results derived from the pure-periodicity case in Chapter 3 are discussed here. 

The average transmission loss for a duct mounted periodically by five identical 

Helmholtz resonators with the geometries 1 4S π=  cm2, 1 2.1l =  cm, 

2 136.75V π= cm3, 12=dS  cm2, and 34.3D =  cm is shown in Fig. 4-2(a). The 

detailed description of such pure-periodic duct-resonator system is presented in 
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Chapter 3. The theoretical prediction is compare with the FEM simulation using the 

commercial software COMSOL Multiphysics® version 2009, which offers an 

extensive interface to MATLAB and its toolboxes for a large variety of programming 

and postprocessing works. 

 

4.2.1 Disorder in Periodic Distance 

In this section, the disorder in the distance between two nearby resonators is 

considered, while the geometries of the Helmholtz resonator remain unchanged. The 

five distances between two nearby resonators are expressed as kD , 1, 2,...,5k = . 
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Figure 4-2. Disorder in periodic distance (“х” represents the FEM simulation and the 

solid lines represent the theoretical prediction).  

 

Fig. 4-2(a) shows the case in which the periodic distance between two nearby 

resonators is perfectly maintained in the whole system as D=34.3 cm; this case is the 

same as that discussed in Chapter 3. Fig. 4-2(b) shows the simple case in which one 

distance is changed (D1=24.3 cm) while the other periodic distances are kept 

unchanged. In this case, the “defect” is adiabatic, which means that the “defect” does 
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not affect the other periodic elements. It can be seen that due to the single “defect,” 

the pattern of the whole main noise attenuation band changes significantly. First, the 

attenuation peak at the frequency of 500 Hz is more obvious than it is in the perfect 

periodic system shown in Fig. 4-2(a). Owing to the single “defect” in periodic 

distance, the resonance peak at the frequency of 500 Hz in the system seems to be 

not as strongly suppressed as it is in the original perfectly periodic system. The 

suppression in this region is due to structural periodicity in the case in which the 

periodic distance D matches the condition kD mπ= , 1, 2,...,m = ∞ , as discussed in 

Chapter 3. Second, an obvious reduction in the main attenuation band can be seen at 

around 630 Hz. As discussed before, the introduction of defects into the perfect 

periodicity may lead to narrow frequency transmission bands (i.e. defect states) 

within the stop-band gaps.35 Fig. 4-2(c) shows the case in which there are two 

defects in periodic distance, D1=24.3 cm and D2=44.3 cm, while the other periodic 

distances are kept unchanged. Compared to the previous case shown in Fig. 4-2(b), 

the defects in this case are no longer adiabatic; the variation of D1 also affects the 

nearby distance D2, which can be interpreted as moving the second Helmholtz 

resonator (Fig. 4-1) to the left of the system by 10 cm. As shown in Fig. 4-2(c), the 

affect introduced by these two “defects” is more obvious, and due to the structural 

periodicity, the original pattern of the noise attenuation band begins to break down 

under the influence of these two “defects.” It can be seen that the suppression due to 
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the periodicity at 500 Hz is no longer strong as the attenuation peak is much stronger 

than those in Fig. 4-2(a) and (b). It can be seen that the main noise attenuation band 

seems difficult to define, especially the upper frequency boundary. In general, the 

periodic system seems to be very “sensitive” to the defects in the periodic distance, 

and such “defects” should be carefully avoided in manufacturing such periodic 

systems. 

 

4.2.2 Disorder in the Geometries of Helmholtz Resonators  

In this section, the disorder in the geometries of Helmholtz resonators is considered, 

with the periodic distance between each of the two nearby resonators being kept 

unchanged. Owing to the disorder in their geometries, the five resonators may have 

different resonance frequencies, noted as nf , 1, 2,...,5n = . 

 

Fig. 4-3(a) shows the case in which the periodicity is perfect, with all of the 

resonators resonating at 500 Hz, which is the same case as that discussed in Chapter 

3, with the geometries π4=nS  cm2, 1.2=nl  cm and π75.136=cV cm3. Fig. 

4-3(b) shows the case in which there are two resonators in disorder, with resonance 

frequencies of 400 Hz and 600 Hz, with the geometries π4=nS  cm2, 1.2=nl  cm, 

213.67cV π= cm3 and π4=nS  cm2, 1.2=nl  cm, 95cV π= cm3 respectively, 

while the other three resonators resonate at 500 Hz. It can be seen that in this case, 
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the main broad noise attenuation band is well maintained, with the bandwidth being 

kept unchanged at around 240-820 Hz. However, when compared to the perfectly 

periodic case shown in Fig. 4-3(a), the pattern of the main attenuation band is 

significantly different in its frequency range. Two new attenuation peaks are found at 

the frequencies of around 400 Hz and 600 Hz. Furthermore, although three 

resonators resonate at the frequency of 500 Hz, the average transmission loss TL  in 

the vicinity of 500 Hz seems to be suppressed significantly; a similar phenomenon 

can also be found in Fig. 4-3(c). The suppression in this region is due to structural 

periodicity in the case in which the periodic distance D matches the condition 

kD mπ= , 1, 2,...,m = ∞ , as discussed in Chapter 3. Fig. 4-3(c) shows the case in 

which there are two resonators in disorder, with resonance frequencies of 250 Hz and 

800 Hz, with the geometries π4=nS  cm2, 1.2=nl  cm, 547cV π= cm3 and 

π4=nS  cm2, 1.2=nl  cm, 53.42cV π= cm3 respectively, which are close to the 

lower and upper boundary of the main attenuation band, while the other three 

resonators resonate at 500 Hz. In general, Fig. 4-3(c) shows that as long as the 

variation of the resonance frequencies of the disordered Helmholtz resonators is kept 

within the frequency range of the main attenuation band, the band will be well 

maintained, with the bandwidth being kept unchanged. This is a useful way for the 

design of such a system to achieve a relatively wide noise attenuation band and to 

track some narrow noise peaks within it. It is especially effective for the kind of 
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noise that is low frequency and broad band and has some peaks. 
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Figure 4-3. Disorder in the geometries of Helmholtz resonators (“х” represents the 
FEM simulation and the solid lines represent the theoretical prediction).  
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4.2.3 Comparison of Differently Tuned Helmholtz 

Resonators with and without Periodic Mounts 

It can be seen from the previous section that the main noise attenuation band 

(240-820 Hz) results mainly from the appropriated design of the periodic distance D. 

In engineering, combining differently tuned resonators is usually one possible way 

of obtaining a broader noise attenuation band, and this has been investigated by 

some researchers.66,67 This section investigates the noise reduction effect of an array 

of differently tuned resonators with and without periodic mounts. 

 

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Frequency (Hz)

   
   

 (d
B

)
TL

 

Figure 4-4. Noise attenuation of an array of differently tuned resonators (the 
solid/dotted lines represent the theoretical prediction for resonators with/without 

periodic mounts, respectively). 

 

Fig. 4-4 shows the comparison of differently tuned resonators with and without 

periodic mounts. The case of differently tuned resonators with periodic mounts is the 
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same as that shown in Fig. 4-3(b). The geometries of the resonators in these two 

cases are the same, with resonance frequencies of f1=400 Hz, f2=600 Hz, and 

f3=f4=f5=500 Hz. In the case without periodic mounts, the distance between the two 

nearby resonators is random, with D1= 15 cm, D2=20 cm, D3=17 cm, D4=18.5 cm, 

and D5=16.5 cm. In the other case, the distance between the two nearby resonators is 

the same: D=34.3 cm. It can be seen that the averaged transmission loss TL  in the 

case without periodic mounts has a significant peak at around 500 Hz, which is the 

advantage of the uncoupled resonators array, compared to the other case; the 

relatively poor performance at around 500 Hz in the latter case is the result of the 

strong suppression due to structural periodicity in the case where the periodic 

distance D matches the condition kD mπ= , 1, 2,...,m = ∞ , as discussed in Chapter 

3. However, the coupled resonators (the solid lines in Fig. 4-3) provide a much 

broader noise attenuation bandwidth than the uncoupled ones, and this is the 

advantage of the coupled resonators. Hence, there are trade-offs between both cases, 

and one can choose the resonators array that is suitable according to the properties of 

the noise type encountered in engineering. 

 

4.4 Conclusion 

This chapter has investigated the influence of disorder in the periodic duct-resonator 



 76

system. Disorder in periodicity includes the disorder in periodic distance and the 

disorder in the geometries of Helmholtz resonators. With regard to the disorder in 

periodic distance, the periodic system seems to be very “sensitive” to both the 

defects in the periodic distance and the original pattern of the noise attenuation band 

due to the fact that the structural periodicity begins to break down under the 

influence of these “defects.” Such “defects” should be carefully avoided in 

manufacturing such periodic systems. However, in the case of the disorder in the 

geometries of Helmholtz resonators, the main attenuation band will be well 

maintained, with the bandwidth being kept unchanged, as long as the variation of the 

resonance frequencies of the Helmholtz resonators are kept within its frequency 

range. This is a useful way for the design of such systems to achieve a relatively 

wide noise attenuation band and to track some of the narrow noise peaks within it. 

Comparing the latter case to the traditional case of a differently tuned resonators 

array taking no account of periodic mounting, the latter case provides a much 

broader attenuation band and the traditional way gives a much higher resonance peak. 

In general, the disorder in the geometries of Helmholtz resonators in the 

duct-resonator periodic system may provide an optional way to reduce the noise, 

especially the kind of noise that is low frequency and broad band and has some noise 

peaks. As an extension of pure-periodic case discussed in Chapter 3, this chapter is 

also an original work. 
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Chapter 5  

Ventilation Performance of Helmholtz 
Resonators  

5.1 A Fluid Dynamic Model of a Single Opening 

Enclosure 

As shown in Fig. 5-1, in fluid dynamics, the phenomenon of turbulent wind induced 

ventilation of a room with a single opening has been reported by several 

researchers.52-54 A room with a single opening can be considered as a big Helmholtz 

resonator. From now on, for the sake of consistence, in most part of the chapter, 

either a room with a single opening or a Helmholtz resonator will be called 

single-opening enclosure, with the room or the cavity of the resonator called 

enclosure, the opening or the neck of the resonator called opening. The fluid 

dynamic modeling of a single-opening enclosure will lead to a non-linear oscillator 

equation. Interested readers can find a detailed discussion of the non-linear oscillator 

equation in many papers, such as Refs. 53 and 54. However, for the sake of 

completeness, the derivation of the nonlinear oscillator equation is discussed here. 
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Figure 5-1. Airflow through a single opening. 

 

When considering the ventilation of a single opening enclosure, the wavelength of 

the external pressure oscillation is assumed to be much larger the geometries of the 

enclosure and the mean air density and ambient pressure can be treated as uniform in 

the enclosure. The density of the internal air can be expressed as 

)()( ' tt ininin ρρρ +=                                                 (5.1) 

where inin t ρρ <<)('  where density changes are assumed to be very small compared 

to the mean value. Applying a compressible form of the continuity equation to the 

internal air gives 

0 ( )indV q t
dt
ρ ρ=                                                    (5.2) 

where 0ρ  denotes the mean density of the internal and external air, as 0ρρρ == exin , 

and V is the volume of the enclosure. And )(tq  is the airflow rate through the 
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opening (defined as the product of the area of the opening and the mean velocity of 

the airflow). The internal and external air pressure )(tPin  and )(tPex  can be 

expressed as 

( ) ( )in in inP t P p t= +  , ( ) ( )ex ex exP t P p t= +                                (5.3) 

where ( )in inp t P<< , ( )ex exp t P<< ; and 0PPP exin == .  The equation of state for the 

internal air is 

γγ
ρρ

inin

in P
t
tP 0

)(
)(
=                                                      (5.4) 

where γ  is the isentropic index for assuming this is a isentropic process. Thus 

t
p

Pt
P

Pt
inin

in

inin

d
d

d
d

d
d

0

0

γ
ρ

γ
ρρ

==                                            (5.5) 

and substituting in Eq. (5.2) gives 

)(
d

d
0 tqP

t
pV in =

γ
                                                   (5.6) 

By ignoring the viscous and the gravity effect of the air, the momentum equation can 

be expressed as (for 2-dimentional condition) 

0

1 0x x x
x y

v v v pv v
t x y xρ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 and 

0

1 0y y y
x y

v v v pv v
t x y yρ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
      (5.7) 

where flow velocity ( , )x yv v=v . Assuming that the flow through the opening can be 

regarded as irrotational flow with velocity potential φ  with 

sv
s
φ∂

= −
∂

                                                        (5.8) 

where sv  is the flow velocity along a streamline and s denotes the distance along a 
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streamline (a streamline is a line that is everywhere tangent to the velocity field of 

the flow).50 The irrotational form of incompressible Bernoulli equation then can be 

given as 

2

0

( )( ) ( )
2

sv tp t F t
t
φ

ρ
∂

+ − =
∂

                                            (5.9) 

Applying Eq. (5.9) to a point on the external side and to another point on the internal 

side, gives 

2 2

0 0

( ) ( ) ( ) ( )
2 2

ex ex in in

ex in

p t v t p t v t
t t
φ φ

ρ ρ
∂ ∂

+ − = + −
∂ ∂

                          (5.10) 

Since the instantaneous velocity and velocity potential can be expressed as a 

spatial-related term and a time-dependent term T(t), Eq. (5.10) can be expressed as 

2
2 2

, , , ,
0

( ) ( ) ( ) ( )
2

ex in
s in s ex s ex s in

p t p t T t Tv v
t

φ φ
ρ
− ∂⎡ ⎤= − + −⎣ ⎦ ∂

                    (5.11) 

where ,s exφ / ,s inφ  is the spatial term of exφ / inφ . Since ( ) j tT t e ω=  and 

, ,
in

ex

s

s ex s in ss
v dsφ φ− = ∫                                                (5.12) 

 

Eq. (5.12) can be simplified by introducing the concept of an effective length el , 

which is the distance along the central streamline that follows the x-axis from the 

external point where the flow velocity can be ignored to the internal point at some 

distance from the outlet whose speed can be given by ( )q t Aβ , where A is the cross 

sectional area of the opening and β  is the contraction ratio (describes the 

contraction of the flow in sharp-edged opening, as jetA A  shown in Fig. 5-5) as49 
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2 2

0 02 2

( )( ) ( ) ( )
2

in

ex

ss
ex in ss

T t q dTp t p t p t v ds
A dt

ρ ρ
β

Δ = − = + ∫                      (5.13)   

where ( ) ( )sq t q T t= . An effective length el  can be defined by 

in

ex

ss
e ss

q l v ds
A

= ∫                                                    (5.14) 

So that Eq. (5.13) becomes 

2 2

0 2 2

( )( ) ( )
2

s s
ex in e

T t q q dTp t p t l
A A dt

ρ
β

= − −                                  (5.15) 

Combining Eqs. (5.6) and (5.15) gives 

2
20 0

0 02 2 ( ) ( )
2

e
ex

l P cdq q t qdt p t
A dt A V

γρ ρ
β

+ + =∫                            (5.16) 

where 2
0 0 0c Pγ ρ=  is the sound speed. Eq. (5.16) describes the ventilation of a 

room with a single opening by the relation of the instantaneous airflow rate q(t) with 

the external pressure fluctuation ( )exp t . And the result of Eq. (5.16) is somehow 

similar to the modeling of a Helmholtz resonator in acoustics way, which is to find 

the relation of the instantaneous particle velocity v(t) in the neck with the external 

pressure ( )exp t , as 

2
2

0 0 0( ) ( )
2e ex

dv K A Al c v t c vdt p t
dt V

ρ ρ ρ
π

+ + =∫                            (5.17) 

where K  is the damping force coefficient, which is defined as F/v (F is the 

damping force of air piston in the neck and v is the mean velocity of the air piston). 

Note that the flow rate ( ) ( )q t Av t= , which equals to the concept of sound volume 

velocity in acoustics. It can be seen that Eq. (5.16) and Eq. (5.17) only differs in the 
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second term on the left-hand side. The acoustic solution is identical to that for a 

mechanical oscillator with linear damping. A damping force of this type can be 

associated with a low Reynolds number (a dimensionless number that describes the 

ratio of inertial forces to viscous forces for a given flow condition) flow through a 

narrow opening where the surface shear stress is proportional to the flow rate q . 

The difference of the second term on the left-hand side of Eq. (5.16) makes the fluid 

dynamic solution of the resonator a non-linear oscillator equation and there are 

several works on the linearization process of this non-linear oscillator equation.68,69 

It can be imagined that when the applied sound pressure continues to grow, the 

behavior of the Helmholtz resonator at the resonance frequency can no longer be 

described by the linearised oscillator equation, Eq. (5.17), but the non-linear 

oscillator equation, Eq. (5.16). 

 

However, both the fluid dynamic modeling in Eq. (5.16), and the acoustic modeling 

in Eq. (5.17), does not provide any information about the ventilation performance of 

the single-opening enclosure since that either the flow rate q(t) or the particle 

velocity v(t) may only describe the backward-forward motion of the “air piston” in 

the opening. The actual ventilation performance, if any, can be described by the air 

exchange between the external and the internal air of the enclosure. In detail, this 

process may contain three parts in a fluctuation period: the air exchange between the 
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internal space (enclosure) and the opening, the air mixing in the opening and the air 

exchange between the external space (may refers to duct in mechanical ventilation) 

and the opening. To investigate the air exchange between the enclosure and the duct 

is the main object in the following part of this chapter. 

 

5.2 Fluid Dynamic Modeling of Inlet and Outlet 

Airflow 

To investigate the air exchange performance of a single opening enclosure, it is 

necessary to know the characteristics (such as airflow velocity distribution) of both 

the external and internal flow near the opening. In flow dynamics, the flow sucked 

into the opening is distinct from the flow pumped out from the opening, and this can 

be described by the sink-jet model. For the sake of simplicity, this chapter considers 

only the two-dimensional flow in the x-y plane, which can be approximated by 

assuming the enclosure, slot-typed opening and external duct has the same width W 

in z-direction, and the width W is relatively large (as shown in Fig.5-2); so in the x-y 

plane of z=0, the flow can be regarded as two-dimensional. This is the common 

approach used by many researchers to simplify the complexity of the fluid dynamic 

problem.70,71 
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Figure 5-2. A duct with single opening enclosure. 

 

5.2.1 Inlet Airflow 

The flow sucked into the opening (or called inlet flow) from either internal or 

external space can be described by a sink. A point sink is the point that into which 

fluid submerges in a uniform manner, as shown in Fig. 5-3. This can be used to 

represent the flow field induced by sucking through a pipe or a hole in an infinite 

plane wall.72 For two-dimensional flow considered in this chapter, a line sink 

perpendicular to the x-y plane with length W exists, as shown in Fig. 5-4, into which 
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fluid passed at a flow rate per unit length denoted by 'Q . 

Point sink

 
Figure 5-3. Point sink. 

 

 
Figure 5-4. Line sink. (a) line sink, (b) view on top of a line sink. 

 



 86

It is apparent that in this situation, the streamlines in x-y plane are radial lines and 

the equipotential lines are concentric spheres center at the origin.50 If the inlet flow 

rate per unit length into the opening in Fig. 5-2 is Q W , the corresponding flow 

into the sink is 2Q W . The velocity along the streamline is  

s
Qv
Wrπ

=                                                        (5.18) 

 

In spite of the instantaneous quantities of the flow are varying with time as a 

perturbation, when the majority of flow is steady, the relationship between the 

pressures at two points, at r1 and r2 (along the streamline) can be expressed as 

1 2

2 2 2
2 2

2 1

1 1( ) 4r rp p Q W
r r

ρ π− = −                                     (5.19) 

Given that the mean velocity through the opening is 

0
Qv

WD
=                                                         (5.20) 

and this speed will occur at a distance /r D π= , where D is the width of the 

opening in x-direction in Fig. 5-2. The corresponding pressure will be taken to be the 

inlet pressure inp . So the pressure difference at two points is given by  

1

2
2 2

2
1

(1 ) 2r in
Dp p Q WD
r

ρ
π

− = −                                      (5.21) 

Thus it can be seen for 1 10r Dπ > , the pressure difference is essentially unaffected 

by the presence of the opening, furthermore at the point of three or four widths away 

from the opening for the effect of the flow induced by the sucking flow can be 
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negligible.  

 

As considered in this chapter, due to fluctuation, the inlet flow varies with time in 

the sucking stage (half of the fluctuation period), this can be generated by varying 

the strength of the sink with time, as 0
j tQ q e ω= with 

0 0, (2 , 2 1) , [0, )q t k k kπ ω< = + = ∞ . However, as the fluctuation frequency 

increases, the spatial acceleration terms decreases and can be ignored compared to 

the temporal acceleration terms in the momentum equation, Eq. (5.7). This is the 

assumption in acoustics that leads to the linearised wave equation. In this situation, 

the motion of the airflow close to the opening can be approximately regard as 

one-dimensional with the direction perpendicular to opening surface. 

 

5.2.2 Outlet Airflow 

The flow pumped out from the opening (or called outlet flow) can be described by a 

jet. An isothermal jet is characterized by its initial flow rate, jetQ . Steady jets can be 

either laminar or turbulent. However, most of jets are somehow turbulent since the 

onset of transition from laminar to turbulent jet is found to occur at Reynolds 

numbers as low as 30.73 The width of the jet increase as it traveled forward. For 

laminar jet, this is the result of molecular diffusion; for turbulent jet, this is due to 

the entrainment (a process whereby less turbulent fluid is incorporated into the 
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turbulent region of the entraining fluid).49 
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Figure 5-5. Jets. 

 

In sharp-edged opening there is a contraction of the flow. As shown in Fig. 5-5. The 

diameter of the jet will be less than the diameter of the opening. This phenomenon is 

called the vena contracta effect. It is a result of the inability of the fluid to turn the 

sharp 90 degree corner since it would take an infinite pressure gradient across the 

streamline to cause the fluid to turn a sharp corner.50 As shown in Fig. 5-5, the 

contraction coefficient is defined by the ratio of area at vena contract and the 

opening area, jetA Aμ = . The mathematical expression of the vena contract effect 

of flow through sharp opening is given by Kirchhoff. 74  Considering a 
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two-dimensional flow through a sharp opening from ( 2,0)π− −  to (0,0) , the jet is 

bounded by two equation sets: 

( ) ( )2 21, 1 ln 1 0, 0x e y e e eφ φ φ φ φ ψ− −= − = − − + − > =            (5.22) 

( ) ( )2 22 1 , 1 ln 1 0,x e y e e eφ φ φ φπ φ ψ π− −= − − + − = − − + − > =    (5.23) 

where φ  is the velocity potential and ψ  is the streamline function.77 It can be seen 

that the contraction coefficient for a shaped-edged opening, 

( 2) 0.611μ π π= + = .75 

 

 

Figure 5-6. Four zones in isothermal jet expansion. 
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In practice the jets from real supply device are complicated. As shown in Fig. 5-6, 

four major zones can be distinguished in the development of a three-dimensional jet 

issuing from an opening.76 Zone 1: A short zone extending about 4 diameters from 

the outlet surface, in which the centerline velocity remains practically unchanged, 

( ) constantU x = , and the velocity profile close to the opening exhibits a top hat 

profile. Zone 2: A transition zone extending to about 8 diameters, most of which the 

centerline velocities vary inversely as the square root of the distance from the outlet, 

( ) 1U x x∼ . Zone 3: A long zone of major engineering importance in which the 

centerline velocity varies inversely with the distance from the outlet, ( ) 1U x x∼ , 

which extends to about 25~100 diameters long depending on the shape of opening. 

For an ideal isothermal jets, the centerline velocity in the zone 3 can be expressed as  

( ) 1
(0) jet

U x C
U x A

=                                                 (5.24) 

where (0)U  is the mean velocity of the jet at the outlet surface of the opening and 

jetA  is the corresponding cross section area of the jet, and there is (0) jet jetU Q A= . 

The value of C is commonly used to characterize terminal performance and is know 

as “throw constant” or “C-value”. In sharp-edged opening, C-value can be given as49  

1 1 2 1
2 1 t

C
α π γμ

=
+

                                             (5.25) 

where α  is the entrainment coefficient equals to 0.0535 0.0025±  for an 

axisysmetric jet,77 and tγ  is a fraction of the momentum flux due to the mean 
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velocity, lies around 15%.78 Zone 4: A terminal zone in which the centerline 

velocity decreases at an increasing rate. In zone 4 the jet becomes indistinguishable.  

 

When a jet is approaching an opposite wall, it is decelerated by the adverse pressure 

gradient and is then deflected by the wall to turn into a radial wall jet.79  And the 

effect of the wall is felt when x L  is greater then 0.84, where L is the distance 

between the opening and the opposite wall. 

 

As considered in this chapter, due to fluctuation, the jet is characterized by its initial 

flow rate with its amplitude varying with time, as 0
j t

jetQ q e ω= with 

0 0, (2 ,2 1) , [0, ]q t k k kπ ω> = + = ∞ . As the unsteady jet travels downstream, 

vortex on the boundary of the jet shed, and moves downstream with the flow. This 

vortex makes the unsteady jet spreads much faster than both the steady laminar and 

turbulent flow. However, as the fluctuation frequency increases, the spatial 

acceleration terms eventually become small enough to be ignored when compared to 

the temporal acceleration term in the momentum equation, Eq. (5.7).  In this 

situation, the motion of the outlet flow is complicated. Fortunately, this is the 

frequency range that acoustics engineer interested, and the outlet flow in this 

frequency range usually travels only a very small distance along the y-direction (as 

shown in Fig. 5-2) from the opening in a pumping stage (half of the fluctuation 
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period). The outlet flow can be approximately described as a top hat “short” jet with 

no flow contraction, which is similar to the characteristics of the inlet flow in 

relatively high frequency.72 

 

5.3 Air Exchange Mechanism of a Single Opening 

Enclosure 

As shown in the Fig. 5-7 (the x-y plane of Fig. 5-2), the case considered in this 

chapter is a duct connected with an enclosure through a single small opening. The 

flow velocity in the duct can be described as a combination of a mean velocity and a 

fluctuating velocity, i.e. '( ) ( )V t V V t= + , where ' '
0( ) j tV t V e ω= . The mean flow is 

provided by a mechanical ventilation fan, and the perturbation can be given by a 

loudspeaker with the sound pressure 0( ) j tp t p e ω=  , where the amplitude 

0

'
0 0 0p c Vρ=  for assuming only plane wave exists (interested sound frequency below 

the cut-on frequency of the duct). 
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Figure 5-7. View on x-y plane of a duct with single opening enclosure. 

 

5.3.1 The Air Exchange between the Duct and the Opening 

Without lose of generality, we assume that a fluctuation period begins with the flow 

pumping out of the opening into the duct, so the first half period can be considered 

as a pumping stage and the second half period can be regarded as a sucking stage. 

Due to the presence of the mean flow in the duct, the air exchange mechanism 

between the opening and the duct region can be greatly simplified by ignoring the 

complexity of the inlet and outlet flow behaviors. The air exchange can be 

interpreted as in each fluctuation periodic, the mean flow “sweeps off” the air 

volume pumping out from the opening in the pumping stage and providing the 

“fresh” air into the opening in the sucking stage when the mean flow velocity in duct 
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is high enough. The quantitative analysis on the mean flow velocity required by the 

“sweep off” effect is now being investigated. 

 

5.3.2 Air Mixing in the Opening 

The mechanism of the air mixing in the opening is relatively least well understood 

and is currently being investigated. For the single opening enclosure designed to 

investigate the air exchange between duct and enclosure, the opening usually should 

be have a relatively short length L. It seems that in the short-length opening the 

turbulent diffusion plays an important role in mixing the air, which is the 

transportation of contaminants by turbulent fluctuations that occurs much more 

rapidly than molecular diffusion and provides rapid mixing during processing.80 

Further work needs to analyze the air mixing quantitatively in this part. 

 

5.3.3 The Air Exchange between the Enclosure and the 

Opening 

It is the mechanism of the air exchange between the enclosure and the opening 

attracted the major attention in this chapter. And it is found that this part plays an 

important role in the whole air exchange system. Without lose of generality, we still 

assume that a fluctuation period begins with the flow pumping out of the opening 
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into the enclosure, so the first half of the period can be considered as a pumping 

stage and the second half can be regarded as a sucking stage. 

 

As discussed in previous section, when the frequency is relatively low that the 

spatial and temporal acceleration terms both play important roles in the fluid 

momentum equation, Eq. (5.7), the behavior of the flow pumping out from and 

sucking into the opening in the enclosure can be described by the sink-jet model, as 

shown in Fig 5-8. 
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Figure 5-8. The sink-jet model. 
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(The dotted line represents the pumping flow in the first half period, and the solid line 
represents the sucking flow in the second half period.) 

 

The line FE is the boundary of the fluid initially on the opening surface at the 

beginning of the pumping stage; at the end of the pumping stage, the surface (line FE) 

moves to the line GH. So the strip EFGH is the air jet formed in the fist half period 

(pumping stage). Similarly, the arc line ACDB is the initial fluid boundary at the 

beginning of the sucking stage, which is also the time of the end of the pumping 

stage; at the end of the sucking stage the boundary (arc line ACDB) moves to the 

line IJ. So the semicircle ACDB is the air sucked into the opening during the second 

half period (sucking stage). For the conservation of mass, there must be a relation of 

the area of the semicircle ACDB equals to the area of the strip EFGH. It can be seen 

that there is an overlap of the strip EFGH with the semicircle ACDB, the composite 

CDEF can be considered as the part of the air jet that “hauled back” into the opening 

in the sucking stage, with the other part (composite GHDC) “escaped” from the 

pumping-sucking cycling of the flow near the opening. From now on, the “escaped” 

air is irrelevant to the air motion in the opening.  

 

It is the “escaped” air jet (composite GHDC) that results from the difference 

behavior of the inlet and outlet flow causes the air exchange between the opening 

and the enclosure. In each fluctuation period there is a fraction of the air jet 
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“escaped” and moved freely downstream with its original velocity directed into the 

enclosure. Along in the centerline of the enclosure, as shown in Fig. 5-7, at some 

distance from the opening, there is a jet path composing many moving air masses 

that are escaped in each fluctuating period. In this jet path, at a certain point on the 

centerline, the velocity is pulsating with time (non-zero mean), with pulsating peak 

proportional to the flow velocity through the opening '
0 0( ) ~v y v  and the pulsating 

frequency equals to that of the supplying sound waves in the duct. If the frequency is 

very low, the pulsating peak is sparse in the time spectrum, and the peak means there 

is an escaped air mass passing through. If the air flow in the opening is oscillating in 

a relative high frequency, for example oscillating at the frequency of 100 Hz for a 

Helmholtz resonator, the peak of pulsating velocity is very dense and can be 

regarded as one combined with another in the time spectrum. This means the air jet 

form by the “escaped” air masses can be regards as a quasi-steady jet with small 

perturbation. In this situation, the flow in the whole jet path can be regarded as a 

quasi-steady jet characterized by mean part of the centerline velocity '( )v y  and a 

fluctuating part with amplitude ( , )y tυ , as '( , ) '( ) ( , )v y t v y y tυ= + . Both the mean 

velocity and the fluctuating amplitude will decrease as y increases.  

 

As discussed in the previous section, at the beginning the jet speed in the centerline 

vary inversely as the square root of the distance from the outlet to about 8 width of 
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the opening, then the jet speed in the centerline varies inversely with the distance 

from the outlet to about 25~100 widths long, finally the centerline velocity decreases 

at an increasing rate and the jet becomes indistinguishable. Usually before the jet 

becomes indistinguishable, it will be affected by the opposite wall and decelerated 

by the adverse pressure gradient, then deflected by the wall to turn into a radial wall 

jet. It can be simply approximated as that the “escaped” air masses will evenly 

spread on the surface of the opposite wall as a thin boundary, and this thin boundary 

contains “fresh” air from the opening will be hauled down slightly when the air in 

the bottom is sucked into the opening in the sucking stage. It should be noted that 

due to its fluctuation, this jet will cause more significant vortex at the interface of the 

jet boundary and the still air in the enclosure. So this jet will spread more quickly 

with the flow slowdown a little quicker with the distance from the outlet of the 

opening than the steady turbulent jet discussed in previous section. 

 

When the sound frequency is high enough, the spatial acceleration term can be 

ignored when compared with the temporal acceleration term in the momentum 

equation, Eq. (5.7), and this leads to the linearised wave equation of acoustics. 

Furthermore, for the special case of the Helmholtz resonator this leads to the 

linearised differential equation, Eq. (5.17). As discussed in previous section, the fluid 

behavior in the opening-enclosure interface is almost the same as a one-dimensional 
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motion in both the sucking and pumping stage in a fluctuation period. In this 

situation that no air masses can escape from the opening in the pumping-sucking 

cycling and no air exchange between the opening and the enclosure occurs. So 

compared to the jet-sink model, the air motion in the opening at high frequency is 

more appropriate to be regarded as an air piston. 

 

However, Helmholtz resonator usually designed to control the noise by resonating at 

a relatively low frequency. At low enough resonance frequency, the spatial 

acceleration term in momentum equation, Eq. (5.7), is no longer appropriate to be 

ignored. It can be imagined that when such kind of Helmholtz resonator is resonating, 

the flow behavior in the opening-enclosure interface is in some extent similar to a 

sink-jet model. In this situation, the air jet formed by the “escaped” air masses can be 

found. Fig. 5-9 shows the air jet path in a preliminary experiment of an axisysmetric 

Helmholtz resonator with the opening radius 5.5 mm, opening length 6 mm, 

enclosure radius 67 mm and enclosure length 110 mm under supplying sound 

pressure level 100 dB. The resonance frequency is 112.5 Hz. It can be seen when the 

resonator is driven at the resonance frequency, the air jet is form. When there is no 

velocity perturbation induced by sound or the driven frequency is high (500Hz), no 

air jet can be found. 
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Figure 5-9. Air jet in the resonator. 

(a) f=112.5 Hz, t=0 s; (b) f=112.5 Hz t=1/30 s; (c) f=112.5 Hz, t=2/30 s; (d) f=112.5 Hz, 
t=3/30 s; (e) f=500 Hz; and (f) no sound supplied. 

 

5.4 Conclusion 

This chapter investigates the mechanical ventilation of an enclosure connect to a 

ventilation duct through a single opening. The ventilation is caused by sound 
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induced velocity fluctuation. Especially at the resonance frequency of the 

enclosure-opening structure (Helmholtz resonator), the motion of the airflow in the 

opening may results in an air jet formed in the enclosure that provides the fresh air 

from the ventilation duct. This air jet is composed of the “escaped” air masses, and 

the “escaped” air masses results from the behavior of the airflow in the region of 

opening-enclosure interface that can be described by the sink-jet model in each 

fluctuation period.  

 

In Chapter 5, the linearised oscillator equation and the non-linear oscillator equation 

are directly from the existing literature, so are the jet model and the sink model. 

However, the sink-jet model and the observation of air jet in the Hemholtz resonator 

are original works. 

 

However, at the present only the qualitatively analysis is provided; lack of the 

quantitatively analysis, the numerical simulation and experimental verification, this 

part of work is far from enough. Actually, this is just a beginning that focuses on 

finding the air jet in cavities by using various kinds of resonators and trying to 

explain the air jet the observed. This work will be extended, which includes the 

quantitative analysis on the variation of the air exchange rate with frequency and 

amplitude of supplying sound, as well as the corresponding experiment on 



 102

measuring the mean and fluctuating velocity of the air jet in the enclosure. 

 

Compared to the traditional mechanical ventilation that uses mechanical fans for 

supplying and/or extracting air, the ventilation method discussed in this chapter can 

be considered as “AC” ventilation with the electrical analogy, which indicates the 

backward-forward motion of the airflow in the opening may result in an air jet 

formed in the enclosure that provides the fresh air from the ventilation duct. 

Similarly the traditional mechanical ventilation can be regarded as “DC” ventilation. 

Although we called it “AC” ventilation, the air jet in the enclosure can be regarded 

as a “DC” flow with the flow velocity fluctuating at the same frequency as that of 

the supplying sound waves. To the author’s knowledge, the “AC” ventilation is a 

relatively innovative ventilation method that attracts little attention and is far less 

understood than the traditional ventilation method.  
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Chapter 6  

Conclusion and Suggestions for Future 
Work  

6.1 Conclusion 

Both the broadband noise control and ventilation effects of Helmholtz resonators 

have been investigated in this thesis. Experiments have been carried out at The Hong 

Kong Polytechnic University to validate some of the theoretical analysis. The 

experimental data agreed well with the FEM simulation and the theoretical 

predictions.  

 

First of all, a single Helmholtz resonator has been discussed. This part mainly comes 

from the existing literature. For the lumped-parameter model of a Helmholtz 

resonator, the air in the neck acts as mass and the air inside its cavity acts as a spring. 

For the distributed-parameter model, the multi-dimensional wave propagation inside 

both the neck and cavity has been considered. It has been shown that the 

distributed-parameter model has a more accurate description of the frequency 

characteristic of a Helmholtz resonator. 

 

Secondly, a theoretical study of sound propagation in a one-dimensional duct with 
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identical side-branch resonators mounted periodically has been reported in this thesis. 

This is the main chapter in the thesis. The characteristic wave type has been 

introduced to describe the wave coupling in this periodic system. Three types of 

stop-bands that result from either the resonance of the resonators or the Bragg 

reflection, or from both, have been discussed and their bandwidths have been 

predicted theoretically. Both the semi-infinite duct with infinite number of 

side-branched resonators and the finite duct with N side-branched resonators have 

been discussed, and the influence of the number of resonators has also been 

investigated. The predicted results using this theory fit well with the FEM simulation 

and the experimental result. The long-term significance is that the use of periodic 

resonators may lead to a more effective noise control method for duct-borne sound 

transmission by broadening the attenuation bandwidth and increasing the magnitude 

of sound attenuation. This broadband of sound attenuation is related to two basic 

parameters in the periodic resonators: the resonance frequency of a single resonator 

and the periodic distance. In this chapter, the eigenvalue analysis on the periodic 

structure is the existing theory. However, as the original contribution, the duct with 

periodic resonators is found to be an effective tool for broadband noise control. In 

particular, such as the influence of the number of resonators in the finite-length 

duct-resonator system and the modified bandwidth prediction are original works, so 

does the detailed analysis on the physical meanings of the characteristic wave types. 
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Furthermore, the influence of the disorder in the periodic duct-resonator system has 

been investigated. The disorder in periodicity included two cases: the disorder in 

periodic distance, the distance between any two nearby resonators, and the disorder 

in the geometries of Helmholtz resonators. For the first case, the periodic system 

seemed to be very “sensitive” to the defects in the periodic distance and the original 

pattern of noise attenuation band due to the structural periodicity began to break 

down under the influence of these “defects”. Such “defects” should be carefully 

avoided in manufacturing such periodic systems. However, for the latter case, the 

main attenuation band was well maintained with the bandwidth kept unchanged as 

long as the variation of the resonance frequencies of Helmholtz resonators kept 

within its frequency range. This is a useful way for the design of such a system to 

achieve a relatively wide noise attenuation band and to track some narrow noise 

peaks within it. In general, the disorder in the geometries of Helmholtz resonators in 

the duct-resonator periodic system may provide an optional way to reduce the noise, 

especially for the kind of noise that is low-frequency broadband and with some noise 

peaks. As an extension of pure-periodic case discussed in Chapter 3, this chapter is 

also an original work. However, this chapter only investigated the disorders in 

periodic distance and geometries of resonators with some specific cases; as well as 

the validation by FEM simulation. Further systematic analysis is need. 
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Last but not least, the mechanical ventilation effect of the Helmholtz resonator, 

which can be regarded as an enclosure connected to a ventilation duct through a 

single opening, has been investigated. Especially at the resonance frequency of the 

enclosure-opening structure (Helmholtz resonator), the motion of the airflow in the 

opening may result in an air jet formed in the enclosure that provides the fresh air 

from the ventilation duct. This air jet was composed of the “escaped” air masses, and 

the “escaped” air masses resulted from the behavior of the airflow in the region of 

opening-enclosure interface that can be described by the sink-jet model in each 

fluctuation period. Compared to the traditional mechanical ventilation that uses 

mechanical fans for supplying and/or extracting air, the ventilation method discussed 

in this chapter can be considered as “AC” ventilation with the electrical analogy. To 

the author’s knowledge, the “AC” ventilation is a relatively innovative ventilation 

method that attracts little attention and is far less understood than the traditional 

ventilation method. As a new type of mechanical ventilation, “AC” ventilation has 

many potential applications. For example, “AC” ventilation can be used in relative 

small space that is not suitable for a traditional ventilation method. Furthermore, 

“AC” ventilation can also be used as a supplementary method to deal with the 

dead-zones of the traditional ventilation. However, in “AC” ventilation, the noise 

induced by the sound radiation from the opening is annoying. This means the AC 



 107

ventilation may not be a ventilation method for improving the human comfort but a 

special way to remove harmful gas in some particular occasions, such as decreasing 

the methane concentration in mine. In Chapter 5, the linearised oscillator equation 

and the non-linear oscillator equation are directly from the existing literature, so are 

the jet model and the sink model. On the other hand, the sink-jet model and the 

observation of air jet in the Helmholtz resonator are original works. However, 

Chapter 5 only contains qualitative analysis; much more works are need for it to 

become useful. 

 

It is hoped that the present study can provide a stepping stone for investigation of 

both the acoustic and ventilation performance of Helmholtz resonators, and seeking 

their potential application in passive noise control and mechanical ventilation.  

 

6.2 Suggestions for Future Work 

The work conducted in this thesis systematically investigates the acoustic 

performance of sound propagation in a one-dimensional duct with identical 

side-branch resonators mounted periodically in both perfect and imperfect conditions, 

based on both lumped- and distributed-parameter model of the Helmholtz resonator. 

However, the investigation of the disorder in a periodic Helmholtz resonators array 
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and the “AC” ventilation performance of Helmholtz resonators are still far from 

enough. On the basis of the present work, future works are recommended as follows: 

 

1. The chapter on the defects in periodic arrays could do with a systematic 

sensitivity analysis to determine the trend of performance variations with each of 

the important system parameters, i.e. periodic distance and geometries of 

resonators. In extreme case, this could also be related to other important types of 

non-periodic arrays, such as those with linear or number sequence variations. 

 

2. This thesis only proposes a qualitative investigation on the ventilation 

mechanism of the Helmholtz resonator. In order to achieve a deeper 

understanding of its ventilation effect, the quantitative analysis based on the 

sink-jet model is need. The ventilation effect can be described by the variation of 

the air exchange rate with frequency and amplitude of supplying sound. This is 

the major work being conducted.    

 

3. To verify the proposed AC ventilation effect of the Helmholtz resonator, 

experimental work is required. This experimental work aims at measuring the 

mean and fluctuating velocity of the air jet in the enclosure. This is the further 

work to be done.  
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4. A subsequence experiment measuring the variation of the concentration of the 

contaminants in the resonator with time at its resonance frequency is necessary. 
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Appendix 

A.1 MATLAB Codes of Distributed-parameter 

Model of Single Helmholtz Resonator 

Part of the MATLAB Codes for solving the distributed-parameter model of 

Helmholtz resonator 

%==========An example for solving the distributed-parameter model ========== 

%CIRCULAR CONCENTRIC HELMHOLTZ RESONATOR 
%SOUND DISTRIBUTION 
clear 
c0=344;ro=1.21; 
p0=1;Pi=1;a1=0.017;a2=0.047;b1=0.0455;b2=0.04; 
Sd=3*0.0601*0.022; 
Sn=pi*(a1)^2; 
%-------------------------------------- 
%FIND ROOTS OF 1ST ORDER BESSEL 
x=0:0.05:50; 
y=besselj(1,x); 
LD0=[]; 
for k=1:1000, 
    if y(k)*y(k+1)<0 
        h=interp1(y(k:k+1),x(k:k+1),0); 
        LD0=[LD0,h]; 
    end 
end 
x20=LD0./a2; 
x10=LD0./a1; 
%------------------------------------- 
%initial marix 
frequency=0:4:1000; 
for jf=1:length(frequency), 
    f0=frequency(jf); 
    w0=2*pi*f0;k0=w0/c0; 
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    N1=[1:5]; LN1=5; 
    N2=[1:5]; LN2=5; 
    LD=[LD0(N2)]; 
    x2=[x20(N2)]; 
    v2=(k0^2-x2.^2).^0.5; 
    x1=[x10(N1)]; 
    v1=-(k0^2-x1.^2).^0.5; 
    C=[]; 
    C(1,:)=[Sd+0.5*Sn Sd-0.5*Sn zeros(1,LN1) 0 zeros(1,LN2)]; 
    C(2,:)=[a1^2*exp(-j*k0*b1) -a1^2*exp(j*k0*b1) zeros(1,LN1) 

-a2^2*(exp(j*k0*b2)-exp(-j*k0*b2)) zeros(1,LN2)]; 
    C(3,:)=[0.5*a1^2*exp(-j*k0*b1) 0.5*a1^2*exp(j*k0*b1) zeros(1,LN1) 

-0.5*a1^2*(exp(j*k0*b2)+exp(-j*k0*b2)) 

-a1*a2./LD.*besselj(1,a1/a2*LD).*(exp(-j*v2*b2)+exp(j*v2*b2))]; 
    for k1=0:LN1, 
        if k1~=0 
           C(k1+3,:)=[0 0 zeros(1,LN1) 0 

-a1./(x2.^2-x1(k1)^2).*x2.*besselj(0,LD(k1)).*besselj(1,a1/a2.*LD).*

(exp(-j*v2*b2)+exp(j*v2*b2))]; 
           C(k1+3,k1+2)=0.5*a1^2*besselj(0,LD(k1))^2*exp(j*v1(k1)*b1); 
        end 
    end 
    for k2=0:LN2, 
        if k2~=0 
           

C(k2+LN1+3,:)=[k0*exp(-j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-k0*exp(j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-v1.*exp(j*v1*b1).*a1./((x2(k2)^2)-x1.^2).*x2(k2).*besselj(0,x1*a1).

*besselj(1,a1/a2*LD(k2)) 0 zeros(1,LN2)]; 
           

C(k2+LN1+3,k2+LN1+3)=-(exp(j*v2(k2)*b2)-exp(-j*v2(k2)*b2))*v2(k2)*0.

5*a2^2*(besselj(0,LD(k2)))^2; 
        end 
    end 
%------------------------------------- 
%made the adjective matrix C 
    while (abs(det(C))>1)&(imag(v2(length(v2)))<10) 
        LN2=LN2+1; 
        N2=[1:LN2]; 
        LD=[LD0(N2)]; 
        x2=[x20(N2)]; 
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        v2=(k0^2-x2.^2).^0.5; 
        while (imag(v1(length(v1)))<10)&(LN1<LN2) 
            LN1=LN1+1; 
            N1=[1:LN1]; 
            x1=[x10(N1)]; 
            v1=-(k0^2-x1.^2).^0.5; 
  
%X=[Pbi Pbo C0 ...Cn(LN1)  D0...Dn(LN2)] Y C 
            C=[]; 
            C(1,:)=[Sd+0.5*Sn Sd-0.5*Sn zeros(1,LN1) 0 zeros(1,LN2)]; 
            C(2,:)=[a1^2*exp(-j*k0*b1) -a1^2*exp(j*k0*b1) zeros(1,LN1) 

-a2^2*(exp(j*k0*b2)-exp(-j*k0*b2)) zeros(1,LN2)]; 
            C(3,:)=[0.5*a1^2*exp(-j*k0*b1) 0.5*a1^2*exp(j*k0*b1) 

zeros(1,LN1) -0.5*a1^2*(exp(j*k0*b2)+exp(-j*k0*b2)) 

-a1*a2./LD.*besselj(1,a1/a2*LD).*(exp(-j*v2*b2)+exp(j*v2*b2))]; 
            for k1=0:LN1, 
                if k1~=0 
                   C(k1+3,:)=[0 0 zeros(1,LN1) 0 

-a1./(x2.^2-x1(k1)^2).*x2.*besselj(0,LD(k1)).*besselj(1,a1/a2.*LD).*

(exp(-j*v2*b2)+exp(j*v2*b2))]; 
                   

C(k1+3,k1+2)=0.5*a1^2*besselj(0,LD(k1))^2*exp(j*v1(k1)*b1); 
                end 
            end 
            for k2=0:LN2, 
                if k2~=0 
                   

C(k2+LN1+3,:)=[k0*exp(-j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-k0*exp(j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-v1.*exp(j*v1*b1).*a1./((x2(k2)^2)-x1.^2).*x2(k2).*besselj(0,x1*a1).

*besselj(1,a1/a2*LD(k2)) 0 zeros(1,LN2)]; 
                   

C(k2+LN1+3,k2+LN1+3)=-(exp(j*v2(k2)*b2)-exp(-j*v2(k2)*b2))*v2(k2)*0.

5*a2^2*(besselj(0,LD(k2)))^2; 
                end 
            end 
        end 
    end 
  
    Y=[]; 
    Y(1,1)=Sd*Pi; 
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    Y(2,1)=0; 
    Y(3,1)=0; 
    for k30=0:LN1, 
        if k30~=0 
           Y(k30+3,1)=0; 
        end 
    end 
    for k3=0:LN2, 
        if k3~=0 
           

%Y(k3+LN1+3,1)=-k0*p0*exp(-j*k0*b1)*a1*a2/LD(k3)*besselj(1,a1/a2*LD(

k3)); 
           Y(k3+LN1+3,1)=0; 
        end 
    end 
%---------------------------------------------------------- 
    X=C\Y; 
%----------------------------------------------- 
    Pbi=X(1);Pbo=X(2); 
    Po=Pbi*(-0.5*Sn/Sd)+Pbo*(0.5*Sn/Sd); 
    pressure(jf)=20*log10(1./abs(Pbi+Pbo)); 
    Zb(jf)=(Pbi+Pbo)/(Pbi-Pbo)*ro*c0; 
    %pressure(jf)=abs(Pbi+Pbo); 
    %reflection(jf)=20*log10(abs(Po)); 
    reflection(jf)=abs(Po); 
end 
plot(frequency,reflection); 
%plot(frequency,pressure); 
%plot(frequency,abs(Zb)); 
clc 
 

%=========================================================== 
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A.2 MATLAB Codes of Finite Periodic 

Duct-resonator System Base on the Distributed 

-parameter Model  

Part of the MATLAB Codes for solving the finite periodic duct-resonator system 

based on the distributed-parameter model 

%========An example for solving the finite periodic duct-resonator system ======== 
%FINITE PERIODIC SYSTEM 
%DISTRIBUTED-PARAMTER MODEL 
clear 
c0=344;ro=1.21; 
p0=1;Pi=1;a1=0.0175;a2=0.047;b1=0.052;b2=0.04;D=0.47; 
Sn=pi*(a1)^2; 
Sd=0.0601*0.022; 
%p0=1;Pi=1;a1=0.017;a2=0.047;b1=0.0455;b2=0.04;D=0.4; 
%Sd=0.022*0.0601; 
%Sn=pi*a1^2; 
reflect=0; 
Lbegin=0.3; 
Lend=0.3; 
n=5; %periodic number-1 
%-------------------------------------- 
%FIND ROOTS OF 1ST ORDER BESSEL 
x=0:0.05:50; 
y=besselj(1,x); 
LD0=[]; 
for k=1:1000, 
    if y(k)*y(k+1)<0 
        h=interp1(y(k:k+1),x(k:k+1),0); 
        LD0=[LD0,h]; 
    end 
end 
x20=LD0./a2; 
x10=LD0./a1; 
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%------------------------------------- 
%initial marix 
frequency=0:5:1000; 
%frequency=150; 
for jf=1:length(frequency), 
    f0=frequency(jf); 
    w0=2*pi*f0;k0=w0/c0; 
    N1=[1:5]; LN1=5; 
    N2=[1:5]; LN2=5; 
    LD=[LD0(N2)]; 
    x2=[x20(N2)]; 
    v2=(k0^2-x2.^2).^0.5; 
    x1=[x10(N1)]; 
    v1=-(k0^2-x1.^2).^0.5; 
    C=[]; 
    C(1,:)=[Sd+0.5*Sn Sd-0.5*Sn zeros(1,LN1) 0 zeros(1,LN2)]; 
    C(2,:)=[a1^2*exp(-j*k0*b1) -a1^2*exp(j*k0*b1) zeros(1,LN1) 

-a2^2*(exp(j*k0*b2)-exp(-j*k0*b2)) zeros(1,LN2)]; 
    C(3,:)=[0.5*a1^2*exp(-j*k0*b1) 0.5*a1^2*exp(j*k0*b1) zeros(1,LN1) 

-0.5*a1^2*(exp(j*k0*b2)+exp(-j*k0*b2)) 

-a1*a2./LD.*besselj(1,a1/a2*LD).*(exp(-j*v2*b2)+exp(j*v2*b2))]; 
    for k1=0:LN1, 
        if k1~=0 
           C(k1+3,:)=[0 0 zeros(1,LN1) 0 

-a1./(x2.^2-x1(k1)^2).*x2.*besselj(0,LD(k1)).*besselj(1,a1/a2.*LD).*

(exp(-j*v2*b2)+exp(j*v2*b2))]; 
           C(k1+3,k1+2)=0.5*a1^2*besselj(0,LD(k1))^2*exp(j*v1(k1)*b1); 
        end 
    end 
    for k2=0:LN2, 
        if k2~=0 
           

C(k2+LN1+3,:)=[k0*exp(-j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-k0*exp(j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-v1.*exp(j*v1*b1).*a1./((x2(k2)^2)-x1.^2).*x2(k2).*besselj(0,x1*a1).

*besselj(1,a1/a2*LD(k2)) 0 zeros(1,LN2)]; 
           

C(k2+LN1+3,k2+LN1+3)=-(exp(j*v2(k2)*b2)-exp(-j*v2(k2)*b2))*v2(k2)*0.

5*a2^2*(besselj(0,LD(k2)))^2; 
        end 
    end 
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%------------------------------------- 
%made the adjective matrix C 
    while (abs(det(C))>1)&(imag(v2(length(v2)))<10) 
        LN2=LN2+1; 
        N2=[1:LN2]; 
        LD=[LD0(N2)]; 
        x2=[x20(N2)]; 
        v2=(k0^2-x2.^2).^0.5; 
        while (imag(v1(length(v1)))<10)&(LN1<LN2) 
            LN1=LN1+1; 
            N1=[1:LN1]; 
            x1=[x10(N1)]; 
            v1=-(k0^2-x1.^2).^0.5; 
  
%X=[Pbi Pbo C0 ...Cn(LN1)  D0...Dn(LN2)] Y C 
            C=[]; 
            C(1,:)=[Sd+0.5*Sn Sd-0.5*Sn zeros(1,LN1) 0 zeros(1,LN2)]; 
            C(2,:)=[a1^2*exp(-j*k0*b1) -a1^2*exp(j*k0*b1) zeros(1,LN1) 

-a2^2*(exp(j*k0*b2)-exp(-j*k0*b2)) zeros(1,LN2)]; 
            C(3,:)=[0.5*a1^2*exp(-j*k0*b1) 0.5*a1^2*exp(j*k0*b1) 

zeros(1,LN1) -0.5*a1^2*(exp(j*k0*b2)+exp(-j*k0*b2)) 

-a1*a2./LD.*besselj(1,a1/a2*LD).*(exp(-j*v2*b2)+exp(j*v2*b2))]; 
            for k1=0:LN1, 
                if k1~=0 
                   C(k1+3,:)=[0 0 zeros(1,LN1) 0 

-a1./(x2.^2-x1(k1)^2).*x2.*besselj(0,LD(k1)).*besselj(1,a1/a2.*LD).*

(exp(-j*v2*b2)+exp(j*v2*b2))]; 
                   

C(k1+3,k1+2)=0.5*a1^2*besselj(0,LD(k1))^2*exp(j*v1(k1)*b1); 
                end 
            end 
            for k2=0:LN2, 
                if k2~=0 
                   

C(k2+LN1+3,:)=[k0*exp(-j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-k0*exp(j*k0*b1)*a1*a2/LD(k2)*besselj(1,a1*LD(k2)/a2) 

-v1.*exp(j*v1*b1).*a1./((x2(k2)^2)-x1.^2).*x2(k2).*besselj(0,x1*a1).

*besselj(1,a1/a2*LD(k2)) 0 zeros(1,LN2)]; 
                   

C(k2+LN1+3,k2+LN1+3)=-(exp(j*v2(k2)*b2)-exp(-j*v2(k2)*b2))*v2(k2)*0.

5*a2^2*(besselj(0,LD(k2)))^2; 
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                end 
            end 
        end 
    end 
  
    Y=[]; 
    Y(1,1)=Sd*Pi; 
    Y(2,1)=0; 
    Y(3,1)=0; 
    for k30=0:LN1, 
        if k30~=0 
           Y(k30+3,1)=0; 
        end 
    end 
    for k3=0:LN2, 
        if k3~=0 
           

%Y(k3+LN1+3,1)=-k0*p0*exp(-j*k0*b1)*a1*a2/LD(k3)*besselj(1,a1/a2*LD(

k3)); 
           Y(k3+LN1+3,1)=0; 
        end 
    end 
%---------------------------------------------------------- 
    X=C\Y; 
%----------------------------------------------- 
    Pbi=X(1);Pbo=X(2); 
    pressure(jf)=20*log10(1./abs(Pbi+Pbo)); 
    %pressure(jf)=abs(Pbi+Pbo); 
    Zb(jf)=(Pbi+Pbo)/(Pbi-Pbo)*ro*c0; 
    k=2*pi*frequency/c0; 
    

%u(i)=acos(0.5*0.5*((2-ro*c0*s./Zb(i)).*exp(-j*k(i)*D)+(2+ro*c0*s./Z

b(i)).*exp(j*k(i)*D))); 
    A=0.5*[(2-Sn/Sd*ro*c0/Zb(jf))*exp(-j*k(jf)*D) 

-Sn/Sd*ro*c0/Zb(jf)*exp(j*k(jf)*D); 

Sn/Sd*ro*c0/Zb(jf)*exp(-j*k(jf)*D) 

(2+Sn/Sd*ro*c0/Zb(jf))*exp(j*k(jf)*D)]; 
    

%u(jf)=acos(0.5*0.5*((2-Sn/Sd*ro*c0./Zb(jf)).*exp(-j*k(jf)*D)+(2+Sn/

Sd*ro*c0./Zb(jf)).*exp(j*k(jf)*D))); 
    %ui(jf)=abs(real(u(jf))); 
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    %ur(jf)=abs(imag(u(jf))); 
    [V,B]=eig(A); 
    r11=B(1,1);r22=B(2,2);  %eignvalue 
    ev11=V(:,1);ev22=V(:,2);  %eignvector 
    if abs(abs(r11)-1)<0.002 
        if abs(ev11(2)/ev11(1))<1 
            r1=r11;r2=r22;ev1=ev11;ev2=ev22; 
        else 
            r1=r22;r2=r11;ev1=ev22;ev2=ev11; 
        end 
    else 
        if abs(r11)<1 
            r1=r11;r2=r22;ev1=ev11;ev2=ev22; 
        else 
            r1=r22;r2=r11;ev1=ev22;ev2=ev11; 
        end 
    end 
    %---------------- 
    % anechonic termination 
    an=[ev1(1)*exp(j*k(jf)*Lbegin) ev2(1)*exp(j*k(jf)*Lbegin); 

r1^n*ev1(2) r2^n*ev2(2)]\[Pi;0]; 
    %---------------- 
    % rigid wall termination 
    %an=[ev1(1)*exp(j*k(jf)*Lbegin) ev2(1)*exp(j*k(jf)*Lbegin); 

r1^n*ev1(1)*exp(-j*k(jf)*Lend)-r1^n*ev1(2)*exp(j*k(jf)*Lend) 

r2^n*ev2(1)*exp(-j*k(jf)*Lend)-r2^n*ev2(2)*exp(j*k(jf)*Lend)]\[Pi;0]

; 
    a=an(1);b=an(2); 
    

ans(jf)=-20/(n-1)*log10(abs((a*r1^(n-1)*(ev1(1)+ev1(2))+b*r2^(n-1)*(

ev2(1)+ev2(2)))/(a*(ev1(1)+ev1(2))+b*(ev2(1)+ev2(2)))));   

    %pressure difference 
    %ans(jf)=abs(b/a);               

    %ratio wave type2/wave type1 
end 
  
plot(frequency,ans) 
clc 
%=========================================================== 
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