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Abstract 

Abstract of dissertation entitled: Intelligent Texture-Based Pattern Search, 

Classification and Interpolation for Woven Fabric Design, submitted by Dejun 

Zheng for the degree of Doctor of Philosophy in the Department of Computing at 

The Hong Kong Polytechnic University in February 2012. 

 

In the cognitive process of design activity, fabric designers conceive the color 

and texture composition not individually, but as an ensemble of tones, shades and 

tints that are created in the texture patterns of yarn and fiber materials. Perceptual 

features of natural textures as well as fabric textures have been extensively 

studied in the existing literature. However, no thorough investigation of the 

cognitive texture features of woven patterns in fabric design has been conducted 

so far. The present research uses cognitive informatics models to study fabric 

texture features in the process of woven fabric design. It provides a 

comprehensive framework to facilitate selecting and designing the fabric textures 

in the design process. 

The research framework comprises cognitive fabric feature analysis and 

fabric texture operations in fabric pattern design, namely, fabric search, pattern 

classification, and woven texture interpolation with color theme-based texture 

synthesis. A novel object-attribute-relation (OAR) model is used to study fabric 

texture digitization and texture feature analysis. A relation between the high-level 

cognitive features and low-level perceptual features of fabric patterns in design 

activity is described. The cognitive features in fabric design are used to develop 

fabric texture operations. Examples of how cognitive features can be used to 
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perform texture selecting and synthesizing tasks are given. 

There are three major contributions of this study to existing fabric texture 

analysis and research. (1) The study reduces the gap between the cognitive 

features of fabric textures in the design activity and the perceptual features of the 

textures in material operations. (2) New approaches for fabric pattern design are 

developed based on the cognitive color theme and interpolated woven patterns. 

(3) The research findings illustrate that fabric texture digitization methods and 

cognitive feature extraction in design activity are major factors in developing 

effective fabric texture operations. 
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Chapter 1:  

Introduction 

 

1.1 Research motivation 

Fabric designers often look for inspiration from image collections according to 

the content-based features of the images. Among different image features, 

perceptual texture features are considered to be the most suited features for 

image texture information retrieval [1, 2]. These perceptual features are wildly 

used in machine vision systems, for example content-based image retrieval, 

classification and texture synthesis, where a designer may want to find images 

that contain a particular texture and use the textures of interest to create new 

textures. Despite the advances in the feature selection techniques and matching 

techniques, the current machine vision systems still have a major difficulty that it 

has yet to overcome, i.e., how does the observer relate the low-level features of 

the images to the high-level semantics of image contents [3, 4]? 

Recently, research focus has been shifted from designing sophisticated 

low-level feature extraction algorithms to reducing the ‘semantic gap’ between 

the perceptual image features and the richness of human semantics. This present 

investigation focuses on fabric texture representation and texture operations in 

the context of fabric texture design. Fabric texture analysis and synthesis are 

achieved through the relationships between the perceptual texture features and 

cognitive features in the cognitive process of fabric design activity. This thesis 

covers the most recent investigations into texture-based approaches for fabric 
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texture analysis. Furthermore, new higher level cognitive models are proposed 

for fabric design and classification. 

 

1.2 Problem statement 

In the textiles and clothing industry, fashion designers mainly use fabric texture 

collections to create new fabric designs according to fashion changes from year 

to year. A fabric swatch library and CAD (computer aided design) tools are 

indispensable to fabric designers in order to search the desired texture elements 

from the library and synthesize new fabric textures in a more efficient way. 

However, the current systems do not provide functions that can efficiently search 

fabric patterns and synthesize new fabric textures. 

The current fabric search methods are based on numerical and alphabetical 

indexing, which provide simple text-based search and classification by 

production attributes of fabrics, such as sample item number, creation date, 

category name, material composition, and fabric density. In fact, these attributes 

contain little content-based information for designing fabric textures. Therefore, 

there is a lack of support from the search methods to the fabric texture synthesis 

and classification in fabric texture design. 

On the other hand, both text-based annotations of the fabrics and the 

synthesis of fabric textures by the current commercial software, such as 

Photoshop and EAT fabric CAD are very tedious and error prone. A fabric 

designer may have to browse many fabric images by the heuristic annotations to 

find the desired texture elements. On the other hand, the designer needs to 

choose delicate operations of texture editing to create a compatible combination 
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of textures and colors through a large number of trials. For these reasons, a 

desired fabric database management system for fabric design should facilitate 

both fabric search and texture operations. 

 

1.3 Objectives 

The main objective of the present research is to develop a complete programme 

of fabric texture management and design in the fabric database system. This 

objective encompasses three sub-goals (1) cognitive informatics models for 

reducing the gap between cognitive process of design activity and 

perception-based texture analysis during texture operations; (2) fabric pattern 

search and classification through cognitive texture features for fabric texture 

selection; and (3) fabric texture synthesis based on cognitive color theme and 

weave pattern interpolation. In this section, each sub-goal will be briefly 

described. Further details will be presented in following chapters. 

 Cognitive models of fabric texture representation 

Gabrieli noted that in computer vision, software engineering, informatics, and 

artificial intelligence, almost all hard problems that are yet to be solved, share a 

common root in the understanding of the mechanisms of the natural intelligence 

and the cognitive processes of the brain [5]. This leads to an emerging discipline 

of research known as cognitive informatics [6]. Cognitive informatics models are 

developed for extending human of intelligence, memory, and capacity of 

information processing. In this research work, cognitive informatics models are 

used to investigate the main components in the cognitive process of fabric design. 

These components are fabric image data, structured patterns and finally design 
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theme of patterns. 

Cognitive models for fabric texture design are built based on the process of 

the information transmission during fabric data collection, digitization, structure 

pattern extraction, texture analysis and operations. The cognitive models provide 

guidance (1) how to collect and digitize the fabric texture for the purpose of 

gathering and sorting fabric textures, (2) how to build the relationships between 

high-level cognitive features and low-level perceptual features, and (3) how to 

use digital fabric textures and cognitive design knowledge to synthesize and 

generate new fabric designs. 

 Fabric pattern search and classification 

Since fabric is interwoven with warp and weft yarns, the color and pattern effect 

of woven fabrics can only be generated through its own interlacing structure. 

Fabric designers choose the suitable interlacing structure for creating textures 

through the weave pattern maps that are interlacing probabilities of material units, 

such as fibers, yarns, and twisted yarn sets. To investigate the principal properties 

of woven structure, structural parameters extraction and analysis were proposed 

in [7]. The fabric defects detection and objective texture classification were 

reviewed in [8]. However, there is little research that focuses on weave pattern 

structure search and classification in terms of fabric pattern design. 

Texture identification of material units is essential for fabric texture search 

and classification in fabric design. The influences of fabric image resolution on 

appearance can be investigated by experimental observations and cognitive 

interpretation of texture design. In the current investigation, fabric texture 

fingerprints and their attributes are used for search and classification of fabric 
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patterns by design rules. The concept of fabric texture fingerprints described in 

this work is inspired by fingerprint recognition as one of the most widely used 

biometric identification technologies in the past half of a century with numerous 

applications to object recognition, indexing, classification, search, etc. 

Fingerprint identification, also referred to as individualization, involves an expert, 

or an expert computer system operating under threshold scoring rules, 

determining whether two friction ridge impressions are likely to have originated 

from the same finger or palm (or toe or sole). 

The fabric fingerprints define major features to differentiate the design rules 

of fabric woven patterns. Fabric search and classification are based on these 

major features for the purpose of selecting and sorting fabric designs. There are 

three aspects in developing a fabric search and classification system: 

(1) The fabric texture image acquisition and representation of material units 

at fiber-level and yarn-level, 

(2) The texture-based detection of fabric design rules by using automatic 

and interactive methods, 

(3) Fabric weave pattern search and classification based on texture design 

rules and cognitive texture features in the process of fabric texture 

design. 

 Fabric texture design and weave pattern interpolation 

Cognitive texture features of fabric design are used to prioritize texture elements 

and generate fabric weave patterns. Perceptual texture features deal with separate 

issues of texture properties and thus are not optimally suitable for the designer’s 

current interests. In [9], methods for extracting low-level perceptual texture 
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features were investigated and classified into three categories: filtering, statistical 

and model-based approaches. In [10], the texture operation focused on texture 

replacement with low-level texture features. In these previous research studies, 

texture resolution, material digitization, feature extraction and texture operations 

were treated as different topics. Moreover, the effectiveness and the efficiency of 

the operations depend on a number of external factors, such as frequent changes 

in the material conditions as well as object data content or status. Thus, texture 

synthesis may introduce inconsistencies in the texture operations in the database 

management system. 

In this work, an object-oriented database system is used. This makes use of 

the interactions of individual texture operations at each synthesis stage, so as to 

help user to find the principal texture features to be extracted, analyzed and 

manipulated. The resulting system will be a fully integrated knowledge base for 

fabric texture documentation and reusing. The consistency of the cognitive 

design theme for such a system is the major prerequisite for fabric texture 

operations. The objectives include: 1) development of an information flow 

framework to bridge fabric weave pattern selection and figured-pattern design 

activity in fabric database management system, and 2) demonstration and 

discussion of application-oriented texture analysis and operations experiments. 

This innovative research method not only ensures the connection of fabric 

texture analysis and synthesis from academic perspectives, but also provides a 

sound technical and management experience for fabric texture documentation 

and design in the textiles and clothing industry. 
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1.4 Contributions 

Searching and sorting fabric weave patterns in a database can be a tedious 

experience in fabric design. Unfortunately, commercial software, such as 

Photoshop, EAT Jacquard design and Penelope CAD for woven fabrics, do not 

explicitly support these tasks. A fabric designer may have to search for suitable 

fabric images and carefully edit them to obtain a weave pattern map for 

simulation on the computer screen or production on the weaving machines. 

Furthermore, a large number of trials are often indispensible to achieve desired 

relationships between color and texture. Hence, a desired approach should 

automate searching and editing fabric colors and textures for fabric texture 

design. In this research, one of the major contributions lies in casting the process 

of cognition in fabric design as an integrated problem that deals with both color 

and texture synthesis combined with the selection and prioritization of texture 

elements. A new framework for fabric design is proposed that simultaneously 

considers the design of fabric color and texture effects in a fabric pattern. 

Another contribution of this work is that the cognitive 

object-attribute-relation (OAR) model is proposed to reduce the gap between 

cognitive texture features and perceptual texture features in fabric design 

operations. In the OAR model, novel techniques of fabric image acquisition and 

perceptual texture feature extraction are developed. Experimental findings 

illustrate that multi-resolution and multi-direction image features are very helpful 

to improve the accuracy of texture extraction algorithms. Automatic and 

interactive weave pattern extraction methods are discussed through experimental 

validation. Cognitive texture features are calculated according to the weave 

pattern structures and cognitive relationships of perceptual features and cognitive 
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features in the fabric production process. Therefore, fabric texture search and 

classification are conducted based on these cognitive features in fabric data 

management and design. 

On the other hand, fabric texture design methods are formulated as an 

optimization problem that quantifies texture and color to maintain the 

consistency of data, patterns and knowledge in the information transmission flow. 

The underlying cognitive relationships that connect textures and color tones from 

different image sources are explored to maintain the same theme in the cognition 

of observers or in the current case, fabric designers. The system can 

automatically interpolate Jacquard fabric patterns through modifying and 

changing the composition of weave patterns and colors of images. Fashion 

designers can use the system to transfer both color and texture from an image to 

the desired fabric simulations. The system can synthesize fabric textures from 

texture and color databases and present the textures in application boards that 

rival complex commercial designs even by professional designers. 

 

1.5 Organization 

The remainder of this dissertation is organized as follows. Chapter 2 reviews 

different methods and models mainly for content-based fabric perceptual feature 

extraction. The advantages and disadvantages offered by the various algorithms 

are discussed. Chapter 3 develops cognitive models and texture-based fabric 

structure representation for fabric cognitive feature analysis. Fabric texture 

operations including search, classification and pattern interpolation, are detailed 

in Chapter 4, Chapter 5, and Chapter 6, respectively. A systematic flow of fabric 
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texture operations in color and texture databases and the examples of design 

applications are also given in Chapter 6. As a summary of this research work, 

conclusions and future directions are discussed in Chapter 7. 
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Chapter 2:  

Literature Review 

 

2.1 Overview 

The interdisciplinary field of texture analysis and design operations includes 

diversified subsequent areas of theoretical and experimental knowledge of 

constructional, technological, system, hardware, and software. The dynamic 

development of these techniques implies that their applications are broadened in 

many fields of science. The feature extraction and displaying of fabric texture 

properties are among the two of classical problems in texture analysis and design. 

Both of them continue to arouse further research interests because of limited 

success so far in the past decades. In this chapter, the existing literature related to 

fabric feature extraction, texture analysis and operation, is reviewed. 

 

2.2 Methodologies for fabric texture-based analysis 

There are several surveys for general texture analysis. In [11], the basic issues of 

texture analysis, such as translation, rotation, affine, and perspective transform 

have been discussed. A survey is dedicated to texture segmentation and feature 

extraction particularly for various unsupervised applications [12]. Specific 

applications of computer vision-based feature extraction surveys had also been 

addressed in [13] and [8]. Tuceryan and Jain [14] identified five major categories 

of features for texture analysis: statistical, geometrical, structural [15], 
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model-based and signal processing features. 

Various imaging techniques and image processing methods were proposed 

for fabric feature extraction and analysis. CT scanning technique has been used 

to trace fabric yarns and reconstruct the three-dimensional geometry structure of 

a fabric [16, 17]. The majority of research focuses on fabric feature extraction 

and feature analysis by image processing methods. 

 

2.2.1 Statistical methods 

Statistical methods are widely used to summarize or describe data pertaining to 

the collection of textures for feature analysis, interpretation and presentation. The 

statistical approaches form the majority of work reported for fabric texture 

analysis, including fractal dimension, first-order statistics, cross correlation, edge 

detection, morphological operations, co-occurrence matrix, eigenfilters, 

rank-order functions, and local linear transforms. Table 1 lists major research 

related to fabric feature extraction and texture analysis by statistical approaches. 

Table 1. Statistical approaches for fabric texture analysis 
Approaches References 

Autocorrelation function Kang and Kim (1999), Jeon et al. (2003), Wu et 

al. (2005), Robert and Mieczyslaw (2006), Zhang 

and Bresee (1995) 

Morphological operation Huang and Bresee (1993), Robert and 

Mieczyslaw (2006), Kuo et al. (2004), Ajallouian 

et al. (2009) 

Artificial neural network Jeon et al (2003), Lee (2004), Kuo and Tsai 

(2006), Kuo and Kao (2007) 

Co-occurrence matrix Bodnarova et al. (1997, 2000), Latif-Amet et al. 

(2000), Siew et al. (1998), Tsai et al. (1995), Lin 
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(2002), Kuo and Tsai (2006), Salem and Nasri  

(2009b), She et al. (2005) 

Edge detection Lee (2004), Yu et al. (2009), Yu (2008) 

Gray level statistics Liu and Li (2008), Kuo and Su (2006), Kuo et al. 

(2007), Su et al. (2010) 

Autocorrelation combines all the image fragments and it is often used to 

characterize repeated structures in the fabric image. This technique makes it easy 

to reproduce the repeated pixel units in relation to the whole image analyzed [18, 

19]. In [20-22], autocorrelation function is used to determine structural repeat 

units of fabric weave pattern. In [20], the testing image and the original 

calculation results by autocorrelation function showed that the autocorrelation 

function has difficulty in accurate recognition of weave repeat unites due to 

irregular distributions along warp and weft directions caused by yarn skewness 

and displacement [23]. The projection profile for gradients was shown to obtain 

better extraction features of fluctuation than the one for grey-levels [22]. The 

experimental results presented in [22] were accurate for high brightness contrast 

of fabric images with regular yarn interlacing appearance; nevertheless, 

autocorrelation function is not applicable for fabric weave patterns with irregular 

colorway layout. 

Erosion and dilatation are among the commonly applied morphological 

operations in the shape analysis of fabric textures. In [19, 21, 24], the authors 

used erosion and dilatation on the mask processed by the threshold procedure to 

analyze yarn interlacing regions. Morphological features were used to describe 

fabric texture features in [25, 26], such as porosity, fiber orientation distribution, 

and fiber regularity distribution. According to Zhang and Bresee [18], applying 

morphological methods in image analysis requires greater calculation power 
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compared with using the statistical methods, considering the higher quality of 

processing the image mask demanded. Furthermore, morphological methods are 

limited to extract fabric texture features when long hairiness exists on the fabric 

surfaces. 

Several studies have been performed on fabric texture classification by 

using neural network. In [21], the ratio values of crossing points were used as the 

input pattern of a neural work and the neural network was then trained by the 

LVQ (learning vector quantization) algorithm to classify fabric weave pattern. 

The edge information was incorporated into multi-layer neural network for 

classification of fabric textures [27]. LVQ was also adopted as a classifier to 

categorize the class of weaving texture [28]. Recently, another related work for 

fabric classification using SOM (Self-Organizing Map) appeared in [29]. 

However, a large number of fabric texture classes with large intra-class diversity 

remain major obstacles in neural network [30] and Genetic SOM [31]. The 

assumption used by neural classifiers in the analysis of fabrics is that the yarn 

spacing and intersection segments are easy to identify. In fact, most of fabric 

textures are not exactly regular and it is often difficult to locate and extract the 

intersection areas of yarns in a fabric image. Furthermore, there are still a 

number of unsolved problems in neural network feature extraction methods, 

including the lack of a profound theoretical basis, the problem of network 

architecture design, and the black-box problem as pointed out by [32]. 

The spatial grey level co-occurrence (SGLC) matrix is a widely used 

statistical tool for detecting fabric features [33-35]. SGLC has been used to 

evaluate the carpet wear in [36] and it was proved to be popular in surface 

evaluation for fabrics [37] and wood [38]. Lin [39] evaluated the efficiency and 
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accuracy of a way to detect a fabric’s weaving density using a 

co-occurrence-based method and the finding was that the calculation precision 

for the plain weave was far better than for twill and satin weaves. The features 

extracted using SGLC were evaluated by [28, 40, 41] and it was shown that 

SGLC has better ability of texture description in fabric classification than 

wavelet analysis, such as Gabor wavelet and wavelet decompositions [40, 41]. 

There are operational problems when the co-occurrence matrices based 

approaches are applied to extract fabric texture features. It is a computationally 

demanding process to determine the co-occurrence matrices and there are up to 

14 features which are extracted from each co-occurrence matrix. There is a 

feature-selection problem in such detection approaches for different types of 

fabric texture and the feature determination therefore needs to be customized for 

different texture properties. 

The amount of gray level transitions in the fabric image may represent lines, 

edges, point defects and other spatial discontinuities. The distribution of the 

amount of edge per unit area is an important feature in the textured images and 

were used to detect fabric texture defects [8, 42, 43]. Lee used edge detection 

approach to get second-order features for classification and the results showed 

that this method was better than texton-based extraction method [27]. A new 

model named active grid model (AGM) was proposed in [44] to identify weave 

pattern of fabrics. The proposed model was based on active contours or snakes 

algorithm introduced first in [45] which was energy-driven curves moving with 

images to auto-adaptively deform and describe the shape of yarns in the fabric 

images. Several experimental results presented by the authors indicated that the 

system was capable of classifying fabric weave patterns. 
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Grey relational analysis was also used to identify fabric texture [46, 47]. 

The grey relational analysis of fabric images was defined in [48, 49]. The grey 

relational approach was applied to analyze the correlation in the random factor 

sequence of feature indexes after some data processing and thus determine the 

texture type of the designated fabric on the basis of the highest correlative degree 

[46]. There were six types of fabric texture used for materials classification in the 

study, i.e. cotton, polyester, silk, rayon, knitting and linen. If there were existing 

shadows in the fabric images, the grey levels in the images would be distributed 

unevenly and that would lead to difficulty or even failure in classification. 

 

2.2.2 Frequency and spatial domain methods 

Since homogeneous textile fabrics consist of texture units arranged under a 

deterministic rule, the high degree of periodicity of basic texture units allows the 

usage of signal processing-based approaches for the extraction of structural 

parameters of fabric textures. Early work on assessment of carpet wear suggested 

that it might be possible to find spatial-frequency domain features less sensitive 

to noise and intensity variations than those features extracted from spatial 

domain [36]. Signal processing-based approaches have been one of the most 

widely used feature extraction approaches. Table 2 summarizes the major 

signal-based approaches adopted for structural parameter extraction in fabric 

texture analysis. 

Fourier transform has been shown to be efficient for fabrics with high 

repetitiveness. When the yarn distortion and slippage are not sharp, the locations 

of yarns could be detected by Fourier transform method. Taking into account that 

a woven fabric is of a periodic texture, it seems quite natural to investigate how 
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to extract the weave pattern information based on yarn location detection using 

Fourier transform [50-52]. 

Table 2. Signal processing-based approaches for feature analysis of fabrics 
Approaches References 

Fourier transform Xu (1996), Kinoshita et al. (1989), Wood 

(1990), Ghane et al. (2010), Millan and Escofet 

(1996), Yu et al. (2007), Pan et al. (2009b), 

Randen and Husoy (1999), Moussa et al. 

(2010), Kinoshita et al. (1989), Ravandi and 

Toriumi (1995), Escofet et al. (2001), Rallo' et 

al. (2003), Akiyama et al. (1986) 

Gabor filter Salem and Nasri (2009b), Arivazhagan et al. 

(2006), Beirão and Figueiredo (2004) 

Wavelet transform Daugman (1980), Peng (2007), She et al. 

(2005), Kuo and Tsai (2006), Kuo and Kao  

(2007), Su et al. (2008) 

Finite impulse response filter Kumar and Pang (2002), Kumar (2003) 

Wiener filter Liqing et al. (2008) 

An image of periodic structures can be described as the convolution of an 

element unit by a two dimensional comb function which establish the periodic 

pattern [53]. The fabric structure thus is recognized and classified by the angular 

correlation of the sample spectrum and the reference spectrum in Fourier domain 

[54, 55]. In [56], the fabric image has been analyzed in HSL color space by 

Fourier transform. The power spectrum image derived from Fourier transform of 

fabric image was analyzed and filtered [9]. Peaks in the power spectrum image 

stand for frequency of yarn periodic elements from which basic weave patterns, 

such as plain, twill [57] and stain, could be discriminated by locations of power 

spectrum peaks [50, 58-60]. 

Ravandi and Toriumi used Fourier transform to evaluate fabric appearance 
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characteristics such as directionality, protruding yarn density, and yarn spacing 

for plain weave fabrics [58]. Two-dimensional Fast Fourier transform was used 

to analyze both weft and warp yarns of fabric image. The 2-D pattern power 

spectra offers a special angle to view weave pattern types of plain, twill and satin. 

However, the method was not so robust and still qualitative and rather 

approximate [60]. Recently, minimal weave repeat definition and identification 

using spatial and Fourier domain was also proposed along this research direction 

[61, 62]. Since the optical behavior of lenses and diffraction gratings could be 

described by Fourier transform theory [63], Akiyama et al. [64] used diffraction 

of laser light by regular arrangement of yarns in a fabric to characterize weave 

pattern types. This method can be bracketed into Fourier transform method. 

Several researchers have applied Gabor filters to fabric texture recognition 

and classification. Salem and Nasri had tested Gabor filter to recognition and 

classification of twill, satin and plain weave patterns [40]. According to the 

report, GLCM method with classification accuracy of 97.2% performed better 

than Gabor filter (best result was 96.9%). The fusion of Gabor filter and GLCM 

gave the best classification result (98%), but a single method of GLCM had 

better running time. Gabor filters are also used in fabric defects detection and 

classification [65, 66]. Gabor filters have been widely used in perceptual feature 

detection and extraction for different texture categories, such as wood, sand and 

grass. However, fabric texture may contain subtle perceptual texture difference 

while there is underlying essential difference in structure. For instance, plain and 

twill may be perceptually very similar but they are different structures in fabric 

design. 

Wavelet transform is also used to differentiate fabric textures in both spatial 
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and spatial-frequency domain [67, 68]. She et al. used a feature set extracted 

from two-level distinct wavelet of decomposed sub-bands and these features 

were then used to classify fabric weave pattern types. Experimental results of the 

recognition rate was 79% [41]. The two-layer wavelet analysis was applied to 

divide an image into sub-images by [28]. Low frequency sub-image was taken in 

the second layer of wavelet transform and the diagonal high frequency sub-image 

was used to calculate the co-occurrence matrix. The classification accuracy of 

fabric weave pattern was about 95% through LVQN (Learning Vector 

Quantization Networks). In [29], wavelet was also utilized to display texture 

characteristics of a fabric image. Su also proposed to use wavelet transform to 

acquire image features to recognize types of fabric texture [30] and the 

recognition rate amounted to 97.67%. Similar to Gabor filters, Wavelet transform 

are designed to differentiate major perceptual difference of fabric textures. 

Other analysis techniques including finite impulse response (FIR) filters and 

Wiener filters were adopted for fabric texture feature extraction. Since fabric 

surface appearance is very complex due to irregular arrangements of yarns and 

fibers, fabric textures that produce very subtle light intensity transitions are 

difficult to identify. A potential solution to extract features from such textures 

was to employ optimal FIR filters. The related work was detailed in [69, 70]. In 

[71], a fabric image was decomposed into horizontal and vertical sub-images by 

using Wiener filter to warp and weft yarn location analysis. A Wiener filter is not 

an adaptive filter because the theory behind this filter assumes that the inputs are 

stationary. Therefore, the filter needs to be customized for different fabric 

textures. There were only three examples tested in the report. 

 

http://en.wikipedia.org/wiki/Adaptive_filter�
http://en.wikipedia.org/wiki/Stationary_process�
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2.2.3 Model-based methods 

The model-based clustering methods were used to extract structural parameters 

from fabric images. Ajallouiana et al. used fuzzy c-means clustering techniques 

to determine the second threshold for generating the information of weave 

pattern in the form of black and white blocks [24]. Pan used a color-clustering 

scheme for yarn colorways detection [72-74]. The proposed scheme involved 

fuzzy C-clustering (FCM) and Hough transform [75] to locate the colorways of 

yarn profiles. As described in [73], the performance of this algorithm was 

excellent for all colored fabric images. The method is not suitable for analyzing 

fabric structural parameters when the image is dominated by grey color. Pan also 

tried a genetic algorithm-based method to detect the layout of color yarns [76]. 

In [26, 77], FCM was performed on multi-scale invariant texture features of 

gray level co-occurrence matrix to classify yarn crossed state of warp and weft. 

There was a geometrical method developed in [78]. The fabric weaving types 

were identified on the basis of geometric features of yarn distribution. There 

were 20 samples used for validation and the method was proven to be suitable for 

characterizing regular texture of fabrics, namely, fabrics have high clarity quality 

in terms of yarn configuration and crossing point profiles. Nishimatsu proposed 

an automatic recognition method also based on yarn float and crossover point 

shape analysis. Cross points of yarns are recognized by edge enhancement, 

threshold process, smoothing, mosaic averaging, and meshing [79]. 

 

2.3 Methodologies for fabric texture-based operations 

Texture feature extraction and analysis are the key problems in texture operations, 
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such as search, classification and interpolation or so called re-design. Texture 

operations give feedback to the former and refine the existing features or provoke 

new features of interest to be analyzed. There are numerous studies on general 

issues and algorithms of image search, classification, and texture synthesis. 

Recent years have seen a trend in computer science, showing that users are 

beginning to pay significant attention to texture-based image operations. 

Image search or retrieval is one of the most important examples of image 

operations. The traditional content-based retrieval (CBIR) systems have many 

limitations. For a given query image, the CBIR system is to find the most similar 

images stored in the database. The search process relies on the use of image 

descriptors which are characterized by two functions [80, 81]: feature vector 

extraction and distance measurement function. Usually, different descriptors are 

statically combined and the combination is fixed. The descriptors are applied to 

process all queries submitted to the retrieval systems. Therefore, similarity of 

images is thus considered as a simple matching between low-level features and 

high-level concepts. Image content-based representation and understanding have 

not been studied well and still offer a challenge to researchers and scientists. 

A wide variety of statistical methods have been proposed for texture 

classification. Most of the developed texture classification techniques are 

characterized by two properties, noise robustness and global and/or local texture 

descriptors [82, 83]. These techniques provide possible solutions to general 

appearance classification. However, few of these methods consider micro and 

macro texture structure properties. A single view of appearance may reveal a 

little underlying physical material meaning and thus cannot meet application 

needs in many situations. For example, these classification techniques provide 
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little classification details of fabric texture characteristics, such as weave pattern, 

material properties, color layout, etc. Many users may have found complex 

parameter configuration daunting. Texture classification, therefore, is a 

comprehensive problem, which should be further studied in a systematic 

framework. 

Texture interpolation refers to texture re-design or synthesis given the 

consideration that a new texture is created based on the existing patterns. In 

digital image processing and computer graphics communities, there is much 

work on texture design and synthesis. These studies are concerned with synthetic 

texture and its applications to scene synthesis, animation and special effects. In 

[10], a new texture was generated as a result of operations of the deformed fields 

in geometry, lighting and color. The authors used the multiplication techniques 

controlled by a weight factor in which the pixel-wise magnitude of a deformation 

field was manipulated. When the value of the weight factor is equal to 1 the 

deformation field is thought of faithful to the input; when the value is not equal 

to 1, i.e. the increment or decrement of the deformation value, the magnitude of 

the deformation field departure is considered as the new texture generation 

process. Brick wall texture and cloth texture were used as test examples. 

In [84], a system for designing new textures induced by an input database is 

presented. By capturing the structure of the induced space through a simplicial 

complex, a user can generate new textures by interpolating within individual 

simplices. Cloth textures were used as examples. The experiment could not 

provide fabric details in the generated textures. Thus, a customized texture 

synthesis approach for fabric needs to be further investigated. 
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2.4 Summary 

In this chapter, computer centric approaches for fabric feature extraction and 

texture classification have been reviewed. Many researchers have been dedicated 

to resolve the problem of fabric texture analysis by machine algorithms but have 

not found a solution for an intelligent analysis system. In the processes of fabric 

texture analysis, these approaches provide solutions to texture understanding, 

analysis and classification at the perceptual level. 

Examples of failed texture feature extraction based on perceptual similarity 

metrics [2] imply that it is difficult to overcome the disadvantages and limitations 

of a perception-based feature extraction method in the fabric texture analysis and 

operation system. Furthermore, the perception-based approaches focus on 

objective feature extraction and typically provide little interactive functions for 

attracting improvement effort from the user. Therefore, both perceptual and 

cognitive understanding of texture features are indispensable in fabric texture 

analysis.  
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Chapter 3:  

Cognitive Models for Fabric Texture Analysis and 

Operations 

 

A texture is perceived in a set of interpretive cognitive processes of the brain at 

the subconscious function layers, which detects, relates, interprets, and searches 

internal information in the memory [6]. Memory is the foundation for 

maintaining a stable state of a conscious system and it plays an important role in 

object perception and recognition. Humans prioritize real entities according to 

virtual image in the memory and extract attributes to build a connection or an 

interrelationship between a pair of object-object, object-attribute, and/or 

attribute-attribute [6, 85]. 

Texture management systems, especially those that offer navigation of data 

processing functionality, have a particular challenge around cognitive 

interpretation of texture features. So the plan of seeking a systematic and 

effective way to continuously exploit cognitive texture features will be the key of 

development of an intelligent texture analysis and operations system. In recent 

years, the internal information processing mechanisms and processes of the brain, 

especially their engineering applications by using an interdisciplinary approach, 

have attracted a lot of research interests [86]. The interdisciplinary approach, 

including disciplines such as psychology, cognitive science, physiology, 

computing and neural science, is considered as a promising approach to model 

cognitive perception in natural intelligence. 
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In this study, an interdisciplinary approach that involves disciplines of 

cognitive computing [6, 85], material science, textile engineering, image 

processing and computer vision is used to investigate the cognitive features of 

fabric textures and their cognitive model in texture operations. First, an OAR 

model for fabric weave pattern is proposed to extract the essential features for 

indexing and grouping the weave patterns. Second, a cognitive informatics model 

for fabric texture operations is presented in which the key connections between 

the internal manipulation engine and external real fabric patterns are defined. 

Third, fabric texture fingerprints, i.e. the major features of woven pattern design 

rules are developed based on the cognitive models for fabric texture analysis and 

operations. 

 

3.1 OAR model for fabric texture analysis 

The cognitive model of the brain and memory function models are proposed and 

investigated in [5, 6]. Memory plays an important role in natural intelligence and 

is used to explain a wide range of fundamental phenomena in art, material 

science, mechanical engineering, psychology and cognitive science. In this 

section, a cognitive model for fabric texture analysis is developed based on 

object-attribute-relation (OAR) model of long-term memory (LTM) [6]. 

LTM is a permanent memory that human beings rely on for storing acquired 

information in terms of facts, knowledge and skills. During the design process, a 

designer selects weave patterns and creates new fabric designs. Both weave 

pattern selection and design activity are highly related to human LTM functions. 

The LTM-based texture interpretation for a fabric design in human brain is 
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unlimited, because of the enormous number of neurons and many more potential 

synaptic connections in the brain. OAR model is a cognitive model of LTM, 

which explains how information or knowledge is represented in LTM and the 

model is described as a triple: 

( , , )ˆC O A R=                           (1) 

where C  represents the cognitive OAR model for object analysis, O  is a finite 

set of objects indentified by symbolic names, A  is a finite set of attributes for 

characterizing an object, and R is a finite set of relations between an object and 

other objects. For fabric texture analysis, Cognitive Weave Pattern OAR model 

(CWP OAR− ) is developed as follows: 

( , , )ˆCWP OAR T A R− =                         (2) 

where T  is a finite set of weave patterns. R  is a finite set of relations of the 

attributes of weave patterns. A  is a set of attributes for characterizing fabric 

weave pattern properties, which is given by: 

{ , , }A M V F=                              (3) 

where M is the feature vector of material structure complexity which is related 

to information entropy [87] and texture regularity [10], V is the feature vector of 

structural appearance which is a grouping function of objects, and F is the 

feature vector of cognitive tracking features that detect repetitive patterns [88, 

89]. These feature vectors are developed to describe the basic attributes of fabric 

weave patterns. These attributes of fabric textures are detailed as below: 

First, fabric weave pattern complexity can be considered as the complexity 

of the material structure. The physical structure is formed during the weaving 
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process of production in which the yarns are inter-woven together. Since a 

binary-valued weave pattern can be used to express the complete interlacing 

structure of a woven fabric without information loss, the distribution complexity 

of the points in the weave pattern thus corresponds to the material structure 

complexity of a fabric. In practice, fabric designers associate the weave pattern to 

the texture appearance of the final product. During the weave pattern selection 

process, designers compare and rank weave patterns according to the regularity 

or complexity of the distribution of warp and weft points. Hence, from the view 

of weave pattern selection in the design process, the weave pattern complexity is 

essential for indexing the material structure complexity. 

Second, fabric appearance depends on its material units that are 

characterized by their structural appearances. The material units include fiber and 

yarn in a fabric. In the formation of a fabric structure, the appearance of the 

fabric is attributed to the spatial distribution of material units to be shown on the 

surface of the fabric. There are two aspects to describe the material units. The 

first one is the fingerprints of the material unit, fiber or yarn, which can uniquely 

define its characteristics of structural appearance at the micro level. The second 

one is the spatial distribution of material units on the fabric surface, which forms 

the texture objects on the fabric pattern. For example, a star pattern can be 

created by a group of warp floats on a plain background weave in which the 

shape of the yarn floats is a star pattern. Therefore, the clusters of yarn floats of 

warp and weft will mainly determine the surface structure appearance of a fabric. 

The clusters of yarn floats are considered to be the objects of interest distributed 

in a weave pattern, which are used as the global texture feature to group or 

categorize a weave pattern in this study. 
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Third, repetition size and content richness are considered as the basic 

features among different texture features of periodic patterns [90]. The cognitive 

features refer to the basic features that can be considered as major characteristics 

for texture pattern perception and understanding in fabric design activity. A 

feature-based texture analysis system is by and large a vision system and no 

feature-based vision system can work unless good features can be identified and 

tracked in the context of applications [91]. Traditional methods for fabric texture 

analysis and operations are based on physical point’s pattern recognition [22, 34, 

46, 60, 92]. In this study, the global texture feature of texel and its repetition 

information are used as the cognitive tracking features to describe the essential 

arrangement of fabric textures. Specifically, the cognitive tracking features are 

used to facilitate fabric texture operations, such as the search and classification of 

fabric images according to their repetition size and content richness. 

 

3.2 Cognitive informatics model for fabric texture operations 

Based on the cognitive model of brain developed in [6, 85], the cognitive 

informatics model for fabric texture operations is developed in Figure 1. The 

cognitive informatics model describes the information flow for fabric texture 

analysis and its operations. It can be considered to be a symmetric processing. 

The left part is the observations on patterns, and the right part expresses the 

knowledge about patterns. From top to bottom, there is a pattern for each layer: 

(1) texton at the first layer [93], which is the basic components of a fabric pattern 

that may include ideal color and texture effects in a fabric pattern; (2) texel at the 

second layer, which is one complete pattern of the periodic patterns of a fabric 
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pattern; and (3) figured-pattern at the third layer, which is a meaningful pattern 

that is related to the high-level concept or description of objects in a fabric 

pattern, in terms of both color and texture effects, that is called a cognitive theme. 

These layers describe a hierarchical structure of pattern reception level from 

micro to macro level. In this study fabric texture is then defined as the patterns in 

the three layers. 

For concreteness, the texton in a fabric expresses the yarn interlacing points 

that include warp and weft points on the fabric surface and their colors. Further, 

the description of texton is related to a weave pattern description at yarn level. 

Next, the texel can be considered to be a pattern, which is a rectangular unit of a 

fabric pattern. This assumption is reasonable for fabric production since a woven 

fabric only has weft (horizontal) and warp (vertical) yarns. Therefore, one 

complete pattern of the repetitive structure is a rectangular shape. 

On the other hand, figured-pattern of a fabric is a combined pattern of fabric 

color and texture. Specifically, the combination process is related to the design 

process and its understanding process that connects texton, texel and finally 

figured-pattern. The combination process is implemented as weight functions of 

attributes of patterns. Note that the function of a figured-pattern is different from 

a texel pattern. For example, the former can express the regularity of the texels 

and the number of repetition times of texels in a fabric, which conveys 

meaningful information in applications. 

In the cognitive informatics model of fabric texture operations, the external 

world can be implemented at the user interface part by inputting fabric texture 

patterns at different observation levels. The internal world refers to the internal 

feature extraction and relation association process, in which the fingerprints, 
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attributes and relations are defined in the abstract layer for fabric texture analysis 

and operations. Specifically, fingerprints in the image layer refer to the abstract 

representation of attribute combinations. Attributes are the basic features that can 

describe the properties of textons and texels independently. 

In the abstract layer, attributes are connected as a result of applications of 

texture operations. The applications in the process of texture operations are 

related to high-level concepts based on knowledge and skills that are subject to 

updating and maintenance. For instance, the relation association process in the 

central part may depend on the presentation way of textons, texels and 

figured-patterns. Once the relation association process is completed, new 

expressions of textons, texels and figured-patterns will be formed. In this way the 

unknown patterns and their Meta fingerprints or attributes then considered to be 

the known patterns and the derived fingerprints or attributes. 

There are several important assumptions made in this model. First, the 

information transmission paths are not purely parallel; second, the cognitive 

relations are governed by a theme or a topic. Thus, the major difference between 

the traditional perception-based feature and the cognition-based feature for 

attribute representation is that: the former is a simple translation process in 

independent layers of textons, texels and figured-patterns, while the latter is not 

which is a more comprehensive description. Moreover, the proposed model 

explains the cognitive information flow for fabric pattern analysis and its 

operations in fabric pattern design process in which fabric designers use existing 

patterns at different levels and combine the essential attributes through the 

intermediate linkages to express knowledge and skills. 
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Figure 1. Cognitive informatics model for fabric texture operations. 

The cognitive model is looped as thinking, reasoning, and other high-level 

cognitive processes [85]. Internal fingerprints are not only related to input 

patterns, but are also eventually connected to known textures. The link in loop in 

the internal texture operation engine makes it possible to transmit and update 

knowledge in abstract layer according to the application concepts and themes. It 

means that the information of input fabric textures includes not only the 

information in Visual Sensory Memory (VSM) but also other information stored 

in LTM. 

Based on the OAR model and cognitive informatics model for texture 

operations, the abstract layer can be represented by a set of fabric textures, 

attributes, and relations, as described in CWP OAR−  model in Section 3.1. As 

discussed in Section 3.1, fabric weave pattern has three essential properties: 

material structure complexity, structural appearance, and repetition features 

(cognitive tracking features). At the texton layer in the cognitive informatics 

model, the pattern representation can be described by its fingerprints and the 

internal relations of basic features. Specifically, the presentation can be modeled 
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by a relation reconfiguring scheme as shown in Figure 2. 

Importantly, note that the basic feature extraction for texton layer may 

include the features from texel layer and even figured-pattern layer. The reason is 

that the attribute relations in the cognitive informatics model for fabric texture 

operations are interpreted as basic features in the implementation model. In 

addition, the central part of the implementation scheme indicates that the theme 

of is texton layer operations, such as search and classification, is the similarity 

measurement. To that end the indexing and grouping function definition is the 

key to fabric texture operations at the micro level. 

 
Figure 2. The implementation scheme of weave pattern search and classification 
based on the OAR model and the cognitive informatics model for fabric texture 
operations. 

In the proposed scheme, O  and Q  are texture objects in CWP OAR−  

model, i.e., unknown and known textures in the cognitive informatics model for 

texture operations. f  can be considered to be the attributes in CWP OAR−  

model and fingerprints in the cognitive informatics model for fabric texture 

operations. r  is the set of relation representation in CWP OAR− , that is, the 

abstract layer relation set of attributes in the cognitive informatics model. 

An algorithm for the evaluation of user relevance feedback was introduced 
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in [94]. Based on the algorithm, the reconfiguring scheme of the relation set is 

comprised of four steps: i) show a small number of known textures specifying 

their application environments (texture application objects); ii) the user indicates 

an interest in fingerprint representations by assigning each weight value W for Q 

in Figure 2; iii) learn the user needs by relevance feedback of Q; and iv) apply 

each weight value W for Q to O. 

 

3.3 Texture fingerprints 

To systematically understand and identify fabric texture properties, the 

development of fabric texture fingerprints will be very useful in texture design 

operations, such as identification of texture properties, digitization, indexing, 

searching, classification and synthesis of textures. The OAR model for fabric 

texture analysis and cognitive informatics model for fabric texture operations 

will provide guidance to develop fabric texture fingerprints by the method of 

systematic analysis. The method of fabric texture fingerprint development 

includes three steps, as described below: 

Step I, conducting a systematic review of fabric texture properties to 

identify significant factors in the process of fabric texture production. 

Step II, implementation of OAR model for fabric texture analysis as detailed 

in Section 3.2. 

Step III, defining fabric texture fingerprints by associating a set of basic 

features to the main properties of fabric material units at yarn level and fiber 

level. 

Fabric texture fingerprints will be developed using the proposed three steps. 
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Each step is detailed in a subsection. 

 

3.3.1 A systematic review of fabric texture properties 

The fabric product used in daily lives, such as garment, curtains, and upholstery, 

is designed to achieve aesthetic or functional features. The modern technologies 

for fabric texture design and production are developed from the complex and 

lengthy socialization and maturation process of the human being. There are 

various fabric texture properties to be considered for fabric evaluation in both 

design and production process. To better understand the properties of fabrics, a 

systematic review of the fabric texture is needed. 
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Figure 3. A layered relation between texture properties and material attributes. 

When a fabric is constructed, the choice of material and finish is most 

important as it determines the final appearance and wearing qualities of the fabric. 

The most important properties of materials and finish are contained in the 

appearance of the fabric. From macro scale to micro scale, fabric texture 

properties include color, shape, and directionality at two levels of materials, i.e., 
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yarn and fiber materials. The color and shape of yarn and fiber materials are 

considered as the two most important factors in fabric texture images. Another 

important characteristic of the fabric texture is the distributing trait of material 

directions, i.e. the directionality of yarn material and fiber material.  

X-Axis 
(Attribute of Color)

z

y

x

Y-Axis 
(Attribute of Shape)

Z-Axis 
(Attribute of Directionality)

Material unit (x, y, z)

 
Figure 4. Three-dimensional coordinate system of texture properties. 

There is a layered relation between fabric texture properties and material 

attributes as shown in Figure 3. Fabric consists of yarns and fibers, so-called 

basic material units in the process of fabric texture design. Each material unit is 

represented by a three-dimensional vector of attributes, i.e. the color of material, 

shape of material and directionality of material. As shown in Figure 4, fabric 

texture properties will be determined by three attributes of material units in the 

three-dimensional coordinate. 

There are six independent dimensions for the two types of material units, 

yarn and fiber. The parameters of texture properties can be described by the 

three-dimensional coordinate of texture properties. At the fiber level, they are: 

(Fiber color - X, fiber thickness - Y, fiber length - Y, fiber arrangement 
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directionality yarn twist / yarn density - Z), 

and at the yarn level, they are: 

(Yarn color - X, yarn thickness - Y, yarn float length -Y, yarn arrangement 

directionalityyarn layout / fabric density - Z), 

where each technical parameter is followed by an attribute in the 

three-dimensional texture coordinate, i.e. - X, - Y, or – Z. “Or” relationship is 

represented by sign /. The sign  is used to represent that the corresponding 

material parameters in the process of fabric texture design and production can be 

derived from an attribute in the three-dimensional texture coordinate. Note that 

the arrangement directionality of material units is used to describe the main 

feature of alignment of material units, such as yarn and fiber. 

The appearance of a fabric texture is mainly determined by the parameters 

of material unit. In some cases, finishing plays an important role in affecting the 

fabric texture properties. The fabric texture properties created by the finishing 

function can be described by the parameters of material unit in a fabric texture 

image. When the texture properties are not suitable to be described by the 

individual material parameter or parameters, the statistical texture features 

introduced in [95] may help to describe the essential texture properties generated 

by finishing. As an example, brushing is a popular method to generate hairiness 

on the surface of a fabric. Instead of using material attributes in the 

three-dimensional texture coordinate, it is convenient to describe the 

characteristics of the fabric texture by the global chaotic statistical features. In 

fact, the example can be considered as a special case as the material units are not 

divided into yarn materials and fiber materials but are thought as the whole units 
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of fiber and yarn. 

The foregoing analysis shows that fabric texture properties are based on two 

types of material units, yarn and fiber. The texture properties of fabric images can 

be described by three attributes of the material units. Material unit-based texture 

attribute analysis is to identify, appraise, select and synthesize fabric texture 

parameters. The parameters to describe fabric texture properties are defined by 

the attributes of material units at the yarn level or fiber level. For different 

parameters of a fabric texture, an appropriate attribute in the three-dimensional 

texture coordinate is used to represent the parameter. 

 

3.3.2 OAR model for fabric texture properties analysis 

The OAR model is a powerful tool to the fabric texture properties analysis, in 

which objects, attributes and relations are defined as a triple. As described in 

section 3.1, the development of a complete OAR model includes the 

developments of A and R for the fabric texture properties analysis. The O is 

fabric texture images. A is the set of attributes to describe fabric texture 

properties, which is defined by Equation (3). Each feature vector in Equation (3) 

can be described by one or more material attributes in the three-dimensional 

texture coordinate. In this section, the focus is to develop R. 

 

Figure 5. 3D properties of fabric texture surface. 
There are many parameters to describe the fabric texture properties at the 
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yarn and fiber material units. The essential relation R in the OAR model for the 

fabric texture properties analysis is to find a function that describes a mapping 

between fabric texture images and fabric texture parameters. The purposes of 

finding such a mapping function are: (1) to reduce the number of dimensions of 

the fabric texture image, (2) describe material parameters as computable features 

by machine, and (3) sort, group and merge features to differentiate fabric texture 

images. 

 

Figure 6. Fabric and weave pattern R[s]. 

The parameters of fabric texture properties are defined by the material 

attributes in the three-dimensional texture coordinate. There is another aspect to 

be defined for a fabric texture, i.e., how to organize the material units of yarn and 

fiber. As shown in Figure 5 [96], there is an interlacing structure, the so-called R 

in terms of structure (R[s]). R[s] represents a 3D interlacing structure of material 

units in which the locations of yarn materials and fiber materials are defined in a 

three-dimensional space. At each interlacing area of yarn materials, the 

directionality of fiber materials categorizes the yarn materials into two types: 

warp and weft. Other material parameters are included in the material units at the 

yarn level or fiber level, such as color and thickness. Since the fabric is made 

only by interlacing the warp yarns in a vertical direction and the weft yarns in a 
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horizontal direction, there are two exact states at each crossing point of warp and 

weft. That is, the warp is interlaced over the weft or vice versa. The former is 

called a warp point and the latter weft point. 

Given the colorway layouts in both horizontal and vertical directions, the 

appearance of the fabric texture depends mainly on the yarn interlacing status. 

Colorway layout refers to the spatial arrangement of yarn materials in a 

two-dimension space. In Figure 6, a fabric with three colorways in warp (red, 

yellow and black) and two colorways in weft (black and yellow) has a twill 

interlacing pattern. The number of grid lines in a horizontal direction is equal to 

the number of weft yarn material units and the locations of grid lines indicate the 

locations of the weft yarn material units. Similarly, the number of warp yarn 

material units and their locations are defined by the grid system. 

The interlacing structure of material units is represented by the black and 

white cells in the grid system. The black cells are used to indicate warp points 

and white cells to represent the weft points. Thus, the spatial organization of 

material units is represented by R[s] in a grid system. The appearance of a fabric 

depends primarily on R[s] and its cell properties, such as color and crossing state 

yarn material units. Material parameters can be encoded into properties of cells 

in the grid system. The properties of cells are represented by the attributes in the 

three-dimensional texture coordinate and the data structure of the properties of 

cells is a hierarchical system in a table form. 

 

3.3.3 Development of fabric texture fingerprints 

There exist two levels of material units in a fabric and it is necessary to use two 
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levels of imaging resolutions in the fabric digitization process. The high 

resolution imaging method is used to digitize the fabric texture details at the fiber 

level. The parameters of fiber material properties, such as fiber color and 

thickness, can be examined in the high resolution fabric image. The low 

resolution of imaging method is used for capturing the fabric texture properties at 

the yarn level. The parameters of yarn material units, such as yarn color and 

thickness, can be evaluated in the low resolution fabric image. 

As shown in the cognitive informatics model developed in section 3.3, the 

texture fingerprints in the image layer are used to connect the physical fabric 

texture to the abstract concepts, attributes and relations in the internal world of 

texture operations. The texture fingerprint is developed according to three aspects: 

material units which are detailed in 3.3.1, R[s] that is the essential map to 

describe fabric material features, and imaging resolution that depends on the 

material units. Thus, fabric texture fingerprints can be described by material units, 

material features in R[s], and fabric texture images: 

( , , )ˆT M F I=                          (4) 

where T  is the fabric texture fingerprints. I  is the image of a fabric texture, 

e.g., a JPEG format file. F  is the material feature vectors for fabric texture 

operations. M is the material unit. 

In a fabric texture, there are two types of material units, fiber and yarn, as 

described in Section 3.3.1. The target of development of F  in Equation (4) is to 

find the minimal number of material features that can uniquely determine the 

material units in the fabric texture. The development of fabric texture fingerprints 

for given material units and their texture images in T  includes two aspects, as 
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described below: 

(1) Definition of F . Each material feature is defined according to the 

material production parameter, namely fabric density, yarn thickness, 

color layout, and yarn interlacing status. 

(2) Optimization of F . For the near regular fabric texture, essential 

material features can be defined through observations from experiments. 

For chaotic fabric textures, essential material features can be defined by 

user feedback investigation, such as the relations reconfiguring scheme 

in Section 3.2. 

 

(a)                                (b) 

Figure 7. Fabric texture images with different material details. (a) yarn-level 
image. (b) fiber-level image. 

Two levels of imaging resolutions are used to observe fabric material units. 

An example of a fabric texture is shown in Figure 7. The properties of fiber 

material units can be observed in the fabric texture image on the right in Figure 7 

wherein I = high resolution JPEG file and M = fiber material units. Based on 

the observations of high resolution images of the fabric texture, the fabric texture 

fingerprint at M =fiber is developed as: 

Ff  = ( 1f : input from users, including the number of colors and 
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regions of sample colors in the image; 2f : locations and sizes of fiber 

clusters; 3f : fibers directionality)                           (5) 

where 1f  is used to understand the user’s observation. 2f  can determine yarn 

density, yarn thickness, and color layout. 3f  can determine yarn interlacing 

status. 2f  and 3f , thus, will uniquely determine fabric texture properties at 

the fiber level. The directionality of fiber materials is defined by using the 

definition of texture directionality in [97]. 

When I =low resolution JPEG file, the fabric texture image is shown on the 

left in Figure 7. The fabric texture fingerprint at M =yarn is developed as: 

Fy = ( 1f : the grid system in R[s]; 2f : location and size of texel, 3f : 

symmetry representation)                     (6) 

where 1f , 2f  and 3f  will uniquely determine the texel fingerprints of the 

fabric texture when M =yarn. A texel, or texture element, is the fundamental 

unit of texture space. The texel of fabric pattern refers to the most prominent 

repeat pattern of fabric texture at yarn material units. Yarn level fingerprints are 

thus defined by the location and size of texel. The grid system in R[s] and 

symmetry representation are used to characterize the arrangement of texels in the 

fabric weaving network. 

 

3.4 Summary 

In this chapter, I established a framework to study fabric texture properties 

through an interdisciplinary approach. An OAR model is presented for fabric 

texture analysis. The OAR model points out the major cognitive features to be 
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searched and classified in the process of fabric design. The model provides 

guidance to fabric texture digitization, analysis and operations. A cognitive 

informatics model for fabric texture operations is thus proposed based on the 

OAR model, in which a relation between high-level features / concepts and 

low-level features is built through fingerprints of fabric material units. 

To facilitate fabric texture search and classification by major attributes, two 

levels of fabric texture fingerprints are developed based on the fabric OAR 

model and the cognitive informatics model for fabric texture operations. The 

essential features of fabric texture fingerprints are captured using two levels of 

imaging resolutions, i.e. the high resolution for the fiber material units and low 

resolution for yarn material units. This chapter provides a general research 

framework for a fabric database management system, based on which fabric 

texture operations are conducted, including fabric search, pattern classification 

and texture synthesis. 
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Chapter 4:  

Weave Pattern Search 

 

The proliferation of digital capture devices and the explosive growth of 

community-contributed media contents have led to a surge of research activity in 

fabric image search or retrieval. Text-based image search systems have been 

deployed by main stream search engines such as Google, Yahoo, as well as 

Microsoft. Although the research on content-based image search has existed for 

decades, it seems that there are few practical systems of content-based image 

search which can be commercialized [98]. 

This research introduces cognitive models for fabric texture analysis and 

operations in Chapter 3. The further analysis of fabric texture properties in 

Section 3.3 reveals that texture fingerprints are connections between object 

concepts and attributes of texture properties. Based on the development of fabric 

texture fingerprints in Section 3.3.3, fabric texture analysis and operations 

techniques for fabric pattern search will be detailed in this chapter. 

 

4.1 Attributes representation 

Object-attribute-relation (OAR) model explains how information or knowledge is 

represented in LTM and the model is described as a triple in which A is a finite 

set of attributes to define object characteristics or properties. An attribute can be 

the accurate quantitative term to define texture material parameter or the general 
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qualitative form to describe the appearance. In Section 3.1, A in the OAR model 

is represented by three aspects of texture-based properties and their detailed 

properties will be individually developed for fabric texture in the following 

sections. 

 

4.1.1 Material structure complexity 

Woven fabrics are highly structured materials, having their appearance, handling 

and mechanical properties influenced by their geometric structure. Fabric pattern 

has a basic unit of weave for production that is periodically repeated throughout 

the entire fabric network. The basic unit is called weave pattern R[s] for fabric 

pattern production. The material network is formed based on the weave pattern 

format during the production process. Designer selects weave patterns according 

to the weave pattern complexity and then determines the weaving parameters of 

the machine accordingly. 

 

Figure 8. The drafting plan of weave pattern on loom. 

There is a well established format for representing the weave pattern known 

as WIF (Weave Information File) format for industrial production usage. As 

illustrated in Figure 8, a weave pattern has three parts: warp yarn setup (bottom 

right, controlled by warping machine), weft yarn setup (bottom left, controlled by 
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weft shuttle, also named as peg plan code in textile mills) and tie-up (upper part, 

also named drafting in textile mills). The pattern of a fabric product is generated 

by the above three parts, so it can be treated as an encoding process of fabric 

pattern production. 

Extraction of the control point of yarn path is as follows, from the tie-up 

plan section of WIF file: 

                     ( , ) ( ( ), ( ))ε µ ζ ζ∂ Γ = Γ ∂                      (7) 

where 1( ) {1,..., }mζ Γ ∈  is the weave encoding function for weft yarns ( 1m  is 

the number of weft threading). 2( ) {1,..., }mζ ∂ ∈  is the weave encoding function 

for warp yarns ( 2m is the number of warp threading). µ is the function described 

in the tie-up plan section. WIF contains the threading information that defines the 

threading of the warp yarns into the heddles of the shafts. It also contains a lift 

plan which represents the combination of shafts raised for creation of each weft. 

The weave pattern is obtained by combining the threading and the lift plan 

information. Weave pattern search by complexity becomes: 

                 ( )cP P ζ=                          (8) 

where P  is the prioritization function to evaluate the information complexity 

(energy function) of weave pattern. It is noteworthy that the weave pattern 

information is compressed through Equation (7) which is related to the 

complexity of weave pattern and is a representation of material-based 

organizational structure as well. In this section, an indexing method is used as a 

prioritization function to prioritize the complexity of production code (peg plan 

code) for fabric weave pattern. 
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To reveal the fundamental information of the weave patterns, a 

mathematical method is thus needed to compress and then index these patterns. 

The concept of information is too broad to be captured by a single definition. 

Luckily, for any probability distribution, a quantity called entropy can be defined, 

which has many properties that agree with the intuitive notion of what a measure 

of information should be. The initial questions treated by information theory lay 

in the areas of data compression and transmission; entropy is interpreted as the 

ultimate data compression [99]. Data compression can be achieved by assigning 

short descriptions to the most frequent outcomes of the data source, and 

necessarily longer descriptions to the less frequent outcomes. Entropy is a 

function of the probability distributions that underlie the process of data 

compression and communication. For a discrete source X , the self-information 

of symbol ix which occurs with probability 
ixp  is defined as log

i ix m xI p= − . 

The uncertainty or entropy of the source is defined as: 

( ) ( ) log
i iX x m x

i
H X E I p p= = −∑                  (9) 

where ( )H X  is the average information per source output. The base of the log 

function is 2 ( 2m = ) and entropy is expressed in bits. It is related to the 

distribution of source probability. The concept of entropy I in information theory 

is related to the concept of entropy in statistical mechanics. The entropy arises in 

statistical mechanics as a measure of uncertainty or disorganization in a physical 

system. The entropy can be regarded as the logarithm of the number of ways in 

which the physical system can be configured. Information-theoretic quantities 

such as entropy arise again and again as the answer to the fundamental questions 

in communication and statistics. The entropy concept is used in this study to 
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represent the weave pattern information in the process of fabric pattern 

production. 

The entropy of a random variable is a measure of the random variable; it is a 

measure of the amount of information required on the average to describe the 

random variable. Indeed, the weave pattern diagram can be treated as an image 

of point distributions in black and white. As a very abstract representation, weave 

pattern diagram is used by a textile designer to deal with texture designs that 

contain the amount of information of yarn interlacing points and their statistics 

meanings. In a weave pattern diagram, the distribution of different brightness 

intensities can be read by a weaving machine to produce the corresponding 

woven structure in which the interlacing rules of material units will be 

determined. The characteristics of fabric woven textures are then represented by 

interlacing rules of material units in a fabric weave pattern diagram. The entropy 

of the weave pattern diagram will be different from each other for its 

corresponding woven texture. It is possible to describe the weave pattern diagram 

by its entropy to measure the material network complexity in a fabric. 

Given an image, the size is M N× and function ( , )f x y represents the 

brightness distribution of pixels. If 1 2( , ) { , , }Lf x y k k k=  and the probability of 

brightness intensity in the image is 1 2{ , , , }f Lp p p p=  , the information entropy 

from Equation (9) for the weave pattern image can be given as: 

1 2 2
1

( , , , ) log
L

L L i i
i

H p p p p p
=

= −∑                   (10) 

As introduced in previous sections, the interlacing status for material units 

at yarn level only includes two situations, i.e. weft point and warp point. The 
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former is denoted as white ( ( , ) 0f x y = ) and the latter denoted as black 

( ( , ) 1f x y = ) in a weave pattern image. In this case, Equation (9) becomes: 

2 0 1 0 2 0 1 2 1( , ) log logH p p p p p p= − −                 (11) 

1 0 1
( , ), 1

M N

f x yp p p
M N

= = −
×∑∑                     (12) 

The calculation of material network complexity for a fabric involves the 

microscopic essence of the pattern complexity based on the probability of 

occurrence for each weft or warp yarn point. However, in a weave pattern image, 

entropy cannot describe the spatial distribution of weft and warp points and the 

distance of different distributions with the same number of weft and warp points. 

For example, theoretically, weave pattern simple plain weave and basket plain 

weave have the same entropy value, but they have different number of weft and 

warp points in spatial domain. In allusion to this shortcoming, Fast Fourier 

Transform (FFT) is used to extract the information of spatial distribution of yarn 

interlacing points. 

For the discrete case, the corresponding pair of the two-dimensional Fourier 

transform of an image is: 

            
1 1

0 0

1( , ) ( , ) exp( 2 ( )),
M N

x y

ux vyF u v f x y j
MN M N

π
− −

= =

= − +∑ ∑  

0,1, 2,... 1u M= − , 0,1, 2,... 1v N= −                       (13) 

            
1 1

0 0

1( , ) ( , ) exp( 2 ( )),
M N

x y

ux vyf x y F u v j
MN M N

π
− −

= =

= +∑ ∑  

0,1, 2,... 1x M= − , 0,1, 2,... 1y N= −                      (14) 

The formulation in (13) and (14) can reduce 2N  operations in the DFT to 
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2logN N  operations in the FFT. The basic idea of the FFT is that the DFT of 

N  elements is the sum of the DFTs of two subsets: even-numbered points and 

odd-numbered points. The dataset can be recursively split into even and odd until 

the length equals one. 

The Fourier transformed domain of the image is filtered so as to select those 

frequency components deemed to be of interest to a particular application, e.g. 

fabric density calculation and even pattern recognition or classification [60]. 

Alternatively, it is convenient to collect the magnitude transform data in achieve 

a reduced set of measurements. The FFT data can be normalized by the sum of 

the squared values of each magnitude component, so that the magnitude data is 

invariant to linear shifts to obtain normalized Fourier coefficients NF as: 

,
, 2

,
( 0) ( 0)

u v
u v

u v
u v

F
NF

F
≠ ∧ ≠

=
∑

                           (15) 

Histogram equalization can provide such invariance, but it is more 

complicated than using Equation (15) in terms of computation cost. The spectral 

data can be described by the entropy as: 

, 2 ,
1 1

( ( , )) log ( )
M N

u v u v
u v

H F u v NF NF
= =

=∑∑                 (16) 

where ( ( , ))H F u v  is called the spectral data entropy or FFT Entropy. 

 

4.1.2 Structural appearance 

The appearance of the weave pattern of a fabric is highly related to the 

organizational structures of material units in horizontal and vertical directions. In 
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this section, an orientation-based cognitive approach is proposed to index the 

structural appearance in weave patterns. 

1hΦ

2hΦ
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1
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Figure 9. Spatial relationship of objects. 

An orientation-based score can be used to scale the regularity of pattern 

arrangement according to human beings adaptive visual perception in the context 

of weave pattern design. The subjective criteria for grouping weave patterns are 

highly related to the regularity measurement of the distributions of the objects of 

interest. In this section, an objective orientation-based measurement of pattern 

distribution is developed. In this way weave pattern appearance is evaluated and 

indexed by the regularity of the distributions of objects in horizontal and vertical 

directions. 

Table 3. Distance measurement value for scattering patterns 

ID SCA1 SCA2 SCA3 SCA4 SCA5 SCA6 

SCA1 0 2 3.5 5 4 5 

SCA2 2 0 1.5 3 2 3 

SCA3 3.5 1.5 0 1.5 2.5 1.5 

SCA4 5 3 1.5 0 3 4.5 

SCA5 4 2 2.5 3 0 3 
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SCA6 5 3 1.5 4.5 3 0 

A difficult content-based pattern problem is thought as a simple directional 

analysis problem (horizontal and vertical) according to fabric material production 

alignments in two directions, weft and warp directions. The “node” and “trail” 

are defined in this study to represent the objects of interest in the weave pattern 

and their spatial relationship in a line. Specifically, there are vertical trails and 

horizontal trails. Note that the trail here is not a yarn but a virtual line to describe 

the spatial relationship of objects (nodes) in a direction. Intuitively, the 

calculation method can be considered as a grouping process in which the nodes 

are grouped by threads that have a connection function. 

As shown in Figure 9, if the horizontal projections of the nodes on vertical 

axis have intersection part, the nodes are defined on the same trail. There are two 

directions of threads, horizontal trail hΨ  and vertical trail vΨ . In each trail 

direction, there are different types of trails. Each trail type is determined by the 

number of nodes on the trail. The horizontal trail hΨ  and vertical trail vΨ  are 

given by: 

{ ( )}, { ( )}, 1, 2, ...h h i v v i i nα α⋅ ⋅Ψ = Γ Ψ = Γ =              (17) 

where i  is the index number of trail type. As illustrated in Figure 10, the trail 

type is defined by the number of nodes on the trail. h  indicates horizontal 

direction and v  indicates vertical direction. n  is the number of trail types. α  

is the number of objects on each trail. The trail type ( )h i α⋅Γ  is represented by: 

( ) ,h i iα α α⋅Γ = =                         (18) 

where the index value of trail type is the number of nodes on the trail. 
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The load value of the nodes on a trail is given by, for example, in horizontal: 

1 ( ( ) 1)hi h α α χ⋅Φ = + Γ − ⋅  

{0,1, 2, 3,..., }i l∈                    (19) 

where χ  is a weight, l  is the number of the trails in the pattern and a  is the 

number of nodes on each trail. For instance, if take 0.5χ = , the value of 0hΦ , 

1hΦ , 2hΦ , 3hΦ  in Figure 10 is 0, 1, 1.5, 2.5, respectively. The difference of 

load value between trail type 0 and 1 is larger than 1 and 2. The distance 

measurement of load value maps the concept that the question of object existing 

or not is more important than the difference of numbers in terms of human 

pattern perception and understanding. 

1

2

3

0

 

Figure 10. Different trail types. 

The mass center spatial position and size of objects in a two-dimensional 

coordinate plane may introduce different spatial relationships as shown in Figure 

9. The nodes on the same trail are defined by: 

0h v h vP Q→ →∩ ≠                        (20) 

where h vP →  and h vQ → are the horizontal projections of object P and Q on 

vertical axis. The nodes are defined on the same trail when horizontal projections 
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of the nodes have intersection part on vertical axis. Similarly, the single vertical 

trail type can be defined. In Figure 9, the property of threads 5 and 6 is different 

from others. It is proposed to differentiate the property by using private trail and 

public trail. The public trail is defined as: 

                    ( ) ( ) 0,h v h v h v h vP T T Q→ → → →∩ ∩ ∩ =  

0, 0.h v h v h v h vP T T Q→ → → →∩ ≠ ∩ ≠              (21) 

where h vT →  is the horizontal projection of object T on vertical axis. In Figure 9, 

threads 1, 2, 3, 4 are private threads and Trail 5 and 6 are public threads. The load 

value of private trail is calculated by Equation (19) and public trail is described 

as: 

1
( 1)

n

hi hi nδΘ = Φ − ⋅ −∑                          (22) 

where n is the number of threads which are public trail type and δ  is a weight. 

The Distance Measurement of Trail-Node (DM-Trail-Node) is given by 

              (1 ) (2 ) (1 ) (2 )| ( ) ( ) | | ( ) ( ) |
U V

h i h i h i h i
i i

α α α αα α α α⋅ ⋅ ⋅ ⋅Μ = Φ −Φ + Θ −Θ∑ ∑  

(1 ) (2 ) (1 ) (2 )| ( ) ( ) | | ( ) ( ) |
QP

v i v i v i v i
i i

α α α αα α α α⋅ ⋅ ⋅ ⋅+ Φ −Φ + Θ −Θ∑ ∑         (23) 

where U  is the number of private threads and V  is the number of public 

threads in horizontal direction. P  is the number of private threads and Q  is 

the number of public threads in vertical direction. The nearest index of threads is 

calculated in pairs. 

Six examples of scattering patterns are given in Figure 11. The 

corresponding distance measurement (DM-Trail-Node) values are shown in 
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Table 3. The distance measurement can describe the spatial distribution 

difference in terms of object directional distribution (horizontal and vertical) and 

the number of objects of scattering patterns. For example, the distance value of 

SCA4-SCA5 is larger than SCA4-SCA3. In Figure 12, there is a triangle spatial 

distribution with vertical trail in SCA3 and SCA4. There is a triangle spatial 

distribution with both horizontal and vertical threads in SCA5. The distance 

between SCA3 and SCA4 is considered to be smaller in Figure 12. 

 

SCA1 SCA2 SCA3 SCA4 SCA5 SCA6
 

Figure 11. Examples of patterns. 
 

SCA3 SCA4 SCA5
 

Figure 12. Object distributions of examples. 

In the proposed trail-node spatial descriptor, the spatial distribution 

relationship is defined by different types of trail. It is a three dimensional feature 

vector (direction; attributes of trail; trail category). The direction includes 

horizontal and vertical. The attributes of trail has two types: private attribute and 

public attribute. The trail category is determined by the number of nodes on a 

trail. The total number of features is 2*2*α . The distance measurement is 

calculated by DM-Trail-Node. 



 

-      - 70 

 

4.1.3 Cognitive repetition features 

A weave pattern design can be examined from two aspects: texel and repetition. 

Texel refers to the most obvious texture element in the fabric texture, which is 

considered to be the fundamental or essential unit of a fabric design. When the 

stimuli of texel patterns are repeated, the neural activity is usually reduced which 

is referred to as adaption. The components of a weave pattern design are 

perceived and understood when repetition suppression happens. Thus, texel and 

repetition characterization are the two important cognitive features for weave 

pattern design. 

Texel and repetition can be adopted as cognitive features to prioritize weave 

patterns. For example, the size of texel and the number of repetitions in a fabric 

texture can be used to index and search fabric patterns. A method proposed in [88] 

was adopted to detect deformed texels in an image. In fabric design, texel and 

repetition are detected by the underlying fact that the fabric material units are 

arranged in a grid system. The detection steps are conducted as follows: 

First, Harris corner detector [100] is adopted to detect low-level cues as the 

most obvious features to track in a fabric image. The Harris corner detector is 

based on an underlying assumption that corners are associated with maxima of 

the local autocorrelation function. It is less sensitive to noise in the image than 

most other algorithms, because the computations are based entirely on first 

derivatives and it has high reliability in finding L junctions and good temporal 

stability [101]. Weave pattern textures may contain defects and local small 

texture details which are not essential for human beings understanding of weave 
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pattern composition (texture element and repetition). In this regard, Harris corner 

detector is suitable to analyze low-level texture features in a fabric image. 

Second, clustering techniques are then used to cluster interest points by 

image patch appearance. Mean-shift clustering technique is adopted. The 

repetition directionality is perfectly constrained along warp and weft direction. 

The proposed repetition structure is thus simplified as a tiling problem of 

rectangular elements. There are no obvious geometrical occlusions and 

deformations. In each detected feature point cluster, three points are randomly 

selected and are calculated by the affine transformation that maps the grid 

structure feature vector [(0, 0), (0, 1), (1, 0)]. The best proposal of the repetition 

basis comes out from multiple random selections and is determined by the largest 

number of votes on the supporting grid structures. 

Third, an inferring algorithm is used to find the similar structure points in 

the underlying grid system of a fabric image. In practice, the weave pattern may 

contain small defects and material deformations. The underlying grid system in a 

fabric image is not a perfect grid structure. A tracking mechanism is needed for 

grid expansion. Given its efficiency, the MSBP algorithm is chosen for refining 

texel locations [88]. A MRF model is a choice for inferring texture element 

locations with two constrained functions. The first is the joint compatibility 

function which is given by: 

[ , ] [ , ] [ , ]( , ) exp( (1 ))i j i j i jx T Tα℘ = − −                   (24) 

where [ , ]i jx  is the 2D coordinate of texel node (the position of the node), α is a 

constant that is set empirically, and [ , ]i jT  is an image patch likelihood which is 

computed by normalized cross correlation between the grid candidate patch and 
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the proposed grid template. 

The second kind of function for the MRF is the pairwise compatibility 

function. The spatial constraints between neighboring pairs of texture elements 

are defined below: 

                  2
[ , ] [ , 1] [ , ] [ , 1]( , ) exp( ( , ) )i j i j i j i jx x h x xϕ β± ±= − × , 

2
[ , ] [ 1, ] [ , ] [ 1, ]( , ) exp( ( , ) )i j i j i j i jx x v x xϕ β± ±= − ×           (25) 

where h  and v  is the spatial consistency of the pair of elements, and β  is a 

constant that is set empirically. The spatial consistency function is defined by the 

normalized error term: 

1 2 1 2 1 1 1 2 2 2( , , , , ) max ( / , / )i i j j i j i i j iNE t t t t t t t t t t= − −         (26) 

The region of dominance is introduced to determine if an estimated texture 

element location can be trusted. The current estimated location with local 

maxima dominant peak is chosen as a peak location to determine the location of 

the trusted texture elements. The trusted texture elements are considered as the 

most obvious texels in the fabric image. The number of detected texture elements 

is defined as the number of repetitions of a pattern in the fabric image. 

 

4.2 Feature representation 

Fabric texture fingerprints have been developed in Section 3.3.3 and fingerprints 

representations of two material units have been given in Equation (5) and (6). 

Among these features in fabric fingerprint representations, two essential features 

in F  of Equation (4): yarn location detection and crossing structure recognition 
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will be detailed in this section. The two features determine weave pattern 

complexity defined in Section 4.1.1. The organization of this section is as 

follows. 

First, the fabric texture digitization methods are discussed. Second, the 

fabric weave pattern recognition problem is formulated as a structure orientation 

identification problem that simultaneously detects the yarn location as well as the 

yarn crossing structure in a woven fabric. A new local orientation pattern feature 

is proposed for fabric structure detection using high resolution images.  

The research method comprises two main steps. First, the yarn location is 

detected by using a series of the image enhancement techniques and the yarn 

intensity projection method. Alternatively, an interactive yarn detection method 

is also introduced to process fabric textures with complex surface appearance or 

captured by a low-resolution imaging method. Second, the fabric structure is then 

recognized with a local orientation detection approach based on Radon 

transform. 

 

4.2.1 Imaging methodology 

As described in Section 3.3.1, each material unit in the three-dimensional texture 

coordinate has its corresponding texture attributes. A systematic review of fabric 

texture properties reveals that the texture attributes of material units are analyzed 

from high resolution images and low resolution images. Therefore, choosing an 

appropriate imaging methodology is indispensible. 

There are two different perspectives to imaging a fabric texture: (1) focusing 

on the same material unit with different imaging conditions, and (2) capturing 
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different material units with similar imaging conditions. Since fabric texture may 

cover a spectrum going from stochastic to regular, it presents computational 

challenges for state of the art fabric pattern search. Investigation of fabric 

imaging conditions is necessary in order to be able to compare or integrate fabric 

texture data from different measurements. 

 

(a)                                  (b) 

Figure 13. Imaging methods of fabric texture appearance. (a) face and back side. 
(b) macro and micro scale. 

The commonality behind the varied appearance of fabric textures is their 

strong tendency towards regularity or symmetry, even though the regularity is 

often imperfectly presented and intertwined with stochastic signals and random 

noise. The random noise of a fabric texture, such as distortion and hairiness, is 

produced in the process of manufacturing. To obtain the comprehensive texture 

information, multiple images of a fabric texture at different levels are desired. 

There are two important imaging techniques for fabric texture digitization. 

The first technique is to capture the surface appearance with multiple images of 

texture areas on the face and back side of the fabric texture, as shown in Figure 

13 (a). The second technique is to capture local and global regions of the fabric 

appearances with different scales as shown in Figure 13 (b). Therefore, these 

imaging techniques should be useful to faithfully record the multi-level surface 
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appearances of fabric swatches. For fabric texture browsing, it should be noted 

that the texture appearance can be observed and identified by an experienced 

technologist, as shown in Figure 13. However, these images may not be adequate 

for texture feature extraction by machine. 

In the experiment, the high resolution image of the yarn-dyed cotton fabric 

is captured by the Leica M165c imaging acquisition system. As shown in Figure 

14, in order to generate different lighting conditions for testing, the uniform 

lighting conditions and the directional lighting conditions are generated by 

adjusting the LED lighting system. The lighting system is mounted above the 

fabric sample and each LED light can be controlled to adjust the illumination 

conditions.  

 

(a)                                 (b) 

Figure 14. The imaging acquisition system. (a) the position of the LED lighting 
system. (b) different lighting conditions. 

The fabric reflective image is captured by a CCD sensor of Leica M165c. 

The image resolution for the physical fabric size in the experiment is around 560 

pixels per millimeter. That is, one millimeter of the real fabric corresponds to 560 

pixels in the fabric image. 

CCD sensor 

Fabric sample

Lighting 
system
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4.2.2 Location detection 

The finished fabric products can be of almost any color, shape, and texture. This 

section introduces two types of location detection ways: (1) an automatic method 

for high resolution fabric images; and (2) an interactive method for fabric 

patterns captured in low-resolution images. 

 

4.2.2.1 Automatic location detection 

Wavelet transform can be employed to transform the digitized spatial image into 

the image based on space-frequency domain [28, 29]. It integrates the regional 

and global characteristics and provides a powerful signal treatment function in 

many fields, such as texture segmentation and edge detection. In the 

segmentation of warp and weft yarns, wavelet transform can be selected to 

enhance the image along the warp and weft directions.  

The Wavelet transform is given by: 

,( ) ( , ) ( )j k
j z k z

f t c j k t
∈ ∈

= Ψ∑∑                       (27) 

where  

, ,( ) ( ), ( ) 0, ,j k m nf t t t j k m n= Ψ Ψ = ≠ ≠               (28) 

,( , ) ( ), ( )j kc j k f t t= Ψ                           (29) 

where ( )f t  is the original signal, ( , )c j k  is the coefficient matrix, and 

, ( )m n tΨ  is the j th layer frequency of Wavelet transform. As for the Wavelet 

function at the location k , Equation (28) shows that the inner product of any two 

functions with a different basis must be 0 in terms of the orthogonal Wavelet 

transform. Accordingly, in Equation (29), the coefficient ( , )c j k  is obtained 
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from the original signal and the inner product of the basis. 

The base used in this study is Haar Wavelet (db1) [102] that is a 

ladder-shaped discontinuous function and is suitable for the inspection of 

products of speedy manufacture. Since the woven fabric consists of warp and 

weft yarns in the horizontal and vertical directions, it is desired to enhance the 

yarn signals by the signal decomposition graph of Wavelet transform in terms of 

horizontal and vertical high frequency signals. The high frequency signals 

represent the yarn edge signals of warp and weft floats in the original fabric 

image. 

The projection method [26, 74, 103, 104] was used to detect the yarn 

location in previous work. In a surface reflection fabric image, the yarns have 

higher intensity values while the interstices between yarns have lower intensity 

values. The underlying square grid structure of yarns in woven fabric allows us 

to analyze yarn locations by two directions in the image. The projection profile 

on the gray-level values along weft and warp directions can be calculated by: 

1

0

1( ) ( , )
N

x
L y f x y

N

−

=

= ∑                           

1

0

1( ) ( , )
M

y
L x f x y

M

−

=

= ∑                       (30) 

where, ( , )f x y  is the gray-level value of a pixel. N and M is the number of 

pixels in weft and warp direction. 

Since the fabric image may contain both the signal noise and the yarn 

hariness, the performance of the method is mainly depended on two image 

processing techniques: the image enhancing technique and the shadow intensity 
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extraction. In this study, the Coherence Enhancing Diffusion (CED) technique is 

adopted to enhance the coherence of the flow-like fiber orientation structures in 

the structural reflection image [105]. 

On the other hand, Wavelet transform is then applied to extract the shadows 

or edges along the warp and weft floats. By using the image intensity projection 

method in warp and weft directions [74], the 1D spatial accumulation distribution 

of the yarn and the interstices projection profile is obtained. Furthermore, before 

applying the peak detection technique, Moving Average (MA) filter [106] is used 

to reduce the random noise while keep the sharpest step edge response in the 

projection signals. 

      

(a)                  (b)                   (c) 

Figure 15. The yarn location detection results. (a) warp yarn location detection 
result by the traditional method. (b) weft yarn location detection result by the 
traditional method. (c) detection results of yarn locations by the proposed 
method. 

The traditional gray-projection method may not be suitable for detecting the 

yarn-dyed fabric including dark color yarns [74]. Figure 15 shows the yarn 

location detection results by the traditional method in warp and weft directions. 

The results show that there are misjudgments of the weft yarn locations. 

Furthermore, the yarn locations of both the warp and weft yarns are not detected 

accurately. Hence, it is infeasible to use the locations of the yarns by the 
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traditional gray-projection method to recognize the fabric structure and the 

weave pattern. 

In this study, Wavelet transform is used to extract the yarn information 

along warp and weft directions. The first layer frequency of Wavelet transform is 

selected to analyze the warp and weft yarn signals. The base used in the 

experiment is the Haar Wavelet (db1). As shown in Figure 16, the high frequency 

details of Wavelet transform decomposition in the vertical and horizontal 

directions can provide useful information for yarn location analysis. When the 

yarn float is warp, the boundary of the float is enhanced along the warp direction. 

Similarly, the weft float is enhanced along the weft direction.  

  

(a)                      (b) 

Figure 16. The extraction results of warp and weft signals by Wavelet transform. 
(a) the warp yarn signals extraction result. (b) the weft yarn signals extraction 
result. 
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(a)                      (b)  
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(c)                      (d)  

Figure 17. The projected yarn signals and the detected yarn locations. (a) the 
warp detection result of the traditional gray-projection method. (b) the weft 
detection result of the traditional gray-projection method. (c) the warp detection 
result of the proposed method. (d) the weft detection result of the proposed 
method. 

The projection signals of the yarns and their interstices by the traditional 

gray-projection method and the proposed method are shown in Figure 17. The 

stars on the projection curve are the peak values detected by the methods. The 

values of the horizontal axis in the warp accumulation curve are the horizontal 

locations in the image and the values of the horizontal axis in the weft 

accumulation curve are the vertical locations in the image. The detection results 

of the Wavelet transform decomposition projection method are shown in Figure 
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15 (c). It can be seen that good results of yarn location detection are obtained by 

using the proposed yarn detection method. In order to test the proposed method, 

more experimental results of different samples will be shown in Section 4.2.3. 

 

4.2.2.2 Interactive location detection 

In this study, more than 5000 fabric samples are collected to investigate fabric 

texture characteristics. Different texture characteristics present problems that can 

be solved by different algorithms. It is difficult to find an algorithm that is fully 

automated for yarn location detection. Four examples from the collections are 

shown in Figure 18. For more examples of fabric textures, see Appendix A. It can 

be seen that the assumption of the projection method do not hold for all fabrics in 

the testing dataset. Further, to illustrate the richness of the characteristics of 

fabric textures, different techniques are tested and the results are shown from 

Figure 19 to Figure 22. 

Projections of weft yarn in horizontal direction and warp yarn in vertical 

direction are calculated. There are eight calculations as shown in Figure 19. For 

each sample, there are two groups of material units, warp yarns and weft yarns. 

Each row in Figure 19 illustrates two calculations for a fabric image. The peaks 

and valleys in both warp and weft directions are relatively easy to detect for 

samples of (a) and (b) with low densities of yarn material units. Sample (c) is a 

solid-color texture and the densities of yarn material units are high in both warp 

and weft directions. Since the density of weft direction is lower than warp 

direction in Sample (c), the detection of peaks or valleys are also easier in weft 

direction than in warp direction. Sample (d) is a color-patterned texture with high 
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densities of material units. The texture patterns of weft direction are more various 

than warp direction. There are five clusters of weft projection intensities and two 

clusters of warp projection intensities. Therefore, the locations of warp yarn 

material units are relatively easy to detect. However, the weft yarn location 

detection is a challenge. As a result, it can be concluded that the accuracy of yarn 

location detection is influenced by the combined effects of color patterns and the 

densities of fabrics in fabric textures. 

    

(a)                             (b) 

    

(c)                            (d) 

Figure 18. Examples of fabric texture collection. (a) solid color sample with low 
density. (b) multi color sample with irregular yarn size. (c) solid color sample with 
high density. (d) multi color sample with indistinct yarn edges. 
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(c)                              (d) 
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(e)                              (f) 
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(g)                              (h) 

Figure 19. Method I in Section 4.2.2.1. (a) weft projection for Sample (a) in Figure 
18. (b) warp projection for Sample (a) in Figure 18. (a) weft projection for Sample 
(b) in Figure 18. (b) warp projection for Sample (b) in Figure 18. (a) weft 
projection for Sample (c) in Figure 18. (b) warp projection for Sample (c) in Figure 
18. (a) weft projection for Sample (d) in Figure 18. (b) warp projection for Sample 
(d) in Figure 18. 
 

           

(a)                              (b) 

           

(c)                              (d) 
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(e)                              (f) 

           

(g)                              (h) 

Figure 20. Method II power spectrum of FFT. (a) power spectrum for Sample (a) 
in Figure 18. (b) power spectrum with threshold for Sample (a) in Figure 18. (c) 
power spectrum for Sample (b) in Figure 18. (d) power spectrum with threshold 
for Sample (b) in Figure 18. (e) power spectrum for Sample (c) in Figure 18. (f) 
power spectrum with threshold for Sample (c) in Figure 18. (g) power spectrum 
for Sample (d) in Figure 18. (h) power spectrum with threshold for Sample (d) in 
Figure 18. 
 

            

(a)                              (b) 
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©                              (d) 

Figure 21. Method III edge detection by Canny algorithm. (a) edge detection 
result for Sample (a) in Figure 18. (b) edge detection result for Sample (b) in 
Figure 18. (c) edge detection result for Sample (c) in Figure 18. (d) edge 
detection result for Sample (d) in Figure 18. 
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(e)                              (f) 
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(g)                              (h) 

Figure 22. Method IV gradient map of yarn edge. (a) warp gradient map for 
Sample (a) in Figure 18. (b) weft gradient map for Sample (a) in Figure 18. (c) 
warp gradient map for Sample (b) in Figure 18. (d) weft gradient map for Sample 
(b) in Figure 18. (e) warp gradient map for Sample (c) in Figure 18. (f) weft 
gradient map for Sample (c) in Figure 18. (g) warp gradient map for Sample (d) in 
Figure 18. (h) weft gradient map for Sample (d) in Figure 18. 

Next, other analysis techniques are also tested for these samples. Fast 

Fourier Transform (FFT) is applied to analyze the locations of yarn material units 

by the periodic light intensity of yarns in fabric images. In Figure 20, power 

spectrum of FFT for each texture image is calculated. The results indicate that 

low frequency components (sharp shadows, edges, and hairiness) and high 

frequency components (smooth colored regions) of the projection curves are 

difficult to discriminate due to irregularity of material shape and orientation, for 
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example Sample (d). Therefore, both noise of hairiness and variation of colors of 

yarns in the texture image make the periodicity of yarn materials difficult to be 

selected out from the power spectrum. 

Since edge is the basic feature to describe an object in a vision detection 

system, the edge locations of yarns are the most straightforward features to detect 

yarns in a fabric image. In this study, Canny algorithm has been used to extract 

the edges of objects in a fabric image. Sample (a) has low density both in warp 

and weft. In this case, the edges of yarns can be extracted easiliy based on the 

Canny algorithm. However, the method would fail to extract edges of yarns in 

fabrics with high density, such as for samples of (b), (c) and (d), as shown in 

Figure 21 (b), (c) and (d). Thus, the calculations reveal little correspondence 

between locations of yarns in the original images and locations of edges in the 

edge maps. 

Gradient map of fabric texture is also calculated in horizontal and vertical 

directions. The calculations are shown in Figure 22. One of the drawbacks of 

gradient distribution is that the method cannot extract global variations of 

material units in terms of color and region. The results of Method III and Method 

IV are similar. Cues from gradient map are helpful to locate yarns for Sample (a). 

Similar to Method III, gradient maps of Sample (b), (c) and (d) provide little 

useful information to detect locations of yarns. Yarn location detection 

techniques based on color or texture segmentation are not investigated since they 

provide poor segmentation results for fabric images with solid color and fuzzy 

texture. For instance, yarn locations of Sample (c) are difficult to extract by color 

or texture segmentation techniques. 

In the four methods tested, method I performs better than the rest as it 
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captures the essence of fabric material production. The underlying structure of 

warp and weft materials is approximately a grid structure. Method I introduced in 

4.2.2.1 is simple and straightforward to explain material locations in the fabric 

image. The projection results of brightness intensity have good correlation with 

human perception. Nevertheless, the method also has encountered situations and 

problems that are not readily soluble in some cases, such as fabrics with high 

density. In practice, to overcome the difficulties in the automatic detection 

method, an interactive method, i.e. the computer assisted analysis method, is then 

proposed for yarn location in woven fabric images. 

 

Figure 23. Lattice of yarn interlacing location. 

For any woven fabric texture wp , four neighboring interlacing points of 

warp and weft yarns are taken. There exists an underlying lattice L  that is a 

geometrical distortion of a square lattice sL . Vertices of sL  correspond to the 

points with integer coordinates, x-coordinates being in the range 1,..., n, 

y-coordinates being in the range 1,...m. n is the number of warp yarns and m is 

the number of weft yarns. Two vertices are connected by an edge wherein the 

corresponding points are at distance 1. As shown in Figure 23, two vertically 

adjacent warp yarns and two horizontally adjacent weft yarns are defined as the 
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basic lattice of yarn interlacing locations. The geometric deformation field geod is 

defined as a function that maps L  to sL  and the deformation distance between 

them has been discussed in [90, 107]. In [10], user-assisted lattice extraction was 

developed to model the geometrical deformation of a near-regular texture. In the 

same way, yarn locations with a 4-cyle grid graph are specified. 

The process of specifying yarn interlacing locations in a fabric image is as 

follows: 

Step I. The user specifies the initial yarn interlacing locations by clicking 

three neighboring points of warp and weft yarns on a fabric image wp  to 

suggest a pair of lattice generating vectors, 1t


, 2t


, as shown in Figure 24 (a); 

Step II. Based on the given lattice locations, the computer generates uniform 

lattices on the input fabric wp with the same vector generators, 1t


, 2t


, as shown in 

Figure 24 (b); 

Step III. The computer compares the automatic location detection results of 

Section 4.2.2.1 with the user specified lattice location and suggests possible 

modifications, as shown in Figure 24 (c); 

Step IV. The user adjusts some of the misplaced interlacing points of yarns 

to generate L  on the computer screen. As illustrated in Figure 25, the user may 

click a lattice edge to select the whole line in red or yellow to rotate the line (left 

image) or shift its locations (middle image). Red line is the weft yarn axis and 

yellow is the warp. Local adjustment of individual lattice is carried out by 

dragging each lattice point on the computer screen (right image). User can also 

add or remove a line from the existing lines by double-clicking and deleting it; 
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Step V. The computer saves the lines user modified as sL . The number of 

red and yellow lines in sL  is the number of yarns in the fabric image. The 

locations of lines indicate the axes of yarn material units in the fabric image. 

 

Figure 24. Interactive yarn location detection. (a) specifying the initial yarn 
interlacing points. (b) generating the grid. (c) correcting the locations of nodes of 
the grid. (d) final locations of the nodes of the grid. 

 

Figure 25. Operations of adjustment. 

 

4.2.3 Structure recognition 

In this section, a interlacing point recognition method for yarns in the fabric as 
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well as the experiment results are presented and discussed in detail. As described 

in the previous section, the yarn floats are located by the grid of the lines 

simultaneously when the locations of the yarn interstices are detected. For each 

yarn segment, the fiber orientation can be used as the key feature to discriminate 

the warp yarns and the weft yarns as discussed in Section 3.3.3 of Chapter 3. 

Therefore, the detection of the weave pattern of a woven fabric is to detection the 

fiber orientation in the yarns of the fabric image. 

Once the locations of the yarns in the fabric have been detected, the crossing 

points of the warp and weft then can be possibly recognized according to the 

yarn interlacing status. There are two groups of yarns in woven fabric and the 

fiber orientation of the yarn floats can be used as the statistical texture feature to 

classify the yarns with the orientation angles. In this study, Radon transform is 

used to detect the fiber orientation in the yarn floats and thus determine the fabric 

structure and the weave pattern. 

The Radon transform computes the projections of an image along the 

specified directions. The transform is given by: 

( ) ( cos sin , sin cos )R f x y x y dyθ ρ θ θ θ θ
+∞

−∞
′ ′ ′ ′ ′= − +∫           (31) 

where 

cos sin
sin cos

x x
y y

θ θ
θ θ

′     
=     ′ −     

                         (32) 

Equation (31) and (32) transform the spatial domain image ( , )f x y into the 

corresponding projection domain image defined by θ  and ρ , where θ  is the 

angle of the projection of the image intensity and ρ  is the smallest distance to 

the origin of the coordinate system. The illustration of Radon transform is shown 
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in Figure 26. 

θ

x

y

( , )f x y

x′y′

( )Rθ ρ
 

Figure 26. Illustration of Radon transform. 
Radon transform generates a signature composed of 180 values, one for 

each angle in the range of [0 179 ]° − °  in 1° increments. Each value sums up the 

size of the image components that are shaped along the given angle. Therefore, 

Radon transform can be used to detect the fiber orientation in the yarn segments. 

The yarn floats patches are extracted from the yarn location grid and the 

fiber orientation of warp floats is different from that of weft floats. As shown in 

Figure 27, the fibers in warp floats are laid around vertical direction and the 

fibers in weft around horizontal direction. Radon transform is used to detect the 

fiber orientation of the yarn floats. In the experiment, the membership function of 

the fiber orientation corresponding to the warp or the weft yarn float can be 

defined as follows: 

{ }
{ }

_ | 90 , [0,179 )

_ | 90 , [0,179 )

Warp

Weft

θ θ θ ε θ

θ θ θ ε θ

= − ° < ∈ °

= − ° ≥ ∈ °
              (33) 

where θ  is the fiber orientation angle that is detected by Radon transform. 

Empirically, take 30ε = °  in all calculations in this paper. 

Figure 27 shows that some of the yarn floats may be very difficult to detect 

even for human eye due to the fuzziness of the micro structures in light or dark 
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colors and the presence of the yarn hariness, for example (b) and (g). On the 

other hand, both the ratio of the yarn float width and length and the shape of the 

yarn float patch are also various and irregular, as shown in Figure 28, which 

makes that it is difficult to detect the types of the yarn floats by its shape. Hence, 

the key of the fabric structure recognition is to find a more suitable feature to 

describe the material organization essence in the fabric structure.  

      

 

      

 

Figure 27. Examples of the yarn floats from the fabric samples. (a), (c), (e), (g), 
(i)and (k) are weft floats. (b), (d), (f), (h), (j) and (l) are warp floats. 
 

           

 

Figure 28. Examples of the shape of the yarn float patch. (a) weft float. (b) weft 
float. (c) warp float. 

    
 

(a) (b) (c) (d) (e) (f) 

(g) (h) (i) (j) (k) (l) 

(a) (b) (c) 

(a) (b) (c) (d) 
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Figure 29. Yarn hariness on the yarn float patch. (a) weft float patch. (b) warp 
float patch. (c) weft float patch. (d) warp float patch. (e) the edge map for the 
Sample (a). (f) the edge map for Sample (b). (g) the edge map for Sample (c). (h) 
the edge map for Sample (d). 
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Figure 30. (a) the fiber orientation distribution plot for Sample (a). (b) the fiber 
orientation distribution plot for Sample (b). (c) the fiber orientation distribution plot 
Sample for (c). (d) the fiber orientation distribution plot for Sample (d). 

The fiber orientation feature is based on the yarn layout in the fabric 

structural organization that can be considered to be the key feature to determine 

the yarn float type. From the high resolution images of yarn floats, it can be seen 

that the edges of the yarn floats are not very clear. However, the fiber orientation 

is relatively consistent along a certain direction. In the perceptions of the 

(a) (b) 

(c) 

(g) (h) (e) (f) 

(d) 
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professional fabric designers, the continuity of the fiber orientation is also the 

key texture feature that leads to the cognition of yarn floats discrimination. 

In the experiments, the hairiness on the yarn floats may have an influence 

on the orientation detection of the whole float patch. Four examples of the yarn 

floats are shown in (a), (b), (c) and (d) in Figure 29. The corresponding edge 

maps obtained from the Canny algorithm and the fiber orientation plots 

calculated by Radon transform are given in (e), (f), (g), (h) of Figure 29, and (a), 

(b), (c), (d) of Figure 30, respectively.  

From the fiber orientation plots, it can be seen that it is dangerous to use 

either the largest orientation response or the dominant orientation responses as 

the final orientation angle or angles to determine the yarn float type. In this study, 

the top k  largest responses are used as the candidates to classify the yarn float 

type. In all tests in the experiment, the 20% of the largest orientation responses in 

Radon transform are taken, i.e. k =180*20%. 

For the given yarn float patches, a classification function is used to differ 

the warp floats from weft floats according to the fiber orientation angles. The 

classification function is composed of two sub functions: the membership 

function of the fiber orientation as given in Equation (33) and the voting function. 

The voting function is defined to form the final judgment of the yarn float type, 

which is given by: 

1 2

1 2

1, 1
0, 1

D when L L
D when L L
= ≥ +
= < +

                         (34) 

where 1D =  means the fiber patch is the warp patch. In the similar way, 0D =  

represents the weft patch. 1L  is the statistical number of the warp memberships 
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in the top k  orientation responses in Random transform and 2L  the statistical 

number of the weft memberships in the top k  responses. 

Luckily, Sample (a), (b) and (c) in Figure 30 are detected by the 

classification function as the weft float ( 0D = ), the warp float ( 1D = ) and the 

weft float ( 0D = ) respectively, which agrees the human observation. However, 

Sample (d) is still detected incorrectly as the weft float ( 0D = ). It can be found 

that the hariness of Sample (d) has a very strong response along the weft 

direction in Radon transform. Thus, the Local Orientation Pattern (LOP) is 

developed to describe the fiber orientation frequency in the yarn floats.  

The LOP is defined as a sliding window that traverses the yarn float patch 

according to the given sampling grid on it. Specifically, the sliding window is a 

small rectangular window with the size of Sx Sy× , where ,Sx Sy mζ < < . 

Suppose the size of the yarn float patch is m n×  and satisfies m n≤ . ζ  is a 

threshold value to define the smallest size of the sliding window. The LOP is 

given by: 

( , , )LOP Sϑ υ= Ψ                          (35) 

where ϑ  is the orientation angle of the fibers detected from Equation (31), υ  

is the moving path of the sliding window in the yarn float patch and S  defines 

the window size.  

The moving path υ  defines the center location of the sliding window when 

it is traversing on the yarn float patch. As shown in Figure 27, the shadow area 

on the boundary of the yarn patch should be removed when LOP is calculated. In 

additional, the moving path can be defined as a grid sampled from the yarn float 

patch to save the computation cost. In this paper, the moving path is defined by a 
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5 5×  grid in which each node ( , )O x y  is the location of the center of the sliding 

window as shown in Figure 31 (a). 

0A0A 0B0B

0C0C0D0D

1A1A 1B1B

1C1C1D1D

0O0O 1O1O

         

0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

Weft float 
W.O.T. LOP

Warp float 
W. LOP

 

 

Figure 31. The moving path of the sliding window (left) and the misclassification 
correction with LOP detection. (a) the sliding window. (b) local values of the fiber 
patch. 

By using LOP, the misjudgment for Sample (d) in Figure 30 can be 

corrected and the results are shown in Figure 31 (b), where 0D =  means the 

yarn float is classified as the weft float by using the whole yarn float without 

LOP detection and 1D =  the warp float with LOP. It can be seen that all the 

fiber orientation responses of the small patches on the yarn float are classified as 

the warp orientation by LOP. Therefore, Sample (d) is the warp float. 

In case that there are different orientation responses in LOP, the voting 

function described in Equation (34) will be invoked. The proposed detection 

method also applies to the detection of the fabric structure with the twisted yarns. 

Figure 32 shows an example of the structure detection result for the twisted yarn 

fabric by LOP. The details of four twisted yarn patches are shown in Figure 32 (d). 

It can be found that the proposed method can detect the fabric structure 

accurately. By calculating the average color of each yarn float patch, the 

representative color for each yarn float patch can be obtained. The final estimated 

fabric image combines all the warp and weft floats and the result is shown in 

(a) (b) 
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Figure 32 (b). The proposed method can also detect the fabric structure pattern 

with multiple color effects. Figure 33 shows the experimental results that confirm 

the effectiveness of the detection method. 

   

 

  
 
 

Figure 32. Fabric structure detection result for the twisted yarns. (a) the fabric 
with the yarn location grid (the twisted yarn structure). (b) the estimated fabric 
image. (c) the detection result of the fabric structure. (d) the examples of the 
twisted yarns from the fabric. 
 

 

 

 

(a) (b) 

(d) 

(c) 
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Figure 33. Structure detection results for fabrics with different color effects. 
In the experiments, three kinds of fabrics are included in the experiments, 

i.e. the single yarn fabric, the double yarn fabric and the twisted yarn fabric. The 

research method has been proven to be effective even with the presence of the 

hariness on the fabric surface. Importantly, there are two points to be noted. First, 

the structure detection method is developed for high resolution fabric images. On 

the other hand, it should be stressed that the whole detection process is 

supervised, i.e. not fully automatic, for all samples, as the parameter of the peak 

or valley detection function may need to be adjusted for different samples. 
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Nevertheless, there are just few parameters to tune for samples with very 

different structures, typically two parameters (threshold values that are set 

empirically) for peak detection, one for warp direction and the other for weft. 

Thus, the developed method is still useful in fabric weave pattern recognition 

especially when there is prior knowledge about the samples. In the following 

experiments, the weave pattern recognition results from real fabrics will be used 

for weave pattern search and evaluation. 

 

4.3 Experiments and discussions 

Fabric weave pattern search is considered to be issues of pattern prioritization 

according to different interests of applications. In this section, I will present the 

experimental results of the three aspects of weave pattern essential characteristics. 

The experiments of fabric weave pattern search will be discussed based on 

different applications. 

 

4.3.1 Weave pattern complexity prioritization 

In fabric weave pattern design process, fabric weave patterns are searched by the 

pattern complexity to optimize production schedule and reduce cost. The first 

experiment is about prioritization of fabric weave patterns by their pattern 

complexity. As described in sections 3.1, 3.3 and 4.1.1, the indexing values of 

weave pattern complexity can be used to rank the weave patterns. In the 

experiments, 40 users were invited, including designers, sales man, product 

managers, production technicians, and consumers. There are 20 users who have 

at least three years design experience. Subjective evaluations of weave pattern 
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prioritization were conducted. 

The only way of performing subjective tests of the user is to ask the user to 

evaluate the prioritization system subjectively. According to the suggestion of 

users with professional design knowledge, the testing samples were divided into 

three classes: weave class A, weave class B, and weave class C. The three classes 

of testing samples are shown in Figure 34. The characteristics of weave class A 

are: (1) high interlacing frequency of warp and weft yarns, (2) short yarn floats, 

and (3) indistinct directionality of the pattern. The characteristics of weave class 

B are: (1) very low interlacing frequency yarns, (2) long yarn floats, and (3) 

indistinct directionality of the pattern. The characteristics of weave class C 

include: (1) low interlacing frequency yarns, (2) long yarn floats, and (3) distinct 

directionality of the pattern. 

Weave pattern complexity value is calculated by FFT entropy method and 

the prioritization result is given in Figure 35. The prioritization is based on the 

score value of FFT entropy value. Three classes of testing samples and their 

index number are shown in Figure 34. An evaluation experiment was conducted. 

A user was asked to give a score for each prioritization of calculations. The 

lowest score value is 0. The score indicates that the machine prioritization is 

random. The highest score is 100%. The score shows that the user is fully 

satisfied with the machine prioritization. The final evaluation score is an average 

evaluation score from all users. The final score is called the user satisfactory 

level. 
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Weave class A 

 
Weave class B 

 
Weave class C 

Figure 34. Weave pattern complexity ranking. 
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Figure 35. Weave pattern complexity prioritization. 

For users with design knowledge, a level of 98% is satisfactory for the 

average prioritization. For those without design knowledge, only a level of 90% 

is satisfactory. The total average satisfactory level is 94%. Weave pattern 

prioritization is highly related to LTM of human brain. Users with fabric design 

knowledge gave higher scores of satisfactory level based on their understandings 

of weave pattern production. Users without professional design background 

tended to give lower scores for the weave pattern prioritization. 

The designers also mentioned the reasons for giving higher satisfactory 

level of the prioritization results. The results reflected several important design 

aspects in production, including repeat size and woven interlacing complexity. In 

Figure 35, scores of weave patterns with similar repetition sizes are close. For 

example, the first row of samples has smaller repetition size than the second row 

for all classes. 

The prioritization results differentiated distance between two weave patterns. 

Weave patterns with lower FFT entropy scores were ranked at the front. For 

example, plain weave pattern with repetition size 2 by 2 was ranked at the first 
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position. Plain weave pattern is generally considered as the simplest weave 

pattern in fabric design. The prioritization results also showed that the 

complexity differences between classes of A and C were minor in Figure 34. 

Complexity values of Class B were generally higher than A and C. 

 

4.3.2 Structural appearance prioritization 

Fabric is a kind of structured materials. Structural appearance is one of the 

essential features of fabric textures. The structural appearance of fabrics can be 

characterized in two ways. The first is the weaving interlaced status of warp and 

weft yarns. The second is the clustering relation of warp and weft floats. The 

characteristics of the two aspects are largely determined by the directionality of 

the yarn float patterns. 

 

Figure 36. Weave pattern prioritization by DM-Trail-Node. 

A fabric weave pattern is considered as a two-phase texture pattern 
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consisting of textons on a regular background. A regular background can be 

defined as a weave pattern with low values of FFT entropy. Textons are clusters 

of warp points or weft points. These clusters are characterized by their shape. 

The LBP (Local Binary Pattern) algorithm is used to detect the locations of 

textons, since it performs a local search of texture patches without global texture 

calculation [82]. 

Based on locations of textons, weave patterns are prioritized by 

DM-Trail-Node. One typical prioritization result is shown in Figure 36. The first 

pattern in the first row is the simplest structural pattern in fabric design. There is 

one texton on a regular background. The prioritization is based on the values of 

DM-Trail-Node. The first pattern is a reference pattern. It is followed by patterns 

with close values of DM-Trail-Node. Values of DM-Trail-Node are calculated 

between the reference pattern and each pattern from the dataset. 

      
a)                                  b ) 

Figure 37. Texton prioritization. (a) texton twill prioritization. (b) texton satin 
prioritization. 

The weave pattern can also be prioritized according to FFT entropy values 

of textons and backgrounds. In Figure 37 a) twill texton has been selected as the 

reference pattern for prioritization of textons. In Figure 37 b), a satin texton has 

been selected as the reference pattern for prioritization of textons. Experiments 

on tag ranking of weave pattern are conducted. The task of tag ranking is to rank 

the weave patterns according to structural appearance similarity by subjective 
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judgment. The Normalized Discounted Cumulative Gain (NDCG) is adopted as 

the evaluation measure of prioritization performance. NDCG is described as: 

( )

1
(2 1) / log(1 )

n
r i

n n
i

NDCG Z i
=

= − +∑                    (36) 

where ( )r i is the relevance score of the i -th tag and nZ is a normalization 

constant that is chosen so that the NDCG of optimal ranking is 1. 

The performances of weave pattern texton orientation by DM-Trail-Node 

and texton prioritization of backgrounds are illustrated in Figure 38. The data 

size of weave pattern is 5000. The number of texton backgrounds is 500. The 

average NDCG value is higher for the first two depths (1 and 3) for weave 

pattern texton orientation prioritization and texton prioritization. The lowest 

average NDCG value is at depth 5 for weave pattern texton orientation 

prioritization. The lowest average NFCG value is at 10 for texton prioritization. 

The results show that the performance of weave pattern texton orientation 

prioritization is higher than texton prioritization. 

 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 6 11 16 21 26

Weave pattern 
texton orientation 
prioritization

Texton prioritization

 

Figure 38. Performances of weave pattern and texton prioritization. 

In fabric design, weave pattern structural appearance similarity is conducted 
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in terms of textons orientation and background texton. A weight with value range 

[0,1] is used to control the prioritization preference between textons orientation 

and background texton components. When the value of weight is equal to 0, the 

output is prioritized by textons orientation. When the value of weight is equal to 

1, the output is prioritized by background texton. If the weight is equal to (0,1), 

2L  distance is used to calculate the prioritization combination of textons 

orientation and background texton. 

 

4.3.3 Cognitive feature prioritization 

Texel repetition and content richness are considered to be the cognitive features 

to prioritize fabric weave patterns. The texel location and the number of texels 

are extracted using the approach introduced in Section 4.1.3. These features are 

used as effective indexing features for weave pattern prioritization. Production 

parameters can be derived from the texel information. For example, the size of a 

texel indicates the quantity of material cost for each repetition pattern in a fabric. 

Weave pattern prioritization by texel size is one of the most important criteria for 

weave pattern data management in practice. 

In Figure 39, there are four weave patterns with different size of repetition. 

The periodic elements and their locations in the weave pattern are extracted by 

the method in Section 4.1.3. Each texel is then extracted based on the detected 

grid marked by lines in dark. The texel of the weave pattern is shown on the right 

in Figure 39 (the small square pattern). Fabric weave patterns are characterized 

by the size of texel and the shape of the grid. Thus, there is an underlying grid 

structure that maps the texel. In this case, the locations of the texels are also 
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determined by the locations of the nodes in the grid. In weave patterns of (a) and 

(b), there are few repetitions. In weave patterns of (c) and (d), there are more 

repetitions. Further, for each grid pattern detected from the weave pattern, the 

regularity of the structural appearance of the nodes can be measured by the 

method introduced in Section 4.1.2. 

 
Figure 39. Weave pattern and their texels. (a) Sample (a) and its texel. (b) 
Sample (b) and its texel. (c) Sample (c) and its texel. (d) Sample (d) and its texel. 

Based on the locations of texels, application-oriented prioritization is 

conducted. As an example, a group of weave patterns in Figure 40 are prioritized 

according to texel size and the content richness of the texel. Low-level features, 

including the number of corners and edges are used to describe the content 

richness of texel. 

The prioritization result is given in Figure 40 in which the weave pattern 

number is the ranked order of calculations. The performance evaluation of the 

prioritization result is subjective. 40 users were invited for the evaluation, 

including designer, sales man, product manager, production technician, and 

consumer. 
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Figure 40. Weave pattern prioritization by features of texel. 

In the experiments, the total average satisfactory level for 40 users is 92.6%. 

The satisfactory level is defined in Section 4.3.1. Users are more interested in 

global texture features rather than local texture variations. According to the 

explanation of cognitive informatics, it is true because the function of human 

beings memory is working as an abstract thinking engine. The abstract thinking 

engine captures global texture features rather than local texture details, such as 

shape of patterns in the texel. 
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4.4 Summary 

This chapter develops fabric texture attributes for search. Application-oriented 

search methods are proposed and discussed. The customized prioritization 

methods for weave pattern search are based on the OAR model. Three essential 

attributes and their mathematical calculation methods for weave pattern search 

are proposed, i.e. weave pattern complexity, structural appearance and cognitive 

features. A key feature for the representation of attributes is elaborated. The key 

feature is defined as weave structural representation. In order to capture fabric 

macro and micro textures, novel fabric image acquisition methods are proposed 

and the necessities of image acquisition conditions are discussed. Automatic and 

interactive fabric pattern recognition methods are developed. Fabric pattern 

recognition produces weave pattern images, which are key fingerprints for fabric 

texture search. Fabric attributes and features in OAR model are tailored to 

describe essential characteristics of fabric textures for fabric swatch 

documentation and searching. 
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Chapter 5:  

Weave Pattern Classification 

 

This chapter provides fabric weave classification techniques based on the 

guidance of OAR model in Section 3.1 and 3.3. It is organized in four major 

sections. Section 1 introduces weave pattern classification techniques based on 

material-based organizational structure of weave patterns, especially in terms of 

weave pattern directionality and complexity. Section 2 proposes a method of 

fabric texture classification which provides new perspectives to fabric swatch 

management and categorization. Section 3 presents experimental results and this 

chapter is concluded in Section 4. 

 

5.1 Weave pattern taxonomy 

Different weave patterns are used to demonstrate texture characteristics in the 

needs of design. Traditionally, the designer classifies and arranges fabric 

swatches according to various conventions. 

In textile design, weave patterns are classified or categorized according to 

their interlacing rules by three categories: plain weave effects, twill weave effects 

and satin weave effects. The taxonomy is illustrated in Figure 41. There are 

regular patterns and irregular patterns. The former includes the three basic 

families: (1) plain, (2) twill and (3) satin, as shown in Figure 42 (a), (b) and (c) 

respectively. The irregular patterns are the patterns that exhibit the characteristics 
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of stochastic textures, for example, crepe weaves as shown in Figure 42 (d) and 

(e). The interlacing rules determine the appearance across the fabric surface, 

which is constrained by maximum weaving yarn floats during the manufacturing 

process. As shown in Figure 41, many types of these patterns, such as the coarse 

twill and satin distribution reveal the yarn floats arrangements. The 

characteristics of different categories should be carefully selected and 

represented to differentiate these interlacing rules. In the following sub-sections, 

the techniques of classifying weave patterns will be discussed according to the 

content-based characteristics of weave patterns. 

 

 

 

 

Figure 41. Taxonomy of fabric weave pattern. 

 

 

Figure 42. Examples of weave patterns. (a) plain weave pattern. (b) twill weave 
pattern. (c) satin weave pattern. (d) crepe weave pattern 1. (e) crepe weave 
pattern 2. 

Weave pattern 

Regular pattern Irregular pattern 

Plain Weave  Twill weave Satin weave 

Basic twill Coarse twill Compound twill 

(a) (b) (c) 

(d) (e) 



 

-      - 114 

 

5.1.1 Regular patterns description and classification 

To simplify the complexity of categorization methods of fabric weave patterns, it 

is necessary to use a simple method to represent these simple samples in the 

regular weave patterns. There are many fabrics of simple and regular rules in 

weave arrangement as shown in Figure 6. For these weave patterns, the 

distribution rules of weave points can be directly extracted through simple 

mathematic description for differentiation or classification. 

Matrix Ψ  is used to describe a weave pattern as follows: 

11 1

1

n

m mn

a a

a a

 
 Ψ =  
 
 



  



                      (37) 

where, { }0,1 ; 1,2, , ; 1, 2, , ;ija i m j n= = =  ija taking the value 0 means weft 

point and 1 means warp point. Each column denotes the warp interlacing rule in 

the fabric: { }1, ,j na a a  . The interlacing rule for each warp can be described 

by the following formula: 

1 2

1 2

x p
j

x p

c c c c
a

d d d d
=

 

 

                         (38) 

where xc means the warp float points and yd means the weft float points; (p + 

q)is the number of interlacing times between warp and weft float points. 

Based on the definitions above, three types of regular weave patterns can be 

described: Regular Plain Weave Pattern (RPWP), Regular Twill Weave Pattern 

(RTWP) and Regular Satin Weave Pattern (RSWP). The value of ija can be 
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deduced by the index of previous warp point position (subscript position) in the 

matrix. The step in warp and weft is used to describe the warp point distribution 

rule, js  meaning step in warp direction and ws  meaning step in weft direction. 

For these regular patterns, there is a pre-requisite condition: 

1 1

p q

j j
j j

m n c d
= =

= = +∑ ∑                           (39) 

For RPWP, the yarn interlacing rule can be expressed as: 

1 1 1
1, ( 1, 1, 1), 1
1 j wa c d p q s s= = = = = = = ±               (40) 

For  RTWP, the rules of yarn interlacing can be subdivided into three categories. 

The first one is basic twill, which can be described as: 

1
1 1 1

1

, ( 3, 1), 1j w
ca c d p q s s
d

= + ≥ = = = = ±                (41) 

The second one is coarse twill, which can be given by: 

1
1 1 1 1 1

1

, ( 4, 1, 1, 1),ca c d c d p q
d

= + ≥ ≠ ≠ = = 1j ws s= = ±          (42) 

When 1 1c d> , technician calls it warp effect coarse twill; when 1 1c d< , 

technician refers to as weft effect coarse twill; 1 1c d=  is the double face coarse 

twill. The third type is compound twill, that is: 

1 1 2 21
( ) 5,p qa c c c d d d= + + + + + + ≥∑    

2, 1j wm n s s= ≥ = = ±                               (43) 

For  RSWP, warp effect is: 
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1
1 1, 4( 5), 1,

1j
ca c c p q= ≥ ≠ = =                 (44) 

where 1 ,j js c< < ( 1)jc + and js are relatively prime. 

Weft effect is described as: 

1 1
1 , 5( 6), 1,

1j
j

a d c p q
d

= ≥ ≠ = =
−

                  (45) 

where, 1 ( 1),w js d< < − jd and ws are relatively prime. 

 

5.1.2 Irregular patterns description and classification 

It is relatively easy to define and differentiate the regular patterns by their simple 

arrangements of yarn interlacing points and step. However, for many fabric 

weave patterns, their step in warp or weft is not a fixed number. In this case, 

smoothness and connectivity is adopted to describe and classify these irregular 

patterns. 

 

 

 

Figure 43. 45 ﾟ and 90 ﾟ connection. 
 

To describe weave pattern distribution, the relative position of the warp 

points and weft points is investigated. Smoothness and connectivity can be used 

to capture their distribution in the diagram. The smoothness is measured by the 

horizontal, vertical and diagonal transitions, and the connectivity is measured by 

the number of black (warp / black point with nominal value equals 1) and white 

45 ﾟ touch with 
the centre 

90 ﾟ touch with 
the centre 
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(weft / white point with nominal value is 0) clusters. 

Before doing the calculations of smoothness and connectivity, satin weave 

is differentiated from plain and twill weaves. As shown in Figure 3, the centre 

interlacing point of interest has two kinds of connections with its neighbors: 

toughing each other by 45° (i.e., ( 1, 1)i j+ ±  or ( 1, 1)i j− ± ) or by 90° (i.e., 

( , 1)i j ± or ( 1, )i j± ). 90° touching is known as four-connectivity, and 90° / 45° 

touching is known as eight-connectivity. In the satin weaves, they may or may 

not have 90° touch with the centre. But for 45° touch with the centre, it is not 

common to have this kind of connection. For the reasons of simplicity, it is taken 

as a criterion to discriminate satins weaves from plain and twill weaves. (If there 

are exceptions, the user can adopt an enforcement rule to take this situation into 

consideration.) 

 

 

 

 

 

Figure 44. Illustrations of transitions calculation. 

The smoothness of the interest neighborhood around pixel ,i jτ  is measured 

by the total number of horizontal, vertical, diagonal and anti-diagonal transitions: 

1E  (horizontal), 2E  (vertical), 3E  (diagonal), 4E  (anti-diagonal). ,i jτ  is the 

value of the thi  weft and thj  warp in the weave pattern. In order to describe 

the distributions of the four directions transitions, the variance of the 

Total diagonal transitions: 2 

2 
1 
2 
1 

0 1 1 1 0 0 
2 
0 
0
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1 2 1 2 

Total horizontal 
transitions: 6 

Total vertical 
transitions: 6 

Total anti-diagonal 
transitions: 3 
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four-direction transitions array { }1 2 3 4, , ,E E E E  is shown as: 

2 2

1

1' ( ) ,
n

i
i

v E E
n ϕ

=

= −∑                         (46) 

{ }
1 1

1 , ,
1 1

( , ) ( ),i j i jE i j µ ν µ ν
µ ν

ξ τ τ+ + + +
=− =−

= ≠∑ ∑                (47) 

{ }
1 1

2 , ,
1 1

( , ) ( ),i j i jE i j µ ν µ ν
µ ν

ξ τ τ+ + + +
=− =−

= ≠∑ ∑                (48) 

{ }
0 0

3 , 1, 1
1 1

( , ) ( ),i j i jE i j µ ν µ ν
µ ν

ξ τ τ+ + + + + +
=− =−

= ≠∑ ∑              (49) 

{ }
1 0

4 , 1, 1
0 1

( , ) ( ),i j i jE i j µ ν µ ν
µ ν

ξ τ τ+ + + − + +
= =−

= ≠∑∑              (50) 

where ( )ξ ⋅  is an indicator function taking value from { }0,1 . An example of 

broken twill weave is given in Figure 44 to illustrate the calculation of transitions 

in four directions. Given a reference value 2'v ϖ=  as plain weave category for 

differentiation of plain weave and twill weave, if 2' ( , )v ϖ δ ϖ δ∈ − + , the 

pattern can be classified into plain weave category (Otherwise, it is twill weave 

pattern). Here increment δ±  is threshold value for the judgment. 

 

 

 

 

 

Figure 45. Illustration of connectivity calculation (top: a regular twill pattern and 
bottom: connected clusters). 
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After the calculation of smoothness, connectivity is used to differentiate 

plain weave and twill weave. As illustrated in Figure 43 and Figure 45, the 

connectivity is measured by the number of the black and white clusters. In order 

to make a differentiation between plain weave and twill weave, the 90 ﾟ

connection criterion shown in Figure 43 is used to describe the connectivity. 

Figure 45 is an example of 4 4×  pattern with eight white points forming two 

clusters and with eight black points forming two clusters. The number of clusters 

can be automatically identified by traversing the graph using depth-first search 

strategy [108, 109]. A stack-based search algorithm can be used to calculate the 

connectivity of 90 degree. 

Suppose that there are Γ  interlacing points in total and the final value of 

ε  indicates the number of clusters. Let ( )v k  store the value of thk  interlacing 

point and 0v  be the interlacing value of interest. Set up an empty stack and an 

P-element array [ ]L ⋅  for storing the index of the cluster that the interlacing 

point belongs to; set [ ] 0L k =  for all 1, 2, , ;k P=   1;i =  0.ε =  StepⅠ: if 

[ ] 0L i ≠  or 0[ ]v i v≠ , go to final step (Step Ⅴ). Step Ⅱ , 1;ε ε= +  push 

node- i into the stack. Step Ⅲ, if the stack is empty, go to Step Ⅴ. Step Ⅳ, 

[ ] .L k ε=  Find all pixels connected with k . For each connected interlacing 

point j , if [ ] 0L j =  (i.e. it has not been visited or pushed into stack), let 

[ ] 1,L j = −  push node- j  into stack (by the definition of connected, 0[ ]v j v= ). 

Go back to Ⅲ. Step Ⅴ, 1;i i= +  if ,i > Γ stop, otherwise go to StepⅠ. The 

number of clusters is used as supplementation of judgment criterion between 

plain pattern and twill pattern. 



 

-      - 120 

 

 
Figure 46. Region and contour description of a twill pattern. (a) a compound twill 
region. (b) the encoded boundary. 

In twill weave pattern, the black cluster may contain a region that need to 

compare and recognize in an efficient way. Thus, for purpose of recognition the 

properties of groups of black points are described. A region of the black cluster 

describes interior points (or contents) surrounded by a boundary (or perimeter). 

An example of twill pattern and its region description is shown in  

Figure 46. 

To investigate the properties of a region, its contour can be measured, which 

is also referred to measurement of the shape. 

A point can be defined to be on the boundary if it is part of the region and 

there is at least one point (white point) in its neighborhood that is not part of the 

region. The boundary itself can be found by the following: first find one point on 

the contour and then progress round the contour either clockwise or 

anticlockwise to search the nearest contour point. To define the interior points in 

a region and the points in the boundary, neighboring relationship between the 

points were investigated. 

(a) (b) 



 

-      - 121 

 

 
 
Figure 47. Contour description code. (a) eight-way neighbors. (b) eight-way code 
description. (c) sample region and contour code. 

The complete neighboring points in eight-way is used to describe the point’s 

relationship. All the eight points surrounding a chosen point are analyzed for this 

relationship illustrated in Figure 47 (a). In this figure, the point is shown as a 

circle point in the centre and its neighbors as square. The eight extra neighbors in 

eight-way relationship are those in the directions North (N), East (E), and South 

(S), West (W), and 45 degree between them, i.e. North-East (NE), South East 

(SE), South West (SW), and North West (NW). 

The coordinates of a sequence of points can be stored to obtain a 

representation of a contour. The relative position between consecutive points is 

then stored. This is called chain code and is formed by concatenating the number 

that designates the direction of the next point. Given a point, the successive 

direction from one point to the next point becomes an element in the final code. 

This is repeated for each point until the start point is reached when the contour is 

completely analyzed. Directions in eight-way relationship can be assigned as 

shown in Figure 47 (b). The code for the example region is shown in Figure 47 

(c). 

The direction from the start point to the next is South East (i.e. code 3) in 

(a) (b) (c) 
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Figure 47 (c), so the first element of the contour code describing the region is 3. 

The direction from P1 to the next, P2, is South (code 4), so the next element of 

the code is 4. The next point after P2 is P3, which is South East. This coding is 

repeated until P15, which is connected eastwards to the starting point. To have 

start point invariance, the digits can shifted cyclically, i.e. replacing the least 

significant digit with the most significant one, and shifting all other digits left 

one place. The smallest integer is returned as the start point invariant contour 

description code. For example, in the Figure 47(c), the initial code (beginning 

from the star point S) is: 

1 {3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2}code = , 

start S=                                      (51) 

The result of the first shift is shown as: 

{4,3,4,4,5,4,6,7,7,7,0,0,1,1,2,3}code =  

1start P=                                     (52) 

The result of one shift is equivalent to the code that would have been 

derived by using point P1 as the starting point. The result of two shifts is the 

description code equivalent to starting at point P2: 

{3,4,4,5,4,6,7,7,7,0,0,1,2,3,4}code =  

2start P=                                      (53) 

To obtain a code that is corresponding to the minimum integer, there is at 

least another shift. The minimum integer code is the minimum of all the possible 

shifts and is the description code that would have been derived by starting at 

point P11, which is given by: 
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{0,0,1,1,2,3,4,3,4,4,5,4,6,7,7,7}code =  

11start P=                                    (54) 

The contour code could be used to describe the regions inside the compound 

twill. For each region in the compound twill, it is relatively easier to shift to 

achieve a minimum integer and compare the regions. Finally, combining 

connectivity, cluster and smoothness descriptors, patterns which belong to twill 

or plain effects can be differentiated. 

 

5.2 Fabric texture classification 

As one of the most common man-made textures in real life, there are many 

classification criteria for fabric textures. This section comprises two parts. In the 

first part, the characteristics of fabric textures are studied based on the fabric 

images captured by different equipment. Then, in the second part, structure-based 

statistical features are proposed to classify fabric textures. 

 

5.2.1 Material-based content 

In order to address the essence of surface appearance of fabric material, images 

of fabrics are captured and compared. Leica M165C has been used to capture the 

surface appearance of fabrics. In particular, the two kinds of materials, cotton and 

silk, have been used in the experiments. The image acquisition consists of 

illuminating a fabric swatch with a point source light and photographing it 

through a macro lens at a fixed magnification that enables the yarns and fibers to 

be discerned. The results are shown in Figure 48 (a) and Figure 49 (a). The yarn 
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structures as well as the fiber details of the fabrics are quite different for different 

materials. 

 
 
 

 
 
 
 
 
 
 

(a)                                   (b) 
Figure 48. Cotton fabric images captured by different equipment. (a) Leica M165C. 
(b) Canon EOS 450D. 
 

 
(a)                                   (b) 

Figure 49. Silk fabric images captured by different equipment. (a) Leica M165C. 
(b) Canon EOS 450D. 

 

 
 
Figure 50. Fabric cover. (a) the aperture between yarns. (b) fabric cover 
illustration. 

On the other hand, the fabric images are obtained by using Canon camera 

(EOS 450D) for each fabric material. The image is shown in Figure 48 (b) and 

Figure 49 (b) (the shutter speed is 1/64 sec; the lens aperture is F/5.7; the focal 
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length is 50mm; Exposure time is 1/60 sec; the ISO speed is 400; the F-number 

is F/5.6). Note that the colors of the images obtained from different equipment 

are not comparable. Since the focus of this study is texture, the color difference 

of the samples is not taken into account. From the captured result, the fiber 

details could not be perceived at the macro-scale level of the fabric surface. 

Furthermore, the contents of the samples are different because the sampled areas 

are different, for instance, the texture pattern of Sample (a) in Figure 48 is 

different from that of Sample (b) in Figure 49. This makes the texture 

classification difficult at yarn level for large patterns of fabrics. For silk fabric, 

besides, there is special light reflection. Especially, the light reflection is distinct 

at the micro level, as shown in Figure 50 (a). Hence, even for the same fabric 

sample, the fabric texture appearance observed is at least depended on several 

factors, such as imaging level (micro or macro) and material types. So, in fabric 

image feature extraction, these factors make the classification of fabric images 

difficult. 

One of the factors that play an important role in determining the texture 

appearances of fabric images is the aperture between yarns. In Figure 48 (a), the 

aperture between the yarns can be observed. In some fabric product, there may 

be large aperture between yarns (the fabric has very low density or very fine 

yarns), for example Figure 18 (a) in Chapter 4. However, in some fabric product, 

like silk tie, the interstice between the yarns is small, as shown in Figure 49 (a) 

and (b). In fact, fabric cover in textile design community can be used to evaluate 

the interstice between yarns in a fabric. As shown in Figure 50 (a) and (b), the 

fabric cover is given by: 
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ABEG
j

ABCD

SE
S

=                           (55) 

where Ej is warp cover. SABEG and SABCD is the area of ABEG and ABCD 

respectively. Ej is determined by yarn density and its width, i.e. j j jE p d=  , 

where Pj is the warp density (ends/10cm) and dj is the width of warp. 

Alternatively, the yarn count can be used to describe the relationship between Ej 

and Pj: 

j j tjE kp T=                          (56) 

where k is a constant and Ttj is warp count (tex). Next, weft cover (Ew) can be 

defined in the same way. The total cover of a fabric is then given by: 

j w j wE E E E E= + −                      (57) 

where E is the total cover of the fabric. 

It is noted that Equation (55) may not be always correct as the yarn 

configuration and its width are subjected to deformation due to density limitation 

and yarn count variation. Thus, the fabric cover may not be suitable for 

describing the interstice between yarns of different types of fabrics. Besides, the 

fabric cover is also difficult to calculate for the purpose of classifying fabric 

texture appearances as there are many parameters of fabrics that need to input 

and then calculate the total cover values in Equation (57). 

Next, the combination effects of aperture of yarns and the size of yarns in 

the fabrics are investigated. In the experiment, colors of the yarns and the layout 

of the yarns of the fabrics are the same. As shown in Figure 51 (a), densities of 

the fabric on the left are 73 ends / cm in warp and 35 picks / cm in weft; in 
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Figure 51 (b), densities of the fabric are 50 ends / cm in warp and 35 picks / cm 

in weft. There are two categories of warp yarn counts in the two sample, i.e. area 

A (warp: 80 ends in 8.438 tex) and area B (warp: 80 ends in 9.842 tex). In weft, 

area C includes 35 picks in 8.438 tex and area D has 35 picks in 9.842 tex. 

 
(a)                                (b) 

 
Figure 51. Fabric texture appearances at the macro scale. (a) texture difference of 
areas cannot be perceived. (b) texture difference of areas can be perceived. 
 

 
 

Figure 52. Appearances at meso scale. 

In Figure 51, areas of sample (a) could not be differentiated in A and B in 

warp and C and D in weft. However, the areas of the different structural 

compositions could be found in sample (b). Considering that this difference is 

mainly caused by different density and yarn size settings, it can be concluded that 

there should be a threshold value that is determined by the combined effects of 

density and yarn size to differentiate the appearances. Intuitively, in fabric image 

classification, the threshold for differentiating the texture difference of the areas 

in the fabric samples can be a statistical measurement that can describe the 
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different areas or objects (clusters of points), especially a local texture descriptor. 

In this case, the traditional global texture features, such as Tamura and Gabor 

features [97, 110] are not suitable for classifying the fabric textures. 

Finally, the fabric texture appearance is investigated at the meso scale 

(medium scale). In Figure 52, fabric images are obtained by using 5 times 

magnification of the fabric images in Figure 51. The results show that the fabric 

texture appearance is depended on the background and the aperture of yarns 

when the fabric density is low and the yarn size is relatively small. In this case, 

the background of the sample platform in the image acquisition setting (see 

Section 4.2.1) should include a set of templates with different bright intensities 

(for example, black and white background) [111]. The purpose of this is to 

capture the texture appearance correctly and clearly. For example, a black 

background is usually needed for a white sample during the image capturing 

process. 

As a summary of the experiments, fabric density, yarn count, background 

and other factors may significantly affect the texture appearances at different 

scales of magnification for the fabric images. Further, different weave patterns 

can have a direct influence on the texture appearance of the fabric as well as 

these parameters, such as the interstice between yarns and fabric densities [112]. 

Thus, the statistical geometrical features [113] are preferred to be used to 

describe a fabric texture in which there is no single factor to solely determine the 

final texture appearance. 
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5.2.2 Structure-based statistical features 

Texture contents of fabric images vary with material physical resolution in the 

image acquisition process as shown in the previous section. Two common 

problems can occur in sensitivity-and-specificity estimates of classes of fabric 

textures. First, unless a broad spectrum of fabrics is chosen both with and 

without the condition of color and structure, the study may yield falsely high 

sensitivity-and-specificity estimates and categorizations, a problem known as 

spectrum bias. Second, unless the interpretation of the structure design and 

essence of pattern design could be represented, bias can falsely elevate the test’s 

categorization accuracy, known as workup bias. 

Two statistical methods to correct biased problems are developed after the 

investigations in this study: binary global statistical feature and texel inference 

feature. 

It is more natural to use statistical method to characterize fabric textures due 

to the complexity of the real materials motivated by the latest findings of Manik 

and Andrew [114]. They demonstrated that materials can be classified using joint 

distribution of intensity values over extremely compact neighborhoods and that 

this can outperform classification using filter banks with large support. The 

performance of filter banks is inferior to that of image patches with equivalent 

neighborhoods and the results show that the statistical information of local region 

is more powerful for material characterization. 

Several different techniques to recognition of the general color textures are 

introduced in the literature [115, 116]. In this study, new texture-based features 

are developed to characterize fabric images based on the investigation of 

characteristics of fabric patterns and the statistical geometrical features [113, 



 

-      - 130 

116]. In this section, texture features are calculated in the gray image domain. 

The color of woven fabric is thus not considered. In practice, the method can be 

used for the classification of the solid-color fabric patterns or the patterns with 

the same color effects. The role of the color will be described in Chapter 6 from 

the design point of view. The reason is that weave pattern and its texture 

appurtenance are of the micro pattern level in textile design and color is usually 

not the focus especially from the point of view of textile engineering. At the 

macro pattern level, i.e. the figured-pattern level, color plays an important role in 

determining the global texture appearance of a fabric pattern, especially from the 

point of view of aesthetic design. 

In this study, the grey channel features have been used to evaluate the 

contents of images and then classify them. In [113], 16 statistical measures based 

on the geometrical properties of connected regions in a series of binary images 

have been proposed to classify images. The binary images called image stack 

were produced by threshold operations on the grey level image. Geometrical 

properties like the number of 4-connected regions and their shape description 

called irregularity together with their statistics (mean, standard deviation) 

describing the stack of binary images are introduced. 

There are two options to produce the image stack: even and non-even 

threshold separating. A desired set of binarization levels can be used which is 

parameterized by an initial threshold 0α  and a step α∆ . The series of 

threshold values is given by iα = 0α α+ ∆ , with 0,..., 1Binsi S= − , where BinsS  is 

the number of image layer in the image stack. For an image ( , )I x y with G grey 

levels, a binary image ( , )BI x yα  can be obtained by thresholding with a 
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threshold value [1, 1]Gα ∈ −  which results in: 

             ( , ) 1BI x yα = , for ( , )I x y α≥               

( , ) 0BI x yα = , for ( , )I x y α<                      (58) 

The first group of ‘1’ valued pixels is defined as being a 4-connected region 

if for all pixels in the group, each pixel has at least one 4-connected neighbor 

within the group. The second groups of ‘0’-valued pixels are similarly defined. 

Let the number of connected regions of l-valued pixels in the binary image 

( , )BI x yα  be denoted by 1( )NC α  and that of 0-valued pixels in the same binary 

image by 0 ( )NC α . Both of 1( )NC α  and 0 ( )NC α  are functions 

of { }, 1,..., 1Gα α ∈ − . Two sets of geometric properties are used by [113]. The 

first is a simple count of the number of connected regions. The second is to use 

average measure of region characteristics weighted by region size. The statistical 

meaning is defined as: 
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where, 0k =  for ‘0’-valued regions and 1k =  for ‘1’-valued regions, j is the 

jth 4-connected region, ( )jNOP α  is the number of pixels in the jth region at 

grey level α . In [113], to each of the connected regions (of either ‘0’-valued 

pixels or ‘1’-valued pixels), a measure of irregularity (un-compactness) is 

applied, which was defined to be: 

2 21 max ( ) ( )
1

i ii I
x x y y

IRGL
I

π
∈

+ ⋅ − + −
= −                 (60) 
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where I  is the set of all indices to pixels in the region, I  is the number of 

indices (the cardinality of the set I ), and ( , )x y  can be thought of as the center 

of mass of the connected region under the assumption that all the pixels in the 

region are of equal weight, which is equal to: 

,
i i

i I i I
x y

x y
I I

∈ ∈= =
∑ ∑

                         (61) 

In Equation (60), the compactness or the opposite description 

un-compactness is used to evaluate the irregularity of the region of interest. It is 

noted that only the maximum value of the cardinal distance from the center of 

mass of the 4-connected pixels is used to estimate the spatial distributions of 

pixels. Thus, it may not be suitable for describing fabric textures with fuzzy 

appearances. This is because the fiber distribution, their profile, and length are 

difficult to define, i.e. it is more suitable to consider it as random texture in this 

point. However, there may be no such kind of fiber protruding on the fabric 

surface. The structure-based texture description should have the ability to capture 

the main region of the fabric appearance which is also presented through 

brightness intensity at this point. A new region compactness measure is given by: 

2 21 ( ) ( )i ix x y y
nRCGL

I

π
+ ⋅ − + −

=
∑

                   (62) 

where ( , )x y  is the average value of coordinates of the boundary pixels, n  is 

the number of boundary pixels in the region of interest. 

Given a connected region A in 2-D plane, the extent of its regularity or 

compactness (in sense that the disk has the most compact shape) can be 
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measured by the sum of its radius to the square root of the area, where the sum 

radius is defined to be: 

2 2

( , )
sup ( ) ( )sum i i
x y A

R x x y y
∈

= − + −∑                    (63) 

,
A A

x xdx y ydy= =∫ ∫                                (64) 

where ( , )x y  can be thought of as the center of mass of the connected region 

under the assumption that all the pixels in the region are of equal weight and sup 

is supremum. Equation (62) in the main text is for measuring the regularity of a 

connected region. The factor π  is introduced to make the measure 

approximate to unite. In this measure, the following factors have been considered. 

First, the number of indices I  approximates its area in the discrete measure in 

the digital image which is equal to the number of pixels for the fixed resolution 

on the screen. Second, n is the number of boundary pixels to describe the 

perimeter length. Third, sumR  is used to describe the distance of members on the 

boundary to their center. The justification of the measure is given by the 

bellowing: 

If there is only one pixel in the region, equation (62) becomes: 

1 0
1 1

1 1
RCGL

π
+ ⋅

= =
⋅

                          (65) 

As the region of the sampling grid approximates a disk and it becomes: 

2 2

2 2
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(66) 

Four feature functions for a threshold level α , i.e. 1( )NC α , 0 ( )NC α , 

1( )RCGL α , 0 ( )RCGL α , have been used, each of which is further characterized 

using the following four statistics: 

max max ( )value g
α

α=                           (67) 

1 ( )
1

average value g
G α

α=
− ∑                      (68) 

1 ( )
( )
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g α

α

α α α
α

= ⋅∑∑
                (69) 

1. . ( ) ( )
( )

sapmle S D g
g α

α

α α α
α

= − ⋅∑∑
              (70) 

where ( )g α  is one of the four feature functions. This gives a total of 16 

features based on the statistics of region content information of the image. 

The structure-based region features can be applied to color space to obtain 

intra-plane features. A color difference representation can be used as [117]: 

1 2 3
2, 128, 128.

3 2 4
R G B R B G R BI I I+ + − − −

= = + = +        (71) 

The three features above can be concatenated to the complete feature vector 

for RGB image. 

 

5.3 Experiments and discussions 

The simplest basis for image classification is texture. Although its importance 
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and ubiquity in image data is quite straightforward, a formal approach to describe 

the definition of texture does not exist and thus defies accurate classification at 

present. In this section, experiments focusing on classifications of weave patterns 

and their texture appearances in the fabrics will be presented. Specifically, the 

classification of the weave pattern is conducted in the binary-valued patterns. 

The classification of the texture appearance of weave pattern is performed in the 

gray image domain of the fabrics. 

 

5.3.1 Weave pattern classification results 

A batch of popular weave patterns (100) are chosen in order to validate the 

methods proposed. To investigate the essential characteristics of weave pattern, 

the repeated pattern is used, i.e. one repetition pattern. The three types of patterns 

here to classify include Plain Weave Pattern (PWP), Twill Weave Pattern (TWP) 

and Satin Weave Pattern (SWP). The results are shown in Figure 53, Figure 54, 

Figure 55, and Figure 56. 

It would be difficult to sort patterns by weave type for manual classification 

labeling, since the taxonomy of weave patterns is controversial for some patterns. 

Many weave patterns fall into inevitable “miscellaneous” category. It is easier to 

differentiate satin weave patterns from plain weave patterns and twill weave 

patterns, but it is difficult to separate the latter two. As shown in Figure 53 and 

Figure 54, when the weave pattern complexity increases (illustrated in Figure 56) 

it would be a challenge to differentiate the two categories of patterns. 
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Figure 53. Classification and FFT entropy calculation results of PWP. 
 

 

Figure 54. Classification and FFT entropy calculation results of TWP. 
 



 

-      - 137 

 

Figure 55. Classification and FFT entropy calculation results of SWP. 

In the proposed classification methods, pattern definitions and pattern visual 

descriptors are used, such as smoothness and connectivity. The calculation results 

of the methods were validated as fellows. In the experiment, there are 20 

designers who have at least 3-year design experience to evaluate the 

classification results. 18 designers totally agreed with the classification results. 

The other two designers had different opinions on pattern p18 and p30 in plain 

weave pattern category. They responded that these two should be classified into 

twill pattern. In fact, if there is no formal definition or an objective indexing 

method to describe all the variants of weave patterns, it is inevitable that different 

people may have different preference to classifying weave patterns. On the other 

hand, it also indicates the necessity of using an objective indexing method that 

can classify and rank weave patterns in the weave pattern database management. 

From Figure 53 to Figure 55, three types of weave patterns are arranged and 
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classified according to the three categories of patterns: plain, twill and satin 

patterns. Important findings are as follows. First, the ranking can be used to 

differentiate the number of ends/columns and the number of picks/rows. Second, 

similar patterns are usually neighbors. Through Fourier analysis, the measures 

are inherently position invariant and can extract the information of spatial 

arrangement of yarns inside the image (the vertical or horizontal signal 

response). 

s34s30 s32

s33s31

s22

s01

s02 s03

s04
s05

s06
s07

s08 s10

s11
s12

s13

s15

s09

s14
s16

s17

s18

s19

s20

s21 s23
s24

s25
s26
s27

s28

s29

t34

t33

t30
t29t28

t27

t25
t24t23t22t21

t15

t32

t31

t26

t35

t36

t19
t20

t18t16
t17

t14

t13

t05

t01 t02
t03t04

t06
t07

t08 t09t10
t11t12

p30

p29p28p27p26p25

p18

p24p23
p22p21p20

p19
p17

p16
p15

p14
p13p12

p11p10

p09p08
p07

p06
p05p04

p03
p01

p02

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40
weave patterns

FF
T 

En
tr

op
y 

va
lu

e

satin weave pattern

twill weave pattern

plain weave pattern

 

Figure 56. Classification and indexing results of different types of weave patterns. 

The method is relatively immune to rotation, since order is not important in 

the FFT entropy calculation. As shown in Figure 56, ranking scores of samples in 

Figure 53, Figure 54, and Figure 55 are close to each other. For example, weave 

patterns of p08 and p09, p10 and p11, s17 and s18 etc. are under geometric 

transformations in 90°increments. The ranking scores of them are very similar. 

Weave patterns with the same number of warps and picks are also very close in 

the ranking score in Figure 56, for instance, weave patterns of t05 and t06. 

Ranking scores of patterns with the similar number of warps and/or picks are 
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also close, e.g. weave patterns of s16 and s17. Therefore, it can be concluded that 

ranking scores of similar patterns are close in the calculation results. 

In the fabric weave pattern design process, the distribution characteristics of 

weave point are also used to do accurate classification and indexing. This can be 

done by calculation of weave pattern smoothness, i.e. four-direction transitions, 

and connectivity, i.e. the number of warp point and/or weft point clusters. 

Accurate classification and indexing of weave patterns are very useful to design 

compound weave patterns. The distribution characteristics of weave point in 

compound weave patterns can be described accurately by smoothness and 

connectivity, which will provide navigation of weave pattern selection and 

matching. By using the combined methods of smoothness, connectivity and FFT 

Entropy, pattern similarity ranking and classification can be conducted for the 

convenience of fabric design and the objectivity of fabric structure evaluation. 

 

5.3.2 Fabric texture classification results 

Images shown in Figure 57 were calculated by Equations (60) and (62) 

respectively. The four evaluation feature functions (from Equation (67) to (70) ) 

were applied to the image stack. All the features were standardized by their 

sample means and S.D.’s as follows: 

, 1, 2,...,i
i

ss i nµ
σ
−′ = =                           (72) 
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= −∑                              (74) 

is  is the feature value and is ′  is the normalized feature value; n  is the number 

of the samples. The features calculated by Equation (60) were shown in Table 4. 

These features were calculated for 1-connected region, and normalization was 

applied to the feature values. The features calculated by Equation (62) were 

shown in Table 5. They were calculated for 0-connected region, and 

normalization was applied to the feature values. 

Statistical texture features are generally easy to compute and it is considered 

as one of the advantages in texture description and analysis. However, they are 

also thought to be largely heuristic. For this reason, the single feature of the 

feature combinations is seldom explained in details in the previous literature. 

Thus, there is usually no such kind of experiment validations for each feature [59, 

113, 118-123]. As a result, when those feature sets are used in the consequent 

classification or characterization it should be difficult to explain the physical 

meaning of the results. This may be mainly responsible for the nebulous 

explanation of traditional statistical techniques. In this study, fabric images are 

used to validate each feature and its ability to classify the characteristics of fabric 

weave patterns. 
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Figure 57. Fabric images for statistical feature evaluation. 
 
Table 4. Calculation results of the statistical geometrical features (1-connected 
region for noc).  
avg_value_ 
irgl 

sample_mean_ 
irgl 

sample_SD_ 
irgl 

max_value_ 
noc 

avg_value_ 
noc 

sample_mean_ 
noc 

sample_SD_ 
noc 

0.013518 0.957451 1.437759 -1.35389 -1.03636 1.376472 0.576148 
0.092403 0.005951 -0.69459 0.677995 0.684623 0.312752 -0.96783 
1.008251 -0.29314 -0.89951 -0.46389 -0.88111 -0.86219 0.438925 
0.737749 0.102949 0.006922 1.114599 1.1425 -0.95549 0.212527 
-0.10355 1.091467 1.526659 -0.8837 -0.99952 1.312228 -0.02588 
1.12975 0.934383 0.213365 -0.8837 -0.78286 0.484371 1.831607 
-1.41101 -1.34969 -0.7935 0.694788 0.865318 -0.79361 -1.08249 
-1.46711 -1.44938 -0.79711 1.097807 1.007417 -0.87453 -0.98301 
 

 
Table 5. Calculation results of the structure-based features (0-connected region 
for noc). 
avg_value_ 
rcgl 

sample_mean_ 
rcgl 

sample_SD_ 
rcgl 

max_value_ 
noc 

avg_value_ 
noc 

sample_mean_ 
noc 

sample_SD_ 
noc 

2.218957 2.234602 2.177143 -1.2668 -0.73339 1.805358 0.782694 
-0.06329 -0.08382 -0.22714 0.191307 1.012143 -0.0628 0.494865 
-0.68635 -0.62575 -0.11361 -0.304 -1.69828 -0.78571 -0.61494 
-0.8712 -0.92522 -1.06129 1.187497 1.570332 -0.73978 -0.17158 
0.51213 0.403752 -0.27224 -0.85497 0.142788 1.021595 0.409559 

-0.05539 0.050058 0.589146 -0.99967 -0.19567 0.409871 1.578308 
-0.4263 -0.40162 -0.38513 0.898101 -0.15882 -0.79554 -1.19688 

-0.62856 -0.652 -0.70687 1.14854 0.060903 -0.85298 -1.28203 

The visualization of feature comparison is shown in Figure 58 and the fabric 

characterization results are shown in Appendix B. It can be seen that the average 

value of IRGL and RCGL have different fabric characterization results in Figure 
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58 (a). The single feature characterization results between them are quite distinct. 

However, there are similar characterization results of sample mean and sample 

SD as shown in Figure 58 (b), (c) and (d) as the shape of the characterization 

curve is similar. In these samples, sample 1 was considered as combination of 

multiple weave patterns, i.e. different weave pattern textons. The feature value of 

sample 1 is higher in the calculation results of RCGL by Equation (62). However, 

it is difficult to explain the IRGL calculation results by Equation (60). Besides, 

twill and plain weave patterns are ranked more closely in B2 than B1 in 

Appendix B. The analysis also reveals that higher ranking scores of the 

characterization feature were given to twill weave patterns than pain weave 

patterns in B2 of Appendix B. 

 

Figure 58. Feature comparison. 

This study used 623 fabric images to evaluate the performance of the 

proposed features for fabric pattern classification. The samples included plain 
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weave patterns, twill weave patterns, satin weave patterns, compound weave 

patterns, and irregular weave patterns. K-means clustering technique was used as 

the classification method. 

 

 

Figure 59. Clustering results (K=3). 

K-means clustering is a partitioning method which partitions data into k 

mutually exclusive clusters. Unlike hierarchical clustering, k-means clustering 

operates on actual observations and creates a single level of clusters. Each cluster 

in the partition is defined by its member objects and by its centroid, or center. 

The centroid for each cluster is the point to which the sum of distances from all 

objects in that cluster is minimized. K-means clustering method computes cluster 

centroids differently for each distance measurement to minimize the sum of 

measurements specified. 

To understand how well-separated the resulting clusters are, a silhouette plot 

using the cluster indices from k-means is shown. The silhouette plot displays a 

measurement of how close each point in one cluster is to points in the 

neighboring clusters. This measurement ranges from +1 to -1. +1 indicates points 
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that are very distant from neighboring clusters. 0 indicates points that are not 

distinctly in one cluster or another. -1 indicates points that are probably assigned 

to the wrong cluster. Suppose the desired number of clusters equals to 3, the 

separated results is shown in Figure 59. 

 

Figure 60. Clustering results (K=5). 

From the silhouette plot, it can be seen that most points in the third cluster 

have a silhouette value around 0.4, indicating that the cluster is somewhat 

separated from neighboring clusters. However, the first and second cluster 

contain many points with low silhouette values, and even contain a few points 

with negative values, indicating that those two clusters are not well separated. 

Increasing the number of clusters can find if the clustering method is a better 

grouping. The clustering results are shown in Appendix C when k=4, 6, 7. The 

best clustering results are shown in Figure 60 when k=5. The accurate rate of 

classification results for five categories of fabric images are 94.2%, 86.7%, 

95.8%, 90.4%, and 92.0%. 

Table 6. Iterations times and total sum of distances. 

Iteration times 11 11 15 10 14 30 
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Total sum of 

distances 
518.7 519.3 518.7 518.7 518.7 518.7 

Like many other types of numerical minimizations, the solution that 

k-means reaches often depends on the starting points. It is possible for k-means 

to reach a local minimum, where reassigning any one point to a new cluster 

would increase the total sum of point-to-centroid distances. A supervised method 

called a replication strategy is used to overcome the disadvantage. The number of 

times to repeat the clustering was assigned, e.g. 6 for k=5, each with a new set of 

initial cluster centroid positions. The final sum of distances for each of the 

solutions is shown in Table 6. The results show that non-global minima exist. 

Each of the five replicates began from a different randomly selected set of initial 

centroids, and k-means found two different local minima. The final solution is 

the one with the lowest total sum of distances over all replicates. 

A statistical classification method of fabric texel extraction and inference 

was used to investigate high-level classification of fabric textures. The high-level 

classification includes two aspects. The first is the classification by weave pattern 

orientation and structure categories and the second by texel size and complexity. 

 

 
Figure 61. Fabric weave pattern orientation and texel extraction. (a) plain fabric. 
(b) satin fabric. (c) twill fabric. 

Methods of texel extraction and inference are introduced in Section 4.1.3, 

(a) (b) (c) 
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and the algorithm is summarized as follows: 

Step I, an original image is split into two components, where u holds the 

geometrical information and v holds the textural information [124, 125]. 

Step II, the Harris corner detector is adopted to detect low-level cues in the 

domain of texture information (v). 

Step III, clustering techniques are then used to cluster interest points by 

image patch appearance. 

Step IV, a MRF (Markov Random Field) model is chosen for inferring 

texture element locations. 

As shown in  

Figure 61, texels of fabrics with plain (left), satin (middle), and twill pattern 

(right) are extracted by using the proposed method. The shape of a texel in the 

red lines categorizes fabric textures into three classes. 

 

 
Figure 62. Vertex of texel. (a) plain pattern. (b) satin pattern. (c) twill pattern. 

The vertexes of the weave pattern texels in  

Figure 61 are illustrated in  

Figure 62. From left to right, they represent plain, satin and twill patterns. 

There are two findings that would help with the classification of the weave 

(a) (b) (c) 
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pattern. First, the basic repetitive texture pattern does not necessarily equal to the 

basic weave pattern. For example, the size of the repetitive pattern is smaller than 

the size of the satin pattern in the second sample in  

Figure 61. Second, plain and satin patterns can be considered to be the 

deformed quadrilateral of plain as shown in  

Figure 62. Therefore, the shape of the quadrilateral can be used for fabric 

classification by its weave pattern and the classification method is described as 

follows. 

As shown in  

Figure 62, the plain pattern is a diamond shape and the ratio of the adjacent 

sides of the quadrilateral equals to 1:1 approximately. If the ratio is decreased to 

a number that is smaller than 1:1, the pattern becomes a twill pattern. If the ratio 

is further decreased, a satin pattern can be derived from a twill pattern. The 

threshold of the ratio can be determined by applications. Intuitively, the weave 

pattern classification can be implemented as a ratio selection process. The ratio 

of the adjacent sides for each pattern is computed in an off line manner and the 

classification is simply conducted by specifying a ration value through dragging 

a slide bar that ranges from 0 to 1 and showing up the weave patterns with 

similar ratio values. 

In the fabric pattern selection and classification process, there are two most 

important factors for fabric texture designers: texel orientation and size. Weave 

pattern orientation and structure categories can be classified according to the 

ratio of the adjacent sides of the quadrilateral. In the graph design process, the 

motif pattern is the texel, which can be thought as an independent part of the 
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fabric texture, for example a flower motif and a heart motif. The size of motif 

and the complexity of it are two of the popular classification criteria in fashion 

design domain. One example of categorization result is shown in Figure 63. The 

four fabric categories are defined and classified by the size of texel and the 

complexity of texel content. 

 

Figure 63. Fabric texture categorization. 

For the size of a motif, it is usually divided into four categories, small, 

medium, large and extra large. The boundary of the categories is 

application-oriented. For example, for a shirt company, the fabric motif size is 

categorized into small (less than 5cm*5cm), medium (5cm*5cm~15cm*15cm), 

large (15cm*15cm~30cm*30cm), and extra large size (larger than 30cm*30cm). 

In regard to motif complexity, there are four common classes: simple, 

moderate, complex, and ombre. The boundary of the classes is also 

application-oriented. The method of complexity indexing for a motif can refer to 

its pattern complexity introduced in Section 4.1.1, which is concerned about 

distribution of the basic features. A possible general way to calculate the basic 

features of motif of a fabric design is to use richness of corners and edges in the 

fabric texture image [126]. However, the richness of fabric texture motif is 

difficult to extract when the weave pattern texture is mixed with color texture of 
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yarns, for example, the printed woven fabrics. 

 

5.4 Summary 

The first part of this chapter introduces a method of accurate weave pattern 

classification. First, weave patterns has been characterized into two categories 

according to the weave point distribution rules, namely, regular weave patterns 

and irregular weave patterns. Second, basic measures, such as smoothness, 

connectivity clustering, transitions, and FFT Entropy are used to describe and 

index characteristics of weave point distribution for accurate weave pattern 

classification. 

The second part of this chapter investigates fabric texture classification 

based on observations and summaries of fabric texture characteristics. The 

analysis of fabric material-based content provides an insight to choose 

structure-based statistical features as a fabric texture classification method. 

Furthermore, a statistical method based on extraction of texel orientation and size 

has been used to classify fabric textures for different application purposes. 
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Chapter 6:  

Fabric Pattern Interpolation 

 

6.1 Definition of FPI 

Fabric Pattern Interpolation (FPI) is a texture operation in which intermediate 

fabric textures are generated from existing ones, in an attempt to keep some 

texture features of the exemplars to a certain extent in the new generations. 

Fabric pattern, as one of the most popular man-made texture materials, includes 

two types of patterns: (1) weave pattern at the micro level from the point of view 

of structure design, and (2) figured-pattern at the macro level from the point of 

view of aesthetic design. As shown in Figure 1, the two are not independent but 

influence each other. 

There are dozens of parameters for the description of fabric texture 

properties in the textile industry. Two most important aspects in fabric design are 

weave pattern and colorway. The former is the essence of structured materials 

and the latter concerns the warp and weft color arrangement which is considered 

to be one of the most significant factors to determine the motif design style of a 

fabric. This chapter describes and demonstrates the FPI methods in the 

framework of fabric texture cognitive analysis and operations. 

 

6.1.1 Fabric pattern design 

As stated in [127], designs of general woven textiles comprise three elements: 
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yarn, structure, and pattern. Weaving theories decide the design details of these 

three main elements [128]. First, the selection and arrangement of yarns 

comprise five main aspects: types of materials, compositions of materials, 

thicknesses, colors, and densities. Second, the structure designs present 

interlacing methods for yarns and the allotment of weaves for partial areas. Third, 

the two aspects of pattern designs are decorative graphics (motif) and allotted 

colors. These design items can technically affect each other, and must 

complement with each other to achieve the desired results. 

There are four steps in pattern design for woven fabrics: First, design of 

graph motif which can be a format of painting or of digital image; second, color 

reduction which maps the total number of colors in the graph to colors of gamut 

weaves (weave pattern) [112]; third, selection of yarn color; fourth, colorway 

alignment. Since the weave pattern and colorway are the key components to 

consider in fabric pattern design process, the two are considered to be the major 

factors in woven fabric pattern interpolation. 

Take a five- thread satin as an example of fabric pattern design source, 

which is generally applied with five-thread weft faced sateen and five-thread 

warp faced satin in fabric designing process. Thus, if the five-thread satin is 

designed in a whole series of weaves, the nature of its structural variation is those 

shown in Figure 64. New generations of weave patterns could be defined as 

digital gamut weaves [112] and the final color effects are determined by gamut 

weave type and its warp and weft color. 

 

Figure 64. Gamut weaves of five-yarn satin [112]. 
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The natural process of fabric pattern design is a typical cognitive dynamic 

process. There are five principles of cognition: language, intelligence, memory, 

and attention [129], perception-action cycle. 

First, motif design is an abstract form of language to convey information 

and provides function of communication through element design in terms of 

color and shape. 

Second, color reduction of graph design through gamut weave design and 

matching to the graph design is the essence of intelligence. The process provides 

two functions, noise suppressing and color dimension reduction. Multiple testes 

and adjustments are needed in practice and feedback is the facilitator of 

intelligence. 

Third, selection of material (yarn and fiber material) is highly related to 

memory function which provides the means for predicting the actions (material 

production and weaving process) taken by the human cognitive dynamic system, 

and accounts for consequences of those actions. 

Fourth, alignment of yarn colorways in a weave pattern is the function result 

of attention which provides the accommodation between micro-level features 

(dozens of material structural parameters) and macro-level features (design motif 

and style). For this reason, the selection of color is one of the most difficult tasks 

in the design process. 

Finally, the whole design process of fabric pattern is the perception-action 

cycle in which there have to be two parts to the cognitive dynamic design system, 

one part (the receiver) perceiving the environment from observables and the 

other part (the transmitter) acting on the environment. The perception-action 
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cycle maximizes the information gain about the environment computed from the 

observables, with the information gain increasing from one cycle to the next. 

 

6.1.2 Fabric pattern interpolation 

Interpolation of fabric pattern materials is different from the texture synthesis for 

some natural materials (for example, sand and grass) in many previous research 

works, such as [84], [130] and [131]. In [84], texture interpolation was addressed 

and a 3D texture painting application with fabric example was illustrated. Rough 

cloth textures were synthesized and these images of fabric examples were 

produced in a low resolution and thus fabric material texture properties could not 

been examined. Another two examples of fabric texture generation techniques 

introduced in [130] and [131] were shown in Figure 65. The generated texture 

was assumed to be the same texture (The smaller textures were the input texture 

and the larger ones are the output textures). 

In Figure 65, there were two problems for fabric texture synthesis. First, the 

structure of the output fabric texture was not consistent compared to the input. 

Yarns in the output disappeared suddenly and the whole structure of the pattern 

was thus not continuous. At the yarn level, different structures of yarn interlacing 

would lead to different surface appearances in the fabric texture as the material 

interlacing force changes the material position on the fabric surface. Second, the 

texture appearance of the output texture was generated by copying input. There 

was no explicit function that controlled the variation of weave pattern and yarn 

colors. The reason was that the fabric structure was not taken into account, for 

example, the weave pattern. Simplistically, an unlimited amount of a texel 

pattern should be generated through structure fingerprints with appearance 
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variations of material units in the three-dimensional texture coordinate system in 

Section 3.3.1. Since the existing methods did not consider these texture 

parameters, these methods thus failed to provide a good solution to fabric pattern 

interpolation for woven fabric design. 

 
 
 
Figure 65. Texture synthesis. (a) a synthesis result by [130]. (b) a synthesis result 
by [131]. 

In this study, the design principle of fabric pattern interpolation is developed 

based on the cognitive dynamic system of fabric texture operations as shown in 

Figure 1. The framework of fabric pattern interpolation is illustrated in Figure 66. 

In Figure 1, fabric finger print is developed in Section 3.3 and two of the most 

significant elements in the feature vector of fabric finger print are proposed and 

adopted in fabric pattern interpolation, weave pattern and yarn color components, 

as shown in Figure 66. 

The inputs of fabrics are divided into two sets of fabric patterns A and B 

and each set may contain one or multiple samples. Techniques of texel extraction, 

weave pattern recognition, and yarn color components selection are used to 

extract basic finger print elements, weave pattern and yarn color components. It 

is noted that the extraction of these features may need some interaction 

operations from the user. In this study, techniques introduced in Chapter 5 texel 

extraction and inference, global statistics of color attributes, and weave pattern 

(a) (b) 
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extraction in Chapter 4 are used to generate candidates of fabric pattern finger 

print for pattern interpolation. 

Texel extraction

Fabric pattern A

Weave pattern 
recognition

Yarn color 
components 

selection Fabric pattern 
interpolation
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Weave pattern 
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Figure 66. Framework of fabric pattern interpolation. 

Evaluation for interpolated patterns is the essence of quality control of 

pattern interpolation. To implement the abstract functions of virtual texture 

manipulation engine, the design of visualization components is an important 

function of intermediary to collect feedbacks and move to next cycle of pattern 

interpolation. Feedbacks related to the basic components of fingerprint come 

from attention evaluation which includes style, motif, and color in fashion of the 

pattern interpolated. The basic finger print components to interpolate new 

patterns can be from the ones extracted from input fabric pattern or from 

database. When the extracted data from input fabric patterns communicate those 

corresponding data in databases, techniques of attributes representation for 

search or indexing introduced in Chapter 4 are used to prioritize and select basic 

components of fingerprint for fabric pattern interpolation. 
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6.2 Object-oriented database system 

Color and texture are the two most important elements in fashion design. It is 

generally believed that certain color and texture combinations are harmonious 

and pleasing, while others are not. Digital fashion design and on-line 

communities provide new ways to investigate color and texture harmony and 

Object-Oriented Database System (OODS) is proposed in this thesis to study 

fabric pattern interpolation. 
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Figure 67. Object-oriented database system. 

The framework of fabric pattern interpolation illustrated in Figure 66 

concludes that the system includes three components, feature extraction, 

attributes prioritization, and visualization. The traditional techniques of texture 

synthesis and / or pattern interpolation based on the assumption that the relations 

of attributes and concepts in the cognitive informatics model for virtual texture 

operations are simple connections that could be fixed. It was assumed that 

quality / beauty of texture could be evaluated even without the context of object 
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visualization. Therefore, those systems could not consider and build connections 

and perform the functions of intelligence and attention in the abstract layer of 

cognitive dynamic system. As a result, there is no explicit way in those systems 

to connect the weave pattern at the micro level and the figured-pattern design at 

the macro level. 

 

 

Figure 68. Texture details in the application of environmental conditions. 
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In this study, Object-Oriented Database System (OODS) is first introduced 

in the texture analysis and operations system. The system of object-oriented 

database consists of three components, view objects (input fabric patterns), 

meto-info objects (basic fabric finger prints) and application objects 

(visualization of interpolated fabric patterns). These components are functionally 

corresponding to feature extraction, attributes prioritization, and visualization. 

The proposed object-oriented database is the inter media to represent 

relations in the cognitive dynamic system for texture analysis and operations. 

The working mechanism of the system of object-oriented database is shown in 

Figure 67. Acquisition methods of material units are introduced in Section 4.2.1 

of Chapter 4. Toolkit has three functions: feature extraction to generate fabric 

texture fingerprints, attributes prioritization to select components of fingerprints, 

and visualization to provide feedbacks of prioritization results of attributes. 

Database system is the center of pattern interpolation in the context of 

application and frame work of fabric pattern interpolation was shown in Figure 

66. As illustrated in Figure 1, fingerprints are connections between user interface 

and the texture attributes. Similarly, texture fingerprints in the object-oriented 

database system are connecting threads in Figure 67. 

The material-based content of fabric appearance is determined primarily by 

its distance from the viewer as shown in Section 5.2.1. Effective observation 

distance for texture of application objects can be evaluated in OODS, and that is 

the most favorite distance to examine the detail of texture. Fabric texture 

fingerprint developed in Section 3.3.3 is adequate for fabric texture design and 

production. However, it is not suitable for characterizing texture objects in 

effective observation distance and some of the elements in the fingerprint feature 
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vector may not be used in a specific range of view distance. As shown in Figure 

68, for instance, an individual yarn takes less than one pixel in the photo of shirts. 

There is no difference between the shirts with fiber texture and without. In this 

case, the fiber details play a minor role in determining the global texture 

appearance (at the figured-pattern level). This suggests that texture fingerprint 

for fabric pattern interpolation should be developed based on an effective 

observation distance in the application of environmental conditions. 

The feature vector of fabric fingerprint to interpolate fabric patterns are 

determined by visualization feedbacks in OODS. First, feature vectors developed 

in Section 3.3.3 are used as the initial fingerprint feature vector in the 

visualization of application objects. Second, elements of the initial fingerprint 

feature vector are prioritized in the three-dimensional texture coordinates 

proposed in Section 3.3.1 for two material units (fiber and yarn) according to the 

score of visualization feedbacks. Note that 4 to 1 are the scores of highly 

significant, significant, noticeable, and not noticeable texture effects, respectively. 

Third, voting mechanism is used to finalize components of fingerprint feature 

vector for the application objects. 

In the proposed fingerprint feature vector, each element is considered as an 

attribute for fabric pattern. The attribute is prioritized according to the indexing 

value of the element in the fingerprint feature vector. As shown in Figure 66, 

there are two sets of fabric patterns to be analyzed to provide pattern information 

as a baseline for fabric pattern interpolation. Application objects in the database 

system provide rules of priority for indexing values of elements of fingerprint 

feature vector. The elements with higher ranking order of the prioritization 

results would be used to generate new fingerprints of fabric patterns. 
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6.3 Weave pattern interpolation 

The concept of digital gamut weaves proposed in [112] could be developed for 

weave pattern interpolation. Digital gamut weave is categorized into two types, 

warp effects and weft effects, according to the material organizational structure. 

In Section 5.1.2, connection and transition are used to describe the visual 

characteristics of fabric weave pattern and weave pattern interpolation is defined 

as: 

( 1| 1, 2 | 2)WPt f WPG WP WPG WP=                   (75) 

( ( , 1)),WPG t WP i j for warp= ±                      (76) 

( ( 1, )),WPG t WP i j for weft= ±                       (77) 

where 1WP  and 2WP  are the given weave pattern sets and 1WPG  and 

2WPG  are the corresponding gamut weaves. Function t  is binary flip function 

that changes the weft crossing point to warp crossing point, and vice versa. 

Function f  is a prioritization function of weave patterns and the prioritized 

weave patterns from gamut weave set in a specified ranking range are defined as 

interpolated weave patterns WPt . 

For a given weave pattern as shown in Figure 69, WPGs for warp and weft 

are calculated and generated by Equations (76) and (77). The prioritization 

function could be an index value of energy in the spectral domain of the weave 

pattern: 

 2
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where ,u vNF  is the normalized Fourier coefficients.  

Prioritization results by indexing value in Equation (78) for Gamut weaves 

A and B are shown in Figure 70. The prioritization results match the weave 

pattern interpolation rules both in warp and weft directions. Note that the 

indexing value of Gamut weaves A is identical to those of Gamut weaves B. This 

indicates that the indexing method can describe the weaves consistently 

(regardless of warp and weft directions). Further, it can be found that the distance 

between the adjacent weaves is larger at the beginning of the ranking (for 

example, weave 1 and 2) than at the end of the ranking (for example, 14 and 15). 

Intuitively, this indicates that the similarity distance of the weaves can be 

expressed by the indexing method. 

     

 
Figure 69. An example of gamut weaves.(a) Gamut weaves A. (b) Gamut weaves 
B. 

In the experiment as shown in Figure 71, the upper part is the given pattern 

information and the bottom part is the application objects and the interpolated 

(a) (b) 
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patterns in the application environment. In the upper part, the first pattern (from 

left to right) is the light intensity map of fabric design. The second and third 

patterns are input fabric patterns. A recommendation of color combination is 

shown in the fourth picture of the first row. 

 

Figure 70. Indexing value of Gamut weaves A and B. 

Fabric graphic design relies on effective use of color, and choosing colors is 

a difficult but crucial task for both amateur and professional designers. There are 

two suggestions, in which the color elements for pattern interpolation are 

determined, including colors from warp and weft colors of given patterns and 

color combinations from large datasets in OODS. For example, a color 

compatibility model and choosing colors techniques from large datasets are used 

to suggest color theme and color combination [132]. In Figure 71, the given color 

patterns consist of more than one color. Color clustering techniques could be 

used to extract the number of the colors and the properties of the colors inside a 

fabric [44]. The output of this method is a color table: 

{ }_ ,Color Table Number Colors= , 
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where 

{ }{ }, , 0i i i iiColors Color R G B i Number= = ≤ ≤ . 

After detection of yarn segments of the fabric in Section 4.2.2, colors of 

yarns can be calculated by: 

{ }, ,i i i iColor R G B= , 

where 
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where E is the yarn segments.  

Texture mapping techniques introduced in [10] were adopted in the 

experiments. Stochastic texture synthesis was used to generate weave pattern 

texture with color effects and two results are shown in the upper-middle part of 

Figure 71. In the bottom half of Figure 71, the first fashion manikin is mapped 

with the light intensity map of fabric texture, which consists of black, white, and 

a series of neutral grays. Fabric texture construction in a group of gamut weaves 

has a corresponding mapping relation in terms of light intensity gradient 

representation, i.e., weave texture transition in a shaded weave effects can 

express colored woven pattern textons in a way similar to the light intensity map 

of fabric design. 
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Figure 71. Experiment of fabric weave pattern interpolation in OODS. (a) top row: 
input pattern. (b) bottom row: output pattern. 

Interpolated colors and textures in the two possible combinations of gamut 

weave in Figure 71 are shown in Figure 72. Results of fabric pattern interpolation 

are shown in the bottom part of Figure 71. Different figured shirts on the fashion 

manikin have different colors and textures in which the original textons in the 

light intensity map are represented by interpolated textures and colors. 

 

Figure 72. Interpolated color and texture pattern by gamut weaves. 

It is observed that different gamut weaves would produce different weave 

texture and color in figured fabric pattern. The quality of interpolated patterns 

could be evaluated in OODS and the structure stability and color selection 

preference are incorporated into the system. 

 

(a) 

(b) 
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6.4 Colorway pattern interpolation 

More than 10,000 fabric samples are collected and categorized according to 

fashion design. The main observations are as follows. Fabric patterns with stripe 

and check are the most popular designs which occupy 80% in the dataset. 

Garment-user preferred striped and checked patterns are far from random; color 

patterns form clusters or manifolds in the space of 2-5 colors and are rated with 

higher scores than only one color or 5 above. The findings agrees that people 

have strong preferences for particular colors [132]. A yarn color book from a 

leading fashion company comprises a collection of colored yarn tags and the 

utilization rate showed that there were only 100 yarn colors frequently used in 

the market among the total number of over 1200 colors. 

The two most important elements in fashion design are determined in 

OODS, which are weave patterns and colorway patterns. Modern fashion 

designers often use photographs for inspiration when they create fabric patterns. 

In this study, application oriented fabric design in terms of colorway pattern 

interpolation is inspired and proposed in the framework of OODS. 

For a photograph that is highly rated by the user, there are two issues to 

consider design of a fabric pattern from inspiration of the photograph. The first 

issue is how to select weave patterns from the weave pattern database. The 

second issue is regarding the extraction of the inspiration colors. In this section, 

weave pattern and its color map are considered as the templates. Thus, for a 

given weave pattern, the number of possible interpolation of colorway patterns 

is: 

1

m
i

r
r

WPC P
=

=∑ , subject to 1 2[ , ]M θ θ∈                  (79) 
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where WPC  is the set of pattern interpolations for given colorways. m  is the 

number of inspiration colors extracted. p  is the permutation of colors for warp 

sequence and weft sequence. M  is the Distance Measurement of Trail-Node 

(DM-Trail-Node) proposed in Section 4.1.2, which is used to constrain the 

variance of appearance. 1θ  and 2θ are constants. 

Color inspirations are extracted with an objective function which is given by 

[132]: 

21 5
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where ic  is a pixel color, kt  is a color combination, and N  is the number of 

pixels. The first term measures the quality of the extracted color combination. 

The second term penalizes dissimilarities between each image pixel and the most 

similar color kt  in the color combination. The third term penalizes 

dissimilarities between color combination kt  and the M  most similar image 

pixels ( )N t . α , β , and σ  are constants. 

Experimental results are given in Figure 73. Six raw pictures, including 

natural scenes and paintings, from [132] are used to extract the color themes by 

using Equation (80) and then applied to the colorways of weave patterns. As a 

result, six sets of ties and shirts are generated through the extracted color themes. 

The experimental results show a possible way to produce a batch of designs with 

the given weave patterns. In fact, it is one of the most common design methods 

in garment design and these designs could be easily found whenever one goes 

shopping for garments, such as shirts and ties. 
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(a) 

 

(b) 
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(c) 

Figure 73. Colorway pattern interpolation through cognitive color theme. (a) color 
themes and fabric patterns on ties. (b) color themes and fabric patterns on ties. (c) 
fabric patterns on shirts. 
 

6.5 Texture interpolation of Jacquard pattern 

A weaving system is designed to automatically maintain a graph pattern in 

alignment with woven texture and it would be helpful to automate that process 

by texture interpolation through computer vision techniques. For decades, 
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Computer Graphics (CG) has played an important role in many kinds of design 

works, especially, industrial design of solid objects. However, most available 

methods cannot work well for soft and deformable object like cloth [133]. 

The motivation of texture interpolation of Jacquard pattern is that the 

designs of cloth pattern could be evaluated or modified in the proposed OOBS 

framework before they are sent to weaving control system and produced on 

weaving machines. The study of texture interpolation of cloth is meaningful 

because of the significance of efficiency and cost. Based on those considerations, 

texture interpolation techniques for cloth and OOBS framework are proposed to 

simulate human cognitive design process in practice and daily life. Following 

examples demonstrate applications of texture manipulation techniques of 

computer vision and graphics to Jacquard pattern interpolation. 

 

6.5.1 Weave pattern synthesis 

Weave pattern is the texton of cloth structure and it is necessary to start with 

texture samples of weaves in cloth and then evaluate the applications in the 

virtual environmental world with appropriate view distance and texture details as 

discussed in Section 6.2. 

There are two possible ways to generate texture samples of weave patterns 

for Jacquard cloth due to the physical structural limitations and, in the end, 

beauty principles as described in the latest study of Jacquard reinventing [112]. 

One is example-based texture images from real cloth and the other is 

pattern-based texture modeling by computer graphics techniques. 

Examples in Figure 71 illustrate that simple techniques of stochastic texture 
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synthesis might be applied to pattern-based texture construction with basic 

parameters, such as average intensity levels and their contrast with distributions 

based on Peirce model [134]. The virtual cloth on shirt and mankind presented in 

Sections 6.3 and 6.4 looks even better and more natural than complicated 

algorithms, for instance, in [135], thanks to the comprehensive studies of fabric 

texture to understand material units and texture patterns of fabrics.  

Additionally, in this section, a method for fabric texture synthesis using 

example-based approach is introduced to generate texture samples of weave 

patterns which are larger than the input ones. Texture generation is one of typical 

computer graphics applications that arise whenever one attempts to apply 

example-based textures to generate large textures for rendering of complex 

graphics scenes. 

A matching quality to measure difference between the pairs of pixels needs 

to be defined. The problem can be easily formulated by the bellowing equation 

[136]: 

( , , , ) ( ) ( ) ( ) ( )M s t A B A s B s A t B t= − + −              (81) 

where A  and B  are the patches to synthesize; ( )A ⋅  and ( )B ⋅  are the pixel 

colors for given position in the new patch to be synthesized and the existing 

patch; s  and t  are the two adjacent pixels copied from patches. The equation 

defines the matching quality cost M  between adjacent pixels, and an 

appropriate norm is used for different types of texture classes. 

Entire patch placement is suitable for structured textures [130]. To account 

for partial overlaps between the existing and new texture patches, the 

sum-of-squared-differences (SSD) cost with the area of the overlapping region 
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are normalized and the cost for all possible translations of the existing texture is 

given by: 

21( ) ( ) ( )
tp At

C t Nt p Et p t
A ∈

= − +∑                 (82) 

where ( )C t  is the cost at translation t  of the existing texture for a given color 

channel, Et  and Nt  are the existing texture and new texture to add, and tA  is 

the portion of the translated Et  overlapping Nt . The target is to make the cut 

between two overlapping patches on the pixels where the two textures match best. 

This can easily be done with dynamic programming. 

 

 
Figure 74. Fabric texture synthesis results. (a) input fabric pattern. (b) the 
synthesized result by [130]. (c) the synthesized result by the proposed method. 

Skew detection techniques, such as yarn location detection introduced in 

Section 4.2.2, are used to calculate the placement orientation for texture samples 

of weave patterns. The ideal placement of texture sample is that the warp is in 

vertical direction in the image and weft in horizontal. The weft direction and 

warp direction could be detected and adopted as the heuristic to choose the 

optimal graph cut. 

Since fabric is more structured in weft than warp as described in Section 

4.2.2, it is desired to start calculating weft direction overlapping SSD and then 

(a) (b) (c) 
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refine the candidates using the warp direction overlapping SSD, instead of 

calculating the sum of the two original image directions in [130]. The 

comparison of the proposed method and [130] for fabric texture synthesis is 

shown in Figure 74. The left image is the example texture, the middle is texture 

synthesis result by method of Efros and Freeman, and the right is the result of the 

proposed method. In fact, the cracks could be removed by graph cut techniques 

as used in [136], instead of dynamic programming. However, the cost of the 

algorithm complexity increases which would reduce the efficiency of the 

performance. 

 

6.5.2 Fabric phase image 

Given a graph design, the target of Jacquard pattern interpolation is to transfer 

characteristics of woven fabric texture into the phase image through appropriate 

placement of fabric gamut weaves with proper colorway alignment of warps and 

wefts. A phase image is one kind of graph designs in which the number of colors 

is designed to be the same as the number of regions in the phase image. The 

graph designs are usually paintings on paper. The graph design by hands may 

show clearly the outline or profile or boundary and it also has special texture in 

painting. 

Texture in painting is a difficult element to define. It does not just refer to 

the roughness or smoothness of a work of art, but also to the subtle gradations of 

surface difference, from the quality of the brushstrokes to the addition of foreign 

elements into the work of art as shown in Figure 75. The most exciting aspect of 

texture is that, when used carefully, it adds to the meaning and depth of an 
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artwork. On the other hand, if texture is used inharmoniously, it can become a 

negative factor. 

 

Figure 75. A painting by the author in 2002. 
It is challenging to deal with both fuzzy texture and sharp object in image 

processing. Recent methods of image segmentation using fuzzy region 

competition [137, 138] can be used to solve the problem of texture and object 

separation in painting. The merit of fuzzy region competition is that the 

optimization problem is convex with respect to the membership function which 

ensures that the method is insensitive to the initialization, and that the global 

minimum can possibly be found, in addition to its higher efficiency benefiting 

from adoption of Chambolle’s projection algorithm [139]. Since spatial region 

information and frequency region information in an image is 

application-dependent, the parameters of spatial and frequency functions in [137] 

need to be tuned based on prior knowledge for different design styles of paintings. 

For general image processing, algorithms proposed in [140] are used in the 
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experiments. 

Specifically, the region segmentation in this study mainly follows the 

method in [140]  except for converting the image from RGB channels to 

CIELAB. Let Ω  be the bounded Lipschitz domain, 3( ) :Ω→I x   be a 

color-scale image, and each component of ( )I x , ( ) ( 1: 3)jI j =x , corresponds to 

the representation of the three channels in the CIELAB space. It is assumed that 

the domain Ω  can be partitioned into N  sub-regions, 1, , NΩ Ω , along an 

edge set 1:{ }i i N=∂Ω , such that 
1

N

i
i=

Ω = Ω


 and i jΩ Ω = Φ  for i j∀ ≠ , 

, 1:i j N= . 

The segmentation model of fuzzy region competition of minimizing the 

energy functional is given by: 

1 1
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= ∇ +∑ ∑∫ ∫               (83) 

subject to: 
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where N  is the number of regions; u  is the fuzzy membership function; the 

term iu dx
Ω

∇∫  equals the perimeter of region iΩ ; 1( ,..., )Na a a= , ia
ir  are error 

functions in region iΩ , which equals to 2| |iI c− , and i ia c=  are constants (in 

the case of fabric images, the model to local case is used [140]); ∇  is the 

gradient operator; λ , p  are positive parameters to determine the fuzziness of 

segmentation. 
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For the efficiency of minimizing the energy equation above, i.e. Equation 

(83), a fast total variation minimization method is chosen to solve it [141] and 

take use of Chambolle’s fast dual projection algorithm [125]. The alternative 

minimization method to minimize energy E  is used to region parameters, 

auxiliary variables, and membership function. 

 

6.5.3 Chinese brocade interpolation patterns 

Chinese brocade is a kind of figured fabric originated from ancient China, in 

which multiple wefts are employed in conjunction with one series of warp 

threads. All the wefts are floating on the surface as required in producing the 

figured effect and to assist in providing the ground structure as shown in Figure 

76. Therefore, the brocade fabric is a kind of weft figuring fabric with an 

intricate weft-backed or multi-layer structure. It was the highest achievement of 

silk fabrication in ancient China and is still being well-received in the world 

market today [112]. 

Traditional Chinese Brocade design method was extended by digital design 

technologies and the color mixing design principles were introduced in Jacquard 

design. Gamut Weaves design method in [112] is used as the pattern interpolation 

rule in this study. 
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Figure 76. Structure design for Chinese brocade with three wefts [112]. 

A weave pattern matrix Ψ  is rewritten as its absolute weft effect matrix 

format in which the weft float region is larger or equal to the warp float region 

(in the same way, warp effect matrix format can be defined): 

( )weft weftΨ = Θ Ψ                           (85) 

where functional ( )weftΘ ⋅  is the operation functional. Suppose Ψ  is warp 

effect pattern, the operation functional is given by: 

, , , ,| 0, 1; 1, 0i j i j i j i jweft for for Ψ = Ψ Ψ = Ψ = Ψ = Ψ =             (86) 

The independent variable of functional ( )weftΘ ⋅  is the same as the dependent 

variable when Ψ  is a weft effect pattern. To represent the interpolation 

functional, first a set of matrices 1[ ,..., ]tE EΕ =  is constructed in which each has 

the same dimension to Ψ  and iteration functional ( )R ⋅  which controls the 

element of matrix in E  and the time sequence in E . Note that Gamut weaves 

of ( )R ⋅  usually takes the formats of formulae in (76) and (77) for warp and weft 

directions respectively. In this case, the interpolation functional could be 

represented as: 
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( , , )f f E R= Ψ                            (87) 

There are many ways to generate the Gamut weaves (see examples in 

Appendix) and the evaluation function to measure the distance between two 

possible neighbors of candidates could be equations (16) and (78). In addition, 

LBP (Local Binary Pattern) techniques [142] could also be used to describe the 

candidates in terms of spatial and frequency domains. 

 

6.5.4 Two-level synthesis of interpolation patterns and applications 

There are two major components in FPI, the graph design (phase image) of the 

motif and weave pattern design of material units. The graph design is to generate 

a phase image wherein different regions are labelled for colorization. Weave 

pattern design is the process of material alignment in spatial domain. It is 

necessary that both components are available. The former determines the global 

pattern, whereas the latter generates the local pattern. Good design has the 

feeling of a unified whole, in which both components in FPI are in balance and 

harmony. A two-level texture synthesis method is proposed for FPI based on 

weave pattern interpolation functions and phase image extraction. Two levels of 

texture synthesis are weave pattern level and phase image level. 

At the level of weave pattern, texture synthesis was conducted as follows. 

First, graph cut techniques in Section 6.5.1 is applied to generate a seamless 

texture which is larger than the input sample. Graph cut techniques solved the 

cracking of the boundaries by a min-cut technology. A fabric sample is shown on 

the left in  

Figure 77. A tiling image of the input sample is given on the right. A new 
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synthesized fabric pattern by graph cuts is shown in Figure 78. Second, fabric 

structure recognition techniques in sections of 4.2.2 and 4.2.3 are adopted to 

obtain the weave pattern map. Third, an active-grid-model in spatial domain was 

used to segment the synthesized fabric pattern at the yarn level [44]. Fourth, 

weave pattern interpolation techniques in Section 6.3 and Section 6.5.3 were 

adopted to generate gamut weaves of the synthesized fabric pattern. Output of 

weave pattern synthesis results are shown at the bottom in Figure 79. 

There are two methods to generate fabric gamut weaves of the fabric weave 

pattern. As shown in Figure 80, fabric gamut weave (a) is generated by copying 

and stitching warp floats. The blue color regions are warp yarn floats. Two 

identical warp floats are stitched side by side. Fabric gamut weave (b) is 

generated by randomly choosing warp floats and stitching to original warp floats. 

The synthesized result looks more natural as fiber details are more irregular on 

the fabric surface. The first method is used to generate yarn details in low 

resolution fabric image, whereas the second method is used to obtain fiber details 

in high resolution fabric image. 

 

 
Figure 77. Fabric texture synthesis by tiling method. (a) input sample. (b) tiling 
image. (c) cracked boundaries. 

(a) (b) (c) 
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Figure 78. Smooth boundaries by graph cuts. 

 

Figure 79. Gamut weaves generation. 

 

 

(a)                      (b) 

Figure 80. Yarn floats generation. (a) identical adjacent floats. (b) different 
adjacent floats. 
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Figure 81. A fabric sample and its two phases image. (a) input sample. (b) output 
phase image.  

There are two ways to obtain a phase image. The first way is to use a fabric 

image and segment it into different phases based on colors of yarn floats. In  

Figure 81, a fabric image is given on the left. Its phase image is obtained by 

MAP-ML estimations since it is efficient to deal with rough texture areas [143]. 

The second is to use a painting and do segmentation on it to obtain the phase 

image. A painting image is necessary for Jacquard fabric design. The painting is 

usually drawn by hand and much noise is introduced. A painting with a flower 

motif for Jacquard fabric design is shown in Figure 75. 

Two-level synthesis of interpolation patterns is carried out for Dobby fabric 

pattern shown in  

Figure 81. From a given weave pattern, its textures are transferred to the 

phase image by putting the gamut weaves of the given pattern onto different 

regions of the phase image. The fabric sample in Figure 79 is used as an input 

weave pattern. The gamut weaves are applied to the phase image in  

Figure 81. The output synthesis results are shown in Figure 82. The 

correspondence of textures between gamut weave patterns and the input fabric 

sample are used. The features may include color, brightness intensity, local 

regional orientation and coarseness. 

(a) (b) 
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Figure 82. Fabric synthesis results by interpolation patterns. 
In Figure 82, brightness intensity is used to generate the correspondence. 

The first output weave pattern in Figure 79 is used to fill the regions with low 

brightness intensity of the phase image in  

Figure 81. The last output weave pattern in Figure 79 is used to fill the 

regions with high brightness intensity of the phase image. The synthesis result is 

shown on the right in Figure 82. A new synthesized fabric pattern is obtained by 

changing the filling order. The result is shown on the left in Figure 82. The 

regions with high brightness intensity in the phase image are filled by the last 

output weave pattern in Figure 79. The regions with low brightness intensity in 

the phase image are filled by the first output weave pattern. 

The painting shown in Figure 75 is used for Jacquard fabric synthesis. Since 

the painting contains both coarse and fine textures, a fuzzy multi-region 

competition segmentation technique in Section 6.5.2 is used to obtain its phase 

image. The rest of the synthesis method is conducted in the same way as Dobby 
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fabric synthesis. The best number of phases in the painting depends on needs of 

applications. For example, if the style of the fabric needed is of simple and 

abstract, the number of phases is usually two or three. A simple Jacquard fabric 

synthesis result is presented in Figure 83 (a) in which the number of phases is 

three. 

In Figure 83, gamut weaves with the same color values of yarn materials are 

used in fabric (a). The gamut weaves create little difference between the 

background and regions of the fabric. Leaves in the painting almost could not 

been discriminated from the background. The colorway pattern interpolation 

techniques in Section 6.4 are used to change the color values of yarn materials. A 

series of fabric textures with different colors are generated, as shown from (b) to 

(f). Different colors of yarn materials create different textures in the fabrics. The 

color plays a role of changing appearance in Jacquard fabrics. For instance, the 

textures of the flowers in (e) and (f) look different. Different warp yarn color and 

weft yarn color are taken into account for explaining the difference. 

The details of Jacquard fabrics could be augmented by using more gamut 

weaves. A fine fabric result is shown in  

Figure 84. The fabric has similar colors and textures to the original painting. 

The gamut weaves are generated by simple stochastic texture synthesis 

techniques. Gamut weaves with low resolutions in the Jacquard fabric look 

realistic. Displaying of gamut weaves in Jacquard fabric is influenced by the 

texture resolutions. 
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Figure 83. Jacquard pattern synthesis results with different colors by weave 
pattern interpolation and phase image extraction. 

 

 
Figure 84. Adding details by extracting more phases of the image. (a) 
synthesized result. (b) original image. 

(a) (b) 
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Figure 85. Synthesis result from real fabric images. (a) synthesized result. (b) 
original image. 

 

Figure 86. Different synthesized styles of Jacquard tapestry in an application 
environment. (a) fine texture. (b) coarse texture. 

In a similar way, the real fabric images are used to synthesize the Jacquard 

fabric. Gamut weaves are selected by color and texture from the fabric library. 

The same phase image is used and the synthesized result is shown in Figure 85. 

In the textile manufacturing process, it is natural to use the specified materials to 

produce new fabrics with different graphic designs. It will be very useful to map 

fabric textures onto objects in application environments. 

 

(a) (b) 

(a) (b) 
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Figure 87. Synthesized cloth on human body. (a) synthesized results. (b) fabric 
pattern details. 

As shown in Figure 86, the Jacquard fabrics in  

Figure 84 and Figure 85 are used in an example of interior decoration. 

Fabric textures in Figure 82 are mapped onto a manikin and the shirts are 

displayed on the human body as shown in Figure 87. A user can directly see the 

textures and colors of the fabrics in a virtual environment. Textures and colors 

can be modified according to the mappings in application environments. 

6.6 Summary 

This part of the study is the logical development and application of fabric texture 

cognitive models in Chapter 3, fabric search in Chapter 4, and pattern 

classification in Chapter 5. Fabric texture analysis and operations converges 

when the object orientation database system is introduced. The importance of 

fabric texture operations have been maximized by putting the fabric texture in a 

meaningful application environment. 

Fabric pattern interpolation is defined with respect to a fabric design process 

in which the gamut weaves of the input fabric texture have been generated and 

used in a phase image to obtain a new fabric pattern. The output ability of fabric 

(a) (b) 
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pattern interpolation has been maximized by cognitive models of fabric texture 

analysis and operations. The effort of that includes how to use the gamut weaves 

of the fabric texture to create new fabric textures. Three possible ways to 

generate new fabric textures are proposed: weave pattern interpolation, colorway 

pattern interpolation and Jacquard texture interpolation. The application results in 

the last part of this chapter indicate that fabric search, pattern classification and 

interpolation could be studied in a systematic way. The research framework 

provides fabric texture management experience for the textile industry. 
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Chapter 7:  

Conclusions 

 

A digital textile database in the textiles and clothing industry usually comprises a 

large number of fabric texture images. An efficient tool to browse and 

manipulate the textures in the digital database management system is 

indispensible. A systematic investigation on fabric texture analysis and 

operations, such as search, classification, and pattern interpolation, was carried 

out in this study. The study finds that it is very helpful to introduce cognitive 

informatics models to study fabric textures and their applications. Attributes of 

the material units and properties of fabric textures were integrally linked as 

expressions of an irreducible essence. This chapter summarizes the work done in 

this project and describes possible directions for future work. 

 

7.1 Fabric texture analysis 

The object-attribute-relation called OAR model is introduced for fabric texture 

analysis in Chapter 3. As the model explains how information or knowledge is 

represented in long-term memory (LTM), the fabric texture properties could be 

modeled and described by a set of cognitive features. Firstly, fabric texture is a 

material-based network structure that is associated with the energy cost to 

produce the physical structure. An increase in energy cost corresponds to higher 

complexity of the network structure. Secondly, the fabric textures are 
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characterized by their structural appearances. The structural appearance is having 

the spatial relation of the texture elements. Thirdly, repetition size and content 

richness are considered to be the cognitive features among different texture 

features of fabric patterns. 

In the section of fabric texture analysis, a systematic review of fabric texture 

properties has been conducted and a three-dimensional nature of fabric material 

units has been proposed for fabric texture analysis. Two levels of material units 

have been defined: the yarn and the fiber level. The fabric texture properties are 

then determined by the material units. The abstract texture fingerprints of 

material units are the fundamental and effective way to define fabric texture 

properties in order to facilitate texture-based fabric search, pattern classification 

and interpolation. 

The purpose of the development of texture fingerprints is to minimize the 

gap between the low-level texture features and high-level concepts of fabric 

properties. Dozens of fabric images were selected to illustrate the richness of 

fabric appearances that were real challenges for existing computer vision 

applications. The large diversity and number of texture examples used in this 

study have significantly surpassed the examples based on which previous studies 

have been done. Hence, a proper statistical comparison of fabric textures on a 

larger scale performed in this work has resulted in a more suitable and accurate 

searching and ranking metrics. Furthermore, the feasibility of different feature 

extraction methods for these fabrics has been addressed. Automatic and 

interactive methods of fabric fingerprints extraction were thus developed and 

discussed. 

Fabric texture includes both colors and structure patterns. The color patterns 
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usually are low frequency components in the image and structural patterns 

correspond to high frequency components. A major challenge is that it is difficult 

to obtain both color and structure information from a single image. A possible 

solution proposed in this study is that the fiber level imaging and yarn level 

imaging methods were both used to acquire the necessary color and texture 

information correctly. A complete set of color and texture features to describe 

fabric details were extracted from the two-level images, which was the principal 

features for fabric search and classification. The research work provides a 

general framework for fabric texture digitization and management. 

 

7.2 Fabric texture operations 

This study introduced cognitive informatics models to study fabric texture 

operations. The cognitive informatics model for texture operations provides an 

intuitive guidance to explore the application needs and research methods of 

fabric texture operations. Three most important fabric texture manipulation 

techniques were presented. They were: fabric search, weave pattern classification 

and texture synthesis. 

Since fabric textures exhibit a large variety of appearances, it is a 

challenging task to search and classify them. In particular, it is difficult to find 

appropriate texture features to search and classify fabric patterns that could be 

useful for both fabric designers and manufacturers. At the outset, a set of 

cognitive features were used to search and classify fabric patterns according to 

their essential texture properties. Also, this research work presented a framework 

to search and classify regular and irregular weave patterns and fabric textures. 
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These investigations will be a significant contribution to the textile industry as 

they provided the guided management of fabric collections in the marketplace. 

The uniqueness of the system for fabric texture operations stemmed from 

the fact that the texture features obtained by search and classification could be 

used for fabric texture synthesis to generate new fabric textures. The new fabric 

textures were directly used in applications. Novel methods of fabric pattern 

interpolation and color theme design for fabrics were detailed to illustrate the 

synthesis process of fabric textures. In particular, a texture interpolation method 

for woven fabrics with complex designs provided a very promising application 

value. The framework of fabric pattern interpolation showed that fabric texture 

analysis and operations could be combined well in an object-oriented database 

system. The research work provided here will be a blue print for further research 

of fabric texture synthesis. Because the synthesized fabric texture on computers 

could show fabric designs in an efficient and user-friendly way, unnecessary 

demands or actions on real materials could be minimized even avoided. Thus, the 

value of the research work was closely related to daily life and practice for 

energy conservation. 

The necessity and important meanings of the research work are stressed as 

follows. Firstly, efficient fabric swatch management, such as searching and 

classification, is indispensible for the textiles and clothing industry. Secondly, 

fabric texture interpolation and synthesis can take advantage of current 

collections in fabric libraries to generate new fabric designs. The new designs are 

evaluated by mapping the textures onto objects in virtual environments. A new 

texture interpolation and synthesis cycle is conducted based on the feedback of 

the application environments. In this way the sample prototyping cost is 
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minimized and a green manufacturing process could possibly be achieved. 

 

7.3 Limitations and future work 

Fabric texture analysis and operations involve many disciplines, including art, 

material science, mechanical engineering, computer vision, and machine 

intelligence. It is relatively challenging to put these disciplines together and see 

the application values clearly in the textiles and clothing industry. The present 

research is an initial attempt in using the novel concepts of cognitive fabric 

texture analysis and operations. There exists a wide scope that can be further 

explored by a multidisciplinary approach. 

Within the present scope of research, it is not possible to include some 

expensive image acquisition methods and complex mathematical models or 

algorithms for fabric texture analysis and operations. There are two major 

reasons for this. Firstly, expensive imaging methods, such as laser scanning, may 

capture some specific details of the local texture whereas general global texture 

information, such as color, is very difficult to obtain. Secondly, the complex 

mathematical models or algorithms are usually time-consuming and the 

optimization and validation cost is too high to meet the application needs. There 

is a trade-off between the cost and application value in fabric texture analysis and 

operations. Similar problems may appear in future. 

An important study for further work would be a large-scale experiment of 

texture perception and a customized feedback system design for fabric texture 

operations. In texture perception experiment, greater attention can be paid to 

investigate how to prioritize and classify fabric textures from different 
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resolutions of the fabric images. In the large scale experiment, it is necessary to 

consider the effectiveness and efficiency of the fabric texture operation 

algorithms. In a feedback system for fabric texture operations, an investigation of 

user behaviors and interests will provide more profound insights that can 

appropriately model the cognitive process of fabric texture operations as well as 

the fabric pattern design process. 
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Appendix 

APPENDIX A EXAMPLES OF DIFFERENT FABRIC TEXTURES 
 

a) Solid color samples 
 

          
 

 
 

          
 

 
 

No.1 Plain weave, high density. No.2 Plain weave, low density. 

No.3 Plain weave, medium density. No.4 Plain weave, clear yarn edge. 
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No.5 Plain weave, fuzzy yarn edge. No.6 Plain weave, no holes between yarns. 

No.7 Plain weave, uneven gabs between yarns. No.8 Plain weave, yarn width variation. 

No.9 Plain weave, peach finishing effects. No.10 Plain weave, dusty surface. 
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No.11 Plain weave, yarn distortion. No.12 Plain weave, layered pattern. 

No.13 Twill weave, 2/1pattern. No.14 Twill weave, 2/2 pattern. 

No.15 Twill weave, twisted yarn. No.16 Twill weave, 3/1 pattern. 
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No.17 Twill weave, low density. No.18 Satin weave, printed yarn. 

No.19 Symmetric weave, 2/1pattern. No.20 Warp rip, plain weave. 

No.21 Combination weave, plain and twill. No.22 Combination weave, plain and twill. 
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b) Dual color samples 
 

          
 

 
 

          
 

 
 

No.23 figured weave, floral pattern. 

No.24 High density, plain weave. No.25 Low density, plain weave. 

No.26 Weft dominance, satin weave. No.27 Warp dominance, satin weave. 
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No.28 Two regions, modified plain. No.29 Stripe regions, twill weave. 

No.30 Multi regions, twill weave. No.31 One region, double yarn. 

No.32 Symmetrical region, multiple weaves. No.33 One region, symmetrical twill. 
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No.36 Twill floats, plain background. No.37 Symmetrical twill, clear yarn edges. 

No.34 Long floats, plain weave. No.35 Plain effects, small stripes. 

No.38 Two regions, weft floats. No.39 Multi regions, fuzzy surface. 
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c) Multi- color samples 
 

          
 
 
 

 
 

 
 
 
 
 
 

No.40 Long floats, complex twill. No. 41 Diagonal stripe, satin weave. 

No.42 Yarn width variation, plain weave. No.43 Stripe pattern, basket weave. 

No.44 Multi regions, plain weave. 
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APPENDIX B FEATURE EVALUATION FOR FABRIC 
EXAMPLES 

 
B1 Sample results by avg_value_irgl. 

 

 
B2 Sample results by avg_value_rcgl. 

 

 
B3 Sample results by sample_mean_irgl. 
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B4 Sample results by sample_mean_rcgl. 

 

 
B5 Sample results by sample_SD_irgl. 

 

 
B6 Sample results by sample_SD_rcgl. 
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APPENDIX C CLUSTERING RESULTS WITH DIFFERENT K 
VALUES 
 

 
C1 Clustering result (k=4). 

 

 
C2 Clustering result (k=6). 
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C3 Clustering result (k=7). 
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