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Abstract 

How to represent the object and how the object representation should be learnt are very 

fundamental problems in pattern classification tasks, for example, face recognition (FR). 

As one of the most visible research topics in computer vision, machine learning and 

biometrics, robust FR to occlusions, misalignment and various variations (e.g., pose, 

expression and illumination) is still a very challenging problem after many years’ 

investigation. Recently, the sparse representation theory has been rapidly developed and 

successfully used in solving various inverse problems such as image reconstruction. 

Efforts have also been made in using sparse representation for signal classification. In 

particular, by coding a testing face sample as a sparse linear combination of the training 

samples and classifying it by evaluating which class leads to the minimum coding residual, 

sparse representation based classification (SRC) leads to very interesting results for FR. 

The success of SRC greatly boosts the research of sparsity based classification and the 

associated dictionary learning techniques.  

Though SRC has shown promising performance in robust FR, there are still many 

problems to be further addressed. What is the working mechanism of SRC? What is the 

role of l0 or l1 norm sparsity in it? How to extract effective features to improve the 

accuracy and speed of SRC? How to design a robust representation fidelity term to handle 

various outliers? How to train a dictionary to improve classification? In this thesis, we aim 

to answer these questions with tools from statistical learning, convex optimization, and 

pattern classification. 

It is widely believed that the l1-norm sparsity constraint on the coding coefficients 

plays a key role in the success of SRC. In this thesis, however, it is shown that the 

collaborative representation mechanism (i.e., using all training samples to collaboratively 

represent the testing sample) is much more crucial than the l1-norm sparsity of coding 

coefficients to the success of face classification. A new framework, namely collaborative 
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representation based classification (CRC), is then established and discussed conceptually 

and experimentally. CRC has various instantiations by applying different norms to the 

coding residual and coding coefficient, while SRC is a special case of it. It is further shown 

that l2-regularizatoin of coding coefficients in CRC could achieve similar performance to 

or better performance than l1-regularization and have higher computational efficiency. 

 We then discuss the use of local features to improve the performance and speed of 

SRC. We present a Gabor feature based robust representation and classification (GRRC) 

scheme with Gabor occlusion dictionary (GOD) learning. It is shown that the use of Gabor 

feature and GOD not only improves the FR accuracy but also reduces significantly the 

computational cost in handling face occlusion. This part of work also indicates that the 

appropriate representation model (e.g., the regularization and dictionary) has a close 

relationship to the feature of the involved signals, which should be considered in designing 

effective representation models. 

The third major contribution of this thesis is the development of regularized robust 

coding (RRC) for FR. In RRC, a robust representation fidelity term is proposed to handle 

various outliers in face images. RRC is a maximum a posterior solution by assuming that 

the coding residual and the coding coefficient are respectively independent and identically 

distributed. An iteratively reweighted regularized robust coding algorithm is developed to 

solve the RRC model efficiently. Extensive experiments on representative face databases 

demonstrate that the RRC is much more effective and efficient than state-of-the-art sparse 

representation based methods in dealing with face occlusion, corruption, lighting and 

expression changes, etc. 

Finally, we discuss the problem of dictionary learning (DL) for sparse representation 

based pattern classification, and propose a novel Fisher discrimination dictionary learning 

(FDDL) scheme. Based on the Fisher discrimination criterion, a structured dictionary, 

whose dictionary atoms have correspondence to the class labels, is learnt so that the 

reconstruction residual after sparse coding can be used for pattern classification. 

Meanwhile, the Fisher discrimination criterion is imposed on the coding coefficients so 
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that they have small within-class scatter but big between-class scatter. A new classification 

scheme associated with the proposed FDDL method is then presented by using both the 

discriminative information in the reconstruction residual and sparse coding coefficient. The 

proposed FDDL is extensively evaluated on benchmark image databases in comparison 

with existing sparsity and DL based classification methods. 
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Chapter 1.  Introduction 

1.1 Face Recognition 

1.1.1 Introduction of face recognition 

1.1.1.1 Face recognition system 

 

Figure 1.1: Flow chart of a generic face recognition system. 

 

 

A facial recognition system is a computer application for automatically identifying or 

verifying a person from a digital image or a video source. The pipeline of a generic face 

recognition system is shown in Fig. 1.1. Given still or video images, first face detection is 

applied to detect the facial region with landmarks (e.g., locations of eyes’ corners or 

centers). Based on the landmarks, the facial region is cropped, aligned and normalized, 

and then facial features are extracted from the aligned face. Finally, by matching with the 

enrolled template face images, face recognition (either identification or verification) can 

be done [1-2]. In face identification, the input to the system is an unknown face, and the 

system reports back the testing image’s identity from a database with known individuals. 

In face verification, the input is an unknown face image with a claimed identity, and the 

system needs to decide whether the individual is who he/she claims to be [1, 3]. 
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1.1.1.2 Utilities of face recognition 

Face is a reliable biometrics trait, and thus face recognition is a biometrics recognition 

problem. A biometrics system is essentially a pattern recognition system which uses data 

collected from human subjects as patterns. It extracts a feature set from the acquired 

biometrics data, and compares this feature set against the template sets in the database [4]. 

Apart from face, there are many kinds of biometrics traits, e.g., DNA [5], iris [6-10], 

retina [11-12], ear [13-14], fingerprint [15-19], finger-knuckle-print [20-21], hand 

geometry [22-23], voice [24-25], signature [26-27], palmprint [28-35], and gait [36], etc. 

Images of these representative biometrics traits are shown in Fig. 1.2.  

 

 

Figure 1.2: Some representative biometric identifiers. 

 

 

Face recognition (FR) has a wide range of applications, e.g., information security, 

access control, surveillance, smart cards, law enforcement, human computer interaction, 

and entertainment [1-3]. In comparison with other biometrics traits, FR has some clear 

advantages, as summarized in Table 1.1. Firstly, FR has a wider range of applications, 

such as surveillance in public place, multimedia management, human computer 

interaction, entertainment, etc. Secondly, face is the least intrusive biometric identifier, 
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which does not even require the cooperation of participants, and does not carry any 

sanitation risks. FR also has very low cost, only needing a camera and processor. Finally, 

FR is probably the most common biometric characteristic used by humans to make 

personal recognition, and it has been attracting significant attentions from the field of 

computer vision, image/video processing, pattern recognition, biometrics, biological 

vision and machine learning. 

 

Table 1.1: Advantages of FR over other biometrics traits. 

Keywords Detailed information 

More applications surveillance in public place (e.g., FaceIt-Hist [37]), witness face 

reconstruction [38], social networks (e.g., photo tagging in Facebook [39]), 

multimedia management (e.g., face based search), human computer 

interaction (e.g., face synthesis and animation [40]), criminal justice systems 

(mug-shot/booking systems, post-event analysis, forensics), and 

entertainment (e.g., video game), etc. 

Least intrusive capturing face images at a distance, contactless, can be free of cooperation 

of participants, and free of any sanitation risks. 

Low cost cost-effective equipment, e.g., a camera and a processor. 

More data sources ubiquitous images and videos, e.g., passports, internet photos, ATM camera, 

and  video surveillance. 

Human habits the most common biometric characteristic used by humans to make a 

personal recognition 

Academic research 

merits  

widely studied in computer vision, image/video processing, pattern 

recognition, biometrics, biological vision and machine learning, etc. 

 

 

1.1.1.3 Challenges of face recognition 

The wide range of practical applications (e.g., commercial and law enforcement) and high 

merits of academic research make face recognition a hot research topic in the past decades. 

After 40 years of research, the face recognition systems in well controlled indoor 

environment have reached a certain level of maturity. However, for the more challenging 

applications in uncontrolled and outdoor environments, current systems are still far away 

from matured. 

The main challenges of FR to be tackled include: 
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1) Variations from the face itself—pose, expression and aging: Human face is a 3D 

object, which will have very different appearance under different viewpoints. Facial 

expression will also make the same face show very different looking. In addition, the 

aging-related phenomena, such as speckles, wrinkles, and changes in shape of face 

primitives (e.g., sagged cheeks, eyes or mouth) would result in large variations of face 

images from the same subject, degrading the face recognition performance. 

2) Variations from external factors—illumination and various occlusion and disguise: 

various illumination conditions and shading could be generated by different lighting 

sources. Face occlusion (e.g., pixel corruption and block occlusion) and disguise (e.g., 

hair, makeup, sunglasses, and scarf) can often appear in face images. Both 

illumination and occlusion would greatly change the appearance of face images, 

resulting in small inter-class variation and large intra-class variation. 

3) Huge number of face classes—human being: In the world there are billions of persons, 

while many people look very similar. Such a huge number of face classes and the 

similarity of face patterns make highly accurate FR very difficult. 

4) Small-sample-size problem—high-dimensional data but few or single training sample: 

the learnt classifier is easy to perform very well in the training data but poorly in 

testing data. 

 

1.1.2 A brief review of face recognition technologies 

The earliest work on FR can be traced back at least to the 1950s in psychology [41] and to 

1960s in engineering [42]. The first PhD thesis for FR was done by T. Kanade in 1973 [43]. 

In the primary stage, there are two types of techniques applied to the FR with frontal views. 

The first type, also the first approach toward an automated recognition of faces, is based on 

the computation of a set of geometrical features (e.g., relative position and other 

parameters of distinctive features such as eyes, mouth, nose, and chin) from the picture of 

a face [43-44]. The second class of techniques is based on template matching. Some FR 
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methods based on template matching were reviewed by [44]. 

Recent years have witnessed the rapid development and deployment of face 

recognition and modeling systems. This is evidenced by the emergence of face recognition 

conferences such as the International Conference on Audio- and Video-Based Biometric 

Person Authentication (AVBPA) since 1997 and the IEEE International Conference on 

Automatic Face and Gesture Recognition (AFGR) since 1995. And many systematic 

empirical evaluations of face recognition techniques, including the FERET [45], FRVT 

[46-48], and XM2VTS [49] protocols, and commercial systems are available [1, 4, 146]. 

Several FR surveys have reviewed the many FR technologies [1-4, 50-53], which 

could be categorized by different ways, e.g., 2D/3D FR [51], still-image/video based FR, 

and homogeneous/heterogeneous FR [4, 53-55], etc. Here, we briefly review the main FR 

technologies from the following four aspects: subspace-based face representation (e.g., 

principal component analysis (PCA) [57], kernel PCA (KPCA) [70]), model-based face 

representation (e.g., active appearance model (AAM) [75-77]), texture-based face 

representation (e.g., local binary pattern (LBP) [90]) and representation-based 

classification (e.g., nearest subspace (NS) [97, 99-101] and sparse representation based 

classification (SRC) [102]) (see Fig. 1.3). 

 

 

Figure 1.3: Main face recognition technologies. 
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1.1.2.1 Subspace-based face representation 

Subspace-based FR is a kind of appearance-based holistic approach. Although facial 

images have a high dimensionality, they usually lie in a manifold with intrinsically low 

dimension. By mapping the high-dimensional face image into a lower dimensional 

subspace, a compact representation of the face pattern can be generated. 

In the communities of face recognition and computer vision, there is a growing 

interest to apply algebraic and statistical tools to extract and analyze the underlying 

manifold of face images [56]. The classical Eigenfaces and Fisherfaces [57-58] algorithms 

are the most representative subspace methods based on principal component analysis 

(PCA) and linear discriminant analysis (LDA), respectively. Compared to Eigenfaces [57], 

Fisherfaces [58] introduces discrimination information by maximizing the ratio of 

between-class scatter to within-class scatter. PCA [57] minimizes the sample covariance 

(second-order dependence) of the face data, while the higher-order dependencies can be 

minimized by the independent component analysis (ICA) [59-60]. All PCA [57], LDA [58] 

and ICA [59-60] could be called linear subspace-based technologies for that they assume a 

linear principal manifold. Besides, as extensions of Eigenfaces, probabilistic Eigenspaces 

[61-62], Bayesian algorithm using probabilistic subspace [63-64], and Tensorfaces [65-66] 

are also representative linear subspace-based FR approaches.  

Although linear subspace-based FR (e.g., Eigenfaces [57] and Fisherfaces [58]) have 

been widely used, they consider only the global scatter of training samples and fail to 

reveal the essential data structures nonlinearly embedded in high dimensional space. To 

overcome these limitations, the nonlinear manifold learning methods were proposed 

[67-68]. The nonlinear principal manifold is a nonlinear (curved) lower-dimensional 

surface, often referred to as principal curves [69]. The principal curves pass through the 

middle of the data while minimizing the total distance between the data points and their 

projections on the manifold. Kernel extension of linear subspace-based FR is another 

category of nonlinear subspace-based approaches. By using a kernel, the original linear 

operation can be done in a reproducing kernel Hilbert space with a non-linear mapping. 
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The representative kernel subspace approaches are kernel PCA [70], kernel Fisherfaces 

(KLDA) [71], etc. 

 

1.1.2.2 Model-based face representation 

This type of FR approaches attempt to build a 2D or 3D face model to facilitate the 

recognition of face images in the presence of pose, expression, illumination and age 

variations. A representative model-based FR is elastic bunch graph matching (EBGM) 

[78], which represents a face as a labeled image graph with each node being a fiducial 

point. By extracting Gabor coefficients on each node and using fiducial points, EBGM 

could deal with FR with pose variation, even the tilted or occluded face. More recent 

model-based technologies could be divided into face alignment models, morphable face 

models and face aging models [2]. 

Face alignment models: A statistical approach is adopted to learn the way in which 

the face shape and texture vary across a large and representative training set of face 

images. The typical face alignment models are Active Shape Model (ASM) [72-74] and 

Active Appearance Model (AAM) [75-77]. In ASM, a set of feature points (e.g., eyes, 

nose, mouth and eye-brows) are annotated to define correspondence across the training set, 

from which the statistical model of shape variation could be learnt and new face shapes 

could be synthesized. In order to utilize the strong discrimination of face texture, AAM 

applies similar techniques used in ASM to build a statistical model of face appearance. 

AAM combines the power of statistical models of face shape and appearance, and 

achieves state-of-the-art performance in dealing with face alignment.  

Morphable face models: morphable face modeling aims to build a synthesis 

framework, which is able to generate all possible face images. In order to be applicable to 

all input face images, morphable model of faces consists of a 3D shape and appearance 

model plus an imaging model, which could not only enable the accurate modeling of any 

illumination and pose but also well separate these variations from the rest (e.g., identity 

and expression). Given an input image, the morphable model searches for its best 
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parameters to make the generated image as similar as possible to the input image. 

Representative morphable model based FR are expression-invariant 3D FR [79], pose and 

illumination invariant FR [80-81], etc.  

Face aging models: face aging is an important cause that degrades the performance of 

FR systems. Building 2D or 3D face aging model that can compensate for the aging 

process is one of the most successful solutions to age-invariant FR. Recently, Ramanathan 

et al. [82] modeled the face shape growth up to age 18; Lanitis et al. [83] built an aging 

function in terms of PCA coefficients of shape and texture; and age invariant FR by 

learning aging pattern from PCA coefficients of separated 3D shape and 2D texture was 

proposed in [84]. 

 

1.1.2.3 Texture-based face representation 

In texture-based FR technologies, robust local features are extracted. Two important 

texture-based technologies are FR based on gradient information and FR based on local 

statistical features (i.e., statistical information of micro patterns). 

FR based on gradient information: The face feature of the raw intensity values is 

quite sensitive to the changes of ambient lighting. It has been found that image gradient 

information is insensitive and robust to different illuminations (e.g., uncontrolled and 

natural lighting). Based on the reflectance model of face image, Gradientfaces [85] based 

on the ratio of y-gradient to x-gradient was proposed for illumination invariant FR. 

Recently, it was found that the distribution of gradient orientation differences of two 

pixel-wise dissimilar image approximates a uniform distribution [86]. Based on the 

measurement of cosine-based correlation of gradient orientations, PCA-based [86], sparse 

representation-based [87], and subspace learning-based [88] FR approaches were 

proposed.  

FR based on local statistical features: Unlike many appearance-based FR methods, 

which are either holistic feature based (e.g., Eigenface [57] and Fisherface [58]) or local 

feature based (e.g., Gabor feature based classification [89]), the adoption of local binary 
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pattern (LBP) in FR [90] triggers the use of local statistical features (LSF) in the FR field. 

LSF-FR methods consist of two main phases: statistical histogram feature extraction and 

feature selection (e.g., weighting the histogram feature extracted in different blocks). 

Histogram feature extraction could be further divided into three steps: feature map 

generation (e.g., original image, Gabor feature), pattern map coding (e.g., LBP) and 

sub-region histogram computing. Almost all the LSF-FR methods [90-95] have similar 

procedures of sub-region histogram computing (i.e., extracting the statistical information 

of pattern feature in each sub-region), which shows certain robustness to local 

deformations (e.g., variations of pose, expression, and occlusion) of face images. However, 

the different schemes of feature map generation and pattern map coding leads to different 

LSF-FR methods. 

The well-known LBP operator [90] directly uses the image intensity values to encode 

the image local pattern features. In order to overcome the sensitiveness of pixel intensity 

value to the image variations (e.g., illumination), Zhang et al. [91] proposed to extract 

directional Gabor magnitude features at multiple scales, and then apply LBP to the Gabor 

magnitude feature maps for robust LSF. The study of Gabor phase based LSF-FR methods 

were conducted in [92-94]. Zhang et al. [92] adopted multi-scale Gabor phase to take the 

place of Gabor magnitude in [91], and the global and local variations of real part and 

imagery part of complex Gabor filtering coefficients were encoded in [93]. Recently, Xie 

et al. [94] utilized XOR (exclusive or) operator to encode the local variation of Gabor 

phase, and then fused Gabor-magnitude local pattern and Gabor-phase local pattern. This 

scheme achieves very promising FR results. 

 

1.1.2.4 Representation based technologies 

Unlike the subspace-based and texture-based technologies, which focus on extracting 

effective facial feature, and the model-based technologies, which focus on building a 

generative model to pose and expression, representation based technologies pay more 

attention to how to classify the face image or extracted features based on linear 
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combination of training images or their features. Given a sufficient expressive training set, 

the recognition of a testing face image is accomplished by checking which class could 

result in the minimal distance between the testing sample and it. Based on the labels of 

training samples to represent the testing image, representation based technologies could be 

categorized as within-class representation methods and across-class representation 

methods. 

Within-class representation: all the training samples used to represent the testing 

image belong to the same class. The most popular classifier for FR may be the nearest 

neighbor (NN) classifier due to its simplicity and efficiency. In order to overcome NN’s 

limitation that only one training sample is used to represent the testing face image with 

representation coefficient as 1, Li and Lu proposed the nearest feature line (NFL) 

classifier [96], which uses two training samples for each class to represent the testing face. 

Chien and Wu [97] then proposed the nearest feature plane (NSP) classifier, which uses 

three independent samples to represent the testing image. Later on, classifiers using more 

training samples for face representation were proposed, such as the local subspace 

classifier (LSC) [98] and the nearest subspace (NS) classifiers [97, 99-101], which 

represent the testing sample by all the training samples of each class. 

Across-class representation: a testing face image could be represented collaboratively 

across different classes. The representative work is sparse presentation based classification 

[102], which parsimoniously selects training samples from all the classes to represent the 

testing sample. With across-class representation, constraints on the representation 

coefficients, e.g., structural sparse constraint [103], nonnegative sparse constraint [104], 

and joint sparse representation [105], can be imposed in order for robust face recognition 

performance. 

 

1.1.3 New trends of face recognition 

As the rapid development of computer science, imaging technologies, and especially 
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network, there are several new trends of FR.  

1) Web-based uncontrolled FR: Recent years have witnessed the rapid development of 

FR using face images collected from internet under uncontrolled environment. The 

representative databases include LFW [106] and PubFig [107]. Some corresponding 

FR methods for such databases can be found in [107-110]. 

2) High-resolution still/video FR: As indicated by FRGC [111], high resolution images 

are one of three main contenders for improving FR performance. Current FR systems 

mainly rely on low-resolution still images and videos, which lead to the lose of 

important information contained in the microscopic traits [112]. More discrimination 

information for accurate FR would be contained in the high-resolution images/videos, 

which consist of facial images with about 250 pixels between the centers of the eyes 

in average [111]. 

3) Heterogeneous FR: As defined in [4], “Heterogeneous face recognition refers to 

matching face images across different image formats that have different image 

formation characteristics.” Typical examples are matching 2D images to 3D models, 

visible light images to infrared images [54], photo to sketches [55]. There are great 

needs for heterogeneous FR in practical applications. For instance, in the application 

of law enforcement where the photo image of a suspect is not available, a sketch 

drawing based on the recollection of an eyewitness is one of the best substitutes [55]. 

Therefore, automatic face photo-sketch synthesis and recognition becomes important. 

However, heterogeneous FR has additional difficulty for that heterogeneity can 

increase the intra-class variability. 

 

1.2 Sparse Representation 

Natural images can be generally coded by structural primitives, e.g., edges and line 

segments [113], and these primitives are qualitatively similar in form to simple cell 
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receptive fields [114-115]. In [114, 116], Olshausen et al. proposed a sparse coding 

strategy of image representation, i.e., representing a natural image using a small number 

of basis functions chosen out of an over-complete code set. Partially due to the progress of 

l0-norm and l1-norm minimization techniques [117-126], in recent years, such a sparse 

coding or sparse representation strategy has been widely studied to solve inverse problems, 

and researchers have achieved a big success in various applications, include compressive 

sensing [127], morphological component analysis [128], image restoration [129-136], and 

super-resolution [137-138], etc. 

Suppose that x
n
 is the target signal to be coded, and  =[1,…, m] is a given 

dictionary of atoms i (i.e., code set), the sparse coding of x over  is to find a sparse 

representation vector  (i.e., most of the coefficients in  are close to zero) such that 

x [119]. The general regularized coding to solve  is ˆ argmin
pl




  s.t. x, 

where 
pl

  is the lp norm. When 1p  , the regularized coding problem requires  to be 

sparse. A simple example of regularized coding is shown in Fig. 1.4, where =[1;2], x is 

a scalar, the line shows the solution of x=, and the red graph denotes the set of  with 

equal lp-norm. Fig. 1.4(a) shows the non-convex sparse coding with p=0.5, Fig. 1.4(b) 

shows a convex sparse coding with p=1, and a non-sparse coding with p=2 is shown in 

Fig. 1.4(c). 

          
(a)                        (b)                       (c) 

Figure 1.4: Regularized coding in two dimensional space. (a) non-convex sparse coding 

with p=0.5, (b) convex sparse coding with p=1, and (c) convex non-sparse coding with 

p=2. 
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If the sparsity is measured as the l0-norm of , which counts the number of non-zero 

coefficients in , the sparse coding problem becomes 
0

min



 
s.t. 

2

2
 x , 

where  is a small number to tolerate the noise. However, the combinatorial l0-norm 

minimization is an NP-hard problem, and greedy pursuit algorithms [119, 125] are often 

used to solve it. Hence, the l1-norm minimization, as the closest convex function to 

l0-norm minimization, is widely employed for sparse coding: 
1

min



 
s.t. 

2

2
 x  

[120-121]. It was also shown that l0-norm and l1-norm minimizations are equivalent if the 

solution is sufficiently sparse [121, 140]. In statistics, the l1-norm minimization technique 

is equivalent to the so-called LASSO problem [117-118], which was developed in the 

context of variable selection. The objective function of LASSO is 
2

2
min 


x
 
s.t. 

1
 , where  is a constant. More algorithms for sparse coding solutions can be found 

in a recent review [124, 126]. 

One successfully application of sparse coding is signal/image restoration. In the 

inverse problems such as signal/image restoration, often we have a degraded observation 

y=Hx+ of the target signal x, where H is the degrading operator and  is additive noise. 

Based on the different forms of H, the problems can be denoising, deblurring, 

super-resolution, inpainting and compressive sensing, etc [127-139]. In general, the sparse 

solution to the inverse problem can be obtained by  2

2 1
min  


 y H , where  

is a regularization parameter controlling the sparsity of the solution. Many algorithms 

have been proposed to solve the above minimization problems, such as the surrogate 

[132], proximal [141] and the TwIST [133] algorithms. Another impressive application of 

sparse representation is compressive (or compressed) sensing [127]. Instead of first 

sampling enough number of samples (suppose N samples) of a compressible signal x and 

then compressing it, the compressive sensing theory supports sampling directly M (M<<N) 
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linear measurements of x with a random sensing matrix , i.e., y=x. It is shown [140, 

142-143] that if the sensing matrix  satisfies the restricted isometry property, the 

original signal x can be effectively reconstructed. Recently, sparse representation has been 

successfully used in pattern classification, including face recognition [102-105, 144-145, 

147]. 

Beyond the l0-norm or l1-norm sparse coding, in [104, 164] the representation 

coefficients are also required non-negative to pursue more physical meanings. More 

interestingly, the mixed l1/lp norm is widely used in group sparse coding [165-167] for 

meaningful feature representation and used in joint sparse coding [105, 168-169] for 

multi-task representation. More recently, structured sparsity was also proposed to enforce 

specific patterns of non-zero coefficients in different applications [103, 170-172]. 

 

1.3 Dictionary Learning 

In sparse and redundant representation, the target signal is described as a linear 

combination of a few atoms from an over-completed dictionary. Therefore, the choice of 

the dictionary which can sparsely represent the signals is crucial for the success of this 

model.  

Generally speaking, there are two ways to build a proper dictionary [148]: 1) building 

a dictionary with off-the-shelf bases designed via a mathematical model, or 2) learning a 

dictionary from a training set. The dictionary built by the first way could be seen as an 

analytic dictionary, and the examples of such dictionaries include wavelets, curvelets, 

contourlets, and bandelets, etc [148]. Although the analytically designed dictionary has 

several advantages, such as free of training samples and universality to various types of 

signals, it may not be effective enough in specific tasks. Learning dictionaries from 

example signals/images can be a much more effective approach to dictionary design. The 

advancement of sparse representation theory and algorithms has strongly influenced the 
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development of dictionary learning, and most dictionary learning methods train dictionary 

atoms in the scheme of sparse representation regularized by l0 or l1 sparsity constraint. 

Compared to analytic dictionaries, the main advantage of learnt dictionaries lies in that 

they lead to state-of-the-art results in many practical applications, such as image 

restoration [130, 135-136], image denoising [129, 134], image super-resolution [150], 

image compression [151], unsupervised clustering [152], edge detection and image 

interpretation [153], and pattern classification [145, 155-159], etc.  

 

 

(a) 

 

(b) 

Figure 1.5: Original image and learnt dictionary from its patches by K-SVD [129]. (a) 

Example of “pepper”, and (b) example of “boat”. 

 

 

Two classical dictionary learning methods are method of optimal directions (MOD) 

[160-161] and K-SVD algorithm [129], both of which could be formulated as 
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2

, 0
min s.t. ,iF

i    D A D , where A is the training sample matrix,  is the 

coding vector matrix, i is the coding vector of the i
th
 training sample, and D is the 

dictionary to be learnt. In the training phase, both of them alternate sparse coding and 

dictionary update steps. In the step of sparse coding (i.e., 

2

0
min s.t. ,iF

i    A D ), each signal vector in A is individually and sparsely 

represented on the fixed dictionary D. In the step of dictionary updating (i.e., 

2
min

F
 D A D ), MOD solves the entire dictionary by an analytic solution using a 

matrix inversion, while K-SVD updates the dictionary atom-by-atom in a simple and 

efficient process. Fig.1.5 shows the dictionary learning results from natural image patches 

by K-SVD. It can be seen that the learnt dictionaries are similar for different images. 

Inspired by KSVD, other dictionary learning methods such as coupled dictionary learning 

[150] have also been proposed for video restoration and image super-resolution. In 

addition, online dictionary learning [163] has also been developed. A recent review of 

dictionary learning can be found in [148]. 

More recently, dictionary learning is applied to pattern classification, and it achieves 

state-of-the-art results in the applications of digit recognition [156], texture classification 

[156, 162], face recognition [155, 157, 159], clustering [152, 158] and image 

classification [145], etc. Overall, dictionary learning for image and face classification has 

a great potential that deserves deeper investigation.  

 

1.4 Outline of the Thesis and Our Contributions 

Although sparse representation and dictionary learning have received significant attentions 

and achieved state-of-the-art results in many fields, such as image processing, compressive 

sensing, etc., the research of sparse representation and dictionary learning for pattern 

classification (e.g., face recognition) is still in its infancy. Many problems need to be 
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further investigated, including the role of sparsity in pattern classification, effective feature 

extraction, robust measurement of representation residuals and dictionary choosing, etc. In 

this thesis, we explore these problems in details.  

 

 

Figure 1.6: Main work of this thesis. 

 

 

Chapter 2 introduces the related works on representation based classification. Chapter 

3 discusses the mechanism of sparse representation based classification (SRC) and the role 

of l1-norm sparsity, and then presents the collaborative representation based classification 

(CRC) scheme. Chapter 4 studies the use of local features to improve the FR performance, 

and presents the Gabor feature based representation and classification scheme. Chapter 5 

focuses on how to robustly measure representation residuals, and presents a regularized 

robust coding model for face recognition. Then in Chapter 6 a discriminative dictionary 

learning method based on Fisher discrimination criterion for pattern classification is 

presented. Finally the summary of this thesis are given in Chapter 7, with some open 

problems and future work also discussed. As shown in Fig. 1.6, the main works are 

presented in Chapters 3, 4, 5 and 6, which have close relations. Chapter 3 presents a 

fundamental work of the Chapters 4, 5 and 6. Chapters 4 and 5 present two different ways 

to increase the robustness to facial occlusions, while the proposed method in Chapter 5 is 

more robust to various occlusions. Different from directly using the training samples as the 

dictionary in Chapters 3, 4 and 5, Chapter 6 improves the former chapters by learning a 
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discriminative dictionary. A single face recognition system which combines Chapters 3, 

4/5, and 6 could be built. 

This thesis brings several contributions to the fields of pattern classification, machine 

learning and computer vision. As shown in Fig. 1.6, considering an unconstrained 

representation model: 
2

2
min

pl
   y D , we discussed the following key issues in 

this thesis: the collaborative representation of y using the training samples from all classes 

and the role of lp norm regularization on  (Chapter 3), Gabor-feature representation of y 

and the Gabor occlusion dictionary learning (Chapter 4), robust measure of the fidelity 

term y-D (Chapter 5), and how to learn a discriminative dictionary D (Chapter 6). The 

main contributions of this thesis are summarized as follows. 

 We propose a novel representation model for face classification, namely collaborative 

representation based classification (CRC) in Chapter 3. By illustrating how sparse 

representation based classification (SRC) works, we show that it is the collaborative 

representation (i.e., representing the testing image collaboratively by samples from all 

the classes) but not the l1-norm sparse representation that makes SRC effective for 

face recognition, and the proposed l2-norm regularized CRC could achieve 

similar/better performance to/than the l1-norm sparse representation. The SRC is a 

special case of collaborative representation based classification (CRC), which has 

various instantiations by applying different norms to the coding residual and coding 

coefficient. We verify the face recognition accuracy and efficiency of the CRC 

scheme with different instantiations. 

 We show in Chapter 4 how to exploit Gabor feature based representation for more 

accurate face classification performance with lower computational burden. The use of 

Gabor features not only increases the face discrimination power, but also allows us to 

compute a compact Gabor occlusion dictionary, on which the coding coefficients 

could be regularized by l2-norm. The proposed approach demonstrates the high 
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effectiveness and efficiency on representative face databases with variations of 

lighting, expression, pose and occlusion. 

 We propose in Chapter 5 a regularized robust representation (RRC) scheme, which 

can effectively model face images with various outliers. The RRC is a maximum a 

posterior solution of the coding problem with the assumption that the coding residual 

and the coding coefficient are respectively independent and identically distributed. An 

efficient algorithm for solving RRC is also presented. Extensive experiments on 

representative face databases demonstrate that the RRC is much more effective and 

efficient than state-of-the-art sparse representation based methods in dealing with face 

occlusion, corruption, lighting and expression changes, etc. 

 We show in Chapter 6 how to learn a discriminative structured dictionary (i.e., 

dictionary atoms have correspondence to the class label) for pattern classification. The 

learnt dictionary could not only make the class-specific representation residual 

discriminative (i.e., the class-specific dictionary could well represent the samples with 

the same label but have low representation ability to samples of other classes), but 

also make the coding coefficients have small within-class scatter but big 

between-class scatter. With a new classification scheme combining the discriminative 

information in the representation residual and sparse coding coefficients, the proposed 

FDDL leads to (or approaches to) state-of-the-art results for several pattern 

recognition problems such as face recognition, digit recognition, gender classification 

and object categorization. 
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Chapter 2.  Related Works on Representation 

based Classification 

In this chapter, we first review the main methods for representation based classification, 

and then discuss the sparse representation based classification in detail; at last, the 

dictionary learning methods for pattern classification are reviewed. 

 

2.1 Overview of Representation based Classification 

A fundamental problem in pattern classification is to correctly determine the label of a 

testing sample by using the labeled training samples. Usually there are two steps in 

representation based classification. The first step is to represent the testing sample on the 

training samples and output the representation coefficient, denoted by . Then the 

classification is accomplished by checking which class could result in the minimal 

distance between the testing sample and its representation on the training samples. 

There are a number of works on estimating the coefficient  for classification tasks, 

such as face recognition (FR). Based on the labels of training samples used to represent 

the testing image, representation based classification technologies could be categorized as 

within-class representation based ones and across-class representation based ones. Nearest 

neighbor and nearest subspace classifiers [96-101, 173-178] are typical within-class 

representation based classification methods, while sparse representation based 

classification [102] is the most representative method of across-class representation. The 

representation based classification could also be extended to kernel space, such as [147]. 

Here we focus on the linear representation models. In the following we briefly review the 

major works. 
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2.1.1 Within-class representation based classification 

Denote by ,1 ,2 ,[ , ,..., ] i

i

m n

i i i i n


 A s s s  the set of training samples of the i

th
 object class, 

where si,j, j=1,2,…,ni, is an m-dimensional vector stretched by the j
th
 sample of the i

th
 class, 

and ni the number of training samples in the i
th
 class. Given a sufficient training dataset Ac, 

intuitively a testing sample my  from the c
th
 class could be well approximated by the 

linear combination of the samples within Ac, i.e., 
, ,1

cn

c j c j c cj



 y s A , where 

,1 ,2 ,[ , ,..., ] c

c

nT

c c c c n     is the coding vector. Therefore the best representation for 

the testing sample y could be sought class by class, and the class label of the testing 

sample is determined by checking which class could have the best representation 

accuracy.  

 

2.1.1.1 Nearest neighbor (NN) classifier 

The nearest neighbor (NN) classifier finds the nearest training sample to testing sample y, 

and uses the nearest neighbor as the best representation in class c:  

  
2

min : 1,2, ,NN

c j cr j n e  (2-1) 

where ,j c j e y s  is the representation residual vector, and NN

cr  is the minimal distance 

between y and class c. The classification is made via: 

   identity argmin NN

c cry  (2-2) 

 

2.1.1.2 Nearest feature line 

The simplest extension of NN is the nearest feature line (NFL) proposed by Li and Lu 

[96], which searches along an optimal pair of training samples the best representation of y:  

  1, 12
min : , 1,2, , , ,NFL

c j k cr j k n j k    e  (2-3) 

where  , 1 , 1 ,1j k c j c k    e y s s  is the representation residual vector, and 
NFL

cr  is the 

minimal distance between y and class c. The classification is the same as in Eq. (2-2).  
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2.1.1.3 Nearest feature plane 

Following NN and NFL, Chien and Wu [97] extended the geometric concepts of point 

(i.e., only one sample used in NN) and line (i.e., only two samples used in NFL) to plane. 

In nearest feature plane (NFP), the distance between y and i
th
 class is defined as 

  , , 2
min : , , 1,2, , , , ,NFP

c j k g cr j k g n j k j g k g    e  (2-4) 

where , , , ,

c

j k g j k g e y p  and 
, ,

c

j k gp  is the projection of y on plane , ,

c

j k gF , which is 

spanned by three linear independent feature points (e.g., sc,j, sc,k and sc,g) of class c. NFP

cr  

is then taken as the minimal distance between y and class c, and the classification is 

performed as that in Eq. (2-2). 

 

2.1.1.4 Nearest subspace 

Chien and Wu [97] further generalized the geometrical concept from plane to space (i.e., 

the subspace spanned by all the independent prototype features associated with class i), 

and Li [100] also proposed a nearest subspace classifier, which linearly combines all the 

training samples of a certain class to represent y:  

 12
min : cnLC

c c c cr


   y A  (2-5) 

which is called nearest linear combination (NLC) or nearest constrained linear 

combination (NCLC) if constrained by 
1

( ) 1
cn

cj
j


  . Eq. (2-5) is a K-Local hyperplane 

algorithm [173] from a different geometric point of view. 

Eq. (2-5) could be computed with an analytical solution of c [98, 101]:  

 
1

T T

c c c c



 A A A y  (2-6) 

With the solved distance, the classification can be performed as that in Eq. (2-2). The 

downsampled images were used in the local regression classification (LRC) [101] 

algorithm, which is a kind of nearest subspace method and achieves good performance in 

FR. 

The application of nearest subspace classifiers to FR has empirical and analytical 
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supports, especially under variable lighting [174-176]. It was found that under certain 

assumptions, face images under all possible lighting conditions form an illumination cone 

[176]. Furthermore, Basri and Jacobs [175], and Ramamoorthi and Hanrahan [177-178] 

have shown that the illumination cone can be accurately approximated by a 9-dimensional 

linear subspace. Lee et al. [99] has also shown how to acquire linear subspaces for FR 

under variable lighting. However, in practical FR, sufficient training samples for each 

class can not be guaranteed, resulting in the performance degradation of nearest subspace 

based classification methods. 

 

2.1.2 Across-class representation based classification 

Although the nearest subspace classifier adopts more samples than the NN, NFL and NFP 

classifiers in testing sample representation, the cross-class combination of training 

samples is not allowed. Recently, it has been shown that across-class representation is 

very helpful to deal with the small-sample-size problem and avoid the overfitting problem 

in FR [102, 179-180]. 

Suppose that we have K object classes, and let A=[ A1, A2,…, AK] be the 

concatenation of the n training samples from all the K classes, where n=n1+n2+…+ nK, 

then a testing sample y with 
c cy A  could also be well reconstructed by the linear 

combination of all the training samples: 

yA (2-7) 

where one solution to the representation coefficient  could be =[1; …, c; …; K] = 

[0; …; c; …; 0]. In other words, the significant elements in  could identify the identity 

of testing sample y. The main problem of across-class representation based classification 

is to estimate the representation coefficient  which should have enough discrimination. 

In Eq. (2-7), the best representation of the testing sample y using all classes can be 

solved by 
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2
min s.t. ( )Ry A


   (2-8) 

where R() is some regularization imposed on . Because the matrix m nA , which is 

composed of all the training samples from all classes, is often over-complete (e.g., n>m) 

or very redundant in the problem of face representation, some regularization on the 

representation coefficient  is needed to make the representation stable. It can be seen that 

the across-class representation can be interpreted as collaborative representation across 

classes, as well as competitive representation between classes in view of the following 

classification stage. Collaborative representation is helpful to overcome the 

small-sample-size problem and it can make the testing sample be well represented. 

Meanwhile, it would benefit the final classification because if one class contributes more 

in the representation, other classes will contribute less. In the face representation problem, 

“collaboration” and “competition” are the two sides of the same coin. 

The across-class representation is used in the recently proposed sparse representation 

based classification (SRC) [102]. SRC mainly involves two steps: a testing face image is 

firstly coded over all the training images with l1-norm sparsity imposed on the coding 

vector; then the classification is performed by checking which class has the least coding 

residual. SRC has led to state-of-the-art performance in robust face recognition (e.g., with 

random pixel corruption, random block occlusion and various disguise). The success of 

SRC triggers the research of pattern classification by sparse representation and dictionary 

learning [103-105, 147, 157, 162, 181-185, 196], which are reviewed in the following 

sections. 

 

2.2 Sparse Representation based Classification 

The great success of sparse representation in compressive sensing [127] and image 

processing [129-131, 134-136, 150-151, 186] triggers the research on sparse 

representation based pattern classification. The basic idea is to code the testing sample 
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over an over-complete dictionary with sparsity constraint, and then do classification based 

on the coding vector. It is believed that the sparsity constraint will make the coding vector 

more discriminative so that the classification accuracy can be improved. Under such a 

philosophy, Huang and Aviyente [144] sparsely coded a signal over a set of predefined 

redundant bases and took the coding vector as features for classification. Rodriguez and 

Sapiro [145] learnt a discriminative dictionary under the sparse representation framework 

and used it to code the image for classification. 

One pioneer work that applies sparse representation to robust FR is the sparse 

representation based classification (SRC) scheme [102]. In SRC for FR without occlusion, 

a testing sample y0 is sparsely coded on the training dataset A via l1-minimization 

01
ˆ argmin s.t. α y A    (2-9) 

Then classification is made by 

   0identity argmini iry  (2-10) 

where  0 2
ˆ

i i ir  y A  ,      1
ˆ ˆ ˆ ˆ; ; ; ;i K         , and   : inn

i     is 

the characteristic function which selects the coefficients associated to the i
th
 class from the 

original coding coefficients.  

In SRC for FR with occlusion or corruption, the testing sample y is sparsely coded as 

      
00 , 0 01

ˆ ˆ; argmin ; s.t. , ;
ee e e e y A A        (2-11) 

where
0 0 0 e e   y y e A A  , y0 is the clean face image, and e0 is the corruption error. 

y0 and e0 are expected to have sparse representations over the training sample dictionary A 

and the occlusion dictionary em n

e


A , respectively. The corruption dictionary Ae is set 

as an identity matrix I in SRC [102]. Then classification is made by Eq. (2-10) with ri 

computed by 

 
2i i i e er   y A A   (2-12) 

Fig. 2.1 gives an example of FR with sunglass by using SRC. Fig. 2.1(a) shows the 

sparse representation (solved by Eq. (2-11)) of the input face image, where red 
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coefficients correspond to training images of the correct individual (in the red box), and 

the right two images are the estimated corruption. Fig. 2.1(b) illustrates the representation 

residuals (i.e., ri in Eq. (2-12)) associated to each class, which clearly show that the 

correct class has the lowest reconstruction error. 
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Figure 2.1: An example of sparse representation based classification [102]. (a) Sparse 

representation of the face image. (b) Representation residuals associated to each class for 

classification. 

 

 

The success of SRC boosts the research of sparsity based FR, and many works have 

been consequently reported. For instance, sparse representation has been extended to 

kernel space [147]; various improved sparsity constraints, e.g., structural sparse constraint 

[103], nonnegative sparse constraint [104, 154], and joint sparse representation [105], 

have been proposed for classification. Sparse representation based robust FR with 

continuous occlusion [187] and misalignment [188-189] has also been studied. Besides, 

l1-graph has been proposed for image classification [182] and subspace learning [183]. In 

[190], sparse coding was combined with linear spatial pyramid matching for image 

classification. In [191], sparse representation with low-rank decomposition was proposed 
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to align a batch of linearly correlated image with gross corruption. In addition, dictionary 

learning methods [157, 162, 184-185, 196] were also developed to enhance SRC based 

pattern classification, which will be discussed in next section. 

Though sparse representation has shown very promising performance in classification 

tasks, especially in robust FR, there are still some significant concerns: 

1) The role of l1-sparsity and the working mechanism of SRC are not fully revealed yet. 

Many following works of SRC aim to improve the l1-regularization term on coding 

vector . For example, Liu et al. [104] added a nonnegative constraint to ; Gao et al. 

[192] introduced a Laplacian term of  in sparse coding; Yuan and Yan [105] used 

joint and group sparse representation to code the multiple types of image features; and 

Elhamifar and Vidal [103] used structured sparse representation for robust 

classification. All these works stress the role of l1-sparsity of  in classification. 

However, the role of collaborative representation in SRC, i.e., using the training 

samples from all classes to represent the testing sample y, is rather ignored. In the 

recent work [193, 238], the role of sparsity in classification has been questioned. This 

issue will be discussed in detail in Chapter 3, and the related works of collaborative 

representation based classification have been published in [179-180]. 

2) Holistic and local features. SRC adopts holistic features (e.g., Eigenfaces, 

Randomfaces, raw intensity value) and this makes the size of occlusion dictionary Ae 

very big and makes SRC computationally expensive. This issue is not fully solved by 

the following sparsity based FR methods [103, 147, 157, 162, 184-185, 187-189]. For 

instance, only holistic features are considered in [103, 157, 162, 184-185, 187-189, 

197], and FR with occlusion is ignored in [147, 188], while the problem of large 

occlusion dictionary is not addressed in [157, 162, 184-185, 197]. To solve this issue, 

we will present in Chapter 4 the algorithm of Gabor feature based representation and 

Gabor occlusion dictionary learning [181, 258]. 
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3) Robustness to outliers. In Eq. (2-9) and Eq. (2-11), the coding residual e=y-D is 

measured by the l2- and l1-norm, respectively, which actually assumes that the coding 

residual e follows Gaussian or Laplacian distribution. In practice, however, such an 

assumption may not hold well, especially when occlusions, corruptions and 

expression variations occur in the testing face images. Few works have been reported 

to solve this problem. In Chapter 5, we will propose a regularized robust coding 

model [194-195] by seeking for a maximum a posterior solution of the coding 

problem, which can effectively deal with FR with various kinds of outliers. 

 

2.3 Dictionary Learning based Classification 

As reviewed in Section 1.3, the choice of dictionary that sparsely represents the signals is 

crucial for the success of sparse representation model, and learning dictionary from 

training data by enforcing sparsity constraint on coding coefficients has lead to 

state-of-the-art results in many practical applications, such as image restoration [130, 

135-136], image denoising [129, 134], image super-resolution [150], image compression 

[151], unsupervised clustering [152], etc. Inspired by the great success of dictionary 

learning in the above fields, dictionary learning based classification has also been paid 

much attention to and promising performance has been achieved [145, 155-159, 162, 

196].  

The very basic model of dictionary learning could be written as 

2

0 1,
min s.t. ori iF

i    
D X

A DX x x  (2-13) 

where A is the training dataset, xi represents a column of coding coefficient matrix X, and 

D is the dictionary to be learnt. Usually, each column dj of the dictionary is required to 

satisfy 
2

2
1j d . The representative dictionary learning methods, such as KSVD [129] 

and MOD [160-161], learn the dictionary by solving Eq. (2-13). However, Eq. (2-13) may 
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not be suitable for classification tasks because it can only ensure that the learnt dictionary 

D could faithfully represent the training samples A.  

In the task of classification, usually additional priors on the dictionary and/or the 

representation coefficients are introduced in the phase of dictionary learning [144, 152, 

155-159, 162, 165, 173-174, 184, 196]. The general dictionary learning model for 

classification tasks could be represented as 

 

 
2

,

0 1

Prior

min s.t. Prior

or

F

i i i 




 


  

D X

X

A DX D

x x

 (2-14) 

where the constraint Prior(X) could introduce discrimination information to the 

representation coefficients (e.g., training a coefficient based classifier [155-157, 159, 184, 

196]), and the constraint Prior(D) could make the class-specific representation residuals 

discriminative [152, 158, 162]. According to the types of constraints (e.g., on X or on D), 

we review the dictionary learning methods for classification by two categories, dictionary 

learning with additional Prior(X) and dictionary learning with additional Prior(D).  

 

2.3.1 Dictionary learning with Prior(D) 

In this case, the atoms of learnt dictionary have labels to define the correspondence to 

different classes. Usually the atoms of such class-specific dictionary should be able to 

well reconstruct the training samples of the same class, but have poor representation 

ability to other classes. Based on KSVD, Mairal et al. [162] added a reconstruction-error 

constraint in the dictionary learning model to gain certain discrimination ability, and 

applied the learnt dictionary to texture segmentation and scene analysis. Sprechmann et al. 

[152] optimized a set of dictionaries, one for each cluster, with which the signals can be 

well clustered. Later on, Ramirez et al. [158] added an incoherence promoting term to the 

model in [152], encouraging dictionaries associated with different classes to be as 

independent as possible.  
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2.3.2 Dictionary learning with Prior(X) 

In this category, the learnt dictionary is shared by all classes. In other words, all the 

training samples could be well reconstructed by the atoms of the shared dictionary. 

Rodriguez et al. [145] proposed to learn dictionary with discriminative sparse coefficients 

by using an orthogonal-matching-pursuit like method. Dictionary learning by training a 

linear classifier was also proposed for digit recognition, texture classification [156], and 

object categorization and FR [155]. Based on [155] and KSVD [129], Zhang et al. [157] 

proposed an algorithm called discriminative KSVD (DKSVD) for FR, followed by the 

so-called Label-Consistent K-SVD [184]. Local feature based dictionary was also learnt 

via back-projection in [159] to represent local features. Recently, beyond l0- or l1-norm 

sparsity, nonnegative [164], group [165] and structured [170] sparsity constraints were 

proposed in different applications to enforce specific patterns of non-zero coefficients.  

Although the first category of dictionary learning methods enforces discrimination to 

the class-specific representation residuals, it does not enforce discrimination to the 

representation coefficients in training the dictionary and doing classification. For the 

second category of dictionary learning methods, the shared dictionary loses the 

correspondence between the dictionary atoms and the class labels, and hence performing 

classification based on the reconstruction error associated with each class is not allowed. 

To exploit the discriminative information in both representation residual and coefficients, 

we will propose a dictionary learning method based on Fisher discrimination criterion, 

which will be presented in Chapter 6. 

 

2.4 Summary 

In this chapter, some related works of this thesis, including representation based 

classification, sparse representation and dictionary learning based classification, were 

reviewed. Sparse representation and dictionary learning have led to state-of-the-art results 
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in many applications such as image reconstruction. However, the study of sparse 

representation and dictionary learning based classification is still in its infancy. This thesis 

aims to investigate the various issues in this problem and advance the research of sparse 

representation and dictionary learning in computer vision. In the following Chapters 3~5, 

we will focus on sparse representation based face classification, and dictionary learning 

will be discussed in Chapter 6. 
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Chapter 3.  Collaborative Representation based 

Classification for Face Recognition 

3.1 Introduction 

Inspired by the findings of sparsity in human visual perception [114-115], sparse 

representation or sparse coding has been successfully used in many applications, including 

compressive sensing [127], morphological component analysis [186], image restoration 

[129-131, 135], and super-resolution [137-138], etc. The great success of sparse 

representation in image reconstruction triggers the research on sparse representation based 

pattern classification [102, 144, 145, 147, 157, 162, 182-185, 188, 189], as described in 

Section 2.2.  

The pioneer work by using sparse representation was reported by Wright et al. [102] 

for face recognition (FR). Denote by im n

i


A  the set of training samples from class i 

(each column of Ai is a sample). Suppose that we have K classes of subjects, and let A = 

[A1, A2, …, AK]. The so-called sparse representation based classification (SRC) [102] 

scheme mainly involves two steps. Firstly, a testing face image y
m
 is coded on A by 

 2

2 1
ˆ argmin   y A   for standard SRC (S-SRC) or 

     2

, 2 1
ˆ argmin , ; ;  e y A Ι e e    for robust SRC (R-SRC). Secondly the 

classification is performed by checking which class has the least coding residual. It is not 

difficult to see that the latter coding model is basically equivalent to 

 
1 1

ˆ argmin   y A   [202] (this equivalence could be derived by denoting 

e=y-A); that is, the coding residual is also characterized by l1-norm to achieve robustness 

to outliers. 
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SRC (including S-SRC and R-SRC) shows very interesting and powerful FR 

performance, and it inspires many following works, e.g., kernel sparse representation 

[147], l1-graph for image classification [182-183], misalignment robust FR [188-189], 

image aligning [191] and dictionary learning [157, 162, 185]. Beyond that, many fast 

algorithms have been proposed to speed up the l1-minimization process [126, 198-204]. 

As reviewed in [126], there are five representative fast l1-norm minimization approaches, 

namely, Gradient Projection, Homotopy, Iterative Shrinkage-Thresholding, Proximal 

Gradient, and Augmented Lagrange Multiplier (ALM). It was indicated in [126] that for 

noisy data, the first order l1-minimization techniques (e.g., SpaRSA [200], FISTA [201], 

and ALM [202]) are more efficient, while in the application of FR, Homotopy [203], 

ALM and l1_ls [204] are better for their good accuracy and fast speed. 

Though SRC shows interesting results in FR and has been widely studied in the 

community, its working mechanism is not fully revealed yet. The role of l1-sparsity is 

often emphasized in face classification, and many works aim to improve the 

l1-regularization term on coding vector  [103-105, 192]. However, recently Berkes et al. 

[193] argued that there is no clear evidence for active sparsification in the visual cortex. 

More importantly, the role of collaborative representation in SRC, i.e., using the training 

samples from all classes to represent the testing sample y, is rather ignored.  

As reviewed in Section 2.1, the SRC classifier has a close relationship to the nearest 

classifiers, including the nearest neighbor (NN), nearest feature line (NFL) [100], nearest 

feature plane (NSP) [97], and nearest subspace (NS) [96-99, 101] classifiers. The NN, 

NFL and NSP classifiers use one, two and three training samples, respectively, to 

represent the testing image for classification, while the NS classifiers represent the testing 

sample by all the training samples of each class. Like these nearest classifiers, SRC also 

represents y as the linear combination of training samples; however, one critical difference 

between SRC and these classifiers is that SRC collaboratively represents y by training 

samples from all classes, while the nearest classifiers represent y by each individual class. 

The use of all classes to collaboratively represent y alleviates much the small-sample-size 
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problem in FR, especially when number of training samples per class is relatively small. 

In this Chapter, we discuss the collaborative representation nature of SRC, and 

present a more general model, namely collaborative representation based classification 

(CRC), for FR. By using either l1-norm or l2-norm to characterize the coding vector  and 

the coding residual e=yA, we can have different instantiations of CRC, while S-SRC 

and R-SRC are special cases of CRC. More specifically, the l1- or l2-norm characterization 

of e is related to the robustness of CRC to outlier facial pixels, while the l1- or l2-norm 

characterization of  is related to the discrimination of employed facial feature y. When 

the face image is not occluded/corrupted, l2-norm is good enough to model e; when the 

face image is occluded/corrupted, l1-norm is more robust to model e. The discrimination 

of facial feature y is often related to its dimensionality. If the dimensionality and hence the 

discrimination of y is high, the coding coefficients  will be naturally sparse and 

concentrate on the samples whose class label is the same as y, no matter l1- or l2-norm is 

used to regularize . When the dimensionality of y is low, often the discrimination power 

of y will be reduced, and thus the distribution of  will be less sparse, and some big 

coefficients can be generated and assigned to the samples whose class labels are different 

from y. In this case, the l1-norm regularization on  will enforce  to be sparse, and 

consequently enhance its discrimination power. Considering that the l1-regularization on  

will make the computational cost high, and usually the facial feature y can have a high 

enough dimensionality, a good instantiation of CRC is that we use l2-norm (for 

non-occluded and non-corrupted faces) or l1-norm (for occluded/corrupted faces) to 

measure e, and use l2-norm to regularize . Such a modeling can lead to not only high FR 

rate but also low computational complexity.  
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3.2 The Role of Sparsity in Representation based FR 

There are two key points in SRC [102]: (i) the coding vector  is enforced to be sparse 

(regularized by the l1-norm), and (ii) the coding of testing sample y is performed over the 

whole dataset A instead of each subset Ai. It was claimed in [102] that the sparsest (or the 

most compact) representation of y over A is naturally discriminative and thus can indicate 

the identity of y. As we explained in the Section 3.1, the SRC classifier is a generalization 

and significant extension of classical nearest classifiers such as NN and NS by 

representing y collaboratively across classes. But there are some issues not very clear yet: 

why the sparsity constraint on  makes the representation more discriminative, and must 

we impose l1-norm sparsity on  to this end? 

Denote by mn
 a dictionary of bases (atoms). If  is complete, then any signal 

x
m
 can be accurately represented as the linear combination of the atoms in . If  is 

orthogonal and complete, however, often we need to use many atoms from  to faithfully 

represent x. If we want to use less number of atoms to represent x, we must relax the 

orthogonality requirement on . In other words, we should allow more atoms to be 

involved in  so that we have more choices to represent x using the atoms in , leading to 

an over-complete and redundant dictionary  but a sparser representation of signal x. The 

recent great success of sparse representation in image restoration [129-131, 135] validates 

that a redundant dictionary can have more powerful capability to represent and reconstruct 

the signal. 

In the scenario of FR, each class of face images often lies in a small subspace of 
m
. 

That is, the m-dimensional face image x can be characterized by a code of much lower 

dimensionality. Let’s take the set of training samples of class i, i.e., Ai, as the dictionary 

for this class. In practice the atoms (i.e., the training samples) of Ai will be correlated. 

Assume that we have enough training samples for each class and all the face images of 

class i can be faithfully represented by Ai, then Ai can be viewed as a redundant 
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dictionary
1
 because of the correlation of training samples of class i. Therefore, we can 

conclude that a testing sample y of class i can be sparsely represented by dictionary Ai. 

Another important fact in FR is that human faces are all somewhat similar, and some 

subjects may have very similar face images. That is, dictionary Ai of class i and dictionary 

Aj of class j are not incoherent; instead, they can be highly correlated. Using the NS 

classifier, for a testing sample y from class i, we can find (by least square method) a 

coding vector i such that 
2

2
argmini i y A  . Let ri=yAii. Similarly, if we 

represent y by class j, there is 
2

2
argminj j y A   and we let rj=y-Ajj. For the 

convenience of discussion, we assume that Ai and Aj have the same number of atoms, i.e., 

Ai, Aj
mn

. Let Aj = Ai +. When Ai and Aj are very similar,  can be very small such 

that 
1

( )

( )

n iF

i iF





 

Δ A

A A
, where 1(Ai) and n(Ai) are the largest and smallest 

eigenvalues of Ai, respectively. Then we can have the following relationship between ri 

and rj (Theorem 5.3.1, page 242, [205]): 

     22
2

2

1 ( ) min 1,
j i

i m n   


   
r r

A
y

 (3-1) 

where 2(Ai) is the l2-norm conditional number of Ai. From Eq. (3-1), we can see that if  

is very small, the distance between ri and rj will also be very small. This makes the 

classification very unstable because some small disturbance can make ||rj||2<||ri||2, leading 

to a wrong classification. 

The above problem can be much alleviated by regularization, for example, enforcing 

some sparsity on i and j. The reason is very intuitive. Take the l0-norm sparsity 

regularization as an example, if y is from class i, it is more likely that we can use only a 

few samples, e.g., 5 or 6 samples, in Ai to represent y with a good accuracy. In contrast, we 

may need more samples, e.g., 8 or 9 samples, in Aj to represent y with nearly the same 

                                                        
1More strictly speaking, it should be the dimensionality reduced dictionary of Ai that is redundant. For the 

convenience of expression, we simply use Ai in the development.   
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representation accuracy. With the sparsity constraint or other regularizer, the representation 

error of y by Ai will be visibly lower than that by Aj, making the classification of y easier. 

Here let’s consider three regularizers: the sparse regularizers by l0-norm and l1-norm, and 

the l2-norm least square regularizer. 

 

  
(a) 

 
(b) 

 
(c) 

 

Figure 3.1: An example of class-specific face representation. (a) The testing face image 

(left: original image; right: the one after histogram equalization for better visualization); 

(b) some training samples from the class of the testing image; (c) some training samples 

from another class. 

 

 

By lp-regularization, p = 0, 1, or 2, the representation of y by dictionary  can be 

formulated as 

2

2
ˆ arg min s.t.

pl
  y    (3-2) 

where  is a positive number. Let 
2

ˆr  y  . We could plot the curves of “r vs. ” for 

two similar classes to illustrate how regularization improves discrimination. Fig. 3.1(a) 

shows a testing face image of class 32 in the Extended Yale B database [99, 206]. Some 

training samples of this class are shown in Fig. 3.1(b), while some training samples of 

class 5, which is similar to class 32, are shown in Fig. 3.1(c). We use the training samples 

of the two classes as dictionaries to represent, respectively, the testing sample in Fig. 3.1(a) 

by using Eq. (3-2). The “r vs. ” curves for p = 0, 1, and 2 are drawn in Fig. 3.2 (a), Fig. 
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3.2(b) and Fig. 3.3(c), respectively. For the l0-norm regularization, we used the 

Orthogonal Matching Pursuit (OMP) algorithm [125] to solve Eq. (3-2); for the l1-norm 

regularization, we used the l1_ls algorithm [204]; while for l2-norm regularization, the 

regularized least square can be used to get an analytical solution to Eq. (3-2). 
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(b)                                       (c)        

Figure 3.2: The curve of representation residual versus the lp-norm of the representation 

coefficients. (a) p=0, (b) p=1, and (c) p=2. 

 

 

From Fig. 3.2(a), one can see that when using only a few training samples (e.g., less 

than 3 samples) to represent the testing sample, both the two classes have big 

representation error. In practice, the system will consider this sample as an imposter and 

directly reject it. When more and more training samples are involved, the representation 

residual r decreases. However, the ability of r to discriminate the two classes will also 

reduce if too many samples (e.g., more than 10 samples) are used to represent the testing 

sample. This is because the two classes are similar so that the dictionary of one class can 

represent the samples of another class if enough training samples are available (i.e., the 

dictionary is nearly over-complete). With these observations, we can conclude that a 
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testing sample should be classified to the class which could faithfully represent it using 

less number of samples, and the l0-norm sparse regularization on  can do this job. In 

other words, the sparsity can improve the discrimination of representation based 

classification. 

Now the question is: can the weaker l1-norm sparsity, and even the non-sparse l2-norm 

regularization, do a similar job? Fig. 3.2(b) and Fig. 3.2(c) give the answer, where one can 

see that l1-norm and l2-norm regularizations also work well in improving the 

discrimination of representation based classification. When  is big (e.g., >8; here the 

feature vector is normalized to have unit l2-norm), which means that the regularization is 

lose, both the two classes have very low reconstruction residual e, making the 

classification very unstable. By setting a smaller , the l1-norm or l2-norm regularized 

solution of  will result in discriminative reconstruction residual, by which the testing 

sample can be correctly classified. From this example, it can be concluded that the role of 

l0-norm or l1-norm sparsity on  is basically to regularize the solution, while the 

non-sparse l2-norm regularization can play a similar role to sparse l1-norm regularization 

in face classification by regularing the solution. 

Remark (regularized nearest subspace, RNS): The above observations and 

discussions imply a regularized nearest subspace (RNS) scheme for FR when the number 

of training samples of each class is big. In this case, we can represent the testing sample y 

class by class, and classify it based on the representation residual and regularization 

strength. Since l0-norm minimization is combinatorial and NP-hard, it is more practical to 

use l1-norm or l2-norm to regularize the representation coefficients. Using the Lagrangian 

formulation, we have the objective function of RNS-Lp as: 

 2

2
ˆ arg min

pl
    y  (3-3) 

where p = 1 or 2 and  is a positive constant. For each class Ai, we could obtain its 

representation vector ˆ
i  of y by taking  as Ai in Eq. (3-3). Denote by 



Chapter 3. Collaborative Representation based Classification for Face Recognition 

41 

2

2
ˆ ˆ

p
i i i i l

r    y A  the sum of representation residual and regularization strength. 

We can then classify y by    identity argmini iry . 

 

3.3 The Collaborative Representation based Classification 

(CRC) 

In our discussion in Section 3.2, we assumed that there are enough training samples each 

class so that each dictionary Ai is redundant. Unfortunately, FR is a typical 

small-sample-size problem, and Ai is under-complete in general. If we use Ai to represent 

y, the representation residual ri can be big, even when y is from class i. Consequently, the 

classification based on ri will be unstable. 

One obvious solution to solving this problem is to introduce more samples of class i 

into the representation of y, yet the problem is how to find the additional samples. 

Fortunately, one fact in FR is that the face images of different people share certain 

similarities, and some subjects, say subject i and subject j, can be very similar to each 

other so that the samples from the class j can be used to represent the testing sample of 

class i. In other words, one class can borrow samples from the classes similar to it in order 

to faithfully represent the testing sample. Such a strategy is very similar to the nonlocal 

technique widely used in image restoration [207-209], where for a given image local patch 

many similar patches to it (i.e., the so-called nonlocal similar patches) are collected in the 

image to help the reconstruction of the given patch. By exploiting the nonlocal 

redundancy, the nonlocal methods achieve state-of-the-art results in the image restoration 

literature. In FR, for each class we may consider the similar samples from other classes as 

the “nonlocal samples” and use them to reconstruct the testing sample for a more accurate 

representation. 

However, such a “nonlocal” strategy has some problems to implement under the 
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scenario of FR. First, how to find the “nonlocal” samples for each class is itself a 

nontrivial problem. Note that here our goal is face classification but not face 

reconstruction (though reconstruction is an intermediate stage in the whole classification 

process), and using the Euclidian/cosine distance to identify the nonlocal samples may not 

be effective for our goal. Second, by introducing the nonlocal samples to represent the 

testing sample, all the classes will reduce its representation residual of the testing sample, 

and thus the discrimination power of representation residual may be reduced, making the 

classification harder. Third, such a strategy can be computationally expensive because for 

each class we need to identify the nonlocal samples and calculate the representation. 

Therefore, we need to find another way to solve the small-sample-size problem. 

Interestingly, in SRC [102] this “lack of samples” problem is solved by using the 

collaborative representation strategy, i.e., coding the testing image y over the samples 

from all classes A = [A1, A2, …, AK] as yA. Such a collaborative representation strategy 

simply takes the face images from all the other classes as the nonlocal samples of one 

class. Though this representation strategy is very simple, there are two key points that we 

would like to stress. First, by collaborative representation the searching for the nonlocal 

samples of each class can be avoided. Second, by collaborative representation all the 

classes share one common representation of the testing sample, and thus the conventional 

representation residual based classification procedure, which is used in NN and NS 

classifiers, cannot be used. 

Though we call the representation of y by A “collaborative representation”, we have 

no objection if anyone call it “competitive representation”, because each class will 

contribute competitively to represent y. If one class contributes more, this means that 

other classes will contribute less. In this face representation problem, “collaboration” and 

“competition” are the two sides of the same coin. Therefore, one intuitive but very 

effective classification rule is to check which class contributes the most in the 

collaborative representation of y, or equivalently which class has the least reconstruction 

residual by using the coding coefficients associated with it. This rule is adopted in the 
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SRC scheme and shows very powerful classification capability. Next, let’s make more 

discussions on this classifier, which can be generally called the collaborative 

representation based classification (CRC) scheme. 

 

3.3.1 Discussions on collaborative representation based classification 

After collaboratively represent y using  2

2 1
ˆ argmin   y A   , SRC classifies 

y by checking the representation residual class by class using 

 
2

ˆidentity argmini i i y y A , where ˆ
i  is the sub-coefficient vector associated 

with class i. For the simplicity of analysis, let’s remove the l1-regularization term (i.e., 

||||1), and the representation becomes the least square problem: 

   

2

2
ˆ argmin

i
i i ii
 

 y A . Refer to Fig. 3.3, the resolved representation 

ŷ ˆ
i ii

 A  is the perpendicular projection of y onto the space spanned by A. The 

reconstruction residual by each class is 
2

2
ˆ

i i ir   y A . It can be readily derived that 

2 2 2

2 2 2
ˆ ˆ ˆ ˆ

i i i i ir       y A y y y A  

Obviously, when we use ri to determine the identity of y, it is the amount 

2*

2
ˆ ˆ

i i ir  y A  (3-4) 

that works for classification because 
2

2
ˆy y  is a constant for all classes. 

From a geometric viewpoint, we can write 
*

ir  as 

 

 

2 2

2*

2

ˆ ˆsin , || ||

sin ,

i

i

i i

r 
y χ y

χ χ
 (3-5) 

where ˆ
i i iχ A  is a vector in the space spanned by Ai, and ˆ

i j jj i
χ A  is a vector 

in the space spanned by all the other classes Aj, ji. Eq. (3-5) shows that by using CRC, 

when we judge if y belongs to class i, we will not only consider if the angle between ŷ  
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and i is small (i.e., if  ˆsin , iy χ  is small), we will also consider if the angle between i 

and iχ  is big (i.e., if  sin ,i iχ χ  is big). Such a “double checking” mechanism makes 

the CRC effective and robust for classification. 

When the number of classes is too big, the number of atoms in dictionary A = [A1, 

A2, …, AK] will be big so that the least square solution    

2

2
ˆ min

i
i i ii
 y A


   is 

not unique (i.e., the solution may become unstable). This problem can be solved by 

regularization. In SRC, the l1-norm sparsity constraint is imposed on  to regularize the 

solution. However, the l1-minimization is time consuming. As we will see in the section of 

experimental results, by using l2-norm to regularize the solution of , we can have similar 

FR results to those by l1-regularization but with significantly less complexity. This 

validates that the collaborative representation plays a more important role than the l1-norm 

regularization in the problem of FR. 

 

 

Figure 3.3: Illustration of collaborative representation based classification. 

 

3.3.2 General model of collaborative representation 

By coding a given testing image y over the dictionary A, we may write it as y=x+e, where 

xA is the component we want to recover from y for classification and e is the 
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y 
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component (e.g., noise, occlusion and corruption) we want to remove from y. A general 

model of collaborative representation is:  

 ˆ argmin
q pl l

  y A    (3-6) 

where  is the regularization parameter and p, q = 1 or 2. Different settings of p and q lead 

to different instantiations of the collaborative representation model. For example, in SRC 

[102] p is set as 1 while q is set as 1 or 2 to handle face recognition with and without 

occlusion/corruption, respectively. 

Different from the sparse representation in image restoration, where the goal is to 

faithfully reconstruct the signal from the noisy and incomplete observation, in CRC the 

goal of collaborative representation is twofold. First, we want to recover the desired signal 

x from observation y with the resolved coding vector ̂ , i.e., x=Â . In x, the noisy and 

trivial information are expected to be suppressed. Second, in order for an accurate 

classification, the coding vector ̂  should be sparse enough so that the identity of y can 

be easily identified. Next let’s discuss how to set p and q in Eq. (3-6) to achieve the above 

goals with a reasonable degree of computational complexity. 

Suppose that there is no occlusion/corruption in y (the case that y is 

occluded/corrupted will be discussed in Section 3.3.4), we may assume that the observed 

image y contains some additive Gaussian noise. Under such an assumption, it is known 

that the l2-norm should be used to characterize the fidelity term in Eq. (3-6) in order for an 

optimal maximum a posterior (MAP) estimation of x [138]. Thus we have q=2. 

Let’s then discuss the regularization term in Eq. (3-6). Most of the previous works 

[102, 147, 182] like SRC emphasize the importance of l1-regularization on , and it is 

believed that the l1-regularization on  makes the resolved coding vector ̂  sparse. In 

order to make clearer which norm we should use to regularize , let’s conduct some 

experiments to investigate its distribution. 

We use the Extended Yale B and AR [212] databases to perform the experiments. The 

training samples (1216 samples in Extended Yale B and 700 samples in AR) are used as 



Regularized Robust Coding and Dictionary Learning for Face Recognition, PhD Thesis, Meng Yang 

 46 

the dictionary A. The PCA is used to reduce the dimensionality of face images. For each 

testing face sample y, it is coded over A, and the coding vector  calculated from all the 

testing samples are used to draw the histogram of . In the first experiment, we reduce the 

feature dimensionality of face images to 800 for Extended Yale B and 500 for AR. Then 

the dictionaries A for the two databases are of size 8001216 and 500700, respectively. 

Since both the two systems are under-determined, we calculate the coding vector with 

least-square method but with a weak regularization:  
1

0.0001T T


  A A Ι A y . In 

Figs. 3.4(a) and 3.4(b) we draw the histograms of  for the two databases, as well as the 

fitted curves of them by using Gaussian and Laplacian functions. 
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(c)                                      (d) 

Figure 3.4: The histograms (in red) of the coding coefficients and the fitted curves of 

them by using Gaussian (in green) and Laplacian (in blue) functions. (a) and (b) show the 

curves for AR (500-d) and Extended Yale B (800-d) databases, respectively, while (c) and 

(d) show the curves when the feature dimension is 50. 
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From Figs. 3.4(a) and 3.4(b), we can see that the distribution of  can be much better 

fitted as Laplacian than Gaussian. The Kullback-Leibler divergences between the 

histograms and the fitted curves are 0.0223 by Gaussian and 0.0172 by Laplacian for the 

AR database, and 0.1071 by Gaussian and 0.0076 by Laplacian for the Extended Yale B 

database. In other words, via collaborative representation the distribution of  naturally 

and passively tends to be sparse (i.e., Laplacian) even without the l1-regularization. This is 

because when the dimension of the face feature y is relatively high (e.g., 500), in general 

the discrimination power of y is also high so that only a few training samples, mostly from 

the same class as y, will be chosen to code it. This naturally leads to a sparse 

representation of y. 

Then we reduce the face feature dimensionality to 50 by PCA, and draw in Figs. 3.4(c) 

and 3.4(d) the histograms of  on the two databases, as well as the fitted curves of them. It 

can be found that the Laplacian fitting of the histogram is not that accurate now (the 

Kullback-Leibler divergences are 0.0264 for the AR database and 0.0152 for the Extended 

Yale B database), while the Gaussian fitting of the histogram is much improved (the 

Kullback-Leibler divergences are 0.0231 for the AR database and 0.0820 for the Extended 

Yale B database). This is because when the dimension of the face feature y is low (e.g., 

50), the discrimination capability of y will be much decreased so that quite a few training 

samples from different classes will be chosen to code y. This makes the representation of y 

much less sparse, and raises the difficulty to correctly identify the identity of y. 

For a more comprehensive observation of the relationship between the dimensionality 

of feature y and the sparsity of coding coefficient , in Fig. 3.5 we show the 

Kullback-Leibler divergences between the coding coefficient histograms and the fitted 

Gaussian and Laplacian functions under various feature dimensions. Clearly, with the 

increase of feature dimensionality, the fitting error by Laplacian function decreases, 

implying that the increase of feature discrimination can naturally force the coding 

coefficients to be sparsely distributed. In such case, there is no necessary to further 
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regularize  by using the expensive l1-norm regularization. However, with the decrease of 

feature dimensionality, the discrimination power of the feature vector will also decrease 

and the distribution of  becomes less sparse. In such case, we may need to impose the 

l1-regularization on  to actively sparsify  to enhance the classification capability. Our 

experiments in Section 3.4 will also validate the above analyses. 
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Figure 3.5: The Kullback-Leibler divergences between the coding coefficient histograms 

and the fitted curves (by Gaussian and Laplacian distributions) under different feature 

dimensions. (a) AR; and (b) Extended Yale B. 

 

3.3.3 CRC with regularized least square 

In practical FR systems, usually the feature dimensionality will not be set too low in order 

for a good recognition rate. Based on our above discussions, there is no necessary to use 

l1-norm to sparsify . Considering that the dictionary A can be under-determined, we use 

||||2 to regularize the solution of Eq. (3-6), leading to the following regularized least 

square (RLS) instantiation of collaborative representation:  

 2 2

2 2
ˆ argmin   y A    (3-7) 

The role of the l2-norm regularization term ||||2 is two-folds. First, it makes the least 

square solution stable, particularly when A is under-determined; second, it introduces a 

certain amount of sparsity to the solution ̂ , yet this sparsity is much weaker than that by 

l1-norm. 

The solution of RLS based collaborative representation in Eq. (3-7) can be 
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analytically derived as ˆ  Py , where  
1

T T


  P A A Ι A . Clearly, P is independent 

of y so that it can be pre-calculated. Once a testing sample y comes, we can simply project 

y onto P via Py. This makes the calculation very fast. The classification by ̂  is similar 

to that in SRC (i.e.,  
2

ˆidentity argmini i i y y A ). In addition to use the 

class-specified representation residual 
2

ˆ
i iy A  for classification, where ˆ

i  is the 

coding vector associated with class i, the l2-norm “sparsity” 
2

ˆ
i  also brings some 

discrimination information. We propose to use both of them in the decision making. 

(Based on our experiments, this improves slightly the classification accuracy over that by 

using only 
2

ˆ
i iy A .) The proposed CRC algorithm via RLS (CRC-RLS) is 

summarized in Table 3.1.  

 

Table 3.1: The CRC-RLS Algorithm. 

The CRC-RLS Algorithm 

1. Normalize the columns of A to have unit l2-norm. 

2. Code y over A by 

ˆ  Py                               (3-8) 

where  
1

T T


  P A A Ι A . 

3. Compute the regularized residuals 

2 2
ˆ ˆ

i i i ir  y A                        (3-9) 

4. Output the identity of y as 

   identity argmini iry                    (3-10) 

 

3.3.4 Robust CRC (R-CRC) to occlusion/corruption 

In Section 3.3.3, we considered the problem of FR without face occlusion/corruption and 

used l2-norm to model the coding residual in CRC. However, when there are outliers (e.g., 

occlusions and corruptions) in the testing face images, using l1-norm to measure the 

representation fidelity is more robust than l2-norm because l1-norm could tolerate the 



Regularized Robust Coding and Dictionary Learning for Face Recognition, PhD Thesis, Meng Yang 

 50 

outliers. In the robust version of SRC (R-SRC), the l1-norm is used to measure the coding 

residual for robustness to occlusions/corruption. Here we could also adopt the l1-norm 

coding residual in the CRC scheme for FR with occlusion/corruption, leading to the robust 

CRC (R-CRC) model:  

 2

1 2
ˆ argmin   y A    (3-11) 

Let e=yA. Eq. (3-11) can be re-written as 

 2

1 2
ˆ argmin  e   s.t. y=A+e (3-12) 

Eq. (3-12) is a constrained convex optimization problem which can be efficiently solved 

by the Augmented Lagrange Multiplier (ALM) method [210-211]. The corresponding 

augmented Lagrange function is given by 

 
2 2

1 2 2
, , ,

2
L


       e z e z y A e y A e     (3-13) 

where >0 is a constant that determines the penalty for large representation error, and z is 

a vector of Lagrange multipliers. The ALM algorithm iteratively estimates the Lagrange 

multipliers and the optimal solution by iteratively minimizing the augmented Lagrangian 

function 

   1 1 ,, argmin , ,
kk k kL   ee e z   (3-14) 

 1k k k    z z y A e  (3-15) 

The above iteration could converge to the optimal solution of Eq. (3-12) when {k} is a 

monotonically increasing positive sequence [210]. 

The minimization in the first stage (i.e., Eq. (3-14)) of the ALM iteration could be 

implemented by alternatively and iteratively updating the two unknowns e and  as 

follows:  

 

 

1

1 1

arg min , ,

arg min , ,

k

k

k k k

k k k

L

L







 

 


 e

e z

e e z

 


 (3-16) 

for which we could have a closed-form solution: 
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A A I A y e z

e y A z




 (3-17) 

where the function S , ≥0, is the soft-thresholding or shrinkage operator defined 

component-wise as 

     sign max , 0i ii
x xS      x  (3-18) 

Clearly,  
1

2T T

k k 


 P A A I A  is independent of y for the given k and thus 

{Pk} can be pre-calculated as a set of projection matrices. Once a testing sample y comes, 

in the first stage of ALM we can simply project y onto Pk via Pky. This makes the 

calculation very fast. After solving the representation coefficients  and residual e, similar 

classification strategy to CRC-RLS can be adopted by R-CRC. The entire algorithm of 

R-CRC is summarized in Table 3.2.  

 

Table 3.2: The R-CRC Algorithm. 

The R-CRC Algorithm 

1. Normalize the columns of A to have unit l2-norm. 

2. Code y over A by 

     INPUT: 0, e0 and  >0. 

     WHILE not converged Do 

      

   

 

 

1

1

1 1

1 1 1

1

2

k

T T

k k k k k

k k k k

k k k k k

S 

  









 

  

   

  

   

A A I A y e z

e y A z

z z y A e







 

     End WHILE 

     OUTPUT: ̂  and ê . 

3. Compute the regularized residuals 

2 2
ˆ ˆ ˆ

i i i ir   y A e   

4. Output the identity of y as 

   identity argmini iry  
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3.4 Experimental Results 

In the experiments from Sections 3.4.1 to 3.4.4, considering the accuracy and 

computational efficiency we chose l1_ls [204] to solve the l1-regularized SRC scheme. In 

the experiments, we denote by S-SRC the standard SRC (i.e., the coding residual is 

measured by l2-norm) and by R-SRC the robust version of SRC (i.e., the coding residual is 

measured by l1-norm). All the experiments were implemented using MATLAB on a 3.16 

GHz machine with 3.25GB RAM. In our paper, the parameter  of CRC-RLS and 

RNS_Lp (p=1 or 2) in gender classification is set as 0.08. Considering that in FR when 

more classes (and thus more samples) are used for collaborative representation, the least 

square solution will be more unstable and thus higher regularization is requires, we set  

as 0.001n/700 for CRC_RLS in all FR experiments, where n is the number of training 

samples. If there is no specific instruction, for R-CRC we set  as 1 in FR with occlusion. 

Three benchmark face databases, the Extended Yale B [99, 206], AR [212] and Multi-PIE 

[213], are used in the evaluation of CRC and its competing methods, including SRC, 

SVM, LRC [101], and NN. (Note that LRC is an NS based method.) 

The experiments are arranged as follows. In Section 3.4.1, we use examples to discuss 

the role of l1-norm and l2-norm regularization; in Section 3.4.2, we use gender 

classification as an example to illustrate that collaborative representation is not necessary 

when there are enough training samples of each class; then FR without and with 

occlusion/corruption are conducted in Section 3.4.3 and Section 3.4.4, respectively; 

finally the running time of SRC and CRC is evaluated in Section 3.4.5. 

 

3.4.1 L1-regularization vs. L2-regularization 

In this section, we study the role of sparsity constraint in FR. Here we use the Extended 

Yale B [99, 206] and AR [212] for experiments (the experimental setting will be described 

in Section 3.4.3). The Eigenfaces with dimensionality 300 are used as the input facial 
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features. The dictionary is formed by all the training samples. 
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Figure 3.6: The recognition rates of S-SRC (l1-regularized minimization) and CRC-RLS 

(l2-regularized minimization) versus the different values of  on the (a) AR and (b) 

Extended Yale B databases. The coding coefficients of one testing sample are plotted in 

(c). 

 

 

We test the performance of S-SRC (l1-regularized minimization) and CRC-RLS 

(l2-regularized minimization) by increasing the regularization parameter λ in Eq. (3-6) with 

q=2, p=1 (i.e., S-SRC) and q=2, p=2 (CRC_RLS). The results on the AR and Extended 

Yale B databases are shown in Fig. 3.6(a) and Fig. 3.6(b), respectively. We can see that 

when λ=0, both S-SRC and CRC-RLS will fail. When λ is assigned a small positive value, 

e.g., from 0.000001 to 0.1, good results can be achieved by S-SRC and CRC-RLS. When λ 

is too big (e.g., >0.1) the recognition rates of both methods fall down. From Fig. 3.6 we 

can find that with the increase of λ (>0.000001), no much benefit on recognition rate can 

be gained. In addition, the l2-regularized minimization (i.e., CRC-RLS) could get similar or 

slightly higher recognition rates than the l1-regularized minimization (i.e., S-SRC) in a 

broad range of λ. This validates our discussion in Section 3.3.2 that the l1-regularization on 
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 is not necessary when the discrimination of face feature is high enough, and the 

l2-regularization on  is as effective as l1-regularization in classification. However, when 

the dimension of facial features is very low, the representation will become very 

under-determined, and the FR results by l1-norm and l2-norm regularizations could be 

substantially different, as demonstrated in [214] and discussed in Section 3.3.2 of this 

Chapter. In such case, l1-regularization is helpful to get discriminative coefficients for 

accurate FR. 

Fig. 3.6(c) plots one testing sample’s coding coefficients by S-SRC and CRC-RLS 

when they achieve their best results in the AR database. It can be seen that CRC-RLS has 

much weaker sparsity than S-SRC; however, it could achieve no worse FR results. Again, 

l1-sparsity is useful but is not crucial for FR. What is really crucial is the collaborative 

representation mechanism in CRC-RLS and S-SRC. 

 

3.4.2 Gender classification 

In Section 3.2, we indicated that when the number of samples in each class is big enough, 

there is no need to code the testing sample over the samples from all classes because the 

subset of each class can form a nearly over-complete dictionary already. To validate this 

claim, we conduct experiment on a two-class separation problem: gender classification. 

We chose a non-occluded subset (14 images per subject) of AR [212], which consists of 

50 male and 50 female subjects. Images of the first 25 males and 25 females were used for 

training, and the remaining images for testing. PCA is used to reduce the dimension of 

each image to 300. Since there are enough training samples in each class, as we discussed 

in Section 3.2, the RNS_Lp (refer to Eq. (3-3) and the related explanations) methods 

should do a good job for the classification task. 

We compare RNS_L1 and RNS_L2 with the CRC-RLS, S-SRC, SVM, LRC, and NN 

methods. The results are listed in Table 3.3. One can see that RNS_L1 and RNS_L2 get the 

same best results, validating that coding on each class’ dictionary is more powerful than 



Chapter 3. Collaborative Representation based Classification for Face Recognition 

55 

coding on the whole dictionary when the training samples are enough, no matter l1- or 

l2-regularizaion is used. CRC-RLS gets the second best result, about 1.4% higher than 

S-SRC. This experiment also shows that the regularization is very helpful to improve the 

classification accuracy. 

 

Table 3.3: The results of different methods on gender classification using the AR 

database. 

RNS_L1 RNS_L2 CRC-RLS S-SRC SVM LRC NN 

94.9% 94.9% 93.7% 92.3% 92.4% 27.3% 90.7% 

 

3.4.3 Face recognition without occlusion/corruption 

We then test the proposed CRC-RLS method for FR without occlusion/corruption on the 

benchmark Extended Yale B, AR and MPIE face databases. The Eigenface is used as face 

feature in these experiments. 

 

1) Extended Yale B Database: The Extended Yale B [99, 206] database contains about 

2,414 frontal face images of 38 individuals. We used the cropped and normalized face 

images of size 54×48, which were taken under varying illumination conditions. We 

randomly split the database into two halves. One half, which contains 32 images for each 

person, was used as the dictionary, and the other half was used for testing. Table 3.4 shows 

the recognition rates versus feature dimension by NN, LRC, SVM, S-SRC and CRC-RLS. 

Here we also report the performance of RNS_L2 due to the high performance of RNS_Lp in 

gender classification. It can be seen that the best two methods, CRC-RLS and S-SRC, 

achieve very similar recognition rates. When the feature dimensionality is relatively high 

(e.g., 150 and 300), the difference of their recognition rate is less than 0.5%. When the 

feature dimensionality is set very low (e.g., 50), S-SRC will show some advantage over 

CRC-RLS in terms of recognition rate. This is exactly in accordance with our analysis in 

Section 3.3.2. We also see that RNS_L2 has lower recognition accuracy than CRC_RLS 
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when the dimension is not too low (e.g., >50). Since there are enough (about 32 per class) 

training samples in the Extended Yale B database, all the methods show no bad recognition 

rates in this experiment. 

 

2) AR database: As in [102], a subset (with only illumination and expression changes) 

that contains 50 male subjects and 50 female subjects was chosen from the AR dataset 

[212] in our experiments. For each subject, the seven images from Session 1 were used for 

training, with other seven images from Session 2 for testing. The size of image was 

cropped to 6043. The comparison of competing methods is given in Table 3.5. We can 

see that CRC-RLS achieves the best result when the dimensionality is 120 or 300, while it 

is slightly worse than S-SRC when the dimensionality is very low (e.g., 54). This is again 

in accordance with our analysis in Section 3.3.2. The recognition rates of CRC-RLS and 

S-SRC are both at least 10% higher than other methods, including RNS_L2, which has 

similar performance to LRC. This shows that collaborative representation do improve 

much face classification accuracy. 

 

Table 3.4: The face recognition results of different methods on the Extended Yale B 

database. 

Dim 50 150 300 

NN 78.5% 90.0% 91.6% 

LRC 93.1% 95.1% 95.9% 

RNS_L2 94.6% 95.8% 96.3% 

SVM 93.4% 96.4% 97.0% 

S-SRC 93.8% 96.8% 97.9% 

CRC-RLS 92.5% 96.3% 97.9% 

 

Table 3.5: The face recognition results of different methods on the AR database. 

Dim 54 120 300 

NN 68.0% 70.1% 71.3% 

LRC 71.0% 75.4% 76.0% 

RNS_L2 70.2% 74.8% 76.1% 

SVM 69.4% 74.5% 75.4% 

S-SRC 83.3% 89.5% 93.3% 

CRC-RLS 80.5% 90.0% 93.7% 
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Table 3.6: The face recognition results of different methods on the MPIE database. 

 NN LRC SVM S-SRC CRC-RLS 

Session 2 86.4% 87.1% 85.2% 93.9% 94.1% 

Session 3 78.8% 81.9% 78.1% 90.0% 89.3% 

Session 4 82.3% 84.3% 82.1% 94.0% 93.3% 

 

3) Multi PIE database: The CMU Multi-PIE database [213] contains images of 337 

subjects captured in four sessions with simultaneous variations in pose, expression, and 

illumination. Among these 337 subjects, all the 249 subjects in Session 1 were used. For 

the training set, we used the 14 frontal images with 14 illuminations
2
 with neutral 

expression. For the testing sets, 10 typical frontal images
3
 of illuminations taken with 

neutral expressions from Session 2 to Session 4 were used. The dimensionality of 

Eigenface is 300. Table 3.6 lists the recognition rates in three tests by the competing 

methods. The results validate that CRC-RLS and S-SRC are the two best methods in 

accuracy, and they have at least 6% improvement over the other three methods. 

 

3.4.4 Face recognition with occlusion/corruption 

One of the most interesting features of representation (or coding) based FR methods is 

their ability to deal with occlusion and corruptions. In R-SRC [102], the robustness to face 

occlusion/corruption is achieved by adding an occlusion dictionary (an identity matrix) for 

sparse coding, or equivalently, using l1-norm to measure the coding residual. In Section 

3.3.4, we have correspondingly presented the robust version of CRC, i.e., R-CRC, for FR 

with occlusion/corruption. In this section we evaluate the performance of R-CRC to 

handle different kinds of occlusions, including random pixel corruption, random block 

occlusion and real disguise. The results of CRC-RLS are also presented for comparison. 

 

1) FR with block occlusion: To be identical to the experimental settings in [102], we 

                                                        
2 Illuminations {0,1,3,4,6,7,8,11,13,14,16,17,18,19}. 
3 Illuminations {0,2,4,6,8,10,12,14,16,18}. 
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used Subsets 1 and 2 (717 images, normal-to-moderate lighting conditions) of the 

Extended Yale B database for training, and used Subset 3 (453 images, more extreme 

lighting conditions) for testing. As in [102], we simulate various levels of contiguous 

occlusion, from 0% to 50%, by replacing a randomly located square block of each testing 

image with an unrelated image. The block occlusion of a certain size is located on the 

random position which is unknown to the FR algorithms. The images were resized to 

96×84. Here  of R-CRC is set as 0.1. The results by S-SRC, R-SRC, CRC-RLS and 

R-CRC are shown in Table 3.7. We can see that R-CRC outperforms R-SRC in most 

cases (with 17% improvement in 50% occlusion) except for the case of 30% block 

occlusion. In addition, CRC-RLS could achieve much better performance than S-SRC. 

This is mainly because the testing sample with block occlusion cannot be well represented 

by the non-occluded samples with sparse coefficients. In the following experiments, we 

only report the results of R-SRC in FR with corruption or disguise. 

 

Table 3.7: The recognition rates of R-CRC, CRC-RLS, R-SRC and S-SRC under different 

levels of block occlusion. 

Occlusion 0% 10% 20% 30% 40% 50% 

S-SRC 100% 99.6% 93.4% 77.5% 60.9% 45.9% 

R-SRC 100% 100% 99.8% 98.5% 90.3% 65.3% 

CRC-RLS 100% 100% 95.8% 85.7% 72.8% 59.2% 

R-CRC 100% 100% 100% 97.1% 92.3% 82.3% 

 

Table 3.8: The recognition rates (%) of R-SRC, CRC-RLS and R-CRC under different 

levels of pixel corruption. 

Corruption 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

R-SRC  100 100 100 100 100 100 99.3 90.7 37.5 7.1 

CRC-RLS 100 100 100 99.8 98.9 96.4 79.9 45.7 13.2 4.2 

R-CRC 100 100 100 100 100 100 100 90.5 51.0 15.9 

 

2) FR with pixel corruption: In this part, we test the robustness of R-SRC and R-CRC 

to pixel corruption. We used the same experimental settings as in [102], i.e., Subsets 1 and 

2 of Extended Yale B for training and Subset 3 for testing. The images were resized to 

9684 pixels. For each testing image, we replaced a certain percentage of its pixels by 



Chapter 3. Collaborative Representation based Classification for Face Recognition 

59 

uniformly distributed random values within [0, 255]. The corrupted pixels were randomly 

chosen for each testing image and the locations are unknown to the algorithm. Table 3.8 

lists the recognition rates of R-SRC, CRC-RLS and R-CRC. It can be seen that R-CRC 

achieves equal or better performance (about 13% improvement over R-SRC in 80% 

corruption) in almost all cases. Interestingly, CRC-RLS can also perform well up to 50% 

pixel corruption. 

3) FR with real face disguise: As in [102], a subset from the AR database consists of 

1,200 images from 100 subjects, 50 male and 50 female, is used here. 800 images (about 8 

samples per subject) of non-occluded frontal views with various facial expressions were 

used for training, while the others with sunglasses and scarves (as shown in Fig. 3.7) were 

used for testing. The images were resized to 83×60. The results of competing methods are 

shown in Table 3.9. 

 

    

Figure 3.7: The testing samples with sunglasses and scarves in the AR database. 
 

Table 3.9: The results of different methods on face recognition with real disguise (AR 

database). 

 Sunglass Scarf 

R-SRC 87.0% 59.5% 

CRC-RLS 68.5% 90.5% 

R-CRC 87.0% 86.0% 

Partitioned Sunglass Scarf 

R-SRC 97.5% 93.5% 

CRC-RLS 91.5% 95.0% 

R-CRC 92.0% 94.5% 

 

 

Although CRC-RLS is not designed for robust FR, interestingly it achieves the best 

result of FR with scarf disguise, outperforming SRC by a margin of 31% and R-CRC by 
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4.5%. (The phemonemon that CRC-RLS is better than R-CRC in scarf disguise may result 

from the special experimental setting, which will be validated by the following FR 

experiments.) By using l1-norm to measure the representation fidelity, R-CRC has the 

same recognition rate as R-SRC in sunglasses disguise, but achieves 26.5% improvement 

in scarf disguise. As in [102], we also partition the face image into 8 sub-regions for FR. 

With partition, CRC-RLS and R-CRC can still achieve slightly better performance than 

R-SRC in scarf disguise, but perform a little worse in sunglass disguise. The reason can be 

that for each partitioned face portion its discrimination power is limited so that the 

l1-regularization is useful to improve the sparsity of coding vector and consequently the 

classification accuracy. Nevertheless, the recognition rates of CRC-RLS and R-CRC are 

very competitive with R-SRC. 

In the above experiment of FR with scarf, the CRC-RLS model with l2-norm 

characterization of coding residual achieves higher recognition rates than the models with 

l1-norm characterization of coding residual (i.e., R-SRC and R-CRC), while the reverse is 

true in the case of FR with sunglasses. To have a more comprehensive observation of 

these methods’ robustness to disguise, we perform another more challenging experiment. 

A subset from the AR database consists of 1,900 images from 100 subjects, 50 male and 

50 female, is used. 700 images (7 samples per subject) of non-occluded frontal views from 

session 1 were used for training, while all the images with sunglasses (or scarf) from the 

two sessions were used for testing (6 samples per subject per disguise). The images were 

resized to 83×60. The FR results are shown in Table 3.10. In this experiment, R-CRC is 

slightly worse than R-SRC in sunglass case with 4% gap, but significantly better than 

R-SRC in the scarf case with 32.4% improvement. Compared to R-SRC, CRC-RLS has 

31% higher recognition rate in scarf case, and 13% lower rate in sunglass case. It can also 

be seen that R-CRC achieves better performance than CRC-RLS in these two cases, which 

validates that the l1-norm regularization of representation residual is more robust than the 

l2-norm one. 
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Table 3.10: The results on another face recognition experiment with real disguise (AR 

database). 

 Sunglass Scarf 

R-SRC 69.8% 40.8% 

CRC-RLS 57.2% 71.8% 

R-CRC 65.8% 73.2% 

 

 

From the results in Table 3.9 and Table 3.10, we can have the following findings. Since 

the eyes are probably the most discriminative part in human face, the sunglass disguise will 

reduce a lot the discrimination capability of face image, and hence the l1-regularized 

R-SRC method will show certain advantage in dealing with sunglass disguise because the 

l1-regularization could actively increase much the sparsity of coding coefficients. (Please 

refer to Section 3.3.2 for more discussions on the relationship between feature 

discrimination and coefficient sparsity.) In the case of scarf disguise, though the occlusion 

area is big, the discrimination of face image is actually not much decreased. Therefore, the 

l2-regularized CRC-RLS and R-CRC methods can perform well. On the contrary, the 

l1-regularization in R-SRC will prevent the use of enough samples to represent the 

occluded face image so that its recognition rate is much lower than CRC-RLS and R-CRC. 

 

3.4.5 Running time 

We compare the running time of CRC and SRC under two situations. For FR without 

occlusion/corruption, it is good to use l2-norm to measure the coding residual, and hence 

we compare the running time of S-SRC and CRC-RLS; for FR with occlusion/corruption, 

we compare the running time of R-SRC and R-CRC, where l1-norm is used to measure the 

coding residual for robustness to outlier pixels. 

 

a) Face recognition without occlusion: The running time of CRC-RLS and S-SRC 

with various fast l1-minimization methods, including l1_ls [204], ALM [126, 202], FISTA 

[201] and Homotopy[203], are compared here. We fix the dimensionality of Eigenfaces as 
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300. The recognition rates and speed of S-SRC and CRC-RLS are listed Table 3.11 

(Extended Yale B), Table 3.12 (AR) and Table 3.13 (Multi-PIE), respectively. Note that 

the results in Table 3.13 are the averaged values of Sessions 2, 3 and 4. 

 

Table 3.11: Recognition rate and speed on the Extended Yale B database. 

 Recognition rate Time (s) 

S-SRC(l1_ls) 97.9% 5.3988 

S-SRC(ALM) 97.9% 0.1280 

S-SRC(FISTA) 91.4% 0.1567 

S-SRC(Homotopy) 94.5% 0.0279 

CRC-RLS 97.9% 0.0033 

Speed-up 8.5~1636 times 

 

Table 3.12: Recognition rate and speed on the AR database. 

 Recognition rate Time (s) 

S-SRC(l1_ls) 93.3% 1.7878 

S-SRC(ALM) 93.3% 0.0578 

S-SRC(FISTA) 68.2% 0.0457 

S-SRC(Homotopy) 82.1% 0.0305 

CRC-RLS 93.7% 0.0024 

Speed-up 12.6~744.9 times 

 

Table 3.13: Recognition rate and speed on the MPIE database. 

 Recognition rate Time (s) 

S-SRC(l1_ls) 92.6% 21.290 

S-SRC(ALM) 92.0% 1.7600 

S-SRC(FISTA) 79.6% 1.6360 

S-SRC(Homotopy) 90.2% 0.5277 

CRC-RLS 92.2% 0.0133 

Speed-up 39.7~1600.7 times 

 

On the Extended Yale B database, CRC-RLS, S-SRC (l1_ls) and S-SRC (ALM) 

achieve the best recognition rate (97.9%), but the speed of CRC-RLS is 1636 and 38.8 

times faster than them. On the AR database, CRC-RLS has the best recognition rate and 

speed. S-SRC (l1_ls) has the second best recognition rate but with the slowest speed. 

S-SRC (FISTA) and S-SRC (Homotopy) are much faster than S-SRC (l1_ls) but they have 
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lower recognition rates. On Multi-PIE, CRC-RLS achieves the second highest recognition 

rate (only 0.4% lower than S-SRC (l1_ls)) but it is significantly (more than 1600 times) 

faster than S-SRC (l1_ls). In this large-scale database, CRC-RLS is about 40 times faster 

than S-SRC with the fastest implementation (i.e., Homotopy), while achieving more than 

2% improvement in recognition rate. We can see that the speed-up of CRC-RLS is more 

and more obvious as the scale (i.e., the number of classes or training samples) of face 

database increases, implying that it is more advantageous in practical large-scale FR 

applications. 

 

b) Face recognition with occlusion: We compare the time complexity of R-CRC with 

the latest fast l1-minimization methods on the Multi-PIE corruption experiment [213]. As 

in [126] and [215], a subset of 249 subjects from Session 1 is used in this experiment. For 

each subject with frontal view, there are 20 images with different illuminations, among 

which the illuminations {0, 1, 7, 13, 14, 16, 18} are chosen as training images with the 

remaining 13 images as testing data. The images are manually aligned and cropped to 

4030. For each testing image, we replaced a certain percentage of its pixels by uniformly 

distributed random values within [0, 255]. The corrupted pixels were randomly chosen for 

each testing image and the locations are unknown to the algorithm. The recognition rates 

and running time of other competing methods are directly copied from [126, 215]. In 

order to make a fair comparison of running time, we used a machine similar to that used in 

[126, 215] to implement R-CRC
4
.  

Table 3.14 shows the FR rates of R-CRC and R-SRC implemented by various 

l1-minimization solvers. One can see that R-CRC has the highest recognition rate in 40% 

and 50% corruption. In other cases, R-CRC is better than SpaRSA [200] and FISTA [201], 

and slightly worse than l1_ls [204], Homotopy [203] and ALM [126]. The running time of 

different methods under various corruption levels is listed in Table 3.15. Apart from the 

                                                        
4 Our MATLAB implementations are on a PC with dual quad-core 2.4G GHz Xeon processors and 16GB 

RAM, similar to that used in [126] and [215], in which the machine is with dual quad-core 2.66GHz Xeon 

processors and 8GB of memory. 
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case of 0% corruption, the proposed R-CRC has the lowest running time. It can also be 

seen that the running time of R-CRC is almost the same for all corruption levels. The 

speed-ups of R-CRC over R-SRC with various l1-minimization algorithms are from 8.79 to 

19.94 in average, showing that R-CRC has much lower time complexity. 

 

Table 3.14: Average recognition rate between 50% and 70% random pixel corruptions on 

the MPIE database. 

Corruption R-CRC l1_ls Homotopy SpaRSA FISTA ALM 

40% 100% 97.8% 99.9% 98.8% 99.0% 99.9% 

50% 100% 99.5% 99.8% 97.6% 96.2% 99.5% 

60% 94.6% 96.65 98.7% 90.5% 86.8% 96.2% 

70% 68.4% 76.3% 84.6% 63.3% 58.7% 78.8% 

 

Table 3.15: The running time (second) of different methods versus various corruption 

rate. 

Corruption 0% 20% 40% 60% 80% Average Speed-up 

l1_ls 19.8 18.44 17.47 16.99 14.37 17.35 18.94 

Homotopy 0.33 2.01 4.99 12.26 20.68 8.05 8.79 

SpaRSA 6.64 10.86 16.45 22.66 23.23 15.97 17.43 

FISTA 8.78 8.77 8.77 8.80 8.66 8.76 9.56 

ALM 18.91 18.85 18.91 12.21 11.21 16.02 17.49 

R-CRC 0.916 0.914 0.918 0.916 0.915 0.916 ------ 

 

3.5 Summary 

We discussed the role of l1-norm regularization in the sparse representation based 

classification (SRC) scheme for face recognition (FR), and we indicated that the 

collaborative representation nature of SRC plays a more important role than the 

l1-regularization of coding vector in face representation and recognition. We then 

proposed a more general model, namely collaborative representation based classification 

(CRC), for FR. Two important instantiations of CRC, i.e., CRC via regularized least 

square (CRC-RLS) and robust CRC (R-CRC), were proposed for FR without and with 

occlusion/corruption, respectively. Compared with the l1-norm regularization, the l2-norm 
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regularization in CRC has very competitive or even better FR accuracy but with much 

lower complexity, as demonstrated in our extensive experimental results. 

SRC is also an instantiation of CRC by using l1-norm to regularize the coding vector . 

The sparsity of  is related to the discrimination and dimension of face feature y. If the 

dimension is high, often the discrimination of y is high and  will be naturally and 

passively sparse even without sparse regularization. In this case, l1-regularization on  will 

not show advantage. If the dimension of y is very low, often the discrimination of y is low, 

and thus it is helpful to actively sparsify  by imposing l1-regularization on it. In this case, 

using l1-norm to regularize  will show visible advantage. 
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Chapter 4.  Gabor Feature based Robust 

Representation and Classification 

4.1 Introduction 

The high-dimensional facial images usually lie in a lower dimensional subspaces or 

sub-manifolds. This fact boosts the development of subspace learning and manifold 

learning based FR methods, such as Eigenface and Fisherface [57-58, 216-217], nonlinear 

dimension reduction [67-68] as well as its linear approximations [218-220]. In the pioneer 

work of sparse representation based classification (SRC) [102], the training face images 

are used to code an input testing image as a sparse linear combination of them via l1-norm 

minimization. To make the l1-norm sparse coding computationally feasible, in general the 

dimensionality of the training and testing face images should be reduced, or a set of 

features could be extracted from the original image for SRC. In the case of FR without 

occlusion, Wright et al. [102] tested different types of features, including Eigenface [57], 

Randomface [102] and Fisherface [58], and they claimed that SRC is insensitive to feature 

types when the feature dimension is large enough. In the case of FR with 

occlusion/corruption, an occlusion dictionary was introduced in SRC to code the 

occluded/corrupted components [102]. Consequently, the classification can be performed 

based on the reconstruction residuals using the coding coefficients over the training face 

images. Such a scheme has shown to be effective in overcoming the problem of face 

occlusion, which triggers the research of sparsity based FR [103, 180, 187-189, 195] and 

dictionary learning for sparse representation [129, 157, 184-185, 196]. 

Although the SRC based FR scheme proposed in [102] is very creative and effective, 

there are two issues to be further addressed. First, the features of Eigenface, Randomface 

and Fisherface tested in [102] are all holistic features. Since in practice the number of 
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training samples is often limited, such holistic features cannot effectively handle the 

variations of illumination, expression, pose and local deformations. The claim made in 

[102] that feature extraction is not so important to SRC actually holds only for holistic 

features. Second, the occlusion matrix proposed in [102] is an orthogonal matrix, such as 

the identify matrix, Fourier bases or Haar wavelet bases, etc. However, the number of 

atoms required in the orthogonal occlusion matrix is very high. For example, if the 

dimensionality of features used in SRC is 3000, then a 3000×3000 occlusion matrix is 

needed. Such a big occlusion matrix makes the sparse coding process very 

computationally expensive, and even prohibitive. These two issues are not fully solved by 

the sparsity based FR improvers [103, 147, 157, 180, 184-185, 187-189, 195], either. For 

instance, only holistic features are considered in [103, 157, 180, 184-185, 187-189, 195], 

FR with occlusion is ignored in [147, 180, 188], and no occlusion dictionary is considered 

in [157, 184-185]. 

In the light of the collaborative representation based classification presented in 

Chapter 3, we propose a Gabor-feature based robust representation and classification 

(GRRC) scheme for FR, which will not only be robust to face occlusion but also have 

much higher computational efficiency than the previous methods such as SRC. In the 

proposed GRRC, the use of Gabor kernels will not only improve much the FR accuracy, it 

will also allow us to learn a compact occlusion dictionary to deal with face occlusions. 

Compared with the occlusion dictionary used in SRC, the number of atoms is significantly 

reduced (often with a ratio of 40:1 ~ 50:1 in our experiments) in the Gabor occlusion 

dictionary (GOD) used in GRRC. Particularly, it is found that the coding coefficients over 

the compact GOD can be regularized by l2-norm. This significantly reduces the 

computational cost in coding occluded face images. Our experiments on benchmark face 

databases clearly validate the performance of the proposed GRRC method. 

Table 4.1 summarizes the abbreviations used throughout the Chapter. 
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Table 4.1: Abbreviation used in this Chapter. 

Abbreviation Meaning 

GOD Gabor Occlusion Dictionary 

GRR Gabor-feature based Robust Representation 

GRRC Gabor-feature based Robust Representation based Classification 

GRRC_Lp GRRC with lp-norm regularization 

SRC Sparse Representation-based Classification 

CRC Collaborative Representation based Classification 

 

4.2 Gabor Features 

The Gabor filter was first introduced by David Gabor in 1946 [221], and was later shown 

as models of simple cell receptive fields [222]. The Gabor filters, which could effectively 

extract the image local directional features at multiple scales, have been successfully and 

prevalently used in FR [89, 223-224], leading to state-of-the-art results. The local Gabor 

features are less sensitive to variations of illumination, expression and pose than the 

holistic features such as Eigenface and Randomface [102]. 

The Gabor filters (kernels) with orientation μ and scale ν are defined as [89]:  

   
2 2 2 2

, ,

2

, 2 2

, 2

k z ik z
k

z e e e      

 


    (4-1) 

where z=(x,y) denotes the pixel, ||.|| denotes the norm operator, and the wave vector kμ,ν is 

defined as 
,

i
k k e 

    with kν =kmax/f
 ν
 and 8  . kmax is the maximum frequency, 

and f is the spacing factor between kernels in the frequency domain. In addition, σ 

determines the ratio of the Gaussian window width to wavelength. 

Convolving an image Img with a Gabor kernel   outputs 

     ,G z Img z z    , where “*” denotes the convolution operator. The complex 

Gabor filtering coefficient Gμ,ν(z) can be rewritten as 

      , , ,expG z M z i z        

with Mμ,ν being the magnitude and θμ,ν being the phase. It is known that magnitude 
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information contains the variation of local energy in the image. In [89], the augmented 

Gabor feature vector χ is defined via uniform down-sampling, normalization and 

concatenation of the Gabor filtering coefficients: 

      0,0 1,0 7,4; ; ;
  

 a a a  

where  
,



 a  is the concatenated column vector of magnitude matrix 
 

,M


   

down-sampled by a factor of ρ. 

 

4.3 Gabor-Feature based Robust Representation and 

Classification 

4.3.1 Gabor-feature based robust representation (GRR) 

For a testing sample 0

my , the coding model of SRC without occlusion is 

 2

0 2 1
ˆ argmin     y A  (4-2) 

where A=[A1, A2,…, AK] be the concatenation of the n training samples from all the K 

classes, 
,1 ,2 ,[ , ,..., ] i

i

m n

i i i i n


 A s s s , and si,j, j=1,2,…,ni, is an m-dimensional vector 

stretched by the j
th
 sample of the i

th
 class. In SRC with occlusion or corruption, the testing 

sample y is rewritten as 

 0 0 0 ; e      y y e A e B  (4-3) 

where    
, em n n

e

 
 B A A , and the clean face image y0 and the corruption error e0 

have sparse representations over the training sample dictionary A and occlusion dictionary 

em n

e


A , respectively. 

Images from the same face, taken at (nearly) the same pose but under varying 

illumination, often lie in a low-dimensional linear subspace known as the harmonic plane 

or illumination cone [206, 225]. This implies that if there are only variations of 



Chapter 4. Gabor Feature based Robust Representation and Classification 

71 

illumination, SRC can work very well. However, SRC with the holistic image features 

(e.g., Eigenface [57], Randomface [102] and Fisherface [58] in non-occluded case, or raw 

pixel intensity value in occluded case) is less effective when there are local deformations 

of face images, such as certain amount of variations of expressions and pose. 

As band-pass filters, Gabor filters could remove some disturbance in the original 

images and extract more discrimnant features by transforming some information from 

spatial domain to scale and orientation space. Therefore, the augmented Gabor face 

feature vector χ can not only enhance the face feature but also tolerate image local 

deformation to some extent. So we propose to use χ to replace the holistic face features for 

face representation, and the Gabor-feature based representation without face occlusion is 

         0 1 1 2 2 K K    y A A A A          (4-4) 

where        1 2, , , K      A A A A ,        ,1 ,2 ,, , ,
ii i i i n

 
 

A s s s    , 

 1 2; ; ; K    , and  ,i js  is the augmented Gabor feature vector of ,i js . 

When the testing face image is occluded, similar to SRC, an occlusion dictionary with 

Gabor features could be introduced to code the occlusion components, and the 

Gabor-feature based robust representation could be formulated as:  

         , e e     y A A B        (4-5) 

where χ(Ae) is the Gabor-feature based occlusion dictionary, and e is the coding vector of 

the input Gabor feature vector χ(y) over χ(Ae). 

For the convenience of expression, we call the representation in either Eq. (4-4) (for 

FR without occlusion) or Eq. (4-5) (for FR with occlusion) the Gabor-feature based robust 

representation (GRR), and the representation vector in the GRR model can be solved by 

         2 2

0 2 2
min or min

p pl l
    y A y B          (4-6) 

where 
pl

  means the lp-norm, and p=1 or 2 in this Chapter. In the case of occlusion, the 

selection of occlusion dictionary χ(Ae) has a big affect on the performance of GRR, and 
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thus one key issue is how to define χ(Ae) to make the GRR effective and efficient. 

4.3.2 Discussions on occlusion dictionary 

SRC [102] is successful in solving the problem of face occlusion by introducing an 

occlusion dictionary Ae to code the occluded face components; however, one drawback of 

SRC is that the number of atoms in the used occlusion dictionary is very big. More 

specifically, the identity matrix was employed in SRC so that the number of atoms equals 

to the dimensionality of the image feature vector. For example, if the feature vector has a 

dimensionality of 3000, then the occlusion dictionary is of size 30003000. Such a high 

dimensional dictionary makes the sparse coding very expensive, and even 

computationally prohibitive. Suppose the size of the dictionary is m×n, then the empirical 

complexity of the commonly used l1-regularized sparse coding methods (such as l1_ls 

[204], l1_magic [226], and MOSEK [227]) to solve Eq. (4-2) is O(m
2
n

ε
) with ε ≈ 1.5 [204, 

228]. So if the number of atoms (i.e., n) in the occlusion dictionary is too big, the 

computational cost will be huge, especially in dealing with FR with occlusion. 

 

Orientation: 2        3                    4

  Scale:  2
                    3

                       4

Gabor

    
(a)                           (b) 

Figure 4.1: Gabor feature extraction. (a) Multi-scale and multi-orientation Gabor filtering; 

(b) The uniform down-sampling of Gabor feature extraction after Gabor filtering. 

 

 

By using Gabor features for face representation, the feature dictionary A and the 

occlusion dictionary Ae in Eq. (4-3) will be transformed into the Gabor feature dictionary 
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χ(A) and the Gabor-feature based occlusion dictionary χ(Ae) in Eq. (4-5). Fortunately, χ(Ae) 

is compressible. This can be easily illustrated by Fig. 4.1. 

Fig. 4.1(a) illustrates the process of Gabor filtering. It is easy to see there are a rich 

amount of redundancies in the filtering responses across the spatial domain and different 

scales and orientations. Therefore after the band-pass Gabor filtering of the face images, a 

uniform spatial down-sampling with a factor of ρ is conducted to form the augmented 

Gabor feature vector χ, as indicated by the red pixels in Fig. 4.1(b). The spatial 

down-sampling is performed for all the Gabor filtering outputs along different orientations 

and on different scales. Therefore, the number of (spatial) pixels in the augmented Gabor 

feature vector χ is 1/ρ times that of the original face image; meanwhile, at each location, 

e.g., P1 or P2 in Fig. 1(b), there is a set of directional and scale features extracted by 

Gabor filtering in the neighborhood (e.g., the circles centered on P1 and P2). Certainly, 

the directional and scale features at the same spatial location have some correlation, and 

there are often some overlaps between the supports of Gabor filters, which make the 

Gabor features at neighboring positions also have some redundancies. 

Considering that “occlusion” is a phenomenon of spatial domain, a spatial 

down-sampling of the Gabor features with a factor of ρ implies that we can use 

approximately 1/ρ times the occlusion bases to code the Gabor features of the occluded 

face image. In other words, the Gabor-feature based occlusion dictionary χ(Ae) can be 

compressed because the Gabor features are redundant as we discussed above. To validate 

this conclusion, we suppose that the image size is 50×50, and in the original SRC the 

occlusion dictionary is an identity matrix 
2500 2500 eA I . Then the Gabor-feature 

based occlusion matrix χ(Ae)
2560 2500 , where the dimensionality of augmented Gabor 

feature is 2560 with ρ=39.06, μ={0,…,7}, ν={0,…,4}. Fig. 4.2 shows the singular values 

of χ(Ae). Obviously, although all the basis vectors of identity matrix I (i.e., Ae) have equal 

importance, only a few (60, with energy proportion of 99.67%) singular vectors of χ(Ae) 

have significant singular values, as shown in Fig. 4.2. This implies that χ(Ae) can be much 
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more compactly represented by using only a few atoms generated from χ(Ae), often with a 

compression ratio about ρ:1. For example, in this experiment we have 

2500/60=41.7ρ=39.06. Next we present an algorithm to compute a more compact 

occlusion dictionary. 
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Figure 4.2: The singular values (left: all the singular values, right: the first 60 singular 

values) of Gabor feature-based occlusion matrix. 

 

4.3.3 Gabor occlusion dictionary (GOD) computing 

Now that χ(Ae) is compressible, we propose to compute a compact occlusion dictionary 

from it with suitable regularization on the coefficients. Here a compact dictionary, denoted 

by m nD , refers to a dictionary which has much less columns (i.e., the so-called 

atoms) than rows (i.e., n<<m).  We call the computed compact occlusion dictionary the 

Gabor occlusion dictionary (GOD) and denote it as Г. Then we could replace χ(Ae) by Г 

in the GRR based FR. 

For the convenience of expression, we denote by 1( ) [ , , ] e

e

m n

n
   eZ A z z  

the original Gabor-feature based occlusion matrix, with each column zi being the 

augmented Gabor-feature vector generated from each atom of Ae. The compact occlusion 

dictionary to be computed is denoted by 1 2[ , ,..., ]
m q

q
  d d d , where q can be set as 

slightly less than ne/ρ in practice. It is required that each occlusion basis dj, j=1, 2, …, q, is 

a unit column vector, i.e. 1T

j j d d . Since we want to replace Z by Г, it is expected that 
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the original dictionary Z can be well represented by Г with the representation coefficients 

being regularized via lp-norm regularization. Obviously, p=1 means that we require sparse 

representation on the learnt GOD. Inspired by the success of l2-norm regularization in 

CRC [179-180] (or please refer to Chapter 3), we can also use l2-norm coefficient 

regularization. With such considerations, the objective function for determining  is 

defined as:  

 2
min

pF l
 Γ,Λ Z ΓΛ Λ  s.t. 1,T

j j j d d  (4-7) 

where  is the representation matrix of Z over dictionary ,  is a positive scalar that 

balances the F-norm term and the lp-norm term (here p=1 for 
1
 and p=2 for 

2

F
 ).  

Eq. (4-7) is a joint optimization problem of the occlusion dictionary  and the 

representation matrix . Like in many multi-variable optimization problems, we solve Eq. 

(4-7) by optimizing  and  alternatively. The optimization procedures are described in 

Table 4.2. 

 

Table 4.2: Algorithm of Gabor occlusion dictionary computing. 

Algorithm of Gabor occlusion dictionary (GOD) computing 

1. Initialize  

We initialize each column of  as a random vector with unit l2-norm. 

2. Fix  and solve  

By fixing , the objective function in Eq. (4-7) will be reduced to 

 2
min

pF l
 

Λ
Z ΓΛ Λ  (4-8) 

The minimization of Eq. (4-8) for p=1 can be achieved by the l1-norm minimization techniques. 

In this paper, we use the algorithm in [204]. The minimization of Eq. (4-8) for p=2 could be 

efficiently solved since has a closed-form least square solution [180]. 

3. Fix  and update  

Now the objective function is reduced to 

 2
min

F


Γ
Z ΓΛ  s.t. 1,T

j j j d d  (4-9) 

We can write matrix  as =[β1;β2,…,βq], where βj, j=1,2,…,q, is the row vector of . We update 

the occlusion bases one by one. When updating dj, all the other columns of , i.e., dl, lj, are 
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fixed. Then Eq. (4-9) is converted into 

2

min
j l l j jl j F

 d Z d β d β  s.t. 1T

j j d d  (4-10) 

Let 
l ll j

 Y Z d β , Eq. (4-10) can be written as  

2

min
j j j F


d

Y d β  s.t. 1T

j j d d  (4-11) 

Using Langrage multiplier, Eq. (4-10) is equivalent to  

 min ( )
j

T T T T T

j j j j j j j jtr        
d

Yβ d d β Y d β β d  (4-12) 

where  is a scalar variable. Differentiating Eq. (4-12) with respect to dj, and let it be 0, we have  

 
1

T T

j j j j 


 d Yβ β β  (4-13) 

Since  T

j j β β  is a scalar and  is a variable, the solution of Eq. (4-13) under constrain 

1T

j j d d  is  

2

T T

j j jd Yβ Yβ  (4-14) 

Using the above procedures, we can update all the vectors dj, and hence the whole set  is 

updated. 

4. Output  

Go back to step 2 until the object function values in adjacent iterations are close enough, or the 

maximum number of iterations is reached. Finally, output . 

 

 

It is straightforward that the above GOD computing algorithm converges because in 

each iteration J, will decrease, as illustrated in Fig. 4.3. Consequently, in our proposed 

GRR, we use the GOD Г to replace the χ(Ae) in Eq. (4-5). Finally, the coding problem in 

GRRC with face occlusion is 

      
2

2
min where ( ) , ;

pl
   Γ Γ Γ Γ Γ Γy B B A          (4-15) 
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Figure 4.3: Illustration of the convergence of the proposed Gabor occlusion dictionary 

(GOD) computing algorithm on AR database. A GOD with 100 atoms is computed from 

the original Gabor-feature based occlusion matrix with 4980 columns. The compression 

ratio is nearly 50:1. 

 

 

4.3.4 GRR based classification (GRRC) 

The SRC scheme [102] assumes that the face image representation residual is sparse, and 

thus uses the l1-norm to characterize the representation coefficients associated with the 

occlusion dictionary, i.e., the identity matrix. Because the number of atoms in the identity 

matrix is very big (equal to the dimensionality of face image), it is necessary to impose 

the l1-norm sparsity on the coding coefficients for a robust and unique representation, yet 

this makes the complexity of SRC very high. However, when Gabor feature is adopted, a 

compact GOD  (with only about 1/40 times the size of the identity matrix) can be learnt, 

and thus it may not be necessary to use the l1-norm sparsity to regularize the coding 

coefficients over the dictionary anymore.  

For a given face Gabor feature χ(y), often its dimensionality is much higher than the 

number of atoms in dictionary B =[χ(A) Г] after GOD computing, which means that the 

dictionary B is not over-complete, and hence the system 

( )  Γ Γy B ω  (4-16) 

is generally an over-determined system. This implies that the solution of Eq. (4-16) is 

stable even without any regularization, and thus it is not necessary to require the 
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representation coefficient vector  to be sparse in order for an accurate approximation of 

χ(y) by B. With these considerations, in this Chapter we allow  to be either sparse or 

dense, and test the results by using both l1-norm and l2-norm to regularize the coding 

coefficients. We name the GRR based classification (GRRC) with l1-norm regularization 

GRRC_L1, and the GRRC with l2-norm regularization GRRC_L2. The GRRC algorithm is 

summarized in Table 4.3. 

 

Table 4.3: Algorithm of GRR based Classification (GRRC). 

Algorithm of GRRC 

1. Input: Gabor feature dictionary (A), GOD Γ, and the Gabor feature (yo) (for testing 

sample without occlusion) or (y) (for testing sample with occlusion).  

2. Solve the lp-minimization (p=1 or 2) problem (the Lagrange formulation): 

  2

2

ˆ arg min ( ) ( )
p

o l
  y A                     (4-17) 

or (let [ ]     ) 

  2

2
ˆ arg min ( ) ( )

pl         y A            (4-18) 

where ˆ ˆˆ [ ]      and λ is a positive scalar that balances the coding residual and 

regularization strength. 

3. Compute the residuals 

   
2

ˆ( ) , for 1, , .i o o i ir i K  y y A               (4-19) 

or 

   
2

ˆ ˆ( ) , for 1, , .i i ir i K   y y A              (4-20) 

where ˆ
i  is the coding coefficient sub-vector associated to class i. 

4. Output: identity(yo)=argmini ri(yo) or identity (y)=argmini ri(y). 

 

4.3.5 Time complexity 

The empirical complexity of the commonly used l1-regularized sparse coding methods is 

O(m
2
n

ε
) with ε ≈ 1.5 [204, 228], while the time complexity of l2-norm regularized coding 

is only O(mn) [180] for that the coding projection matrix could be computed offline, 
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where m is facial feature dimensionality and n is the number of dictionary atoms. For 

GRRC, in Fourier domain it is very fast to extract Gabor features, whose time complexity 

could be negligible compared with that of l1-norm regularized sparse coding.  

In the case of FR without occlusion, n is the number of training samples. Therefore, 

GRRC_L1 has similar computational burden to SRC, but GRRC_L2 has much lower time 

complexity than GRRC_L1 and SRC. For FR without occlusion, there is a fast version of 

SRC, namely SRC using Hashing [198]. This method is usually faster than the original 

SRC because the used random projection matrix is very sparse. So GRRC_L1 would have 

a little higher time complexity than SRC using Hashing, but GRRC_L2 is still much faster 

than SRC using Hashing. 

In the case of FR with occlusion, it is easy to get that the time complexity of 

GRRC_L1 is O(m
2
(n+m/)

ε
), where ≈40. This is much lower than SRC whose time 

complexity is O(m
2
(n+m)

ε
). Obviously, GRRC_L2’s time complexity is O(m(n+m/)) and 

it is the fastest one among the three methods. 

 

4.4 Experimental Results 

In this section, we present experiments on benchmark face databases to demonstrate the 

superiority of GRRC to SRC. Before giving the detailed experimental results, we discuss 

the selection of Gabor features and regularization of GOD computing in Section 4.4.1. To 

evaluate more comprehensively the performance of GRRC, in Section 4.4.2 we first test 

FR with little deformation; then in Section 4.4.3 we demonstrate the robustness of GRRC 

to expression and pose variation; finally in Section 4.4.4 we test FR against block 

occlusion and real disguise. In our implementation of Gabor filters, the parameters are set 

as Kmax=π/2, 2,f   σ=1.5π, μ={0,…,7}, ν={0,…,4} by our experiences and they are 

fixed for all the experiments. In the experiments,  in GRRC is fixed 0.0005 for FR 

without and with occlusion. We also give the results of GRRC with =0.001 for FR 
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without occlusion to show GRRC very robust to parameter’s value. In addition, all the face 

images are cropped and aligned by using the location of eyes, which is provided by the 

face databases (for Mulit-PIE, we manually locates the positions of eyes).  

In the following tables of this section, the results of competing methods with reference 

numbers in the tables are reported by the corresponding paper. All the other results are 

computed by us with reporting their best recognition rates. 

 

4.4.1 Gabor features and regularization of GOD computing 

1) Gabor features: In GRRC, we adopt the Gabor magnitude as the augmented facial 

features. Here we also evaluate other Gabor features, such as Gabor real parts, Gabor 

imaginary parts, and the concatenation of Gabor real and imaginary parts. We replace 

Gabor magnitude features in GRRC_L2 by these Gabor features, and test their 

performance on the AR database (the detailed experimental setting is described in Section 

4.4.2). Table 4.4 lists the recognition rates. It is easy to see that the features of Gabor real 

parts (denoted by GRRC_L2 (Real parts)), Gabor imaginary parts (denoted by GRRC_L2 

(Imaginary parts)) and their concatenation (denoted by GRRC_L2 (Real + Imaginary)) do 

not lead to good results. This demonstrates that Gabor magnitude (denoted by GRRC_L2 

(Magnitude)) is more discriminative in the Gabor feature-based representation scheme. 

The results by SRC [102] and CRC [180] schemes with holistic PCA features are also 

listed in Table 4.4 for comparison.  

 

Table 4.4: Face recognition rates (%) of different Gabor features on AR database. 

Dimension 130 300 540 

PCA+SRC 89.7 93.3 93.5 

PCA+CRC 90.0 93.7 93.9 

GRRC_L2 (Real parts) 84.3 89.4 91.4 

GRRC_L2 (Imaginary parts) 85.8 91.0 93.3 

GRRC_L2 (Real + Imaginary) 85.0 91.4 93.6 

GRRC_L2 (Magnitude) 93.1 96.8 97.3 
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Figure 4.4: Recognition rates by using l1-norm and l2-norm regularized GOD computing 

in the experiment of FR with random block occlusion. 

 

 

2) Regularization on GOD computing: In the GOD computing algorithm (refer to 

Table 4.1), we regularize the coding coefficient by lp-norm with p=1 or 2. Here we use an 

FR experiment on Extended Yale B [99, 206] with random block face occlusion (about 

45% occlusion) to discuss the selection of lp-norm. The detailed experimental setting will 

be presented in the experiments of FR with random block occlusion in Section 4.4.4. We 

set the parameter  in the model (Eq. (4-7)) of GOD computing as 0.005. The recognition 

rates of lp-norm regularized GOD computing versus different regularization parameters  

in coding (Eq. (4-18) with l1-norm regularization) of the classification stage are shown in 

Fig. 4.4. It can be seen that there is not much difference in recognition accuracy between 

l1-norm and l2-norm regularization in GOD computing. The reason is that the redundancy 

of Gabor feature transformation (analyzed in Section 4.3.2) makes the learnt GOD 

dictionary compact so that the GOD dictionary is obviously over-determined. An 

over-determined dictionary itself could stably represent the testing sample even without 

regularization. Therefore, the l1-norm and l2-norm regularizations will lead to stable 

occluded face representation and similar recognition results. Considering that the 

recognition rates by l1-norm and l2-norm regularized GOD computing are similar, we 

prefer to use the l2-norm regularized one for its fast speed. In our paper, the parameter  in 
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GOD computing is set as a small scalar, e.g., 0.001. 

In order to give an intuitive illustration of the leant GOD, we plot the 1
st
, 51

st
, 101

st
 and 

151
st
 atom of l1-norm regularized GOD in Fig. 4.5. We could see that the learnt GOD 

atoms are roughly periodic signals, which have 40 repeated patterns (because the Gabor 

feature is the concatenation of 40 down-sampled Gabor magnitudes). The original 

occlusion dictionary (i.e., the identity matrix) has clear spatial meaning, e.g., each atom is 

a unit vector representing one pixel of the image. However, the size of such an occlusion 

dictionary is too big (e.g., 8064×8064 in this experiment). The learnt GOD not only has 

much smaller size (e.g., 8940×200), but also have very clear spatial meaning, i.e., on each 

down-sampled Gabor magnitude feature, the corresponding atom of GOD is a local basis 

to represent the scale and orientation information at that location. Therefore, GOD is much 

more efficient to handle occlusion. 
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Figure 4.5: The 1
st
, 51

st
, 101

st
, and 151

st
 atoms of the learnt Gabor Occlusion Dictionary. 

 

4.4.2 Face recognition with little deformation 

We evaluate the proposed GRRC scheme on four representative facial image databases: 
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Extended Yale B [99, 206], AR [212], Multi-PIE [213] and FERET [45, 229]. We compare 

GRRC with SRC [102], CRC [180], Linear Regression for Classification (LRC) [101], 

linear Support Vector Machine (SVM) and Nearest Neighbor (NN) methods. If no specific 

instruction, for all the competing methods we use PCA to reduce the feature dimension. 

1) Extended Yale B Database: The Extended Yale B database consists of 2,414 

frontal-face images of 38 individuals, captured under various laboratory-controlled 

lighting conditions [99, 206]. For each subject, we randomly selected half of the images 

for training (i.e., 32 images per subject), and used the other half for testing. The images 

are normalized to 192×168, and the dimension of the augmented Gabor feature vector of 

each image is 19760 (40×26×19). The results of all the methods versus the feature 

dimension are listed in Table 4.5. It can be seen that GRRC is better than SRC, CRC and 

other methods in all the dimensions except that SRC and LRC are slightly better 

GRRC_L2 in the dimension of 56. GRRC_L2 has similar performance to GRRC_L1 when 

the dimension is greater than 56. On this database, the maximal recognition rates of the 

competing methods are 99.2% for GRRC_L1, 99.1% for GRRC_L2, 97.9% for SRC, 

98.0% for CRC, 96.4 for SVM, 95.7% for LRC, and 92.0% for NN. In addition, it can be 

seen that GRRC is not sensitive to the value of . 

 

Table 4.5: Face recognition results (%) on the Extended Yale B database. For GRRC, r1(r2) 

means r1 is the recognition rate for =0.0005, with r2 for =0.001. 

Methods 56 120 300 504 

SRC 92.6 95.6 97.4 97.9 

CRC 88.6 95.4 97.4 98.0 

NN 81.4 89.2 91.9 92.0 

LRC 94.1 94.7 95.4 95.7 

SVM 92.6 95.3 96.3 96.4 

GRRC_L1 92.7(92.7) 95.6(96.2) 97.9(97.9) 99.0(99.2) 

GRRC_L2 90.5(90.5) 96.3(96.3) 98.4(98.4) 99.1(99.1) 

 

2) AR database: The AR database consists of over 4,000 frontal images from 126 

individuals [212]. For each individual, 26 pictures were taken in two separate sessions. As 
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in [102], in the experiment we chose a subset of the dataset consisting of 50 male subjects 

and 50 female subjects. For each subject, the seven images with illumination change and 

expressions from Session 1 were used for training, and the other seven images with only 

illumination change and expression from Session 2 were used for testing. The size of 

original face image is 165×120, and the Gabor-feature vector is of dimension 12000 

(40×20×15). The comparison of GRRC and the competitors are shown in Table 4.6. Again 

we can see that GRRC performs much better than all the other methods under all the 

dimensions, especially with more than 3% improvement when the dimension is lager than 

54. On this database, the maximal recognition rate of GRRC_L1, GRRC_L2, SRC, CRC, 

SVM are 97.1%, 97.3%, 93.5%, 93.9% and 88.8%, respectively. 

 

Table 4.6: Face recognition results (%) on the AR database. For GRRC, r1(r2) means r1 is 

the recognition rate for =0.0005, with r2 for =0.001. 

Methods 54 130 300 540 

SRC 80.0 89.7 93.3 93.5 

CRC 80.5 90.0 93.7 93.9 

NN 67.8 70.1 71.2 72.1 

LRC 75.4 76.0 70.7 76.7 

SVM 77.5 82.7 87.3 88.8 

GRRC_L1 86.0(86.0) 94.0(94.0) 96.7(96.6) 97.1(97.1) 

GRRC_L2 82.7(82.7) 93.1(93.1) 96.7(96.7) 97.3(97.3) 

 

3) Large-scale Multi-PIE database: The CMU Multi-PIE database [213] contains 

images of 337 subjects captured in four sessions with simultaneous variations in pose, 

expression, and illumination. In the experiments, all the 249 subjects in Session 1 were 

used. For the training set, we used the 14 frontal images with illuminations 

{0,1,3,4,6,7,8,11,13,14,16,17,18,19} and neutral expression. For the testing sets, 10 

typical frontal images of even-number illuminations taken with neutral expressions from 

Session 2 to Session 4 were used. The image size is cropped and normalized to 100×82, 

and the Gabor feature vector is of the dimension of 8320 (40×16×13). We use PCA to 

reduce the dimensionality of the input feature to 300. Table 4.7 lists the recognition rates 
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in three tests by the competing methods. The results validate that GRRC methods get the 

best in accuracy, at least 3% higher than that of SRC and CRC in session 2 and about 5% 

higher than that of SRC and CRC in other sessions. NN, LRC and SVM can not get good 

recognition accuracy (lower than 90%) in this database, much lower than SRC, CRC and 

GRRC. 

 

Table 4.7: Face recognition results (%) on the Multi-PIE database. For GRRC, r1(r2) 

means r1 is the recognition rate for =0.0005, with r2 for =0.001. 

 SRC CRC NN LRC SVM GRRC_L1 GRRC_L2  

Session 2 93.9 94.1 86.4 87.1 85.2 97.3(97.5) 97.1(97.2) 

Session 3 90.0 89.3 78.8 81.9 78.1 96.7(96.7) 96.8(96.8) 

Session 4 94.0 93.3 82.3 84.3 82.1 98.6(98.6) 98.7(98.7) 

 

Table 4.8: Face recognition results (%) on the FERET database. For GRRC, r1(r2) means 

r1 is the recognition rate for =0.0005, with r2 for =0.001. 

 SRC CRC NN SVM GRRC_L1 GRRC_L2  

Fb 86.9 85.4 87.1 87.1 95.7(95.6) 95.6(95.6) 

Fc 77.3 75.8 73.2 73.2 97.4(97.4) 94.8(95.4) 

Dup1 51.6 51.5 47.8 47.8 77.7(78.0) 79.1(78.9) 

Dup2 33.3 35.5 23.9 23.9 75.6(76.5) 78.6(78.6) 

 

4) Large-scale FERET database: The FERET database [45, 229] is often used to 

validate an algorithm’s effectiveness because it contains many kinds of image variations. 

By taking ‘Fa’ subset as a gallery, the probe subsets ‘Fb’ and ‘Fc’ were captured with 

expression and illumination variations. Especially, ‘Dup1’ and ‘Dup2’ consist of images 

that were taken at different times with more than one year interval. Here we should note 

that in the Gallery set ‘Fa’, each subject only has one sample, which is very challenging 

for SRC and GRRC because usually they usually need several samples for each subject to 

construct the subspace. The image size is cropped and normalized to 150×130, and the 

Gabor feature vector is of dimension 21000 (40×25×21). For all the competing methods, 

we used LDA to reduce the original feature dimensionality to 428 for LDA could achieve 

better performance than PCA in this challenging dataset. Table 4.8 shows the face 
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recognition results on FERET database. It is surprised that SRC and CRC have higher 

accuracy than NN and SVM except for ‘Fb’ even only one sample for each subject in the 

training set. GRRC methods achieve the best performance with over 95% recognition 

rates in ‘Fb’ and ‘Fc’ and about 78% in ‘Dup1’ and ‘Dup2’. It can also be seen that for 

‘Fb’, GRRC has at least 8% improvements compared to other methods, while with about 

20%, 27% and 43% improvements for ‘Fc’, ‘Dup1’ and ‘Dup2’, respectively. According 

to the recent state-of-the-art FR results on the FERET database, e.g., Xie et al. ’s method 

[94], further improvement could be achieved if more discriminative features, e.g., fused 

Gabor magnitude and phase feature [94], are utilized in the framework of GRRC. 

From the experimental results in Extended Yale B, AR, Multi-PIE and FERET, we 

could see that GRRC is very robust to the value of  and GRRC_L1 and GRRC_L2 have 

very similar performance (the gap usually is less than 0.5% in high dimensional feature), 

showing that GRRC_L2 is very suitable for the practical FR systems due to its fast speed 

and good performance. Besides, the improvements brought by GRRC on the AR, 

Multi-PIE, and FERET are much bigger than that on the Extended Yale B database. This 

is because mostly there is only illumination variation between the training images and 

testing images, and the number of training samples (i.e., 32) in the Extended Yale B 

database is also high. Thus the original SRC and CRC work well on it. However for the 

more challenging cases (e.g., the training and testing samples of the AR, Multi-PIE and 

FERET have much more variations, including time, illumination, etc., but with very 

limited number of training samples), the local feature based GRRC is much more robust 

than the holistic feature based SRC, CRC, SVM, LRC and NN. 

 

4.4.3 Face recognition with pose and expression variations 

In this section, we verify the robustness of GRRC to pose and expression variations on the 

pose subset of FERET database [45, 229] and expression subset of Multi-PIE [213]. 
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1) FERET pose database: Here we used the pose subset of the FERET database [45, 

229], which includes 1400 images from 198 subjects (about 7 each). This subset is 

composed of the images marked with ‘ba’, ‘bd’, ‘be’, ‘bf’, ‘bg’, ‘bj’, and ‘bk’. In our 

experiment, each image has the size of 80×80 and the dimension of Gabor feature is 6760 

(40×13×13). Some sample images of one person are shown in Fig. 4.6. 

 

            
ba: gallery   bj: expression  bk: illumination  be: +15    bf: -15     bg: -25     bd: +25 

Figure 4.6: Some samples of a subject on the pose subset of the FERET database. 

 

 

Five tests with different pose angles were performed. In test 1 (pose angle is zero 

degree), images marked with ‘ba’ and ‘bj’ were used as the training set, and images 

marked with ‘bk’ were used as the testing set. In all the other four tests, we used images 

marked with ‘ba’, ‘bj’ and ‘bk’ as gallery, and used the images with ‘bg’, ‘bf’, ‘be’ and 

‘bd’ as probes, respectively. Here we use 350-dimension Eigenfaces as the input feature. 

Table 4.9 lists the results of different methods for various face poses. Obviously, we can 

see that GRRC has much higher recognition rates than SRC and other methods. In 

particular, when the pose variation is moderate (0
o
 and 15

o
), about 20% improvement is 

achieved by GRRC compared to SRC. We could also see that GRRC_L2 performs very 

similarly to GRRC_L1. It is undeniable that GRRC’s performance also degrades much 

when pose variation becomes large (e.g. 25
o
). Nevertheless, GRRC can much improve 

the robustness to moderate pose variation, which indicating GRRC could tolerate 

registration error (e.g., pose variation, misalignment) to some extent. 

 

 



Regularized Robust Coding and Dictionary Learning for Face Recognition, PhD Thesis, Meng Yang 

 88 

Table 4.9: Face recognition results (%) on the pose subset of the FERET database. For 

GRRC, r1(r2) means r1 is the recognition rate for =0.0005, with r2 for =0.001. 

Pose (degree) -25 -15 0 15 25 

SRC 32.5 70.5 83.5 57.5 28.0 

CRC 21.0 62.5 74.5 40.0 17.0 

NN 10.5 54.0 78.5 39.0 17.5 

LRC 11.5 58.0 75.5 40.5 20.0 

SVM 14.5 61.5 80.5 43.5 20.0 

GRRC_L1 41.5(42.0) 95.5(95.5) 99.0(99.0) 89.0(89.5) 44.5(45.0) 

GRRC_L2 41.0(41.0) 95.5(95.5) 99.0(99.0) 91.5(91.5) 44.0(44.0) 

 

 
(a) 

    
(b)                                  (c) 

    
(d)                                  (e) 

Figure 4.7: A subject in Multi-PIE database. (a) Training samples with only illumination 

variations. (b) Testing samples with surprise expression and illuminations in Session 2. (c) 

Testing samples with squint expression and illuminations in Session 2. (d) and (e) show 

the testing samples with smile expression and illumination variations in Session 1 and 

Session 3, respectively. 

 

2) Multi-PIE expression subset: All the 249 subjects in Session 1 were used as 

training set in this experiment. To make the FR more challenging, four subsets with both 

illumination and expression variations in Sessions 1, 2 and 3 were used for testing. For the 

training set, as in [189] we used the 7 frontal images with extreme illuminations {0, 1, 7, 

13, 14, 16, 18} and neutral expression (refer to Fig. 4.7(a) for examples). For the testing 

set, 4 typical frontal images with illuminations {0, 2, 7, 13} and different expressions 

(smile in Sessions 1 and 3, squint and surprise in Session 2) are used (refer to Fig.4.7(b) 

for examples with surprise in Session 2, Fig. 4.7(c) for examples with squint in Session 2, 

Fig. 4.7(d) for examples with smile in Session 1, and Fig. 4.7(e) for examples with smile 
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in Session 3). We used the Eigenface with dimensionality 900 as the face feature. 

 

Table 4.10: Face recognition rates on Multi-PIE expression database. For GRRC, r1(r2) 

means r1 is the recognition rate for =0.0005, with r2 for =0.001. 

 Smile-S1 Smile-S3 Surprise-S2 Squint-S2 

SRC 94.1 60.9 55.0 57.2 

CRC 92.4 56.7 49.2 52.7 

NN 89.4 46.3 40.5 50.3 

LRC 90.4 49.8 40.1 52.1 

SVM 88.9 46.3 25.6 47.7 

Hash+OMP 92.2 50.2 42.3 51.8 

Hash+L1 87.2 50.0 46.4 56.2 

GRRC_L1 97.7(97.4) 73.4(73.3) 81.8(82.4) 87.5(87.8) 

GRRC_L2 97.3(97.3) 74.2(74.2) 82.2(82.2) 88.0(88.1) 

 

Table 4.10 lists the recognition rates in four testing sets by the competing methods, 

including SRC using Hasing [198] (e.g., Hash+OMP and Hash+L1). It can be seen that 

GRRC achieves the best performance in all tests and SRC performs the second best. It can 

also be seen that SRC using Hashing has low recognition rates than SRC, which may 

result from it using random projection dimension-reduced matrix. In addition, all the 

methods achieve their best results when Smile-S1 is used for testing because the training 

set is also from Session 1. The highest rates of GRRC_L1 and GRRC_L2 are 97.7% and 

97.3%, respectively, more than 3% improvement over the third best one, SRC. From 

testing set Smile-S1 to set Smile-S3, the variations increase because of the longer data 

acquisition time interval and expression changes (refer to Fig. 4.7 (d) and Fig. 4.7 (e)). 

The recognition rates of GRRC_L1 and GRRC_L2 drop by 24.3% and 23.1%, respectively, 

while those of SRC, CRC, NN, LRC and SVM drop by 33.2%, 35.7%, 43.1%, 40.6% and 

42.6%, respectively, validating that GRRC is much more robust to face variation than the 

other methods. For the testing set of Surpise-S2 and Squint-S2, GRRC has about 30% 

improvement over all the other methods. Meanwhile, for all the four tests, GRRC with 

l1-norm constraint or l2-norm constraint on coding coefficients has similar performance. 
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Table 4.11: Average time (second) comparison for sparse representation-based FR 

methods 

Method SRC Hash+OMP Hash+L1 GRRC_L1 GRRC_L2 

Running Time 1.398 1.061 2.644 0.2423+1.400 0.2423+0.046 

 

 

The running time of GRRC, SRC, and SRC using Hashing [198] (e.g., Hash+OMP 

and Hash+L1) is compared in Table 4.11. Here the Gabor feature extraction for GRRC is 

0.2423 second. From Table 4.11, it is very clear that GRRC_L2 is the fastest one, about 4 

times faster than Hash+OMP, the second fastest method. GRRC_L1’s running time is still 

lower than Hash+L1. 

From the experiments on FR with local deformation (e.g., pose and expression 

variations), we could see that there is almost no difference for GRRC with =0.001 and 

GRRC with =0.0005, showing GRRC is very robust to the value of . GRRC is much 

superior to the other methods, including SRC and CRC. This not only shows that 

collaborative representation based classification strategy with l1 or l2 norm regularization 

is more powerful than other classifiers, such as NN, LRC and SVM, but also demonstrates 

that Gabor magnitude features are more robust to the variations of pose and expression. 

 

4.4.4 Recognition against occlusion 

In this sub-section, we test the robustness of GRRC to face occlusions, including block 

occlusion and real disguise. FR with random block occlusion is performed on the 

Extended Yale B database [99, 206], while FR with real disguise is performed on the AR 

database [212]. 

1) FR with random block occlusion: As in [102], we chose Subsets 1 and 2 (717 

images, normal-to-moderate lighting conditions) for training, and Subset 3 (453 images, 

more extreme lighting conditions) for testing. In accordance to the experiments in [102], 

the images were resized to 96×84, and the occlusion dictionary Ae in SRC is set to an 
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identity matrix. 

With the above settings, in SRC the size of matrix B in Eq. (4-3) is 8064×8761. In the 

proposed GRRC, the dimension of augmented Gabor-feature vector is 8960 (40×16×14, 

ρ40). The GOD Γ is then computed using Algorithm in Table 4.2. In the experiment, we 

set the number of atoms in Γ to 200 (i.e., q=200, with compression ratio about 40:1), and 

hence the size of dictionary BΓ in Eq. (4-15) is 8960×917. Compared with the original 

SRC, the dictionary size of GRRC is reduced from 8761 to 917. 

As in [102], we simulated various levels of contiguous occlusion, form 0% to 50%, by 

replacing a randomly located square block in each testing image with an unrelated image, 

whose size is determined by the occlusion percentage. The location of occlusion was 

randomly chosen for each testing image and is unknown to the computer. Fig. 4.8 

illustrates the classification process by using an example. Fig. 4.8 (a) shows a testing 

image with 30% randomly located occlusion; Fig. 4.8 (b) shows the augmented Gabor 

features of the testing image. The residuals of GRRC_L2 associated to all classes are 

plotted in Fig. 4.8(c), and a template image of the identified subject is shown in Fig. 

4.8(d). The detailed recognition rates of GRRC, SRC, CRC and PCA+NN (used as the 

baseline) are listed in the Table 4.12. We see that GRRC can correctly classify all the 

testing images when the occlusion percentage is less than or equal to 30%. When the 

occlusion percentage becomes larger, the advantage of GRRC over SRC is getting higher. 

Especially, GRRC_L1 can still have a recognition rate of 87.4% when half of image is 

occluded, while SRC and CRC only achieve a rate of 65.3% and 61.0 respectively. 

PCA+NN gets the worst results for it does not consider the occlusion. We could also see 

that good performance is still achieved when the representation coefficients on Gabor 

occlusion dictionary are regularized by l2-norn in GRRC_L2. 
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    (a)              (b)                     (c)                     (d) 

Figure 4.8: An example of face recognition with block occlusion. (a) A 30% occluded test 

face image y from the first class of Extended Yale B. (b). Uniformly down-sampled Gabor 

features χ(y) of the testing image. (c). Estimated residuals ri(y), i = 1, 2, …, 38. (d). One 

sample of the class to which the testing image is classified. 

 

Table 4.12: The recognition rates (%) of different methods under different levels of block 

occlusion. 

Occlusion ratio 0% 10% 20% 30% 40% 50% 

SRC[102] 100 100 99.8 98.5 90.3 65.3 

CRC 100 99.8 96.7 86.3 74.8 61.0 

PCA+NN[102] 92.5 90.7 84.0 73.5 61.5 45.0 

GRRC_L1 100 100 100 100 96.5 87.4 

GRRC_L2 100 100 100 100 97.1 84.1 

 

2) FR with real disguise: A subset from the AR database was used in this experiment. 

This subset consists of 1199 images from 100 subjects (14 samples each class except for a 

corrupted image w-027-14.bmp), 50 male and 50 female. 799 images (about 8 samples per 

subject) of non-occluded frontal views with various facial expressions were used for 

training, while the others for testing. The images are resized to 83×60. So in original SRC, 

the size of matrix B in Eq. (4-3) is 4980×5779. In the proposed GRRC, the dimension of 

Gabor-feature vectors is 5200 (40×13×10, ρ38), and 100 atoms (with compression ratio 

50:1) are computed to form the GOD by Algorithm in Table 4.2. Thus the size of 

dictionary BΓ in Eq. (4-15) is 5200×899, and the dictionary size is reduced from 5779 to 

899 for GRRC. 

We consider two separate testing sets of 200 images (1 sample each session and each 

subject, with neural expression). The first testing set contains images of the subjects 

wearing sunglasses, which occlude roughly 20% of the image. The second testing set is 

composed of images of the subjects wearing a scarf, which occlude roughly 40% of the 

images. The results by GRRC, SRC, CRC, PCA+NN and SVM are listed in Table 4.13 
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(where the results of SRC and PCA+NN are copied from the original paper [102]). We see 

that on faces occluded by sunglasses, GRRC achieves a recognition rate of 93.0%, over 

5% higher than that of SRC, while for occlusion by scarves, the proposed GRRC_L1 

(GRRC_L2) achieves a recognition rate of 79% (77.5%), about 20% higher than that of 

SRC. It is surprising that CRC gets 90.5% in the scarf case but with very low recognition 

accuracy in sunglass case. SVM gets bad performance for that it cannot learn the 

occlusion information from the training set without occlusion. 

In [102], the authors also partitioned the image into blocks for face classification by 

assuming that the occlusion is continuous. Such an SRC scheme is denoted by SRC-p, 

with the CRC scheme denoted by CRC-p. Here, after partitioning the image into several 

blocks, we calculate the Gabor features of each block and then use GRRC to classify each 

block image. The final classification result is obtained by voting. We denote by GRRC-p 

the GRRC with partitioning. In experiments, as [102] we partitioned the images into eight 

(4×2) blocks of size 20×30. The Gabor-feature vector of each block is of dimension 800, 

and the number of atoms in the computed GOD Γ is set to 20. Thus the dictionary B in 

SRC is of size 600×1379, while the dictionary BΓ in GRRC is of size 800×819. The 

recognition rates of SRC-p, CRC-p and GRRC-p are also listed in Table 4.13. We see that 

with partitioning, GRRC can lead to recognition rates of 100% on sunglasses and 99% on 

scarves, also better than SRC and CRC. 

 

Table 4.13: Recognition rates (%) on the AR database with disguise occlusion (‘-p’: 

partitioned, ‘-sg’: sunglasses, and ‘-sc’: scarves). 

 Sunglass Scarf 

SRC (SRC-p) [102] 87  (97.5) 59.5  (93.5) 

CRC (CRC-p) [180] 68.5 (91.5) 90.5  (95) 

PCA+NN [102] 70.0 12.0 

SVM 66.5 16.5 

GRRC_L1 (GRRC-p_L2) 93.0  (100) 79.0  (99) 

GRRC_L2 (GRRC-p_L2) 93.0  (100) 77.5  (99) 
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3) Running time comparison: The recognition rates and running time of the proposed 

GRRC and SRC on a more challenging FR experiment with real disguise are compared 

here. A subset of 50 males and 50 females are selected from the AR database. For each 

subject, 7 samples with no occlusion from session 1 are used for training, with all the 

remaining samples with disguises for testing. These testing samples (including 3 sunglass 

samples in Session1, 3 sunglass samples in Session 2, 3 scarf samples in Session 1 and 3 

scarf samples in Session 2 per subject) not only have disguises, but also have variations of 

time and illumination. The image size and the extraction of Gabor feature of GRRC 

remains the same as before. Here =0.005 for GRRC and the programming environment is 

Matlab version R2011a. The desktop used is of 1.86 GHz CPU and with 2.99G RAM. All 

the l1-minimization problem is solved by using the fast solver: ALM [126, 202]. The 

recognition rates and running time of GRRC and SRC are listed in Table 4.14. The 

recognition rates of GRRC in all cases are much higher than SRC and CRC, especially 

with over 7% improvement on FR with sunglasses of session 1, and at least 43% in FR 

with scarf. It can also be seen that GRRC_L1 is slightly better in FR with scarf, while 

GRRC_L2 slightly better in FR with sunglasses. Fig. 4.9 plots the representation 

coefficients and residuals of a sample from class 1. As shown in Fig. 4.9(b), the sample is 

wrongly classified by GRRC_L1 though the coefficients are sparse (see Fig. 4.9(a)). 

Although the representation coefficients of GRRC_L2 are dense (Fig. 4.9(c)), the sample is 

correctly classified, as shown in Fig. 4.9(d). 

 

Table 4.14: Recognition rates (%) and average running time (second) of GRRC and SRC 

on FR with disguise. (A-time: average time.) 

 Sunglass-S1 Scarf-S1 Sunglass-S2 Scarf-S2 A-time Speedup 

SRC 83.3 48.7 49.0 29.0 12.278 -- 

CRC 78.0 52.3 44.7 29.3 0.084 146.2 

GRRC_L1 90.7 95.3 50.3 87.3 1.539 7.98 

GRRC_L2 92.3 95 51.7 84.3 0.331 37.09 
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The running time of SRC per testing sample is about 12 seconds, while GRRC_L1 

only needs about 1.5 seconds. However, this is still long for practical FR system. With 

l2-norm regularization on the Gabor feature representation coefficients, the running time 

of GRRC_L2 is only about 0.3 second, where 0.29 second is the running time of Gabor 

feature extraction. Although CRC is the fastest one, its recognition rate is also very low, 

similar to that of SRC. The speedup of GRRC_L2 and GRRC_L1 over SRC are 37.09 and 

7.98 times, respectively. 
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(a)                 (b)                  (c)                  (d) 

Figure 4.9: Representation coefficient and residual of a sample from class 1. (a) and (c) 

plot the coefficients of GRRC_L1 and GRRC_L2, respectively; (b) and (d) illustrate the 

representation residual associated to each class by GRRC_L1 and GRRC_L2, respectively. 

 

 

It can be seen from the FR experiments with occlusion that GRRC could achieve much 

higher recognition accuracy than SRC and CRC. More importantly, with Gabor 

transformation the occlusion dictionary could be compressed, which reduces significantly 

the number of unknown parameters and the computational burden.  

4.5 Discussion of Regularization on Coding Coefficients 

In this section, we discuss the effect of feature dimension on the regularization (l1-norm or 

l2-norm) of coding coefficient. Fig. 4.10 plots the recognition rates of GRRC_L1 and 

GRRC_L2 versus different feature dimensionality with the same experiment setting on 

Mulit-PIE database in Section 4.4.3. The number of dictionary atoms is 3486 (14249). 

From Fig. 10, we get that when the feature dimension is too low compared to the number 
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of dictionary atoms, GRRC_L1 has better performance than GRRC_L2. However, as the 

feature dimensionality increases, their recognition rates will become close. This 

phenomenon is consistent with the analysis of the l1-norm and l2-norm regularization on 

coding coefficients summarized in Chapter 3. 
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               (a) Smile-S1                            (b) Smile-S3 
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               (c) Surprise-S2                          (d) Squint-S2 

Figure 4.10: Recognition rates of GRRC_L1 and GRRC_L2 versus feature dimensionality 

in FR with expression variations. (a) FR with smile in session 1 for testing. (b) FR with 

smile in session 3 for testing. (c) FR with surprise in session 2 for testing. (d) FR with 

squint in session 2 for testing. 

 

4.6 Summary 

In this Chapter, we proposed a Gabor-feature based robust representation and classification 

(GRRC) scheme for face recognition, and proposed an associated Gabor occlusion 

dictionary (GOD) computing algorithm to handle the occluded face images. Apart from the 

improved face recognition rate, one important advantage of GRRC is its compact occlusion 

dictionary, which has much less atoms than that of the original SRC scheme. More 

importantly, we proposed to regularize the coding coefficients on the learnt GOD by 
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l2-norm. This greatly reduces the computational cost of coding. We evaluated the proposed 

method on different conditions, including variations of illumination, expression and pose, 

as well as block occlusion and disguise occlusion. The experimental results clearly 

demonstrated that the proposed GRRC has much better performance than SRC, leading to 

much higher recognition rates while spending much less computational cost. This makes it 

much more practical to use than SRC in real world face recognition. 
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Chapter 5.  Regularized Robust Coding for Face 

Recognition 

5.1 Introduction 

Face recognition (FR) to occlusion/corruption is a very challenging issue because of the 

variations of occlusion, such as disguise, continuous or pixel-wise occlusion, randomness 

of occlusion position and the intensity of occluded pixels. Several robust FR methods, 

such as LBP [90, 149], Eigenimages [230-231], probabilistic local approach [232], 

support vector machines based FR [233], and image gradient orientations for FR [86], 

have been proposed to deal with the occlusion in facial images. However, either only 

special kinds of occlusions can be handled (e.g., continuous occlusion [86, 149, 232] and 

occlusion in color face image [233]), or the performance is not satisfactory [230-231]. 

The recognition of a testing face image is usually accomplished by classifying the 

features extracted from this image. The most popular classifiers for FR may be the nearest 

neighbor (NN) classifier and its variants, e.g., nearest feature line (NFL) [96], nearest 

feature plane (NFP) [97], and nearest subspace (NS) [97-101], all of which aim to find a 

suitable representation of the testing face image, and classify it by checking which class 

can give a better representation than other classes. Though NFL, NSP, and NS may 

achieve better performance than NN, they are not robust to face occlusion with holistic 

face features. Therefore how to formulate the representation model for classification tasks 

such as FR is still a challenging problem. 

In recent years, sparse representation (or sparse coding) has been attracting a lot of 

attention due to its great success in image processing [131-135], and it has also been used 

for FR [102, 146, 181, 234] and texture classification [144, 162]. In general, the sparse 

coding problem can be formulated as 
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2

1 2
min s.t.  y D    (5-1) 

where y is the given signal, D is the dictionary of coding atoms,  is the coding vector of y 

over D, and ε > 0 is a constant. Recently, Wright et al. [102] applied sparse coding to FR 

and proposed the sparse representation based classification (SRC) scheme. By coding a 

testing image y as a sparse linear combination of all the training samples via Eq. (5-1), 

SRC classifies y by evaluating which class could result in the minimal reconstruction error 

of it. One interesting feature of SRC is its processing of face occlusion and corruption. 

More specifically, it introduces an identity matrix I as a dictionary to code the outlier 

pixels (e.g., corrupted or occluded pixels):  

     
1

min ; s.t. , ;   e e y D I e  (5-2) 

By solving Eq. (5-2), SRC shows good robustness to face occlusions such as block 

occlusion, pixel corruption and disguise. It is not difficult to see that Eq. (5-2) is basically 

equivalent to 
1 1

min s.t.  y D   . That is, it uses l1-norm to model the coding 

residual y-Dα to gain certain robustness to outliers. 

Although the sparse coding model in Eq. (5-1) has made a great success in image 

restoration [131-135] and led to interesting results in FR [102, 146, 181, 234], there are 

two issues to be considered more carefully when applying it to pattern classification tasks 

such as FR. One is that whether the l1-sparsity constraint ||||1 is indispensable to regularize 

the solution, since the l1-minimization needs much computational cost. The other is that 

whether the term 
2

2
 y D  is effective enough to characterize the signal fidelity, 

especially when the observation y is noisy and/or has many outliers. For the first issue, on 

one side reweighted l1 or l2 minimization was proposed to speed up the sparse coding 

process [235-236]; one the other side some works [180, 237-238] have questioned the use 

of sparse coding for image classification. Particularly, as shown in Chapter 3, it is not 

necessary to impose the l1-sparsity constraint on the coding vector , while the l2-norm 

regularization on  performs equally well. For the second issue, to the best of our 
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knowledge, few works have been reported in the scheme of sparse representation except 

for the l1-norm fidelity (i.e., 
1

 y D ) in [102, 234], and the correntropy based 

Gaussian-kernel fidelity in [239-240]. The fidelity term has a very high impact on the 

final coding result. From the viewpoint of maximum a posterior (MAP) estimation, 

defining the fidelity term with l2- or l1-norm actually assumes that the coding residual 

e=yD follows Gaussian or Laplacian distribution. In practice, however, such an 

assumption may not hold well, especially when occlusions, corruptions and expression 

variations occur in the testing face images. Although Gaussian kernel based fidelity term 

utilized in [239-240] is claimed to be robust to non-Gaussian noise [241], it may not work 

well in FR with occlusion due to the complex variation of occlusion. For example, the 

scarf disguise occlusion needs to be manually removed in [240]. 

To increase the robustness of FR to occlusion, pixel corruption, disguises and big 

expression variations, etc., we propose a regularized robust coding (RRC) model in this 

Chapter. We assume that the coding residual e and the coding vector  are respectively 

independent and identically distributed, and then robustly regress the given signal based 

on the MAP principle. In implementation, the RRC minimization problem is transformed 

into an iteratively reweighted regularized robust coding (IR
3
C) problem with a reasonably 

designed weight function for robust FR. Our extensive experiments in benchmark face 

databases show that RRC achieves much better performance than existing sparse 

representation based FR methods, especially when there are complicated variations, such 

as face occlusions, corruptions and expression changes, etc.  

 

5.2 Regularized Robust Coding (RRC) 

5.2.1 The modeling of RRC 

The conventional sparse coding model in Eq. (5-1) is equivalent to the so-called LASSO 
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problem [117]:  

2

2 1
min s.t.  y D    (5-3) 

where  > 0 is a constant, y=[y1;y2;…;yn]
n
 is the signal to be coded, D=[d1, d2, …, dm] 


nm

 is the dictionary with column vector dj being its j
th
 atom, and m

 is the vector of 

coding coefficients. In the problem of face recognition (FR), the atom dj can be simply set 

as the training face sample (or its dimensionality reduced feature) and hence the 

dictionary D can be the whole training dataset.  

If we have the prior that the coding residual e = yD follows Gaussian distribution, 

the solution to Eq. (5-3) will be the maximum likelihood estimation (MLE) solution. If e 

follows Laplacian distribution, the l1-sparsity constrained MLE solution will be  

1 1
min s.t.  y D    (5-4) 

The above Eq. (5-4) is essentially another expression of Eq. (5-2) because they have the 

same Lagrangian formulation: min{||yD||1+||||1} [202]. 

In practice, however, the Gaussian or Laplacian priors on e may be invalid, especially 

when the face image y is occluded, corrupted, etc. Let’s use examples to illustrate the 

fitted distributions of residual e by different models. Fig. 5.1(a) shows a clean face image, 

denoted by yo, while Fig. 5.1(b) and Fig. 5.1(c) show the occluded and corrupted testing 

images y, respectively. The residual is computed as e= ˆy D , while to make the coding 

vector more accurate we use the clean image to calculate it via Eq. (5-3): 

2

2 1
ˆ argmin s.t.o   y D   . The empirical and fitted distributions of e by using 

Gaussian, Laplacian and the distribution model (refer to Eq. (5-15)) associated with the 

proposed method are plotted in Fig. 5.1(d). Fig. 5.1(e) shows the distributions in log 

domain for better observation of the tails. It can be seen that the empirical distribution of e 

has a strong peak at zero but a long tail, which is mostly caused by the occluded and 

corrupted pixels. For robust FR, a good fitting of the tail is much more important than the 

fitting of the peak, which is produced by the small trivial coding errors. It can be seen 
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from Fig. 5.1(e) that the proposed model can well fit the heavy tail of the empirical 

distribution, much better than the Gaussian and Laplacian models. Meanwhile, Laplacian 

works better than Gaussian in fitting the heavy tail, which explains why the sparse coding 

model in Eq. (5-4) (or Eq. (5-2)) works better than the model in Eq. (5-1) (or Eq. (5-3)) in 

handling face occlusion and corruption. 
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(d)                                      (e) 

Figure 5.1: The empirical distribution of coding residuals and the fitted distributions by 

different models. (a) Clean face image; (b) and (c) are occluded and corrupted testing face 

images; (d) and (e) show the distributions (top row: occluded image; bottom row: 

corrupted image) of coding residuals in linear and log domains, respectively. 

 

 

Inspired by the robust regression theory [242-244], in our work [195] we proposed an 

MLE solution for robust face image representation. Rewrite D as D = [r1; r2; …; rn], 

where ri is the i
th
 row of D, and let e = yD = [e1; e2; …; en], where ei = yiri, i=1,2,…,n. 

Assume that e1, e2, …, en are independent and identically distributed (i.i.d.) and the 

probability density function (PDF) of ei is fθ(ei), where θ denotes the unknown parameter 

set that characterizes the distribution, the so-called robust sparse coding (RSC) [195] was 
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formulated as the following l1-sparsity constrained MLE problem (let θ(e) = -lnfθ(e))  

 
1

min
n

i ii
y


 θ r


  s.t. 

1
  (5-5) 

Like SRC, the above RSC model assumes that the coding coefficients are sparse and uses 

l1-norm to characterize the sparsity. However, the l1-sparsity constraint makes the 

complexity of RSC high, and recently it has been indicated in [180] that the l1-sparsity 

constraint on  is not the key for the success of SRC [102]. Therefore we then propose a 

more general model, namely regularized robust coding (RRC). The RRC can be much 

more efficient than RSC, while RSC is one specific instantiation of the RRC model. 

Let’s consider the face representation problem from a viewpoint of Bayesian 

estimation, more specifically, the maximum a posterior (MAP) estimation. By coding the 

testing image y over a given dictionary D, the MAP estimation of the coding vector  is 

 ˆ argmax ln |P y  . Using the Bayesian formula, we have 

    ˆ argmax ln | lnP P y    (5-6) 

Assuming that the elements ei of coding residual e=yD = [e1; e2; …; en] are i.i.d. with 

PDF fθ(ei), we have    
1

|
n

i ii
P f y


  θy r  . Meanwhile, assume that the elements 

j, j=1,2,…,m, of the coding vector =[1; 2; …; m] are i.i.d. with PDF f(j), there is 

   
1

m

jj
P f 


 ο . The MAP estimation of  in Eq. (5-6) is 

    1 1
ˆ argmax ln ln

n m

i i ji j
f y f 

 
   θ or   (5-7) 

Letting θ(e) = -lnfθ(e) and () = -lnf(), Eq. (5-7) is converted into  

    1 1
ˆ argmin

n m

i i ji j
y  

 
   θ or   (5-8) 

We call the above model regularized robust coding (RRC) because the fidelity term 

 
1

n

i ii
y


 θ r  will be very robust to outliers, while  

1

m

jj
 

 o  is the 

regularization term depending on the prior probability P(). 

It can be seen that  
1

m

jj
 

 o
 becomes the l1-norm sparse constraint when j is 
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Laplacian distributed, i.e.,    1 1
exp 2

m

jj
P    


  . For the problem of 

classification, it is desired that only the representation coefficients associated with the 

dictionary atoms from the target class could have big absolute values. As we do not know 

beforehand which class the testing image belongs to, a reasonable prior can be that only a 

small percent of representation coefficients have significant values. Therefore, we assume 

that the representation coefficient j follows generalized Gaussian distribution (GGD). 

There is 

       exp 2 1j jf Γ


       ο
 (5-9) 

where Г denotes the gamma function. 

For the representation residual, it is difficult to predefine the distribution due to the 

diversity of image variations. In general, we assume that the unknown PDF fθ(e) are 

symmetric, differentiable, and monotonic w.r.t. |e|, respectively. So θ(e) has the 

following properties: (1) θ(0) is the global minimal of θ(x); (2) symmetry: θ(x)= θ(-x); 

(3) monotonicity: θ(x1)> θ(x2) if |x1|>|x2|. Without loss of generality, we let θ(0)=0. 

Two key issues in solving the RRC model are how to determine the distributions θ (or 

fθ), and how to minimize the energy functional. Simply taking fθ as Gaussian or Laplacian 

and taking fo as Laplacian, the RRC model will degenerate to the conventional sparse 

coding problem in Eq. (5-3) or Eq. (5-4). However, as we showed in Fig. 5.1, such preset 

distributions for fθ have much bias and are not robust enough to outliers, and the Laplacian 

setting of fo makes the minimization inefficient. In this Chapter, we allow fθ to have a more 

flexible shape, which is adaptive to the input testing image y so that the system is more 

robust to outliers. To this end, we transform the minimization of Eq. (5-8) into an 

iteratively reweighted regularized coding problem in order to obtain the approximated 

MAP solution of RRC effectively and efficiently. 
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5.2.2 RRC via iteratively reweighting 

Let  
1

( )
n

ii
F e


θ θe . The Taylor expansion of Fθ(e) in the neighborhood of e0 is:  

         0 0 0 1

T
F F F R   e e e e e e    (5-10) 

where R1(e) is the high order residual, and  F  e is the derivative of Fθ(e). Denote by    

the derivative of θ, and there is        0 0,1 0,2 0,; ; ; nF e e e        e    , where e0,i is the 

i
th
 element of e0. To make  F  e  strictly convex for easier minimization, we 

approximate the residual term as R1(e)0.5(e-e0)
T
W(e-e0), where W is a diagonal matrix 

for that the elements in e are independent and there is no cross term of ei and ej, i≠j, in 

Fθ(e).  

Since Fθ(e) reaches its minimal value (i.e., 0) at e=0, we also require that its 

approximation  F e  reaches the minimum at e=0. Letting  F  0 =0, we have the 

diagonal elements of W as  

   , 0, 0, 0,i i i i ie e e  W    (5-11) 

According to the properties of θ, we know that ( )ie  will have the same sign as ei. So 

Wi,i is a non-negative scalar. Then  F e  can be written as  

 F e =
0

2
1 2

2

1

2
b eW e  (5-12) 

where    
0 0, 0, 0,1

2
n

i i ii
b e e e 


    θ θe

 is a scalar constant determined by e0. 

Without considering the constant 
0

be , the RRC model in Eq. (5-8) could be 

approximated as 

   
2

1 2

12

1
ˆ argmin

2

m

jj
 



 
   

 
 oW y D   (5-13) 

Certainly, Eq. (5-13) is a local approximation of Eq. (5-8) but it makes the minimization 

of RRC feasible via iteratively reweighted l2-regularized coding, in which W is updated 
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via Eq. (5-11). Now, the minimization of RRC is turned to how to calculate the diagonal 

weight matrix W. 

 

5.2.3 The weights W 

The element Wi,i, i.e., (ei), is the weight assigned to pixel i of testing image y. Intuitively, 

in FR the outlier pixels (e.g., occluded or corrupted pixels) should have small weights to 

reduce their effect on coding y over D. Since the dictionary D, composed of 

non-occluded/non-corrupted training face images, could well represent the facial parts, the 

outlier pixels will have rather big coding residuals. Thus, the pixel which has a big 

residual ei should have a small weight. Such a principle can be observed from Eq. (5-11), 

where (ei) is inversely proportional to ei and modulated by ( )ie . Refer to Eq. (5-11), 

since θ is differentiable, symmetric, monotonic and has its minimum at origin, we can 

assume that (ei) is continuous and symmetric, while being inversely proportional to ei 

but bounded (to increase stability). Without loss of generality, we let (ei)[0, 1]. With 

these considerations, one good choice of (ei) is the widely used logistic function [245]:  

      2 2exp 1 expi i ie e e           (5-14) 

where μ and δ are positive scalars. Parameter  controls the decreasing rate from 1 to 0, 

and δ controls the location of demarcation point. Here the value of δ should be big 

enough to make (0) close to 1 (usually we set δ≥8). With Eq. (5-14), Eq. (5-11) and 

θ(0)=0, we could get 

       21
ln 1 exp ln 1 exp

2
i ie e   


        (5-15) 

We can see that the above θ satisfies all the assumptions and properties discussed in 

Section 5.2.1. 

The PDF fθ associated with θ in Eq.(5-15) is more flexible than the Gaussian and 

Laplacian functions to model the residual e. It can have a longer tail to address the 
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residuals yielded by outlier pixels such as corruptions and occlusions (refer to Fig. 5.1 for 

examples), and hence the coding vector  will be robust to the outliers in y. (ei) could 

also be set as other functions. However, as indicated by [246], the proposed logistic 

weight function is the binary classifier derived via MAP estimation, which is suitable to 

distinguish inliers and outliers. When (ei) is set as a constant such as (ei)=2, it 

corresponds to the l2-norm fidelity in Eq. (5-3); when set as (ei)=1/|ei|, it corresponds to 

the l1-norm fidelity in Eq. (5-4); when set as a Gaussian function   2 2exp( 2 )i ie e   , 

it corresponds to the Gaussian kernel fidelity in [239-240]. However, all these functions 

are not as robust as Eq. (5-14) to outliers, as illustrated in Fig. 5.2. From Fig. 5.2, one can 

see that the l2-norm fidelity treats all pixels equally, no matter it is outlier or not; the 

l1-norm fidelity assigns higher weights to pixels with smaller residuals; however, the 

weight can be infinity when the residual approaches to zero, making the coding unstable. 

Both our proposed weight function and the weight function of the Gaussian fidelity used 

in [239-240] are bounded in [0, 1], and they have an intersection point with weight value 

as 0.5. However, the proposed weight function prefers to assign larger weights to inliers 

and smaller weights to outliers; that is, it has higher capability to classify inliers and 

outliers. 
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Figure 5.2: Weight functions for different signal fidelity terms, including (a) l2 and 

l1-norm fidelity terms in SRC [102] and (b) the Gaussian kernel fidelity term [239-240], 

as well as the proposed RRC fidelity term. 
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The sparse coding models in Eqs. (5-3) and (5-4) are instantiations of the RRC model 

with Eq.(5-14) and =1 in Eq.(5-9). The model in Eq. (5-3) is the case by letting ωθ(ei)=2. 

The model in Eq. (5-4) is the case by letting ωθ(ei)=1/|ei|. Compared with the models in 

Eqs. (5-3) and (5-4), the proposed RRC model (Eq. (5-8) or Eq. (5-13)) is much more 

robust to outliers (usually the pixels with big residuals) because it will adaptively assign 

small weights to them. Although the model in Eq. (5-4) also assigns small weights to 

outliers, its weight function ωθ(ei)=1/|ei| is not bounded (i.e., the weights assigned to very 

small residuals can have very big values and dramatic changing ratios), making it less 

effective to distinguish between inliers and outliers.  

 

5.2.4 Two important cases of RRC 

The minimization of RRC model in Eq. (5-13) can be accomplished iteratively, while in 

each iteration W and  are updated alternatively. By fixing the weight matrix W, the RRC 

with GGD prior on representation (Eq. (5-13)) and () =-lnf() could be written as 

   0

2
1 2

12

1
ˆ argmin

2

m

jj
b



 


 
    

 
W y D   (5-16) 

where  
0j j b



    o ,  1


  and   
0

ln 2 1b      is a constant. 

Similar to the processing of  
1

( )
n

ii
F e


θ θe  in Section 5.2.2, 

1

m

jj




 could also 

be approximated by the Taylor expansion. Then Eq. (5-16) changes to 

  2
1 2 2

,12
ˆ argmin

m

j j jj



  W y D V   (5-17) 

where W is a diagonal matrix with  ,j j j j  
o

V . 

The value of  determines the types of regularization. If 0<≤1, then sparse 

regularization is applied; otherwise, non-sparse regularization is imposed on the 

representation coefficients. In particular, the proposed RRC model has two important 

cases with two specific values of . 
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When =2, GGD degenerates to the Gaussian distribution, and the RRC model 

becomes  

  2 21 2

22
ˆ argmin   W y D    (5-18) 

In this case the RRC model is essentially an l2-regularized robust coding model. It can be 

easily derived that when W is given, the solution to Eq. (5-18) is 

 
1

ˆ T T


 D WD Ι D Wy .  

When =1, GGD degenerates to the Laplacian distribution, and the RRC model 

becomes 

  2
1 2

12
ˆ argmin   W y D    (5-19) 

In this case the RRC model is essentially the RSC model in [195], where the sparse 

coding methods such as l1_ls [204] is used to solve Eq. (19) when W is given. In this 

Chapter, we solve Eq. (5-19) via Eq. (5-17) by the iteratively re-weighting technique 

[235]. Let (0)

, 1j j V , and then in the (k+1)
th
 iteration the diagonal matrix V is set as 

1/2
( 1) ( ) 2 2

, ( )k k

j j j  


  V , and then 
    

1
1 1ˆ k kT T


 
 D WD V D Wy . Here  is a scalar 

defined in [235].  

 

5.3 Algorithm of RRC 

5.3.1 Iteratively reweighted regularized robust coding (IR
3
C) algorithm 

As discussed in Section 5.2, the minimization of RRC is an iterative process, and the 

weights W and V are updated alternatively in order for the desired coding vector . 

Although we can only have a locally optimal solution to the RRC model, fortunately in 

FR we are able to have a very reasonable initialization to achieve good performance. In 

this section we propose an iteratively reweighted regularized robust coding (IR
3
C) 
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algorithm to minimize the RRC model.  

 

Table 5.1: Algorithm of Iteratively Reweighted Regularized Robust Coding.  

Iteratively Reweighted Regularized Robust Coding (IR
3
C) 

Input: Normalized testing image y with unit l2-norm; dictionary D (each column of D has unit 

l2-norm); (1)
. 

Output:  

Start from t=1: 

1. Compute residual ( ) ( )t t e = y D . 

2. Estimate weights as 

    2
( ) ( )1 1 expt t

i ie e     , 

where  and δ could be estimated in each iteration (please refer to Section 5.4.1 for the settings 

of them). 

3. Weighted regularized robust coding:  

      
2

1 2
*

1
2

1
arg min

2

mt

o jj
 



 
   

 
W y D   (5-21) 

where W
(t)

 is the estimated diagonal weight matrix with   ( ) ( )

,

t t

i i ieW  , 

 
0j j b



    
o  and  = 2 or 1. 

4. Update the sparse coding coefficients: 

If t=1, (t)
= *

; 

If t>1, (t)
= (t-1)

+ (t)
 (*

-(t-1)
); 

where 0<(t)
1 is a suitable step size that makes 

           1 1

1 1 1 1

n m n mt t t t

i i o j i i o ji j i j
y y     

 

   
         r r . (t) 

can be 

searched from 1 to 0 by the standard line-search process [247].  

5. Compute the reconstructed testing sample: 

( ) ( )t t

rec y D , 

and let t=t+1. 

6. Go back to step 1 until the condition of convergence (refer to Section 5.3.2) is met, or the 

maximal number of iterations is reached.  

 

 

When a testing face image y comes, in order to initialize W, we should firstly initialize 

the coding residual e of y. We initialize e as e=yD(1)
, where (1)

 is an initial coding 
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vector. Because we do not know which class the testing face image y belongs to, a 

reasonable (1)
 can be set as 

(1) 1 1 1; ;...;
m m m

     (5-20) 

That is, D(1)
 is the mean image of all training samples. With the initialized coding vector 

(1)
, the proposed IR

3
C algorithm is summarized in Table 5.1. 

When IR
3
C converges, we use the same classification strategy as in SRC [18] to 

classify the face image y:  

   identity argminc cy  (5-22) 

where  1/2

2
ˆ

c final c c W y D , Dc is the sub-dictionary associated with class c, ˆ
c is the 

final sub-coding vector associated with class c, and Wfinal is the final weight matrix. 

 

5.3.2 The convergence of IR
3
C 

Eq. (5-21) is a local approximation of the RRC in Eq. (5-8), and in each iteration the 

objective function of Eq. (5-8) decreases by the IR
3
C algorithm, i.e., in steps 3 and 4, (t)

 

can make 
           1 1

1 1 1 1

n m n mt t t t

i i o j i i o ji j i j
y y     

 

   
       r r   . 

Since the cost function of Eq. (5-8) is lower bounded (0), the iterative minimization 

procedure in IR
3
C will converge. Specifically, we stop the iteration if the following holds:  

( 1) ( ) ( )

2 2

t t t   WW W W  (5-23) 

where W is a small positive scalar. 

 

5.3.3 Complexity analysis 

Generally speaking, the complexity of IR
3
C and SRC [102] mainly lies in the coding 

process, i.e., Eq. (5-18) or (5-19) for IR
3
C and Eq. (5-1) or Eq. (5-2) for SRC. It is known 

that the l1-minimization, such as Eq. (5-1) for SRC, has a computational complexity of 
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O(n
2
m

1.5
) [228], where n is the dimensionality of face feature, and m is the number of 

dictionary atoms. It is also reported that the commonly used l1-minmization solvers, e.g., 

l1_magic [226] and l1_ls [204], have an empirical complexity of O(n
2
m

1.3
) [204]. 

For IR
3
C with =2, the coding (i.e., Eq. (5-18)) is an l2-regularized least square 

problem. The solution  
1

ˆ T T


 D WD Ι D Wy  could be got by solving 

  ˆT T D WD Ι D Wy  efficiently via conjugate gradient method [248], whose time 

complexity is about O(k1nm) (here k1 is the iteration number in conjugate gradient 

method). Suppose that t iterations are used in IR
3
C to update W, the overall complexity of 

IR
3
C with =2 is about O(tk1nm). Usually t is less than 15. It is easy to see that IR

3
C with 

=2 has much lower complexity than SRC.  

For IR
3
C with =1, the coding in Eq. (5-19) is an l1-norm sparse coding problem, 

which could also be solved via conjugate gradient method. The complexity of IR
3
C with 

=1 will be about O(tk1k2nm), where k2 is the number of iteration to update V. By 

experience, k1 is less than 30 and k2 is less 20, and then k2k1 is basically in the similar 

order to n. Thus the complexity of IR
3
C with =1 is about O(tn

2
m). Compared with SRC 

in case of FR without occlusion, although IR
3
C needs several iterations (usually t=2) to 

update W, its time consumption is still lower than or comparable to SRC. In FR with 

occlusion or corruption, for IR
3
C usually t=15. In this case, however, SRC’s complexity is 

O(n
2
(m+n)

1.3
) because it needs to use an identity matrix to code the occluded or corrupted 

pixels, as shown in Eq. (5-2). It is easy to conclude that IR
3
C with =1 has much lower 

complexity than SRC for FR with occlusion. 

Although many faster l1-norm minimization methods than l1_magic [226] and l1_ls 

[204] have been proposed recently, as reviewed in [126], by adopting them in SRC the 

running time is still larger than or comparable to the proposed IR
3
C, as demonstrated in 

Section 5.4.5. In addition, in the iteration of IR
3
C we can delete the element yi that has 

very small weight because this implies that yi is an outlier. Thus the complexity of IR
3
C 
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can be further reduced. For example, in FR with real disguise on the AR database, about 

30% pixels could be deleted. 

 

5.4 Experimental Results 

We perform experiments on benchmark face databases to demonstrate the performance of 

RRC. In Section 5.4.1, we give the parameter setting of RRC; in Section 5.4.2, we test 

RRC for FR without occlusion; in Section 5.4.3, we demonstrate the robustness of RRC to 

FR with random pixel corruption, random block occlusion and real disguise; in Section 

5.4.4, the experiments on rejecting invalid testing images are performed. In Section 5.4.5, 

the running time is presented. Finally, some discussions of parameter selection are given 

in Section 5.4.6. 

All the face images are cropped and aligned by using the locations of eyes. We 

normalize the testing image (or feature) and training image (or feature) to have unit 

l2-norm energy. For AR [212] and Extended Yale B [99, 206] databases, the eye locations 

are provided by the databases. For Multi-PIE [213] database, we manually locate the eyes 

for the experiments in Section 5.4.2, and automatically detect the facial region by the face 

detector [249] for the experiments in Sections 5.4.4. In all experiments, the training 

samples are used as the dictionary D in coding. We denote by RRC_L1 our RRC model 

with l1-norm coefficient constraint (i.e., Eq. (5-19)), and by RRC_L2 our RRC model with 

l2-norm coefficient constraint (i.e., Eq. (5-18)). Both RRC_L1 and RRC_L2 are 

implemented by the IR
3
C algorithm described in Section 5.3.1. 

 

5.4.1 Parameter setting 

In the weight function Eq. (5-14), there are two parameters, δ and , which need to be 

calculated in Step 2 of the IR
3
C algorithm. δ is the parameter of demarcation point. When 
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the square of residual is larger than δ, the weight will be less than 0.5. To make the model 

robust to outliers, we compute δ as follows. Let l=τn, where scalar τ(0,1), and τn 

outputs the largest integer smaller than τn. We set δ as 

δ =1(e)l (5-24) 

where for a vector e
n
, 1(e)k is the k

th
 largest element of the set { 2

je , j=1,…,n}. 

Parameter  controls the decreasing rate of weight Wi,i. Here we simply let =ς/δ, 

where ς=8 is set as a constant. In the experiments, τ is fixed as 0.8 for FR without 

occlusion, and 0.6 for FR with occlusion. In addition, the regularization parameter  in Eq. 

(5-18) or Eq. (5-19) is set as 0.001 by default.  

For RRC_L1, there is a parameter ε in updating the weight matrix V: 

1/2
( 1) ( ) 2 2

, ( )k k

j j j  


  V . According to [235], we choose ε as  

       1

2min ,
k k k

L
m  


   (5-25) 

where for a vector m
,  2 i
   is the i

th
 largest element of the set { , 1, ,j j m  }. 

We set L = 0.01m. The above design of ε could not only make the numerical computing 

of weight V stable, but also ensure the iteratively reweighted least square achieve a sparse 

solution (
 1k




 decreases to zero as k increases).   

 

5.4.2 Face recognition without occlusion 

We first validate the performance of RRC in FR with variations such as illumination and 

expression changes but without occlusion. We compare RRC with SRC [102], 

locality-constrained linear coding (LLC) [237], linear regression for classification (LRC) 

[101] and the benchmark methods such as nearest neighbor (NN), nearest feature line 

(NFL) [96] and linear support vector machine (SVM). In the experiments, PCA is used to 

reduce the dimensionality of original face images, and the Eigenface features are used for 

all the competing methods. Denote by P the PCA projection matrix, the step 3 of IR
3
C 
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becomes:  

     
2

* 1 2

12

1
argmin ( )

2

mt

o jj
 



 
   

 
P W y D   (5-26) 

 

4.2.1) Extended Yale B Database: The Extended Yale B [99, 206] database contains 

about 2,414 frontal face images of 38 individuals. We used the cropped and normalized 

face images of size 5448, which were taken under varying illumination conditions. We 

randomly split the database into two halves. One half, which contains 32 images for each 

person, was used as the dictionary, and the other half was used for testing. Table 5.2 

shows the recognition rates versus feature dimension by NN, NFL, SVM, SRC, LRC, 

LLC and RRC methods. RRC_L1 achieves better results than the other methods in all 

dimensions except that it is slightly worse than SVM and LLC when the dimension is 30. 

RRC_L2 is better than SRC, LRC, LLC, SVM, NFL and NN when the dimension is 150 

or higher. The best recognition rates of SVM, SRC, LRC, LLC, RRC_L2 and RRC_L1 are 

97.0%, 98.3%, 96.0%, 97.6%, 98.9% and 99.8% respectively. 

 

Table 5.2: Face recognition rates on the Extended Yale B database. 

Dimension 30 84 150 300 

NN 66.3% 85.8% 90.0% 91.6% 

SVM 92.4% 94.9% 96.4% 97.0% 

LRC 63.6% 94.5% 95.1% 96.0% 

NFL 89.6% 94.1% 94.5% 94.9% 

SRC 90.9% 95.5% 96.8% 98.3% 

LLC 92.1% 96.4% 97.0% 97.6% 

RRC_L2 71.6% 94.4% 97.6% 98.9% 

RRC_L1 91.3% 98.0% 98.8% 99.8% 

 

4.2.2) AR Database: As in [102], a subset (with only illumination and expression 

changes) that contains 50 male and 50 female subjects was chosen from the AR database 

[212] in this experiment. For each subject, the seven images from Session 1 were used for 

training, with other seven images from Session 2 for testing. The images were cropped to 
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6043. The FR rates by the competing methods are listed in Table 5.3. We can see that 

apart from the case when the dimension is 30, RRC_L1 achieves the highest rates among 

all methods, while RRC_L2 is the second best. The reason that RRC works not very well 

with very low-dimensional feature is that the coding vector solved by Eq. (5-26) is not 

accurate enough to estimate W when the feature dimension is too low. Nevertheless, when 

the dimension is too low, all the methods cannot achieve good recognition rate. We can 

see that all methods achieve their maximal recognition rates at the dimension of 300, with 

93.3% for SRC, 89.0% for LLC, 95.3% for RRC_L2 and 96.3% for RRC_L1. 

 

Table 5.3: Face recognition rates on the AR database. 

Dimension 30 54 120 300 

NN 62.5% 68.0% 70.1% 71.3% 

SVM 66.1% 69.4% 74.5% 75.4% 

LRC 66.1% 70.1% 75.4% 76.0% 

NFL 64.5% 69.2% 72.7% 73.4% 

SRC 73.5% 83.3% 90.1% 93.3% 

LLC  70.5% 80.7% 87.4% 89.0% 

RRC_L2 61.5% 84.3% 94.3% 95.3% 

RRC_L1 70.8% 87.6% 94.7% 96.3% 

 

From Table 5.2 and Table 5.3, one can see that when the dimension of feature is not 

too low, RRC_L2 could achieve similar performance to that of RRC_L1, which implies 

that the l1-sparsity constraint on the coding vector is not so important. This is because 

when the feature dimension is not too low, the dictionary (i.e., the feature set of the 

training samples) may not be over-complete enough, and hence using Laplacian to model 

the coding vector is not much better than using Gaussian. As a result, RRC_L2 and 

RRC_L1 will have similar recognition rates, but the former will have much less 

complexity.  

 

4.2.3) Multi PIE database: The CMU Multi-PIE database [213] contains images of 

337 subjects captured in four sessions with simultaneous variations in pose, expression, 

and illumination. Among these 337 subjects, all the 249 subjects in Session 1 were used 
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for training. To make the FR more challenging, four subsets with both illumination and 

expression variations in Sessions 1, 2 and 3, were used for testing. For the training set, as 

in [189], we used the 7 frontal images with extreme illuminations {0, 1, 7, 13, 14, 16, and 

18} and neutral expression (refer to Fig. 5.3(a) for examples). For the testing set, 4 typical 

frontal images with illuminations {0, 2, 7, 13} and different expressions (smile in 

Sessions 1 and 3, squint and surprise in Session 2) were used (refer to Fig. 5.3(b) for 

examples with surprise in Session 2, Fig. 5.3(c) for examples with smile in Session 1, and 

Fig. 5.3(d) for examples with smile in Session 3). Here we used the Eigenface with 

dimensionality 300 as the face feature for sparse coding. Table 5.4 lists the recognition 

rates in four testing sets by the competing methods. 

 

      
          (a)                                     (b) 

             
 (c)                                    (d) 

Figure 5.3: A subject in Multi-PIE database. (a) Training samples with only illumination 

variations. (b) Testing samples with surprise expression and illumination variations. (c) 

and (d) show the testing samples with smile expression and illumination variations in 

Session 1 and Session 3, respectively. 
 

Table 5.4: Face recognition rates on Multi-PIE database. (‘Smi-S1’: set with smile in 

Session 1; ‘Smi-S3’: set with smile in Session 3; ‘Sur-S2’: set with surprise in Session 2; 

‘Squ-S2’: set with squint in Session 2). 

 Smi-S1 Smi-S3 Sur-S2 Squ-S2 

NN 88.7% 47.3% 40.1% 49.6% 

SVM 88.9% 46.3% 25.6% 47.7% 

LRC 89.6% 48.8% 39.6% 51.2% 

NFL 90.3% 50.0% 39.8% 52.9% 

SRC 93.7% 60.3% 51.4% 58.1% 

LLC 95.6% 62.5% 52.3% 64.0% 

RRC_L2 96.1% 70.2% 59.2% 58.1% 

RRC_L1 97.8% 76.0% 68.8% 65.8% 
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From Table 5.4, we can see that RRC_L1 achieves the best performance in all tests, 

and RRC_L2 performs the second best. Compared to the third best method, LLC, 6% and 

2.3% improvements are achieved by RRC_L1 and RRC_L2, respectively. In addition, all 

the methods achieve their best results when Smi-S1 is used for testing because the training 

set is also from Session 1. From testing set Smi-S1 to Smi-S3, the variations increase 

because of the longer data acquisition time interval and the difference of smile (refer to 

Fig. 5.3(c) and Fig. 5.3(d)). The recognition rates of RRC_L1 and RRC_L2 drop by 21.8% 

and 25.9%, respectively, while those of NN, NFL, LRC, SVM, LLC and SRC drop by 

41.4%, 40.3%, 40.8%, 42.6%, 33.1% and 33.4%, respectively. This validates that the 

RRC methods are much more robust to face variations than the other methods. Meanwhile, 

we could also see that FR with surprise and squint expression changes are much more 

difficult than FR with the smile expression change. In this experiment, the gap between 

RRC_L2 and RRC_L1 is relatively big. The reason is that the dictionary (size: 300×1743) 

used in this experiment is much over-complete and the 300-d eigenface feature doesn’t 

contain enough discrimination, and thus the l1-norm is much more powerful than the 

l2-norm to regularize the representation of samples with big variations (e.g., expression 

changes). 

 

5.4.3 Face recognition with occlusion 

One of the most interesting features of sparse coding based FR in [102] is its robustness to 

face occlusion. In this section, we test the robustness of RRC to different kinds of 

occlusions, such as random pixel corruption, random block occlusion and real disguise. In 

the experiments of random corruption and random block occlusion, we compare RRC 

methods with SRC [102], LRC [101], Gabor-SRC [181] (only suitable for block occlusion) 

and correntropy-based sparse representation (CESR) [240], and NN is used as the baseline 

method. In the experiment of real disguise, we compare RRC with SRC, Gabor-SRC 

(GSRC) [181] (here GSRC refers to GRRC_L1 in Chapter 4), CESR and other 
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state-of-the-art methods.  

4.3.1) FR with pixel corruption: To be identical to the experimental settings in [102], 

we used Subsets 1 and 2 (717 images, normal-to-moderate lighting conditions) of the 

Extended Yale B database for training, and used Subset 3 (453 images, more extreme 

lighting conditions) for testing. The images were resized to 9684 pixels. For each testing 

image, we replaced a certain percentage of its pixels by uniformly distributed random 

values within [0, 255]. The corrupted pixels were randomly chosen for each testing image 

and the locations are unknown to the algorithm.  

Fig. 5.4 shows a representative example of RRC_L1 and RRC_L2 with 70% random 

corruption. Fig. 5.4(a) is the original sample, and Fig. 5.4(b) shows the testing image with 

random corruption. It can be seen that the corrupted face images are difficult to recognize, 

even for humans. The estimated weight maps of RRC_L1 and RRC_L2 are shown in the 

top and bottom rows of Fig. 5.4(c) respectively, from which we can see not only the 

corrupted pixels but also the pixels in the shadow region have low weights. Fig. 5.4(d) 

shows the coding coefficients of RRC_L1 (top row) and RRC_L2 (bottom row), while Fig. 

5.4(e) shows the reconstructed images of RRC_L1 (top row) and RRC_L2 (bottom row).  

It can be seen that for RRC_L1 only the dictionary atoms with the same label as the testing 

sample have big coefficients and the reconstructed image is faithful to the original image 

(Fig. 5.4(a)) but with better visual quality (the shadow which brings difficulties to 

recognition is removed). For RRC_L2, although the coefficients are not sparse, the visual 

quality of the reconstructed image is also good and the classification performance is 

similar to RRC_L1, which are shown in Table 5.5. 

Table 5.5 shows the results of SRC, CESR, LRC, NN, RRC_L2 and RRC_L1 under 

different percentage of corrupted pixels. Since all competing methods could achieve no 

bad performance from 0% to 50% corruptions, we only list the average recognition rate 

for 0%~50% corruptions. One can see that when the percentage of corrupted pixels is 

between 0% and 50%, RRC_L1, RRC_L2, and SRC could correctly classify all the testing 

images. Surprisingly, CESR does not correctly recognize all the testing images in that 
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case. However, when the percentage of corrupted pixels is more than 70%, the advantage 

of RRC_L1, RRC_L2, and CESR over SRC is clear. Especially, RRC_L1 achieves the best 

performance in all cases, with 100% (99.6% and 67.1%) in 70% (80% and 90%) 

corruption, while SRC only has a recognition rate of 90.7% (37.5% and 7.1%). LRC and 

NN are sensitive to the outliers, with much lower recognition rates than others. All RRC 

methods achieve better performance than CESR in all cases, which validates that the RRC 

model could suppress outliers better.  
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Figure 5.4: Recognition under random corruption. (a) Original image y0 from Extended 

Yale B database. (b) Testing image y with random corruption. (c) Estimated weight map of 

RRC_L1 (top row) and RRC_L2 (bottom). (d) Estimated representation coefficients  of 

RRC_L1 and RRC_L2. (e) Reconstructed images yrec of RRC_L1 and RRC_L2. 
 

 

Table 5.5: The recognition rates of RRC, LRC, NN, SRC and CESR versus different 

percentage of corruption. 

Corruption(%) 0~50 60 70 80 90 

NN 89.3% 46.8% 25.4% 11.0% 4.6% 

SRC [102] 100% 99.3% 90.7% 37.5% 7.1% 

LRC 95.8% 50.3% 26.4% 9.9% 6.2% 

CESR 97.4% 96.2% 97.8% 93.8% 41.5% 

RRC_L2 100% 100% 99.8% 97.8% 43.3% 

RRC_L1 100% 100% 100% 99.6% 67.1% 

 

4.3.2) FR with block occlusion: In this section we test the robustness of RRC to block 

occlusion. We also used the same experimental settings as in [102], i.e., Subsets 1 and 2 
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of Extended Yale B for training, Subset 3 for testing, and replacing a randomly located 

square block of a testing image with an unrelated image, as illustrated in Fig. 5.5(b). The 

face images were resized to 96×84.  

Fig. 5.5 shows an example of occluded face recognition (30% occlusion) by using 

RRC_L1 and RRC_L2. Fig. 5.5 (a) and (b) are the original sample from Extended Yale B 

database and the occluded testing sample. Fig. 5.5 (c) shows the estimated weight maps of 

RRC_L1 (top row) and RRC_L2 (bottom row), from which we could see that both of them 

assign big weights (e.g., 1) to the un-occluded pixels, and assign low weight (e.g., 0) to 

the occluded pixels. The estimated representation coefficients of RRC_L1 and RRC_L2 

are shown in the top row and bottom row of Fig. 5.5 (d) respectively. It can be seen that 

RRC_L1 could achieve very sparse coefficients with significant values on the atoms of 

correct class; the coefficients by RRC_L2 also have significant values on the atoms of 

correct class but they are not sparse. From Fig. 5.5 (e), we see that both RRC_L1 and 

RRC_L2 have very good image reconstruction quality, effectively removing the block 

occlusion and the shadow. 
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Figure 5.5: Recognition under 30% block occlusion. (a) Original image y0 from Extended 

Yale B. (b) Testing image y with random corruption. (c) Estimated weight maps of 

RRC_L1 (top row) and RRC_L2 (bottom row). (d) Estimated representation coefficients  

of RRC_L1 and RRC_L2. (e) Reconstructed images yrec of RRC_L1 and RRC_L2. 
 

 

Table 5.6 lists the detailed recognition rates of RRC_L1, RRC_L2, SRC, LRC, NN, 

GSRC and CESR under the occlusion percentage from 0% to 50%. From Table 5.6, we 
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see that RRC_L1 has the best accuracy, and RRC methods achieve much higher 

recognition rates than SRC when the occlusion percentage is larger than 30% (e.g., more 

than 22% (6%) improvement at 50% (40%) occlusion). Compared to GSRC, RRC still 

gets better results without using the enhanced Gabor features. CESR gets worse results 

than SRC in this experiment. This may be because FR with block occlusion is more 

difficult than that of pixel corruption, but it shows that CESR could not accurately identify 

the outlier points in such block occlusion (i.e., outlier points have similar intensity as the 

face pixels). Encouragingly, RRC_L2 has competing recognition rates with RRC_L1 (even 

better than RRC_L1 40% and 50% occlusion).  

 

Table 5.6: The recognition rates of RRC, LRC, NN, GSRC, SRC and CESR under 

different levels of block occlusion. 

Occlusion (%) 0 10 20 30 40 50 

NN 94.0% 92.9% 85.4% 73.7% 62.9% 45.7% 

SRC [102] 100% 100% 99.8% 98.5% 90.3% 65.3% 

LRC 100% 100% 95.8% 81.0% 63.8% 44.8% 

GSRC[181] 100% 100% 100% 99.8% 96.5% 87.4% 

CESR 94.7% 92.7% 89.8% 83.9% 75.5% 57.4% 

RRC_L2 100% 100% 100% 99.8% 97.6% 87.8% 

RRC_L1 100% 100% 100% 99.8% 96.7% 87.4% 

 

4.3.4) FR with real face disguise: A subset from the AR database is used in this 

experiment. This subset consists of 2,599 images from 100 subjects (26 samples per class 

except for a corrupted image w-027-14.bmp), 50 males and 50 females. We perform two 

tests: one follows the experimental settings in [102], while the other one is more 

challenging. The images were resized to 83×60 in the first test and 42×30 in the second 

test. 

In the first test, 799 images (about 8 samples per subject) of non-occluded frontal 

views with various facial expressions in Sessions 1 and 2 were used for training, while two 

separate subsets (with sunglasses and scarf) of 200 images (1 sample per subject per 

Session, with neutral expression) for testing. Fig. 5.6 illustrates the classification process 
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of RRC_L1 by using an example. Fig. 5.6(a) shows a testing image with sunglasses; Figs. 

5.6(b) and 5.6(c) show the initialized and final weight maps, respectively; Fig. 5.6(d) 

shows one template image of the identified subject. The convergence of the IR
3
C algorithm 

to solve the RRC model is shown in Fig. 5.6(e), and Fig. 5.6(f) shows the reconstruction 

error of each class, with the correct class having the lowest value.  
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Figure 5.6: An example of face recognition with disguise using RRC_L1. (a) A testing 

image with sunglasses. (b) The initialized weight map. (c) The weight map when IR
3
C 

converges. (d) A template image of the identified subject. (e) The convergence curve of 

IR
3
C. (f) The residuals of each class by RRC_L1. 

 

The FR results by the competing methods are listed in Table 5.7. We see that the RRC 

methods achieve much higher recognition rates than SRC, GSRC and CESR, while 

RRC_L1 and RRC_L2 achieve similar results. CESR has similar performance to RRC 

methods in FR with sunglass, but has much worse recognition rate in dealing with scarf. 

Similar to the case of FR with block occlusion, CESR is not robust enough for more 

challenging case (e.g., scarf covers about 40% face region). The proposed RRC methods 

also significantly outperform other state-of-the-art methods, including [250] with 84% on 

sunglasses and 93% on scarf, and [233] with 93% on sunglasses and 95.5% on scarf. 
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Table 5.7: Recognition rates by competing methods on the AR database with disguise 

occlusion. 

Algorithms Sunglasses Scarves 

SRC [102] 87.0% 59.5% 

GSRC [181] 93% 79% 

CESR 99% 42.0% 

RRC_L2 99.5% 96.5% 

RRC_L1 100% 97.5% 

 

Table 5.8: Recognition rates by competing methods on the AR database with complex 

disguise occlusion. 

Algorithms Session 1 Session 2 

Sunglasses Scarves Sunglasses Scarves 

SRC [102] 89.3% 32.3% 57.3% 12.7% 

GSRC [181] 87.3% 85% 45% 66% 

CESR 95.3% 38% 79% 20.7% 

RRC_L2 99.0% 94.7% 84.0% 77.3% 

RRC_L1 99.0% 93.3% 89.3% 76.3% 

 

In the second test, we conduct FR with more complex disguise (disguise with 

variations of illumination and longer data acquisition interval). 400 images (4 neutral 

images with different illuminations per subject) of non-occluded frontal views in Session 

1 were used for training, while the disguised images (3 images with various illuminations 

and sunglasses or scarves per subject per Session) in Sessions 1 and 2 for testing. Table 

5.8 lists the results by competing methods. Clearly, the RRC methods achieve much better 

results than SRC, GSRC and CESR. Interestingly, CESR works well in the case of 

Sunglasses disguise but poor in the case of Scarves disguise, while GSRC the reverse. In 

addition, the average improvements of RRC_L1 over SRC, GSRC and CESR are 

respectively 25.9%, 28% and 7% on sunglasses, and respectively 62.3%, 9.3% and 60.5% 

on scarf. In this experiment, RRC_L1 is slightly better than RRC_L2 on sunglasses, with 

RRC_L2 slightly better than RRC_L1 on scarf. 
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5.4.4 Face validation 

In practical FR systems, it is important to reject invalid face images which have no 

template in the database. It should be noted that “rejecting invalid images not in the entire 

database is much more difficult than deciding if two face images are the same subject” 

[189]. In this section we check whether the proposed RRC methods could have good face 

validation performance. Similar to [102, 189], all the competing methods use the Sparsity 

Concentration Index (SCI) proposed in [102] to do face validation with the coding 

coefficient. Like [189], we used the large-scale Multi-PIE face database to perform face 

validation experiments. All the 249 subjects in Session 1 were used as the training set, 

with the same subjects in Session 2 as customer images. The remaining 88 subjects (37 

subjects with ID between 251 and 292 from Session 2 and 51 subjects with ID between 

293 and 346 from Session 3) different from the training set were used as the imposter 

images. For the training set, as in [189] we used the 7 frontal images with extreme 

illuminations {0, 1, 7, 13, 14, 16, and 18} and neutral expression (refer to Fig. 5.3(a) for 

examples). For the testing set, 10 typical frontal images of illuminations {0, 2, 4, 6, 8, 10, 

12, 14, 16, 18} taken with neutral expressions were used. In this experiment, the testing 

face images were automatically detected by using Viola and Jones’ face detector [249] and 

then automatically aligned to the size of 60×48 without manual intervention (a testing 

image is automatically aligned to the training data of each subject by the method in [189]).  

Fig. 5.7 plots the ROC (receiver operating characteristic) curves of the competing 

methods: SRC, RRC_L1, RRC_L2 and CESR. It can be seen that CESR works the worst 

while RRC_L2 works the best. For instance, when the false positive rate is 0.1, the true 

positive rate is 82.6% for CESR, 90.7% for SRC, 93.3% for RRC_L1 and 95.8% for 

RRC_L2. It is a little surprising that RRC_L2 with l2-norm coefficient constraint achieves 

better face validation results than the l1-norm coefficient constrained methods, e.g., SRC, 

RRC_L1, and much better than CESR. The reason may be that the l1-norm constraint, 

especially the nonnegative sparse constraint (for CESR), which strongly forces the coding 
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coefficients to be sparse, will force one specific class to represent the input invalid testing 

sample, and hence incorrectly recognize this testing sample. Comparatively, l2-norm 

constraint does not force the coding coefficients to be sparse, which allows the 

representation coefficients of invalid testing samples to be evenly distributed across 

different classes. Therefore the incorrect recognition can be avoided.  In addition, 

RRC_L1 are better than SRC and CESR, validating that the signal fidelity term of RRC_L1 

is more robust. 
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Figure 5.7: Subject validation on the large-scale Multi PIE. 

 

 

5.4.5 Running time comparison 

Apart from recognition rate, computational expense is also an important issue for practical 

FR systems. In this section, the running time of the competing methods, including SRC, 

GSRC, CESR, RRC_L2 and RRC_L1, is evaluated using two FR experiments (without 

occlusion and with real disguise). The programming environment is Matlab version 7.0a. 

The desktop used is of 3.16 GHz CPU and with 3.25G RAM. All the methods are 

implemented using the codes provided by the authors. For SRC, we adopt l1_ls [204], and 

two fast l1-minimization solvers, ALM and Homotopy [126], to implement the sparse 

coding step. 
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Figure 5.8: Running time and recognition rates by the competing methods under different 

feature dimension in FR without occlusion. 

 

 

The first experiment is FR without occlusion on the AR database, whose experimental 

setting is the same as that in Section 5.4.2 but with various down-sampled face features 

(i.e., 128, 2115, 3324, 4230 and 12690). Fig. 5.8 compares the running time (Fig. 

5.8 (a)) and recognition rates (Fig. 5.8 (b)) of the competing methods under various 

feature dimensions. From Fig. 5.8 (a), it can be seen that RRC_L2, CESR and SRC (ALM) 

have obvious faster speed than other methods. RRC_L1 is also much more efficient than 

SRC (l1_ls), the slowest one. 

With the feature of 792 (3324) dimensions, RRC_L2, CESR, RRC_L1, SRC (l1_ls), 

SRC (ALM) and SRC (Homotopy) take 0.257, 0.330, 1.450, 8.551, 0.377 and 0.199 

seconds, respectively. RRC_L1 achieves the best recognition rates followed by RRC_L2, 

as shown in Fig. 5.8(b). Although CESR is also fast, its recognition rates are lower than 

other methods. It can be concluded that compared to SRC and CESR, RRC_L2 has good 

recognition rate with much less or comparable computation expense, while RRC_L1 has 

much higher recognition rate.  

The second experiment is FR with real face disguise. The experimental settings are 

described in Section 5.4.3. The dictionary has 800 training samples with size 83×60 in 

Test 1, and 400 training samples with size 42×30 in Test 2. The recognition rates have 

been reported in Table 5.7 (for Test 1) and Table 5.8 (for Test 2). Table 5.9 lists the 
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average computational expense and recognition rates of different methods on Test1 and 

Test2. Clearly, RRC_L2 has the least computation time, followed by CESR and RRC_L1. 

SRC has rather high computation burden even with fast solvers such as ALM and 

Homotopy, which is because an additional identity matrix is utilized to code occlusion. 

For the recognition rate, SRC’s performance is the worst, and CESR also has rather bad 

recognition rate in FR with scarf in each test. GSRC solved by l1_ls has lower time cost 

than SRC (l1_ls) but still very slow. Considering both the recognition rate and running 

time, RRC_L1 and RRC_L2 are the best ones. RRC_L1 gets the highest recognition rates in 

all case, at the same time with faster speed than SRC and GSRC. RRC_L2 is the fastest 

one in all case, at the same time with the second best performance (e.g., in the Test 2 of 

FR with scarf, 63.5%, 10.5% and 56.6% higher than SRC(l1_ls), GSRC, and CESR in 

average).  

 

Table 5.9: The average running time (seconds) of competing methods in FR with real face 

disguise. The values in parenthesis are the average recognition rate. 

Method Test 1-sunglass Test 1-scarf Test 2-sunglass Test 2- scarf 

CESR[240] 2.5 (99.0%) 3.6 (42.0%) 0.5 (87.2%) 0.5 (29.4%) 

SRC(l1_ls) 662.1 (87.0%) 727.1 (59.5%) 38.2 (73.3%) 47.7 (22.5%) 

SRC(ALM) 36.0 (84.5%) 36.4 (58.5%) 2.3 (72.4%) 2.4 (21.7%) 

SRC(Homotopy) 14.0 (65.0%) 13.7 (37.5%) 3.6 (60.0%) 3.6 (17.3%) 

GSRC[181] 119.3 (93.0%) 118.1 (79.0%) 13.0 (66.2%) 12.5 (75.5%) 

RRC_L1 8.7 (100%) 8.6 (97.5%) 2.1 (94.2%) 2.0 (84.8%) 

RRC_L2 2.2 (99.5%) 2.0 (96.5%) 0.2 (91.5%) 0.2 (86.0%) 

 

5.4.6 Parameter discussion 

In this section, we discuss the effect of parameter  in RRC on the final recognition rate. 

As described below Eq. (5-14) and in Section 5.4.1, the parameter  is a key parameter to 

distinguish inliers or outliers (if the residual’s square of a pixel is larger than , its weight 

will be less than 0.5; otherwise, its weight is bigger than 0.5). In our implementation, we 

use the parameter τ to estimate , as described in Eq. (5-24). Hence, it is necessary to 
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discuss the selection of τ.  Here we take the experiment with various level random pixel 

corruption (experimental settings are described in Section 5.4.3) as an example to discuss 

the selection of τ for RRC. Fig. 5.9 plots the recognition rates of RRC_L1 versus different 

values of τ for 0%, 30%, 60%, and 90% pixel corruption. It can be seen that for moderate 

corruption (i.e., 0%~60%), RRC_L1 could get very good performance (i.e., more than 

95%) in a broad range of τ. For all percentages of pixel corruption, the best performance 

could be achieved when τ=0.5. Compared to CESR [240], whose kernel size is very 

sensitive to the corruption percentage (please refer to Section 5.7 of [240]), our proposed 

RRC method is easy to tune and is more robust to occlusion. Usually the domain of τ 

could be set as [0.5, 0.8].  It is reasonable because at least 50% samples should be trusted 

when there are large percent of outliers. 
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Figure 5.9: Recognition performance versus τ in estimating δ of RRC’s weight function. 

 

5.4 Summary 

This Chapter presented a novel robust regularized coding (RRC) model and an associated 

effective iteratively reweighted regularized robust coding (IR
3
C) algorithm for robust face 

recognition (FR). One important advantage of RRC is its robustness to various types of 

outliers (e.g., occlusion, corruption, expression, etc.) by seeking for an approximate MAP 

(maximum a posterior estimation) solution of the coding problem. By assigning adaptively 
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and iteratively the weights to the pixels according to their coding residuals, the IR
3
C 

algorithm could robustly identify the outliers and reduce their effects on the coding process. 

The proposed RRC methods were extensively evaluated on FR with different conditions, 

including variations of illumination, expression, occlusion, corruption, and face validation. 

The experimental results clearly demonstrated that RRC outperforms significantly previous 

state-of-the-art methods, such as SRC, CESR and GSRC. In particular, RRC with l2-norm 

regularization could achieve very high recognition rate but with low computational cost, 

which makes it a very good candidate scheme for practical robust FR systems. 



Regularized Robust Coding and Dictionary Learning for Face Recognition, PhD Thesis, Meng Yang 

 132 

 



Chapter 6. Fisher Discrimination Dictionary Learning for Sparse Representation 

133 

Chapter 6.  Fisher Discrimination Dictionary 

Learning for Sparse Representation 

6.1 Introduction 

As reviewed in Sections 1.3 and 2.3, the choice of the dictionary that sparsely represents 

the signals is crucial for the success of sparse representation modeling, and learning 

dictionary from training data has led to state-of-the-art results in many practical 

applications, including pattern classification. In sparsity based classification, usually there 

are two phases: coding (or representation) and classification. In the first phase, the testing 

signal/image is sparsely coded over a dictionary of atoms, and in the second phase, the 

classification is performed based on the coding coefficients and the dictionary. The 

dictionary for sparse coding could be predefined. For example, Wright et al. [102] directly 

used the training samples of all classes as the dictionary to code the testing face image, 

and then classified the testing face image by evaluating which class will lead to the 

minimal reconstruction error. Although this sparse representation based classification 

(SRC) scheme has shown interesting FR results, the dictionary used in it may not be 

effective enough to represent the testing images due to the uncertain and noisy 

information in the original training images. On the other hand, the number of atoms of 

such a dictionary can be very big, which increases the coding complexity. In addition, 

dictionary learning could remove unuseful information and introduce appropriate 

regularizations, which could well exploit the discriminative information hidden in the 

training samples. Furthermore, selecting a subset of the analytically designed off-the-shelf 

bases as dictionary (e.g., [144] uses Haar wavelet bases and Gabor bases as the dictionary) 

might be universal to all types of images but will not be effective enough for a specified 

type of images such as face, digit and texture images. In fact, all the above mentioned 
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problems of predefined dictionary for sparse representation can be addressed, at least to 

some extent, by learning properly a non-parametric dictionary from the original training 

samples. 

Dictionary learning (DL) aims to learn from the training samples the sparse domain 

where the given signal could be sparsely coded for processing. Many DL methods have 

been proposed for image processing [129, 131, 151] and classification [145, 155-159, 162, 

184, 196, 251]. One representative DL method for image processing is the KSVD 

algorithm [129], which learns an over-complete dictionary of atoms from a training 

dataset of natural image patches. However, KSVD is not suitable for classification tasks 

because it only requires that the learnt dictionary should faithfully represent the training 

samples.  

As reviewed in Section 2.3, the dictionary learning model for classification tasks 

usually need to introduce additional priors. One important way is to require the coding 

coefficient have discrimination in the phase of dictionary learning, such as supervised 

dictionary learning [156], discriminative K-SVD [157], Label-Consistent K-SVD [184] 

and joint learning and dictionary construction [155]. All the works in [155-157, 184] try to 

learn a common dictionary shared by all classes, as well as a classifier of coefficients for 

classification. However, the shared dictionary loses the correspondence between the 

dictionary atoms and the class labels, and hence performing classification based on the 

reconstruction error associated with each class is not allowed. Another direction is to learn 

a structure dictionary whose atoms have correspondence to the object classes [158, 162]. 

In this case the dictionary atoms of one class are required to be able to well reconstruct the 

training samples of the same class, but have poor representation ability to other classes. 

Most of the previous methods [158, 162] of this kind use only the reconstruction error 

associated with each class as the discriminative information for classification, but they do 

not enforce discriminative information into the sparse coding coefficients in dictionary 

learning and final classification.  

In this Chapter we propose a new discriminative DL framework which employs the 
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Fisher discrimination criterion to learn a structured dictionary (i.e. the dictionary atoms 

have correspondence to the class labels so that the reconstruction error associated with 

each class can be used for classification). Meanwhile, the Fisher discrimination criterion is 

imposed on the coding coefficients to make them discriminative. To this end, in the DL 

process we make the sparse coding coefficients have small within-class scatter but big 

between-class scatter, and at the same time we make each class-specific sub-dictionary in 

the whole structured dictionary have good representation ability to the training samples 

from the associated class but poor representation ability for other classes. With the 

proposed Fisher discrimination based DL (FDDL) method, both the reconstruction error 

and the coding coefficient will be discriminative, and hence a new classification scheme is 

proposed to exploit such information. The extensive experiments on the application of 

face recognition, digit recognition, gender classification and object categorization show 

that better or very competitive performance could be achieved by FDDL compared to the 

state-of-the-art methods. 

 

6.2 Some Related Works 

In this section, we briefly review some DL methods which are closely related to our 

proposed FDDL. One characteristic of this kind of learnt dictionary is that the dictionary 

atoms have class labels in correspondence to the object classes. Therefore, when the 

sparse coding coefficient (i.e.,  1 2; ; ; K     where i  is the coefficient vector 

associated with class i) of a testing sample y is computed, the class-specific representation 

residual (i.e., 
2i iy D  where Di is the sub-dictionary associated with class i) could be 

used to do the final classification. 

Denote by Ai as the training samples of the i
th
 object class, with each column of Ai 

being a training sample vector. The class-specific dictionary 1 2[ , ,..., ] i

i

m p

i p


 D d d d  
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could be learnt class by class: 

 2

1,
min

i i
i i i iF

 
D Z

A D Z Z   s.t.  1T

j j j d d ，  (6-1) 

where Zi is the representation coefficient matrix of Ai on Di. 

Eq. (6-1) is the basic model of learning dictionary with labels. Although it seems 

similar to the model of KSVD [129], note that here the dictionary is trained from the 

samples of a specific class. Therefore, DL by Eq. (6-1) is much more suitable for 

classification task than directly applying KSVD to all the training samples.  

The metaface learning method [251] adopts the model in Eq. (6-1) to train dictionaries 

for FR. However, metaface learning does not introduce into the learnt dictionary more 

discrimination information, which is very crucial for classification tasks. Unlike metafaces 

learning that trains the class-specific dictionary separately, Ramirez et al. [158] used an 

incoherence promoting term to encourage the dictionaries associated with different classes 

as independent as possible. The so-called dictionary learning with structured incoherence 

(DLSI) could be formulated as 

 
 

22

11, , 1, ,
min

i i

K T

i i i i i jFi i j Fi K
 

 
   

D Z
A D Z Z D D  s.t. 1T

k k k d d ，    (6-2) 

where term 
2

T

i ji j F D D  is to promote incoherence between the different dictionaries. 

It is easy to see that the dictionary incoherence term could make the class-specific 

dictionary more distinctive and hence benefit the final classification. 

 

6.3 Fisher Discrimination Dictionary Learning (FDDL) 

To improve the performance of SRC [102] and previous DL methods [155-158, 162, 184, 

196], we propose here a novel Fisher discrimination based DL (FDDL) scheme. Instead of 

learning a shared dictionary to all classes, we aim to learn a structured dictionary 

D=[D1,D2,…,DK], where Di is the class-specified sub-dictionary associated with the i
th
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class, and K is the total number of classes. With this structured dictionary, we could use 

the reconstruction error associated with each class for classification, as in the original 

SRC method [102].  

Denote by A=[A1, A2, …, AK] the set of original training samples, where Ai is the 

sub-set of the training samples from class i. Denote by X the sparse coding coefficient 

matrix of A over D, i.e. ADX. We can write X as X = [X1, X2, …, XK], where Xi is the 

sub-matrix containing the coding coefficients of Ai over D. Apart from requiring that the 

dictionary D should have powerful reconstruction capability of A (i.e. ADX), we also 

require that D should have powerful discriminative capability of images in A. To this end, 

we propose the following FDDL model:  

    1 21,
min , ,r f  
D X

A D X X X  (6-3) 

where r(A,D,X) is the discriminative data fidelity term; ||X||1 is the sparsity constraint; f(X) 

is a discrimination constraint imposed on the coefficient matrix X; and 1 and 2 are scalar 

parameters. Next let’s discuss the design of r(A,D,X) and f(X) based on the Fisher 

discrimination criterion. 

 

6.3.1 Discriminative data fidelity term r(A,D,X) 

We can write Xi, the representation of Ai over D, as Xi =[Xi
1
; …; Xi

j
; …; Xi

K
], where Xi

j
 is 

the coding coefficients of Ai over the sub-dictionary Dj. Denote the representation of Dk to 

Ai as Rk=DkXi
k
. First of all, the dictionary D should be able to well represent Ai, and there 

is Ai≈DXi=D1Xi
1
+…+ DiXi

i
+…+ DKXi

K
= R1+…+Ri+…+RK. Second, since Di is required 

to be associated with the i
th
 class, it is expected that Ai should be well represented by Di 

but not by Dj, ji. This implies that Xi
i 
should have some significant coefficients such that 

||Ai-DiXi
i
||

2 

F is small, while Xi
j 
should have nearly zero coefficients such that ||DjXi

j
||

2 

F  is 

small. Thus we can define the discriminative data fidelity term as 
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2 22

1, ,
Ki j
ji i i i i i i j iF F Fj i

r 


    A D X A DX A D X D X  (6-4) 

An intuitive explanation of three terms in r(Ai,D,Xi) is shown in Fig. 6.1. Fig. 6.1(a) 

shows that although D is ensured to represent Ai well, Ri may deviate much from Ai so that 

Di could not well represent Ai. If we add another constraint that ||Ai-DiXi
i
||

2 

F is small, better 

discrimination will be achieved, as shown in Fig. 6.1(b). Nonetheless, Ai may also be well 

represented by other sub-dictionaries, e.g. Di-1 in Fig. 6.1(b), which reduces the 

discrimination capability of D. With the third constraint that the representation of Dj, ji, 

to Ai is small, the proposed discriminative fidelity term could overcome this problem, as 

shown in Fig.6.1(c). 

 

 

(a)                   (b)                    (c) 

Figure 6.1: Illustration of the fidelity constraints. (a) Only D is required to well represent 

Ai. (b) Both D and Di are required to well represent Ai. (c) The proposed discriminative 

fidelity term in Eq. (6-4). 

 

6.3.2 Discriminative coefficient term f(X) 

To make the dictionary D be discriminative for the samples in A, we can make the 

representation coefficient of A over D, i.e. X, be discriminative. Based on some criterion 

such as the Fisher discrimination criterion [252], this can be achieved by minimizing the 

within-class scatter of X, denoted by SW(X), and maximizing the between-class scatter of 

RK 
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X, denoted by SB(X). SW(X) and SB(X) are defined as 

    
1 k i

K T

W k i k ii X 
    x

S X x m x m , and     
1

K T

B i i ii
n


  S X m m m m , 

where mi and m are the mean vector of Xi and X respectively, and ni is the number of 

samples in class Ai. 

Intuitively, we can define f(X) as tr(SW(X))－ tr(SB(X)). However, the term of 

-tr(SB(X)) makes such an f(X) non-convex and unstable. To solve this problem, we 

propose to add an elastic term ||X||
2 

F into f(X). So f(X) is defined as 

f(X)= tr(SW(X)) tr(SB(X))+ ||X||
2 

F, (6-5) 

where  is a parameter. We will further discuss the convexity of f(X) in Section 6.4. 

 

6.3.3 The FDDL model 

By incorporating Eqs. (6-4) and (6-5) into Eq. (6-3), we have the following FDDL model:  

        2

1 211,
min , ,

K

i i W B Fi
r tr  


   

D X
A D X X S X S X X  (6-6) 

The term ||X||
2 

F  not only makes the fidelity coefficient term convex but also makes the 

solving of X in Eq. (6-6) smoother due to that ||X||1 is convex but not differentiable. 

Although the objective function J in Eq. (6-6) is not jointly convex to (D, X), we will 

see that it is convex with respect to each of D and X when the other is fixed. Therefore, an 

algorithm of alternatively optimizing D and X can be designed. Detailed discussions and 

the optimization procedures are presented next in Section 6.4. 

 

6.3.4 A simplified version of FDDL 

The unconstraint problem of FDDL (Eq. (6-6)) could be rewritten as a constrained 

formulation: 
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22 2

1 21,
1

2

min

s. t. ,

K
i

i i i i i W BF FF
i

j

j i fF

tr

i j

  





 
      

 

  


D X

A DX A D X X S X - S X X

D X

 (6-7) 

where f is a scalar. The constraint could guarantee that each class-specific sub-dictionary 

has poor representation ability for other classes. 

It is a little complex to solve the FDDL model (i.e., Eq. (6-6) or Eq. (6-7)). One 

simplified way to solve the FDDL model is to find first the formulation which 

approximately meets the constraint in Eq. (6-7), and then to find the optimal one which 

follows that formulation. Inspired by the prior that Xi
j 

should have nearly zero 

representation on the dictionary Dj, ji, the simplified FDDL could be the one by assuming 

j

i  0X  for j≠i. In this case, the constraint can be well met since 
2

0j

j i F
D X  for j≠i. 

In the simplified FDDL, the sparse coding coefficient X becomes a block diagonal matrix, 

whose between-class scatter, tr(SB(X)), could be shown to be large enough in general 

(please refer to Appendix 1 for the details). 

Based on the above discussions, the simplified FDDL model could be written as 

       
22 2

1 21,
1

min

s. t. ,

K
i

i i i i i W BF FF
i

j

i

tr

i j

  


 
      

 

  



0

D X
A DX A D X X S X - S X X

X

 (6-8) 

which could be further formulated as  (please refer to Appendix 2 for the detailed 

derivation)  

2
2 2

1 2 31 1 1,
min

i

K i i i i i

i i i i i i ii F n F
F

  
 

 
         

 


D X
A D X X X m X  (6-9) 

where 1 1 2   ,  2 2 1 2i     , i=1-ni/n, and  3 2 2i      . Here 
i

im  and mi 

are the mean vectors of 
i

iX and Xi, respectively. It can be seen that the dictionary learning 

in the simplified FDDL model could be performed class by class.  
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6.4 Optimization of FDDL 

In this section, we first present the optimization procedure of original FDDL model in Eq. 

(6-6), and then present the solution of simplified FDDL model in Eq. (6-9). 

The FDDL objective function in Eq. (6-6) can be divided into two sub-problems by 

optimizing D and X alternatively: updating X by fixing D, and updating D by fixing X. 

The procedures are iteratively implemented for the desired discriminative dictionary D 

and the discriminative coefficients X. 

 

6.4.1 Sparse coding of FDDL 

First, suppose that the dictionary D is fixed, and the objective function J(D,X) in Eq. (6-6) is 

reduced to a sparse coding problem to compute X = [X1, X2, …, XK]. Here we compute Xi 

class by class. When compute Xi, all Xj, j≠i, are fixed. Thus the objective function in Eq. 

(6-6) is further reduced to:  

 1 21
min ( , , ) ( )

i

i i i i ir f  
X

A D X X X  (6-10) 

with  

 
2 2 2

1

K

i i i i k iF F Fk
f 


    X X M M M X , 

where Mk and M are the mean vector matrices (by taking nk mean vectors mk or m as its 

column vectors) of class k and all classes, respectively. It can be proved that if >1-ni/n, 

fi(Xi) is strictly convex to Xi (please refer to Appendix 3 for the proof), where ni and n are 

the number of training samples in the i
th
 class and all classes, respectively. In order to 

make fi(Xi) not only convex but also have enough discrimination, in this thesis, we set =1 

for simplicity. Then we can see that all the terms in Eq. (6-10), except for ||X||1, are 

differentiable, and Eq. (6-10) is strictly convex. We rewrite Eq. (6-10) as 

  1min 2
i

i iQ 
X

X X  (6-11) 
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where      2, ,i i i i iQ r f X A D X X , and τ=λ1/2. Define
,1 ,2 ,, , ,

i

T
T T T

i i i i n
   X x x x , 

where xi,k is the k
th
 column vector of matrix Xi. Because Q(Xi) is strictly convex and 

differentiable to Xi, the Iterative Projection Method (IPM) [253] (whose speed could be 

improved by approaches like FISTA [201]) can be employed to solve Eq. (6-11), as 

described in Table 6.1.  

 

Table 6.1: The sparse coding algorithm of FDDL. 

Coding algorithm of FDDL 

1. Input: σ, τ >0.  

2. Initialization: 
 1

i  0X  and h=1. 

3. While convergence and the maximal iteration number are not reached do 

 h = h+1 

      1 11

2

h h h

i i iQ 


  
   

 
X S X X                                 (6-12) 

where 
  1h

iQ


 X  is the derivative of Q(Xi) w.r.t. 
 1h

i


X , and  S is a 

soft thresholding operator defined in component-wise [253] by: 

 
 

0

sign otherwise

j

j

j j

x

x x
 

 

 

 
    



S x . 

4. Return 
 h

i iX X . 

 

 

The sparse coding phase of simplified FDDL (i.e., Eq. (6-9)) is the special case 

with  
2

2 2

2 31
2i

i i i i

i i i i i i iF n F
Q  


       X A D X X m X  and 0j

i X  for ji, which 

could also be efficiently solved by the algorithm in Table 6.1. For simplified FDDL, we set 

=i=1-ni/n (i.e., 
3=0) in this thesis. 

 

6.4.2 Dictionary updating of FDDL 

Let’s then discuss when X is fixed, how to update D = [D1, D2, …, DK]. In order to avoid 
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that D has arbitrarily large l2-norm, which would result in trivial values of the coding 

coefficients, i.e., arbitrarily small values, we constrain each column vector of D to have a 

unit l2-norm. We also update 1 2[ , ,..., ]
ii pD d d d  class by class. When update Di, all Dj, j

≠i, are fixed. Now the objective function in Eq. (6-6) is reduced to:  

 
2 2 2

21,

ˆmin s. t. 1, 1, ,
i

Ki i i

i i i i i j l ij j iF FF
l p

 
     

D
A D X A D X D X d   (6-13) 

where 
1,

ˆ K j

jj j i 
 A A D X  and X

 i 
is the coding coefficients of A over Di. Eq. (6-13) 

could be further re-written as 

2

2
min s. t. 1, 1, ,

i

i i i l iF
l p  

D
D Z d  (6-14) 

where ˆ
i i

 
 

0 0 0 0A A  and 1 1 1

i i i i i i

i i i i K 
   X X X X X X . Eq. (6-14) is a 

quadratic programming problem, and its solution is the same as the dictionary updating 

parts of the algorithm of Gabor occlusion dictionary (GOD) computing in Table 4.2.  

The dictionary updating of simplified FDDL is also the same as that of the original 

FDDL except that Eq. (6-14) becomes a simpler one with i i A  and 
i

i i X . 

 

6.4.3 Algorithm of FDDL 

The whole algorithm of FDDL is summarized in Table 6.2. The algorithm converges since 

the two alternative optimizations (i.e., sparse coding of FDDL and dictionary updating of 

FDDL) in it are both convex.  

 

Table 6.2: Algorithm of Fisher Discrimination Dictionary Learning. 

Fisher Discrimination Dictionary Learning (FDDL) 

1. Initialization D. 

We initialize all the pi atoms of each Di as random vectors with unit l2-norm. 

2. Sparse coding coefficients X. 

Fix D and solve Xi, i=1,2,…,K, one by one by solving Eq. (6-11) with the algorithm in Table 

6.1. 

3. Updating dictionary D. 
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Fix X and update each Di, i=1,2,…,K, by solving Eq. (6-14) : 

1) Rewrite 1 2; ; ;
ii p

   Z z z z , 1 2; ; ;
ii p

   D d d d where zj, j=1,2,…,pi, is the row vector 

of Zi, and jd  is the j
th

 column vector of Di. 

2) Fix all ,l l jd , update 
jd . Let

i l ll j
  Y d , so the optimization problem of 

minimization of Eq. (6-14) changes to 

2

min
j

j j F
 

d
Y d  s.t. 

2
1j d ; 

After some deviation, finally we could get the solution which is 
2

T T

j j j  d Y Y  

3) Using the above procedures, we can update all the vectors jd , and hence the whole 

dictionary Di is updated. 

4. Output. 

Return to step 2 until the object function values in adjacent iterations are close enough, or the 

maximum number of iterations is reached. Then output X and D. 
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  (b)                            (c) 

Figure 6.2: An example of FDDL process on the Extended Yale B face database. (a) The 

convergence of FDDL. (b) The curve of tr(SW(X))/tr(SB(X)) versus iteration number. (c) 

The curves of the reconstruction error of Di to Ai and the minimal reconstruction error of 

Dj to Ai, j≠i, versus the iteration number. 
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Fig. 6.2 shows an example of FDDL on the Extended Yale B face database. Fig. 6.2(a) 

illustrates the convergence of FDDL; Fig. 6.2(b) shows that the value of 

tr(SW(X))/tr(SB(X)) (essentially equivalent to tr(SW(X))tr(SB(X)) in representing the 

discrimination ability of X but is invariant to the scale of X) decreases as the iteration 

number increases, which indicates that the coefficients X are discriminative after learning 

the dictionary D; Fig. 6.2(c) plots the curves of ||Ai-DiXi
i
||F (i=10 here) and the minimal 

value of ||Ai-DjXi
j
||F, j=1,2,…,K, j≠i, showing that the dictionary Di could represent the 

samples of Ai well, but Dj, j≠i, has poor representation ability to the samples of Ai. 

With FDDL, we could use the sparse coding coefficients of each class, i.e., Xi, to 

compute the mean coefficient vector of that class, denoted by mi, which will then be used 

for the testing sample classification. For simplified FDDL, the mean coefficient vector for 

each class is constructed by ; ; ; ;i

i i
   0 0m m , where 

i

im  is the mean vector of 
i

iX . 

 

6.5 The Classification Scheme 

If the dictionary D is available, a testing sample can be classified via sparsely coding it 

over D. Based on the employed dictionary D, different information can be utilized for the 

classification task. In the methods [155, 157, 184, 196], a common dictionary is shared by 

all classes, and the sparse coding coefficients are used for classification. In the SRC 

scheme [102], the original training samples are used to form a structured dictionary to 

code the testing sample, and then the reconstruction error associated with each class is 

used for classification. Compared to SRC, in [158, 162] the testing sample is sparsely 

coded on each sub-dictionary associated with each class, and then the reconstruction error 

is computed for classification.   

Although the methods in [102, 155, 157, 158, 162, 184, 196] could lead to good 

results, they are not able to use both the reconstruction errors and the coding coefficients 
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for image classification. With the proposed FDDL model in Eq. (6-6), however, the learnt 

dictionary D will make both the reconstruction error and the sparse coding coefficients 

discriminative. Naturally, we can make use of both the reconstruction error associated 

with each class and the coding coefficients for more accurate classification results. 

According to the number of training samples per class, we propose two classification 

schemes, the global classifier (GC) and local classifier (LC), which use both the 

reconstruction error and the coding coefficients. 

1) GC: When the number of training samples of each class is relatively small, the 

learnt dictionary Di may not be able to faithfully represent the testing samples of this class, 

and hence we code the testing sample y over the whole dictionary D. In this case, the 

sparse coding coefficients could be got by solving 

 2

2 1
ˆ argmin   y D


    (6-15) 

where  is a constant. Denote by 
1 2

ˆ ˆ ˆ ˆ[ ; ; ; ]K    , where ˆ
i  is the coefficient vector 

associated with sub-dictionary Di. We define the metric for final classification as 

2

2
ˆ

i i ie   y D
2

2
ˆ

iw  m  (6-16) 

where the first term is the reconstruction error by class i, the second term is the distance 

between the coefficient vector ̂  and the learnt mean vector mi of class i, and w is a 

preset weight to balance the contribution of the two terms. The classification of y is made 

by    identity argmini iey . 

2) LC: When the number of training samples of each class is relatively large, the 

learnt dictionary Di is able to well span the sample space of class i, and thus we could 

directly code the testing sample y by Di to reduce the computational cost and the 

interference of other dictionaries. The coding coefficients associated with Di are got by 

solving 

 22

1 22 1 2
ˆ argmin i

i i     y D m


     (6-17) 

where 1 and 2 are constants. Here we require not only that the sub-dictionary Di should 



Chapter 6. Fisher Discrimination Dictionary Learning for Sparse Representation 

147 

well code the testing sample y with sparse coefficients, but also that the coding vector  

should be close to mi
i
, the i

th
-class trained mean vector associated with sub-dictionary Di. 

Hence the metric for final classification is defined as  

22

1 22 1 2
ˆ ˆ ˆ i

i i ie      y D m    (6-18) 

The final classification rule is also    identity argmini iey . 

6.6 Experimental Results 

In this section, we verify the performance of FDDL on applications such as FR, digit 

recognition, gender classification and object categorization. The selection of model and 

parameters is discussed in Section 6.6.1. Then face recognition, digit recognition, gender 

classification and object categorization are performed by using FDDL and the competing 

methods in Section 6.6.2, Section 6.6.3, Section 6.6.4 and Section 6.6.5, respectively. 

 

6.6.1 Model and parameter selection 

In this section, the selection of dictionary learning model (e.g., FDDL and simplified 

FDDL), classification model (e.g., GC and LC), the number of dictionary atoms, l1-norm 

or l2-norm regularization, and parameters is discussed. In order to better analyze the model 

selection, the parameters in classifiers, i.e.,  and w in GC and 1 and 2 in LC, are 

predefined. Specifically, we set the values of  and 1 from set {0.001, 0.005, 0.01, 0.05, 

0.1}, and set the values of w and 2 from set {0, 0.001}. Given a dictionary training and 

classification model, we report the best performance of different classifiers. 

 

6.6.1.1 Model selection in dictionary learning and classification 

Here we evaluate how to select dictionary learning and classification model. As 

mentioned before, simplified FDDL is a special but important case of FDDL model by 

assuming 
j

i  0X  for j≠i. One advantage of simplified FDDL lies in that the dictionary 
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learning for each class could be performed in parallel. When there are (nearly) enough 

training samples for each class, it is not necessary to represent the samples on the whole 

dictionary of all classes. Therefore the simplification of j

i  0X  for j≠ i is very 

reasonable. In the phase of classification, the GC and LC classifiers are suitable for 

small-sample-size problem and enough-training-sample problem, respectively.  

The FR performance of FDDL or simplified FDDL coupled with GC or LC on the AR 

database (the detailed experimental settings can be found in Section 6.6.2) [212] is listed 

in Table 6.3. Here we set 1=0.005 and 2=0.01 in dictionary learning. It can be seen that 

with FDDL or simplified FDDL the GC achieves much better performance than the LC 

with over 20% gap under different numbers of training samples. In addition, FDDL and its 

simplified version have similar performance. 

 

Table 6.3: FR rates of FDDL and simplified FDDL coupled with GC or LC on the AR 

database. 

Trainning num 4 7 

GC LC GC LC 

FDDL 0.863 0.615 0.926 0.748 

Simplified FDDL 0.860 0.614 0.930 0.748 

 

Table 6.4: Performance of FDDL and simplified FDDL coupled with GC or LC in USPS digit 

recognition. 

Training num 5 10 100 300 

GC LC GC LC GC LC GC LC 

FDDL 0.789 0.798 0.829 0.843 0.902 0.941 0.908 0.941 

Simplified FDDL 0.785 0.795 0.829 0.841 0.929 0.942 0.943 0.950 

 

Table 6.4 compares the performance of FDDL and simplified FDDL coupled with GC 

and LC in the USPS [254] digit recognition (the detailed experimental settings can be 

found in Section 6.6.3). We set 1=0.05 and 2=0.005. Opposite to that of FR, with either 

FDDL or simplified FDDL the LC always outperforms the GC, especially when the 

number of training samples increases. The recognition rates of FDDL and simplified 
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FDDL with LC are very close. On the other hand, when the number of training samples is 

not enough (e.g., 5 and 10), FDDL gets a little higher recognition rate, while the 

simplified FDDL is slightly better in the case that the number of training samples is big. 

In order to reduce the computational burden, we adopt simplified FDDL to learn the 

dictionary in all the experiments except for the part of face recognition. In the 

classification phase, GC is used in face recognition and object categorization, LC is used 

in digit recognition, and both GC and LC are tested in gender classification.  

 

6.6.1.2 Discussion on the number of dictionary atoms 

One important parameter in FDDL is the number of atoms in Di, denoted by pi. For FDDL, 

we usually set all pi equal, i=1,2,…,K. We use SRC as the baseline method, and analyze 

the effect of pi on the performance of FDDL. We take FR on Extended Yale B [99, 206] 

as an example (the experimental setting is given in Section 6.6.2). Because SRC uses the 

original training samples as dictionary, we randomly select pi training samples as 

dictionary atoms and run 10 times the experiment to get the average recognition rate. Fig. 

6.3 plots the recognition rates of FDDL and SRC versus different number of dictionary 

atoms. We can see that in all cases FDDL has about 3% improvement over SRC. 

Especially, even with the atom number pi=8, FDDL can still have higher recognition rate 

than SRC with pi=20. Besides, from pi=20 to pi=8, FDDL’s recognition rate drops by 

2.2%, compared to 4.2% for SRC. This indicates that FDDL is effective to compute a 

compact and representative dictionary, which can reduce the computational cost and 

improve the recognition rate simultaneously.  
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Figure 6.3: The recognition rates of FDDL and SRC versus the number of dictionary 

atoms. 

 

6.6.1.3 Discussions on l1-norm regularization and l2-norm regularization 

In Chapter 3 we have indicated that the sparse constraint on the coding coefficients may 

not be necessary in the coding stage of SRC. In the proposed FDDL model, both l1-norm 

and l2-norm regularizations are imposed on the coding coefficients X in the stage of 

learning the dictionary. In this sub-section, we evaluate the role of l1-norm regularization 

term (i.e., ||X||1 in Eq. (6.6)) and l2-norm regularization term (i.e., 
2

F
X  in Eq. (6-6)) in 

the dictionary learning phase by changing the values of parameters λ1 and η (>1-ni/n). 

We also evaluate the performance of GC and LC with l2-norm regularization in coding the 

testing sample (i.e., replacing 
1

  by 
2

F
  in Eq. (6-15) and Eq. (6-17)). 

Table 6.5 lists the recognition rates of FDDL with different values of λ1 and η on the 

Extended Yale B database (the experimental setting is given in Section 6.6.2). The GC is 

used in this experiment for classification. Here we set 2=0.005. It can be seen that when 

there is no l1-norm regularization on the coding coefficient (i.e., λ1 =0) in FDDL, the 

performance will degrade (e.g., the performance when λ1 =0 is lower than that when λ1 

=0.005). When there is l1-norm regularization (e.g., λ1 =0.005), the varying strength of 

l2-norm regularization has little affect on the final performance. This finding shows that 

l1-norm regularization is useful and important in learning discriminative dictionary for 

pattern classification. 
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Table 6.5: FR rates on the Extended Yale B database with various parameter settings of 

(λ1, η). 

Parameters (0.005, i) (0.005, 1) (0.005, 5) (0, 1) (0, 5) 

L1-norm GC  0.924 0.921 0.924 0.908 0.917 

L2-norm GC 0.911 0.907 0.913 0.886 0.916 

 

With the learnt dictionary by FDDL, in the classification stage, from Table 6.5 we can 

see that the l2-norm regularized GC has a little bit lower recognition rates than the l1-norm 

regularized GC. This is mainly because that l1-norm regularization is used in learning the 

dictionary, so if l1-norm regularization is not employed in coding the testing sample, the 

discrimination of the dictionary may not be fully exploited. 

We then apply FDDL to the UPSP digit database with 300 training samples, with the 

recognition rates listed in Table 6.6. The LC classifier is used in this experiment. Here we 

also change the values of λ1 and η, and fix 2=0.005. Similar conclusions could be made: 

l1-norm sparse regularization is useful in the phase of dictionary learning and 

consequently the l1-norm regularized classifier is more powerful than l2-norm regularized 

classifier in couple with the learnt dictionary.  

 

Table 6.6: Digit recognition rate on the USPS database with various parameter settings of 

(λ1, η). 

parameters (0.05, i) (0.05, 1) (0.05, 5) (0, 1) (0, 5) 

L1-norm LC  0.950 0.950 0.952 0.931 0.933 

L2-norm LC 0.933 0.933 0.934 0.916 0.933 

 

6.6.1.4 Cross-validation of parameters 

In all the experiments, if no specific instructions, the tuning parameters in FDDL (λ1 and 

λ2 in dictionary learning phase,  and w in GC or 1 and 2 in LC) and the parameters of 

competing methods are evaluated by 5-fold cross validation to avoid over-fitting. Because 

there are many combinations of these four parameters, we use a few simple heuristic to 
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reduce the search space. Usually, the value range of λ1 and λ2 is between 0.001 and 0.1 and 

the value of  or 1 is similar to the value of λ1. Therefore, w or 2 is set as 0 to firstly 

search the optimal values of λ1, λ2 and  or 1; then with the fixed λ1, λ2 and  or 1, the 

value of w or 2 is searched. We usually choose the set {0.001, 0.005, 0.01, 0.05, and 0.1} 

as the set of optimal values of λ1, λ2 and  or 1. 

 

6.6.2 Face recognition 

In this section, we apply the proposed algorithm to FR on the Extended Yale B [99, 206], 

AR [212], and Multi-PIE [213] face databases. In order to clearly illustrate the advantage 

of the proposed method, besides SRC we compare FDDL with two latest 

sparse-dictionary-learning based classification methods, discriminative KSVD (DKSVD) 

[157] and dictionary learning with structure incoherence (DLSI) [158], and two popular 

classification methods, nearest neighbor (NN) and linear support vector machines (SVM). 

Note that the original DLSI method codes the testing sample by each class. For a fair 

comparison, we also gave the results (denoted by DLSI*) by coding the testing sample on 

the whole dictionary and using the reconstruction error for classification. The default 

number of dictionary atoms in FDDL on each class is set as the number of training 

samples. The Eigenface [57] with dimension 300 is used in all FR experiments. 

a) FR on Extended Yale B database: The Extended Yale B database consists of 2,414 

frontal-face images from 38 individuals (about 64 images per subject), captured under 

various laboratory-controlled lighting conditions. For each subject, we randomly selected 

20 images for training, with the others (about 44 images per subject) for testing. The 

images were normalized to 54×48. The results of FDDL, SRC, NN, SVM, DKSVD and 

DLSI are listed in Table 6.7. It can be seen that FDDL can improve about at least 2% over 

all the other methods. DKSVD, which only uses sparse coefficients to do classification, 

does not work well here. DLSI* has better results than DLSI, which shows that coding the 

testing image on the whole dictionary is more reasonable in this case. 
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Table 6.7: The FR rates of various methods on the Extended Yale B database. 

Method SRC NN SVM DKSVD DLSI (DLSI*) FDDL 

Reco-rate 0.900 0.617 0.888 0.753 0.850 (0.890*) 0.919 

 

b) FR on the AR database: The AR database consists of over 4,000 frontal images 

from 126 individuals. For each individual, 26 pictures were taken in two separated 

sessions. As in [102], in the experiment we chose a subset consisting of 50 male subjects 

and 50 female subjects. For each subject, the 7 images with illumination and expression 

changes from Session 1 were used for training, and the other 7 images with the same 

condition from Session 2 were used for testing. The size of original face image is 60×43. 

The comparison of FDDL with the competing methods is shown in Table 6.8. Again, we 

can see that FDDL has at least 3% improvement over the other methods. DLSI* has the 

second best performance; however, DLSI gets the second worst results because each class 

has only 7 training samples in this experiment.  

 

Table 6.8: The FR rates of various methods on the AR database. 

Method SRC NN SVM DKSVD DLSI(DLSI*) FDDL 

Reco-rate 0.888 0.714 0.871 0.854 0.737 (0.898*) 0.920 

 

c) FR on the Multi-PIE database: The CMU Multi-PIE face database [213] is a large 

scale database of 337 subjects including four sessions with simultaneous variations of 

pose, expression and illumination. Among the 337 subjects, we chose the first 60 subjects 

presented in Session 1 as the training set to do FR. For each of the 60 training subjects, we 

used the frontal images of 14 illuminations
5
, taken with neutral expression (for Test 1) or 

smile expression (for Test 2), for training. For the testing set, we used the frontal images 

of 10 illuminations
6
 from Session 3 with neutral expression (for Test 1) or smile 

expression (for Test 2). Note that Session 1 and Session 3 were recorded with long time 

                                                        
5 Illuminations {0,1,3,4, 6,7,8,11,13,14,16,17,18,19}. 
6 Illuminations {0,2,4,6,8,10,12,14,16,18}. 
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interval. The images were manually cropped and normalized to 100×82. 

For FDDL, the dictionary size of each class is set as half of the number of training 

samples. The experimental results of different methods are listed in Table 6.9. We can see 

that compared with the previous methods, FDDL has at least 1% (in Test 1) or 2% (in Test 

2) improvement with a smaller dictionary. SRC works the second best. DLSI* advances 

DLSI in all tests.  

In all the FR experiments, DLSI* advances DLSI, and DKSVD is worse than FDDL, 

SRC and DLSI*, which may imply that the reconstruction error associated with each class 

is more powerful than the coding coefficients in face classification. 

 

Table 6.9: The FR rates of various methods on the Multi-PIE database. 

Method SRC NN SVM DKSVD DLSI (DLSI*) FDDL 

Test 1 0.955 0.902 0.916 0.939 0.914 (0.941*) 0.967 

Test 2 0.961 0.947 0.922 0.898 0.949 (0.959*) 0.980 

 

6.6.3 Digit recognition 

We then perform handwritten digit recognition on the widely used USPS database [254] 

with 7,291 training and 2,007 testing images. We compare the proposed FDDL with 

state-of-the-art methods reported in [144, 156, 158]. These methods include the best 

reconstructive DL method with linear and bilinear classifier models (denoted by REC-L 

and REC-BL) [156], the best supervised DL method with generative training and 

discriminative training (denoted by SDL-G and SDL-D) [156], the best result of sparse 

representation for signal classification (denoted by SRSC) [144] and the best result of 

DLSI [158]. In addition, some results of problem-specific methods (i.e., the standard 

Euclidean k_NN and SVM with a Gaussian kernel) reported in [158] are also listed. Here 

the dictionary of each class has 90 atoms in FDDL with λ1 =γ1=0.1, λ2=0.001, and 

γ2=0.005.  
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Figure 6.4: The learnt bases of digits 8 and 9 by FDDL. 
 

 

Fig. 6.4 illustrates the learnt bases of digits 8 and 9. Table 6.10 lists the results of 

FDDL and its competing methods. We see that FDDL outperforms all the competing 

methods except for SDL-D (FDDL and SDL-D have very close results). It should be 

noted that SDL-D uses more information in DL and classification, including a learnt 

classifier of coefficients, the sparsity of coefficients, and the reconstruction error. In 

addition, the optimization of SDL-D method is much more complex than that of FDDL.  

 

Table 6.10: Error rates of various methods on digit recognition. 

Algorithms FDDL SRSC REC-L REC-BL SDL-G SDL-D DLSI KNN SVM 

Error rate (%) 3.69 6.05 6.83 4.38 6.67 3.54 3.98 5.2 4.2 

 

6.6.4 Gender classification 

In this experiment we chose a non-occluded subset (14 images per subject) of AR 

consisting of 50 male subjects and 50 female subjects. Images of the first 25 males and 25 

females were used for training, and images of the remaining 25 males and 25 females for 

testing. We used PCA [57] to reduce the dimension of each image to 300. In addition, we 

present the result of DLSI
# 

(coding on the whole dictionary and classifying like SRC). 

Here pi is set as 250 for FDDL and RBF kernel is adopted in SVM. 
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Table 6.11: The results of different methods on gender classification using the AR 

database. 

SRC DK-SVD DLSI (DLSI
#
) LC (GC) with FDDL SVM NN 

0.930 0.861 0.940 (0.900) 0.954 (0.941) 0.924 0.907 

 

Table 6.11 lists the recognition results of FDDL and the competing methods. It can be 

seen that LC with FDDL gets the best result when coding the testing image on the 

dictionary of each class (1.4% improvement compared to the second best one, DLSI); 

while GC with FDDL gets the best result when coding the testing sample on the whole 

dictionary (1.1% higher than the second best one, SRC). Meanwhile, we can see that 

DLSI and LC with FDDL have better performance than DLSI
#
 and GC with FDDL 

respectively. This is because in gender recognition, there are only two classes and each 

class has enough training samples so that the learnt dictionary of each class is 

representative enough for the testing sample. 

 

6.6.5 Object categorization 

At last, let’s validate the effectiveness of the proposed method on multi-class object 

categorization. An Oxford flower dataset with 17 categories [255] are used here, some 

samples of which are shown in Fig. 6.5. We adopt the default experimental settings 

provided on the website (www.robots.ox.ac.uk/˜vgg/data/flowers) including the training, 

validation, test splits and the multiple features. It should be noted that these features are 

only extracted from flower regions which are well cropped by the preprocessing of 

segmentation. 
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Figure 6.5: Samples of ‘daffodil’ from the Oxford flower data sets. 

 

 

For a fair comparison with the state-of-the-art methods, e.g., MTJSRC [105], we also 

extended the original features from [255-256] to its kernel versions for the experiments on 

these two dataset. Specifically, we adopt the so-called column generation method [105]. 

Given the original training dataset A and a testing sample y, the column-generation 

training dataset G and testing sample h are computed by G=(A)
T(A) and h=(A)

T(y), 

with (A)=[ (a1),…, (an)], where ai the i
th
 training sample and  is the map function of 

the kernel defined by       exp ,
T

   a y a y . Here  is set to the mean value of 

the pairwise Chi-square distances (denoted by ) on the training set.  

 

Table 6.12: The accuracy (mean±std %) performance by using single feature on the 17 

category Oxford Flowers dataset. 

Features NS SVM [257] MTJSRC-CG [105] SRC FDDL+SRC 

Color 61.7±3.3 60.9±2.1 64.0±3.3 61.9±2.2 65.0±2.4 

Shape 69.9±3.2 70.3±1.3 71.5±0.8 72.7±1.9 72.8±1.7 

Texture 55.8±1.4 63.7±2.7 67.6±2.2 61.4±0.9 64.9±1.7 

HSV 61.3±0.7 62.9±2.3 65.0±3.9 62.5±3.0 65.5±3.4 

HOG 57.4±3.0 58.5±4.5 62.6±2.7 61.4±1.9 62.7±2.4 

SIFTint 70.7±0.7 70.6±1.6 74.0±2.2 73.7±2.9 74.4±2.6 

SIFTbdy 61.9±4.2 59.4±3.3 63.2±3.3 62.3±2.6 64.0±2.4 
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Table 6.13: The accuracy (mean  std %) performance by combining all features on the 17 

category Oxford Flowers dataset. 

Methods Accuracy (%) 

SRC combination 85.9±2.2 

MKL [257] 85.2±1.5 

LP-Boost [257] 85.4±2.4 

CG-Boost [257] 84.8±2.2 

MTJSRC-CG[105] 87.5±1.5 

FDDL+SRC 86.7±1.3 

FDDL+MTJSRC 87.7±1.9 

 

 

This flower dataset contains 17 species of flowers with 80 images per class. As in 

[105], we directly use the 2
 distance matrices of seven features (i.e., HSV, HOG, SIFTint, 

SIFTbdy, color, shape and texture vocabularies) to generate the column-generation 

training matrix G and testing samples h. We firstly evaluate the performance of FDDL on 

each single feature. Table 6.12 lists the best results of NS, SVM, MTJSRC-CG, SRC and 

the proposed FDDL+SRC (i.e., w=0 in Eq. (6-16) for simplicity). It is clear to see that the 

dictionary learnt by FDDL could always improve the original SRC which directly uses 

training samples as the dictionary. Compared to the other state-of-the-art methods, such as 

SVM and MTJSRC, FDDL+SRC could achieve the highest recognition rates in most 

cases. We also evaluate the recognition performance by combing all features. In order to 

make a fair comparison of MTJSRC based on multi-task joint sparse representation, we 

give the results of FDDL+MTJSRC additionally. We simply set all the task weights in 

MTJSRC and FDDL+MTJSRC as 1. The results of FDDL (1=0.005, 2=0.01) compared 

with other state-of-the-art methods are shown in Table 6.13. All MTJSRC, FDDL+SRC, 

and FDDL+MTJSC could achieve over 86.5% recognition rates, higher than all the other 

state-of-the-art methods. FDDL+SRC is slightly worse than MTJSRC, but 

FDDL+MTJSRC is slightly better than MTJSRC, which shows the effectiveness of FDDL 

in the same classification scheme. 
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6.7 Summary 

In this Chapter, we proposed a Fisher Discrimination Dictionary Learning (FDDL) 

approach to sparsity based image classification. The FDDL model aims to learn a 

structured dictionary whose sub-dictionaries have specific class labels. The discrimination 

ability of FDDL is two-folds. First, each sub-dictionary of the learnt whole dictionary has 

good representation power to the samples from the corresponding class, but has poor 

representation power to the samples from other classes. Second, FDDL will result in 

discriminative coefficients by minimizing the with-class scatter and maximizing the 

between-class scatter of them. Consequently, we presented the classification schemes 

associated with FDDL, which use both the discriminative reconstruction error and sparse 

coding coefficients to classify the input testing image. The experimental results on face 

recognition, digit recognition, gender classification and object categorization clearly 

demonstrated the superiority of FDDL to many state-of-the-art dictionary learning based 

methods. 

 

6.8 Appendix 

Appendix 1: tr(SB(X)) when 0,j

i j i X  
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Denote by i=1-ni/n, after some derivations the trace of SB(X) becomes 
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Because i

im  is the mean coding vector of the samples from the same class, 
2

2

i

im  often 

has a big energy value.  

 

 

Appendix 2: The derivation of simplified FDDL model 

Denote by 
i

im  and mi the mean vector of 
i
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Based on Appendix 1, the trace of between-class scatter is   
2
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S X m , 

where i=1-ni/n. Therefore the discriminative coefficient term, 

i.e.,       
2

W B F
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Then the discriminative coefficient term could finally be written as 

     
2

2
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X X m X  (6-19) 

With the constraint that 0j

i X  for j≠i in Eq. (6-8), we get 
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With Eq. (6-19) and Eq. (6-20), the model of simplified FDDL (i.e., Eq. (6-8)) could be 

written as 

2
2 2

1 2 31 1 1,
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D X
A D X X X m X  (6-21) 

where 1 1 2   ,  2 2 1 2i     , and  3 2 2i      . 

 

 

Appendix 3: The convexity of fi(X) 
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Rewrite Xi as a column vector, ,1 ,2 ,, , ,
T

i i i i d
   r r r , where ri,j is the j

th
 row vector of 

Xi, and d is the total number of row vectors in Xi. Then fi(Xi) equals to 
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where diag(T) is to construct a block diagonal matrix with each block on the diagonal 

being matrix T.  

The convexity of fi(χi) depends on whether its Hessian matrix 
2
fi(χi) is positive 

definite or not [123]. We could write the Hessian matrix of fi(χi) as 

        2

1,
2diag 2diag 2diag 2

TKT T k k

i i i i i i i ik k i
f 

 
    N N P P C C I . 


2
fi(χi) will be positive definite if the following matrix S is positive definite: 
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After some derivations, we have 
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In order to make S positive define, each eigenvalue of S should be greater than 0. 

Because the maximal eigenvalue of Ei
i
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For n=n1+n2+…+nK, we have >1-ni/n, which could guarantee that fi(Xi) is convex to Xi.
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Chapter 7.  Conclusion 

7.1 Conclusion 

We have addressed in this thesis several important issues of sparse representation and 

dictionary learning for pattern classification, especially face recognition, by using tools 

from statistical machine learning, convex optimization, pattern classification, and 

computer vision. 

First, we proposed the model of collaborative representation based classification 

(CRC), which has various instantiations by applying different norms to the coding residual 

and coding coefficient. By this model, we illustrated how SRC works and showed that the 

collaborative representation mechanism used in SRC is much more crucial than the l1-norm 

sparsity of coding coefficients to the success of face classification. More specifically, the l1 

or l2 norm characterization of coding residual is related to the robustness of CRC to outlier 

facial pixels, while the l1 or l2 norm characterization of coding coefficient is related to the 

degree of discrimination of facial features. 

Second, we discussed the use of local features in sparse representation model. A Gabor 

feature based robust representation and classification (GRRC) scheme was proposed for 

robust face recognition. The use of Gabor features not only increases the face 

discrimination power due to the multi-scale and multi-orientation description, but also 

allows us to compute a compact Gabor occlusion dictionary, which has significantly 

smaller size than the identity occlusion dictionary. More importantly, we showed that with 

Gabor feature transformation, l2-norm could take place the role of l1-norm to regularize the 

coding coefficients in face classification tasks, which further reduces significantly the 

computational cost in coding occluded face images.  

The sparse coding model with the data fidelity term measured by l2-norm or l1-norm 

actually assumes that the coding residual follows Gaussian or Laplacian distribution, 
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which may not be effective enough to describe the coding residual in practical FR systems. 

To solve this problem, we proposed a new face coding model, namely regularized robust 

coding (RRC), which could robustly regress a given signal with regularized regression 

coefficients. By assuming that the coding residual and the coding coefficient are 

respectively independent and identically distributed, the RRC seeks for a maximum a 

posterior solution of the coding problem. An iteratively reweighted regularized robust 

coding algorithm was proposed to solve the RRC model efficiently. Extensive experiments 

on representative face databases demonstrated that the RRC is much more effective and 

efficient than state-of-the-art sparse representation based methods in dealing with face 

occlusion, corruption, lighting and expression changes, etc. 

Finally, we presented a novel Fisher discrimination dictionary learning (FDDL) 

method to fully exploit the discrimination information in coding coefficient and coding 

residual. Based on the Fisher discrimination criterion, a structured dictionary, whose 

dictionary atoms have correspondence to the class labels, was learnt so that the 

reconstruction error after sparse coding can be used for pattern classification. Meanwhile, 

the Fisher discrimination criterion was imposed on the coding coefficients so that they 

have small within-class scatter but big between-class scatter. A new classification scheme 

associated with the proposed FDDL method was then presented by using both the 

discriminative information in the reconstruction error and the sparse coding coefficients. 

The proposed FDDL was extensively evaluated on benchmark image databases in 

comparison with existing sparsity and DL based classification methods. 

 

7.2 Future Work 

There are several extensions of this thesis, which we are investigating and are not 

presented in this thesis. The first one is the extension of Chapter 3. We have proposed a 

relaxed collaborative representation model to exploit the similarity and distinctiveness of 
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features for pattern classification. The preliminary results have been published in [259]. 

Another interesting question is how to effectively handle the misalignment in face 

recognition under the sparse or collaborative representation based classification framework. 

We have proposed a misalignment robust representation model in [260], which has similar 

recognition accuracy to the state-of-the-art robust alignment by sparse representation 

(RASR) [189] but with much faster speed (e.g., 100 times speedup). We will further 

enhance the above two extensions in the future work. 

Apart from the above extensions, there are still some theoretical problems on 

collaborative representation and sparse regularization to be more deeply investigated, such 

as how to effectively exploit the inspiration of sparse coding mechanism of human vision 

system for pattern classification, how sparsity brings distinctiveness for pattern 

classification, why l2-norm regularized collaborative representation could achieve similar 

performance as sparse representation, and why the SRC/CRC classifier works better than 

the nearest neighbor and nearest subspace classifiers. Although some empirical discussions 

on them have been made in Chapter 3, more theoretical supports from statistical machine 

learning theory and biological vision need to be further studied.  

Dictionary learning is also a very important topic in this thesis. Recently, dictionary 

learning for labeled and unlabeled data, dictionary learning with classifier training, and 

dictionary learning with complex regularization (e.g., structured and hierarchical sparsity) 

have been attracting much attentions from researchers. We will make further studies along 

these directions as the following work of Chapter 6. 

In this thesis, the training samples are all labeled and all the proposed methods employ 

an automatic learning scheme. However, in some practical applications, it may be difficult, 

time-consuming, or expensive to obtain labeled samples. In the future, we will consider the 

classification problem where only a part of training samples are labeled. In such case, the 

semi-supervised learning or active learning techniques could be adopted. 

Finally, more general and practical problems, such as image classification, object 

recognition, texture recognition, and image reconstruction, could be applied by adapting 
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the outputs of this thesis. We believe that these new applications will open up many 

possibilities in the exploration of designing novel classification and learning methods 

based on sparse or collaborative representation. 
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