
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



1 

 

 

 

THE HONG KONG POLYTECHNIC UNIVERSITY 

Department of Chinese and Bilingual Studies 

 

 

 

 

INFERENTIAL PATTERNS OF GENERALIZED QUANTIFIERS  

AND THEIR APPLICATIONS TO SCALAR REASONING 

 

CHOW Ka Fat 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

 

March 2012 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.




2 

 

 

 

CERTIFICATE OF ORIGINALITY 

 

I hereby declare that this thesis is my own work and that, to the best of my 

knowledge and belief, it reproduces no material previously published or written, 

nor material that has been accepted for the award of any other degree or diploma, 

except where due acknowledgement has been made in the text. 

_____________________________ (Signed) 

_______CHOW Ka Fat__________ (Name of student) 



3 

 

Abstract 

    This thesis studies the inferential patterns of generalized quantifiers (GQs) 

and their applications to scalar reasoning. In Chapter 1, I introduce the basic 

notions of Generalized Quantifier Theory (GQT) and survey the major types of 

right-oriented GQs traditionally studied under GQT (including both monadic and 

iterated GQs). I also expand the scope of this theory to the analysis of 

left-oriented GQs (including left conservative GQs such as “only” and 

left-iterated GQs manifested as quantified statements with relative clauses). 

    In Chapter 2, I introduce the major aspects of scalar reasoning to be studied 

in this thesis and summarize the major findings in the literature. After reviewing 

different notions of scales, I introduce other essential concepts and review the 

various theories and schools on the two main types of scalar reasoning, i.e. scalar 

entailments (SEs) and scalar implicatures (SIs). I then introduce four types of 

scalar lexical items studied under the Scalar Model Theory and Chinese grammar 

and discuss how their semantics / pragmatics are related to SEs and/or SIs. These 

include scalar operators (SOs), climax construction connectives (CCCs), 

subjective quantity operators (SQOs) and lexical items denoting extreme values. 

In the final part of this chapter, some outstanding problems in the studies on 

scalar reasoning are identified. 

    In Chapter 3, I study four main types of quantifier inferences. They are 

monotonicity inferences, argument structure inferences, opposition inferences 

and (non-classical) syllogistic inferences. The major findings are summarized in 

tables and theorems. Special emphasis is put on devising general principles and 

methods that enable us to derive valid inferential patterns of iterated GQs from 

the inferential properties of their constituent monadic GQs. 

    In Chapter 4, I apply the major findings worked out in the previous chapter 
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to resolve the outstanding problems identified in Chapter 2. I first develop a basic 

formal framework that is based on the notions of generalized fractions and 

I-function. This basic framework can deal with the various aspects of scalar 

reasoning in a uniform way. I then enrich the basic framework by adding specific 

ingredients to deal with the phenomena of SEs and SIs. To deal with SEs, I add a 

relation connecting the I-function and SEs to the basic framework, so that the 

derivation of SEs is reduced to comparison between the I-function values of 

propositions. Moreover, by capitalizing on a parallelism between SEs and 

monotonicity inferences, I combine findings of the two types of inferences and 

discover new inferential patterns, such as Proportionality Calculus and scalar 

syllogisms. To deal with SIs, I add the ingredients of question under discussion 

(QUD) foci, answer exhaustification and opposition inferences to the basic 

framework, so that it can account for the various types of SIs and related 

phenomena introduced in Chapter 2 in a uniform way. I then use the framework 

to conduct a cross-linguistic study on the English and Chinese scalar lexical 

items introduced in Chapter 2. The I-function is used to formulate the conditions 

of use for these lexical items. The association of SEs and SIs with different types 

of scalar lexical items is also explored. 

    Finally, Chapter 5 discusses the significance of the major findings of this 

thesis and possible extensions of the study. 



5 

 

Publications arising from the Thesis 

Chow, K.F. (2011a) “A Semantic Model for Vague Quantifiers Combining Fuzzy 

Theory and Supervaluation Theory”, in van Ditmarsch, H. et al (eds.) 

Proceedings of the 3
rd

 International Workshop on Logic, Rationality and 

Interaction, Heidelberg: Springer, pp. 61 – 73. 

Chow, K.F. (2011b) “Duidang Fangzhen Yiban Moshi ji qi Yingyong” [The 

General Pattern of Squares of Opposition and its Applications], in Jiang, Y. 

(ed.) Approaching Formal Pragmatics, Shanghai: Shanghai Educational 

Publishing House, pp. 104 – 121. 

Chow, K.F. (2011c) “Dandiaoxing yu Tiji Tuili” [Monotonicity and Scalar 

Reasoning], in Jiang, Y. (ed.) Approaching Formal Pragmatics, Shanghai: 

Shanghai Educational Publishing House, pp. 122 – 174. 

Chow, K.F. (2011d) “Yiwen Liangci de Xingshi Biaoda yu Tuili Moshi” [Formal 

Representation and Inferential Patterns of Interrogative Quantifiers], in Jiang, 

Y. (ed.) Approaching Formal Pragmatics, Shanghai: Shanghai Educational 

Publishing House, pp. 175 – 261. 

Chow, K.F. (2012a) “General Patterns of Opposition Squares and 2n-gons”, in 

Beziau, J.-Y. and Jacquette, D. (eds.) Around and Beyond the Square of 

Opposition, Basel: Birkhäuser / Springer, pp. 263 – 275. 

Chow, K.F. (2012b) “Generalizing Monotonicity Inferences to Opposition 

Inferences”, in Aloni, M. et al (eds.) Proceedings of the 18
th

 Amsterdam 

Colloquium, Berlin: Springer, pp. 281 – 290. 

Chow, K.F. (2012c) “Zhuguanliang de Tiji Moxing Jieshi” [A Scalar Model 

Interpretation for Subjective Quantity], Chinese Language Learning, 2012:4, 

pp. 29 – 38. 



6 

 

Acknowledgements 

    After I obtained my first degree in 1989, I started looking for a subject area 

for doing research and pursuing a doctoral degree. This search lasted for nearly 

two decades until 2007 when I finally decided to conduct a research on quantifier 

inferences and scalar reasoning. The choice of this topic was of course not done 

randomly, but was inspired by four scholars who also provided different help for 

me to complete this study. I would thus like to take this opportunity to express 

my gratitude to them. 

    First and foremost, I have to extend my thanks to Dr. JIANG Yan, who is 

not only my PhD degree supervisor, but also the advisor of my MA dissertation 

(which won the Outstanding Thesis Award (MA) of the Linguistic Society of 

Hong Kong). In the past five years, Dr. JIANG has provided me with supportive 

guidance and valuable inspiration without which my thesis would not have 

covered certain important aspects of scalar reasoning and Chinese linguistics. He 

has also encouraged me to submit papers to academic conferences and journals 

and given me opportunity to publish parts of my works in three chapters of his 

edited book (Approaching Formal Pragmatics). These precious experiences have 

made the period of my doctoral study an exciting and rewarding one. 

    I would also like to thank the other three members of the Board of 

Examiners. They are Professor SHI Dingxu, Professor PAN Haihua and 

Professor ZOU Chongli. Professor SHI is the Chair of the Board of Examiners. 

He and Dr. JIANG were the instructors of the first courses that I attended for the 

MA in Chinese Linguistics degree in 2003. As I had no formal educational 

background on linguistics before I pursued the MA degree, their teaching laid a 

good foundation for my linguistic research later. Professor SHI’s Chomsky’s 

Theory of Syntax – Its Evolution and Latest Development remains one of my 



7 

 

favourite references on Chomskyan Syntax, although I have not chosen to pursue 

studies in this area. 

    Professor PAN is the co-author (with Dr. JIANG) of Introduction to Formal 

Semantics and Professor ZOU is the author of Studies in Natural Language Logic 

and Logic, Language and Information – Studies on Logical Grammar. It is 

through these works that I got to know the fruitful ground of Formal Semantics, 

especially Generalized Quantifier Theory. It is indeed my honour to have the 

three experienced workers of Formal Semantics in China to examine my thesis 

and provide valuable comments so that I can improve the presentation, sharpen 

the arguments and correct the mistakes in my thesis. 

    Last but not least, I must also thank my wife Belle, who has always 

supported me in my studies, not only in taking care of our family, but also in 

sharing the ups and downs in my academic life, including accompanying me in a 

number of academic conferences! 



8 

 

Table of Contents 

Abstract .................................................................................................................. 3 

Publications arising from the Thesis ...................................................................... 5 

Acknowledgements ................................................................................................ 6 

Table of Contents ................................................................................................... 8 

List of Figures ...................................................................................................... 12 

List of Tables ........................................................................................................ 12 

List of Abbreviations ............................................................................................ 13 

Chapter 1 Formal Properties of Generalized Quantifiers ............................. 14 

1.1 General Outline of this Thesis ...................................................... 14 

1.2 Overview of GQT ........................................................................ 15 

1.3 Scope of the Study ....................................................................... 16 

1.4 Basic Notions of GQs and Models ............................................... 17 

1.5 Basic Notions of Entailments and Equivalences .......................... 19 

1.6 Right-Oriented GQs ..................................................................... 20 

1.6.1 Determiners .................................................................................. 21 

1.6.2 Type <1> GQs .............................................................................. 22 

1.6.3 Structured GQs ............................................................................. 23 

1.6.4 Existential Sentences .................................................................... 24 

1.6.5 Iterated Polyadic GQs .................................................................. 25 

1.6.6 Right Conservativity and Right Iteration ..................................... 27 

1.7 Left-Oriented GQs ....................................................................... 28 

1.7.1 “only” ........................................................................................... 28 

1.7.2 Other Left Conservative Determiners .......................................... 30 

1.7.3 Left Conservative Structured GQs ............................................... 31 

1.7.4 Left-Iterated GQs ......................................................................... 32 

1.8 Conclusion ................................................................................... 35 

Chapter 2 Scalar Reasoning: Logical and Linguistic Aspects ...................... 36 

2.1 Overview of Scalar Reasoning ..................................................... 36 

2.2 Different Notions of Scales .......................................................... 37 

2.3 Scalar Entailments ........................................................................ 39 

2.3.1 Scalar Model Theory .................................................................... 39 

2.3.2 Relation between Horn Scales and Hirschberg Scales ................. 42 

2.4 Scalar Implicatures ....................................................................... 44 

2.4.1 Grice’s Quantity-1 Submaxim...................................................... 44 

2.4.2 Epistemic Force ............................................................................ 46 

2.4.3 Canonical SIs and Alternate-Value SIs ........................................ 47 

2.4.4 Defaultism and Contextualism ..................................................... 49 



9 

 

2.4.5 Globalism and Localism .............................................................. 52 

2.4.6 Contrastive Construals ................................................................. 57 

2.5 Scalar Operators ........................................................................... 59 

2.5.1 Basic Notions ............................................................................... 59 

2.5.2 “even” + Negation ........................................................................ 61 

2.5.3 “even” and “at least” .................................................................... 62 

2.6 Climax Constructions ................................................................... 65 

2.6.1 Canonical Climax Constructions ................................................. 65 

2.6.2 Anti-Climax Constructions .......................................................... 66 

2.7 Subjective Quantity ...................................................................... 68 

2.7.1 Abnormal SQ ............................................................................... 68 

2.7.2 Infected SQ................................................................................... 70 

2.7.3 “jiu” and “cai” .............................................................................. 71 

2.8 Extreme Values ............................................................................. 73 

2.8.1 Maximizers / Minimizers and Superlatives ................................. 73 

2.8.2 Chinese Idiomatic Constructions with “yi”.................................. 76 

2.9 Conclusion ................................................................................... 77 

Chapter 3 Inferential Patterns of Generalized Quantifiers............................ 80 

3.1 Introduction .................................................................................. 80 

3.2 Monotonicity Inferences .............................................................. 82 

3.2.1 Basic Definitions .......................................................................... 82 

3.2.2 Previous Studies ........................................................................... 84 

3.2.3 Monotonicities of Monadic GQs .................................................. 85 

3.2.4 Monotonicity Calculus ................................................................. 89 

3.2.5 GQs as Sets and Arguments ......................................................... 93 

3.2.6 Negation Operator ........................................................................ 94 

3.3 Argument Structure Inferences .................................................... 95 

3.3.1 Basic Definitions .......................................................................... 95 

3.3.2 Previous Studies ......................................................................... 101 

3.3.3 Double Negation Law and Duality Inferences ........................... 103 

3.3.4 Fixed Points and Self-Duals ....................................................... 107 

3.3.5 Duality and Monotonicities ........................................................ 111 

3.3.6 Transposition Inferences on the Argument Level ...................... 112 

3.3.7 Transposition Inferences on the Quantifier Level ...................... 114 

3.4 Opposition Inferences ................................................................ 116 

3.4.1 Basic Definitions ........................................................................ 116 

3.4.2 Previous Studies ......................................................................... 119 

3.4.3 O-Sensitivities of Monadic GQs (Single OP) ............................ 120 



10 

 

3.4.4 O-Sensitivities of Monadic GQs (Multiple OPs) ....................... 123 

3.4.5 Opposition Calculus ................................................................... 127 

3.4.6 GQs as Sets and Arguments ....................................................... 131 

3.4.7 Negation Operator ...................................................................... 132 

3.4.8 Comparison with Monotonicity Inferences ................................ 133 

3.5 Syllogistic Inferences ................................................................. 135 

3.5.1 Basic Definitions ........................................................................ 135 

3.5.2 Previous Studies ......................................................................... 138 

3.5.3 Monadic Syllogisms ................................................................... 140 

3.5.4 Relational Syllogisms by Direct Substitution ............................ 142 

3.5.5 Relational Syllogisms by Syllogism Embedding ....................... 144 

3.5.6 Refutation of Invalid Syllogisms ............................................... 148 

3.5.7 Inverse Logic .............................................................................. 150 

3.6 Conclusion ................................................................................. 151 

Chapter 4 Quantifier Inferences and Scalar Reasoning .............................. 153 

4.1 Introduction ................................................................................ 153 

4.2 Scalar Entailments ...................................................................... 153 

4.2.1 Generalized Fractions................................................................. 153 

4.2.2 The I-Function and SEs .............................................................. 156 

4.2.3 Strict Monotonicity Inferences as Scalar Entailments ............... 159 

4.2.4 Proportionality Calculus ............................................................ 162 

4.2.5 Scalar Syllogisms ....................................................................... 165 

4.3 Scalar Implicatures ..................................................................... 166 

4.3.1 The I-function and SIs ................................................................ 167 

4.3.2 Alternate-Value SIs .................................................................... 169 

4.3.3 Canonical SIs ............................................................................. 171 

4.3.4 SIs Right-Embedded under “every” ........................................... 173 

4.3.5 SIs Right-Embedded under Simple Indefinite Determiners....... 177 

4.3.6 Left-Embedded SIs..................................................................... 179 

4.3.7 SIs with Negative Scalar Terms ................................................. 181 

4.3.8 SIs Right-Embedded under “no” ................................................ 183 

4.3.9 Contrastive Construals and SIs .................................................. 184 

4.3.10 Other Applications of Opposition Inferences ............................. 186 

4.4 Scalar Operators and Climax Construction Connectives ........... 187 

4.4.1 Focus Structure ........................................................................... 187 

4.4.2 Standalone SOs .......................................................................... 189 

4.4.3 Correlative SOs .......................................................................... 191 

4.4.4 SO + Conjunction ....................................................................... 196 



11 

 

4.4.5 SO + Negation ............................................................................ 197 

4.4.6 Certain Complex Sentence Types .............................................. 199 

4.4.7 Comparative Constructions ........................................................ 201 

4.4.8 “even” and “at least” .................................................................. 202 

4.4.9 Chinese Rhetorical Questions and “ba”-questions ..................... 205 

4.5 Subjective Quantity .................................................................... 209 

4.5.1 SQOs Based on Informativeness ................................................ 209 

4.5.2 “jiu”, “cai” and “zhi”.................................................................. 213 

4.6 Extreme Values ........................................................................... 217 

4.6.1 Maximizers / Minimizers ........................................................... 217 

4.6.2 Superlatives and Extreme Degree Modifiers ............................. 221 

4.6.3 Chinese Idiomatic Constructions with Extreme Numerals ........ 222 

4.7 Conclusion ................................................................................. 227 

Chapter 5 Concluding Remarks .................................................................. 230 

5.1 Significance of the Present Study .............................................. 230 

5.2 Possible Extensions of the Present Study ................................... 233 

Appendix 1 Truth Conditions of Right Conservative GQs ............................ 237 

Appendix 2 Truth Conditions of Left Conservative GQs .............................. 239 

Appendix 3 Proofs of Theorems .................................................................... 240 

References .......................................................................................................... 259 

 



12 

 

List of Figures 

Figure 2.1  A Scalar Model 40 

Figure 2.2  Schematic Representation of SEs and SIs 47 

Figure 4.1  Transforming an Ordered Scale to an Alternate-Value Set 172 

 

 

List of Tables 

Table 2.1  Chinese CCCs and Approximate English Equivalents 65 

Table 2.2  SQs denoted by “dou / hai” 69 

Table 2.3  SQs denoted by “jiu / cai” 72 

Table 2.4  Israel’s Typology of Maximizers / Minimizers 75 

Table 3.1  Monotonicities of GQs 89 

Table 3.2  Outer Negations of GQs 96 

Table 3.3  Inner Negations of GQs 97 

Table 3.4  Duals of GQs 97 

Table 3.5  Fixed Points 110 

Table 3.6  Self-Duals 110 

Table 3.7  Converse Pairs of GQs 113 

Table 3.8  Symmetric Quantifiers 114 

Table 3.9  Contrapositive Determiners 114 

Table 3.10  OPs of GQs 125 

Table 3.11  Figures of Classical Syllogisms 136 

Table 3.12  Valid Classical Syllogisms 136 

Table 4.1  Correspondence between SOs and Complex Sentence Types 200 

Table 4.2  Conditions of Use of SOs 209 

Table 4.3  Correspondence between SOs, Maximizers / Minimizers and 

Scalar Reasoning 

220 

Table 4.4  A New Typology of Maximizers / Minimizers 227 



13 

 

List of Abbreviations 

Abbreviation Full Name 

BO Boolean operator 

CCC climax construction connective 

CP context proposition 

CS context set 

DRT Discourse Representation Theory 

FOPL First Order Predicate Logic 

GCI generalized conversational implicature 

GF generalized fraction 

GQ generalized quantifier 

GQT Generalized Quantifier Theory 

iff if and only if 

LHS left-hand side 

NP noun phrase 

NPI negative polarity item 

OP opposition property 

PCI particularized conversational implicature 

PMC Principle of Monotonicity Calculus 

POC Principle of Opposition Calculus 

PPC Principle of Proportionality Calculus 

PPI positive polarity item 

QUD question under discussion 

RHS right-hand side 

SE scalar entailment 

SI scalar implicature 

SM scalar model 

SMN scalar metalinguistic negation 

SMT Scalar Model Theory 

SO scalar operator 

SQ subjective quantity 

SQO subjective quantity operator 

TP text proposition 

wrt with respect to 



14 

 

Chapter 1 Formal Properties of Generalized Quantifiers 

1.1 General Outline of this Thesis 

    The main theme of this thesis is about formal reasoning in language, an 

important cognitive activity of the human kind. Two types of reasoning will be 

studied: inferences of generalized quantifiers (GQs) and scalar reasoning 

(including scalar entailments (SEs) and scalar implicatures (SIs)). 

    As quantification is a common phenomenon in natural language, a thorough 

study of the inferential patterns of quantifiers is of utmost importance in 

understanding natural language inferences. In fact, throughout the history of 

logic, from the ancient Aristotelian Logic to the modern First Order Predicate 

Logic (FOPL) as well as its offshoot Generalized Quantifier Theory (GQT), 

quantifiers (or quantified statements) have been a primary target of study. 

    Reasoning is also a primary object of study in modern pragmatics. Among 

the various types of pragmatic reasoning, I have chosen to study scalar reasoning 

because it is closely related to quantifier inferences. In fact, the classical 

examples of SIs are precisely about quantifiers, which can form scales. More 

importantly, it will be shown in this thesis that scalar reasoning shares some 

striking similarities with quantifier inferences, and research findings on 

quantifier inferences can be used to solve some problems in the studies of scalar 

reasoning. 

    In this and the next chapter, I will first introduce the basic notions of GQT 

and scalar reasoning. In addition to introducing and reviewing past results, I will 

also expand the scope of GQT study to left-oriented GQs and point out some 

outstanding problems in the studies of scalar reasoning. In Chapter 3, I will study 

four main types of quantifier inferences, namely monotonicity inferences, 

argument structure inferences, opposition inferences and syllogistic inferences. 
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In Chapter 4, I will apply the major findings worked out in the previous chapter 

to solve the problems identified in Chapter 2. Specifically, I will develop a 

formal framework for SEs and SIs and use it to account for the formal pragmatics 

of a number of scalar lexical items, including scalar operators, climax 

construction connectives, subjective quantity operators, maximizers / minimizers 

and Chinese idiomatic constructions with extreme numerals, etc. Chapter 5 

provides some concluding remarks. 

 

1.2 Overview of GQT 

    GQT may be roughly divided into two streams
1
. The first stream is mainly 

interested in the logical properties of GQs and develops into a branch of modern 

Mathematical Logic. It grows out of FOPL, which used to study the logical 

inferences of the universal and existential quantifiers. Since Mostowski (1957) 

and Lindström (1966), the range of quantifiers studied by logicians has been 

greatly expanded to generalized quantifiers. Nowadays, researches in this stream 

cover a wide range of topics in Model Theory, Proof Theory, Computation 

Theory, Game Theory, Computer Science, Artificial Intelligence and various 

types of modal logics, non-standard logics and theories on uncertainties (such as 

Fuzzy Theory and Probability Theory). Van Benthem and Westerståhl (1995) and 

Väänänen (1999) are good overviews of such researches. 

    The second stream is mainly interested in the linguistic properties of GQs. 

Through the works of Montague (1973), Barwise and Cooper (1981) and Keenan 

and Stavi (1986) and the subsequent application of GQT to linguistic studies, 

GQT has become an important branch of Formal Semantics. Some syntacticians 

                                                 
1
 Of course, such a division does not mean that every piece of works on GQT can be neatly 

classified into exactly one of the streams. There are in fact many studies that straddle across the 

two streams. 
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also borrow ideas from this stream to study syntactic phenomena related to 

quantification, such as Beghelli (1995)’s study on quantifier scope. Thus, 

researches in this stream also cover a wide spectrum of subject areas ranging 

from Formal Semantics to Formal Syntax. 

    As outlined by Szabolcsi (2010), the development of linguistic theories on 

quantification since 1970s has undergone transformation from a period of “Grand 

Uniformity” (1970s and 1980s), during which GQT was seen as a uniform theory 

for identifying the typology and general semantic properties of different types of 

noun phrases (NPs), to a period of “Diversity” (1980s and 1990s), during which 

diversified anaphoric and scopal properties of different GQs were discovered and 

led to diversified treatments of different types and phenomena of GQs. 

    The period starting from 2000 may be called a period of “In-Depth 

Researches”
2
, during which certain subject areas not touched upon in the 

previous periods are now put onto the research agenda. These include, inter alia, 

researches on special types of quantifiers (e.g. Bernardi and Moot (2003), 

Glöckner (2006)), internal composition of GQs (e.g. Hackl (2000), Matthewson 

(2001)), polyadicity of GQs (e.g. van Eijck (2005), Robaldo (2011)), 

generalization or refinement of certain GQ properties (e.g. Zuber (2010b, 2011)), 

etc. 

 

1.3 Scope of the Study 

    Although advances have been made in the studies of various aspects related 

to GQs such as vagueness, interrogative, plurality, mass terms, genericity, 

intensionality and dynamic semantics of anaphora and ellipsis, this thesis is 

                                                 
2
 Szabolcsi (2010) used the name “Internal Composition” to call this period. But since this name 

fails to cover some important researches during this period, I replace it by “In-Depth 

Researches”. 
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targeted at the inferential patterns of GQs. Therefore, I choose to focus on the 

core type of GQs, i.e. sharp declarative GQs with non-collective, non-mass 

arguments in an episodic, extensional and static setting, to avoid distraction by 

considerations of issues other than quantifier inferences. Concerning embedded 

GQs, this thesis will only study GQs embedded within the scopes of other GQs 

and will not study GQs embedded under “world-creating predicates” (e.g. 

reporting verbs, propositional attitude verbs, etc). Despite the above restrictions, 

this thesis will extend the GQT framework, which has traditionally been 

concentrated on right-oriented GQs, to left-oriented GQs, which include left 

conservative monadic GQs (e.g. “only”) and left-iterated GQs. 

    At present, GQT has developed to the extent that two pieces of work on 

GQT may differ a lot in their scopes of study, basic assumptions and notations 

from the classical GQT and from each other. The emergence of new theories 

departing from the classical GQT is often due to the need of accounting for 

phenomena not adequately explained by the classical GQT. This is especially so 

for those researches that have a strong syntactic flavor. Since one main objective 

of this thesis is to study the inferential patterns of GQs, this thesis will not touch 

on topics that are more syntax-oriented, such as scope and binding and internal 

composition of GQs.  

 

1.4 Basic Notions of GQs and Models 

    A GQ can be seen as a second-order predicate with first-order predicates as 

arguments. Different GQs may differ in terms of the number and arities of their 

arguments, where “arities” refer to the number of arguments of the first-order 

predicates. Lindström (1966) devised a special nomenclature to denote the type 

of a GQ. The nomenclature takes the form of a sequence of natural numbers 
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<n1, ... nk> where k is the number of arguments of the GQ and n1, ... nk are the 

arities of each argument. If all the numbers in the sequence are 1, the GQ is 

“monadic”. Otherwise, it is “polyadic”. For instance, the sequence <1,3> 

represents a polyadic GQ with two arguments, the first of which being a unary 

predicate and the second being a ternary predicate
3
. This sequence can be used to 

represent the iterated polyadic GQ “(j … some … m)
4
” in the sentence: 

(1) John gave some flowers to Mary. 

Note that this GQ has a unary predicate (i.e. FLOWER) and a ternary predicate 

(i.e. GIVE)
5
 as arguments and is thus a <1,3> GQ.  

    In this thesis, the meaning of GQs is defined to be truth conditions. Thus, 

the truth of a quantified statement is not determined once and for all (unless it is 

a tautology or contradiction) and may vary with respect to different models. In 

Mathematical Logic and Formal Semantics, a model is usually represented by a 

pair <U, ║·║> where U is a set composed of all the members of the universe (or 

domain of discourse) and ║·║ is an interpretation function whose purpose is to 

specify the denotations of all non-logical predicates in the model. For 

convenience, in this thesis I will only apply this function to propositions to 

denote their truth values. A predicate will be denoted as a set represented by 

capital letters. Hence, the denotation of “boy” will be written as BOY. 

    In addition to the interpretation function, there is another notion – variable 

assignment function that assigns values to variables. Since I will use the 

                                                 
3
 Many notions in Mathematical Logic have corresponding notions in Set Theory. For example, a 

unary predicate corresponds to an ordinary set (composed of individual members), while an n-ary 

predicate corresponds to a set composed of n-tuples of individual members. In this thesis, I will 

switch freely between the “predicate talk” and “set talk”. 
4
 In this thesis, I use small letters to represent proper names in the GQ. For example, “j” and “m” 

represent John and Mary, respectively. See Subsection 1.6.5 for an introduction to iterated 

polyadic GQs. 
5
 This thesis does not consider the issue of grammatical number and tense. Thus, the semantic 

representation of all sentences will be numberless and tenseless. 
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set-theoretic notations
6
 to represent the argument structures of GQs (e.g. 

representing “Most A are B” by “most(A)(B)” instead of “most x(A(x), B(x))”) 

and will not consider sentences with unbound variables, all variables are hidden 

inside the set notation
7
 and so there is no need for the variable assignment 

function. 

 

1.5 Basic Notions of Entailments and Equivalences 

    Although quantifier inferences are not studied until Chapter 3, I will provide 

formal definitions of entailments and equivalences, the most basic notions in the 

study of inferences, in this section, because these notions are essential for 

understanding the truth conditions and certain properties of quantifiers, as well as 

some aspects of scalar reasoning to be introduced in the next chapter. 

    First, we consider entailments which are defined as follows: 

(2) Let p and q be propositions, then p entails q (written “p  q”)
8
, iff wrt 

every model, if ║p║ = 1, then ║q║ = 1. 

In the above definition, p is called the premise
9
 and q is called the conclusion. In 

the study of inferences, we also need the notion of equivalences which are in fact 

bilateral entailments:  

(3) Let p and q be propositions, then p is equivalent to q (written “p  q”) 

iff wrt every model, ║p║ = 1 iff ║q║ = 1. 

    Sometimes it is useful to view the entailment and equivalence relations 

between quantified statements as set-theoretic relations between quantifiers. To 

                                                 
6
 By using the set notations, I am able to make use of the powerful laws and functions in Set 

Theory. 
7
 Note that hiding an unbound variable x inside the set notation is equivalent to binding x by λ, 

because {x: A(x)} is equivalent to λx(A(x)). Also note that the symbol A for a set is in fact a short 

form for {x: A(x)}. 
8
 In this thesis, I use “” to denote “entailment” and “” to denote “(material) implication”. 

9
 In case there is more than one premise, then p is the conjunction of these premises. 
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this end, we first reinterpret quantifiers as sets. Using type <1,1> GQs as an 

example, we can interpret any such GQ as a set of ordered pairs of sets. For 

example, we have 

(4) every = {<A, B>: A  B} 

In this way, a quantified statement can be rewritten as a set-theoretic statement. 

For example, 

(5) Every A is B.  <A, B>  every 

Based on the above reinterpretation, we can then define two set-theoretic 

relations between quantifiers – “inclusion” and “equality”, denoted by “” and 

“=”, respectively. Let Q, Q’ be type <1,1> GQs, then 

(6) Q  Q’ iff wrt every model and every A, B, Q(A)(B)  Q’(A)(B). 

(7) Q = Q’ iff wrt every model and every A, B, Q(A)(B)  Q’(A)(B). 

Using the truth conditions of quantifiers (recorded in Appendix 1 and Appendix 

2), one can easily derive 

(8) no  (fewer than 2)  (fewer than 3)  … 

(9) most = (more than 1/2 of) 

    In Classical Logic, we have the subalternate relation “Every A is B  Some 

A is B”. But under the modern interpretation of the quantifier “every”, this 

relation is only conditionally valid under the condition that A is non-empty. Now, 

under the above reinterpretation, we can express this conditionally valid relation 

as “Within the domain {<A, B>: A  }, every  some”. In fact, we can 

generalize this to the following chain relation: 

(10) Within the domain {<A, B>: |A|  n},  

every  (at least n)  (at least n – 1)  …  (at least 2)  some 

 

1.6 Right-Oriented GQs 
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    In this section, I will introduce those GQs that are most studied in the 

literature. In this thesis, these GQs are called right-oriented GQs, which include 

two subtypes – right conservative GQs and right-iterated GQs. In what follows, I 

will first provide a typology of these GQs, and will then explain the term 

“right-oriented”. 

 

1.6.1 Determiners 

    Let’s start from the most important GQs – type <1,1> GQs. Since these GQs 

have two unary predicates as arguments, we may represent the argument 

structure of this type of GQs in the form of a tripartite structure
10

: 

(11) Q(A)(B) 

where Q, A and B denote the type <1,1> GQ, its left argument (also called the 

“nominal argument”) and right argument (also called the “predicative argument”), 

respectively
11

. Apart from indicating the argument structure of a GQ, the 

tripartite structure can also be used to represent a sentence headed by that GQ. 

Syntactically, Q, A and B correspond to the determiner, subject (excluding the 

determiner) and sentential predicate, respectively. For this reason, type <1,1> 

GQs are often called determiners in the literature. For example, the sentence 

(12) Every boy sang. 

can be represented as 

(13) every(BOY)(SING) 

    Tripartite structure is a succinct means for representing the argument 

structure of a GQ or a quantified statement. It turns out that it is not only 

                                                 
10

 In this thesis, the argument structure of a GQ may take two forms: the flat structure, such as 

Q(A, B), or the tripartite structure, such as Q(A)(B). According to the Schönfinkelization Theory, 

the two forms are equivalent. Therefore I will switch freely between these two forms. 
11

 In the literature, the left and right arguments of a tripartite structure are also called “restrictor” 

and “nuclear scope”, respectively. 
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applicable to determiners, but also other kinds of GQs. Thus, this thesis will use 

tripartite structure as a standard notation. 

    The semantics of a GQ is delineated by its truth condition which is 

expressed by a set-theoretic proposition. For example, the truth condition of 

“every” is as follows: 

(14) every(A)(B)  A  B 

In this thesis, the truth conditions of right conservative GQs mainly follow those 

adopted in Keenan and Westerståhl (2011) (see Appendix 1). 

 

1.6.2 Type <1> GQs 

    Type <1> GQs include those GQs corresponding syntactically to full NPs, 

such as “everybody” and “x” (where “x” represents an individual member of the 

universe expressed as a proper name in natural language). Since a type <1> GQ 

only requires one predicative argument, when we express such a GQ as a 

tripartite structure, the left argument is left empty (denoted “–”), with the right 

argument being the unique argument. For example, the sentence 

(15) Nobody sang. 

has the following argument structure and truth condition: 

(16) nobody(–)(SING) ⇔ PERSON  ¬SING 

    According to Appendix 1, type <1> GQs such as “everything” and “nobody” 

can be reanalyzed as complex structures with type <1,1> GQs such as 

“every(THING)” and “no(PERSON)”, respectively. Sometimes the sets THING 

and PERSON may be equivalent to the universe U. In this case, the truth 

condition can be simplified. For example, when PERSON = U, then (16) 

becomes 
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(17) nobody(–)(SING) ⇔ SING =  

    In FOPL, proper names are seen as individuals of the universe. Under this 

view, a proper name such as “x” can be analyzed as a complex structure with the 

determiner “every”, such as “every({x})”. Alternatively, we may also follow 

Montague (1973) by analysing proper names as GQs (called “Montagovian 

individuals” in the literature). Under this view, the proper name “x” has the 

following truth condition: 

(18) x(–)(B) ⇔ x  B 

One can easily check that the above truth condition is equivalent to the truth 

condition of “every({x})(B)”. 

    Apart from the aforesaid type <1> GQs, the “determiner + common noun” 

structure, i.e. the “Q(A)” sub-part of the tripartite structure “Q(A)(B)”, 

corresponds to a full NP in natural language, and so can also be seen as a type 

<1> GQ. 

 

1.6.3 Structured GQs 

    Structured GQs refer to monadic GQs with more than two arguments. 

Beghelli (1994) has studied various types of structured GQs. This thesis will 

focus on structured GQs expressing quantity comparison, such as “(more … 

than …)”. One characteristic of such kind of structured GQs is that the same GQ 

may appear in three different argument types, the most important of which being 

<1
2
,1>, with 2 nominal arguments and 1 predicative argument. Syntactically, the 

2 nominal arguments together with the quantifier correspond to a complex 

subject, while the predicative argument corresponds to the sentential predicate. 

To express the argument structure such kind of GQs in the form of a tripartite 

structure, we may write the first two arguments as an ordered pair occupying the 
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A position of the tripartite structure Q(A)(B). For example, the sentence 

(19) More boys than girls sang. 

has the following tripartite structure and truth condition
12

: 

(20) (more … than …)(B, G)(S) ⇔ |B  S| > |G  S| 

    The other two argument types, <1,1
2
> and <1

2
,1

2
>, can also be represented 

in the same way. For example, the sentences 

(21) More boys sang than danced. 

(22) More boys sang than girls danced. 

can be represented by the following tripartite structures and truth conditions: 

(23) (more … than …)(B)(S, D) ⇔ |B  S| > |B  D| 

(24) (more … than …)(B, G)(S, D) ⇔ |B  S| > |G  D| 

Note that (23) and (24) can be seen as variants of (20). That is why only (20) is 

listed in Appendix 1. In this thesis, I will mainly study type <1
2
,1> structured 

GQs. 

 

1.6.4 Existential Sentences 

    Existential sentences refer to the “there + be + Q(A)” structure with an 

existential meaning in English. Following Keenan (1987b), such kind of 

sentences will be seen as equivalent to “Q(A) exist(s)” where “exist(s)” is a 

trivially true predicate that may be represented by the universe U. For example, 

the sentence 

(25) There are more than two boys singing. 

has the following argument structure and truth condition: 

(26) (more than 2)(BOY  SING)(U) ⇔ |BOY  SING| > 2 

                                                 
12

 For readability’s sake, I have omitted the angled brackets (<·>) for representing ordered pairs 

in the tripartite structure. 
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In (25), “singing” is called the “coda” of the existential sentence. According to 

Keenan (1987b), the coda can be treated as an intersective adjective or relative 

clause attached to “Q(A)”. 

 

1.6.5 Iterated Polyadic GQs 

    The GQs introduced in the previous subsections are all monadic GQs, which 

are used to represent sentences with only unary predicates (intransitive verbs, 

predicative adjectives, etc). If a sentence contains n-ary predicates with n > 1 

(transitive verbs, ditransitive verbs, predicative adpositions, etc), then it has to be 

represented by polyadic GQs. According to Keenan and Westerståhl (2011), there 

are various types of polyadic GQs. In this thesis I will only discuss iterated 

polyadic GQs. 

    Consider the following sentence: 

(27) Every girl loves John. 

This sentence may be represented as containing the following complex GQ: 

(28) (every … j …)(GIRL, –)(LOVE) 

Since LOVE is a binary predicate, the complex GQ “(every … j …)” above is of 

type <1,2> and is thus polyadic. Moreover, according to Keenan and Westerståhl 

(2011), (28) can also be seen as containing an iterated polyadic GQ composed of 

“every(GIRL)”
 
and “j(–)”. Thus, (28) may be rewritten as an iterated tripartite 

structure
13

: 

(29) every(GIRL)([j(–)]2(LOVE)) 

Note that (29) reflects both the scope structure and grammatical relations of 

                                                 
13

 (29) should be seen as the variable-free version of the following: 

every({z: GIRL(z)})({x: j(–)({y: LOVE(x, y)})}) 

In the following, I will freely switch between the two versions of iterated tripartite structures. 
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(27)
14

. First, the inner tripartite structure “[j(–)]2(LOVE)” is placed inside the 

outer tripartite structure “every(GIRL)(·)”, showing that “John” and “every girl” 

take narrow and wide scopes in (27), respectively. Second, the subscript “2” of 

“[j(–)]2” indicates that “John” is the second argument (i.e. object) of “love”. 

    The truth condition of an iterated GQ may be derived from the truth 

conditions of its constituent monadic GQs by using the following derivation 

formula (adapted from Keenan (1987a) and Keenan and Westerståhl (2011)): let 

B be a predicate with n arguments x1, … xn, then for 1  i  n, we have 

(30) [Q(A)]i(B) = {<x1, … xi-1, xi+1, ... xn>: Q(A)(Bx1, … xi-1, xi+1, ... xn)} 

where “A” may be “–” (if Q is a type <1> GQ), a unary predicate (if Q is a 

determiner) or an ordered pair of unary predicates (if Q is a type <1
2
,1> 

structured GQ), and 

(31) Bx1, … xi–1, xi+1, ... xn = {xi: B(x1, … xn)} 

    For illustration, let’s use (30) and (31) to derive the truth condition of (29). 

First, we compute the following: 

 [j(–)]2(LOVE)  

= {x1: j(–)(LOVEx1)} by (30) 

= {x1: j(–)({x2: LOVE(x1, x2)})} by (31) 

= {x1: j  {x2: LOVE(x1, x2)}} by Appendix 1 

= {x1: LOVE(x1, j)}  

The above result shows that “[j(–)]2(LOVE)” denotes the set of those who love 

John. Next, by using the truth condition of “every” and the above result, we 

obtain 

                                                 
14

 This thesis adopts a simple treatment of quantifier scopes that is compatible with Montague 

(1973)’s “quantifying-in” or May (1985)’s “quantifier raising”. To achieve a more sophisticated 

treatment, one will need to borrow ideas from theories developed under other syntactic / semantic 

frameworks, such as Cooper (1983), Beghelli (1995), Dalrymple et al (1999), etc. 
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(32) every(GIRL)([j(–)]2(LOVE))  GIRL  {x1: LOVE(x1, j)} 

    An advantage of using the above notation is that we can represent the truth 

conditions of certain special sentence types in a format that is as close as their 

surface forms. These include the topicalized sentences, focused sentences and 

other special Chinese sentence types discussed in Jiang and Pan (2005), as well 

as the left and right dislocated sentence types in English and other languages 

studied in Cann et al (2005). Consider the following Chinese sentence: 

(33) You yige nühai meige nanhai dou ai ta. 

 have a girl every boy all love she 

 There is a girl whom every boy loves. 

This is a topicalized sentence in which the logical object of the verb “ai” is 

placed in front of the logical subject. Logically speaking, this sentence is 

equivalent to a sentence with object wide scope. Using (30) and (31), we can 

represent (33) in the following form and derive its truth condition as follows: 

(34) a(GIRL)([every(BOY)]1(LOVE))  

 |GIRL  {x2: BOY  {x1: LOVE(x1, x2)}}| > 0 

Note that in the above, the components of the iterated tripartite structure are in 

the same order as the components of the surface structure of (33). 

 

1.6.6 Right Conservativity and Right Iteration 

    GQT not only tries to formulate the truth conditions of GQs, but also studies 

the general properties of GQs. One such property is conservativity associated 

with determiners. This property is defined as follows: 

(35) A determiner Q is conservative iff for all A, B, Q(A)(B) ⇔ Q(A)(A  

B). 

It can easily be shown that all determiners listed in Appendix 1 satisfy the above 
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definition. In fact, early GQT scholars widely believed that conservativity was a 

universal property of natural language determiners. 

    In (35), it is the right argument of Q that undergoes a Boolean operation, 

namely intersection. To distinguish this property from a similar property defined 

on the left argument, I will henceforth rename this property “right 

conservativity”. 

    The right argument is also where iteration takes place in the iterated GQs 

introduced in the previous subsection. In general, the iterated tripartite structures 

associated with these GQs have the form 

(36) Q1(A1)([Q2(A2)]k(…)) 

where the inner tripartite structure “[Q2(A2)]k(…)” is embedded inside the right 

argument of the outer tripartite structure “Q1(A1)(·)”. To distinguish this kind 

from another kind of iterated GQs, this kind of iterated GQs will henceforth be 

called “right-iterated GQs”. 

    The right conservative and right-iterated GQs together constitute the focus 

of classical GQT studies. Since both types of GQs are concerned with the right 

arguments, I will henceforth call them “right-oriented GQs” collectively. In the 

next section, I will introduce “left-oriented GQs”, which include two subtypes: 

left conservative GQs and left-iterated GQs. 

 

1.7 Left-Oriented GQs 

1.7.1 “only” 

    The once widely-accepted view that right conservativity is a universal 

property of natural language determiners is not totally uncontroversial because 

“only” as used in the sentence 
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(37) Only willows weep. 

with the truth condition (according to de Mey (1990)) 

(38) only(A)(B)  A  B 

can easily be shown to be violating the defining condition of right conservativity 

(35). Just choose two sets A and B such that B is not a subset of A. Then these 

two sets do not satisfy (38) but they do satisfy only(A)(A  B)  A  A  B, 

and so we have only(A)(B) # only(A)(A  B) 
15

, violating (35). But then 

many scholars argue that “only” has very different syntactic behaviour than 

ordinary determiners and thus should not be considered a determiner. 

    Challenging the traditional view, de Mey (1990) and Hobbs (1995) both 

maintained that “every” and “only” should be treated as converses of each other 

and so should not be given different statuses just because they have different 

syntactic behaviour. To quote de Mey’s words, “syntax cannot dictate the proper 

analysis of ‘only’ ”
16

. The concept of “converse” is defined below: 

(39) Let Q be a determiner. Its converse, denoted Q
–1

, is a determiner such 

that for all A, B, Q(A)(B)  Q
–1

(B)(A). 

According to the above definition, we have every
–1

 = only. 

    De Mey (1990) also played down the special status of right conservativity 

by introducing similar properties of determiners: 

(40) A determiner Q is left conservative iff for all A, B, Q(A)(B) ⇔ Q(A  

B)(B). 

(41) A determiner Q is right progressive
17

 iff for all A, B, Q(A)(B) ⇔ 

                                                 
15

 In this thesis, I use “#”, “#” and “#+>” to denote “non-entailment”, “non-equivalence” 

and “non-implicature”, respectively. 
16

 De Mey (1991), p. 101. 
17

 “Progressivity” is a term coined by de Mey (1990) in contrast to “conservativity”: while 

conservativity is defined in terms of set intersection, progressivity is defined in terms of set 

union. 
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Q(A)(A  B). 

(42) A determiner Q is left progressive iff for all A, B, Q(A)(B) ⇔ Q(A  

B)(B). 

It can easily be shown that “only” is both left conservative and right progressive 

whereas “every” is both right conservative and left progressive. Thus, the logical 

properties of “only” and “every” are mirror images of each other and should thus 

be treated on a par. This thesis follows de Mey (1990) by treating “only” as a (left 

conservative) determiner. 

 

1.7.2 Other Left Conservative Determiners 

    In addition to “only”, “(apart from C only)”, where C is a set of individuals, 

is also left conservative
18

. This determiner is the converse of “(all … except C)”. 

These examples are in fact special cases of a general fact
19

: 

Theorem 1.1 A determiner Q is left conservative iff Q
–1

 is right conservative. 

Thus we can identify left conservative determiners by considering the converses 

of right conservative determiners. Based on this principle, from the following 

equivalence relation: 

(43) More than 70% of the participants are students.  

⇔ Students constitute more than 70% of the participants. 

we may conclude that there should be a left conservative determiner “(constitute 

more than r of)”, which is the converse of “(more than r of)”, with the following 

argument structure and truth condition: 

(44) (constitute more than r of)(A)(B) ⇔ |B  A| / |B| > r 

Although syntactically speaking, this does not correspond to any natural 

                                                 
18

 According to Zuber (2004), “sami” and “oprócz C sami”, the Polish equivalents of “only” and 

“(apart from C only)”, respectively, are genuine determiners. 
19

 See Appendix 3 for proofs of the theorems in this thesis. 
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language determiner (at least in English and Chinese), from the logico-semantic 

point of view, studying these “abstract” determiners can help us discover more 

inference patterns. Moreover, in view of the relation 

(45) Within the domain {<A, B>: B  }, 

only = (constitute exactly 100% of) 

one can see that these “abstract” determiners are a natural generalization of the 

left conservative determiner “only”. Also note that the relation between “only” 

and “(constitute exactly r of)” is completely analogous to that between “every” 

and “(exactly r of)” because we have the relation 

(46) Within the domain {<A, B>: A  }, every = (exactly 100% of) 

    Furthermore, left conservative GQs can also be found among the symmetric 

GQs as defined below: 

(47) A determiner Q is symmetric iff for all A, B, Q(A)(B) ⇔ Q(B)(A). 

From (39), it can easily be seen that a symmetric determiner is self-converse. 

Thus, according to Theorem 1.1, symmetric right conservative determiners must 

also be left conservative. These left-and-right conservative determiners include 

“some”, “no”, “(more than n)”, “(no … except C)”, etc. 

 

1.7.3 Left Conservative Structured GQs 

    The above discussions are concentrated on determiners. According to 

Keenan and Moss (1984), we may also define (right) conservativities of different 

types of structured GQs. Here are the definitions: 

(48) A type <1
2
,1> structured quantifier Q is right conservative iff for all A1, 

A2, B, Q(A1, A2)(B) ⇔ Q(A1, A2)((A1  A2)  B). 

(49) A type <1,1
2
> structured quantifier Q is right conservative iff for all A, 
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B1, B2, Q(A)(B1, B2) ⇔ Q(A)(A  B1, A  B2). 

(50) A type <1
2
,1

2
> structured quantifier Q is right conservative iff for all A1, 

A2, B1, B2, Q(A1, A2)(B1, B2) ⇔ Q(A1, A2)(A1  B1, A2  B2). 

It can be shown that every structured GQ listed in Appendix 1 satisfies the 

respective definitions for the respective argument structures. 

    We may extend the above definitions to left conservativities: 

(51) A type <1
2
,1> structured quantifier Q is left conservative iff for all A1, 

A2, B, Q(A1, A2)(B) ⇔ Q(A1  B, A2  B)(B). 

(52) A type <1,1
2
> structured quantifier Q is left conservative iff for all A, B1, 

B2, Q(A)(B1, B2) ⇔ Q(A  (B1  B2))(B1, B2). 

(53) A type <1
2
,1

2
> structured quantifier Q is left conservative iff for all A1, 

A2, B1, B2, Q(A1, A2)(B1, B2) ⇔ Q(A1  B1, A2  B2)(B1, B2). 

    Similar to the case of determiners, the sentence  

(54) Girls constitute a larger proportion of students in this class than boys. 

may be seen as containing a type <1
2
,1> structured GQ with the following 

argument structure and truth condition: 

(55) (constitute a larger proportion of … than …)(A1, A2)(B)  

⇔ |A1  B| / |B| > |A2  B| / |B| 

It is easily shown that the GQ above satisfies (51). Moreover, the same GQ may 

also appear as a type <1,1
2
> and <1

2
,1

2
> GQ and satisfies the respective 

definitions of left conservativities. A list of the left conservative GQs studied in 

this thesis is provided in Appendix 2. 

 

1.7.4 Left-Iterated GQs 

    As mentioned above, we may represent a sentence with an n-ary predicate 

(n > 1) by a right-iterated GQ where the iteration takes place in the right 
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argument. When it comes to a sentence with relative clause(s)
20

, we need to 

extend the notion of iteration to the left argument and obtain left-iterated GQs. 

For example, the sentence 

(56) Every individual who loves John is happy. 

may be represented by 

(57) every([j(–)]2(LOVE))(HAPPY)  {x1: LOVE(x1, j)}  HAPPY 

In the above, the relative clause “who loves John” is represented by the set {x1: 

LOVE(x1, j)} with the variable x1 taking the place of “who”. This is equivalent to 

Carpenter (1997) and Dalrymple (2001)’s
21

 treatment of relative clauses by 

λ-abstraction. 

    In (56) the subject contains an expletive noun “individual” which functions 

as a place-holder to introduce the following relative clause. If we replace it by a 

concrete noun such as “girl”, then the subject has to be represented by the 

intersection of two sets, following Carpenter (1997) and Dalrymple (2001), as 

follows: 

(58) every(GIRL  [j(–)]2(LOVE))(HAPPY)  

 GIRL  {x1: LOVE(x1, j)}  HAPPY 

    In the above example, the complex subject is represented by an intersection 

of two sets. In some situation, they have to be represented in another way. 

Consider the following sentence: 

(59) Only players who made some mistake received no prize. 

The above sentence is ambiguous between one of the following readings: 

(60) Among all the individuals, only players who made some mistake 

                                                 
20

 The following discussion is also applicable to non-finite clauses and verbless clauses playing 

the same role as relative clauses. 
21

 The theories of Carpenter (1997) and Dalrymple (2001) are based on different syntactic 

frameworks, namely Categorial Grammar and Lexical Functional Grammar, respectively. Yet 

they share some commonalities in their semantic treatment of relative clauses. 
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received no prize. (This implies that all other individuals, including 

non-players, received a prize.) 

(61) Among all the players, only those who made some mistake received no 

prize. (This says nothing about whether non-players received no prize.) 

Under reading (60), the complex subject “players who made some mistake” of 

(59) should be represented by an intersection. Moreover, since (59) also contains 

an object, this sentence may be represented by a left-and-right-iterated GQ: 

(62) only(PLAYER  

[some(MISTAKE)]2(MAKE))([no(PRIZE)]2(RECEIVE)) 

In this representation, PLAYER only appears in the left argument of “only”. 

    But under reading (61), the complex subject cannot be so represented. Here 

the phrase “among all the players” serves to restrict the arguments of the GQ to 

subsets of PLAYER. Thus, PLAYER should appear in both arguments of “only”. 

For convenience, I introduce the notation of “restriction”: 

(63) Let Q be a monadic GQ with n arguments and S be a set. Then 

(Q|S)(X1, … Xn)  Q(X1  S, … Xn  S). 

With this notation, we can then represent reading (61) by 

(64) (only|PLAYER)([some(MISTAKE)]2(MAKE))([no(PRIZE)]2(RECEIVE)) 

The main difference between (62) and (64) is that in the former PLAYER is part 

of an argument of the GQ, whereas in the latter it serves as a parameter of the 

GQ.  

    Note that the above ambiguity is mainly due to the fact that “only” is not 

right conservative, resulting in the non-equivalence of (62) and (64). If Q is a 

right conservative determiner, then we have Q(S  A)(B)  Q(S  A)(S  A  

B)  Q(S  A)(S  B)  (Q|S)(A)(B). Thus, for right conservative determiners, 

the two aforesaid ways of representing complex subjects are equivalent. 
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1.8 Conclusion 

    In this chapter, I have introduced the core type of GQs studied under GQT – 

right-oriented GQs and extended the study to left-oriented GQs which are less 

studied in the literature. Although GQs only correspond to a restricted set of 

syntactic categories, namely NPs and determiners, the findings of GQT 

researchers are in fact applicable to other syntactic categories that can be treated 

as quantifiers in different types of domains. For example, modals and adverbs of 

quantification can be treated as quantifiers in the possible worlds domain and 

temporal domain, respectively. This is exactly the approach taken in Chow 

(2006). 

    In this thesis, I will take another approach, i.e. extend the study on GQs to 

scalar reasoning. However, the association between GQT and scalar reasoning is 

not that they correspond to quantifiers defined on different types of domains, but 

that quantifier inferences and scalar reasoning share some common features. 

However, before talking about their commonalities, I have to provide 

background knowledge of scalar reasoning first, which is the topic of the next 

chapter. 
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Chapter 2 Scalar Reasoning: Logical and Linguistic Aspects 

2.1 Overview of Scalar Reasoning 

    In this thesis, the term “scalar reasoning” is used to refer to a number of 

phenomena related to pragmatic reasoning of scales. These phenomena arose in 

different periods under different subfields of linguistics. 

    The first phenomenon that may be categorized under scalar reasoning is the 

implicatures, i.e. non-literal meanings, associated with scales. Such implicatures 

are thus called “scalar implicatures”. Scalar implicatures have close relationship 

with quantifier inferences because a typical instance of this kind of implicatures 

as exemplified below is built up on a pair of GQs: “some” and “every”
22

: 

(1) Some student sang. +> Not every student sang. 

But scalar implicatures have much wider applications that go beyond scales 

composed of GQs. 

    Apart from implicatures, some scholars studied another type of pragmatic 

inferences, called “scalar entailments” by Kay (1990), which are more like 

logical entailments. Such kind of inferences was first studied by Fauconnier 

(1975). Later, advocates of Construction Grammar systematized Fauconnier’s 

idea and formulated the Scalar Model Theory (SMT). 

    Scalar reasoning is also useful for studying certain lexical items (henceforth 

“scalar lexical items”). For example, SMT is mainly used to study “scalar 

operators”, which are lexical items whose meanings are built up on scalar 

entailments, including “let alone”, “even”, “even if”, “at least” and a number of 

aspectual adverbs. Apart from scalar entailments, some scholars also studied 

scalar implicatures of scalar operators. Some other scholars applied SMT to 

lexical items denoting extreme values, such as maximizers and minimizers. 

                                                 
22

 In this thesis, I use “+>” to represent “implicates”. 
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    In Chinese grammatical studies, the equivalents of the aforesaid scalar 

operators (e.g. “shenzhi”, “hekuang”, etc.) and extreme values are usually put 

under the grammatico-semantic study of climax constructions or certain 

idiomatic constructions. Traditionally, Chinese scholars did not use the concept 

of scales. But in recent years, Chinese scholars also started to use scales or even 

apply SMT to study individual lexical items. 

    Some other scholars studied Chinese scalar operators, aspectual adverbs (e.g. 

“cai”, “jiu”) and extreme values from a new perspective called “subjective 

quantity”. Although these scholars did not use the framework of SMT, it can be 

shown (in Chapter 4) that the phenomenon of subjective quantity is indeed a 

manifestation of scalar reasoning. 

    In the following sections, I will introduce the basic notions and previous 

findings obtained in the studies of the aforesaid phenomena. I will also point out 

some outstanding problems and debates between different schools in the studies 

of specific topics. 

 

2.2 Different Notions of Scales 

    There are different notions of scales in linguistic studies. In this section, I 

will introduce several notions of scales that are relevant to the study of scalar 

reasoning. The first notion comes from scalar implicatures associated with 

certain scales studied by Horn (1984, 1989). These scales are thus called “Horn 

scales”. A Horn scale can be represented as a tuple of scalar terms <x1, x2, …> 

satisfying xj u xi for all i, j such that i < j, where “u” represents a generalized 

notion of unilateral entailment definable between n-ary predicates of any n 
23

, i.e. 

                                                 
23

 For example, if A and B are binary predicates, then A  u B is defined as A(x, y)  u B(x, y) 

for any arbitrary x, y. Note that propositions can be seen as 0-ary first order predicates, while 

determiners can be seen as binary second order predicates. 
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“xj u xi” roughly means “xj  xi but not vice versa” (a more rigorous definition 

for “u” will be provided in Chapter 4). For example, the following determiners 

which are defined within the domain {<A, B>: A  } form a scale: 

(2) <some, all> 

Note that in certain scales, the lower valued scalar terms should be understood to 

have an “at least” meaning, because otherwise the aforesaid unilateral entailment 

relation would not hold. For example, in a scale <warm, hot>, “warm” should be 

understood to be meaning “at least warm”, because otherwise we would not have 

hot u warm. 

    After Horn, Hirschberg (1985) generalized the notion of scales to relations 

in any partially ordered sets (posets)
24

. These scales are thus called “Hirschberg 

scales”. For example, the following is a scale of qualities of a hotel: 

(3) <noisy and uncomfortable, noisy but comfortable,  

quiet and comfortable > 

Note that the Hirschberg scale (3) differs from the Horn scale (2) in that there is 

no logical entailment relation among the elements of (3). For example, a hotel 

being quiet and comfortable does not entail its being noisy but comfortable. By 

generalizing the notion of scales, Hirschberg (1975) has expanded the 

applicability of scalar implicatures. 

    Studies on scalar entailments (i.e. SMT) also talk about scales. According to 

Israel (2011), these scales are also posets and so are essentially the same as 

Hirschberg scales. The only difference is that SMT scholars have generalized the 

notion of scales from one-dimensional to multi-dimensional ones. 

    Although Horn scales and Hirschberg scales differ from each other, they are 

                                                 
24

 A poset is a set with a partial order, i.e. a binary relation that is reflexive, antisymmetric and 

transitive. 
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not unrelated. In the following section, I will show the inherent association 

between the Horn scales and Hirschberg scales after introducing the basic notions 

of scalar entailments. 

 

2.3 Scalar Entailments 

2.3.1 Scalar Model Theory 

    Scalar entailments (SEs) refer to entailments associated with a scalar model 

(SM). In this subsection, I first introduce the basic notions of SMT. According to 

Kay (1990), an SM is a quadruple <S, T, Dx, P>, where S is a set of states of 

affairs, T = {0, 1} is a set of truth values, Dx = D1 × … × Dn is the Cartesian 

product of scales D1, … Dn and P is a propositional function which maps a 

member of Dx to a proposition (which in turn can be seen as a function mapping 

S to T). 

    Kay (1990) illustrated the above definition with a two dimensional example 

in which S is about the ability of a set of jumpers who try to clear a set of 

obstacles. The jumpers and obstacles are represented by the following scales: 

(4) X: <x1, x2, …>; Y: <y1, y2, …> 

Here the elements of X (jumpers) are arranged in decreasing jumping ability (or 

equivalently, increasing clumsiness) while the members of Y (obstacles) are 

arranged in increasing difficulty. Thus S can be represented by the following 

propositional function: 

(5) P(x, y) = “Jumper x can clear obstacle y” 

where x and y are variables from X and Y, respectively and P(x, y) is a 

proposition that may be true or false. Moreover, P must satisfy the following 

property: whenever a certain jumper can clear a certain obstacle, then other 

things being equal, any better jumper can clear any easier obstacle, but not vice 
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versa. Conversely, whenever a certain jumper cannot clear a certain obstacle, 

then other things being equal, any worse jumper cannot clear any harder obstacle, 

but not vice versa. The above example may be depicted by the following figure: 

 

Figure 2.1  A Scalar Model 

    Each cell in the above figure represents the proposition obtained by 

substituting a member of X × Y into P. The number 0 or 1 is the truth value of the 

proposition. Whenever a cell contains “1”, then all cells whose x- and 

y-coordinates are not greater than that cell also contain “1”; whenever a cell 

contains “0”, then all cells whose x- and y-coordinates are not smaller than that 

cell also contain “0”. According to the above property and figure, we can derive 

the following SEs: 

(6) Jumper x3 can clear obstacle y3. u Jumper x2 can clear obstacle y2. 

(7) Jumper x9 cannot clear obstacle y35.  

u Jumper x10 cannot clear obstacle y36. 

    The above entailments are pragmatic in nature. Scalar entailments differ 

from logical entailments in that the latter are analytical in nature, i.e. the validity 

of logical entailments is based on the definitions of the logical operators and 

general laws of logic, whereas the validity of SEs is also dependent on world 
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knowledge. 

    In the above example, the relevant world knowledge is the likelihood of 

jumpers clearing obstacles, and the SEs above can be seen as the following 

reasoning pattern about likelihood: 

(8) Let p and q be two propositions in an SM such that p is less likely than 

q. Whenever p is true, then other things being equal, q is also true, but 

not vice versa. (Whenever q is false, then other things being equal, p is 

also false, but not vice versa.) 

Note that the final sentence above is not necessary, because it can in fact be 

derived from the previous sentence by contraposition. 

    But “likelihood” is just one possible type of world knowledge that may 

feature in an SM. To make the theory more generally applicable, Kay (1990) 

proposed the concept of “informativeness”: 

(9) Let p and q be two propositions in an SM. Then p is more informative 

than q iff p u q. 

Now according to (8), if p is less likely than q, then p u q. By (9), this is 

equivalent to saying that p is more informative than q. Following a similar line of 

reasoning, if p is more likely than q, then p is less informative than q. Thus, we 

have the following result: 

(10) In an SM whose informativeness is reflected by the likelihood of the 

propositions, informativeness is inversely proportional to likelihood. 

One can then interpret the SEs in (6) and (7) in terms of informativeness. For 

example, since “jumper x3 clearing obstacle y3” is less likely than “jumper x2 

clearing obstacle y2”, by (10) the former is more informative than the latter, and 

so by (9), the former unilaterally entails the latter, which is exactly what (6) 

asserts. 
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    The validity of SEs is subject to the condition “other things being equal”. 

Similar situations can also be found in other linguistic phenomena. For example, 

many scholars pointed out that the meaning of the English progressive aspect 

contains an “other things being equal” condition as exemplified in the following 

sentence
25

: 

(11) Mary was baking a cake, but she didn't finish it. 

i.e. had other things been equal, Mary would have finished the cake; but since 

other things were not equal, she didn’t finish it. Borrowing ideas from Talmy 

(2000)’s Force Dynamic Schema, Copley and Harley (2011) proposed a 

framework which incorporates forces
26

 in its ontology, and used it to account for 

the “other things being equal” condition of the progressive aspect and other 

associated linguistic phenomena. 

    It is also possible to include the treatment of SEs into this framework. Using 

the notion of forces, we can then interpret SEs as results of comparison between 

forces. However, since this will involve fundamental changes of the ontology, I 

will not pursue this approach. Instead, I will adopt an approach that is based on 

the proportionality relation between the scalar terms and the informativeness of 

the proposition in Chapter 4. 

 

2.3.2 Relation between Horn Scales and Hirschberg Scales 

    Having introduced SEs, we can now develop a unified view towards Horn 

scales and Hirschberg scales. As mentioned above, while Horn scales are based 

on logical entailment relations, Hirschberg scales are based on the broader 

                                                 
25

 Copley and Harley (2010), (15a). 
26

 According to Copley and Harley (2011), “forces” can be defined as a function mapping 

situations to situations, where a situation is a collection of individuals and their properties. Note 

that this notion of “forces” is unrelated to the “illocutionary force” in Speech Act Theory. 



43 

 

concept of partial order. Despite this difference, we can say that Hirschberg 

scales are also based on entailments, if we extend the scope of entailments to 

include SEs, because SEs depend on the order relation of the scalar terms, which 

is exactly what Hirschberg scales reflect. 

    For example, let’s consider the following example
27

: 

(12) This hotel’s noisy, but at least it’s comfortable. 

In anticipation of the analysis to be introduced in a later section, the proper use of 

“at least” above is subject to the condition that 

(13) “This hotel is noisy but comfortable” is more informative than “This 

hotel is noisy and uncomfortable”. 

The Hirschberg scale (3) associated with this example is based on a partial order 

of qualities of a hotel. Now the key point in this example is not that the first 

proposition in (13) is less likely than the second one, but that the first proposition 

is more desirable than the second one. Here we have an SM whose 

informativeness is reflected by the “desirability” rather than the “likelihood” of 

the propositions. Note that we may as well express (13) as the following SE: 

(14) This hotel has attained a quality level of no less than “noisy but 

comfortable” in the scale (3). u This hotel has attained a quality level 

of no less than “noisy and uncomfortable” in the scale (3). 

where the scale of “quality level” is in fact a scale of desirability. Generalizing 

the above, we have the following relation (c.f. (10)): 

(15) In an SM whose informativeness is reflected by the desirability of the 

propositions, informativeness is directly proportional to desirability. 

    This example shows that Horn scales and Hirschberg scales can be treated 

uniformly under SMT via the notion of informativeness. Thus, in what follows I 

                                                 
27

 Kay (1997), (28), p. 108. 
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will base the order of terms of a scale on informativeness, i.e. a scale is a tuple of 

predicates <x1, x2, …> such that xj is more informative than xi for all i, j 

satisfying i  j. 

 

2.4 Scalar Implicatures 

2.4.1 Grice’s Quantity-1 Submaxim 

    Scalar implicatures (SIs) are a subtype of conversational implicatures 

associated with pragmatic scales. In proposing the Cooperative Principle, Grice 

(1975) argued that our conversational exchanges involve a process of pragmatic 

inferences through interaction among 4 maxims of conversation (Quantity, 

Quality, Relation and Manner) with a number of submaxims under the 

Cooperative Principle. Among these, the following Quantity-1 Submaxim is most 

relevant to SIs
28

: 

(16) Make your contribution as informative as it is required (for the current 

purposes of the exchange). 

    A classical example of SI is the following: 

(17) Some student sang. +> Not all students sang. 

In the above, “p +> q” means that the utterance p conveys a non-literal meaning 

represented by q. Using (16), we can account for the above SI in the following 

way: since by virtue of the scale (2), “All students sang” is more informative 

than “Some student sang” (according to the definition of “informativeness” given 

in (9)), assuming that the speaker is cooperative, when he / she utters the latter, 

one can infer that he / she is not in a position to utter the former (otherwise by 

(16) he / she should utter the former which is more informative), and thus it 

follows that the former is not true and the SI obtains. 

                                                 
28

 Grice (1975), p. 45. 
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    One important characteristic of implicatures is that they are defeasible. 

According to the literature, the defeasibility of SIs is manifested by at least two 

properties. First, SIs are cancellable
29

, i.e. a sentence with SI may be followed by 

a sentence which asserts the opposite of the SI without causing contradiction. For 

example, 

(18) Some student sang yesterday. In fact / Actually, all of them did. 

Second, SIs are reinforceable, i.e. a sentence with SI may be followed by a 

sentence which explicitly asserts the SI without causing redundancy. For 

example, 

(19) Some student sang yesterday. But not all of them did. 

    The defeasibility of implicatures also means that given the literal meaning 

of two propositions represented by p and q, p  q is not necessarily false. 

Otherwise, p and ¬q will satisfy the relation of entailments instead of 

implicatures. For example, if we replace “Some student sang” in (17) by “No 

student sang”, then since “No student sang  all students sang” is necessarily 

false, what we obtain is an SE instead of an SI: 

(20) No student sang. u Not all students sang. 

Thus, defeasibility can be seen as a condition that differentiates SIs from SEs and 

will be called “defeasibility condition” in this thesis. 

    Apart from the defeasibility condition, scholars have proposed various 

constraints on the scales associated with SIs. Matsumoto (1995) reduced these 

constraints into two general conditions: Conversational Condition and Scalarity 

Condition. In brief, the Conversational Condition states that a scale does not 

                                                 
29

 Not all scholars adopt the view that SIs are cancellable and reinforceable. According to these 

scholars, SI cancellation and SI reinforcement are interpreted as other phenomena. But for 

convenience of reference, I will continue to call these examples “SI cancellation” and “SI 

reinforcement”, which should be seen as names for certain types of sentences. 
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license an SI “p +> ¬q” if the speaker’s choice of uttering p instead of q is 

attributable to the avoidance of violating any maxim of conversation other than 

the two Quality Submaxims
30

 and the Quantity-1 Submaxim. This condition 

precludes <Japan, Tokyo> from being an SI-licensing scale in a conversation 

about the countries that one has visited because the utterance of a city name 

“Tokyo” in such a conversation is more informative than is required and will thus 

violate the Quantity-2 Submaxim
31

. The Scalarity Condition states that the terms 

in an SI-licensing scale must be all increasing or all decreasing. This condition 

precludes <some, (some but not all)> from being an SI-licensing scale because 

“(some but not all)” is non-monotonic
32

. In this thesis, I assume that all scales 

associated with SIs satisfy the above conditions. 

 

2.4.2 Epistemic Force 

    The studies on SIs also involve the notion of “epistemic force”. This 

concerns whether the implicature is presented as a fact or as a description of the 

speaker’s knowledge / belief, which may be strong, weak or nil (i.e. ignorance). 

In the literature there is not a uniform epistemic force applicable to all SIs. Van 

Rooij and Schulz (2004) have identified five possible epistemic forces. 

Developing a theory that fully incorporates all these possibilities will involve 

using modal operators. 

    To avoid complicating matters, unless otherwise stated, I will assume that 

the speaker’s knowledge with respect to the subject matter is complete and so we 

may disregard the weak and ignorant implicatures. Moreover, I will assume that 
                                                 
30

 Quality-1 Submaxim: “Do not say what you believe to be false.” Quality-2 Submaxim: “Do 

not say that for which you lack adequate evidence.” 
31

 Quantity-2 Submaxim: “Do not make your contribution more informative than is required.” 
32

 The definitions of increasing and decreasing monotonicities can be found in Subsection 3.2.1 

of Chapter 3. The proof that “(some but not all)” is (right) non-monotonic can be found in 

Subsection 3.3.5 of that chapter. 
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the SIs generated are statements with the speaker’s belief world as background. 

For example, the SI in (17) above should actually have the full form “The 

speaker believes that not all students sang”. On such an understanding, we may 

then drop the phrase “The speaker believes that” associated with SIs, just as we 

may drop the phrase “other things being equal” associated with SEs on the 

understanding that the validity of SEs is subject to this background condition. 

    An advantage of adopting such an approach is that we may treat SEs and SIs 

uniformly using the concept of informativeness. The following figure is a 

schematic representation of SE and SI properties: 

 

Figure 2.2  Schematic Representation of SEs and SIs 

Just like Figure 2.1, the numbers 0 and 1 above represent truth values. The above 

figure shows that SEs are inferences leading from the truth of a highly 

informative statement to the truth of a lowly informative statement, whereas SIs 

are inferences leading from the truth of a lowly informative statement to the 

falsity of a highly informative statement. 

 

2.4.3 Canonical SIs and Alternate-Value SIs 

    Scholars after Grice studied different types of SIs, which come in two main 

types: canonical SIs and alternate-value SIs. Canonical SIs are the focus of 

scholars studying SIs. They are based on scales consisting of higher and lower 
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values, i.e. ordered values, of an entity. For example, (17) above exemplifies a 

canonical SI based on the scale (2). 

    Alternate-value SIs are less mentioned by scholars, apart from Hirschberg 

(1985), who has made in-depth study on this kind of SIs. They are based on 

unordered alternate values of an entity. Consider the following
33

: 

(21) A: Which of Chomsky’s works has John read?  

B: He has read Syntactic Structures (SS). 

+> John has not read Aspects of the Theory of Syntax (ATS). 

The above is an example of alternate-value SIs based on the alternate values of 

“Chomsky’s works”: 

(22) {SS, ATS} 

Since the alternate values in an alternate-value SI are unordered, they are 

represented by a set, instead of a tuple as in a canonical SI. 

    The above example is reminiscent of the classical immediate inferences 

involving the contrary relations, because SS and ATS are contrary to each other
34

. 

Apart from this, there is another type of alternate-value SIs. Consider the 

following
35

: 

(23) A: So did you snarf all the cakes down? 

B: I didn’t eat the chocolate one. 

+> B ate the cheese cake. 

which is based on the following set of alternate values: 

                                                 
33

 Note that the following SI satisfies the defeasibility condition introduced in Subsection 2.4.1 

because “John has read SS  John has read ATS” under the literal meanings of the two conjuncts 

is not necessarily false. One can check in a similar fashion that all other SIs studied in this thesis 

also satisfy the defeasibility condition. 
34

 SS and ATS are contrary to each other because a particular work of Chomsky cannot be SS 

and ATS at the same time. But it does not mean that two propositions containing these two terms 

are necessarily contrary propositions. For example, the propositions “John has read SS” and 

“John has read ATS” are not contrary to each other because they can be both true. 
35

 Adapted from Hirschberg (1985), Ch. 3, (63), p. 60. 
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(24) {chocolate, cheese} 

Note that the above SI is reminiscent of the classical immediate inferences 

involving the subcontrary relation, because we get a positive conclusion from a 

negative premise. Hirschberg (1985)’s study shows that alternate-value SIs are 

related to certain inferences related to the classical square of opposition. 

 

2.4.4 Defaultism and Contextualism 

    Scholars studying SIs may be classified into camps according to their views 

towards a certain aspect of SIs. In this subsection, I will introduce two camps 

who hold opposite views towards the general nature of SIs: the Defaultists and 

the Contextualists
36

. These two camps differ in whether they view SIs as a 

subtype of generalized conversational implicatures. According to Grice (1975), 

conversational implicatures may be classified into two types: generalized 

conversational implicatures (GCIs) and particularized conversational 

implicatures (PCIs). The main difference between these two is that GCIs are 

triggered by certain lexical items (such as the less informative items in a scale in 

the case of SIs) and do not rely on special contexts, whereas PCIs rely heavily on 

special contexts. 

    The Defaultists include Gazdar (1979), Horn (1984, 1989), Levinson (2000) 

and Zhang (2008), etc. Although these scholars have proposed different 

frameworks to account for implicatures, they share one common feature in that 

they all view SIs as a subtype of GCIs. Moreover, they also contend that GCIs 

are generated by default, hence the name “Defaultists”. Levinson (2000) even 

went further by proposing the use of Default Logic as the theoretical basis for 

GCIs, although he has not really done the formal work, which was later 

                                                 
36

 The names of “Defaultists” and “Contextualists” are from Zondervan (2006). 
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accomplished by Zhang (2008). 

    The Contextualists hold the opposite view towards SIs. These scholars 

include Sperber and Wilson (1986), van Kuppevelt (1996), van Rooij and Schulz 

(2004), Carston (2004, 2012), Zondervan (2006), Sevi (2009), etc. A common 

feature of these scholars is that they view SIs as being generated only in certain 

appropriate contexts instead of by default. 

    Despite the aforesaid commonality, the Contextualists hold different views 

about the key factor that determines the appropriate context. For the Relevance 

Theorists (including Sperber and Wilson (1986), Carston (2004, 2012)), the key 

factor is “relevance”, which they assumed to be the underlying principle 

governing all types of pragmatic inferences. The Relevance Theorists also 

proposed the concept of “explicatures” as opposed to implicatures. Explicature is 

the totality of what constitutes the truth conditional meaning of a speaker’s 

utterance, and may include, in addition to those aspects traditionally put under 

semantic studies (such as referent assignment, disambiguation), such aspects 

traditionally put under pragmatic studies, such as meaning modulation. On the 

other hand, implicatures come in two sorts: implicated premises and implicated 

conclusions, with the former being extra premises inferred implicitly from the 

explicatures of the speaker’s utterance and the latter being conclusions entailed 

by implicated premises and other explicatures
37

. Since the Relevance Theorists 

saw SIs as the outcome of “narrowing” (to be elaborated in subsection 2.4.6), 

which is a subtype of meaning modulation, they classified SIs as explicatures 

rather than implicatures. 

    As for the other Contextualists, they viewed SIs as arising from answers to 

                                                 
37

 Note that the relation between implicated premises and their implicated conclusion is 

entailment relation. But since an implicated conclusion is based on its implicated premises, which 

are defeasible propositions, it is thus defeasible and so can be seen as an implicature. 
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specific (implicit or explicit) questions in the contexts. These scholars have 

proposed two important notions that will be useful in this thesis: question under 

discussion (QUD) foci and strongly exhaustive answers. 

    The QUD model was proposed by Roberts (1996), who viewed discourse as 

a process of questioning and answering about world information and modelled 

the (implicit or explicit) questions involved in this process by QUDs. QUDs may 

have a hierarchical structure consisting of a series of structured sub-QUDs 

requesting partial information that build up step-by-step the whole body of 

information requested by the main QUD. 

    Zondervan (2006) borrowed the notion of QUD and argued that all 

Contextualist approaches might be unified under the single framework of QUD. 

Moreover, he proposed the following QUD Focus Condition for SIs
38

: 

(25) An SI will arise in a sentence iff the scalar term (with which the SI is 

associated) is in a constituent that answers the QUD of the context that 

the sentence is part of, and therefore has focus. 

    By adopting the above condition, one can then account for the existence and 

non-existence of SIs in different contexts. Compare the following 

question-answer pairs (in what follows, I use [·]F to denote the QUD focus)
39

: 

(26) Who has fourteen children? 

[Nigel]F has fourteen children. #+> Nigel has at most fourteen children. 

How many children does he have? 

He has [twenty]F. +> Nigel has at most twenty children. 

It is often said that a cardinal n carries the literal meaning “at least n” and an SI 

“at most n”
40

. But the above example shows that this SI is not generated in all 
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 Zondervan (2006), (57’), p. 30. 
39

 Adapted from van Kuppevelt (1996), (9)’, p. 406. 
40

 This is a controversial point that is not agreed upon by all scholars. I cite this example only for 
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circumstances. This difference can be accounted for by using (25). In the first 

answer above, since “fourteen” is not inside the QUD focus, it does not carry the 

SI “at most fourteen”, whereas the second answer does carry the SI “at most 

twenty” because “twenty” is inside the QUD focus. 

    Zondervan (2006)’s QUD Focus Condition states that the answer to a QUD 

may give rise to SI. However, not all answers but only strongly exhaustive 

answers will have this effect. Strong exhaustivity is an important notion in 

Groenendijk and Stokhof (1984)’s interrogative semantics. It requires the answer 

to a question to contain all and only (i.e. exactly) the true information requested 

by the question. This requirement is expressed as an “exh” operator with a 

meaning similar to “only”
41

. For example, if John and Mary are exactly the ones 

who sang, then “Only John and Mary” or “John and Mary and nobody else” 

would be a strongly exhaustive answer to the question “Who sang”. 

    Some Contextualists (e.g. van Rooij and Schulz (2004), Sevi (2009)) 

borrowed and refined the idea of strong exhaustivity and used it to account for 

SIs. For example, in (17) above, the sentence “Some student sang” can be seen as 

a strongly exhaustive answer to the QUD “What proportion of the students sang” 

and is equivalent to: 

(27) Only some student sang. 

The SI generated in (17) is then a logical consequence of (27), because “Only 

some student sang” is incompatible with “All students sang”. 

 

2.4.5 Globalism and Localism 

                                                                                                                                    
illustrative purpose. 
41

 The word “only” here should be understood to carry the prejacent presupposition, i.e. it is 

equivalent to “all and only” and is thus different from the left conservative GQ “only” discussed 

in Chapter 1. 
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    Apart from the debate between the Defaultists and the Contextualists, there 

is another debate between the Globalists and the Localists, who differ in their 

views towards the interpretation of embedded SIs. SIs can be classified into 

simple SIs and embedded SIs. In this thesis, simple SIs refer to SIs of scalar 

terms that do not fall under the scope of any logical operator, whereas embedded 

SIs are SIs of scalar terms embedded in the scope of a logical operator, which 

may be the negation operator or a GQ (excluding singular terms, i.e. singular 

proper names and singular definite descriptions)
42

. Earlier scholars paid little 

attention to or simply denied the existence of embedded SIs. Gazdar (1979) 

maintained that no SI is generated if an SI-trigger is embedded under a logical 

operator. But some other scholars such as Horn (1989) and Levinson (2000) 

pointed out that negation will give rise to SIs that are associated with a reversed 

scale. 

    Recently, some scholars began to study more general embedded SIs. 

Roughly speaking, these scholars fall into two camps: the Globalists and the 

Localists. The Globalist approach, represented by Sauerland (2004), Geurts 

(2010) and Russell (2012), adopts the traditional view that the SI of a sentence is 

generated only after the semantics of the whole sentence is computed 

compositionally. Thus, the negation operator arising from an SI can only be 

applied globally to the denotation of the whole sentence. Sauerland (2004) 

proposed a systematic method for generating SIs of complex sentences. Formally, 

let p(x1, … xi, … xn) be a sentence containing the scalar terms x1, … xi, … xn, 

from the scales X1, … Xi, … Xn, respectively and xi’ be a value of the scale Xi 

                                                 
42

 Since singular terms are scopeless, no scalar term will be embedded under the scope of 

singular terms. Moreover, scalar terms may also be embedded under propositional attitudinal 

predicates, such as “believe”, “know”, etc. This thesis does not consider such kind of embedded 

SIs. 
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different from xi. Then we have the following: 

(28) If p(x1, … xi’, … xn) u p(x1, … xi, … xn), then p(x1, … xi, … xn) +> 

¬p(x1, … xi’, … xn). 

For example, in the sentence
43

 

(29) Every student completed some of the assignments. 

“some” can be seen as a scalar term from the scale (2). If we replace “some” by 

“all”, the resultant sentence unilaterally entails the above sentence. So we have 

the following SI: 

(30) Every student completed some of the assignments.  

+> Not every student completed all of the assignments. 

    The Localist approach, represented by Landman (1998), Chierchia (2004) 

and Recanati (2010), holds the view that SIs are generated at the same time when 

the meaning of a sentence is computed compositionally, either by default as 

proposed by Landman (1998) and Chierchia (2004), or by a pragmatic process 

that may affect the truth condition of an utterance as proposed by Recanati 

(2010). Thus, the negation operator arising from an SI can be applied locally to 

scalar terms at any level of the sentence. Again we may express this formally. Let 

p(x1, … xi, … xn) and xi’ be defined as above. Then we have the following: 

(31) If p(x1, … xi’, … xn) u p(x1, … xi, … xn), then p(x1, … xi, … xn) +> 

p(x1, … ¬xi’, … xn). 

Concerning (29), the Localists will predict the following SI: 

(32) Every student completed some of the assignments.  

+> Every student did not complete all of the assignments. 

    There is a heated debate between the two camps. One criticism raised by the 

Localists against the Globalists is that the Globalist approach often leads to 
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 Adapted from Chierchia (2004), (35)c. 
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predictions that are too weak. Comparing (30) and (32), both SIs seem to be 

correct. But since the SI predicted in (32) entails that in (30), the Globalists’ 

prediction is not sharp enough. 

    On the other hand, the Localists also point out that the Globalist scheme (28) 

will lead to predictions that are too strong and thus incorrect in some cases, e.g. 

when the scalar term is embedded under indefinite determiners, such as the 

following
44

: 

(33) Last year, a Dutch sailor showed some of the symptoms of delirium. 

#+> Last year, no Dutch sailor showed all the symptoms of delirium. 

The above incorrect SI is generated by replacing “some” by “all” and then 

negating the whole sentence. In comparison, the Localist approach will predict 

the seemingly correct SI “Last year, a Dutch sailor did not show all the 

symptoms of delirium”. 

    In reply to the first criticism, Sauerland (2004) pointed out that the weaker 

Globalist predictions are not an undesirable feature because which prediction is 

preferred often depends on our background knowledge. That (32) seems to be 

preferable to (30) is due to our background knowledge that no students would do 

more than is required of them. In contrast to (29), consider the following
45

: 

(34) Every student at MIT has read some of Chomsky’s works. 

Based on the background knowledge that MIT students study Chomsky’s works 

very seriously, the weaker Globalist SI “Not every student at MIT has read all of 

Chomsky’s works” is more plausible than the stronger Localist SI “Every student 

at MIT has not read all of Chomsky’s works”. 

    In reply to the second criticism, Geurts (2010) adopted a completely new 
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 Geurts (2010), Ch. 7, (29), p.144. 
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 Adapted from Sauerland (2004), (58), p. 390. 
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view towards SIs embedded under indefinites. Borrowing the idea of “discourse 

referents” from Kamp and Reyle (1993)’s Discourse Representation Theory 

(DRT), he argued that any SI generated from the LHS of (33) should be a 

statement about the specific discourse referent introduced by “a Dutch sailor”, 

not a statement about the general “Dutch sailors”. Thus, the correct SI of (33) 

should be “He did not show all the symptoms of delirium”, where “he” refers to 

the specific Dutch sailor. Geurts (2010) contended that his views could be 

implemented by a theory that puts the study of SIs under the DRT framework, 

although he has not fully developed the theory. 

    Apart from Kamp and Reyle (1993), Fodor and Sag (1982) have also 

studied the referential or specific use of indefinites. They proposed treating 

referential indefinites like demonstratives. In this way, referential indefinites are 

like proper names and definite descriptions, which correspond to specific 

members in the universe. How can we establish the correspondence between the 

indefinites and specific members in the universe? Reinhart (1997) and Winter 

(2001)’s answer is to use the choice function. The choice function will thus be 

another possible way to implement Geurts (2010)’s idea. More will be said about 

the choice function in Chapter 4. 

    Geurts (2010)’s view has an advantage over the Localist approach 

concerning the prediction of SIs embedded under certain non-monotonic 

indefinite determiners. Consider the following example
46

: 

(35) Thirty nine senators supported most of the bills. 

Under the Localist approach, the wrong SI “Thirty nine senators did not support 

all of the bills” will be predicted. Using the concept of discourse referents, the SI 

generated should be one concerning the discourse referent denoting the 39 
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 Geurts (2010), Ch. 7, (34)b, p.146. 
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senators, such as “Not all of them supported all of the bills”. The problem of the 

Localist approach is thus avoided. 

 

2.4.6 Contrastive Construals 

    In the literature, there is a type of negation that is closely related to SIs. 

Here is an example (in what follows, capitalization represents stress): 

(36) Not SOME student sang yesterday. ALL of them did. 

Note that (36) is similar in form to the examples of SI cancellation in (18) and SI 

reinforcement in (19) and so I will treat (36), (18) and (19) as different 

manifestations of the same phenomenon
47

. There are different explanation and 

terminology for this phenomenon. One view, represented by Horn (1985, 1989), 

contends that the negation in (36) belongs to a subtype of metalinguistic negation 

involving scalar terms and will henceforth be called scalar metalinguistic 

negation (SMN)
48

. According to this view, SMN is a metalinguistic device for 

registering objection to the SI generated from a previous utterance. It is different 

from the ordinary truth-conditional negation and is characterized by stress on the 

negated term. Moreover, a literal interpretation of SMN will lead to contradiction. 

For example, since “all” entails “some”, the above sentence apparently contains a 

contradiction. 

    Another view, held by Geurts (2010), puts the phenomenon of SMN under a 

broader category called “contrastive construals”. Under this view, the scalar term 

SOME is construed contrastively with ALL in (36), i.e. it means the same as 

                                                 
47

 On the surface, (18) does not involve negation. But according to Sevi (2009), the lexical item 

“in fact / actually” that is often used to cancel SIs should be seen as a means to mildly correct a 

previous utterance. Thus, SI cancellation does involve implicit negation. Moreover, Horn (1985) 

also pointed out that SI cancellation and scalar metalinguistic negation can achieve the same 

effect. 
48

 According to Horn (1985, 1989), metalinguistic negation is a broad concept that may involve 

negation of a variety of aspects. This thesis only deals with SMN. 
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“some but not all”. Geurts (2010) argued that contrastive construals are achieved 

through the pragmatic process called “narrowing”. This strategy is to narrow 

down the extensions of one or all of the lexical items in contrast by enriching 

their intensions, thereby sharpening their meaning and avoiding semantic oddity. 

For example, since “some but not all” is contrary to “all”, by construing “some” 

as “some but not all” in (36), the apparent contradiction is eliminated. 

    Contrastive construals may occur in different types of contexts, of which 

(36), (18) and (19) are just some special examples. In fact, contrastive construals 

may occur in every antonymy context, such as those identified by Jones 

(2002)
49,50

. Geurts (2010)’s examples of contexts where contrastive construals 

occur correspond to Jones (2002)’s antonymy types. For example, the following 

correspond precisely to Jones (2002)’s negated antonymy, comparative antonymy, 

coordinated antonymy and ancillary antonymy, respectively
51

: 

(37) Around here, we don’t LIKE coffee, we LOVE it. 

(38) I’d rather have a WARM bath than a HOT one. 

(39) Is a parallelogram SOMETIMES or ALWAYS a square? 

(40) If it’s WARM, we’ll lie out in the sun. But if it’s VERY WARM, we’ll 

                                                 
49

 Based on a corpus study, Jones (2002) identified 8 types of antonymy contexts, namely, 

ancillary antonymy, coordinated antonymy, comparative antonymy, distinguished antonymy, 

transitional antonymy, negated antonymy, extreme antonymy and idiomatic antonymy. 
50

 Incidentally, Levinson (2000) also identified certain “intrusive constructions” (including 

comparatives, negatives and conditionals) in which narrowing may occur (although he did not 

use this term). Most of these constructions in fact correspond to Jones (2002)’s antonymy 

contexts. For example, comparatives and negatives correspond to Jones (2002)’s comparative and 

negated antonymies, respectively. For conditionals, some of them correspond to Jones (2002)’s 

ancillary antonymy, such as (Levinson (2000), Ch. 3, (24)b, P. 205): 

If the USA won some of the Olympic medals, other countries must have got the rest. 

while some of them contain words that directly entails (without contrast) the narrowed meaning 

of scalar terms, such as (Levinson (2000), Ch. 3, (24)a, P. 205): 

If each side in the soccer game got three goals, then the game was a draw. 

The word “draw” above directly entails the “exactly three” reading of “three”. Note that this 

word plays a similar role as “only” in the phrase “only some” which directly entails the “some 

but not all” reading of “some”. More studies are required to figure out the precise relationship 

between antonymy contexts and intrusive constructions. 
51

 Geurts (2010), Ch. 8, (43)a – d, p.187. 
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go inside and sit in front of the air-conditioner. 

    Now, according to Recanati (2010) and Carston (2012), narrowing is a kind 

of meaning modulation that gives rise to explicatures. By recognizing contrastive 

construals as an outcome of narrowing, Geurts (2010) has in effect classified 

contrastive construals as an example of explicatures
52

. Thus, under Geurts 

(2010)’s view, SIs and contrastive construals are two very different phenomena 

which should be classified as implicatures and explicatures, respectively. This 

view is in sharp contrast with the Relevance Theorists who contend that both SIs 

and contrastive construals should be classified as explicatures. This constitutes 

another debate among scholars studying SIs. 

 

2.5 Scalar Operators 

2.5.1 Basic Notions 

    Scalar operators (SOs) refer to lexical items whose meaning and use are to 

be accounted for with respect to scales. A number of SOs have been studied by 

scholars from the perspective of SMT. These include “let alone” studied by 

Fillmore et al (1988), “even” studied by Kay (1990), aspectual operators studied 

by Israel (1997), “even if” studied by Sawada (2003), “at least” studied by Kay 

(1997) and Nakanishi and Rullmann (2009), etc. 

    We need two more notions of propositions. The first notion, called text 

proposition (TP), is the proposition obtained after deleting the SO from the 

sentence originally containing that SO (and making other necessary grammatical 

adjustments). The second notion, called context proposition (CP), is another 

proposition in the SM which differs from TP just in the scalar value and perhaps 

                                                 
52

 Although Geurts (2010) did not use the term “explicatures”, he explicitly stated that 

contrastive construals “are not implicatures, but honest-to-goodness truth-conditional effects” 

(Geurts (2010), p. 141). This is very similar to the Relevance Theorists’ view on explicatures. 
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polarity. It functions as an alternative statement in contrast to TP in the context 

and may be either implicit or explicit. For example, in the following discourse, 

(41) A: Can John clear obstacle y2? 

B: Sure. He can even clear obstacle y3. 

the TP and CP are “John can clear obstacle y3” and “John can clear obstacle y2”, 

respectively. 

    With the above definitions, one can state the conditions of use of certain 

SOs. Here I use the term “conditions of use” instead of “truth conditions” 

because according to many linguists (such as König (1991)), what SOs contribute 

to the meaning of sentences is not the semantic but pragmatic aspects of meaning. 

But which aspect of pragmatics (presupposition, conventional implicature, 

conversational implicature or a mixture of these) they are concerned with is still 

under debate. For this reason, I borrow the term “conditions of use” from 

Recanati (2010) to refer to the condition of proper use of these items. Moreover, 

these conditions of use only reflect one facet of the meaning (which may be 

called “scalar meaning”) of these items and should be seen as necessary 

conditions rather than sufficient conditions. 

    According to Kay (1990), the meaning of “even” can be expressed as the 

following condition of use in the form of an SE relation between TP and CP
53

: 

(42) even: TP u CP 

Using (41) as an example, since the following SE relation is valid: 

(43) John can clear obstacle y3. u John can clear obstacle y2. 

by (42) we may conclude that “even” is properly used in (41). The conditions of 

                                                 
53

 Different from the classical analysis of “even” (such as Karttunen and Peters (1979)’s), the 

following condition of use does not require that the TP be an extreme member in a likelihood 

scale. Since Kay (1990) has already discussed the rationale for this difference, I will not repeat 

his points here. Neither will I discuss the existential presupposition of “even” (if any), which is 

another controversial issue. 
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use of other SOs can be formulated and used in an analogous way. 

 

2.5.2 “even” + Negation 

    SOs may interact with various logical operators. In this subsection, I will 

introduce the interaction between “even” and the negation operator, which has 

drawn the most attention and led to much controversy. Consider the following 

sentence: 

(44) John cannot even clear obstacle y2. (No doubt he cannot clear obstacle 

y3.) 

The problem of the above sentence is that although on the surface “even” comes 

after “not”, the condition of use for the above sentence cannot be expressed as 

the negation of (42). In other words, the above sentence does NOT mean “It is 

not the case that John can even clear obstacle y2”. 

    There are two opposing approaches to the analysis of sentences like (44) – 

the Scope Approach and the Lexical Approach. The Scope Approach, represented 

by Karttunen and Peters (1979), Kay (1990) and Wilkinson (1996), analyses (44) 

as having the following structure
54

: 

(45) even(¬(“John can clear obstacle y2”)) 

i.e. “even” has wider scope than “not” despite the surface structure of (44). 

    In contrast, the Lexical approach, represented by Rooth (1985), Rullmann 

(1997) and Giannakidou (2007), analyses (44) as having the following structure: 

(46) ¬evenNPI(“John can clear obstacle y2”) 

i.e. the “even” in (44) is a negative polarity item (NPI) “evenNPI” different than 

the ordinary positive polarity item (PPI) “even” in sentences like (41). Being a 
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 Here I tentatively represent “even” as a sentential operator ignoring the focus structure of an 

“even”-sentence. A better representation method will be proposed in Chapter 4. 
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different lexical item, “evenNPI” satisfies a different condition of use than (42), 

which may be formulated as: 

(47) evenNPI: CP u TP 

We can then use the old SE relation (43) and this new condition of use for 

“evenNPI” to account for the proper use of “even” in (44). 

 

2.5.3 “even” and “at least” 

    The studies on “even” have led to much controversy because different 

scholars hold different views on the condition of use for “even”. According to 

Kay (1990)’s view, “even” is used for comparing the TP with a CP and should 

satisfy (42). But according to the more traditional view, “even” is used for 

emphatic purposes by asserting the most informative (or equivalently the least 

likely) proposition among all the propositions in an SM and may be called an 

emphatic SO. The two views are not incompatible. In fact, the emphatic use of 

“even” is a special case of its more general use under Kay’s view because if a 

proposition is the most informative, then it will entail all other propositions in the 

SM, including the CP, and so (42) is surely satisfied. But since the emphatic use 

is not the unique use of “even”, I maintain that (42) is preferable as it can cover 

more cases. 

    That said, the emphatic use of “even” is nonetheless the most prominent use 

of this SO. Thus, in this subsection I will formulate an alternative condition of 

use that suits the emphatic use of “even” better. Moreover, I will also contrast 

“even” with another SO – “at least”. 

    First, I contend that the traditional view that “even” asserts the most 

informative proposition should be modified. As pointed out by Sawada (2003), 
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“even” may trigger SIs as shown in the following example
55

: 

(48) Even if you study very hard, you won’t be able to get an A in that class. 

+> If you study much harder than “very hard” (e.g. Study very hard 

without sleep, study at the risk of one’s life), you can get an A in that 

class. 

In the above sentence, “You cannot get an A if you study very hard” is very 

informative. But the SI brings out an even more informative proposition “You 

cannot get an A if you study much harder than ‘very hard’ ” which has been 

negated. Thus, even under the emphatic use, “even” does not necessarily assert 

the most informative proposition. For this reason, an alternative condition of use 

for the emphatic use of “even” should be: 

(49) even: TP is extremely informative, though not necessarily the most 

informative. 

    I next consider “at least”
56

. This SO differs from “even” in that the 

informativeness of the SM associated with an “at least”-sentence is reflected by 

the desirability rather than likelihood of the propositions. Consider the following: 

(50) At least John can clear obstacle y2. (It’s better than his just being able to 

clear obstacle y1.) 

the part after “it’s better than” (i.e. the CP) represents a less desirable proposition 

than the TP
57

. Similar to (14) above, we can express this situation as the 
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 Sawada (2003), (21), (25), pp. 429 – 430. Note that what Sawada (2003) studied is in fact 

“even if”. But since “even if” can be seen as a special use of “even” with condtional sentences, 

Sawada (2003)’s findings are applicable to simple “even”-sentences. 
56

 Kay (1997) identified 3 different uses of “at least” – scalar, evaluative and rhetorical, whereas 

Nakanishi and Rullmann (2009) identified 2 – epistemic and concessive. The “at least” studied in 

this thesis corresponds to Kay (1997)’s evaluative “at least” and Nakanishi and Rullmann 

(2009)’s concessive “at least”. 
57

 Kay (1997) contended that an “at least”-sentence is associated with two CPs: a less desirable 

and a more desirable propositions. But according to Nakanishi and Rullmann (2009), the more 

desirable proposition should be seen as an SI generated by the “at least”-sentence (see example 

below). I thus only consider the less desirable proposition as the CP of “at least”. This is in 

accord with the above treatment that only a proposition that has an SE relation with the 
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following SE: 

(51) John’s jumping capability is up to the level of no less than obstacle y2. 

u John’s jumping capability is up to the level of no less than obstacle 

y1. 

Based on the above TP-CP relation, we can then formulate the condition of use 

for “at least” as follows: 

(52) at least: TP u CP 

Note that the above condition has the same form as condition (42) for “even”. 

Moreover, like “even”, “at least” can also trigger SIs, such as 

(53) At least John can clear obstacle y2. +> John cannot clear obstacle y3. 

However, this cannot be the whole story because otherwise we would have “at 

least” performing the same function as “even”. But we know that these two SOs 

are very different. While “even” is emphatic, “at least” is attenuating, i.e. 

conveying extremely low informativeness. Thus, just like “even”, I formulate an 

alternative condition of use for the attenuating use of “at least” as follows:  

(54) at least: TP is very uninformative, but not the most uninformative. 

Note that the above condition contains the phrase “but not the most 

uninformative” because according to Kay (1997) and Nakanishi and Rullmann 

(2009), “at least” is used to settle for less, and so although the TP of an “at 

least”-sentence is very uninformative, it is still more informative than at least one 

proposition (i.e. the CP) in the same SM. In summary, “at least” shares some 

commonalities with “even” in certain respects, but also performs an opposite 

rhetorical function in contrast to “even”. In this sense, “at least” can be seen as a 

mirror opposite of “even”
58

. 

                                                                                                                                    
“even”-sentence is considered as a CP of “even”. 
58

 A number of scholars (e.g. Sawada (2006), Giannakidou (2007), Crnič (2011)) have studied 

the association and contrast between “even” and “at least”. Among these scholars, Sawada (2006) 
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2.6 Climax Constructions 

2.6.1 Canonical Climax Constructions 

    In Chinese grammar, there is a construction called “climax construction”. 

Traditionally, climax constructions were studied as a subtype of complex 

sentences. Xing (2001) classified them under the category of “generalized 

coordinate complex sentences”
59

. According to Xing (2001), the most typical 

climax construction connective (CCC) “budan … erqie …” (≈ “not only … but 

also …”) may be used simply to coordinate two items. Under this use, p and q in 

“budan p, erqie q” are put on an equal footing. We may call this the additive use 

of “budan … erqie …”. However, there is another use of “budan p, erqie q” such 

that q denotes a larger scope or higher degree than p. This use distinguishes an 

order between p and q. Since order is a characteristic of scales, we may call this 

the scalar use of “budan … erqie …”. It is this scalar use that is related to SMT. 

The most commonly used CCCs in Chinese and their approximate English 

equivalents are set out in the following table. One will find that the English 

equivalents of most CCCs are in fact SOs. 

Table 2.1  Chinese CCCs and Approximate English Equivalents 

Chinese CCC Approximate English Equivalent 

lian_dou / lian_ye
60

 / shenzhi even 

bieshuo / hekuang not to mention / let alone 

faner / fandao / dao on the contrary 

shangqie … hekuang … even … not to mention … 

budan … erqie … / budan … hai … not only … but also … 

                                                                                                                                    
explicitly proposed that “even” and “at least” are mirror opposites of each other. 
59

 Xing (2001) classified Chinese complex sentences into three broad categories, namely 

“generalized coordinate”, “generalized causal” and “generalized contrastive”. Climax 

constructions were put under the “generalized coordinate” category. 
60

 The discontinuous particle “lian_dou / ye” is written in this way to mean that the focus of this 

particle is placed between “lian” and “dou / ye”. Note that “lian”, “dou” and “ye” are originally 

three different words with their own meanings. 
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budan bu … faner …
61

 not only not … on the contrary … 

Chinese grammarians distinguish two types of climax constructions: canonical 

climax constructions which are used with most of the CCCs in the above table, 

and anti-climax constructions which are used with “faner” and “budan bu … 

faner …”. 

    The above table gives us insight for identifying SOs in English. One may 

suspect that “not only … but also …” (the English equivalent of “budan … 

erqie …”) as well as the closely related form “only” may also be SOs. In fact, 

Horn (1969) and König (1991) have pointed out that although “only” is basically 

non-scalar, it may convey scalar meaning in some circumstances. Zeevat (2009) 

also treated “only” and “even” on a par and grouped them together under the 

category of “mirative particles”. The same can be said of “not only … but 

also …”. For this reason, I will thus add “only” and “not only … but also …” 

(under their scalar use) to the inventory of SOs. 

    Traditionally, Chinese scholars did not use the concept of scales to study 

climax constructions, even under the scalar use. For example, Zhou (2003), a 

monograph on the climax constructions, made no mention of “scales”. In recent 

years, Chinese scholars (e.g. Jiang (1998), Liu (2000), Shen (2001), Jiang (2003), 

Shyu (2004), Gong (2006), Yuan (2008), Jiang (2011)) began to use scales or 

even apply SMT to study individual CCCs, but not climax constructions as a 

whole. In Chapter 4, I will put CCCs and SOs under the common framework of 

SMT. 

 

2.6.2 Anti-Climax Constructions 

    Yuan (2008) has studied Chinese anti-climax constructions. He pointed out 
                                                 
61

 The word “bu” here represents the negation morpheme and may be replaced by other Chinese 

words conveying the negative meaning such as “meiyou” (≈ “not yet”), etc. 
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that the meaning of such constructions involve the two notions of scales and 

contrast. Thus, in the construction “budan bu p, faner q”, q is not only contrary to 

p, but also denotes a larger scope or higher degree than ¬p. Consider the 

following example
62,63

: 

(55) Jintian wuhou xia le yi chang lei zhenyu, budan 

 today afternoon fall ASP one CLS thunder shower budan 

 meiyou liang xia lai, tianqi faner geng menre le. 

 not yet cool down come weather faner more stuffy PART 

 After the thunder shower this afternoon, not only hasn’t it got cooler. Quite the 

contrary, it gets even more stuffy. 

In this sentence, “geng menre” is not only contrary to “liang xia lai”, but denotes 

a higher degree of discomfort than “meiyou liang xia lai”. 

    Yuan (2008) also pointed out that sometimes “faner q” can be used alone 

without “budan bu p”, provided that there is an appropriate presupposed clause in 

the context, i.e. a CP, to bring out the climax effect
64

. For example, in (55) above, 

the clause “budan meiyou liang xia lai” can be omitted. In this case, the 

presupposed clause would be the following: 

(56) Yuan yiwei keyi liangkuai yixie. 

 originally expect possible cool a bit 

 Supposedly it should get a bit cooler. 

Note that the above sentence, when put in contrast with the TP “tianqi faner geng 

menre le”, brings out the climax effect. 

    According to Zhou (2003), “faner” is used only to strengthen the contrastive 
                                                 
62

 Adpated from Yuan (2008), (42), p. 116. 
63

 In this thesis, I use the following abbreviations for glosses of Chinese sentences: ASP = aspect 

marker, CLS = classifier, PART = particle, POSS = possessive marker. 
64

 According to Guo (1999), “faner” (and its variants “fandao”, “dao”, etc.) can be used as an 

ordinary contrastive particle without climax effect. I contend that this is a non-scalar use of 

“faner”. 
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mood and is not a necessary element in the anti-climax constructions. In fact, 

“budan bu p, faner q” can be seen as a negative version of “budan p, erqie q”. It 

thus comes as no surprise that “faner” can be replaced by “erqie / hai / lian_dou / 

shenzhi” in this construction, according to Zhou (2003). In this thesis, I will use 

“budan bu p, faner q” as a representative of all these variants. 

 

2.7 Subjective Quantity 

2.7.1 Abnormal SQ 

    Subjective quantity (SQ) is a concept in Chinese grammar, first proposed by 

Chen (1994) and further developed by Li (2000) and Li (2003), etc. This concept 

enables us to study the meaning of certain polysemous Chinese function words 

from a new perspective. In this thesis, I will focus on adverbs and conjunctions 

that can trigger SQ (henceforth “subjective quantity operators” (SQOs)). 

Consider the following sentences: 

(57) Ta 20 jin dou tiao de qi. 

 he 20 catty dou lift able up 

 He can even lift up 20 catties. 

(58) Ta tiao 20 jin dou juede lei. 

 he lift 20 catty dou feel tired 

 He felt tired even though he only carried 20 catties. 

Without the SQO “dou” (≈ “even”
65

), the quantity phrase “20 jin” in the above 

two sentences does not indicate large or small quantities. We say that it denotes 

“objective quantities” in this case. But with “dou”, the above sentences convey 

subjective evaluation of the largeness (i.e. SQ) of the quantity phrase. Intuition 
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 Historically, “dou” with the meaning “even” evolved from the CCC “lian_dou”. As the 

meaning of “lian” became bleached, “dou” came to denote the meaning of the whole structure, 

especially when it is used as an SQO. 
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tells us that “20 jin” denotes large and small SQ in (57) and (58), respectively. 

    Li (2000) has identified four sources of SQ: abnormality, infection, direct 

assignment and hyperbolism. This thesis will study the first three of these. 

Abnormal SQ is contrary to the expected quantity
66

, which refers to the expected 

or ideal quantity in the speaker’s mind. Whenever the quantity under discussion 

differs from the expected quantity, abnormal SQ will arise. In a nutshell, 

abnormal SQ comes from “unexpectedness”. 

    Note that the aforesaid concepts are reminiscent of certain concepts of SMT 

in that the sentence containing the quantity under discussion (excluding the 

SQOs) and the sentence containing the expected quantity are analogous to TP 

and CP, respectively. For this reason, I will extend the concepts of TP and CP 

used in SMT to the analysis of abnormal SQ. For example, the following may 

serve as a CP for (57): 

(59) Wo yiwei ta zhi tiao de qi 15 jin. 

 I expect he only lift able up 15 catty 

 I expected that he can only lift up 15 catties. 

    The most typical abnormal SQOs are “dou” and “hai” (≈ “still”). Li (2000) 

has identified the conditions under which a quantity phrase in a “dou / 

hai”-sentence denotes large / small SQ. His findings are summarized in the 

following table: 

Table 2.2  SQs denoted by “dou / hai” 

SQO Qd Qi 

dou / hai small SQ large SQ 

In the table above, Qd and Qi represent quantity phrases that are directly and 

inversely proportional to the likelihood that the sentential predicate can be 
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 Li (2000) in fact used the term “normal quantity”. Li (2003) changed it to the more general 

term “expected quantity”. 
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realized, respectively. This table shows that whether a quantity phrase in a “dou / 

hai”-sentence denotes large / small SQ depends on the proportionality relation 

between the quantity phrase and the sentential predicate
67

. 

    Let me use (57) and (58) to illustrate the idea. In (57), the quantity phrase 

“20 jin” is inversely proportional to the likelihood of the sentential predicate 

“tiao de qi”, because the larger the weight, the less likely a person can lift it up. 

On the other hand, in (58), “20 jin” is directly proportional to the likelihood of 

the sentential predicate “juede lei”, because the larger the weight, the more likely 

a person carrying it will feel tired. Thus, “20 jin” is a Qi in (57) and a Qd in (58). 

According to Table 2.2, it denotes large and small SQ in (57) and (58), 

respectively, in conformity with our intuition. 

 

2.7.2 Infected SQ 

    When a quantity phrase not denoting abnormal SQ is put in contrast with 

another quantity phrase denoting abnormal SQ in a sentence, the former quantity 

phrase may acquire SQ. This kind of SQ is called infected SQ. Li (2000)’s 

examples for infected SQ are mainly based on the prosody of the sentence, which 

I do not intend to study in this thesis. But Li (2000) also pointed out that 

“bieshuo / hekuang”, when used in contrast with “dou”, may denote SQs. I 

contend that such SQs are not abnormal SQs because “bieshuo / hekuang” does 

not denote unexpectedness. Consider the following example
68

: 

(60) Lian zhe shi lai fenzhong ta dou shou bu liao, 

 lian this 10 odd minute she dou withstand not PART 
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 As a matter of fact, Li (2000) contended that whether a quantity phrase in a “dou / 

hai”-sentence denotes large / small SQ does not only depend on the proportionality relation but 

also the relative position of the quantity phrase wrt the word “dou / hai”. But in fact only the 

proportionality relation is relevant, and so Table 2.2 has simplified Li (2000)’s findings.  
68

 Adapted from Li (2000), Ch. 4, [64], p. 142. 
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 hekuang ban nian zhi qi.  

 hekuang half year POSS period  

 She cannot even withstand 10 odd minutes, let alone a half-year period. 

In the above sentence, “hekuang” is associated with the proposition “she cannot 

withstand a half-year period”, which is a normal state of affairs. The quantity 

phrase “ban nian zhi qi” by itself does not denote SQ, but since it is put in 

contrast with “shi lai fenzhong” which denotes small SQ, it acquires an infected 

large SQ. 

 

2.7.3 “jiu” and “cai” 

    Li (2000) has also studied the SQ associated with two Chinese aspectual 

operators – “jiu”
69

 and “cai”. Among the SQOs, “jiu” and “cai” are special in 

that they have the dual nature of both abnormal and directly assigned SQOs. On 

the one hand, they may trigger abnormal SQs. Consider the following minimal 

pair: 

(61) Liang ge ren jiu zhuan de 40,000 yuan. 

(62) Liang ge ren cai zhuan de 20,000 yuan. 

 2 CLS person jiu / cai earn get  dollar 

 The two of them earn as much as $40,000. / 

The two of them only earn $20,000. 

Intuitively, “liang” and “40,000 yuan” denote small and large SQs in (61) , while 

“liang” and “20,000 yuan” denote large and small SQs in (62), respectively. The 

aforesaid SQs are abnormal SQs because they can be seen as being derived by 

contrast with a CP such as the following: 
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 According to Liu et al (2001), “jiu” is ambiguous and is synonymous with “bian” (≈ 

“thereupon”) and “zhi” (≈ “only”) under different stress environment. In this thesis, I only 

consider the sense of “jiu” that is synonymous with “bian”. 
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(63) Wo yuqi liang ge ren zhuan 30,000 yuan. 

 I expect 2 CLS person earn  dollar 

 I expected that 2 persons earn $30,000. 

    On the other hand, according to Chen (1994) and Li (2000), unlike other 

abnormal SQOs, “jiu” and “cai” trigger SQs mainly by way of the relative 

positions of the quantity phrases wrt “jiu / cai”. In this way, “jiu” and “cai” are 

like SQOs such as “zuzu” (≈ “fully”) that directly assign SQs to quantity phrases 

located at specific neighbouring positions. 

    Li (2000) has identified the conditions under which a quantity phrase in a 

“jiu / cai”-sentence denotes large / small SQ. His findings are summarized in the 

following table: 

Table 2.3  SQs denoted by “jiu / cai” 

SQO Ql Qr 

jiu small SQ large SQ 

cai large SQ small SQ 

In the table above, Ql and Qr represent quantity phrases that are located on the 

left and right of “jiu / cai” in a sentence, respectively. This table shows that 

whether a quantity phrase in a “jiu / cai”-sentence denotes large / small SQ 

depends on the relative location of the quantity phrase wrt “jiu / cai”. 

    Let me use (61) and (62) to illustrate the idea. In (61), the quantity phrases 

“liang” and “40,000 yuan” are located on the left and right of “jiu”; whereas in 

(62), “liang” and “20,000 yuan” are located on the left and right of “cai”, 

respectively. According to Table 2.3, “liang” and “40,000 yuan” denote small and 

large SQs in (61); while “liang” and “20,000 yuan” denote large and small SQs 

in (62) respectively, in conformity with our intuition. 
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2.8 Extreme Values 

2.8.1 Maximizers / Minimizers and Superlatives 

    Israel (1996, 2011) has tried to extend SMT to a comprehensive theory on 

polarity items (including PPIs and NPIs). Although his theory is elegant and 

systematic, the types of polarity items are various and their use is extremely 

complicated. It is thus doubtful that a theory solely based on scalar reasoning 

could be an adequate theory. As a matter of fact, in the literature there is a wide 

variety of theories based on very different notions. In addition to scalar reasoning, 

these notions include domain widening (Kadmon and Landman (1993)), 

monotonicities (Zwarts (1997), van der Wouden (1997)), (non-)veridicality 

(Giannakidou (1999)), resumptive quantification (Szabolcsi (2004)), etc. Israel 

(1996, 2011)’s theory is just one among the many on the market. 

    Nevertheless, Israel (2011)’s discussion on the scalar reasoning of two 

subtypes of polarity items – maximizers and minimizers is insightful. 

Maximizers / minimizers are scalar terms with extreme (maximal or minimal) 

values
70

. They are typically idiomatic constructions. In this thesis, I will focus on 

maximizers / minimizers and will not deal with other types of polarity items. 

    Maximizers / minimizers may be classified into two types according to their 

rhetorical purposes. Emphatic maximizers / minimizers are used for achieving 

emphatic or hyperbolic effects, whereas attenuating maximizers / minimizers are 

used for achieving understating or euphemistic effects. Israel (2011) defined two 

scalar properties with binary values: q(uantitative)-value (high or low) tells us 

whether the scalar term is a maximizer or a minimizer, and i(nformative)-value 

(emphatic or attenuating) tells us the rhetorical purpose of the scalar term. Using 
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 Israel (1996, 2011) treated maximizers / minimizers as “scalar operators”. But in fact it is more 

appropriate to treat these items as “scalar terms”, i.e. they should be seen as values of a scale 

rather than functions operating on the values of a scale. 
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these two values together with the logic of SEs, Israel (2011) was able to account 

for the polarities of maximizers / minimizers. 

    For attenuating scalar terms, Israel (2011) observed that attenuating 

maximizers and minimizers are NPIs and PPIs, respectively. This conclusion is 

valid for any one-dimensional scale in which a proposition with a higher scalar 

term entails a proposition with a lower scalar term. This kind of scale is called 

“canonical” by Israel (2011). Since the function of attenuating maximizers / 

minimizers is to make weak claims, they must make the propositions where they 

appear highly uninformative. Now a negated proposition with a maximal scalar 

term or an affirmed proposition with a minimal scalar term entails few or even no 

other propositions in the scale, and is, by (9), very uninformative. A pair of 

attenuating maximizer / minimizer (underlined) is exemplified below
71

: 

(64) Stella is not all that clever. 

(65) Stella is sort of clever. 

    For emphatic scalar terms, the situation is more complicated. Israel (2011) 

observed that in a canonical scale, emphatic maximizers and minimizers are PPIs 

and NPIs, respectively. Again, one can draw this conclusion by noting that the 

function of emphatic maximizers / minimizers is to make strong claims. So an 

affirmed proposition with a maximal scalar term or a negated proposition with a 

minimal scalar term entails many other propositions in the scale, and is, by (9), 

very informative. A pair of canonical emphatic maximizer / minimizer is 

exemplified below
72

: 

(66) Julio spent a king’s ransom on the party. 

(67) He won’t spend a red cent on your wedding. 
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 Israel (2011), Ch. 4 (5), p. 92. 
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 Israel (2011), Ch. 4 (13)a and (12)a, p. 97. 
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    However, Israel (2011) also observed that there are emphatic maximizers 

and minimizers being NPIs and PPIs, respectively. This kind of maximizers / 

minimizers follow reasoning patterns of “inverted” scales, i.e. scales in which a 

proposition with a lower scalar term entails a proposition with a higher scalar 

term. Since the direction of reasoning is inverted, the roles of PPIs and NPIs are 

interchanged. A pair of inverted emphatic maximizer / minimizer is exemplified 

below
73

: 

(68) She wouldn’t kiss him for all the tea in China. 

(69) But he somehow got Madonna to play for peanuts. 

    Israel (2011) accounted for the difference between canonical and inverted 

scales in terms of the participant roles played by the scalar terms. For example, 

although both “a king’s ransom” and “all the tea in China” represent huge 

amount of valuables, the former is expense while the latter is reward in the 

respective sentences. It is this difference that gives rise to different scales. If a 

person is willing to spend a certain amount of expense, then other things being 

equal, he / she will also be willing to spend a smaller amount. So “a king’s 

ransom” occurs in a canonical scale in (66). On the other hand, if a person is 

willing to do something for a certain amount of reward, then other things being 

equal, he / she will also be willing to do the same thing for a larger amount. So 

“all the tea in China” occurs in an inverted scale in (68). The polarities of various 

types of maximizers / minimizers found by Israel (2011) with English examples 

are summarized in the following table: 

Table 2.4  Israel’s Typology of Maximizers / Minimizers 

 Maximizer Minimizer 

Canonical PPI NPI 
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 Israel (2011), Ch. 4 (12)b and (13)b, p. 97. 
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Emphatic “a king’s ransom” “not … a red cent” 

Inverted  

Emphatic 

NPI 

“not … all the tea in China” 

PPI 

“peanuts” 

Attenuating 
NPI 

“not … all that” 

PPI 

“sort of” 

    Superlatives function like emphatic maximizers / minimizers in many cases. 

Fauconnier (1975) pointed out that superlatives may be used to perform a 

function very similar to universal quantification, as exemplified by
74

 

(70) Tommy will not eat the most delicious food. 

which in effect means “Tommy will not eat any food”. In fact, “the most 

delicious” can be seen as an inverted emphatic maximizer. If a person will eat 

food that is tasty to a certain degree, then other things being equal, he / she will 

eat food that is more tasty. So “the most delicious” occurs in an inverted scale in 

(70). Now negating a maximal scalar term in an inverted scale entails negating 

other lower scalar terms, and so (70) has the effect of universal negation. 

 

2.8.2 Chinese Idiomatic Constructions with “yi” 

    Parallel to the relation between SOs and maximizers / minimizers, there is 

also a natural association between Chinese SQOs and idiomatic constructions 

with extreme numerals. As a matter of fact, Li (2000) has extended his studies on 

SQ to Chinese idiomatic constructions with minimal numerals. In Chinese, “yi” 

(≈ “one”) and “ban” (≈ “half”) are the smallest numerals. In addition, some 

traditional measure words denoting very small amounts (e.g. “hao”) and bare 

classifiers (i.e. classifiers without numerals in front, meaning “one”) can also 

perform the function of “yi”. In what follows, I use “yi” to represent all these 

words. 
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    Li (2000) has discussed a number of idiomatic constructions in which “yi” 

may appear. These constructions may be grouped into two types. The first type 

has the main form “yi” + negation. Here are some examples of idioms in this 

form: 

(71) bu kan yi ji  

 not endure one strike cannot withstand a single blow 

(72) zhi zi wei ti  

 CLS word not yet mention not utter a word 

Note that “yi” in this form can be analysed as a canonical emphatic minimizer 

using Israel (2011)’s framework as introduced in the previous subsection. 

    The second type has the main form “yi … jiu …”, which is a very common 

construction in Chinese, as exemplified by the following sentence: 

(73) Ta yi kan jiu ming.  

 he one see jiu understand  

 He could understand by glancing through just once. 

This form is also exemplified in many idioms where “jiu” is omitted or replaced 

by other adverbs with similar meaning, as in the following: 

(74) yi ming jing ren  

 one sound amaze people  

 amaze the world with a single brilliant feat 

Note that the appearance of “yi” in this form conforms to Li (2000)’s theory on 

the SQ associated with “jiu”, because according to Table 2.3, a quantity phrase 

appearing on the left of “jiu” denotes small SQ, which is exactly what “yi” 

should denote. 

 

2.9 Conclusion 
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    In this chapter, I have introduced and commented on a number of theories 

dealing with different aspects of scalar reasoning. In some cases, I have also 

presented my preliminary views on these theories. However, there are still a 

number of outstanding problems. 

    The theories introduced above were developed independently. Each is based 

on its own terminology and principles. Yet the various phenomena studied under 

these theories are all related to scalar reasoning. Can we develop a new 

framework on scalar reasoning that can deal with these phenomena in a uniform 

way? 

    As pointed out in Section 2.3, SEs are pragmatic reasoning different from 

logical entailments. However, under the assumption of “other things being equal”, 

the robustness of SEs is indeed comparable to logical entailments. Can we 

discover more parallelism between the two types of entailments? 

    In Section 2.4, I have discussed the merits and demerits of different schools 

on different aspects of SIs (as well as contrastive construals). While I am 

sympathetic to a certain school in respect of a particular aspect, how can the 

theories of the various schools on different aspects be integrated to provide a 

complete and consistent account for the various types of SIs (including canonical 

and alternate-value SIs, simple and embedded SIs) and contrastive construals as 

well as provide answers to the debates among these schools? 

    As shown in Sections 2.5 – 2.8, although different types of scalar lexical 

items were studied independently under different theories, these theories are to a 

certain extent complementary to each other. First, there is a correspondence 

between the SOs studied under SMT and the CCCs studied under Chinese 

grammar. In fact, Chinese scholars have started to use SMT to study individual 

CCCs. Second, SMT and the theory on SQ also share some commonalities. For 
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example, the notion of “proportionality relations” used by Li (2000) can in fact 

be seen as an alternative manifestation of the notion of “participant roles” used 

by Israel (2011). For instance, while the difference between “a king’s ransom” 

and “all the tea in China” in (66) and (68) is seen as different participant roles 

under Israel (2011)’s theory (i.e. “a king’s ransom” is expense for “Julio spent” 

while “all the tea in China” is reward for “she would kiss him”), the difference is 

seen as different proportionality relations under Li (2000)’s theory (i.e. “a king’s 

ransom” is inversely proportional to “Julio spent” while “all the tea in China” is 

directly proportional to “she would kiss him”
75

). Given these commonalities, can 

we develop a unified theory for all these scalar lexical items? 

    Finally, although SEs and SIs are different types of reasoning, it has been 

shown in Subsection 2.5.3 that “even” and “at least” can both trigger SEs and SIs. 

What does this phenomenon tell us about the relationship between SEs and SIs? 

How are they manifested in the scalar lexical items? 

    My approach to solving the aforesaid outstanding problems is to gain 

insights from the studies of logical inferences, especially quantifier inferences. In 

fact, as shown in (17), the classical examples of SIs are about quantifiers. This 

shows that quantifier inferences have an inherent association with scalar 

reasoning. Thus, to solve the outstanding problems raised in this chapter, we first 

need to have a thorough understanding of the inferential patterns of GQs, which 

is the topic of the next chapter. 
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Chapter 3 Inferential Patterns of Generalized Quantifiers 

3.1 Introduction 

    In this chapter, I will study 4 main types of quantifier inferences, namely 

1. monotonicity inferences; 

2. argument structure inferences; 

3. opposition inferences; and 

4. (non-classical) syllogistic inferences. 

The choice of these 4 types of inferences is not arbitrary. Right from the 

beginning of the linguistic stream of GQT, monotonicities of GQs have been one 

of the foci in GQT research. Later, some scholars (e.g. van Benthem (1986), 

Sanchez Valencia (1991)) studied monotonicity inferences of sentences with 

complex quantifier structures and called such kind of study “Natural Logic”
76

. In 

the 21
st
 century, some other types of inferences were also studied as special types 

of “Natural Logic”. These latter types of inferences can all be seen as modern 

versions of classical logical inferences, among which syllogisms are the most 

important ones. In recent years, some scholars (van Benthem (2008), 

MacCartney (2009), Icard (2012), Mineshima et al (2012)) added inferences 

involving “exclusion relations” to the list of “Natural Logic” inferences. 

Exclusion relations are in fact a generalization of the opposition relations defined 

on the classical square of opposition. Also included in the category are inferences 

involving the concepts of negation and duality, which I will call “duality 

inferences” and inferences involving transposition of arguments or quantifiers, 

which I will call “transposition inferences”. These two kinds of inferences are in 
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 “Natural Logic” is a loose term without rigorous definition. Despite this, the inferences 

categorized under “Natural Logic” share some common features in that they are all inferences of 

quantified statements and can be studied using the theoretical tools of GQT. For this reason, I 

choose these inferences for study. 
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fact modern version of the classical eductive inferences
77

, and will be 

collectively called argument structure inferences. 

    Although the aforesaid 4 types of inferences are studied separately, they are 

intimately related. Using monotonicity inferences as a reference point, the other 

3 types of inferences can be seen as related to monotonicity inferences in 

different aspects. First, the argument structure inferences studied in Section 3.3 

are inferences involving negation and / or transposition of the quantifiers or their 

arguments, where negation and transposition are both manipulations of the 

quantifier argument structures. Similarly, monotonicity inferences can be seen as 

involving two other types of manipulations of the quantifier argument structures, 

i.e. expansion (to a superset) and contraction (to a subset). Second, the opposition 

inferences studied in Section 3.4 are inferences involving the contradictory, 

contrary and subcontrary relations, which are the three core relations defined on 

the classical square of opposition. On the other hand, monotonicity inferences 

can be seen as involving the fourth relation on the square of opposition, i.e. the 

subalternate relation
78

. Third, as will be pointed out in Section 3.5, monotonicity 

inferences can be seen as extension of the classical syllogisms. Moreover, many 

modern scholars have also discovered various types of non-classical syllogisms. 

Thus, the non-classical syllogisms studied in Section 3.5 and monotonicity 

inferences can both be seen as extension of the classical syllogisms, albeit in 

different directions. 
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 Eductive inference is one of the two main types of immediate inferences in Classical Logic 

(the other type being the opposition inference). This type includes inferences that make use of the 

operations of obversion, conversion, contraposition (and sometimes inversion). 
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 According to Keenan and Faltz (1985), propositions and predicates (i.e. sets) can both form 

Boolean algebras in which the subalterante (i.e. unilateral entailment) relation and proper subset 

relation are essentially the same relation. The superset relation is just a converse of the subset 

relation. Note that some modern scholars (such as Smessaert (2012)) think that the subalternate 

relation is very different from the contradictory, contrary and subcontrary relations and so only 

the latter three are core opposition relations. 
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    Before starting our study on quantifier inferences, I will first point out the 

scope of study in this chapter. Since the main objective of this chapter is to 

identify valid inferential patterns of various types of GQs, this chapter will adopt 

the model-theoretic framework of classical GQT, and will not consider 

proof-theoretic issues usually studied under modern Mathematical Logic, 

including formal syntax, metalogical properties, computational complexity, 

expressive power, proof algorithms, etc. 

 

3.2 Monotonicity Inferences 

3.2.1 Basic Definitions 

    Monotonicity is concerned with truth preservation of a quantified statement 

when the arguments of the statement are replaced by their supersets / subsets. 

Since the concept of monotonicity can also be applied to Boolean operators 

(BOs)
79

, here I adopt a more general definition for monotonicity: 

(1) Let Q be a GQ / BO with n arguments, then Q is increasing in the i
th

 

argument (1  i  n) iff for all X1, … Xi, Xi’, … Xn, Xi  Xi’  

Q(X1, … Xi, … Xn)  Q(X1, … Xi’, … Xn). 

(2) Let Q be as above, then Q is decreasing in the i
th

 argument (1  i  n) iff 

for all X1, … Xi, Xi’, … Xn, Xi  Xi’  Q(X1, … Xi, … Xn)  Q(X1, … 

Xi’, … Xn). 

Q is called monotonic in the i
th

 argument iff it is either increasing or decreasing 

in the i
th

 argument. Otherwise, it is called non-monotonic in the i
th

 argument. In 

the above definitions, “” is a general partial order relation. When used between 

two sets, it represents “” (the subset relation); when used between two 

                                                 
79

 Boolean operators mean the same as “propositional connectives”, such as “negation” (“¬”), 

conjunction (“”), etc. 
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propositions, it represents “” (the entailment relation)
80

. 

    In what follows, I introduce a notation to denote the monotonicities of GQs / 

BOs
81

 as exemplified in: 

(3) every  ↓MON↑; (more … than …)  ↑↓MON– 

In the above, ↓MON↑ and ↑↓MON– represent sets of GQs / BOs with the 

specified monotonicities. The left and right sides of “MON” represent the 

nominal and predicative arguments of a GQ, or the first and second arguments of 

a binary BO, respectively. The symbols ↑, ↓ and – represent increasing, 

decreasing and non-monotonic, respectively. Thus, (3) tells us that “every” is left 

decreasing and right increasing, while “(more … than …)” is increasing, 

decreasing and non-monotonic in the 1
st
, 2

nd
 and 3

rd
 arguments, respectively. 

    Next I introduce the notion of “triviality”: 

(4) Let Q be a GQ / BO with n arguments, then Q is trivial in the i
th

 

argument (1  i  n) iff for any particular set of X1, … Xi–1, Xi+1, … Xn, 

either ║Q(X1, … Xi, … Xn)║ = 1 for any Xi, or ║Q(X1, … Xi, … Xn)║ 

= 0 for any Xi. 

In other words, whether ║Q(X1, … Xi, … Xn)║ = 1 or not only depends on 

X1, … Xi–1, Xi+1, … Xn but does not depend on Xi. Note that no GQ / BO studied 

in this thesis possesses this property
82

.  

                                                 
80

 According to the Boolean Semantics developed by Keenan and Faltz (1985), propositions and 

various word classes (modeled as sets) in natural language form Boolean algebras. Under this 

approach, the entailment relation between propositions and the subset relation between sets are 

indeed the same relation, namely the domination relation (represented by “”) of a Boolean 

algebra. 
81

 Note that “monotonicity” may be manifested in two different levels – the GQ / BO level and 

the argument level. Using “every(A)(B)” as an example, on the GQ / BO level, we say that the 

monotonicity of the GQ “every” is left decreasing and right increasing; on the argument level, we 

say that the monotonicities of the arguments A and B under “every” are decreasing and increasing, 

respectively. Also note that some scholars use the term “polarity” to call “monotonicity on the 

argument level”. To avoid using different terms for similar notions, I do not adopt this 

terminology. 
82

 Since ║every()(B)║ = 1 for any B, one may say that the type <1> GQ “every()” is trivial 

in its only argument. But “every()” is not a single GQ studied in this thesis. 
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    Since increasing and decreasing are not contradictory concepts (but 

monotonic and non-monotonic are), it is logically possible that the same GQ / 

BO may have both properties in the same argument(s). But fortunately we have 

the following theorem: 

Theorem 3.1 If a GQ / BO is both increasing and decreasing in an argument, 

it is trivial in that argument. 

Thanks to this theorem, once we have established that a GQ / BO studied in this 

thesis is increasing (decreasing) in an argument, we can be sure that it cannot 

also be decreasing (increasing) in that argument. 

 

3.2.2 Previous Studies 

    Ever since the inception of GQT, many scholars have studied the 

monotonicities of various types of GQs, including structured GQs (Smessaert 

(1996)), iterated GQs (Zuber (2010a)), possessive constructions (Peters and 

Westerståhl (2006)) and other GQs that have not been considered in this thesis. 

    Some scholars proposed and studied generalized or refined concepts of 

monotonicity. These include continuity (Westerståhl (1989)), local 

monotonicities (Glöckner (2006)), (anti-)additivity / (anti-)multiplicativity as 

well as their combined properties, i.e. homomorphicity / antimorphicity (Zwarts 

(1997), van der Wouden (1997)) and “directional monotonicities”, i.e. southeast 

increasing / southwest increasing / northeast decreasing / northwest decreasing, 

as well as their combined properties, i.e. antieuclidity / smoothness / 

intersectivity (Peters and Westerståhl (2006)). By introducing these new notions, 

certain GQs that are non-monotonic may turn out to have certain generalized or 

refined monotonicities. For example, the left non-monotonic GQ “(at least 1/3)” 

is smooth (i.e. southeast increasing and northwest decreasing). 
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    In a complex sentence, the monotonicity of a predicate may interact with 

any quantifier or logical operator that has scope over that predicate. Such 

interaction is the subject matter of Monotonicity Calculus, whose purpose is to 

devise a set of rules or an algorithm for determining the monotonicities of the 

predicates in a complex sentence. The idea of Monotonicity Calculus was 

initiated by Hoeksema (1986) and van Benthem (1986), but the first practicable 

model for Monotonicity Calculus was developed by Sanchez Valencia (1991), 

who adopted the proof-theoretic approach and built up his framework using 

Categorial Grammar. 

    Following Sanchez Valencia (1991), a number of scholars extended or 

improved his framework using different variants of Categorial Grammar 

(including Dowty (1994), Kas and Zwarts (1994), Bernardi (2002), Fyodorov 

(2002), Zamansky (2004), van Eijck (2007), Christodoulopoulos (2008) and 

Moss (2012)) or other computational approaches (such as MacCartney (2009)). 

 

3.2.3 Monotonicities of Monadic GQs 

    In Chow (2007), I have proposed some rules for determining the 

monotonicities of types <1> and <1,1> right conservative GQs as well as 

right-iterated GQs. In this thesis, I will further generalize these rules. This 

subsection is devoted to the rules for monadic GQs. I first state the following 

preliminary theorems: 

Theorem 3.2 Let X, X’ and Y be sets such that X  X’. Then 

(a) X  Y  X’  Y 

(b) |X  Y|  |X’  Y| 

Theorem 3.3 A GQ with presupposition is monotonic only in cases where its 
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arguments satisfy the presupposition. 

Then we have the following theorems for monadic GQs: 

Theorem 3.4 Let Q’s truth condition be in the form X1  Y or X1  X2  Y, 

where Xi (i  {1, 2}) and Y are arguments of Q or constant sets 

and no Xi is equal to Y. Then Q is increasing (decreasing) in all 

arguments Y (Xi). If Xi or Y is replaced by its negative 

counterpart in the truth condition, the monotonicity of Xi or Y 

is reversed. 

Theorem 3.5 Let Q’s truth condition be in one of the following forms (after 

converting any division into multiplication): 

(a) |X1  X2| />//< n; 

(b) |X1  X2| /> |Y1  Y2|; 

(c) |X1  X2| />//< r × |X3|; 

(d) |X1  X2| × |Y3| /> |Y1  Y2| × |X3| 

where n and r are constants as defined in Appendix 1, Xi and Yj 

(i, j  {1, 2}) are arguments of Q or constant sets and X3 and 

Y3 are equal to one of the Xi and Yj, respectively. Then Q is 

increasing (decreasing) in all arguments appearing solely on the 

left (right) of “/>” or the right (left) of “/<”, and 

non-monotonic in all arguments appearing on both sides of 

“/>//<”. If any monotonic Xi or Yj is replaced by its negative 

counterpart in the truth condition, then treat ¬Xi or ¬Yj as if it 

were Xi or Yj appearing on the opposite side of “/>//<”. 

Theorem 3.6 Let Q’s truth condition be in the form X1 = Y or X1  X2 = Y, 

where Xi (i, j  {1, 2}) and Y are arguments of Q or non-trivial 
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constant sets and no Xi is equal to Y. Then Q is non-monotonic 

in all of its arguments. This fact is unaffected if Xi or Y is 

replaced by its negative counterpart in the truth condition. 

Theorem 3.7 Let Q’s truth condition be in one of the following forms: 

(a) |X1  X2| = n; 

(b) m  |X1  X2|  n; 

(c) |X1  X2| = |Y1  Y2|; 

(d) |X1  X2| / |X3| = r; 

(e) q  |X1  X2| / |X3|  r; 

(f) |X1  X2| / |X3| = |Y1  Y2| / |Y3| 

where m, n, q and r are constants as defined in Appendix 1, Xi 

and Yj (i, j  {1, 2}) are arguments of Q or constant sets and X3 

and Y3 are equal to one of the Xi and Yj, respectively. Then Q is 

non-monotonic in all of its arguments. This fact is unaffected if 

Xi or Yj is replaced by its negative counterpart in the truth 

condition. 

    In what follows I demonstrate how to use these theorems to determine the 

monotonicities of GQs. Consider the GQ “both” with a presupposition |CS  A| 

= 2. Since after replacing A by its superset or subset A’, |CS  A’| is not 

necessarily equal to 2, it may result in presupposition failure, by Theorem 3.3 

this GQ is left non-monotonic. Since the truth condition of “both” is CS  A  B, 

by Theorem 3.4, “both” is right increasing. Together, we have both  –MON↑. 

    Since the truth condition of “every” and “no” can be written as A  B and A 

 ¬B, respectively, by Theorem 3.4, we have every  ↓MON↑, no  ↓MON↓. 

    Since the truth condition of “(constitute less than r of)” can be written as |B 

 A| < r × |B|, where A appears solely on the left and B appears on both sides of 
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“<”, by Theorem 3.5(c), we have (constitute more than r of)  ↓MON–. 

    Since the truth condition of “(more … than …)” can be written as |A1  B| > 

|A2  B|, where A1 appears solely on the left, A2 appears solely on the right and 

B appears on both sides of “>”, by Theorem 3.5(b), we have (more … than …)  

↑↓MON–. 

    Next consider “(all … except C)” and “(between m and n)” whose truth 

conditions can be written as A  ¬B = C (where C is a constant set) and m  |A 

 B|  n, respectively. By Theorem 3.6 and Theorem 3.7(b), we have (all … 

except C), (between m and n)  –MON–. 

    The following valid inference illustrates the left decreasing and right 

increasing monotonicities of “every”: 

(5) Every child is jogging.  Every boy is doing exercises. 

Note that the above inference makes use of the relations BOY  CHILD and 

JOG  DO-EXERCISES. In contrast, the following invalid inference illustrates 

that “(more … than …)” is not increasing in the 3
rd

 argument: 

(6) More boys than girls are jogging.  

# More boys than girls are doing exercises. 

To prove the invalidity of the above, one can use a method similar to that 

introduced in the proof of Theorem 3.5 to construct a counterexample. Hence, we 

may let U = {a, b, c, d, e}, BOY = {a, b}, GIRL = {c, d, e}, JOG = {a, b, c}, 

DO-EXERCISES = {a, b, c, d, e}. Then one can check that JOG  

DO-EXERCISES and ║(more … than …)(BOY, GIRL)(JOG)║ = 1, but 

║(more … than …)(BOY, GIRL)(DO-EXERCISES)║ = 0. 

    The following table summarizes the monotonicities of the GQs studied in 
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this thesis
83

: 

Table 3.1  Monotonicities of GQs 

Monotonicity 

Type 
GQ 

MON↑ everybody(-thing), somebody(-thing), (x1, x2 and …) 

MON↓ nobody(-thing) 

↑MON↑ some, (more than n), (at least n) 

↑MON↓ (not every), only 

↑MON– (constitute more than r of), (constitute at least r of) 

↓MON↑ every, (not only) 

↓MON↓ no, (fewer than n), (at most n) 

↓MON– (constitute less than r of), (constitute at most r of) 

–MON↑ most, (more than r of), (at least r of), the, C’s, both, either 

–MON↓ (a minority of), (less than r of), (at most r of), neither 

↑↓MON– (more … than …), (at least as many … as …), (constitute a 

larger proportion of … than …), (constitute at least the same 

proportion of … as …) 

↓↑MON– (fewer … than …), (at most as many … as …), (constitute a 

smaller proportion of … than …), (constitute at most the same 

proportion of … as …) 

 

3.2.4 Monotonicity Calculus 

    In this subsection, I will study the monotonicities of iterated GQs, which is 

the subject matter of Monotonicity Calculus. First consider the case in which a 

predicate does not fall within the argument of any GQ / BO. Let X and X’ be 

predicates, i.e. sets. A set not falling within the argument of any GQ / BO can be 

seen as falling within the argument of the identity operator ι defined by ι(X) = X 

for any set X. Now it is obvious that if X  X’, then ι(X)  ι(X’). By definition 

(1), ι is increasing in its argument. So we conclude that a predicate not falling 

                                                 
83

 Only those monotonicity types with at least one increasing / decreasing argument position are 

listed here. Thus, GQs studied in this thesis that are not listed below are understood to be 

non-monotonic in all arguments. For example, (exactly n)  –MON–. 
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within the argument of any GQ / BO is increasing. 

    Next we consider the case in which a predicate falls within the argument of 

some GQ / BO. In this case, we need the following theorem: 

Theorem 3.8 Let P and P’ be n-ary predicates, then P  P’  {xi: P(x1, … 

xi–1, xi, xi+1, … xn)}  {xi: P’(x1, … xi–1, xi, xi+1, … xn)} for any 

1  i  n and any particular set of x1, … xi–1, xi+1, … xn. 

With the above theorem, we can then conclude that a predicate is increasing 

(decreasing) if it falls within an even (odd) number of decreasing argument 

positions without at the same time falling within any non-monotonic argument 

position. In what follows, I will provide a proof sketch for this important result. 

Here I will only consider a special case which can be generalized to other cases. 

Suppose we have an iterated GQ with the following argument structure: 

(7) Q1(A1)({x1: … Qn(An)({xn: B(x1, … xn)}) … }) 

We focus on the monotonicity of B (the monotonicities of other predicates can be 

similarly treated). Suppose B does not fall within any non-monotonic argument 

position and B  B’. By Theorem 3.8, we know that {xn: B(x1, … xn)}  {xn: 

B’(x1, … xn)} for any x1, … xn–1. According as Qn is right increasing or 

decreasing, we have Qn(An)({xn: B(x1, … xn)})  Qn(An)({xn: B’(x1, … xn)}) or 

Qn(An)({xn: B’(x1, … xn)})  Qn(An)({xn: B(x1, … xn)}). Thus, the increasing 

and decreasing monotonicities are, respectively, preserving and reversing the 

order relation between B and B’. The above reasoning can be seen as a kind of 

“upward derivation”: from the set inclusion relation at the B-level, we derive an 

entailment relation at the Qn-level. 

    Now Qn(An)({xn: B(x1, … xn)}) can be seen as the argument structure of an 

(n – 1)-ary predicate (with x1, … xn–1 as arguments). Thus, we can carry out the 

aforesaid upward derivation again by making use of Theorem 3.8 and deriving an 
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entailment relation at the Qn–1-level. The process of determining the 

monotonicity of B in (7) is essentially a repetition of this upward derivation up to 

the Q1-level. Thus, if B falls within an even (odd) number of decreasing 

argument positions, the order relation between B and B’ will finally be reversed 

for an even (odd) number of times, which is equivalent to no (one) reverse and so 

B is increasing (decreasing). 

    Note that the aforesaid upward derivation breaks down when B falls within 

at least one non-monotonic argument position, because when we come to the 

Qk-level (1  k  n) where Qk is non-monotonic in the right argument, no 

entailment relation can be derived at that level. Intuitively speaking, the upward 

derivation is blocked by Qk and so B turns out to be non-monotonic. 

    With the above discussion and results, we can now formulate the following 

Principle of Monotonicity Calculus (PMC): 

Principle of Monotonicity Calculus (PMC) 

A singly-occurring predicate not falling within the argument of any GQ / BO is 

increasing. A singly-occurring predicate is increasing (decreasing) if it falls 

within an even (odd) number of decreasing argument positions without at the 

same time falling within any non-monotonic argument position. A 

singly-occurring predicate is non-monotonic if it falls within at least one 

non-monotonic argument position. 

In the above principle, a “singly-occurring” predicate is a predicate that has only 

one occurrence in the quantified statement. 

    Writing a disambiguated complex quantified statement in the form of a 

variable-free iterated tripartite structure, we can then easily determine the 

monotonicity of each predicate appearing in the statement by employing PMC. 

For example, consider the following tripartite structure: 
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(8) no(A1)([every(A2)]2([(exactly 1)(A3)]3(B))) 

Since no  ↓MON↓, every  ↓MON↑, (exactly 1)  –MON–, one can easily see 

that A1 is decreasing. As A2 falls within the right argument of “no” and the left 

argument of “every”, i.e. 2 decreasing argument positions, it is increasing. As A3 

and B fall within the left and right arguments of “(exactly 1)”, they are both 

non-monotonic. Based on the above analysis, we can derive the following valid 

inference: 

(9) No teacher recommended every romance novel to exactly 1 student.  

 No English teacher recommended every novel to exactly 1 student. 

    Next consider the following tripartite structure: 

(10) (exactly 1/2 of)(A1)([some(A2)]2(B)) 

By PMC we know that B is non-monotonic in (10). Although PMC does not 

provide a systematic method for constructing counterexamples to prove 

non-monotonicities, it is not difficult to construct these counterexamples. For 

example, let A1 = {a, b, c, d}, A2 = {e, f}. We then define B = {<a, e>, <b, f>} 

and B’ = {<a, e>, <b, f>, <c, f>}. One can check that the above predicates satisfy 

B  B’ and that ║(exactly 1/2 of)(A1)([some(A2)]2(B))║ = 1 but ║(exactly 1/2 

of)(A1)([some(A2)]2(B’))║ = 0, thus showing that B is not increasing in (10). 

Similarly, we can also construct counterexamples to show that B is not 

decreasing. 

    In Chapter 1, I showed that sentences with relative clauses may be 

represented by left-iterated GQs. We can also apply PMC to determine the 

monotonicities of these GQs. For example, consider the following iterated 

tripartite structure: 

(11) every(A  [some(B)]1(C))(D) 

Since A, B and C all lie within the left argument of “every”, these three 
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predicates are decreasing (the decreasing monotonicity of B and C is unaffected 

by “some” because “some” is increasing in both arguments). This result enables 

us to derive the following valid inference: 

(12) Every boy who is loved by some girl is happy.   

Every handsome boy who is deeply loved by some pretty girl is happy. 

    Of course, we can also apply PMC to left-and-right-iterated GQs. Consider 

the following iterated tripartite structure: 

(13) every(A  [no(B)]2(C))([a(D)]2(E)) 

Since B falls within two decreasing argument positions, it is increasing. 

Moreover, it is obvious that A and D are decreasing and increasing, respectively. 

This result enables us to derive the following valid inference: 

(14) Every athlete who won no track event obtained a consolation prize.  

 Every male athlete who won no event obtained a prize. 

 

3.2.5 GQs as Sets and Arguments 

    As discussed in Chapter 1, GQs can be viewed as sets – higher order sets 

whose members are n-tuples of sets. Thus, GQs may also have supersets and 

subsets. Consider the following tripartite structure: 

(15) every(A)(B) 

Viewed as a set, since “every” does not fall within the argument of any GQ / BO, 

it is increasing. Now by virtue of the set inclusion relation given in (10) of 

Chapter 1, we can derive the following subalternate relation in Classical Logic: 

(16) Given that A  , every(A)(B)  some(A)(B) 

Thus the classical subalternate relation can be seen as a special case of 

monotonicity inferences. 

    Moreover, GQs may also act as arguments of other GQs / BOs. In an 
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iterated tripartite structure, a GQ in the inner tripartite structure can be seen as an 

argument of another GQ in the outer tripartite structure. For instance, in the 

following iterated tripartite structure 

(17) every(A1)([every(A2)]2(B)) 

the second “every” can be seen as falling within the right argument of the first 

“every” and is thus increasing. Moreover, the first “every”, not falling within the 

argument of any GQ / BO, is also increasing. Thus, by making use of (10) of 

Chapter 1 and assuming that A1   and A2  , we can derive the following 

valid inference schema: 

(18) every(A1)([every(A2)]2(B))  some(A1)([some(A2)]2(B)) 

or even the following (on condition that |A1|  10 and |A2|  2)
84

: 

(19) every(A1)([every(A2)]2(B))  (at least 10)(A1)([(at least 2)(A2)]2(B)) 

Schemas (18) and (19) can be seen as generalizations of the classical subalternate 

relation to multiply quantified sentences, which have been considered by Zou 

(2002). By using PMC, more generalizations can be made. 

 

3.2.6 Negation Operator 

    As mentioned above, BOs may also affect monotonicities. In this thesis, I 

only consider the monotonicity of the negation operator “¬”. We have the 

following theorem: 

Theorem 3.9 “¬” is decreasing. 

Since “¬” is a polymorphic operator that may appear in different levels, the 

above theorem is particularly useful for exploring the interaction between 

monotonicity and negation. But just as I pointed out in Chow (2007), we must 
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 When deriving this inference schema, I am treating the two “every” as two separate GQs 

instead of two different occurrences of the same GQ, so that I can replace the two “every” by 

different GQs. 
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determine the correct scope structure of a quantified statement in order to analyse 

the monotonicities of its predicates correctly. Consider the following sentence: 

(20) Non-professionals do not constitute less than half of the participants. 

Although the above sentence appears to contain a transitive verb “constitute”, 

this verb should be seen as part of the left conservative GQ “(constitute less than 

1/2 of)”, and the sentence should be represented as the following tripartite 

structure: 

(21) ¬(constitute less than 1/2 of)(¬PROFESSIONAL)(PARTICIPANT) 

Based on the above, we can now easily see that PROFESSIONAL and 

PARTICIPANT fall within 3 decreasing and 1 non-monotonic argument positions 

and are thus decreasing and non-monotonic, respectively. So we have the 

following valid inference (assuming that LAWYER  PROFESSIONAL): 

(22) Non-professionals do not constitute less than half of the participants.  

Non-lawyers do not constitute less than half of the participants. 

 

3.3 Argument Structure Inferences 

3.3.1 Basic Definitions 

    Argument structure inferences refer to inferences involving manipulations 

(such as Boolean operations and transpositions) of the arguments or quantifiers. 

In this section, I will focus on argument structure inferences involving negation 

and transposition, which can be classified into two subtypes – duality inferences 

and transposition inferences. 

    Duality inferences are argument structure inferences involving negation. 

Modern scholars have classified three notions of negation: outer negation, inner 

negation and dual. Generalizing de Mey (1990), I extend the notions of inner 

negation and dual to the various arguments of a multi-argument GQ. Let Q be a 
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monadic GQ with n arguments, the outer negation (denoted ¬Q), inner negation 

in the i
th

 argument (1  i  n) (denoted Q¬ i) and dual in the i
th

 argument (1  i  n) 

(denoted Q
di

) are defined as follows
85

: 

(23) (¬Q)(X1, … Xn)  ¬(Q(X1, … Xn)) 

(24) (Q¬ i)(X1, … Xi, … Xn)  Q(X1, … ¬Xi, … Xn) 

(25) (Q
di

)(X1, … Xi, … Xn)  ¬(Q(X1, … ¬Xi, … Xn)) 

Note that dual is a composite of the outer and inner negations. Based on these 

definitions, we can also derive other composite relations among these notions. 

For example, one can easily derive ¬(Q
di

) = Q¬ i, (Q¬ i)
di

 = ¬Q, etc. 

    Moreover, we can also combine inner negations in different arguments. For 

example, for determiners, we may talk about left-and-right inner negation, which 

is a combination of inner negations in the left and right arguments. The following 

tables list the outer negations, inner negations and duals of the GQs studied in 

this thesis
86

: 

Table 3.2  Outer Negations of GQs 

¬somebody(-thing) = nobody(-thing); ¬every = (not every); ¬some = no; ¬(more 

than n) = (at most n); ¬(fewer than n) = (at least n); ¬(more than r of) = (at most 

r of); ¬(less than r of) = (at least r of); ¬either = neither; ¬(more … than …) = (at 

most as many … as …); ¬(fewer … than …) = (at least as many … as …); 

¬(proportionally more … than …) = (at most the same proportion of … as …); 

¬(proportionally fewer … than …) = (at least the same proportion of … as …); 

¬only = (not only); ¬(constitute more than r of) = (constitute at most r of); 

¬(constitute less than r of) = (constitute at least r of); ¬(constitute a larger 
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 For a type <1> GQ with only one argument, there is no need to specify the unique argument in 

which the inner negation and dual occur. For determiners, the arguments are usually called “left” 

and “right” arguments. Correspondingly, “l” and “r” will be used instead of numbers in the 

notation. Please also note that some scholars (such as Bird (1964)) used special terms (such as 

obversion, inversion, conversion, contraposition) to denote some of the negative notions. To 

avoid using too many jargons, I do not adopt these terms. 
86

 Since outer negation, inner negation and dual are involutive operations, each equation listed in 

the following tables is equivalent to one which differs from the original equation only by 

interchanging the positions of the GQs (and thus is not listed). For instance, ¬somebody(-thing) = 

nobody(-thing) is equivalent to ¬nobody(-thing) = somebody(-thing), and so the latter is not 

listed. 
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proportion of … than …) = (constitute at most the same proportion of … as …); 

¬(constitute a smaller proportion of … than …) = (constitute at least the same 

proportion of … as …) 

Table 3.3  Inner Negations of GQs 

Argument(s) 

Involved 
Inner Negation 

unique everybody(-thing)¬ = nobody(-thing); (everybody(-thing) except 

C)¬ = (nobody(-thing) except C) 

right every¬r = no; (all … except C)¬r = (no … except C); (exactly n)¬r 

= (all except n); (more than r of)¬r = (less than 1 – r of); (at least 

r of)¬r = (at most 1 – r of); (exactly r of)¬r = (exactly 1 – r of) = 

(all except r of); (between q and r of)¬r = (between 1 – r and 1 – 

q of) = (all except between q and r of); both¬r = neither 

left only¬ l = no; (apart from C only)¬ l = (no … except C); (constitute 

more than r of)¬ l = (constitute less than 1 – r of); (constitute at 

least r of)¬ l = (constitute at most 1 – r of); (constitute exactly r 

of)¬ l = (constitute exactly 1 – r of) = (constitute all except r of); 

(constitute between q and r of)¬ l = (constitute between 1 – r and 

1 – q of) = (constitute all except between q and r of) 

left and right every¬ l,r = only; (all … except C)¬ l,r = (apart from C only) 

3
rd

 (proportionally more … than …)¬3 = (proportionally fewer … 

than …); (at least the same proportion of … as …)¬3 = (at most 

the same proportion of … as …) 

1
st
 and 2

nd
 (constitute a larger proportion of … than …)¬1,2 = (constitute a 

smaller proportion of … than …); (constitute at least the same 

proportion of … as …)¬1,2 = (constitute at most the same 

proportion of … as …) 

Table 3.4  Duals of GQs 

Argument(s) 

Involved 
Dual 

unique everybody(-thing)
d
 = somebody(-thing) 

right every
dr

 = some; (more than r of)
dr

 = (at least 1 – r of); (less than r 

of)
dr

 = (at most 1 – r of); both
dr

 = either 

left only
dl

 = some; (constitute more than r of)
dl

 = (constitute at least 

1 – r of); (constitute less than r of)
dl

 = (constitute at most 1 – r of) 

left and right every
dl,r

 = (not only); only
dl,r

 = (not every) 

3
rd

 (proportionally more … than …)
d3

 = (at least the same 
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proportion of … as …); (proportionally fewer … than …)
d3

 = (at 

most the same proportion of … as …) 

1
st
 and 2

nd
 (constitute a larger proportion of … than …)

d1,2
 = (constitute at 

least the same proportion of … as …); (constitute a smaller 

proportion of … than …)
d1,2

 = (constitute at most the same 

proportion of … as …) 

    The equalities in the above tables can be proved by using the truth 

conditions of the GQs and definitions (23) – (25). For example, we can prove 

(proportionally more … than …)¬3 = (proportionally fewer … than …) as follows: 

let A1, A2, B be arbitrary sets, then 

 (proportionally more … than …)¬3(A1, A2)(B)  

 (proportionally more … than …)(A1, A2)(¬B) by (24) 

 |A1 – B| / |A1| > |A2 – B| / |A2| by Appendix 1 

 1 – |A1  B| / |A1| > 1 – |A2  B| / |A2|  

 |A1  B| / |A1| < |A2  B| / |A2|  

 (proportionally fewer … than …)(A1, A2)(B) by Appendix 1 

Note that in the above proof I have made use of the set-theoretic laws: X  ¬Y = 

X – Y and |X| = |X  Y| + |X – Y| for any sets X and Y. 

    I next introduce two notions that are useful in the study of duality 

inferences – fixed points and self-duals: 

(26) Let Q be a monadic GQ with n arguments. Q is a fixed point in the i
th

 

argument (1  i  n) iff Q¬ i = Q. 

(27) Let Q be as above. Q is a self-dual in the i
th

 argument (1  i  n) iff Q
di

 

= Q. 

In other words, fixed points / self-duals are GQs that are equal to their inner 

negations / duals. 

    Transposition inferences are argument structure inferences involving 

transpositions (i.e. interchange of positions) and, in some cases, also negations. 
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Transpositions may occur on two levels: arguments or quantifiers, each with its 

own terminology and notation. I first consider transpositions on the argument 

level, which involve the notions of “converse” and “symmetry”. These two 

notions have already been defined for determiners in (39) and (47) of Chapter 1. 

    To generalize these two concepts to more general monadic GQs, I first 

define a new notion of converse: 

(28) Let Q be a monadic GQ with n arguments and 1  i < j  n. Its converse 

wrt the i
th

 and j
th

 arguments, denoted Q
–1

i,j, is a monadic GQ with the 

same argument structure as Q such that for all X1, … Xn, Q(X1, … 

Xi, … Xj, … Xn)  (Q
–1

i,j)(X1, … Xj, … Xi, … Xn). 

According to this definition, the type <1
2
,1> structured GQs “(more … than …)” 

and “(fewer … than …)” are converses wrt the 1
st
 and 2

nd
 arguments because 

(29) (more… than …)(A1, A2)(B)  (fewer… than …)(A2, A1)(B) 

A generalized notion of symmetry can now be defined
87

: 

(30) Let Q be a monadic GQ with n arguments and 1  i < j  n. Q is 

symmetric wrt the i
th

 and j
th

 arguments iff for all X1, … Xn, Q(X1, … 

Xi, … Xj, … Xn)  Q(X1, … Xj, … Xi, … Xn). 

In other words, Q is symmetric wrt the i
th

 and j
th

 arguments iff Q is self-converse 

wrt the same arguments. 

    I next consider transpositions on the quantifier level. For an iterated GQ 

composed of two type <1> GQs Q1(A1) and Q2(A2) and a binary predicate B, the 

two GQs may be transposed. The equivalence / entailment relation between the 

pre-transposed and post-transposed statements gives us the notion of scope 

independence / scope dominance as defined below: 

                                                 
87

 As a matter of fact, Zuber (2007) has also proposed a generalized definition of symmetry. To 

suit the purpose of this thesis, I adopt a different definition. 
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(31) Q1(A1) and Q2(A2) are scopally independent iff for all B, 

Q1(A1)([Q2(A2)]2(B))  Q2(A2)([Q1(A1)]1(B)). 

(32) Q1(A1) is scopally dominant over Q2(A2) iff for all B, 

Q1(A1)([Q2(A2)]2(B))  Q2(A2)([Q1(A1)]1(B)). 

In the above definitions, Q1(A1)([Q2(A2)]2(B)) and Q2(A2)([Q1(A1)]1(B)) 

represent two different readings, i.e. subject-wide-scope reading and 

object-wide-scope reading, of the same sentence. Thus, the notions of scope 

independence and scope dominance express inferential relations between 

different scope structures of multiply quantified statements. For example, it is 

well known that the sentence 

(33) Some boy loves every girl. 

has two scope structures that are related by the following entailment relation: 

(34) Some boy is such that he loves every girl.  

 Every girl is such that some boy loves her. 

    On the other hand, we can define the converse of B, denoted B
–1

, as follows: 

(35) B
–1

(x, y)  B(y, x) 

then by (30) and (31) of Chapter 1, we have 

(36) [Q1(A1)]1(B) = [Q1(A1)]2(B
–1

) 

In natural language, pairs of converse predicates include the active and passive 

forms of transitive verbs such as “love” and “be loved by”, some special pairs of 

verbs such as “send letters to” and “receive letters from”, and others studied by 

Cruse (1986). 

    Substituting (36) into (31) – (32), we will obtain the following alternative 

definitions of scope independence / dominance: 

(37) Q1(A1) and Q2(A2) are scopally independent iff for all B, 
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Q1(A1)([Q2(A2)]2(B))  Q2(A2)([Q1(A1)]2(B
–1

)). 

(38) Q1(A1) is scopally dominant over Q2(A2) iff for all B, 

Q1(A1)([Q2(A2)]2(B))  Q2(A2)([Q1(A1)]2(B
–1

)). 

We can thus view scope independence / dominance as inferential relations 

between two different sentences (both assumed to be under subject-wide-scope 

reading) whose predicates are converses of each other. In this thesis, I will 

mainly use these two definitions. For example, (34) can be rewritten as 

(39) Some boy is such that he loves every girl.  

 Every girl is such that she is loved by some boy. 

    By combining negation and transposition, we may come up with even more 

notions. In this thesis, I will study one such notion – contrapositivity, which is 

defined only on determiners: 

(40) A determiner Q is contrapositive iff for all A, B, Q(A)(B) ⇔ Q(¬B)(¬A). 

 

3.3.2 Previous Studies 

    Duality inferences can be seen as a modern counterpart of the classical 

eductive inferences called obversion and inversion, which are equivalent to right 

inner negation and left-and-right inner negation, respectively. In modern times, 

some scholars
88

 (including Piaget (1949), Gottschalk (1953), Löbner (1987, 

2011), de Mey (1990), Peters and Westerståhl (2006)) studied the various notions 

of negation and interactions between these notions, while some scholars 

(including Zwarts (1996), Keenan (2003, 2008), Zuber (2005), Löbner (2011)) 

studied valid inference patterns involving these notions as well as “fixed points / 

self-duals”. 

                                                 
88

 Some of the following scholars actually used their own terms instead of “inner negation” and 

“dual”. But their terms are equivalent to the notions introduced here. 
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    Transposition inferences on the argument level can be seen as a modern 

counterpart of the classical eductive inferences called conversion (transposition 

of the subject and predicate) and contraposition (transposition of the negated 

subject and negated predicate). In modern times, some scholars (such as Barwise 

and Cooper (1981), Peters and Westerståhl (2006), Zuber (2007)) studied 

symmetry and contrapositivity from the perspective of GQT, and shed new light 

on this old topic. 

    Individual examples of transposition inferences on the quantifier level such 

as (34) have been known for a long time. However, systematic studies on scope 

independence / dominance only have a short history, starting from Westerståhl 

(1986). After that, Zimmermann (1993) and Westerståhl (1996) studied special 

cases of scope independence called scopelessness and self-commutativity, 

respectively, whereas Altman et al (2001), Ben-Avi and Winter (2004) and 

Altman et al (2005) studied scope dominance of monotonic GQs. Altman and 

Winter (2005) have also devised an algorithm for computing scope dominance. 

    Apart from negation and transposition, scholars have also studied other 

types of manipulations. For example, GQT scholars such as Zwarts (1983), van 

Benthem (1984), Westerståhl (1984) and Zuber (2005) have studied a number of 

quantifier properties whose definitions involve various kinds of argument 

manipulations. Some examples of these quantifier properties include reflexivity, 

antisymmetry, transitivity, etc. These properties may also be seen as inferential 

patterns of GQs. 

    Some modern logicians have also tried to generalize the classical notion of 

categorical statements by manipulating the subject or predicate of the categorical 

statement. These manipulations include “quantification of the predicate”, e.g. 

“Some A is every B” (according to Cavaliere (2008), this statement is equivalent 
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to “Some A is B and every B is A”), “complement of the subject”, e.g. “Every 

non-A is B” (according to Richman (2004), de Morgan called this the 

“e-statement” in analogy to the classical “E-statement”: “Every A is non-B”) and 

“conjunction of quantifiers”, e.g. “Some but not all A are B” and “All or no A are 

B” (called “distinctive quantifiers” by Cavaliere (2008)), etc.  

 

3.3.3 Double Negation Law and Duality Inferences 

    Based on definitions (23) – (25) and Table 3.2 – Table 3.4, we can 

immediately derive valid inference schemas with only one monadic GQ, such as 

the following: 

(41) every(A)(B)  no(A)(¬B) 

which may be generalized to the inference schema 

(42) Q(A)(B)  (Q¬r)(A)(¬B) 

    On top of these, there are more interesting ones. Keenan (1993, 2003) and 

Zwarts (1996) have proposed a number of inference schemas with iterated GQs. 

These schemas are all based on the following Double Negation Law: 

(43) ¬¬X = X 

where X may be a GQ or predicate. For example, consider the following 

inference schema (called “Facing Negations” by Keenan (1993)) where Q1 and 

Q2 are determiners: 

(44) Q1(A1)([Q2(A2)]2(B))  (Q1¬r)(A1)([(¬Q2)(A2)]2(B)) 

To prove the validity of this inference schema, we can rewrite the RHS by using 

the definition of (right) inner negation given in (24): 

(45) Q1(A1)([¬¬Q2(A2)]2(B)) 

By (43), one can immediately see that the above is equivalent to the LHS of (44). 

    We next consider the following inference schema involving 3 determiners 
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and all 3 notions of negation: 

(46) Q1(A1)([Q2(A2)]2([Q3(A3)]3(B)))  

 (Q1¬r)(A1)([(Q2
dr

)(A2)]2([(¬Q3)(A3)]3(B))) 

To prove this schema, we can rewrite the RHS by using the definitions of (right) 

inner negation and (right) dual given in (24) and (25): 

(47) Q1(A1)([¬¬Q2(A2)]2([¬¬Q3(A3)]3(B))) 

Obviously the above is equivalent to the LHS of (46). 

    In fact, there is no need to list all valid inference schemas. Just by 

considering the Double Negation Law, we can identify valid duality inferences. 

Consider the following sentence: 

(48) Only players who made some mistake received no prize. 

As discussed in Chapter 1, this sentence is ambiguous between two readings. 

Here I will only consider the reading that may be represented as follows: 

(49) (only|PLAYER)([some(MISTAKE)]2(MAKE))([no(PRIZE)]2(RECEIVE)) 

Note that here PLAYER is treated as a parameter of the GQ “only”. Under this 

reading, we have the following valid inference: 

(50) Only players who made some mistake received no prize.  

 All players who made no mistake received some prize. 

Since only¬ l,r = all, ¬some = no and ¬no = some, the above can be seen as an 

instance of the following inference schema
89

: 

(51) (only|A)([some(B)]2(C))([no(D)]2(E)) 

 (only|A)¬ l,r([¬some(B)]2(C))([¬no(D)]2(E)) 

To prove the above schema, we can rewrite the RHS by using the definition of 

(left-and-right) inner negation: 

                                                 
89

 Remember (see Subsection 1.7.4 of Chapter 1) that since “all” is right conservative, (all|A) = 

all. 
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(52) (only|A)([¬¬some(B)]2(C))([¬¬no(D)]2(E)) 

One can then easily see that the above is equivalent to the LHS of (51). 

    Apart from occurring in quantifiers on the subject / object position, 

negations may also occur in predicates on various grammatical positions. For 

example, Zwarts (1996) talked about “verb negations” as opposed to “quantifier 

negations”. Thus, analogous to (46), we have the following inference schema: 

(53) Q1(A1)([Q2(A2)]2(B))  (Q1¬r)(A1)([(Q2
dr

)(A2)]2(¬B)) 

The following is an instance of this inference schema (assuming that ¬QUIT = 

ATTEND): 

(54) At least 1/3 of the students quit some class.  

 At most 2/3 of the students attend every class. 

To derive the correct inference, the verbs “quit” and “attend” above must be seen 

as taking the narrowest scope. Note that unlike its surface structure, the tripartite 

structure of the LHS of (54) should in fact be 

(55) (at least 1/3 of)(STUDENT)([some(CLASS)]2(QUIT)) 

    The example above shows that determining correct scope structures is 

essential to obtaining valid inferences. Here I demonstrate another example that 

is even more subtle. Consider the following Chinese example
90

: 

(56) Ta gan zhe zhong shi bu keneng cai yi ci. 

 she do this kind thing not possible only one time 

 She could not have done such kind of things only once. 

What is interesting with this sentence is that the quantified phrases (including the 

modal particle) appear in the latter part of the sentence. According to Shi (2006), 

the former part of this sentence “ta gan zhe zhong shi” (henceforth represented 

by TGZZS) should be analysed as a clause functioning as the subject of the 

                                                 
90

 Shi (2006), (26), p. 53. 
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whole sentence. The scope structure of (56) will then be represented as follows: 

(57) no(W)({w: (at most 1)({r: TGZZS(r)})(R) in w}) 

The above expression has made use of notions of Possible Worlds Semantics and 

borrowed an idea from Nicolas (2010). First, “it could not have been the case that 

p” where p is a proposition is represented by no(W)({w: p in w}), meaning 

literally that no possible world w in the possible worlds domain W is such that p 

is true in w. Second, I treat TGZZS as a relation type
91

 and use {r: TGZZS(r)} to 

represent the set of instances of this relation type. Moreover, I represent “only 

once” by the determiner “(at most 1)”. Thus, the inner tripartite structure (at most 

1)({r: TGZZS(r)})(R) means that there is at most one instance of TGZZS in the 

domain of instances of relations (represented by R). Note that this tripartite 

structure has the form of an existential sentence as introduced in Chapter 1. 

Under this interpretation, (56) means it is impossible that there is at most 1 

instance of TGZZS. 

    Based on the above scope structure and using the schema (44) as well as the 

facts no¬ r = every and ¬(at most 1) = (more than 1), we obtain the following 

valid inference: 

(58) no(W)({w: (at most 1)({r: TGZZS(r)})(R) in w})  

 every(W)({w: (more than 1)({r: TGZZS(r)})(R) in w}) 

According to Possible Worlds Semantics, every(W)({w: p in w}) represents “it 

must be the case that p”. Thus the RHS of the above represents the following 

sentence: 

(59) Ta gan zhe zhong shi yiding buzhi yi ci. 

 she do this kind thing necessarily not only one time 

                                                 
91

 According to Nicolas (2010), “relation” is a more general notion than “state”, “event”, 

“process” and may encompass the latter notions. 
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 She must have done such kind of things more than once. 

One can check that (56) and (59) are equivalent statements. 

 

3.3.4 Fixed Points and Self-Duals 

    In this subsection, I study fixed points and self-duals. As a matter of fact, 

Keenan (2003, 2008) and Zuber (2005) have studied these notions and proposed 

a number of theorems. But since these theorems are focused on right 

conservative GQs, I will generalize them so that they can also be applied to left 

conservative GQs. For fixed points, we have the following two theorems (In 

what follows, “” and “” are defined pointwise, i.e. (Q1 () Q2)(X1, … Xn)  

Q1(X1, … Xn) () Q2(X1, … Xn) for any X1, … Xn): 

Theorem 3.10 Let Q be a monadic GQ with n arguments, then Q  Q¬ i and Q 

 Q¬ i are fixed points in the i
th

 argument. 

Theorem 3.11 Let Q1 and Q2 be monadic GQs with the same argument 

structure. If both Q1 and Q2 are fixed points in the i
th

 argument, 

then ¬Q1, Q1  Q2 and Q1  Q2 are also fixed points in the i
th

 

argument. 

    Based on these two theorems, we can identify a number of fixed points in 

natural language. First consider the classical GQs and their converses. Since 

some¬r = (not all), some¬ l = (not only), all¬ l,r = only, by Theorem 3.10 we know 

that “(some but not all)” is a right fixed point, “(some but not only)” is a left 

fixed point, and “(all and only)” is a left-and-right fixed point. 

    Next consider the proportional quantifiers. Since (at least r of)¬r = (at most 

1 – r of), by Theorem 3.10 we know that “(at least r and at most 1 – r of)”, where 

r  1/2, is a right fixed point. Taking r = 1/3 and 1/2, we then obtain “(between 

1/3 and 2/3 of)” and “(exactly 1/2 of)” as two right fixed points. The above 



108 

 

reasoning can be extended to left conservative proportional quantifiers as well. 

Thus, “(constitute between 1/3 and 2/3 of)” and “(constitute exactly 1/2 of)” are 

two left fixed points. 

    Having identified some fixed points, we can use Theorem 3.11 to obtain 

more. For example, since ¬(some but not all) = (all or no), we know that “(all or 

no)” is a right fixed point because its negation is. Moreover, we also know that 

“(between 1/3 and 2/3 of)(A1) and (exactly 1/2 of)(A2)” is a fixed point because 

its two conjuncts are. 

    Using the above results, the definition of fixed points and the inference 

schemas, we can then derive valid inferences. Using “(exactly 1/2 of)” as an 

example, when we take A = {x, y} where x and y are individuals, “(exactly 1/2 

of)(A)” is equivalent to “(exactly one of x and y)(–)”, and so we have the 

following valid inference (assuming ¬WIN = LOSE, i.e. there is no tie in a 

presidential election): 

(60) Exactly one of Obama and Romney will win the presidential election. 

 Exactly one of Obama and Romney will lose the presidential 

election. 

    One may wonder whether there are similar results for outer negation. But 

we have the following negative result: 

Theorem 3.12 There is no fixed point for outer negation. 

    Since dual is a combination of inner and outer negations, one may 

conjecture that there are relatively few self-duals in natural language. In fact, 

only one main type of self-duals will be discussed in this thesis. Following 

Keenan (2003), I first make the following definition. Let k be a non-negative 

integer and K be a subset of the number set {0, … k}. We define the following 

determiner (for A such that |A| = 2k + 1): 
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(61) 

Qk,K(A)(B)  

|A  B|  K, if 0  |A  B|  k 

 2k + 1 – |A  B|  K, if k + 1  |A  B|  2k + 1 

Then we have the following theorem: 

Theorem 3.13 The determiner Qk,K defined in (61) is a right self-dual. 

    To illustrate the above theorem, let us substitute K =  into (61): 

(62) 

Qk,(A)(B)  

|A  B|  , if 0  |A  B|  k 

 2k + 1 – |A  B|  , if k + 1  |A  B|  2k + 1 

Since |A  B|   must be false and 2k + 1 – |A  B|   must be true for any k, 

A, B, (62) can be rewritten as 

(63) For |A| = 2k + 1, Qk,(A)(B)  |A  B|  k + 1 

This shows that Qk, can be expressed as “(more than 1/2 of)” on condition that 

|A| is odd. Following a similar line of reasoning, if we substitute K = {0, … k} 

into (61), we will obtain 

(64) For |A| = 2k + 1, Qk,{0, … k}(A)(B)  |A  B|  k 

This shows that Qk,{0, … k} can be expressed as “(less than 1/2 of)” on condition 

that |A| is odd. Thus, by Theorem 3.13, we may conclude that “(more than 1/2 

of)” and “(less than 1/2 of)” are right self-duals on condition that |A| is odd
92

. 

Now in (63) and (64) above, if we exchange the roles of A and B, we will obtain 

two left conservative determiners: “(constitute more than 1/2 of)” and 

“(constitute less than 1/2 of)” on condition that |B| is odd. Thus, we may also 

conclude that these two determiners are left self-duals on condition that |B| is 

odd. 

    Apart from the aforesaid special proportional determiners, singular terms 

                                                 
92

 Note that by choosing different k and K, we can obtain even more right self-duals. For 

example, by choosing k = 3 and K = {0, 3}, we obtain the partitive construction “(either none or 

3 or 5 or 6 of the 7)”, which is also a right self-dual. But since such partitive constructions are 

quite unnatural, I do not consider them any further. 
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(i.e. singular proper names of the form “x(–)”, where x is an individual, and 

singular definite descriptions of the form “the(S)” or “C’s(S)”, where S is 

singular) are also self-duals, because these singular terms can all be expressed as 

“every(A)”, where A = {x}, CS  S or POSSESSC  S. In all these cases, A is a 

singleton, and “every(A)” is equivalent to Q0,(A)
93

: 

(65) 

Q0,(A)(B)  

|A  B|  , if |A  B| = 0 

 1 – |A  B|  , if |A  B| = 1 

Thus, “every(A)” is in fact a special case of Qk,K(A), and so any singular term is 

a self-dual
94

. 

    The following tables list the fixed points and self-duals found in this thesis: 

Table 3.5  Fixed Points 

Argument 

Involved 
Fixed Point 

right (exactly 1/2 of), (between q and r of) (q + r = 1) 

left (constitute exactly 1/2 of), (constitute between q and r of) (q + r = 

1) 

Table 3.6  Self-Duals 

Argument 

Involved 
Self-Dual 

unique x, the(A) (A is singular), C’s(A) (A is singular) 

right (more than 1/2 of) (|A| is odd), (less than 1/2 of) (|A| is odd) 

left (constitute more than 1/2 of) (|B| is odd), (constitute less than 1/2 

of) (|B| is odd) 

    Using the above results, the definition of self-duals and the inference 

schema (46), we can then derive valid inferences such as the following: 

(66) Every policeman asked more than 3 of the 7 suspects some question.  

                                                 
93

 Since A is a singleton, |A  B| = 1 iff A  B. Thus, (65) can be rewritten as Q0,(A)(B)  A  

B and so Q0,(A) is equivalent to “every(A)”. 
94

 Keenan (2003) also pointed out that reflexive pronouns are self-duals. But since reflexive 

pronouns have to be analysed as a certain type of non-iterated polyadic GQs not studied in this 

thesis, I do not include Keenan (2003)’s result on reflexive pronouns. 
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 No policeman asked more than 3 of the 7 suspects no question. 

(67) All except one boy gave Mary at least two roses.  

 Exactly one boy gave Mary fewer than two roses. 

 

3.3.5 Duality and Monotonicities 

    In this subsection, I discuss the relation between duality and monotonicities, 

i.e. how monotonicities are influenced by the three notions of negation. I first 

state the following theorem: 

Theorem 3.14 Let Q be a monadic GQ with n arguments, then 

(a) Q is increasing (decreasing) in the i
th

 argument iff ¬Q and 

Q¬ i are decreasing (increasing) in the i
th

 argument iff Q
di

 is 

increasing (decreasing) in the i
th

 argument. 

(b) Q is non-monotonic in the i
th

 argument iff ¬Q, Q¬ i and Q
di

 

are non-monotonic in the i
th

 argument. 

The above theorem enables us to determine the monotonicities of GQs. For 

example, from the facts that “every” is right increasing, ¬every = (not every), 

every¬r = no and every
dr

 = some, we can deduce by Theorem 3.14(a) that both 

“(not every)” and “no” are right decreasing, whereas “some” is right increasing. 

    Theorem 3.14(b) enables us to identify non-monotonic GQs. In addition to 

this, we also have the following theorem which can be seen as a corollary of 

Theorem 3.14(a). 

Theorem 3.15 Let Q be a monadic GQ that is non-trivial in the i
th

 argument. If 

Q is a fixed point in the i
th

 argument, then Q is non-monotonic 

in that argument. 

Combining the above theorem with the findings in the previous subsection, we 

can identify even more non-monotonic GQs. For example, by combining 
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Theorem 3.15 and Theorem 3.10, we know that (Q  Q¬ i) and (Q  Q¬ i) where 

Q is any monadic GQ are non-monotonic in the i
th

 argument. Thus, “(some but 

not all)” and “(all or no)” are both right non-monotonic. 

 

3.3.6 Transposition Inferences on the Argument Level 

    In this subsection, I study transposition inferences on the argument level. 

This kind of inferences is related to three notions of monadic GQs – converses, 

symmetry and contrapositivity. I first propose the following theorem concerning 

converses: 

Theorem 3.16 Let Q1 and Q2 be monadic GQs with n arguments and the same 

argument structure and 1  i < j  n. Then (¬Q1)
–1

i,j = ¬(Q1
–1

i,j); 

(Q1  Q2)
–1

i,j = Q1
–1

i,j  Q2
–1

i,j; (Q1  Q2)
–1

i,j = Q1
–1

i,j  Q2
–1

i,j. 

This theorem enables us to discover more converse pairs of GQs. For example, 

from every
–1

 = only, we may deduce that (not every)
–1

 = (not only). 

    I next consider symmetry inferences. It is easy to identify symmetric GQs 

by checking their truth conditions. Whenever the truth condition of a GQ remains 

unchanged upon transposing a pair of arguments, that GQ is symmetric wrt that 

pair of arguments. For example, the truth condition of “(no … except C)” is 

(68) (no … except C)(A)(B)  A  B = C 

It is easy to see that this truth condition remains unchanged upon transposing A 

and B (because “” is commutative). Thus, we know that this determiner is 

symmetric, as exemplified by the following valid inference: 

(69) No student except John sang.  No singer except John is a student. 

    For contrapositivity, I propose the following theorems: 

Theorem 3.17 Let Q be a determiner. Then Q is symmetric iff Q¬ r is 
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contrapositive iff Q¬ l is contrapositive. 

Theorem 3.18 Let Q be a determiner. Then Q is contrapositive iff Q
–1

 is 

contrapositive iff ¬Q is contrapositive iff Q¬ l,r is contrapositive. 

By using these two theorems, we can easily identify contrapositive determiners. 

For example, since no¬r = every and (no … except C)¬ l = (apart from C only), 

and we know that “no” and “(no … except C)” are symmetric, by Theorem 3.17 

we may conclude that “every” and “(apart from C only)” are contrapositive. 

Moreover, since every
–1

 = only, by Theorem 3.18 we may conclude that “only” is 

also contrapositive. 

    The following tables list the converse pairs of GQs, symmetric quantifiers 

and contrapositive determiners found in this thesis: 

Table 3.7  Converse Pairs of GQs
95

 

Arguments 

Involved 
Converse Pair 

left and right every
–1

 = only; (not every)
–1

 = (not only); (more than r of)
–1

 = 

(constitute more than r of); (less than r of)
–1

 = (constitute less 

than r of); (at least r of)
–1

 = (constitute at least r of); (at most r 

of)
–1

 = (constitute at most r of); (exactly r of)
–1

 = (constitute 

exactly r of); (between q and r of)
–1

 = (constitute between q and r 

of); (all except r of)
–1

 = (constitute all except r of); (all except 

between q and r of)
–1

 = (constitute all except between q and r of); 

(all … except C)
–1

 = (apart from C only) 

1
st
 and 2

nd
 (more … than …)

–1
1,2 = (fewer … than …); (at least as many … 

as …)
–1

1,2 = (at most as many … as …); (proportionally more… 

than …)
–1

1,2 = (proportionally fewer… than …); (at least the 

same proportion of … as …)
–1

1,2 = (at most the same proportion 

of … as …); (constitute a larger proportion of … than …)
–1

1,2 = 

(constitute a smaller proportion of … than …); (constitute at 

least the same proportion of … as …)
–1

1,2 = (constitute at most 

the same proportion of … as …) 

                                                 
95

 Since converse is an involutive operation, each equation listed below is equivalent to one with 

the positions of the GQs interchanged. For instance, every
–1

 = only is equivalent to only
–1

 = every. 
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Table 3.8  Symmetric Quantifiers 

Arguments 

Involved 
Symmetric Quantifier 

left and right some, no, (no … except C), (more than n), (fewer than n), (at 

least n), (at most n), (exactly n), (between m and n) 

1
st
 and 2

nd
 (exactly as many … as …), (exactly the same proportion of … 

as …), (constitute exactly the same proportion of … as …) 

Table 3.9  Contrapositive Determiners 

every, (not every), (all … except C), (all … except n), only, (not only), (apart 

from C only) 

 

3.3.7 Transposition Inferences on the Quantifier Level 

    I next turn to transposition inferences on the quantifier level. This kind of 

inferences is related to two properties of iterated GQs – scope independence and 

scope dominance. Due to the technicalities of the issue, in what follows, I will 

mainly introduce some particular results over finite domains obtained by other 

scholars
96

 and suggest some possible extensions. As for scope independence, the 

main result is that Q1(A1) and Q2(A2) are scopally independent where Q1(A1) and 

Q2(A2) are non-trivial and increasing iff Q1 = Q2 = “every” / “some”, or either 

one of Q1(A1) and Q2(A2) is a singular term, as exemplified by the following 

inference schemas: 

(70) every(A1)([every(A2)]2(B))  every(A2)([every(A1)]2(B
–1

)) 

(71) x(–)([most(A2)]2(B))  most(A2)([x(–)]2(B
–1

)) 

    As for scope dominance, there are four main results. The first result 

concerns the case of two increasing non-trivial GQs. If Q1 = “some” or Q2 = 

“every”, then Q1(A1) is scopally dominant over Q2(A2), as exemplified by the 

following schema: 

                                                 
96

 These results are from Altman et al (2005), Fact 2, Corollary 3 and Ben-Avi and Winter (2004), 

Corollary 7, Corollary 8, Propositon 10. 
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(72) some(A1)([(at least 2)(A2)]2(B))  (at least 2)(A2)([some(A1)]2(B
–1

)) 

    The second and third results concern the case of two GQs of opposite 

monotonicities. If the truth conditions of Q1 and Q2 are of one of the following 

forms: (i) |A1  B1|  r1 and |A2  B2| < r2, respectively, such that |A1| / r1 < (r2 + 

1) / r2; or (ii) |A1  B1| < r1 and |A2  B2|  r2, respectively, such that |A2| > (r2 – 

1)(|A1| – r1 + 2), then Q1(A1) is scopally dominant over Q2(A2), as exemplified by 

the following schemas (by taking r1 = |A1| and r2 = |A2| in (73), and r1 = |A1| and 

r2 = |A2| / 2 in (74)): 

(73) every(A1)([(not every)(A2)]2(B))  (not every)(A2)([every(A1)]2(B
–1

)) 

(74) (not every)(A1)([(at least 1/2 of)(A2)]2(B))  

 (at least 1/2 of)(A2)([(not every)(A1)]2(B
–1

)) 

    The fourth result concerns the case of two decreasing GQs. If the truth 

conditions of Q1 and Q2 are of the form |A1  B1| < r1 and |A2  B2| < r2, 

respectively, such that 2 – |A2| / r2 > (r1 – 1) / (|A1| – r1 + 1), then Q1(A1) is 

scopally dominant over Q2(A2), as exemplified by the following schema (by 

taking r1 = |A1| / 2 and r2 = |A2|): 

(75) (less than 1/2 of)(A1)([(not every)(A2)]2(B))  

 (not every)(A2)([(less than 1/2 of)(A1)]2(B
–1

)) 

    To extend the above results, I propose the following theorem: 

Theorem 3.19 Q1(A1) is scopally dominant over Q2(A2) iff 

(a) (Q2
dr

)(A2) is scopally dominant over (Q1
dr

)(A1); 

(b) (Q1¬ l)(A1) is scopally dominant over (Q2¬ l)(A2); 

(c) (Q2
dl,r

)(A2) is scopally dominant over (Q1
dl,r

)(A1). 

I now use the above theorem to extend results of scope dominance. By virtue of 

Theorem 3.19(a) and the fact that every
dr

 = some and (not every)
dr

 = no, we can 

deduce the following from (73): 
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(76) no(A1)([some(A2)]2(B))  some(A2)([no(A1)]2(B
–1

)) 

Next, by virtue of Theorem 3.19(b) and the fact that no¬ l = only and some¬ l = 

(not only), from (76) we can deduce the following schema involving left 

conservative GQs: 

(77) only(A1)([(not only)(A2)]2(B))  (not only)(A2)([only(A1)]2(B
–1

)) 

Since scope independence is just a bilateral version of scope dominance, we can 

also use Theorem 3.19 to extend results of scope independence. For example, by 

using Theorem 3.19(c) on both directions and the fact that every
dl,r

 = (not only), 

we can deduce the following schema from (70): 

(78) (not only)(A1)([(not only)(A2)]2(B))  

 (not only)(A2)([(not only)(A1)]2(B
–1

)) 

    Apart from valid inference schemas, there are also invalid ones which can 

be disproved by constructing counterexamples. For instance, for the following 

invalid schema: 

(79) most(A1)([(less than 1/2 of)(A2)]2(B))  

# (less than 1/2 of)(A2)([most(A1)]2(B
–1

)) 

we can construct the following counterexample: A1 = {a, b, c}, A2 = {d, e, f}, B 

= {<a, d>, <b, e>, <c, d>, <c, e>}. One can check that with these predicates, the 

premise of (79) is true, but the conclusion is false. 

 

3.4 Opposition Inferences
97

 

3.4.1 Basic Definitions 

    Opposition inferences refer to inferences involving the contradictory, 

contrary and subcontrary relations
98

 and can be defined by generalizing the 

                                                 
97

 Some parts of this section have been published in Chow (2012b). 
98

 These three relations are the core relations defined on the classical square of opposition. 
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definitions of monotonicity inferences. So let us first review the definitions of the 

increasing and decreasing monotonicities combined below (c.f. (1) and (2)): 

(80) Let Q be a GQ / BO with n arguments. Q is increasing (decreasing) in 

the i
th

 argument (1  i  n) iff for all X1, … Xi, Xi’, … Xn, Xi () Xi’ 

 Q(X1, … Xi, … Xn)  Q(X1, … Xi’, … Xn). 

In the definition above, “ / ” can be seen as short form of the “subset / 

superset” relation between sets or “entailing / entailed by” relation between 

propositions. Now “” and “” are just two possible binary relations between 

sets / propositions. If we replace “” and “” in (80) by other binary relations 

(denoted by R1, R2), and write them in prefix form (i.e. “R1(X, Y)” instead of “X 

R1 Y”), then we obtain the following definition: 

(81) Let Q be a GQ / BO with n arguments. Q is R1R2 in the i
th

 argument 

(1  i  n) iff for all X1, … Xi, Xi’, … Xn, R1(Xi, Xi’)  R2(Q(X1, … 

Xi, … Xn), Q(X1, … Xi’, … Xn)). 

Under this definition, the increasing and decreasing monotonicities may be 

represented by “” (or equivalently “”) and “” (or equivalently 

“”), respectively. 

    In addition to (81), we also need the definitions of 7 basic binary relations 

between sets / propositions: equivalence, subalternation, superalternation, 

contradiction, contrariety, subcontrariety and loose relationship. The names of 

these 7 relations are adapted from Brown (1984). They are defined as follows: let 

X and X’ be sets / propositions, then 

(82) (a) X is equivalent with X’ iff X = X’;  

(b) X is subalternate to X’ iff X < X’; 

(c) X is superalternate to X’ iff X > X’; 
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(d) X is contradictory with X’ iff X = ¬X’; 

(e) X is contrary to X’ iff X < ¬X’; 

(f) X is subcontrary to X’ iff ¬X < X’; 

(g) X is loosely related to X’ iff X and X’ do not satisfy (a) – (f) above. 

Now “” and “” are just two possible disjunctions of these 7 binary relations, i.e. 

 = subalternate or equivalent;  = superalternate or equivalent. In this section I 

will study two other possible disjunctions of these relations. They are “contrary 

or contradictory” (denoted by “CC” for short) and “subcontrary or contradictory” 

(denoted by “SC” for short), which can be defined using the definitions in (82):
99

 

(83) CC(X, X’)  X  ¬X’; SC(X, X’)  ¬X  X’ 

From the above definition and the contrapositive law
100

, it is easily seen that 

(84) CC(X, X’)  CC(X’, X); SC(X, X’)  SC(X’, X) 

(85) CC(X, X’)  SC(¬X, ¬X’) 

When X and X’ are propositions, we can also interpret the CC and SC relations 

alternatively as follows: two propositions satisfy the CC relation iff they cannot 

be both true, and they satisfy the SC relation iff they cannot be both false. 

    By instantiating R1 and R2 in definition (81) as CC and SC, we then have 4 

possible properties of Q: “CCCC”, “CCSC”, “SCCC” and “SCSC”. 

These 4 properties will henceforth be called “opposition properties” (OPs). We 

say that Q is “o(pposition)-sensitive” in the i
th

 argument iff it possesses any of 

the aforesaid 4 OPs in that argument. Otherwise, it is o-insensitive in that 

argument
101

. In what follows, I will denote the sets of GQs possessing or not 

                                                 
99

 When X and Y are sets, we have CC(X, X’)  no(X)(X’); SC(X, X’)  every(¬X)(X’). 
100

 That is X  X’ iff ¬X’  ¬X for any X and X’. 
101

 Like “monotonicity”, “o-sensitivity” may also be manifested on either the GQ / BO level or 

the argument level. Using “every(A)(B)” as an example, on the GQ / BO level, we say that the 

o-sensitivity of the GQ “every” is, subject to certain conditions, SCCC in the left argument and 

CCCC in the right argument; on the argument level, we say that the o-sensitivities of the 

arguments A and B under “every” are SCCC and CCCC, respectively. 
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possessing a certain OP in a certain argument by placing a “+” or “–“ sign on the 

left and right-hand sides of the name of the OP. For example, –CCCC+ 

denotes the set of those GQs that are CCCC in the right but not left argument. 

 

3.4.2 Previous Studies 

    Opposition inferences were originally inferences involving the opposition 

relations defined on the classical square of opposition and were one of the 

immediate inferences studied in Classical Logic. In modern times, some scholars 

tried to refine or generalize these relations. Reichenbach (1952) has refined the 

concepts of contrary, subcontrary and subalternate by introducing different 

presuppositions associated with these concepts. For example, he subclassified the 

contrary / subcontrary relation into the “proper” and “oblique” subtypes. Other 

scholars have generalized the classical opposition relations to more general 

relations. For example, by making different combinations of the 7 basic binary 

relations, Huang (1994) identified a series of “generalized categorical 

statements” that are defined on binary relations not studied by logicians before. 

    There are also modern scholars who studied opposition inferences. Van 

Benthem (2008) was the first to propose the study on this kind of inferences. 

After pointing out that monotonicity inferences are inferences with “inclusion 

premises” in the form: 

(86) P  Q implies φ(P)  φ(Q) 

he proposed (but without carrying out) the study on a new type of inferences with 

“exclusion premises” in the form
102

: 

(87) P  ¬Q implies φ(P)  ¬φ(Q) 

Note that the above is equivalent to the definition of CCCC. After van 

                                                 
102

 Both formulae are from van Benthem (2008), section 6. 
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Benthem (2008), MacCartney (2009), Icard (2012) and Mineshima et al (2012) 

have started the study on opposition inferences. But their studies were based on 

frameworks different than that adopted in this thesis. 

 

3.4.3 O-Sensitivities of Monadic GQs (Single OP) 

    My next task is to derive rules for determining the o-sensitivities of monadic 

GQs. I first propose the following general theorems: 

Theorem 3.20 A GQ with presupposition has any one of the 4 OPs only in 

cases where its arguments satisfy the presupposition. 

Theorem 3.21 Let Q be a GQ with n arguments. Then wrt the i
th

 argument, Q 

possesses a certain OP iff each of ¬Q, Q¬ i and Q
di

 possesses a 

different OP according to the following table: 

Q ¬Q Q¬ i Q
di

 

CCCC CCSC SCCC SCSC 

CCSC CCCC SCSC SCCC 

SCCC SCSC CCCC CCSC 

SCSC SCCC CCSC CCCC 
 

Theorem 3.22 Let Q1 and Q2 be GQs of the same type with Q1  Q2. 

(a) If Q2 is CCCC (SCCC) in the i
th

 argument, so is Q1. 

(b) If Q1 is CCSC (SCSC) in the i
th

 argument, so is Q2. 

Theorem 3.23 Let Q be a GQ with n arguments, 1  i < j  n and Π be one of 

the 4 OPs. 

(a) Q is Π in the i
th

 argument iff Q
–1

i,j is Π in the j
th

 argument. 

(b) If Q is symmetric wrt the i
th

 and j
th

 arguments, then Q is Π 

in both or neither of these two arguments. 

Theorem 3.24 Let Q be a contrapositive determiner. Then Q is CCCC in an 

argument iff it is SCCC in the other argument. Q is CCSC 
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in an argument iff it is SCSC in the other argument. 

    The above are general principles. We also need the following particular 

result:  

Theorem 3.25 “(at least r of)” (1/2 < r < 1) is CCCC in the right argument; 

“(more than r of)” (1/2  r < 1) is CCCC in the right 

argument; “(between q and r of)” (0 < q < r < 1) is not CCCC 

in the left argument. 

Based on this particular result and the general theorems above, we can then 

determine the properties of the proportional GQs. For example, let 1/2 < r < 1, 

then since (exactly r of)  (at least r of) and (exactly r of) = (between r and r of), 

from Theorem 3.25 and Theorem 3.22, we have (exactly r of), (at least r of) 

 –CCCC+ for 1/2 < r < 1. Next let 1/2  r < 1. By Theorem 3.25, we already 

know that “(more than r of)” is CCCC in the right argument. Moreover, since 

(exactly r + ε of)  (more than r of) where ε represents an infinitesimal quantity, 

by Theorem 3.22, we know that “(more than r of)” is not CCCC in the left 

argument. Thus, we have (more than r of)  –CCCC+ for 1/2  r < 1. 

    We next consider the classical determiner “some”. First we observe that 

there is the relation (at least r of) (0 < r  1/2)  some, on condition that A  
103

. 

Now it can be shown that “(at least r of)” is SCSC in the right argument for 0 

< r  1/2
104

. So by Theorem 3.22(b), we know that “some” is SCSC in the right 

argument on condition that A  . Note that this condition is essential because 

when A = , ║some()(B)║ = 0 for any B, and so we can never have SC(B, B’) 

 SC(some()(B), some()(B’)). As for the left argument of “some”, by 

                                                 
103

 According to the truth condition of “(at least r of)”, this GQ is undefined if A = . 
104

 By Theorem 3.25, “(more than r of)” (1/2  r < 1) is CCCC in the right argument. Since 

(more than r of)
dr

 = (at least 1 – r of), by Theorem 3.21, “(at least 1 – r of)” (0 < 1 – r  1/2) is 

SCSC in the right argument. Replacing the arbitrary 1 – r by r, we obtain the result: “(at least r 

of)” (0 < r  1/2) is SCSC in the right argument. 
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symmetry of “some” and Theorem 3.23(b), we know that “some” is SCSC in 

the left argument subject to certain condition. One can easily verify that this 

condition is B  . The above fact will be represented succinctly by some  

+SCSC+ (B  ; A  )
105

. 

    Since some
dr

 = every, by Theorem 3.21, we may conclude that “every” is 

CCCC in the right argument subject to certain condition. One can easily verify 

that this condition is A  . Since “every” is contrapositive, by Theorem 3.24, 

“every” is SCCC in the left argument subject to B  U. Again this condition is 

essential because when B = U, ║every(A)(U)║ = 1 for any A, and so we can 

never have SC(A, A’)  CC(every(A)(U), every(A’)(U)). The above fact will be 

represented succinctly by every  +SCCC–  –CCCC+ (B  U; A  )
106

. 

The o-sensitivities of some other determiners can be determined in a similar way. 

    Concerning the absolute numerical GQs, we have the following negative 

result: 

Theorem 3.26 Every absolute numerical determiner and structured GQ studied 

in this thesis is o-insensitive in all arguments. 

    Based on the above results, we can derive valid inferences. For example, the 

following are instances exemplifying the facts that “(at least 3/4 of)” is CCCC 

in the right argument and “some” is SCSC in the right argument on condition 

that its left argument is non-empty (given that CC(TEENAGER, ELDERLY), 

SC(AGED-OVER-50, AGED-BELOW-51)): 

(88) CC(“At least 3/4 of the members are teenagers”,  

“At least 3/4 of the members are elderly”)  

                                                 
105

 The conditions B  ; A   are ordered such that the first (second) condition corresponds to 

the left (right) argument of the determiner. 
106

 The fact that “every” is neither SCCC in the right argument nor CCCC in the left 

argument can be established by constructing counterexamples. 
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(89) (Additional assumption: There is some member.) 

SC(“Some member is aged over 50”,  

“Some member is aged below 51”) 

 

3.4.4 O-Sensitivities of Monadic GQs (Multiple OPs) 

    In the previous subsection, I have only considered the case in which a GQ 

possesses a single OP in an argument. In this subsection, I will consider the 

possibility that a GQ may possess more than one OP in the same argument. To do 

this, we need to introduce some new notions
107

: 

(90) Let Q be a GQ with n arguments. Q is perfectly consistent in the i
th

 

argument iff Q(X1, … Xi, … Xn)  ¬Q(X1, … Y, … Xn) where Y is 

any subset or superset of ¬Xi. 

(91) Let Q be a GQ with n arguments. Q is perfectly complete in the i
th

 

argument iff ¬Q(X1, … Xi , … Xn)  Q(X1, … Y, … Xn) where Y is 

any subset or superset of ¬Xi. 

I now propose the following theorem: 

Theorem 3.27 Let Q be a GQ with n arguments. With respect to the i
th

 

argument, 

(a) It is impossible for Q to be CCCC and CCSC. 

(b) It is impossible for Q to be SCCC and SCSC. 

(c) Q is CCCC and SCSC iff Q is self-dual and increasing. 

(d) Q is SCCC and CCSC iff Q is self-dual and decreasing. 

(e) Q is CCCC and SCCC iff Q is perfectly consistent. 

(f) Q is CCSC and SCSC iff Q is perfectly complete. 

                                                 
107

 The notions of “perfect consistency” and “perfect completeness” are generalization of Zwarts 

(1996)’s notions of “consistency” and “completeness”. 
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From Theorem 3.27(a) and (b), we can deduce that it is impossible for any GQ to 

possess 3 or 4 of the OPs. Therefore we need not consider these cases. 

    According to Theorem 3.27(c) and (d), we can find GQs that are both 

CCCC and SCSC, or both SCCC and CCSC from among the self-duals 

identified in Subsection 3.3.4. For example, since the singular terms, i.e. monadic 

GQs of the form “x(–)”, “the(A)” or “C’s(A)” where A is singular, are increasing 

self-duals, they are both CCCC and SCSC. Moreover, since “(constitute less 

than 1/2 of)” (where |B| is odd) is a decreasing left self-dual, we know that this 

determiner is both SCCC and CCSC in the left argument. 

    According to Theorem 3.27(e), we can find GQs that are both CCCC and 

SCCC from among perfectly consistent GQs. But what GQs are these? Among 

the GQs studied in this thesis, the absolute numerical and proportional GQs are 

in general not perfectly consistent, because their truth conditions are dependent 

on the cardinalities or proportionalities rather than the member composition of 

their arguments. Consider “(exactly 3/4 of)”. Let us construct a counterexample. 

Define A and B such that ║(exactly 3/4 of)(A)(B)║ = 1, i.e. |A  B| / |A| = 0.75. 

That means |A  ¬B| / |A| = 0.25. Also define a subset X of A  B such that |X| / 

|A| = 0.5. Since ¬B and X are disjoint, we must have |A  (¬B  X)| / |A| = 0.25 

+ 0.5 = 0.75, and so we have ║(exactly 3/4 of)(A)(¬B  X)║ = 1. This model 

shows that “(exactly 3/4 of)” is not perfectly consistent in the right argument. 

    Thus, perfectly consistent GQs can only be found from among GQs that are 

not essentially numerical or proportional. It turns out that exceptive GQs (such as 

“(all … except C)”) whose truth conditions are in the form of a set-theoretic 

equation are such GQs. Since the truth of a set-theoretic equation depends on the 

membership composition of the sets involved, changing a set X to a subset or 

superset of ¬X will in general make a true equation become false. Consider 
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“(all … except C)” as an example. Suppose ║(all … except C)(A)(B)║ = 1, then 

we have A – B = C. That means C is disjoint from B. So provided that A – C  , 

we must have A – Y  C, where Y is any subset or superset of ¬B. Thus we 

conclude that “(all … except C)” is both CCCC and SCCC in the right 

argument on condition that A – C  . 

    Finally, as for GQs that are both CCSC and SCSC, i.e. perfectly 

complete GQs, by Theorem 3.27(e), (f) and Theorem 3.21, we know that this 

kind of GQs can be found from the outer negations of perfectly consistent GQs. 

But it turns out that there is no such outer negations among the GQs studied in 

this thesis. For example, the outer negation of “(all … except C)” would be a 

determiner with the truth condition A – B  C, which does not correspond to any 

determiner studied in this thesis
108

. 

    The following table summarizes the OPs of the GQs studied in this thesis
109

: 

Table 3.10  OPs of GQs 

OP Type GQ 

CCCC+ everybody(-thing) (S  ), (x1, x2 and …) 

SCCC+ nobody(-thing) (S  ) 

SCSC+ somebody(-thing) (S  ) 

CCCC+  

 SCCC+ 

(everybody(-thing) except C) (S – C  ), (nobody(-thing) 

except C) (S – C  ) 

CCCC+  

 SCSC+ 

x, the(A) (A is singular), C’s(A) (A is singular) 

                                                 
108

 Note that it can be shown that the structured GQ (studied by Beghelli (1994)) as defined by 

the following truth condition: 

(the same … as …)(A)(B1, B2)  A  B1 = A  B2 

is perfectly consistent in the 2
nd

 argument subject to the condition A – (A  B2)  . (A similar 

statement can be made for the 3
rd

 argument.) Therefore, its outer negation as defined by (the 

subscript “w” below represents a “weak” version of “different”) 

(differentw … than …)(A)(B1, B2)  A  B1  A  B2 

is perfectly complete in the 2
nd

 argument. Therefore, there does exist in natural language GQ that 

is both CCSC and SCSC in the same argument. But these two structured GQs are not among 

the GQs studied in this thesis. 
109

 Only those OP types with at least one o-sensitive argument position are listed here. Thus, GQs 

studied in this thesis that are not listed below are understood to be o-insensitive in all arguments. 

For example, (exactly n)  –CCCC–  –CCSC–  –SCCC–  –SCSC–. 
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+CCCC– (constitute more than r of) (1/2  r < 1), (constitute at least r of) 

(1/2 < r < 1), (constitute exactly r of) (1/2 < r < 1), (constitute 

between q and r of) (1/2 < q < r < 1), (constitute all except r of) 

(0 < r < 1/2), (constitute all except between q and r of) (0 < q < r 

< 1/2) 

–CCCC+ most, (a majority of), (more than r of) (1/2  r < 1), (at least r of) 

(1/2 < r < 1), (exactly r of) (1/2 < r < 1), (between q and r of) 

(1/2 < q < r < 1), (all except r of) (0 < r < 1/2), (all except 

between q and r of) (0 < q < r < 1/2), both 

+CCSC– (constitute less than r of) (1/2 < r < 1), (constitute at most r of) 

(1/2  r < 1) 

–CCSC+ (less than r of) (1/2 < r < 1), (at most r of) (1/2  r < 1) 

+SCCC+ no (B  ; A  ) 

+SCCC– (constitute less than r of) (0 < r  1/2), (constitute at most r of) 

(0 < r < 1/2), (constitute exactly r of) (0 < r < 1/2), (constitute 

between q and r of) (0 < q < r < 1/2), (constitute all except r of) 

(1/2 < r < 1), (constitute all except between q and r of) (1/2 < q < 

r < 1) 

–SCCC+ (a minority of), (less than r of) (0 < r  1/2), (at most r of) (0 < r 

< 1/2), (exactly r of) (0 < r < 1/2), (between q and r of) (0 < q < r 

< 1/2), (all except r of) (1/2 < r < 1), (all except between q and r 

of) (1/2 < q < r < 1), neither 

+SCSC+ some (B  ; A  ) 

+SCSC– (constitute more than r of) (0 < r < 1/2), (constitute at least r of) 

(0 < r  1/2) 

–SCSC+ (more than r of) (0 < r < 1/2), (at least r of) (0 < r  1/2), either 

+CCCC–  

 +SCSC– 

(constitute more than 1/2 of) (|B| is odd) 

–CCCC+  

 –SCSC+ 

(more than 1/2 of) (|A| is odd) 

+SCCC–  

+CCSC– 

(constitute less than 1/2 of) (|B| is odd) 

–SCCC+ 

 –CCSC+ 

(less than 1/2 of) (|A| is odd) 

+CCCC+  

 +SCCC+ 

(all … except C) (B  C  U; A – C  ), (no … except C) (B – 

C  ; A – C  ), (apart from C only) (B – C  ; A  C  U) 

+CCCC–  

 –SCCC+ 

only (B  ; A  U) 
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+SCCC–  

 –CCCC+ 

every (B  U; A  ) 

+CCSC–  

 –SCSC+ 

(not only) (B  ; A  U) 

+SCSC–  

 –CCSC+ 

(not every) (B  U; A  ) 

 

3.4.5 Opposition Calculus 

    Parallel to Monotonicity Calculus, we also have Opposition Calculus, which 

involves opposition inferences of iterated GQs. The o-sensitivity of an iterated 

GQ can be determined based on those of its constituent monadic GQs. To this 

end, we need a principle like PMC. Before stating the principle, we first need a 

definition: 

(92) Let X be a predicate under an iterated GQ. Suppose X is within the ik
th

 

argument of Qk (1  k  n), ik–1
th

 argument of Qk–1, … i1
th

 argument of 

Q1, where Qk, Qk–1, … Q1 are constituent monadic GQs of the iterated 

GQ ordered from the innermost to the outermost layers. Then X has an 

OP-chain <Rk, Rk–1, … R0>, where each of Rk, Rk–1, … R0 is one of 

{CC, SC}, iff Qk is RkRk–1 in the ik
th

 argument, Qk–1 is Rk–1Rk–2 in 

the ik–1
th

 argument, … Q1 is R1R0 in the i1
th

 argument. 

For instance, in the following argument structure of an iterated GQ: 

(93) (at most 1/2 of)(A1)({x1: no(A2)({x2: B(x1, x2)})}) 

A2 is within the left argument of “no” and right argument of “(at most 1/2 of)”. 

Since “no” is SCCC in the left argument on condition that its right argument is 

non-empty and “(at most 1/2 of)” is CCSC in the right argument, A2 has an 

OP-chain <SC, CC, SC> on condition that {x2: B(x1, x2)}  . One can also 

easily check that B has an OP-chain <SC, CC, SC> on condition that A2   
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while A1 has no OP-chain. 

    We now consider the case in which a predicate does not fall within the 

argument of any GQ / BO. Let X and X’ be sets. A set not falling within the 

argument of any GQ / BO can be seen as falling within the argument of the 

identity operator ι. Now it is obvious that if CC(X, X’), then CC(ι(X), ι(X’)). The 

same is true for the case of SC(X, X’). Thus, ι is CCCC and SCSC in its 

argument. We conclude that a predicate not falling within the argument of any 

GQ / BO is CCCC and SCSC. 

    We next consider the case in which a predicate falls within the argument of 

some GQ / BO. We need the following theorems: 

Theorem 3.28 Let P be a predicate. Then {x: ¬P(x)} = ¬{x: P(x)}. 

Theorem 3.29 Let P and P’ be n-ary predicates and R be one of {CC, SC}, 

then R(P1, P2)  R({xi: P(x1, … xi–1, xi, xi+1, … xn)}, {xi: 

P’(x1, … xi–1, xi, xi+1, … xn)}) for any 1  i  n and any 

particular set of x1, … xi–1, xi+1, … xn. 

With the above theorems, we can then conclude that a predicate is RnR0 if it 

has an OP-chain <Rn, … R0>. In what follows, I will provide a proof sketch for 

this important result. Suppose we have an iterated GQ in the form (7) 

renumbered as (94) below: 

(94) Q1(A1)({x1: … Qn(An)({xn: B(x1, … xn)}) … }) 

We focus on the o-sensitivity of B (the o-sensitivities of other predicates can be 

similarly treated). Let B have an OP-chain <Rn, Rn–1, … R0> and Rn(B, B’). By 

Theorem 3.29, we have Rn({xn: B(x1, … xn)}, {xn: B’(x1, … xn)}) for any x1, … 

xn–1. Moreover, by definition (92), Qn is RnRn–1 in {xn: B(x1, … xn)}, and so 

we have Rn–1(Qn(An)({xn: B(x1, … xn)}), Qn(An)({xn: B’(x1, … xn)})). The above 

reasoning is the same as the “upward derivation” introduced in Subsection 3.2.4: 
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from the Rn relation at the B-level, we derive the Rn–1 relation at the Qn-level. 

Now the process of determining the o-sensitivities of B is essentially a repetition 

of this upward derivation. After n rounds of derivation, we will finally derive the 

R0 relation at the Q1 level. The net effect is thus Rn(B, B’)  R0(Q1(A1)({x1: … 

Qn(An)({xn: B(x1, … xn)}) … }), Q1(A1)({x1: … Qn(An)({xn: B’(x1, … 

xn)}) … })), showing that B is RnR0. 

    The above derivation relies on the condition that B has an OP-chain. This 

condition does not hold either when at least one of Q1, … Qn is o-insensitive, or 

when the OPs possessed by Q1, … Qn do not form a chain. In either case, the 

absence of the OP-chain blocks the upward derivation. 

    With the above discussion and results, we can formulate the Principle of 

Opposition Calculus (POC): 

Principle of Opposition Calculus (POC) 

A singly-occurring predicate not falling within the argument of any GQ / BO is 

CCCC and SCSC. A singly-occurring predicate is RkR0 iff it has an 

OP-chain <Rk, … R0>. 

    We can now use POC to determine the o-sensitivities of predicates in a 

multiply quantified statement. Consider (93) renumbered as (95) below: 

(95) (at most 1/2 of)(A1)({x1: no(A2)({x2: B(x1, x2)})}) 

In the above, it has been found that A1 has no OP-chain whereas A2 and B both 

have the OP-chain <SC, CC, SC> subject to different conditions. Thus, according 

to POC, we know that A1 is o-insensitive, A2 is SCSC on condition that {x2: 

B(x1, x2)}   and B is SCSC on condition that A2  . From the above result, 

we can derive the following valid inference (by letting A1 = CLUB, A2 = 

AGED-OVER-50, A2’ = AGED-BELOW-51, B = ADMIT-AS-MEMBERS): 
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(96) (Additional assumption: Every club admits somebody as member.) 

SC(“At most 1/2 of the clubs admit nobody aged over 50 as member”,  

“At most 1/2 of the clubs admit nobody aged below 51 as member”) 

    Although POC does not provide a systematic method for constructing 

counterexamples to show that a certain argument does not possess a certain OP, it 

is in general not difficult to construct such counterexamples. For instance, to 

show that the argument A1 in (95) is not CCSC, we may define U = {a, b, c, d, 

e, f, g}, A1 = {a, b, c}, A1’ = {d, e}, A2 = {f}, B = {<a, g>, <c, f>, <d, g>}. Then 

we have CC(A1, A1’) and ║(at most 1/2 of)(A1)({x1: no(A2)({x2: B(x1, x2)})})║ 

= ║(at most 1/2 of)(A1’)({x1: no(A2)({x2: B(x1, x2)})})║ = 0. 

    Opposition Calculus is also applicable to left-iterated GQs. Consider the 

predicate B in the argument structure of the following left-iterated GQ: 

(97) no(A  {x: some(B)({y: C(x, y)})})(D) 

Since B falls within the left arguments of “some” and “no”, which are SCSC 

and SCCC, respectively, both in its left argument on condition that its right 

argument is non-empty, B has an OP-chain <SC, SC, CC>. By POC, B is 

SCCC subject to the condition that {y: C(x, y)}    D  . From the above 

result, we can derive the following valid inference (by letting A = COMPANY, B 

= AGED-OVER-50, B’ = AGED-BELOW-51, C = EMPLOY, D = 

GO-BANKRUPT): 

(98) (Additional assumption: Every company employs somebody and some 

company went bankrupt.) 

CC(“No company employing somebody aged over 50 went bankrupt”,  

“No company employing somebody aged below 51 went bankrupt”) 

    Note that monotonicity inferences of iterated quantifiers are governed by the 

same condition as opposition inferences. If we represent increasing monotonicity 
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as  or  and decreasing monotonicity as  or , then we can 

define an analogous notion of “MON-chain” by replacing {CC, SC} with {, } 

in (92) and modify POC by replacing “OP-chain” with “MON-chain”. The 

modified condition can then be used to determine the monotonicities of iterated 

quantifiers in its predicates. 

    For illustration, consider (93) renumbered as (99) below: 

(99) (at most 1/2 of)(A1)({x1: no(A2)({x2: B(x1, x2)})}) 

Let’s determine the monotonicity of A2. Since A2 is within the left argument of 

“no” and right argument of “(at most 1/2 of)”, and both “no” and “(at most 1/2 

of)” are decreasing in both of their arguments, A2 has a MON-chain <, , > (or 

equivalently, <, , >)
110

. According to the modified POC, we know that A2 is 

 (or equivalently ), i.e. increasing. This result is in accord with that 

obtained by using PMC. 

 

3.4.6 GQs as Sets and Arguments 

    As pointed out above, GQs can be seen as higher order sets and so they may 

enter into the CC and / or SC relations with other GQs. For example, it is easy to 

see that the following holds: 

(100) Within the domain {<A, B>: A  },  

CC(every, no)  SC(some, (not every)) 

(101) CC(some, no)  SC(some, no) 

Following the same line of reasoning as in (16) and making use of the fact that a 

GQ not falling within the argument position of any GQ / BO is both CCCC 

                                                 
110

 Note that since both increasing and decreasing monotonicities have two possible 

representations, the determination of MON-chains is more complicated than that of OP-chains. 

We may need to consider all possible representations of the monotonicities involved in order to 

determine whether a predicate has a MON-chain. 
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and SCSC, we can then derive the following contrary, subcontrary and 

contradictory relations in Classical Logic: 

(102) Given that A  , every(A)(B)  ¬no(A)(B) 

(103) Given that A  , ¬some(A)(B)  (not every)(A)(B) 

(104) some(A)(B)  ¬no(A)(B) 

Thus, the classical contrary, subcontrary and contradictory relations can be seen 

as special examples of the opposition inferences studied in this thesis. 

    Moreover, GQs as sets may also act as arguments of other GQs / BOs. For 

instance, consider (93) renumbered as (105): 

(105) (at most 1/2 of)(A1)({x1: no(A2)({x2: B(x1, x2)})}) 

Since “no” falls within the right argument of “(at most 1/2 of)”, which is 

CCSC in the right argument, we know that “no” is CCSC in (105). Using 

(100), we can then derive the following valid inference: 

(106) SC(“At most 1/2 of the clubs admit nobody aged over 50 as members”,  

“At most 1/2 of the clubs admit everybody aged over 50 as members”) 

    Before closing this subsection, I will introduce and prove the following CC 

relation which will be useful in Chapter 4: 

(107) For any A, A’ such that CC(A, A’), CC(only(A), some(A’)) 

To proof the above, first assume that ║only(A)(B)║ = 1 for an arbitrary B. 

According to Appendix 2, this is equivalent to B  A. From CC(A, A’), we have 

A  ¬A’ by (83). Combining these two subset relations, we have B  ¬A’, which 

is equivalent to no(A’)(B). Thus, we must have ║some(A’)(B)║ = 0. I have 

shown that CC(only(A)(B), some(A’)(B)) for any B. The above CC relation thus 

follows. 

 

3.4.7 Negation Operator 
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    Finally, we discuss the o-sensitivity of the negation operator “¬”. 

Theorem 3.30 “¬” is CCSC and SCCC and does not possess other OPs. 

With this theorem, we can determine the o-sensitivities of predicates within the 

scope of “¬”. Consider the argument A2 in the following iterated GQ: 

(108) (less than 1/2 of)(A1)({x1: some(¬A2)({x2: B(x1, x2)})}) 

Since A2 falls under the argument of “¬”, the left argument of “some” and the 

right argument of “(less than 1/2 of)”, it has an OP-chain <CC, SC, SC, CC>. 

Therefore, A2 is CCCC on condition that {x2: B(x1, x2)}  . Based on this 

result, we can derive the following valid inference (by letting A1 = CLUB, A2 = 

TEENAGER, A2’ = ELDERLY, B = ADMIT-AS-MEMBERS): 

(109) (Additional assumption: Every club admits somebody as member.) 

CC(“Less than 1/2 of the clubs admit some non-teenager as member”,  

“Less than 1/2 of the clubs admit some non-elderly as member”) 

 

3.4.8 Comparison with Monotonicity Inferences 

    From the discussion above, one can see that there is a parallel relation 

between opposition inferences and monotonicity inferences in terms of the basic 

notions and principles governing the inferential patterns of these two types of 

inferences. More importantly, the definitions of the CC / SC relations in (83) are 

expressed in the form of subset relations, a characteristic relation of the 

monotonicity inferences. In view of this, one may doubt whether opposition 

inferences can be treated as a subtype of monotonicity inferences. Yet the GQs 

have non-parallel patterns of monotonicities and o-sensitivities. Consider the 

proportional determiner “(at least r of)” as an example. While this determiner has 

a uniform monotonicity throughout the whole range of 0 < r < 1 (i.e. it 

is –MON↑ in that range), it has two different o-sensitivities in that range (i.e. it 



134 

 

is –CCCC+ for 1/2 < r < 1 but –SCSC+ for 0 < r  1/2). 

    In fact, despite the similarity between the definitions of the CC / SC 

relations and that of the usual subset relation, one cannot derive results for the 

o-sensitivities of a GQ by simply referring to its monotonicity. Reviewing the 

proof of the right o-sensitivity of “(at least r of)” (i.e. Theorem 3.25), one can 

find that it contains steps using the properties of right inner negation and outer 

negation, as well as a step that makes use of a property of proportional 

determiners (i.e. deriving ║(less than r of)(A)(B’)║ = 1 from ║(at most 1 – r 

of)(A)(B’)║ = 1 for 1/2 < r < 1). Note that these steps are not derivable from the 

right monotonicity of these determiners. Since the o-sensitivities of many other 

GQs depend on that of “(at least r of)”, we may thus conclude that o-sensitivities 

are independent of monotonicities, and opposition inferences are not subsumable 

under monotonicity inferences. 

    The inferential relations derived from the OPs of GQs are often weaker than 

those derived from the monotonicities. For instance, by (83) the inferential 

relation in (88) can be rewritten as the following entailment: 

(110) At least 3/4 of the members are teenagers.  

 Less than 3/4 of the members are elderly. 

Although valid, the conclusion above seems too weak because if we make use of 

the relation TEENAGER  ¬ELDERLY, the right increasing monotonicity of “(at 

least 3/4 of)” and the fact that (at least 3/4 of)¬r = (at most 1/4 of), we can obtain 

the following sharper inference: 

(111) At least 3/4 of the members are teenagers.  

 At most 1/4 of the members are elderly. 

Thus, opposition inferences seem to generate weaker conclusions. 

    However, entailment is not the only type of inferential relations that is of 
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interest in logical studies. In some situations, we do need to establish some other 

types of inferential relations (such as the CC / SC relation) between sets / 

propositions. Consider the following puzzle
111

: 

(112) Three persons A, B and C each made a remark about the membership of 

a club. Suppose the club has some member, John is a member of the 

club and there is only one true statement among the three remarks. 

Which is the only true statement? 

A: Not all members of the club are teenagers. 

B: Not all members of the club are elderly. 

C: John is a teenager. 

Based on the fact that “(not every)” is CCSC in the right argument, we may 

conclude that A’s and B’s remarks satisfy the SC relation, i.e. one of them must 

be true. Since there is only one true statement among the three, C’s remark must 

be false, i.e. John is not a teenager. This means that A’s remark must be true, 

because otherwise it contradicts the fact that John is not a teenager. Thus, we 

conclude that A’s remark is the only true statement. Apart from solving logical 

puzzles, opposition inferences also have linguistic uses. This will be discussed in 

Chapter 4. 

 

3.5 Syllogistic Inferences 

3.5.1 Basic Definitions 

    This section mainly studies non-classical syllogisms. In order to do so, we 

first need to review some basic notions of classical syllogisms. Classical 

syllogisms refer to inferences between quantified statements with two premises 

                                                 
111

 The following is adapted from a typical type of classical puzzles that make use of relations 

defined on the classical square of opposition. 
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and one conclusion each of which has specific syntactic structure (the so-called 

“figures” and “moods”). The following table summarizes the figures of classical 

syllogisms: 

Table 3.11  Figures of Classical Syllogisms 

 Figure 1 Figure 2 Figure 3 Figure 4 

Major Premise Q1(M)(P) Q1(P)(M) Q1(M)(P) Q1(P)(M) 

Minor Premise Q2(S)(M) Q2(S)(M) Q2(M)(S) Q2(M)(S) 

Conclusion Q3(S)(P) Q3(S)(P) Q3(S)(P) Q3(S)(P) 

In the above table, S, P and M are the minor term, major term and middle term, 

respectively. Q1, Q2 and Q3 are quantifiers (restricted to the four classical 

quantifiers). The mood of a syllogism is denoted by the alphabets representing 

the classical quantifiers (A = “every”, E = “no”, I = “some”, O = “(not every)”) 

appearing in the premises and conclusion. In Classical Logic, we can use the 

format “mood-figure” to identify a particular syllogism. For example, “EIO-1” 

represents the following syllogism
112

: 

(113) no(M)(P)  some(S)(M)  (not every)(S)(P) 

    The essence of the classical syllogisms is to find out the relation between 

the subject (i.e. the minor term) and predicate (i.e. the major term) in the 

conclusion, based on the two premises which establish the relations between a 

middle term and each of the aforesaid two terms. The middle term, which does 

not appear in the conclusion, functions as a link between the minor and major 

terms. The following table lists the valid classical syllogisms
113

: 

Table 3.12  Valid Classical Syllogisms 

Additional Assumption Valid Syllogism 

None AAA-1, EAE-1, AII-1, EIO-1, EAE-2, AEE-2, EIO-2, 

AOO-2, IAI-3, AII-3, OAO-3, EIO-3, AEE-4, IAI-4, 

                                                 
112

 In this thesis, I assume that “” has precedence over “”, and so no parantheses are used to 

contain the two premises. 
113

 Adapted from Pagnan (2012). 
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EIO-4 

S   AAI-1, EAO-1, AEO-2, EAO-2, AEO-4 

P   AAI-4 

M   AAI-3, EAO-3, EAO-4 

    In modern times, many scholars have proposed various types of 

non-classical syllogisms which differ from the classical ones in the syntactic 

structure or even the number of premises and conclusions
114

. The traditional 

concepts of “figure” and “mood” are no longer relevant. The distinction between 

the major / minor terms and the middle term has also become blurred because in 

some syllogisms studied by modern scholars, all three terms may appear in the 

conclusion. 

    While each of the other types of inferences studied in this chapter is 

associated with a specific type of operations / relations (i.e. monotonicity 

inferences associated with the superset and subset relations, argument structure 

inferences associated with negation and transposition, opposition inferences 

associated with the CC and SC relations), syllogistic inferences are not 

associated with any specific type of operations / relations, and we can only define 

syllogistic inferences as inferences involving quantified statements with at least 2 

premises and cannot be classified under the other types of quantifier inferences. 

This heterogeneous nature makes it difficult to devise a method for determining 

the (in)validity of all syllogisms. Nevertheless, in this section I will try to 

formulate general principles and methods for monadic and relational syllogisms. 

    An important discovery in the modern study on “Natural Logic” is that 

classical syllogisms are subsumable under monotonicity inferences. For example, 

van Eijck (1984, 2007) pointed out that all valid classical syllogisms can be 

                                                 
114

 Strictly speaking, syllogisms with more than 2 premises and / or more than 1 conclusion 

should be called “polysyllogisms”. For simplicity, these are also called “syllogisms” in this 

thesis. 
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accounted for by using the monotonicities of the GQs in question (plus the 

property of symmetry and existential presupposition in some cases). For example, 

the classical AAA-1 syllogism 

(114) every(M)(P)  every(S)(M)  every(S)(P) 

can be reinterpreted as the following inference: 

(115) Given M  P, every(S)(M)  every(S)(P) 

which is a manifestation of the right increasing monotonicity of “every”. 

Moreover, since monotonicity inferences may involve GQs, such kind of 

inferences can indeed be seen as extension of classical syllogisms. For example, 

by using the right decreasing monotonicity of “(less than 1/2 of)” as exemplified 

by 

(116) Given P  M, (less than 1/2 of)(S)(M)  (less than 1/2 of)(S)(P) 

we can immediately obtain the following Figure 2 syllogism featuring the GQ 

“(less than 1/2 of)”: 

(117) every(P)(M)  (less than 1/2 of)(S)(M)  (less than 1/2 of)(S)(P) 

Thus, monotonicity inferences can be seen as extension of classical syllogisms. 

    Apart from the above, modern scholars have also identified a large number 

of new syllogisms that are not subsumable under monotonicity inferences. These 

new syllogisms constitute another direction of extending classical syllogisms and 

will be called non-classical syllogisms, which is the main target of study in this 

section. 

 

3.5.2 Previous Studies 

    Since the ancient times, generations of logicians had thoroughly studied 

classical syllogisms. Apart from identifying all valid syllogisms, they had in 

effect established a logical system based on the concept of “distribution”. 
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However, with the emergence of modern mathematical logic, not only has 

syllogism lost its central importance in logic, its independent status is also called 

into question, because syllogisms may be seen as a subtype of logical inferences 

in FOPL. But in the latter half of the 20
th

 century, we saw a revival of interest 

among some scholars in syllogisms. In what follows, I will briefly introduce the 

various progresses made in the modern studies on non-classical syllogisms. 

    Many scholars have studied syllogisms enriched with various kinds of new 

features. These new features include: Boolean operations (Reichenbach (1952), 

Nishihara and Morita (1989), Richman (2004), Moss (2010a, 2011b)
115

), 

numerical quantifiers (Hacker and Parry (1967), Murphree (1991, 1997), 

Pratt-Hartmann (2008)), vague / fuzzy quantifiers (Zadeh (1983), Dubois et al 

(1993), Peterson (2000)), transitive verbs (Thom (1977), Sommers and 

Englebretsen (2000), Moss (2010b), Pratt-Hartmann and Moss (2009), van Rooij 

(2012)), comparative adjectives
116

 (Keene (1969), Moss (2011a)) and 

generalized categorical statements (Huang (1994), Cavaliere (2008)). 

    Apart from identifying non-classical syllogisms, modern scholars have also 

tried to formulate systematic theories about syllogisms. Some scholars (e.g. 

Reichenbach (1952), Hacker and Parry (1967), Peterson (2000)) inherited the 

traditional concept of distribution and tried to formulate new laws of distribution 

for determining the validity of non-classical syllogisms. Other scholars (e.g. 

Łukasiewicz (1951), Nishihara and Morita (1989), Moss (2008), Pratt-Hartmann 

(2008, 2011)) tried to build up formal proof systems for syllogisms and made use 

of various tools of modern logic to study the metalogical properties, expressive 

                                                 
115

 Moss (2010a) is about syllogisms with intersecting adjectives, but these can also be seen as 

syllogisms with the Boolean operation of intersection. 
116

 Both transitive verbs and comparative adjectives are represented by binary predicates. But 

comparative adjectives have additional properties such as transitivity. 
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power and computational complexity of these systems. 

 

3.5.3 Monadic Syllogisms 

    Given the diverse types of syllogisms, can we identify general principles to 

account for all these syllogisms? Traditionally, the validity of syllogisms is based 

on the concept of distribution. Although some modern scholars (e.g. van Eijck 

(1984), Hodges (1998)) have tried to provide formal interpretation for this 

concept, other scholars (e.g. Geach (1962), Murphree (1994)) criticized and 

queried the coherence and relevance of this concept. Moreover, it is not clear 

how to extend this concept to syllogisms with different types of GQs, and so I 

will not make use of this concept. Instead, I propose two general methods for 

constructing and proving valid monadic syllogisms. 

    The first method is to make use of the inferential patterns introduced in this 

thesis and other logical laws to transform syllogisms known to be valid to new 

ones. For example, by virtue of the notion of converses, we can easily derive 

syllogisms with left conservative GQs by replacing the GQs of a valid syllogism 

with their converses and transposing their arguments. For example, from the 

classical AEO-2 syllogism, we have the following valid syllogism with the 

additional assumption that P   (note that the roles of S and P have been 

interchanged): 

(118) only(M)(S)  no(M)(P)  (not only)(S)(P) 

    The second method is summarized below: 

(119) Given a monadic syllogistic schema, the premises may be rewritten as 

set-theoretic or numerical (in)equalities. Based on these (in)equalities, an 

appropriate (in)equality can be proved or derived and then rewritten in a 
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suitable form as the conclusion, if the syllogistic schema is valid; or a 

counterexample can be constructed, if the syllogistic schema is invalid. 

    In what follows, I will apply (119) to derive different types of non-classical 

monadic syllogisms. In this way, the various types of syllogisms can be 

accounted for under a unified framework. First, consider the following syllogism 

with Boolean operation: 

(120) (not every)(S)(M  P)  every(S)(M)  (not every)(S)(P) 

According to (119), we first rewrite the premises as (in)equalities: 

(121) |S – (M  P)|  1  |S – M| = 0 

Using the set-theoretic formulae: A – (B  C) = (A – B)  (A – C), |A  B| = |A| 

+ |B| – |A  B| and A – B = A  ¬B for any sets A, B, C, the first conjunct of 

(121) can be rewritten as 

(122) |S – M| + |S – P| – |S – M – P|  1 

Using the fact |S – M| = 0, the above can be rewritten as |S – P|  1 + |S – M – P|, 

which entails |S – P|  1. This is exactly the conclusion of (120). 

    In some cases, the conclusion is derived indirectly from the premises. 

Consider the following syllogism with numerical GQs: 

(123) (at most n)(M)(¬P)  (at least m + n)(S)(M)  (at least m)(S)(P) 

which is in fact a generalized form of the classical AII-1 syllogism. First rewrite 

the premises as inequalities: 

(124) |M – P|  n  |S  M|  m + n 

Using the set-theoretic formula: |A| = |A  B| + |A – B| for any sets A, B, (124) 

can be rewritten as 

(125) |M – P  S| + |M – P – S|  n  |S  M  P| + |S  M – P|  m + n 

From the first conjunct above, we have |M – P  S|  n, which is equivalent 

to –|M – P  S|  –n. From the second conjunct, we have |S  M  P|  m + n – 
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|S  M – P|. Combining the above, we have |S  M  P|  m. From this we can 

then derive |S  P|  m and thus deduce the conclusion of (123) indirectly. 

    As shown in Table 3.12, some classical syllogisms rely on additional 

assumptions about the minimum cardinality of certain sets. Murphree (1997) 

called these “minimum presuppositions” and extended the concept to “maximum 

presuppositions”. According to Murphree (1997), these presuppositions can be 

used to derive from one statement to another statement. For example, based on 

the minimum presupposition |S|  m + n, from “(at most n)(S)(¬P)” we can 

derive “(at least m)(S)(P)”
117

. On the contrary, based on the maximum 

presupposition |S|  m + n, from “(at least m)(S)(P)” we can derive “(at most 

n)(S)(¬P)”. 

    I next consider a syllogism with maximum presupposition: 

(126) (at least m + l)(M)(P)  (at least m + n)(S)(M)  |M|  l + m + n  

 (at least m)(S)(P) 

In classical syllogisms, from two “at least”-statements one cannot derive 

anything. But with a maximum presupposition, we can derive an “at 

most”-statement which can then be used as a new premise. For example, in (126), 

from |M|  l + m + n and the first premise, we can derive “(at most n)(M)(¬P)”. 

Now this result and the second premise above constitute the premises of (123), 

and so the conclusion of (126), which is the same as the conclusion of (123), 

obtains immediately. 

 

3.5.4 Relational Syllogisms by Direct Substitution 

    Relational syllogisms refer to syllogisms with iterated GQs and have posed 
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 We first rewrite |S|  m + n as |S  P| + |S – P|  m + n and “(at most n)(S)(¬P)” as |S – P|  n. 

Combining these two inequalities, we then obtain |S  P|  m, which gives us “(at least 

m)(S)(P)”. 
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challenges to any theory on syllogistic inferences because of their complexities 

and diversity. In this and the next subsections I will propose two general methods 

for deriving and proving certain types of relational syllogisms. 

    The most straightforward way of constructing relational syllogisms is by 

making direct substitution for the terms of monadic syllogisms. For example, by 

substituting P = {x: most(O)({y: R2(x, y)})} and S = {x: no(S)({y: R1(x, y)})} 

into the monadic syllogism (123), we immediately obtain the following: 

(127) (at most n)(M)(¬{x: most(O)({y: R2(x, y)})})  (at least m + n)({x: 

no(S)({y: R1(x, y)})})(M)  (at least m)({x: no(S)({y: R1(x, y)})})({x: 

most(O)({y: R2(x, y)})}) 

The above schema may be exemplified by the following inference (by letting n = 

1, m = 2, S = EXAM, M = REPEATER, O = COURSE, R1 = PASS, R2 = 

RETAKE): 

(128) At most 1 repeater did not retake most of the courses.  At least 3 of 

those who passed no exams were repeaters.  At least 2 of those who 

passed no exams retook most of the courses. 

    Sometimes we have to make use of results of other types of inferences (such 

as argument structure inferences) when making substitutions. Van Rooij (2012) 

discussed the following inference: 

(129) No man is seen by an ass.  Everything that laughs sees a man. 

 Nothing that laughs is an ass. 

which may be represented as (by letting S = LAUGH, M = MAN, O = ASS, R = 

SEE): 

(130) no(M)({x: some(O)({y: R
–1

(x, y)})})  every(S)({x: some(M)({y: R(x, 

y)})})  no(S)(O) 

To prove the validity of the above, we have to invoke the following equivalence: 
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(131) no(A1)([some(A2)]2(B))  no(A2)([some(A1)]2(B
–1

)) 

Note that the above can be derived from (70) by first invoking the duality 

inference schema (53) (using the facts every¬r = no and every
dr

 = some) and then 

replacing the arbitrary ¬B by B on both sides. Using (131), we can then rewrite 

(130) as 

(132) no(O)({x: some(M)({y: R(x, y)})})  every(S)({x: some(M)({y: R(x, 

y)})})  no(S)(O) 

The above is valid because it is just an instance of the classical EAE-2 syllogism 

(by substituting M = {x: some(M)({y: R(x, y)})}), P = O). The validity of (132) 

guarantees the validity of (130). 

 

3.5.5 Relational Syllogisms by Syllogism Embedding 

    Apart from direct substitution, we may construct relational syllogisms by 

syllogism embedding. The idea is to make proper substitution into a monadic 

syllogism to obtain a syllogism with one of its premises and its conclusion 

containing a free variable. By binding the free variable with the set symbol, we 

then transform the syllogism to an immediate inference whose conclusion has the 

form of a subset relation X  Y, which can be rewritten as the proposition 

“every(X)(Y)”. We then choose a suitable syllogistic scheme and make suitable 

substitution so that “every(X)(Y)” becomes one of the premises and derive the 

desired conclusion. The aforesaid process can be seen as embedding a monadic 

syllogism into another monadic syllogism. 

    One advantage of the aforesaid method is that we can easily construct 

relational syllogisms involving non-classical quantifiers. The key is to identify a 

valid simple syllogism with non-classical quantifiers. For illustration, consider 

the following inference schema involving numerical GQs and a binary relation 
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R: 

(133) (at least m + n)(S)(M)  every(O)({x: (at most n)(M)({y: ¬R(x, y)})})  

 every(O)({x: (at least m)(S)({y: R(x, y)})}) 

Let’s see how this schema can be derived. By first substituting P = {y: R(x, y)} 

into the numerical syllogism (123) proved above and using Theorem 3.28, we 

obtain the following: 

(134) (at most n)(M)({y: ¬R(x, y)})  (at least m + n)(S)(M)  

 (at least m)(S)({y: R(x, y)}) 

Since x is an arbitrary unbound variable, from the above we derive the following: 

(135) (at least m + n)(S)(M)   

{x: (at most n)(M)({y: ¬R(x, y)})}  {x: (at least m)(S)({y: R(x, y)})} 

We next substitute S = O, P = {x: (at least m)(S)({y: R(x, y)})} and M = {x: (at 

most n)(M)({y: ¬R(x, y)})} into the AAA-1 syllogism and obtain 

(136) every({x: (at most n)(M)({y: ¬R(x, y)})})({x: (at least m)(S)({y: R(x, 

y)})})  every(O)({x: (at most n)(M)({y: ¬R(x, y)})})  every(O)({x: 

(at least m)(S)({y: R(x, y)})}) 

Note that the first premise of (136) is the same as the conclusion of the 

immediate inference (135). It can thus be replaced by the premise of (135), i.e. 

(at least m + n)(S)(M) (This is equivalent to strengthening the premise of (136)). 

After such a replacement, we obtain (133). Note that (133) can be seen as the 

result of embedding the numerical syllogism (123) into the AAA-1 syllogism. Its 

validity is thus guaranteed by the validity of these two syllogisms. Here is an 

instance of (133) (by letting m = 2, n = 3, S = BOY, M = SMOKER, O = GIRL, 

R = LIKE and assuming that DISKLIKE = ¬LIKE): 

(137) At least 5 boys are smokers.  Every girl dislikes at most 3 smokers.  
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 Every girl likes at least 2 boys. 

    In the above example, R is a general binary relation. If we now require that 

R possess certain specific properties, then we will obtain even more interesting 

results. One such property is transitivity as defined below: 

(138) A binary relation R is transitive iff for all x, y, z  U, R(x, y)  R(y, z) 

 R(x, z). 

Based on the above definition, we can derive theorems involving transitive 

relations, such as the following: 

Theorem 3.31 Let R be a transitive relation, O a set, x an individual and Q a 

right increasing determiner, then some({z: Q(O)({w: R(z, 

w)})})({y: R(x, y)})  Q(O)({y: R(x, y)}). 

    Comparative adjectives, including adjectives used in equal comparative 

constructions (e.g. “as … as” structure) and those used in unequal comparative 

constructions (e.g. “more … than” structure), are typical examples of transitive 

relations. For example, if x is as smart as y, and y is as smart as z, then x is as 

smart as z. Thus, syllogisms with binary transitive relations may be manifested as 

syllogisms with comparative adjectives. Consider the following syllogism (where 

R is assumed to be transitive): 

(139) every(S)({x: some(M)({y: R(x, y)})})  every(M)({z: most(O)({w: R(z, 

w)})})  every(S)({x: most(O)({y: R(x, y)})}) 

Let’s see how this schema can be derived. By substituting P = {y: R(x, y)} and S 

= {z: most(O)({w: R(z, w)})} into the classical IAI-3 syllogism, we first obtain 

the following: 

(140) some(M)({y: R(x, y)})}  every(M)({z: most(O)({w: R(z, w)})}) 

 some({z: most(O)({w: R(z, w)})})({y: R(x, y)}) 

Since “most” is a right increasing determiner, by Theorem 3.31, we have 
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(141) some({z: most(O)({w: R(z, w)})})({y: R(x, y)})  

 most(O)({y: R(x, y)}) 

Combining (140) and (141), we obtain 

(142) some(M)({y: R(x, y)})}  every(M)({z: most(O)({w: R(z, w)})})  

 most(O)({y: R(x, y)}) 

Since x is an arbitrary unbound variable, from the above we derive the following: 

(143) every(M)({z: most(O)({w: R(z, w)})})  

 {x: some(M)({y: R(x, y)})}  {x: most(O)({y: R(x, y)})} 

We next substitute P = {x: most(O)({y: R(x, y)})} and M = {x: some(M)({y: R(x, 

y)})} into the AAA-1 syllogism and obtain 

(144) every({x: some(M)({y: R(x, y)})})({x: most(O)({y: R(x, y)})})  

every(S)({x: some(M)({y: R(x, y)})})  every(S)({x: most(O)({y: R(x, 

y)})}) 

Since the first premise of (144) is the same as the conclusion of (143), it can be 

replaced by the premise of (143). After such a replacement, we obtain (139). 

Note that (139) can be seen as the result of embedding the IAI-3 syllogism into 

the AAA-1 syllogism. Its validity is thus guaranteed by the validity of these two 

classical syllogisms (as well as Theorem 3.31). 

    Here is an instance of (139) (by letting S = LOGICIAN, M = PHYSICIST, 

O = MATHEMATICIAN, R = AS-SMART-AS): 

(145) Every logician is as smart as some physicist.  

 Every physicist is as smart as most mathematicians. 

 Every logician is as smart as most mathematicians. 

Note that the above syllogism is also valid if we replace “as smart as” by 

“smarter than” because adjectives used in unequal comparative constructions are 

also transitive. However, since adjectives used in unequal comparative 
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constructions possess properties other than transitivity
118

, if we are to study 

syllogistic inferences involving such adjectives, we need to assume more 

properties for R. By so doing, we can then derive more theorems related to such 

adjectives in addition to Theorem 3.31, and more syllogistic schemas involving 

such adjectives. I will leave this for future research. 

 

3.5.6 Refutation of Invalid Syllogisms 

    The classical theory of syllogisms included rules to distinguish valid from 

invalid syllogisms by considering the distribution of the terms. Since I have 

abandoned the concept of distribution, no such rules are available. Although (119) 

provides the general principle of how to refute invalid syllogisms, it is not clear 

whether the principle can be generalized to a systematic way of constructing 

counterexamples for refuting invalid syllogistic schemas. Thus in this subsection, 

I only show some typical examples of refuting invalid syllogistic schemas. First 

consider an example of a purported monadic syllogistic schema: 

(146) every(M)(P)  (at least 2)(S)(M) # (at least 3)(S)(P) 

First rewrite the above as (in)equalities: 

(147) |M – P| = 0  |S  M|  2 # |S  P|  3 

To form a link between the premises and the conclusion, the above is then 

rewritten as 

(148) |M – P  S| + |M – P – S| = 0  |S  M  P| + |S  M – P|  2  

# |S  P  M| + |S  P – M|  3 

From the above, it is clear that if we let |M – P  S| = |M – P – S| = |S  P – M| 

= 0, |S  M  P| = 2, then we will have true premises and false conclusion. Thus, 
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 According to Keene (1969), such adjectives also possess the properties of counter-transitivity 

and asymmetry. 
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a counterexample for (146) can be obtained by letting S = M = P = {a, b}. 

    Next consider an example of embedding a valid syllogism (i.e. AAA-1) into 

an invalid syllogistic schema (i.e. (146)): 

(149) every(O)(M)  (at least 2)(S)({x: every(M)({y: R(x, y)})})  

# (at least 3)(S)({x: every(O)({y: R(x, y)})}) 

Let’s see how this purported schema can be derived. First, by substituting S = O 

and P = {y: R(x, y)} into the AAA-1 syllogistic schema and then binding the 

unbound variable x, we obtain: 

(150) every(O)(M)   

{x: every(M)({y: R(x, y)})}  {x: every(O)({y: R(x, y)})} 

Next by substituting M = {x: every(M)({y: R(x, y)})} and P = {x: every(O)({y: 

R(x, y)})} into (146), we have 

(151) every({x: every(M)({y: R(x, y)})})({x: every(O)({y: R(x, y)})})  

 (at least 2)(S)({x: every(M)({y: R(x, y)})})  

# (at least 3)(S)({x: every(O)({y: R(x, y)})}) 

By combining (150) and (151), we obtain the purported inference schema (149). 

    To refute (149), we can make use of the counterexample for (146) to find a 

counterexample for (151): O = M = P = {a, b}, S = {c, d}, R = {<c, a>, <c, b>, 

<d, a>, <d, b>}. Since (149) is derived from (151), it turns out that the above is 

also a counterexample for (149). 

    Finally consider an example of embedding an invalid syllogism (i.e. (146)) 

into a valid syllogistic schema (i.e. AAA-1): 

(152) (at least 2)(O)(M)  every(S)({x: every(M)({y: R(x, y)})})  

# every(S)({x: (at least 3)(O)({y: R(x, y)})}) 

Let’s see how this schema can be derived. First, by substituting S = O and P = {y: 

R(x, y)} into (146) and then binding the unbound variable x, we obtain: 
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(153) (at least 2)(O)(M) #  

{x: every(M)({y: R(x, y)})}  {x: (at least 3)(O)({y: R(x, y)})} 

Next by substituting M = {x: every(M)({y: R(x, y)})} and P = {x: (at least 

3)(O)({y: R(x, y)})} into the AAA-1 syllogistic schema, we have 

(154) every({x: every(M)({y: R(x, y)})})({x: (at least 3)(O)({y: R(x, y)})})  

 every(S)({x: every(M)({y: R(x, y)})})  

 every(S)({x: (at least 3)(O)({y: R(x, y)})}) 

By combining (153) and (154), we obtain the purported inference schema (152). 

    To refute (152), we can make use of the counterexample for (146) to find a 

counterexample for (153): O = M = P = {a, b}, R = {<c, a>, <c, b>, <d, a>, <d, 

b>}. Since (152) is derived from (153), we can expand the above to a 

counterexample for (152) by just adding S = {c, d}. 

 

3.5.7 Inverse Logic 

    In the above, I am interested in identifying inferential patterns that a given 

set of GQs satisfies. This kind of inquiry is called “direct logic” by van Benthem 

(1995). On the contrary, we may also study “inverse logic” in which we try to 

identify GQs that satisfy a given inferential pattern. Inverse logic has been 

studied by van Benthem (1984), Westerståhl (1984b), etc. Instead of repeating 

the results of these studies, here I will only try to generalize a result in Peters and 

Westerståhl (2006). This result is instructive in that it involves the concepts of 

conservativity, monotonicity and duality. According to Peters and Westerståhl 

(2006), a right conservative determiner Q is right increasing iff it satisfies the 

following schema: 

(155) Q(S)(P)  Q
dr

(S)(P’)  some(S)(P  P’) 

    I now generalize this result to the following: 
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Theorem 3.32 A left conservative determiner Q is left increasing iff it satisfies 

the following syllogistic schema: 

(156) Q(S)(P)  Q
dl

(S’)(P)  some(S  S’)(P) 
 

Here is an instance of (156) (by letting Q = only, S = MEMBER, S’ = FEMALE, 

P = ATTEND-THE-MEETING and making use of only
dl

 = some): 

(157) Only members attended the meeting.  Some female attended the 

meeting.  Some female member attended the meeting. 

    The different nature of inverse logic from direct logic is revealed by the 

proof of Theorem 3.32 which does not invoke (119). In fact, inverse logic can be 

studied as a separate topic. For this reason, I will not discuss this topic any 

further. 

 

3.6 Conclusion 

    Having completed the study on the 4 main types of quantifier inferences, it 

is now time to briefly discuss the statuses of these inferences in natural language 

inferences. Monotonicity inferences and opposition inferences can be seen as two 

main pillars of natural language inferences complementary to each other. They 

are defined on parallel notions and governed by parallel principles (PMC and 

POC). Their complementary statuses can be revealed by the fact that the relations 

studied under each of these two types of inferences correspond to different 

relations defined on the classical square of opposition: the subset and superset 

relations correspond to the subalternate relation, whereas the CC and SC 

relations correspond to the contradictory, contrary and subcontrary relations. 

    The argument structure inferences studied in this chapter mainly serve as 

useful tools for deriving the other types of inferences, in that the results of 

argument structure inferences are often used to transform propositions to a 
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suitable form so that they can be manipulated by the operations of the other types 

of inferences. Finally, the non-classical syllogisms studied in this chapter provide 

additional instances of natural language inferences that are not subsumable under 

the other types of inferences and may be useful for constructing certain complex 

inferences. 

    Although quantifier inferences are an important subject area of modern 

Formal Semantics that may be studied in its own right, what is more important is 

that they can be used to account for certain aspects of scalar reasoning, which is 

the topic of the next chapter. Their different statuses mean that they will play 

different roles in the next chapter. 
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Chapter 4 Quantifier Inferences and Scalar Reasoning 

4.1 Introduction 

    In this chapter, I will apply the major findings on quantifier inferences 

worked out in Chapter 3 to the studies on scalar reasoning in an attempt to solve 

the outstanding problems raised in the end of Chapter 2. Of course, not every 

single result from Chapter 3 is applicable, and not all 4 types of quantifier 

inferences are equally important. In fact, the statuses of the 4 types of inferences 

in this chapter will be similar to those discussed in Section 3.6. More specifically, 

in the first half of this chapter, monotonicity inferences and opposition inferences 

will be used to establish a formal framework for scalar entailments and scalar 

implicatures. Non-classical syllogistic inferences will provide insights for 

extending the scope of scalar entailments (to “scalar syllogisms”). Argument 

structure inferences are mainly used to transform propositions to a suitable form 

so as to reveal their reasoning patterns. 

    In the second half of this chapter, the formal framework for scalar 

entailments / implicatures will be further used to study the various types of scalar 

lexical items introduced in Chapter 2. Although the relation between quantifier 

inferences and these items is indirect, one will see that some special inferential 

patterns (especially inferences related to the left arguments of determiners) will 

shed light on certain aspects of scalar lexical items that past researchers have not 

paid enough attention to. 

 

4.2 Scalar Entailments 

4.2.1 Generalized Fractions 

    In this section, I will develop a formal framework for scalar entailments 

(SEs). This framework is composed of two main ingredients. The first is 
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generalized fractions. The second is the I-function. I will discuss generalized 

fractions first. 

    SEs are in essence comparison of informativeness, an attribute of 

propositions. Therefore, to develop a formal framework for SEs, we first need to 

devise a formal method for comparing attributes of entities in a domain. In our 

daily life, comparisons of attributes are often based on specific measurements. 

For example, comparison of tallness is often based on heights. 

    The most typical comparisons are comparisons of magnitudes of single 

numbers. For example, when comparing the tallness of two persons John and 

Mary, we measure their heights, which are expressed as numbers and compare 

the magnitudes of the numbers, with the greater magnitude corresponding to the 

taller person. Formally, I express this as the formula 

(1) TALLNESS(x) = h 

In the above, TALLNESS is the attribute in question, x is a variable of entities 

(e.g. persons) whose tallness is to be compared, and h is a numerical variable 

representing heights. This formula says that our comparison of tallness of 

persons is based on their heights. That is why TALLNESS is expressed as a 

function. In this example, the attribute depends on only one factor – height. 

    Sometimes an attribute may depend on more than one factor. In this case, 

we have to express the attribute function in the form of fractions. Consider a case 

of comparing the efficiency of factories (represented by x) measured by 3 factors: 

number of days spent (represented by d), number of jobs completed (represented 

by j) and number of workers (represented by w). To make a sensible comparison, 

we may measure the average number of jobs completed per worker per day. This 

may be represented by the following formula: 
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(2) EFFICIENCY(x) ~ j / (w × d) 

In the above formula, “~” represents “be proportional to”. Note that this formula 

does not provide an exact numerical formula for evaluating the efficiency of 

factories because efficiency may depend on many factors and it is difficult to 

devise a precise formula. Nevertheless, this formula does reflect the 

proportionality relation between efficiency and the three factors. Since it is more 

convenient to do comparison with an equation, we can transform the above 

formula to an equation: 

(3) EFFICIENCY(x) = j / (w × d) 

Strictly speaking, in order for a proportionality relation to become an equation, 

the RHS of (3) should contain a proportionality constant k. But since every value 

output by this function will then contain the same constant k, we may scale down 

all the function values by k and thus obtain the above formula. This is equivalent 

to choosing a suitable unit to measure EFFICIENCY so that the measured values 

are equal to the calculated values of the above formula. Note that this is a 

standard practice adopted in natural sciences. So in what follows, I will adopt the 

convention that all attribute functions are expressed in the form of an equation 

without a proportionality constant. 

    In even more complicated cases, the attribute may depend on non-numerical 

factors and we cannot combine the factors into a numerical fraction like (3). For 

instance, consider a case of comparing the smartness of people (represented by x) 

based on two relevant factors: age (represented by a) and rank attained 

(represented by r). Although the ranks are ordered (e.g. in a scale like <trainee, 

officer, manager, CEO>), they are not numerical values. Yet it seems that the 

following “generalized fraction” is sensible: 
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(4) SMARTNESS(x) = r / a 

In the above, r and a are placed at the numerator and denominator because these 

two factors are directly and inversely proportional to the smartness of a person, 

respectively, i.e. the higher rank a person attains at a younger age, the smarter he 

/ she is. 

    In general, given a set of entities (represented by x) whose attribute A is to 

be compared based on a number of ordered (represented by a scale) but not 

necessarily numerical factors: a1, … , am, b1, …, bn, where the ai’s and bj’s are 

directly and inversely proportional to A respectively, we may make comparison 

by evaluating a generalized fraction (GF): 

(5) A(x) = (a1 × … × am) / (b1 × … × bn) 

For comparison between two GFs, we define the following: 

(6) Let F = (a1 × … × am) / (b1 × … × bn) and F’ = (a1’ × … × am’) / (b1’ × … 

× bn’) be two GFs of the same structure. Then we say that 

(a) F < F’ iff for all 1  i  m, ai < ai’ and for all 1  j  n, bj > bj’; 

(b) F > F’ iff for all 1  i  m, ai > ai’ and for all 1  j  n, bj < bj’; 

(c) F = F’ iff for all 1  i  m, ai = ai’ and for all 1  j  n, bj = bj’; 

(d) F and F’ are incomparable, otherwise. 

    According to the above, we have the following inequality: 

(7) manager / 25 < CEO / 24 

Note that this inequality corresponds to the following comparison result: 

(8) A person who becomes a CEO at the age of 24 is smarter than a person 

who becomes a manager at the age of 25. 

 

4.2.2 The I-Function and SEs 

    As shown in Chapter 2, informativeness is a central idea in the theory on 
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SEs. Since the informativeness of a proposition is an attribute that may depend 

on one or more factors, it can be expressed as an I(nformativeness)-function in 

the form of a GF. The GF will be composed of variables representing members of 

scales associated with the proposition defined in a scalar model (SM). These 

scales are factors determining the informativeness of the proposition. Those 

factors appearing on the numerator (denominator) are directly (inversely) 

proportional to the informativeness of the proposition. 

    In many cases, the informativeness of a proposition is reflected by its 

likelihood or desirability. Since we have the following relation established in (10) 

and (15) of Chapter 2: 

(9) In an SM whose informativeness is reflected by the likelihood 

(desirability) of the propositions, informativeness is inversely (directly) 

proportional to likelihood (desirability). 

the GF associated with the I-function should be constructed as follows: those 

factors appearing on the numerator are inversely (directly) proportional to the 

likelihood (desirability) of the proposition, whereas those factors appearing on 

the denominator are directly (inversely) proportional to the likelihood 

(desirability) of the proposition. 

    For illustration, let us consider the following propositional function in an 

SM: 

(10) “Jumper x can clear obstacle y” 

where x and y are variables from the following two scales, respectively 

(11) X: <x1, x2, … >; Y: <y1, y2, … > 

Remember that the elements of X are arranged in increasing clumsiness while the 

members of Y are arranged in increasing difficulty. Now the two factors X and Y 

are both inversely proportional to the likelihood of (10), because the more 
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clumsy x is and the more difficult y is, the less likely x can clear y. Thus, the 

I-function for (10) can be written as
119

 

(12) I(“Jumper x can clear obstacle y”) = x × y 

    Using the I-function and the definition of informativeness given in (9) of 

Chapter 2, we can now derive the following relation: 

(13) Let p and q be two propositions in an SM. Then I(p) > I(q) iff p u q. 

One important point to note is that the entailment relation “u” above is subject 

to the condition “other things being equal” and is thus a type of pragmatic 

reasoning rather than logical inference. 

    By (13), we can now reduce SEs to inequalities of I-function values of 

propositions in an SM. An advantage of this reduction is that it provides a 

convenient method for calculating SEs. This is especially so if the I-function is 

equal to a GF with many factors and having different proportionality relations 

with the propositional function. Once we have determined the form of the 

I-function, we can then calculate easily by just comparing GFs. For illustration, 

consider the following SE wrt the SM set up by (10) and (11): 

(14) Jumper x3 can clear obstacle y3. u Jumper x2 can clear obstacle y2. 

According to the two scales in (11) and the definition of comparison of GFs, we 

have the inequality x3 × y3 > x2 × y2, which, by (12), tells us that 

(15) I(“Jumper x3 can clear obstacle y3”)  

> I(“Jumper x2 can clear obstacle y2”) 

By (13), (15) is just an alternative way of expressing (14). The validity of (14) 

can now be accounted for by the correctness of (15). 

    The I-function is particularly convenient for handling SEs involving negated 
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 Since both variables are at the numerator, the denominator of the following GF is 1. 

Following the convention of arithmetic, the denominator need not be written out in this case. 
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propositions. Since negation will reverse the proportionality relations, we have 

the following: 

(16) I(¬p) = 1 / I(p) 

i.e. the I-function of a negated proposition is just the reciprocal of the I-function 

of the original unnegated proposition. For illustration, consider the following SE: 

(17) Jumper x9 cannot clear obstacle y35.  

u Jumper x10 cannot clear obstacle y36. 

By (16), we can obtain from (12) the following: 

(18) I(¬(“Jumper x can clear obstacle y”)) = 1 / (x × y) 

By virtue of the inequality 1 / (x9 × y35) > 1 / (x10 × y36), we have the following: 

(19) I(“Jumper x9 cannot clear obstacle y35”)  

> I(“Jumper x10 cannot clear obstacle y36”) 

The validity of (17) can now be accounted for by the correctness of (19). 

 

4.2.3 Strict Monotonicity Inferences as Scalar Entailments 

    In this subsection I will establish the association between SEs and 

monotonicity inferences. First let us compare two typical examples of SEs and 

standard monotonicity inferences: 

(20) Given the difficulty of y4 < the difficulty of y5, 

 John can clear obstacle y5. u John can clear obstacle y4. 

(21) Given BOY  CHILD and JOG  DO-EXERCISES, 

 Every child is jogging.  Every boy is doing exercises. 

An important difference between the above two examples is that while (20) is 

based on the strict relations “<” and “u”, (21) is based on the non-strict 

relations “” and “”. To eliminate this difference, we turn our attention from 

standard monotonicity inferences to strict monotonicity inferences by replacing 
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the non-strict relations in (21) with their strict counterparts “” and “u”: 

(22) Given BOY  CHILD and JOG  DO-EXERCISES, 

 Every child is jogging. u Every boy is doing exercises. 

where “u” is defined as follows: 

(23) Let p and q be propositions. Then p u q iff wrt every model, if ║p║ = 1, 

then ║q║ = 1, and it is not the case that wrt every model, if ║q║ = 1, then 

║p║ = 1.
120

 

Note that the results of standard monotonicity inferences discussed in Chapter 3 

and recorded in Table 3.1 are also valid for strict monotonicity inferences except 

for certain extreme cases such as the following: 

(24) Given   CHILD, JOG  U,  

every()(JOG) #u every(CHILD)(U) 

The reason for the invalidity of the above is that the predicates  and U have 

trivialized the right and left arguments of “every”, respectively, by making 

“every()(X)” and “every(X)(U)” trivially true for any set X, and so the 

conclusion in (24) should be an equivalence instead of a unilateral entailment. 

But in daily language use, we seldom use these “trivializing predicates”. 

Therefore, by casting aside trivializing predicates, we can safely use the results 

of standard monotonicity inferences for strict monotonicity inferences. 

    Strict monotonicity inferences are unilateral entailments between two 

quantified statements one of whose arguments has proper superset-subset relation. 

Since proper supersets / subsets can form scales, strict monotonicity inferences 

can thus be reformulated as SEs. Consider the strict monotonicity inference given 

in (22) again. Let us define the following propositional function: 
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 According to this definition, p u q can be true even if there is some model in which ║p║ = 

║q║ = 1, provided not all models are such that ║p║ = ║q║ = 1. 
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(25) “Every x is y-ing” 

where x and y are variables from the following two scales, respectively: 

(26) X: <CHILD, BOY>; Y: <DO-EXERCISES, JOG> 

The scales are ordered in a way such that each scalar term is a proper subset of 

any scalar term on its left. This is to accord with the convention stipulated in 

Chapter 2 that each scalar term is more informative than any scalar term on its 

left, because a set is more informative than its superset
121

. 

    How can we determine the I-function for (25)? I will try to provide a 

general answer to this question instead of talking about a particular example. Let 

Q(a, … x, … z) be the argument structure of a monadic GQ with n arguments. 

Let x be an argument of Q whose possible values form a scale X: <x1, x2, x3, …> 

such that xi  xj for any i and j such that i < j. Now any argument of Q may be 

increasing, decreasing or non-monotonic. If x is increasing, then given xi  xj, 

we have Q(a, … xj, … z) u Q(a, … xi, … z). Thus, the further right xi is located 

in X, the more entailments Q(a, … xi, … z) can generate, and the more 

informative Q(a, … xi, … z) is. Following a similar line of reasoning, if x is 

decreasing, then the further right xi is located in X, the less informative Q(a, … 

xi, … z) is. If x is non-monotonic, then the location of xi in X is unrelated to the 

informativeness of Q(a, … x, … z). Based on the above discussion, we may 

conclude the following: 

(27) Let Q be a GQ and x be an argument of Q. If x is increasing 

(decreasing), it is directly (inversely) proportional to the 

informativeness of Q. If x is non-monotonic, it has no proportionality 

relation with the informativeness of Q. 
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 But since the I-function only depends on the proportionality relation between the scales and 

the informativeness of the proposition, whether the scalar terms are arranged from less 

informative to more informative ones or the other way around is in fact not very important. 
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    Now in (25), the arguments x and y are decreasing and increasing, 

respectively, according to the monotonicity of “every”. By (27), we may 

conclude that x and y are inversely and directly proportional to the 

informativeness of (25), respectively. In other words, the I-function of (25) is 

(28) I(“Every x is y-ing”) = y / x 

According to (26), we have JOG / CHILD > DO-EXERCISES / BOY. This 

means 

(29) I(“Every child is jogging”) > I(“Every boy is doing exercises”) 

We have thus reduced the strict monotonicity inference (22) to a comparison of 

informativeness. By using (27), we can reduce all strict monotonicity inferences 

to SEs. In a sense, we may thus say that SEs are a generalization of monotonicity 

inferences. 

 

4.2.4 Proportionality Calculus 

    We may also consider entailments in which a scalar term is within the scope 

of a GQ / BO such as the following: 

(30) Every jumper who cannot clear obstacle y6 will receive no prize.  

u Every jumper who cannot clear obstacle y5 will receive no prize. 

To account for the validity of the above, we may represent the propositional 

function associated with this SE as the following tripartite structure: 

(31) every(JUMPER  {x: ¬(x can clear obstacle y)})(NO-PRIZE) 

where y is a variable from the scale Y defined in (11)
122

. Now y is a scalar term 

having a particular (i.e. direct) proportionality in the embedded proposition “x 

can clear obstacle y”. But y is also within the argument of “¬” and the left 
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 Note that in (31), the bound variable x is used as a dummy variable in the set notation and so 

does not contribute to the informativeness of the whole proposition. 
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argument of “every”. So how can we determine the proportionality of y in (31)? 

    Just as we have Monotonicity Calculus for determining the monotonicity of 

a GQ argument located within the scope of another GQ / BO, we also have 

Proportionality Calculus for determining the proportionality of a scalar term 

located within the scope of a GQ / BO. Given the correspondence between 

monotonicities and proportionality relations given in (27), the principle 

governing Proportionality Calculus is similar to that governing Monotonicity 

Calculus. I now formulate the Principle of Proportionality Calculus (PPC) based 

on PMC given in Subsection 3.2.4: 

Principle of Proportionality Calculus (PPC) 

A singly-occurring scalar term not falling within the argument of any GQ / BO 

has its proportionality unaffected. A singly-occurring predicate has its 

proportionality retained (reversed) if it falls within an even (odd) number of 

inversely proportional argument positions without at the same time falling within 

any non-monotonic argument position. A singly-occurring predicate is 

non-monotonic if it falls within at least one non-monotonic argument position. 

    We can now use the above principle to determine the proportionality of y in 

(31). As discussed above, y originally has direct proportionality within the 

embedded proposition “x can clear obstacle y”. Since y falls within the argument 

of “¬” and the left argument of “every”, which are both inversely proportional 

argument positions according to (16) and (27), by PPC we know that y has its 

proportionality retained. As a result, y is directly proportional to the 

informativeness of (31). This is formally recorded as 

(32) I(every(JUMPER  {x: ¬(x can clear obstacle y)})(NO-PRIZE)) = y 

Since y6 > y5, we have 
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(33) I(“Every jumper who cannot clear obstacle y6 will receive no prize”)  

> I(“Every jumper who cannot clear obstacle y5 will receive no prize”) 

The validity of (30) can now be accounted for by the correctness of (33). 

    As pointed out in Chapter 3, GQs can be treated as sets, and so they can also 

act as scalar terms. We next consider a case with two scalar terms one of which 

being a GQ: 

(34) Every jumper can clear obstacle y6.  

u Some jumper can clear obstacle y5. 

We define the following propositional function: 

(35) q(JUMPER)({x: x can clear obstacle y}) 

where y is a variable from the scale Y defined in (11) and q is a variable from
123

 

(36) Q: <some, every> 

    In (35), q does not fall within the argument of any GQ / BO. According to 

PMC, such a GQ is increasing, and so has direct proportionality. By PPC, q has 

its proportionality unaffected. Moreover, y falls within the right argument of q, 

which is a directly proportional argument position because both members of Q 

are right increasing. Thus, by PPC, y has its proportionality retained. As a result, 

we have the following I-function for (35): 

(37) I(q(JUMPER)({x: x can clear obstacle y})) = q × y 

Since every × y6 > some × y5, we have 

(38) I(“Every jumper can clear obstacle y6”)  

> I(“Some jumper can clear obstacle y5”) 

The validity of (34) can now be accounted for by the correctness of (38). 
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 Note that when we use the scale <some, every>, we must assume that the left arguments of 

these 2 GQs are non-empty, because every(A)(B) u some(A)(B) only when A  . But in daily 

language use, this poses no problem because we seldom use “every” to talk about empty 

categories. 
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4.2.5 Scalar Syllogisms 

    Just as we may combine SEs with (strict) monotonicity inferences, we may 

also consider combining SEs with (non-classical) syllogistic inferences, which 

may be called scalar syllogisms. 

    Consider the following scalar syllogism: 

(39) There are at most 3 adjudicators.  At least 2 teachers are adjudicators. 

 Every jumper who can clear obstacle y35 will be praised by at least 2 

adjudicators. u Every jumper who can clear obstacle y36 will be 

praised by at least 1 teacher. 

To construct this scalar syllogism, we will use the method of syllogism 

embedding introduced in Subsection 3.5.5 and the non-classical syllogistic 

schema (126) of Chapter 3 repeated below (rewritten in the strict form): 

(40) |M|  l + m + n  (at least m + n)(S)(M)  (at least m + l)(M)(P)  

u (at least m)(S)(P) 

Substituting l = m = n = 1, M = AJUDICATOR, S = TEACHER, P = {y: 

PRAISE
–1

(x, y)} into the above, we obtain the following schema: 

(41) |AJUDICATOR|  3  (at least 2)(TEACHER)(AJUDICATOR)  

 (at least 2)(AJUDICATOR)({y: PRAISE
–1

(x, y)})  

u (at least 1)(TEACHER)({y: PRAISE
–1

(x, y)}) 

Since the above contains an arbitrary unbound variable x, we rewrite it as 

(42) |AJUDICATOR|  3  (at least 2)(TEACHER)(AJUDICATOR)  

u {x: (at least 2)(AJUDICATOR)({y: PRAISE
–1

(x, y)})}  

 {x: (at least 1)(TEACHER)({y: PRAISE
–1

(x, y)})} 

The conclusion of (42) is a proper subset relation. It thus forms a scale: 
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(43) Z: <z1, z2>, where  

z1 = {x: (at least 1)(TEACHER)({y: PRAISE
–1

(x, y)}),  

z2 = {x: (at least 2)(AJUDICATOR)({y: PRAISE
–1

(x, y)})} 

We next define the following propositional function: 

(44) every(JUMPER  {x: x can clear obstacle y})(z) 

where y and z are variables from the scales Y and Z defined in (11) and (43), 

respectively. Now y has direct proportionality in the embedded proposition “x 

can clear obstacle y” and falls within the left argument of “every”. By PPC, its 

proportionality is reversed. Moreover, since z falls within the right argument of 

“every”, it has direct proportionality. As a result, the I-function of (44) is 

(45) I(every(JUMPER  {x: x can clear obstacle y})(z)) = z / y 

Since z2 / y35 > z1 / y36, we have 

(46) I(“Every jumper who can clear obstacle y35 will be praised by at least 2 

adjudicators”) > I(“Every jumper who can clear obstacle y36 will be 

praised by at least 1 teacher”) 

From (46) we obtain the following valid unilateral entailment: 

(47) Every jumper who can clear obstacle y35 will be praised by at least 2 

adjudicators. u Every jumper who can clear obstacle y36 will be praised 

by at least 1 teacher. 

Now (47) is the result of applying PPC to the I-function (45), which depends on 

two scales: (11) and (43), the latter being derived from the conclusion of (42). By 

adding the premises of (42) to the premise of (47), we then obtain (39). The 

validity of (39) is thus guaranteed by the validity of the non-classical syllogism 

(40) and the correctness of (46). 

 

4.3 Scalar Implicatures 
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4.3.1 The I-function and SIs 

    In this section, I will turn to the topic of scalar implicatures (SIs). Certain 

notions developed in the previous section for SEs will be extended to the study of 

SIs. These include scales, GFs, informativeness and the I-function. 

    According to Figure 2.2, SIs are inferences leading from the truth of a lowly 

informative statement to the falsity of a highly informative statement in an SM. 

Informativeness is thus a central idea in the theory on SIs, just as it is in the 

theory on SEs. We may thus describe SIs in terms of comparison of I-function 

values. 

    Consider the following example of canonical SIs: 

(48) Most students sang. +> Not all students sang. 

It is not difficult to determine the I-function associated with (48): 

(49) I(“q students sang”) = q 

where q is a variable from the following scale: 

(50) Q: <most, all> 

Since according to (50), most < all, we have 

(51) I(“Most students sang”) < I(“All students sang”) 

Thus, (48) does have the characteristic of SIs, i.e. an inference from the truth of a 

lowly informative statement (“Most students sang”) to the falsity of a highly 

informative statement (“All students sang”). 

    In Chapter 2, I have also introduced another type of SIs – alternate-value SIs, 

which are based on unordered sets rather than ordered scales. How can we apply 

the I-function to this kind of SIs? The key is to reformulate alternate-value SIs as 

canonical SIs by arranging members of the set into a hierarchy, thereby assigning 

an order to them. For illustration, consider the following example: 
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(52) A: Which of Chomsky’s works has John read? 

B: He has read SS. 

+> John has not read ATS. 

which is based on the following set: 

(53) Y: {SS, ATS} 

Note that this set can be reformulated as the following scale of sets: 

(54) Y’: <{SS, ATS}, {SS}> 

We then define the following propositional function associated with (52): 

(55) “John has read y’ ” 

where y’ is a variable from Y’. It is not difficult to determine the I-function 

associated with (55): 

(56) I(“John has read y’ ”) = 1 / y’ 

Since according to (54), {SS, ATS} < {SS}, we have 

(57) I(“John has read SS”) < I(“John has read both SS and ATS”) 

As a result of this, we can then say that the SI generated in (52) is in fact a 

canonical one like the following: 

(58) Not both SS and ATS have been read by John. 

Given B’s response in (52), (58) can be re-expressed more briefly as 

(59) John has not read ATS. 

which is precisely what appears after “+>” in (52). 

    In the above, I have shown that the I-function can be used to uniformly 

describe canonical and alternate-value SIs. However, what the I-function 

describes is only the symptoms of SIs as depicted in Figure 2.2. It has not 

explained why SIs arise. To do this, we need more tools. It turns out that these 

tools can be best illustrated in the case of alternate-value SIs, a topic to which we 

now turn. 
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4.3.2 Alternate-Value SIs 

    In this subsection, I will interpret alternate-value SIs as a combination of 

two components: exhaustivity implicatures and opposition inferences. The 

concept of exhaustivity implicatures comes from the Contextualist view that 

makes use of the notions of QUD and strongly exhaustive answers introduced in 

Chapter 2. This view is stated as follows (the following is a modified version of 

(25) in Chapter 2): 

(60) An SI will arise in a sentence iff the scalar term (with which the SI is 

associated) is a strongly exhaustive answer
124

 to the QUD and therefore 

has focus. 

    I will illustrate the idea by considering (52) renumbered as (61) below. 

Since (60) involves the notion “focus”, the following will explicitly show the 

foci of the answers by putting them in [.]F (Note that WH-words are by default 

the foci of the questions where they appear): 

(61) A: Which of Chomsky’s works has John read? 

B: He has read [SS]F. 

+> John has not read ATS. 

the SI generated is based on the set Y of alternate values defined in (53). 

    By (60), I interpret B’s answer as a strongly exhaustive answer, i.e. “John 

has only read SS”. Note that according to a result of transposition inferences 

introduced in Chapter 3, a singular term like “John” is scopally independent of 

any GQ. In other words, “John has only read SS” and “John has read ATS” are 

                                                 
124

 In this thesis, I will consider only a subtype of strongly exhaustive answers. These are called 

“definite” answers in Groenendijk and Stokhof (1984) and may take either one of the following 

forms: (i) a single number or a quantifier denoting proportion, (ii) (conjoined) proper names and / 

or definite descriptions, (iii) universally (positive or negative) quantified terms. 
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respectively equivalent to “Only SS has been read by John” and “ATS has been 

read by John”, which may be expressed as the following tripartite structures: 

(62) only({SS})({x: x has been read by John}) 

(63) some({ATS})({x: x has been read by John})
125

 

After exhaustifying the answer, we can then bring opposition inferences into play. 

Since CC({SS}, {ATS}), by (107) of Chapter 3, we have 

(64) CC(only({SS}), some({ATS})) 

The above expression entails that for any B, CC(only({SS})(B), 

some({ATS})(B)). From this we may derive the following relation: 

(65) CC(only({SS})({x: x has been read by John}),  

some({ATS})({x: x has been read by John})) 

Combining the above with (62), we can deduce that ║some({ATS})({x: x has 

been read by John})║ = 0, which is precisely the SI derived in (61). 

    The above discussion shows that there is a subtle relationship between 

logical entailments and SIs. According to the defeasibility condition for SIs, two 

propositions having the relation “p +> ¬q” must not be such that ║p  q║ = 0 

(under the literal, i.e. non-exhaustified, meaning of p). Otherwise, we will have 

“p  ¬q”, which is a logical entailment rather than an implicature. However, 

after exhaustification, we have in effect transformed p to another proposition p’ 

with exhaustified meaning such that ║p’  q║ = 0, which then gives us the 

logical entailment “p’  ¬q”. For example, in (61), “John has read SS” (under its 

literal meaning) is compatible with “John has read ATS”. But after 

exhaustification, “Only SS has been read by John” is no longer compatible with 

“ATS has been read by John”. The SI in (61) is thus the result of the combined 

                                                 
125

 Since {ATS} is a singleton, some({ATS})({x: x has been read by John}) is equivalent to ATS 

 {x: x has been read by John}. 
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effects of exhaustification and logical entailments. 

    In summary, I have broken down the derivation process of SIs into two steps. 

In the first step (i.e. the exhaustivity implicature), we exhaustify the proposition 

p (under the literal meaning) which is compatible with q to another proposition p’ 

which is incompatible with q. In the second step (i.e. the opposition inference), 

we derive a logical entailment “p’  ¬q”. The combination of these two steps 

gives us the SI “p +> ¬q”. 

    One should be aware that the exhaustivity implicature is context-dependent 

and does not always hold. In fact, answers to questions may exhibit different 

types of exhaustivity. As argued by Beck and Rullman (1999), answers of 

different types of exhaustivity (including strong exhaustivity, weak exhaustivity 

and non-exhaustivity) may turn out to be ideal answers in different circumstances. 

For example, in the following discourse, B’s response is obviously 

non-exhaustive but appropriate, given B’s understanding of the purpose of A’s 

question (just hoping to buy one copy for reading instead of doing a survey on 

the sales network): 

(66) A: Where can I buy New York Times? 

B: The newsstand at the train station. 

In case of non-exhaustivity, one cannot use opposition inferences to derive SIs. 

That is why SIs should be seen as defeasible implicatures although their 

derivation process contains an element of logical entailment. 

 

4.3.3 Canonical SIs 

    On the surface, canonical SIs are very different from alternate-value SIs in 

that they are associated with ordered scales consisting of higher and lower values. 
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But in fact, ordered scales can be reformulated as alternate-value sets
126

. Suppose 

we have the following scale: 

(67) X: <x1, x2, x3, … xn–1, xn> 

where the scalar terms are related by unilateral entailment relation: … x3 u x2 

u x1. This unilateral entailment relation is characteristic of strict monotonicity 

inferences rather than opposition inferences. But we can reformulate X as 

(68) X’: {x1  ¬x2, x2  ¬x3, … xn–1  ¬xn, xn} 

The idea can be illustrated by the following figure: 

 

Figure 4.1  Transforming an Ordered Scale to an Alternate-Value Set 

In the above figure, the rectangles x1, x2 and x3 with a nested structure form a 

scale. However, they can be reformulated as mutually exclusive and collectively 

exhaustive rectangles. Essentially, this reformulation replaces the unilateral 

entailment relation among members of X to contrary relation among members of 

X’. After deriving the above set, the remaining part in the derivation of the SI is 

the same as in the previous subsection. 

    I illustrate the idea by considering the following example: 

(69) [Most]F students sang. +> Not all students sang. 

I assume that the QUD associated with this example is 

(70) What is the proportion q such that q students sang? 

whose answer is restricted to members of the scale Q defined in (50). By (60), I 

                                                 
126

 In Subsection 4.3.1, I have shown that unordered sets can be reformulated as ordered scales. 

In this subsection, I will show that ordered scales can be reformulated as unordered sets. 
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interpret the LHS of (69) as a strongly exhaustive answer to this QUD. Now 

according to Beck and Rullmann (1999), the strongly exhaustive answer to a 

question asking for the quantity or degree associated with a proposition is the 

greatest quantity or highest degree that satisfy that proposition. Thus, the LHS of 

(69) is understood to be the highest member q of Q such that ║q students sang║ 

= 1, and so is equivalent to “most but not all”. Moreover, since proportion serves 

as an object requested by the QUD (70), “most but not all” should in this case be 

treated as a Montagovian individual (of a domain composed of GQs) rather than 

an ordinary GQ
127

. To distinguish “most but not all” being a Montagovian 

individual from being an ordinary GQ, I will represent the former as 

“MOST-BUT-NOT-ALL”. Thus, the effect of exhaustification is to reformulate the 

scale Q defined in (50) as the following set of Montagovian individuals: 

(71) Q’: {MOST-BUT-NOT-ALL, ALL} 

The LHS of (69) viewed as a strongly exhaustive answer is thus equivalent to   

(72) (MOST-BUT-NOT-ALL)(–)({q’: q’ students sang}) 

Now the two members of Q’ are contrary to each other, i.e. 

(73) CC(MOST-BUT-NOT-ALL, ALL) 

From (73) we may derive the following relation: 

(74) CC((MOST-BUT-NOT-ALL)(–)({q’: q’ students sang}),  

ALL(–)({q’: q’ students sang})) 

Combining this with (72), we can thus deduce ║ALL(–)({q’: q’ students sang})║ 

= 0, which is precisely the RHS of (69). 

 

4.3.4 SIs Right-Embedded under “every” 

                                                 
127

 The situation is similar to a question like “What is the smallest prime number”. The answer to 

this question “two” should be treated as an individual of a domain composed of natural numbers 

rather than an ordinary GQ. 
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    The framework developed in the previous two subsections for simple SIs 

can be applied to embedded SIs. As mentioned in Chapter 2, there is heated 

debate between the Globalists and Localists, who hold different views on the 

particular SIs generated for embedded scalar terms. In this subsection, I consider 

SIs embedded under the right argument of “every” first. 

    Under the framework developed above, the difference between the two 

views can be accounted for by using different types of QUDs. I first consider an 

example of embedded alternate-value SIs (based on the set Y defined in (53)): 

(75) Every student at MIT has read [SS]F. 

The SIs generated by this sentence under the Globalist and Localist views are, 

respectively: 

(76) Not every student at MIT has read ATS. 

(77) Every student at MIT has not read ATS. 

    The Globalist SI in (76) is associated with the following QUD: 

(78) Which of Chomsky’s works has every student at MIT read? 

This question asks for a subset of Chomsky’s works bearing a common relation 

to (i.e. having been read by) every MIT student. Viewing (75) as a strongly 

exhaustive answer to this question, we can express (75) as 

(79) only({SS})({x: Every MIT student has read x}) 

Note that although according to Chapter 3, “every” and “only” are not scopally 

independent, i.e. 

(80) Every student at MIT has only read SS.  

# Only SS has been read by every student at MIT. 

this does not affect my analysis here, because according to the Globalists, (75), 

with “SS” being exhaustified, does not mean the LHS of (80). In other words, the 

LHS of (80) is simply unrelated to the SI generated by (75) under the Globalist 
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view. 

    From (79) and the CC relation (64), we may then deduce ║some({ATS})({x: 

Every MIT student has read x})║ = 0. This means that ATS is not read by every 

MIT student (note that this does not rule out the possibility that ATS may be read 

by some MIT student), which is precisely what (76) asserts. 

    In contrast, the Localist SI in (77) is associated with the following QUD: 

(81) Which of Chomsky’s works has every student at MIT only read? 

This question is stronger than the question in (78) because it requires that every 

student at MIT has read and only read the same set of works. The difference 

between (78) and (81) can be illustrated by a scenario in which the set of MIT 

students contains only x, y and z such that x read SS, while y and z both read SS 

and ATS. In this scenario, “SS” is what x, y and z have all read, whereas there is 

no common work that each of x, y and z has only read. Thus, under the Localist 

view, (75), with “SS” being exhaustified, can be expressed as 

(82) only({SS})({x: Every MIT student has only read x}) 

From (82) and the CC relation (64), we may then deduce ║some({ATS})({x: 

Every MIT student has only read x})║ = 0. This means that ATS is not 

something that every MIT student has only read. In other words, every MIT 

student has not read ATS, which is precisely what (77) asserts. 

    Comparing (79) and (82), we will find that while (79) contains just one 

“only”, (82) contains two. For this reason, we may call the QUD (78) a “singly 

exhaustive question” and (81) a “doubly exhaustive question”. Thus, while the 

Globalist SI is associated with a singly exhaustive QUD, the Localist SI is 

associated with a doubly exhaustive QUD. 

    Next consider an example of embedded canonical SIs (based on the scale Q 

defined in (50): 
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(83) Every student at MIT has read [most]F of Chomsky’s works. 

The Globalist and Localist SIs derived from this sentence are, respectively: 

(84) Not every student at MIT has read all of Chomsky’s works. 

(85) Every student at MIT has not read all of Chomsky’s works. 

These two SIs are associated with the following QUDs, respectively: 

(86) What is the common proportion q such that every MIT student has read q 

of Chomsky’s works? 

(87) What is the common proportion q such that every MIT student has read 

only q of Chomsky’s works? 

    Similar to the previous example, (86) and (87) are a “singly exhaustive 

question” and a “doubly exhaustive question”, respectively. Their difference is 

that the former does not rule out the possibility that different students may have 

read different proportions of Chomsky’s works, while the latter requires that 

every MIT student has read the same proportion of Chomsky’s works. The 

difference between (86) and (87) can be illustrated by a scenario in which the set 

of MIT students contains only x, y and z such that x read 70% of Chomsky’s 

works, while y and z both read 100% of Chomsky’s works. In this scenario, 

“most” is the highest common proportion from among (50) that x, y and z have 

all read, whereas there is no common proportion that each of x, y and z has only 

read. Based on the above discussion, (83) can now be expressed as two strongly 

exhaustive answers from the set Q’ defined in (71) to the two QUDs: 

(88) (MOST-BUT-NOT-ALL)(–)({q’: q’ is the common proportion such that 

every MIT student has read q’ of Chomsky’s works}) 

(89) (MOST-BUT-NOT-ALL)(–)({q’: q’ is the common proportion such that 

every MIT student has read only q’ of Chomsky’s works}) 

By using the CC relation in (73), we can then derive (84) and (85) from (88) and 
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(89), respectively. 

    The above discussion shows that the Localist view is associated with doubly 

exhaustive QUDs which, in my opinion, are less common and natural than the 

singly exhaustive QUDs associated with the Globalist view. For this reason, I 

conclude that the Globalist view on embedded SIs is preferable as it represents a 

more common and natural phenomenon, while the Localist view should be seen 

as representing a marked phenomenon. 

 

4.3.5 SIs Right-Embedded under Simple Indefinite Determiners 

    The framework introduced in the previous subsections cannot be directly 

applied to SIs embedded in the right argument of simple indefinite determiners 

such as “some / a” and bare numerals. Consider the following example: 

(90) A student at MIT has read [SS]F. 

Note that according to Chapter 3, “a” and “only” are not scopally independent. In 

other words, 

(91) A student at MIT has only read SS.  

# Only SS has been read by a student at MIT. 

Moreover, (90), with “SS” being exhaustified, does not mean the RHS of (91). 

Thus, the framework introduced above seems not to be applicable to this kind of 

sentences. 

    However, as mentioned in Chapter 2, Geurts (2010) claimed that such kind 

of SIs should be analysed as statements about the discourse referents introduced 

by the indefinite NPs using the DRT framework. I think Geurts (2010)’s idea is 

correct, but I will implement his idea by using the choice function. 

    A choice function is of type (e  t)  e. It is a function f mapping a 

non-empty set S to an individual such that f(S)  S. Following Reinhart (1998), I 
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will use choice functions to represent indefinites used referentially. Let us 

consider an example involving a singular indefinite determiner such as (90) 

above. Using choice functions, (90) can be paraphrased as 

(92) f1(MIT-STUDENT) has read [SS]F. 

In the above, f1 represents a particular choice function whose output is a specific 

member of the set MIT-STUDENT. This means that f1(MIT-STUDENT) is like a 

singular term such as “John”. Thus, the SI generated by (90) is just a simple 

alternate-value SI and may be treated in the same way as discussed in Subsection 

4.3.2. Under such a view, the SI generated is 

(93) f1(MIT-STUDENT) has not read ATS. 

which is as desired
128

. 

    Next consider an example involving a distributive plural indefinite 

determiner: 

(94) Thirty nine senators supported [most]F of the bills. 

Following Winter (2001), I treat plural indefinites as sets of sets and so the 

choice function corresponding to “thirty nine senators” above takes a set of sets 

as its argument. The distributive meaning of the above sentence will be 

implemented as a universally quantified statement. Thus, the above sentence can 

be paraphrased as 

(95) Every one of f2({X: X  SENATOR  |X| = 39}) supported [most]F of 

the bills. 

In the above, f2({X: X  SENATOR  |X| = 39}) is a specific set of 39 senators. 

Now the above paraphrase shows that the SI generated by (94) is just a canonical 

                                                 
128

 Since f1 is a variable, we need to bind it by means of “existential closure”. However, since 

f1(MIT-STUDENT) is also used in the SI of (90), existential closure should be applied over the 

whole discourse (including SIs that are not overtly uttered) instead of just one sentence. This will 

involve theory on discourses and thus will not be further discussed in this thesis. 
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SI right-embedded under “every” and may be treated in the same way as 

discussed in Subsection 4.3.4. Under this view, the SI generated is 

(96) Not every one of f2({X: X  SENATOR  |X| = 39}) supported all of the 

bills. 

which is as desired. 

 

4.3.6 Left-Embedded SIs 

    Scalar terms may also be embedded in the left argument of a GQ within a 

relative clause. In this subsection, I will only consider the case of SIs 

left-embedded under “every”. For left-embedded alternate-value SIs, the analysis 

is the same as that for right-embedded alternate-value SIs, as shown by the 

following example: 

(97) Every student who has read [SS]F admires Chomsky.  

+> Not every student who has read ATS admires Chomsky. 

The QUD associated with the above is 

(98) Which of Chomsky’s works y is such that every student who has read y 

admires Chomsky? 

The LHS of (97), with “SS” being exhaustified, can be expressed as 

(99) only({SS})({y: Every student who has read y admires Chomsky}) 

By using the CC relation (64), one can then derive the RHS of (97). 

    As for left-embedded canonical SIs, the situation is more complicated, 

because left-embedded and right-embedded canonical SIs are based on scales 

with different structures. So far in this section, I have only considered the 

following “right-implicating scales” ((50) is an example of this kind of scales): 
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(100) A scale <x1, x2, x3, …> is right-implicating
129

 iff x1 is the scalar term in 

focus and x1, x2, x3, … satisfy … u x3 u x2 u x1. 

This kind of scales is suitable for the previous examples of canonical SIs because 

according to Figure 2.2, SIs are inferences from the affirmation of lowly 

informative propositions to the negation of highly informative propositions. Now 

in the scale (100), the proposition with x1 is the lowest informative proposition in 

the SM, and so it will implicate the negation of the propositions with x2, x3, … 

    The above conclusion is valid only when the focused scalar term is in an 

increasing position. If it is in a decreasing position, then we will need 

“left-implicating scales”: 

(101) A scale <… x3, x2, x1> is left-implicating iff x1 is the scalar term in focus 

and x1, x2, x3, … satisfy x1u x2 u x3 u … 

because the direction of inference of a term in decreasing position is opposite 

that of a term in increasing position. Thus, we see monotonicity inferences also 

have a role to play in the theory on SIs. To summarize, we have the following: 

(102) A scalar term in an increasing (decreasing) position is based on a right- 

(left-) implicating scale. 

    For illustration, consider the following example: 

(103) Every student who has read [most]F of Chomsky’s works admires 

Chomsky. +> Not every student who has read some of Chomsky’s works 

admires Chomsky. 

Note that the scalar term in focus, “most” falls within the left argument of 

“every”, which is a decreasing position. So by (102), (103) is based on a 

left-implicating scale, such as 

                                                 
129

 This kind of scales is called “right-implicating” because it is associated with SIs in which a 

proposition with the scalar term x1 implicates the negation of all propositions with scalar terms 

that are on the right of x1. 
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(104) Q: <some, most> 

The QUD associated with (103) is 

(105) What is the common proportion q such that every student who has read q 

of Chomsky’s works admires Chomsky? 

Since q falls within a decreasing position, a strongly exhaustive answer to this 

QUD would be the lowest member q of Q satisfying the proposition after “such 

that” above. The effect of this exhaustification is to transform (104) into the 

following set of Montagovian individuals: 

(106) Q’: <SOME-BUT-NOT-MOST, MOST> 

whose members satisfy the following relation: 

(107) CC(SOME-BUT-NOT-MOST, MOST) 

The LHS of (103) can thus be expressed as 

(108) MOST(–)({q’: q’ is the common proportion such that every student who 

has read q’ of Chomsky’s works admires Chomsky}) 

From (107), we can derive ║SOME-BUT-NOT-MOST(–)({q’: q’ is the common 

proportion such that every student who has read q’ of Chomsky’s works admires 

Chomsky})║ = 0, which is precisely the RHS in (103). 

 

4.3.7 SIs with Negative Scalar Terms 

    Scalar terms may also be embedded under the negation operator. As the 

negation operator may appear in different sentence levels, there are different 

types of negative SIs. In this subsection, I will study SIs with negative scalar 

terms. First consider an example of alternate-value SI with a negative scalar 

term: 

(109) A: So did you snarf all the cakes down? 
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B: I didn’t eat the [chocolate]F one. 

+> B ate the cheese cake. 

which is based on the following set of alternate values: 

(110) Y: {chocolate, cheese} 

In Chapter 2, I have pointed out that the above SI is reminiscent of inferences 

involving the subcontrary relation. But for uniform analysis, I will interpret the 

SI as involving contrary inferences. After all, contrary and subcontrary relations 

are interdefinable thanks to (85) of Chapter 3. Thus, I will make use of the 

following relation: 

(111) CC(only({chocolate}), some({cheese})) 

    The key point is to note that B’s response is not a direct answer to A’s 

question. According to the QUD model, B’s response can be seen as an answer to 

a sub-QUD that incorporates the negation operator: 

(112) Which cake didn’t you eat? 

With respect to this sub-QUD, B’s response under exhaustive interpretation can 

be represented by 

(113) only({chocolate})({y: ¬(B ate the y cake)}) 

By (111) and (113), we can deduce ║some({cheese})({y: ¬(B ate the y cake)})║ 

= 0. This means that the cheese cake is not among the cakes that B didn’t eat, 

which is equivalent to the SI derived in (109). 

    Next consider an example of canonical SI with a negative scalar term: 

(114) Not [most]F students sang. +> Some student sang. 

Note that the scalar term in focus, “most”, is in a decreasing position. So by 

(102), (114) is based on a left-implicating scale such as (104). Similar to the 

previous example, we may assume that the above SI is associated with a QUD 

that incorporates the negation operator: 
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(115) What is the proportion q such that not q student(s) sang? 

Under exhaustive interpretation, the scale (104) is transformed to the set Q’ 

defined in (106) and the LHS in (114) can thus be expressed as 

(116) MOST(–)({q’: ¬(q’ student(s) sang)}) 

From (107) and (116) we can deduce ║SOME-BUT-NOT-MOST(–)({q’: ¬(q’ 

student(s) sang)})║ = 0. This is equivalent to ║Some but not most student sang║ 

= 1, which is precisely the RHS of (114). 

 

4.3.8 SIs Right-Embedded under “no” 

    In this subsection, I will study SIs embedded in the right argument of “no”. 

Consider the following example: 

(117) No student at MIT has read [most]F of Chomsky’s works. +> Some 

student at MIT has read some of Chomsky’s works. 

Note that “most” is in a decreasing position. So by (102), (117) is based on a 

left-implicating scale such as (104). The key point for analyzing (117) is to 

transform the LHS of (117) to a quantified statement headed by “every”. By 

using the following duality inference schema ((42) of Chapter 3): 

(118) Q(A)(B)  (Q¬r)(A)(¬B) 

the LHS of (117) can be transformed to 

(119) Every student at MIT has not read [most]F of Chomsky’s works. 

We may assume that the above is associated with the following QUD: 

(120) What is the common proportion q such that every student at MIT has not 

read q of Chomsky’s works? 

Under exhaustive interpretation, the scale (104) is transformed to the set Q’ 

defined in (106) and (119) can thus be expressed as 
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(121) MOST(–)({q’: q’ is the common proportion such that every MIT student 

has not read q’ of Chomsky’s works})) 

From (107) we can deduce ║SOME-BUT-NOT-MOST(–)({q’: q’ is the common 

proportion such that every MIT student has not read q’ of Chomsky’s works)})║ 

= 0, which is equivalent to
130

 

(122) Not every student at MIT has not read any of Chomsky’s works. 

By using (118) again, the above can be transformed to 

(123) Some student at MIT has read some of Chomsky’s works. 

which is precisely the RHS of (117). 

 

4.3.9 Contrastive Construals and SIs 

    In Chapter 2, I have introduced the notion of contrastive construals which 

can account for the phenomena of SI cancellation, SI reinforcement and scalar 

metalinguistic negation (SMN), all involving scalar terms in antonymy contexts, 

as exemplified in the following examples (in what follows, I adopt Iwata 

(1998)’s idea by treating the contrasted terms as focused terms): 

(124) [Some]F student sang yesterday. In fact / Actually, [all]F of them did. 

(125) [Some]F student sang yesterday. But not [all]F of them did. 

(126) Not [some]F student sang yesterday. [All]F of them did. 

All these examples can be accounted for by adopting Geurts (2010)’s view that 

contrastive construals are explicatures resulted from narrowing, a subtype of 

meaning modulation. Under this view, the meaning of “some” above has been 

narrowed to “some but not all”, so that these sentences all involve ordinary 

negation corresponding to Jones (2002)’s negated antonymy context and there is 
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no semantic oddity. 

    Now that we have identified two related aspects involving scalar terms, i.e. 

SIs and contrastive construals, should we view them as belonging to the same 

kind of phenomena (i.e. explicatures) as suggested by the Relevance Theorists, or 

different kinds of phenomena (i.e. implicatures and explicatures, respectively) as 

suggested by Geurts (2010)? I think Geurts (2010)’s view is preferable for the 

following reason. 

    One important difference between explicature and implicature is that the 

former is part of the truth-conditional content albeit obtained via a pragmatic 

process, whereas the latter is not part of the truth-conditional content. In an 

example of contrastive construal such as (126), “some but not all” must be seen 

as the truth-conditional meaning of the term “some” because otherwise the two 

clauses will lead to contradiction, a truth-conditional oddity. On the other hand, 

in an example of SI such as (69) above, the “most but not all” meaning of the 

term “most” is a result of the interaction of exhaustivity implicature and 

opposition inferences. As argued in Subsection 4.3.2, the exhaustivity implicature 

is subject to certain conditions including the QUD focus and relevance of 

strongly exhaustive reading of the answer to the QUD. Failing to provide a 

strongly exhaustive answer will only lead to violation of Grice’s cooperative 

principle, which is by no means a truth-conditional oddity, and may in some 

contexts even be desirable (e.g. (66)). Thus, we see that SIs and contrastive 

construals have very different nature and it is preferable to classify them as 

belonging to two different classes of phenomena. 

    Moreover, the reinterpretation of SIs proposed in this thesis also shares a 

striking similarity with the Relevance Theorists’ notion of implicatures. Compare 
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the following example of conversational implicature from Carston (2004)
131

: 

(127) X: Have you read Susan’s book? 

Y: I don’t read autobiographical books. (i) 

Implicated premise: Susan’s book is autobiographical. (ii) 

Implicated conclusion: Y hasn’t read Susan’s book. (iii) 

(i)  (ii)  (iii) 

with the following example of alternate-value SI adapted from (61) above: 

(128) A: Which of Chomsky’s works has John read? 

B: He has read [SS]F. (i) 

Exhaustivity implicature: B’s answer is strongly exhaustive. (ii) 

Opposition inference: John has not read ATS. (iii) 

(i)  (ii)  (iii) 

The similarity of these two examples shows that the SIs reinterpreted under the 

framework of this section are compatible with the Relevance-Theoretic notion of 

implicatures. 

 

4.3.10 Other Applications of Opposition Inferences 

    So far in this section, I have only shown how the results of opposition 

inferences can be applied to account for the process of SI generation. In fact, 

these results have wider applications. One such application is to determine the 

incompatibility between two predicates. For instance, from the fact that every 

 –CCCC+, we know that “clubs all members of which are teenagers” and 

“clubs all members of which are elderly” are incompatible, whereas “clubs of 

which all teenagers are members” and “clubs of which all elderly are members” 

are not (because it is logically possible to have a club that includes all teenagers 
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and elderly as members). 

    As incompatibility is an essential element of antonyms that feature in 

certain linguistic structures, such as those identified by Jones (2002), the 

determination of incompatibility can help us determine the well-formedness of 

certain linguistic structures. For example, “X rather than Y” is a structure where 

X and Y should be antonyms. Thus, based on the above discussion, we know that 

the following sentence is well-formed: 

(129) I would rather work for [a club all members of which are teenagers]F 

than [a club all members of which are elderly]F. 

    Of course, this does not mean that (129) will necessarily become not 

well-formed if it becomes 

(130) I would rather work for [a club of which all teenagers are members]F 

than [a club of which all elderly are members]F. 

because when appearing in an antonymy context like “X rather than Y”, the 

meanings of X and Y will often be construed contrastively so as to become 

mutually incompatible. This is precisely the process of narrowing. For example, 

in (130) the meanings of “club of which all teenagers / elderly are members” may 

be narrowed down to say “club that includes all and only teenagers / elderly as 

members”, so as to make the two types of clubs contrary to each other. Thus, the 

results of opposition inferences can help us determine in what occasion 

narrowing is needed. 

 

4.4 Scalar Operators and Climax Construction Connectives
132

 

4.4.1 Focus Structure 

    As introduced in Chapter 2, scalar operators (SOs) and climax construction 
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connectives (CCCs) are studied independently by different scholars based on 

very different frameworks. Yet there is a certain degree of overlapping between 

the two types of lexical items. Table 2.1 shows a rough correspondence between 

Chinese CCCs and English particles that have been counted as SOs in the 

literature. Thus, it is instructive to treat SOs and CCCs on a par. More 

specifically, I claim that CCCs can be treated as SOs. In this section, I will 

reformulate some of the findings on SOs and CCCs introduced in Chapter 2 

using the I-function. But before doing so, I have to introduce some basic 

definitions. 

    According to König (1991), SOs are a subtype of focus particles. Thus, a 

sentence with an SO has a focus structure. For analysis we only need to consider 

the portion of the sentence constituting the scope of the SO. The focus structure 

of this portion will be represented as follows: 

(131) O(f)(λx(p(x))) 

where O represents the SO, f represents the focus value, p represents the scope of 

O (not including O itself) and λx(p(x)) is the result of λ-abstracting the focus 

from p. If p contains more than one focus, then f will be in the form of an ordered 

tuple. In the following example (with reference to Figure 2.1),
133

 

(132) A: Can jumper [x1]F1 clear obstacle [y6]F2? 

B: Sure. Jumper [x2]F1 can even clear obstacle [y7]F2. 

B’s response contains two foci and may be represented by 

(133) even(<x2, y7>)(λ<x, y>(“Jumper x can clear obstacle y”)) 

    The notions TP and CP introduced in Chapter 2 can also be expressed using 

the aforesaid notation. TP may be represented by λx(p(x))(f). CP may be 
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represented by λx(p(x))(f’) or ¬λx(p(x))(f’), where f’ represents an alternative 

focus value. Using this notation, the TP and CP of B’s response in (132) are, 

respectively, 

(134)  λ<x, y>(“Jumper x can clear obstacle y”)(<x2, y7>) 

 = “Jumper x2 can clear obstacle y7” 

(135)  λ<x, y>(“Jumper x can clear obstacle y”)(<x1, y6>) 

 = “Jumper x1 can clear obstacle y6” 

 

4.4.2 Standalone SOs 

    The SOs in Table 2.1 can be classified into two types: “standalone” SOs (e.g. 

“even”) and correlative SOs (e.g. “not only … but also …”). In this subsection, I 

will study the three most basic standalone SOs first. These include “even”, “not 

to mention”
134

 and “only” (under the scalar meaning). The objective of the study 

is to identify the conditions of use for these SOs. 

    Kay (1990) has proposed the condition of use for “even”, i.e. (42) of 

Chapter 2, which is based on the relative informativeness of the TP and CP 

associated with an “even”-sentence. I assume that this condition is also valid for 

the Chinese equivalents of “even”. By (42) of Chapter 2 and (13), this condition 

can easily be reformulated in terms of the I-function as follows: 

(136) even: I(TP) > I(CP) 

Using (132) as an example, we first determine the following I-function (which is 

identical to (12)): 

(137) I(“Jumper x can clear obstacle y”) = x × y 

Since with reference to Figure 2.1, x2 × y7 > x1 × y6, we have 
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(138) I(“Jumper x2 can clear obstacle y7”)  

> I(“Jumper x1 can clear obstacle y6”) 

By (134) – (136), we may thus conclude that “even” is properly used in (132) 

because the “even”-sentence satisfies the condition of use for “even”. 

    In a similar fashion, the conditions of use for “not to mention” and “only” 

(as well as their Chinese equivalents) may be formulated respectively as follows: 

(139) not to mention: I(TP) < I(CP) 

(140) only: I(TP) < I(¬CP) 

The following are sentences containing “not to mention” and “only” (the CPs are 

given in parentheses): 

(141) (John can clear obstacle [y7]F), not to mention obstacle [y6]F. 

(142) John can only clear obstacle [y6]F. (He cannot clear obstacle [y7]F.) 

These two sentences are associated with the following common I-function:  

(143) I(“John can clear obstacle y”) = y 

The proper use of SOs in (141) and (142) can both be accounted for by the 

inequality y6 < y7. For example, for (142), ¬CP = “John can clear obstacle y7”. 

Since y6 < y7, we have 

(144) I(“John can clear obstacle y6”) < I(“John can clear obstacle y7”) 

By (140), we may then conclude that “only” is properly used in (142). 

    The correct formulation of the I-function is crucial to the correct analysis of 

SOs. In different contexts, an SO may be associated with the same scale in 

opposite ways. Compare the following sentences which König (1991) classified 

as expressing sufficient and necessary conditions, respectively
135

: 

(145) Only a [B]F grade is required. (An [A]F grade is not required.) 
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(146) Only a [B]F grade is satisfactory. (A [C]F grade is not satisfactory.) 

Despite the fact that the two sentences may be seen as associated with the same 

scale: 

(147) X: <… C, B, A> 

the I-functions for the two sentences are very different because of the different 

SE patterns satisfied by them: 

(148) An A grade is required. u A B grade is required. u … 

(149) … u A B grade is satisfactory. u An A grade is satisfactory. 

Based on the above entailment patterns, we can determine the I-functions for 

(145) and (146), respectively, as follows: 

(150) I(“A x grade is required”) = x 

(151) I(“A x grade is satisfactory”) = 1 / x 

where x is a variable from (147). By using these I-functions, one can check that 

(145) and (146) satisfy condition (140) for “only”. 

    Incidentally, in Chinese the same morpheme “zhi” can appear as part of the 

conjunction for sufficient conditions “zhiyao” (≈ “provided that”) as well as the 

conjunction for necessary conditions “zhiyou” (≈ “only if”). This lends support 

to the assertion that “only” can enter into opposite reasoning directions in 

different contexts. 

 

4.4.3 Correlative SOs 

    An advantage of pursuing cross-linguistic study of SOs and CCCs is that we 

can gain some insight that may otherwise be overlooked. In Chinese grammar, 

correlatives
136

 are important constructions, and there are a number of correlative 
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CCCs. This suggests that we may also study “correlative SOs”, which has not 

been studied under SMT before. In this subsection, I will consider the correlative 

SOs shown in Table 2.1. 

    Comparing (136) and (139), one can find that the conditions of use for 

“even” and “not to mention” are opposite inequalities. This implies that the TP of 

the one can be the CP of the other, and so “even” and “not to mention” can 

readily form correlative SOs. In fact, there is a well-established Chinese 

correlative CCC – “shangqie … hekuang …” that corresponds to “even … not to 

mention …”. The condition of use for “even … not to mention …” is given 

below (in what follows, p and q represent propositions): 

(152) even p, not to mention q: I(p) > I(q) 

    Here is a Chinese example of this correlative SO: 

(153) Ta [gao]F lan shangqie tiao de guo, hekuang [di]F lan. 

 he high hurdle shangqie jump able over hekuang low hurdle 

 He can even jump over high hurdles, not to mention low hurdles. 

The I-function associated with this sentence can be determined as follows: 

(154) I(“Ta x lan tiao de guo”) = x 

where x is a variable from the following scale: 

(155) X: <di, gao> 

Since gao > di, we have 

(156) I(“Ta gao lan tiao de guo”) > I(“Ta di lan tiao de guo”) 

Since condition (152) is satisfied, we may conclude that “shangqie … 

hekuang …” is properly used in (153). 

    Next consider “not only … but also …”. Here we have a case of an SO 

embedded under the scope of the negation operator. Since the framework adopted 

in this thesis considers just one facet of the meaning of the SOs, I am not going 
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to derive the meaning of “not only” compositionally. Instead, I will treat “not 

only” holistically (just like the GQ “fewer than n”) by contrasting it with “only”. 

While “only” implies that an alternative proposition with a higher 

informativeness, i.e. the CP, is not true, “not only” implies that the CP is true. 

Thus, the condition of use for “not only” should be 

(157) not only: I(TP) < I(CP) 

i.e. identical to condition (139) for “not to mention”. 

    But “not only” is seldom used in isolation. Its condition of use shows that it 

is readily paired with “even”. In English, “not only … but also …” is a 

commonly used correlative which uses the non-scalar particle “also”. But just 

like “only”, “also” may have scalar use, especially when it appears in the 

aforesaid correlative. In such a context, the function of “also” is in fact very 

similar to that of “even”, because both are additive focus particles according to 

König (1991). Therefore, I claim that “not only …, but even …” and “not 

only …, but also …” are near-variants of each other. Interestingly, in Chinese we 

also have the two variants “budan … erqie …” and “budan … lian_dou / 

shenzhi …” corresponding to these two English variants. Here is the condition of 

use for this correlative: 

(158) not only p, but also q: I(p) < I(q) 

    Given the scalar use of the originally non-scalar additive particle “also”, one 

may conjecture that other additive particles may also have scalar use. This 

conjecture is borne out as Zhou (2007) pointed out that in Chinese the inclusive 

construction “chule … hai / you / zai / qie / bingqie / erqie …” (corresponding to 

the English construction “besides … also …”) can also be used as a CCC, as 

exemplified by 
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(159) Ta chule hui zuo [jiashu]F, hai hui zuo [chengshu]F. 

 he chule know do addition hai know do multiplication 

 Besides knowing how to add, he also knows how to multiply. 

In the above sentence, “chule p, hai q” conveys the same meaning as “budan p, 

erqie q”. The I-function associated with this sentence can be determined as 

follows: 

(160) I(“Ta hui zuo x”) = x 

where x is a variable from the following scale: 

(161) X: <jiashu, chengshu> 

Since jiashu < chengshu, we have 

(162) I(“Ta hui zuo jiashu”) < I(“Ta hui zuo chengshu”) 

Since condition (158) is satisfied, we may conclude that “chule … hai …” is 

properly used in (159). 

    Based on the discussion above, we find that “even” appears in two 

correlatives: “even … not to mention …” and “not only … but even …” (being a 

near-variant of “not only … but also …”). One may thus conjecture that the two 

correlatives may be combined in one sentence with “even” acting as a bridge. 

This conjecture is borne out as Zhou (2007) pointed out that there does exist a 

construction “budan … lian_dou … hekuang …” in Chinese. 

    But in fact “also” and “even” are a bit different in that the latter is more 

emphatic than the former. This can be illustrated by the fact that in Chinese, 

“budan”, “erqie” and “shenzhi” can form a three-part correlative “budan … 

erqie … shenzhi …”. Interestingly, in English we can also find sentences with 

the structure “not only p, but also q, and even r”, such as the following (through 
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google search)
137

: 

(163) The study of astrology, he argues, offers a practical method of not only 

becoming more conscious of these subtle connections but also of testing 

and even predicting their occurrence throughout our lives. 

The condition of use of this three-part correlative is given below: 

(164) not only p, but also q, and even r: I(p) < I(q) < I(r) 

    Next consider the Chinese correlative “budan bu … faner …”. As 

introduced in Chapter 2, in the construction “budan bu p, faner q”, q is not only 

contrary to p, but also denotes a larger scope or higher degree than ¬p. Thus, the 

condition of use for “budan bu … faner …” can be formulated as: 

(165) budan bu p, faner q: I(¬p) < I(q) 

Here is an example of “budan bu … faner …”: 

(166) Jintian wuhou xia le yi chang lei zhenyu, budan 

 today afternoon fall ASP one CLS thunder shower budan 

 meiyou liang xia lai, tianqi faner geng menre le. 

 not yet cool down come weather faner more stuffy PART 

 After the thunder shower this afternoon, not only hasn’t it got cooler. Quite the 

contrary, it gets even more stuffy. 

The I-function associated with this sentence can be determined as follows: 

(167) I(“Jintian wuhou xia le yi chang lei zhenyu, tianqi x”) = x 

where x is a variable from the following scale: 

(168) X: <¬liang xia lai, geng menre> 

Since ¬liang xia lai < geng menre, we have 

(169) I(¬(“Jintian wuhou xia le yi chang lei zhenyu, tianqi liang xia lai”)) < 
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I(“Jintian wuhou xia le yi chang lei zhenyu, tianqi geng menre”) 

Since condition (165) is satisfied, we may conclude that “budan bu … faner …” 

is properly used in (166). 

    It was also pointed out in Chapter 2 that sometimes “faner q” may be used 

alone, provided that there is an appropriate presupposed clause in the context 

playing the same role as p in “budan bu p, faner q”. Using the terminology of this 

thesis, this p is the CP of the “faner”-sentence. Based on (165), we may then 

formulate the condition of use for a standalone “faner” as follows: 

(170) faner: I(TP) > I(¬CP) 

 

4.4.4 SO + Conjunction 

    Some SOs may combine with conjunctions to form composite conjunctions 

such as “even if”, “even though”, “not to mention if”, “only if”, “only when”, etc. 

In Chinese, we have the conjunctions “jishi”, “jiusuan”, etc. which perform the 

same function as “even if”, although they do not have the transparent form of 

“CCC + Conjunction”. 

    I will analyse these composite conjunctions as an SO acting on a complex 

sentence. In this case, the focus of the SO will be a proposition. For example, 

consider the following sentence
138

: 

(171) Even if [it snows]F, the match will not be cancelled. (If [it rains]F, the 

match of course will not be cancelled.) 

The TP of this sentence may be represented as 

(172) even(“it snows”)(λx(“The match will not be cancelled if x”)) 

We may adopt the following I-function for (171): 
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(173) I(“The match will not be cancelled if x”) = x 

where x is a variable from the scale <“it is windy”, “it rains”, “it snows”>, one 

can easily verify that (171) satisfies condition (136) for “even”. 

 

4.4.5 SO + Negation 

    In Chapter 2, I have introduced two different approaches for analyzing 

“even” + negation – the Scope Approach and the Lexical Approach. Each of the 

two approaches has its own merits and demerits. In this thesis, I adopt the Scope 

Approach, which maintains that a sentence like 

(174) John cannot even clear obstacle [y3]F. (No doubt he cannot clear 

obstacle [y4]F.) 

should be analysed as “even” taking wider scope than “not”, i.e. 

(175) even(y3)(λy(¬(“John can clear obstacle y”))) 

    Based on (143) and (16), we can then obtain the following I-function: 

(176) I(¬(“John can clear obstacle y”)) = 1 / y 

Since 1 / y3 > 1 / y4, we have 

(177) I(“John cannot clear obstacle y3”) > I(“John cannot clear obstacle y4”) 

By condition (136) for “even”, we may then conclude that “even” is properly 

used in (174). 

    One reason why I prefer the Scope Approach is that in English, negative 

“even”-sentences can be reorganized as having “even” before “not”, as 

exemplified by the following reorganized version of (174): 

(178) John even cannot clear obstacle [y3]F. (No doubt he cannot clear 

obstacle [y4]F.) 

More interestingly, in Chinese, “lian / shenzhi” must appear before the negation 

operator, as exemplified in the following sentence: 
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(179) Zhangsan lian [di]F lan dou tiao bu guo. 

 Zhangsan lian low hurdle dou jump not over 

 Zhangsan cannot even jump over low hurdles. 

    When we consider correlatives like the “even … not to mention …” + 

negation structure, we will find another advantage of the Scope Approach. 

Consider the following sentence: 

(180) He cannot even clear obstacle [y3]F, not to mention obstacle [y4]F. 

Under the Scope Approach, both “even” and “not to mention” are seen to be 

taking wider scope than “not”, and so both clauses have the same I-function 

(176). The proper use of “even … not to mention …” in the above sentence can 

thus be accounted for by the condition of use (152) and the correctness of the 

inequality 1 / y3 > 1 / y4. 

    In contrast, under the Lexical Approach, the “even” in (180) is seen to be an 

NPI “evenNPI” taking narrower scope than “not” with the following condition of 

use (c.f. (136)): 

(181) evenNPI: I(TP) < I(CP) 

In order to account for the proper use of the correlative “even … not to 

mention …” in (180), we then have to postulate an NPI “not-to-mentionNPI” with 

the following condition of use (c.f. (139)): 

(182) not-to-mentionNPI: I(TP) > I(CP) 

as well as the following condition of use for the correlative (c.f. (152)): 

(183) evenNPI p, not-to-mentionNPI q: I(p) < I(q) 

This analysis is equivalent to saying that “not to mention” also takes narrower 

scope than “not” in (180), just like “even”. But this is untenable because the 
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second clause of (180) can be expanded to
139

 

(184) … not to mention the fact that he cannot clear obstacle [y4]F. 

in which “not to mention” takes wider scope than “not” rather than the other way 

around. The above argument shows that the Scope Approach is more plausible. 

 

4.4.6 Certain Complex Sentence Types 

    As shown by (152), “even” and “not to mention” play contrastive roles in 

the correlative they form. Apart from pairs of lexical items, certain pairs of 

complex sentence types may also enter into such a relationship. According to 

Talmy (2000)’s Force Dynamics Schema, causal and concessive sentences 

represent different consequences of interaction between an external force and a 

hindrance. Causal sentences represent the consequence of the external force 

successfully overcoming the hindrance and yielding the normal result, whereas 

concessive sentences represent the consequence of the external force failing to 

overcome the hindrance and yield the normal result. Talmy (2000)’s analysis can 

be extended to two more sentence types that are closely related to causal 

sentences and concessive sentences. They are hypothetical conditional sentences 

and hypothetical concessive sentences, respectively. Note that according to Xing 

(2001)’s classification scheme, causal and hypothetical conditional sentences 

both are subtypes of “generalized causal complex sentences”, whereas 

concessive and hypothetical concessive sentences both are subtypes of 

“generalized contrastive complex sentences”. 

    The above results can be reinterpreted in terms of informativeness. The 

external force successfully overcoming the hindrance and yielding the normal 

result represents an expected scenario and so have relatively low informativeness. 

                                                 
139

 A lot of examples of “not to mention the fact that” can be found on the Internet. 
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In contrast, the external force failing to overcome the hindrance and yielding the 

normal result represents an unexpected scenario and so have relatively high 

informativeness. Based on (152), we can thus establish the correspondence 

between “not to mention / “even” and the four types of complex sentences 

mentioned above as summarized in the following table: 

Table 4.1  Correspondence between SOs and Complex Sentence Types 

Informativeness SO Complex Sentence Type 

relatively high even 
concessive sentence /  

hypothetical concessive sentence 

relatively low not to mention 
causal sentence /  

hypothetical conditional sentence 

Based on the above table, I predict that causal / hypothetical conditional 

sentences and concessive / hypothetical concessive sentences may form multiple 

complex sentences
140

 such that the two parts denote contrastive informativeness 

just as “not to mention” and “even” do in (152). The above prediction is borne 

out by the following Chinese multiple complex sentence
141

: 

(185) Jishi wo [tiantian]F dagong, ye zhuan bu dao 20,000. 

 even if I everyday work also earn not able 20,000 

 Ruguo wo [getian]F dagong, jiu geng zhuan bu dao 20,000. 

 if  every other day  then more  

 Even if I work everyday, I cannot earn $20,000, much less if I work every other day. 

I assume that the concessive conditional and hypothetical conditional sentences 

above are both associated with the following I-function: 

(186) I(“Wo x dagong, zhuan bu dao 20,000”) = x 

where x is a variable from the following scale of frequency: 

                                                 
140

 Multiple complex sentence is a notion in Chinese grammar. It refers to a complex sentence 

that is made up of multiple levels of constituent complex sentences. 
141

 Adapted from Li (2000), Ch. 4, [30], p. 138. 
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(187) X: <getian, tiantian> 

Since according to this scale, tiantian > getian, we have 

(188) I(“Wo tiantian dagong, zhuan bu dao 20,000”)  

> I(“Wo getian dagong, zhuan bu dao 20,000”) 

One can thus see that the concessive conditional and hypothetical conditional 

sentences in (185) play the same roles as “even p” and “not to mention q” in 

(152), respectively. This is consistent with the result in Table 4.1. 

 

4.4.7 Comparative Constructions 

    As pointed out in the previous sections, scalar reasoning can be seen as 

comparison of informativeness, an attribute of propositions. Thus, scalar 

reasoning is closely related to comparison of attributes. We thus expect that 

lexical items used in comparative constructions may be used as SOs. In fact, in 

Chinese there does exist one such item – “geng / gengjia”. Roughly equivalent to 

“more”, “geng” is often used in comparative constructions, and may also be used 

in climax constructions. However, since “geng” only denotes higher order of a 

scalar term in a scale regardless of the nature of the scale, it may play very 

different roles in different types of climax constructions. 

    According to Xing (2001), “geng” may appear as part of the complex 

sentence schemas “budan p, (erqie) geng q” (≈ “not only p, but even q”) and 

“shangqie p, geng (hekuang) q” (≈ “even p, not to mention q”). Note that 

according to conditions (158) and (152), “geng” plays opposite roles in these two 

schemas. In “budan p, (erqie) geng q”, q has a higher informativeness than p, 

whereas in “shangqie p, geng (hekuang) q”, q has a lower informativeness than p. 

But in the latter case, we may also say that q has a higher likelihood than p. Thus, 

despite the opposite roles, “geng” in fact expresses the same core meaning (i.e. 
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“more”) in the two schemas. 

    There is another word displaying similar features – “guran / ziran”. Roughly 

equivalent to “of course / naturally”, “guran” is usually used for assertion rather 

than comparison. But it can also be used in contrast with “geng” to denote 

relative lower order in a scale, just like the case of a positive degree adjective 

used in contrast with a comparative degree adjective. Interestingly, when used in 

the schemas “guran p, geng q”, “guran” may also play opposite roles in different 

contexts.  

    According to Xing (2001), “guran p, geng q” may be rewritten as “budan p, 

geng q” or “shangqie p, geng q” in different contexts. As discussed in the above, 

clauses p and q have opposite comparative relations in terms of informativeness 

in these two schemas. Despite this, “guran p, geng q” expresses the same core 

meaning, i.e. q has a higher order than p in a scale (be it an informativeness scale 

or a likelihood scale). 

 

4.4.8 “even” and “at least” 

    In Chapter 2, I have categorized “even” and “at least” as an emphatic SO 

and an attenuating SO, respectively. I have also formulated two alternative 

conditions of use for each of them. With the notion of I-function, I will now 

reformulate these conditions of use as follows (c.f. (42), (49), (52) and (54) of 

Chapter 2): 

(189) even: I(TP) > I(CP) or I(TP) is extremely high, though not necessarily 

the highest 

(190) at least: I(TP) > I(CP) or I(TP) is very low, but not the lowest 

    An advantage of using the I-function is that the I-function, in conjunction 

with the Proportionality Calculus introduced in Subsection 4.2.4, can clearly 
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show the interaction between the direction of scalar reasoning and the argument 

structure of a sentence, and thus reveal certain features that would otherwise be 

overlooked. 

    Since “even” and “at least” are in a sense opposite to each other, they are 

mainly associated with different scalar reasoning. Based on Figure 2.2, “even”, 

being a highly informative SO, is mainly associated with SEs; whereas “at least”, 

being a lowly informative SO, is mainly associated with SIs. I thus predict that 

these two SOs will give rise to inferences in opposite directions. This prediction 

is borne out by the following examples: 

(191) Every jumper can even clear obstacle [y6]F, (not to mention obstacle 

[y5]F.) 

(192) At least every jumper can clear obstacle [y5]F. (But it’s hard to say if 

they can clear obstacle [y6]F.) 

In the above, the “not to mention”-sentence is a lowly informative but certain 

statement entailed by the “even”-sentence, while the “hard to say”-sentence is a 

highly informative but uncertain statement implicated by the “at 

least”-sentence
142

. The felicity of these two examples can be accounted for by 

using the following I-function
143

: 

(193) I(every(JUMPER)({x: x can clear obstacle y})) = y 

where y is a variable from the scale Y defined in (11). An important point to note 

                                                 
142

 Note that the “hard to say”-sentence represents the “ignorant” epistemic force of an 

implicature, which is different from the “strong” epistemic force assumed in Subsection 2.4.2 of 

Chapter 2. Since the main theme of this section is not to discuss the pragmatics of SIs, there is no 

harm to assume a different epistemic force here. 
143

 Note that although the informativeness of the SM associated with an “at least”-sentence is 

reflected by the desirability rather than likelihood of the propositions, the I-function for the “at 

least”-sentence has the same form as that for the “even”-sentence in this particular example. This 

is because the harder the obstacle, the more desirable (and thus more informative) that every 

jumper can clear that obstacle. On the other hand, the harder the obstacle, the less likely (and thus 

also more informative) that every jumper can clear that obstacle. Hence the I-function has the 

same form in both cases. 
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is that in the above two examples, the positions where “y6” and “y5” appear in the 

main propositions and the entailed / implicated propositions are exactly opposite. 

    In (191) and (192), “y6” and “y5” fall within the right argument of “every”. 

In case they fall within the left argument of “every”, I predict that the positions 

where they appear will be opposite to those in (191) and (192), because the left 

and right arguments of “every” have opposite monotonicities. Again, this 

prediction is borne out by the following examples: 

(194) Even all those who can clear obstacle [y5]F will get a medal, (not to 

mention those who can clear obstacle [y6]F.) 

(195) At least all those who can clear obstacle [y6]F will get a medal. (But it’s 

hard to say if those who can clear obstacle [y5]F will get a medal.) 

Note that these two examples are associated with the following I-function: 

(196) I(every({x: x can clear obstacle y})(GET-MEDAL)) = 1 / y 

Comparing (196) and (193), one can see that the variable y has opposite 

proportionalities in (194) – (195) and (191) – (192). This explains why the 

differences between the two sets of examples arise. 

    Despite the opposite rhetorical functions performed by “even” and “at least”, 

these two SOs in fact share some commonalities, which are best illustrated by the 

fact that each of them has an alternative condition of use in the same form (i.e. 

I(TP) > I(CP), see (189) and (190)). An interesting consequence of this is that in 

some languages, the same word (used with different intonation and / or 

co-occurring particles) may perform the dual functions of “even” and “at least”. 

One such example is Slovenian “magari”, as proposed by Crnič (2011). I propose 

that Cantonese “dou” is another example
144

. 

                                                 
144

 In this thesis, the Cantonese words are transcribed using Jyutping, a Romanization scheme 

devised by the Linguistic Society of Hong Kong. 
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    Cantonese “dou” can be used to convey a variety of different meanings, 

including scalar meanings. Among its scalar meanings, the emphatic scalar 

meaning is similar to that of Mandarin Chinese “dou”, which may be seen as a 

short form of the CCC “lian_dou”, a counterpart of English “even”. Thus, 

Cantonese “dou” can be used like “even”, as in the following example: 

(197) Keoi [singsou]F dou sik laa, [gaasou]F ganggaa m sai gong. 

 he multiplication dou know PART addition more not need say 

 He even knows how to multiply, not to mention add. 

In the above example, the use of “dou” is accompanied by the sentence-final 

particle “laa” (first tone), which expresses an emphatic / hyperbolic mood. But 

“dou” can also be used as an attenuating SO similar to “at least”. This use of 

“dou” is often accompanied by a sentence-final particle that expresses a 

concessive mood, such as “ge” (second tone). This concessive mood conveys the 

“settle for less” meaning associated with “at least”. Here is an example of this 

use of “dou”: 

(198) Keoi [gaasou]F dou sik ge, [singsou]F zau naan gong laa. 

 he addition dou know PART multiplication then hard say PART 

 It’s hard to say whether he knows how to multiply. But at least he knows how to add.  

Note that the two scalar terms “singsou” and “gaasou” have exchanged positions, 

showing that “dou” is playing opposite roles in these two examples. 

 

4.4.9 Chinese Rhetorical Questions and “ba”-questions 

    In Chinese, there are two types of non-canonical questions – rhetorical 

questions and “ba”-questions (i.e. questions formed by adding the sentence-final 

particle “ba”). Chinese rhetorical questions may appear in various forms. In this 

thesis, I will use rhetorical questions in the form of “ma”-questions (i.e. 
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questions formed by adding the sentence-final particle “ma”) as representative. 

According to Shao (1996), Chinese questions may be classified according to their 

“degrees of interrogation”, and rhetorical questions and “ba”-questions have 

extremely low and very low degrees of interrogation, respectively
145

. This thesis 

will not study the semantics of interrogatives. Suffice it to say that Chinese 

rhetorical questions and “ba”-questions are used not to request for information 

but to assert the high certainty of their associated propositions. For a 

“ba”-question, the associated proposition is the declarative obtained after 

deleting “ba”. For a rhetorical “ma”-question, the associated proposition is the 

negation of the declarative obtained after deleting “ma”. 

    The certainty of a proposition is often manifested as the likelihood that the 

proposition is realized. So by virtue of (9), rhetorical questions and 

“ba”-questions denote propositions with extremely low and very low 

informativeness, respectively. A natural corollary of this fact is that these two 

types of questions may interact with SOs, especially the Chinese counterparts of 

“even” (i.e. “lian_dou / shenzhi”) and “at least” (i.e. “zhishao / qima”), whose 

conditions of use involve opposite ends of the informativeness scale. 

    The previous subsection has shown that “even” and “at least” satisfy the 

following patterns of scalar reasoning: 

(199) “even”-sentence u “not to mention”-sentence 

 (highly informative)  (lowly informative and certain) 

(200) “at least”-sentence +> “hard to say”-sentence 

 (lowly informative)  (highly informative and uncertain) 

Based on the above observation, I predict that rhetorical questions and 

                                                 
145

 Within the range of [0, 1], Shao (1996) assigned 0 and 1/4 as the degrees of interrogation of 

rhetorical questions and “ba”-questions, respectively. 
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“ba”-questions, which are lowly informative and certain, can take the place of 

“not to mention”-sentences and “at least”-sentences in the above patterns. This 

prediction is borne out by the following examples (c.f. (191) and (192)): 

(201) Ta lian [gao]F lan dou tiao de guo, 

 he lian high hurdle dou jump able over 

 hui tiao bu guo [di]F lan ma?  

 will jump not over low hurdle ma  

 He can even jump over high hurdles. Can’t he jump over low hurdles? 

(202) Hen nan shuo ta shifou tiao de guo [gao]F lan, 

 very hard say he whether jump able over high hurdle 

 dan yinggai tiao de guo [di]F lan ba? 

 but should jump able over low hurdle ba 

 It’s hard to say if he can jump over high hurdles. But he should be able to 

jump over low hurdles, right? 

In (201), the rhetorical question actually conveys the meaning “Needless to say 

he can jump over low hurdles”. It thus functions like a “not to mention”-sentence 

in (199). In (202), the “ba”-question actually conveys the meaning “At least he 

should be able to jump over low hurdles”. It thus functions like an “at 

least”-sentence in (200). An interesting point to note here is that “hekuang”, 

which is a Chinese equivalent of “not to mention”, was historically an ancient 

Chinese WH-phrase often used to form rhetorical questions. This fact lends 

further support to my analysis
146

. 

    The relation between “lian_dou / zhishao” and rhetorical / “ba”-questions 

are so closed that the former can even form part of the latter. As mentioned above, 

                                                 
146

 In this thesis, I follow some scholars (such as Xing (2001)) by treating “hekuang” as an 

unanalysed SO instead of an interrogative structure. 
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a rhetorical “ma”-question asserts extremely high likelihood of the negation of 

the declarative obtained after deleting “ma”. But if ¬p is extremely likely, then p 

is extremely unlikely, and is thus extremely informative. By (189), I predict that 

a “lian_dou”-sentence can form part of a rhetorical question with the 

“lian_dou”-subpart and the whole rhetorical question denoting opposite ends of 

the informativeness scale. On the other hand, as a “ba”-question asserts very high 

likelihood of its associated proposition, by (190), I predict that a 

“zhishao”-sentence can form part of a “ba”-question with the “zhishao”-subpart 

and the whole “ba”-question both denoting very low informativeness. The above 

predictions are borne out by the following example: 

(203) Ta shi zui hao de xuanshou, hui 

 he is most good POSS athlete will 

 lian [di]F lan dou tiao bu guo ma? 

 lian low hurdle dou jump not over ma 

 Being the best athlete, couldn’t he jump over even the low hurdle? 

(204) Ta bu shi zui cha de xuanshou, 

 he not is most bad POSS athlete 

 yinggai zhishao tiao de guo [di]F lan ba? 

 should zhishao jump able over low hurdle ba 

 He is not the worst athlete. At least he should be able to jump over the 

low hurdle, right? 

In (203), the “lian_dou”-subpart (i.e. “lian di lan dou tiao bu guo”) denotes high 

informativeness, while the whole rhetorical question denotes low 

informativeness. In (204), both the “zhishao”-subpart (i.e. “zhishao tiao de guo di 

lan”) and the whole “ba”-question denote low informativeness. 

    To conclude this section, I now summarize the conditions of use of the 
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standalone and correlative SOs studied in this thesis in the following table:
147

: 

Table 4.2  Conditions of Use of SOs 

SO Condition of Use 

even 

I(TP) > I(CP) or 

I(TP) is extremely high, though not 

necessarily the highest 

at least 
I(TP) > I(CP) or 

I(TP) is very low, but not the lowest 

not to mention I(TP) < I(CP) 

only I(TP) < I(¬CP) 

not only I(TP) < I(CP) 

on the contrary I(TP) > I(¬CP) 

even p, not to mention q I(p) > I(q) 

not only p, but also / even q I(p) < I(q) 

not only p, but also q, and even r I(p) < I(q) < I(r) 

not only not p, on the contrary q I(¬p) < I(q) 

 

4.5 Subjective Quantity
148

 

4.5.1 SQOs Based on Informativeness 

    In Chapter 2, I have introduced the notion of subjective quantity (SQ) and 

distinguished two types of subjective quantity operators (SQOs): abnormal SQOs 

represented by “dou” and infected SQOs represented by “hekuang”. Now these 

two SQOs are also SOs
149

 denoting different informativeness. In this subsection, 

I will show that the contrast between some abnormal and infected SQOs is in fact 

manifestation of the contrast between high and low informativeness. Thus, I will 

use the more general concept of high / low informativeness instead of 

                                                 
147

 For convenience, the scalar lexical items listed here are only given in English. See Table 2.1 

for the rough Chinese equivalents of some of these items. 
148

 Some parts of this section have been published in Chow (2011c) (in Chinese) and will be 

published in Chow (2012c) (in Chinese). 
149

 Both Liu (2000) and Shen (2001) contended that “hai” is also an SO. But as pointed out by 

Zhang (2003), the scalar meaning of “hai” is derived from its meaning as an aspectual operator 

(i.e. “continue” or “remain”). Therefore, the formal pragmatics of “hai” is complicated and I will 

not consider it in this chapter. 
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abnormality / infection to distinguish these SQOs. 

    In Chapter 2, I have summarized Li (2000)’s findings on the SQs triggered 

by “dou” in Table 2.2. I now provide an account for these findings by 

considering two specific examples: 

(205) Ta [20 jin]F dou tiao de qi. 

 he 20 catty dou lift able up 

 He can even lift up 20 catties. 

(206) Ta tiao [20 jin]F dou juede lei. 

 he lift 20 catty dou feel tired 

 He felt tired even though he only carried 20 catties. 

The I-functions of these two sentences can be determined as follows: 

(207) I(“Ta x tiao de qi”) = x 

(208) I(“Ta tiao x juede lei”) = 1 / x 

where x is a variable of weights. The rationale of these functions is based on the 

informativeness of the proposition, which is inversely proportional to the 

likelihood of the sentential predicate. 

    Assuming “dou” is subject to the same condition of use for “even”, i.e. 

(136), the felicitous use of “dou” in (205) and (206) requires that I(TP) > I(CP). 

In (205), I(TP) = 20 jin. If the quantity in the CP (which in the case of “dou” is 

also the expected value) is x1 say, then in order to satisfy (136), we must have 20 

jin > x1. Therefore, the focused scalar term
150

 “20 jin” in (205) must denote an 

SQ larger than expected, i.e. a large SQ. Similarly, in (206), if the quantity in the 

CP is x2 say, then in order to satisfy (136), we must have 1 / 20 jin > 1 / x2, or 

equivalently, 20 jin < x2. Therefore, “20 jin” in (206) must denote an SQ smaller 

                                                 
150

 In Chapter 2, these terms are called “quantity phrases”. Since I now treat SQ as a scalar 

phenomenon, I will adopt the terminology of SMT and call these “scalar terms”. 
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than expected, i.e. a small SQ. 

    The above analyses can be generalized as follows: if x is directly (inversely) 

proportional to the informativeness of the sentence, or equivalently inversely 

(directly) proportional to the likelihood of the sentential predicate, then x must 

denote large (small) SQ. This conclusion is in accord with Table 2.2. The above 

discussion also shows that the SQ triggered by “dou” is in fact a by-product of 

the meaning of this particle as an SO. 

    Apart from “dou”, I have also studied other SOs denoting relatively high 

informativeness in the previous section. These SOs may also trigger SQ. For 

example, consider the following sentence with the SO “faner”: 

(209) (Ta tiao bu qi na ge zhong [10]F jin de), 

 he lift not up that CLS weigh 10 catty POSS 

 faner tiao de qi zhe ge zhong [20]F jin de. 

 faner lift able up this CLS weigh 20 catty POSS 

 (He could not lift up that 10-catty weight.) Yet he could lift up this 

20-catty weight. 

I assume that this sentence is associated with the I-function given in (207). 

According to (170), the felicitous use of “faner” requires that I(TP) > I(¬CP). In 

(209), I(TP) = 20 jin and I(¬CP) = 10 jin. Thus, condition (170) for “faner” is 

satisfied. Moreover, since the focused scalar term “20 jin” is larger than the 

expected quantity “10 jin”, “20 jin” denotes large SQ in (209), which is in accord 

with our intuition about this sentence. 

    SQOs denoting relatively low informativeness such as “bieshuo / hekuang” 

can also be analysed in a similar fashion. Consider the following example: 

(210) Bieshuo [10 jin]F, ta [20 jin]F dou tiao de qi. 
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 bieshuo 10 catty he 20 catty dou lift able up 

 He can even lift up 20 catties, not to mention 10 catties. 

Here I focus on the “bieshuo”-clause above. According to condition (139), the 

felicitous use of “bieshuo” above requires that I(TP) < I(CP). Using (207) as the 

I-function associated with (210), I(TP) = 10 jin. If the quantity in the CP is x1 say, 

then in order to satisfy (139), we must have 10 jin < x1. Therefore, “10 jin” in 

(210) must denote a small SQ. 

    In Section 4.4, I have also shown that certain complex sentence types, 

comparative constructions and non-canonical questions may function like 

constructions with SOs. It turns out that these can also trigger SQs. Consider the 

following examples: 

(211) Ta [10 jin]F dou tiao bu qi, 

 he 10 catty dou lift not up 

 neng tiao de qi [20 jin]F ma? 

 can lift able up 20 catty ma 

 He cannot even lift up 10 catties. Can he lift up 20 catties? 

(212) Jishi [10 jin]F de danzi, ta dou tiao bu qi. 

 even if  POSS load  

 Ruguo huan le [20 jin]F de danzi, ta gengjia tiao bu qi. 

 if change ASP   more  

 Even if the load weighs only 10 catties, he cannot lift it up, much less if the 

load weighs 20 catties. 

In (211), the second clause is a rhetorical question. In (212), the second complex 

sentence is a hypothetical conditional sentence with the comparative particle 

“gengjia”. Both these constructions function like a “hekuang”-clause with 

relatively low informativeness and the scalar term “20 jin” in these two sentences 
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denotes large SQ. 

 

4.5.2 “jiu”, “cai” and “zhi” 

    In Chapter 2, I pointed out that abnormal SQ comes from unexpectedness, 

whereas in the previous subsection I correlated abnormal SQ with high 

informativeness. In many situations, unexpectedness does coincide with high 

informativeness, because many unexpected events are unlikely and so highly 

informative. However, unexpectedness and informativeness are independent 

concepts and may not coincide in some situations, especially when it involves 

personal expectation which may not coincide with the normal state of affairs. 

    I contend that some SQOs are based on unexpectedness rather than 

informativeness. These include “jiu” and “cai”. Moreover, as shown in Table 2.3, 

the use of “jiu” and “cai” are peculiar in that they trigger SQs according to the 

relative locations of the focused scalar terms. Therefore, we need to provide a 

separate treatment for these two SQOs. It turns out that this treatment is also 

based on proportionality relation albeit of a different kind than the SOs. 

    In what follows I will only consider the case that “jiu / cai” appears as an 

adverbial in front of the sentential predicate. Let L1, … Lm be scalar terms 

located on the left of “jiu / cai”, and R1, … Rn be scalar terms located on the right 

of “jiu / cai” in a sentence. Then I define the following function: 

(213) LARGENESS = (R1 × … × Rn) / (L1 × … × Lm) 

which is a combined measure of the largeness of the scalar terms. The rationale 

of this formula is as follows: scalar terms on the right of “jiu / cai” are in the 

object / complement positions that are directly related to the sentential predicate 

and thus reflect (i.e. directly proportional to) the largeness of the quantity 

expressed by it; whereas scalar terms on the left are in contrast to (i.e. inversely 
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proportional to) those on the right. Thus, the scalar terms on the right (left) 

appear in the numerator (denominator) of the above function. 

    For example, consider the following sentences: 

(214) [Liang]F ge ren jiu zhuan de [40,000 yuan]F. 

(215) [Liang]F ge ren cai zhuan de [20,000 yuan]F. 

 2 CLS person jiu / cai earn get  dollar 

 The two of them earn as much as $40,000. / 

The two of them only earn $20,000. 

Let n and m be variables of natural number and monetary value, respectively. 

Then by (213), we have the following LARGENESS function for (214) and 

(215): 

(216) LARGENESS = m / n 

Note that the above is in fact a ratio measuring the amount of money earned per 

person. Thus, we may say that (213) is a ratio measuring the relative largeness of 

the quantity expressed by the sentential predicate, and “jiu” and “cai” denote that 

this ratio is large and small, respectively. Based on the above observation, I now 

formulate the conditions of use for “jiu” and “cai” as follows: 

(217) jiu: LARGENESS(TP) > LARGENESS(CP) 

(218) cai: LARGENESS(TP) < LARGENESS(CP) 

    We can now account for the SQs triggered by “jiu / cai” in (214) and (215). 

For (214), by (216), we have LARGENESS(TP) = 40,000 / 2. If the expected 

quantity in the CP is m / n say, then in order to satisfy condition (217), we must 

have 40,000 yuan  m and 2  n. Therefore, “40,000 yuan” and “liang” must 

denote large and small SQs, respectively. A similar analysis on (215) will show 

that “20,000 yuan” and “liang” denote small and large SQs, respectively. 

    The above analyses can be generalized as follows: if x is located on the left 
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(right) of “jiu”, then x must denote small (large) SQ; if x is located on the left 

(right) of “cai”, then x must denote large (small) SQ. This conclusion is in accord 

with Table 2.3. 

    To summarize, conditions (217) and (218) show that the proper use of “jiu” 

and “cai” depends on a comparison between the quantities under discussion and 

the expected quantities. So “jiu” and “cai” are abnormal SQOs. On the other 

hand, since the LARGENESS function as defined in (213) is determined by the 

relative positions of the scalar terms wrt “jiu / cai”, this shows that “jiu” and 

“cai” are also directly assigned SQOs. This explains the dual nature of “jiu” and 

“cai”. 

    Finally, we come to the problematic “zhi” (≈ “only”). Li (2000) classified 

“zhi” as a directly assigned SQO. In fact, “zhi” may take the place of “cai” in 

some sentences. For example, (215) above may be rewritten as 

(219) [Liang]F ge ren zhi zhuan de [20,000 yuan]F. 

Moreover, as pointed out by Zeevat (2009), “only” is a mirative particle denoting 

unexpectedness. It is thus plausible to analyse “zhi” in a fashion similar to “cai”. 

    However, according to condition (140), “zhi” is also an SO denoting 

relatively low informativeness. Therefore, I predict that “zhi”, just like other SOs 

based on informativeness, should be able to trigger both large and small SQs in 

different contexts. This prediction is borne out by the following examples
151

: 

(220) Zhongguo sheng Yilang zhi xu chu [ban]F li. 

 China win Iran zhi need use half strength 

 China only needs to use half of their strength to beat Iran. 

(221) Yu qu sheng zhi neng [quan]F li yi fu. 

                                                 
151

 Adapted from headlines of sports news found on the Internet: 

http://sports.iyaxin.com/content/2010-07/30/content_2019091.htm and 

http://sports.sina.com.cn/cba/2012-01-06/09115896193.shtml. 

http://sports.iyaxin.com/content/2010-07/30/content_2019091.htm
http://sports.sina.com.cn/cba/2012-01-06/09115896193.shtml
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 wish gain victory zhi able full strength PART go 

 Only with all-out efforts can you win a victory. 

In the above examples, “zhi” denotes the same meanings as “zhiyao” and 

“zhiyou”, respectively. As pointed out in Subsection 4.4.2, “zhiyao” and 

“zhiyou” are conjunctions for sufficient and necessary conditions, respectively, 

and enter into opposite reasoning directions. Thus, the I-functions associated 

with (220) and (221) should have a form similar to (150) and (151): 

(222) I(“China needs to use x of their strength to beat Iran”) = x 

(223) I(“You can win a victory with x of your efforts”) = 1 / x 

where x is a variable from the following scale: 

(224) X: <half, all> 

Now according to (140), the felicitous use of “zhi” requires that I(TP) < 

I(¬CP)
152

. In (220), I(TP) = half. If the expected quantity in ¬CP is x1 say, then in 

order to satisfy (140), we must have half < x1. Therefore, “ban” in (220) must 

denote small SQ. Similarly, in (221), I(TP) = 1 / full. If the quantity in ¬CP is x2 

say, then in order to satisfy (140), we must have 1 / full < 1 / x2, or equivalently, 

full > x2. Therefore, “quan” in (221) must denote large SQ. 

    The above analyses show that “zhi” has the dual nature of being an SQO 

denoting unexpectedness like “cai” as well as an SO denoting relatively low 

informativeness like “hekuang”. This duality should be seen as a phenomenon of 

polysemy. In fact, the polysemy of “zhi” is multi-faceted. As pointed out above, 

“zhi” has both scalar and non-scalar uses. The aforesaid duality is only one facet 

of this polysemy. It requires more researches to clarify the various facets in the 

meaning of “zhi”. 
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 The TP and CP of a “zhi”-sentence has opposite polarities. For example, a possible CP of 

(220) might be “Bu xu chu quan li” (≈ “There is no need to use full strength”). That is why the 

condition of use for “zhi” involves the negation of CP. 
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4.6 Extreme Values
153

 

4.6.1 Maximizers / Minimizers 

    In Chapter 2, I have introduced Israel (2011)’s theory and typology for 

maximizers / minimizers. In this section, I will reformulate his theory using the 

I-function and extend the applicability of the theory to other linguistic 

phenomena involving extreme values. 

    Consider emphatic maximizers / minimizers first. As pointed out in Chapter 

2, these items are very informative. I thus propose the following condition of use 

for these items: 

(225) Emphatic Maximizers / Minimizers: I(TP) is maximal 

According to Israel (2011), maximizers / minimizers may play different 

participant roles in different sentences. To account for this difference, he 

classified two types of emphatic maximizers / minimizers: “canonical” and 

“inverted” as recorded in Table 2.4 and explained their difference in terms of 

different participant roles. In this thesis, I interpret this difference in terms of 

different proportionality relations between the scalar terms and the I-function 

values. In this way, I am able to account for Israel’s two types of emphatic 

maximizers / minimizers by using just one condition (225). 

    The idea can be illustrated by the following examples: 

(226) Julio spent [a king’s ransom]F on the party. 

(227) She wouldn’t kiss him for [all the tea in China]F. 

(226) shows an example of Israel (2011)’s canonical emphatic maximizers which 

play the participant role of “expenses”. Since the larger the expense, the less 

likely a person is willing to spend and so the more informative the sentence is, 
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 Some parts of this section have been published in Chow (2011c) (in Chinese). 
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the I-function associated with (226) is 

(228) I(“Julio spent x on the party”) = x 

where x is a variable of monetary value. Since “a king’s ransom” is a maximizer, 

substituting a maximal value into x above will yield a maximal function value. 

Thus condition (225) is satisfied, and we may conclude that the maximizer is 

properly used in (226). 

    In contrast, (227) shows an example of Israel (2011)’s inverted emphatic 

maximizers which play the participant role of “rewards”. Since the larger the 

reward, the less likely a person is not willing to do some things for it and so the 

more informative the sentence is, the I-function associated with (227) is 

(229) I(¬(“She would kiss him for x”)) = x 

where x is a variable of amounts of reward. Since “all the tea in China” is a 

maximizer, following the same line of reasoning as above, we may conclude that 

the maximizer is also properly used in (227). 

    Comparing (225) with (189), one can see that the two are compatible. This 

implies that we can rewrite any sentences containing emphatic maximizers / 

minimizers as sentences with the emphatic SO “even”. For example, we can 

easily add “even” to each of (226) and (227) without altering its meaning. 

    Next consider attenuating maximizers / minimizers. Since these items are 

very uninformative, I propose the following condition of use for these items: 

(230) Attenuating Maximizers / Minimizers: I(TP) is minimal 

I will use the following examples to illustrate the idea: 

(231) Stella is [sort of]F clever. 

(232) Stella is not [all that]F clever. 

The following I-function will be used to analyse these two sentences: 
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(233) I(“Stella is x clever”) = x 

where x is a variable of degree. The rationale for this I-function is that the higher 

the degree is, the less likely a person is clever to that degree, and so the more 

informative the sentence is. Note that according to (16), the I-function associated 

with (232) is just the reciprocal of (233). Substituting a minimal value into x in 

(233) and a maximal value into 1 / x, which is the reciprocal of the RHS of (233), 

will both yield minimal function values. We may thus conclude that the 

attenuating minimizer “sort of” and the attenuating maximizer “all that” are both 

properly used in (231) and (232). 

    A point which can easily be shown by Figure 2.2 is that attenuating 

maximizers / minimizers may generate SIs because of their low informativeness. 

For example, (231) and (232) may generate the SIs “Stella is not very clever” and 

“Stella is at least a bit clever”, respectively. These two SIs show that attenuating 

maximizers / minimizers can be used to avoid overpraising or overcriticizing, 

which is precisely what attenuation is supposed to achieve. 

    Comparing (230) with (190), one can see that the two are compatible. This 

implies that attenuating maximizers / minimizers share the same core meaning 

with the attenuating SO “at least”. However, unlike “even”, it is not always the 

case that we can readily add “at least” to sentences containing attenuating 

maximizers / minimizers. Sometimes we need to construct a suitable context to 

do this. For example, for (232), we may construct the following context: 

(234) A: I heard that Stella is extremely cheerful and clever. 

B: Not so. At least she’s not all that clever. 

    A final point to note is that by using conditions (225) and (230), we can 

easily account for the polarities shown in Table 2.4. For example, if we change 

(232) to a positive sentence, the associated I-function will become identical to 
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(233). Substituting a maximal value into x in (233) will yield a maximal 

I-function value. But this is in conflict with condition (230). Thus, if we want “all 

that” to be an attenuating maximizer, it can only appear in a negative context, as 

recorded in Table 2.4. 

    I now summarize the correspondence between SOs, maximizers / 

minimizers and typical types of scalar reasoning in the following table: 

Table 4.3  Correspondence between SOs, Maximizers / Minimizers and 

Scalar Reasoning 

SO 
Type of 

Maximizers / Minimizers 

Typical Type of Scalar 

Reasoning 

even emphatic SE 

at least attenuating SI 

A striking point of the above table is that it is consistent with the diagnostics for 

emphasis (attenuation) proposed by Israel (2011). One diagnostic is 

co-occurrence with “even” (“at least”). The other diagnostics are derivable from 

the meaning and use of “even” (“at least”). In what follows, I will reformulate 

some of Israel (2011)’s diagnostics in terms of the notions developed in this 

thesis. 

    According to Israel (2011), two diagnostics for emphatic lexical items are 

that (i) they can co-occur with constructions conveying an exclamative / mirative 

meaning such as “you’ll never believe it” and (ii) their TP must be stronger (i.e. 

more informative) than their CP. Note that (i) is consistent with the fact that 

“even” is often used to denote low likelihood, while (ii) is consistent with the 

condition of use (136) for “even”. 

    Regarding the attenuating lexical items, Israel (2011) proposed that they can 

be used in two types of constructions – “hedged concessions” and 
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“anti-concessives”, as exemplified by the following
154

: 

(235) Well, I guess he’s not here [yet]F, (but I still think he will come). 

(236) She may not be brilliant, but she is [fairly]F clever. 

In the hedged concession in (235), the CP (i.e. the clause in parenthesis) 

represents the negation of a proposition with higher informativeness than the 

TP
155

. Thus the TP and CP satisfy the condition of SI as depicted in Figure 2.2, 

i.e. TP +> ¬CP. In the anti-concessive in (236), the attenuator “fairly” expresses a 

weak claim and “settle for less” meaning, which is the core meaning of “at least”. 

In conclusion, Israel (2011)’s diagnostics for emphasis / attenuation lend further 

support to the correlation shown in Table 4.3. 

 

4.6.2 Superlatives and Extreme Degree Modifiers 

    Maximizers / minimizers usually refer to idiomatic lexical items like those 

mentioned in the previous subsection. However, in natural language there are 

some other lexical items that can perform certain functions of maximizers / 

minimizers. I will discuss two types of these – superlatives and extreme degree 

modifiers such as “extremely”, “unusually”, “amazingly”, etc. These lexical 

items can be seen as extreme scalar terms in their respective scales of degrees. 

But unlike emphatic / attenuating maximizers / minimizers, superlatives and 

extreme degree modifiers are non-polar (i.e. they can appear in both positive and 

negative contexts), and so they should be seen as “neutral” maximizers / 

minimizers according to Israel (1996). Moreover, they can perform both the 

emphatic and attenuating functions
156

. 
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 Israel (2011), Ch. 5, (24)a, (27), p. 119. 
155

 The negation of the CP – “he won’t come” unilaterally entails, and is thus more informative 

than, the TP – “he’s not here yet”. 
156

 As mentioned in Chapter 2, Fauconnier (1975) pointed out that superlatives can perform the 

function of emphasis. I contend that superlatives can also perform the function of attenuation, not 
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    For illustration, consider the following I-functions: 

(237) I(“Tommy will eat the x delicious food”) = 1 / x 

(238) I(“Stella is x clever”) = x 

where x is a variable of degree in both I-functions. The rationale of (238) has 

already been explained above, while the rationale of (237) is that the more 

delicious the food, the more likely a person will eat it, and so the less informative 

the sentence is. From these two I-functions, one can predict that the superlative 

“most” can perform the emphatic and attenuating functions in the negative and 

positive forms of the propositional function in (237), respectively, whereas the 

extreme degree modifier “unusually” can perform the emphatic and attenuating 

functions in the positive and negative forms of the propositional function in (238), 

respectively. The above predictions are borne out by the following examples, 

which also illustrate the correlation between emphasis / attenuation and “even” / 

“at least” as shown in Table 4.3: 

(239) Tommy will not even eat the [most]F delicious food, let alone the less 

delicious one. (emphatic) 

(240) Tommy is not that choosy. At least he will eat the [most]F delicious 

food. (attenuating) 

(241) Stella is not just bright, but even [unusually]F clever. (emphatic) 

(242) Stella is not a genius. At least she is not [unusually]F clever. 

(attenuating) 

 

4.6.3 Chinese Idiomatic Constructions with Extreme Numerals 

    In Chapter 2, I have introduced two Chinese idiomatic schemas containing 

the numeral “yi” studied by Li (2000) based on his SQ theory. These two 

                                                                                                                                    
just emphasis. 
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schemas are “yi … jiu …” and “yi” + negation. As I have put the study on SQ 

under the SMT framework in this chapter, I will now reinterpret and extend these 

results. 

    First consider the “yi … jiu …” schema exemplified by the following: 

(243) Ta [yi]F kan jiu ming.  

 he one see jiu understand  

 He could understand by glancing through just once. 

In Subsection 4.5.2, I have shown that Li (2000)’s findings about the SQ 

triggered by “jiu” and “cai” as recorded in Table 2.3 can be accounted for by 

using the I-function. Therefore, the following discussion will be based on Table 

2.3. According to Table 2.3, scalar terms located on the left of “jiu” denote small 

SQ. Since “yi” represents the smallest natural number, “yi … jiu …” is a 

legitimate construction. 

    But there are more schemas that can be predicted. According to Table 2.3, 

scalar terms located on the left of “cai” denote large SQ. In Chinese, “bai” (≈ 

“hundred”), “qian” (≈ “thousand”) and “wan” (≈ “ten thousand”) are often used 

to denote large quantities. Therefore we expect that there is also a “bai / qian / 

wan … cai …” schema in Chinese, although “cai”, just like “jiu”, may be 

omitted or replaced by words with similar meaning (such as “shi”). The 

following is an instance of this schema: 

(244) [qian]F hu [wan]F huan shi chu lai 

 1,000 call 10,000 call shi out come 

 appear only after repeated calls 

    Moreover, “yi” and “bai / qian / wan” may also co-occur to form the “yi … 

jiu … bai / qian / wan” and “bai / qian / wan … cai … yi” schemas, where “jiu / 

cai” may be omitted or replaced by words with similar meanings. Note that the 
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“yi” and “bai / qian / wan” are located on the correct positions wrt “jiu / cai” in 

these two schemas. The following are two instances of these two schemas: 

(245) [yi ri]F [qian li]F  

 1 day 1,000 mile make progress with giant strides 

(246) [bai nian]F [yi]F yu  

 100 year 1 meet happen only once in a century 

Note that these two idioms contain an implicit “jiu” and “cai”, respectively. 

    Next consider the “yi” + negation schema exemplified by the following: 

(247) [zhi]F zi wei ti  

 CLS word not yet mention not utter a word 

Obviously, the phrase “zhi” (being a variant of “yi”) above serves as an emphatic 

minimizer NPI performing the same function as “a red cent” in (67) of Chapter 2. 

    But according to Table 2.4, there are in fact 4 types of emphatic maximizers 

/ minimizers. Thus, apart from emphatic minimizer NPIs, there are also emphatic 

minimizer PPIs, emphatic maximizer NPIs and emphatic maximizer PPIs. I 

predict that these should also be found in Chinese idioms. This prediction is 

borne out by the following instances: 

(248) [fen miao]F bi zheng  

 minute second must contest count every minute and second 

(249) [qian zai]F bu bian  

 1,000 year not change unchanged for a thousand years 

(250) [wan gu]F chang cun  

 10,000 ancient long exist last forever 

In the above, “fen miao” (being a variant of “yi”) serves as an emphatic 

minimizer PPI performing the same function as “peanut” in (69) of Chapter 2; 

“qian zai” serves as an emphatic maximizer NPI performing the same function as 
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“all the tea in China” in (68) of Chapter 2; “wan gu” serves as an emphatic 

maximizer PPI performing the same function as “a king’s ransom” in (66) of 

Chapter 2. 

    Furthermore, extreme numerals should also be able to serve as attenuating 

maximizers / minimizers. Based on Table 2.4, I predict that there should be 

attenuating maximizer NPIs and attenuating minimizer PPIs in Chinese idioms. 

Again, this prediction is borne out by the following instances: 

(251) lüe zhi [yi er]F  

 brief know 1 2 know something about 

(252) bu [jin]F
157

 ru yi  

 not total accord wish not totally in accord with one’s wishes 

In the above, “yi er” serves as an attenuating minimizer PPI performing the same 

function as “sort of” in (65) of Chapter 2; “jin” serves as an attenuating 

maximizer NPI performing the same function as “all that” in (64) of Chapter 2. 

    There is a final question. Just as we have 4 possible combinations of 

emphatic maximizers / minimizers and PPIs / NPIs, can we also have 4 

combinations of attenuating maximizers / minimizers and PPIs / NPIs? More 

specifically, apart from the attenuating maximizer NPIs and attenuating 

minimizer PPIs introduced above, are there attenuating maximizer PPIs and 

attenuating minimizer NPIs? A positive answer will mean expansion of Israel 

(2011)’s typology as recorded in Table 2.4. It turns out that it is not 

straightforward to find these examples, because the canonical use of attenuation 

is to assert a small quantity or to deny a large quantity, whereas attenuating 

maximizer PPIs and attenuating minimizer NPIs represent non-canonical use of 
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 The adverb “jin” is not a numeral. But since its meaning is similar to “100%”, we can view it 

as a “quasi-numeral”. 
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attenuation. Yet I do find two possible candidates of attenuating maximizer PPIs 

and attenuating minimizer NPIs: 

(253) bu wei [wu dou]F mi zhe yao 

 not for 5 bushel rice bend waist 

 not to bend one’s back just for five bushels of rice 

(254) [zhong]F
158

 shang zhixia you yong fu 

 great reward under have brave man 

 generous rewards rouse one to heroism 

    To show that (253) and (254) are attenuators, we first note that both idioms 

denote highly likely, or equivalently lowly informative, propositions and are thus 

potential candidates of attenuators. Moreover, both idioms satisfy the diagnostics 

introduced at the end of Subsection 4.6.1, as exemplified by the following: 

(255) Ta bu shi hen you qijie, 

 he not is very have moral integrity 

 dan zhishao bu hui wei [wu dou]F mi  zhe yao. 

 but at least not will for 5 bushel rice bend waist 

 He is not a person with high moral integrity. But at least he won’t bend 

his back for just five bushels. 

(256) Zhe jian renwu [zhong]F shang zhixia shi you yong fu. 

 this CLS task great reward under is have brave man 

 (Dan ruo meiyou zhong shang jiu mei ren yuan zuo.) 

 but if no great reward then no person willing do 

 Well, you can find some brave fellows to do the task by offering generous 

rewards. (But nobody is willing to do it without generous rewards.) 

                                                 
158

 “Zhong” is not a numeral, but is a maximizer as it denotes large amount. Moreover, note that 

(254) is a variant of the standard Chinese idiom “zhong shang zhixia bi you yong fu” with the 

modal particle “bi” expressing necessity. 
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Note that (255) is an anti-concessive like (236) because the sentence expresses a 

weak claim and conveys a “settle for less” meaning
159

, whereas (256) is a hedged 

concession like (235) because the negation of its CP, i.e. somebody is willing to 

do the task (even) without generous rewards, is more informative than its TP, i.e. 

you can find somebody to do the task by offering generous rewards, and so 

satisfy the relation TP +> ¬CP. These two examples show that both (253) and 

(254) can be used as attenuators. 

    Based on the above discussion, I now propose an expanded typology of 

maximizers / minimizers with examples of Chinese idiomatic constructions: 

Table 4.4  A New Typology of Maximizers / Minimizers 

 Maximizer Minimizer 

Emphatic 

PPI 

“wan gu chang cun” 

PPI 

“fen miao bi zheng” 

NPI 

“qian zai bu bian” 

NPI 

“zhi zi wei ti” 

Attenuating 

PPI 

“zhong shang zhixia you yong fu” 

PPI 

“lüe zhi yi er” 

NPI 

“bu jin ru yi” 

NPI 

“bu wei wu dou mi zhe yao” 

Note that in this typology I do not differentiate “canonical / inverted” emphatic 

maximizers / minimizers. Moreover, this table is more symmetric than Table 2.4. 

 

4.7 Conclusion 

    In this chapter, I have studied a number of linguistic phenomena related to 

scalar reasoning and addressed to the outstanding problems identified in the end 

of Chapter 2. Based on the ingredients of GFs and I-function, I have developed a 
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 Traditionally, “bu wei wu dou mi zhe yao” (≈ “not to bend one’s back just for five bushels of 

rice”) is used to commend somebody who does not succumb to the authority just for a scanty pay. 

But if we compare it with a possible alternative “bu wei wan dou mi zhe yao” (≈ “not to bend 

one’s back (even) for ten thousand bushels of rice”), then we will see that it in fact expresses a 

weak claim. 
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basic framework that can deal with the various aspects of scalar reasoning in a 

uniform way. Of course, since each of the 3 major aspects, namely SEs, SIs and 

scalar lexical items, has its own peculiarities, I have to add specific assumptions 

or ingredients to deal with these aspects. But one can still see the uniformity of 

the overall framework. 

    By adding relation (13) to the framework, I have formulated a formalized 

theory of SEs that enables one to calculate SEs by comparing I-function values 

of propositions in an SM. I have also shown the parallel relationship between 

SEs and monotonicity inferences. By capitalizing on this parallelism, I have 

combined findings of the two types of inferences and discovered new inferential 

patterns, such as Proportionality Calculus and scalar syllogisms, thus greatly 

expanding the scope of logical inferences and scalar reasoning. 

    I have enriched the basic framework by adding the ingredients of QUD-foci, 

answer exhaustification and opposition inferences, so that it can account for the 

various types of SIs (alternate-value and canonical, simple and embedded) in a 

uniform way. Moreover, I have also provided my own solution to the 

Defaultism-Contextualism debate, the Globalism-Localism debate and the 

implicature-explicature debate on the status of SIs. 

    I have linked up lexical items that were traditionally studied under different 

frameworks. This approach has shed new light on the studies of these lexical 

items. For example, by borrowing the notion of proportionality relations from the 

SQ theory, I have reformulated the research findings of SMT for different types 

of lexical items (including SOs, maximizers / minimizers, superlatives) using the 

same notion – the I-function. More importantly, it turns out that this reformulated 

SMT can also account for the formal pragmatics of lexical items that were not 

traditionally studied under SMT (including CCCs, SQOs and Chinese idiomatic 
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constructions with extreme numerals), thereby expanding the applicability of 

SMT. 

    Finally, I have explored the association of SEs and SIs with different types 

of scalar lexical items (summarized in Table 4.3). The study on the relation 

between SIs and attenuating maximizers / minimizers is particularly fruitful as it 

has led to deeper understanding of the rhetoric of attenuation as well as a 

possible expansion of Israel’s typology of maximizers / minimizers by using 

Chinese data. Moreover, the fact that “even” and “at least” can trigger both SEs 

and SIs has given me insight to explore the dual functions of Cantonese “dou”, a 

phenomenon that has not been taken notice of by researchers before. 
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Chapter 5 Concluding Remarks 

5.1 Significance of the Present Study 

    In this section, I will discuss the theoretical and applicational significance of 

this study. I have chosen a modest set of GQs to study in this thesis. Despite this, 

I have made contribution to GQT. The main novelty of this thesis is that it has 

paid special attention to the left argument of the tripartite structure by studying 

left-oriented GQs. This has enabled a more symmetrical treatment of certain 

notions used in GQT. For example, traditionally the notions of conservativity, 

inner negation and dual are only defined on the right argument. Yet the notion of 

monotonicity is defined on both the left and right arguments. Thus, extending the 

definitions of conservativity, inner negation and dual to the left argument is a 

natural move. If monotonicity can be defined on the left argument, why can’t the 

other notions? 

    More importantly, paying attention to the left argument enables me to 

extend the applicability of certain findings to left conservative GQs and 

sentences with relative clauses. For example, PMC, POC and PPC are powerful 

principles for determining the monotonicities, o-sensitivies and proportionalities 

of the various predicates of iterated GQs. If we restrict our attention on 

right-iterated GQs only, we will not bring the power of these principles into full 

play and will fail to discover inferential patterns of sentences with relative 

clauses that we can discover by employing these principles. 

    Moreover, paying attention to the left argument also enables me to explore 

new areas of scalar reasoning. These areas include left-embedded SIs and the 

contrast between “even / at least” in increasing and decreasing argument 

positions. For example, in Chapter 4, I have studied how monotonicities interact 

with the formal pragmatics of “even / at least”, as illustrated in (191), (192), (194) 
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and (195) of that chapter. Had I not studied sentences with relative clauses, I 

would not have considered (194) and (195) and would not have got a full picture 

of this linguistic phenomenon. 

    In Chapter 3, I have studied quantifier inferences by proving theorems and 

proposing general principles and methods that enable us to discover the 

inferential patterns of GQs. The most important principles and methods include 

PMC, POC, the Double Negation Law for deducing valid patterns of duality 

inferences and the two methods for constructing relational syllogisms. These 

have resulted in systematic methods for deriving valid inferential patterns of 

iterated GQs from the inferential properties of their constituent monadic GQs. 

    The findings of Chapter 3 have enriched the content of GQT and “Natural 

Logic”, because quantifier inferences are a major object of study in these theories. 

For example, some earlier studies on GQT (e.g. Zwarts (1983), van Benthem 

(1984), Westerståhl (1984)) were about the inferential patterns of GQs. The 4 

types of quantifier inferences are each studied by some scholars working on 

“Natural Logic”. This thesis is a continuation of these scholars’ work. 

    In Chapter 4, I have formulated a uniform framework based on the theories 

and findings of predecessors of scalar reasoning research, and studied various 

aspects of SEs, SIs and scalar lexical items, thereby making contribution to 

Formal Pragmatics. For the first time, research findings obtained separately 

under different theories or even different branches of linguistics, i.e. SMT 

(studying SEs and SOs, maximizers / minimizers, superlatives), pragmatic 

theories on conversational implicatures (studying SIs) and Chinese grammar 

(studying CCCs, SQOs, idiomatic constructions with extreme numerals), are 

integrated and reformulated under the framework proposed in this chapter. 

    I have also shown the close relation between quantifier inferences and scalar 
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reasoning. To be sure, it is generally agreed that reasoning is among the primary 

objects of study in pragmatics. Topics like conversational implicatures, 

explicatures, presupposition accommodation, Illocutionary Logic (an offshoot of 

Speech Act Theory), etc. all involve reasoning. However, it is not clear how 

concrete research findings of semantic / logical inferences can be applied to 

pragmatic reasoning. 

    To a certain extent, this thesis has achieved this. In Chapter 4, I have shown 

how monotonicity inferences permeate into various aspects of scalar reasoning. 

First, by viewing strict monotonicity inferences as special cases of SEs, I am able 

to extend the notions and methods of Monotonicity Calculus and syllogism 

embedding to scalar reasoning, resulting in two brand new topics in the study of 

SEs, namely Proportionality Calculus and scalar syllogisms. Second, the notion 

of monotonicity is also useful for determining whether an SI is associated with a 

left-implicating or right-implicating scale, and the reasoning direction of certain 

SOs such as “even” and “at least”. 

    Opposition inferences play an important role in the theory of SIs, because 

SIs are essentially negative inferences, which are precisely what opposition 

inferences are about. In Chapter 4, I have shown that opposition inferences 

constitute one of the two components of SIs. I have also discussed how the 

results of opposition inferences may be useful in the studies of antonymy and 

narrowing. Moreover, results of argument structure inferences are also useful for 

transforming quantified statements to a suitable form for analysis. 

    The findings of this study will also have important applications in various 

areas. Specifically, the findings on quantifier inferences will be useful to 

subfields of Computational Semantics and Artificial Intelligence that attach great 

importance to inferences. In fact, the study on opposition inferences in this thesis 
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may be seen as implementing van Benthem (2008)’s proposal and extending 

MacCartney (2009)’s exclusion inferences as a subtask for tackling the 

Recognising Textual Entailment (RTE) problem, which is being studied by 

researchers in Computational Semantics and Artificial Intelligence. 

    Traditionally, Computational Semantics and Artificial Intelligence are 

mainly interested in logical items, such as GQs. The discovery of the parallelism 

between monotonicity inferences and SEs as well as mixed inferences involving 

both GQs and scalar terms has opened new possibilities in the research of these 

two fields. 

 

5.2 Possible Extensions of the Present Study 

    In this final section I will point out some possible extensions of the present 

study. Since this thesis has chosen a rather restricted set of GQs for study, one 

possible direction is to extend the study to other types of GQs. A whole class of 

GQs that have not been studied in this thesis is the non-iterated polyadic GQs, 

which include resumptive GQs, branching GQs, cumulative GQs, reciprocal GQs, 

generalized determiners, etc. (according to Peters and Westerståhl (2006), 

Keenan and Westerståhl (2011), Zuber (2010b, 2011)). Even within the class of 

monadic GQs, there are some types of quantifiers that I have not considered. 

These include vague quantifiers, interrogative quantifiers, plural quantifiers, 

quantifiers in a generic, opaque or dynamic setting, etc. There is no doubt that 

these GQs have rich inferential properties. A study on these GQs will thus 

expand our inventory of valid inferential patterns of GQs. Some scholars have 

studied inferences of these GQs. For example, I have carried out study on vague 
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quantifiers and interrogative quantifiers
160

 and discovered certain inferential 

patterns of these quantifiers, such as the following syllogistic schema involving 

vague quantifiers: 

(1) no(M)(P)  (almost every)(S)(M)  (a large proportion of)(S)(¬P) 

A direction for future work is to integrate the findings of different scholars with 

the framework established in this thesis. 

    In this thesis, quantification is mainly defined on domains composed of 

individuals
161

. But quantification can also be defined on other domains composed 

of say possible worlds, time, events, locations, etc. A study on quantifier 

inferences defined on these domains will surely reveal interesting inferential 

patterns in lexical items other than quantifiers, such as modals, adverbs of 

quantification, locative adpositions, etc. For example, the following is a valid 

inference in the event domain: 

(2) John prays (each time) before he has meals.  

John performs a religious ritual (each time) before he has breakfast. 

Note that this inference is a manifestation of the left decreasing and right 

increasing monotonicities of “every” in the event domain. Since these domains 

have different structures than individual domains, we have to make substantial 

modification to the ontology before we can apply the results of GQT to these 

domains. This constitutes another direction for future studies. 

    As mentioned in the previous section, this thesis has contributed to the study 

of “Natural Logic” and will have applications in Computational Semantics and 

Artificial Intelligence. However, modern studies in these fields are more than just 

                                                 
160

 Some of the results have been published in Chow (2011a, d). But to keep this thesis better 

focused, I have not included these results in this thesis. 
161

 Note that in the study of SIs, I have viewed GQs as Montagovian individuals in some 

occasions. This is equivalent to placing GQs in a higher-order domain composed of quantifiers. 
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identifying valid inferential patterns. Thus, the findings in Chapter 3 are only raw 

materials for building a logical proof system or computation algorithm that can 

deal with natural language inferences. More work need be done in this direction. 

    Even if we restrict our attention to identifying valid inferential patterns of 

the 4 main types of quantifier inferences studied in this thesis, there are still 

many areas that this thesis has not touched upon, such as the following 

“opposition syllogism” (studied by MacCartney (2009) and Icard (2012)): 

(3) Fish and humans are contraries.  Humans and non-humans are 

contradictories.  Fish is subalternate to non-humans. 

Researches in these areas will surely yield fruitful results. 

    Concerning scalar lexical items, this thesis has only considered the most 

basic types. According to Israel (2011), there are other types of scalar lexical 

items. These include certain aspectual operators (such as “yet”), modals (such as 

“need”), connectives (such as “either”) and indefinites (such as “any”). Since the 

meaning of these lexical items contain other elements than scalarity, the 

semantics / pragmatics of these items is more complicated and demands more 

work. Moreover, as many of these items are polarity sensitive, it requires further 

study to have a clear understanding of the subtle relation between scalar 

reasoning and polarity sensitivity. 

    Even for those items that have been studied in this thesis, further work is 

still needed. This thesis has dealt with the scalar meaning of these items. 

However, scalarity is only one aspect of meaning. There are other aspects of 

meaning. Moreover, the use of these function words each has its own subtlety. 

How we should interpret the interaction between these aspects / subtleties and the 

scalar meaning of these words in order to get a fuller picture of the meaning and 

use of these words requires more work. 
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    Finally, scalarity is a widespread phenomenon in natural language. This 

thesis has only touched on a particular aspect – scalar reasoning. What are the 

other aspects? How do they interact with scalar reasoning? Are there other types 

of scalar reasoning apart from SEs and SIs? These remain open questions for 

future studies. 

    Thus, while this thesis has addressed to a number of problems in the study 

of scalar reasoning raised in the final section of Chapter 2, new problems are also 

discovered. But I believe that this thesis has laid a good foundation for tackling 

these outstanding problems in future. 
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Appendix 1 Truth Conditions of Right Conservative GQs 

In what follows, m, n are natural numbers with 0 < m < n; q, r are rational 

numbers with 0 < q < r < 1; x1, x2, … are individual members of the universe 

manifested as proper names; C is a non-empty set of individuals manifested as 

conjoined proper names and / or definite descriptions; S is equal to PERSON or 

THING, according as the GQ ends with “-body” or “-thing”. 

Tripartite Structure Truth Condition 

everybody(-thing)(–)(B) 
S  B or 

S – B =  

somebody(-thing)(–)(B) 
|S  B| > 0 or 

S  B   

nobody(-thing)(–)(B) 
S  ¬B or 

S  B =  

(everybody(-thing) except C)(–)(B) S – B = C 
162

 

(nobody(-thing) except C)(–)(B) S  B = C 

(x1, x2 and …)(–)(B) {x1, x2, …}  B 
163

 

every(A)(B) 

all(A)(B) 

A  B or 

A – B =  

(not every)(A)(B) 

(not all)(A)(B) 

|A – B| > 0 or 

A – B   

some(A)(B) 

a(A)(B) 

|A  B| > 0 or 

A  B   

no(A)(B) 
A  ¬B or 

A  B =  

(all … except C)(A)(B) A – B = C 

(no … except C)(A)(B) A  B = C 

(more (fewer) than n)(A)(B) |A  B| >(<) n 

(at least (most) n)(A)(B) |A  B| () n 

(exactly n)(A)(B) |A  B| = n 

(between m and n)(A)(B) m  |A  B|  n 

(all except n)(A)(B) |A – B| = n 

                                                 
162

 In this thesis, I only consider exceptive constructions in the form “all / no … except C” where 

C is manifested as conjoined proper names and / or definite descriptions and is represented 

set-theoretically by the union of the sets representing its components. For example, when C is 

manifested as “John, Mary and the teacher”, we have C = {j}  {m}  (CS  TEACHER). 
163

 For a single individual x, the truth condition can alternatively be written as x  B. 
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(all except between m and n)(A)(B) m  |A – B|  n 

most(A)(B) 

(a majority of)(A)(B) 
|A  B| / |A| > 0.5 

(a minority of)(A)(B) |A  B| / |A| < 0.5 

(more (less) than r of)(A)(B) |A  B| / |A| >(<) r 

(at least (most) r of)(A)(B) |A  B| / |A| () r 

(exactly r of)(A)(B) |A  B| / |A| = r 

(between q and r of)(A)(B) q  |A  B| / |A|  r 

(all except r of)(A)(B) |A – B| / |A| = r 

(all except between q and r of)(A)(B) q  |A – B| / |A|  r 

the(A)(B), where A is singular CS  A  B, if |CS  A| = 1 
164

 

C’s(A)(B), where A is singular 
POSSESSC  A  B,  

if |POSSESSC  A| = 1 
165

 

both(A)(B) CS  A  B, if |CS  A| = 2 

either(A)(B) |CS  A  B| > 0, if |CS  A| = 2 

neither(A)(B) CS  A  ¬B, if |CS  A| = 2 

(more (fewer) … than …)(A1, A2)(B) |A1  B| >(<) |A2  B| 
166

 

(at least (most) as many … as …)(A1, 

A2)(B) 
|A1  B| () |A2  B| 

(exactly as many … as …)(A1, A2)(B) |A1  B| = |A2  B| 

(proportionally more (fewer) … than …) 

(A1, A2)(B) 
|A1  B| / |A1| >(<) |A2  B| / |A2| 

(at least (most) the same proportion of … 

as …)(A1, A2)(B) 
|A1  B| / |A1| () |A2  B| / |A2| 

(exactly the same proportion of … as …) 

(A1, A2)(B) 
|A1  B| / |A1| = |A2  B| / |A2| 

                                                 
164

 In this thesis I adopt Westerståhl (1984a)’s semantic analysis of definite determiners which 

uses a context set (CS) that serves to restrict the domain by intersection. Moreover, I also assume 

that definite determiners carry presuppositions which, following Heim and Kratzer (1998), are 

implemented by partial functions that are only defined in cases where certain conditions are 

satisfied. 
165

 POSSESSC = {x: y  C (POSSESS(y, x))}. Here POSSESS represents the possessive 

relation and has a broad meaning, as proposed in Langacker (1991). Moreover, I do not consider 

such relational nouns as “father”, “friend”, etc which may appear in possessive constructions, as 

these relational nouns involve more complicated semantics. 
166

 Each type <1
2
,1> structured GQ listed here also has type <1,1

2
> and <1

2
,1

2
> variants. For 

simplicity, I have only included the truth condition of the <1
2
,1> variant, because the truth 

conditions of the other two variants can be derived from that of the <1
2
,1> variant. 
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Appendix 2 Truth Conditions of Left Conservative GQs 

In what follows, m, n are natural numbers with 0 < m < n; q and r are rational 

numbers with 0 < q < r < 1; C is a non-empty set of individuals manifested as 

conjoined proper names and / or definite descriptions. 

Tripartite Structure Truth Condition 

only(A)(B) 
A  B or 

B – A =  

(not only)(A)(B) 
|B – A| > 0 or 

B – A   

(apart from C only)(A)(B) B – A = C 

(constitute more (less) than r of)(A)(B) |B  A| / |B| >(<) r 

(constitute at least (most) r of)(A)(B) |B  A| / |B| () r 

(constitute exactly r of)(A)(B) |B  A| / |B| = r 

(constitute between q and r of)(A)(B) q  |B  A| / |B|  r 

(constitute all except r of)(A)(B) |B – A| / |B| = r 

(constitute all except between q and r 

of)(A)(B) 
q  |B – A| / |B|  r 

(constitute a larger (smaller) proportion 

of … than …)(A1, A2)(B) 
|A1  B| / |B| >(<) |A2  B| / |B| 

(constitute at least (most) the same 

proportion of … as …)(A1, A2)(B) 
|A1  B| / |B| () |A2  B| / |B| 

(constitute exactly the same proportion 

of … as …)(A1, A2)(B) 
|A1  B| / |B| = |A2  B| / |B| 
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Appendix 3  Proofs of Theorems 

Theorem 1.1 A determiner Q is left conservative iff Q
–1

 is right conservative. 

Proof: Here I only prove one direction of the theorem. The other direction is 

similar. Let Q be a left conservative determiner and A, B be arbitrary sets. Then 

by (40), we have Q(A)(B)  Q(A  B)(B). Let Q
–1

 be the converse of Q. Then 

by (39), we have Q(A)(B)  Q
–1

(B)(A) and Q(A  B)(B)  Q
–1

(B)(A  B). 

Combining the above, we have Q
–1

(B)(A)  Q
–1

(B)(A  B). Since A, B are 

arbitrary, by (35) we conclude that Q
–1

 is right conservative.  

Theorem 3.1 If a GQ / BO is both increasing and decreasing in an argument, 

it is trivial in that argument. 

Proof: Suppose Q is a GQ / BO with n arguments that is both increasing and 

decreasing in the i
th

 argument. For any particular set of X1, … Xi–1, Xi+1, … Xn, 

either ║Q(X1, … Xi, … Xn)║ = 0 for all Xi, or║Q(X1, … Xi’, … Xn)║ = 1 for at 

least an Xi’. In the latter case, take an arbitrary Xi. Since Q is increasing in the i
th

 

argument, we can deduce ║Q(X1, … Xi  Xi’, … Xn)║ = 1. Since Q is also 

decreasing in the i
th

 argument, we can next deduce ║Q(X1, … Xi, … Xn)║ = 1. I 

have thus proved that for any particular set of X1, … Xi–1, Xi+1, … Xn, either 

║Q(X1, … Xi, … Xn)║ = 1 for any Xi, or ║Q(X1, … Xi, … Xn)║ = 0 for any Xi, 

i.e. Q is trivial in the i
th

 argument.  

Theorem 3.2 Let X, X’ and Y be sets such that X  X’. Then 

(a) X  Y  X’  Y 

(b) |X  Y|  |X’  Y| 

Proof: If X  Y = , then (a) and (b) are satisfied automatically. So let x be an 

arbitrary element of X  Y. By the assumption, x is also an element of X’. So x 

is also an element of X’  Y. Both (a) and (b) are thus satisfied.  
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Theorem 3.3 A GQ with presupposition is monotonic only in cases where its 

arguments satisfy the presupposition. 

Proof: In cases where the arguments of a GQ do not satisfy its presupposition, 

the quantified statement is undefined and has no truth value, and so does not 

satisfy the definitions of the increasing and decreasing monotonicities.  

Theorem 3.4 Let Q’s truth condition be in the form X1  Y or X1  X2  Y, 

where Xi (i  {1, 2}) and Y are arguments of Q or constant sets 

and no Xi is equal to Y. Then Q is increasing (decreasing) in all 

arguments Y (Xi). If Xi or Y is replaced by its negative 

counterpart in the truth condition, the monotonicity of Xi or Y 

is reversed. 

Proof: Here I only prove the monotonicity of X2 under Q with the truth condition 

X1  X2  Y. The proofs for other cases are similar. Suppose the truth condition 

is satisfied and let X2  X2’. Then by Theorem 3.2(a), X1  X2’  X1  X2, and 

so X1  X2’  Y, i.e. the truth condition of Q is satisfied with X2’ replacing X2. 

We have thus shown that X2 is decreasing. 

Suppose the truth condition becomes X1  ¬X2  Y and let X2  X2’. Then we 

have ¬X2’  ¬X2. By Theorem 3.2(a) again, X1  ¬X2’  X1  ¬X2, and so X1  

¬X2’  Y, i.e. the truth condition of Q is satisfied with X2’ replacing X2. We have 

thus shown that X2 is increasing.  

Theorem 3.5 Let Q’s truth condition be in one of the following forms (after 

converting any division into multiplication): 

(a) |X1  X2| />//< n; 

(b) |X1  X2| /> |Y1  Y2|; 

(c) |X1  X2| />//< r × |X3|; 
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(d) |X1  X2| × |Y3| /> |Y1  Y2| × |X3| 

where n and r are constants as defined in Appendix 1, Xi and Yj 

(i, j  {1, 2}) are arguments of Q or constant sets and X3 and 

Y3 are equal to one of the Xi and Yj, respectively. Then Q is 

increasing (decreasing) in all arguments appearing solely on the 

left (right) of “/>” or the right (left) of “/<”, and 

non-monotonic in all arguments appearing on both sides of 

“/>//<”. If any monotonic Xi or Yj is replaced by its negative 

counterpart in the truth condition, then treat ¬Xi or ¬Yj as if it 

were Xi or Yj appearing on the opposite side of “/>//<”. 

Proof: For truth conditions (a) and (b), I only prove the monotonicity of Y2 

under Q with the truth condition |X1  X2|  |Y1  Y2|. The proofs for other cases 

are similar. I first consider the case that Y2 is not the same as any Xi. Suppose the 

truth condition is satisfied and let Y2  Y2’. Then by Theorem 3.2(b), |Y1  Y2’| 

 |Y1  Y2|, and so |X1  X2|  |Y1  Y2’|, i.e. the truth condition of Q is 

satisfied with Y2’ replacing Y2. We have thus shown that Y2, which appears 

solely on the right of “/>”, is decreasing. 

I next consider the case that Y2 is the same as some Xi. Without loss of generality, 

let the truth condition be |X1  Y2|  |Y1  Y2|. I will prove the non-monotonicity 

of Y2 by showing how to construct a counterexample. First choose three 

non-trivial sets X1, Y1 and Y2 satisfying the following three conditions: (i) |X1  

Y2|  |Y1  Y2|; (ii) |X1| < |Y1|; (iii) (Y1 – X1)  Y2  . Define Y2’ = (Y1 – X1) 

 Y2. Then we have Y2’  Y2, X1  Y2’ =  and Y1  Y2’ = Y2’, and so |X1  

Y2’| < |Y1  Y2’|. Next define Y2’’ = U. Then we have Y2  Y2’’, X1  Y2’’ = X1 

and Y1  Y2’’ = Y1, and so |X1  Y2’’| < |Y1  Y2’’| by (ii) above. I have thus 

shown that Y2 is neither decreasing nor increasing, i.e. it is non-monotonic. 
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In case the truth condition has the form (c), say |X1  Y2|  r × |Y2|, we can prove 

the non-monotonicity of Y2 in the same way as in the previous paragraph by 

writing U instead of Y1 and modifying the first two conditions in the previous 

paragraph as (i) |X1  Y2|  r × |Y2|; (ii) |X1| < r × |U|. One can check that the 

method described above will provide the required counterexample. Note that by 

interchanging the roles of X1 and Y1, one can then prove the non-monotonicity of 

Y2 in |X1  Y2|  |Y1  Y2| and |X1  Y2|  r × |Y2|. 

In case the truth condition has the form (d), say |X1  X2| × |Y2|  |Y1  Y2| × 

|X2|, we can prove the non-monotonicity of X2 in the same way as in the previous 

paragraph by moving |Y2| to the RHS of “” and treating |Y1  Y2| / |Y2| as a 

constant. 

If any monotonic Xi or Yj is replaced by its negative counterpart in the truth 

condition, then we can follow a similar line of reasoning as in the proof of 

Theorem 3.4 to show that the monotonicity of ¬Xi or ¬Yj is opposite that of Xi or 

Yj. Thus, ¬Xi or ¬Yj can be treated as if it were Xi or Yj appearing on the 

opposite side of “/>//<”.  

Theorem 3.6 Let Q’s truth condition be in the form X1 = Y or X1  X2 = Y, 

where Xi (i, j  {1, 2}) and Y are arguments of Q or non-trivial 

constant sets and no Xi is equal to Y. Then Q is non-monotonic 

in all of its arguments. This fact is unaffected if Xi or Y is 

replaced by its negative counterpart in the truth condition. 

Proof: Here I only prove the non-monotonicity of X2 under Q with the truth 

condition X1  X2 = Y. The proofs for other cases are similar. I will show how to 

construct a counterexample. First choose three non-trivial sets X1, X2 and Y such 

that (i) X1  X2 = Y and (ii) X1  Y. Then choose an element x from Y. Define 

X2’ = X2 – {x}. Then we have X2’  X2 and X1  X2’  Y. Next define X2’’ = X1 
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 X2. Then we have X2  X2’’ and X1  X2’’ = X1  Y by (ii) above. I have thus 

shown that X2 is neither decreasing nor increasing, i.e. it is non-monotonic. 

In case the truth condition contains a negative set, say X1  ¬Z = Y, we can 

define X1 and Y as in the previous paragraph and define Z, Z’ and Z’’ as ¬X2, 

¬X2’ and ¬X2’’, respectively, where X2, X2’ and X2’’ are as defined in the 

previous paragraph. Then we will have Z  Z’, Z’’  Z and X1  ¬Z = Y, X1  

¬Z’  Y, X1  ¬Z’’  Y, and so Z is non-monotonic.  

Theorem 3.7 Let Q’s truth condition be in one of the following forms: 

(a) |X1  X2| = n; 

(b) m  |X1  X2|  n; 

(c) |X1  X2| = |Y1  Y2|; 

(d) |X1  X2| / |X3| = r; 

(e) q  |X1  X2| / |X3|  r; 

(f) |X1  X2| / |X3| = |Y1  Y2| / |Y3| 

where m, n, q and r are constants as defined in Appendix 1, Xi 

and Yj (i, j  {1, 2}) are arguments of Q or constant sets and X3 

and Y3 are equal to one of the Xi and Yj, respectively. Then Q is 

non-monotonic in all of its arguments. This fact is unaffected if 

Xi or Yj is replaced by its negative counterpart in the truth 

condition. 

Proof: I first prove the non-monotonicity of X2 under Q with truth condition in 

the form (b). First choose two non-trivial sets X1 and X2 such that (i) m  |X1  

X2|  n and (ii) |X1| > n. Then choose a subset Z consisting of |X1  X2| – m + 1 

elements from the intersection X1  X2. Define X2’ = X2 – Z. Then we have X2’ 

 X2 and |X1  X2’| = |X1  X2| – (|X1  X2| – m + 1) = m – 1 < m. Next define 

X2’’ = X1  X2. Then we have X2  X2’’ and |X1  X2’’| = |X1| > n by (ii) above. 
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I have thus shown that X2 is neither decreasing nor increasing, i.e. it is 

non-monotonic. The proof method described above can be applied to truth 

conditions in the form (a) because (a) is equivalent to n  |X1  X2|  n. Then the 

proof method can be further applied to truth conditions in the form (c). For 

instance, when proving the non-monotonicity of X2 in (c), one can treat |Y1  Y2| 

as a constant. 

Next consider truth conditions in the form (e), say q  |X1  X2| / |X2|  r. To 

prove the non-monotonicity of X1, we can rewrite this truth condition as q × |X2| 

 |X1  X2|  r × |X2|, and then treat q × |X2| and r × |X2| as constants. The proof 

method is then similar to that for (b) above. To prove the non-monotonicity of X2, 

we can rewrite this truth condition as the conjunction |X1  X2| / |X2|  q  |X1  

X2| / |X2|  r. Then we can employ the method in the proof of Theorem 3.5 to 

construct counterexamples for either conjunct. The proof method described 

above can be applied to truth conditions in the form (d) or (f). 

In case the truth condition contains a negative set, we can follow a similar line of 

reasoning as in the proof of Theorem 3.6 to prove the non-monotonicity of the 

arguments in question.  

Theorem 3.8 Let P and P’ be n-ary predicates, then P  P’  {xi: P(x1, … 

xi–1, xi, xi+1, … xn)}  {xi: P’(x1, … xi–1, xi, xi+1, … xn)} for any 

1  i  n and any particular set of x1, … xi–1, xi+1, … xn. 

Proof: Suppose P  P’. Then for any particular set of x1, … xi–1, xi+1, … xn and 

any arbitrary xi, we have P(x1, … xi–1, xi, xi+1, … xn)  P’(x1, … xi–1, xi, xi+1, … 

xn), which is equivalent to saying that if xi  {xi: P(x1, … xi–1, xi, xi+1, … xn)}, 

then xi  {xi: P’(x1, … xi–1, xi, xi+1, … xn)}, thus showing that {xi: P(x1, … xi–1, 

xi, xi+1, … xn)}  {xi: P’(x1, … xi–1, xi, xi+1, … xn)}.  
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Theorem 3.9 “¬” is decreasing. 

Proof: Let X and X’ be sets or propositions such that X  X’. Then according to 

Set Theory and Propositional Logic, we have ¬X  ¬X’. Thus, by definition (2), 

“¬” is decreasing.  

Theorem 3.10 Let Q be a monadic GQ with n arguments, then Q  Q¬ i and Q 

 Q¬ i are fixed points in the i
th

 argument. 

Proof: For any X1, … Xn, ((Q  Q¬ i)¬ i)(X1, … Xi, … Xn)  (Q  Q¬ i)(X1, … 

¬Xi, … Xn)  Q(X1, … ¬Xi, … Xn)  (Q¬ i)(X1, … ¬Xi, … Xn)  (Q¬ i)(X1, … 

Xi, … Xn)  Q(X1, … Xi, … Xn)  (Q  Q¬ i)(X1, … Xi, … Xn). So by 

definition (26), Q  Q¬ i is a fixed point in the i
th

 argument. The proof for Q  

Q¬ i is similar.  

Theorem 3.11 Let Q1 and Q2 be monadic GQs with the same argument 

structure. If both Q1 and Q2 are fixed points in the i
th

 argument, 

then ¬Q1, Q1  Q2 and Q1  Q2 are also fixed points in the i
th

 

argument. 

Proof: Let Q1 be a fixed point in the i
th

 argument, then ((¬Q1)¬ i)(X1, … Xi, … Xn) 

 (¬Q1)(X1, … ¬Xi, … Xn)  ¬(Q1(X1, … ¬Xi, … Xn))  ¬((Q1¬ i)(X1, … 

Xi, … Xn))  ¬(Q1(X1, … Xi, … Xn))  (¬Q1)(X1, … Xi, … Xn). So by 

definition (26), ¬Q1 is also a fixed point in the i
th

 argument. 

Let Q1 and Q2 be fixed points in the i
th

 argument, then ((Q1  Q2)¬ i)(X1, … 

Xi, … Xn)  (Q1  Q2)(X1, … ¬Xi, … Xn)  Q1(X1, … ¬Xi, … Xn)  Q2(X1, … 

¬Xi, … Xn)  (Q1¬ i)(X1, … Xi, … Xn)  (Q2¬ i)(X1, … Xi, … Xn)  Q1(X1, … 

Xi, … Xn)  Q2(X1, … Xi, … Xn)  (Q1  Q2)(X1, … Xi, … Xn). So by 

definition (26), Q1  Q2 is also a fixed point in the i
th

 argument. The proof for Q1 

 Q2 is similar.  
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Theorem 3.12 There is no fixed point for outer negation. 

Proof: This can be proved by contradiction. Assume that Q is a fixed point for 

outer negation. Then, by the definition of fixed points, we must have Q(X1, … Xn) 

 ¬Q(X1, … Xn) for any X1, … Xn. But this is impossible because any 

proposition cannot be equivalent to its negation. So there cannot be a fixed point 

for outer negation.  

Theorem 3.13 The determiner Qk,K defined in (61) is a right self-dual. 

Proof: On the one hand, we have 

(A1) 

((Qk,K)¬r)(A)(B)  

|A – B|  K, if 0  |A – B|  k 

 2k + 1 – |A – B|  K, if k + 1  |A – B|  2k + 1 

On the other hand, since 2k + 1 = |A| = |A  B| + |A – B|, we have 

(A2) 0  |A – B|  k  k + 1  |A  B|  2k + 1 

k + 1  |A – B|  2k + 1  0  |A  B|  k 

Therefore we can rewrite (A1) as 

(A3) 

((Qk,K)¬r)(A)(B)  

2k + 1 – |A  B|  K, if k + 1  |A  B|  2k + 1 

 |A  B|  K, if 0  |A  B|  k 

The outer negation of (A3), i.e. (Qk,K)
dr

, is 

(A4) 

((Qk,K)
dr

)(A)(B)  

2k + 1 – |A  B|  K, if k + 1  |A  B|  2k + 1 

 |A  B|  K, if 0  |A  B|  k 

Since (A4) is equivalent to (61), we have thus proved that (Qk,K)
dr

 = Qk,K. By (27), 

Qk,K is a right self-dual.  

Theorem 3.14 Let Q be a monadic GQ with n arguments, then 

(a) Q is increasing (decreasing) in the i
th

 argument iff ¬Q and 

Q¬ i are decreasing (increasing) in the i
th

 argument iff Q
di

 is 

increasing (decreasing) in the i
th

 argument. 
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(b) Q is non-monotonic in the i
th

 argument iff ¬Q, Q¬ i and Q
di

 

are non-monotonic in the i
th

 argument. 

Proof: Since outer negation, inner negation and dual are involutive operations, 

we only need to prove one direction of both parts of the theorem. 

(a) Let Q be increasing in the i
th

 argument. We consider the monotonicities of ¬Q, 

Q¬ i and Q
di

 in the i
th

 argument in turn. First, by Theorem 3.9 and PMC, “¬” 

reverses the monotonicity of any predicate within its scope, and so ¬Q is 

decreasing in the i
th

 argument. Second, by definition (1), we have the entailment 

Xi  Xi’  Q(X1, … Xi, … Xn)  Q(X1, … Xi’, … Xn). Replacing the arbitrary 

Xi and Xi’ by their negations, we obtain the equivalent entailment ¬Xi  ¬Xi’  

Q(X1, … ¬Xi, … Xn)  Q(X1, … ¬Xi’, … Xn), which is in turn equivalent to Xi’ 

 Xi  Q¬ i(X1, … Xi, … Xn)  Q¬ i(X1, … Xi’, … Xn). By definition (2), Q¬ i is 

decreasing in the i
th

 argument. Third, since Q
di

 is the combination of ¬Q and Q¬ i, 

by PMC, Q
di

 will preserve the monotonicity of the i
th

 argument, which is thus 

increasing. The proof for the case when Q is decreasing is similar. 

(b) Suppose Q is non-monotonic in the i
th

 argument. Then Q is neither increasing 

nor decreasing in the i
th

 argument. So by (a), ¬Q and Q¬ i are neither decreasing 

nor increasing in the i
th

 argument, and Q
di

 is neither increasing nor decreasing in 

the i
th

 argument. The conclusion thus obtains.  

Theorem 3.15 Let Q be a monadic GQ that is non-trivial in the i
th

 argument. If 

Q is a fixed point in the i
th

 argument, then Q is non-monotonic 

in that argument. 

Proof: Let Q be a fixed point in the i
th

 argument. Then by definition (26), we 

have Q¬ i = Q. Suppose Q is increasing (decreasing) in the i
th

 argument, then by 

Theorem 3.14(a), Q¬ i is decreasing (increasing) in the i
th

 argument. So Q is both 

increasing and decreasing in the i
th

 argument. But by Theorem 3.1, this entails 
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that Q is trivial in the i
th

 argument. This contradiction shows that Q is 

non-monotonic in the i
th

 argument.  

Theorem 3.16 Let Q1 and Q2 be monadic GQs with n arguments and the same 

argument structure and 1  i < j  n. Then (¬Q1)
–1

i,j = ¬(Q1
–1

i,j); 

(Q1  Q2)
–1

i,j = Q1
–1

i,j  Q2
–1

i,j; (Q1  Q2)
–1

i,j = Q1
–1

i,j  Q2
–1

i,j. 

Proof: Let X1, … Xi, … Xj, … Xn be arbitrary sets. Then (¬Q1)
–1

i,j(X1, … Xi, … 

Xj, … Xn)  (¬Q1)(X1, … Xj, … Xi, … Xn)  ¬(Q1(X1, … Xj, … Xi, … Xn)) 

 ¬((Q1
–1

i,j)(X1, … Xi, … Xj, … Xn)). So we have (¬Q1)
–1

i,j = ¬(Q1
–1

i,j). 

Let X1, … Xi, … Xj, … Xn be arbitrary sets. Then (Q1  Q2)
–1

i,j(X1, … Xi, … 

Xj, … Xn)  (Q1  Q2)(X1, … Xj, … Xi, … Xn)  Q1(X1, … Xj, … Xi, … Xn)  

Q2(X1, … Xj, … Xi, … Xn)  Q1
–1

i,j(X1, … Xi, … Xj, … Xn)  Q2
–1

i,j(X1, … 

Xi, … Xj, … Xn). So we have (Q1  Q2)
–1

i,j = Q1
–1

i,j  Q2
–1

i,j. The proof for (Q1  

Q2)
–1

i,j = Q1
–1

i,j  Q2
–1

i,j is similar.  

Theorem 3.17 Let Q be a determiner. Then Q is symmetric iff Q¬ r is 

contrapositive iff Q¬ l is contrapositive. 

Proof: Here I only prove the case for “Q¬r”. The proof for the other case is 

similar. Let Q be symmetric. By definition of symmetry, we have Q(A)(B)  

Q(B)(A). By definition of “¬ r”, this is equivalent to Q¬r(A)(¬B)  Q¬r(B)(¬A), 

which is in turn equivalent to Q¬ r(A)(B)  Q¬r(¬B)(¬A) because we can 

replace the arbitrary B by its negation. By definition (40), Q¬r is contrapositive. 

 

Theorem 3.18 Let Q be a determiner. Then Q is contrapositive iff Q
–1

 is 

contrapositive iff ¬Q is contrapositive iff Q¬ l,r is contrapositive. 

Proof: Let Q be contrapositive. Then by (40), we have Q(A)(B)  Q(¬B)(¬A). 

By definition of converse, this is equivalent to Q
–1

(B)(A)  Q
–1

(¬A)(¬B). Thus, 

Q
–1

 is contrapositive. 
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Since Q(A)(B)  Q(¬B)(¬A) can be equivalently rewritten as ¬Q(A)(B)  

¬Q(¬B)(¬A), we may conclude that Q is contrapositive iff ¬Q is contrapositive. 

Finally, by definition of “¬ l,r”, Q(A)(B)  Q(¬B)(¬A) is equivalent to 

Q¬ l,r(¬A)(¬B)  Q¬ l,r(B)(A), which is in turn equivalent to Q¬ l,r(A)(B)  

Q¬ l,r(¬B)(¬A) because we can replace the arbitrary A and B by their negations. 

Thus, Q is contrapositive iff Q¬ l,r is contrapositive.  

Theorem 3.19 Q1(A1) is scopally dominant over Q2(A2) iff 

(a) (Q2
dr

)(A2) is scopally dominant over (Q1
dr

)(A1); 

(b) (Q1¬ l)(A1) is scopally dominant over (Q2¬ l)(A2); 

(c) (Q2
dl,r

)(A2) is scopally dominant over (Q1
dl,r

)(A1). 

Proof: 

(a) By definition (38), Q1(A1) is scopally dominant over Q2(A2) iff 

Q1(A1)([Q2(A2)]2(B))  Q2(A2)([Q1(A1)]2(B
–1

)), which is equivalent to 

¬Q2(A2)([Q1(A1)]2(B
–1

))  ¬Q1(A1)([Q2(A2)]2(B)). This last entailment can be 

rewritten as (Q2
dr

)(A2)([(Q1
dr

)(A1)]2(¬B
–1

))  (Q1
dr

)(A1)([(Q2
dr

)(A2)]2(¬B)). 

Replacing the arbitrary B by ¬B
–1

, we obtain (Q2
dr

)(A2)([(Q1
dr

)(A1)]2(B))  

(Q1
dr

)(A1)([(Q2
dr

)(A2)]2(B
–1

)), i.e. (Q2
dr

)(A2) is scopally dominant over 

(Q1
dr

)(A1)
167

. 

(b) Similar as above, Q1(A1) is scopally dominant over Q2(A2) iff 

Q1(A1)([Q2(A2)]2(B))  Q2(A2)([Q1(A1)]2(B
–1

)). This last entailment can be 

rewritten as (Q1¬ l)(¬A1)([(Q2¬ l)(¬A2)]2(B))  (Q2¬ l)(¬A2)([(Q1¬ l)(¬A1)]2(B
–1

)). 

Replacing the arbitrary ¬A1 and ¬A2 by their negations, we obtain 

(Q1¬ l)(A1)([(Q2¬ l)(A2)]2(B))  (Q2¬ l)(A2)([(Q1¬ l)(A1)]2(B
–1

)), i.e. (Q1¬ l)(A1) is 

scopally dominant over (Q2¬ l)(A2). 

                                                 
167

 Here I have made use of the fact that (¬B)
–1

 = ¬(B
–1

). This fact can be proved by modifying 

the proof of Theorem 3.16 to make it applicable to predicates. 



251 

 

(c) Since left-and-right dual is the combination of right dual and left inner 

negation, the result of (c) follows immediately from (a) and (b).  

Theorem 3.20 A GQ with presupposition has any one of the 4 OPs only in 

cases where its arguments satisfy the presupposition. 

Proof: In cases where the arguments of a GQ do not satisfy its presupposition, 

the quantified statement is undefined and has no truth value and so does not 

satisfy the definitions of the OPs.  

Theorem 3.21 Let Q be a GQ with n arguments. Then wrt the i
th

 argument, Q 

possesses a certain OP iff each of ¬Q, Q¬ i and Q
di

 possesses a 

different OP according to the following table: 

Q ¬Q Q¬ i Q
di

 

CCCC CCSC SCCC SCSC 

CCSC CCCC SCSC SCCC 

SCCC SCSC CCCC CCSC 

SCSC SCCC CCSC CCCC 
 

Proof: Here I only prove the first row of the table. The remaining rows can be 

derived from the first row by using the composite relations among Q, ¬Q, Q¬ i 

and Q
di

. 

By definitions (81) and (83), Q is CCCC in the i
th

 argument iff 

(A5) CC(Xi, Xi’)  Q(X1, … Xi, … Xn)  ¬Q(X1, … Xi’, … Xn) 

Now (A5) is equivalent to 

(A6) CC(Xi, Xi’)  ¬(¬Q)(X1, … Xi, … Xn)  (¬Q)(X1, … Xi’, … Xn) 

Substituting the arbitrary Xi and Xi’ by their negations and using (85) and the 

definitions of inner negation and dual, (A5) and (A6) can be rewritten as 

(A7) SC(Xi, Xi’)  (Q¬ i)(X1, … Xi, … Xn)  ¬(Q¬ i)(X1, … Xi’, … Xn) 

(A8) SC(Xi, Xi’)  ¬(Q
di

)(X1, … Xi, … Xn)  (Q
di

)(X1, … Xi’, … Xn) 

From (A6) – (A8), we may conclude that ¬Q is CCSC, Q¬ i is SCCC and Q
di
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is SCSC in the i
th

 argument.  

Theorem 3.22 Let Q1 and Q2 be GQs of the same type with Q1  Q2. 

(a) If Q2 is CCCC (SCCC) in the i
th

 argument, so is Q1. 

(b) If Q1 is CCSC (SCSC) in the i
th

 argument, so is Q2. 

Proof: 

(a) Suppose CC(Xi, Xi’) and ║Q1(X1, … Xi, … Xn)║ = 1, then since Q1  Q2, we 

have ║Q2(X1, … Xi, … Xn)║ = 1. But since Q2 is CCCC in the i
th

 argument, 

we have ║Q2(X1, … Xi’, … Xn)║ = 0. By Q1  Q2 again, we have ║Q1(X1, … 

Xi’, … Xn)║ = 0. We have thus proved that CC(Q1(X1, … Xi, … Xn), Q1(X1, … 

Xi’, … Xn)), i.e. Q1 is CCCC in the i
th

 argument. The proof for the case 

SCCC is exactly the same. 

(b) Suppose CC(Xi, Xi’) and ║Q2(X1, … Xi, … Xn)║ = 0, then since Q1  Q2, we 

have ║Q1(X1, … Xi, … Xn)║ = 0. But since Q1 is CCSC in the i
th

 argument, 

we have ║Q1(X1, … Xi’, … Xn)║ = 1. By Q1  Q2 again, we have ║Q2(X1, … 

Xi’, … Xn)║ = 1. We have thus proved that SC(Q2(X1, … Xi, … Xn), Q2(X1, … 

Xi’, … Xn)), i.e. Q2 is CCSC in the i
th

 argument. The proof for the case 

SCSC is exactly the same.  

Theorem 3.23 Let Q be a GQ with n arguments, 1  i < j  n and Π be one of 

the 4 OPs. 

(a) Q is Π in the i
th

 argument iff Q
–1

i,j is Π in the j
th

 argument. 

(b) If Q is symmetric wrt the i
th

 and j
th

 arguments, then Q is Π 

in both or neither of these two arguments. 

Proof: 

(a) Here I only prove the case when Π = CCCC. The proofs of the other cases 

are similar. Suppose CC(Xi, Xi’) and Q is CCCC in the i
th

 argument. Then we 

have Q(X1, … Xi, … Xj, … Xn)  ¬Q(X1, … Xi’, … Xj, … Xn), which by (28) 



253 

 

may be rewritten as (Q
–1

i,j)(X1, … Xj, … Xi, … Xn)  ¬(Q
–1

i,j)(X1, … Xj, … 

Xi’, … Xn). This shows that Q
–1

i,j is CCCC in the j
th

 argument. 

(b) Let Q be symmetric wrt the i
th

 and j
th

 arguments, then Q is self-converse wrt 

the same arguments. So by (a), Q is Π in the i
th

 argument iff it is Π in the j
th

 

argument, i.e. Q is Π in both or neither of these two arguments.  

Theorem 3.24 Let Q be a contrapositive determiner. Then Q is CCCC in an 

argument iff it is SCCC in the other argument. Q is CCSC 

in an argument iff it is SCSC in the other argument. 

Proof: Suppose Q is CCCC in the right argument and SC(A, A’), which by (85) 

is equivalent to CC(¬A, ¬A’). Let ║Q(A)(B)║ = 1. By contrapositivity of Q, this 

is equivalent to ║Q(¬B)(¬A)║ = 1. But then we must have ║Q(¬B)(¬A’)║ = 0. 

By contrapositivity of Q again, this is in turn equivalent to ║Q(A’)(B)║ = 0. We 

have thus proved that SC(A, A’)  CC(Q(A)(B), Q(A’)(B)), i.e. Q is SCCC in 

the left argument. Similarly, we can prove that if Q is SCCC in the left 

argument, then Q is CCCC in the right argument. The proofs for the cases Q is 

CCCC in the left argument and CCSC in either argument follow the same 

line.  

Theorem 3.25 “(at least r of)” (1/2 < r < 1) is CCCC in the right argument; 

“(more than r of)” (1/2  r < 1) is CCCC in the right 

argument; “(between q and r of)” (0 < q < r < 1) is not CCCC 

in the left argument. 

Proof: I first prove “(at least r of)” (1/2 < r < 1) is CCCC in the right 

argument. Let ║(at least r of)(A)(B)║ = 1 and CC(B, B’). Then by (83), B  ¬B’. 

Since (at least r of)  –MON↑, we have ║(at least r of)(A)(¬B’)║ = 1, which is 

equivalent to ║(at most 1 – r of)(A)(B’)║ = 1. Since 1/2 < r < 1, this entails 

║(less than r of)(A)(B’)║ = 1, which is equivalent to ║¬(at least r of)(A)(B’)║ = 
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1. I have thus shown that CC((at least r of)(A)(B), (at least r of)(A)(B’)). Thus, 

“(at least r of)” is CCCC in the right argument. The fact that “(more than r of)” 

(1/2  r < 1) is CCCC in the right argument can be proved similarly. 

Next I show that “(between q and r of)” (0 < q < r < 1) is not CCCC in the left 

argument by devising a method for constructing counterexamples for any 0 < q < 

r < 1. Choose any rational number x/y such that q  x/y  r. Construct two sets A 

and A’ such that |A| = |A’| = y and A  A’ = . Choose a subset X of A and a 

subset X’ of A’ such that |X| = |X’| = x. Then set B = X  X’. It is easy to check 

that with these predicates, we have CC(A, A’) and ║(between q and r of)(A)(B)║ 

= ║(between q and r of)(A’)(B)║ = 1. In other words, we do not have 

CC((between q and r of)(A)(B), (between q and r of)(A’)(B)), thus completing 

the proof.  

Theorem 3.26 Every absolute numerical determiner and structured GQ studied 

in this thesis is o-insensitive in all arguments. 

Proof: According to Table 3.10, a proportional determiner possesses a certain OP 

only within a certain range. Now, an absolute numerical determiner can be made 

equivalent to any proportional determiner by setting an appropriate cardinality of 

its left or right argument. Thus, given an absolute numerical determiner Q, a 

certain OP and a certain argument, we can construct a model in which Q is 

equivalent to a proportional determiner which does not possess that OP in that 

argument. Thus, every absolute numerical determiner is both left and right 

o-insensitive. For example, to show that “(at least 5)” is not SCSC in the right 

argument, we first observe that “(at least 5)(A)(B)” is equivalent to “(constitute 

at least 1/2 of)(A)(B)” in a model where |B| = 10. Since “(constitute at least 1/2 

of)” is not SCSC in the right argument, we can then use a method similar to 

that shown in the proof of Theorem 3.25 to construct a model in which |B| = 10 
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and “(constitute at least 1/2 of)” is not SCSC in the right argument. This model 

is thus a counterexample showing that “(at least 5)” is not SCSC in the right 

argument. 

Next consider the structured GQs. Since these GQs do not denote fixed quantities, 

their arguments can be made equivalent to the arguments of different 

proportional determiners under different models. Thus, based on the same 

argument as above, we may conclude that the structured GQs are o-insensitive in 

all arguments.  

Theorem 3.27 Let Q be a GQ with n arguments. With respect to the i
th

 

argument, 

(a) It is impossible for Q to be CCCC and CCSC. 

(b) It is impossible for Q to be SCCC and SCSC. 

(c) Q is CCCC and SCSC iff Q is self-dual and increasing. 

(d) Q is SCCC and CCSC iff Q is self-dual and decreasing. 

(e) Q is CCCC and SCCC iff Q is perfectly consistent. 

(f) Q is CCSC and SCSC iff Q is perfectly complete. 

Proof: 

(a) Suppose Q is CCCC and CCSC. Take an arbitrary Xi. For any particular 

set of X1, … Xi–1, Xi+1, … Xn, ║Q(X1, … Xi, … Xn)║ = 1 or 0. Let ║Q(X1, … 

Xi, … Xn)║ = 1. Since CC(Xi, ¬Xi), we have ║Q(X1, … ¬Xi, … Xn)║ = 0. Since 

CC(¬Xi, ), we then have ║Q(X1, … , … Xn)║ = 1. But since CC(, Xi), we 

then have ║Q(X1, … Xi, … Xn)║ = 0. Thus, starting from ║Q(X1, … Xi, … 

Xn)║ = 1, I can derive ║Q(X1, … Xi, … Xn)║ = 0. Similarly, starting from 

║Q(X1, … Xi, … Xn)║ = 0, I can derive ║Q(X1, … Xi, … Xn)║ = 1. This 

contradiction shows that it is impossible for Q to be CCCC and CCSC. The 

proof of (b) follows a similar line of reasoning. 
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(c) First let Q be CCCC and SCSC. Then since CC(Xi, ¬Xi) and SC(¬Xi, Xi), 

we have Q(X1, … Xi, … Xn)  ¬Q(X1, … ¬Xi, … Xn) and ¬Q(X1, … ¬Xi, … Xn) 

 Q(X1, … Xi, … Xn), respectively. Combining the above, we have Q(X1, … 

Xi, … Xn)  ¬Q(X1, … ¬Xi, … Xn). So by (27), Q is self-dual. Next, let 

║Q(X1, … Xi, … Xn)║ = 1 and Xi  Xi’. Then since CC(Xi, ¬Xi’), we have 

║Q(X1, … ¬Xi’, … Xn)║ = 0. But since SC(¬Xi’, Xi’), we have ║Q(X1, … 

Xi’, … Xn)║ = 1. Thus, Q is increasing. 

Next let Q be self-dual and increasing. Suppose ║Q(X1, … Xi, … Xn)║ = 1 and 

CC(Xi, Xi’). Since Q is self-dual, we have ║¬Q(X1, … ¬Xi, … Xn)║ = 1. From 

CC(Xi, Xi’) we have Xi’  ¬Xi. Since Q is increasing, by Theorem 3.14(a) ¬Q is 

decreasing and so we have ║¬Q(X1, … Xi’, … Xn)║ = 1, i.e. ║Q(X1, … Xi’, … 

Xn)║ = 0. So Q is CCCC. Similarly, one can prove that Q is also SCSC, thus 

completing the proof of (c). The proof of (d) follows a similar line of reasoning. 

(e) First let Q be CCCC and SCCC. When Y is a subset of ¬Xi, we have 

CC(Xi, Y). From this we have Q(X1, … Xi, … Xn)  ¬Q(X1, … Y, … Xn). When 

Y is a superset of ¬Xi, we have SC(Xi, Y). From this we also have Q(X1, … 

Xi, … Xn)  ¬Q(X1, … Y, … Xn). So by definition (90), Q is perfectly 

consistent. 

Next let Q be perfectly consistent and CC(Xi, Xi’). By (83), Xi’  ¬Xi, i.e. Xi’ is 

a subset of ¬Xi. So by (90) we must have Q(X1, … Xi, … Xn)  ¬Q(X1, … 

Xi’, … Xn). Thus, Q is CCCC. Similarly, one can prove that Q is also SCCC. 

The proof of (f) follows a similar line of reasoning.  

Theorem 3.28 Let P be a predicate. Then {x: ¬P(x)} = ¬{x: P(x)}. 

Proof: For any member x of U, we have ║x  {x: ¬P(x)}║ = ║¬P(x)║ = ║x  

¬{x: P(x)}║. Thus {x: ¬P(x)} = ¬{x: P(x)}.  
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Theorem 3.29 Let P and P’ be n-ary predicates and R be one of {CC, SC}, 

then R(P1, P2)  R({xi: P(x1, … xi–1, xi, xi+1, … xn)}, {xi: 

P’(x1, … xi–1, xi, xi+1, … xn)}) for any 1  i  n and any 

particular set of x1, … xi–1, xi+1, … xn. 

Proof: Here I only prove the case in which R = CC. The case in which R = SC is 

similar. Suppose CC(P, P’). By (83), this is equivalent to P  ¬P’. By Theorem 

3.8, we have {xi: P(x1, … xi–1, xi, xi+1, … xn)}  {xi: ¬P’(x1, … xi–1, xi, xi+1, … 

xn)} for any 1  i  n and any set of x1, …xi–1, xi+1, … xn. Now by Theorem 3.28, 

{xi: ¬P’(x1, … xi–1, xi, xi+1, … xn)} = ¬{xi: P’(x1, … xi–1, xi, xi+1, … xn)}. Thus, 

by (83) again, we have CC({xi: P(x1, … xi–1, xi, xi+1, … xn)}, {xi: P’(x1, … xi–1, xi, 

xi+1, … xn)}).  

Theorem 3.30 “¬” is CCSC and SCCC and does not possess other OPs. 

Proof: Suppose CC(X, X’). Then by (85), we have SC(¬X, ¬X’), thus showing 

that “¬” is CCSC. I next show that “¬” is not CCCC by constructing a 

counterexample. Let X and 0 be a non-trivial member and the zero member of a 

Boolean algebra, respectively. Then we have CC(X, 0) (because X  ¬0 for any 

X) but not CC(¬X, ¬0) (because ¬X > 0 for any non-trivial X). So “¬” cannot be 

CCCC. The proofs that “¬” is SCCC but not SCSC are similar.  

Theorem 3.31 Let R be a transitive relation, O a set, x an individual and Q a 

right increasing determiner, then some({z: Q(O)({w: R(z, 

w)})})({y: R(x, y)})  Q(O)({y: R(x, y)}). 

Proof: Let some({z: Q(O)({w: R(z, w)})})({y: R(x, y)}) be true, then there exists 

a z such that Q(O)({w: R(z, w)}) and R(x, z) are both true. By transitivity of R, 

we have for every w, R(x, z)  R(z, w)  R(x, w). This means, on condition that 

R(x, z), {w: R(z, w)}  {w: R(x, w)}, and so we have Q(O)({w: R(z, w)})  

Q(O)({w: R(x, w)}) by the right increasing monotonicity of Q. The above 



258 

 

argument shows that some({z: Q(O)({w: R(z, w)})})({y: R(x, y)})  Q(O)({w: 

R(x, w)}). Since “w” in the conclusion is just a dummy variable, we can replace 

it by “y”, thus completing the proof.  

Theorem 3.32 A left conservative determiner Q is left increasing iff it satisfies 

the following syllogistic schema: 

(156) Q(S)(P)  Q
dl

(S’)(P)  some(S  S’)(P) 
 

Proof: First let Q be left increasing and ║Q(S)(P)║ = ║Q
dl

(S’)(P)║ = 1. I will 

prove that ║some(S  S’)(P)║ = 1 by contradiction. So let the conclusion be 

false, i.e. S  S’  P = . Then we have S  P  ¬S’. By the left conservativity 

of Q and ║Q(S)(P)║ = 1, we can deduce ║Q(S  P)(P)║ = 1. Then since Q is 

left increasing, we have ║Q(¬S’)(P)║ = 1, i.e. ║¬(Q(¬S’)(P))║ = 0. By the 

definition of left dual, this is equivalent to ║Q
dl

(S’)(P)║ = 0, which contradicts 

the assumption that ║Q
dl

(S’)(P)║ = 1. This contradiction shows that Q must 

satisfy (156). 

Next suppose Q satisfies (156), S  S’ and ║Q(S)(P)║ = 1. I will show that Q is 

left increasing by proving ║Q(S’)(P)║ = 1 by contradiction. So let the conclusion 

be false, i.e. ║Q(S’)(P)║ = 0, which can be rewritten as ║¬(Q(¬¬S’)(P))║ = 1. 

By the definition of left dual, this is equivalent to ║Q
dl

(¬S’)(P)║ = 1. Since Q 

satisfies (156), we then have ║some(S  ¬S’)(P)║ = 1, i.e. S  ¬S’  P  . 

From this we can deduce that S  ¬S’  , but this contradicts the assumption 

that S  S’. This contradiction shows that Q must be left increasing.  
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