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Abstract

The systems of gas dynamics (Euler, Euler-Poisson, Navier-Stokes, Navier-
Stokes-Poisson equations) and of shallow water (Camassa-Holm and Degasperis-
Procesi equations) are important basic models in �uid mechanics and astro-
physics. Constructing analytical or exact solutions for the partial di¤erential
equations is a vital part in nonlinear sciences. Indeed, scientists and mathe-
maticians are eager to seek analytical solutions for better understanding of the
evolution of these kinds of systems. In this PhD thesis, I consider the con-
struction of analytical solutions for the above systems. As these systems share
similar mathematical structures in some aspects, I will exhibit some common
features among them, including certain blowup and stability phenomena. In de-
tail, I attempt to employ the well-known separation method to its fullest extent
and introduce a novel pertubational method to seek analytical solutions with
free boundaries. The main idea is to reduce the nonlinear partial di¤erential
systems into several ordinary or functional di¤erential equations, or to simpler
partial di¤erential equations under some suitable assumptions on the functional
structures of the solutions. After proving the existence of solutions of the corre-
sponding simpler di¤erential equations, the analytical solutions for the original
nonlinear systems are constructed. One of the applications of such analytical
solutions is to test numerical methods designed for these systems. Another ap-
plication is to provide samples of concrete solutions so as to a¢ rm or support
theoretical hypotheses or conjectures about these complicated systems.
A substantial percentage of the results presented in this thesis have appeared

in print. In total, sixteen published papers (not counting preprints; see the lists
in the next three pages) are the direct outcome of work done during my PhD
study. The fact that these results are well-received by referees and editors attests
to the great interest of others in these analytical solutions.
The most signi�cant contributions of this thesis are as follows:

� I am the �rst to reduce the compressible density-dependent Navier-Stokes
equations in RN to new 1+N di¤erential functional equations, which lead
to solutions with elliptical symmetry and drift phenomena.

� I am the �rst to obtain self-similar solutions in explicit form for the 2-
component shallow water systems.

� We construct the �rst rotational solutions in explicit form for the 2-
dimensional Euler-Poisson equations and demonstrate the principle that
rotation can prevent blowup.

The thesis is organized as follows:

� A brief introduction of the above six models is provided.

� The separation method is applied to construct solutions with free bound-
aries for the systems of gas dynamics and shallow water.
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� In addition, some solutions with rotation are constructed for the 2-dimensional
Euler-Poisson and 3-dimensional Euler equations.

� Based on the separation method, a novel pertubational method is used to
obtain more general classes of analytical solutions for the 1-dimensional
Euler and Camassa-Holm equations.

� Finally a summary is provided to conclude the works done and other re-
lated works in the PhD studies, together with some future research insights
for the further development of this thesis is included.

Mathematics Subject Classi�cation 2010: 34A05, 34K09, 35B10, 35B40, 35B44,
35C05, 35L60, 35Q31, 35Q35, 76D05, 76N10, 76U05, 85A05, 85A15

KeyWords: Construction of Solutions, Separation Method, Pertubational Method,
Reduction of Equations, Self-similar Solutions, Emden Dynamical System,
Force-Force Interaction, Analytical, Blowup, Global Solutions, Periodic
Solutions, Rotational, Newtonian Fluids, Euler, Euler-Poisson, Navier-
Stokes, Navier-Stokes-Poisson, Camassa-Holm, Degasperis-Procesi
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Chapter 1

Introduction

In the �rst chapter, four important models in gas dynamics � Euler, Euler-Poisson,

Navier-Stokes, Navier-Stokes-Poisson equations � and two models in shallow water

systems � Camassa-Holm and Degasperis-Procesi equations � are described.

1.1 Gas Dynamics

We are interested in four well-known isentropic models in �uid mechanics.

� Euler : There is no interaction between the �uid particles due to gravitational
or electrostatic types of forces and the �uid is not viscous. These assumptions

are expressed as

� = 0 and vis(�; ~u) = 0

in the mathematical formulation given below.

� Euler-Poisson : Gravitational (attractive) or electrostatic (attractive or re-
pulsive) type of interaction is present, but the �uid is not viscous. Mathemat-

ically,

� = �1 and vis(�; ~u) = 0:

� Navier-Stokes : The �uid is viscous, but there are no inter-particle forces,
that is,

� = 0 and vis(�; ~u) 6= 0:
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� Navier-Stokes-Poisson : The �uid is viscous and inter-particle forces are
present, that is,

� = �1 and vis(�; ~u) 6= 0:

The above models can be written in the uni�ed form

8

>

>

>

<

>

>

>

:

�t +r � (�~u) = 0
� [ ~ut + (~u � r)~u ] +rP = ��r�+ vis(�; ~u)

��(t; ~x) = �(N) (�� �) :

(1.1)

The explanation of the various notations is given below.

� The independent variables are time t and position ~x = (x1; x2; x3; :::; xN ) 2
R
N . For lower dimensional cases, we also use the notation x = x1, y = x2 and

z = x3.

� The unknown functions � = �(t; ~x) � 0 and ~u = ~u(t; ~x) = (u1; u2; ::::; uN ) 2
R
N are the density and the velocity, respectively, at a given time t and position

~x. In the one dimensional case, we will write u instead of ~u for convenience.

� �(N) is a constant related to the unit ball in RN :

�(1) = 2; �(2) = 2�

and for N � 3;

�(N) = N(N � 2)V (N) = N(N � 2) �N=2

�(N=2 + 1)
(1.2)

where V (N) is the volume of the unit ball in RN and � is the Gamma function.

� P is the pressure term. In some models, P = 0 and the system is said to be

�pressureless�. In the contrary case, the system is said to be �with pressure�.

A common hypothesis is that P satis�es the -law, namely

P (�)= K� (1.3)

with constants K > 0 and  � 1. Note that P depends only on the density

function, and not directly on t, ~x or ~u. The �uid is said to be isothermal if

 = 1.
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� The number � is called the background or cosmological constant. When � is
positive, the space is said to be �open�; when it is negative, the space is said

to be �closed�; when it is zero, the space is ��at�.

� The term vis(�; ~u) is the viscosity function

vis(�; ~u) = 5(�(�)5 �~u): (1.4)

A common assumption is that �(�) satis�es

�(�) = ��� (1.5)

where � and � � 0 are constants.

� The constant � can take one of three values: �1, 1 or 0.

� When � = �1, the system can model �uids that are self-gravitating,

such as gaseous stars. In addition, the evolution of the simple cosmol-

ogy can be modelled by the dust distribution without the pressure term.

This describes the stellar systems of collisionless and gravitational n-body

systems For detail of the modelling approach, see Fliche and Triay [28].

The pressureless Euler-Poisson equations can be derived from the Vlasov-

Poisson-Boltzmann model with the zero mean free path [31]. For N = 3

and � = �1, the equations (1.1) are the classical (non-relativistic) de-
scriptions of a galaxy in astrophysics. See Binney and Tremaine [4] and

Chandrasekhar [8] for details about the systems.

� When � = 1, the system is the compressible Euler-Poisson and Navier-

Stokes-Poisson equations with repulsive forces. The equation (1.1)3 is

the Poisson equation through which the potential with repulsive forces is

determined by the density distribution of the electrons. In this case, the

system can be viewed as a semiconductor model. See Chen [9] and Lions

[51] for the detailed analysis of the system.

� For � = 0, the system is the classical Euler or Navier-Stokes equations

for �uid mechanics. See Chen and Wang [10] and Lions [51].
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For an introduction to the above systems, readers may refer to Landau and

Lifshitz [46], and Nishida [62], in addition to [51] which has been mentioned above.

In the above systems, the self-gravitational potential �eld � = �(t; ~x) is deter-

mined by the density � itself, by solving the Poisson equation (1.1)3

�(t; ~x) =

Z

RN
G(~x� ~y)(�(t; ~y)� �)d~y

where G is the Green�s function for the Poisson equation in the N -dimensional spaces

de�ned by

G(~x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

j~xj for N = 1

log j~xj for N = 2

�1
j~xjN�2 for N � 3:

If we seek solutions in radial symmetry with r =
�

PN
i=1 x

2
i

�1=2
, the Poisson

equation (1.1)3 is transformed to

rN�1�rr + (N � 1) rN�2�r=� (N) (�� �)rN�1

�r =
� (N)

rN�1

Z r

0
(�(t; s)� �)sN�1ds:

In general, radial solutions without rotation can be written in the form

�(t; ~x) = �(t; r)

and

~u =
~x

r
V (t; r) :=

~x

r
V:

Standard computation, by substituting the above expressions into (1.1), leads to

the radially symmetric form of our �uid dynamical systems

8

>

>

>

>

>

<

>

>

>

>

>

:

�t + V �r + �Vr +
N � 1
r

�V = 0

� (Vt + V Vr) + Pr(�) = ���r + �r (�)

�

N � 1
r

V + Vr

�

+ �(�)

�

Vrr +
N � 1
r

Vr �
�

N � 1
r2

�

V

�

:

(1.6)

For the 3-dimensional case, the hydrostatic equilibrium for the Euler-Poisson

and Navier-Stokes-Poisson equations with attractive forces (� = �1), as speci�ed by
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~u = 0, has been known for a long time. According to Chandrasekhar [8], the ratio

between the core density �(0) and the mean density
_
� for 6=5 <  < 2 is given by

_
�

�(0)
=

��3
s
_g (s)

�

s=s0

where g(s) is the solution of the following Lane-Emden equation with n = 1=(� 1)
with  > 1,

�g(s) +
2

s
_g(s) + gn(s) = 0; g(0) = � > 0; _g(0) = 0

and s0 is the �rst zero of g(s0) = 0. We can solve the Lane-Emden equation analyt-

ically for

ganal(s) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1� 1
6
s2 for n = 0

sin s

s
for n = 1

1
p

1 + s2=3
for n = 5:

For other values of n, only numerical solutions can be obtained. It can be shown

that for n < 5, the radius of polytropic models is �nite; for n � 5, the radius is

in�nite.

For the isothermal case ( = 1), the corresponding stationary solution is the

solution of the Liouville equation,

�g(z) +
2

s
_g(s) +

4�

K
eg(s) = 0:

Makino [57], Gambin [29] and Bezard [2] obtained local existence results for the

compressible Euler-Poisson equations.

1.2 Shallow Water Systems

The 2-component Camassa-Holm equations can be expressed in the following

form
8

<

:

�t + u�x + �ux = 0

mt + 2uxm+ umx + ���x = 0
(1.7)



8

with

m = u� �2uxx: (1.8)

We are here con�ned to the one-dimensional case x 2 R. The unknown functions
are again the density � = �(t; x) � 0 and the velocity u = u(t; x) 2 R of the �uid

under study. The constant � is equal to 1 or �1: If � = �1; the gravity acceleration
points upwards. See, for example, Constantin�s paper [12] and other�s papers [11],

[34], [35]. For � = 1; the corresponding model has been investigated in [18], [27],

[35] and [34].

When � � 0; the system returns to the classical 1-component Camassa-Holm

equation �rst introduced in Camassa and Holm [5].

The search for a model equation which can capture breaking waves and peaked

traveling waves is a long-standing open problem; see Whitham [73]. The classi-

cal 1-component Camassa-Holm equation satis�es the above conditions as a model

equation. The search for peaked traveling waves is motivated by the wish to discover

waves replicating a characteristic for the wave of great height (waves of largest am-

plitude) that are exact traveling solutions of the shallow water equations, whether

periodic or solitary; see Constantin [14], Constantin and Escher [17] and Toland

[70]. The breaking waves can be interpreted as solutions which remain bounded

but the slope at some point becomes unbounded at some �nite time; see Constantin

[15]. Meanwhile, there is an alternative derivation of the Camassa-Holm equation

in Johnson [41] and Constantin and Lannes [19]. With � = 1; the system (1.7) is

integrable; see Ivanov [38] and [5].

Meanwhile, the 2-component Degasperis-Procesi shallow water system � see

Popowicz [64] and Jin-Guo [40] � can be expressed in the following form

8

<

:

�t + k2u�x + (k1 + k2)�ux = 0; x 2 R
ut � uxxt + 4uux � 3uxuxx � uuxxx + k3��x = 0;

(1.9)

where k1, k2, k3 are constants. For � = 0; the system (1.9) reverts to the classical

1-component Degasperis-Procesi equation [26], [52] and [97].
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1.3 Outline of the Thesis

The six di¤erential systems described in the previous two sections are very important

basic models in �uid mechanics and astrophysics. Constructing analytical or exact

solutions for the partial di¤erential equations is a vital part to nonlinear sciences.

Indeed, scientists and mathematicians are eager to seek analytical solutions for better

understanding of the evolution of these kinds of systems. In this PhD thesis, we

consider the construction of analytical solutions for the above systems, which share

similar mathematical structures in some aspects. We would also like to exhibit some

common features among them, including certain blowup and stability phenomena.

The separation method was �rst used by Goldreich and Weber in 1980 to con-

struct radially symmetric solutions of the 3-dimensional Euler-Poisson equations.

The result was later improved and generalized by Makino, Deng�Xiang�Yang and

Yuen, among others to the N -dimensional case.

We then observed that the separation method is applicable to other similar

systems. The author�s PhD project is an attempt to fully exploit this method to

include as many systems as possible. This thesis, as well as some published and

accepted articles, represent the outcome of this e¤ort.

On the surface, the method appears to be fairly routine. Based on experience,

one guesses a possible functional structure of the solutions and tries to verify that

they are indeed solutions by direct computation. Yet, much e¤ort focuses on looking

for ways to extend the functional structure by relaxing the symmetry requirements

for the solutions. For instance, instead of requiring radial symmetry, we succeeded in

�nding solutions that are anisotropic (meaning that the solution evolves di¤erently in

di¤erent directions), leading to solutions with elliptic symmetry. As another exam-

ple, the classical radially symmetric solutions are irrotational, and we constructed,

for R2, global rotational solutions that are in a more general sense also radially

symmetric. We also found a novel pertubational method that gives solutions having

a drift component. The work involves a lot of inductive reasoning and patience in

trial and error.

The main idea of the separation method is to reduce the nonlinear partial dif-

ferential systems into several ordinary di¤erential equations, functional di¤erential

equations or simpler partial di¤erential equations under some suitable assumptions
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about the functional structures of the solutions. After the existence of solutions

of the corresponding simpler di¤erential equations have been proven, the analytical

solutions for the original nonlinear systems are constructed.

One application of constructing these analytical solutions is to verify the exis-

tence or non-existence of solutions having certain properties, such as blowing up, or

being periodic. Another application is to test numerical methods designed for these

systems.

Quite a number of the results presented in this thesis have appeared or will soon

appear in print. In total, �fteen update published or accepted papers (not counting

preprints; see the lists in the next two pages) are the direct outcome of work done

during my PhD study. The fact that these results are well-received by referees and

editors attests to the great interest of others in these analytical solutions.

The most signi�cant contributions of this thesis are as follows:

� We are the �rst to exhibit periodic solutions of the Euler-Poisson equations
when the cosmological background constant is negative.

� We are the �rst to reduce the compressible density-dependent Navier-Stokes
equations in RN to new 1 +N di¤erential functional equations, which lead to

solutions with elliptical symmetry and drift phenomena.

� We are the �rst to obtain self-similar solutions in explicit form for the 2-

component shallow water systems.

� We construct the �rst rotational solutions in explicit form for the 2-dimensional
Euler-Poisson equations and demonstrate the principle that rotation can pre-

vent blowup.

The thesis is organized as follows:

In Chapter 2, we apply the separation method to construct particular solutions

for the Euler, Euler-Poisson, Navier-Stokes, and Navier-Stokes-Poisson equations.

In Chapter 3, we further apply the separation method to seek solutions for the

2-component Camassa-Holm and Degasperis-Procesi equations.

In Chapter 4, we study the existence of pulsating �ows for the 2D pressureless

Euler-Poisson equations. The approach used in this chapter is markedly di¤erent
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from that in other chapters, being much more theoretical. The desired solutions

cannot be expressed in explicit form and their existence can only be established

theoretically. The result is a demonstration of the principle that rotation can prevent

the onset of blowup.

In Chapter 5, we construct rotational solutions for the 2-dimensional Euler-

Poisson and 3-dimensional Euler equations.

In Chapter 6, we introduce a perturbational method to obtain a new class of so-

lutions for the 2-component Camassa-Holm and the compressible Euler and Navier-

Stokes equations in the 1-dimensional case.

In the last chapter, we summarize the work reported in this thesis along with

other related work done during the PhD studies. Future directions of research are

indicated.
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Chapter 2

The Separation Method for Gas

Dynamics

In the second chapter, the separation method is applied to construct solutions for

the systems in gas dynamics. Solutions with radial, elliptical, cylindrical and line

symmetries are obtained. We are the �rst to exhibit periodic solutions of the Euler-

Poisson equations with a negative cosmological constant and to reduce the density-

dependent Navier-Stokes equations in RN to 1+N di¤erential functional equations

leading to solutions with elliptical symmetry and with a drift velocity.

2.1 The Separation Method

Historically, Goldreich and Weber [32] were the �rst (in 1980 in the study of astro-

physics) to construct a family of radially symmetric analytical blowup (collapsing)

solutions of the 3-dimensional Euler-Poisson equations with � = 0 and  = 4=3,

8

>

>

<

>

>

:

�t + V �r + �Vr +
2

r
�V = 0

� (Vt + V Vr) +K
@

@r
� = �4��

r2

Z r

0
�(t; s)s2ds:

(2.1)

The system models non-rotating gas spheres. Subsequently, in 1992, Makino [58]

gave a rigorous mathematical proof of the existence of such solutions. In 2003,

Deng, Xiang and Yang [24] extended the above result to yield blowup solutions for

the general N -dimensional case (N � 3). The corresponding system of equations is
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8

>

>

<

>

>

:

�t + V �r + �Vr +
m

r
�V = 0

� (Vt + V Vr) +K
@

@r
� = ��(N)�

rm

Z r

0
�(t; �)�md�

(2.2)

with m = N � 1 and  = (2N � 2)=N .
In 2008, Yuen [80] completed the picture by �nding the analogous solutions in

R2 with  = 1. The work was part of the author�s MPhil degree project, completed

before the start of the current PhD programme.

This above-mentioned family of analytical solutions of (2.2) is given as follows.

For N � 3 and  = (2N � 2)=N (in [24]),

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�(t; r) =

8

>

<

>

:

1

aN (t)
g�( r

a(t)) for r < a(t)S�

0 for a(t)S� � r

V (t; r) =
_a(t)

a(t)
r

�a(t) =
��
am(t)

; a(0) = a0 > 0; _a(0)= a1

�g(s)+
m

s
_g(s)+

�(N)

2mK
g�(s) = �; g(0) = � > 0; _g(0) = 0;

where � = N=(N � 2), � = [N(N � 2)�]=(2N � 2)K and the �nite number S� is the

�rst zero of g(s).

For N = 2 and  = 1 (in [80]),

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�(t; r) =
1

a2(t)
eg(r=a(t))

V (t; r) =
_a(t)

a(t)
r

�a(t) =
��
a(t)

; a(0) = a0 > 0; _a(0)= a1

�g(s) +
1

s
_g(s) +

2�

K
e
g(s)

= �; g(0) = �; _g(0) = 0;

where � = 2�=K with a su¢ciently small �; and � are constants.

For other constructions of analytical solutions by the separation method for the

Euler-Poisson equations with damping, interested readers can refer to Yuen [79].

Local existence results can be found in Makino [57], Bezard [2] and Gamblin [29].
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2.2 The Navier-Stokes-Poisson Equations with Density-

Dependent Viscosity

The �rst result in the thesis is the construction of analytical radially symmetric

blowup solutions of the pressureless N -dimensional Navier-Stokes-Poisson equations

with density-dependent viscosity and attractive forces (� = �1) with zero back-
ground (� = 0)

8

>

>

>

>

<

>

>

>

>

:

�t + V �r + �Vr +
m

r
�V = 0

� (Vt + V Vr) = � �(N)�
rm

Z r

0
��md� + [���]r

�m

r
V + Vr

�

+ (���)
�

Vrr +
m

r
Vr +

m

r2
V
�

:

(2.3)

As reported in [83], we are the �rst to apply the separation method to a pres-

sureless Navier-Stokes-Poisson system with a density-dependent viscosity term (2.3).

The viscosity term (the last two terms on the right-hand side of (2.3)) replaces the

pressure term in (2.2) (the last term on the left-hand side) to balance the equation.

Theorem 2.1 ([83]) For the N -dimensional pressureless Navier-Stokes-Poisson equa-

tions (2.3), there exists a family of radially symmetric solutions:

For N � 2 and N 6= 3, with � = N=(N � 3),
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�(t; r) =

8

>

<

>

:

1

(T � Ct)N g
�

�

r

T � Ct

�

for
r

T � Ct < S0

0 for S0 �
r

T � ct

V (t; r) =
�C

T � Ctr

�g(s) +
m

s
_g(s) +

�(N)

(2N � 3)C�� g
�(s) = 0; g(0) = � > 0; _g(0) = 0;

(2.4)

For N = 3,
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�(t; r) =
1

(T � Ct)3 e
g(r=(T�Ct)),

V (t; r) =
�C

T � Ctr

�g(s) +
2

s
_g(s) +

4�

CN�
eg(s) = 0; g(0) = �; _g(0) = 0;

(2.5)

where T > 0, � > 0, C 6= 0 and � are constants, and the �nite number S0 is the �rst
zero of g(s). In particular, for C > 0, the solutions blow up at the �nite time T=C.
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Remark 2.1 Throughout this work, the solutions of a system is described usually

in a form exempli�ed by (2.4) or (2.5). The �rst two equations express the density

and velocity functions in terms of one or two auxiliary functions which satisfy the

ordinary di¤erential equations and initial conditions that are listed below. In this

case, we have only one auxiliary function g(s) and it satis�es the second-order initial

value problem given as the last row in (2.4) or (2.5). Since we can get di¤erent g(s)

by choosing di¤erent initial value �, we have actually constructed a one-parameter

family of solutions.

Remark 2.2 One must �rst establish the existence of the auxiliary function g(s)

before one can ensure the existence of solutions to the original system. On the other

hand, properties of g(s) can be used to derive properties of the solutions.

In the separation method, the �rst step is often to seek solutions of some general

form for the continuity equation of mass. The next Lemma provides one such family

of solutions in the radially symmetric case. Similar results were known to the earliest

researchers in the �eld, and are progressively re�ned by subsequent authors.

The Lemma is deliberately stated in a form more general than what is needed

in this section, but the more general result will be used in the next section.

Lemma 2.1 (Extension of Lemma 6 of [82]) The functions

�(t; r) =
f(r=a(t))

aN (t)
; V (t; r) =

�
a(t)

a(t)
r (2.6)

where f � 0 and a(t) > 0 are any two arbitrary C1 functions, are solutions of the
radially symmetric N-dimensional equation of conservation of mass (2.3)1.

Proof. Substituting (2.6) into the �rst equation of (2.3), we obtain

�t + V �r + �Vr +
m

r
�V

=
�N �

a(t)f(r=a(t))

aN+1(t)
�

�
a(t)r

�
f(r=a(t))

aN+2(t)

+

�
a(t)r

a(t)

�
f(r=a(t))

aN+1(t)
+
f(r=a(t))

aN (t)

�
a(t)

a(t)
+
m

r

f(r=a(t))

aN (t)

�
a(t)

a(t)
r

= 0:

The equation of conservation of mass is thus satis�ed.

We only need a special case of the Lemma in order to prove Theorem 2.1.
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Corollary 2.1 The functions

�(t; r) =
f(r=(T � Ct))
(T � Ct)N ; V (t; r) =

�C
T � Ctr;

where f � 0 2 C1; and T and C are positive constants, are solutions of the radially

symmetric N-dimensional equation of conservation of mass (2.3)1.

Proof. This is a special case of the above Lemma, with a(t) = T � Ct.
The next Lemma is essential to complete the proof of the Theorem in the 2-

dimensional case (please refer to Remarks 2.1 and 2.2). It establishes the existence

of the function g(s) for all s � 0, and its asymptotic behaviour as s ! 1. The
result is not obviously covered by standard existence results of ordinary di¤erential

equations due to the singularity of the second term at s = 0, and the singularity

of the third term when g(s) = 0. In fact, the singularity at s = 0 mandates that

the second initial condition _g(0) = 0 must hold. The Lemma is actually implied by

Lemmas 9 and 10 in our earlier work [80].

Lemma 2.2 The ordinary di¤erential equation (which is the third equation in (2.4)

for the particular case N = 3)

8

>

<

>

:

�g(s) +
1

s
_g(s)� �

g2(s)
= 0

g(0) = � > 0; _g(0) = 0;

(2.7)

where � is a positive constant, has a solution g(s) 2 C2 and lim
s!1

g(s) = 1 for all

s � 0.

Proof. By integrating (2.7), we have

�
g(s) =

�

s

Z s

0

1

g2(�)
�d� � 0: (2.8)

Thus, for 0 < s < s0, g(s) has a uniform lower bound

g(s) � g(0) = � > 0:

Local existence of solution guarantees that g(s) exists in some neighborhood of s = 0.

Therefore, there are two possibilities to consider when trying to extend the solution.

(1) g(s) only exists in some �nite interval [0; s0]. We have two sub-cases.
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(1a) lim
s!s0�

g(s) =1;

(1b) g(s) has a uniform upper bound, i.e. g(s) � �0 for some constant �0:

(2) g(s) exists in [0; 1).

(2a) lim
s!1

g(s) =1;

(2b) g(s) has a uniform upper bound, i.e. g(s) � � for some constant � > 0.

We claim that possibility (1) does not exist. Let us consider (1b) �rst: If the

statement (1b) is true, (2.8) becomes

�s

2�2
=
�

s

Z s

0

�

�2
d� � _g(s): (2.9)

Thus, _g(s) is bounded in [0; s0]. Then we can use the local existence theorem again

to obtain a larger domain of existence [0; s0 + �] for some positive number �. This

is a contradiction. Therefore, (1b) is rejected.

Next we consider the case (1a). From (2.9), _g(s) has an upper bound in [0; s0]

�s0
2�2

� _g(s):

It follows that

g(s0) = g(0) +

Z s0

0
_g(�)d� � � +

Z s0

0

�s0
2�2

d� = � +
�s20
2�2

:

Since g(s) is bounded above in [0; s0], this contradicts (1a). So, we can exclude the

possibility (1).

Now we claim that the possibility (2b) does not exist. This is because

_g(s) =
�

s

Z s

0

�

g2(�)
d� � �

s

Z s

0

�

�2
d� =

�s

2�2
:

Then we have

g(s) � � + �

4�2
s2;

and so

lim
s!1

g(s) =1;

which contradicts the case (2b). The only remaining case (2a) is our desired con-

clusion.
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For N � 4, our blowup solutions involve solutions of the Lane-Emden equation,
8

<

:

�g(s) +
m

s
_g(s) + �g�(s)= 0

g(0) = � > 0; _g(0) = 0;
(2.10)

where � > 1 and � are positive constants, which is reducible to a particular case of

the Emden-Fowler equation,

�h+ s1�nhn = 0;

with n > 1, using the transformation,

h =
g(s)

s
:

For the existence and uniqueness of the equation (2.10), readers may refer to the

survey paper by Wong [74].

Proof of Theorem 2.1. Lemma 2.1 means that (2.4) satis�es (2.3)1.

Here we denote g(z) = g. For the case of N � 2 and N 6= 3 with � = (2N�3)=N ,
we plug the solutions (2.4) into the momentum equation (2.3)2,

�(Vt + V Vr) +
�(N)�

rm

r
Z

0

��md� � [���]r
�m

r
V + Vr

�

� ���
�

Vrr +
m

r
Vr �

m

r2
V
�

=
�(N)�

rm

r
Z

0

g �

(T � Ct)N �
md� +

(2N � 3)C�
�

g

(T � Ct)N�3
g ��1 _g

(T � Ct)N+2

=
�

(T � Ct)mQ
�

r

T � Ct

�

:

Denote

Q(s) := Q

�

r

T � Ct

�

=
(2N � 3)C�

�
_g(s) +

�(N)

sm

s
Z

0

g ��md�:

Di¤erentiate Q(s) with respect to s,

�
Q(s) =

(2N � 3)C�
�

�g + �(N)g � � m�(N)
sm

s
Z

0

g ��md�

= �m
s
Q(s):

The above result holds due to the fact that we have chosen g(s) to satisfy the Lane-

Emden equation, namely, the third equation in (2.4). With Q(0) = 0, this implies

that Q(s) = 0. Thus, the momentum equation (2.3)2 is satis�ed.
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The proof for the case of N = 3 is similar and is thus omitted.

Finally, it is obvious that the solutions blow up at the �nite time T=C if C > 0.

This completes the proof.

Corollary 2.2 The blowup rate of the solutions (2.4) and (2.5) is

lim
t! T

C

�
�(t; 0)(T � Ct)N � O(1):

2.3 Periodic Solutions of the Euler-Poisson Equations

with a Negative Background Constant

The Goldreich and Weber�s solutions of the Euler-Poisson equations (2.1) are for

systems with � = 0 and are non-time-periodic. In [84], we were the �rst to observe

that when the cosmological constant � is negative, some solutions of the system can

exhibit a periodic nature. This new phenomenon lends itself to some interesting

physical interpretation.

For simplicity, we consider here the 3-dimensional case, N = 3, and choose

� = �3=4�. Under the assumption of radial symmetry, the system of equations is

8

>

>

<

>

>

:

�t + V �r + �Vr +
2

r
�V = 0

� (Vt + V Vr) +K
@

@r
� = �4��

r2

Z r

0

�

�(t; �) +
3

4�

�

�2d�:

(2.11)

Compare this with (2.1); the cosmological constant appears as the extra term 3=4�

under the integral sign on the right-hand side of the second equation.

The following Theorem is a special case of the result reported in [84].

Theorem 2.2 ([84]) Assume � = �3=4� and  = 4=3. The 3-dimensional Euler-
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Poisson equations in spherical symmetry (2.11) have the following family of solutions

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�(t; r) =

8

>

<

>

:

1

a3(t)
g3
�

r

a(t)

�

for r < a(t)S�

0 for a(t)S� � r

V (t; r) =
_a(t)

a(t)
r

�a(t) =
�

a2(t)
� a(t); a(0) = a0 > 0; _a(0)= a1

�g(s) +
2

s
_g(s) +

�

K
g3(s) =

3�

4K
; g(0) = � > 0; _g(0) = 0

(2.12)

where �, �0 > 0, a1 and � > 0 are arbitrary constants, and the �nite number S� is

the �rst zero of g(s).

(1) When � � 0, the solutions collapse at a �nite time T .

(2) When � > 0, the solutions are non-trivially time-periodic, except in the case

where a0 =
3
p
�� and a1 = 0, when a(t) is a constant and as a result, �(t; r)

is independent of t while V (t; r) � 0.

Remark 2.3 In this system, the solutions we constructed depend on two auxiliary

functions a(t) and g(s), which can vary with the choices of four parameters, �,

a0 > 0, a1 and � > 0.

Remark 2.4 Both auxiliary functions satisfy a second-order di¤erential equation.

In the equation for g(s), the independent variable s appears explicitly in the coef-

�cient and it has a singularity at s = 0, just like the corresponding g(s) in Theo-

rem 2.1.

Remark 2.5 On the other hand, the equation for the new function a(t) is au-

tonomous, that is, the independent variable t does not appear explicitly in the co-

e¢cient. Indeed, it is a Hamiltonian system. This makes it possible to use the

well-known tool of energy method to study a(t).

Remark 2.6 If a(t) vanishes at some value t = T > 0, then �(t; r) blows up at

t = T . On the other hand, if a(t) is a periodic function of t, then �(t; r) is also a

periodic function of t, uniformly in r.
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The following two lemmas address the two properties of a(t) mentioned in the

above remark.

Lemma 2.3 Suppose that � � 0. For any given initial conditions a0 and a1, the

solution a(t) of (2.12)3 must vanish at some t = T > 0.

Proof. Suppose that a(t) does not vanish at any t > 0. Since a(0) > 0, a(t) > 0 for

all t > 0. It follows from (2.12)3 that, since � � 0,

�a(t) + a(t) � 0:

By the well-known Sturm�s comparison theorem in oscillation theory, we see that

a(t) must oscillate faster than the solution y(t) of the comparison equation

�y(t) + y(t) = 0:

But y(t) = A sin(t + t0) for some constants A and t0 and it must vanish at some

t = � > 0. Since we know that a(t) oscillates faster than y(t), it must then vanish

at some point earlier than � , contradicting our earlier assumption that a(t) does not

vanish.

The following is a well-known result in the study of autonomous second-order

equations. See, for example, Section 4.3 of Lakin and Sanchez [45]. We include its

proof for the sake of completeness.

Lemma 2.4 Let K : (0;1)! (0;1) be a positive C1 function, such that

lim
z!0

K(z) = lim
z!1

K(z) =1 (2.13)

and its derivative k(z) = K 0(z) vanishes only at one value z = z0. Suppose that a(t)

satis�es the di¤erential equation

�a(t) + k(a(t)) = 0: (2.14)

Then a(t) is a non-trivial periodic function, unless a(0) = z0 and _a(0) = 0, in which

case a(t) � z0 is a constant function.

Proof. Equation (2.14) represents a Hamiltonian system which has a �rst integral,

obtained by multiplying the equation by _a(t) and then integrating.

_a2(t)

2
+K(a(t)) = E :=

_a2(0)

2
+K(a(0)): (2.15)
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The �rst term on the left represents the kinetic energy, and the second term K(a(t))

the potential energy. The equality (2.15) says that the total energy is conserved,

being a constant E. Together with (2.13), (2.15) implies that a solution a(t) must

be uniformly bounded from below, away from 0, and uniformly bounded from above.

By assumption, k(z) must be of one sign in each of the intervals (0; z0) and

(z0;1). The condition (2.13) further requires that k(z) < 0 for z < z0 and k(z) > 0
for z > z0. As a consequence, at some point when a(t) < z0, �a(t) = �k(a(t)) > 0,
and hence a(t) concaves upwards. The same argument shows that, when a(t) > z0,

a(t) concaves downwards.

We would like to show that a(t) has an in�nite number of local maxima and

minima.

Suppose that at some point t = t0, _a(t0) > 0. We claim that there must exist

a point t1 2 (t0;1) at which a(t) attains a local maximum, with _a(t1) = 0, and

a(t1) > z0.

We �rst prove that _a(t) must vanish at some point beyond t0. Suppose the

contrary, that is, _a(t) > 0 for all t > t0. Then a(t) is an increasing function of t for

t > t0. Since a(t) is bounded from above, we conclude that lim
t!1

a(t) = z1 exists.

From (2.14), we see that lim
t!1

�a(t) = �k(z1) also exists. The only way that this will
not contradict the previous statement (that lim

t!a(t)
exists) is to require k(z1) = 0,

and we thus conclude that z1 = z0. Since a(t) is increasing for t > t0 and has the

limit z0, we see that a(t) < z0 for all t > t0. Thus, a(t) concaves upward for t > t0.

In other words, _a(t) is an increasing function in (t0;1) and _a(t) � _a(t0) > 0. This

contradicts the earlier statement that lim
t!1

a(t) exists. Hence, there must be points

beyond t0 at which _a(t) vanishes.

Let t1 be the �rst of such points. Then a(t) is increasing in (t0; t1). If a(t1) � z0,
then a(t) � z0 for all t 2 (t0; t1) and _a(t) is an increasing function in the same

interval. This contradicts the assumption that _a(t0) > 0 and the fact that _a(t1) = 0.

Hence, we must have a(t1) > z0. Since a(t) concaves downwards at t1, it has a local

maximum at t1.

We can prove in the same way that if at some point t = t2, _a(t2) > 0, there must

exist a point t3 2 (t2;1) at which a(t) attains a local minimum, with _a(t3) = 0, and
a(t3) < z0.
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Combining these two claims, we can easily see that there exists a sequence of

points t1 < t2 < t3 < : < tn < :. of alternating local maxima and local minima of

a(t). At each tn, the potential energy are the same as the initial energy

K(a(tn)) = E:

Since K(z) is decreasing in (0; z0) and increasing in (z0;1), there is a unique value
in each interval that corresponds to the value E. Hence,

a(t1) = a(t3) = ::: and a(t2) = a(t4) = :::

In other words, all the local maxima (minima) have the same value.

It now follows from the uniqueness result of ordinary di¤erential equation that

a(t) in (t1;1) is identical to itself in (t3;1) after translation. In other words, a(t)
is periodic.

Remark 2.7 An alternative proof can be given using the phase plane technique of

dynamical systems. A solution a(t) corresponds to an orbit in the (a; _a) plane. Any

closed orbit represents a periodic solution if and only if the time needed to traverse

the trajectory is �nite. Let a 2 (0; z0) and a 2 (z0;1) be the only points at which
K(a) = K(a) = E. By explicitly integrating the energy equation (2.15), we obtain

the time to traverse the trajectory, which is

T =
p
2

Z a

a

dz
p

E �K(z)
:

This is an improper integral because the denominator of the integrand vanishes at the

endpoints a and a. Under the hypotheses of the Lemma, it can be shown easily that

the rate of divergence of the integrand at the endpoints is su¢ciently tame (more

precisely, it is O((z� a)�1=2) and O((a� z)�1=2)) to guarantee that T is �nite, and
hence the conclusion of the Lemma holds. We omit the details.

For the proof of Theorem 2.2, we need a special case of the Lemma, with k(z) =

z � �=z2. Another special case will be used in Sections 4.1 and 5.1.

Corollary 2.3 Suppose that � > 0. For any given initial conditions a0 and a1,

other than (a0 =
3
p
�; a1 = 0), the solution a(t) of (2.12)3 is non-trivially periodic.

In the exceptional case, a(t) � 3
p
� is a constant function.
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Proof of Theorem 2.2. By Lemma 2.1, the solutions given in (2.12) satisfy (2.3)1.

Next we show that the momentum equation is also satis�ed. For convenience, denote

g(z) = g. Plugging (2.12) into (2.11)2), we obtain

�(Vt + V Vr) +K
@

@r
�4=3 +

4��

r2

r
Z

0

(�� �)�2d� + �
�

Vrr +
m

r
Vr �

m

r2
V
�

= �

��
a(t)

a(t)
r + 4K

�

g3

a(t)3

�1=3
g2 _g

a(t)4
+
4��

r2

r
Z

0

(�� �)�2d�

= �

" ��
a2(t)

+ a(t)

a(t)
r

#

+ 4K
g3

a(t)3

�
g

a(t)2
+

4��

r2a2(t)

r
Z

0

g3�2d� � 3�
r2

r
Z

0

�2d�

= �
��r
a3(t)

+ �r + 4K�
_g

a2(t)
+

4��

r2a3(t)

r
Z

0

g3�2d� � �r

=
�

a2(t)

2

4� �

a(t)
r+4K

�
g +

4�

r2a(t)

r
Z

0

g3�2d�

3

5

=
�

a2(t)

2

6

4
� �

a(t)
r + 4K

�
g +

�(N)
�

r
a(t)

�2

r=a(t)
Z

0

g3�2d�

3

7

5

=
�

a2(t)
Q

�

r

a(t)

�

: (2.16)

In the above, we have used the di¤erential equation (2.12)3 satis�ed by a(t). Let us

denote

Q

�

r

a(t)

�

= Q(s) = ��s+ 4K �
g(s)+

4�

s2

s
Z

0

g3�2d�

and di¤erentiate Q(s) with respect to s to obtain

�
Q(s) = ��+ 4K ��

g(s)+4�g3(s)� 2 � 4�
s3

s
Z

0

g3�2d�

= �2
s

2

4�s+ 4K _g(s)�K�s+ 4�
s2

s
Z

0

g3�2d�

3

5

= �2
s
Q(s): (2.17)

The second inequality in the above holds due to (2.12)4.

Since lim
s!0+

Q(s) = Q(0) = 0, (2.17) implies that Q(s) = 0 and (2.16) implies that

the momentum equation is satis�ed.
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The statements (1) and (2) are consequences of Lemma 2.3 and Corollary 2.3.

Remark 2.8 The method described in this section can be easily extended to the

general Euler-Poisson equations in RN , by following the same approaches used in

the previous works [24] and [80]. Please refer to [84] for details.

Remark 2.9 The existence of collapsing solutions (with suitable choices of initial

values) is similar to the case when cosmological background is absent and is thus not

surprising. However, the existence of a time-periodic pattern is characteristic of the

negative constant �. This phenomenon is never seen before in the zero background

Euler-Poisson equations, with or without frictional damping, as studied in [79] and

[80].

With suitable initial conditions, for example, 0 < a(0) = � << 1 and _a(0) = 0,

the density becomes

�(0; 0) =
�3

�3
>> M0

where M0 is an arbitrary constant. Such solutions provide a possible explanation of

how the universe can expand and then almost re-collapse. The density at the origin

can be periodically greater than any given constant

�(T; 0) >> M0:

Notice that this phenomena is not the same as �(T; 0) = 1 with a �nite time T .

In the re-collapsing model with a negative cosmological constant � < 0, as described

in [21], the solutions are periodic with time-singular points. Here, the solutions of

the almost re-collapsing model are signi�cantly di¤erent from the above situation, as

the globally periodical solutions contain no time-singular point. As the time-periodic

e¤ect is due to the negative cosmological constant in our model, more solutions

of this pattern are expected for other  values. Further work may be done using

numerical simulation to study the stability of the solutions. If some gaseous stars (a

galaxy) obey the - law ( = 4=3), it may provide an alternative explanation about

its evolution. The time-periodic solutions coincide with the expansion segment (the

red-shift e¤ect) in a short time. Therefore, it is extremely hard to detect which model

is more accurate by the observation.



26

2.4 Self-similar Solutions with Elliptical Symmetry

In physics, Sedov [66] in 1953 and Ovsiannikov [63] in 1965 �rst constructed self-

similar solutions of gas dynamic systems having elliptic symmetry. Prior to that,

the separation method pioneered by Goldreich, Weber and Makino had only been

applied to obtain radially symmetric solutions.

In a radially symmetric solution, the velocities of all �uid particles point directly

towards or away from the origin, and the magnitude of the velocities of particles

equidistant from the origin are identical. In an elliptically symmetric solution, the

velocity of a particle no longer points directly towards the origin. Instead, the com-

ponents of the velocity along the direction of the coordinate axes vary independently

from each other. As a matter of fact, it may happen that along the x-direction, par-

ticles move towards each other, while along the y-direction, they move away from

each other.

In [95], Yuen, being unaware of the earlier work by Sedov and Ovsiannikov, pro-

posed an even more general concept of elliptic symmetry with a drift, and constructed

solutions of this type for the Euler equations in Rn. The results are presented in

this section.

Theorem 2.3 ([95]) To the Euler equations in RN

8

<

:

�t+r � (�~u) = 0

� [~ut + (~u � r) ~u] +K� = 0;
(2.18)

there exists a family of solutions

8

>

>

>

>

>

<

>

>

>

>

>

:

� =
f(s)
N
�
k=1
ak

ui =
_ai
ai
(xi + di) for i = 1; 2; ::::; N

(2.19)

where

f(s) =

8

>

>

<

>

>

:

�e�
�
2K
s for  = 1

max

 

�

��( � 1)
2K

s+ �

�
1

�1

; 0

!

for  > 1
(2.20)

with s =

N
X

k=1

(xk + dk)
2

a2k(t)
, and arbitrary constants � � 0; dk, �; and the auxiliary
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functions ai = ai(t) satisfy the Emden dynamical system

8

>

>

>

<

>

>

>

:

�ai =
�

ai

 

N
Q

k=1
ak

!�1 , for i = 1; 2; ::::; N

ai(0) = ai0 > 0; _ai(0) = ai1

(2.21)

with arbitrary constants ai0 and ai1:

Corollary 2.4 With  = 1;

(1a) for � < 0, the solutions (2.19) blow up in �nite time;

(1b) for � > 0; the solutions (2.19) exists globally.

With  > 1;

(2a) for � < 0 and some ai1 < 0, the solutions (2.19) blow up at or before the �nite

time

T = min(�ai0=ai1 : a1i < 0; i = 1; 2; :::; N);

(2b) for � > 0 and ai1 � 0 the solutions (2.19) exist globally.

We make use of a recent result of Yeung and Yuen [78], which gives a general al-

gorithm to generate solutions for the mass equations (2.19)1 using either an arbitrary

implicit or explicit function.

Lemma 2.5 (Lemma 1 in [78]) The conservation of mass equation (2.18)1 has

solutions of the following form

8

>

>

>

>

>

<

>

>

>

>

>

:

� =

f

�

x1 + d1
a1(t)

;
x2 + d2
a2(t)

; � � � ; xN + dN
aN (t)

�

N
Q

i=1
ai(t)

ui =
_ai(t)

ai(t)
(xi + di) for i = 1; 2; ::::; N

(2.22)

with an arbitrary C1 function f � 0 and ai(t) > 0 and constants di.

Proof. We substitute the second expression involving ui in (2.22), into (2.18)1,

while leaving � alone to get

@

@t
�+

N
X

i=1

@

@xi
�
_ai(t)

ai(t)
(xi + di) +

N
X

i=1

� _ai(t)

ai(t)
= 0:
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This can be regarded as a semi-linear partial di¤erential equation in the unknown

�, having the following general solution

F

 

N
Y

i=1

ai(t)� ;
x1 + d1
a1(t)

;
x2 + d2
a2(t)

; � � � ; xN + dN
aN ; (t)

!

= 0

where F is an arbitrary C1 function for � � 0. By solving the above equation

explicitly for the �rst argument, we obtain the �rst equation in (2.22).

Proof of Theorem 2.3. By Lemma 2.5, the mass equation is satis�ed.

Making use of the i-th momentum equation (2.18)2, we obtain

�

"

@ui
@t

+

N
X

k=1

uk
@ui
@xk

#

+K
@

@xi
�

= �

�

@

@t

�

_ai
ai
(xi + di)

�

+

�

_ai
ai
(xi + di)

�

@

@xi

�

_ai
ai
(xi + di)

��

+K��1
@�

@xi

= �

8

>

>

<

>

>

:

" 

�ai
ai
� ( _ai)

2

(ai)
2

!

(xi + di) +
( _ai)

2

(ai)
2 (xi + di)

#

+K��2
@

@xi

f(s)
N
�
k=1
ak

9

>

>

=

>

>

;

= �

8

>

>

>

<

>

>

>

:

�ai
ai
(xi + di) + 2K

f�2(s)
�

N
�
k=1
ak

��2
_f (s)

�

N
�
k=1
ak

�

�

xi + di
a2i

�

9

>

>

>

=

>

>

>

;

=
(xi + di) �

a2i

8

>

>

>

<

>

>

>

:

�aiai + 2K
f�2(s) _f (s)
�

N
�
k=1
ak

��1

9

>

>

>

=

>

>

>

;

=
(xi + di) �

a2i

�

N
�
k=1
ak

��1

n

� + 2Kf�2(s) _f (s)
o

:

In the last step, we use the properties of the N -dimensional Emden dynamical sys-

tem. Local existence of solutions for the Emden dynamical system can be guaranteed

by the usual existence theory, established, for example, by using the Banach �xed

point theorem.

To further simplify the above expression, we require either the �rst order ordinary

di¤erential equation

� + 2Kf�2(s) _f(s) = 0; f(0) = � � 0;

to hold or � = 0. By solving this di¤erential equation, we arrive at the required

expression (2.20) for f .
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Remark 2.10 Even though they all satisfy similar di¤erential equations, the N

functions ai(t) can di¤er from each other because di¤erent initial conditions can be

imposed on them. Even if we start out with requiring all ai0 to be equal, the ai1 can

also be chosen to be di¤erent so that at a subsequent time, ai(t) can still be di¤erent

from each other.

An interesting situation arises if we choose a10 > 0 and a20 < 0. Along the x1

axis direction, particles are moving towards each other, while along the x2 axis di-

rection, they move away from each other. It is natural to ask how these initial values

can a¤ect the blowup or global behaviour of the solutions. Corollary 2.4 answers this

question partially. It will be nice if a complete answer can be achieved.

Remark 2.11 When all the initial conditions for ai(t) are chosen to be the same,

all the functions ai become identical and we fall back to the radial symmetric case.

Hence, radial symmetry is subsumed under elliptic symmetry. The term �elliptic�

is derived from the fact that at all points on the ellipsoid

N
X

k=1

(xk + dk)
2

a2k(t)
= constant;

all the �uid particles have the same density � and speed j~uj.

Remark 2.12 The vector (d1; d2; :; dN ) represents the drift. When di = 0 for all i,

our concept of elliptic symmetry reduces to that of Sedov [66] and Ovsiannikov [63].

Remark 2.13 There are physical applications of the �uids with elliptic symmetry.

For detail, see Gornushkin et al [33] and Baxter-Shabanov [3].

Proof of Corollary 2.4. With  = 1; the Emden dynamical system (2.21) becomes

N de-coupled conventional Emden equations, each one having the form

�ai(t) =
�

ai(t)
; ai(0) = ai0 > 0; _ai(0) = ai1:

It is not di¢cult to see that if � < 0, ai(t) must vanish at some �nite time. As a

consequence, the corresponding solution (2.19) blows up. This proves (1a).

(1b) For � > 0, it is well-known that the functions ai(t) does not vanish at any

t > 0 and hence the solutions (2.19) exist globally.

Next, we turn to the case of  > 1.
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(2a) For � < 0 and some ai1 < 0, we see that �ai(t) � 0, implying that

_ai(t) � ai1 < 0. Hence, ai(t) must vanish at or before the �nite time

T = min(�ai0=ai1 : ai1 < 0; i = 1; 2; :::; N)

and the corresponding � blows up at the same time.

(2b) For � > 0 and all ai1 � 0, it is clear that ai(t) will not vanish for any

t > 0 and the solution (2.19) exist globally.

In our paper [82], we reported that a result analogous to Theorem 2.3 also holds

when the pressure term in (2.18) is replaced by a density-dependent viscosity term.

8

>

>

<

>

>

:

�t+r � (�~u) =0

�

�

@

@t
ui + ~u � rui

�

=�
@

@xi

�

��r � ~u
�

for i = 1; 2; ::::; N

: (2.23)

This observation was pursued further in a subsequent paper [96] and the following

general result was obtained.

Theorem 2.4 ([96]) The pressureless density-dependent Navier-Stokes equations

(2.23) with � > 0 in RN has the following family of solutions
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>

:

� =
f(s)
N
�
k=1
ak

ui =
_ai
ai
(xi + di) for i = 1; 2; ::::; N

(2.24)

where

f(s) =

8
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>

<

>

>

:

�e�
�
2�
s for � = 1

max
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��(� � 1)
2�

s+ �

�
1

��1

; 0

!

for � 6= 1

with s =
N
X

k=1

(xk + dk)
2

a2k(t)
, arbitrary constants � � 0; dk and �; and the auxiliary

functions ai = ai(t) satisfy the Emden dynamical system
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>

>

>

>

>

>

<

>

>

>

>

>

>

:

�ai(t) =

��
�

N
�
k=1

_ak(t)
ak(t)

�

ai(t)

�

N
�
k=1
ak(t)

���1 for i = 1; 2; :::; N

ai(0) = ai0 > 0; _ai(0) = ai1
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with arbitrary constants ai0 and ai1:

In particular, for � < 0,

(1) if all ai1 < 0, the solutions (2.24) blow up at or before the �nite time

T = min(�ai0=ai1 : a1i < 0; i = 1; 2; :::; N);

(2) if all ai1 � 0 the solutions (2.24) exist globally.

The proof of this Theorem is similar to that of the previous one. We omit the

details. Interested readers can consult the source material [96].

2.5 Qualitative Properties of the Emden System

The Emden system is the reduced system of the solutions with elliptical symmetry

for the Euler equations in the last section. When the qualitative properties (glob-

ally positive or non-globally positive) of the system are known, the corresponding

blowup or global existence of the analytical solutions with elliptical symmetry can

be determined. In this section, we list some non-trivial qualitative properties for the

Emden system.

A solution of the Emden system

�ai(t) = �
1

ai(t)

�

N
�
k=1
ak(t)

��1 ; i = 1; 2; ::::; N; (2.25)

with the constant  > 1, is said to be globally positive (GP) if ai(t) > 0 for all t > 0

and for all i. A solution that is not GP is said to be non-GP (NGP).

If the Emden system is NGP, the corresponding solution with elliptical symmetry

blows up at a �nite time; If the Emden system is GP, the corresponding solution

exists globally.

Proposition 2.5 The system possesses both GP and NGP solutions.

Proof: With the particular choice a1(0) = a2(0) = ::: = aN (0) and _a1(0) =

_a2(0) = ::: _aN (0), the system becomes the classical Emden equation. The well known

Emden equation possesses both GP and NGP solutions.
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Proposition 2.6 The Emden system (2.25) has the invariant

E(t) =
N
X

k=i

_a2i (t)

2
� 1

( � 1)
�

N
�
k=1
ak(t)

��1 = �: (2.26)

Proof: By di¤erentiating E(t), we have

dE(t)

dt

=

N
X

i=1

_ai(t)�ai(t) +

N
X

i=1

( � 1) _ai(t)

( � 1)ai(t)
�

N
�
k=1
ak(t)

��1

=
N
X

i=1

� _ai(t)

ai(t)

�

N
�
k=1
ak(t)

��1 +
N
X

i=1

_ai(t)

ai(t)

�

N
�
k=1
ak(t)

��1

= 0:

Hence, E(t) is a constant.

Corollary 2.5 Let � be de�ned as in (2.26). If � < 0, then the solution is NGP.

Proof: From the de�nition of � and (2.25), we see that, for any i,

� =
N
X

i=1

_a2i (t)

2
+
ai(t)�ai(t)

 � 1 :

Hence,

ai(t)�ai(t) = ( � 1)
 

� �
N
X

i=1

_a2i (t)

2

!

� ( � 1)�

�ai(t) �
( � 1)�
ai(t)

:

We know that the solution of the above Emden equation blows up at a �nite time t

for � < 0. Therefore, the solution is NGP.

We give an alternative proof. Suppose the contrary, that is, ai(t) is GP. Then

each ai(t) is increasing and so it either diverges to 1 or converge to a positive

constant. They cannot be all bounded. Otherwise the system (2.25) shows that

�ai(t) converges to a negative constant and that implies that _ai(t) will eventually

become negative.

Hence,
1

( � 1)
�

N
�
k=1
ak(t)

��1 ! 0
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and
N
X

i=1

_a2i (t)

2
= � +

1

( � 1)
�

N
�
k=1
ak(t)

��1 ! � < 0

and some _ak(t) must be negative for large t. Therefore, the solution is NGP.

When the total energy is non-negative, we have the following results:

Proposition 2.7 (1) If for N � 2 and  � 2; any one of the solutions of the

following inequalities:

8

>

>

>

<

>

>

>

:

�Ai(t) � �1

Ai (t)
N
�
k 6=i

(

2(�1)
"

�t2+(aj0aj1+ak0ak1)t+
(aj1)

2

2
+
(ak1)

2

2

#

�A2i (t)
)

�1
2

Ai(0) = ai0 > 0, _Ai(0) = ai1 > 0

blows up, then the corresponding solution of the Emden system (2.25) blows up;

(2) If for N = 2 and 1 <  � 2; the solutions of the following inequalities:
8

>

>

<

>

>

:

�A1(t) � �1

A1 (t)

�

2(�1)
�

�t2+(a10a11+a20a21)t+
(a11)

2

2
+
(a21)

2

2

�

�A21(t)
�

�1
2

A1(0) = a10 > 0, _A1(0) = a11 > 0

and
8

>

>

<

>

>

:

�A2(t) � �1

A2 (t)

�

2(�1)
�

�t2+(a10a11+a20a21)t+
(a11)

2

2
+
(a21)

2

2

�

�A22(t)
�

�1
2

A2(0) = a20 > 0, _A2(0) = a21 > 0

exist globally, then the solutions of the Emden system exist globally.

Proof: We have

1

 � 1aj(t)�aj(t) = � �
N
X

i=1

_a2i (t)

2
for j 2 1; 2; :::N:

We add the above equations to get

1

 � 1aj(t)�aj(t) + ai(t)�ai(t) = 2� �
N
X

k=1

_a2k(t) for j 6= i

1

 � 1
�

aj(t)�aj(t) + ai(t)�ai(t) + _a2j (t) + _a2i (t)
�

= 2� �  � 2
 � 1

 

N
X
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_a2k(t)

!

1

 � 1
d

dt
(aj(t) _aj(t) + ai(t) _ai(t)) = 2� �

 � 2
 � 1

 

N
X

k=1

_a2k(t)

!

� 2�
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for  � 2;
aj(t) _aj(t) + ai(t) _ai(t)

 � 1 � 2�t+ aj0aj1 + ai0ai1

1

2( � 1)
d

dt

�

a2j (t) + a
2
i (t)
�

� 2�t+ aj0aj1 + ai0ai1

1

2( � 1)
�

a2j (t) + a
2
i (t)
�

� �t2 + (aj0aj1 + ai0ai1)t+
(aj1)

2

2
+
(ak1)

2

2

a2j (t) � 2( � 1)
"

�t2 + (aj0aj1 + ak0ak1)t+
(aj1)

2

2
+
(ak1)

2

2

#

� a2k(t)

aj(t) �
(

2( � 1)
"

�t2 + (aj0aj1 + ai0ai1)t+
(aj1)

2

2
+
(ai1)

2

2

#

� a2i (t)
)

1
2

:

We can, therefore, estimate the Emden system by the N Emden inequalities as

stated in the Proposition and arrive at the desired conclusion.

In the following, we restrict ourselves to the 2-dimensional case (N = 2). For

convenience, we write a(t) and b(t) instead of a1(t) and a2(t), and denote

� = a(0); �1 = _a(0); � = b(0) and �1 = _b(0):

The following comparison properties is useful.

Proposition 2.8 Suppose

� � �, �1
�
<
�1
�

and a(t) > 0 for t 2 [0; T ).
Then

_a(t)

a(t)
<
_b(t)

b(t)

and this implies that

a(t) < b(t), _a(t) < _b(t):

Proof: We treat the Emden system like second order linear di¤erential equations:
8

>

<

>

:

�a(t) +
1

a+1(t)b�1(t)
a(t) = 0; a(0) = � > 0, _a(0) = �1

�b(t) +
1

b+1(t)a�1(t)
b(t) = 0; b(0) = � > 0, _b(0) = �1:

(2.27)

Suppose the proposition is not true. That means there exists a �rst �nite time T ,

such that a(T ) = b(T ). We may apply the condition

a(t) < b(t) for 0 < t < T
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for the linear system (2.27) to get

1

a+1(t)b�1(t)
>

1

b+1(t)a�1(t)
for 0 < t < T:

Then we apply the well-known Sturm�s comparison theorem (see, for example, Chap-

ter 8 of Coddington and Levinson�s book [19] for details) to obtain

_a(T )

a(T )
<
_b(T )

b(T )
:

which contradicts our assumption, thus proving the proposition.

Proposition 2.9 Suppose that the solutions a1(t) and b1(t) of
8

>

>

<

>

>

:

�a1(t) +
1

a1(t) (a1(t)b1(t))
�1 = 0; a1(0) = a10 > 0, _a1(0) = a11

�b1(t) +
1

b1(t) (a1(t)b1(t))
�1 = 0; b1(0) = b10 > 0, _b1(0) = b11;

(2.28)

are GP and a2(t) and b2(t) are solutions of
8

>

>

<

>

>

:

�a2(t) +
1

a2(t) (a2(t)b2(t))
�1 = 0; a2(0) = a20 > 0, _a2(0) = a21

�b2(t) +
1

b2(t) (a2(t)b2(t))
�1 = 0; b2(0) = b20 > 0, _b2(0) = b21;

(2.29)

with

a10 < a20; b10 < b20; (2.30)

and
a11
a10

<
a21
a20
;

b11
b10

<
b21
b20
: (2.31)

Then

a1(t) < a2(t) , b1(t) < b2(t) (2.32)

and a2(t) and b2(t) are also GP.

Proof: The proposition is proved by comparing equations (2.28)1-(2.29)1 with

(2.28)2-(2.29)2.

Similarly, we have the following corollary:

Corollary 2.6 Suppose that the solutions a1(t) and b1(t) of
8

>

>

<

>

>

:

�a1(t) +
1

a1(t) (a1(t)b1(t))
�1 = 0; a1(0) = a10 > 0, _a1(0) = a11

�b1(t) +
1

b1(t) (a1(t)b1(t))
�1 = 0; b1(0) = b10 > 0, _b1(0) = b11;
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are NGP and a2(t) and b2(t) are solutions of

8

>

>

<

>

>

:

�a2(t) +
1

a2(t) (a2(t)b2(t))
�1 = 0; a2(0) = a20 > 0, _a2(0) = a21

�b2(t) +
1

b2(t) (a2(t)b2(t))
�1 = 0; b2(0) = b20 > 0, _b2(0) = b21;

with

a10 > a20; b10 > b20

and
a11
a10

>
a21
a20
;

b11
b10

>
b21
b20
:

Then

a1(t) > a2(t), b1(t) > b2(t)

and a2(t) and b2(t) are also NGP.

Proposition 2.10 (a) Given �; �1; � > 0, there exists �1 > 0 such that the corre-

sponding solution is GP.

(b) Given �; �1; �1 > 0, there exists � > 0 such that the corresponding solution

is GP.

Proof: (a) Integrating the Emden system over [0; T ], we get

_a(t) = �1 �
Z t

0

ds

a(s) (a(s)b(s))�1
(2.33)

and

_b(t) = �1 �
Z t

0

ds

b(s) (a(s)b(s))�1
: (2.34)

We claim that if �1 is su¢ciently large, then

_a(t) � �1
2

and _b(t) � �1
2

for t � 0: (2.35)

Suppose this is false. Then there exists a �nite time T > 0 such that either

_a(T ) =
�1
2

or _b(T ) =
�1
2
: (2.36)

Then in [0; T ], we have

a(t) � �+ �1t
2
; b(t) � � + �1t

2
: (2.37)
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We substitute the above inequalities into the equalities (2.33) to get

_b(T ) = �1 �
Z T

0

ds

b(s) (a(s)b(s))�1

� �1 �
Z T

0

ds
�

�+ �1s
2

��1
�

� + �1s
2

�

= �1 �
Z T

0

ds
�

�
�

��1 �
� + �1�s

2�

��1 �
� + �1s

2

�

� �1 �
1

�

�
�

��1

Z T

0

ds
�

� + �1�s
2�

�2�1

By choosing �1 �
�1�

�
; the last expression is

= �1 �

2

6

4

�1
(2 � 2)

�

�
�

��1
2�

�1�

1
�

� + �1�s
2�

�2�2

3

7

5

s=T

s=0

= �1 +
�1

(2 � 2)
�

�
�

��1
2�

�1�

1
�

� + �1�T
2�

�2�2

� 1

(2 � 2)
�

�
�

��1
2�

�1�

1

�2�2

� �1 �
1

(2 � 2)
�

�
�

��1
2�

�1�

1

�2�2

� 2�1
3
:

The last inequality is obtained by choosing

�1 �
1

(2 � 2)
�

�
�

��1
2�

�1�

1

�2�2
� 2�1

3
:

Similarly, for the equality (2.34), we have:

_a(T ) = �1 �
Z T

0

ds

a(s) (a(s)b(s))�1

� �1 �
Z T

0

ds
�

�+ �1s
2

�
�

� + �1s
2

��1

= �1 �
Z T

0

ds
�

�
�

��1
�

�+ �1s
2

�
�

� + ��1s
2�

��1 : (2.38)
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We may control the above integral as the follows:

Z T

0

ds
�

�
�

��1
�

�+ �1s
2

�
�

� + ��1s
2�

��1

=

Z 1

0

ds
�

�
�

��1
�

�+ �1s
2

�
�

�+ ��1s
2�

��1

+

Z T

1

ds
�

�
�

��1
�

�+ �1s
2

�
�

�+ ��1s
2�

��1

�
Z 1

0

ds

���1
�

�+ ��1s
2�

��1 +
Z T

1

ds
�

�
�

��1 �
��1
2�

��1
�

�+ �1s
2

�
:

We examine the above �rst integral in three cases:

Case 1: 1 <  < 2,

Z 1

0

ds

���1
�

�+ ��1s
2�

��1

� 1

���1
�

��1
2�

��1

Z 1

0

ds

s�1

=
1

���1
�

��1
2�

��1
(2� )

s2�
�

�

s=1

s=0

=
1

���1
�

��1
2�

��1
(2� )

:

Case 2:  = 2,

Z 1

0

ds

���1
�

�+ ��1s
2�

��1

=
1

��

2�

��1
ln

�

�+
��1s

2�

��

�

�

�

s=1

s=0

=
2

�2�1

�

ln

�

�+
��1
2�

�

� ln�
�

:

Case 3:  > 2,

Z 1

0

ds

���1
�

�+ ��1s
2�

��1

=
1

���1( � 2) 2���1

1
�

�+ ��1s
2�

��2

�

�

�

�

�

�

�

s=1

s=0
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=
1

���1( � 2) 2���1

2

6

4

1
�

�+ ��1
2�

��2 �
1

��2

3

7

5
:

We require a su¢ciently large �1 such that

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

1

���1
�

��1
2�

��1
(2� )

� �1
6

for 1 <  < 2

2

�2�1

�

ln

�

�+
��1
2�

�

� ln�
�

� �1
6

for  = 2

1

���1( � 2) 2���1

2

6

4

1
�

�+ ��1
2�

��2 �
1

��2

3

7

5
� �1
6
for  > 2:

Then, we control the second term of the equation as follows:

Z T

1

ds
�

�
�

��1 �
��1
2�

��1
�

�+ �1s
2

�

= � 1
�

�
�

��1 �
��1
2�

��1
1

�

�+ �1s
2

��1

�

�

�

�

�

�

�

s=T

s=1

= � 1
�

�
�

��1 �
��1
2�

��1
1

�

�+ �1T
2

��1 +
1

�

�
�

��1 �
��1
2�

��1
1

�

�+ �1
2

��1

� �1
6

by choosing
1

�

�
�

��1 �
��1
2�

��1
1

�

�+ �1
2

��1 �
�1
6
:

After that, equation (2.38) becomes

_a(T ) � �1 �
�1
3
=
2�1
3
:

This contradicts the equations in (2.36). Thus, given �; �1; � > 0, there exists �1 > 0

such that the corresponding solution is GP.

(b) We claim that if � is su¢ciently large, then

_a(t) � �1
2

and _b(t) � �1
2

for t � 0: (2.39)

Suppose this is false. Then there exists a �nite time T > 0 such that either

_a(T ) =
�1
2

or _b(T ) =
�1
2
: (2.40)
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Then in [0; T ], we have

a(t) � �+ �1t
2

and b(t) � � + �1t
2
: (2.41)

We substitute these inequalities into equation (2.33) to get

_a(T ) = �1 �
Z T

0

ds

a(s)b�1(s)

� �1 �
Z T

0

ds
�

�+ �1s
2

�
�

� + �1s
2

��1

� �1 �
Z T

0

ds

��1
�

�+ �1s
2

�

� �1 +
1

�1
2 �

�1( � 1)
�

�+ �1s
2

��1

�

�

�

�

�

s=T

s=0

� �1 +
2

�1
2 �

�1( � 1)
�

�+ �1T
2

��1 �
2

�1
2 �

�1( � 1)��1

� 2�1
3

by choosing

�1 �
2

�1
2 �

�1( � 1)��1 �
2�1
3
:

For equation (2.34), we have

_b(T ) = �1 �
Z T

0

ds

a�1(s)b(s)

� �1 �
Z T

0

ds
�

�+ �1s
2

��1
�

� + �1s
2

�

� �1 �
Z T

0

ds

��1
�

� + �1s
2

� ds

� �1 +
1

2
�1
��1

�

� + �1s
2

��1

�

�

�

�

�

�

�

s=T

s=0

= �1 +
1

2
�1
��1

�

� + �1T
2

��1 �
1

2
�1
��1��1

� 2�1
3

by choosing

�1 �
1

2
�1
��1��1

� 2�1
3
:
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This contradicts equations (2.40). Thus, Given �; �1; �1 > 0, there exists � > 0

such that the corresponding solution is GP.

As a consequence of Proposition 2.7, we have:

Proposition 2.11 Given �, �1, � > 0, there exists a critical value ��1 > 0, such

that if � � ��1 , the corresponding solution is GP, while if �1 < ��1 , the corresponding
solution is NGP.

Proof: A direct application of Proposition 2.8 gives the conclusion except for

the situation inf � = ��1 . We claim that in this critical case, the solution is GP.

Suppose this is not true. This means that for � > ��1 , the solution is GP, but for

��1 the solution is non-GP. We know that _a
�(T ) = 0 for some �nite time T . We can

construct a sequence such that �n ! ��1+ by the continuous dependence of solutions

on the initial conditions, in the bounded domain where a(t) � � and b(t) � � with
some constant � > 0 for 0 < t � T . Then there exists a constant N such that

_an(T ) = _a�(T ) = 0 for n � N , by the continuous dependence of the initial values:
It means there exist some �n for n � N , such that the corresponding solution is

non-GP. This contradiction proves our claim.

Proposition 2.12 Suppose

� � �; �1
�
<
�1
�

and �1�1 �
1

( � 1) (��)�1
� �0

for some positive constant �0 > 0. Then the solution is NGP.

Proof: From the second proof of Corollary 1, we see that if a(t) and b(t) are GP,

then when t is su¢ciently large, we have

1

(a(t)b(t))�1
< �

with a su¢ciently small constant � > 0. By applying Proposition 4 with � � �;

�1=� < �1=�, we obtain

b(t) > a(t)

1

b(t)
<

1

a(t)
:

Suppose the conclusion is not true. Then _a(t) > 0 for all time t > 0:
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By integrating the Emden system, we have

_a(0)� _a(t) =

Z t

0

ds

a(s)b�1(s)
;

_a(0) =

Z t

0

ds

a(s)b�1(s)
+ _a(t):

Hence,

_a(0) �
Z t

0

ds

a(s)b�1(s)
:

On the other hand, we have

_b(0)� _b(t) =
Z t

0

ds

a�1(s)b(s)
�
Z t

0

ds

a(s)b�1(s)
� _a(0):

_b(t) � _b(0)� _a(0) = �1 � �1:

Hence,
h

_b(t)
i2
� (�1 � �1)2 : (2.42)

From the total energy, we have

_a2(t)

2
+
_b2(t)

2
� 1

( � 1) (a(t)b(t))�1
= � =

(�1)
2

2
+
(�1)

2

2
� 1

( � 1) (��)�1

(�1 � �1)2
2

�
_b2

2
<
(�1)

2

2
+
(�1)

2

2
� 1

( � 1) (��)�1
+

�

( � 1) :

With a su¢ciently small constant � > 0, when t is su¢ciently large,

(�1 � �1)2 � (�1)2 + (�1)2 �
2

( � 1) (��)�1
+

2�

( � 1)

�1�1 >
1

( � 1) (��)�1
� �

( � 1) : (2.43)

Then, by choosing the constant �
(�1) � �0, inequality (2.43) contradicts the second

condition in the hypotheses. Therefore, the solution must be NGP.

Remark: Proposition 2.8 covers the example � = � = 1, �1 =
1
2 and �1 =

199
100 , but Corollary 2.5 does not. This shows that Proposition 2.8 is stronger than

Corollary 2.5.

For  = 2, the system has a second invariant.

Proposition 2.13 The Emden system

8

>

<

>

:

�a(t) =
�1

a2(t)b(t)
;

�b(t) =
�1

a(t)b2(t)
;

(2.44)
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has a second invariant

�2 =
(_a(t)b(t)� a(t)_b(t))2

2
�
Z t

0

 

� _a(t)b(t)
a2(t)

+
_a(t)b(t)

b2(t)
+
a(t)_b(t)

a2(t)
� a(t)

_b(t)

b2(t)

!

ds:

Proof: The function �2 is conserved because

d�2
dt

= (_a(t)b(t)� a(t)_b(t))(�a(t)b(t) + _a(t)_b(t)� _a(t)_b(t)� a(t)�b(t))

�
 

� _a(t)b(t)
a2(t)

+
_a(t)b(t)

b2(t)
+
a(t)_b(t)

a2(t)
� a(t)

_b(t)

b2(t)

!

= (_a(t)b(t)� a(t)_b(t))(�a(t)b(t)� a(t)�b(t))

�
 

� _a(t)b(t)
a2(t)

+
_a(t)b(t)

b2(t)
+
a(t)_b(t)

a2(t)
� a(t)

_b(t)

b2(t)

!

= (_a(t)b(t)� a(t)_b(t))
� �b(t)
a2(t)b(t)

� �a(t)
a(t)b2(t)

�

�
 

� _a(t)b(t)
a2(t)

+
_a(t)b(t)

b2(t)
+
a(t)_b(t)

a2(t)
� a(t)

_b(t)

b2(t)

!

= (_a(t)b(t)� a(t)_b(t))
� �1
a2(t)

+
1

b(t)2

�

�
 

� _a(t)b(t)
a2(t)

+
_a(t)b(t)

b2(t)
+
a(t)_b(t)

a2(t)
� a(t)

_b(t)

b2(t)

!

=
� _a(t)b(t)
a2(t)

+
_a(t)b(t)

b2(t)
+
a(t)_b(t)

a2(t)
� a(t)

_b(t)

b2(t)

�
 

� _a(t)b(t)
a2(t)

+
_a(t)b(t)

b2(t)
+
a(t)_b(t)

a2(t)
� a(t)

_b(t)

b2(t)

!

= 0:

When N =  = 2, we have the following corollary:

Corollary 2.7 A solution of the Emden system with N =  = 2 is GP if and only

if the solution of each of the following two initial value problems is GP:

8

>

<

>

:

�A(t) = �1
A2(t)

p
2�t2+2(a10a11+a20a21)t+�2+�2�A2(t)

A(0) = � > 0; _A(0) = �1;

and
8

>

<

>

:

�B(t) = �1
B2(t)

p
2�t2+2(a10a11+a20a21)t+�2+�2�B2(t)

B(0) = � > 0; _B(0) = �1:
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2.6 Cylindrical Solutions for the Euler-Poisson Equa-

tions

In this section, we construct cylindrical solutions for the N -dimensional Euler-

Poisson equations,

8

>

>

>

>

>

<

>

>

>

>

>

:

�t +r � ~u�+r� � ~u = 0

�

 

@ui
@t

+

N
X

k=1

uk
@ui
@xk

!

+
@

@xi
P (�) = �� @

@xi
�(�) for i = 1; 2; :::N

��(t; ~x) = �(N)�:

(2.45)

We observe that the functions for RN (N � 3)
8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�(t; r) = �(t; �r) =
1

a2(t)
ey(�r=a(t)),

~u(t; ~x) =
_a(t)

a(t)
(x1; x2; 0; :::; 0)

�a(t) =
��
a(t)

; a(0) = a1 > 0; _a(0) = a2

�y(z) +
1

z
_y(z) +

�(N)

K
e
y(z)

=
2�

K
; y(0) = �; _y(0) = 0

(2.46)

with �r =
p

x21 + x
2
2 are the trivial extended cylindrical solutions for Yuen�s 2-

dimensional solutions [80].

The following Theorem is the corresponding result for the cylindrical case with

non-trivial i-th (i � 3) component of the velocity ~u.

Theorem 2.14 ([89]) The isothermal Euler-Poisson equations (2.45) in RN (N �
3) has the following family of solutions,

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�(t; ~x) = C
a2(t)

e�
�(s)
K ,

~u(t; ~x) =

�
a(t)

a(t)
(x1; x2; x1 + x2; :::x1 + x2)

a(t) = a0 + a1t

s��(s) + _�(s)� ��e�
�(s)
K = 0; �(0) = �, _�(0) = ��e�

�
K

(2.47)

where s =
x21 + x

2
2

a2(t)
; a0 > 0; a1 ; C > 0;

�(N)C

4
= �� and � are arbitrary constants.

(1) If a1 < 0, the solutions (2.47) blow up at the �nite time T = �a0=a1:
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(2) If a1 � 0, the solutions (2.47) exist globally.

Remark 2.14 Our 3-dimensional blowup solutions (2.47) and (2.46) could be used

to interpret the evolution of cylindrical clouds for star formation in astrophysics.

For details about the physical meaning of cylindrical solutions for the Euler-Poisson

system (2.45), readers may refer to the related literature Shu-Adams-Lizano [67],

Tomisaka [71], Cook-Shapiro-Stephens [20] and Holden-Hoppins-Baxter-Fatuzzo [37].

Lemma 2.6 For the continuity equation (2.45)1 in R
N , there exist solutions with

the following functional structure

�(t; ~x) =
f (s)

a2(t)
; ~u(t; ~x) =

�
a(t)

a(t)
(x1; x2; x1 + x2; :::; x1 + x2) (2.48)

with arbitrary C1 scalar functions f(s) � 0 and s = x21 + x
2
2

a2(t)
, a(t) 6= 0.

Proof. We plug the solutions (2.48) into the continuity equation (2.45)1,

�t +r � ~u�+r� � ~u

=
@

@t

�

f (s)

a2(t)

�

+

�

r � _a(t)
a(t)

(x1; x2; x1 + x2; :::; x1 + x2)

�

f (s)

a2(t)

+

�

r f (s)
a2(t)

�

� _a(t)
a(t)

(x1; x2; x1 + x2; :::; x1 + x2)

=
�2 _a(t)
a3(t)

f (s) +
1

a2(t)

@

@t
f (s)

+
_a(t)

a(t)

 

@

@x1
x1 +

@

@x2
x2 +

N
X

i=3

@

@xi
(x1 + x2)

!

f (s)

a2(t)

+
_a(t)

a(t)

"

@

@x1

f (s)

a2(t)
� x1 +

@

@x2

f (s)

a2(t)
� x2 +

N
X

i=3

@

@xi

f (s)

a2(t)
� (x1 + x2)

#

=
�2 _a(t)
a3(t)

f (s)� 2

a2(t)
_f (s)

(x21 + x
2
2) _a(t)

a3(t)
+
2 _a(t)

a(t)

f (s)

a2(t)

+
_a(t)

a(t)

"

_f (s)

a2(t)

2x21
a2(t)

+
_f (s)

a2(t)

2x22
a2(t)

#

= 0:
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The following lemma takes care of the Poisson equation (2.45)3 for our solutions

(2.47).

Lemma 2.7 The function

� =
C

a2(t)
e�

�(s)
K (2.49)

satis�es the Poisson equation (2.45)3 in R
N (N � 3). Here, �(s) satis�es the

second-order ordinary di¤erential equation (2.47)4.

Proof. We can check that our potential functions �(t; x1;x2) satisfy the Poisson

equation (2.45)3

��(t; ~x)� �(N)�

= r � r� (s)� �(N)C
a2(t)

e�
�(s)
K

= r �
�

@

@x1
� (s) ;

@

@x2
� (s) ;

@

@x3
� (s) ; :::;

@

@xN
� (s)

�

� �(N)C
a2(t)

e�
�(s)
K

=
@

@x1

�

_�(s)
2x1
a2(t)

�

+
@

@x2

�

_�(s)
2x2
a2(t)

�

� �(N)C
a2(t)

e�
�(s)
K

= ��(s)
4x21
a4(t)

+ _�(s)
2

a2(t)
+ ��(s)

4x22
a4(t)

+ _�(s)
2

a2(t)
� �(N)C

a2(t)
e�

�(s)
K

=
4

a2(t)

�

s��(s) + _�(s)� �(N)C
4

e�
�(s)
K

�

:

In view of (2.47)4, we see that the Poisson equation is satis�ed.

The following lemma establishes the global existence of the function �(s). Similar

lemmas have been given as Lemmas 9 and 10, in [80].

Lemma 2.8 Given K > 0 and arbitrary �, there exists a small constant "�, such

that 0 < "� < K, the ordinary di¤erential equation (2.47)4 has a unique solution

�(s) 2 C1[0;1).

Proof. First, the equation (2.47)4 can be rewritten as

d

ds

�

s _�(s)
�

= "�e�
�(s)
K :

With the initial conditions: �(0) = � and _�(0) = ��e�
�
K , we deduce that

_�(s) =
"�

s

Z s

0
e�

�(�)
K d� > 0: (2.50)
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Set

f(s; �(s)) =
"�

s

Z s

0
e�

�(�)
K d�:

For any s0 > 0, f 2 C1[0; s0]. For any �1; �2 2 C1[0; s0], we have,

jf(s; �1(s))� f(s; �2(s))j =
"�
�

�

�

�

R s
0

�

e�
�2(�)
K � e�

�1(�)
K

�

d�

�

�

�

�

s
:

As e� is a C1 function of �, we can show that the function e� is Lipschitz-continuous.

Then we get,

jf(s; �1(s))� f(s; �2(s))j

=
"�
R s
0 j�2(�)� �1(�)j d�

Ks

� "�

K

�

sup
0�s�s0

j�1(s)� �2(s)j
�

:

Let

T�(s) = �+

Z s

0
f(�; �(�))d�:

We have T� 2 C[0; s0] and

jT�1(s)� T�2(s)j

=

�

�

�

�

Z s

0
f(�; �1(�))d� �

Z s

0
f(�; �2(�))d�

�

�

�

�

� "�

K

�

sup
0�s�s0

j�1(s)� �2(s)j
�

:

By choosing the small constant "�, such that 0 < "� < K, this shows that the

mapping T : C[0; s0] ! C[0; s0], is a contraction with the sup-norm. By the �xed

point theorem, there exists a unique �(s) 2 C[0; s0]; such that T�(s) = �(s).
In addition, from the equation (2.50), we see that the function �(s) is increasing

�(0) � �(s); for s 2 [0;+1):

Then, we have

0 � f(s; �(s)) = "�

s

Z s

0
e�

�(�)
K d� � "�

s

Z s

0
e�

�(0)
K d� = "�e�

�(0)
K :

As the function f(s; �(s)) is bounded and Lipschitz for any �nite time s 2 [0;+1),
the conditions of the Picard�s existence theorem are satis�ed to have the global
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existence of the solutions. Therefore, given K > 0 and arbitrary �, there exists a

small constant "�, such that 0 < "� < K, the ordinary di¤erential equation (2.47)4

has a unique solution �(s) 2 C1[0;1).
The �gure below shows the shape of the solution for the particular equation with

�� = K = 1 and � = 0
8

<

:

s��(s)+ _�(s)� e��(s)= 0
�(0) = 0, _�(0) = 1:

(2.51)

Fig. 2.1: �(s) in the equation (2.51)

We are now ready to check that the solutions (2.47) satisfy the Euler-Poisson

equations (2.45).
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Proof of Theorem 2.14. By Lemma 2.6 and Lemma 2.7, the functions (2.47)

satisfy (2.45)1 and (2.45)3. For the �rst component of the isothermal momentum

equations (2.45)2 in R
N (N � 3), we have

�

 

@u1
@t

+
N
X

k=1

uk
@u1
@xk

!

+
@

@x1
K�+ �

@�

@x1

= �

0

B

@

@
@t
_a(t)
a(t)x1 +

_a(t)x1
a(t)

@
@x1

_a(t)x1
a(t) +

_a(t)x2
a(t)

@
@x2

_a(t)x1
a(t)

+
N
P

i=3

_a(t)(x1+x2)
a(t)

@
@xi

�

_a(t)x1
a(t)

�

1

C

A
+K

@

@x1

Ce�
�(s)
K

a2(t)
+ �

@�

@x1
(s)

= �

��

�a(t)

a(t)
� _a2(t)

a2(t)

�

x1 +
_a(t)x1
a(t)

_a(t)

a(t)

�

� Ce
�

�

 

x21+x
2
2

a2(t)

!

K

a2(t)

@�

@x1
(s) + �

@�

@x1
(s)

= �
�a(t)

a(t)
x1 � �

@� (s)

@x1
+ �

@� (s)

@x1

= 0

with

a(t) = a0 + a1t

for a0 > 0:

A similar conclusion holds for the second component of the momentum equations.

For the i-th component (i � 3) of the isothermal momentum equations (2.45)2

in RN , we verify that

�

 

@ui
@t

+
N
X

k=1

uk
@ui
@xk

!

+
@

@xi
K�+ �

@�

@xi

= �

0

@

@
@t
_a(t)(x1+x2)

a(t) + _a(t)x1
a(t)

@
@x1

_a(t)x1
a(t) +

_a(t)x2
a(t)

@
@x2

_a(t)x2
a(t)

+
PN
k=3 uk

@
@xk

_a(t)(x1+x2)
a(t)

1

A

+K
@

@xi

e�
�(s)
K
+C

a2(t)
+ �

@

@xi
� (s)

= �

��

�a(t)

a(t)
� _a2(t)

a2(t)

�

(x1 + x2) +
_a2(t)x1
a(t)2

+
_a2(t)x2
a2(t)

�

= �
�a(t)

a(t)
(x1 + x2)

= 0:
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Therefore, our functions (2.47) satisfy the Euler-Poisson equations.

The statements (1) and (2) are obviously true.

The blowup rate of the constructed solutions is easily obtained.

Corollary 2.8 The blowup rate of the solutions (2.47) is

lim
t!T

�(t;~0) (T � t)2 � O(1):

Remark 2.15 The functions

�(t; ~x) =
C

a2(t)
e�

�(s)
K , ~u(t; ~x) =

�
a(t)

a(t)
(x1; x2; x3; :::; xN )

are not the solutions for the Euler-Poisson equations (2.45) in RN (N � 3):

Remark 2.16 Our solutions (2.47) and (2.46) also work for the isothermal Navier-

Stokes-Poisson equations in RN (N � 3)
8

>

>

>

<

>

>

>

:

�t+r � (�~u) = 0

� [~u+ (~u � r) ~u] +rK� = ��r�+ ��~u
��(t; ~x) = �(N)�

where � > 0 is a positive constant.

2.7 Line Symmetric Solutions for the Euler-Poisson Equa-

tions

In this section, we obtain novel results in the line symmetric case for the 2-dimensional

Euler-Poisson equations (2.52)

8

>

>

>

<

>

>

>

:

�t+r � (�~u) = 0
� [~u+ (~u � r) ~u] +rP = ��r�

��(t; ~x) = �(N)�

: (2.52)

as given in the following theorem.
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Theorem 2.15 ([86]) For the 2-dimensional isothermal Euler-Poisson equations

(2.52), there exists a family of solutions,

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�(t; x; y) = C
a2(t)

e�
�

�

Ax+By
a(t)

�

K

~u(t; x; y) =
_a(t)

a(t)
(x; y)

a(t) = a0 + a1t

��(s)� ��e��(s)
K = 0; �(0) = �; _�(0) = �

(2.53)

where A; B � 0, such that A and B are not both 0, C > 0, a0 6= 0; a1,
2�C

A2 +B2
=

�� > 0, � and � are arbitrarily constants.

(1) If a0 > 0 and a1 < 0, the solutions (2.53) blow up at the �nite time T =

�a1=a0.

(2) If a0 > 0 and a1 � 0, the solutions (2.53) are global.

Lemma 2.9 For the continuity equation (2.52)1 in R
2, there exist solutions of the

form

�(t; x; y) =

f

�

Ax+By

a(t)

�

a2(t)
; ~u(t; x; y) =

�
a(t)

a(t)
(x; y) (2.54)

where the scalar function f(s) � 0 2 C1 and a(t) 6= 0 2 C1:

Proof. We plug the solutions (2.53) into the continuity equation (2.52)1,

�t +r � ~u�+r� � ~u

=
@

@t

2

6

6

4

f

�

Ax+By

a(t)

�

a2(t)

3

7

7

5

+r � _a(t)
a(t)

(x; y)

f

�

Ax+By

a(t)

�

a2(t)

+r
f

�

Ax+By

a(t)

�

a2(t)
� _a(t)
a(t)

(x; y)

=
�2 _a(t)
a3(t)

f

�

Ax+By

a(t)

�

+
1

a2(t)

@

@t
f

�

Ax+By

a(t)

�

+
_a(t)

a(t)

�

@

@x
x+

@

@y
y

� f

�

Ax+By

a(t)

�

a2(t)
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+
_a(t)

a(t)

2

6

6

4

@

@x

f

�

Ax+By

a(t)

�

a2(t)
� x+ @

@y

f

�

Ax+By

a(t)

�

a2(t)
� y

3

7

7

5

=
�2 _a(t)
a3(t)

f

�

Ax+By

a(t)

�

� 1

a2(t)
_f

�

Ax+By

a(t)

�

(Ax+By) _a(t)

a2(t)

+ 2
_a(t)

a(t)

f

�

Ax+By

a(t)

�

a2(t)

+
_a(t)

a(t)

2

6

6

4

_f

�

Ax+By

a(t)

�

a2(t)

Ax

a(t)
+

_f

�

Ax+By

a(t)

�

a2(t)

By

a(t)

3

7

7

5

= 0:

The global existence of solutions for the ordinary di¤erential equation (2.53)3

can be shown as follows.

Lemma 2.10 The equation,

8

<

:

��(s)� ��e�
�(s)
K = 0

�(0) = �, _�(0) = �
(2.55)

where �� > 0, � and � are constants, has a solution in �(s) 2 C2(�1; 1) and
lim

s!�1
�(s) =1.

Proof. The proof is similar to Lemma 3 in [84].

Multiply equation (2.55) by _a(t) and then integrate it to obtain

(��(s)� ��e�
�(s)
K ) _�(s) = 0

Z s

0

_�(�)d _�(�)� ��
Z s

0
e�

�(�)
K d�(�) = 0

1

2
_�2(s) + ��e�

�(s)
K = �

with the constant � = 1
2
_�2(0) + ��e�

�(0)
K > 0.

We de�ne the kinetic energy as

Fkin(t) :=
_�2(t)

2
(2.56)
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and the potential energy as

Fpot(t) = �
�e�

�(t)
K : (2.57)

The total energy is conserved

d

dt
(Fkin(t) + Fpot(t)) = 0

Fkin(t) + Fpot(t) = �:

By the classical energy method for conservative systems (in Section 4.3 of [45]), the

solutions have a trajectory. We may calculate the required time for traveling the

whole orbit

T =

Z T

0

d�(�)
q

2(� � ��e��(�)
K )

=

Z 1

�

d�
q

2(� � ��e� �
K )

�
Z 1

�

d�p
2�

=1:

Therefore, the solution �(s) exists globally for s 2 [0;1) and lim
s!1

�(s) =1:
For the interval s 2 (�1; 0]; the proof is similar.
On the other hand, the following lemma handles the Poisson equation (2.52)3

for our solutions (2.53).

Lemma 2.11 The solutions

� =
C

a2(t)
e�

�

�

Ax+By
a(t)

�

K (2.58)

with the second-order ordinary di¤erential equation

��(s)� ��e�
�(s)
K = 0; �(0) = �, _�(0) = � (2.59)

where s := (Ax+By)=a(t) and C, 2�C
A2+B2

= �� > 0, � and � are constants,

satisfy the Poisson equation (2.52)3 in R
2.
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Proof. We check that our potential function �(t; x; y) satis�es the Poisson equation

(2.52)3

��(t; x; y)� 2��

=
@

@x

�

_�

�

Ax+By

a(t)

�

A

a(t)

�

+
@

@y

�

_�

�

Ax+By

a(t)

�

B

a(t)

�

� 2�C

a2(t)
e�

�

�

Ax+By
a(t)

�

K

=
A2 +B2

a2(t)

�

��(s)� 2�C

A2 +B2
e�

�(s)
K

�

;

where A and B are not both 0. By choosing s := (Ax+By)=a(t) and requiring the

ordinary di¤erential equation

��(s)� ��e�
�(s)
K = 0; �(0) = �, _�(0) = �;

to hold with 2�C
A2+B2

= ��, and � and � are the constants given in Lemma 2.10, we

see that the solutions (2.58) satisfy the Poisson equation (2.52)3.

With the above Lemmas, it is easy to check that the solutions satisfy the Euler-

Poisson equations (2.52). The main technique exploited in our approach is to use

the pressure term rK� to balance the potential term ��r� for the momentum
equations. We omit the details.

Remark 2.17 For the case of A = 0 and B = 0, the corresponding solutions (2.53)

reduce to the special solutions in [79].

Remark 2.18 Denote z = Ax + By. From Lemma (2.10), before the blowup time

T , we have

lim
z!�1

�(t; x; y) = lim
z!�1

C

a2(t)
e�

�

�

z
a(t)

�

K = 0: (2.60)
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Chapter 3

The Separation Method for

Shallow Water Systems

In Chapter 2, we saw the successful application of the separation method to various

versions of the Euler�s equations. In this chapter, we further extend the method to

construct self-similar solutions for the shallow water systems, modelled respectively

by the 2-component Camassa-Holm and Degasperis-Procesi equations.

3.1 The 2-Component Camassa-Holm Equations

The 2-component Camassa-Holm equations refer to the system

8

<

:

�t + u�x + �ux = 0

mt + 2uxm+ umx + ���x = 0
(3.1)

with

m = u� �2uxx: (3.2)

Here � can assume the value of 1 or �1 depending on the physical properties of the
system.

In [85], we made the observations that (3.1) is similar to the isentropic Euler

system in some sense, and applied the separation method to obtain some exciting

results. As before, we were able to reduce the nonlinear partial di¤erential equations

(3.1) to simpler ordinary di¤erential equations, from which the solutions can be

constructed. The result is reproduced below.
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Theorem 3.1 ([85]) De�ne the function a(s) as the solution of the Emden equation

8

<

:

��
a(s)� �

3a1=3(s)
= 0

a(0) = a0 6= 0;
�
a(0) = a1

(3.3)

and

f(�) =
�

�

s

��
�
�2 +

�

��

�

�2

(3.4)

where � = x
a1=3(s)

, � � 0; � 6= 0, a0 and a1 are arbitrary constants.
For the 2-component Camassa-Holm equations (3.1), there exists a family of solu-

tions

(1) For � = �1;

(1a) with � < 0 and a0 > 0;

�(t; x) =

8

<

:

f(�)

a1=3(3t)
; for �2 < ��2

�

0; for �2 � ��2

�

; u(t; x) =

�
a(3t)

a(3t)
x: (3.5)

The solution (3.5) blows up at a �nite time T .

(1b) with � > 0 and a0 < 0;

�(t; x) =
f (�)

a1=3(3t)
; u(t; x) =

�
a(3t)

a(3t)
x: (3.6)

The solution (3.6) may exist globally or blow up in �nite time depending

on the initial value _a(0);

(2) for � = 1;

(2a) with � > 0 and a0 > 0;

�(t; x) =

8

<

:

f(�)

a1=3(3t)
; for �2 < �2

�

0; for �2 � �2

�

; u(t; x) =

�
a(3t)

a(3t)
x: (3.7)

The solution (3.7) may exist globally or blow up in �nite time depending

on the initial value _a(0);

(2b) with � < 0 and a0 < 0;

�(t; x) =
f (�)

a1=3(3t)
; u(t; x) =

�
a(3t)

a(3t)
x: (3.8)

The solution (3.8) blows up at a �nite time T .
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As our �rst step, we design a nice functional structure for the solutions of the

mass equation, which is similar to that for the Euler system.

Lemma 3.1 For the 1-dimensional equation of mass (3.1)1

�t + u�x + �ux = 0; (3.9)

there exist solutions

�(t; x) =
f(�)

a1=3(3t)
; u(t; x) =

�
a(3t)

a(3t)
x (3.10)

for arbitrary f(�) � 0 2 C1 with � = x
a1=3(3t)

, and arbitrary a(3t) > 0 2 C1:

Proof. Substituting (3.10) into (3.9), we obtain

�t + u�x + �ux

=
@

@t

�

f(�)

a1=3(3t)

�

+

�
a(3t)

a(3t)
x
@

@x

�

f(�)

a1=3(3t)

�

+
f(�)

a1=3(3t)

@

@x

 �
a(3t)

a(3t)
x

!

=
1

a
1=3+1

(3t)
(�1
3
) � �a(3t) � 3 � f(�) + 1

a1=3(3t)

�
f(�)

@

@t
(

x

a1=3(3t)
)

+

�
a(3t)x

a(3t)

�
f(�)

a(3t)

@

@x

�

x

a1=3(3t)

�

+
f(�)

a1=3(3t)

�
a(3t)

a(3t)

= �
�
a(3t)f(�)

a1=3+1(3t)
+

1

a1=3(3t)

�
f(�)

x

a1=3+1(3t)

1

3
_a(3t) � 3

+

�
a(3t)x

a(3t)

�
f(�)

a1=3(3t)

1

a1=3(3t)
+

f(�)

a1=3(3t)

�
a(3t)

a(3t)

= 0:

Equation (3.3)1 is a particular case of the more general equation

�a(s)� � sign(a(s))ja(s)j� = 0; (3.11)

where 0 < � < 1, which in turn is a particular case of (2.14). The qualitative

properties of (3.11) have been studied in [24] and [80]. Local existence of solutions

is covered by standard theory. The blowup property of the time function a(s) is

given by the following lemma.

Lemma 3.2 For the Emden equation (3.11), with initial conditions (3.3)2,
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(1) if � < 0, there exists a �nite time S, such that lim
s!S�

a(s) = 0:

(2) if � > 0 and a0 > 0 there exists a �nite time S, such that lim
s!S�

a(s) = 0 if and

only if a1 � �
q

2�a1��0 =(1� �). In the contrary case, the solution a(s) exists
globally and

lim
s!1

a(s) =1: (3.12)

(3) if � > 0 and a0 < 0 there exists a �nite time S, such that lim
s!S�

a(s) = 0 if and

only if a1 �
p

2�ja0j1��=(1� �). In the contrary case, the solution a(s) exists
globally and

lim
s!1

a(s) = �1: (3.13)

Proof. (1) By assumption � < 0, implying that the curve a(s) concaves downwards.

Suppose that _a(�) � 0 at some �nite time � > 0. Then _a(s) < 0 for s > � and so
the curve must intersect the s-axis at some �nite S > �.

It remains to show that the contrary case cannot happen. In that case, _a(s) > 0

for all s > 0 and a(s) is an increasing function.

As in the proof of Lemma 2.4, (3.11) has a �rst integral given by the conservation

identity
_a2(s)

2
� �a

1��(s)
1� � = E (3.14)

where the two terms on the left-hand side are the kinetic and potential energies,

respectively, and E is a constant determined by the initial conditions.

Since � < 0, both terms on the left-hand side of (3.14) are positive. Therefore,

each term is bounded above by E. As a consequence, a(s) is bounded above. and so

a(s) converges to a �nite limit a�, which can be determined from (3.14) by noting

that _a(s)! 0 as s!1.
The di¤erential equation (3.14) leads to the solution

Z a(s)

0

p
1� � da

p

2�(1� �) + 2�a1��
= s: (3.15)

As s ! 1, the upper limit a(s) ! a�. Since the denominator of the integrand

vanishes at a = a�, the left-hand side is an improper integral. It is easy to verify,

however, that the integral converges because the power of a in the denominator is

less than 1. However, this contradicts the fact that the right-hand side is unbounded

as s!1, and completes the proof of (1).
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(2) for � > 0, a0 > 0 and

(a) E < 0, as the in�mum of a(s) is

ainf =

��E(1� �)
�

�
1

1��

> 0;

the solution a(s) is uniformly bounded below. The time for achieving the in�mum

is �nite if a1 < 0,

S1 =

Z S1

0
ds =

Z a0

ainf

p
1� � da

p

2E(1� �) + 2�a1��
< +1:

Therefore, for any constant a1, the solution a(s) must increase, after some �nite

time. Moreover, the time for traveling the interval [ainf ;+1) or [a0;+1) is in�nite,

S2 =

Z +1

ainf

p
1� � da

p

2E(1� �) + 2�a1��
< +1:

Therefore, we showed that the solution a(s) globally exists, such that

lim
s!+1

a(s) = +1;

(b) E � 0, from the total energy (3.14), we have

_a2(s)

2
� �a

1��(s)
1� � � 0

_a(s) � �
p

2�a1��(s)=(1� �) or _a(s) �
p

2�a1��(s)=(1� �)

For the case a1 �
q

2�a1��0 =(1� �), we can repeat the above analysis to show that
the solution a(t) exists globally, such that

lim
s!+1

a(s) = +1:

For the case, a1 �
q

2�a1��0 =(1� �), we have

1
1��
2 + 1

a(s)
1��
2
+1 � �

p

2�=(1� �)s+ 1
1��
2 + 1

a
1��
2
+1

0 :

Then, we may see that there exists a su¢ciently large S, such that lim
s!S�

a(s) = 0:

By combining the above two cases, we have statement (2): if � > 0 and a0 > 0 there

exists a �nite time S, such that lim
s!S�

a(s) = 0 if and only if a1 � �
q

2�a1��0 =(1� �).
In the contrary case, the solution a(s) exists globally and

lim
s!1

a(s) =1:
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We complete the proof of (2).

(3) We may let b(t) = �a(t); for the Emden equation with a0 < 0,
8

<

:

�a(s)� � sign(a(s))
ja(s)j� = 0;

a(0) = a0 < 0, _a(0) = a1

have
8

<

:

�b(s) + � sign(a(s))
jb(s)j� = 0;

b(0) = b0 > 0, _b(0) = b1:
(3.16)

Then by applying the similar analysis in the proof of statement (2) for the equation

(3.16), it is clear to have statement (3).

Fig. 3.1: curve for potential energy � �a1��(s)
1�� with � = �3 and � = 1=3
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Fig. 3.2: phase diagram of the dynamical system (a(s); _a(s)) with � = �3 and
� = 1=3
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Fig. 3.3: curve for potential energy � �a1��(s)
1�� with � = 3 and � = 1=3:

Proof of Theorem 3.1. From Lemma 3.1, it is clear that functions (3.5), (3.6),

(3.7) and (3.8) satisfy the mass equation, (3.1)1, except for the two boundary points.

As the velocity u in the solutions (3.5)�(3.8) is a linear �ow, uxx = 0 and so

m = u. The second equation of the (3.1)2, becomes

mt + 2uxm+ umx + ���x

= ut + 3uxu+ ���x



63

=
@

@t

�

_a(3t)

a(3t)

�

x+ 3

�

_a(3t)

a(3t)

�

x
_a(3t)

a(3t)
+ %sigma

f(�)

a1=3(3t)

�

f(�)

a1=3(3t)

�

x

=

�

3
�a(3t)

a(3t)
� 3 _a

2(3t)

a2(3t)

�

x+ 3

�

_a(3t)

a(3t)

�

_a(3t)

a(3t)
x

+ �
f(�)

a1=3(3t)

_f(�)

a1=3(3t)

1

a1=3(3t)

= 3
�a(3t)

a(3t)
x+ �

f(�) _f(�)

a(3t)

=
�

a(3t)

�

�

�
� + f(�) _f(�)

�

:

We have used the fact that a(s), with s = 3t satis�es the Emden equation (3.3).

Now if we choose f(�) as in (3.4), we see that the last expression above vanishes

and so (3.1)2 is satis�ed.

For the graphical illustration of the solution (3.7), for the integrable system with

� = 1, � = 1, � = 1, and a0 = 1, the initial shape of the self-similar solution can be

found in Fig.3.4 below.
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Fig. 3.4: �(0; x) =
p
�x2 + 1

For the solution (3.8) with � = 1, � = �1, � = 1, and a0 = �1, the correspond-
ing graph is shown in Fig.3.5 below.
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Fig. 3.5: �(0; x) =
p
x2 + 1

Remark 3.1 If the solution blows up at a �nite time T , it collapses at the origin

in the sense that

lim
t!T�

�(t; 0) =1:

If the solution exists globally, then at the origin,

lim
t!1

�(t; 0) = 0:

Remark 3.2 The solutions (3.5) and (3.7) are only C0 functions, as the function

f(�) is discontinuous at the two boundary points, for � > 0,

lim
�2!

�

�

�

�
�

�

�

�

_f(�) 6= 0:
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Remark 3.3 For the integrable system with � = 1, we can calculate the mass of

(1) the blowup solution (3.8) (or (3.8)), � < 0 and a0 < 0

Mass =

Z 1

�1
�(0; x)dx

=
�

a
1=3
0

Z 1

�1

v

u

u

t�1
�

 

x

a
1=3
0

!2

+

�

1

�
�

�2

dx

=1;

(2) the global solution (3.7), � > 0 and a0 > 0

Mass =

Z 1

�1
�(0; x)dx

= 2

Z a
1=3
0 �

q

1
�

0

f

�

x

a
1=3
0

�

a
1=3
0

dx

=
2�

a
1=3
0

Z a
1
3
o �
q

1
�

0

v

u

u

t�1
�

 

x

a
1=3
0

!2

+

�

�

�

�2

dx

= 2�

Z �
q

1
�

0

s

�1
�
s2 +

�

�

�

�2

ds

=
2�p
�

Z �
q

1
�

0

s

�2

�
� s2ds

=
�2�

2
p
�
:

We are also interested in how fast the blowup solutions tends to in�nity as t

approaches the critical time T .

Theorem 3.2 The blowup rate of the solutions (3.5) and (3.8) for � > 0, is

lim
s!S�

�(s; 0)(S � s)1=3 > 0:

Proof. We only need to study the blowup rate of the Emden equation (3.3) with

� < 0:
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Assume the total energy E > 0;.

S = s+

Z S

s
d�

= s+

Z 0

a(s)

d�

da
da

= s�
Z 0

a(s)

1
p

2E + 3�a2=3(�)
da

� s+
Z a(s)

0

da(�)p
2E

:

That is,

(S � s)1=3 � �a1=3(s)

for some � > 0. It follows that

lim
s!S�

�(s; 0)(S � s)1=3 = lim
s!S�

�

a1=3(s)
(S � s)1=3 � �� > 0:

Note that our blowup rate in the above theorem is di¤erent from the results in

Constantin and Escher [16] and [13].

3.2 The 2-Component Degasperis-Procesi Equations

It is natural to ask if the above result can be extended to the 2-component Degasperis-

Procesi equations

8

<

:

�t + k2u�x + (k1 + k2)�ux = 0; x 2 R
ut � uxxt + 4uux � 3uxuxx � uuxxx + k3��x = 0:

(3.17)

The separation method has indeed been applied successfully again for this purpose

in [92].

Theorem 3.3 ([92]) De�ne the function a(s) to be the solution of the Emden equa-

tion
8

<

:

��
a(s)� �

4a�(s) = 0

a(0) = a0 > 0;
�
a(0) = a1

(3.18)

and

f(�) = k3�

s

� �
2

k3�
+

�

�

k3�

�2

(3.19)
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where � = x
ak2=4(s)

with s = 4t; � = k1
2 +k2�1; � � 0; � 6= 0, a0 and a1 are constants.

For the 2-component Degasperis-Procesi system (3.17), there exists a family of so-

lutions.

(1) For k3 = 0; and � = 0; we have

�(t; x) =
�0(�)

a(k1+k2)=4(4t)
; u(t; x) =

�
a(4t)

a(4t)
x (3.20)

where �0 � 0 is an arbitrary C1 function.

(2) For k3 > 0 and � > 0; or

(3) For k3 < 0 and � < 0; we have

�(t; x) = max

�

f (�)

a(k1+k2)=4(4t)
; 0

�

; u(t; x) =

�
a(4t)

a(4t)
x: (3.21)

Our solutions (3.21) can shed some light on the evolution of breaking waves.

These are solutions that develop singularities due to unbounded derivatives while

remaining bounded themselves.

Notice that the mass of a solution of (3.17)1 is not conserved except when k1 = 0

and k2 = 1. Nevertheless, we can still obtain solutions with a nice functional struc-

ture for arbitrary k1 and k2.

Lemma 3.3 For the 1-dimensional equation of mass (3.17)1

�t + k2u�x + (k1 + k2)�ux = 0; (3.22)

there exist solutions of the form

�(t; x) =
f(�)

a(k1+k2)=4(4t)
; u(t; x) =

�
a(4t)

a(4t)
x (3.23)

with arbitrary f(�) � 0 2 C1, � = x
ak2=4(4t)

, and a(4t) > 0 2 C1:
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Proof. Direct veri�cation gives

�t + k2u�x + (k1 + k2)�ux

=
@

@t

 

f(�)

a
(k1+k2)=4(4t)

!

+ k2

�
a(4t)

a(4t)
x
@

@x

�

f(�)

a(k1+k2)=4(4t)

�

+ (k1 + k2)
f(�)

a(k1+k2)=4(4t)

@

@x

 �
a(4t)

a(4t)
x

!

=
1

a(k1+k2)=4+1(4t)

�

�(k1 + k2)
4

�

� �a(4t) � 4 � f(�)

+
1

a
(k1+k2)=4(4t)

�
f(�)

@

@t

�

x

ak2=4(4t)

�

+
k2

�
a(4t)x

a(4t)

�
f(�)

a
(k1+k2)=4(4t)

@

@x

�

x

ak2=4(4t)

�

+
(k1 + k2)f(�)

a(k1+k2)=4(4t)

�
a(4t)

a(4t)

= �(k1 + k2)
�
a(4t)f(�)

a(k1+k2)=4+1(4t)
� 1

a(k1+k2)=4(4t)

�
f(�)

x

ak2=4+1(4t)

k2
4
_a(4t) � 4

+
k2

�
a(4t)x

a(4t)

�
f(�)

a(k1+k2)=4(4t)

1

ak2=4(4t)
+ (k1 + k2)

f(�)

a(k1+k2)=4(4t)

�
a(4t)

a(4t)

= 0:

Proof of Theorem 3.3.

As in the proof of Theorem 3.1, uxx = 0 and the second equation in (3.17)

becomes

ut � uxxt + 4uux � 3uxuxx � uuxxx + k3��x

= ut + 4uux + k3��x

=
@

@t

�

_a(4t)

a(4t)

�

x+ 4

�

_a(4t)

a(4t)

�

x
_a(4t)

a(4t)

+ k3
f(�)

a(k1+k2)=4(4t)

�

f(�)

a(k1+k2)=4(4t)

�

x

=

�

4
�a(4t)

a(4t)
� 4 _a

2(4t)

a2(4t)

�

x+ 4

�

_a(4t)

a(4t)

�

_a(4t)

a(4t)
x

+ k3
f(�)

a(k1+k2)=4(4t)

_f(�)

a(k1+k2)=4(4t)

1

ak2=4(4t)

= 4
�a(4t)

a(4t)
x+ k3

f(�) _f(�)

a
k1
2
+
3k2
4 (4t)

=
k3

a
k1
2
+
3k2
4 (4t)

�

�

k3
eta+ f(�) _f(�)

�

:
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For k3 6= 0, we use the Emden equation (3.18) together with the change of variables
s := 4t, � := x=a

k2=4(s), and � = k1
2 + k2 � 1:

For k3 = 0; we have � = 0 and

�(t; x) =
�0(�)

a(k1+k2)=4(4t)
; u(t; x) =

�
a(4t)

a(4t)
x (3.24)

where �0 is an arbitrary C
1 function.

For the graphical illustration of the breaking wave solution (3.21), for the inte-

grable system with k3 = 1, � = 1, � = 2, and a0 = 1, we can see the initial shape of

the self-similar solution:

Fig. 3.6: �(0; x) =
p
�x2 + 22

The rest of the proof is now straightforward.
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Blowup properties of the solutions of (3.17), analogous to statements (1a) and

(2a) of Theorem 3.1, Remarks 3.1�3.3, and Theorem 3.2 can be similarly established.

We omit the details.
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Chapter 4

Pulsating Flows to the 2D

Euler-Poisson Equations

In this chapter, we show the existence of a class of �radially symmetric� rotational

solutions to the 2-dimensional pressureless Euler-Poisson equations. The �ows are

global (i.e., exist for all t > 0), have compact support at all time, and pulsate

periodically. Our result demonstrates that rotation can prevent blowup phenomena.

4.1 Introduction

The N -dimensional compressible Euler-Poisson equations

8

>

>

>

>

<

>

>

>

>

:

�t+r � (�~u) = 0

� [ ~ut + (~u � r) ~u ] +rP = � �r�

��(t; ~x) = �(N)�;

(4.1)

can be rewritten in the scalar form
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

@�

@t
+

N
X

k=1

uk
@�

@xk
+ �

N
X

k=1

@uk
@xk

= 0

�

 

@ui
@t

+
N
X

k=1

uk
@ui
@xk

!

+
@P

@xi
= �� @�

@xi
for i = 1; 2; :::N:

(4.2)

Existence and stability results can be found, for example, in [2], [7], [23], [25],

[29], [39], [50], [54], [55], [56], [57], [60], [69] and [81].
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For the most part we are concerned with classical solutions having compact

support. In other words �(0; ~x) has continuous �rst derivatives and vanishes outside

a ball of �nite radius, say, R. The velocity function ~u(0; ~x), on the other hand, is

only assumed to be C1 and is not required to have compact support. Local existence

results guarantee that a C1 solution exists in some time interval [ 0; t�), t� > 0. Since

the system is hyperbolic, the �uid will have compact support at any �xed future

time t > 0, but, of course, the support may grow (and even become out of bound)

with time. If t� can be chosen as large as we please, the solution is said to be

global. In the contrary case, there is an upper bound of all such t�. Without loss of

generality we may assume that t� has already been chosen to be this upper bound.

As t ! t��, the regularity of the solution is lost, either due to a blowup of � or ~u
at some �nite point ~x0, or a blowup of one of their �rst derivatives.

The simplest example of a break-down of solution regularity is the existence of

shock waves in solutions of the Burgers� equation. The onset of turbulence in �uid

motion is another. As a general rule, blowup solutions are more interesting and

more di¢cult to study than global ones. In the case of one-dimensional or radially

symmetric irrotational higher-dimensional �ows, Engelberg, Liu, and Tadmor [22]

and Liu and Tadmor [53] study the phenomenon of critical thresholds. A certain

inequality involving the initial state of a �ow determines whether �nite-time blowup

occurs later or not. Intuitively speaking, if initially the �ow is quickly expanding,

meaning that the �ow particles all move away from each other with relative velocity

exceeding a certain threshold, then the gravitational force will not be strong enough

to pull the particles towards each other so as to cause collision in �nite time.

Recently, Chae and Tadmor [7] demonstrate �nite-time blowup for the pressure-

less Euler-Poisson system with attractive forces, under the condition that at the

initial time t = 0, there exists a point x0 for which the set

S := fa 2 RN
�

� �0(a) > 0; 
(a) = 0; r � ~u(0; x0(0)) < 0g 6= ;; (4.3)

is non-empty. The rescaled vorticity matrix 
 is de�ned as (
ij) =
1
2(@iu

j � @jui)
with the notation ~u = (u1; u2; ::::; uN ) in their paper. For N = 2, condition (4.3)

alone is su¢cient for blowup. For N > 2, an additional condition ensuring that the

�uid velocity is not too large is needed.
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They use the technique of spectral dynamics to derive the Riccati di¤erential

inequality,
D div ~u

Dt
� � 1

N
(div ~u)2: (4.4)

The inequality (4.4) blows up at or before T = �N=(r � ~u(x0(0); 0)).
In this chapter, we con�ne ourselves to the simpler particular class of two-

dimensional pressureless systems, in which the term in rP (4.1)2 is assumed to

be 0. For the two-dimensional pressureless system, the Euler-Poisson equations

(4.2) assumes the simpler form

8

>

>

>

>

>

<

>

>

>

>

>

:

@�

@t
+

2
X

k=1

uk
@�

@xk
+ �

2
X

k=1

@uk
@xk

= 0

@ui
@t

+
2
X

k=1

uk
@ui
@xk

= � @�
@xi

for i = 1; 2:

(4.5)

We are interested in a special class of �radially symmetric� solutions of the form

�(t; ~x) = �(t; r); ~u(t; ~x) =
F (t; r)

r
(x; y) +

G(t; r)

r
(�y; x) (4.6)

For each �xed t, the functions �, F , and G take the same values for all points ~x that

are equidistant from the origin. The function F (t; r) represents the radial component

of the �ow velocity while G(t; r) represents the rotational component.

When G(t; r) � 0, the functions reduce to the classical radially symmetric solu-
tions which have been well studied. See, for example, [50], [60], [79], [80] and [84].

These are irrotational �ows for which the �uid particles are moving strictly in the

radial direction. Such a �ow satis�es the Chae-Tadmor condition (4.3) and hence

by their result in [7], the solution cannot be global. Physically this means that

the gravitational force, represented by the Poisson term in the �ow equations, is so

strong that it is always able to pull the �ow particles closer and closer together and

collision eventually occurs. The purpose of this chapter is to demonstrate that when

rotational motion is present, collision can be circumvented to yield global solutions.

Theorem 4.1 ([44]) There exists a global solution of the Euler-Poisson equations

(4.5) of the form (4.6) for which F 6= 0. It is necessary that G 6= 0.

The physical explanation is that part of the gravitational force is averted to

balance the centrifugal force due to rotation. The principle that rotation can prevent
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the blowup of solutions was �rst suggested by Liu and Tadmor in [53], where they

study the 2D Euler equation, with the Poisson term replaced by an external Coriolis

force. Our result furnishes another example. In the system of Liu and Tadmor,

the rotation is caused by an external Coriolis force, whereas in ours, the rotation is

induced by the internal gravitational force.

Concerning the structure of global solutions of the type (4.6), we prove in Section

4.3 that

Theorem 4.2 ([44]) For a global solution of the form in Theorem 4.1, the support

of the solution must be decomposable into a sum of disjoint annular regions. At

the boundary of the annulus, the �ow particles have only rotational, but no radial,

motion. Inside each annulus, the solution �pulsates� with uniform period.

Here the term �pulsates� refers to the periodic change of the distance of a �ow

particle from the origin. See Section 4.2 for the detailed explanation. The pulsating

periods in di¤erent regions can, however, be di¤erent.

For Theorem 4.3 and Section 4.4, we have to relax the smoothness requirement

on �(0; ~x) by requiring only that its �rst derivative exists everywhere except on the

points of a particular circle, at which the two one-sided derivatives of � exist but

are not identical. In this situation, the solution is no longer a classical solution and

should be understood in a weaker sense. One approach is to solve the system of

equations in the classical sense in the complement of the circle of singularity, and

the solutions in the two regions, one inside the circle and one outside the circle, are

then pieced together.

Our next result asserts that global solutions with non-trivial annular structures

as described in Theorem 4.2 do exist in a weak sense.

Theorem 4.3 ([44]) A given global solution of the form in Theorem 4.1 can be

extended to a larger global (weak) solution by adding an annular pulsating solution,

having any given period, outside the support of the original solution.

First note that for any given function f(r; t) of r and t, we have

ft =
@f(t; r)

@t
; (4.7)
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fx =
@f

@r
� x
r
; fy =

@f

@r
� y
r
: (4.8)

The following identities are also useful.

@
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= � x
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= � y
r3
; (4.9)
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= �xy
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; (4.10)
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r

�

= �xy
r3;
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�x

r

�

=
x2

r3
: (4.11)

From (4.6), the components of ~u have the form

u1 =
x

r
F � y

r
G; (4.12)

u2 =
y

r
F +

x

r
G: (4.13)

Substituting this into the �rst momentum equation in (4.5)2, we get

x

r
Ft�

y

r
Gt+

�x

r
F � y

r
G
� @

@x

�x

r
F � y

r
G
�

+
�y

r
F � x

r
G
� @

@y

�y

r
F � x

r
G
�

= �x
r
�r:

(4.14)

Making use of the identities (4.9)�(4.11) above, and after quite a bit of algebraic

simpli�cation, we get

x

r

�

Ft + FFr �
G2

r
+ �r(�)

�

+
y

r

�

Gt + FGr +
FG

r

�

= 0: (4.15)

If we carry out the same calculations using the second momentum equation in (4.5)2,

we arrive at

y

r

�

Ft + FFr �
G2

r
+ �r(�)

�

+
x

r

�

Gt + FGr +
FG

r

�

= 0: (4.16)

Finally, it is easy to verify that the �rst equation of the Euler-Poisson equations

(4.5), the equation of conservation of mass, is automatically satis�ed by the class of

solutions (4.6).

Then we need to have the two functions F (t; r) and G(t; r).to be
8

>

<

>

:

Ft + FFr �
G2

r
+
2�

r

Z r

0
�(t; s)s ds = 0

Gt + FGr +
FG

r
= 0:

(4.17)

We employ the familiar technique of characteristic curves. Such curves are de-

termined by the solution r(t; a) of the initial value problem

dr(t; a)

dt
= F (t; r); r(0) = a: (4.18)
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Given any function f(t; r) of r and t, we denote

f 0 :=
d

dt
f(t; r(t; a)) =

�

@

@t
+ F (t; r)

@

@r

�

f(t; r)

�

�

�

�

r=r(t;a)

: (4.19)

With this notation, equations (4.17)1 and (4.17)2 reduce to the simpler form

8

>

<

>

:

F 0 � G
2

r
+
M

r
= 0;

G0 +
FG

r
= 0;

(4.20)

where

M =M(a) = 2�

Z r(t;a)

0
�(s; t)s ds

= 2�

Z a

0
�(s; 0)s ds (4.21)

is a constant along a given characteristic curve. Knowing the initial density function

�(0; r), M(a) can be determined from (4.21). Conversely, if M(a) is known as a

function of a, the initial density function is given by

�(0; a) =
M 0(a)
2�a

: (4.22)

Equations (4.18) and (4.20)2 imply that

(rG)0 = rG0 + r0G = (�FG) + FG = 0: (4.23)

Therefore,

r(t; a)G(t; r(t; a)) = c = c(a) (4.24)

is a constant along any �xed characteristic curve. As a result

G(t; r(t; a)) =
c

r(t; a)
=
c

r
: (4.25)

In the following, for the sake of convenience, we will suppress the explicit men-

tioning of the dependence of constants such asM(a) and c(a) on a, and simply write

M and c instead, when there is no risk of confusion.

Substituting (4.25) into (4.20)1 and making use of (4.18), we arrive at a second-

order di¤erential equation for r(t; a)

r00 +
M

r
� c2

r3
= 0: (4.26)
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The initial conditions satis�ed by r are

r(0) = a; r0(0) = a1 = F (0; a): (4.27)

Equation (4.26) describes a conservative dynamical system, having a constant

energy

E =
(r0(t))2

2
+M ln(r(t)) +

c2

2r2(t)
(4.28)

� a21
2
+M ln(a) +

c2

2a2
: (4.29)

From this identity, all solutions can, in theory, be computed using a quadrature.

It is obvious that all solutions oscillate periodically around the equilibrium point

r = c=
p
M . The period and amplitude depend on the energy E (when M and c

are given). More speci�cally, the maximum and minimum radii are given by the

formulas

rM = exp

�

1

2
ML

�

�c
2 exp(�2A)

M

�

+A

�

(4.30)

and

rM = exp

�

1

2
ML

�

�1;�c
2 exp(�2A)

M

�

+A

�

; (4.31)

respectively, where A = E=M , and L(�) is the well-known Lambert W function (see

[6]) de�ned by

L(x) = w () wew = x (4.32)

and L(�1; �) is the (�1)st branch of the function. The period of the oscillation is
given by

T =

Z rM

rm

d r
p

E � ln(r)� 1=2r2
: (4.33)

In the particular situation when

a2M = c2 and a1 = 0; (4.34)

r(t) becomes the stationary solution r(t) � a and F (t; r(t; a)) � 0. This represents a
degenerate oscillation with amplitude 0. The period of a stationary solution cannot

be determined from the solution itself; a linear analysis in the neighborhood of the

equilibrium point provides the needed tool. See Lemma 4.5 in the next section.



79

If we make (4.34) hold for all a, we arrive at a fairly trivial class of solutions of the

2D Euler-Poisson equations. Let us choose M(r) to be an arbitrary non-decreasing

C1 function with compact support. Then it is easy to verify that the functions

�(t; r) =
M 0(r)
r

; F (t; r) � 0; G(t; r) =M(r) (4.35)

satisfy (4.34) for all a and furnish a solution of the Euler-Poisson equations. It is a

stationary solution, not because the �ow particles are stationary, but in the sense

that the solution functions do not change in time. This is a global solution that

represents a purely rotational �ow with no radial motion. The purpose of the rest of

the article is to show the existence of global solutions with nontrivial radial motion.

4.2 Physical Interpretation

The moving �uid is interpreted as being made up of individual, in�nitesimally small

particles located at position ~x, and traveling with velocity ~u at time t. The property

of �radial symmetry� refers to the requirement that the �velocity� of particles having

the same distance from the origin is in some sense the �same�.

Up to now, the class of �radially symmetric� solutions that have been well stud-

ied are irrotational �ows, that is, with G � 0 in (4.6). Here we assume that the

particles also revolve around the origin. In (4.6), G(t; r), the rotational component,

is perpendicular to the radial component F (t; r). For all particles having the same

distance from the origin, the magnitudes of these components are identical.

Normally, to follow a characteristic curve means to attach a coordinate reference

frame to one particular particle; as the particle moves, the reference frame moves

together with the particle. In our interpretation, we are not following just one

individual particle, but instead the moving circular shell S(t) which, for �xed time

t, contains the particle we are following as well as all other particles with the same

distance from the origin. In other words, the �characteristic curve� refers not to

the trajectory of one particular particle, but rather the �size� (the radius) of the

collective S(t). Strictly speaking, the moving shell S refers to a circular shell plus

its motion in time, while S(t) refers to the circular shell at at particular time t.

However, for the sake of convenience, we may sometimes use the symbol S to refer

to a particular circular shell S(t) at a �xed time t.
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As we have seen in the previous section, the size of S varies periodically. In

physical terms, the shell S expands and shrinks periodically as r(t) increases and

decreases. The special case when r(t) is stationary can be regarded as a degenerate

oscillation. If we follow a particular particle in S, we see that it revolves around

the origin while its distance from the original varies periodically. This is similar

to the motion of a planet in an elliptic trajectory around the sun, which is located

at the origin. The shell S is like a continuum of identical small planets, which

are assumed to be indistinguishable from each other, with identical distance from

the sun. As each individual planet revolves, the collective observable e¤ect is the

pulsating motion of the shell. In the degenerate case when r(t; a) is a constant, each

particle in the shell moves in a circular path (instead of an oblong elliptic path)

around the origin, and the shell appears to be stationary.

Now let us decompose the entire set of particles that make up the initial �ow

into circular shells, and denote by Sa = Sa(t) the shell corresponding to the initial

radius a < R. According to the above analysis, each shell Sa pulsates periodically

with its own period and amplitude.

Suppose that initially a shell Sa is inside another shell Sb, that is, a � b. Our

assumption that ~u is a C1 solution implies that as time t increases, Sa remains

inside Sb, lest the spatial derivatives of ~u and/or ~� blow up as Sa crashes into Sb,

reminiscent of the formation of shock waves of the Burgers� equation when two

characteristic curves intersect each other.

The quantity M = M(a) in (4.20)1 represents the total mass of the particles

contained inside the circle bounded by Sa. From the above discussion, we see that

particles that are initially inside a shell can never �ow outward across the shell.

Hence, M is a constant along a characteristic curve.1

Let

A0 = fa 2 (0; R) jSag (4.36)

1 It is interesting to see if a concept of �weak� solutions can be formulated by allowing charac-

teristic curves to intersect and then afterward each to continue its own way. After the intersection,

the quantity M on a characteristic will not remain the same and we need to �nd the correct way

to adjust it accordingly.
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denote the set of all stationary shells, and

A = (0; R) nA0 (4.37)

be its complement, the set of non-stationary shells. By continuity, A is an open

subset of (0; R) and hence is the union of a countable number of open intervals

A =
1
[

n=1

In: (4.38)

In the next section, we shall see (Lemma 4.1) that under the hypothesis of having

a global solution, all shells within each subinterval In must pulsate with the same

period. This fact implies Theorem 4.2 .

4.3 Uniformly Pulsating Layer

As mentioned above, Theorem 4.2 is a consequence of the following Lemma.

Lemma 4.1 Let In be one of the open subintervals of A in 4.38. Then the periods

of all the pulsating shells Sak , a 2 In are the same.

Proof. A mathematically rigorous proof can surely be written down, but it would

be full of technical details and would be fairly dry and tedious reading. We prefer

to describe the ideas of the proof in a pedagogical manner and let the readers �ll in

the analytic details themselves.

Take any �a 2 In and de�ne the set

B = fa 2 InjSa = S�ag : (4.39)

By continuity, B is a closed subset of In. If we can show that B is also an open

subset, then B must be the entire In. To that end, we need only to show that every

a 2 B is an interior point of B.

Suppose the contrary. Then there must be a sequence of points ak 2 In n B,
ak ! a, such that the period Tk of Sak di¤ers from the period T of Sa, for all k,

that is, "k = jTk � T j > 0. As a consequence, a phase shift exists between the two
�waves�. Fig.4.1 depicts the graph of r(t; a) (the radius of Sa) and r(t; ak) for one
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such k.

Fig. 4.1: Graphs of the radii of two shells

As seen in the last section, the hypothesis of having a global solution implies that

the two characteristic curves cannot intersect each other. Suppose ak > a. Then at

t = 0, the graph of r(t; ak) starts above that of r(t; a), and it should always remain

on top. If ak < a, then the opposite is true. Since the proof is similar in both cases,

we can con�ne ourselves to the �rst case.

On the other hand, by choosing k large enough, we can make the minimum

height of the upper curve strictly less than the maximum height of the lower curve,

and we can also make the phase di¤erence "k between the two shells as small as we

please. As time evolves, the phase di¤erence between the two shells will gradually

build up. Depending on the relative sizes of the periods, the minimum point of

the upper curve will move either towards the next or the previous maximum point

of the lower curve. In Fig.4.1, the upper curve is chosen to have a slightly longer

period. Suppose both curves assume their maximum at t = 0. The �rst minimum

of the upper curve is then located slightly to the right of that of the lower curve.

As we get to the second minimum point of the upper curve, it should have moved

twice as much relative to the second minimum point of the lower curve. It is at least

intuitively obvious that sooner or later, the minimum point of the upper curve will

catch up with the maximum point of the lower curve. Since the former is strictly

below the latter, we see a contradiction (the fact that the di¤erence between the two

periods can be made su¢ciently small plays a role here).
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For convenience, let us call two non-crashing shells compatible. Obviously, a

larger shell will be compatible with a smaller one if the minimum radius of the

former is larger than the maximum radius of the latter, no matter what the two

periods of the shells are. On the other hand, if the minimum radius of the former

is less than the maximum radius of the latter, then from the proof of Lemma 4.1,

we see that the two shells must have the same period. It is interesting to note that

in the critical case, when the minimum radius of the larger shell is equal to the

maximum radius of the smaller shell, then there are several possibilities depending

on the initial phase di¤erence of the two shells, and may depend on whether the

ratio of the two periods are rational or not.

Note that the uniformity of the periods of all the shells is only a necessary

condition for the solution to be global and is far from being su¢cient. Even if two

shells have the same period, their oscillation amplitudes and/or phase di¤erence may

be such that the two shells can still crash into each other in �nite time.

The period of a shell depends on the parameters M and c, as well as on the

initial conditions a and a1. Every one of these values has to be just right to give a

speci�c period. Therefore, it is quite a rare exception that a solution does not blow

up in �nite time.

The strategy we adopt to construct our global solution is to �rst construct suit-

able individual shells and then piece them together. Any two shells of a global

solution must be compatible.

Each shell S(t) is the set of all points with distance r(t) from the origin, where

r(t) is a solution of the initial value problem (4.26) (4.27). Note that we have four

degrees of freedom in constructing a shell, namelyM , c, a and a1. To simplify things,

we always choose a1 = 0, but that still leaves us with three degrees of freedom. Such

�exibility will be put to good use later.

Suppose that by some means we have constructed correctly all the shells Sa for

a 2 [�; �] for some numbers 0 < � < �, and they are all mutually compatible. Then
the �solution� �(t; r) and ~u(t; r) can be determined for all r 2 [r(t;�); r(t;�)]. More
speci�cally, from the parameters M and c associated with each shell Sa, we can

determine the functions � (using (4.22)) and G; and we can also �nd F = r0. Of

course, one cannot simply piece together any arbitrary set of shells. The set must be
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chosen discretely so that the calculated functions �, F , and G are C1 smooth with

respect to the spatial coordinates. Furthermore, M(a) must be a non-decreasing

function because the density �, calculated using (4.22), ought to be nonnegative.

Let us call the appropriate functions calculated above a �partial solution� de�ned

on [�; �]. It may not be a complete solution yet unless � = 0, and �(0; �) = 0. In

case these two conditions are not both satis�ed, we need to demonstrate that we

can extend the partial solution into a complete solution with compact support.

The next Lemma shows how one class of partial solutions can be easily extended

to complete solutions. The method generalizes the construction of the class of trivial

rotational �ows given by (4.35).

Lemma 4.2 Suppose we have a partial solution de�ned on [0; �] with S� being a

stationary shell. Then the partial solution can be extended to a complete solution.

Proof. Starting with the known M(r) de�ned on [0; �], we can extend it to an

increasing function on [0;1) in such a way that M(r) is a constant on [� + 1;1).
This will correspond to a �(r; 0) that vanishes on [� + 1;1). The shells Sa for
a 2 (�; � + 1) are chosen to be stationary shells by letting c(a) = �

p

M(a) as

required in (4.34).

After that, we study (4.26) as a standalone di¤erential equation, temporarily

ignoring the background Euler-Poisson equations. The quantitiesM and c are simply

regraded as constant parameters. We are interested in �nding out how varying M

and c can a¤ect the solution, and in particular its period. The �rst two Lemmas

involve the familiar methods of scaling the solution and the independent variable,

respectively. The methods have been used in [61].

Lemma 4.3 Let r(t) be a solution of (4.26) and � > 0 be any positive constant.

Then �r(t) = �r(t) is a solution of

�r00 +
�M

�r
� �c2

�r3
= 0; (4.40)

where

�M = �2M; �c = �2c: (4.41)

Proof. The proof is by direct computation.
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Note that r(t) and �r(t) have the same period and they do not intersect when

� 6= 1. Lemma 4.1 has several simple but useful applications.
Suppose we know a shell S� with initial radius � > 0. By scaling down the shell

with a constant a=� for each 0 < a < �, we obtain the set of shells fSa = aS�=� j a 2 [0; �]g,
which is a partial solution corresponding to a �ow with constant density �(t; r) =

2M(�)=�2.

Let r1(t) and r2(t) be two compatible shells, with a1 = r1(0) < r2(0) = a2, and

0 < �1 < �2 be any two real constants; then �1r1(t) and �2r2(t) are again two

compatible shells.

The following construction generalizes the above two observations. Suppose we

are given a partial solution ra(t) over an interval [�; �]. Take any smooth increasing

function � : [�; �]! [0; �(�)] such that �(�) = 0. Then the scaled shells �(a)ra(t),

a 2 [�; �] yield a partial solution over [0; �(�)�].

Lemma 4.4 Let r(t) be a solution of (4.26) and � > 0 be any positive constant.

Then r̂(t) = r(�t) is a solution of

r̂00 +
M̂

r̂
� ĉ2

r̂3
= 0; (4.42)

where

M̂ = �2M; ĉ = �c: (4.43)

Proof. Again the proof is by direct computation.

The period of r is � times that of r̂. This Lemma can be used to obtain a shell

with a desired period from a known solution of (4.26) that may not have the correct

period. This can then be coupled with Lemma 4.1 to scale the shell to have a desired

initial radius.

As a corollary of Lemmas 4.3 and 4.4, by suitably choosing � and �, we can

always transform equation (4.26) to an equation of the same form with any other

choices of M and c.

For the rest of the section, we always assume that r(t) takes the initial value

r0(0) = 0. We shall write r(t; a) if we want to emphasize the dependence of r on the

initial radius r(0) = a.
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Lemma 4.5 As a ! c=
p
M , a 6= c=

p
M , the period of the solution r(t; a) ap-

proaches
p
2c�=M , which can be adopted as the period of the stationary solution

r(t) � c=
p
M .

Proof. The substitution r(t) = s(t) + c=
p
M transforms (4.26) into

s00(t) + g(s) = 0; (4.44)

where

g(s)

=
M

s+ c=
p
M
� c2

(s+ c=
p
M)3

(4.45)

=
2M2

c2
s+O(s2): (4.46)

By retaining only the �rst order term of g(s), we see that s(t) has the asymptotic

period of
p
2M�=c as s! 0.

Applying Lemma 4.5 to the case M = c = 1, we see that the stationary solution

r(t) � 1 has the period
p
2�. It turns out that another choice, M = 1=2, c = 1=

p
2,

may be more convenient because it helps to eliminate the factor
p
2 in some relevant

computations. The stationary solution is still r(t) � 1 but the period is 2�.
For the next stage of our discussion, we vary the initial radius a, increasing it from

the stationary value, and would like to know how the period changes. Numerical

experiments (illustrated in Fig.4.2 and Table 4.1), either by directly solving the

initial value problem (4.26) (4.27) or by evaluating (4.33), strongly suggest

Conjecture The period of the solution of the initial value problem (4.26), r(0) =

a, r0(0) = 0, is an increasing function of a over [ c=
p
M;1) and a decreasing func-

tion over [ 0; c=
p
M ].
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Fig. 4.2: T (a) vs a, M = c = 1

a T (a) a T (a)

1.02 2.2222162 1.22 2.2935196

1.04 2.2244910 1.24 2.3051739

1.06 2.2281031 1.26 2.3174210

1.08 2.2329380 1.28 2.3302202

1.10 2.2388907 1.30 2.3435345

1.12 2.2458704 1.32 2.3573310

1.14 2.2537925 1.34 2.3715788

1.16 2.2625819 1.36 2.3862496

1.18 2.2721720 1.38 2.4013178

1.20 2.2825025 1.40 2.4167597

Table 4.1: T (a) vs a, M = c = 1

Supposedly the formula (4.33) contains all the information we need to establish

this Conjecture, but we were unsuccessful in doing any useful analysis on it. We are
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only able to prove a partial result, which, fortunately, is all we need to construct

our example of pulsating solution.

Lemma 4.6 For given M and c, there exists a constant � > c=
p
M such that the

period of oscillation T (a) of r(t; a) is a C1 increasing function of a in the interval

[c=
p
M; �].

Proof. In view of the scaling technique, we only have to prove the claim for a

particular pair of (M; c). Let us choose M = c2 = 1=2.

The fact that T (a) is C1 follows from standard theory. As in the proof of

Lemma 4.5, we �rst transform equation (4.26) to (4.44), and the initial conditions

to

s(0) = a� 1; s0(0) = 0: (4.47)

We extend the method of small parameter analysis used in the proof of Lemma 4.5

to the third order, with one modi�cation. Instead of determining T as the smallest

positive time needed for s(t) to attain s(T ) = a � 1, we use the distance �3 � �1,
where �1; �2; �3; :. are the points of intersection of the graph of s(t) with the s-axis.

Let b = s0(�1). It follows from the conservation of energy that

b =

r

2 ln(a) +
1

a2
� 1; (4.48)

and it is easy to verify that b is an increasing function of a over [1;1). Therefore,
if we can show that T is an increasing function of b in some neighborhood of b = 0,

then the conclusion of the Lemma follows.

By shifting �1 to the origin, we can further reduce the conclusion of the Lemma

to the equivalent statement that the period T of the solution of the initial value

problem (4.44) with initial conditions

s(0) = 0; s0(0) = b (4.49)

is an increasing function of b in some neighborhood of b = 0.

Assume that the solution has the expansion

s(t) = s1(t)b+ s2(t)b
2 + s3(t)b

3 + o(b4): (4.50)
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We substitute this into (4.44), and expand the resulting equations into a power series

of b. Note that (4.46) now becomes

g(s) =
s(s+ 2)

2(s+ 1)3
= s� 5

2
s2 +

9

2
s3 +O(s4): (4.51)

By equating the coe¢cients of powers of b, we arrive at the following three initial

value problems

s001 + s1 = 0; s1(0) = 0; s
0
1(0) = 1; (4.52)

s002 + s2 �
5

2
s1 = 0; s2(0) = s

0
2(0) = 0; (4.53)

s003 + s3 � 5s1s2 +
9

2
s31 = 0; s3(0) = s

0
3(0) = 0: (4.54)

The �rst equation has the solution

s1(t) = sin(t): (4.55)

Substituting this into (4.53) and solving the resulting initial value problem, we obtain

s2(t) =
5

4
� 5
3
cos(t) +

5

12
cos(2t): (4.56)

Finally, substituting (4.55) and (4.56) into (4.57) and solving, we obtain, with the

help of MAPLE,

s3(t) = �
7

9
sin (t)� 13

12
sin (t) (cos (t))2 +

1

144
(400 sin (t)� 132 t) cos (t) : (4.57)

Putting these solutions into (4.44) and substituting the special time t = 2�, we

get

s(2�) = �11�
6
b3 +O(b4); (4.58)

and

s0(2�) = b+O(b4): (4.59)

From these two statements, we deduce that

T (b) = 2� +
11�

6
b2 +O(b3) (4.60)

and the Lemma is proved.

Since we are interested in shells that don�t crash into each other, the following

comparison result turns out to be useful. In general, it is not easy to compare

solutions of nonlinear di¤erential equations. That is primarily why the Lemma

starts with a lot of assumptions.
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Lemma 4.7 Assume that a > c=
p
M . Let r(t) be the solution of (4.26) (4.27) and

r(t) be the solution of

r00 +
M

r
� c2

r3
= 0 (4.61)

under the same initial condition (4.27), and suppose that the following comparison

conditions are satis�ed

M �M; M

a
� c2

a3
� M

a
� c2

a3
: (4.62)

Let [0; � ] be an interval in which both r(t) and r(t) are decreasing. Then

r(t) � r(t) for t 2 [0; � ]: (4.63)

Proof. Suppose that r(t) decreases to a value a1 at time t1. The energy method

provides an elementary way to compute t1. Let r(t) decrease to the same height a1

at time t1. If we can show that t1 � t1, then the conclusion of the Lemma follows.
De�ne

f(r) =
M

r
� c2

r3
; F (r) =

Z a

r
f(s) ds (4.64)

and, likewise,

f(r) =
M

r
� c2

r3
; F (r) =

Z 1

r
f(s) ds: (4.65)

Using (4.62), it is easy to verify that, for all r 2 (0; a],

f(r) � f(r): (4.66)

This in turn implies that

F (r) � F (r): (4.67)

From the conservation of energy, we obtain

jr0(t)j =
p

2F (t) �
p

2F (t) = jr0(t)j (4.68)

and

t1 =

Z a

a1

d r

jr0(t)j �
Z a

a1

d r

jr0(t)j = t1; (4.69)

as desired.
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4.4 Main Result � Pulsating Solution

The results in the last section provide us with a way to construct compatible shells

that have the same period.

We start with equation (4.26) having the particular choice M = c = 1. Let � be

the number determined in Lemma 4.6, and denote by J the interval

J = [1; �]; � = min
�

�;
p
2
	

; (4.70)

For each a 2 J , let r(t; a) be the corresponding pulsating shell. Initially, this family
of shells fr(t; a) j a 2 Jg does not have uniform periods and they intersect each other.
We are going to perform a sequence of scalings on the shells to end up with a partial

solution of the Euler-Poisson equations.

We illustrate how this is done to two particular shells. Choose two numbers,

a1 < a2 in J , and let r1(t) = r(t; a1) and r2(t) = r(t; a2) be the two corresponding

shells. First we scale them down to have initial radius 1 each,

�r1(t) =
r1(t)

a1
; �r2(t) =

r2(t)

a2
: (4.71)

By Lemma 4.3, the scaled-down equations have the parameters

M1 = c1 =
1

a21
; and M2 = c2 =

1

a22
; (4.72)

respectively. Let T1 and T2 be the respective periods of �r1 and �r2, and T0 the period

of the stationary solution. By Lemma 4.6,
p
2� = T0 < T1 < T2. In the interval

[0; T1=2], both functions �r1 and �r2 are decreasing.

We now apply Lemma 4.7 to these two solutions, with a = 1, M = M1, c = c1,

M = M2, and c = c2. It is easy to check that all the hypotheses are satis�ed. The

second inequality in (4.62) becomes

1

a22
� 1

a42
� 1

a21
� 1

a41
(4.73)

which is a consequence of the fact that the function 1=x2 � 1=x4 is increasing for
x 2 [1;

p
2]. We point out that (4.73) may not hold if a2 >

p
2. That is why we

need to impose an upper bound on J , and hence on a2, in (4.70). We conclude, from

Lemma 4.7, that

�r2(t) � �r1(t) for all t 2 [0; T1=2]: (4.74)



92

Recall that �r2 has a longer period than that of �r1. Our next step is to scale

the independent variable t so as to shrink each of the periods down to T0. More

speci�cally, we de�ne

r̂1(t) = �r1

�

T1
T0
t

�

; r̂2(t) = �r2

�

T2
T0
t

�

: (4.75)

It is now easy to deduce from (4.74) that

r̂2(t) � r̂1(t) (4.76)

for all t 2 [0; T0=2]. Knowing that r̂2 has the same period as that of r̂2, we conclude
that (4.76) actually holds for all t > 0. Physically this means that the pulsating

shells corresponding to r̂2 and r̂1 do not crash into each other except at those times

when they both attain the maximum radius.

In addition, scaling �r2 to r̂2 increases theM -parameter for the new shell to M̂2 =

T 22M2=T
2
0 , and there is no guarantee that it remains larger than the corresponding

M -parameter for r̂1. For a physically realizable system, the M -parameter for an

inner shell ought to be smaller. In reality, it can be shown that this last scaling does

not increase M̂2 enough to overtake M̂1. Instead of proving this fact, we will coerce

the shells to have obviously compatible physically parameters, by performing one

more scaling

�r1(t) =
T0
T1
r̂2(t): �r2(t) =

T0
T2
r̂2(t): (4.77)

Then �r1 and �r2 become two compatible shells, the former being the outside shell.
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Fig. 4.3: Graph of �M vs �r(0)

�r(0) �M �r(0) �M

0.99965137 0.96116878 0.96857314 0.67186240

0.99862910 0.92455621 0.96367629 0.65036420

0.99701019 0.88999644 0.95858349 0.62988158

0.99485137 0.85733882 0.95331826 0.61035156

0.99220632 0.82644628 0.94790217 0.59171598

0.98912274 0.79719388 0.94235451 0.57392103

0.98564597 0.76946753 0.93669310 0.55691691

0.98181702 0.74316290 0.93093423 0.54065744

0.97767311 0.71818443 0.92509265 0.52509977

0.97324819 0.69444444 0.91918178 0.51020408
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Table 4.2: Table of �M vs �r(0).

To summarize, after performing the above transformations on the functions r(t)

for every a 2 J , we obtain a partial solution over the interval [�; 1] = [T0=�T (�); 1],
composed of the shells �r(t). More speci�cally, corresponding to every a 2 J , there
is a shell �r(t) with the following initial radius and parameters

�r(0) =
T0

aT (a)
; �M =

1

a2
; �c =

T 20
a4T 2(a)

; (4.78)

where T (a) is the period function as in Lemma 4.6. The graph of �M versus �r(0) for

the shells of the partial solution is shown in Fig.4.3 for the choice of � = 1:4, with

the corresponding numerical data compiled in Table 4.2. The graphs of 20 particular

shells are shown in Fig.4.4.

Fig. 4.4: Partial solution constructed using � = 1:4
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Using the method presented in the discussion after Lemma 4.3, we can stretch

this partial solution to give a partial solution over [0; 1]. For instance, the shells

in Fig.4.5 are obtained by scaling the n-th innermost shell in Fig.4.4 by a factor

of (n � 1)=20. Finally, this last partial solution can be further extended to a full
solution by using Lemma 4.2. This completes the proof of Theorem 4.1.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4.5: Pulsating shells constructed using � = 1:4.

Global pulsating solutions are by no means unique. For example, we can use

any subinterval of J instead of J in our construction to obtain a slightly di¤erent

pulsating solution. Di¤erent scaling functions can also be used in the various steps

in the construction.

All the shells in our example pulsate in phase, in the sense that they attain

their maximum/minimum radii at the same time. Numerical experiments show that

solutions in which the shells pulsate slightly out of phase can also be constructed.

This fact can be established rigorously.

Theorem 4.3 stipulates the existence of an annular pulsating solution with sta-

tionary shells at the inner and outer boundaries. Let us �rst show that a (weak)
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solution of this type exists.

We start with the partial solution represented by the shells �r constructed in

the last section and depicted in Fig.4.4. The outermost shell is stationary. As we

decrease the initial radius, the inner shells pulsate with increasing amplitudes, and

we stop at the radius � = T0=aT (�) � 0:92, the last entry of �r(0) in Table 2.

Fig. 4.6: Initial set of shells

Let us continue to decrease the initial radii of the shells, but reverse the process;

namely, to make the shells pulsate with decreasing amplitudes, until we reach a

stationary shell at some point. This is achieved as follows: for each of the shells

above the innermost shell in Fig.4.4, we scale it down so that its minimum radius

is exactly the same as that of the latter. The result is shown in Fig.4.6. The thick

curve in the middle of all the shells is the same as the innermost shell in Fig.4.4,

with initial radius �. Each of the shells above it has a �re�ected image� below
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it. Numerical computation indicates that the new shells collapse together at their

common minimum radius, which has the value 0:498739, but they do not intersect

at any other points. Fig.4.6 clearly bears out this fact. A rigorous proof can easily

be shown and we omit the details.

Does the augmented set of shells qualify as the annular solution that we are

looking for? At �rst sight, the collapsing of the new shells seems to disqualify it.

However, that can be easily circumvented by progressively shrinking each of the new

shells a bit more. A more subtle and serious problem is revealed by examining the

M -parameter of the shells, as a function of the initial radius.

Before proceeding any further, let us streamline the functional notations. The

many scalings used in the construction in the previous section have led to di¤erent

symbols for the many functions involved with the various shells. For convenience,

let us rename the functions associated with the last set of shells so that the M -

parameter is again denoted by M(a), and the shells by r(t).

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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Fig. 4.7: graph of M vs r(0) for the annular solution

When the old and new sets of shells are considered separately (that is, on the two

subintervals a < � and a > �, respectively) each of these functions is smooth, but

the combined graph has a kink at the junction point �. This is illustrated in Fig.4.7

in which the dashed curve is the plot of M(a) versus a for a < � and the dotted

curve is its counterpart for a > �. The derivative of M has a jump discontinuity,

leading to a jump discontinuity of the solution function �(t; r) across the dividing

shell between the two sets.

To remedy this problem, we apply two scalings, one to each of the sets of shells.

For the shells with a < �, we use the scale

�a = �r(0) = �1(a)a; �M(a) = �21(a)M(a) �1(a) = (1�
p
�� a): (4.79)

For those with a > �, we use

�a = �r(0) = �2(a)a; �M(a) = �22(a)M(a) �2(a) = (1 +
p
a� �): (4.80)

In fact, any function �(a) that is smooth in (0; �) [ (�; 1) and satis�es

lim
a!�

�(a) = 1 and lim
a!��

�0(a) =1 (4.81)

will do the trick. After the scaling, �M becomes a function of �a and is connected

to it via a parametric relationship given by (4.79) and (4.80). The solid curve in

Fig. 4.7 is the plot of �M(�a) versus �a. The point � remains the same under the

transformation. As long as we stay away from �, the scaling functions are smooth

and hence, �M is a smooth function of �a. For a 6= �,

d �M

d�a
=
d �M

da

�

d�a

da
=
2�(a)�02(a)M 0(a)
�0(a)a+ �(a)

; (4.82)

where � is �1 or �2 depending on whether a < � or not. It follows from (4.81) and

the above identity that

lim
a!��

d �M

d�a
=
2M(�)

�
: (4.83)

Since the two one-sided limits agree, �M 0(�a) can be de�ned and �M(�a) can be con-

sidered a C1 function, and it will not lead to a jump discontinuity of the density

function �(r; t). Unfortunately, a further analysis shows that the second derivative

d2 �M

d�a2
=

d

da

�

d �M

d�a

��

d�a

da
(4.84)
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of �M(�a) has a jump discontinuity induced by that of the �rst derivative ofM(a) at �.

Hence, �(r; t) is only piecewise C1 and it only satis�es the Euler-Poisson equations

in a weak sense.

Now that we have the desired annular solution, we can scale it to have any size

and period if necessary, so that the given global solution is contained inside the

innermost shell of the annular solution. The gap between the global solution and

the annular can be �lled in by stationary shells in the obvious way and Theorem 4.3

is proved.
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Chapter 5

Rotational Flows

In this chapter, we construct rotational and periodical solutions in explicit form

for the 2-dimensional Euler-Poisson equations. Some special blowup solutions with

in�nite energy for the 3-dimensional compressible or incompressible Euler equations

are also given.

5.1 The 2D Isothermal Euler-Poisson Equations

We continue our study of the system (4.1), this time by exploiting the separation

method. The main idea is to apply the isothermal pressure term to balance the

potential force to produce novel solutions with rotation.

Theorem 5.1 ([43]) For the isothermal ( = 1) Euler-Poisson equations (4.1) in

R2, there exists a family of global solutions with rotation in radial symmetry,
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�(t; ~x) =
1

a2(t)
eg(r=a(t))

~u(t; ~x) =

�
a(t)

a(t)
(x; y) +

�

a2(t)
(�y; x)

�a(t) =
��
a(t)

+
�2

a3(t)
a(0) = a0 > 0, _a(0) = a1

��
g(s) +

1

s

�
g(s) +

2�

K
e
g(s)

=
2�

K
; g(0) = �;

�
g(0) = 0

(5.1)

with arbitrary constants � 6= 0; a0, a1 and �.
In particular, with � > 0;

(1) the solutions (5.1) are time-periodic, except for the case a0 =
j�jp
�
and a1 = 0;

(2) when a0 =
j�jp
�
and a1 = 0, the solutions (5.1) are steady.
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Remark 5.1 Equation (5.1)3 satis�ed by a(t) is, in fact, identical to the Emden

equation (4.26) satis�ed by r in the last chapter. The global existence and periodic

nature of the solution is discussed near the end of Section 4.1.

Equation (5.1)4 satis�ed by g(s) is the Liouville equation which has been ex-

tensively studied in di¤erential geometry. The global existence of solutions is well-

known.

Remark 5.2 Choosing � = 0 reduces (5.1) to Yuen�s irrotational solutions in [80].

For � > 0, these irrotational solutions blow up at a �nite time T . Hence, we again see

that rotational motion prevents blowup. The solutions (5.1) can be used to simulate

the evolution of some rotational stars or galaxies.

Our main e¤ort is to uncover self-similar rotational solutions (G(t; r) 6= 0) of the
mass equation (4.1)1.

Lemma 5.1 For the equation of conservation of mass

�t +r � (�~u) = 0; (5.2)

there exist solutions of the form

�(t; ~x) = �(t; r) =
f( r
a(t))

a2(t)
; ~u(t; ~x) =

F (t; r)

r
(x; y) +

G(t; r)

r
(�y; x) (5.3)

where

F (t; r) =
_a(t)

a(t)
r (5.4)

with arbitrary functions f � 0 2 C1 and a(t) > 0 2 C1:
Proof. Direct substitution gives

�t +r � (�~u)

= �t +
@

@x

�

�
Fx

r
� �Gy

r

�

+
@

@y

�

�
Fy

r
+ �

Gx

r

�

= �t +
@

@x
�
Fx

r
+ �

�

@

@x

Fx

r

�

� ( @
@x
�)
Gy

r
� �( @

@x

Gy

r
)

+
@

@y
�
Fy

r
+ �

�

@

@y

Fy

r

�

+ (
@

@y
�)
Gx

r
+ �(

@

@y

Gx

r
)

= �t + �r
x

r

Fx

r
+ �

�

Fr
x

r

� x

r
+ �

F

r
� �Fx x

r3

� �r
x

r

Gy

r
� �Gr

x

r

y

r
+ �Gy

x

r3
+ �r

y

r

Fy

r
+ �

�

Fr
y

r

� y

r
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+ �
F

r
� �Fy y

r3
+ �r

y

r

Gx

r
+ �

�

Gr
y

r

� x

r
� �Gx y

r3

= �t + �r
x

r

Fx

r
+ �

�

Fr
x

r

� x

r
+ �

F

r
� �Fx x

r3

+ �r
y

r

Fy

r
+ �

�

Fr
y

r

� y

r
+ �

F

r
� �Fy y

r3

= �t + �rF + �Fr + �F
1

r
: (5.5)

Now plug in the relations (5.3) and (5.4) to get

=
@

@t

f( r
a(t))

a2(t)
+
@

@r

f( r
a(t))

a2(t)

_a(t)r

a(t)
+
f( r
a(t))

a2(t)

_a(t)

a(t)
+
f( r
a(t))

a2(t)

_a(t)

a(t)

=
�2 �a(t)f(r=a(t))

a3(t)
�

�
a(t)r

�
f(r=a(t))

a4(t)

+

�
f(r=a(t))

a3(t)

�
a(t)r

a(t)
+
f(r=a(t))

a2(t)

�
a(t)

a(t)
+
f(r=a(t))

a2(t)

�
a(t)

a(t)

= 0:
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Fig. 5.1: Fpot with � = 1 and �
2 = 2
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Fig. 5.2: a(t) of the equation �a(t) = �1
a(t) +

1
a3(t)

; a(0) = 1; _a(0) = 1:

Proof of Thoerem 5.1. The proof for rotational �uids is similar to that for

non-rotational ones. Lemma (5.1) takes care of the mass equation. For the �rst

momentum equation (4.1)21, we carry out the following computation

�

�

@u1
@t

+ u1
@u1
@x

+ u2
@u1
@y

�

+
@

@x
P + �

@

@x
�

= �

�

@

@t
(F
x

r
�Gy

r
) + u1

@u1
@x

+ u2
@u1
@y

�

+
@

@x
Ke

f( r
a(t)

)
+ �

@�
�

r
a(t)

�

@x

= �

�

@

@t
(F
x

r
�Gy

r
) + u1

@u1
@x

+ u2
@u1
@y

�

+Kef(s)
x

r

@

a(t)@
�

r
a(t)

�f(s) +
x

r

@

@r
�(s)
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= �

8

>

>

>

<

>

>

>

:

@
@t(F

x
r �G

y
r ) + u1

@u1
@x + u2

@u1
@y

+K 1
a(t)

x
r
@
@sg(s) +

x
r
2�
r

r
Z

0

e
g(

�
a(t)

)

a(t)2
�d�

9

>

>

>

=

>

>

>

;

= �

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

@
@t(F

x
r �G

y
r )

+(F x
r �G

y
r )

@
@x(F

x
r �G

y
r ) +

�

F y
r +G

x
r

�

@
@y (F

x
r �G

y
r )

+ x
a(t)r

2

4K _g(s) + 2�
r

a(t)

r
Z

0

e
g(

�
a(t)

)

a(t)2
�d�

3

5

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

= �

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Ft
x
r �Gt

y
r

+(F x
r �G

y
r )[(Fr

x
r
x
r + F

1
r + Fx

@
@x

1
r )� (Gr xr

y
r +Gy

@
@x

1
r )]

+
�

F y
r +G

x
r

�

h

(Fr
y
r
x
r + Fx

@
@y
1
r )� (Gr

y
r
y
r +

G
r +Gy

@
@y
1
r

i

+ x
a(t)r

2

4K _g(s) + 2�
r

a(t)

r
Z

0

e
g( �
a(t)

)
�

�
a(t)

�

d
�

�
a(t)

�

3

5

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

= �

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Ft
x
r �Gt

y
r

+(F x
r �G

y
r )[(Fr

x
r
x
r + F

1
r � Fx xr3 )� (Gr xr

y
r �Gy xr3 )]

+
�

F y
r +G

x
r

� �

Fr
y
r
x
r � Fx

y
r3
� (Gr yr

y
r +

G
r �Gy

y
r3
)
�

+ x
a(t)r

2

4K _g(s) + 2�
s

s
Z

0

eg(�)�d�

3

5

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

:

After simpli�cation, we have

=
x�

r

0

B

B

B

@

Ft + FFr � G2

r +
1
a(t)

2

4K _f(s) + 2�
s

s
Z

0

ef(�)�d�

3

5

� y
x(Gt + FGr + FG

1
r )

1

C

C

C

A

:

Similarly, we obtain the corresponding result for the second momentum equation

(4.1)22

=
y�

r

0

B

B

B

@

Ft + FFr �
G2

r
+

1

a(t)

2

4K _f(s) +
2�

s

s
Z

0

ef(�)�d�

3

5

�x
y (Gt + FGr + FG

1
r )

1

C

C

C

A

:

It means that the isothermal Euler-Poisson system can be reduced to the simpler

partial di¤erential equations

8

>

>

>

<

>

>

>

:

Ft + FFr �
G2

r
+

1

a(t)

2

4K _g(s) +
2�

s

s
Z

0

eg(�)�d�

3

5 = 0

Gt + FGr + FG
1

r
= 0:

(5.6)
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By taking

F (t; r) =
_a(t)

a(t)
r and G =

�

a2(t)
r; (5.7)

we can immediately verify (5.6)2 .

Gt + FGr + FG
1

r

=
d

dt

�

a2(t)
r +

_a(t)

a(t)
r
�

a2(t)
+
_a(t)

a(t)
r
�

a2(t)
r
1

r

= �2� _a(t)
a3(t)

r +
2� _a(t)

a3(t)
r

= 0:

Then the equation (5.6)1 becomes

Ft + FFr �
G2

r
+

1

a(t)

2

4K _g(s) +
2�

s

s
Z

0

eg(�)�d�

3

5

=
�a(t)

a(t)
r �

�

�
a(t)2

r
�2

r
+

1

a(t)

2

4K _g(s) +
2�

s

s
Z

0

eg(�)�d�

3

5

=
1

a(t)

8

<

:

��s+

2

4K _g(s) +
2�

s

s
Z

0

eg(�)�d�

3

5

9

=

;

= 0: (5.8)

We have made use of the facts that a(t) and g(s) satisfy the last two di¤erential

equations of 5.1, respectively.

The statements (1) and (2) are obvious.
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Fig. 5.3: Graph of g(s) with K = 2�; � = 0 and � = 1
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Two graphs for the velocity ~u (5.1) are illustrated below:

Fig. 5.4: steady rotational velocity ~u(t; ~x) = (u1; u2) = (�y; x) with a0 = 1,
a1 = 0; � = 1 and � = 1
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Fig. 5.5: rotational velocity ~u(0; ~x) = (u1; u2) = (x+ y;�x+ y) with a0 = 1,
a1 = 1 and � = 1

5.2 Exact 3D Solutions for the Euler Equations

In this section, we construct some exact rotational solutions for the 3-dimensional

compressible or incompressible Euler equations using elementary functions.

Theorem 5.2 ([90]) For the 3-dimensional compressible Euler equations

8

<

:

�t+r � (�~u) = 0

� [~ut + (~u � r) ~u] +rP = 0;
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there exists a class of rotational solutions:

for  > 1,
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

� = max
�

�1
K s; 0

�
1

�1

u1 = a(t) + C (y � z)
u2 = a(t) + C (�x+ z)
u3 = a(t) + C (x� y)

(5.9)

where

s = C2
�

x2 + y2 + z2 � (xy + yz + xz)
�

� _a(t)(x+ y + z) + b(t) (5.10)

a(t) = c0 + c1t (5.11)

and

b(t) = 3c0c1t+
3

2
c21t

2 + c2 (5.12)

with arbitrary constants C, c0, c1 and c2;

for  = 1,
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

� = e
s
K

u1 = a(t) + C (y � z)
u2 = a(t) + C (�x+ z)
u3 = a(t) + C (x� y) :

(5.13)

The solutions (5.9) and (5.13) exist globally.

We omit the proof which involves checking the validity of the di¤erential equa-

tions by direct computation. Interested readers can refer to the original article [90].

Note that the masses of the solutions are in�nite. The rational functional form

with a(t) = 0 and C = 1 for the velocity ~u has been given in Senba and Suzuki�s

book [65]. The velocities ~u are not spherically symmetric, but they are similar to the

irrotational blowup or global solutions in Li [47], which have spherically symmetric

velocities ~u. The exact solutions can blow up on account of the in�nite energy from

the boundary. Another class of (cylindrical) blowup solutions with in�nite energy

has been found in [30].

Next we turn to the incompressible case.

Theorem 5.3 ([90]) For the 3-dimensional incompressible Euler equations
8

<

:

div ~u = 0

� [~ut + (~u � r) ~u] +rP = 0;
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there exists a class of rotational solutions

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

P (�)
� = s1

u1 = a1(t) + C (y � z)
u2 = a2(t) + C (�x+ z)
u3 = a3(t) + C (x� y)

(5.14)

with

s1 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

C2
�

x2 + y2 + z2 � (xy + yz + xz)
�

� [ _a1(t) + C(a2(t) + a3(t))]x
� [ _a2(t) + C(a1(t) + a3(t))] y
� [ _a3(t) + C(a1(t) + a2(t))] z + b(t)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(5.15)

and
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

P (�)
� = s2

u1 = a1(t) + C (y + z)

u2 = a2(t) + C (x+ z)

u3 = a3(t) + C (x+ y)

(5.16)

with

s2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�C2
�

x2 + y2 + z2 + xy + yz + xz
�

� [ _a1(t) + C(a2(t) + a3(t))]x
� [ _a2(t) + C(a1(t) + a3(t))] y
� [ _a3(t) + C(a1(t) + a2(t))] z + b(t)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(5.17)

where ai(t) is an arbitrary local C
1 function for i = 1; 2 or 3; b(t) is an arbitrary

function, and C is an arbitrary constant.

In particular,

1. if jai(T )j = 1 or j _ai(T )j = 1 with the �rst �nite positive constant T , the

solutions (5.14) and (5.16) blow up at a �nite time T ;

2. For global C1 functions ai(t), the solutions (5.14) and (5.16) exist globally.

Again, interested readers can refer to the same article for the detailed proof.

Remark 5.3 Here the kinetic energy of the solutions (5.14) and (5.16) for the

incompressible �uids are in�nite

1

2

Z

R3
~u2d~x =1:
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Earlier, Gibbon, Moore and Stuart [30] gave another example of (cylindrical) blowup

solutions with in�nite energy for the incompressible Euler equations.

Remark 5.4 In 1965, Arnold �rst introduced the well-known Arnold-Beltrami-Childress

(ABC) �ow
8

>

>

>

<

>

>

>

:

u1 = A sin z + C cos y

u2 = B sinx+A cos z

u3 = C sin y +B cosx

(5.18)

with constants A, B, C and a suitable pressure function P for the incompressible

Euler equations in [1]. We observe that our solutions (5.14) and (5.16) are similar

to the ABC �ow.

Remark 5.5 Since �~u = ~0; the solutions (5.9) and (5.13) are also solutions of

the 3-dimensional compressible Navier-Stokes equations, obtained by adding a term

��~u, � � 0: to the right-hand side of the momentum equation of the Euler system.

Likewise, the solutions (5.14) and (5.16) are also solutions of the corresponding

3-dimensional incompressible Navier-Stokes equations.
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Chapter 6

The Perturbational Method

In this chapter, we introduce a novel perturbational method to augment the conven-

tional separation method and apply it to the 2-component Camassa-Holm equations

and 1-dimensional compressible Euler equations to obtain new solutions with drift

phenomenon.

6.1 The 2-Component Camassa-Holm Equations

In Chapter 3, we used the separation method to obtain a class of blowup or global so-

lutions for the Camassa-Holm equations (3.1) and the Degasperis-Procesi equations

(3.17). It is natural to consider the more general linear velocity

u(t; x) = c(t)x+ b(t) (6.1)

to look for new solutions. The new idea is to substitute (6.1) into the Camassa-Holm

equations and compare the coe¢cient of di¤erent polynomial degrees to deduce the

necessary functional di¤erential equations (c(t); b(t); �2(t; 0)): Then we apply the

Hubble�s transformation

c(t) =
_a(3t)

a(3t)
(6.2)

with _a(3t) :=
da(3t)

d(3t)
, to simplify the equations involving (a(3t); b(t); �2(0; t)). After

proving the local existence of the corresponding dynamical system, we can show the

following results.
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Theorem 6.1 ([94]) For the 2-component Camassa-Holm equations (3.1), there

exists a family of solutions

8

>

>

>

<

>

>

>

:

�2(t; x) = max

(

R(t)� 2

�

�

_b(t) + 3b(t)
_a(3t)

a(3t)

�

x� 3�

�a
4
3 (3t)

x2; 0

)

u(t; x) =

�
a(3t)

a(3t)
x+ b(t)

(6.3)

where a(t), b(t) and c(t) satisfy the following functional di¤erential equations

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

d2

dt2
a(3t) =

�

a
1
3 (3t)

; a(0) = a0 > 0, _a(0) = a1

d2

dt2
b(t) +

6 _a(3t)

a(3t)

d

dt
b(t) +

12�

a
4
3 (3t)

b(t) = 0; b(0) = b0, _b(0) = b1

dR(t)

dt
+
2_a(3t)

a(3t)
R(t) =

2b(t)

�

�

_b(t) + 3b(t)
_a(3t)

a(3t)

�

; R(0) = �2

(6.4)

where R(t) = �2(t; 0), �, a0, a1, b0, b1 and � are arbitrary constants.

Proof. In view of (3.2) and (6.1), the momentum equation (3.1)2 becomes

ut + 3uux + ���x = 0

_c(t)x+ _b(t) + 3[c(t)x+ b(t)]c(t) +
�

2

@

@x
�2 = 0

�

2

@

@x
�2 = �[_b(t) + 3b(t)c(t)]� [ _c(t) + 3c2(t)]x:

Integrating from [0; x], we get

�

2

Z x

0

@

@s
�2ds = �[_b(t) + 3b(t)c(t)]

Z x

0
ds� [ _c(t) + 3c2(t)]

Z x

0
sds;

�

2

�

�2(t; x)� �2(t; 0)
�

= �[_b(t) + 3b(t)c(t)]x� [ _c(t) + 3c
2(t)]

2
x2;

and, �nally,

�2(t; x) = �2(t; 0)� 2

�
[_b(t) + 3b(t)c(t)]x� [ _c(t) + 3c

2(t)]

�
x2:

On the other hand, for the mass equation (3.1)1, we obtain

�t + [c(t)x+ b(t)] �x + �c(t) = 0:

Next, we multiply � on both sides to get

1

2

�

�2
�

t
+
[c(t)x+ b(t)]

2

�

�2
�

x
+ �2c(t) = 0: (6.5)
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After that, we substitute equation (6.1) into equation (6.5):

1

2

�

@

@t

�

�2(t; 0)
�

� 2

�

@

@t
[_b(t) + 3b(t)c(t)]x� @

@t

[ _c(t) + 3c2(t)]

�
x2
�

+ [c(t)x+ b(t)]

�

� 1
�
[_b(t) + 3b(t)c(t)]� 1

�
[ _c(t) + 3c2(t)]x

�

+ c(t)

�

�2(t; 0)� 2

�
[_b(t) + 3b(t)c(t)]x� [ _c(t) + 3c

2(t)]

�
x2
�

=
1

2

@

@t

�

�2(t; 0)
�

+ c(t)�2(t; 0)� b(t)
�
[_b(t) + 3b(t)c(t)]

+

8

>

<

>

:

� 1
�

@

@t
[_b(t) + 3b(t)c(t)]� c(t)

�
[_b(t) + 3b(t)c(t)]

�b(t)
�
[ _c(t) + 3c2(t)]� 2c(t)

�
[_b(t) + 3b(t)c(t)]

9

>

=

>

;

x

+

8

>

<

>

:

� 1

2�

@

@t
[ _c(t) + 3c2(t)]� 1

�
[ _c(t) + 3c2(t)]c(t)

�c(t)[ _c(t) + 3c
2(t)]

�

9

>

=

>

;

x2:

By comparing the coe¢cients of the polynomial, we arrive at the di¤erential equa-

tions
8

>

>

>

>

<

>

>

>

>

:

d

dt

�

�2(t; 0)
�

+ 2c(t)�2(t; 0)� 2

�
b(t)[_b(t) + 3b(t)c(t)] = 0

d

dt
[_b(t) + 3b(t)c(t)] + 3c(t)[_b(t) + 3b(t)c(t)] + b(t)[ _c(t) + 3c2(t)] = 0

d

dt
[ _c(t) + 3c2(t)] + 4[ _c(t) + 3c2(t)]c(t) = 0:

(6.6)

Let us �rst solve equation (6.6)3. Using the Hubble�s transformation, therefore

(6.2), the equation is transformed to

d

dt

�

3�a(3t)

a(3t)
� 3 _a

2(3t)

a2(3t)
+
3 _a2(3t)

a2(3t)

�

+ 4

�

3�a(3t)

a(3t)
� 3 _a

2(3t)

a2(3t)
+
3 _a2(3t)

a2(3t)

�

_a(3t)

a(3t)
= 0

8

>

<

>

:

d

dt

�

�a(3t)

a(3t)

�

+
4�a(3t)

a(3t)

_a(3t)

a(3t)
= 0

a(0) = a0 > 0; _a(0) = a1, �a(0) = a2

3
...
a (3t)

a(3t)
� 3 _a(3t)�a(3t)

a2(3t)
+
4 _a(3t)�a(3t)

a2(3t)
= 0

...
a (3t)

a(3t)
+
_a(3t)�a(3t)

3a2(3t)
= 0:

Then we multiply a2(3t) on both sides to have

a(3t)
...
a (3t) +

_a(3t)�a(3t)

3
= 0;

which reduces to (6.4)1.
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It is now easy to show that the second equation (6.6)2 can be simpli�ed to (6.4)2

using our knowledge of the function a(3t). From standard theory, b(t) exists as long

as a(3t) and _a(3t) exist.

Lastly, by denoting

H(t) =
2 _a(3t)

a(3t)
, G(t) =

2b(t)

�

�

_b(t) + 3b(t)
_a(3t)

a(3t)

�

; (6.7)

the �rst equation (6.6)1 becomes

8

<

:

d

dt

�

�2(t; 0)
�

+ �2(t; 0)H(t) = G(t)

�2(0; 0) = �2:
(6.8)

The solution of this �rst-order ordinary di¤erential equation (6.8) is

�2(t; 0) =

R t
0 �(s)G(s)ds+ k

�(t)

where

�(t) = e
R t
0 H(s)ds:

Therefore, we obtain the density function from equation (6.1)

�2(t; x) = �2(t; 0)� 2

�

�

_b(t) + 3b(t)
_a(3t)

a(3t)

�

x� 3�

�a
4
3 (3t)

x2:

For �(x; t) � 0, we may set

�2(t; x) = max

(

�2(t; 0)� 2

�
[_b(t) + 3b(t)

_a(3t)

a(3t)
]x� 3�

�a
4
3 (3t)

x2; 0

)

:

We thus conclude that the class of function (6.3) solves the Camassa-Holm equations.

We remark that the above solutions (6.3) fully cover previous known results in

[85] by the separation method if we choose b0 = b1 = 0.

Notice that the above solutions are not radially symmetric for the density func-

tion � with b(t) 6= 0. Thus, the above solutions cannot be obtained by the conven-
tional separation method of the self-similar functional.

Theorem 6.2 ([94]) For the 2-component Camassa-Holm equations with radial

symmetry
8

<

:

�t + V �r + �Vr = 0

Vt + 3V Vr + ���r = 0;
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there exists a family of solutions

8

>

>

>

<

>

>

>

:

�2(t; r) = max

(

�2(t; 0)� 2

�

�

_b(t) + 3b(t)
_a(3t)

a(3t)

�

r � 3�

�a
4
3 (3t)

r2; 0

)

V (t; r) =

�
a(3t)

a(3t)
r + b(t)

(6.9)

where a(t), b(t) and c(t) are the auxiliary functions in the equations (6.4).

For the graphical illustration of the classical blowup solution (6.3) with the in-

�nitive mass by choosing the parameters � = 1, b1 =
�
2 ; a0 = 1; a1 = 0 and � =

��
3 ;

we can see the initial shape of the non-radially symmetric solution:

Fig. 6.1: �0(x) =
p
1� x+ x2
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For the global breaking solutions (6.3), we choose the parameters � = 1; b1 =
�
2 ;

a0 = 1; a1 = 0 and � =
�
3 to have the graph:

Fig. 6.2: �0(x) = max(
p
1� x� x2; 0)

6.2 The 1D Compressible Euler Equations

In a similar way, we can use the perturbational method to handle the 1-dimensional

compressible adiabatic Euler equations

8

>

<

>

:

�t+r � (�u) = 0

(ut + uux) +K
1

�

@�

@x
= 0

(6.10)
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with  > 1:

Theorem 6.3 ([91]) There exists a family of solutions to the 1-dimensional com-

pressible Euler equations (6.10)

8

>

>

<

>

>

:

��1(t; x) = max

�

��1(t; 0)�  � 1
K

�

_b(t) + b(t)
_a(t)

a(t)

�

x� ( � 1)�
2Ka+1(t)

x2; 0

�

u(t; x) =

�
a(t)

a(t)
x+ b(t)

(6.11)

where a(t), b(t) and c(t) satisfy the following functional di¤erential equations

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�a(t) =
�

a(t)
; a(0) = a0 > 0, _a(0) = a1

�b(t) +
(1 + ) _a(t)

a(t)
_b(t) +

�

2�

a+1(t)
+ ( � 1) _a

2(t)

a2(t)

�

b(t) = 0;

b(0) = b0, _b(0) = b1
@

@t
��1(t; 0) + ��1(t; 0)

_a(t)

a(t)
�  � 1

K

�

_b(t) + b(t)
_a(t)

a(t)

�

b(t) = 0;

�(0; 0) = �

(6.12)

where a0, a1, b0, b1 and � are arbitrary constants.

Remark 6.1 As we can choose the two free constants b0 and b1 in Theorem 6.3,

Theorem 2.3 in Section 2.3 (for which we can only choose one constant d1 for the

1-dimensional case) cannot cover the theorem in this section.

Remark 6.2 Our solutions (6.11) fully cover the previous known ones with radial

symmetry, for the 1-dimensional case in [59] and [48] with b0 = b1 = 0.

Proof. First, we perturb the velocity as this form

u(t; x) = c(t)x+ b(t): (6.13)

The 1-dimensional momentum equation (6.10)2 becomes, for the non-trivial solutions

(ut + uux) +K
1

�

@�

@x
= 0

for  > 1;

_c(t)x+ _b(t) + [c(t)x+ b(t)]c(t) +
K

 � 1
@

@x
��1 = 0

K

 � 1
@

@x
��1 = �[_b(t) + b(t)c(t)]� [ _c(t) + c2(t)]x:
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We take integration from [0; x] to have

K

 � 1

Z x

0

@

@s
��1ds = �[_b(t) + b(t)c(t)]

Z x

0
ds� [ _c(t) + c2(t)]

Z x

0
sds (6.14)

K

 � 1
�

��1(t; x)� ��1(t; 0)
�

= �[_b(t) + b(t)c(t)]x� _c(t) + c2(t)

2
x2

��1(t; x) = ��1(t; 0)�  � 1
K

[_b(t) + b(t)c(t)]x�  � 1
2K

[ _c(t) + c2(t)]x2: (6.15)

On the other hand, for the 1-dimensional mass equation (6.10)1, we obtain

�t + �xu+ �ux = 0

�t + [c(t)x+ b(t)] �x + �c(t) = 0:

We multiply by ��2 on both sides to have
�

��1

 � 1

�

t

+ [c(t)x+ b(t)]

�

��1

 � 1

�

x

+ ��1c(t) = 0:

We substitute the above equation back into equation (6.15)
�

��1

 � 1

�

t

+ [c(t)x+ b(t)]

�

��1

 � 1

�

x

+ ��1c(t)

=
1

 � 1

0

@

@
@t�

�1(t; 0)� �1
K

@
@t [
_b(t) + b(t)c(t)]x

� �1
2K

@
@t [ _c(t) + c

2(t)]x2

1

A

+ [c(t)x+ b(t)] � 1

 � 1

0

@

��1
K

@
@x [
_b(t) + b(t)c(t)]x

� �1
2K

@
@x [ _c(t) + c

2(t)]x2

1

A

+ c(t)

�

��1(t; 0)�  � 1
K

[_b(t) + b(t)c(t)]x�  � 1
K

[ _c(t) + c2(t)]

2
x2
�

=
1

 � 1

0

@

@
@t�

�1(t; 0)� �1
K

@
@t [
_b(t) + b(t)c(t)]x

� �1
2K

@
@t [ _c(t) + c

2(t)]x2

1

A

+ [c(t)x+ b(t)]

�

� 1

K
[_b(t) + b(t)c(t)]� 1

K
[ _c(t) + c2(t)]x

�

+ c(t)

�

��1(t; 0)�  � 1
K

[_b(t) + b(t)c(t)]x�  � 1
2K

[ _c(t) + c2(t)]x2
�

=
1

 � 1
@

@t
��1(t; 0) + c(t)��1(t; 0)� b(t)

K
[_b(t) + b(t)c(t)]

+

8

<

:

� 1
K

@
@t

h

_b(t) + b(t)c(t)
i

� c(t)
K

h

_b(t) + b(t)c(t)
i

� b(t)
K [ _c(t) + c

2(t)]� (�1)c(t)
K [_b(t) + b(t)c(t)]

9

=

;

x

+

8

<

:

� 1
2K

@
@t [ _c(t) + c

2(t)]� c(t)
K [ _c(t) + c

2(t)]

� (�1)c(t)
2K [ _c(t) + c2(t)]

9

=

;

x2:
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By comparing the coe¢cients of the polynomial, we require the functional di¤erential

equations involving (c(t); b(t); ��1(t; 0))
8

>

>

>

>

<

>

>

>

>

:

d

dt
��1(t; 0) + ( � 1)c(t)��1(t; 0)�  � 1

K
b(t)[_b(t) + b(t)c(t)] = 0

d

dt
[_b(t) + b(t)c(t)] + c(t)[_b(t) + b(t)c(t)] + b(t)[ _c(t) + c2(t)] = 0

d

dt
[ _c(t) + c2(t)] + ( + 1)[ _c(t) + c2(t)]c(t) = 0

(6.16)

to solve the compressible 1-dimensional Euler system.

For details (existence, uniqueness and continuous dependence) on theories of func-

tional di¤erential equations, the interested reader can see the classical literature [36]

and [72].

Here, we solve equation (6.16)3 with the Hubble�s expression for c(t)

c(t) =
_a(t)

a(t)
(6.17)

d

dt

�

d

dt

�

_a(t)

a(t)

�

+
_a2(t)

a2(t)

�

+ ( + 1)

�

d

dt

�

_a(t)

a(t)

�

+
_a2(t)

a2(t)

�

_a(t)

a(t)
= 0

d

dt

�

�a(t)

a(t)
� _a2(t)

a2(t)
+
_a2(t)

a2(t)

�

+ ( + 1)

�

�a(t)

a(t)
� _a2(t)

a2(t)
+
_a2(t)

a2(t)

�

_a(t)

a(t)
= 0

8

>

<

>

:

d

dt

�

�a(t)

a(t)

�

+ ( + 1)
�a(t)

a(t)

_a(t)

a(t)
= 0

a(0) = a0 > 0; _a(0) = a1, �a(0) = a2
...
a (t)

a(t)
� _a(t)�a(t)

a2(t)
+ ( + 1)

_a(t)�a(t)

a2(t)
= 0

...
a (t)

a(t)
+ 

_a(t)�a(t)

a2(t)
= 0:

We multiply by a+1(t) on both sides to obtain

a(t)
...
a (t) + a�1(t) _a(t)�a(t) = 0:

Here, we can observe that this can be reduced to the Emden equation
8

>

<

>

:

�a(t) =
�

a(t)

a(0) = a0 > 0, _a(0) = a1

(6.18)

where � = a0a2 are an arbitrary constant by freely choosing a2:

We remark that the Emden equation (6.18) was well-studied in the literature of

astrophysics and mathematics. The local existence of the Emden equation (6.18)

can be shown by the �xed point theorem.
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For the second equation (6.16)2 of the dynamic system, we have

d

dt

�

_b(t) + b(t)
_a(t)

a(t)

�

+ 

�

_b(t) + b(t)
_a(t)

a(t)

�

_a(t)

a(t)
+
�a(t)

a(t)
b(t) = 0

�b(t) + _b(t)
_a(t)

a(t)
+ b(t)

d

dt

_a(t)

a(t)
+ 

_a(t)

a(t)
_b(t) + b(t)

_a2(t)

a2(t)
+
�a(t)

a(t)
b(t) = 0

�b(t) +
(1 + ) _a(t)

a(t)
_b(t) +

�

�a(t)

a(t)
� _a2(t)

a2(t)
+
 _a2(t)

a2(t)
+
�a(t)

a(t)

�

b(t) = 0

8

<

:

�b(t) + (1+) _a(t)
a(t)

_b(t) +
h

2�
a+1(t)

+ ( � 1) _a2(t)
a2(t)

i

b(t) = 0

b(0) = b0, _b(0) = b1

with the Emden equation (6.18) for a(t).

We denote

f1(t) =
(1 + ) _a(t)

a(t)
, f2(t) =

�

2�

a+1(t)
+ ( � 1) _a

2(t)

a2(t)

�

(6.19)

to get
8

<

:

�b(t) + f1(t)_b(t) + f2(t)b(t) = 0

b(0) = b0, _b(0) = b1:
(6.20)

Therefore, when the functions f1(t) and f2(t) are bounded, that is

jf1(t)j < f1, jf2(t)j < f2 (6.21)

with the constants f1 and f2, provided that a(t) 6= 0 and _a(t) exist for 0 � t < T .
Then, the functions b(t) and _b(t) exist and are bounded by the comparison theorem

of ordinary di¤erential equations.

For the �rst equation (6.16)1, as it is a �rst order ordinary di¤erential equations

only, we can directly solve the following:

d

dt
��1(t; 0) + ( � 1)��1(t; 0) _a(t)

a(t)
�  � 1

K

�

_b(t) + b(t)
_a(t)

a(t)

�

b(t) = 0:

Denote

H(t) = ( � 1) _a(t)
a(t)

, G(t) =
 � 1
K

�

_b(t) + b(t)
_a(t)

a(t)

�

b(t)

to solve
d

dt
��1(t; 0) + ��1(t; 0)H(t) = G(t)

with bounded a(t) 6= 0 and _a(t) for 0 � t < T .
The formula of the �rst order ordinary di¤erential equation is

��1(t; 0) =

R t
0 �(s)G(s)ds+ k

�(t)



123

with

�(t) = e
R t
0 H(s)ds

and a constant k:

Therefore, we have the density function by equation (6.15)

��1(t; x) = ��1(t; 0)�  � 1
K

�

_b(t) + b(t)
_a(t)

a(t)

�

x�  � 1
2K

�a(t)

a(t)
x2

��1(t; x) = ��1(t; 0)�  � 1
K

�

_b(t) + b(t)
_a(t)

a(t)

�

x� ( � 1)�
2Ka+1(t)

x2:

For the non-negative density solutions �(t; x), we must set

��1(t; x) = max

�

��1(t; 0)�  � 1
K

�

_b(t) + b(t)
_a(t)

a(t)

�

x� ( � 1)�
2Ka+1(t)

x2; 0

�

:

We notice that the above solutions are not radially symmetric for the function

b(t) 6= 0. Therefore, the above density solutions � cannot be obtained by the sepa-
ration method of the self-similar functional, as

�(t; x) 6= f( x
2

a(t)
)g(a(t)) and u(t; x) =

_a(t)

a(t)
x+ b(t): (6.22)

On the other hand, for the compressible 1-dimensional Euler system in radial

symmetry (2.3), we may replace equation (6.14) to have the corresponding equation

by taking the integration from [0; r] :

K

 � 1

Z r

0

@

@s
��1ds = �[_b(t) + b(t)c(t)]

Z r

0
ds� [c(t) + c2(t)]

Z r

0
sds:

The corresponding result in radial symmetry obviously holds.

Theorem 6.4 ([91]) There exists a family of solutions for the 1-dimensional com-

pressible Euler equations with radial symmetry (6.10)

8

>

>

<

>

>

:

��1(t; r) = max

�

��1(t; 0)�  � 1
K

�

_b(t) + b(t)
_a(t)

a(t)

�

r � ( � 1)�
2Ka+1(t)

r2; 0

�

V (t; r) =

�
a(t)

a(t)
r + b(t);

(6.23)

where a(t), b(t) and c(t) are the auxiliary functions in the equations (6.12).
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We note that the original solutions

u(t; x) =
V (t; r)

r
(6.24)

in (6.10), with the functions V (r; t) in the equation (6.23) are with the singular point

at the origin 0, for b(t) 6= 0.
It is clear to see that the solutions (6.11) and (6.23) are also the solutions of the

compressible 1-dimensional Navier-Stokes equations
8

<

:

�t+r � (�u) = 0
� [u+ (u � r)u] +rP = ��u

with a positive constant �:

To determine if the solutions are global or local only, we could use the following

lemma about the Emden equation (6.11)3.

Lemma 6.1 For the Emden equation
8

>

<

>

:

�a(t) =
�

a�(t)

a(0) = a0 > 0; _a(0) = a1

with the constant � > 1;

(1) if � < 0

a1 <

r

�2�
�� 1a

(��+1)
2

0 ;

there exists a �nite time T , such that

lim
t!T�

a(t) = 0;

otherwise, the solution a(t) exists globally, such that

lim
t!1

a(t) =1:

(2) if � = 0, with a1 < 0, the solution a(t) blows up in

T =
�a0
a1
;

otherwise, the solution a(t) exists globally.

(3) if � > 0, the solution a(t) exists globally, such that

lim
t!1

a(t) =1:
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All the proofs can be shown by the standard energy method of classical me-

chanics. The particular proofs can be found in [24] with � > 1 for blowup cases.

Therefore, we can omit the proof here.

We observe that the gradient of the velocity is

@

@x
u(t; x) =

_a(t)

a(t)
:

When the function a(T ) = 0 with a �nite time T , @
@xu(T; x) blows up at every space-

point x: Based on the above lemma about the Emden equation for a(t), (6.11)3, it

is clear to have the corollary

Corollary 6.1 (1a) For � < 0 and

a1 <

r

�2�
�� 1a

(��+1)
2

0 ;

the solutions (6.11) and (6.23) blow up at a �nite time T ;

(1b) For � = 0, with a1 < 0, the solutions (6.11) blow up in

T =
�a0
a1
:

(2) otherwise, the solutions (6.11) and (6.23) exist globally.

For the graphical illustration of the blowup solution (6.11) with the in�nite mass,

by choosing the parameters  = 2; � = 1; b0 = 2, b1 = 0; a0 = 1; a1 = 0 < a0;

K = 1 and � = �4; we can see the initial shape of the non-self-similar and non-
radially symmetric solution:
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Fig. 6.3: �0(x) = 1� x+ x2

For the global solutions, we can see the initial shape of the corresponding solu-

tion by choosing the parameters  = 2; � = 1; b0 = 2, b1 = 0; a0 = 1; a1 = 0; K = 1

and � = 4 in Fig.6.4.
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Fig. 6.4: �0(x) = 1� x� x2
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Chapter 7

Conclusions and Suggestions for

Future Research

7.1 Summary and Other Related Work

In this thesis, I present the computational techniques that have enabled me to con-

struct new analytical/exact solutions for six �uid dynamical systems: the Euler,

Euler-Poisson, Navier-Stokes, Navier-Stokes-Poisson, Camassa-Holm and Degasperis-

Procesi equations. More precisely, I have fully exploited the well-known separation

method and devised a new perturbational method. The main principle behind the

success in obtaining new solutions is to reduce the original nonlinear partial di¤er-

ential systems to several ordinary or functional di¤erential equations, or to simpler

partial di¤erential equations by imposing some suitable functional structures on the

solutions. A substantial portion of my e¤ort is spent on searching for such suitable

functional structures and on verifying the validity of the solutions. After that, ex-

istence and other qualitative results of the reduced simpler equations must then be

established in order to complete the construction of explicit solutions for the original

nonlinear systems.

My work in constructing solutions with elliptic symmetry and drift phenomena

is particularly exciting since for many years authors have paid attention only to

radially symmetric solutions. Although elliptically symmetric solutions have been

known to some physicists for a while, their work is not well-known to mathematicians

working on �uid dynamics. In my work, I have independently rediscovered and
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generalized the concept of elliptic symmetry in �uid dynamical systems. I have

obtained 1 + N di¤erential functional equations for the density-dependent Navier-

Stokes equations in RN , leading to the new Emden systems of di¤erential equations.

The qualitative study of the system yields some very interesting results concerning

the global existence of positive solutions and their oscillatory properties.

For the 2-component shallow water systems, I am the �rst person to obtain the

self-similar solutions in explicit form. For the 2-dimensional Euler-Poisson equations,

we construct the �rst rotational and periodic solutions in explicit form.

The study of pulsating rotational solutions of the 2-dimensional Euler-Poisson

equations represents a more analytical and theoretical diversion from the other part

of my thesis work. Instead of having an explicit formula for the pulsating solution, its

existence is only established through a long chain of nontrivial theoretical arguments.

Finally, I would like to point out that some other related work have also been

accomplished during my Ph.D. study. These have not been described in the thesis.

These include the following papers

[75] We constructed a class of self-similar solutions for the pressureless Navier-

Stokes equations with density-dependent viscosity;

[76] We constructed a class of similar solutions with drifting term for the non-

isentropic pressure Euler equations;

[77] We constructed a class of self-similar solutions for the Navier-Stokes-Poisson

equations with density-dependent viscosity and with pressure;

[78] We gave a class of the implicit and explicit solutions for the pressureless Euler

equations;

[88] I showed some blowup phenomena for the Euler equations with repulsive force

and with pressure under some initial-boundary conditions;

[93] I constructed the class of self-similar solutions for the isentropic pressureless

Euler equations and

[87] I showed some blowup phenomena for the Euler-Poisson equations with at-

tractive forces under some initial-boundary conditions.
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7.2 Future Studies

Finally, I would like to indicate some directions of further research based on the

thesis in the following three remarks.

Remark 7.1 Most of the constructed solutions assume linear functional forms for

the velocity ~u. Known solutions of the 3-dimensional systems in gas dynamics

(Euler, Euler-Poisson, Navier-Stokes, Navier-Stokes-Poisson equations) suggest the

more general functional form in Cartesian coordinate
8

>

>

>

<

>

>

>

:

u1 = a1(t) + b11(t)x+ b12(t)y + b13(t)z

u2 = a2(t) + b21(t)x+ b22(t)y + b23(t)z

u3 = a3(t) + b31(t)x+ b32(t)y + b33(t)z

(7.1)

with smooth C1 functions ai(t) and bij(t) for i; j = 1; 2 and 3:

Can we construct a blowup example with rotation having this more general form

for the Euler system with �nite energy?

In principle, we could adopt the trial-and-error approach to search for suitable

density functions. Under the assumed functional form, the system is reducible to

1 + 12 functional di¤erential equations. Direct veri�cation will be computational

extremely intensive if it is to be carried out by hand. Symbolic or numerical compu-

tations are possible and indeed very promising tools that come in handy and we hope

to investigate more systematically in this direction.

Remark 7.2 In 2008, Jang [39] showed the existence of perturbed solutions of the

stationary solutions with spherical symmetry for the Euler-Poisson equations with

 = 6=5. And in Section 6.2, the simple time-dependent pertubational method is

developed for the Camassa-Holm and Euler equations. Can we further perturb the

known exact or analytical solutions for the systems under some suitable norms to

establish the weak existence results?

Remark 7.3 In Chapter 4, we introduce a class of rotational radially symmetric

solutions of the two-dimensional Euler-Poisson equations, and demonstrate the exis-

tence of radially symmetric global pulsating solutions of the two-dimensional Euler-

Poisson equations. All the shells pulsate with the same period. In a sense, such

solutions are a rarity rather than the rule. A slight perturbation of the motion of
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one of the shells can destroy the global property of the solution. This is in contrast

to the principle of critical thresholds.

We would like to know if Theorem 4.3 can be improved to yield classical global

solutions having annular structures. It is plausible that such solutions may not exist.

In other words, global solutions of this type must possess some sort of singularity.

It is interesting to ask whether non-radially symmetric global solutions exist.

On the other hand, a more interesting question is, in the case when a global solution

fails and some sort of collision of the characteristic curves does happen, is there a

way to extend the de�nition of solution to a weaker sense to enable us to study what

happens beyond the collision. The class of rotational radially symmetric solutions

provides a concrete framework on which such a theory can be tested.

It is also of interest to see if there are any analogs of similar radially symmetric

rotational solutions in higher dimensions.

Finally, the Conjecture in Section 4.3 seems so intuitively true, but its proof is

tantalizingly out of reach. We would like to further investigate this Conjecture.
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