
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

 

 

GENERALIZED FORM 

CHARACTERIZATION OF 

ULTRA-PRECISION FREEFORM 

SURFACES USING AN INVARIANT 

FEATURE-BASED PATTERN 

ANALYSIS 

 

 

REN MINGJUN 

 

 

 

Ph.D 

 

The Hong Kong  

Polytechnic University 

 

2012

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.




 

 

 

The Hong Kong Polytechnic University 

Department of Industrial and Systems Engineering 

 

 

Generalized Form Characterization of 

Ultra-precision Freeform Surfaces Using an Invariant 

Feature-based Pattern Analysis 

 

 

 

 

Ren Mingjun 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree 

of Doctor of Philosophy 

 

December 2011 

 



 

 

 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

 

 

 

__________________________________________(Signed) 

__________Ren Mingjun___________(Name of student) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Abstract 

I 

 

Abstract 

Ultra-precision freeform surfaces are complex surfaces that possess 

non-rotational symmetry and are widely used in many industries, such as advanced 

optics and biomedical implants, due to their superior optical and mechanical 

properties. In view of the geometrical complexity of freeform surfaces, there is no 

international standard for the traceable measurement and characterization of machined 

ultra-precision freeform surfaces with sub-micrometre form accuracy and nanomatric 

surface finishing. 

Motivated by the need for such a standard, this thesis presents an Invariant 

Feature-based Pattern Analysis Method (IFPAM) for the generalized form 

characterization of ultra-precision freeform surfaces. The IFPAM makes use of 

intrinsic surface properties, such as Gaussian curvature, to map the surface into a 

special image to form an orientation invariant feature pattern (IFP) for the 

representation of the surface geometry. The digital image processing techniques are 

then employed to conduct the IFP registration and correspondence searching for the 

form characterization of the surface. Compared with traditional freeform form 

characterization methods, such as least squares or minimum zone methods, the 

IFPAM is not only independent of the type of the surface being characterized but also 

from the coordinate frame which brings many difficulties and uncertainties for the 

characterization of freeform surfaces. 

The calculation of the intrinsic surface features from a machined freeform 

surface is susceptible to the sampling strategy and the measurement noise and outliers 

associated in the measured data. To address these problems, a bidirectional curve 

network based sampling strategy (BCNSS) combined with a robust surface fitting and 
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reconstruction algorithm (RSFRA) are developed for ensuring accurate extraction of 

the intrinsic surface features from a machined freeform surface. The BCNSS is based 

on scanning two sets of curves on the measured surface along two different directions 

to form a curve network which is used to construct a substitute surface to represent the 

measured surface. The RSFRA is developed to reconstruct a high fidelity surface from 

measured discrete points while the surface smoothness can be ensured as well. A 

fitting threshold, named the confidence interval of fitting error, is used to strike a 

balance between fitting accuracy and surface smoothness in the fitting process. 

Experimental study confirms that the BCNSS and RSFRA provide an effective means 

for the improvement of the efficiency in data sampling and in increasing the accuracy 

of the surface representation for the measurement of ultra-precision freeform surfaces. 

To access the reliability and accuracy of the IFPAM, a task specific uncertainty 

analysis model is built based on a Monte Carlo method to estimate the uncertainty 

associated in the results of the form characterization of ultra-precision freeform 

surfaces. Three influential factors are identified and considered in the model, 

including measurement error, surface form error, and sample size. Fractional 

Brownian motion is used to quantify the random surface form error while the 

measurement error is modeled by multivariable random noise. Rather than relying on 

intuition, the study is more focused on mathematical modeling of the relationship 

between the influential factors and the resulted uncertainty so that a prediction can be 

made to estimate the uncertainty in the form characterization of a specific freeform 

surface. The developed uncertainty analysis model is helpful for control and 

optimization of the IFPAM so as to provide more reliable form characterization 

results. 

The IFPAM substantially addresses the deficiencies and limitations of traditional 

freeform surface characterization methods, which are more susceptible to embedded 
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coordinated systems and possess uncertainty due to the geometrical complicity and 

form variety of freeform surfaces. The outcome of this study not only significantly 

contributes to the state-of-the-art of measurement science and technology but also 

provides approaches that can be used in the standardization of measurement and 

characterization of freeform surfaces. 
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Chapter 1  

Introduction 

1.1 Background of the Study 

With the development of science and technology, traditional industrial 

components composed of simple geometries like planes, spheres and cylinders are 

unable to fulfill the increasing demanding functionality of products. For instance, 

high-added-value photo-electronic parts in the optical industry have shifted from 

traditional symmetrical elements, such as spherical optics, to complex optical 

elements with freeform shapes for improving the performance of the products, in 

terms of both functionality and size reduction (Lee et al, 2005b; Jiang et al, 2007b).  

Freeform surfaces are classified as complex geometrical features that have no 

symmetry in rotation or translation and are increasingly being used in many fields, 

from precision optics and bio-implants to multi-functional structures (Claytor et al, 

2004). To ensure the functionality, the freeform surfaces are required to possess high 

precision in terms of form accuracy in the micrometre to sub-micrometre range and 

surface finishing at the nanometric level. The rapid development of ultra-precision 

machining technologies, such as single-point diamond turning (SPDT), ultra-precision 

raster milling, computer controlled ultra-precision polishing, allows designed 

ultra-precision freeform surfaces to be fabricated (Lee et al, 2005b). However, a 

fundamental problem is how to measure and characterize such surfaces so as to 

examine the conformity of the machined surfaces with designer’s intend. 

Form accuracy plays an essential role in the characteristics of freeform elements. 
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Research in surface characterization started in 1933 and the focus in recent decades 

has shifted from simple geometries like spheres to freeform surfaces (Jiang et al, 

2007a). Traditionally, the form error of freeform surfaces is characterized based on 

specially manufactured test gauges (Savio et al, 2007). However, the quality of the 

measurement heavily relies on the proficiency of the operator and the measuring 

accuracy is difficult to be guaranteed. Therefore, automatic form characterization 

techniques have been developed, in which the mechanical gauges are replaced by a 

computerized geometrical model. A machined freeform surface is measured and the 

form accuracy of the surface is characterized by comparing the measured surface with 

the computerized model. In this way, the human element and the mechanical gauge 

are no longer necessary, thereby greatly saving the time and improving measurement 

accuracy. 

In an overview of the published literature, one of the most challenging problems 

in the form characterization of freeform surfaces is surface matching (also termed as 

surface fitting (Jiang et al, 2010) and surface localization (Li and Gu, 2004). This is 

due to the fact that the measured data and the computerized model are not exactly 

located in the same coordinate system. Hence, surface matching is required to 

eliminate the misalignment of the coordinate systems before the form characterization 

of the measured data. Researchers employ the least squares or minimum zone 

methods (Li and Gu, 2005; Kong et al, 2010) to perform freeform surface matching, 

but they encounter problems such as matching uncertainties due to the dependency of 

the methods on the coordinate frame or the geometry of the surface being 

characterized. One promising approach is the utilization of the intrinsic surface 

properties which are independent from the coordinate frame. The implementation of 

the approach for the use of intrinsic surface properties emphasizes on image 

processing, computer visualization, and pattern recognition (Iyer et al, 2005), while 
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only a limited number of applications have been found in the characterization of 

ultra-precision freeform surfaces with sub-micrometre form accuracy. 

The measurement and form characterization of a freeform surface combines with 

errors which lead to uncertainty to the characterization results. Uncertainty associated 

in the form characterization of freeform surfaces comes from many sources, including 

the error of the measurement instruments (Wilhelm et al, 2001), the error of the 

adopted sampling strategy (Philips et al, 1998), and the error imposed by the surface 

matching and comparison method being used. As a result, uncertainty analysis is 

indispensable for form characterization which assesses the accuracy and reliability of 

the measurement and the characterization results for the freeform surfaces. However, 

current research on the analysis of the uncertainty in geometric measurement is still 

focused on simple geometries such as circle, sphere and cylinder (Wilhelm et al, 2001; 

Maihle et al, 2009), and relatively little research work has been conducted on freeform 

surfaces. The general model described in the Guide to the Expression of Uncertainty 

in Measurement (ISO, 1995; 2008) is also difficult to apply to the process of freeform 

surface measurement since the uncertainty varies with the nature of surfaces being 

measured. 

The geometrical complexity and high precision of the ultra-precision freeform 

surfaces bring considerable challenges to the measurement and form characterization 

of these surfaces. Although extensive research has been conducted in recent decades, 

there is still a lack of international standards and definitive methodologies to 

characterize the form accuracy of machined ultra-precision freeform surfaces with 

sub-micrometre accuracy. As a result, it is necessary to develop a practical and 

generalized method to perform high-precision and robust form characterization of 

ultra-precision freeform surfaces with sub-micrometer form accuracy and nanometric 

surface roughness. 
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1.2 Research Objectives 

Motivated by the demand for a standard and generalized form characterization 

method for the measurement of ultra-precision freeform surfaces, this research aims to 

develop an invariant feature pattern based form characterization method to address the 

deficiency and limitations of the traditional freeform surface characterization methods 

identified in the previous section. This research attempts to address the following key 

objectives: 

(i) To study the characteristics of different types of ultra-precision freeform surfaces 

and the orientation invariant surface features, i.e. the invariant feature patterns 

are identified and engaged in freeform surface representation and surface 

matching; 

(ii) To develop reliable sampling strategies and effective surface fitting techniques to 

extract invariant feature patterns from the machined freeform surfaces with high 

fidelity; 

(iii) To develop an Invariant Feature-based Pattern Analysis method for the 

generalized form characterization of ultra-precision freeform surfaces with 

high-precision and robustness; 

(iv) To develop an uncertainty analysis model to assess the accuracy and reliability of 

the form characterization results of ultra-precision freeform surfaces. 

1.3 Organization of the Thesis 

The thesis is divided into 6 chapters. Chapter 2 gives a literature review of the 

relevant topics of this research including the application of ultra-precision freeform 
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surfaces in different fields, the enabling ultra-precision freeform machining 

technologies for the fabrication of ultra-precision freeform surfaces, the 

state-of-the-art high precision measurement instruments for the measurement of 

ultra-precision freeform surfaces, and current research on the automatic form 

characterization techniques for ultra-precision freeform surfaces. 

Chapters 3, 4 and 5 constitute the core part of this research. Chapter 3 focuses on 

the study of measurement strategies and surface modeling of ultra-precision freeform 

surfaces. This attempts to address the problem of extracting surface intrinsic features 

from the machined freeform surfaces. A bidirectional curve network based sampling 

strategy is developed to enhance the efficiency and reliability of the sampling plan in 

the measurement of ultra-precision freeform surfaces. A robust surface fitting 

algorithm is developed to reconstruct a high fidelity surface from measured discrete 

points while the smoothness of the surface can also be ensured. In Chapter 4, the 

surface intrinsic features of freeform surfaces are studied and the orientation invariant 

surface features are identified and engaged in freeform surface representation and 

surface matching. Based on this approach, an Invariant Feature-based Pattern 

Analysis method is developed for the generalized form characterization of the 

machined ultra-precision freeform surfaces. In Chapter 5, a task specific uncertainty 

analysis model is presented to analyze the associated uncertainty in the form 

characterization results with consideration of three influential factors, including the 

error of the measurement instruments, the error introduced by the adopted sampling 

plan and the surface matching and comparison method. Chapter 6 provides an overall 

conclusion to the thesis, and some suggestions for the future research. 
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Chapter 2  

Literature Review 

2.1 Ultra-precision Freeform Surfaces and Their Applications 

Traditional industrial components mostly consist of simple geometries, such as 

planes, spheres and cylinders, which are fundamental for the functionality of the 

components. However, with the rapid development of science and technology, these 

simple surfaces are inadequate to fulfill the more and more particular functionality of 

the products. For example, in the optical industry, the performance of optical systems 

which employ spherical lens is limited by aberrations (Lee et al, 2005b). As a result, 

more and more essential components with freeform surfaces have attracted a lot of 

interest from academics to industry.  

Differing from conventional simple surfaces, freeform surfaces are complex 

surfaces which usually have no symmetry in rotation or translation (Claytor et al, 

2004). Structured surfaces, such as microlens arrays, V-grooves, lenticulations, echells 

and pyramids are sometimes also classified as freeform surfaces since they have the 

same aspects in regard to fabrication, alignment and measurement (Jiang et al, 2007b). 

Owing to the superior optical and mechanical properties of freeform surfaces, they are 

now widely used in many fields, ranging from the design and manufacturing of 

die/molds, patterns and modeling, products in plastics, automotive and aerospace 

industries to biomedical, entertainment and geographical data processing applications 

(Savio et al, 2007). To ensure the functionality of the components, these surfaces are 

required to have form accuracy within the micrometre to sub-micrometre range and 
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surface finishing at the nanometric level (Jiang et al, 2011). 

In the optics industry, freeform optics breaks through the traditional concept of 

optical imaging. It integrates different complex surfaces in an optical system to fit 

differing needs of the photonics and telecommunication technologies for transmitting, 

receiving, converting and storage of data. As shown in Figure 2.1, the first widely 

used commercial product that contained freeform components was the Polaroid SX-70 

folding Single Lens Reflex camera which was introduced in 1972 (Plummer, 2004). In 

its optical design, two freeform optical components were used for distortion 

correction. 

 

Figure 2.1 Polaroid SX-70 folding Single Lens Reflex camera (Adapted from 

Plummer, 2004) 

Along with the rapid development of photonics and telecommunication, freeform 

optics have been emerging and are now increasingly being used in the design and 

production of high-value-added products. Some freeform optics that are commonly 

found in the market are shown in Figure 2.2. For example, the F-theta lens (Figure 2.2 

(a)) is designed to provide a flat field on the image plane for scanning and engraving 

applications. It is commonly used in conjunction with galvanometer scanning mirrors 
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for such things as laser printing, laser marking, engraving and laser machining. 

Micro-structured freeform surfaces are crucial components for many photoelectrical 

products such as microlens scanners (Daly, 2001) and microlens arrays (Figure 2.2 (b)) 

for flat-panel digital displays. The progressive lens (Figure 2.2 (c)) is another widely 

used freeform optic. It is characterized by a gradient increasing lens power, which 

starts at the top of the lens and reaches a maximum addition power at the bottom of 

the lens (Pope, 2000). Wearers can adjust the additional lens power at different 

viewing distances by tilting their head to look through the most appropriate part of the 

vertical progression.  

 

Figure 2.2 Commonly found freeform optics in the market (Adapted from Lee et al, 

2005b) 
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Others include multi-layer diffraction optical elements (Figure 2.2 (d)) for a 

camera lens for improving imaging performance (Cannon, 2011), LED reflector 

(Figure 2.2 (e)) for automotive lighting system, and freeform surface prism (Figure 

2.2 (f)) for head-mounted display systems (Lee et al, 2005b). A systematic review of 

freeform optics applications can be found in Lee et al (2005b) and Ledig (2010). 

Over the past decades, the optical industry has grown from one based on skills 

and manual labour to one based on the design and manufacture of advanced products. 

In the United States of America alone, there are more than 5000 optical design and 

manufacturing companies with an estimated turnover of more than US$50 billion 

(Kong, 2010c). The products are becoming more and more specialized and 

complicated so as to meet the increasing demands of customers. Figure 2.3 shows a 

roadmap of the evolution of the freeform optical components and products.  

  

Figure 2.3 The roadmap of the application of freeform optical components 

It is evident that the freeform components used in these products significantly 
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improve the performance in terms of both system size reduction and functionality 

(Lee et al, 2005b). For example, with the adoption of freeform micro-optics, 

biomedical measurement systems have become very small and robust; Lendicular 

arrays, formed from cylindrical lenses, are used in 3D displays for generating 

stereoscopic 3D effects; and a variety of freeform optics are used in LED vehicle 

lighting systems for increasing LED efficiency. 

The use of the ultra-precision freeform surface is not limited to the optics field. 

As shown in Figure 2.4, bio-implants such as knee prostheses use freeform surfaces as 

bearing components. In order to prolong the implant against corrosion and wear 

debris, the form accuracy requirement for the implants is in the micrometre to 

sub-micrometre range, while that for surface roughness is less than 10 nanometres. It 

has been found that an increase of 0.1μm in roughness results in a 13 fold increase in 

wear (Charlton and Blunt, 2008). 

 

Figure 2.4 Freeform knee joint orthopaedic implants 

However, the high accuracy requirement and geometric complexity of 

ultra-precision freeform surfaces bring considerable challenges for the fabrication and 

measurement of these surfaces. Differing from traditional surfaces such as sphere and 

asphere, which can be produced by conventional two axis machines, more 
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complicated multi-axis ultra-precision machining technologies such as multi-axis 

milling and polishing are required in fabrication of ultra-precision freeform surfaces. 

The measurement and characterization of the machined ultra-precision freeform 

surfaces are also much more difficult and complex than conventional rotationally 

symmetry surfaces for which measurement may rely on the acquisition of several 

cross profiles.  

For ultra-precision freeform surfaces, the measurement requires more advanced 

measurement technologies including precision 3D measuring instruments, 

comprehensive measurement strategies and reliable form characterization methods. 

Due to the geometric complexity of ultra-precision freeform surfaces, there is a lack 

of international standards for the form characterization of ultra-precision freeform 

surfaces. This brings a great deal of inconsistency in the information exchanges in 

industry as well as in the academic research field. 

2.2 Ultra-precision Freeform Machining Technology 

Ultra-precision machining represents the most advanced stage of machining and 

is one of the most important techniques for the manufacture of high precision 

components. Since its introduction in the 1970’s, ultra-precision machining 

technology, such as single point diamond turning (SPDT), has become the most 

powerful solution for the manufacture of precision parts that require extremely high 

form accuracy and super smooth surfaces; for example, computer memory discs used 

in hard drives and photoreceptor components used in photocopy machines (Chapman, 

2004). According to Taniguchi curves (Taniguchi, 1983), “precision” is a relative idea 

that varies with the development of science and technology; ultra-precision machining 

nowadays refers to machining technologies that can produce components with form 
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accuracy better than 0.1 µm and surface roughness smaller than 0.025 µm. 

However, ultra-precision freeform surfaces generally possess non-rotational 

symmetry or microstructure surfaces that have a tessellated pattern which cannot be 

machined by conventional two axis ultra-precision machining such as SPDT. 

Machining of such surfaces requires at least three numerically controlled machine 

axes. The increasing complexity of the surface geometry is associated with the 

increase of the number of controllable machine axes. Figure 2.5 shows the 

development of ultra-precision machining technologies towards higher accuracy and 

surface complexity (Riemer, 2011). This section reviews several state-of-the-art 

multi-axes ultra-precision machining technologies that are commonly used in the 

manufacturing of ultra-precision freeform surface. 

 

Figure 2.5 Development of ultra-precision machining technologies towards higher 

accuracy and surface complexity (Adapted from Riemer, 2011) 

The Fast Tool Servo (FTS) is an electro-mechanical device equipped on a 
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diamond turning lathe. Initial development of the FTS for direct machining of 

freeform surfaces took place in the mid to the late 1980s (Falter and Dow, 1988). 

Since the tool has axial motion in coordination with the rotation of the spindle, 

non-rotationally symmetric parts can be made on the lathe. The axial motion of the 

tool is usually accomplished by a piezoelectric actuator. The high stiffness and low 

moving mass of the piezoelectric actuator allows high bandwidth (BW) in the axial 

motion. This is a significant advantage of the FTS for the fabrication of structured 

freeform surfaces such as microlens arrays (Luttrell, 2010).  

However, most of the FTS systems have a maximum stroke less than 1 mm and 

therefore they are limited to certain geometries in which departure from the rotational 

symmetry is small. Recent innovations in FTS development include long stroke tool 

servos (Weck, 1995). Figure 2.6 shows a FTS actuator from Moore Nanotechnology 

Systems (NFTS-600) which enables displacements up to 1 mm at 100 Hz BW and 6 

mm at 20 Hz BW (Moore, 2011).  

 

Figure 2.6 NFTS-600 Fast tool servo actuator (Adapted from Moore, 2011) 

In addition, Brinksmeier et al (2010) have recently developed a nano FTS which has a 

350nm stroke and is able to operate at a frequency up to 10 kHz. This system allows 
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the machining of complex microstructures such as diffractive optical elements. 

The Slow Slide Servo (SSS) is another powerful machining technique for 

manufacturing ultra-precision freeform surfaces. The SSS is similar to the FTS in that 

it also moves the tool in coordination with the rotation of the work spindle, but uses 

the machine’s Z slide instead of an additional motion actuator. Figure 2.7 shows the 

configuration of a SSS machine (Tohme and Murray, 2011). SSS is able to fabricate 

freeform surfaces with much larger deviations (millimeter scale) than those in the 

piezo-actuated FTS since the tool of the SSS can be oscillated at a range up to 25 mm 

(Tohme and Murray, 2011). The slow slide servo is easy to set-up, inexpensive and 

allows the manufacturing of high accurate freeform parts. The SSS method is 

commonly applied to machine torics, freeform polynomials, Zernike surfaces, and a 

wide variety of other freeform parts. 

 

Figure 2.7 Configuration of a SSS machine (Adapted Tohme, 2011) 

Ultra-precision raster milling is one of the most common techniques for 

manufacturing freeform surfaces with nanometric surface finishing and 
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sub-micrometre form accuracy without any additional post processing. Unlike the 

turning process, such as in a single point diamond turning machine, the generation of 

freeform shapes on raster milling has the workpiece relatively stationary and the 

cutting tool rotating on the main spindle. The motion of the machine axes is 

coordinated so that the cutting tool is moved across the workpiece along a series of 

parallel scanning lines with very close spacing. This raster type scanning allows the 

tool to follow very complex contours (Luttrell, 2010). Figure 2.8 shows a five axis 

ultra-precision freeform machine system named Freeform 705G from Precitech Inc. of 

USA (Precitech, 2011). There are totally five axes in the machine tool including three 

linear axes named X-axis, Y-axis and Z-axis, and two rotational axes named B-axis 

and C-axis, as shown in Figure 2.9. The machining is conducted in a raster milling 

style, which can machine the workpiece to a super mirror surface finish of several 

nanometres and form accuracy in the sub-micrometre scale using a one-pass cut 

(Kong, 2010c). It is frequently employed for machining ductile materials such as 

aluminum and copper. 

 

Figure 2.8 Freeform 705G ultra-precision five axis raster milling machine  
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Figure 2.9 Configuration of the Freeform 705G 

Ultra-precision grinding allows direct machining of a wide range of hard 

non-ferrous materials offering the benefits of high material removal rates with 

relatively low tool wear (Namba et al, 1999; Ohmori et al, 2000; Aurich et al, 2009; 

Xie et al, 2011). Hardened steel and brittle materials, such as glass and ceramics, are 

normally not amenable to using a single point diamond tool since these materials are 

susceptible to subsurface damage and easily cause chipping of the diamond tool. The 

grinding method minimizes the subsurface damage of the workpiece and provides a 

solution for machining brittle materials with sub-micrometre form accuracy and 

nanometric surface finish. (Lee et al, 2005b). 

Ultra-precision freeform polishing includes bonnet based mechanical polishing, 

fluid jet polishing (Freeman, 2011), magnetorheological polishing (Jha and Jain, 

2004), electrorheological polishing (Kuriyagawa et al, 2002), etc. It provides an 

important means for removing non-preferable machine signatures by diamond turning 

or raster milling and in machining those materials such as ferrous material that 

diamond machining cannot. Currently, ultra-precision polishing has been widely used 

in machining a variety of materials including plastics, biomedical polymeric materials, 
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ceramics and steels, etc. Figure 2.4 shows an ultra-precision multi-axis freeform 

polishing machine named the IRP200 from Zeeko Ltd. in UK (Zeeko, 2011). The 

machine has 7 axes of motion of which four axes control the work piece motion and 

the other three axes control the polishing head. It is reported as having the capability 

to polish freeform surfaces with sub-micrometre form accuracy and surface finishing 

in nanometre to sub-nanometre range (Kong, 2010). 

 

Figure 2.10 IRP200 Ultra-precision multi-axis freeform polishing machine 

Besides the ultra-precision multi-axes freeform machining technologies reviewed 

above, other methods such as diamond micro chiseling and micro milling are also 

powerful solutions in manufacturing complex structured freeform surfaces. More 

details of the development of ultra-precision machining over the last few decades 

have been summarized by Evans (1989), Chapman (Chapman, 2004) and Marsilius 

(2009). It is interesting to note from the literature review that the advanced 

development of  ultra-precision freeform machining technologies constitute an 

enabling technology that allows the designed freeform surfaces to be fabricated with 

form accuracy in the sub-micrometre range and surface finishing at nanometric level. 
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2.3 Instrumentation for Measurement of Ultra-precision Freeform Surfaces 

Two approaches are commonly used in the measurement of freeform surfaces, i.e. 

direct and indirect comparison (Ip and Loftus, 1996; Savio et al, 2007). With a direct 

comparison, the form accuracy of a machined freeform surface is characterized by 

checking the deviation of the surface with a corresponding mechanical gauge. The 

quality of the measurement heavily depends on the operator’s proficiency and the 

manufacturing accuracy of the gauge. It is evident that the process is inefficient and 

the measuring accuracy is difficult to be guaranteed.  

With indirect comparison, the mechanical gauge is replaced by a computerized 

geometrical model (e.g. computer aided design (CAD) model), and the comparison is 

performed between the measured surface and the computerized model. In this way, 

the human operation and mechanical gauge are no longer necessary, thereby greatly 

saving time and improving accuracy. 

Savio et al (2007) classified measurement technologies for freeform surfaces into 

6 categories and the typical ranges of measuring accuracy with part dimensions for 

different categories of measuring systems are shown in Figure 2.11. It can be seen that 

there are three categories that are suitable for the measurement of ultra-precision 

freeform surfaces with form accuracy in the micrometre to sub-micrometre range and 

dimensions in the several centimeters to several decimeters range, including 

coordinate measuring machines, profilometry and interferometric techniques.  

In the following sections, the measurement principles as well as the 

state-of-the-art measurement instruments of these three categories are reviewed. The 

recently developed multi-sensor techniques as well as the typical measurement 

instruments are also reviewed. 
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Figure 2.11 Measuring accuracy with part dimensions for different categories of 

measuring systems (Adapted from Savio et al, 2007) 

2.3.1 Coordinate measuring machine 

Coordinate measuring machines (CMMs) involve the most important 

measurement technology for the inspection of freeform surfaces and are widely used 

in industry. A CMM acquires spatial coordinates of discrete points and a points cloud 

is used or processed to represent the geometry of the surface shape being measured. 

Almost all machine designs of CMMs are based on linear axes arranged according to 

the Cartesian coordinate system with corresponding linear scales (Weckenmann et al, 

2004). During the measurement, the measuring carriages are moved in the coordinate 

axes, and one of the coordinate axes, usually the Z axis, is equipped with a sensor for 

detecting the measured points. Hence, the accuracy of a CMM is determined by two 

systems: the moving system (including the positioning accuracy and perpendicularity 
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of the coordinate system) and the measuring sensor system (also referred to as the 

probing system).  

Figure 2.12 shows four different types of designs of moving system for CMMs 

(Christoph and Neumann, 2010). The first type primarily consists of two mechanical 

stages (X and Y) with mechanical bearings as shown in Figure 2.12 (a). The Z axis 

also runs on mechanical bearings. The measuring range of this type of CMMs is 

approximately 200 mm to 400 mm (Christoph and Neumann, 2010).  

 

Figure 2.12 Designs of coordinate measuring machines (Adopted from Christoph and 

Neumann, 2010) 

For higher precision requirements and larger measuring ranges, bridge-type 

designs are widely used as shown in Figure 2.12(b)-(d). In the design, the mechanical 
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guideway is replaced by moving systems with air bearings. The force required to 

move the carriages is relatively small and the lack of hysteresis in the positioning 

system results in low measuring uncertainties. For the type of design shown in Figure 

2.12(b), the bridge and its columns move along the primary axis and a carriage moves 

laterally on the bridge a long the secondary axis. The third axis is attached to this 

bridge. Since the workpieces are not moved during the measurement, the CMMs with 

this type of design are suitable for measuring extremely heavy workpieces. For fixed 

bridge type of designs as shown in Figure 2.12(c) and Figure 2.12(d), the workpieces 

are moved along the primary axis on a moving stage. The other two axes are arranged 

on the bridge. The chief advantage of this design is that the drive systems and scales 

of all three axes can be mounted centrally so as to minimize the Abbe offset effects 

(Christoph and Neumann, 2010). 

The probing system is the most important element of a CMM which is 

responsible for the overall accuracy of a measurement. A probing system can be 

classified into two categories, i.e. contact probing systems and optical probing 

systems. This literature review focuses on the contact type of probing systems for 

micro-metrology and nano-metrology. A comprehensive review of optical probing and 

measurement systems can be found in Schwenke et al (2002), Estler et al (2002) and 

Hocken et al (2005).  

Figure 2.13 shows the general principle of the contact type of probing systems. 

The CMMs move the probe onto the workpiece (or alternatively move the workpiece) 

and touch it with a sensing element (e.g. stylus tip); the coordinate of the touching 

point on the workpiece is determined by the relative position of the point to a 

reference point on the CMMs. This process is repeated and a cloud of points can be 

extracted from the workpiece, which are used to represent the geometry of the surface. 
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Figure 2. 13 General tactile probing systems of coordinate measuring machines 

In a recent keynote speech at ISMTII 2011, Gao (2011) claimed that positioning 

and position measuring systems of sufficient range and resolution (several nanometres) 

are already available. In almost all cases, the probing system is the limiting factor of 

the measurement, including accessibility and the damage due to the touching force on 

the workpiece. To overcome these problems, micro-probing systems and nano- 

probing systems have been developed in recent years.  

Technische Universiteit Eindhoven (TUE) developed a micro-probe and the 

probing system (Haitjema et al, 2001), as shown in Figure 2.14. The system adopted a 

three legged design, and piezo-resistive strain gauges are used to determine the 

position of the stylus. The resolution of this system is about 1 nm and the moving 

mass is limited to a mere 20 mg. The National Physics Laboratory (NPL) in UK 

developed a small probe (Peggs et al, 1999) that has a very light structure and 

relatively low probing force as shown in Figure 2.15. The probe was designed to 

operate with a standard probing force of 0.2 mN, corresponding to a probe tip 

deflection of about 10 μm. The resolution of the probe is claimed to be 3 nm. Other 
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recently developed micro tactile probes, such as METAS 3D probing system (Meli et 

al, 2003) and nonconventional probes, such as fibre opto-tactile probes developed by 

PTB (Schwenke et al, 2001), are also reported as having the capability to measure 

high aspect ratio surfaces with several nanometres resolution. 

 

Figure 2.14 Micro-probe and the probing system developed by TUE (Adapted from 

Haitjema et al, 2001) 

 

Figure 2.15 Micro probing system developed by NPL (Adapted from Peggs et al, 

1999) 
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These micro-probing systems are now successfully integrated into the CMMs 

and there are several commercialized ultra-precision CMMs available in the market, 

such as Carl Zeiss F25 (Carl Zeiss, 2011) offered by Carl Zeiss Inc. in Germany, as 

shown in Figure 2.16, and the Isara series (IBS, 2011) offered by IBS Precision 

Engineering in Netherlands, as shown in Figure 2.17. 

 

Figure 2.16 Carl Zeiss F25 ultra-precision CMM (Adapted from Carl Zeiss, 2011) 

 

Figure 2.17 Isara 400 ultra-precision CMM (Adapted from IBS, 2011) 
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2.3.2 Profilometry 

Profilometry is another widely used measurement technology in ultra-precision 

geometric measurement. In stylus profilometry, a stylus is traversed over a workpiece 

and a transducer measures the vertical displacement with resolutions that can be down 

to nanometres to sub-nanometres over a range up to 25 mm (Taylor Hobson, 2011). 

Conventionally, profilometry is very commonly found in industry for the testing of 

rotationally symmetry surfaces such as spheres and aspheres since the 1980s (Scott, 

2002). Equipped with an additional moving stage, stylus profilometry is able to 

measure freeform surfaces in a raster scanning mode. 

The transducer is the sensor responsible for the overall measuring accuracy of 

the profilometry. Laser interferometer is one of the most widely used methods in 

stylus profilometry (Jiang et al, 2007a). The measurement principle of this type of 

profilometer is shown in Figure 2.18.  

 

Figure 2.18 Measuring principle of laser interferometer based stylus profilometer 

(Adapted from Jiang, 2007a) 
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A light from the laser source is split into two parts by a beam splitter, one of 

which goes to the reference mirror, and the other goes to the reflector fixed on the 

cantilever. When the stylus moves on the workpiece, the light reflected from the 

reflector is interfered by the light from the reference mirror and hence an interference 

stripe is generated. The phase of the interference stripe is relative to the displacement of 

the reflector, and the output data can be interpreted and the vertical displacement of the 

tip of the stylus is obtained. One of the typical commercialized instruments is the 

Surface Profiler PGI series offered by Taylor Hobson in UK (Taylor Hobson, 2011a) 

as shown in Figure 2.19. The recently offered PGI 2540 has a 25 mm measuring range 

with a resolution of only 0.4 nm.  

 

Figure 2.19 Taylor Hobson Profiler PGI 1240 (Adapted from Taylor Hobson, 2011a) 

Another typical commercialized profilometer widely used in ultra-precision 

freeform surfaces measurement is the Freeform profiler UA3P, developed by the 

Panasonic Corporation in Japan. UA3P is an ultra-high accuracy profilometer which 

uses an atomic force probe as the measurement probe (Panasonic, 2011). Figure 2.20 

shows the measuring principle of this profiler. When the stylus moves on a workpiece, 
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the atomic force is generated against the measurement force that always keeps the 

atomic force constant, whereby the displacement is measured by the laser 

interferometer. UA3P has a measurement volume up to 400×400×90 mm, probing 

force of 0.3 mN and laser interferometers for measuring the displacement in 3 axes. It 

has been reported that UA3P can achieve measurement accuracy down to 150 nm 

even when the slope of the workpiece is up to 75 degree (Panasonic, 2011). 

 

Figure 2.20 Freeform profiler UA3P and its measuring principle (Adapted from 

Panasonic, 2011) 

2.3.3 Interferometric techniques 

Interferometric techniques are well known as rapid, nondestructive and 

noncontact surface metrology techniques (Schwenke et al, 2002, Hocken et al, 2005). 

Figure 2.21 shows the general principle of interferometric methods (Blunt, 2006). The 

light from a light source (e.g. white light lamp) is split into two paths by a beam 

splitter.  One path directs the light onto the workpiece under test and the other path 

directs the light to a reference mirror.  Reflections from the two surfaces are 

recombined and projected onto an array detector.  When the path difference between 

the recombined beams is of the order of a few wavelengths of light or less, the 
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interferometric stripes are generated and are read by the CCD detector. This 

interference contains information about the surface contours of the test 

surface.  Vertical resolution can be of the order of several angstroms while the lateral 

resolution depends upon the objective, and is typically in the range of 0.5-5 microns 

(Estler et al, 2002; Blunt, 2006).  

 

Figure 2.21 General principle of interferometric methods (Adapted from Blunt, 2006) 

Typical interferometric measuring instruments in the market include Talysurf CCI 

series offered by Taylor Hobson Ltd in UK (Taylor Hobson, 2011b), Zygo surface 

profilers offered by Zygo Corp. in USA (Zygo, 2011), and Wyko optical 

interferometric profilers offered by Veeco Instruments Inc. in USA (Veeco, 2011). 

Figure 2.22 shows some noncontact optical instruments. 

When measuring aspheres or freeform surfaces which have too much departure 

from the reference mirror, the dynamic range of the interferometers is generally 

insufficient. This can be overcome by using a correction element such as a null lens 

(Kim et al, 2004) or Computer Generated Hologram (CGH) (Pfeifer et al, 1993; Burge 

and Wyant, 2004). Figure 2.23 shows the schematic principle of CGH. CGH 

interferometry is based on the use of a surface specific diffractive element added to an 
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interferometer, which changes a spherical wavefront into a more complex wavefront. 

However, these elements have to be specially designed and manufactured for each 

specific surface shape. This not only adds to the cost but also increases the 

measurement uncertainty due to the manufacturing error and alignment error of these 

elements. 

 

Figure 2.22 Noncontact optical instruments (Veeco, 2011; Taylor Hobson, 2011b) 

 

Figure 2.23 Schematic principle of a CGH (Adapted from Savio, 2007) 

2.3.4 Multi-sensor techniques 

There are already various measurement technologies available for the 
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measurement of ultra-precision freeform surfaces, as reviewed in previous sections. 

However all of these techniques have their own advantages and disadvantages and 

none of them can fulfill all the required tasks with high accuracy and efficiency 

(Weckenmann et al, 2006).  

CMMs are powerful instruments for measuring complex surfaces with high 

accuracy. However, the contacting force may be unacceptable when measuring 

delicate parts. Further the relative slow measuring speed may take a long time for the 

measurement of ultra-precision freeform surfaces that require a large number of points 

to fully represent the surface geometry. 

Stylus profilometry is good solution for measuring rotationally symmetric 

surfaces such as aspheres. However, the range measurement must be performed for 

the measurement of freeform surfaces and it will encounter the same problems as 

CMMs. The relatively small measuring slopes (normally no more than 30 degrees 

(Clayer et al, 2004)) and measurement ranges (normally no more than 20mm (Taylor 

Hobson, 2011)) of this method limit its application to complex surfaces with high 

curvature changes.  

Interferometry techniques are well known rapid and noncontact surface 

metrology techniques that can measure thousands of points with nanometre accuracy 

in a second. However, the measurement range of this method is relatively small 

(normally no more than 2 mm) and stitching techniques are required when a large area 

is measured (Savio et al, 2007). Although the CGH method can be used to measure 

true freeform surfaces, it has to be specially designed and manufactured for each 

specific surface shape. 

As a result, a sophisticated combination of several measuring techniques into a 

single system seems to be the approriate solution for measurement quality assurance. 

Multi-sensor techniques have been already utilized in recent years and typical 
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commercialized instruments include Carl Zeiss F25 ultra-precision CMM (Carl Zeiss, 

2011) by Carl Zeiss Inc. and VideoCheck UA 400 (Werth, 2011) offered by Werth 

Messtechnik GmbH in Germany. Taking VideoCheck UA 400 as an example as shown 

in Figure 2.24, it integrates an image processing video sensor, an optical distance 

sensor, a touch trigger, a dynamic scanning probe and a fiber probe into a single 

machine. With the combination of several measuring sensors, it can fully measure 

complex 3D geometries with accuracy down to the sub-micrometer range. However, 

the field of the multi-sensor measuring strategy and data fusion is emerging and has 

recently attracted a lot of research attention.  

 

Figure 2.24 Werth VideoCheck UA 400 (Adapted from Werth, 2011) 

2.4 Form Characterization of Ultra-precision Freeform Surfaces 

A fundamental issue in the manufacturing process is to determine whether a 

machined workpiece meets the requirements of its original design specification. It is 

widely recognized that the surface form plays an essential role in the characteristics of 

freeform components (Iyer et al, 2005). Hence, the component must have extremely 
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high fidelity with the original design so as to ensure its functionality. It was explained 

in Section 2.3 that modern advanced measurement instruments are capable of 

extracting the coordinates of points on a machined freeform surface with accuracy at 

the nanometre level. However, the problem remains how to give an appropriate 

sampling strategy for a measurement so as to ensure that the extracted information is 

adequate for characterizing the surface form of a measured workpiece. Moreover, 

there are some key issues related to how to process and convert these measured data 

points into a useful mathematical model for representing the measured surface; and 

how to evaluate and characterize the form accuracy of the measured surface. 

2.4.1 Sampling strategy 

The sampling strategy is considered to be a major contribution to measurement 

uncertainty (Hocken et al, 1993; Weckenmann et al, 1997; Philips et al, 1998). This is 

crucial when it comes to the level of accuracy required by ultra-precision freeform 

surfaces. Several studies have been reported in the literature in which the sample 

period has been reduced, i.e. more sampled points, in order to reduce the effect of the 

sampling strategy on measurement uncertainty (Hocken et al, 1993; Edgeworth and 

Wilhelm, 1999). Most of optical sensor-based measuring instruments are able to 

measure huge numbers of points in a short time. However other systems, especially 

the contact types of measuring instruments, such as CMMs with contact probe and 

stylus profilometers, have limitations in measuring speed and may require a more 

intelligent sampling strategy. 

Due to the high precision requirement and geometrical complexities, the 

measurement of ultra-precision freeform surfaces demands a large number of points 

for fully characterizing the surface geometry and reducing measurement uncertainty. 
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This usually takes a long measurement time. It is intuitive to perform the 

measurement with the lowest possible number of sample points while ensuring the 

accuracy as well. The traditional inspection planning software usually relies on 

uniformly sampling of data points on the surface, without considering surface 

complexity. However, a uniform sampling strategy may lead to undesirable results 

such as over sampling data points on low curvature regions of the surface, or under 

sampling data points from strong features and high curvature regions on the surface, 

which results in overlooking complex features of the surface. 

Extensive research has been conducted on the development of various sampling 

methods to improve the efficiency of the sampling plan. Fiona et al (2009) have 

provided a thorough review of this topic for CMMs with tough-trigger probes. The 

main theme of these studies is the use of a feature pattern to guide the sampling 

process such that the complex regions of the measuring part are given more emphasis 

than simple regions. Cho and Kim (1995) proposed a surface curvature based 

sampling strategy for optimizing the distribution of sampling points with given 

numbers. The strategy divides the surface into a certain number of regions and ranks 

each region using the surface mean curvature. The regions with higher rank have 

more emphasis during the measurement. Edgeworth and Wilhelm (1999) presented an 

adaptive sampling technology for conducting measurement on CMM. Their procedure 

adds sample points along the workpiece profile until the errors between the nominal 

data and each interpolant between any two consecutive points of preliminary data set 

are within an acceptable tolerance range. However, this type of probe acquires data on 

a point-by-point basis and it takes a long time for each point as the process of 

approaching the surface and withdrawing has to be repeated for each probed point 

(Weckenmann et al, 2004). 

The CMMs equipped with a continuous-contact probing system which can 
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acquire dense data along a curved path are becoming more widely used in industry 

(Neumann, 2000; Weckenmann et al, 2004). A scanning probes maintain contact with 

the measuring part while a set of points are sampled along a line across the part 

surface as it travels from one surface point to another. This type of measurement 

permits a much higher rate of data collection than the standard point-to-point 

technique. ElKott et al (2002) proposed several Non-Uniform Rational B-Spline 

(NURBS) surface parameters based algorithms for the measurement of freeform 

surfaces. NURBS parameters, surface patch size, and surface patch mean curvature 

are used as the criteria in the sampling process. Ainsworth et al (2000) presented a 

CAD-based approach for the planning of the CMM measurement path, which uses a 

recursive subdivision algorithm to sample the surfaces along their isoparametric lines. 

Chord length, minimum sampling density, and surface parameterization are the 

criteria used to guide the process. The work presented by ElKott and Veldhuis (2005; 

2007) adopted the sampling of surface isoparametric curves, which are used to 

construct substitute geometry for the physical object. Both curvature change and 

accuracy of substitute geometry are used to determine the locations of the sampled 

curves. 

Marinello et al (2007) proposed a bidirectional sampling strategy for three 

dimensional measurements. The measurement is carried out in two steps. In the first 

step, a set of curves is scanned along a particular direction. In the second step, another 

set of curves are scanned along different directions, and is used to compensate the 

error of the relative position of the first set of profiles caused by thermal drift. 

One of the limitations of the current approaches to measuring ultra-precision 

freeform surfaces is that the sampling methods are based on surface features extracted 

from the CAD model. This makes the sampling pattern highly dependent on the 

coordinate system of the CAD model. Since the coordinate system of the CAD model 
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and the coordinate system of the measurement instruments are normally different, the 

relationship between the two frames has to be established before performing the 

measurement. However, this is a very challenging task for the measurement of 

ultra-precision freeform surfaces as there are uncertainties in coordinate 

transformation (Cheung et al, 2010). Furthermore, the form deviation of the 

measuring parts with the CAD model amplifies the uncertainty caused by the 

sampling strategy. Even in the case of circles and cylinders, the situation is complex 

and probably worse for ultra-precision freeform surfaces (Wilhelm et al, 2001). A 

compromise might be to start the measurement with an initial inspection of the 

surface using fast measuring devices, such as computer vision, to acquire prior 

knowledge about the measuring parts (Chen and Lin, 1997, Galetto and Vezzetti, 

2006). 

2.4.2 Surface fitting and reconstruction 

Ultra-precision freeform surfaces possess non-rotationally symmetry that cannot 

be generalized by a universal equation used for rotational symmetric surfaces like 

aspheric surfaces. The representation of ultra-precision freeform surfaces is usually 

based either on a known surface model or a cloud of discrete measured data for an 

unknown surface model (Cheung et al, 2006). If the surface model is not available and 

only a cloud of discrete measured data of the surface is provided, the unknown surface 

model must first be reconstructed in order to obtain the form of the theoretical surface 

from the discrete data points.  

In the measurement of ultra-precision freeform surfaces, a large number of 

discrete points are normally required for fully describing the geometry of the surface. 

However, performing dense measurement of freeform surfaces is very time 
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consuming for most of the contact-type measuring instruments such as the CMMs. 

Hence, in practice, a certain number of discrete points are extracted from the 

machined surface, with the guidance of appropriate measurement strategy, and fitted 

by a continuous surface to represent the measured surface, including the 

non-measuring area, and for further mathematical processing in the form 

characterization of the measured surfaces (Savio et al, 2007). This means that surface 

fitting and reconstruction is crucial in the measurement and form characterization so 

as to represent the surface shape based on a cloud of discrete points.  

Due to the unlimited degree of geometrical freedom and the straightforward 

mathematics, B-spline surfaces are commonly adopted for constructing the surface. A 

B-spline surface S  is defined as (Piegl and Tiller, 1997): 
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where ( , )p q  are the degree of the B-spline surface; ijP  is the control point 

controlling the shape of the surface; un  and 
vn  are the numbers of control points in 

u and v direction respectively; u and v are surface parameters identifying the location 

of point ( , )u vS  within the length of the two directions of the surface; , ( )i pN u  and 

, ( )j qN v  are the normalized B-spline functions uniquely defined by the degree p  

and a knot vector U, degree q  and a knot vector V, respectively. In the present study, 

(p=3, q=3)th degree of B-spline surface is adopted. Then the surface reconstruction 

can be formulated as an optimization scheme as follows (Weiss et al, 2002):  

Given a set of discrete data points kX , 1,2,...k m , a B-spline surface ( , )u vS  

is constructed with a set of control points ijP , 1,2,... ui n , 1,2,... vj n  and 

appropriate knots vector such that the objective function 
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is minimized by satisfying the constraint ( , )min ( , )u v k fu v  S X , where  

 ( , ), kd u vS X  is distance function which is used to measure the approximation error 

of the reconstructed surface from kX ; sf  is a smoothing term and s  is the weight 

of sf ;  f  is user-defined tolerance.  

This optimization scheme is a highly non-linear problem and is difficult to solve 

especially when the required tolerance for approximation is tight. Extensive literature 

addresses different problems on this topic (Franke and Nielson, 1991; Dierckx, 1993; 

Weiss et al, 2002). If the discrete points are given as a regular lattice (points on a grid), 

the problem can be solved by a tensor product B-spline surface using chord-length 

parametrised knot vectors. However, if the points are given as an unorganized points 

cloud, the surface is generally reconstructed in two steps. In the first step, an initial 

surface is constructed to approximate the points cloud with certain precision (Dierckx, 

1993; Greiner et al, 1997; Weiss et al, 2002). An initial surface is used to estimate the 

minimal degree of freedom needed to characterize the real shape and to obtain a good 

parameter value to each data point by projecting the points cloud onto it.  

There is a variety of methods to construct the initial surface, such as a plane, a 

bilinearly blended Coons patch (Hermann et al, 1997). Ma and Kruth (1995) used 

interactively defined section curves together with the four boundary curves to obtain 

an initial surface. Weiss et al. (2002) proposed a recursive method to construct the 

initial surface, starting with a simple surface with a few control points and gradually 

increasing the smoothness or the number of control points until the control net of the 

initial surface is reasonably fair and even.  
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The constructed initial surface is then used to assign parameters to all fitted 

points, i.e. locate the points on the initial surface that are close to the fitted points. 

Hoschek (1988) proposed an iterative method, called intrinsic parametrization, to 

correct a parameter using a formula that is a first order approximation to the exact foot 

point computation. Approximations of higher order or accurate foot point 

computations were discussed by Hoschek and Lasser (1993), Saux and Daniel (2003), 

and Hu and Wallner (2005).  

Secondly, the initial surface is optimized to meet the prescribed tolerance. Once 

each data point is assigned corresponding parameters, the distance function from 

fitted data to the surface can be formulated to optimize the initial surface. Wang et al 

(2006) gave a thorough overview of the existing fitting method and divided them into 

three categories based on different distance functions (see Eq. (2.2)), i.e. point 

distance minimization (PDM), tangent distance minimization (TDM), and squared 

distance minimization (SDM). PDM minimizes the squared distance from the data 

points to the foot points to optimize the constructed surface. It is the most popular 

technique for surface fitting in computer graphics and CAD with B-spline surfaces, as 

well as other types of surface, due to its simplicity (Hopper et al, 1994; Farin, 1997; 

Hopper, 1998; Haber et al, 2001; Greiner et al, 2002;).  

Blake and Isard (1999) utilized TDM from the data point to the tangent plane in 

the foot point as a based error term to speed up the convergence of the iterative 

optimization. SDM was studied by Pottmann and Hofer (2003) and was applied to 

solve curve and surface fitting problems (Pottmann et al, 2002). Wang et al (2006) 

proposed an algorithm based on a second order approximation to the distance function, 

named squared distance minimization (SDM), to solve the curve fitting problem. They 

compared the performance of the SDM with the PDM and the TDM in fitting a 

B-spline curve to point clouds and found that the SDM converges faster than the PDM 
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and is also more stable than the TDM.  

Multilevel B-spline approximation of 3D discrete points was studied by Lee et al 

(1997; 2005a). The method is based on a coarse-to-fine hierarchy of control lattices to 

iteratively perform the local refinement such that a B-spline surface is reconstructed 

with high fidelity. Besides minimizing the approximation error of the reconstructed 

surfaces, various smoothness functions are usually added to improve the quality of the 

reconstructed surface. The most frequently used one is the simplified quadratic 

functional of the parametric derivatives (Dietz, 1998). 

Traditional fitting technologies can efficiently reconstruct smooth surfaces from 

a cloud of discrete points, but few clearly demonstrate how smoothly the 

reconstructed surfaces should be done to represent the real form of the objects. It is 

important to specify an appropriate fitting threshold to balance the fitness and 

smoothness of reconstructed surface. This is particularly true for the reconstruction of 

a measurement surface from a cloud of measured data. In addition, most of the 

existing methods used to optimize the initial surface are based on local optimization, 

which makes the optimized surfaces very sensitive to the initial surface (Yang et al, 

2004). It is vital to determine the appropriate number of control points and their 

distribution of initial surface to ensure the accuracy of the optimized surface in 

meeting a prescribed error threshold. 

2.4.3 Form error evaluation of freeform surfaces 

The form error of a measured surface is evaluated by comparing it with the 

design surface. A review of relevant published literature on the form characterization 

of freeform surfaces, reveals that one of the most important issues is surface matching 

(referred to by Jiang et al (2010) as surface fitting and by Li and Gu (2004) as   
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localization/registration) between the measured surface and the design template (Li 

and Gu, 2004; Savio et al, 2007; Cheung et al, 2009). This is due to the fact that the 

measured data points are embedded in the coordinate system of the corresponding 

measuring instrument, which is commonly not the same as the coordinate system of 

the design template. Slight misalignment between the two coordinate systems can 

cause serious errors in the results of the form error evaluation. This is vital for the 

measurement of ultra-precision freeform surfaces, which have form accuracy down to 

sub-micrometre level. Hence, the measured data and the designed template have to be 

precisely transferred to a common coordinate system before the comparison. 

Form characterization of freeform surfaces is commonly formulated as an 

optimization problem to search for an optimal Euclidean motion (translation and 

rotation) based on methods such as Least Squares Method (Eq. (2.3)) or the Minimum 

Zone Method (Eq. (2.4)), so that the two surfaces are aligned as closely as possible 

(Besl and McKay, 1992; Meng et al, 1992; Yau and Meng, 1996): 
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where  iQ  is the measured point and iP  is the corresponding point of iQ  in the 

template surface;   is the distance between ( iP , iQ ) and is positive if iQ  is above 

the template surface, otherwise negative. i i
TP Q  is considered as the form error 

of the measured surface at point iQ . The coordinate transformation T  is a function 

of spatial rotation and translation and can be represented by following matrix 
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where  xt , yt  and zt  are the translation components, and xr , yr  and zr  are the 

rotation angles along the X , Y , and Z  axis; ()c  and ()s  are abbreviations of the 

cosine and sine functions. The core of this optimization scheme is the establishment 

of correspondence pairs ( iP , iQ ) between two matching objects. 

In real measurement, neither the corresponding points of the measured data, 

nor the coordinate transformation function T  are known knowledge. Hence, the 

freeform surface matching problem is generally solved in a nested approach (Besl and 

McKay, 1992; Ahn, 2004). Firstly, the correspondence of each measured point is 

established by locating the minimum distance point on the design surface in the inner 

iteration. In the outer iteration, T  is estimated based on the established 

correspondence pairs. T  is then used to transform the measured surface and new 

correspondence pairs are established. This process is iterated and is terminated when 

the desired accuracy is achieved.  

Due to the non-convexity of the optimization problem, the matching results 

may be trapped at a local minimum or even become divergent if the initial relative 

position of the two matching surfaces is not appropriately provided (Ahn, 2004). 

Hence, conventional methods perform freeform surface matching in two stages, i.e. 

coarse matching and fine matching (Li and Gu, 2004; Zhang, 2009). Coarse matching 

is intended to find a rough position for the measured surface with respect to the design 

surface. The rough matching results are optimized at the fine matching stage.  

2.4.3.1 Coarse matching of Freeform surface 

If the measured surface includes some salient features like holes, slots, or 

pockets, these features can be used to perform coarse matching (Kyprianous, 1980; 

Joshi and Chang, 1988). However, most of smooth freeform surfaces do not contain 

any salient features. Consequently, various orientation independent mathematical and 
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geometrical surface features have been developed.  

Wang et al (1997) defined the gravity centre of a surface as a feature point, the 

best fit plane as a feature plane, and the line from the gravity centre to the fastest point 

on the surface as a feature line. Then two surfaces are matched based on these 

invariant features. Cheung et al (2006) developed a method called the five-point 

method. The gravity centre and the four corner points of the points are used to 

construct a feature shape, which is used to perform surface matching. These methods 

are effective when the measured surface and the design template are approximately of 

the same size. Corney et al (2002) proposed a method to calculate the convex hull of a 

3D object. Values such as hull crumpliness, hull packing and hull compactness are 

obtained from the convex hull and are taken as measures of the similarity between 

two objects. 

Higuchi et al (1995) built a spherical map of curvature values called an SAI for 

each view of an object. The SAI are registered by rotating the spheres until the 

curvature values are aligned. Chua and Jarvis (1996) used principle curvatures to 

constrain a heuristic search for aligning matching objects. Feldmar and Ayache (1996) 

performed affine registration by minimizing the combined distance between position, 

surface normal and curvature. Thirion (1996) used crest lines to extract external points 

and their associated Darboux frames, which are matched in an ICP-like fashion. 

Soucy and Ferrie (1997) locally registered surface patches by minimizing the distance 

between Darboux frames over an entire neighborhood.  

Yang and Allen (1998) minimized a scaled product of positional and curvature 

distances. Johnson and Herbert (1998) used invariants derived from the spin-image, a 

histogram of distances and angles to nearby surface points, to perform recognition and 

registration of 3D range maps. VandenWyngaerd et al (1999) matched bi-tangent 

curve pairs, which are pairs of curves that share the same tangent plane, between two 
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views for rigid and affine registration. Kase et al (1999) proposed a method to 

perform local matching and global matching of freeform surfaces based on both 

curvature change and angles formed by normal vectors. Sharp et al (2002) combined 

Euclidian invariants such as curvatures into the traditional ICP method, namely ICPIF, 

to improve the convergence to the global minimum. Osada et al (2002) presented a 

method to represent the surface as a signature of shape distribution. Hence the surface 

matching problem is converted to the comparison of probability distributions. 

Ko et al (2003a; 2003b) utilized the Gaussian and the mean curvatures for 

surface matching, and the related iso-curvature lines were used to establish the 

correspondence between two objects. Other surface intrinsic properties of umbilical 

points and intrinsic frames were also studied and used to carry out the freeform 

objects matching. Li and Gu (2005) defined four types of surface shape: concave 

surface, convex surface, saddle surface, and flat surfaces based on different geometric 

information of the surfaces. The rough matching was carried out by searching four 

correspondences including feature similarity, inter-feature distance, curvature 

similarity, and frame similarity, and then the fine localization was conducted by the 

ICP method.  

Zhu et al (2009) proposed a 3D shape matching approach based on diffusion 

wavelets. Jiang et al. (2010) proposed a new method for freeform surface matching 

whereby a new surface feature, named structured region signature, is used to conduct 

rough matching. Cheung et al (2006; 2009) and Kong et al. (2006) presented a series 

of surface matching algorithms for optical freeform surfaces. They presented several 

freeform surface coarse matching methods, including five-point method, couple 

reference data method, and a hybrid surface fitting and matching method.  

Some global features like geometric moments (Funkhouser et al, 2003), Fourier 

descriptors (Zhang and Lu, 2002) and harmonic shape images (Groemer, 1996), which 
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are widely used in image retrial, are also used in 3D surface matching. Novotni and 

Klein (2004) proposed a 3D Zernike descriptor for 3D shape searching. Zernike 

moments are considered as possessing the best performance against noise and 

information redundancy. Guo and Li (2009) presented a new shape descriptor named 

Gaussian curvature moment invariant for surface matching. It is claimed that the new 

descriptor is superior in accuracy and efficiency to Fourier descriptors and Zernike 

moments.  

2.4.3.2 Freeform surface fine matching 

The rough position obtained by coarse matching is refined by fine matching. The 

most commonly used method to deal with this problem is the Iterative Closest Point 

(ICP) method (Besl and McKay, 1992, Meng, 1992). ICP is an iterative descent 

procedure which seeks to minimize the sum of the squared distances between all 

points in measured surface and their closest points in the corresponding design surface. 

When the measured surface and the design surface can be represented as two sets of 

points with known correspondences, the coordinate transformation matrix can be 

determined by solving Eq. (2.3) or Eq. (2.4). 

Many surface matching methods based on ICP are found in the published 

literature. Li and Gu (2004) provided an extensive review of this topic. Zhang (1994) 

extended ICP to include robust statistics and adaptive thresholds to handle outliers and 

occlusions. Masuda and Ykoya (1995) used ICP with random sampling and a least 

median squared error measurement that is robust to partial overlapping. Pottmann 

(2001) developed an approach similar to the ICP, which minimizes the sum of the 

squared distance between the measured points and the tangent plane of the nominal 

surface at a corresponding point. Jinkerson et al (1993) introduced a seventh 

parameter to the six used in the ICP minimization process, namely offset distance, for 
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solving the transformation; they claimed that the use of seven parameters results in 

smaller Root Mean Square (RMS) values after transformation than when only six are 

used.  

Besides the development of new surface matching technologies, efforts have also 

been made to improve computing efficiency. Non-linear problems are usually solved 

by the combination of the Steepest-Descent method and the Newton-Raphson method 

(Kelley, 1999). However, as indicated by Menq et al (1992), solving non-linear 

equations takes an undesirable amount of computation time due to the complex 

operations involved. The problem worsens when a large number of measurement 

points are involved. Horn (1987) proposed a closed-form solution for providing more 

efficient, robust and reliable solution. Menq et al (1992) proposed a pseudo-inverse 

method to determine a transformation matrix that can be approximated by a rigid body 

transformation, claiming that the modified algorithm was 10 times faster. The method 

was subsequently modified by Huang and Gu (2001) to improve computing 

efficiency. 

Although many kinds of orientation invariant surface descriptors have been 

developed to perform surface matching, many of them are either susceptible to the 

noise and outliers presented in the measured data or the features become weak when 

the surface being matched is relatively smooth and flat. This introduces unacceptable 

uncertainty to the surface matching results. Despite efforts to improve computation 

efficiency, surface matching under a conventional scheme still involves expensive 

computation. In each iteration, it requires the solution of highly non-linear equations 

(normally also an iterative process), and establishing correspondence pairs by 

searching the closest point for each measured point in the template surface. In practice, 

the characterization of ultra-precision freeform surfaces usually involves a large 

number of measured data points, which lead to an unacceptable computing time. 
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2.4.3.3 Characterization of structured freeform surfaces 

As a special type of ultra-precision freeform surface, micro-structured surfaces 

are crucial components for many photoelectrical products such as backlight guides for 

display devices, microlens scanners (Daly, 2001), and microlens arrays for flat-pannel 

digital displays. Although ultra-precision machining technologies, such as fast tool 

servo, enables the micro-structured surfaces to be fabricated, the measurement and 

characterization of such surfaces are still challenging tasks. This is due to the fact that 

most of micro-structured surfaces possess a high aspect ratio and high slope which 

makes most contact type measuring instruments unable to access the features or cause 

weak reflection for optical measuring instruments (Weckenmann et al, 2006).  

The form characterization of the machined micro-structured surfaces is also 

different from that of smooth freeform surfaces. Micro-structured surfaces have 

tessellated pattern, for instance micro-lens arrays, micro-pyramids and micro-grooves. 

Hence, the characterization of a machined micro-structured surface not only needs to 

characterize the quality of each single feature (e.g. each lens in the surface), but also 

to analyze the pattern and lattice dislocation errors. Currently, optical micro-structured 

surfaces are usually characterized by their surface quality, such as surface roughness, 

as well as by their optical properties such as their modulation transfer function. 

Interferometric methods (Schwider and Sickinger, 2002; Ottevaere et al, 2003; 

Moench and Zappe, 2004; Reichelt et al, 2005) as well as wavefront measurement 

(Daly et al, 1994; Sickinger et al, 1999; Miyashita et al, 2004), such as Mach-Zehnder 

interferometers (MZI), are commonly used to test micro-optics.  

Nussbaum et al (1997) characterized microlens arrays based on surface profiles, 

wave aberrations and surface roughness. Both geometrical features and the functional 

performance of the fabricated microlens arrays are considered in the characterization. 
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Liu et al (1998) tested micro-structured surfaces in an indirect way. The 

characterization is performed in terms of optical performance testing of fabricated 

products, such as spot uniformity, spot sizes and the positions of the focused spots at 

various accessible locations. Lee and Haynes (2001) proposed some parameters such 

as microlens pitch, fill factor, and surface quality to examine the quality of lens-let 

arrays for astronomical spectroscopy. Gu et al (2004) measured microlens profiles and 

some optical parameters, such as spot size, using laser scanning 

reflection/transmission confocal microscopy. 

Cheung et al (2010) proposed a generic method for the characterization of 

freeform surfaces including micro-structured surfaces. The form deviation of each 

micro lens of a machined surface is evaluated by comparing with the design surface 

based on fine surface matching, similar to the characterization of smooth freeform 

surfaces. A surface matching-based method was also proposed by Yu et al (2011), but 

instead of quantitative pattern analysis of the lens arrays, only conventional surface 

height parameters, such as peak-to-valley-height and root-mean-square, are used in 

characterization. A pattern and feature parametric analysis method was proposed by 

Kong et al (2010) for characterizing optical microstructures. This involves using 

digital imaging technology to conduct quantitative pattern analysis and several lattice 

parameters to characterize the form deviation as well as the pattern and lattice 

distortion of the machined micro-structured surfaces. 

2.4.4 Surface parameters 

The manufacturing specification of freeform surfaces is commonly described by 

form tolerance, which is the permitted maximum value of the form deviation. 

According to ISO 1101 (ISO, 2004), there is a defined form tolerance zone within 
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which all points of the features must be contained. Within this zone, the machined 

surface may possess any form if it is not specified. Figure 2.25 shows the construction 

of a tolerance zone for a freeform surface. A set of points are sampled from design 

surface, then, a series of spheres are established with each sampled point as the centre 

point at a diameter d. Two enveloping surfaces can be constructed based on these 

spheres and denoted as the upper bound surface and the lower bound surface, 

respectively. The zone between the upper and lower surfaces is the tolerance zone of 

the design surface with tolerance d. 

 

Figure 2.25 Tolerance zone of a freeform surface 

For conventional simple surfaces like plane, sphere and cylinder, standard 

parameters such as flatness, straightness, cylindricity and circularity can be used to 

characterize the form accuracy of the workpiece. However, due to the geometric 

complexity of freeform surfaces, there are currently no standard surface parameters 

for the form characterization of freeform surfaces (Jiang et al, 2007b; Whitehouse, 

2011). In Section 2.4.3, it is reviewed that the form error of a measured freeform 

surface at a measured point is determined by projecting this point onto correspoinding 

design template after surface matching. In the present study, the form error of the 

measured surface is characterized by areal surface parameters (ISO, 2004) which are 

determined by the local form error of the measured points. 
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Areal surface parameters are developed for the extension of surface 

characterization from 2D profiles to 3D area. In 2002, a working group in ISO/TC 

213 was set up to develop a new generation of areal surface texture standards (Jiang et 

al, 2007b). A new generation “geometric product specification and verification” 

(ISO/TC213-GPS) was published and some surface parameters presented for areal 

surface texture characterization (ISO, 2004). A similar standard is found in EUR 

15178 EN (Whitehouse, 2011). The areal surface parameters can be classified into 

five groups, including height parameters, spatial parameters, feature parameters, 

functional parameters, and hybrid parameters. 

Height parameters are amplitude parameters which are defined with respect to a 

mean plane obtained through the leveling of the mean square plane of the measured 

surface. Table 2.10 summarizes these height parameters. In the present study, the 

height parameters are used for characterizing the form errors of the measured 

freeform surfaces. Especially, the surface peak-to-valley height tS  and 

root-mean-square value qS  are usually employed for the characterization of form 

errors of freeform surfaces around the world, particularly Asian and European regions.  

Other groups of parameters, such as spatial parameters, feature parameters, 

functional parameters, and hybrid parameters, have also been found to be used for 

characterizing freeform products for some specific applications. Spatial parameters 

quantify the lateral information present on the X and Y axes of the surface. Feature 

parameters are derived from the segmentation of a surface into motifs (hills and dales) 

in accordance with the watersheds algorithm. Functional parameters are calculated 

from the Abbott-Firestone curve obtained by the integration of the height distribution 

on the whole surface, while hybrid parameters quantify the information present in the 

X, Y and Z axes. 
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Table 2.1 List of surface height parameters (Adopted from EUR 15178 EN) 

Parameters Notations Definitions Remark 

aS  
Arithmetic mean of the 

deviation from the mean 

1 1

,

0 0

1 N M

a x y

x y

S Z
MN

 

 

   

EUR 15178 EN 

report/ISO 

25187 

qS  

Root mean square height of 

the surface from the mean 

surface 

 
1 1

2

,

0 0

1 N M

a x y

x y

S Z
MN

 

 

   

EUR 15178 EN 

report/ISO 

25187 

pS  Highest peak of the surface 

Height between the 

highest peak and the 

mean plane 

Conformity with 

2D parameters 

vS  
Deepest valley of the 

surface 

Depth between the 

mean plane and the 

deepest valley 

Conformity with 

2D parameters 

tS  Total height of the surface t p vS S S   
Conformity with 

2D parameters 

zS  
Height of the 10 points of 

the surface 

Mean of distance 

between the 5 highest 

peaks and the 5 

deepest valleys 

EUR 15178 EN 

report/ISO 

25187 

skS  

Skewness of the height 

distribution (third statistical 

moment, qualifying height 

distribution symmetry) 

 
1 1

3

,3
0 0

1 N M

sk x y

x yq

S Z
MNS

 

 

 

 

EUR 15178 EN 

report/ISO 

25187 

kuS  

Kurtosis (fourth statistical 

moment, qualifying the 

flatness of the height 

distribution) 

 
1 1

4

,4
0 0

1 N M

ku x y

x yq

S Z
MNS

 

 

   

EUR 15178 EN 

report/ISO 

25187 
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2.5 Measurement Uncertainty and Traceability 

Any measurement process combines with errors. Hence, when reporting a 

measurement result, it is obligatory that some quantitative indication of the quality of 

the results be given so as to assess its reliability. The indication takes the form of 

measurement uncertainties associated with the results (Cox and Harris, 2006). In 1995, 

the “Guide to the Expression of Uncertainty in Measurement” (GUM) was published 

by the ISO (ISO, 1995). GUM and several documents derived from it provide 

guidance for a wide range of uncertainty evaluation problems (Philips, 2004). A 

supplement to the GUM gives the guidance on the use of computer-based Monte 

Carlo methods, which provides more reasonable uncertainty intervals where the 

measurement model is highly non-linear or various input quantities have asymmetric 

probability distributions (JCGM, 2008). 

Uncertainty associated in the measurement and form characterization of freeform 

surface comes from many sources, and the estimation of the total uncertainty of the 

measurement results is non-trivial due to the fact that coordinate measuring systems 

are complex and the measurement uncertainties vary with the task being performed, 

the environment, the operator, the chosen measurement methodologies, etc. Wilhelm 

et al (2001) divided the sources of uncertainty in geometric measurement into five 

main categories: hardware, workpiece, sampling strategy, fitting and evaluation 

algorithm, and extrinsic factors. Figure 2.26 shows the error components that lead to 

uncertainty in CMM measurements. 

The hardware of the coordinate measuring system contributes most to the 

uncertainty of the measurement result. This category refers to the sources of 

uncertainty caused by uncorrected systematic and apparently random probing errors 

(Estler et al, 1997), probe changing and probe articulation uncertainties (Weckenmann 
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et al, 2004; 2006), probing parameters and errors caused by dynamics of the machine 

structure (Pereira, 2001), and environmental and machine temperatures and vibration 

(ISO, 2001). The uncertainties related to the properties of the workpiece include 

elastic deformation due to probing forces (Weckenmann et al, 2004), coordinate 

transformation to the part coordinate system (Cheung et al, 2006; 2007). It is evident 

that sampling strategy is a major contributor to the CMM’s measurement uncertainty 

(Hocken et al, 1993; Phillips et al, 1995). Included in this are errors due to inadequate 

sampling (Choi et al, 1998) and sampling distribution (Choi et al, 1998; ElKott and 

Veldhuis, 2007).  

 

Figure 2.26 Error source in freeform surface measurement and form characterization 

The uncertainties caused by the fitting and evaluation algorithms are dominated 

by their algorithm suitability, selection and implementation. The National Institute of 

Standards and Technology (NIST) in USA, Physikalish-Technische Bundesanstalt 
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(PTB) in Germany, and the National Physics Laboratory (NPL) in UK have reported 

recent developments on software specification for uncertainty evaluation (Cox and 

Harris, 2008; Blunt et al, 2008). In the form characterization of freeform surfaces, the 

form error of measured surfaces is evaluated by comparing with the design surface 

based on fine surface matching. For example, the least squares based surface 

matching method is theoretically able to match two freeform surfaces with any 

desired accuracy when there is no deviation between them. Since the measured data 

do not perfectly match with the template, the surface matching results always contain 

uncertainties. 

Much research has been conducted in recent decades on the uncertainty analysis 

of coordinate measuring instruments so as to calibrate and compensate for errors 

during measurement (Wilhelm et al, 2001). However, research on uncertainty analysis 

in data processing focuses on simple geometry, such as circles, spheres and cylinders 

(Wilhelm et al, 2001; Maihle et al, 2009), with relatively little research having been 

conducted on the measurement of freeform surfaces. In fact, uncertainty analysis is an 

indispensable part for form characterization, which assesses the accuracy and 

reliability of the characterization results and is the focus of this study. Some 

researchers have represented freeform surfaces by assembling simple geometry, such 

as spheres and cylinders, so that the problem is converted to analyzing each piece of 

assembled simple geometry (Savio et al, 2002). The general model described by the 

“Guide to the Expression of Uncertainty in Measurement” (ISO, 1995) is also difficult 

to apply to the freeform surface measurement process, since the uncertainty varies 

with the surface being measured and the sampling strategy being used.  

The estimated measurement uncertainty in itself is insufficient to assess the 

quality of a measurement result. It is necessary to have in place a credible basis for the 

measurement result and associated uncertainty. The basis constitutes traceability of 
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the measurement results. The International Vocabulary of Basic and General Terms 

in Metrology (VIM) defines traceability as “the property of the result of a 

measurement or the value of a standard whereby it can be related to stated references, 

usually national or international standards, through an unbroken chain of comparison 

all having stated uncertainties” (ISO, 1993).  

This basis is strengthened by the equivalence of measures across nations by their 

national measurement institutes (NMI) participating in comparisons of measurement 

standards, known as key comparisons, through a mutual recognition arrangement 

(MRA) (BIPM, 1999).  

 

Figure 2.27 Traceability chains and their strengthening through key comparisons 

(Adopted from Cox and Harris, 2006) 

Calibration of 

secondary standards 

against primary 

standards               

CIPM Mutual 

Recognition 

Arrangement 

National (primary) 

measurement standards    

Secondary 

measurement standards    

Calibration of tertiary and 

other working standards 

against secondary 

standards, etc             

Equivalence of 

measurement standards      

Mutual Recognition Arrangement   

Key comparisons             

NMI A  

Calibration 

Laboratory L  Laboratory M  Laboratory N  

Calibration Calibration  

NMI B  NMI C  

S
tren

g
th

en
in

g
 th

ro
u

g
h

 

k
ey

 co
m

p
a
riso

n
s     

T
ra

d
itio

n
a
l tra

cea
b

ility
 ch

a
in

   



Chapter 2 Literature Review 

55 

 

Figure 2.27 shows the traceability chains and their strengthening through key 

comparisons. Unfortunately, due to the geometric complexity of freeform surfaces, 

there is still no international standard for traceable measurement and form 

characterization of freeform surfaces. Recently, a freeform artifact was fabricated by 

NPL for verification of non-contact measuring systems (McCarthy, 2011). However, 

the form accuracy of the artifact is still at micrometre level. 

2.6 Summary 

Ultra-precision freeform surfaces are usually large scale surface topologies with 

shapes possessing no symmetry in rotation or translation. These surfaces are 

increasingly being used in many fields such as advanced optical systems and 

biomedical implants due to their superior optical and mechanical properties. To ensure 

the performance of the components, ultra-precision freeform surfaces are required to 

have form accuracy in the micrometre to sub-micormetre range and surface finishing 

at the nanometre level. The advanced development of modern ultra-precision freeform 

machining technologies constitutes an enabling technology that allows the designed 

freeform surfaces to be fabricated. However, there is yet a lack of international 

standards and well established traceable form characterization methods for the 

measurement of the machined ultra-precision freeform surfaces with sub-micrometre 

form accuracy. 

Surface characterization has been studied for a considerable time and the 

research has shifted from simple geometry to freeform surfaces in recent decades. The 

geometrical complexity of freeform surfaces brings considerable challenges to the 

measurement and characterization of ultra-precision freeform surfaces. Although there 

are various enabling precision measuring techniques, e.g. ultra-precision CMMs and 
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stylus profilometry, which are able to measure data points from a machined freeform 

surface with nanometric accuracy, current research on ultra-precision freeform 

surfaces is hindered by generalized and accurate form characterization methods. 

Based on a review of relevant literature, current freeform surface characterization 

methods have the following deficiencies: 

(i) As freeform surfaces have non-rotational symmetry, conventional surface 

sampling strategies based on sampling one or several cross sections of the 

surface is inadequate to represent the variation of the surface characteristics at 

different regions. Hence, a more comprehensive sampling strategy is required for 

fully representing the geometry of machined freeform surfaces. 

(ii) Most of the form characterization methods for freeform surfaces depend on the 

embedded coordinate systems or frames which bring the barriers for surface 

form error evaluation by comparison between the designed model and the 

measured surface. There is a lack of efficient corresponding searching/surface 

matching methods for a freeform surfaces approach by Rigid-Body 

Transformation (RBT) of the coordinate system. 

(iii) The measurement and form characterization of a freeform surface combines with 

errors which lead to uncertainty to the characterization results. However, current 

research on the analysis of the uncertainty in geometric measurement is focused 

on simple geometries such as circles, spheres and cylinders, and relatively little 

research work has been conducted on freeform surfaces. In fact, uncertainty 

analysis is indispensable part for the form characterization which assesses the 

accuracy and reliability of the measurement and characterization results for 

freeform surfaces. 
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In view of the above shortcomings, there is a need for a generalized method to 

perform high-precision and robust form characterization of ultra-precision freeform 

surfaces with sub-micrometre form accuracy. One promising approach is the 

utilization of the intrinsic surface properties, which are independent of the coordinate 

frame. This research therefore focused on the development of an invariant feature 

pattern-based characterization method to address the stringent requirements for the 

measurement of ultra-precision freeform surfaces.  
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Chapter 3  

Measurement Strategy and Surface Modeling of 

Ultra-precision Freeform Surfaces 

The measurement and form characterization of a machined freeform surface can 

generally be divided into two parts: data acquisition and data processing. The former 

refers to the extraction of the geometric features from machined freeform surface by 

using precision 3D measuring instruments. To achieve the generalized form 

characterization of freeform surfaces, it is vital to extract the intrinsic surface features 

from a machined ultra-precision freeform surface with high accuracy (Cheung et al, 

2010).  

This is not so difficult for the design surface since it is given as a mathematical 

model, like a parametric surface, and the derivatives can therefore be obtained 

accurately. However, it is a challenging task for the machined surface. High precision 

measuring instruments are required to measure the surface geometry of the machined 

surface by extracting a large number of discrete points. Intrinsic surface features are 

then calculated based on the measured discrete points. Since the calculation of the 

intrinsic surface features, such as curvature, is very sensitive to the noise and outliers 

associated in the measured data, proper data processing techniques are required to 

eliminate the effect of the noise in the measured data.  

This chapter studies the measurement strategy and the surface modeling 

techniques for ultra-precision freeform surfaces. A novel bidirectional curve network 

based sampling method is presented for enhancing the performance of the sampling 
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plan in the representation and the characterization of ultra-precision freeform surfaces. 

A robust surface fitting algorithm is developed to reconstruct a high fidelity surface 

from measured discrete points while the surface smoothness can also be ensured. In 

this way, the intrinsic surface features of the machined surface can be calculated 

accurately based on the reconstructed surface.  

3.1 Measurement Strategy for Freeform Surfaces 

In recent years, some newly developed measuring instruments (Weckenmann et 

al, 2006; 2011), such as IBS Isara (IBS, 2011), are reported as having the capability to 

extract data points from machined freeform surfaces with the nanometre level of 

accuracy. Due to the geometrical complexities, measuring ultra-precision freeform 

surfaces with the sub-micrometer form accuracy usually requires high density and 

intensive sampling in order to fully characterizing the surface geometry and reducing 

the measurement uncertainty. However, this usually imposes a lot of challenges in 

surface metrology and precision surface measurement, such as insufficient sampling 

or long measurement time, especially for contact type measuring instruments. As a 

result, it is desirable to perform the measurement with the lowest number of points 

while the accuracy can be ensured as well.  

3.1.1 CAD Model based bidirectional optimal sampling strategy 

Optimal sampling strategy in coordinate measurement refers to optimize the 

sampling plan for minimizing the number of sample points, minimizing the length of 

the measuring traverse path, or minimizing the sampling error. However, this can be 

obtained only through the knowledge of the shape and position of the measuring 
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object. For freeform measurement with the CMMs, the position of the measuring 

object can be pre-located by some reference to the object, and the computer aided 

design (CAD) model of the object can then be used to generate the optimal sampling 

strategy for the measurement.  

3.1.1.1 Definition and manipulation of CAD model 

(i) Nominal surface reconstruction 

The CAD model of freeform surfaces is sometimes given by a cloud of discrete 

data points. In this case, the model should be reconstructed in order to obtain a 

nominal surface so as to guide the sampling process. This section only deals with the 

surface fitting problems when the discrete points are rectangularly arranged. 

Given a grid of points ksQ  ( 1,2,...,k n , 1,2,...,s m ), a continuous surface is 

sought to construct by B-spline surface to fit these points. According to the definition 

of B-spline surface as shown in Eq. (2.1), the surface reconstruction can be 

formulated as follows: 

,3 ,3

1 1

( , ) ( ) ( )
n m

ks k s i k j s ij

i j

u v N u N v
 

 Q S P             (3.1) 

where ( , )k su v  is the parameters of ksQ  which is obtained by Centripetal method 

(Piegl and Tiller, 1997). Eq. (4.1) represents  n m  equations with  n m  

unknown ijP . Since S  is a tensor product surface, the ijP  can be obtained 

efficiently as follows (Piegl and Tiller, 1997). For each fixed s , Eq. (3.1) can be 

written as  
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,3 ,3

1 1

,3 ,3 ,3

1 1 1

( ) ( )

( ) ( ) ( )

n m

ks i k j s ij

i j

n m n

i k j s ij i k ks

i j j

N u N v

N u N v N u

 

  



 
  

 



  

Q P

P R

        (3.2) 

where 

,

1

( )
m

ks j q s ij

j

N v


R P                        (3.3) 

Eq. (3.1) can then be solved with two steps. In the first step, a row of points ksQ  are 

used to determine ksR  by solving Eq. (3.2) for each fixed s . In the second step, a 

row of ksR  are used to determine ijP  by solving Eq. (3.3) for each fixed k .  

(ii) B-spline surface and plane intersection 

The cutter plane is defined by a point Q  and the normal vector D  and it is 

denoted as ( , )L L D Q . The problem of solving the intersection of plane and 

B-spline surface can be formulated as finding the zeros of the function ( , )f u v  as 

shown as follows: 

 ( , ) ( , ) 0f u v u v Q D   S                      (3.4) 

Recursive subdivision technology is used to determine the parametric values of 

the points in the intersection curve with high accuracy (Dokken, 1985). The calculated 

points are used to construct a number of Bezier curve segments which are the B-spline 

representation of a curve with knot multiplicities of 1p  , where p is the degree of 

the curve. Figure 3.1 shows an example of a plane/surface intersection curve. 
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Figure 3.1 Plane/surface intersection curve 

(iii) Interpolation of a bidirectional curve network 

Let Eq. (3.5) and Eq. (3.6)  

         
,3

1

( ) ( )
i n

k i ki

i

C u N u




 P   1 , 2 , . . . ,k r  0 1u      (3.5) 

 

         ,3

1

( ) ( )
j m

l j lj

j

C v N v




 P   1 , 2 , . . . ,l s   0 1v       (3.6) 

be two sets of B-spline curves satisfying two conditions:  

 As independent sets that are compatible, i.e. all the ( )kC u  are defined on a 

common knot vector, U , and all the ( )vC l  are defined on a common knot 

vector, V .   

 There exist parameters 1 2 10 1s su u u u        and 

1 2 10 1l lv v v v        such that  

, ( ) ( )l k k l l kQ C u C v    1 , 2 , . . .k r , 1,2,...l s        (3.7) 

Gordon Surface technology (Piegl and Tiller, 1997) is used to construct a surface 

( , )S u v  given by Eq. (3.8) which satisfying Eq. (3.9) and Eq. (3.10) as follows 
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,

1 1 1 1

( , ) ( ) ( ) ( ) ( ) ( ) ( )

1( , ) 2( , ) ( , )

s r s r

l l k k l k l k

l k l k

S u v C v u C u v Q u v

L u v L u v T u v

   
   

  

  

  
       (3.8) 

( , ) ( )l lS u v C v      1 , 2 , . . . ,l s                   (3.9) 

    ( , ) ( )k kS u v C u     1 , 2 , . . . ,k r                  (3.10) 

where 
1{ ( )}s

l lu 
 and 

1{ ( )}r

k kv 
 are two sets of blending functions satisfying 

0
( )

1
l iu


 


  
i f l i

i f l i




    

0
( )

1
k iv


 


  
i f k i

i f k i




             (3.11) 

( , )S u v  is composed of three simpler surfaces, i.e. two scanned surfaces 1( , )L u v , 

2( , )L u v  and a tensor product ( , )T u v . Figure 3.2 shows an example of interpolating 

a bidirectional curve network. 

 

Figure 3.2 Interpolation of a bidirectional curve network 

(iv) Surface complexity analysis 

The curvature change is used to analyze the surface complexity in the present 

study. This choice is inspired by considering that both the machining error of the 

machined surface and the form error of the substitute surface are likely to take place at 

the surface regions where the curvature changes sharply. The analysis is made in the 



Chapter 3 Measurement Strategy and Surface Modeling of Ultra-precision Freeform Surfaces 

64 

 

Euclidian space. Firstly, a grid of points is evaluated on the surface. The size of the 

grid is user-specified. Let ( , )Curv i j  be the surface curvature at an arbitrary point 

. . .( , , )i j i j i jP x y z  in the grid, 1,2,...,i Nx  and 1,2,...,j Ny  where ( , )i j  are 

integer indices while Nx  and Ny  are the size of the surface grid in the directions 

of X  and Y , respectively. A matrix C  that represents the surface curvature is 

given by Eq. (3.12) as follows: 

(1,1) (1,2) (1, )

(2,1) (2,2) (2, )

( ,1) ( ,2) ( , )

Curv Curv Curv Ny

Curv Curv Curv Ny
C

Curv Nx Curv Nx Curv Nx Ny

 
 
 
 
 
 

          (3.12) 

Secondly, the curvature changes between every two neighboring points along 

each of the two directions X  and Y  and is determined as follows: 

0 0 0 0

0 (2,1) (2, 1) 0

0 0

( 1,1) ( 1, 1)

0 0 0 0

ChanX ChanX Ny

CX

ChanX Nx ChanX Nx Ny

 
 


 
 
 

   
  

        (3.13) 

 

0 0 0 0

0 (2,2) (2, 1) 0

0 0

( 1,2) ( 1, 1)

0 0 0 0

ChanY ChanY Ny

CY

ChanY Nx ChanY Nx Ny

 
 


 
 
 

   
  

        (3.14) 

where 

1, ,

( 1, ) ( , )
( , )

i j i j

Curv i j Curv i j
ChanX i j

x x

 



               (3.15) 
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, 1 ,

( , 1) ( , )
( , )

i j i j

Curv i j Curv i j
ChanY i j

y y

 



               (3.16) 

CX  is the matrix represents surface curvature change in X  direction; CY  is the 

matrix represents surface curvature change in Y  direction. Hence, the above two 

curvature change matrices are combined to simplify the calculations and unify the 

representation of the surface curvature. Then, the final curvature change matrix of the 

surface is determined as follows: 

0 0 0 0

0 (2,1) (2, 1) 0

0 0

( 1,1) ( 1, 1)

0 0 0 0

CC CC Ny

CC

CC Nx CC Nx Ny

 
 


 
 
 

   
  

          (3.17) 

where 

   
2 2

( , ) ( , ) ( , )CC i j ChanX i j ChanY i j              (3.18) 

CC  is the final curvature change matrix of the surface. All the points in the grid are 

projected to the nominal surface so as to determine the corresponding curvature. From 

a given surface ( , )u vS , the Gaussian and mean curvature, K  and H  are 

calculated as follows: 

2

2

LN M
K

EG F





, 2

1 2

2

EN GL FM
H

EG F

  
   

 
    (3.19) 

where u uE S S  , u vF S S   and v vG S S   are the first fundamental form 

coefficients, and uuL N S  , uvM N S   and vvN N S   are the second 

fundamental form coefficients;  uS  and vS  are tangent vectors of S  at an point 

( , )u vS  in u, v direction respectively, and uuS ,  uvS  and vvS  are the second 
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derivatives. Since the Gaussian curvature may vanish for some classes of surface, the 

selection of the curvature measure is carried out interactively. 

3.1.1.2 Automatic bidirectional optimal sampling algorithm 

Traditional one directional raster fashion sampling strategies (Ainsworth et al, 

2000; ElKott and Veldhuis, 2005) extract a series of curves along a direction, which is 

used to construct a skinned surface to represent the measured surface. However, the 

proposed bidirectional sampling strategy samples two sets of curves along two 

different directions of the surface to form a curve network, which is used to construct 

the substitute surface. It is emphasized that in this study all the curves are extracted 

through intersecting the surface with infinite planes. This is due to the fact that the 

freeform surfaces are measured by extracting a series of iso-planer curves along a 

direction for most CMMs equipped with a scanning probe, as well as stylus 

profilometers. 

As shown in Figure 3.3, Cartesian coordinate frame is constructed based on three 

axes of the CAD model, i.e. X , Y  and Z  to guide the sampling process. The 

sampling is carried out into two directions, X  and Y . iA  ( 1,2,..4i  ) are obtained 

by projecting four corner points of the surface onto XY plane along Z  direction. 

Surface sectioning starts at 1A , then 2A  is the end of the surface sectioning in the 

direction, X . 4A  is the end of surface sectioning in the other direction, Y . This 

ensures that the first and last surface bounding curves in two sampling directions are 

included in the sampling plan. 
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Figure 3.3 Cartesian coordinate of the CAD model 

Then, four boundaries of the manufactured surface are used to construct initial 

bidirectional curve network to construct a substitute geometry based on the algorithm 

given in Section 3.1.1.1. A Grid of points is sampled on the substitute geometry and 

each point is projected on the nominal surface, so that the deviation of the substitute 

geometry from CAD model is determined. If the constructed substitute surface does 

not meet the required accuracy, a new curve will be extracted to subdivide the curve 

network.  

Figure 3.4 shows the operation of the bidirectional sampling algorithm. The 

location of the new sampling curve is determined by considering both the surface 

complexity and deviation of the substitute geometry from the nominal surface. Firstly, 

the curvature change matrix (CC) is calculated on the sub-region where the maximum 

deviation of the substitute surface (MDp) from the nominal surface is located. CC 

represents the surface complexity of the region and is determined based on Eq. (3.12) 

to Eq. (3.19), given in Section 3.1.1.1.  

 

Z

 

X  

Y  

2A

 
3A  

4A

 

CAD Model 

1A

 

Cutter Plane 

Intersection Curve 



Chapter 3 Measurement Strategy and Surface Modeling of Ultra-precision Freeform Surfaces 

68 

 

 

Figure 3.4 Schematic diagram of the bidirectional sampling algorithm 

Then the maximum value of the curvature change matrix (MVC) is determined 

and compared to a curvature factor (CF) which is a threshold used to control the 

sensitivity of the sampling algorithm to the change of surface curvature. If MVC is 

smaller than CF, the curvature change is considered having little effect on sampling 

accuracy and a new sampling line is extracted on MDp. Otherwise, a new curve is 

sampled on the point (MVCp) where MVC is located. It is worthynote that when the 

new sampling curve is determined by MVC, the sampling location is constrained by 

the minimum step size (MS) between subsequent sampling curves. That is, if the new 

sampled curve is too close to the nearest original curves, the process is returned and 

another curve is sampled based on the new curvature change matrix which is obtained 

by setting the original MVC be zero. This is due to the consideration that the sampling 

plan is available only when the distance of any two adjacent sampled curves is bigger 
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than the minimum step size of measuring instruments. 

Then, a normal vector between two sampling direction X  and Y  is chosen to 

construct cutter plan with the sampling loation obtained in above step. Figure 3.5 

shows the projection of the bidirectional curve network.  

 

Figure 3.5 Projection of bidirectional curve network 

Point Sp  is the sampling location. Cx  and Cy  are the projection of intersection 

curves along X  and Y  respectively. If the deviation of the regions (2 and 5) that 

Cx  passes through is bigger than the deviation of the regions (region 1, 2 and 3) that 

Cy  passes through, Cx  is selected to add to the curve network. Otherwise, Cy  is 

selected. This ensures that the selected curve contributes more to improve the fitting 

accuracy of substitute geometry. Finally, the intersection curve is used to subdivide 

the curve network to construct a new substitute surface. Figure 3.6 shows the 

schematic diagram of adding a new sampling curve. 
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Figure 3.6 Procedure of adding a new curve 

MDp refers the point where the maximum deviation between the substitute 

geometry and nominal surface is located; MVC is the maximum value in CC ; MVCp 

refers the point where MVC is located; CF is the curvature factor;  P  refers to the 

plane which is decided by a point and a vector; SRX and SRY refers to the 

sub-regions that Cx and Cy pass through; DEV(SRX) and DEV(SRY) are the 

deviation of the SRX and the SRY from nominal surface respectively; MS is the 

START 

Find sub-region where MDp is located 

Calculate CC  of the sub-region (Complexity Analysis) 

Extract new curve at Cx 

Find nearest planes L1 and L2 
besides Cx along X , and let 

d1 = distance ( Cx, L1 ) 
d2 = distance ( Cx, L2 ) 

YES NO 

END 

Return New Curve 

MVC > CF  ? 

Read MVCp and determine  

 Cx = P(MVCp, X )CAD Surface 

 Cy = P(MVCp,Y )CAD Surface 

Find sub-regions SRX which Cx passed through 

Find sub-regions SRY which Cy passed through 

DEV(SRX) > DEV(SRY) ? 
YES NO 

Read MVC from CC  and set the value in CC  be zero 

 

Read MDp and determine  

 Cx = P(MDp, X )CAD Surface 

 Cy = P(MDp,Y )CAD Surface 

Find nearest planes L1 and L2 
besides Cy along Y , and let 

d1 = distance ( Cy, L1 ) 
d2 = distance ( Cy, L2 ) 

d1 & d2 > MS  ? d1 & d2 > MS  ? 

YES 

Extract new curve at Cy 

NO NO 
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minimum step-over distance between two consecutive sampling curves. 

3.1.1.3 Computer simulation of bidirectional optimal sampling 

The bidirectional sampling method has been extensively tested for a variety of 

surfaces with various complexities. A case study is presented to study the efficiency 

and accuracy of the proposed method. The ideal design surface is given by Eq. (3.20): 

2 2(0.0005 0.001 )30 x yz e                         (3.20) 

with the dimensions 5050  x  (mm) and 5050  y  (mm). To generalize the 

application, a B-spline form of nominal surface is obtained by fitting a cloud of 

discrete points scattered on the designed surface. Bidirectional sampling method is 

then used to generate the sampling plan based on the reconstructed surface. The 

sampling is carried out along X  and Y  axis. 

Traditional one directional sampling method is employed to compare the 

performance with the bidirectional sampling method. The one directional sampling 

method produces the sampling plan by sampling a set of iso-planar curves from given 

CAD model. The location of the sampled curves is obtained iteratively based on the 

same sampling criteria as given in Section 3.1.1.2 but only in one direction. The 

minimum distance between subsequent sample lines is set to be 0.1 mm . To get better 

sampling results, the Y  direction is selected as the sampling direction of both 

uniform iso-planar sampling method and optimal iso-planar sampling method, since 

the curvature change along the Y direction is bigger than that along the X direction.  

Table 3.1 shows the simulation results with the sampling accuracy at a low level, 

meaning that the maximum deviation of the substitute geometry is in the range of 

1 310 ~10   mm; and Table 3.2 shows the simulation results with the sampling 
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accuracy at a high level, meaning that the maximum deviation of the substitute 

geometry is in the range of 4 610 ~10   mm. A summary of the sampling results are 

shown in Table 3.3, where N  is the total number of sampled curves; xN  and yN  

are the number of sampled curves in X  and  Y  directions respectively; and Es  

is the sampling accuracy denoting the maximum deviation of the substitute surface 

with the nominal surface. 

 It is interesting to note from the simulation results in Table 3.1 that there is not 

much difference in the efficiency between the one directional sampling method and 

the bidirectional sampling method when the requirement of the sampling accuracy is 

low, i.e. in the range of 1 310 ~10  mm. However, as shown in Table 3.2, along with 

the improvement of the sampling accuracy, the sampling plans generated by one 

direction sampling method possess a larger number of curves compared with that 

generated by the bidirectional sampling method. It can be seen from Table 3.3 that the 

efficiency of the sampling plan with the bidirectional sampling method is improved 

by almost 50% compared with the one directional sampling method when the 

accuracy of the sampling is in the sub-micrometer level. 

The advantage of the bidirectional sampling method can be explained from the 

principle of the sampled curves in estimating the non-measuring area. For 

conventional one directional method, this is carried out by skinning a set of section 

curves to construct a surface so as to approximate the area between the section curves. 

However, for the proposed method, this is carried out by skinning two sets of section 

curves from two different directions to construct a curve network so as to approximate 

the intersection area. 
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Table 3.1 Sampling results with precision in the low level (10
-1

-10
-3 

mm) 

 

 One directional optimal Sampling Bidirectional optimal sampling 

Sampling Error Threshold: 10
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mm 
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Table 3.2 Sampling results with precision in the high level (10
-4

-10
-6 

mm) 

 

 One directional optimal Sampling Bidirectional optimal sampling 

Sampling Error Threshold: 10
-4 

mm 

 

  

 

  

Sampling Error Threshold: 10
-5 

mm 
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Table 3.3 Number of sampling curves under various sampling accuracy 

Es  ( mm) 110  210  310  410  510  610  

One directional sampling 

N  8 11 18 28 49 86 

Bidirectional sampling 

 ,x yN N N  (5, 3) (5, 5) (5, 8) (10, 8) (11, 11) (15, 15) 

As a result, it is proven that the curve network provides much stronger geometric 

constraint to the non-measuring area than a set of parallel section curves. Compared 

with traditional sampling methods, such as sampling curves only in one direction, the 

bidirectional sampling method provides a significant improvement in terms of the 

efficiency of freeform data sampling with high precision. 

3.1.2 Bidirectional uniform sampling strategy 

The CAD model based optimal sampling strategy highly depends on the 

embedded coordinate frame of the CAD model. For measuring instruments such as 

CMMs, the precise location of the machined workpiece relative to the coordinate 

frame of the CAD model can be captured before the measurement. However, for 

measuring instruments such as profilometers, this becomes a challenging task. In such 

cases, a uniform sampling strategy is compromisingly used in practice even though 

the sampling efficiency is low. In the present study, a bidirectional uniform sampling 

strategy is proposed to improve the sampling efficiency of freeform measurements 

with stylus profilometers.  
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3.1.2.1 Curve network extraction 

Two Cartesian coordinates are constructed based on the structure of the adopted 

profilometer to guide the sampling process as shown in Figure 3.7. 

 , ,O o o oC X Y Z  represents the coordinate system of the measurement 

instrument, and  , ,R R R RC X Y Z  represents the embedded coordinate system of 

the rotating table, where RZ  is the axis of rotation. The workpiece is mounted on the 

rotating table and the surface curve is measured by moving the probe along oX .  

 

Figure 3.7 Sampling coordinate systems in the instrument 

Sampling is carried out in two steps. In the first step, a set of curves are 

uniformly sampled along a selected direction 1d  with step size 1d , denoted as S 1iC , 

1,...,i n . 1d  is appropriately selected such that the sampled curves in this direction 

possess a higher curvature change. ElKott and Veldhuis (2005) found that sampled 

curves with high curvature change leads to a better sampling plan. The coordinate 

transformation from OC  to RC  is a function of spatial rotation and translation and 
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can be represented by the following matrix: 

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

0 0 0 1

x

y

RO

z

t

t

t

           

           

    

  
  
 
 

 
 

C           (3.21) 

where  ,  ,   are the Euler angles; xt , yt , zt  are components of the translation 

vector; c  and s  are abbreviations of the cosine and sine functions. Then, the 

sampled curves under RC  can be determined as follows: 

RS 1 S 1i RO iC C C ,      1,...,i n                   (3.22) 

In the second step, the rotating table is rotated with a certain angle  . Then, 

another set of curves are uniformly sampled along direction 2d  with step size 2d , 

denoted as S 2 jC , 1,...,j m . There is no strict requirement for the choice of  . In 

this work,   is simply selected such that the sampled curve network covers as much 

area of the measured surface as possible. Then the new coordinate transformation 

from OC  to RC  can be represented as follows: 

N RO R ROC C C                             (3.23) 

where 

c 0 0

c 0 0

0 0 1 0

0 0 0 1

R

s

s

 

 

 
 
 
 
 
 

C  

The sampled curves under RC  can then be determined by 

RS 2 N S 2j RO jC C C ,      1,...,j m            (3.24) 
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Hence, two sets of curves can be used to construct a curve network under the 

embedded coordinate system of the rotating table RC  as shown in Figure 3.7. 

The sampled curves should be trimmed before surface reconstruction. Four 

border curves, 1RS 1C , RS 1nC , 1RS 2C  and RS 2mC , are used to form a 

quadrilateral. As shown in Figure 3.8, four planes passing through the four border 

curves are used to cut the part of each sampled curve that is outside the quadrilateral. 

This is a curve/plane intersection problem and intersection points can be determined 

numerically with high accuracy using recursive subdivision technology (Dokken, 

1985). The trimmed surface is then used to construct the substitute surface to 

represent the measured surface. 

 

Figure 3.8 Trimming sampled curve network 

3.1.2.2 Computer simulation of bidirectional uniform sampling 

In the present study, the sampling efficiency of a sampling plan is characterized 

by the total length of sampled curves in it. It is particularly meaningful for 

profilometry since the measuring time is proportional to the total length of sampled 

curves. Sampling accuracy of a sampling plan is characterized by the deviation of the 

substituted surface from the nominal surface. Two case studies are presented, which 
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include sampling a biconic surface in B-spline format and a CAD model of a freeform 

streetlight lens. 

An automatic sampling algorithm is implemented based on the proposed 

bidirectional uniform sampling method, as shown in Figure 3.9, where 1Ns  and 

2Ns are user-defined initial number of curves which are pre-sampled on a given 

surface along two different directions, 1d  and 2d  respectively. The sampled curves 

are used to construct substitute surface using the fitting algorithm as presented in 

Section 3.1.1.1. The sampling error is characterized by the maximum deviation of the 

substitute surface from the given nominal surface. If the sampling error is larger than 

a given error threshold, ( 1 1Ns  ) and ( 2 1Ns  ) curves are re-sampled on the given 

surface. The whole process is iterative and is terminated upon reaching the desired 

level of accuracy. 

 

Figure 3.9 Schematic diagram of automatic bidirectional uniform sampling process 

START 
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A biconic surface which is widely applied in the optical components is designed 

as given by Eq. (3.25):  

2 2

2 2 2 2
1 11 1- ( 1) - ( 1)

n m
x y i j

xi yj

i jx x y y

C x C y
z A x A y

K C x K C y  


  

  
          (3.25) 

The parameters of the design surface are listed in Table 3.4. This leads to the 

generation of the biconic design surface as shown in Figure 3.10. 

Table 3.4 Parameter of the designed biconic surface 

xC  0.3713834 yC  0.2057346 

xK  -0.2405417 yK  -14.23495 

2xA  0 2yA  0 

4xA  -3.4195423×10-3 4yA  -3.44147×10-3 

6xA  -2.5526374×10-4 6yA  2.0794629×10-3 

8xA  -9.4151045×10-6 8yA  -7.7332897×10-4 

10xA  -2.2655833×10-6 10yA  1.8985258×10-4 

12xA  -5.8382646×10-7 12yA  -2.9348209×10-5 

14xA  1.3432194×10-7 14yA  2.4562495×10-6 

 

 

Figure 3.10 Designed biconic surface 
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The sampling of surface data is carried out based on three different strategies, i.e. 

the one directional uniform sampling (ODUS) along X , Y  directions respectively, 

and bidirectional uniform sampling (BDUS) along both X  and Y  directions. All 

sampling plans are produced with the same threshold of sampling error of 5 nm. 

Hence, the comparisons of the sampling efficiency among the produced sampling 

plans are performed by comparing the total length of the sampled curves. Table 3.5 

shows the produced sampling plan and corresponding deviation of the substitute 

surface from the designed surface. 

Table 3.5 Sampling results on biconic surface 

Sampling Plan Sampling Error Summary 

  

SD : X  

SE : 4.5 nm 

NsX : 19 

NsY : 0 

TLC : 75 mm 

  

SD : Y  

SE : 4.9 nm 

NsX : 0 

NsY : 32 

TLC : 128mm 

  

SD : X , Y  

SE : 0.7 nm 

NsX : 7 

NsY : 7 

TLC : 56 mm 

SD is the sampling direction; SE is the sampling error; NsX  and NsY  are the 

number of sampled curves along X  and Y  respectively. TLC  is the total length of 
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sampled curves which is determined by Eq. (3.26): 

 
1 1

 = 
NsX NsY

i j

i j

TLC Lc Lc
 

                       (3.26) 

where iLc / jLc  is the length of the i th / j th sampled curves along X / Y . 

The results show that the sampling plan produced by the BDUS method 

possesses less curves (total 14 curves) with a smaller sampling error as compared with 

the sampling plan produced by the ODUS method irrespective of whether it is along 

X  (19 curves) or Y  (32 curves). With the same sampling error threshold, the 

BDUS method produces sampling plan with shorter TLC  when compared with that 

produced by the ODUS method. This infers that the BDUS method requires less 

measuring time than that for the ODUS method with the same level of accuracy. 

A CAD model of a freeform surface for a streetlight lens is used to study the 

sampling accuracy of the proposed method (Jiang et al, 2009). Figure 3.11 shows the 

surface model of the freeform lens. Similar to the previous case study, three different 

strategies are used to sample the given CAD model, but in order to provide a 

comparison of the sampling accuracy of all three sampling plans which have 

approximately the same TLC. 

 

Figure 3.11 CAD model of the freeform streetlight lens 
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Table 3.6 shows the produced sampling plan and the corresponding deviation of 

the substitute surface from the designed surface. With approximately the same TLC, 

the results show that the sampling plan produced by the BDUS method has a much 

smaller sampling error (0.9 nm) than that produced by the ODUS method irrespective 

of whether it is in the X  (187.7 nm) or Y  (12.3 nm) direction. This infers that the 

BDUS method possesses a higher sampling accuracy than that for the ODUS method 

with the same measuring time. 

Table 3.6 Sampling results on CAD model of a freeform surfaces for an optical lens 

Sampling Plan Sampling error Summary 

  

SD X  

SE 187.7 nm 

NscX 135 

NscY 0 

TLC 3105 mm 

  

SD Y  

SE 12.3 nm 

NscX 0 

NscY 62 

TLC 3100 mm 

  

SD X , Y  

SE 0.9 nm 

NscX 67 

NscY 31 

TLC 3091 mm 

It is found in the present study, as well as in the published literature, that sampled 

curves with a high curvature change produce a better sampling plan. As shown in 

Table 3.5, the ODUS method produced a more efficient sampling plan along X . This 
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is due to the fact that the section curves sampled along X  possess greater curvature 

change than that for the sampled section curves along Y  as shown in Figure 3.12. 

Table 3.6 shows another example of the sampling plan along Y  being more accurate 

than that along X  (see Figure 3.13). 

It is also found from the results in the Table 3.5 and Table 3.6 that all the 

substitute surfaces possess a much higher deviation in the regions where curvature 

changes sharply than in relatively flat regions. This reflects the fact that uniform 

sampling based strategies, irrespective of ODUS method or BDUS method, have 

sampled redundant points from relatively flat regions. 

   

(a) GC change along X            (b) GC change along Y  

Figure 3.12 Gaussian curvature (GC) change of designed biconic surface 

 

Figure 3.13 Gaussian curvature of the CAD model of the streetlight lens 
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3.2 Robust Surface Fitting and Reconstruction Algorithm 

In the measurement of freeform surfaces, the problem of converting the 

measured discrete points into useful geometric models is referred to as surface 

reconstruction. Surface reconstruction plays key role in the generalized form 

characterization of ultra-precision freeform surfaces. This is due to the fact that the 

direct calculation of the intrinsic surface features from a machined surface is highly 

sensitive to the local surface properties, such as surface roughness, caused by tool 

marks. This gives rise to surface fitting as a crucial means to reconstruct a smooth 

surface from measured discrete points to represent the machined surface. This section 

presents a robust surface fitting and reconstruction algorithm to reconstruct a high 

fidelity surface from a cloud of unorganized discrete points, while ensuring surface 

smoothness. 

3.2.1 Fitting criteria 

If the B-spline surface is used to construct the surface, the surface reconstruction 

can be formulated as an optimization scheme as follows. Given a set of unorganized 

data points kX , 1,2,...k m , a set of control points are found ,i jP , 1,2,... ui n , 

1,2,... vj n  and appropriate knots vector is such that the objective function  

2

,

1 1 1

1
( ) ( ) ,

2

u vn nm

i j i j k s s

k i j

F d N u N v f
  

 
  

 
  P X             (3.27) 

is minimized, where ( )d  is a measure of the fitting error of kX  from the 

reconstructed surface, sf  is a smoothing term, and s  is the weight of sf . Fitting 

accuracy and surface smoothness usually contradict each other. If the reconstructed 
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surface is too close to the data points, unwanted variation may occur due to 

measurement noise and surface roughness. On the other hand, the reconstructed 

surface cannot meet the required accuracy if the surface is too smooth. Hence, it is 

important to strike a balance between them in an appropriate way. 

To effectively demonstrate the problem, an example of curve fitting is presented. 

An ideal curve is designed to generate a nominal curve that is obtained by adding an 

artificial roughness. The ideal curve and added roughness are given by Eq. (3.28) and 

Eq. (3.29): 

sin(0.2 )y x                             (3.28) 

6 67 10 sin(10 ) 3 10 rand(0,1)y x                     (3.29) 

with the dimensions 0 10x    ( mm ). Figure 4.14 shows the added roughness, 

where 
pR  is the maximum pick height and vR  is the maximum valley depth. 

 

Figure 3.14 Artificial roughness added on ideal designed curve 

A row of discrete data is extracted from a nominal curve and used to fit a 

continuous curve. Curvature is a local property that represents the ‘curvedness’ of a 

surface or curve. Hence, it is a good measure of local variations of the reconstructed 

curve which are caused by roughness or noise. To analyze the influence of added 
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artificial roughness to the reconstructed curve under different thresholds of fitting 

error, extensive simulation has been conducted to analyze the curvature accuracy of 

the reconstructed curve under a wide range of threshold fitting errors ranging from 0.3 

nm to 480 nm. Curvature accuracy of the reconstructed curve is determined by the 

maximum error of the curvature of the fitted row of discrete data, which are estimated 

based on the reconstructed curve. 

Figure 3.15 shows the curvature error of the reconstructed curve under different 

thresholds of the fitting error. The error of the curvature is large in both cases when 

the threshold of the fitting error is too tight or too loose. It is interesting to note from 

Figure 3.15 that the curvature error increases sharply when the fitting error decreases 

from max(Rp, Rv) (9.9 nm). This infers that the reconstructed curve contains 

unwanted variation caused by the added roughness when the fitting error is smaller 

than max(Rp, Rv). The smaller the fitting error is, the sharper the variations. On the 

other hand, the curvature error increases slowly along with the increase of fitting error 

from max(Rp, Rv). This infers that the reconstructed curve is no longer affected by 

the added roughness and the curvature error is mainly caused by low fidelity of the 

reconstructed curve due to the loose fitting error. Based on the above analysis, a 

proper threshold of fitting error for curve fitting or surface fitting is sought by 

minimizing the influence of surface roughness of manufactured objects to intrinsic 

features of the reconstructed object. 



Chapter 3 Measurement Strategy and Surface Modeling of Ultra-precision Freeform Surfaces 

88 

 

 

Figure 3.15 Curvature error of reconstructed curve under different fitting error 

thresholds 

The above example shows max(Rp, Rv) to be a critical value as a threshold of 

fitting error, which is used to control the balance between fitness and smoothness. 

However, it is inevitable that the estimated max(Rp, Rv) contains error in real 

measurement and it is almost impossible to judge whether the value is the best fitting 

error or not. Hence, a new threshold of fitting error is proposed as follows: 

IntMEr C       Int 2t tC R R                (3.30) 

s.t.  a a aEr c R      
1

1 m

a k

k

Er d
m 

   

where t p vR R R   is the maximum peak to valley height of the roughness; aR  is 

the arithmetic roughness; ac  is the user-defined non-negative constant; MEr  and 

aEr  are the maximum fitting error and the average deviation of cloud points from 

constructed geometry, respectively.  

In the criterion, an interval likely to include the best fitting error is estimated and 

is denoted in this study as ‘confidence interval of fitting error’ rather than estimating 

the best fitting error. a ac R  is used to further control the form accuracy of 

reconstructed objects. In the present study, ac  is set to be 1.2. It is considered that 
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the fitting accuracy and smoothness are well balanced if the fitting error of the 

reconstructed object satisfies the condition given in Eq. (3.30). It is also worth noting 

that when the maximum fitting error is close to the lower limit of confidence interval, 

the possibility of the loss of surface smoothness is increased. On the other hand, when 

the maximum fitting error is close to the upper limit of confidence interval, the 

possibility of the loss of surface fidelity is increased. 

In the example, the confidence interval of fitting error can be determined by Eq. 

(3.30), i.e.  Int 9.89 19.78C  (nm). Figure 3.16 shows a part of Figure 3.15 with a 

fitting error from 0.30 to 67 nm . The discrete data is reconstructed with a high 

curvature accuracy (less than 0.28
1m 
) and an acceptable fitting error in the area 

where the fitting error falls into the confidence interval. This infers that the fitting 

accuracy and curve smoothness are well balanced. 

 

Figure 3.16 Part of Fig 3.15 with fitting error from 0.3nm to 67 nm 

3.2.2 Robust surface fitting algorithm 

Once the threshold of the fitting error is estimated, surface reconstruction can be 

carried out using the objective function of the optimization scheme as given in Eq. 

(3.27). This is a highly non-linear problem since the number and the distribution of 
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control points, the knot vector and the associated parameter values of the data points 

are all unknown. To simplify the process, an initial surface is constructed to 

approximate the points cloud with certain precision, which is used to estimate the 

minimal degree of freedom needed to characterize the real shape and to obtain a good 

value of the parameter for each data point. 

3.2.2.1 Construction of an initial surface 

If the measured data points are regularly distributed, e.g. the measured data 

points are sampled with the guidance of the bidirectional sampling strategy, then the 

initial surface can be easily constructed by parameterizing the measured points based 

on the Centripetal method (Piegl and Tiller, 1997) as given in Section 3.1.1.1. 

However, if the measured data points are randomly distributed, the bidirectional 

sampling strategy is used to extract two sets of iso-parametric rows of data from 

points cloud and each row of data is approximated to construct a curve network. This 

curve network is then fitted to obtain an initial surface with B-spline form. The details 

are given in the following procedures: 

Step 1: Extract four boundaries from the points cloud and fit to form a curve network.  

Step 2: Fit a B-spline surface to the curve network to form an initial surface. 

Step 3: Project each point onto the initial surface and locate point dP  which 

possesses the maximum distance from the corresponding projection. The distance 

between dP  and its projection is considered as the deviation of the initial surface 

from points cloud. 

Step 4: Update the initial surface if the deviation is within the given tolerance. 
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Otherwise, the parameter ( , )d du v  of dP
 

is used to sample a new curve from points 

cloud. There are two sampling directions, i.e. u  and v . If u  is selected as the 

sampling direction, all the points satisfying d d su u u      are sampled from 

points cloud; otherwise, if v  is selected, all the points satisfying d d sv v v      

are sampled from points cloud. u  and v  are the parameters of an arbitrary point in 

points cloud; s  is a user specified tolerance. The criterion for the selection of the 

sampling direction is similar to that given in Section 3.1.1.2. The sampled points are 

used to construct a new curve so as to form a new curve network. 

3.2.2.2 Construction of an accurate surface 

Squared distance minimization technology (Wang et al., 2006) is used to 

optimize the constructed initial surface by minimizing the objective function as 

follows: 

2

1

1

2

Nn

obj k k s s

k

F Esd f 


                     (3.31) 

where k  is the weight of kX  and kEsd  denotes the distance function from data 

kX  to the corresponding projection ( , )k ku vS  on the initial surface ( , )u vS . Before 

going into details, the formula of the B-spline surface is modified to simplify the 

presentation: 

1 1

, , ,

0 0 0

( , ) ( ) ( ) ( , )
u m cn n n

i p j q i j s s

i j s

u v N u N v N u v
 

  

  S P P          (3.32) 

where 

c u mn n n , ( ), ( )s i s j sP P , ( ), ( ),( , ) ( ) ( )s i s p j s qN u v N u N v  
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( )
v

s
i s

n

 
  
 

, ( ) mod vj s s n  

If it is assumed that the parameter ( , )k ku v  of each point kX  and knot vector in 

the u , v  directions are fixed at each iteration, the control points are the only 

variables in the objective function (Eq. (3.31)). Let ( , )u vS  denote the optimized 

surface with updated control points , , ,i j i j i j P P P , where ,i jP  is the 

incremental updates to ,i jP . When the control points ,i jP  change with the fixed 

parameters ( , )k ku v , the foot point ( , )k ku vS  becomes a variable point ( , )k ku vS . 

Considering the initial surface is constructed close to the point cloud, ( , )k ku vS  is 

assumed to be in the neighborhood of ( , )k ku vS . Since the translation from ( , )k ku vS  

to ( , )k ku vS  is relative to the data point kX , it can be viewed in a relative sense that 

( , )k ku vS  is fixed and kX  undergoes a translation to kX  as shown in Figure 3.17. 

Then, the distance function kEsd  can be approximated by the Squared Distance 

Function from kX  to ( , )k ku vS  under the local right-handled Cartesian system k  

at ( , )k ku vS  (see Figure 3.17), where 1,kT , 2,kT  and kN are the two principle 

curvature directions and normal vector at ( , )k ku vS , respectively; 
kN  is the normal 

vector at ( , )k ku vS  of the optimized surface (Pottamann and Hofer, 2003). 
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Figure 3.17 Relative translation under local coordinate system on ( , )k ku vS
 

The Squared Distance Function from 
kX  to the original surface S  in local 

coordinate system k  is defined as follows (Pottamann and Hofer, 2003): 

2 2 2

1 2 3

1, 2,

( ) k k
k k

k k k k

d d
Esd x x x

d d 
  

 
X                (3.33) 
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where 1 2 3( , , )x x x  are the coordinates of the 
kX  (see Figure 3.17) under the local 

frame k ; ( , )k k k kd u v S X  is the distance from kX  to ( , )k ku vS ; 
1,k  and 

2,k  are two principle curvature radius at the point ( , )k kS u v . Substituting 

 ( , )k k ku v S X  by  ( , )k k ku v S X , the final distance function from kX  to 

( , )k ku vS  in the global coordinate can be expressed as: 

  2 2 2

1 2 3

1, 2,

k k
k

k k k k

d d
Esd x x x

d d 
  

 
P                 (3.35) 
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where P  is the matrix of updated control points. 

To further improve the quality of generated surface, the smoothness functions are 

usually added to smooth the reconstructed surface as much as possible. This work 

makes use of simplified thin plate energy (Dietz, 1998), which is a quadratic function 

in the second partial derivatives as given in Eq. (3.37).  

 2 2 22s uu uv vvf S S S dudv


                     (3.37) 

The smoothness weight s  is used to control the effect of the smoothing term to 

surface fitting. It is started with a certain big value and is adjusted in each iteration 

such that the resulting surface is improved, but not over dominated by the smoothness 

function. It is emphasized that the smoothing term is integrated explicitly without 

numerical approximation in the present study. 

Substituting all terms into the objective function in Eq. (3.31), the final linear 

optimal system is arrived at as: 

     2 2 2 2

1

1
2

2

n

opt k k s uu uv vv

k

F Esd S S S dudv 
 

    P P           (3.38) 

The objective function 
optF  is positive and quadratic in the updated control points P . 

Hence, these control points can be computed efficiently by quasi-Newton 

optimization (Kelley, 1999). 

On the whole, this algorithm takes the cloud of scanned 3D data as input, while 

the output is a B-spline surface which satisfies the given fitting threshold. As shown 
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in Figure 3.18, bidirectional sampling strategy is used to extract sampling curves to 

construct an initial surface with certain level of accuracy. This initial surface is then 

optimized based on the square distance minimization technology. If the optimized 

surface does not reach the required accuracy, a new curve is extracted from the 

original data to construct a new initial surface. The whole process is iterative and is 

terminated upon attaining the desired level of accuracy. 

 

Figure 3.18 Overview of the surface fitting algorithm 

3.2.3 Computer simulation of surface fitting algorithm 

To evaluate the validity of the proposed fitting algorithm, an ideal freeform 

surface is designed to generate a measured surface that is obtained by adding the 

surface roughness. The ideal designed surface and the surface roughness are given by 

Eq. (3.39) and Eq. (3.40) 

  s i n ( 0 . 2 ) c o s ( 0 . 3 )z x y                      (3.39) 

START 

Input cloud of scanned points  

Create initial bidirectional Curve Network 

Extract a new curve from points  
cloud and add it to curve network 

Update final surface 

END 

Construct initial surface 

Determine the deviation of the initial surface 

NO 

YES 

Optimize the initial surface  

Determine the deviation of the optimized surface 

NO 
Is deviation acceptable? 

 

Is deviation acceptable? 

 YES 

Estimate the weight of each point Estimate the weight of each point 



Chapter 3 Measurement Strategy and Surface Modeling of Ultra-precision Freeform Surfaces 

96 

 

    6 6 65 1 0 s i n ( 1 0 ) 5 1 0 c o s ( 1 0 ) 2 1 0 r a n d ( 0 , 1 )z x y                 (3.40) 

with the dimensions 0 6x   ( mm) and 0 6y   ( mm). Figure 3.19 and Figure 

3.20 show the ideal surface and the aided error pattern, respectively. 

 

Figure 3.19 Ideal designed surface 

 

Figure 3.20 Aided error on ideal surface 

The fitting error threshold can be determined by the parameters of the added 

surface roughness using Eq. (3.30). Based on this equation, three fitting cases are 

studied, i.e. well fitting, under fitting, and over fitting. In the present study, Gaussian 

curvature is adopted as a measure of the surface smoothness of the reconstructed 

surface, since Gaussian curvature is slightly more sensitive to the local variation of 

the surface than mean curvature. Table 3.7 shows the fitting error map and Gaussian 
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curvature error map of the reconstructed surface and a summary of the simulation 

results are shown in Table 3.8. 

Table 3.7 Fitting error and curvature error of reconstructed surface 

Case Fitting error Curvature error 

Well fitting 

  

Under fitting 

  

Over fitting 

  

 

It is interesting to note from the results that an over-tight threshold of the fitting 

error leads to unwanted variations in the reconstructed surface when the maximum 

fitting error is below the confidence interval. This can be verified by the large 

Gaussian curvature error of the reconstructed surface. On the other hand, both poor 

form accuracy and Gaussian curvature accuracy arise under a tight fitting error 

threshold when the surface is reconstructed with the maximum fitting error above the 
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confidence interval. When the thresholds of the fitting error satisfy the fitting criteria, 

both fitting accuracy and Gaussian curvature accuracy are at a high level. This infers 

that the fitting accuracy and smoothness are well balanced for this surface fitting. 

 

Table 3.8 Summary of the simulation results 

 Specific Value 

Discrete data Number of discrete points 200×200 

Fitting Criteria 

Confidence Interval [11.65, 23.3] nm  

Arithmetic roughness 4.09 nm  

Well fitting 

Maximum fitting error 13.39 nm  

Average fitting error 3.96 nm  

Maximum Gaussian curvature error  15.8 1nm  

Over fitting 

Maximum fitting error 5.22 nm  

Average fitting error 1.19 nm  

Maximum Gaussian curvature error 120.75 1nm  

Under fitting 

Maximum fitting error 37.95 nm  

Average fitting error 8.23 nm  

Maximum Gaussian curvature error 63.27 1nm  

3.3 Measurement of a Freeform Mould Inserts of a Bifocal Lens 

To further evaluate the capability of the proposed methods, an ultra-precision 

freeform mould insert of a bifocal lens made of stainless steel is produced by a 7-axis 

ultra-precision polishing machine (Zeeko IRP-200). The measurement is carried out 

using a Form Talysurf PGI 1240 freeform measurement system (Appendix I). Talysurf 
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PGI 1240 is an ultra-precision stylus profilometer, which has 200 mm traverse unit 

with 0.11 μm\200 mm straightness and has 12.5 mm gauge range with 0.8 nm vertical 

resolution. Two coordinate systems are established to facilitate the measuring process 

as shown in Figure 3.21. Co is the coordinate system of measurement instrument 

while CR is the embedded coordinate system of the rotating table. The measurement 

trajectory is designed following with the sampled curves in a sequential way in each 

direction, respectively. 

 

 

Figure 3.21 Measuring machined freeform workpiece 

The measurement is carried out in two steps. Firstly, a set of uniformly 

distributed curves is extracted along Yo  with step size of 4.5 mm. Secondly, the 

rotating table is rotated 90
ｏ
 and another set of curves is extracted along Yo  also 

with the same step size of 4.5 mm. By transforming all sampled data points to the 

embedded coordinate system of rotating table as described in Section 3.1.2.1, a curve 

network is formed by the sampled curves. Figure 3.22 shows the two set of rows of 

data sampled along different direction and the formed curve network.  
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Figure 3.22 Sampled curve network based on bidirectional sampling method 

 

Figure 3.23 Reconstructed substitute surface based on sampled curve network 

A smooth surface is then constructed by fitting the sampled curve network. To 

characterize the form accuracy of the reconstructed surface of the machined surface, a 

set of high density curves are extracted with step size of 1 mm under the coordinate 

system of the instrument as shown in Figure 3.24a. It is emphasized that the 

workpiece is mounted throughout the whole measuring process in order to avoid 

unnecessary misalignment of the coordinate systems. Hence, a nominal surface is 

constructed under the embedded coordinate system of the rotating table using the high 

density curve set. It is assumed that the curve set has sufficient density to fully 

Trimmed curve network Constructed curve network 

Sampled curves before rotation Sampled curves after rotation 
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describe and represent the geometry of the machined surface. Figure 3.24b shows the 

constructed nominal model and the deviation of the sampled substitute surface from 

the nominal model as shown in Figure 3.25. The maximum deviation is 41.8 nm and 

the average deviation is 7.9 nm. This infers that the reconstructed surface represents 

the measured data with accuracy in nanometer range. 

 

(a) Dense curve set            (b) constructed nominal surface 

Figure 3.24 Dense curve set and constructed nominal surface 

 

Figure 3.25 Deviation of substitute surface from nominal surface 

When the bidirectional sampling method is used for profilometry as is the case of 

above application, a key problem is that the two sets of curves are sampled in 

different coordinate systems and should be transferred to a common coordinate 

system accurately so as to form a curve network. The accuracy of the rotating table 

would affect the sampling accuracy of the bidirectional sampling method. A series of 
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simulation experiments have been conducted to study the effect of the rotation error of 

the rotating table on the final sampling accuracy. Rotational error ranging from -0.5 

degree to 0.5 degree are aided in the process of coordinate transformation to form a 

series of new curve networks. Figure 3.26 shows the relative sampling error (SE) of 

the rotation error aided sampling plan as comparing with the original one.  

 

Figure 3.26 Relative sampling error of rotation error aided sampling plans 

The result shows that the SE increases approximately linearly with increasing 

absolute value of the rotational error. In this application, the relative SE is smaller 

than 20 nm when the rotation error is smaller than 0.1 degree. It is also found from 

Figure 3.26 that there is a smaller increment of SE when the rotational error is 

increased from 0 to 0.1 degree as compared to others. This might show the fact that 

there exists rotational error in the experiment and the actual rotational angle of the 

rotating table is in the range of 90 ~ 90.1 degrees. 

3.4 Summary 

A critical problem of the generalized form characterization of ultra-precision 

freeform surface is the accurate extraction of the intrinsic surface features from a 

machined freeform surface. To address this problem, this chapter presents a 
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bidirectional curve network based sampling strategy combines with a robust surface 

fitting and reconstruction algorithms.  

Different from the conventional raster fashion sampling, the bidirectional 

sampling strategy attempts to enhance the efficiency and the accuracy of the sampling 

plan by extracting two sets of raster fashion curves along two different directions to 

form a curve network, which is used to generate a substitute surface. A CAD based 

bidirectional optimal sampling algorithm is developed to generate optimal sampling 

plan with the consideration of both surface complexity and the deviation of the 

substitute surface from the CAD model. Compared with the sampling plan that is 

generated by the one directional sampling strategy, the proposed method shows a 

significant improvement (around 30%) in terms of the efficiency of freeform data 

sampling with sampling accuracy at the sub-micrometre level. The method is 

particularly applicable to sampling for the freeform measurement with coordinate 

measuring machines. 

The CAD based sampling strategy greatly depends on the embedded coordinate 

frame of the CAD model, which makes it difficult to be applied to some measuring 

instruments such as profilometry. To address this problem, a bidirectional uniform 

sampling strategy is developed. The experimental results indicate that the method 

requires less measuring time than that for the raster scanning method with the same 

level of sampling accuracy, and possesses higher sampling accuracy than that for the 

raster scanning method with the same measuring time. The method is particularly 

applicable for the measurement of freeform surfaces with continuous probe, while it 

can also be applied to trigger probe based measurement by further sampling discrete 

points on each sampled curve. 

Since the direct calculation of the intrinsic features, such as curvature from the 

measured discrete points, is very sensitive to the noise and outliers presented in the 
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measured data, a robust surface fitting and reconstruction algorithm is developed to 

address this problem. To obtain a high quality surface, the reconstructed surface is 

required to be close enough to the fitted points to fully characterize the form of the 

measured surface, while surface smoothness should also be ensured to avoid 

unwanted variations caused by surface roughness and measurement noise.  

A new fitting threshold named ‘confidence interval of fitting error’ has been 

presented to balance the fitting accuracy and surface smoothness. To simplify the 

fitting process and to avoid local optimization problem, an initial surface is 

constructed to estimate an appropriate number of control points and their distribution. 

The squared distance minimization method is then used to minimize the fitting error 

of the initial surface and experimental work conducted to verify the performance of 

the developed surface fitting algorithm. The results indicate that the proposed fitting 

criterion provides an effective means of balancing fitting accuracy and surface 

smoothness so as to reconstruct high fidelity surfaces with good surface smoothness. 
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Chapter 4  

Invariant Feature Based Form Error Evaluation of 

Ultra-precision Freeform Surfaces 

 

Over the considerable number of years that surface characterization has been 

studied, the research has shifted from profile to areal, from stochastic to structured 

surfaces, and from simple geometries to freeform surfaces (Jiang et al, 2007b), with 

more research conducted on freeform surface characterization techniques in recent 

decades. However, due to the geometric complexity of freeform surfaces, there is still 

a lack of international standards and definitive methodologies for the form 

characterization of ultra-precision freeform surfaces with form accuracy in the 

sub-micrometre range and surface finishing at the nanometre level.  

The literature review conducted for this study indicates that the most 

conventional form characterization methods for freeform surfaces are developed 

based on distance errors (Li and Gu, 2004; Savio et al, 2007; Cheung et al, 2010). 

These methods employ the least squares method or the minimum zone method to 

perform the correspondence searching/surface matching and form error evaluation. 

However, these methods are susceptible to geometry of the surface being 

characterized and to the present outliers in the measured data, and there are still some 

problems such as the uncertainty due to the dependency of the methods on the 

coordinate frame or the geometry of the surface being characterized. As a result, there 

is a need for a generalized form characterization method for ultra-precision freeform 

surfaces, which is not only independent of the type of freeform surfaces being 
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characterized but is also free from the coordinate systems that cause the uncertainties 

in surface matching.  

One promising approach is the utilization of the surface intrinsic properties, 

which are independent of the coordinate frame. This Chapter presents a generalized 

form characterization method, named invariant feature-based pattern analysis method 

(IFPAM), which provides a robust and high precision form characterization method 

for various types of ultra-precision freeform surfaces with sub-micrometre form 

accuracy and surface finish in the nanometre range. The IFPAM makes use of 

orientation invariant surface features, such as Gaussian curvature, to map the surface 

into a special 2D image pattern so that the corresponding searching or surface 

matching is converted into invariant feature pattern registration, which makes the 

method free from the embedded coordinate frame. The bidirectional curve network 

based sampling strategy combined with a robust surface fitting method, as presented 

in Chapter 3, are incorporated into the IFPAM to ensure performance of the method in 

the representation and characterization of the machined ultra-precision freeform 

surface.   

4.1 Invariant Feature-based Pattern Analysis Method 

Since the geometry of a machined freeform surface is measured by extracting the 

coordinates of a set of points on the surface under a Cartesian coordinate frame (e.g. 

the coordinate systems of the measurement instruments), it is intuitive that the 

subsequent representation and analysis of the measured surface are performed 

“extrinsically”, i.e. under the embedded Cartesian coordinate frame. However, this 

presents problems when the form error of the measured freeform surface is 

characterized by comparing with theoretical design surface if the two surfaces are not 
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embedded in the same coordinate system. Hence, surface matching must be 

undertaken to eliminate the misalignment between the two coordinate systems before 

the form error evaluation. Precise surface matching of two freeform surfaces is a 

challenging task since freeform surfaces have six degrees of freedom, especially when 

there is no strong feature in the matched surface. 

Intrinsic surface feature refers to the intrinsic property of a surface, which is 

determined solely by the distance within the surface and is free of the embedded 

coordinate system of the surface (Aleksandrov, 1967). Taking Gaussian curvature as 

an example, it is an intrinsic property of a surface used to describe how “curve” is the 

surface, and is invariant under the transformation of the coordinate system. Based on 

the coordinate transformation invariant property of the intrinsic surface feature, an 

Invariant Feature-based Pattern Analysis Method (IFPAM) has been developed. 

Figure 4.1 shows the schematic diagram of the IFPAM divided into five parts, i.e. 

theoretical design surface input and processing, measured data acquisition and 

processing, invariant feature based surface representation, invariant feature pattern 

based surface matching and comparison, and parametric output of form error 

characterization.  

Different from conventional simple surfaces, such as spheres, freeform surfaces 

cannot be generalized by a universal equation. The representation of ultra-precision 

freeform surfaces is usually based either on a known surface model or an unknown 

surface model (Cheung et al, 2006). Known surface model refers to the freeform 

surfaces generated by some specially designed equations, such as F-theta surfaces and 

bi-conic surfaces. Unknown surface model refers to surfaces represented by a cloud of 

discrete points. This kind of surface model is commonly found in freeform optics 

design. For example, the freeform automotive reflector is usually designed with some 

CAD software packages, such as Reflector CAD and ASAP, and the surface model 
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can be obtained as a cloud of discrete points in IGES or STEP file format (Minano et 

al, 2009; Kong et al, 2011). 

 

Figure 4.1 A schematic diagram of the invariant feature-based pattern analysis method 
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For unknown surface models, the surface is reconstructed to obtain a 

mathematically continuous theoretical surface. The reconstructed surface can be used 

to estimate the coordinates and differential geometrical features of the surface, 

including non-sampled area of the given surface model. A portion of the theoretical 

design model is considered as design surface, which is used to guide the measurement 

of machined workpiece and subsequent form characterization of the measured surface. 

The details of this part of research work have been presented in Chapter 3. 

In the second part, the machined workpiece is measured by high precision 

measurement instruments. In the present study, Carl Zeiss PRISMO CMM from Carl 

Zeiss Inc. and PGI 1240 stylus profilometer from Taylor Hobson are used to measure 

machined ultra-precision freeform surfaces. During the measurement, an appropriate 

sampling strategy is generated with the guidance of the design surface so as to ensure 

the measured data points are adequate to fully represent the geometry of machined 

workpiece. The measured data points are then fitted to reconstruct a continuous 

surface to represent the measured surface. This is for two reasons. Firstly, the 

reconstructed surface can be used to estimate the non-measuring area of the machined 

surface. Secondly, the reconstructed surface can be easily used to calculate the 

differential geometrical properties of the measured surface with high accuracy. In the 

IFPAM, the bidirectional curve network based sampling strategy combines with a 

robust surface fitting and reconstruction algorithm, which has been discussed in 

Chapter 3. 

In the third part, invariant feature patterns (IFPs) of the design surface and the 

measured surface are generated respectively to represent the surface geometry. IFP is 

generated by making use of the surface intrinsic features, such as Gaussian curvature, 

to map the surface into a 2D image to form a special feature pattern. Since the IFP is 

composed of intrinsic surface features, it is a generalized surface feature that is 
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independent of the type of the surface geometry and is free from the embedded 

coordinate system. In the fourth part, the correspondence searching between measured 

surface and design surface is performed in terms of image registration of IFP of the 

measured surface on IFP of the design surface. The form error of the measured surface 

can be evaluated based on the correspondence established by IFP registration results. 

The details of this part of work are presented in the following sections of this chapter. 

Finally, surface parameters are used to characterize the evaluated form error. Any 

measurement process combines with errors. It is inevitable that errors are associated 

with the results of the form characterization, which may be due to factors such as 

measurement error of measuring instruments, form error of measured surface, and the 

utilized sampling plan. Hence, it is obligatory to analyze the uncertainty of the form 

characterization method so as to assess the reliability and accuracy of the 

characterization results. A task specific uncertainty analysis model is developed in this 

study to evaluate the uncertainty associated in the characterization results with the 

consideration of the following three factors: measurement error, surface form error, 

and sampling strategy. The details of uncertainty analysis are discussed in Chapter 5. 

4.2 Invariant Feature Pattern Based Surface Representation 

Surface representation is the first step toward the final goals of correspondence 

searching/surface matching and form characterization. Invariance, uniqueness and 

stability are the key properties for an effective and efficient surface representation, 

which directly affects the results of surface matching and registration. The common 

used freeform surface representation methods, such as parametric surfaces (e.g. 

NURBS) or points cloud, are highly dependent on the implicit parameterization and 

the embedded coordinate system, which presents difficulty in surface matching and 
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comparison. In the present study, an invariant feature pattern (IFP) based surface 

representation method is presented. 

4.2.1 Invariant surface feature 

Invariant surface features refer to those surface features whose values are 

invariant under the transformation (rotation/translation) of the embedded coordinate 

frame and are free to the implicit parameterization of the surface. In the form 

characterization of freeform surfaces, if the design surface and measured surface can 

be represented by invariant surface features, then the form characterization of the 

measured surface can be performed without the need to consider the misalignment of 

the coordinate frames and the parameterization of the surfaces.  

For example, a sphere can be represented by a point and a radius as its invariant 

surface features. Hence, the form of a measured sphere can be characterized by 

comparing the radius of the measured surface with that of the design surface without 

the need to consider the embedded coordinate frame. Unfortunately, most of freeform 

surfaces do not have such kind of obvious and simple invariant features. As a result, 

intrinsic surface property based invariant features are studied in this work. 

Suppose a freeform surface S  is given in a parametric form as follows: 

 
 
 
 

x u v

u v y u v

z u v

 
  
 
 

,

S , ,

,

S ,       2u v  , ,u a b           (4.1) 

where u  and v  are parameters along u  and v  direction respectively;  ,a b  

denotes a rectangular in the u, v-plane, as shown in Figure 4.2. It is assumed that the 

parametric surface  u v,S  possesses continuous second partial derivatives. 

Generally, there are two basic mathematical entities that are considered in the 
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differential geometry of a smooth surface, i.e. the first and second fundamental forms 

of a surface (Hsiung, 1981).  

The first fundamental form of  u v,S  is given as follows: 

2 2 2 2 2

2 2

2

2

u u v v
I ds du dudv dv

Edu Fdudv Gdv

   

  

S S S S
               (4.2) 

where ds  is the arc element of  u v,S ;  
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 
   

 

( , )S
S                     (4.5) 

and where u
S  and v

S  are referred to as the tangent vector along u  and v  

direction respectively (see Figure 4.2).  

 

Figure 4.2 Local coordinate frame of parametric surface 

As indicated by Eq. (4.2), the first fundamental form I  measures the small 

amount of movement 2ds  on the surface at a point (u, v) along a given vector 

movement in the u, v-plane. It is well known that an arc element ds  is invariant to 
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the surface parameterization changes and is free to the coordinate frame. Hence, the 

first fundamental form is invariant to the coordinate transformation. In other words, it 

depends only on the surface itself but does not depend on how the surface is 

embedded in the 3D space. Such properties are referred to be an intrinsic property of a 

surface. 

The second fundamental form of  u v,S  is given by: 

  2 22II d u v dn Ldu Mdudv Ndv     ,S           (4.6) 

where 

u v

u v

n





S S

S S
                         (4.7) 
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As shown in Eq. (4.6), the second fundamental form II  measures the correlation 

between the change in the surface position  d u v,S  and the change in the normal 

vector dn  as a function of a small movement in the u, v-plane. In contrast to first 

fundamental form, the second fundamental form of a surface is dependent on the 

embedding of the surface in 3D space. 

There are two fundamental theorems, i.e. existence theorem and uniqueness 

theorem for 3D surfaces that are proven as a direct consequence of the fundamental 

theorem of ordinary differential equations. Here the uniqueness theorem is given as 

follows, which is extensively used in this study (Besl, 1988). 

Uniqueness: If two surfaces S  and 
S  possess fundamental form I , II  and I  , 
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II   respectively such that the following equalities hold at every point of two surfaces 

E E ,   F F ,   G G                 (4.11) 

L L ,   M M  ,   N N                (4.12) 

then there exists an appropriate translation and rotation such that S  and 
S  

coincide exactly implying they have the same shape. 

The theorem implies that an arbitrary smooth 3D surface shape is completely 

captured by six scalar functions, i.e. E, F, G, L, M, and N, i.e. an arbitrary smooth 3D 

surface can be uniquely represented by the six scalar functions. Although these scalar 

functions depend on the surface parameterization or the embedded coordinate frame, 

there are several combinations of these functions that yield specific features of surface 

shape, which are invariant surface features. Surface curvature is one of the most 

important invariant surface features. 

Gaussian curvature K of a surface is determined by the coefficients of the first 

and second fundamental forms and it is given as follows: 

1

det det
E F L M

K
F G M N

                 
             (4.13) 

where  det   denotes the determinant of a matrix. The mean curvature H of a surface 

is defined as follows: 

1
1

2

E F L M
H tr

F G M N

             
                (4.14) 

where  tr   denotes the trance of a matrix. Both Gaussian curvature and mean 

curvature are obtained by mapping the two fundamental form functions into a single 

scalar function. The signs of the Gaussian and mean curvature determine eight basic 

surface types as listed in Table 4.1 (Besl, 1988).  
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Table 4.1 Surface Type determined by signs of curvature and mean curvature 

(Adopted from Besl, 1988) 

 K<0 K=0 K>0 

H<0 Peak Ridge saddle ridge 

H=0 Minimal Flat none 

H>0 Pit Valley saddle valley 

There are other ways of looking at surface curvature. The ratio of the first 

fundamental form I and the second fundamental form II is known as normal curvature 

function. Normal curvature at a surface point is the curvature of a curve in the surface, 

of which the osculating plane is perpendicular to the surface tangent plane at the 

surface point. It varies as a function of the direction of the differential vector (du, dv) 

in the parametric plane (see Figure 4.2), and is given by:  

 
2 2

2 2

2
( , ), ,

2
normal

Ldu Mdudv Ndv
u v du dv

Edu Fdudv Gdv

 
 

 
S            (4.15) 

Eq. (4.15) can be rewritten as: 

 
2

2

2
( , ),

2
normal

L M N
u v

E F G

   
  

   
S                (4.16) 

where tandv du     (see Figure 4.2). normal  has two extreme values and occur 

at the roots 1  and 2  of: 

2 1

det 0E F G

L M N

  
 

 
 
 

                   (4.17) 

The quantities 1  and 2  define two directions in the parametric plane and are 

called principle directions. The two extreme values of normal  at a surface point are 
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called principle curvatures and denoted as 1  and 2 . The signs of two principle 

curvatures determine six basic surface types as listed in Table 4.2 (Besl, 1988).  

Table 4.2 Surface Type determined by signs of principle curvatures (Adopted from 

Besl, 1988) 

 1 <0 1 =0 1 >0 

2 <0 Peak Ridge saddle 

2 =0 Ridge Flat valley 

2 >0 Saddle Valley pit 

The principle curvatures 1  and 2  are pair of orientation invariant surface 

descriptors which are similar to the Gaussian and mean curvature. In fact, the 

Gaussian and mean curvature can also be determined by the two principle curvatures 

as follows: 

1 2K    ,  1 2

2
H

  
                  (4.18) 

Gaussian and mean curvatures, as well as principle curvatures, are widely used as 

shape descriptors in image processing, computer visualization and pattern recognition 

(Iyer et al, 2005). They are all invariant to arbitrary coordinate transformations and 

are also free to the surface implicit parameterization. In contrast, six E, F, G, L, M, 

and N depend on the choice of the surface parameterizations, though they uniquely 

characterize the surface shape. As a result, it is more convenient to use the surface 

curvature as a surface shape descriptor. In practice, different kinds of surface 

curvature have advantages and disadvantages depending on their application. A 

comparison among different kinds of surface curvature is summarized. 

Firstly, Gaussian and mean curvature uniquely determine the surface shape 
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according to the Gaussian Curvature Uniqueness Theorem (Hsiung, 1981; Horn, 1984) 

and the Mean Curvature Uniqueness Theorem (Hsiung, 1981; Horn, 1984). However, 

principle curvatures do not permit such kind of comparable theorem due to its 

directional dependence. Secondly, the values of the principle curvature should 

combine with corresponding principle directions for a richer description of the surface 

while the values for Gaussian and mean curvature are free to direction. Thirdly, the 

mean curvature and principle curvature change the sign if the orientation of the 

surface is reversed. However, the Gaussian curvature is entirely independent of the 

surface parameterization. Fourthly, surface curvatures are sensitive to the noise 

presented in the analyzed data in numerical computation. Since the mean curvature is 

the average of the principle curvatures, it is slightly less sensitive than principle 

curvatures. However, Gaussian curvature is more sensitive to noise. Finally, the 

calculation of principle computations is more complicated as compared with the mean 

and Gaussian curvature. Moreover, it is much simpler to compute the sign of the mean 

and Gaussian curvature than that for the principle curvature.  

Although the Gaussian and mean curvature do not contain all the surface shape 

information contained in the six functions in general, the two curvature functions 

contain essentially all surface shape information under certain sets of constraints. The 

uniqueness theorem indicate that the surface corresponding searching/surface 

matching is able to perform without considering the embedded coordinate frame if a 

freeform surface is fully represented by Gaussian curvature and mean curvature. 

4.2.2 Invariant surface feature pattern 

Uniqueness theorem provides the basis for representing and characterizing 

freeform surfaces by invariant surface features. This section presents an invariant 
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feature pattern based freeform surface representation, which is generated based on the 

invariant surface features such as Gaussian curvature. The main theme of the method 

is shown in Figure 4.3.  

  

Figure 4.3 Invariant feature pattern based surface representation method 

A grid of points are uniformly sampled on a freeform surface and the values of 

the invariant surface feature of these points are arranged on a 2D plane to form a 

bitmap image. This bitmap image is named invariant feature pattern of the surface 

since it is not only invariant to the coordinate transformation but is also free to the 

implicit parameterization of the surface. However, the layout of a two dimensional 

texture onto a general freeform surface inevitably creates distortion in all but 

developable surfaces, i.e. surfaces with zero Gaussian curvature, such as a cylinder 

(Ahlfors, 1960). Hence, the problem is how to fit a 2D pattern into a freeform surface 

such that the texture distortion is minimized. In the present study, a woven mesh 

model (Wang, 2005) is employed to address this problem. 

Woven mesh model is a kind of woven fabric model, which consists of a series 

of vertical threads (warp) with a series of horizontal threads (weft) as shown in Figure 

4.4. The directions of warp and weft are orthogonal to each other. There are three 

types of springs in woven mesh model, i.e. weft spring, warp spring, and diagonal 

spring. The three types of spring have their own initial length at which the spring has 

Invariant Feature value 
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zero energy. The initial length of the weft spring, the warp spring, and the diagonal 

spring are denoted as 
weftl , 

warpl  and 
diagl , respectively. When the mesh model is 

fitted into a freeform surface, the texture may be distorted and the directions and 

lengths of the springs are not preserved as compared with the original 2D pattern. This 

leads to the strain energy. The distortion can then be minimized by minimizing the 

strain energy in the mesh model during the fitting process. 

 

Figure 4.4 Woven mesh model 

Suppose ( , )u vS  is a parametric surface, then the mesh model is fitted into ( , )u vS  

by the following steps.  

Step 1: Define a point and two perpendicular vectors on ( , )u vS  denoted as cP  and 

( ,A B ), as shown in Figure 4.5(a). The vectors are selected in such a way that the 

sampled points can cover as large an area of the surface as possible. In practice, the X , 

Y  axis of the embedded coordinate system are appropriate for a measured surface. 

Step 2: N M  grid of points are extracted from ( , )u vS  with spacing weftl  and warpl . 

It starts from extracting two perpendicular curves on ( , )u vS , as shown in Figure 

warpl
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4.5(a). Cutting planes A and B are determined by normal vector cN  of ( , )u vS  at 

point cP  and vector ,A B  respectively. Then two rows of points are sampled on the 

intersection curves AC  and BC . Figure 4.5(b) shows the method for sampling the 

points. Suppose ,c iP  is an arbitrary sampled point on curve AC , the subsequent point 

, 1c iP  is determined in two steps. In the first step, a point ,

o

c iP  is determined by Eq. 

(4.19) as follows: 

, , , ,weft

o

c i c i c i c iT Tl P P                   (4.19) 

where ,c iT  is tangent vector of  AC  in ,c iP . In the second step, , 1c iP  is determined 

by projecting ,

o

c iP  on AC . The normal direction from point ,

o

c iP  to AC  is 

determined by solving the following equation: 

    , 0c iu u  C C P  

where  uC  is the B-spline form of AC ;  uC  is the first derivative of  uC . It 

can be solved iteratively with Newton method (Piegl and Tiller, 1997). With the same 

method, a row of points can be determined on BC  with sampling step warpl .  

 

Figure 4.5 The method for selecting two perpendicular rows of points 
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Figure 4.6 shows the method for determining the remaining points in the grid. If 

points cP , , 1c iP  and , 1c jP  are already determined in previous steps, a point 1, 1

o

i j P  

is determined by: 

       1, 1 1 , , , ,

o

i j c i c c i c c j c cwarp j cs l       P P P P P P P P P          (4.20) 

1, 1i j P  is then determined by projecting 1, 1

o

i j P  on ( , )u vS . With the same method, 

1, 2i j P  can be determined by points , 1c jP , , 2c jP  and 1, 1i j P .  

 

Figure 4.6 The method for determining points in the grid 

Step 3: The distribution of the sampled points is optimized by minimizing the strain 

energy. The total strain energy of the sampled points is given by: 
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where adjP  is adjacent point of ,i jP , adjk  is the spring constant of ,i j adjP P ; adjl  is 

the initial length of the spring at zero-energy stage; sn  and sm  are the number of 

sampled points along two sampling directions. It is noted that there are 8 adjacent 

points for each internal point, 5 adjacent points for edge points and 3 adjacent points 

for corner points. To minimize the strain energy, the following should be preserved for 

each sampled points: 

 ,

,

, ,

0
i j adj

adj i j adj adj

adji j i j adj

E
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            (4.22) 
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A diffusion-like process is employed to release the strain energy (Kobbelt, 2000; 

Wang et al, 2005). The total strain energy is released by adjusting the distribution of 

sampled points from those points nearby the centre point cP . For each point, new 

position is obtained iteratively by: 

, ,

,

new

i j i j

i j

E
 


P P

P
                       (4.23) 

where   is a damping factor. The iteration is terminated when the variation of E  is 

in the prescribed tolerance. Figure 4.7 shows an example of the generation of an 

invariant feature pattern for a given sinusoidal surface. 

      

      

        

Figure 4.7 An example of generation of invariant feature pattern of a freeform surface 
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Step 4: The invariant surface features such as Gaussian curvature and mean curvature 

are calculated for each sampled point. The invariant feature values of the grid of 

points are then used to form a feature pattern in the 2D plane. 

From the generation process, it can be seen that the IFP is composed of two kinds 

of geometrical features of ( , )u vS : invariant surface feature of a range of data points, 

and the distance between them. This makes IFP to be invariant to the coordinate 

transformation and is also free from the implicit parameterization of the surface. 

Moreover, the uniqueness theorem implies that IFP uniquely represents the geometry 

of a surface when the density of the IFP is sufficient.  

4.3 Invariant Feature Pattern Based Surface Matching and Comparison 

Invariant feature pattern (IFP) based surface matching and comparison intends to 

represent the ultra-precision freeform surfaces by IFP, which is free to the embedded 

coordinate system. The corresponding searching/surface matching problem between 

the measured surface (MS) and the design surface (DS) is then converted to IFP 

registration. That is, the corresponding searching is performed in 2D space rather than 

in 3D space as shown in Figure 4.8. By registering the IFP of MS on IFP of DS, 

point-to-point correspondence pairs are established between MS and DS. The 

established correspondence pairs can then be used to estimate the coordinate 

transformation of the measured surface in least square scheme. 
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Figure 4.8 IFP based surface matching process 

4.3.1 Correspondence establishment 

It is noted in the literature review in Section 2.4.3 that the correspondence 

establishment between MS and DS is the core step of the form characterization of 

freeform surfaces. If the DS and MS are represented by IFP, then the correspondence 

between MS and DS can be established by the image registration of IFP of MS on IFP 

of DS. Image registration is a process of geometric alignment of two similar images 

so that they may be compared and analyzed in a common reference frame. 

Registration problems that involve translation and rotation can be recovered by 

applying Fourier-Mellin transform and phase correlation method (Chen, 1994; Takita, 

2003). This method represents the image in frequency domain using Fourier 

transformation so as to recover the translation. Then polar transformation is used to 

the magnitude spectrum and the rotation is recovered by using phase correlation in the 

polar space. 

Suppose  ,f x y  is a translated and rotated replica of  ,f x y  given as 

follows: 

   , cos( ) sin( ) , sin( ) cos( )f x y f x y x x y y           (4.24) 

where  ,x y   is a translation distance and   is a rotation angle as shown in 

x  

y  

z  

x  

y  
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Figure 4.9. According to the Fourier translation property and the Fourier rotation 

property, the Fourier transformation of f  and f   are related by: 

   , exp 2 ( ) ( cos( ) sin( ), sin( ) cos( ))F j x y F                     (4.25) 

where F  and F   are Fourier transform of f  and f  , respectively. Therefore, 

from Eq. (4.25), Eq. (4.26) preserves: 

 , ( cos( ) sin( ), sin( ) cos( ))M M                (4.26) 

where M   and M  are magnitude of F  and F  , respectively. 

 

Figure 4.9 Image registration of IFP of MS on IFP of DS 

According to Eq. (4.26), the spectral magnitude of the Fourier transform of an 

image is translational invariant, and the rotation of the image causes the spectral 

magnitude to be rotated with the same angle. By representing the spectral magnitude 

of two images in polar coordinates, the rotation angle is converted to translational 

offsets in polar coordinates as shown in the following equation: 

 , ( , )PM PM                         (4.27) 

where PM  and PM   are the spectral magnitude of f  and f   in polar 

coordinates, respectively. The translational offsets can be determined by phase 

correlation method (Takita et al, 2003), which is done by extracting and correlating 

IFP of DS  

f   

f

 



 

y

 

x
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the phase of both PM  and PM   as follows: 

 
 

 

 

 
   

, ,
, exp , ,

, ,
FPM FPM

FPM u v FPM u v
Cor u v j u v j u v

FPM u v FPM u v



     

    (4.28) 

where FPM  and FPM   are the Fourier transform of PM  and PM  ; FPM  and 

FPM   are the spectral phase of PM  and PM  . In the absence of noise, Eq. (4.28) is 

reduced to: 

   , exp 2Cor u v u v                      (4.29) 

The inverse Fourier transform of Eq. (4.29) is a Dirac δ-function yielding a sharp 

maximum at  0, . Since the spectral magnitude is a periodic function of the polar 

angle, the determined angle of rotation may be either   or 180 . Hence, the  

f   is rotated by   and 180 , and the two rotated f   are phase correlated 

with f . The highest maximum of the outputs is located and is considered as the 

translational offset  ,x y   of f  . 

The Fourier-Mellin transform and phase correlation based image registration 

process is summarized as follows: 

(i) Input image f  and its translated and rotated image f  ; 

(ii) Compute the Fourier transforms of f  and f  , and transform the spectral 

magnitude of f  and f   into polar coordinate; 

(iii) Determine the rotated angle   by phase correlation method; 

(iv) Rotate the f   by   and 180 , and the two rotated f   are matched 

with f  by phase correlation method respectively; 

(v) Determine the translational offsets by locating the highest maximum of the 

outputs. 
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Point to point correspondence between MS and DS can be established after the 

IFP registration. It should be noted that IFP of MS and DS must have the same 

spacing in two directions, respectively. Suppose MSI  and DSI  are IFP of MS and DS, 

respectively; ,k sQ  ( 0,1,...,k n , 0,1,...,s m ) are sampled points when generating 

MSI ; ,i jP  ( 0,1,...,i N , 0,1,...,j M ) are sampled points when generating DSI . 

Then the corresponding index of ,k sQ  with respect to the centre of MSI  is given as 

follows: 

 ,

2
Ind

2k s

k n
s m
 
  

Q                      (4.30) 

After registering MSI  on DSI  with [ , , ]x y   , the new index of ,k sQ  in DSI  

is given as follows: 

     
   ,

2 cos( ) 2 sin( )
NInd

2 sin( ) 2 cos( )k s

k n k n x

k n s m y

    
      

Q
 
 

       (4.31) 

Suppose  ,NInd k sQ  is located in a sub-rectangular of DSI  as shown in Figure 4.10, 

then Eq. (4.32) and Eq. (4.33) preserve 

 ,NInd k s

i
j

       
Q                      (4.32) 

 ,
,

,

NIndk s
k s

k s

Qx i
Qy j
         

Q                   (4.33) 

where  ,i j  is the corresponding index of sampled point ,i jP  on DSI . Based on 

,k sQx  and ,k sQy , a point ,

o

k sQ  can be determined as follows: 

   

   

   

, , 1, , 1, , , , 1 , , 1 ,

1, , , 1, , 1, , 1, 1 1, 1, 1 1,

,

, 1 , 1, 1 , 1 1, 1 , 1 , , , 1

1

4

i j k s i j i j i j i j k s i j i j i j i j

i j k s i j i j i j i j k s i j i j i j i jo

k s

i j k s i j i j i j i j k s i j i j

Qx Qy

Qx Qy

Qx Qy

   

        

       

     

      


     

P P P P P P P P P

P P P P P P P P P
Q

P P P P P P P P

   

, , 1

1, 1 , , 1 1, 1 , 1 1, 1 , 1, 1, , 1 1, 1

i j i j

i j k s i j i j i j i j k s i j i j i j i jQx Qy



            

 
 
 
 
 
 
       
 

P

P P P P P P P P P

 (4.34) 
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,

o

k sQ  is projected on DS and the projection is considered as the corresponding point of 

,k sQ  on the DS. Figure 4.11 shows an example of correspondence establishment 

process for given two sinusoid surfaces. 

 

Figure 4.10 Location of index of ,k sQ  on DSI  

  

Figure 4.11 Correspondence establishment by IFP registration 

(c) IFP of DS 

(b) IFP of MS (a) DS and MS 

(e) Correspondence establishment 

(d) Image registration 

 ,i j

 

 1,i j

 

 , 1i j 

 

,k sQy
 

,k sQx
 

,NInd k sQ
 

 , 1i j 
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4.3.2 Form error evaluation 

Form error of a measured ultra-precision freeform surface is evaluated by 

comparing it with the theoretical design surface as follows: 

 i i i
E n  

i
TP Q                       (4.35) 

where  ,i iP Q  is a correspondence pair in a homogeneous coordinates; in  is unit 

normal vector of DS at point iP ; T  is a coordinate transformation matrix used to 

remove the misalignment between MS and DS and is given as follows: 

c( )c( ) s( ) ( ) ( ) ( ) ( ) s( ) ( ) ( ) ( ) ( )

s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) c( )c( )

0 0 0 1

z y z y z y x z x z y x x

z y z x z y x z x z y x y

y y x y x z

r r r c r c r s r s r r s r c r s r c r t

r c r c r c r s r s r s r c r s r s r s r c r t

s r c r s r r r t

  
 
  
 
 
 
 

T   (4.36) 

where  xt , yt  and zt  are the translation components, and xr , yr  and zr  are the 

rotation angles along X , Y  and Z  axis respectively; ()c  and ()s  are abbreviations 

of the cosine and sine functions. By using the correspondence established in Section 

4.3.1, the six spatial parameters , ,x y z x y zr r r t t t   m ，， ，  can be determined by 

minimizing the sum of squared form error i
E  of each correspondence pairs. 

 
2

1

min
N

i i

i

F


 m TP Q                    (4.37) 

where N is the number of the correspondence pairs. 

A residual vector 3 1NR is defined as 

3 2

3 1

3

i i

k i i

i i

px qx k i

R py qy k i

pz qz k i

  


   
  

     1 , 2 , . . . ,i N           (4.38) 

where [ , , ]i i ipx py pz  is components of  iP ; [ , , ]i i iqx qy qz  is components of i
T P . 
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Then the Eq. (4.37) can be rewritten in matrix form as 

  min TF m R R                       (4.39) 

Then the following preserve for the local minimum 

2 0

T
F  
  

  

R
R

m m
                    (4.40) 

Eq. (4.40) is expanded with the Taylor series, 

   
2

2

2
2 2 0

T T

TF
O 

                                

R R R R
R R m m m m

m m m m m
  (4.41) 

By ignoring the higher order terms in Eq. (4.42), the Newton method (Fletcher, 

2000) can be used iteratively updates the solution by  

 
1

T T


  m J J S J R                      (4.42) 

where 





R
J

m
  is 3 6N   Jacobian matrix; S  is 6 6  matrix with 

2
T

i j

i j
m m




 

R
S R

, . Newton method is known to exhibit a quadratic convergence rate. 

Due to the computation complexity of the second order derivatives at each iteration, 

the term S  is sometimes ignored and this leads to the Gauss-Newton (GN) method 

(Chong, 2001) 

 
1

T T


 m J J J R                       (4.43) 

GN method has a super-linear convergence rate when the given initial guess is 

sufficiently close to the solution. A drawback of this method is the relatively narrow 

convergence domain and the results may be tracked at a local minimum or even 

divergent if the initial guess is not provided appropriately.  

To enhance the robustness of the algorithm to the initial guess, a new method 

was developed by Kenneth Levenberg and Donald Marquardt, named 
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Lervenberg-Marquardt (LM) method (Marquardt, 1963) as given by 

 
1

T T


  m J J D J R                      (4.44) 

where   is a damping factor and D  is a diagonal matrix with entries equal to the 

diagonal elements of T
J J  while it is feasible to set D  as an identity matrix in 

practice. The parameter   is used to control the step-length to guarantee the 

reduction of F  at each iteration (see Eq. (4.37)). To speed up the convergence rate, 

  is reduced in each iteration and the LM method moves towards the GN method 

and allows faster convergence near the solution. A common technique for the 

selection of   is given by Jiang et al (Jiang et al, 2010).  

Considering the difficulty in guessing a good initial value for the iteration in real 

measurement, this study chooses more stable Levenberg-Marquardt method to solve 

Eq. (4.37). A schematic diagram for the determination of the coordinate 

transformation matrix is shown in Figure 4.12.  

The key part of the programme is to calculate the Jacobian matrix 





R
J

m
. 

Recalling that: 

1 2 1 2[ , , ... , ] [ , ,... , ]T T

N N R T T TP P P Q Q Q            (4.45) 

Then: 

1 2

T

N

  
 

  

T T T
J

m m m
[ Q , Q ,... , Q ]                (4.46) 

It is noted from Eq. (4.46) that the calculation of Jacobian matrix is complex and time 

consuming if it needs to be determined at each iteration. Hence, the six spatial 

parameters are estimated recursively in this study. In each iteration, m  is estimated 

with given 0m  by Eq. (4.44); and it is used to transform each i
Q  to a new position 

by T . In the next iteration, a new m  is estimated with given 0m  based on the 
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moved i
Q . The process is continued and is terminated upon the norm of m  is 

smaller than prescribed value LM . The transformation matrix of the original 

correspondence pairs is obtained by cumulating the T  in each iteration. It is noted 

that 0m  is always set to be [0 0 0 0 0 0]，，，，，  and does not change throughout the 

whole process.  

 

Figure 4.12 Schematic diagram of the determination of six spatial parameters 

In this way, the Jacobian matrix J  does also not change in the whole iteration 

and can simply be determined as follows: 

   1 1, ..., , ...,
T T

N N R P P Q Q  

Correspondence pairs  ,i iP Q , 1,2,...,i N  

max i i LM  P Q 

 ? 

Converg

ed 

YES 

NO 

Initialize 
0 [0 0 0 0 0 0]m ，，，，，  

 
1

T T


  m J J D J R   





R
J

m
    

i i




T

T T T

Q Q


 

1,2,...,i N  
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0 1 0 0 3 2

0 0 1 0 3 1

0 0 0 1 3

i i

k i i

i i

qz qy k i

qz qx k i

qy qx k i

  


  
 

J            (4.47) 

The correspondence established by IFP registration can be further refined by 

orthogonal point projection if it is necessary. The refinement can be performed in a 

nested approach. That is, a new the correspondence is established by projecting each 

measured point on the design surface and the projection is considered as the 

correspondence pair of that point. The newly established correspondence is then used 

to estimate the coordinate transformation function. This process is continued upon 

reaching the desired accuracy. max i i P Q  is the variation of the maximum 

deviation of the measured data from the design surface in each iteration. A schematic 

diagram of correspondence refinement is shown in Figure 4.13.  

 

Figure 4.13 A schematic diagram of correspondence pair refinement 

One of the problems needs to be addressed is the calculation of Jacobian matrix. 

Project i
Q  on design to determine new i

P  1,...i N  

Measured points iQ , 1,2,...,i N  
1,...i N  

Determine m by LM method using 

established correspondence  ,i iQ P  
1,...i N  

( )i iQ T m Q  1,...i N  

max i i rf  P Q

 ? 

Converge

d 

YES 
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Recalling Eq. (4.46), the term 




P

m
 is considered to be zero since P  is free to m  

in LM method. However, in the correspondence refinement, P  is the projection of 

Q . When the Q  moves, P  moves as well, which means P  is relevant with the 

motion parameters m . i




P

m
 is further expended as follows: 

i i i

i

  


  

P P u

m u m
                      (4.48) 

where  ,i i iu vu  is the parameters of i
P  on the design surface. Since each 

correspondence pair  ,i iP Q  is the nearest to each other, the following relation 

always holds true (Ahn, 2004): 

     2 0

T

T i
i i i i i i

i i

  
     

  

P
P Q P Q P Q

u u
          (4.49) 

Eq. (4.49) is differentiated to m , so that: 

      

   
0

T T T

uu uvT T

T T

uv v

    
    

   

P P Q P P Q P P Q
P P P Q

P P Q P P Q

u

u u m m u mu u
m

  (4.50) 

where the subscript i  is omitted and the partial derivatives 




P

u
 is written as Pu  

for the sake of clarity. Hence: 

   

   

1
T T

uu uvT T

T T

uv v



   
       

P P Q P P Q
P P P Q

P P Q P P Q
m u u u m

u          (4.51) 

Jacobian matrix can then be obtained by Eq. (4.46), Eq. (4.48), and Eq. (4.51). 

4.3.3 Surface parameters for form error characterization 

The form error of a measured surface is evaluated after surface matching. The 



Chapter 4 Invariant Feature Based Form Error Evaluation of Ultra-precision Freeform Surfaces 

135 

 

form error of the measured surface at a measured point iQ  is defined by:  

     
2 2 2

i i i i i i iE px qx py qy pz qz                  (4.52) 

If the measured point is above the design surface, iE  is positive otherwise is 

negative. Three surface parameters are defined in the present study to characterize the 

evaluated form error of the measured surface: 

(i) Surface peak-to-valley height error tS  which is defined as:  

max( ) min( )t i iS E E                        (4.53) 

(ii) Surface root-mean-square error qS  which is defined as: 

2

1

1 N

q i

i

S E
N 

                          (4.54) 

(iii) Surface average error aS  which is defined as: 

1

1 N

a i

i

S E
N 

                           (4.55) 

4.4 Experimental Verification 

To demonstrate the performance of the invariant feature-based pattern analysis 

method (IFPAM) for generalized form characterization of ultra-precision freeform 

surfaces, the method has been implemented using the MATLAB software package for 

the freeform surfaces in B-spline form in order to enhance the generalizability of the 

algorithm. The dependence of various critical factors, such as spacing of IFP, to the 

accuracy of the characterization results is also studied. It is worthnoting that all 

experiments are conducted on relatively flat freeform surfaces in which the form error 

is difficult to be evaluated due to the lack of strong geometric features for surface 
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matching. 

4.4.1 Error budgeting 

In the present study, the experiments for error budgeting are used to determine 

the systematic error of the IFPAM through a series of simulation experiments on two 

different kinds of surface, which include an aspherical surface and a continuous 

freeform surface. In the following simulation, a portion of the given design surface 

(DS) are sampled and transformed to a position by [1,1,1,1,1,1]m  to simulate the 

measured surface (MS). Then IFPAM is used to perform the corresponding 

searching/surface matching and form error evaluation. Since the MS is directly 

transformed from the DS, the form error of the MS should be zero. Hence, the 

evaluated form error of the MS is considered as the systematic error of the IFPAM. 

4.4.1.1 Study on an aspherical surface 

An optical aspherical surface is defined as:  








n

i

i

i pA
pCK

Cp
z

1

2

2
22

2

)1(11
              (4.56) 

where, RC /1  is the radius of curvature and R  is the radius of the best fit 

spherical surface; 22 yxp  is the distance from the optical axis Z ; the conic 

constant K  is a parameter for measuring the eccentricity of the conic surface; the 

even-numbered values of iA2  are aspheric deformation constants. The parameters of 

the aspheric surface machined in the present study are tabulated in Table 4.3.  
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Table 4.3 Parameters of the aspherical surface 

Parameters Value 

R (mm) -37.68811 

K  0 

2A  0 

4A  2.371191710
-3 

6A  -2.882116310
-5 

8A  9.627440510
-7 

10A  -1.371815310
-9 

Figure 4.14 shows the topography of the DS. From the DS, a section is chosen as 

the MS and is moved to an arbitrary position by adjusting the six parameters of 

coordinate transformation  T m  to indicate the misalignment between the coordinate 

systems of MS and DS. Then the IFPAM is used to perform surface matching and 

form error evaluation of the MS by comparing with the DS. In the present case study, 

the Gaussian curvature is used as invariant surface feature to generate the IFP of both 

MS and DS. 

 

Figure 4.14 Designed aspherical surface 

As shown in Figure 4.15a and Figure 4.15b, the form characterization starts from 

generating the IFP of the MS and the DS with a spacing of 0.1 mm in both two 
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sampling directions ( X  and Y  axes), respectively. Then the image registration 

technique presented in Section 4.3.1 is used to register the IFP of the MS on IFP of the 

DS to establish the correspondence between MS and DS as shown in Figure 4.16.  

    

(a) IFP of DS                        (b) IFP of MS 

Figure 4.15 Generated IFP of DS and MS (aspherical surface) 

 

Figure 4.16 Image registration of IFP of MS on IFP of DS (aspherical surface) 

The correspondence pairs are then used to estimate the six parameters of 

coordinate transformation. Figure 4.17 shows the evaluated form error of the MS. It is 

found from the results that the evaluated form error of the MS is smaller than 1 nm, 

which means the systematic error of IFPAM is smaller than 1 nm when the IFP is 

generated with spacing 0.1 mm in both sampling directions. It should be noted that 

IFPAM is able to characterize the form of the aspherical surfaces with accuracy at the 
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sub-nanometre level.  

 

Figure 4.17 Evaluated form error of the MS (aspherical surface) 

4.4.1.2 Study on continuous freeform surface 

A continuous freeform surface is designed and described by the following 

equation: 

 sin 0.5 cos(0.5 ) 0x x         (4.57) 

with dimensions 4 4x     and 4 4y    . From the DS, a section is chosen 

as the MS and is moved to an arbitrary position by adjusting the six parameters of 

coordinate transformation  T m  to indicate the misalignment between the coordinate 

systems of the MS and the DS. To test the sensitivity of IFPAM to the initial position 

of the MS and DS, MS is transferred to three different positions by pure translation 

(PT) or translation combining with rotation (TR). It is emphasized that a rough 

matching process is required if least square based surface matching methods are 

undertaken for all the three tested initial positions. 

Figure 4.18 shows the form error evaluation process. As shown in Figure 4.18a 

and Figure 4.18b, form characterization starts from generating the IFP of the MS and 

the DS with a spacing of 0.1mm in both sampling directions ( X  and Y  axes), 
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respectively. Then the image registration technique is used to register the IFP of the 

MS on the IFP of the DS as shown in Figure 4.18c. The corresponding pairs are then 

used to estimate the six parameters of coordinate transformation. Figure 4.18d shows 

the evaluated form error of the MS. 

Table 4.4 shows the results of the surface matching and the corresponding form 

error evaluation with different parameters of coordinate transformation. It is found 

that the systematic error of the IFPAM is quite small for the surface matching that 

only involves translation. However, when the surface matching involves translation as 

well as rotation, the systematic error becomes bigger along with the increase of angle 

of rotation. This is due to the fact that the rotation of the MS produces texture 

distortion to the IFP of the MS, as compared with that for the IFP of the DS, which 

leads to an error in the image registration process. 

 

Figure 4.18 Form error evaluation process by IFPFC (smoothed freeform surface) 

(a) IFP of DS (b) IFP of MS 

(d) Form error evaluation (c) Image registration 
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This problem can be easily solved by performing IFPAM several times to reduce 

the angle of rotation each time. Normally, the IFPAM is required to be performed no 

more than twice, even when the rotation angle is quite big. For the third case in Table 

4.4, the IFPAM is required to be performed twice. In addition, the large angle of 

rotation is rare in practice since it can be simply avoided by the operators. It should be 

noted from the results that the IFPAM demonstrates its low sensitivity to the initial 

position between the MS and the DS and high accuracy (nanometre to sub-nanometre 

level) in the form characterization of continuous freeform surfaces. 

Table 4.4 Form characterization results with various transformation parameters 

 , , , , ,x y z x y zT t t t r r r  

Translation Error (nm) Rotation Error (μrad) RMS (nm) 

xt  yt  zt  xr  yr  zr  qS  

1  3, 3, 3, 0, 0, 0PT  -1.9 8.4 0.1 0.3 0.7 4.0 0.2 

2  3, 3, 3, 2, 2, 2TR  17.1 9.8 1.8 4.3 2.5 9.8 13.3 

3  3,3,3,10,10,10TR  1337 1155 329 161 223 582 297.6 

Note: RMS: Root-mean-square 

4.4.2 Factors influencing accuracy of form characterization  

In the IFPAM, there are several factors that influence the reliability of the 

characterization results. The form error of a measured ultra-precision freeform surface 

is evaluated by Eq. (4.37). This is carried out by transforming the measured surface 

(MS) into the coordinate of design surface (DS) using the coordinate transformation 

matrix presented in Eq. (4.36), which is obtained based on the correspondence pairs 

 ,i iP Q  1,...i N . Hence, the accuracy of the form characterization results mainly 
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depends on the quality of the correspondence pairs. Theoretically, if there is no 

deviation between the MS and the DS, there should be a unique iP  in the DS for 

each iQ  such that a coordinate transformation matrix exists to perfectly match iP  

and iΤQ  for 1,...i N .  

In the IFPAM, the correspondence pairs are determined by IFP registration. As a 

result, the accuracy of the IFPAM mainly depends on the accuracy of IFP registration 

of the MS on the DS. In IFP registration, there are three factors that may affect the 

accuracy of the registration results, including the spacing of the IFP, i.e. the sampling 

density of the IFP; the texture distortion of the IFP; and the error generated in 2D-3D 

projection. The second and third sources of error are closely related to the complexity 

of the surface being characterized and the initial relative position between the MS and 

the DS. In this section, a study of the effect of these factors on the accuracy of the 

IFPAM is presented. 

4.4.2.1 The effect of the spacing of invariant feature pattern 

The spacing of the IFP is the most critical parameter that will seriously affect the 

accuracy of the IFP registration. In Section 4.2.2, the spacing in two sampling 

directions are given by weftl  and warpl . The effect of the spacing of IFP on the 

accuracy of the IFP based form characterization method is analyzed. Suppose the 

error of the estimated is [ , , ]x y    (see Eq. (4.31)), while that after IFP registration 

is [ , , ]ex ey    , then the error of the registered index of a measured point 

 ,NInd Qk s  in IFP of DS can be determined by: 
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 

 

 

 
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EIndY -IndX( )cos( ) IndY( )sin( )

Q Q Q

Q Q Q

i i i

i i i

ex

ey

  

  

      
   

         

  (4.58) 

According to Eq. (4.34), the displacement of the correspondence of ,Qk s  in 

design surface can be approximated as: 

   EIndX EIndYP Q Q
wefti i arpi w

Al l B             (4.59) 

Pi  leads to error to the estimation of six spatial parameters and the error can be 

approximated by:  

 
1

P
T T



  m J J J                  (4.60) 

where  1
=P P , ... , P

T

N
    is 3×4 residual vector; J  is the Jacobian matrix as 

given by Eq. (4.47); , , , , ,
x y z x y z

r r r t t t         m . 

With a small transformation perturbation, the resulting form error can be 

approximated as: 

 Q Qi i i ife n  ΔT                   (4.61) 

where ΔT  is the perturbed transformation matrix and can be approximated as 

follows 

1

1

1

0 0 0 1

z y x

z x y

y x z

r r t

r r t

r r t

   
 
   


   
 
  

ΔT                  (4.62) 

Eqs. (4.58-4.62) demonstrates the relationship between the IFP registration 

accuracy and the evaluated form error. It is seen from the deduction that the 

propagation of the error of IFP registration to the evaluated form error is a complex 

process that may vary with the change of distribution of the measured points and the 
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complexity of the surface being matched. In practice, iQ  can be replaced by the iP  

since iQ  and iP  are close to each other after surface matching. In the present study, 

IFP registration is carried out by the phase correlation method presented in Section 

4.3.1 which is able to achieve the registration with translation accuracy down to 

0.1-0.01 pixel (spacing) accuracy and rotation down to 1/40 degree. Hence, the 

spacing of the IFP can be estimated with respect to the required characterization 

accuracy for a specific freeform surface. 

To more effectively demonstrate the effect of the IFP spacing to the form 

characterization results, an analysis is carried out on a sinusoidal surface given by Eq. 

(4.57) based on Eqs. (4.58) to (4.62). Figure 4.19 shows the maximum error of the 

evaluated peak-to-valley height tS  with different IFP spacing ranging from 0.1mm to 

1mm. It should be noted from the results that the error of tS  shows exponential 

growth along with the increase of the spacing of IFP. When the spacing is smaller than 

0.2mm, the IFPAM is able to characterize the form of the given freeform surface with 

accuracy at the nanometre level (smaller than 10 nm). 

 

Figure 4.19 Maximum error of the evaluated tS  with different IFP spacings 
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4.4.2.2 Effect of the initial relative position between measured surface and design 

surface 

It is noted in Section 4.2.2 that the layout of a two dimensional texture map onto 

a general freeform surface inevitably creates distortion in all but developable surfaces. 

The distortion of IFP is closely related to the Gaussian curvature of the surface, which 

is an indicator of how far a surface is developable (Wang et al, 2005). Surface with 

zero Gaussian curvature corresponds to a developable surface which can be mapped 

to a plane with zero distortion. In fact, the distortion is a monotone increasing 

function of the Gaussian curvatures magnitude. Intuitively, the texture distortion of 

IFP affects the accuracy of IFP registration. This implies that the accuracy of IFP 

based method is affected by the surface complexity. 

However, IFP of the MS and the DS should have similar distortion since DS and 

MS are the same surface in different positions. That is, they possess the same surface 

complexity and the same curvature distribution. As presented in Section 4.2.2, the IFP 

is generated with a given centre point and two sample directions. Suppose the IFP of 

the MS and the DS are generated with the same centre point and the same sample 

directions, theoretically, the IFP of the MS should be exactly the same as the IFP of 

the DS, even though texture distortion occurred during the generation. Intuitively, the 

difference between the IFP of the MS and the DS is related to the difference between 

their centre point and sampling directions. This implies that the accuracy of the 

IFPAM may be affected by the initial relative position between the MS and the DS. 

As indicated in Section 4.2.2, in practice, the X , Y  axis of the embedded 

coordinate system are selected as sampling directions to generate the IFP of the MS 

and the DS. Hence, the sampling directions of MS are different from that of DS with 

the change of the relative position of MS with respect to DS. A series of experiments 



Chapter 4 Invariant Feature Based Form Error Evaluation of Ultra-precision Freeform Surfaces 

146 

 

have been conducted to study the effect of different sampling directions of MS and 

DS to the accuracy of the form characterization results. As shown in Figure 4.5, the 

IFP of the DS is generated along the  ,A B . Then a series of IFP of the MS are 

generated by rotating the  ,A B  with given angle  . The generated set of IFP of 

the MS is then registered on the IFP of the DS and the results are used to evaluate the 

form error of the MS.  

Figure 4.20 shows the maximum error of evaluated peak-to-valley height tS  with 

different   ranging from 0 to 20 degree. The results that the error of tS  shows 

exponential growth along with the increase of the spacing of IFP. The systematic error 

of IFP based method increases dramatically when the   is larger than 10 degrees. 

This is due to the fact that the rotation of the MS produces texture distortion to the IFP 

of the MS as compared with the IFP of the DS, which lead to an error in the image 

registration process. This problem can be easily solved by performing IFPAM several 

times to reduce the angle of rotation each time. Normally, the IFPAM is required to be 

performed no more than two times even when the angle of rotation is quite big. 

Indeed, the angle of rotation between the the MS and the DS can be easily controlled 

in the measuring process by operators. When the angle between the sample directions 

of MS and DS is smaller than 5 degrees, the accuracy of the IFPAM can be 

maintained smaller than 100 nm. 
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Figure 4.20 Maximum error of evaluated tS  with different   

4.4.3 Measurement of a freeform mould insert of a streetlight lens 

To further evaluate the capability of the developed IFPAM in real measurement 

of ultrap-precision freeform surfaces, a freeform mould insert of a streetlight lens was 

machined by a 7-aixs freeform polishing machine as shown in Figure 4.21a. The 

machined workpiece was measured by a Form Talysurf PGI 1240 freeform 

measurement system with a sampled area of 85×26 mm
2
. Figure 4.21b shows the 

measured discrete points. 

    

(a) Machined freeform mould insert        (b) Measured discrete points 

Figure 4.21 Measurement of a machined freeform mould insert of streetlight lens 
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Robust surface fitting and reconstruction algorithm presented in Chapter 3 are 

used to reconstruct a smooth surface from the measured data points for the extraction 

of the invariant feature pattern. For freeform surfaces, the confidence interval of 

fitting error is not easily determined from a pure geometric standpoint. In order to 

estimate the surface roughness of the machined workpiece, 10 different regions over 

the workpiece are sampled and measured by the Wyko NT8000 optical measuring 

system (Appendix II). Wyko NT8000 is an ultra-precision optical profiler which has 

8mm vertical scan range with sub-nanometer resolution. The average of tS  and 
qS  

of 10 sampled regions are considered as roughness parameters of the workpiece, i.e. 

3.07tS  μm , 0.29qS  μm . Then, the confidence interval can be determined 

according to Eq. 4.63 as follows: 

 1.53 3.07MEr  s.t.  0.35aEr   (μm )        (4.63) 

A smooth surface is fitted on the measured data with the maximum fitting error 

1.97 μm, which is a value in the confidence interval. Figure 4.22a shows the fitting 

error map. Based on the reconstructed surface, Gaussian curvature of the measured 

surface can be calculated. It is seen from Figure 4.22b that there is no sharp variation 

caused by the surface roughness. An over fitting case is also studied and is shown in 

Figure 4.23. The surface is reconstructed with maximum fitting error 0.58μm (see 

Figure 4.23a), which is a value below the confidence interval. It is clearly seen from 

Figure 4.23b that the Gaussian curvature of the reconstructed surface varies sharply, 

which indicates that the tight fitting threshold makes the surface roughness 

significantly affecting the smoothness of the reconstructed surface. 
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(a) Fitting error map      (b) Gaussian curvature of reconstructed surface 

Figure 4.22 Experimental results of well surface fitting 

      

(a) Fitting error map      (b) Gaussian curvature of reconstructed surface 

Figure 4.23 Experimental results of over surface fitting 

The form characterization of the machined surface is performed based on the 

reconstructed MS. Figure 4.24 shows the IFP registration result, and the evaluated 

form error of the MS is shown in Figure 4.25. To verify the accuracy of the IFPAM, 

the results are compared with that is obtained by a Robust Form Characterization 

Method (RFCM) (Cheung et al, 2006). RFCM is developed based on the idea of the 

traditional iterative closest point (ICP) method. A comparison of the form 

characterization results is summarized in Table 4.5. It is noteworthy that the 

characterization results based on the reconstructed surface agree with those obtained 

by the traditional method.  
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Figure 4.24 IFP registration of the MS on the DS of the streetlight lens 

 

Figure 4.25 Evaluated form error of the MS of the streetlight lens 

Table 4.5 Form Characterization results comparison 

Surface parameters ( m ) Reconstructed surface Measured data 

Surface Profile error, tS  18.8 19.7 

Root mean square error, 
qS  6.39 6.42 

4.5 Summary 

Traditional form characterization methods for freeform surfaces depend on 
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embedded coordinate systems, which present barriers for surface form error 

evaluation by the comparison between the designed model and the measured surface. 

Although extensive research work has been conducted in recent years on the 

development of more effective and accurate freeform surface matching techniques, 

there are still some problems, such as the uncertainty due to the dependency of the 

methods on the coordinate frame and the geometry of the surface being characterized. 

This chapter presents an invariant feature-based pattern analysis method (IFPAM) 

for generalized characterization of ultra-precision freeform surfaces with 

sub-micrometer form accuracy. The IFPAM makes use of orientation invariant surface 

features to represent the geometry of the freeform surface with an invariant feature 

pattern (IFP). Surface corresponding searching is performed by IFP registration based 

on the Fourier-Mellin transforms and phase correlation. The technological advantages 

and merits of IFPFAM are summarized as follows:  

(i) It is a generalized method for form characterization of different types of surfaces. 

The IFP is generated by mapping the intrinsic surface feature of a freeform 

surface, such as Gaussian curvature, into a 2D pattern. Hence, the IFP is a 

generalized surface feature that is independent of the type of surface being 

characterized.  

(ii) It is robust to the initial position and the proportion of the measured surface 

relative to the design surface. The IFPAM represents the surface geometry by an 

orientation independent IFP, which makes the IFPAM free from the coordinate 

system. This addresses the deficiencies of traditional distance error based 

approaches, such as least squares or minimum zoom methods.  

(iii) The IFPAM is computationally efficient. The method does not involve iteration 

and high quality corresponding pairs can be established in one step in terms of 
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IFP registration. Hence, fast surface matching can be performed even if a large 

number of measured points are involved. 

(iv) The results of computer simulation demonstrate the systematic error of the 

IFPAM in freeform surface matching and form error evaluation in a noise free 

ideal case. The results show that systematic error of the IFPAM is found at 

sub-nanometre level, which implies that IFPAM is capable of realizing precise 

matching between the measured and the designed surfaces for characterizing the 

form error of ultra-precision freeform surfaces with sub-micrometre form 

accuracy. 

A critical challenge of IFPAM is that the calculation of the intrinsic surface 

features from a machined freeform surface is susceptible to the sampling strategy and 

the measurement noise and outliers associated in the measured data. This has been 

successfully addressed by incorporating the bidirectional curve network based 

sampling strategy combined with a robust surface fitting and reconstruction algorithm 

in the IFPAM, as presented in Chapter 3. This not only provides an important means 

for determining the appropriate number of measured data points for fully representing 

the geometry of the machined surface, but also for ensuring the accuracy of the 

extraction of the invariant feature pattern from the measured data points. 
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Chapter 5  

Uncertainty Analysis in Form Characterization of 

Ultra-precision Freeform Surfaces 

 

Although the invariant feature-based pattern analysis method (IFPAM), 

presented in Chapter 4, provides an important means for the generalized form 

characterization of ultra-precision freeform surfaces, the process of the measurement 

and form characterization inevitably combines with errors that lead to uncertainty of 

the measurement results. Uncertainty associated in the measurement and form 

characterization of freeform surfaces comes from many sources, such as uncorrected 

systematic and random error of the measurement instrument, inadequate sampling, 

and errors imposed during surface matching and comparison. As a result, uncertainty 

analysis is an indispensable part of form characterization, which assesses the accuracy 

and reliability of the characterization results. 

In this Chapter, a task specific uncertainty analysis model is presented, in which 

the associated uncertainty in the form characterization results is estimated when the 

measured data is extracted from a specific surface using a specific sampling strategy. 

Three factors are identified and considered in the uncertainty analysis model: 

measurement error, surface form error, and sample size. Rather than relying on 

intuition, the present study is more focused on the mathematically modeling of the 

relationship among the influential factors and the resulted uncertainty, so that a 

prediction can be made to estimate the uncertainty associated in the result of the form 

characterization for a specific freeform surface measurement. 
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5.1 Establishment of Uncertainty Analysis Model 

Modern uncertainty analysis models for geometric measurement can be classified 

into three groups. The first group is theoretical estimation (statistical approach). One 

potential benefit of theoretical estimation of the uncertainty is that it avoids the need 

for a large number of measurements and allows the operator to express it as an exact 

mathematical expression. Any theoretical model contains two basic components: 

uncertainty of the coordinates of each measurement points, and a method to propagate 

the point coordinate uncertainty into uncertainty of the substitute geometry. The 

second group is computer-based simulation of measurement process. Monte Carlo 

simulation can be used to estimate uncertainty by repeatedly calculating the parameter 

in question with different random errors in the input data and examining the frequency 

distribution of the results (JCGM, 2008). The third group is experimental method. 

Different artifacts, user-defined parts or geometrical gauges, can be used to calibrate 

and determine uncertainty in the measurement results. In the present study, a Monte 

Carlo method based uncertainty analysis model is developed. 

5.1.1 Error source identification and quantification 

The uncertainty in the form characterization of freeform surface can be analyzed 

from three aspects. Firstly, the measurement errors associated in the measured data 

points propagate to the characterization results. Normally, the uncertainty caused by 

the random measurement error can generally be averaged by taking a large number of 

data points. Secondly, insufficient sampling makes the measured surface failing to 

fully describe the geometry of the workpiece and thus leads to uncertainty to the 

results of the form characterization. Intuitively, the uncertainty caused by sampling 
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can also be reduced by taking a large number of data points from the workpiece. 

However, the trade-off is the cost of more measurement time, especially for contact 

type measurement instruments such as coordinate measurement machines (CMMs). 

Hence, the key issue is how to determine the minimum sample size for a measurement 

so that the uncertainty of the sampling strategy is in a prescribed tolerance. 

The third part is the uncertainty due to inaccurate surface matching. The 

measured surface always contains measurement error and form error of the workpiece 

so that it does not perfectly match with the design surface. Hence, the estimated 

coordinate transformation matrix would contain errors that cause the coordinate 

systems misalignment between the measured surface and design surface. Typically, 

the larger the deviation between the measured surface and the design surface is, the 

larger is the uncertainty of the surface matching results. However, rather than intuition, 

uncertainty analysis is required to mathematically model such relationships in order to 

estimate the uncertainty associated in a surface matching result with respect to the 

magnitude of the form deviation of measured surface. 

The error of a measurement instrument is inherent and it is contained in each 

measured data. Since much effort has been applied to calibrate and compensate the 

systematic errors of the measurement instruments in recent years (Wilhelm et al, 

2001), the error of a well calibrated measurement instrument can be modeled as 

multivariable random noise, so that the measurement error in an arbitrary measured 

point can be regarded as a sample from the distribution. In this study, the random error 

of the measuring instrument is described using a simple model, known as the single 

parameter model, proposed by Philips et al. (1995). The single parameter model 

considers the random error of the measured points within the workzone of the 

measuring instrument has the same uncertainty and these points are independent of 

one another. A typical measurement noise generated by multivariable Gaussian 
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distribution (MGD) is shown in Figure 5.1. Figure 5.1a shows some random points 

drawn from MGD, and a 3D error map of a measured surface due to the MGD noise is 

shown in Figure 5.1b. 

 

(a) Points drawn from multivariable Gaussian noise 

 

 (b) 3D error map due to measurement noise 

Figure 5.1 Typical measurement noise generated by multivariable Gaussian noise 

The form error of a machined surface is surface variation caused by imperfect 

manufacturing and is dominated by the error of the relative motion between cutting 

tool and machining workpiece. Suppose the relative positioning error of cutting tool 

and machining workpiece is random noise with Gaussian distribution, the form error 

can be considered to be a signal generated by random walks which increments has 

Gaussian distribution. Hence, fractional Brownian motion (fBm) is used in this study 

to generate fractal surface to simulate the form error of machined surface. fBm is a 
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continuous-time Gaussian process ( )HB t on  0 T , which has expectation zero for 

all t  in  0 T  as the following covariance function (Mandelbrot, 1968): 

 2 2 21
( ) ( )

2

H H HH HE B x B y x y x y          (5.1) 

where  , 0x y T ; H  is a real number in [0 1], called the Hurst index which can 

be used to control the ‘roughness’ of generated signal. Figure 5.2 shows the surface 

generated with the Hurst index 0.2, 0.5 and 0.8.  

 

(a) H=0.2 

 

(b) H=0.5 

 

 (c) H=0.8 

Figure 5.2 Surface generated by fBm with different Hurst index 
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Figure 5.2 shows that the generated surface becomes smooth with the increase of 

the Hurst index and it exhibits strong low-frequency component and has irregular 

behavior when the H is 0.8. It is well match with the properties of the form error of a 

machined surface. Hence, fractional Brownian motion with Hurst index 0.8 is suitable 

to simulate the random form error for the machined surface. The magnitude of the 

generated random form error is controlled by the standard deviation (Std) of the 

Gaussian noise. Figure 5.3 shows the peak-to-valley height (PV) of three sets of 

random form errors which are generated by fBm with Std 0.5 μm, 1.5 μm and 2.5μm 

respectively.  

 

Figure 5.3 PV of random form errors by fBm with different standard deviations 

It can be seen from Figure 5.3 that the PV of the generated form errors fluctuates 

in a certain range. For instance, the PV of generated form errors fluctuates in a range 

of [6.2, 7.8] μm when Std of the fBm is 1.5 μm. That is, if fBm with Std 1.5 μm is 

used as random variable to describe the form error, the generated random form errors 

may cover all possible form errors of a machined surface within the range of [6.2, 7.8] 

μm if the number of the trials are sufficiently large. Hence, the uncertainty of the 

surface matching due to form error within the range of [6.2, 7.8] μm can be estimated 
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based on Monte Carlo method by using fBm with Std 1.5 μm as form error variable. 

5.1.2 Uncertainty propagation and evaluation 

Based on knowledge of the measurement and characterization of ultra-precision 

freeform surfaces, a mathematical uncertainty evaluation model is established. In the 

measurement of freeform surfaces, the form of a machined workpiece is characterized 

by comparing the measured surface with the corresponding design surface and can be 

given by: 

 ,evaf fE DS Q                        (5.2) 

where  1 ... NQ QQ  represents N measured points; evafE  represents evaluated 

surface form error; DS  represents the design surface;  f   is a function to 

determine the deviation of Q  from DS . The measured points Q  can be 

represented by: 

 ( ) real measf  mQ T P nE E                    (5.3) 

where P  are the corresponding points of Q  on DS ; n  is normal vectors of 

DS  at P ; realfE  is the form error of measured surface at Q ; measE  is the 

measurement error at Q ; ( )m
T  is coordinate transformation matrix determined by 

spatial parameters m  to indicate the misalignment of the coordinate system between 

the measured surface and the design surface. Eq. (5.2) can be solved by the IFPAM 

for generalized form characterization of ultra-precision freeform surfaces as discussed 

in Chapter 4. 

In accordance with the “Guide to the Expression of Uncertainty in Measurement” 

(GUM) concept (ISO, 1995), the measurement process is expressed as a model 
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equation while the affecting factors are expressed by means of appropriate probability 

distributions functions (PDF). Based on Eq. (5.2) and Eq. (5.3), the model equation 

for uncertainty analysis can be expressed by: 

6 3

, , ,real meas

N N

Y f f
 

  
 
 

DS m E E                      (5.4) 

Eq. (5.4) demonstrates that there are total 4N+6 factors affecting the form 

characterization results for a given DS . If an affecting factor is denoted as ix , the 

expectation iX  and standard deviation of this factor is given by (ISO, 1995): 

 
ii x i i iX g d  





                          (5.5) 

  

0.5

2

i ix x i i i iu g X d  




 
  
 
                    (5.6) 

where 
ixg  is the PDF of ix  and i  is the possible value of ix . Then the PDF of 

the Y  is given by:  

      
1 4 6 1 4 6 1 4 6 1 4 6... ... ... ... ...

Ny x x N N Ng g g f d       


 

  

 

           (5.7) 

where   is an estimated value of Y . Hence, the expectation  E Y  and the 

standard deviation  u Y  can be given by:  

 ( ) yE Y g d  




                          (5.8) 

      
0.5

2

yu Y g E Y d  




 
  
 
                   (5.9) 

Due to the high non-linearity of the form characterization of freeform surfaces, a 

Monte Carlo method is used to evaluate the uncertainty based on the latest GUM 
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(JCGM, 2008). In Eq. (5.4), measE  is modeled by multivariable Gaussian noise and 

realfE  is generated by fractional Brownian motion as given in Section 5.1.1. 

5.1.3 Task specific uncertainty analysis model 

The uncertainty in the form characterization of freeform surfaces may be caused 

by three factors, including the form error of the workpiece, the measurement error 

associated in the measured data, and the sample size. However, due to the geometric 

variety of freeform surfaces, the propagation of the errors during form 

characterization may also be different from the geometry of the surface being 

characterized and the sampling strategy being utilized. This makes it difficult to 

establish a universal model to analyze the uncertainty for all types of freeform 

surfaces. As a result, a task specific uncertainty analysis method is proposed in the 

present study. That is, the associated uncertainty in characterization results is 

estimated when the measured data is extracted from a specific surface with specific 

sampling strategy. 

Figure 5.4 shows a schematic diagram of the task specific uncertainty analysis 

model which is basically composed of two processes, i.e. form characterization and 

uncertainty evaluation. The form characterization process starts from inputting a 

design surface (DS), and a random form error is added on the DS to simulate the 

machined surface. A certain number of points are then sampled from the machined 

surface, with the guidance of a utilized sampling strategy, and added by a random 

measurement error to simulate the measurement instrument error. The measured 

surface (MS) is generated by moving the sampled data (SD) to an arbitrary position to 

indicate the misalignment of the embedded coordinate system of MS from that of DS. 
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Least square based method is then used to perform form characterization of the 

machined surface based on the generated MS. In this process, the uncertainty due to 

the adopted sampling strategy is evaluated by comparing the deviation of the SD from 

DS with the added form error. The uncertainty due to the least square based surface 

matching is evaluated by comparing the deviation of the MS from the DS with the 

deviation of the SD from the DS. Hence, the whole uncertainty in the form 

characterization process can be evaluated by both considering the part of uncertainty 

caused by insufficient sampling, and the part caused by misalignment of coordinate 

systems of the MS and the DS due to inaccurate surface matching. 

 

Figure 5.4 Schematic diagram of task specific uncertainty analysis method 

5.2 Computer Simulation 

An F-theta surface for a laser scanner lens is designed and given as follows: 

   

2 4 2

1 / 2 5 0 1 / 9 2 0 0 0 1 / 2 5
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z a x b x c y

a b c

x y
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

    
     

， ，

， 

                 (5.10) 

The uncertainty of the IFPAM presented in Chapter 4 is studied based on the designed 

F-theta surface with a uniform sampling strategy. Although the uniform sampling 
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strategy may not be the best sampling method, it is widely used in practice.  

In the following simulation, a certainty number of points are uniformly sampled 

from the design surface, with dimensions -12≤x≤8 mm and -4.5≤y≤3 mm, and are 

used to simulate the measured data points based on the transformation given by Eq. 

(5.3). The six spatial parameters  , , , , ,rx ry rz tx ty tzm  in coordinate 

transformation matrix ( )m
T  are randomly selected to indicate the coordinate frame 

misalignment between the measured surface and the design surface. The IFPAM is 

then used to characterize the measured surface. To further improve the accuracy of the 

results of the form characterization, the correspondence pairs established by invariant 

feature pattern registration is refined by orthogonal projection as given in Section 

4.3.2.  

The uncertainty is analyzed as follows: 

(i) The systematic error of the implemented algorithm is studied in a noise free ideal 

case; 

(ii) The uncertainty due to inaccurate surface matching and the uncertainty due to 

inadequate sampling strategy are studied with respect to different magnitudes of 

form error, measurement noise and sample size; 

(iii) The confidence interval of the results of the form characterization is evaluated 

and tested.  

Two surface parameters, i.e. peak-to-valley height tS  and root mean square 

error qS , are used to characterize the form error of machined surface and are 

determined as follows: 

max( ) min( )t i i i iS    P TQ P TQ     (5.11) 
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1

1 N

q i i

i

S
N 

  P TQ      (5.12) 

where N is total number of sampled points. 

5.2.1 Systematic error in error free ideal case 

Since the IFPAM is an optimization process, the implemented algorithm always 

contains systematic error which may affect the accuracy of the subsequent uncertainty 

analysis. To clarify this effect, the systematic error of the implemented algorithm is 

evaluated in an error free ideal case, i.e. with setting of random form error and 

measurement noise to be zero in Eq. (5.3). Since the measured surface is directly 

sampled from the design surface, the form error should be zero. Hence, the evaluated 

form error is considered to be the systematic error of the implemented algorithm.  

The magnitude of the systematic error is determined by the terminate threshold 

of the surface matching optimization process. In the present study, the terminate 

threshold rf  (see Figure 4.13) is set to be 10-6 mm. Figure 5.5 shows the evaluated 

3D form error of the measured surface. It is worthy of note that the peak-to-valley 

height tS  of the evaluated form error is at the level of 10-8 mm, which is small 

enough to ignore the effect of this error on the subsequent uncertainty analysis. 

 

Figure 5.5 Uncertainty of form characterization result in ideal case 
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5.2.2 Uncertainty in freeform surface matching 

The uncertainty of the IFP based surface matching is analyzed with the 

consideration of three factors including the measurement error associated in the 

measured data, the form error of the workpiece, and the number and the distribution 

of measured data points. 

5.2.2.1 Effect of measurement noise to freeform surface matching 

The uncertainty analysis is conducted with different magnitudes of measurement 

noise and different number of sampled points. A total 9 cases are studied as given in 

Table 5.1. In each case study, 1500 Monte Carlo trials are made based on 

3-dimensional Gaussian noise with given standard deviation in order to evaluate the 

uncertainty of the surface matching results due to measurement noise. 

Table 5.1 Magnitudes of added measurement error and number of sampled points 

Measurement error Number of sample points 

Std: 0.2 μm 30×30 60×60 90×90 

Std: 0.5 μm 30×30 60×60 90×90 

Std: 0.8 μm 30×30 60×60 90×90 

Figure 5.6 shows the standard deviation (Std) of evaluated six spatial parameters 

with different magnitudes of measurement noise and different number of sample 

points. It is clearly found from the results that the uncertainties of all six parameters 

decrease along with increasing number of sample points. This is a good match to the 

intuition that the effect of the random measurement error to the surface matching can 

generally be averaged by taking a large number of data points.  
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(a) Std of estimated rotation angles 

 

(b) Std of estimated translation offsets 

Figure 5.6 Uncertainty of evaluated spatial parameters due to measurement noise 

Figures 5.7 and Figure 5.8 show the bias and Std of the estimated surface 

parameters due to inaccurate surface matching. It is found that the bias and the 

uncertainty of the evaluated surface parameters (both tS  and qS ) decreases 

dramatically with an increasing number of sampled points. Although a large 

magnitude of noise causes a large error to the surface parameters, the difference also 

decreases with an increasing number of sampled points. It is interesting to note from 

the simulation results that for the designed F-theta surface, the uncertainty of the 

surface matching results ( tS  and qS ) due to measurement noise, of which Std is in 

the sub-micrometre range and is smaller than 50 nm if more than 3600 points are 

uniformly sampled. The proposed form characterization method shows its low 

sensitivity to the random measurement noise. 
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Figure 5.7 Bias and uncertainty of evaluated tS  

 

Figure 5.8 Bias and uncertainty of evaluated qS  

5.2.2.2 Effect of surface form error to freeform surface matching 

In the present study, fBm is used as a random variable to model the form errors. 

It was noted in Section 5.1.1 that the magnitude of the random form errors is 

generated by fBm with a given standard deviation fluctuating in a certain range. If the 

number of trials is sufficiently large, the uncertainty of the surface matching due to 

form errors with magnitude in that range can be estimated by the Monte Carlo method. 

To establish the relationship between the uncertainty of the surface matching and the 

magnitude of the form errors for the given F-theta surface, fBm is used to generate 5 

sets of random form errors with different magnitudes. Since the sample size may also 

affect the surface matching results, surface matching with different sample sizes are 

also studied. Table 5.2 shows 25 case studies with different magnitudes of form error 
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and different sample sizes. The magnitude of the form error is represented by tS .  

The number of Mote Carlo trials in each case study is determined adaptively 

such that the variance of Std of the evaluated surface parameters are in a prescribed 

threshold. Figure 5.9 shows an example of a case study (30×10 points, St 10μm). As 

shown in Figure 5.9, it is found that the variation of the Std of tS  and qS  are 

smaller than 10 nm and 5nm when the number of trials increases to 1500. Hence, for 

the case study, 1500 trials are enough for accurately estimating the uncertainty of 

evaluated surface parameters. 

Table 5.2 Magnitude of random form error and number of sampled points 

Std of fBm tS  of form error Number of sample points 

0.4 μm 1.5≤St≤2.5 μm 30×10 60×20 90×30 120×40 150×50 

0.9 μm 3.5≤St≤4.5 μm 30×10 60×20 90×30 120×40 150×50 

1.3 μm 5.5≤St≤6.5 μm 30×10 60×20 90×30 120×40 150×50 

1.8 μm 7.5≤St≤8.5 μm 30×10 60×20 90×30 120×40 150×50 

2.2 μm 9.5≤St≤10.5 μm 30×10 60×20 90×30 120×40 150×50 

  

Figure 5.9 Variation in Std of surface parameters related to number of trials 

First of all, the robustness and accuracy of the invariant feature pattern (IFP) 
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registration against different noise levels is studied. During the simulation, all of the 

IFP of the measured surface and the design surface are generated with spacing 0.1 mm. 

Peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) are used to 

characterize the quality of the generated IFP of measured surface and are determined 

as follows (Netravali, 1995): 

10

max( )
20log

I
PSNR

RMSE

 
  

 
,   1020log

RMS
SNR

RMSE

 
  

 
          (5.13) 
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I  is the ideal IFP of the MS generated without error; nI  is the IFP of the MS 

generated with error. The mean of the results of each group are shown in Table 5.3.  

Intuitively, both PSNR and SNR decrease with the increase of the scale of the 

error. However, it is interesting to note from the results that the generated IFP has high 

quality (SNR>36dB) when the PV of the error is smaller than 5 μm, and are at an 

acceptable level (SNR>32dB) when the PV of the error is at a level up to 10 μm. This 

is due to the fact that the high frequency part of the added error is well smoothed in 

the surface reconstruction process, and the error of the generated IFP is mostly 

contributed by the low frequency part of the added error, which does not seriously 

affect the calculation of the curvature. The mean of the IFP registration results are also 

shown in Table 5.3. By comparing the results with those in an ideal case, it is 

interesting to note that the accuracy of IFP registration is smaller than 0.1 pixel in 

translation and 0.05 degree in rotation. 
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Table 5.3 IFP registration results with different scales of added error 

Added Error 

(μm) 

PSNR 

(dB) 

SNR   

(dB) 

Ind_X 

(pixel) 

Ind_Y 

(pixel) 

Angle 

(degree) 

0 Infinite Infinite 43.55 43.55 0.5 

1.5<PV<2.5 41.2 39.1 43.54 43.54 0.46 

3.5<PV<4.5 39.7 37.3 43.54 43.54 0.45 

5.5<PV<6.5 36.4 35.4 43.53 43.54 0.45 

7.5<PV<8.5 35.0 34.6 43.53 43.53 0.46 

9.5<PV<10.5 34.8 33.7 43.53 43.53 0.45 

Note: Ind_X , Ind_Y are the index of the centre of the IFP of MS on the IFP of DS 

after registration. 

After IFP registration, the correspondence pairs are established and refined so 

that the coordinate transformation matrix is evaluated and hence the form error of the 

measured surface. Figure 5.10 shows the Std of the estimated six spatial parameters 

due to different magnitudes of form errors and different sample sizes. The bias and 

standard deviation of the estimated surface parameters due to inaccurate surface 

matching are shown in Figures 5.11 and Figure 5.12.  

The results show that the uncertainty of the surface matching due to the form 

error is insensitive to the sample size. This may be explained by the utilization of the 

uniform sampling strategy. With the uniform sampling strategy, points are sampled 

uniformly over the surface and the global geometry of the surface can be captured 

with relatively few points. The increase of the sample points may contribute little to 

further improve the quality of the captured global geometry of the surface. 
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(a) Uncertainty of the estimated rotation angles 

 

(b) Uncertainty of the estimated translation offsets 

Figure 5.10 The uncertainty of the six spatial parameters due to surface form error 

It is found from Figure 5.10 that the uncertainty of the estimated translation 

offsets along X and Y directions are much larger than that for the other parameters. 

This may be explained by the criteria of the surface matching and the flatness of the 

given F-theta surface. As discussed in Section 4.3.2, the correspondence refinement in 

the surface matching is performed by minimizing the square sum of the orthogonal 

distance between the measured points and the design surface. When the surface is 

relatively flat, similar to the designed F-theta surface in the present study, the offsets 

of the coordinate system of the measured surface along X and Y directions contribute 

relatively little to the orthogonal distance between the points and the design surface.  

It is also found from Figure 5.11 and Figure 5.12 that both bias and uncertainty 

of the estimated surface parameters increases with increasing magnitude of the form 

error. Although the increment becomes smaller, the results show that the accuracy of 

the surface matching results is still adversely affected by the form error. This is due to 

the fact that the established correspondence between the measured surface and the 
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design surface becomes poor with the increasing magnitude of the form error. Based 

on the simulation results, it can be estimated for the given F-theta surface that the 

uncertainty of the estimated tS  and qS  are around 10% and 3% of the tS  of the 

form error, respectively. 

    

Figure 5.11 Bias and uncertainty of tS  due to inaccurate surface matching 

    

Figure 5.12 Bias and uncertainty of qS  due to inaccurate surface matching 

5.2.3 Uncertainty in freeform surface sampling 

Sampling strategy is considered as one of the major contributors to the 

measurement of uncertainty. This is due to the fact that the form error of the machined 

surface is characterized by a finite number of points on the surface. Based on the same 

idea as described in Section 5.2.1, the uncertainty of the utilized sampling strategy 

due to the form errors of which magnitude in a certain range can be estimated by the 

Monte Carlo method. The same 5 sets of random form errors given in Table 5.2 are 

used in the present study. Figure 5.13 shows the Std of the surface parameters due to 
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the utilized sampling strategy.  

    

Figure 5.13 Uncertainty of the surface parameters with respect to sampling size 

It is seen from the results that the uncertainty of the evaluated surface parameters 

decreases with increasing number of the sample points, and decreases with increasing 

magnitude of the surface form error. Although the results are intuition, rather than the 

trend, it is important to evaluate the extract uncertainty of a surface parameter for a 

freeform surface measurement. It is found from the results that the uncertainty of tS , 

for the designed F-theta surface due to the sampling, is around 1% of the form error 

when the number of sample points is 7500. However, the trade-off is the cost of more 

measurement time. As shown in Figure 5.13, 2700 points are required if the 

requirement of the sampling accuracy is 2%.  

5.2.4 Evaluation of confidence interval 

Based on the results obtained in the previous sections, the confidence interval of 

the results of the form characterization can be given for the designed F-theta surface. 

Figure 5.14 shows regions covering a 95% confidence interval of tS  and qS  when 

120×40 points are uniformly sampled from a machined F-theta surface, which may 

have form errors ranging from 0 to 10 μm. This confidence region can be used to 

estimate the uncertainty of the results of the form characterization with respect to the 
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magnitude of the surface form error being characterized 

      

Figure 5.14 95% Confidence interval of evaluated surface parameters 

To verify the validity of the estimated confidence regions, a total of 2922 trials 

are generated based on Eq. (5.2). formE  is randomly generated by fBm with Std in 

the range of [0, 1.3] μm; measE  is randomly generated by MGN with Std in the range 

of [0.2, 0.8] μm; m  is set to be [1, 1, 1, 1, 1, 1]. For each trial, the sampled points 

are characterized by the form characterization method presented in Chapter 4. Then 

the error of the results of the form characterization is pointed on corresponding region 

with respect to the magnitude of the surface form error. For the evaluated tS , a total 

of 151 trials are located outside of the confidence region and the validity of the 

confidence region is 94.8%. For the evaluated qS , a total of 137 trials are located 

outside of the confidence region and the validity of the confidence region is 95.3%. It 

should be noted that the results match well with the given confidence level of the 

region. 

5.3 Experimental Study 

The developed task specific uncertainty analysis model has been incorporated 
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into the invariant feature-based pattern analysis method (IFPAM), and hence into the 

generalized form characterization system presented in Chapter 4. To further evaluate 

the capability of this system, a series of experiments have been conducted on different 

types of freeform surfaces. A case study on a machined bifocal surface is presented, in 

which Gaussian curvature is used as the intrinsic surface feature to generate the 

invariant feature pattern. 

An ultra-precision freeform mould insert of a bifocal optical lens is produced by 

a 7-axis ultra-precision polishing machine (Zeeko IRP-200). The produced workpiece 

is measured by Talysurf PGI 1240. The measured surface is characterized by the 

generalized form characterization system built based on the IFPAM. First of all, the 

measured surface is sampled with the guidance of bidirectional sampling strategy, and 

the measured discrete data points are reconstructed by the developed robust surface 

fitting algorithm presented in Section 3.2. The machined surface is then characterized 

by IFPAM based on the measured surface, i.e. the reconstructed surface. 

Figure 5.15 and Figure 5.16 show the intitial positions of the design surface (DS) 

and the measured surface (MS). It is emphasized that the initial positions of the DS 

and the MS are quite far away from each other (which can be inferred from the 

coordinates of two surfaces from the figures), such that a rough matching process is 

required if the conventional least square based form characterization methods are 

undertaken. 
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Figure 5.15 Designed bifocal surface 

 

Figure 5.16 Measured bifocal surface 

The invariant feature pattern (IFP) based surface matching and form error 

evaluation process is shown in Figure 5.17. It starts from generating the IFP of the MS 

and the DS with a spacing of 0.5 mm along X  and Y  axes of the corresponding 

coordinate frame, as shown in Figure 5.17a and Figure 5.17b, respectively. Then the 

phase correlation method is used to register the IFP of the MS on the IFP of the DS as 

shown in Figure 5.17c. Corresponding pairs are then established and are used to 

evaluate the form error of the MS as shown in Figure 5.17d. From the results, tS  of 

the form error is found to be 2.02 μm and qS  of the form error is found to be 0.44 
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μm.  

The reliability of the results of the form characterization is tested by the 

developed task specific uncertainty analysis model. Two sources of errors are 

considered in the present study including the measurement error and the form error of 

the machined surface. Since the magnitude of the form error of the machined bifocal 

surface is found to be 2.02 μm, fractional Brownian motion is used to generate a large 

number of random form errors, the magnitude of which varies around 2.02 μm. 

          

(a) IFP of DS                      (b) IFP of MS 

      

(c) IFP registration                 (d) Form error evaluation 

Figure 5.17 Form characterization of measured bifocal surface 

Figure 5.18 shows the tS  of the 1500 random form errors, which are generated 

by the fractional Brownian motion with a standard deviation of 0.4μm. It can be seen 

from Figure 5.18 that the magnitude of the random form error varies in the range of 

[1.5, 2.5] μm. The measurement noise associated with the measured points is 

simulated by the three dimensional Gaussian noise with a standard deviation of 0.2μm 
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in all three axes. Based on the uncertainty analysis by the Monte Carlo method with 

1500 trials, the uncertainty of the estimated tS  obtained in this case study is found to 

be 0.15 μm, and the uncertainty of the estimated qS  is found to be 0.09 μm. 

To further evaluate the accuracy of the IFPAM for generalized form 

characterization of ultra-precision freeform surfaces, the results are also compared 

with that are obtained by conventional least squares based method (LSM) (Cheung et 

al, 2006). Figure 5.19 shows the uncertainty of the form characterization results when 

the magnitude of the surface form error is in the range of [1, 30] μm and standard 

deviation of the measurement noise is 0.3 μm. 

 

Figure 5.18 tS  of the 1500 random form errors for bifocal surface 

 

Figure 5.19 Uncertainty of evaluated tS  related to magnitude of surface form error 



Chapter 5 Uncertainty Analysis in Form Characterization of Ultra-precision Freeform Surfaces 

179 

 

The results show that the standard deviation (std) of the evaluated peak-to-valley 

(PV) by the IFPAM and the LSM both increase along with increasing magnitude of 

the surface form error. However, when the tS  of the surface form error is larger than 

15μm, the IFPAM possesses a lower uncertainty than that for the LSM. This is due to 

the fact that the quality of the corresponding pairs by LSM becomes poor with 

increasing form error of the MS, since it is obtained by the closest point principle (Li, 

2004). On the other hand, the IFPAM establishes the corresponding pairs by the IFP 

registration. The high frequency part of the surface form error is well smoothed in the 

surface reconstruction process, and the error of the generated IFP of MS is mostly 

contributed to by the low frequency part of the added error, which does not have a 

serious effect on the calculation of the curvature. Indeed, the advanced image 

registration technique ensures that the IFPAM is highly accurate and robust. 

5.4 Summary 

This chapter presents a task specific uncertainty analysis model to analyze 

uncertainties associated with the results of the form characterization of ultra-precision 

freeform surfaces. Monte Carlo method is used to evaluate the uncertainty with the 

consideration of three factors, including measurement error, sample size, and form 

error of the workpiece. Fractional Brownian motion is used as a random variable to 

simulate the possible form error of a measured surface, and multivariable Gaussian 

noise is used to generate the random measurement error. Since the propagation of the 

uncertainty in form characterization varies with the surface geometry being 

characterized, and the sampling strategy being adopted, a task specific uncertainty 

evaluation method is suggested in the present study. That is, the associated uncertainty 

in the results of the form characterization is estimated when the measured data is 
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extracted from a specific surface with a specific sampling strategy.  

The developed task specific uncertainty analysis model has been incorporated 

into the generalized form characterization system, based on the IFPAM presented in 

Chapter 4. Experimental results show that the proposed uncertainty analysis model is 

able to estimate the uncertainty associated with the results of the form characterization 

in respect of the magnitude of the form error of the surface. Based on extensive 

simulation, the proposed model is also able to establish a relationship between the 

uncertainty of the results of the form characterization and the magnitude of 

contributed sources of error (e.g. the adopted sampling plan, and the magnitude of the 

measurement error), so that a prediction can be made for a specific form 

characterization of freeform surface. This provides an important means for the control 

and the optimization of the measurement and characterization process, so as to 

improve the reliability and accuracy of the results of the form characterization of 

ultra-precision freeform surfaces. 
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6.1 Overall Conclusion 

Ultra-precision freeform surfaces possessing non-rotationally symmetry are 

increasingly being used in various industries such as advanced optical systems (e.g. 

F-theta lens in scanner, automotive lighting systems, telecommunications, and 

photonics), with the functional aims of improving the performance of the products in 

terms of size reduction and functionality. To ensure the performance of the 

components, these surfaces are fabricated by modern ultra-precision freeform 

machining technologies, such as ultra-precision raster milling, ultra-precision 

polishing and ultra-precision grinding, with sub-micrometre form accuracy and 

surface finish in the nanometer range.  

However, the geometric complexity and high precision requirements of 

ultra-precision freeform surfaces bring considerable challenges to the measurement 

and characterization of these surfaces. Although the advanced development of the 

measurement instruments constitutes enabling technologies to extracts data points  

from the machined freeform surfaces with a nanometric level of accuracy, there is still 

a lack of international standards and definitive methodologies to characterize the form 

of the machined ultra-precision freeform surfaces with sub-micrometre form accuracy. 

Currently, the least-squares-based or minimum-zone-based form characterization 
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methods are widely used in the measurement and form characterization of 

ultra-precision freeform surfaces. However, these methods are susceptible to the 

dependent coordinate frames and to the geometry of the surface being characterized. 

There is a stringent requirement to develop a practical and generalized method to 

perform high-precision and robust form characterization of ultra-precision freeform 

surfaces with sub-micrometer form accuracy. 

Motivated by the demand for a standard and generalized form characterization 

method for ultra-precision freeform surfaces, this thesis presents an invariant 

feature-based pattern analysis method (IFPAM) for generalized form characterization 

of ultra-precision freeform surfaces, so as to address the deficiency and limitations of 

traditional form characterization methods. The IFPAM makes use of intrinsic surface 

properties such as Gaussian curvature to map the surface into a special image to form 

a generalized orientation invariant feature pattern (IFP) for the representation of the 

surface geometry. Digital image processing techniques are then employed to conduct 

the IFP registration and correspondence searching for the form characterization of the 

surface. In this way, the IFPAM is not only free of the type of the freeform surfaces 

being characterized but is also independent of the embedded coordinate frame, which 

brings many difficulties and uncertainties to the form characterization of 

ultra-precision freeform surfaces. 

The calculation of the intrinsic surface features from a machined freeform 

surface is susceptible to the sampling strategy, the measurement noise and outliers 

associated with the measured data. To address these problems, a bidirectional curve 

network based sampling strategy (BCNSS) combined with a robust surface fitting and 

reconstruction algorithm (RSFRA) are developed for ensuring the accurate extraction 

of the intrinsic surface features from machined freeform surfaces. Different from the 

traditional one directional raster sampling strategy, the BCNSS samples two sets of 
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curves from two different directions to form a curve network, which is used to 

construct a substitute surface to represent the measured surface. Experimental work 

shows that the sampling plan produced by the BCNSS has significant improvement in 

terms of the efficiency of sampling of the freeform data, with the sampling accuracy 

at a sub-micrometre level. 

The RSFRA is developed to reconstruct a high fidelity surface from the discrete 

measured points, while the surface smoothness is also ensured to avoid unwanted 

variation caused by surface roughness and measurement noise. A new fitting threshold 

named the confidence interval of fitting error has been presented to balance the fitting 

accuracy and surface smoothness. To simplify the fitting process and to avoid local 

optimization problems, an initial surface is constructed to estimate an appropriate 

number of control points and their distribution. The squared distance minimization 

method is then used to minimize the fitting error of the initial surface. The results of 

the experimental work indicate that the RSFRA provides an effective means in 

balancing fitting accuracy and surface smoothness, so as to reconstruct high fidelity 

surfaces with well surface smoothness. Both the BCNSS and the RSFRA have been 

incorporated into the developed IFPAM to enhance its measurement performance. 

To assess the reliability and accuracy of the IFPAM, a Monte Carlo method 

based task specific uncertainty analysis model is built to estimate the associated 

uncertainty in the results of the form characterization of ultra-precision freeform 

surfaces. Three factors are identified and considered in the model: measurement error, 

surface form error, and sample size. Fractional Brownian motion is used as a random 

variable to simulate the possible form error of a measured surface, and multivariable 

Gaussian noise is used to generate the random measurement error. Since the 

propagation of the uncertainty in form characterization may vary with the surface 
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geometry being characterized, a task specific uncertainty evaluation method is 

developed. That is, the associated uncertainty in the characterization results is 

estimated when the measured data is extracted from a specific surface with a specific 

sampling strategy. The developed task specific uncertainty analysis model has been 

incorporated into the IFPAM to access the reliability of the results of form 

characterization in real freeform surface measurement. Experimental results show that 

the proposed uncertainty analysis model is able to estimate the uncertainty associated 

with the results of the form characterization, with respect to the magnitude of the form 

error of the surface being characterized.  

The major contributions of the research are summarized as follows: 

(i) Form quality plays an essential role in the characterization of ultra-precision 

freeform surfaces. At present, there are no international standards and definitive 

methods for the form characterization of ultra-precision freeform surfaces with 

sub-micrometre form accuracy. In this study, an IFPAM has been developed, 

which can perform a robust and accurate form characterization of ultra-precision 

freeform surfaces. The IFPAM is robust to the embedded coordinate frames of 

the freeform surface being characterized. It makes use of the orientation invariant 

surface features as surface matching and optimization criteria, which makes the 

method free from the coordinate frames. The IFPAM is a generalized form 

characterization method for ultra-precision freeform surfaces. It represents the 

surface geometry by the invariant feature pattern (IFP), which is generated by 

mapping the intrinsic surface features of a freeform surface, such as Gaussian 

curvature, into a 2D pattern. Hence, the IFP is a generalized surface feature that 

makes the IFPAM independent of the type of the freeform surfaces being 

characterized. They provide an important means for the advancement and 

standardization of freeform surface measurement. 
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(ii) The effectiveness of the IFPAM depends on the accurate extraction of the 

intrinsic features from the machined freeform surfaces. In this study, a 

bidirectional curve network based sampling strategy (BCNSS) combined with a 

robust surface fitting and reconstruction algorithm (RSFRA) has been developed 

for ensuring the accurate extraction of the intrinsic surface features from a 

machined freeform surfaces. The BCNSS is able to produce a more efficient 

sampling plan than the traditional one directional method in the sampling of the 

data from the ultra-precision freeform surfaces with sampling accuracy in 

sub-micrometre to nanometre range. The RSFRA is able to reconstruct a 

mathematically continuous surface model from discrete measured points, which 

attempts to strike a good balance between the surface fitness and the surface 

smoothness. The BCNSS and the RSFRA provides an important means to ensure 

the efficiency and accuracy of the IFPAM in the measurement and generalized 

form characterization of machined ultra-precision freeform surfaces. 

(iii) Uncertainty analysis is indispensable part of the form characterization of 

ultra-precision freeform surfaces. In this study, a task specific uncertainty 

analysis model has been built to assess the accuracy and reliability of the IFPAM. 

Based on the results of extensive simulation experiments, the uncertainty 

analysis model is verified as being able to establish a relationship between the 

uncertainty of the results of the IFPAM and the magnitude of contributed sources 

of errors (e.g. the adopted sampling plan, the magnitude of the measurement 

error), so that a prediction can be made for the form characterization of a specific 

freeform surface. This provides an important means for the control and 

optimization of the measurement and form characterization process so as to 

improve the reliability and accuracy of the results of the generalized form 

characterization of ultra-precision freeform surfaces. 
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The present study provides a practical and generalized methodology for 

performing high-precision and robust form characterization of ultra-precision 

freeform surfaces with sub-micrometer form accuracy. The advanced technical merits 

of the IFPAM not only provide a breakthrough for the advancement of state-of-the-art 

generalized form characterization of ultra-precision freeform surfaces, but also 

contribute significantly to the advancement of measurement science and technology, 

as well as to international efforts to standardize freeform measurement. 

6.2 Suggestions for Further Research 

Due to the geometric complexity and factors affecting the measurement 

uncertainty, there is currently still a lack of international standards and well 

established measurement technologies for the form characterization of ultra-precision 

freeform surfaces with sub-micrometre form accuracy. The present study provides a 

practical and generalized solution to perform high-precision and robust form 

characterization of ultra-precision freeform surfaces. However, the theory and the 

practice are far from performing highly efficient and traceable measurement and form 

characterization on all kinds of ultra-precision freeform surfaces. Some topics for 

further research are suggested in the following sections: 

(i) Research of a multi-intrinsic-surface-feature based generic method for the 

representation and form characterization of all kinds of freeform surfaces. 

The present study is focused on the form characterization of continuous freeform 

surfaces. However, the structured surfaces and conjunct surfaces with steps or edges 

are also classified as special kinds of freeform surfaces, since they have the same 

aspects in regard to the fabrication, alignment and measurement (Jiang, 2007b). Some 
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structured surfaces which contain ruled or revolute surfaces such as cylindrical 

surfaces along with their conjunct surfaces (e.g. cylindrical lens arrays), have zero 

Gaussian curvatures (GC). As a result, the registration of these surfaces cannot be 

realized by only using GC. For freeform surfaces wholly described by flat and 

cylindrical surfaces which have zero GC, the principal curvatures (minimum and 

maximum curvatures) can be separately used to identify the two types of surface. All 

the salient features like holes, slots, pockets, and transition or intersection curves 

between two adjacent surfaces can also be used as important intrinsic surface features 

to form a multi-intrinsic surface feature pattern for enhancing the performance of the 

representation and characterization of the complex surface geometry. In this way, the 

multi-intrinsic surface feature based form characterization method is able to be 

applied to all kinds of freeform surfaces, including continuous surface and structured 

surface. This provides an important means for supporting the standardization of 

freeform surface measurement and form characterization. 

(ii) Development of the measurement strategy and the data fusion technologies for 

the multi-sensor based freeform surface measurement. 

For the future development of ultra-precision freeform surfaces, there is 

increasing geometrical complexity and more difficulty in terms of form 

characterization with sub-micrometer form accuracy. Although substantial strides 

have been made in the development of high precision coordinate measurement 

instruments, none of the techniques is capable of fulfilling all the required 

measurement tasks with a high degree of accuracy and efficiency.  

As a result, a sophisticated combination of several measuring techniques into one 

system appears to be a solution for assuring the quality of surface measurements. 

Multi-sensor based measurement technologies are used in order to get holistic, more 
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accurate and reliable measurements, which are not possible with a single sensor 

system (Weckenmann, 2009). However, since it is relatively new, very little research 

has been conducted into multi-sensor measuring strategies and data fusion. 

Measurement strategy contributes significantly to the efficiency of the 

measurement and the reliability of the measurement results. Differing from single 

sensor based measurement, the multi-sensor based measurement requires more 

comprehensive measurement strategies and sampling plans to guide the measurement 

process. For example, tactile and optical sensors are commonly integrated in a 

coordinate measurement machine, such as the VideoCheck UA 400 (Werth, 2011), to 

perform complex measuring tasks. To further enhance the efficiency of freeform 

measurement, an integrated measurement strategy and sampling criteria should be 

developed to produce a sampling plan for both optical and tactile sensors. For instance, 

optical sensors, such as video-cameras are used to capture information of the global 

shape of the measurand, which can provide a more intelligent sampling plan for the 

tactile sensor to perform precision and dense measurements of the area of interest. 

Proper data fusion methods are also required to combine the data from different 

sensors into a common representation format, so that measurement results can benefit 

from all available sensors and data. This provides an important means for the 

realization of the multi-sensor based measurement technique to perform a holistic, 

accurate and reliable measurement of freeform surfaces. 

(iii) Development of a generalized uncertainty analysis model for the evaluation of 

the uncertainty in the form characterization of freeform surfaces. 

Due to the geometric variety of freeform surfaces, this study suggested a task 

specific uncertainty analysis method for the form characterization of freeform 

surfaces. However, this method currently can only be used to analyze the uncertainty 
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for a specific freeform surface each time, and the whole process needs to be carried 

out again if another kind of freeform surface is characterized. In further work, surface 

geometrical feature parameters should be developed to describe the geometry of the 

surface so that it can be incorporated into the uncertainty analysis model. For the 

sampling strategy, commonly used methods should be summarized and standardized 

as several modules so that appropriate module can be selected for different situation. 

The effect of the error sources affecting uncertainty in the measurement, 

characterization and evaluation also needs an in-depth study in order to provide a 

better understanding of the control and optimization of the measurement process for 

improving measuring accuracy. The study should provide an important means to 

generalize the capability of the uncertainty evaluation in measurement and form 

characterization of more types of ultra-precision freeform surfaces. 

(iv) Study of functional and surface parameters for the form characterization of 

freeform surfaces. 

Currently, there is a lack of international standards for surface parameters used 

for the form characterization of ultra-precision freeform surfaces. Although some 

areal parameters have been published by the ISO project for evaluating the surface 

quality of 3D surfaces, most of them are limited to use in surfaces possessing 

rotational symmetry such as aspheric surfaces. As a result, a series of surface 

parameters including global parameters and local parameters should be studied to 

characterize the magnitude and variation of the form errors of ultra-precision freeform 

surfaces. The surface parameters also need to be correlated with the specific 

functional characteristics of the surface (e.g. optical properties, self cleaning, and 

wettability) so that, based on the parameters, a decision can be made to examine if the 

surface meets the designer’s requirements for its functional uses.  
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Appendices 

Appendix I Form Talysurf PGI 1240 Freeform Profiler 

The Form Talysurf PGI 1240 (Figure 2.19) from Taylor Hobson is a premium 

specification measurement system for the small to medium sized optics market. It is 

designed for applications where optimum component quality and consistency cannot be 

compromised. The PGI 1240 Measurement System represents a new level of 

performance for applications such as: 

 Diamond-turned or Ultra-precision ground molds for plastic or glass optics 

 Aspherics for laser applications 

 Digital cameras, projectors, etc 

 IR & Diffractive optics up to 200mm diameter 

The Form Talysurf PGI 1240 has been developed specifically for the optics 

industry. Every aspect of manufacture is to the highest possible level which results in 

unparalleled system performance. 

 200 mm Traverse unit with 0.11 μm\200 mm straightness 

 12.5 mm Gauge range, 0.8 nm vertical resolution 

 50 mm Gauge range possible with special styli 

 1 nm RMS noise floor provides market-leading optics surface finish measurement 

capability 

 Extensive Range of Optional Accessories, including styli for demanding 

applications
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Appendix II WYKO NT 8000 Optical Profiling System 

 

The Wyko NT8000 is the most capable optical profiler available for the 

non-contact measurement of step heights, roughness and surface topography of 

MEMS, metal materials, semiconductors, medical devices, precision lenses and more. 

Major features include: 

 Gauge-capable measurement with sub-nanometer vertical resolution 

 8mm vertical scan range with sub - nanometer resolution. 

 Internal reference enabling self-calibrating accuracy over the entire range 

The Wyko NT 8000 system consists of several key components which work 

together to provide information on your sample, see Figure A-1. The system includes: 

 A Wyko Profiler head mounted on a Z-axis and automated tip/tilt cradle 

 Various magnification objectives mounted on a turret 

 A vibration-isolation table 

 A motorized x/y sample stage 

 

Figure A- 1  Wyko NT 8000 (Reduced Footprint Configuration) 




