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Abstract

This thesis focuses on the stochastic variational inequality (VI). The stochastic VI has

been used widely in engineering and economics as an effective mathematical model for

a number of equilibrium problems involving uncertain data.

For a class of stochastic VIs, we present a new residual function defined by the

gap function in Chapter 2. The expected residual minimization (ERM) formulation

is a nonsmooth optimization problem with linear constraints. We prove the Lipschitz

continuity and semismoothness of the objective function and the existence of minimizers

of the ERM formulation. We show various desirable properties of the here and now

solution, which is a minimizer of the ERM formulation.

In Chapter 3, we propose a globally convergent (a.s.) smoothing sample average

approximation (SSAA) method for finding a minimizer of the ERM formulation. We

show that the SSAA problems of the ERM formulation have minimizers in a compact

set, and any cluster point of minimizers (stationary points) of the SSAA problems is

a minimizer (a stationary point) of the ERM formulation (a.s.) as the sample size

N →∞ and the smoothing parameter µ ↓ 0.

We discuss the ERM formulation for the stochastic linear VI in Chapter 4, which

is convex under some mild conditions. We apply the Moreau-Yosida regularization to

present an equivalent smooth convex minimization problem. To have the convexity

of the sample average approximation (SAA) problems of the ERM formulation, we

adopt the Tikhonov regularization. We show that any cluster point of minimizers of

the Tikhonov regularized SAA problems is a minimizer of the ERM formulation as the
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sample size N → ∞ and the Tikhonov regularization parameter ε → 0. Moreover, we

prove that the minimizer is the least l2-norm solution of the ERM formulation. We

also prove the semismoothness of the gradients of the Moreau-Yosida and Tikhonov

regularized SAA problems.

In Chapter 5, we discuss the distributionally robust stochastic linear VI based on

the ERM formulation. We introduce the CVaR formulation defined by the ERM for-

mulation and establish the relationship between the CVaR formulation and the ERM

formulation. For a wide range of cases, we show that the two formulations have the same

minimizers. Moreover, we derive the gradient consistency for the smoothing CVaR for-

mulation. We employ the sublinear expectation to consider the distributionally robust

CVaR formulation for the stochastic linear VI, and prove the existence of minimizers

of the robust CVaR formulation.

We provide applications arising from traffic flow problems for stochastic VI in Chap-

ter 6. We show the conditions and assumptions imposed in this thesis hold in such appli-

cations. Moreover, numerical results illustrate that the solutions, efficiently generated

by the ERM formulation, have desirable properties.
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Chapter 1

Preview and Introduction

1.1 The stochastic variational inequalities

The variational inequality (VI), the special case of which is the complementarity prob-

lem (CP), has a wide applicability across many fields. For instance, it can be used as an

effective model for a number of equilibrium problems in engineering and economics. The

VI provides a bridge for the study of optimization and equilibrium problems. Mathe-

matically, the VIs arise from the constrained optimization and the Karush-Kuhn-Tucker

(KKT) system. The study of the finite-dimensional VI and CP began in the mid-1960s,

and had many fundamental results and articles in 1970s [22, 26].

The classic VI is the problem of finding x ∈ X that satisfies the inclusion −F (x) ∈
NX(x) denoted by VI(X,F ), also written as,

find x ∈ X such that (u− x)T F (x) ≥ 0, ∀u ∈ X;

here F : Rn → Rn is a continuous function, X ⊆ Rn a (nonempty) closed, convex set

and NX(x) is the normal cone to X at x.

It turns out that the classic VI or CP can be formulated as an equivalent formulation

in terms of systems of equations or optimization problems. The VI is casted via a
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deterministic minimization problem by using a residual function for the VI.

Definition 1.1.1 [26] A residual function for the VI(X,F ) on a (closed) set D ⊇ X

is a nonnegative function f : D → R+ such that f(x) = 0 if and only if x ∈ D solves

the VI(X,F ).

Many residual functions for the VI have been extensively studied. Specifically, the

gap function, as a basis of some residual functions for the VI, is given by:

g(x) = max
y∈X

F (x)T (x− y), x ∈ D ⊇ X.

Based on the gap function, Fukushima in [29] introduced the regularized gap func-

tion as

gc(x) = max
y∈X

{F (x)T (x− y)− c

2
(x− y)T G(x− y)},

where c is a positive number, G is a symmetric positive definite matrix and x ∈ D.

Peng in [49] gave another residual function, the D-gap function, as

gab(x) = ga(x)− gb(x),

where b > a > 0 and x ∈ Rn.

In this thesis, our interest is the VI in a stochastic environment, which we consider

it as the stochastic VI. The stochastic VI is a natural extension of VI, and it has been

studied in [2, 17, 30, 31, 35, 40, 57, 63]. However, most of these articles focus on the

feasible sets of the stochastic VI are deterministic. In this thesis, we consider the case

where both the function and the feasible set of the stochastic VI have uncertainties.

Consider the stochastic VI where F : Ξ×Rn → Rn is continuously differentiable in

x for every ξ ∈ Ξ ⊆ RL and measurable in ξ for every x ∈ Rn and

Xξ = {x |Ax = bξ, x ≥ 0}
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with a given matrix A ∈ Rm×n and a random vector bξ taking values in Rm. If Xξ = Rn
+,

the stochastic VI simplifies to a stochastic complementarity problem (CP).

When the function F (ξ, x) is affine for almost every ξ ∈ Ξ, i.e.

F (ξ, x) = Mξx + qξ, a.s.,

the above stochastic VI reduces to the stochastic linear VI.

In this thesis, we suppose that for any ξ ∈ Ξ, the feasible set Xξ is nonempty and

the matrix A has full-row rank. In some applications, A is an incidence matrix whose

entries are either 0 or 1 but the function F and the vector b depend on stochastic

parameters, e.g., traffic equilibrium problems, Nash-Cournot production/distribution

problems, etc.

A good formulation of the VI, in a stochastic environment, when either F , or X,

or both, depend on stochastic parameters is not straightforward. Even, when just

F involves stochastic parameters, say ξ, one might be led to consider a variety of

formulations: find x ∈ X such that

prob
{− F (ξ, x) ∈ NX(x)

} ≥ α, or − F (ξ̂, x) ∈ NX(x)

or still E[−F (ξ, x)] ∈ NX(x), (1.1.1)

where α ∈ (0, 1], ξ̂ stands for a guess of the future and E[·] denotes the expected value

over Ξ ⊆ RL, a set representing future states of knowledge. The last two formulations

are essentially deterministic variational inequalities, the only issues being how to calcu-

late E[−F (ξ, x)] for the last one and having an undeniable capability to know the future

for the second one; one might consider setting ξ̂ = E[ξ] but that has been discredited

repeatedly including in this thesis. The first formulation with α = 1 could be converted

to a large VI, involving an infinite number of inequalities when ξ is continuously dis-

tributed, that only exceptionally would have a solution. When α ∈ (0, 1), the problem

takes on the form of a ‘chance constraint’ and would actually be quite challenging to
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come to grips with theoretically and computationally and this, in addition to having

to validate the choice of the α. When, also the set X depends on ξ, a meaning can

still be attached to the first two of these formulations but the comments made earlier

about such formulations remain valid, even more so. When seeking to mimic the third

formulation one runs quickly into difficulties when trying to justify replacing Xξ by its

expectation or try to compute E[NXξ
(x) + F (ξ, x)].

The following two deterministic formulations have been studied for the stochastic

VI when the feasible set is fixed.

• Expected Value (EV) formulation [30, 31, 35, 57, 63]: find x ∈ X such that

(y − x)T E[F (ξ, x)] ≥ 0, ∀ y ∈ X. (1.1.2)

• Expected Residual Minimization (ERM) formulation [2, 16, 20, 27, 39, 40, 68, 69]:

minx∈X E[f(ξ, x)], (1.1.3)

where f(ξ, ·) : X → R+ is a residual function for the VI(X,F (ξ, ·)) for fixed ξ ∈ Ξ.

As already pointed out, the EV formulation can be viewed as a deterministic

VI(X, F̄ ) with the expected function F̄ (x) = E[F (ξ, x)]. Using mean values or some

other estimates for the uncertain parameters in the model may lead to seriously mis-

leading decisions. The ERM formulation proposed by Chen and Fukushima in [16]

minimizes the expected values of the ‘loss’ for all possible scenarios due to failure of the

equilibrium. Mathematical analysis and practical examples show that the ERM formu-

lation is robust in the sense that its solution has minimum sensitivity with respect to

variations in the random parameters.

For the stochastic CP, the ERM formulation defined by different residual functions

has different properties, such as smoothness and boundness [16, 20, 27, 67]. For the

stochastic VI, Agdeppa et al. in [2] studied the ERM formulation given by the regular-

ized gap function and the D-gap function to illustrate the convexity of the stochastic
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linear VI. Chen and Lin in [17] employed the D-gap function as a risk function to define

the Conditional Value-at-Risk (CVaR) [54, 55] for the stochastic VI. In this thesis, we

pay our attention to the ERM formulation defined by a new residual function which is

given by the gap function and the recourse variable. We find that the condition for the

convexity of our new residual function for the stochastic linear VI is weaker than that

is used by Agdeppa et al. in [2].

1.2 Robust optimization for the stochastic VI

The ERM formulation aims to reduce the total loss of the decisions for all scenarios, and

the numerical results in Chapter 6 show that it can give a robust optimal solution. It is

defined by the expected value of random variables and it is a stochastic programming.

It is inevitable that we must resort to Monte Carlo approximation [12, 57, 59] to get

the expected value. A difficulty thing, which is lead by the limit information of a

distribution for the random variables in practice, is more challenging and needs to be

considered.

In recent years, robust optimization for the stochastic programming has attracted

much attention to reduce the influence of the parametric uncertainties on the math-

ematical optimization. The first step in this area was taken by Scarf in [58], who

defined a set of probability distributions, which is assumed to include the true dis-

tribution. Recent developments in robust optimization focus on the uncertainty sets

[4, 6, 7, 8, 9, 10, 11, 18, 23, 24, 25, 32, 46] to develop some new models to overcome

the conservatism of the old ones.

It is worth noting that in the field of the stochastic programming, there are already

abundant results for theoretical analysis and algorithm for the linear expectation; see

Birge and Louveaux [12], Kall and Wallace [36], and Ruszcyński and Shapiro [57].

However, we find that there are few references concern on a robust statistics. The

robust statistics produces estimators that are not unduly affected by small changes of

the model assumptions, and the standard methods may be comparatively badly affected.
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The sublinear expectation [34, 51, 61] is a robust statistics and it is also called

the upper expectation. The sublinear expectation is used in the situations when the

probability models have uncertainty. We focus on the sublinear expectation to consider

distributionally robust stochastic VI.

Let Ω be a given set and H be a linear space of real valued functions defined on Ω.

We suppose that H satisfies c ∈ H for each constant c and |X | ∈ H if X ∈ H.

Definition 1.2.1 A sublinear expectation E is a functional E : H → R satisfying

• Monotonicity: E[X ] ≥ E[Y ] if X ≥ Y.

• Constant preserving: E[c] = c for c ∈ R.

• sub-additivity: For each X ,Y ∈ H, E[X + Y ] ≤ E[X ] + E[Y ].

• Positive homogeneity: E[λX ] = λE[X ] for λ ≥ 0.

It is not difficult to see that if E is a sublinear expectation and ρ(X ) := E[−X ], we

can gain ρ is a coherent risk measure [3] which is a function satisfying the following

properties:

(i) Monotonicity: For all X ,Y ∈ H with X ≥ Y , we have ρ(X ) ≥ ρ(Y).

(ii) Translational invariance: For all X ∈ H and ∀ c ∈ R, we have ρ(X+c) = ρ(X )−c.

(iii) Sub-additivity: For all X ,Y ∈ H, we have ρ(X + Y) ≤ ρ(X ) + ρ(Y).

(iv) Positive homogeneity: For all X ∈ H and ∀ λ ≥ 0, we have ρ(λX ) = λρ(X ).

1.3 Outline of the thesis

We make a brief preview for the rest chapters. In Chapter 2, we present a residual mini-

mization (ERM) formulation defined by a new residual function for a class of stochastic
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VI. We get that the objective function of the ERM formulation is Lipschitz continuous

and semismooth which can guarantee the existence of optimal solutions of the ERM

formulation. We define a here and now solution with various desirable properties and

it is a minimizer of the ERM formulation. The ERM formulation of the stochastic CP,

which is a special case of the stochastic VI, is also studied in this chapter. We find that

under some suitable condition, optimal solutions of the ERM formulation are the same

as that of the EV formulation for the stochastic CP.

In Chapter 3, smoothing sample average approximation (SSAA) method is studied.

We use SSAA method to find optimal solutions of the ERM formulation. We get

that SSAA method is globally convergent almost surely (a.s.). We show that optimal

solutions of the SSAA problem of the ERM formulation exist in a compact set, and

any cluster point of optimal solutions and stationary points of the SSAA problems is

an optimal solution and a stationary point of the ERM problem (a.s.) as the sample

size N →∞ and the smoothing parameter µ ↓ 0.

In Chapter 4, we focus on the stochastic linear VI which has a wide range of ap-

plications. The ERM formulation given in Chapter 2 is considered for the stochastic

linear VI. To ensure the convexity of the approximation we use the Tikhonov regular-

ization. Moreover, we employ the Moreau-Yosida regularization to get a smooth and

convex approximation. We derive good theoretical properties of the Moreau-Yosida

regularization for the stochastic linear VI, such as the semismoothness of the gradient

of the Moreau-Yosida regularization and the convergence of the optimal solutions as

the sample size N →∞ and the Tikhonov regularization parameter ε → 0.

We discuss the distributionally robust stochastic linear VI using the sublinear ex-

pectation in Chapter 5. We use the ERM formulation to define the CVaR formulation

for the stochastic linear VI. The relationship for the ERM formulation and the CVaR

formulation is studied, and optimal solutions of the two formulations are the same for

some cases. For the smoothing CVaR formulation, we can obtain its gradient consis-

tency. The existence of optimal solutions of the robust CVaR formulation is proved.

For a wide range of residual functions, we can get the explicit form of the sublinear
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expectation, and the distributionally robust stochastic VI can be solved efficiently.

We consider the applications and numerical experiments of the stochastic VI in

Chapter 6. We concentrate our attention on the traffic equilibrium for the applications.

We show that conditions and assumptions imposed in this thesis hold in such appli-

cations. Moreover, the numerical results of the SSAA method and the Moreau-Yosida

regularization for the stochastic linear VI illustrate that the ERM formulation has good

properties, such as robustness and high probability.
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Chapter 2

The ERM formulation for the

stochastic VI

2.1 Introduction

A good deterministic formulation for the stochastic VI is necessary and important.

Although we have introduced some deterministic formulations for the stochastic VI in

Chapter 1, there is another way to formulate the problem, even when both F and X are

stochastic, that comes with a ‘natural’ interpretation and leads, at least in the case we

shall consider, to implementable algorithmic procedures. For each realization ξ of the

random quantities, let g(ξ, x) be a function that measures the compliance gap, i.e., a

nonnegative function such that g(ξ, x) = 0 if and only if −F (ξ, x) ∈ NXξ
(x). The values

to assign to g(ξ, x) could depend on the specific application but usually it would be a

relative of the gap function and solving the problem would be to minimize E[g(ξ, ·)] or

some other risk measure associated with the random variable g(ξ, ·). It is this latter

approach that will be developed in this chapter for the particular class of stochastic VIs

described in the following sections.
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The main contribution of this chapter is to show that the ERM formulation,

minx∈D ϕ(x) = E[f(ξ, x)], (2.1.1)

defined by the new residual function has various desirable properties.

In this chapter, we focus on a new residual function f(ξ, x) defined by the gap

function given in Section 2.2. We show that the function f(ξ, x) is a residual function

for the stochastic VI, and it is measurable in ξ for any fixed x and locally Lipschitz

continuous in x. In Section 2.3, we show the objective function ϕ(x) of the ERM formu-

lation defined by the residual function f(ξ, x) is Lipschitz continuous and semismooth.

Moreover, we prove the existence of solutions of the ERM formulation. For the linear

case when F (ξ, x) = Mξx + qξ, we show that ϕ(x) is convex if E[Mξ] is positive semi-

definite. The ERM formulation defined by the residual function for the stochastic CP,

the special case of the stochastic VI, is also introduced in Section 2.4.

2.2 A new residual function

To allow for the dependence of the set X on ξ ∈ Ξ, one needs to extend Definition 1.1.1

of the residual function for the classical VI to the stochastic VI.

Definition 2.2.1 Let D ⊆ Rn be a closed and convex set. f : Ξ×D → R+ is a residual

function of the stochastic VI, if the following conditions hold,

(i) For any x ∈ D, prob{ f(ξ, x) ≥ 0} = 1.

(ii) ∃ u : Ξ×D → Rn such that for any x ∈ D and almost every ξ ∈ Ξ, f(ξ, x) = 0 if

and only if u(ξ, x) solves the VI(Xξ, F (ξ, ·)).

From Definition 1.1.1, we can see that Definition 2.2.1 is a natural extension of

Definition 1.1.1. Moreover, the residual function can be used to provide error bounds

on the distance from x to the solution set of VI(Xξ, F (ξ, ·)). See [26].
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The ‘natural’ residual function

‖x− projXξ
(x− F (ξ, x))‖2

is a residual function for the stochastic VI with D = Rn and u(ξ, x) = x. Here projXξ

is the orthogonal projection of Rn onto Xξ and ‖ · ‖ is the `2 norm. When Xξ = Rn
+,

one has

x− projXξ
(x− F (ξ, x)) = min(x, F (ξ, x)).

Other possible residual functions may be defined via the KKT conditions in the

primal-dual variable (x, v) ∈ Rn+m

0 ≤ F (ξ, x) + AT v ⊥ x ≥ 0, Ax− bξ = 0.

However, in the ‘natural’ residual function and the KKT condition, there are not re-

course variables.

In this thesis, we rely on the gap function [26, Section 1.5] to define a new residual

function. The gap function provides a measure for the deviations that will be needed

to ‘adjust’ the solution of the VI as it is affected by the circumstances, i.e., the random

components of the problem.

For given ξ, the gap function for the VI(Xξ, F (ξ, ·)) is defined by

g(ξ, x) = max{ (x− y)T F (ξ, x) | y ∈ Xξ}.

It is easy to see that g(ξ, x) ≥ 0 for x ∈ Xξ and it is known that the VI(Xξ, F (ξ, ·)) is

equivalent to the minimization problem [26, Section 1.5.3]

minx∈Xξ
g(ξ, x). (2.2.1)
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This minimization problem (2.2.1) can be written as a two stage optimization problem

min xT F (ξ, x) + Q(ξ, x)

s.t. x ∈ Xξ

Q(ξ, x) = max{−yT F (ξ, x) | y ∈ Xξ};
(2.2.2)

from linear programming duality it follows that Q can also be written,

Q(ξ, x) = min{ zT bξ | AT z + F (ξ, x) ≥ 0}. (2.2.3)

Suppose that for any x ∈ Rn the recourse variable u(ξ, x) is defined by the projection

of x on the set Xξ. For any fixed ξ ∈ Ξ, to get u(ξ, x) we should solve the following

optimization problem:

min
u

1

2
‖u− x‖2

Au = bξ

u ≥ 0.

We find that it is not easy to get the explicit form of u(ξ, x) and for almost every

ξ ∈ Ξ, we need to solve the above optimization problem. To avoid the complicated

computation, we consider the recourse variable u(ξ, x) as the projection of x ∈ Rn on

the set {x|Ax = bξ} and obtain the following optimization problem

min
u

1

2
‖u− x‖2

Au = bξ,

and we obtain u(ξ, x) = (I −A†A)x + A†bξ, where A† is a generalized inverse matrix of

the matrix A. If the matrix A has full-row rank, we can get A† = AT (AAT )−1. Since

u(ξ, x) is a feasible point, to guarantee the nonnegativity of u(ξ, x) we suppose that the

point x belongs to a constraint set D.
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Let

D = {x | (A†A− I)x ≤ c},

where ci = minξ∈Ξ(A†bξ)i, for i = 1, . . . , m.

In this thesis, we suppose that the set D is nonempty, and the following two condi-

tions can guarantee D 6= ∅:

i. For any ξ ∈ Ξ, A†bξ ≥ 0 holds. (Application OK!)

ii. For any ξ ∈ Ξ, Xξ 6= ∅ and argminξ∈Ξ(A†bξ)i

⋂
argminξ∈Ξ(A†bξ)j 6= ∅ for i 6= j.

It is not difficult to verify that u(ξ, x) satisfies the KKT conditions

0 ≤ u− x + AT v ⊥ u ≥ 0 and Au = bξ,

with Lagrange multiplier v = (AAT )−1(Ax− bξ), of the following convex minimization

problem

min {1

2
‖u− x‖2 |Au = bξ, u ≥ 0}

for a fixed x ∈ D. Hence, for any x ∈ D and almost every ξ ∈ Ξ,

u(ξ, x) = projXξ
(x). (2.2.4)

In this thesis, we rely on the residual function defined by the above gap function as

follows:

f(ξ, x) = u(ξ, x)T F (ξ, u(ξ, x)) + Q(ξ, u(ξ, x)), (2.2.5)

where u(ξ, x) and Q(ξ, u(ξ, x)) are defined by the above formulations.

Assumption 2.2.1 Assume that for all x ∈ D and for almost every ξ ∈ Ξ,

∃ y(ξ, x) such that Q(ξ, u(ξ, x)) = −y(ξ, x)T F (ξ, u(ξ, x)).
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Rather than assuming that the second stage program is feasible for all u ∈ Xξ, As-

sumption 2.2.1 only requires that it is feasible for a much more restricted class, namely,

those u =projXξ
(x) when x ∈ D. In Chapter 6, we show that Assumption 2.2.1 holds

for a class of matrices A and vectors bξ that arise from traffic equilibrium problems.

Theorem 2.2.1 When Assumption 2.2.1 is satisfied, f : Ξ×D → R, as defined earlier

f(ξ, x) = u(ξ, x)T F (ξ, u(ξ, x)) + Q(ξ, u(ξ, x)), is a residual function for our stochastic

VI.

Proof. Let x ∈ D. By the definition of u(ξ, x), we have Au(ξ, x) = bξ and

u(ξ, x) = (I − A†A)x + A†bξ ≥ (I − A†A)x + c ≥ 0.

Hence u(ξ, x) ∈ Xξ. By definition of f(ξ, x) and Assumption 2.2.1, for almost every

ξ ∈ Ξ, there is y(ξ, x) ∈ Rn such that

f(ξ, x) = u(ξ, x)T F (ξ, u(ξ, x)) + Q(ξ, u(ξ, x))

= u(ξ, x)T F (ξ, u(ξ, x))− y(ξ, x)T F (ξ, u(ξ, x))

= max{(u(ξ, x)− y)T F (ξ, u(ξ, x)) | y ∈ Xξ}
≥ 0,

where the last inequality follows from u(ξ, x) ∈ Xξ. Hence, we obtain prob{f(ξ, x) ≥
0} = 1. Moreover, f(ξ, x) = 0 if and only if u(ξ, x) solves the VI(Xξ, F (ξ, ·)) a.s.

Assumption 2.2.2 (i) There are b, b̄ ∈ Rm such that b ≤ bξ ≤ b̄ for ∀ξ ∈ Ξ;

E[‖bξ‖] < ∞,

(ii) ∃ d : Ξ → R+ such that ‖F (ξ, u)‖ ≤ d(ξ) for all u ∈ U and E[d(ξ)] < ∞,

(iii) ∃ d1 : Ξ → R+, bounded, such that ‖∇F (ξ, u)‖ ≤ d1(ξ) for all u ∈ U ,

(iv) ∃ γ > 0 such that Xξ ⊂ U0 = {u ∈ Rn | ‖u‖∞ ≤ γ} for any ξ ∈ Ξ.
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Assumption 2.2.2(i)-(iii) are pretty standard and are in no way restrictive as far

as applications are concerned. Assumption 2.2.2(iv) is not quite as common but, in

particular, is satisfied by the class of problems considered in Chapter 6.

Since u(ξ, x) = (I − A†A)x + A†bξ is a linear function of x and u(ξ, x) ∈ U for any

x ∈ D, for almost every ξ ∈ Ξ, we immediately obtain the following proposition.

Proposition 2.2.1 F (ξ, u(ξ, x)) is measurable in ξ for every x ∈ D. Moreover, for

any fixed ξ ∈ Ξ, the following hold.

(i) F (ξ, u(ξ, x)) is continuously differentiable with respect to x.

(ii) If (ii) and (iii) of Assumption 2.2.2 hold, then for all x ∈ D,

‖F (ξ, u(ξ, x))‖ ≤ d(ξ) and ‖∇xF (ξ, u(ξ, x))‖ ≤ ‖I − A†A‖d1(ξ).

Theorem 2.2.2 Assume that Assumption 2.2.1 holds. Then, the function f is mea-

surable in ξ for any x ∈ D and locally Lipschitz continuous in x a.s.; actually, under

Assumption 2.2.2(iii), the functions {f(ξ, ·) : D → R, ξ ∈ Ξ} are then also equi-locally

Lipschitz continuous a.s.

Proof. Since u(ξ, x) is linear in x, by Proposition 2.2.1, we only need to consider

F (ξ, u) for u ∈ U .

For any u, v ∈ U and almost every ξ ∈ Ξ, there are z(ξ, u), z(ξ, v) ∈ Rm such that

Q(ξ, u) = bT
ξ z(ξ, u) and Q(ξ, v) = bT

ξ z(ξ, v). By perturbation error analysis for linear

programs in [41], there is a constant νA > 0, that only depends on the matrix A, such

that

‖Q(ξ, u)−Q(ξ, v)‖ ≤ ‖bξ‖‖z(ξ, u)−z(ξ, v)‖ ≤ ‖bξ‖mνA‖F (ξ, u)−F (ξ, v)‖ a.s. (2.2.6)

Since for any fixed ξ ∈ Ξ, F (ξ, ·) is continuously differentiable in x, Q(ξ, ·) is locally

Lipschitz continuous in x a.s. with, in view of Assumption 2.2.2(iii), the (local) Lipschitz
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constant not depending on ξ. From this it follows that for any fixed ξ ∈ Ξ, the two terms

in f(ξ, ·) are locally Lipschitz continuous in x with Lipschitz constant not depending

on ξ. Hence, the collection {f(ξ, ·), ξ ∈ Ξ} is then equi-locally Lipschitz continuous in

x, a.s. Recall that F (ξ, x) is measurable in ξ for every x ∈ Rn and bξ is measurable in

ξ. We have that Q(ξ, u) is measurable in ξ for any u ∈ U , cf. [57, Theorem 19, Chapter

1]. Hence the function f(ξ, x) is measurable in ξ for any x ∈ Rn.

2.3 The ERM formulation for stochastic VI

By the residual function f , we get our ERM formulation (2.1.1) with the objective

function:

ϕ(x) = E[f(ξ, x)] = E[u(ξ, x)T F (u(ξ, x))] + E[Q(ξ, u(ξ, x))].

By Theorem 2.2.1, ϕ(x) ≥ 0 for all x ∈ D and if ϕ(x) = 0 then, u(ξ, x) solves the

VI(Xξ, F (ξ, ·)) for almost every ξ ∈ Ξ. Hence the “here and now” solution is

xERM = E[u(ξ, x∗)] = x∗ + A†(E[bξ]− Ax∗),

where x∗ is a solution of the ERM formulation (2.1.1). By definition of u(ξ, x),

AxERM = E[bξ] and xERM ≥ 0. (2.3.7)

Moreover, the following proposition shows that xERM is also a solution of our ERM

formulation (2.1.1).

Proposition 2.3.1 Under Assumption 2.2.1, if (2.1.1) has a solution x∗, then

xERM ∈ argminx∈D ϕ(x). (2.3.8)
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Proof. For x ∈ D, let ū = E[u(ξ, x)] == (I − A†A)x + A†E[bξ], and we have

(A†A− I)ū = (A†A− I)((I − A†A)x + A†E[bξ])

= (A†A− I)(I − A†A)x + (A†A− I)A†E[bξ]

= (A†A− I)x + 0

≤ c,

where the last inequality holds because x ∈ D.

Hence, ū ∈ D. Then, from (2.2.4)

u(ξ, ū) = projXξ
(ū) = projXξ

(E[projXξ
(x)]).

Moreover, we obtain

u(ξ, ū)− u(ξ, x) = (I − A†A)ū + A†bξ − (I − A†A)x− A†bξ

= (I − A†A)((I − A†A)x + A†E[bξ])− (I − A†A)x

= (I − A†A)A†E[bξ] = 0,

where the last two equalities use (I −A†A)(I −A†A) = I −A†A and (I −A†A)A† = 0.

Hence for any x ∈ D and almost every ξ ∈ Ξ, we have

projXξ
(x) = projXξ

(E[projXξ
(x)]). (2.3.9)

From (2.3.9), for every ξ ∈ Ξ,

u(ξ, xERM) = projXξ
(xERM) = projXξ

(x∗) = u(ξ, x∗),

which, together with ϕ(x∗) = minx∈D ϕ(x), implies

ϕ(xERM) = minx∈D ϕ(x),
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which in turn yields (2.3.8).

It is interesting to note that xERM = x∗ if and only if A†(E[bξ] − Ax∗) = 0. From

(2.3.8), if the ERM formulation (2.1.1) has a solution and A†(E[bξ] − Ax∗) 6= 0, then

(2.1.1) has a multiplicity of solutions.

Again, with c̄i ≥ maxξ∈Ξ(A†bξ)i, i = 1, · · · ,m, let

U = {u = Λc + (I − Λ)c̄ + (I − A†A)x |Λ = diag(λ1, · · · , λn), λi ∈ [0, 1], x ∈ D }

and observe that for any x ∈ D and ξ ∈ Ξ: u(ξ, x) ∈ U .

Theorem 2.3.1 Assume that Assumption 2.2.1 holds. Moreover, under Assumption

2.2.2 (i)-(ii) the following hold.

(i) If each component Fi(ξ, u) of F (ξ, u) is concave in u, then Q(ξ, u) is convex in u.

(ii) If F (ξ, x) = Mξx + qξ and E[Mξ] is positive semi-definite, then the objective

function ϕ is a finite valued convex function on D.

Proof. We prove the theorem in the two aspects. (i) For any u, v ∈ U , λ ∈ [0, 1] and

almost every ξ ∈ Ξ,

min{ bT
ξ z |AT z + F (ξ, u) ≥ 0} and min{ bT

ξ z |AT z + F (ξ, v) ≥ 0}

have solutions. Let z(ξ, u) and z(ξ, v) be solutions of these two problems, respectively.

Since the functions Fi(ξ, x) are concave in x a.s.,

0 ≤ λ(AT z(ξ, u) + F (ξ, u)) + (1− λ)(AT z(ξ, v) + F (ξ, v))

≤ AT (λz(ξ, u) + (1− λ)z(ξ, v)) + F (ξ, λu + (1− λ)v)

holds a.s. This implies that λz(ξ, u)+(1−λ)z(ξ, v) ∈ {z|AT z+F (ξ, λu+(1−λ)v) ≥ 0}
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a.s. Hence, we obtain the convexity of Q(ξ, x),

Q(ξ, λu + (1− λ)v) ≤ bT
ξ (λz(ξ, u) + (1− λ)z(ξ, v))

= λQ(ξ, u) + (1− λ)Q(ξ, v), a.s.

(ii) With B = A†A− I, one has

f(ξ, x) = (−Bx + A†bξ)
T (Mξ(−Bx + A†bξ) + qξ) + Q(ξ,−Bx + A†bξ)

= xT BT MξBx− (A†bξ)
T (Mξ + MT (ξ))Bx− qT

ξ Bx

+(A†bξ)
T (MξA

†bξ + qξ) + Q(ξ,−Bx + A†bξ).

By conditions (i) and (ii) of Assumption 2.2.2, there exists d2(ξ) such that 0 ≤ f(ξ, x) ≤
d2(ξ) for all x ∈ D and E[d2(ξ)] < ∞. Taking the expected value of f , we see that ϕ

is finite valued and there are a vector c ∈ Rn and a constant c0 such that

ϕ(x) = xT BT E[Mξ]Bx + cT x + c0 + E[Q(ξ,−Bx + A†bξ)].

Since Q(ξ, u) is convex in u for almost every ξ ∈ Ξ, Q(ξ,−Bx + A†bξ) is convex in x

for almost every ξ ∈ Ξ. Hence, when E[Mξ] is positive semi-definite it implies that ϕ

is convex.

Theorem 2.3.2 Under Assumptions 2.2.1 and 2.2.2, ϕ is globally Lipschitz on D, i.e.,

|ϕ(x)− ϕ(y)| ≤ κ‖x− y‖, x, y ∈ D (2.3.10)

where

κ = (E[d(ξ)] + E[d1(ξ)](E[‖bξ‖] mνA + γ
√

n))‖I − A†A‖;

recall that A is an m× n-matrix and for the constant νA refer to (2.2.6).
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Proof. For the first term in ϕ, we have

|uT F (ξ, u)− vT F (ξ, v)| ≤ |uT (F (ξ, u)− F (ξ, v))|+ |(u− v)T F (ξ, v)|
≤ ‖u‖d1(ξ)‖u− v‖+ d(ξ)‖u− v‖
≤ (γ

√
nd1(ξ) + d(ξ))‖u− v‖.

For the second term, from (2.2.6), we have

|Q(ξ, u)−Q(ξ, v)| ≤ ‖bξ‖mνAd1(ξ)‖u− v‖.

Combining these two inequalities,

|ϕ(x)− ϕ(y)| ≤ E[|f(ξ, x)− f(ξ, y)|]
≤ E[|u(ξ, x)T F (ξ, u(ξ, x))− u(ξ, y)T F (ξ, u(ξ, y))|] + E[|Q(ξ, u(ξ, x))−Q(ξ, u(y, ξ))|]
≤ (γ

√
nE[d1(ξ)] + E[d(ξ))] + mνAE[‖bξ‖]E[d1(ξ)])‖I − A†A‖‖x− y‖,

completes the proof.

Definition 2.3.1 [44] Suppose that φ : X ⊆ Rm → R is a locally Lipschitz continuous

function, then φ is semismooth at x ∈ int X if φ is directionally differentiable at x and

for any g ∈ ∂φ(x + h),

φ(x + h)− φ(x)− gT h = o(‖h‖),

where int X denotes the interior of X and ∂φ denotes the Clarke generalized gradient.

Theorem 2.3.3 Suppose Assumptions 2.2.1 and 2.2.2 hold. Then the function ϕ is

semismooth on D.

Proof. Following Proposition 1 and (3.1)-(3.2) in [52], we only need to show that the

following three conditions hold:
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(i) There exists an integrable function κ1 such that

|f(ξ, x)− f(ξ, y)| ≤ κ1(ξ)‖x− y‖, for all x, y ∈ D, a.s.

(ii) f(ξ, ·) is semismooth at x ∈ D a.s.

(iii) The directional derivative f
′
ξ(x; h) of f(ξ, ·) at x in direction h satisfies

|f ′ξ(x + h; h)− f
′
ξ(x; h)|

‖h‖ ≤ κ2(ξ),

where E[κ2(ξ)] < ∞.

For (i), as follows from the proof of Theorem 2.3.2,

|f(ξ, x)− f(ξ, y)| ≤ (d(ξ) + d1(ξ)
√

nγ + mν(A)d1(ξ)‖bξ‖)‖I − A†A‖‖x− y‖

for all x, y ∈ D and almost every ξ ∈ Ξ.

For (ii), since F (ξ, ·) is continuously differentiable at x, it suffices to worry about

Q(ξ, ·) and by [12, Theorem 5.8, Section 3.1] this function is piecewise smooth. Since

piecewise smooth implies semismooth and the addition of semismooth functions is also

a semismooth function, f(ξ, ·) is semismooth on D a.s.

For (iii), from Assumption 2.2.2, we find that the first term of f ′ξ(x+h; h) is bounded

by the integrable function (d(ξ) +
√

nγd1(ξ))‖I − A†A‖‖h‖. The second term of f is

the directional derivative of Q(ξ, x), by [53, Lemma 2.2] and the formula 2.3.7, this

term can be bounded by mν(A)d1(ξ)‖bξ‖‖I −A†A‖‖h‖. Thus, we set κ2(ξ) = 2(d(ξ) +
√

nγd1(ξ) + mν(A)d1(ξ)‖bξ‖)‖I − A†A‖ and this yields (iii).

Theorem 2.3.4 Suppose Assumptions 2.2.1 and 2.2.2(i-ii, iv) hold. Then, (2.1.1) has

a solution in the compact set

D1 = { y |y = (I − A†A)x, x ∈ D}.
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Moreover,

D1 ⊆ D and argminy∈D1
ϕ(y) ⊆ argminx∈D ϕ(x). (2.3.11)

Proof. For any x ∈ D, u(ξ, x) = (I − A†A)x + A†bξ ∈ Xξ and y = (I − A†A)x ∈ D1,

we get y = u(ξ, x) − A†bξ. Under Assumption 2.2.2(i) and (iv), we know that u(ξ, x)

and A†bξ are bounded, so we obtain the set D1 is closed and bounded.

For any x ∈ D, we can gain 0 ≤ ϕ(x) < ∞ from Theorem 2.2.1 and Theorem 2.2.2.

From the definition of u(ξ, x), we have that u(ξ, x) ∈ Xξ and there are two constants b

and b̄ such that b ≤ bξ ≤ b̄ for ∀ ξ ∈ Ξ. Hence, the vector

(I − A†A)x = u(ξ, x)− A†bξ

is in the compact set D1. From (I − A†A)(I − A†A) = (I − A†A) and D = {x|(I −
A†A)x + c ≥ 0}, we have y = (I − A†A)x ∈ D which implies D1 ⊆ D. Moreover, from

(I − A†A)(I − A†A)x + A†bξ = (I − A†A)x + A†bξ = u(ξ, x),

we obtain

minx∈D ϕ(x) = miny∈D1 ϕ(y). (2.3.12)

Since D1 is compact and ϕ is continuous, argminD1
ϕ 6= ∅ and any y∗ ∈ argminD1

ϕ also

minimizes ϕ on D since D1 ⊆ D. Finally, from (2.3.12) one obtains (2.3.11).

2.4 The ERM formulation for stochastic CP

The stochastic CP, as a special case of the stochastic VI, deals with finding a vector

x ∈ Rn, such that

x ≥ 0, F (ξ, x) ≥ 0, xT F (ξ, x) = 0 (2.4.13)

holds for every ξ ∈ Ξ.

The ERM formulation for the stochastic CP has been studied in [16, 20, 27, 67, 69].
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The residual function of these papers is defined as f(ξ, x) = ||G(ξ, x)||2 with

G(ξ, x) =




φ(F1(ξ, x), x1)
...

φ(Fn(ξ, x), xn)


 ,

and φ : R2 → R is an NCP function, which satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Among various NCP functions, the “min” function φ1 and the Fischer-Burmeister(FB)

function φ2 [28] are popular, which are given as follows:

φ1(a, b) := min(a, b)

and

φ2 := a + b−
√

a2 + b2.

Another NCP function defined based on the FB function is presented by Chen-Chen-

Kanzow in [13]

φ3 := λ(a + b−
√

a2 + b2) + (1− λ)a+b+, λ ∈ (0, 1),

which is called the penalized FB function.

The ERM formulation for the stochastic CP defined by the “min” function, FB

function and the penalized FB function has different properties such as the smoothness

and the boundedness. We can find the related results about these properties in [16, 20,

27, 67].

When the feasible set of the stochastic VI is defined by X := {x|x ≥ 0}, the recourse

variable u(ξ, x) reduces to x and the residual function (2.2.5) is as follows:

f1(ξ, x) = xT F (ξ, x) + Q(ξ, x), (2.4.14)
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where Q(ξ, x) = maxy≥0−yT F (ξ, x).

Moreover, the constraint set of the ERM formulation is given by D := {x|x ≥ 0}.

The ERM formulation for the stochastic CP defined by the residual function (2.4.14)

is

min
x≥0

ϕ(x) = E[f1(ξ, x)]. (2.4.15)

We can see that under Assumption 2.2.1, the function f1(ξ, x) and ϕ(x) are well defined.

Furthermore, if Assumption 2.2.1 holds for the stochastic CP, it means that for a fixed

x ≥ 0 and almost every ξ ∈ Ξ, F (ξ, x) should be nonnegative and Q(ξ, x) = 0. The

residual function (2.4.14) becomes to f1(ξ, x) = xT F (ξ, x) and the ERM formulation

(2.4.15) for the stochastic CP reduces to

min ϕ(x) = xT E[F (ξ, x)] (2.4.16)

x ≥ 0.

The EV formulation for the stochastic CP is to find a vector x ∈ Rn such that

x ≥ 0, E[F (ξ, x)] ≥ 0, xT E[F (ξ, x)] = 0. (2.4.17)

Under Assumption 2.2.1, we can define the gap function of the EV formulation for

the stochastic CP as

g1(x) = max
y≥0

(x− y)T E[F (ξ, x)] = xT E[F (ξ, x)]. (2.4.18)

Hence, we can see that the gap function of the EV formulation is the same as the

objective function of the ERM formulation. It means that under Assumption 2.2.1,

solutions of the ERM formulation for the stochastic CP is the same as that of the EV

formulation.

The EV formulation (2.4.17) is a deterministic CP. If Assumption 2.2.1 holds, we

get the feasibility of the CP (2.4.17) and under some suitable conditions, such as co-
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coercivity of the function E[F (ξ, x)] we get that the solution set of (2.4.17) is nonempty

and compact [26]. In other words, under Assumption 2.2.1 and conditions of existence

of solutions for the CP (2.4.17) we can guarantee the existence of the ERM formulation

for the stochastic CP.

Remark 2.4.1 To define a deterministic optimization formulation for finding a “here

and now” solution for the stochastic VI, we need a deterministic feasible set and a

deterministic objective function. The feasible set D defined in Section 2.2 after (2.2.3)

can ensure that

(i) u(ξ, x) =projXξ
(x) ≥ 0, for any x ∈ D;

(ii) existence of solutions and finding a solution on a bounded subset D1 ⊆ D.

The new function f(ξ, x) in (2.2.5) is defined by the recourse variable u(ξ, x) which

is dependent on the first level variable x and random variable ξ. Hence the degree of

inadequacy or “loss” of a given x for a given ξ can be measured by f(ξ, x). In Chapter

6, we show that max{−yT F (ξ, x)|y ∈ Xξ} has a closed form and f(ξ, x) can be written

explicitly for Wardrop’s equilibrium for traffic assignment.
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Chapter 3

Smoothing sample average

approximations (SSAA) for the

stochastic VI

3.1 Introduction

Let ξ1, · · · , ξN be a sampling of ξ. The Sample Average Approximation (SAA) method

has been used to find a solution of the EV formulation (1.1.2) over a deterministic

feasible set X [31, 35, 63]. The SAA method for the EV formulation of the stochastic

VI uses the sample average value

F̂N(x) =
1

N

N∑
i=1

F (ξi, x)

to approximate the expected value E[F (ξ, x)] and solves

(y − x)T F̂N(x) ≥ 0, for all y ∈ X.

The classical law of large numbers ensures that F̂N(x) converges with probability 1 to

E[F (x, ξ)] when the sample is iid.
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Similarly, one can apply the SAA method to the ERM formulation (1.1.3) and

denote the sample average value by

ϕ̂N(x) =
1

N

N∑
i=1

f(ξi, x).

By the assumption that F is continuously differentiable in x for every ξ ∈ Ξ, E[F (ξ, x)]

and F̂N(x) are continuously differentiable. However, the assumption of continuous dif-

ferentiability of F does not imply that our (objective) function ϕ and its sample aver-

age approximation ϕ̂N(x) are differentiable. In what follows, we introduce a smoothing

sample average approximation (SSAA)

ΦN
µ (x) =

1

N

N∑
i=1

f̃(ξi, x, µ), (3.1.1)

where f̃ : Ξ×Rn ×R+ is a smoothing approximation of f .

Definition 3.1.1 Let g : Rn → R be a locally Lipschitz continuous function. We call

g̃ : Rn × R+ → R a smoothing function of g, if g̃ is continuously differentiable on Rn

for any µ ∈ R++ and for any x ∈ Rn,

limz→x, µ↓0 g̃(z, µ) = g(x). (3.1.2)

For the stochastic linear VI, under the condition that E[Mξ] is positive semi-definite,

we employe the Moreau-Yosida regularization which is a smooth version of the ERM

formulation to solve the ERM formulation. We analyze the convergence of optimal

solutions of the SAA problem for the Moreau-Yosida regularization to that of the ERM

formulation in Chapter 4. However, the Moreau-Yosida regularization cannot be used

when the function F (ξ, x) is nonlinear in x or E[Mξ] is not positive semi-definite. The

SSAA function is based on the smoothing function, and we will give smoothing functions

for traffic equilibrium problems in Chapter 6.

In this chapter, we define the SSAA function and prove the existence of solutions
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to SSAA minimization problems. Moreover, we show that any sequence of solutions

of SSAA minimization problems has a cluster point and any such cluster point is a

solution of the ERM formulation (2.1.1) (a.s.). We also show that any cluster point of

a sequence of stationary points of SSAA minimization problems is a stationary point

of the ERM formulation (2.1.1) (a.s.).

3.2 Minimizers of SSAA problem

In this section, we consider the existence and the convergence of solutions of the fol-

lowing SAA problems

minx∈D ϕ̂N(x) (3.2.3)

and SSAA problems

minx∈D ΦN
µ (x). (3.2.4)

Let X ⊆ Rn be an open set and R = [−∞,∞].

Definition 3.2.1 [56] A sequence of functions {gN : X → R,N ∈ N} epi-converges to

g : X → R, written gN e−→ g, if for all x ∈ X,

(i) lim infN→∞ gN(xN) ≥ g(x) for all xN → x; and

(ii) lim supN→∞ gN(xN) ≤ g(x) for some xN → x.

Definition 3.2.2 [37] A function g : Ξ×X → R is a random lsc (lower semicontinu-

ous) function if

(i) g is jointly measurable in (ξ, x),

(ii) g(ξ, ·) is lsc for every ξ ∈ Ξ.

Definition 3.2.3 [37] A sequence of random lsc functions {gN : Ξ×X → R, N ∈ N}
epi-converges to g : X → R a.s., written gN e−→ g a.s., if for almost every ξ ∈ Ξ,

{gN(ξ, ·) : X → R,N ∈ N} epi-converges to g : X → R.
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Let δD(x) = 0 when x ∈ D and δD(x) = ∞ otherwise; δD is the indicator function

of the set D. For a given x ∈ Rn and a positive number r, we denote the closed ball

with center x and radius r by

B(x, r) = { y ∈ Rn | ‖y − x‖ ≤ r }.

Let µ̄ be a positive number. Let

ϕµ(x) = E[f̃(ξ, x, µ)].

Lemma 3.2.1 Let f̃ be a smoothing function of f . Then ΦN
µ and ϕµ are smoothing

functions of ϕ̂N and ϕ, respectively. If the sample is iid then for any fixed µ ∈ [0, µ̄],

we have

ΦN
µ

e−→ ϕµ, on D, a.s. (3.2.5)

Proof. By Definition 3.1.1, it is easy to see that ΦN
µ and ϕµ are smoothing functions

of ϕ̂N and ϕ, respectively.

The proof for (3.2.5) is based on the convergence of inf-projections. Let

cx,r = infB(x,r) ϕµ + δD, cN
x,r = infB(x,r) ΦN

µ + δD.

Let Qn be the set of rational n-dimensional vectors and Q++ = R++ ∩ Q1. For any

x ∈ Qn, r ∈ Q++, since the samples are iid, the random variables {cN
x,r} are iid [37].

From the Law of Large Number follows

cN
x,r −→ cx,r as N →∞ a.s.

Since ΦN
µ +δD and ϕµ+δD are random lsc functions, both functions can be completely

identified by a countable collection of their inf-projections [37, 56, Chapter 14]. Hence

we obtain (3.2.5).
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For any locally Lipschitz continuous function g : Rn → R, we can construct a

smoothing function g̃ : Rn ×R+ → R satisfying the gradient consistent property

{ lim
z→x,µ↓0

∇g̃(z, µ)} ⊆ ∂g(x) (3.2.6)

by convolution [56, Theorem 9.67], where ∂g denotes the Clarke generalized gradient.

Moreover, for many locally Lipschitz continuous functions, we can easily construct

computable smoothing functions satisfying (3.2.6). See examples in Chapter 6 and

(ii) of Lemma 6.1.2. In the remainder of this chapter, we assume that the smoothing

functions ΦN
µ and ϕµ satisfy the gradient consistent property (3.2.6).

Lemma 3.2.2 Under Assumptions 2.2.1 and 2.2.2(iii), whatever be the sample {ξ1, · · · , ξN}
that defines the functions ϕ̂N and ΦN

µ , the collection of functions {ϕ̂N , N ∈ N}, as well

as the collection {ΦN
µ , µ > 0, N ∈ N}, are equi-locally Lipschitz continuous on D.

In particular, this implies that when, for all N , the samples are iid, the functions

ΦN
µ not only epi-converge almost surely to ϕµ on D, but converge also pointwise almost

surely.

Proof. The statements about the collections being equi-locally Lipschitz follow directly

from Theorem 2.2.2 and the gradient consistent property (3.2.6), since they imply that

both the collections of functions {f(ξ, · ) : D → R, ξ ∈ Ξ} and {f̃(ξ, ·µ) : D → R, µ >

0, ξ ∈ Ξ}, that define ϕ̂N and ΦN
µ , via finite sums, are equi-locally Lipschitz continuous.

The almost sure pointwise convergence then follows immediately from [56, Theo-

rem 7.10] and Lemma 3.2.1 which imply that under equi-lower semicontinuity of the

approximating functions, epi-converges implies pointwise convergence.

Lemma 3.2.3 Under the assumptions of Theorem 2.3.4, for any µ ∈ [0, µ̄] and N ∈ N,

the SAA minimization problem (3.2.3) and the SSAA minimization problem (3.2.4)

admit optimal solutions.
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Proof. Since for any ξ ∈ Ξ, f(ξ, ·) is a continuous function on D and measurable in

ξ for any x ∈ D, the SAA function ϕ̂N and the SSAA function ΦN
µ are continuous

functions on D for any µ ∈ [0, µ̄] and N ∈ N and consequently are also random lsc

functions [56, Example 14.15]. Moreover by the same arguments as in the proof of

Theorem 2.3.4, one obtains

minx∈D ϕ̂N(x) = miny∈D1 ϕ̂N(y) (3.2.7)

and

minx∈D ΦN
µ (x) = miny∈D1 ΦN

µ (y). (3.2.8)

Since D1 is compact, there are y∗, y∗∗ such that

y∗ ∈ argminy∈D1
ϕ̂N(y) and y∗∗ ∈ argmin

y∈D1

ΦN
µ (y),

respectively. Moreover, from D1 ⊆ D and (3.2.7), (3.2.8), y∗ and y∗∗ are thus solutions

of (3.2.3) and (3.2.4), respectively.

Let S∗, SN and SN
µ be the sets of solutions of (2.1.1), (3.2.3) and (3.2.4) in D1. In

the following, we analyze the convergence of SN and SN
µ to S∗. For two sets Y and Z,

we denote the distance from z ∈ Rn to Y and the excess of the set Y on the set Z by

dist(z, Y ) = infy∈Y ‖z − y‖, and ce(Y, Z) = supy∈Y dist(y, Z).

Since ϕ, ϕ̂N and ΦN
µ are continuous and D1 is compact, we have

minx∈Rn h(x) + δD1(x) ⇐⇒ minx∈D1 h(x),

for h = ϕ, h = ϕ̂N or h = ΦN
µ .

Theorem 3.2.1 Under Assumptions 2.2.1 and 2.2.2, if the sample is iid, then the

following hold.

(i) Any sequence {xN
µ ∈ SN

µ } has a cluster point as N →∞ and µ ↓ 0 a.s.
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(ii) Any cluster point of {xN
µ ∈ SN

µ } is an optimal solution of (2.1.1) a.s.

(iii) ce(SN
µ , S∗) −→ 0 a.s., as N →∞ and µ ↓ 0.

Proof. By the definition of the smoothing functions of ϕ(x), limx→x̄,µ↓0 ϕµ(x) = ϕ(x̄)

for any x, x̄ ∈ D1. Moreover, from Lemmas 3.2.1, 3.2.2 and

|ΦN
µ (x)− ϕ(x̄)| ≤ |ΦN

µ (x)− ϕµ(x)|+ |ϕµ(x)− ϕ(x̄)|,

we obtain

ΦN
µ (x) −→ ϕ(x̄), as x → x̄, N →∞, µ ↓ 0, a.s.

which means ΦN
µ epi-converges to ϕ as N →∞ and µ ↓ 0, a.s. Hence by [56, Theorem

7.11], one has

ΦN
µ + δD1

e−→ ϕ + δD1 , a.s.

Moreover, by the continuity and nonnegativity of ϕ on the compact set D1 and Theorem

2.3.4, one also has

−∞ < min
x∈Rn

ϕ(x) + δD1(x) = minx∈D1 ϕ(x) < ∞.

Hence, from [56, Theorem 7.31], we obtain

lim supN→∞,µ↓0 argminx∈D1
ΦN

µ (x) = lim supN→∞,µ↓0 argminx∈D1
(ΦN

µ (x) + δD1(x))

⊂ argminx∈D1
(ϕ(x) + δD1(x))

= argminx∈D1
ϕ(x), a.s.

By the compactness of D1, the sequence {xN
µ } has a cluster point and any such cluster

point lies in the solution set of minx∈D1 ϕ(x) a.s. Using Theorem 2.3.4 again, any such

cluster point is also in the solution set of (2.1.1). The statement (iii) follows from (i)

and (ii) of this theorem and the compactness of D1.
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In some cases, the expectation can be defined by multi-dimensional integrals and

we can apply efficient quasi-Monte Carlo methods [60] to find approximate values of

the expectation at each point x over a compact set. By error analysis of quasi-Monte

Carlo methods for numerical evaluation of continuous integrals, we have

limN→∞ ΦN
µ (x) = ϕµ(x), x ∈ D1, µ ∈ [0, µ̄], (3.2.9)

in the sense that for any given ε > 0, there is a ν̄ > 0, such that for any N ≥ ν̄, we

have

|ΦN
µ (x)− ϕµ(x)| < ε, for any x ∈ D1, µ ∈ [0, µ̄].

Theorem 3.2.2 Under Assumptions 2.2.1 and 2.2.2, if (3.2.9) holds, so do the follow-

ing.

(i) Any sequence {xN
µ } ⊆ SN

µ has a cluster point as N →∞ and µ ↓ 0.

(ii) Any cluster point of {xN
µ } is an optimal solution of (2.1.1).

(iii) ce(SN
µ , S∗) −→ 0, as N →∞ and µ ↓ 0.

Proof. By definition of the smoothing functions associated with ϕ(x), limx→x̄,µ↓0 ϕµ(x) =

ϕ(x̄) for any x̄ ∈ D1. Moreover, from (3.2.9) and

|ΦN
µ (x)− ϕ(x̄)| ≤ |ΦN

µ (x)− ϕµ(x)|+ |ϕµ(x)− ϕ(x̄)|,

we find

limx→x̄,N→∞,µ↓0 ΦN
µ (x) = ϕ(x̄),

which means ΦN
µ +δD1 continuously converges to ϕ as N →∞ and µ ↓ 0 and continuous

convergence implies epi-convergence. The remaining part of the proof is then similar

to the proof of Theorem 3.2.1.
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3.3 Stationary points of SSAA problem

In this section, we analyze the convergence of stationary points, that so far has only

received perfunctory attention in the approximation theory for variational problems.

Recall [56, Section 8.A] that the subderivative of a function g : Rn → R at a point

x̄ at which g(x̄) is finite, is the function dg(x̄; ·) defined by

dg(x̄; h) = lim inf
τ↓0

h′→h

∆τg(x; h′) or, equivalently, dg(x̄; ·) = epi- lim inf
τ↓0

∆τg(x̄; ·)

where ∆τg(x; w) is the difference quotient function:

∆τg(x; h) :=
g(x + τh)− g(x)

τ
for τ > 0.

One refers to x̄ ∈ X ⊂ Rn as a stationary point of g on a closed set X, if

dg(x̄; h) ≥ 0 for all h ∈ TX(x̄), (3.3.10)

where TX(x̄) is the tangent cone of X at x̄ ∈ X [26]. When, X is convex, one can

exploit the polarity between the tangent and the normal cones [56, Theorem 6.9] and

reformulate this condition as

dg(x̄; z − x̄) ≥ 0 for all z ∈ X.

We work with this latter inequality since our X, the sets D and D1, are convex. More-

over, the functions f(ξ, ·), from Theorem 2.2.2, and, a fortiori, f̃(ξ, x, µ) that are used

to build our sample average approximation are locally Lipschitz (a.s.). We are going

to assume that they are also Clarke regular at the points of interest. Of course, this

would be the case when Q(ξ, ·) is regular since, by assumption, F (ξ, ·) is continuously

differentiable. This occurs in a variety of situations, for example, when F (ξ, ·) is linear,

when for i = 1, . . . , n, the functions Fi(ξ, ·) are concave and, in particular, when Q(ξ, ·)
can be expressed as a max-function as in our applications in Chapter 6.
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In view of [56, Theorem 9.16], when g is locally Lipschitz and Clarke regular at x̄,

then the subderivative coincides with the directional derivative,

dg(x̄; h) = lim
τ↓0

∆τg(x; h) = g′(x; h).

Moreover, dg(·, h) is usc (upper semicontinuous); in fact, [56, Theorem 9.16] asserts a

bit more but that’s not needed here.

In addition to these properties, the proof of the next theorem relies like Lemma

3.2.1 on the law of large numbers for random lsc functions, more precisely, random usc

functions, and two inequalities: The first one, comes about from the interchange of

subdifferentiation and taking expectation, the second one results from the choice of a

smoothing function that will satisfy

limµ↓0 df̃µ(ξ, x; h) ≤ df(ξ, x; h) for all x, h. (3.3.11)

In Chapter 6, we show that Q(ξ, ·) is regular and the exponential smoothing function

[19, 47] satisfies (3.3.11) for piecewise maxima functions.

Theorem 3.3.1 Suppose Assumptions 2.2.1 and 2.2.2 hold and Q(ξ, ·) is regular for

any fixed ξ ∈ Ξ. Then for any µ ≥ 0 and N ∈ N, the SAA problem (3.2.3) and the

SSAA problem (3.2.4) have stationary points in the compact set D1. Let {xN
µ } ⊂ D1 be

a sequence of stationary point of (3.2.4). If the sample is iid, then any cluster point of

{xN
µ } is a stationary point of (2.1.1), a.s.

Proof. The existence of stationary points follows directly from the existence of mini-

mizers of (3.2.3) and (3.2.4).

By the regularity of Q and continuous differentiability of F , we deduce that f , ϕ,

ϕ̂N are Clarke regular [21, Definition 2.3.4, Proposition 2.3.6] in D.

Since f is globally Lipschitz in D, there are constants t̄ > 0 and β such that

t−1[f(ξ, x + h) − f(ξ, x)] ≥ β, a.s. for all h in a neighborhood of 0 and 0 < t̄ ≤ t. By
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Proposition 2.9 in [62, Section 2], we obtain

E[df(ξ, x; y − x)] ≤ dϕ(x; y − x), ∀x, y ∈ D. (3.3.12)

By the continuous differentiability of f̃(ξ, x, µ) for µ > 0 and upper semicontinuity

of df(ξ, x; h) on x for each fixed h, we deduce that for any fixed µ ∈ [0, µ̄] and h ∈ Rn,

dΦN
µ (·; h) = 1

N

∑N
i=1 df̃µ(ξi, ·; h) is upper semicontinuous. Hence, we can use the same

technique as in the proof of Lemmas 3.2.1 and 3.2.2, to show that

dΦN
µ (·; h)

e,p−→ dϕµ(·; h), in D, a.s., (3.3.13)

where e, p stands for epi- and pointwise convergence.

Let x̂ be a cluster point of {xN
µ }. For a y ∈ D, let h = y − x̂. One might have to

restrict the argument to a subsequence but to simplify the notation, assume that {xN
µ }

converges to x̂. Then, one has

0 ≤ dΦN
µ (xN

µ ; y − xN
µ )

≤ σ‖x̂− xN
µ ‖+ dΦN

µ (xN
µ ; h)− dϕµ(x̂; h) + dϕµ(x̂; h)− dϕ(x̂; h) + dϕ(x̂; h),

where σ is a Lipschitz constant of ΦN
µ near x̂ for all µ ≥ 0 and N ∈ N; the existence of

such σ follows from the global Lipschitz continuity of ΦN
µ and ϕ.

The third and second terms give dΦN
µ (xN

µ ; h)− dϕµ(x̂; h) → 0 as N →∞ and µ ↓ 0,

a.s. by using (3.3.13).

From (3.3.12) and (3.3.11), the fifth and fourth terms give

dϕµ(x̂; h)− dϕ(x̂; h) ≤ E[dfµ(ξ, x̂; h)− df(x̂; h)] ≤ 0, as µ ↓ 0.

Hence we obtain dϕ(x̂; h) ≥ 0 as N →∞ and µ ↓ 0.
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Remark 3.3.1 From the properties of smoothing functions, we can define

f̃(ξ, x, 0) = limµ↓0 f̃(ξ, x, µ)

at any x ∈ D and ξ ∈ Ξ. Hence, we can consider ϕ̂N(x) = ΦN
0 (x) = limµ↓0 ΦN

µ (x) at

any x ∈ D. Since our convergence results include µ ≡ 0, the same convergence results

hold for SAA-solutions and SAA-stationary points as a special case.

Remark 3.3.2 The conclusions of Proposition 6 [57, Chapter 6] are similar to that

of Theorem 3.2.1 but require the a.s.-uniform convergence of the SAA-functions ϕ̂N

whereas essentially our only requirement is ‘iid samples’ and then, we followed the

pattern already laid out in [5].

Remark 3.3.3 In [64], Xu and Zhang proposed a SSAA method for solving a general

class of one stage nonsmooth stochastic problems and derived the exponential rate of

convergence of the SSAA method. We believe that the exponential rate can be also

derived for residual minimization SSAA method for stochastic variational inequalities.

However, this is by no means straightforward and, as far as we can tell, it requires

non-classical analysis. This certainly will require a separate treatment that we plan to

deal with in a separate paper.
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Chapter 4

Moreau-Yosida regularization for

stochastic linear VI

4.1 Introduction

In this chapter, we focus on a class of linear VIs in a stochastic environment, in which

both the function and the feasible set have uncertainties. The stochastic linear VI

is closely linked to the study of stochastic linear and quadratic programs, and has a

wide range of applications, which we can find in pricing competition among several

firms providing substitutable goods or services [14] and the transportation stochastic

user equilibrium [35, 69]. Moreover, some problems in oligopolistic transit market can

be reformulated as generalized Nash equilibrium with stochastic linear VI constraints

[38, 70].

The function and the feasible set of the stochastic linear VIs are defined by:

F (ξ, x) = Mξx + qξ

and
Xξ = {x |Ax = bξ, x ≥ 0}.
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Here A ∈ Rm×n, Mξ ∈ Rn×n, qξ ∈ Rn, and bξ ∈ Rm for any fixed ξ ∈ Ξ ⊆ R`, a set

representing future state of knowledge.

In general, there is no x ∈ Xξ such that

(y − x)T (Mξx + qξ) ≥ 0, ∀ y ∈ Xξ (4.1.1)

holds for all random variables ξ ∈ Ξ. Such stochastic linear VI includes the stochastic

linear complementarity problem as a special subclass [16, 20, 27].

Assume that Mξ, qξ and bξ are measurable in ξ. We denote the expected values as:

M̄ = E[Mξ], q̄ = E[qξ], b̄ = E[bξ].

Assumption 4.1.1 Assume that the matrix A has full-row rank, and there is a positive

constant γ, such that Xξ ⊆ U0 = {u ∈ Rn|‖u‖∞ ≤ γ} holds for any ξ ∈ Ξ.

Remark 4.1.1 Assumption 4.1.1 holds for a class of matrices A and vectors bξ in

traffic equilibrium problems [42, 69]. See Chapter 6.

Under Assumption 4.1.1, the Moore-Penrose generalized inverse of A can be defined as

A† = AT (AAT )−1. The residual function defined by (2.2.5) has the following form for

the linear case,

f(ξ, x) = u(ξ, x)T (Mξu(ξ, x) + qξ) + Q(ξ, u(ξ, x)), (4.1.2)

where u(ξ, x) = x + A†(bξ − Ax) and

Q(ξ, u(ξ, x)) = max
y
{−yT (Mξu(ξ, x) + qξ) |Ay = bξ, y ≥ 0 }

= min
z
{ zT bξ |AT z + Mξu(ξ, x) + qξ ≥ 0 }.

Under Assumption 4.1.1, Xξ is bounded. Combining it with the continuity of−yT (Mξu(ξ, x)+

qξ), we can ensure that there is y(ξ, x), such that Q(ξ, u(ξ, x)) = −y(ξ, x)T (Mξu(ξ, x)+
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qξ). Moreover, for any ξ ∈ Ξ, there exist b and b̃ such that b ≤ bξ ≤ b̃. Hence, there is

a vector c, such that ci = minξ∈Ξ(A†bξ)i, i = 1, · · · ,m. Let

D = {x |A†Ax− x ≤ c}.

Assumption 4.1.2 Suppose that Mξ and qξ are measurable in ξ with the following

property

E[||Mξ||] < ∞ and E[||qξ||] < ∞.

We consider the following ERM formulation with the residual function (4.1.2)

min
x∈D

ϕ(x) := E[f(ξ, x)]. (4.1.3)

For the ERM formulation, we set the here-and-now solution as

xERM = x∗ + A†(E[bξ]− Ax∗),

where x∗ ∈ argminx∈Dϕ(x).

From Theorem 2.3.1 in Chapter 2, we know that the objective function ϕ is a finite

convex function on the set D, if the matrix M̄ is positive semi-definite, which means

xT M̄x ≥ 0, ∀ x ∈ Rn. (4.1.4)

In [2], Agdeppa, et al. formulate the ERM formulation using the D-gap function [49]

as follows:

min
x∈Rn

Ψ(x) := E[θτ (ξ, x)],

where θτ (ξ, x) = gτ (ξ, x)− g 1
τ
(ξ, x) and τ > 1. Here

gτ (ξ, x) = max
y∈Xξ

(Mξx + qξ)
T (x− y)− 1

2τ
‖x− y‖2
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is the regularized gap function [29] for a fixed ξ ∈ Ξ. The following condition

inf
ξ∈Ξ, ‖x‖=1

xT Mξx ≥ β0 > 0 (4.1.5)

is used in [2] to prove the convexity of the function Ψ.

Note that condition (4.1.4) is weaker than condition (4.1.5). See Example 4.2.1 in

Section 4.2.

To guarantee the convexity of the SAA problem of (4.1.3), we adopt the Tikhonov

regularization to (4.1.3) as follows

min
x∈D

ϕε(x) := E[f(ξ, x)] +
ε

2
xT x, (4.1.6)

where ε > 0. For any ε > 0, the function ϕε is strongly convex under condition (4.1.4).

Moreover, under Assumptions 4.1.1 and 4.1.2, the function ϕε is globally Lipschitz con-

tinuous and semismooth on D. The convexity enables us to employ the Moreau-Yosida

regularization to define the SAA problem of the following smooth convex minimization

problem

min
x∈D

ϕ̂ε(x), (4.1.7)

where

ϕ̂ε := min{ϕε(y) +
µ

2
‖x− y‖2|y ∈ D}

is the Moreau-Yosida regularization of ϕε.

For any µ > 0, problem (4.1.6) is equivalent to problem (4.1.7).
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4.2 Sample average approximation for the ERM for-

mulation

Let Ξ, · · · , ξN be a sample of ξ. The SAA method for the ERM formulation (4.1.3) uses

the sample average value

ΦN(x) =
1

N

N∑
i=1

f(ξi, x)

to approximate the expected value ϕ(x) = E[f(ξ, x)] and solves

min
x∈D

ΦN(x). (4.2.8)

The classical law of large number for random functions ensures that for any fixed x ∈ D,

ΦN(x) converges with probability 1 to the expected value ϕ(x) = E[f(ξ, x)], when the

sample is independent and identically distributed (iid).

To ensure the convexity of the SAA problem, we adopt the Tikhonov regularization

and consider (4.1.6). The SAA problem of (4.1.6) is denoted by

min
x∈D

ΦN
ε (x) =

1

N

N∑
i=1

f(ξi, x) +
ε

2
xT x. (4.2.9)

Under Assumption 4.1.1 and condition (4.1.4), for any ε > 0, there is Nε > 0 such

that for any N ≥ Nε, the function ΦN
ε is convex. For the Monte Carlo method, from

Theorem 1.1 in [48] we get that the following error estimate

ΦN
ε (x)− ϕε(x) = ΦN(x)− ϕ(x) = O(x,

1√
N

) (4.2.10)

holds for a fixed x ∈ D. For a fixed ξ ∈ Ξ, we use y(ξ, x) to denote an optimal

solution of maxy∈Xξ
−yT (Mξu(ξ, x)+ qξ). From Theorem 2.4 in [41], y(ξ, x) is Lipschitz

continuous in bξ and the Lipschitz constant is only dependent on A. Suppose that the

matrix Mξ, vectors qξ and bξ are Lipschitz continuous in ξ and bounded on Ξ. Then,

y(ξ, x) is Lipschitz continuous in ξ. Moreover, from u(Ξ, x)−u(ξ2, x) = A†(bΞ−bξ2), we
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get the Lipschitz continuity of u(ξ, x) in ξ. Under Assumption 4.1.1, we know u(ξ, x)

and y(ξ, x) are bounded for any ξ ∈ Ξ. Hence

||u(Ξ, x)T (MΞu(Ξ, x) + qΞ)− u(ξ2, x)T (Mξ2u(ξ2, x) + qξ2)||
≤ (||u(Ξ, x)||||MΞ||+ ||u(ξ2, x)||||Mξ2 ||+ ||qΞ||)||u(Ξ, x)− u(ξ2, x)||

+||u(Ξ, x)||||u(ξ2, x)||||MΞ −Mξ2||+ ||u(ξ2, x)||||qΞ − qξ2||
≤ γ1||Ξ− ξ2||

holds, which means the Lipschitz continuity of u(ξ, x)T (Mξu(ξ, x) + qξ). Similarly, we

can obtain Q(ξ, x) = −y(ξ, x)T (Mξu(ξ, x) + qξ) is Lipschitz continuous in ξ. Thus,

the function f(ξ, x) = u(ξ, x)T (Mξu(ξ, x) + qξ) + Q(ξ, x) is Lipschitz continuous in ξ

and the Lipschitz constant is independent on x. Hence, the error estimate O( 1√
N

) is

independent on x.

Combining this with the strong convexity of ϕε, we obtain

ΦN
ε (z) = ϕε(z) + O(

1√
N

)

≤ λϕε(x) + (1− λ)ϕε(y)− ε

2
λ(1− λ)‖x− y‖2 + O(

1√
N

)

= λΦN
ε (x) + (1− λ)ΦN

ε (y)− ε

2
λ(1− λ)‖x− y‖2 + O(

1√
N

), (4.2.11)

where z = λx + (1 − λ)y for 0 ≤ λ ≤ 1. Roughly speaking, if N ≥ ε−3, it is very

likely that − ε
2
λ(1− λ)‖x− y‖2 + O( 1√

N
) ≤ 0, which implies the convexity of ΦN

ε . The

quasi-Monte Carlo method [48] yields a better error bound O( 1
N

) for suitably chosen

sets of nodes for some problems. Similarly, for this case, choosing N ≥ ε−2 might ensure

the convexity of ΦN
ε .

Note that under condition (4.1.5) in [2], problem (4.2.8) is a strongly convex problem.

Moreover, if the matrix Mξ is positive semi-definite for almost every ξ ∈ Ξ, problem

(4.2.8) is also a convex problem for all N . For these two cases, for any ε > 0, we can

ensure the strong convexity of (4.2.9) for any N .

The following example satisfies condition (4.1.4), but fails for condition (4.1.5) im-
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posed in [2]. For this example, it is not difficult to find the value of ε and the sample

size N such that ΦN
ε is convex.

Example 4.2.1 Consider the linear function F (ξ, x) = Mξx + qξ with the random

variable ξ = (ξ̂, ξ̃)T ∈ Ξ ⊆ R2, and

Mξ =




−4 + (14 + ξ̂) max(0, sign(ξ̂)) 0 0

0 −4− (16 + ξ̂) min(0, sign(ξ̂)) 0

0 0 ξ̂


 ,

qξ =




3 + ξ̂

ξ̂

−4ξ̂


 ,

where ξ̂ ∈ Ξ := [−1, 1] and ξ̂ is uniformly distributed in Ξ. The matrix A and the vector

bξ are given as follows:

A =


 1 1 0

0 0 1


 , bξ =




2

1+e−ξ̃2

2
1+ξ̃2


 ,

where ξ̃ is normally distributed in R. For any fixed ξ ∈ Ξ := Ξ× R, the constraint set

is

Xξ := {x|x ≥ 0, x1 + x2 =
2

1 + e−ξ̃2
, x3 =

2

1 + ξ̃2
}.

Moreover, the vector bξ is bounded as


 1

0


 ≤ bξ ≤


 2

2


 for any ξ ∈ Ξ.

Thus

A† =




1
2

0

1
2

0

0 1


 , c = min

ξ∈Ξ
A†bξ =




0.5

0.5

0


 ,
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and we obtain the feasible set D := {x | |x1 − x2| ≤ 1, x3 ∈ R}.

It is easy to see that

Mξ =




−4 0 0

0 12 + ξ̂ 0

0 0 ξ̂


 for ξ̂ < 0, Mξ =




10 + ξ̂ 0 0

0 −4 0

0 0 ξ̂


 for ξ̂ > 0,

Mξ =




−4 0 0

0 −4 0

0 0 0


 for ξ̂ = 0, M̄ = E[Mξ] =




3.25 0 0

0 3.75 0

0 0 0


 .

Hence, there is no ξ ∈ Ξ such that Mξ is a positive semi-definite matrix, which implies

that condition (4.1.5) does not hold. For this example, the objective function Ψ(x) of

the ERM formulation defined by the D-gap function in [2] is not convex.

For every ξ ∈ Ξ, the vector bξ is nonnegative, so we obtain

Q(ξ, x) = min{bT
ξ z|AT z + Mξu(ξ, x) + qξ ≥ 0} = bT

ξ z(ξ, x),

where u(ξ, x) = (I−A†A)x+A†bξ and z(ξ, x) = (max{−y1(ξ, x),−y2(ξ, x)},−y3(ξ, x))T .

Here yi(ξ, x) = (Mξu(ξ, x) + qξ)i means the i-th element of the vector Mξu(ξ, x) + qξ.

Based on the above analysis, the residual function is

f(ξ, x)

= u(ξ, x)T F (ξ, u(ξ, x)) + Q(ξ, x)

= xT (I − A†A)Mξ(I − A†A)x + (2MξA
†bξ + qξ)

T (I − A†A)x

+(A†bξ)
T (MξA

†bξ + qξ) + bT
ξ z(ξ, x)

= xT M̃ξx + (2MξA
†bξ + qξ)

T (I − A†A)x + bT
ξ z(ξ, x) + (A†bξ)

T (MξA
†bξ + qξ),
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where

M̃ξ = (I − A†A)Mξ(I − A†A)

=




−2 + (7
2

+ ξ̂
4
)a− (4 + ξ̂

4
)b 2− (7

2
+ ξ̂

4
)a + (4 + ξ̂

4
)b 0

2− (7
2

+ ξ̂
4
)a + (4 + ξ̂

4
)b −2 + (7

2
+ ξ̂

4
)a− (4 + ξ̂

4
)b 0

0 0 0


 ,

a = max(0, sign(ξ̂)) and b = min(0, sign(ξ̂)). The expected value of the matrix M̃ξ is as

follows:

E[M̃ξ] =




1.75 −1.75 0

−1.75 1.75 0

0 0 0


 .

It is positive semi-definite, so our ERM formulation (4.1.3) is a convex minimization

problem. Suppose that the sample of ξ̂ is given as ξ̂i = −1 + (i − 1) 2
N−1

, for i =

1, · · · , N , where N > 1 is the sample size. The SAA problem of (4.1.3) is described as

ΦN(x) = 1
N

∑N
i=1 f(ξi, x) and its quadratic item is 1

N

∑N
i=1 xT M̃ξi

x = xT 1
N

∑N
i=1 M̃ξi

x.

Furthermore, we know

1

N

N∑
i=1

M̃ξi
=




1.75 −1.75 0

−1.75 1.75 0

0 0 0


 .

The matrix 1
N

∑N
i=1 M̃ξi

is positive semi-definite, which implies ΦN is convex. So for

any ε > 0 and sample size N > 1, ΦN
ε is strongly convex.

We denote xEV ∈ SOL(X̄, M̄x+ q̄) and xERM = (I−A†A)x∗+A†E[bξ], where x∗ is

a solution of (4.1.6). In Table 4.1, we list the solutions xERM , xEV , and the risk criteria

for the ERM and EV solutions with different sample sizes N and different regularized

parameters ε. We use the residual function f and CVaR [54]

α∗(x) ∈ argminα∈R α +
1

1− β
E[(f(ξ, x)− α)+] (4.2.12)

to compare the ERM and EV solutions, where (t)+ = max(t, 0). We find that the ERM
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solution performs better than the EV solution in the aspects of the risk criteria.

Table 4.1: Solutions and criteria for x = xERM and x = xEV with β = 0.98
N = 103 N = 104 N = 106

ε = 10−2 ε = 10−4 ε = 10−6

xERM xEV xERM xEV xERM xEV

x1 0.9609 0.7458 0.9672 0.7502 0.9797 0.7651
x2 1.2620 1.4771 1.2615 1.4786 1.2497 1.4643
x3 0.6397 0.6397 0.6534 0.6534 0.6529 0.6529

α∗(x) 34.6273 42.1975 34.3611 41.9291 34.0628 41.5353
CVaR(x, α∗(x)) 35.4821 43.1837 35.2542 43.0134 34.8736 42.5204

E[f(ξ, x)] 18.8417 19.1656 18.9022 19.2308 18.9307 19.2525

4.3 Moreau-Yosida regularization

For simplicity, we assume that ΦN
ε is convex in our discussion. In this section, we

consider the Moreau-Yosida regularization of the SAA problem (4.2.9).

Let δD be the indicator function of the set D, that is,

δD(x) =





0, if x ∈ D,

+∞, otherwise.

Then we have

min
x∈D

ϕε(x) ⇐⇒ min
x∈Rn

ϕε(x) + δD(x) (4.3.13)

and

min
x∈D

ΦN
ε (x) ⇐⇒ min

x∈Rn
ΦN

ε (x) + δD(x). (4.3.14)

Since ΦN
ε is not necessarily differentiable, we employ the Moreau-Yosida regulariza-

tion to define a smooth convex function. For µ > 0, the Moreau-Yosida regularization

of ΦN
ε is defined by

Φ̂N
ε (x) := min{ΦN

ε (y) +
µ

2
‖x− y‖2|y ∈ D}. (4.3.15)
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By the smoothing property of the Moreau-Yosida regularization, the functions ϕ̂ε

and Φ̂N
ε are convex and continuously differentiable on D. Moreover, for any x ∈ D, we

have

∇ϕ̂ε(x) = µ(x− pε(x)), ∇Φ̂N
ε (x) = µ(x− qN

ε (x)),

where pε(x) and qN
ε (x) denote the unique optimal solutions of (4.1.8) and (4.3.15),

respectively. From Exercise 12.23 in [56], we know pε and qN
ε are globally Lipschitz

continuous, which implies the gradients of ϕ̂ε and Φ̂N
ε are globally Lipschitz continuous.

Based on the above analysis and the convexity of ϕε(x) and ΦN
ε (x), solving optimization

problems (4.3.13) and (4.3.14) is equivalent to solving the following nonlinear equations

on D

∇ϕ̂ε(x) = µ(x− pε(x)) = 0, (4.3.16a)

∇Φ̂N
ε (x) = µ(x− qN

ε (x)) = 0, (4.3.16b)

respectively. Suppose that

x∗ε = argminx∈Dϕε(x), x̂ε = argminx∈Dϕ̂ε(x),

xN∗
ε ∈ argminx∈DΦN

ε (x), x̂N
ε ∈ argminx∈DΦ̂N

ε (x).

It is known that minimizing ϕε and minimizing ϕ̂ε are equivalent, in the sense that

x̂ε = x∗ε.

Similarly, we have

argminx∈DΦN
ε (x) = argminx∈DΦ̂N

ε (x).

See [33]. Now, we consider the following problem

min
x∈D

Φ̂N
ε (x). (4.3.17)

Let S∗, S∗ε and ŜN
ε be the sets of solutions of (4.1.3), (4.1.6) and (4.3.17). In the

following, we analyze the convergence of ŜN
ε to S∗. For two sets Y and Z, we denote
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the distance from z ∈ Rn to Y and the excess of the set Y on the set Z by

dist(z, Y ) = infy∈Y ‖z − y‖

and

ce(Y, Z) = supy∈Y dist(y, Z).

Let

D1 = {y | y = (I − A†A)x, x ∈ D}.

Under Assumption 4.1.1, for any y ∈ D1, we have y = u(ξ, x)−A†bξ and bξ is bounded.

Furthermore, we know u(ξ, x) ∈ Xξ, so we obtain the set D1 is closed and bounded.

Lemma 4.3.1 If Assumption 4.1.1 and condition (4.1.4) hold, we have

argminy∈D1
ϕε(y) = argminx∈Dϕε(x).

Proof. From (I −A†A)(I −A†A) = (I −A†A), we know that D1 ⊆ D. Because of the

continuity of the function ϕε(x) and the fact that the set D1 is closed and bounded, we

have

min
y∈D1

ϕε(y) ≥ min
x∈D

ϕε(x). (4.3.18)

For x∗ε = argminx∈Dϕε(x), let y∗ε = (I − A†A)x∗ε. Then we have y∗ε ∈ D1 and

u(ξ, y∗ε) = (I − A†A)y∗ε + A†bξ

= (I − A†A)(I − A†A)x∗ε + A†bξ

= (I − A†A)x∗ε + A†bξ

= u(ξ, x∗ε).
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Hence, we have

ϕε(x
∗
ε)− ϕε(y

∗
ε) =

ε

2
(x∗Tε x∗ε − y∗Tε y∗ε)

=
ε

2
(x∗Tε x∗ε − x∗Tε (I − A†A)T (I − A†A)x∗ε)

=
ε

2
(x∗Tε x∗ε − x∗Tε (I − A†A)x∗ε)

=
ε

2
x∗Tε A†Ax∗ε

≥ 0,

where the last inequality uses that the matrix A has full-row rank and the matrix A†A

is positive semi-definite.

Thus,

min
y∈D1

ϕε(y) ≤ ϕε(y
∗
ε) ≤ ϕε(x

∗
ε) = min

x∈D
ϕε(x). (4.3.19)

Combining (4.3.18) with (4.3.19), we obtain miny∈D1 ϕε(y) = minx∈D ϕε(x). Moreover,

from the strong convexity of ϕε(x) we get argminy∈D1
ϕε(y) = argminx∈Dϕε(x).

Lemma 4.3.2 If the sample is iid, for any fixed ε > 0 we have

ΦN
ε

e−→ ϕε, in D1, a.s. (4.3.20)

Proof. The proof is based on the convergence of the inf-projections. Let

cx,r = inf
B(x,r)

ϕε + δD1 , cN
x,r = inf

B(x,r)
ΦN

ε + δD1 .

Let Qn be the set of rational n-dimensional vectors and Q++ = R++ ∩ Q1. For any

x ∈ Qn, r ∈ Q++, since the samples are iid, the random variables {cN
x,r} are iid [37].

From the Law of Large Number follows

cN
x,r −→ cx,r as N →∞ a.s..

Since ΦN
ε + δD1 and ϕε + δD1 are random lsc functions, both functions can be com-
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pletely identified by a countable collection of their inf-projections [37, 56, Chapter 14].

Hence, we obtain our desirable result.

Theorem 4.3.1 Under Assumption 4.1.1 and condition (4.1.4), if the sample is iid,

then for any fixed ε > 0 the sequence {x̂N
ε ∈ ŜN

ε } converges to the optimal solution of

minx∈D ϕε(x) a.s. as N →∞.

Proof. First, from Lemma 4.3.2, we know that ΦN
ε epi-converges to ϕε as N → ∞.

Hence, one has

ΦN
ε + δD1

e−→ ϕε + δD1 , a.s.

From Assumption 4.1.1 and condition (4.1.4), we have that ϕε is a convex function on

D1 and ϕε + δD1 is convex.

By the definition of the Moreau-Yosida regularization, we obtain

min
x∈D1

ϕ̂ε(x) ⇐⇒ min
x∈D1

ϕε(x)

and

min
x∈D1

Φ̂N
ε (x) ⇐⇒ min

x∈D1

ΦN
ε (x).

Furthermore, by the continuity of ϕε on the compact set D1 and the fact miny∈D1 ϕε(y) =

minx∈D ϕε(x), we have

−∞ < min
x∈Rn

ϕε(x) + δD1(x) = min
x∈D1

ϕε(x) < +∞.

Hence, from [56], we obtain

lim supN→∞argminx∈D1
Φ̂N

ε (x) = lim supN→∞argminx∈Rn(ΦN
ε (x) + δD1(x))

⊂ argminx∈Rn(ϕε(x) + δD1(x))

= argminx∈D1
ϕε(x), a.s.

Since D1 is closed and bounded, the sequence {x̂N
ε } has a cluster point and by Lemma

4.3.1 this cluster point is also in the solution set of minx∈D ϕε(x) a.s. Because of the
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strong convexity of ϕε(x), we know that the solution set S∗ε is singleton. From the

argument above, we have our desirable result.

From Theorem 4.3.1, we deduce

ce(ŜN
ε , S∗ε ) −→ 0, a.s., as N →∞.

Moreover, we also obtain that the optimal solution x∗ε of (4.1.6) exists. Based on

the above analysis, we get that the solution set of (4.1.3) has a least l2-norm solution,

which is the vector that belongs to the solution set and is the closest one to the origin

in the l2-norm.

Lemma 4.3.3 x∗ε converges to the least l2-norm solution of (4.1.3) as ε → 0.

Proof. For any x̂ ∈ S∗, where S∗ is the set of the optimal solutions of (4.1.3), we have

the following inequalities

ϕ(x̂) ≤ ϕ(x∗ε) ≤ ϕ(x∗ε) +
ε

2
x∗Tε x∗ε ≤ ϕ(x̂) +

ε

2
x̂T x̂. (4.3.21)

Since ϕ is a continuous function on D, any cluster point of {x∗ε} is a solution of (4.1.3),

which means limε→0 dist(x∗ε, S
∗) = 0.

Let x∗ be a limit of a subsequence {x∗εk
} as εk → 0. We assume that there exists

x̃ ∈ S∗ such that ‖x̃‖ ≤ ‖x∗‖ and ϕ(x̃) = ϕ(x∗). We have

ϕ(x∗εk
) +

εk

2
x∗Tεk

x∗εk
≤ ϕ(x̃) +

εk

2
x̃T x̃ ≤ ϕ(x∗) +

εk

2
x∗T x∗.

Combining this with (4.3.21), we obtain

0 ≤ 2

εk

(ϕ(x∗εk
)− ϕ(x̃)) ≤ x̃T x̃− x∗Tεk

x∗εk
≤ x∗T x∗ − x∗Tεk

x∗εk
→ 0 as εk → 0.

This implies that ‖x∗εk
‖ converges to ‖x̃‖ as εk → 0. Hence, we obtain ‖x̃‖ = ‖x∗‖.

Moreover, from the convexity of D and ϕ, the least l2-norm solution of (4.1.3) is unique.
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Therefore, we get that x∗ is the least l2-norm solution of (4.1.3). Because of the arbi-

trariness of the chosen subsequence, we can claim that x∗ε converges to the least l2-norm

solution x∗ as ε → 0.

Theorem 4.3.2 Suppose that Assumption 4.1.1 and condition (4.1.4) hold, and the

sample is iid. x̂N
ε converges to the least l2-norm solution x∗ of (4.1.3) a.s., as N →∞

and ε → 0.

Proof. The desirable result can be derived from Theorem 4.3.1 and Lemma 4.3.3.

4.4 Semismoothness of the gradient of the Moreau-

Yosida regularization

In this section, we prove the semismoothness of the gradient of the Moreau-Yosida

regularization Φ̂N
ε . A remarkable property is that using the semismoothness we can

obtain the superlinear or quadratic convergence of generalized Newton methods and

quasi-Newton methods for solving nonsmooth equations (4.3.16b) [15, 45].

There are several different forms for the definition of piecewise smooth functions.

We state one from [43] below.

Definition 4.4.1 [43] A continuous function ψ : Rn → Rl is said to be a piecewise Ck

(k times continuously differentiable) function on a set Y ⊆ Rn if there exists a finite

index set J = {1, · · · , r}, closed sets Y1, · · · , Yr, open sets U1, · · · , Ur (or relatively open

with respect to the affine hull of Y ), and functions ψ1, · · · , ψr such that

(i) Y ⊆ ∪r
j=1Yj and Yj ⊆ Uj for each j ∈ J ,

(ii) ψj ∈ Ck(Uj) for each j ∈ J ,

(iii) ψ(u) = ψj(u) for any u ∈ Y ∩ Yj and each j ∈ J .
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We refer to {(Yj, Uj, ψj)}j∈J as a representation of ψ.

For any u ∈ D, we write

J(u) = {j ∈ J : ΦN
ε (u) = ΦN

εj(u)}.

To study the semismoothness of the gradient of the Moreau-Yosida regularization

Φ̂N
ε , the following constraint qualification-Affine Independence Preserving Constraint

Qualification (AIPCQ) [45] is important.

Definition 4.4.2 [45] AIPCQ is said to hold for a piecewise smooth function ψ at u

if for every subset K ⊆ J(u) for which there exist a sequence {uk} with {uk} → u,

K ⊆ J(uk), and the vectors






∇ψi(u

k)

1


 : i ∈ K



 (4.4.22)

being linearly independent, it follows that the vectors






∇ψi(u)

1


 : i ∈ K



 (4.4.23)

are linearly independent.

Theorem 4.4.1 Suppose that Assumption 4.1.1 and condition (4.1.4) hold. Then the

gradient ∇Φ̂N
ε of the Moreau-Yosida regularization Φ̂N

ε is semismooth on D.

Proof. By the definition of u(ξ, x),

Q(ξ, x) = max
y
{−yT (Mξu(ξ, x) + qξ) |Ay = bξ, y ≥ 0 }

= max
y
{−yT (Mξ(I − A†A)x + MξA

†bξ + qξ) |Ay = bξ, y ≥ 0 }.
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Hence, Q(ξ, x) is a piecewise linear function on x, and so is the sum of Q(ξi, x) which

means that QN(x) =
∑N

i=1 Q(ξi, x) is a piecewise linear function. Moreover, the other

part of the function ΦN
ε is a quadratic function on x and continuously differentiable.

Therefore, we get that ΦN
ε is a piecewise C2 function.

Since QN(x) is piecewise linear and it can be represented by {QN
j }j∈J using Defini-

tion 4.4.1, where QN
j (x) = (αN

j )T x − βN
j for some αN

j ∈ Rn. For any w ∈ D and any

index set K ⊆ J(w), we have






 (∇ΦN

ε (w))j

1


 : j ∈ K



 =








Pw + h + αN
j

N

1


 : j ∈ K





, (4.4.24)

where

P = NεI +
N∑

i=1

[(I − A†A)(Mξi
+ MT

ξi
)(I − A†A)]

and

h = (I − A†A)
N∑

i=1

[qξi
+ (Mξi

+ MT
ξi

)A†bξi
].

It is easy to find that vectors in (4.4.24) are linearly independent if and only if

vectors








αN
j

N

1


 : j ∈ K





are linearly independent, from




I − (Pw + h)

N

0 1







Pw + h + αN
j1

N
· · ·

Pw + h + αN
j|K|

N

1 · · · 1


 =




αN
j1

N
· · ·

αN
j|K|

N

1 · · · 1


 .

Suppose that there exists a sequence {wk} → w, and vectors in (4.4.24) with wk are

linearly independent. Then we can get that vectors








αN
j

N

1


 : j ∈ K





are linearly

independent. Based on the above argument, we obtain that vectors in (4.4.24) with w

are linearly independent. So AIPCQ holds at any w ∈ D.
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From Theorem 1 in [45], we can get our desirable result, which is the gradient of

the Moreau-Yosida regularization of Φ̂N
ε is semismooth.

Example 4.4.1 Suppose that there is Γ > 0, such that for any ξ ∈ Ξ, bξ ≥ 0,

E[‖bξ‖∞] ≤ Γ, and A can be split into two submatrices A1 and A2, where A1 is an

m×m M-matrix and A2 is an m× (n−m) nonnegative matrix whose each column has

only one positive entry. Without loss of generality we assume that A = [A1, A2]. Such

matrix can be found in traffic equilibrium [42, 69].

Let

c(ξ, x) = Mξu(ξ, x) + qξ

= Mξ(I − A†A)x + MξA
†bξ + qξ

and

Jk = {j| ak,m+j 6= 0, 1 ≤ j ≤ n−m}.

Then

Q(ξ, x) = min
z
{bT

ξ z|AT z + c(ξ, x) ≥ 0}

=
m∑

k=1

(bξ)k max{(−A−T
1 c̃(ξ, x))k, max

j∈Jk

{−cm+j(ξ, x)

ak,m+j

}},

where c̃(ξ, x) = (c1(ξ, x), · · · , cm(ξ, x))T . Hence, the function QN(x) can be written as

QN(x) =
N∑

i=1

m∑

k=1

(bξi
)k max{(−A−T

1 c̃(ξi, x))k, max
j∈Jk

{−cm+j(ξi, x)

ak,m+j

}}.

For any fixed ξ ∈ Ξ and any u ∈ Xξ, we have [A1, A2]u = bξ and u ≥ 0. Since A1

is an M-matrix, we can obtain [Im, A−1
1 A2]u = A−1

1 bξ ≥ 0. Moreover, because u ≥ 0,

E[‖bξ‖∞] ≤ Γ and [Im, A−1
1 A2] ≥ 0, we get ‖u‖∞ ≤ γ for some γ > 0.

Hence, for this example, Assumption 4.1.1 holds. Moreover, AIPCQ holds at any

x ∈ D and from Theorem 4.4.1, ∇Φ̂N
ε is semismooth on D.
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Remark 4.4.1 When the stochastic vectors bξ and Mξx + qξ are independent for any

x ∈ Rn, we can get that the solution set of the EV formulation is the same as the

solution set of the ERM formulation (4.1.3).

For the EV formulation, it is equivalent to solve a determine VI, and its residual

function is:

f(x) = min
x∈X̄

xT (M̄x + q̄) + b̄T y(x), (4.4.25)

where y(x) = argmin{b̄T y|AT y + M̄x + q̄ ≥ 0}, and X̄ := {x|x ≥ 0, Ax = b̄}.

For the ERM formulation, we know the solution u should satisfy u ≥ 0 and Au = b̄.

Moreover, the expected residual function is:

ϕ(x) = E[f(ξ, u)] = E[u(ξ, x)T (Mξu(ξ, x) + qξ)] + E[bT
ξ y(ξ, x)], (4.4.26)

where y(ξ, x) = argmin{bT
ξ y|AT y + Mξu(ξ, x) + qξ ≥ 0}. Since bξ ≥ 0, bξ and Mξx + qξ

are independent for any x ∈ Rn, from the form of y(ξ, x) given in Example 4.4.1, we

can get that

ϕ(x) = ūT (M̄ū + q̄) + b̄T E[y(ξ, x)]

= ūT (M̄ū + q̄) + b̄T ȳ(ū),

where ȳ(ū) = argmin{b̄T y|AT y + M̄ū + q̄ ≥ 0}.

From the above analysis, the EV formulation and the ERM formulation have the

same objective functions and feasible sets if Mξx + qξ and bξ are independent random

variables for any x ∈ Rn. However, such case rarely happens in the real world. For

example, in stochastic traffic equilibrium problems, the uncertainty of the vector Mξx+qξ

is due to the capacity on the links and the uncertainty of the vector bξ arising from

the demand. In general, both the capacity and the demand are influenced by weather,

accidents, etc., so the vectors Mξx + qξ and bξ are dependent in general.
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Chapter 5

Distributionally robust CVaR

formulation for the stochastic linear

VI

5.1 Introduction

Value-at-Risk (VaR) is a widely used measure of risk in finance and economics. For a

specific probability level β, the β-VaR of a decision is the smallest number α, such that

the loss will not exceed α with the probability β. Let f(ξ, x) be the loss associated with

the decision x ∈ D ⊆ Rn and the random variable ξ ∈ Ξ. The probability of f(ξ, x)

not exceeding α is given as follows:

Ψ(x, α) = prob{f(ξ, x) ≤ α}.

From the property of the probability function, we know Ψ(x, α) is right continuous

with respect to α. The β-VaR associated with the decision x and any probability level

β ∈ (0, 1) will be denoted by αβ(x), and it is given by

αβ(x) = min{α ∈ R : Ψ(x, α) ≥ β}. (5.1.1)

58



CVaR [54, 55] is one of risk measures which is coherent. A coherent risk measure

is a function that satisfies properties of monotonicity, sub-additivity, homogeneity, and

translational invariance. For a given β-quantile, β-CVaR measures the expected loss

of a decision given that a loss is occurring at or below the β-quantile. The β-CVaR

denoted by φβ(x) is given by [54]

φβ(x) = (1− β)−1

∫

f(ξ,x)≥αβ(x)

f(ξ, x)dF(ξ), (5.1.2)

where F(ξ) is the distribution function of the random variable ξ. From the definitions

of VaR and CVaR, we find that the β-VaR is never more than the β-CVaR, which

means low CVaR must have low VaR.

Rockafellar and Uryasev in [54] define the function Gβ on D ×R

Gβ(x, α) = α + (1− β)−1E[(f(ξ, x)− α)+], (5.1.3)

which characterizes some properties of αβ(x) and φβ(x). Theorem 1 in [54] and Theorem

10 in [55] show that φβ(x) = minα∈R Gβ(x, α) and αβ(x) = left point of argmin
α∈R

Gβ(x, α).

In this chapter, We use the residual function (2.2.5) as a loss function. We define the

CVaR formulation by the ERM formulation. In Section 5.2, we discuss the relationship

between the ERM formulation and the CVaR formulation, and properties of the CVaR

formulations for the stochastic linear VI, such as Lipschitz continuity and gradient

consistency. In Section 5.3, we employ the sublinear expectation to discuss the robust

CVaR formulation and prove the existence of optimal solutions of the robust CVaR

formulation.
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5.2 CVaR and ERM formulations

In this section, we focus on the CVaR formulation of the stochastic linear VI which is

to find

x ∈ Xξ := {x|Ax = bξ, x ≥ 0}

such that

(y − x)T (Mξx + qξ) ≥ 0, ∀ y ∈ Xξ. (5.2.4)

Assumption 5.2.1 Assume that there exists a positive number γ, such that Xξ ⊆ U0 =

{u ∈ Rn|‖u‖∞ ≤ γ} holds for any ξ ∈ Ξ.

If the matrix A has full-row rank, we can define the Moore-Penrose generalized

inverse of A by A† = AT (AAT )−1.

The residual function (2.2.5) has the following form

f(ξ, x) = u(ξ, x)T (Mξu(ξ, x) + qξ) + Q(ξ, u(ξ, x)), (5.2.5)

where u(ξ, x) = x + A†(bξ − Ax) and Q(ξ, x) = min{bT
ξ z|AT z + Mξu(ξ, x) + qξ ≥ 0}.

Under Assumption 5.2.1, for any fixed ξ ∈ Ξ, bξ is bounded, so we can ensure there

exists z(ξ, x) such that Q(ξ, x) = bT
ξ z(ξ, x) and there is c such that ci = minξ∈Ξ(A†bξ)i,

i = 1, · · · ,m. We define the feasible set by

D = {x |A†Ax− x ≤ c}.

The ERM formulation defined by the residual function (5.2.5) is as follows:

min
x∈D

E[f(ξ, x)]. (5.2.6)

We define the here and now solution of the ERM formulation by xe = x∗ + A†(E[bξ]−
Ax∗), where x∗ ∈ argminx∈DE[f(ξ, x)]. From Proposition 2.3.1 in Chapter 2, we know

60



that xe is an optimal solution of the ERM formulation.

Then, the CVaR formulation defined by the ERM function (5.2.6) is given as the

following one:

min
x∈D, α∈R

Gβ(x, α) = α + (1− β)−1E[(f(ξ, x)− α)+]. (5.2.7)

From Theorem 1 in [54], if the probability Ψ(x, α) is continuous in α, we know for any

fixed x ∈ D, Gβ(x, α) is convex and continuously differentiable on α. For any fixed xe,

we denote αe ∈ argminGβ(xe, α), and (x∗β, α∗β) ∈ argminx∈D,α∈RGβ(x, α).

Proposition 5.2.1 Suppose that Ψ(x, α) is continuous with respect to α, and (x∗0, α
∗
0)

is an optimal solution of (5.2.7) as β = 0. Then x∗0 is an optimal solution of the ERM

formulation and (xe, αe) ∈ argminx∈D,α∈RGβ(x, α).

Proof. For β = 0, we have G0(x, α) = α + E[(f(ξ, x) − α)+]. For any fixed x ∈ D,

G0(x, α) is continuous with respect to α and the derivative is

∂G0(x, α)

∂α
= 1 + (Ψ(x, α)− 1) = Ψ(x, α).

Since (x∗0, α
∗
0) is an optimal solution of (5.2.7) as β = 0, we have

prob{ξ|f(ξ, x∗0) ≤ α∗0} = 0,

and G0(x
∗
0, α

∗
0) = E[f(ξ, x∗0)].

Similarly, we have prob{ξ|f(ξ, xe) ≤ αe} = 0, and

Gβ(xe, αe) = E[f(ξ, xe)].

Moreover, Gβ(xe, αe) ≥ Gβ(x∗0, α
∗
0) holds, which implies

E[f(ξ, x∗0)] ≤ E[f(ξ, xe)].
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Since xe is an optimal solution of minx∈D E[f(ξ, x)], we obtain E[f(ξ, xe)] = E[f(ξ, x∗0)],

which implies our desirable result.

Generally speaking, the values of αe and α∗β are both not unique, because optimal

solutions of minα∈R Gβ(xe, α) and (5.2.7) may have multiple optimal solutions. In the

following analysis, we assume that our solutions αe and α∗β are the left points of the sets

of optimal solutions, respectively, which means that they are the β-VaR of the decisions

xe and x∗β.

In the following analysis, we define the indicator function by

IΞ̂ =





1, if ξ ∈ Ξ̂,

0, otherwise.

Hence, we get that the expectation of the random variable h(ξ) on the set Ξ̂ is given as

E[h(ξ)IΞ̂] and E[IΞ̂] = prob{ξ|ξ ∈ Ξ̂}.

For any x ∈ D and α ∈ R, we denote the sets Ξ(x, α) and ΞC(x, α) by

Ξ(x, α) := {ξ|f(ξ, x) ≤ α}

and

ΞC(x, α) := {ξ|f(ξ, x) > α}.

We define the difference of the two sets Ξ(x, α1) and Ξ(x, α2) for α2 ≤ α1 by

Ξ(x, α1)\Ξ(x, α2) = {ξ|α2 < f(ξ, x) ≤ α1}.

Theorem 5.2.1 Suppose that Ψ(x, α) is continuous with respect to α. For any fixed

β ∈ (0, 1), x∗β, xe are optimal solutions of the ERM formulation and (5.2.7) respectively,

if and only if α∗β ≤ αe.
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Proof. From Theorem 1 in [54], we have

prob{f(ξ, x∗β) ≤ α∗β} = prob{f(ξ, xe) ≤ αe} = β

and

Gβ(x∗β, α∗β) = α∗β + (1− β)−1E[(f(ξ, x∗β)− α∗β)+]

= α∗β + (1− β)−1E[(f(ξ, x∗β)− α∗β)IΞC(x∗β ,α∗β)]

= α∗β + (1− β)−1E[f(ξ, x∗β)IΞC(x∗β ,α∗β)]− (1− β)−1α∗βE[IΞC(x∗β ,α∗β)]

= (1− β)−1E[f(ξ, x∗β)IΞC(x∗β ,α∗β)].

Similarly, we get Gβ(xe, αe) = (1− β)−1E[f(ξ, xe)IΞC(xe,αe)]. Hence, we have

E[f(ξ, x∗β)IΞC(x∗β ,α∗β)] ≤ E[f(ξ, xe)IΞC(xe,αe)].

In the following, we discuss our result in two aspects, and the first one is α∗β ≤ αe.

We have

E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)]

= E[(f(ξ, x∗β)− α∗β)IΞ(x∗β ,α∗β)] + E[(α∗β − f(ξ, xe))IΞ(xe,α∗β)]

+E[(α∗β − f(ξ, xe))IΞ(xe,αe)\Ξ(xe,α∗β)]

= E[(f(ξ, x∗β)− α∗β)IΞ(x∗β ,α1)] + E[(f(ξ, x∗β)− α∗β)IΞ(x∗β ,α∗β)\Ξ(x∗β ,α1)]

+E[(α∗β − f(ξ, xe))IΞ(xe,α∗β)] + E[(α∗β − f(ξ, xe))IΞ(xe,αe)\Ξ(xe,α∗β)]

= E[f(ξ, x∗β)IΞ(x∗β ,α1)]− E[f(ξ, xe)IΞ(xe,α∗β)]

+E[(f(ξ, x∗β)− α∗β)IΞ(x∗β ,α∗β)\Ξ(x∗β ,α1)] + E[(α∗β − f(ξ, xe))IΞ(xe,αe)\Ξ(xe,α∗β)],

where prob{ξ|ξ ∈ Ξ(x∗β, α1)} = prob{ξ|ξ ∈ Ξ(xe, α
∗
β)} = β1, β1 ≤ β and α1 ≤ α∗β ≤ αe.
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We consider a sequence {αi}∞i=0, which satisfies the following properties

prob{ξ|ξ ∈ Ξ(x∗β, αi+1)} = prob{ξ|ξ ∈ Ξ(xe, αi)} = βi+1. (5.2.8)

We use the sequence {αi}∞i=0 to decompose the support set Ξ and choose α0 = α∗β,

βi+1 ≤ βi and limi→∞ βi+1 = 0. We get

E[f(ξ, x∗β)IΞ(x∗β ,αi+1)]− E[f(ξ, xe)IΞ(xe,αi)]

= E[f(ξ, x∗β)IΞ(xβ ,αi+2)]− E[f(ξ, xe)IΞ(xe,αi+1)]

+E[(f(ξ, x∗β)− αi+1)IΞ(x∗β ,αi+1)\Ξ(x∗β ,αi+2)] + E[(αi+1 − f(ξ, xe))IΞ(xe,αi)\Ξ(xe,αi+1)].

It is not difficult to see that

E[(f(ξ, x∗β)− α∗β)IΞ(x∗β ,α∗β)\Ξ(x∗β ,α1)] + E[(α∗β − f(ξ, xe))IΞ(xe,αe)\Ξ(xe,α∗β)] ≤ 0

and

E[(f(ξ, x∗β)− αi+1)IΞ(x∗β ,αi+1)\Ξ(x∗β ,αi+2)] + E[(αi+1 − f(ξ, xe))IΞ(xe,αi)\Ξ(xe,αi+1)] ≤ 0,

which means

E[f(ξ, x∗β)IΞ(x∗β ,αi+1)]− E[f(ξ, xe)IΞ(xe,αi)]

≤ E[f(ξ, x∗β)IΞ(x∗β ,αi+2)]− E[f(ξ, xe)IΞ(xe,αi+1)], for i = 0, 1, 2, · · · .

From Theorem 2.2.1, f(ξ, x) is a residual function, which means f(ξ, x) ≥ 0 for any

x ∈ D and almost every ξ ∈ Ξ. Hence, there exist α∗β and αe such that

prob{ξ|ξ ∈ Ξ(x∗β, α∗β)} = prob{ξ|ξ ∈ Ξ(xe, αe)} = 0.
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Thus, we get

E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)]

≤ E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)
]

= 0.

Combining the fact of E[f(ξ, x∗β)IΞC(x∗β ,α∗β)] ≤ E[f(ξ, xe)IΞC(xe,αe)], we get E[f(ξ, x∗β)] ≤
E[f(ξ, xe)]. Moreover, we know xe is an optimal solution of minx∈D E[f(ξ, x)], so we

have E[f(ξ, x∗β)] = E[f(ξ, xe)] and E[f(ξ, x∗β)IΞC(x∗β ,α∗β)] = E[f(ξ, xe)IΞC(xe,αe)]. Hence,

we get x∗β is an optimal solution of minx∈D E[f(ξ, x)] and xe is an optimal solution of

(5.2.7).

The other aspect is that αe < α∗β. We get

E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)]

= E[(f(ξ, x∗β)− αe)IΞ(x∗β ,αe)] + E[(αe − f(ξ, xe))IΞ(xe,αe)]

+E[(f(ξ, x∗β)− αe)IΞ(x∗β ,α∗β)\Ξ(x∗β ,αe)]

= E[f(ξ, x∗β)IΞ(x∗β ,αe)]− E[f(ξ, xe)IΞ(xe,α1)]

+E[(f(ξ, x∗β)− αe)IΞ(x∗β ,α∗β)\Ξ(x∗β ,αe)] + E[(αe − f(ξ, xe))IΞ(xe,αe)\Ξ(xe,α1)].

Similarly, we consider the sequence {αi}∞i=1 defined by (5.2.8) with α0 = αe, βi+1 ≤ βi

and limi→∞ βi+1 = 0. Moreover, since αe and α∗β are both left points of optimal sets,

we get

prob{ξ|ξ ∈ Ξ(x∗β, α∗β)} − prob{ξ|ξ ∈ Ξ(x∗β, αe)} > 0

and

E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)] > E[f(ξ, x∗β)IΞ(x∗β ,αe)]− E[f(ξ, xe)IΞ(xe,α1)].

Furthermore, we also get

E[f(ξ, x∗β)IΞ(x∗β ,αi)]−E[f(ξ, xe)IΞ(xe,αi+1)] ≥ E[f(ξ, x∗β)IΞ(x∗β ,αi+1)]−E[f(ξ, xe)IΞ(xe,αi+2)],
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for i = 0, 1, 2, · · · .

From the above analysis, we get

E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)]

> E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)
]

= 0.

On the other hand, we employ the sequence {αi}∞i=1 with α0 = α∗β, βi ≤ βi+1 and

limi→∞ βi+1 = 1. Similarly, we get

0 < E[f(ξ, x∗β)IΞ(x∗β ,α∗β)]− E[f(ξ, xe)IΞ(xe,αe)]

≤ E[f(ξ, x∗β)IΞ(x∗β ,α1)]− E[f(ξ, xe)IΞ(xe,α∗β)]

and

E[f(ξ, x∗β)IΞ(x∗β ,αi+1)]− E[f(ξ, xe)IΞ(xe,αi)]

≤ E[f(ξ, x∗β)IΞ(x∗β ,αi+2)]− E[f(ξ, xe)IΞ(xe,αi+1)]

≤ E[f(ξ, x∗β)]− E[f(ξ, xe)],

for i = 0, 1, 2, · · · .

Hence, we get

E[f(ξ, x∗β)] > E[f(ξ, xe)].

Thus, x∗β is not an optimal solution of the ERM formulation. Moreover, we have

prob{ξ|f(ξ, xe) ≤ α∗β} > prob{ξ|f(ξ, xe) ≤ αe} = β,

which implies xe is not an optimal solution of (5.2.7).

So we obtain our desirable result.
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Suppose that for any x ∈ D and α ∈ R the expectation of the random matrix Mξ

over the set Ξ(x, α) is positive semi-definite, which means

E[MξIΞC(x,α)] º 0. (5.2.9)

It is easy to see that if the matrix Mξ is positive semi-definite for almost every ξ ∈ Ξ,

condition (5.2.9) holds.

Proposition 5.2.2 (i) For any fixed α ∈ R, the function Gβ(x, α) is locally Lipschitz

continuous and for any fixed x ∈ D it is also locally Lipschitz continuous.

(ii) Suppose that condition (5.2.9) holds. Then Gβ(x, α) is convex with respect to

(x, α).

Proof. (i) For any fixed α ∈ R and x, y ∈ D, we have

|Gβ(x, α)−Gβ(y, α)| = (1− β)−1|E[(f(ξ, x)− α)+]− E[(f(ξ, y)− α)+]|
= (1− β)−1|E[(f(ξ, x)− α)+ − (f(ξ, y)− α)+]|
≤ (1− β)−1E[|(f(ξ, x)− α)+ − (f(ξ, y)− α)+|]
≤ (1− β)−1E[|f(ξ, x)− f(ξ, y)|].

Moreover, from Theorem 2.2.2, we know the residual function f is locally Lipschitz

continuous with respect to x. Hence, we obtain the function Gβ(x, α) is locally Lipschitz

continuous with respect to x.

For any fixed x ∈ D and α1, α2 ∈ R, in the similar way, we have

|Gβ(x, α1)−Gβ(x, α2)|
≤ |α1 − α2|+ (1− β)−1|E[(f(ξ, x)− α1)+]− E[(f(ξ, x)− α2)+]|
≤ |α1 − α2|+ (1− β)−1E[|α1 − α2|]
= (1 + (1− β)−1)|α1 − α2|.
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So we obtain our desirable result.

(ii) Under condition (5.2.9), we know E[(f(ξ, x)− α)+] = E[(f(ξ, x)− α)IΞC(x,α)] is

convex in x and α, so Gβ(x, α) is convex with respect to (x, α).

From Theorem 2.2.2, for any fixed ξ ∈ Ξ, f(ξ, x) is Lipschitz continuous but not

differentiable, so we get Gβ(x, α) is Lipschitz continuous but not differentiable with

respect to x. If the probability function Ψ(x, α) is continuous with respect to α, Gβ(x, α)

is continuously differentiable in α. Otherwise, for any fixed x ∈ D, Gβ(x, α) is Lipschitz

continuous but not differentiable. For any fixed ξ ∈ Ξ, we assume that f̃(ξ, x, µ) is a

smoothing function of f(ξ, x) and s̃(t, α, µ) is a smoothing function of (t− α)+.

Then, we define

G̃β(x, α, µ) = α + (1− β)−1E[s̃(f̃(ξ, x, µ), α, µ)]. (5.2.10)

The Clark subdifferential of Gβ at (x, α) ∈ D ×R is denoted by

∂Gβ(x, α) = con∂BGβ(x, α),

where

∂BGβ(x, α) = {

 w

v


 |


 ∇xGβ(z, ν)

∇αGβ(z, ν)


 →


 w

v


}.

Here Gβ is differentiable at (z, ν), z → x, ν → α.

Moreover, we denote the subdifferential associated with a smoothing function by

GG̃β
(x, α) = con{ lim

xk→x,αk→α,µk↓0


 wk

vk


},

where


 wk

vk


 =


 ∇xG̃β(xk, αk, µk)

∇αG̃β(xk, αk, µk)


 .

Theorem 5.2.2 The function G̃β(x, α, µ) defined by (5.2.10) is a smoothing function of
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Gβ(x, α). Moreover, for any (x, α) ∈ D×R, {limxk→x,αk→α,µk↓0


 wk

vk


} is nonempty

and bounded, and the gradient consistency ∂Gβ(x, α) = GG̃β
(x, α) holds.

Proof. First, we get

|G̃β(z, ν, µ)−Gβ(x, α)|
≤ |ν − α|+ (1− β)−1|E[s̃(f̃(ξ, z, µ), ν, µ)− (f(ξ, x)− α)+]|
≤ |ν − α|+ (1− β)−1E[|s̃(f̃(ξ, z, µ), ν, µ)− (f(ξ, x)− α)+|]
≤ |ν − α|+ (1− β)−1E[|s̃(f̃(ξ, z, µ), ν, µ)− (f̃(ξ, z, µ)− ν)+|

+|(f̃(ξ, z, µ)− ν)+ − (f(ξ, x)− α)+|]
≤ |ν − α|+ (1− β)−1(E[|s̃(f̃(ξ, z, µ), ν, µ)− (f̃(ξ, z, µ)− ν)+|]

+E[|f̃(ξ, z, µ)− f(ξ, x)|] + |ν − α|).

Since s̃(t, α, µ) is a smoothing function of (t − α)+, we get limµ→0 |s̃(f̃(ξ, z, µ), ν, µ) −
(f̃(ξ, z, µ) − ν)+| = 0. Similarly, we get limz→x,µ→0 |f̃(ξ, z, µ) − f(ξ, x)| = 0. More-

over, we have limν→α |ν − α|=0, so limz→x,ν→α,µ→0 |G̃β(z, ν, µ) − Gβ(x, α)| = 0, which

implies G̃β is a smoothing function of Gβ. Furthermore, we also get the gradient of the

smoothing function G̃β as follows:


 w

v


 =


 (1− β)−1E[∇ts̃(ξ, t, α)|t=f̃(ξ,x,µ)∇xf̃(ξ, x, µ)]

1 + (1− β)−1E[∇αs̃(ξ, t, α)|t=f̃(ξ,x,µ)]


 .

Hence, we know

{ lim
xk→x,αk→α,µk↓0


 wk

vk


} ⊆


 (1− β)−1E[∂t(t− α)+|t=f(ξ,x)∂xf(ξ, x)]

1 + (1− β)−1E[−∂α(t− α)+|t=f(ξ,x)]


 .

For the stochastic linear VI and any fixed ξ ∈ Ξ, we have

f(ξ, x) = u(ξ, x)T (Mξu(ξ, x) + qξ) + Q(ξ, x),
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where u(ξ, x) = x + A†(bξ − Ax) and Q(ξ, x) = min{bT
ξ z|AT z + Mξu(ξ, x) + qξ ≥ 0} is

linear in x. Since the first part of f(ξ, x) is strictly differentiable and Q(ξ, x) is convex

in x, by Proposition 2.3.6 in [21], we get f(ξ, x) is regular at x. Moreover, we know

(t − α)+ is regular at t and ∀p ∈ ∂(·)+ is nonnegative, so by the chain rule Theorem

2.3.9 in [21] we get

(1− β)−1E[∂t(t− α)+|t=f(ξ,x)∂xf(ξ, x)] = ∂xGβ(x, α).

Similarly, we obtain

1 + (1− β)−1E[−∂α(t− α)+|t=f(ξ,x)] = ∂αGβ(x, α).

Hence, we obtain

con{ lim
xk→x,αk→α,µk→0


 wk

vk


} = GG̃β

(x, α) ⊆ ∂Gβ(x, α).

On the other hand, from Proposition 5.2.2 we know Gβ is locally Lipschitiz continuous

and ∂Gβ(x, α) is nonempty. According to Theorem 9.61 and Corollary 8.47 in [56],

we get ∂Gβ(x, α) ⊆ GG̃β
(x, α). Then, we get the gradient consistency ∂Gβ(x, α) =

GG̃β
(x, α).

Corollary 5.2.1 Suppose that Ψ(x, α) is continuous with respect to α and G̃β(x, α, µ) =

α + (1− β)−1E[(f̃(ξ, x, µ)−α)+] is a smoothing function of Gβ(x, α). For any (x, α) ∈

D×R, {limxk→x,µk↓0


 wk

v


} is nonempty and bounded, and the gradient consistency

∂Gβ(x, α) = GG̃β
(x, α) holds.

Proof. This is a special case of Theorem 5.2.2 and the proof is similar with Theorem

5.2.2, so we omit it here.

For some applications, such as traffic equilibrium problem, because of the special

structure of the matrix A, the recourse problem Q(ξ, u(ξ, x)) has explicit form. For the

transportation problem, the elements of the matrix A is either 1 or 0 and every column
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of the matrix A only has a positive number, so we define the index set Ii as follows:

Ii = {j : A(i, j) 6= 0, ∀ j = 1, · · · , n}.

The explicit form of the recourse problems is Q(ξ, u(ξ, x)) =
∑m

i=1 bξi maxj∈Ii
{−Fj(ξ, u(ξ, x))},

where Fj(ξ, u(ξ, x)) denotes the j-th element of the vector F (ξ, u(ξ, x)). Then we get

the explicit form of the residual function as

f(ξ, x) = g(ξ, x) +
m∑

i=1

bξi max
j∈Ii

{−Fj(ξ, u(ξ, x))}. (5.2.11)

Then, Gβ(x, α) defined by the residual function (5.2.11) is given as the following one:

Gβ(x, α)

= α + (1− β)−1E[(g(ξ, x) +
m∑

i=1

bξi max
j∈Ii

{−Fj(ξ, u(ξ, x))} − α)+] (5.2.12)

We know that one of the smoothing functions of p(y) = max1≤i≤k{yi} is defined by

p̃(y, µ) = µln
∑k

i=1 e
yi
µ in [47].

We define the smoothing function of the CVaR formulation (5.2.12) as follows:

G̃(x, α, µ)

= α + µ(1− β)−1E[ln(1 + e
g(ξ,x)−α

µ (
m∏

i=1

∑
j∈Ii

e
−bξiFj(ξ,u(ξ,x))

µ )]. (5.2.13)

Remark 5.2.1 If we do not get the explicit form of the recourse problem, we sup-

pose that f̃(ξ, x, µ) is a smoothing function of f(ξ, x). Hence, G̃(x, α, µ) = α + µ(1 −
β)−1E[ln(1 + e

f̃(ξ,x,µ)−α
µ )] is a smoothing function of Gβ(x, α).
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5.3 Distributionally robust stochastic linear VI

In this section, we consider the distributionally robust CVaR formulation of stochastic

linear VI using the sublinear expectation.

By the sublinear expectation, the β-CVaR formulation for the robust case is denoted

by the following one:

min
x∈D,α∈R

GR
β (x, α) = α + (1− β)−1E[(f(ξ, x)− α)+], (5.3.14)

where E[·] denotes the sublinear expectation.

We generalize Definition 1.2.1 as follows:

Definition 5.3.1 For any fixed x and hi(ξ, x) : Ξ×Rn → R where i = 1, 2, a sublinear

expectation E is a functional E : H → R satisfying

(i) Monotonicity: E[h1(ξ, x)] ≥ E[h2(ξ, x)] if h1(ξ, x) ≥ h2(ξ, x).

(ii) Constant preserving: E[c] = c for c ∈ R.

(iii) Sub-additivity: For each h1(·, x), h2(·, x) ∈ H, E[h1(ξ, x)+h2(ξ, x)] ≤ E[h1(ξ, x)]+

E[h2(ξ, x)].

(iv) Positive homogeneity: E[λh1(ξ, x)] = λE[h1(ξ, x)] for λ ≥ 0.

Proposition 5.3.1 For any fixed x, c ∈ R and h(ξ, x) : Ξ × Rn → R, we have

E[h(ξ, x) + c] = E[h(ξ, x)] + c.

Proof. From Definition 5.3.1, we get

2E[h(ξ, x)] = E[2h(ξ, x)] = E[h(ξ, x) + c + h(ξ, x)− c]

≤ E[h(ξ, x) + c] + E[h(ξ, x)− c]

≤ E[h(ξ, x)] + E[c] + E[h(ξ, x)] + E[−c]

= 2E[h(ξ, x)].
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From the above formulation, we get all of equalities should hold. Moreover, from

Definition 5.3.1 we know E[h(ξ, x)+ c] ≤ E[h(ξ, x)]+ c and E[h(ξ, x)− c] ≤ E[h(ξ, x)]+

E[−c]. If E[h(ξ, x) + c] 6= E[h(ξ, x)] + c, we have E[h(ξ, x) + c] + E[h(ξ, x) − c] <

E[h(ξ, x)]+ c+E[h(ξ, x)]+E[−c] which conflicts with that all of equalities hold. Based

on the above analysis, we get E[h(ξ, x) + c] = E[h(ξ, x)] + c holds.

Lemma 5.3.1 [51] Let E be a functional defined on a linear space H satisfying sub-

additivity and positive homogeneity. Then there exists a family of linear functionals

{Eθ : θ ∈ Θ} defined on H such that

E[X] = sup
θ∈Θ

Eθ[X], for X ∈ H

and, for each X ∈ H, there exists θX ∈ Θ such that E[X] = EθX
[X].

Furthermore, if E is a sublinear expectation, then the corresponding Eθ is a linear

expectation.

Theorem 5.3.1 For any fixed x ∈ D, GR
β (x, α) is finite and convex with respect to α,

and the robust β-CVaR of the loss associated with x ∈ D can be given from

φR
β (x) = min

α∈R
GR

β (x, α),

and the optimal set is a nonempty, closed and bounded interval.

Proof. For any fixed x ∈ D, since the linear expectation Eθ[f(ξ, x)] < ∞ holds for any

distributions θ ∈ Θ, we have E[f(ξ, x)] is also finite, which implies the finiteness of the

function GR
β (x, α). Moreover, by Lemma 5.3.1 we get the explicit form of the sublinear

expectation E[(f(ξ, x) − α)+] = supθ∈Θ Eθ[(f(ξ, x) − α)+], and we know for any fixed

x ∈ D the function Eθ[(f(ξ, x)− α)+] is convex in α. Hence, we obtain the convexity.
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From Definition 5.3.1 and Proposition 5.3.1, we get

GR
β (x, α) = α + (1− β)−1E[(f(ξ, x)− α)+]

= (1− β−1)E[(1− β)α + (f(ξ, x)− α)+].

Moreover, from Lemma 5.3.1 and Theorem 10 in [55], for any fixed x ∈ D, we get the

existence of optimal solutions of minα GR
β (x, α).

We get our desirable results.

Theorem 5.3.2 Suppose that condition (5.2.9) holds. Then the robust β-CVaR for-

mulation defined by (5.3.14) is convex over all (x, α) ∈ D × R, and minx∈D φR
β (x) =

minx∈D,α∈R GR
β (x, α) holds.

Proof. From Proposition 5.2.2 and Lemma 5.3.1, if condition (5.2.9) holds, we get

E[(f(ξ, x)−α)+] is convex with respect to (x, α), which implies the convexity of GR
β (x, α)

over all (x, α) ∈ D×R. From Theorem 5.3.1, optimal solutions of minαR
GR

β (x, α) exist

and can be obtained, so we get the equivalence of the two optimization problems.

Hence, we get the desirable result.

Proposition 5.3.2 The robust β-CVaR defined by the sublinear expectation is a co-

herent risk measure when the function f(ξ, x) is linear in x, and if f(ξ, x) = c, then

φR
β (x) = c. Moreover, if f(ξ, x1) ≤ f(ξ, x2), then φR

β (x1) ≤ φR
β (x2).

Generally speaking, the distributions of random variable ξ ∈ Ξ has the following

four parameters:

µ̄ := E[ξ], µ := −E[−ξ],

and

σ̄2 := E[ξ2], σ2 := −E[−ξ2].

Suppose that the random variable ξ follows the normal distribution such that the mean
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µ = 0 and the standard deviation σ2 ∈ [σ2, σ̄2], which is also called the G-normal

distribution [50].

Proposition 5.3.3 [50] Suppose that the random variable ξ follows the G-normal dis-

tribution. If the function (f(ξ, x) − α)+ is convex in ξ, then for any fixed x ∈ D and

α ∈ R,

Gβ(x, α) = α + (1− β)−1E[(f(ξ, x)− α)+]

= α + (1− β)−1Eθ∗ [(f(ξ, x)− α)+],

where Eθ∗ denotes the linear expectation, the density function of which is the normal

distribution N (0, σ̄2); but if the function (f(ξ, x) − α)+ is concave in ξ, the above σ̄2

should be replaced by σ2.

In reality, lots of random variables follow the normal distribution. Since the pa-

rameters of the normal distribution may have uncertainty, we can use the G-normal

distribution to reduce the risk of a decision. Moreover, when (f(ξ, x) − α)+ is convex

or concave in ξ, the explicit form of the sublinear expectation can be given and we can

use the SAA method to obtain the value of E[(f(ξ, x)− α)+].
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Chapter 6

Applications and numerical

experiments

In this chapter, we employ the traffic equilibrium to illustrate our applications. Numer-

ical results for the linear or nonlinear cases show that our ERM formulation has some

good properties, such as robustness and high probability.

For the numerical experiments, we use the semi-smooth Newton method [53] to get

a solution xEV of the EV formulation. We use examples coming from traffic equilib-

rium assignment to illustrate the ERM formulation (2.1.1) and the SSAA-method. We

derive an explicit expression for Q(ξ, x) and its smoothing approximation for a class of

stochastic VI and show that all conditions used in the above chapters are satisfied.

Moreover, we present numerical results to compare the solution of ERM formulation

defined by our new residual function with that of the EV formulation.

It is remarkable that for all the applications being considered the only requirement

is that the sampling should be independent and identically distributed, (abbreviated

iid) whereas related convergence results require strong conditions, for example, uniform

convergence of the approximating functions.

76



6.1 Application

6.1.1 Stochastic VI for traffic equilibrium

The model of traffic or transportation obtained by the transportation networks is usually

used to forecast the future traffic flows to avoid the congestions. For the transportation

assignment, the Wardrop’s user equilibrium is widely used to define an equilibrium

point. The Wardrop’s user equilibrium principle states that the user-optimized traffic

pattern with the equilibrium property that, once established, no user may decrease his

travel cost by making a unilateral decision to change his route. We can easily find that

the model is based on the demand and the cost functions. Because of the influence

of the weather, accidents and so on, we should consider the uncertainty of the traffic

networks and obtain a stochastic user equilibrium. It can be represented as the following

stochastic VI:

〈F (ξ, x), y − x〉 ≥ 0 ∀ y ∈ {x | Ax = bξ, x ≥ 0}, (6.1.1)

where F : Ξ × Rn → Rn is the cost function, bξ denotes the demand of the traffic

network and A ∈ Rm×n is the OD-path incidence matrix whose entries are given by

Air =





1, if the path r connects the OD pair i,

0, otherwise,

x denotes the travel flow, and the link flow vector v = ∆x, where ∆ is the link-path

incidence matrix whose components are given by

∆ak =





1, if the link a on the path k,

0, otherwise.

Traffic equilibrium models are built based on travel demand between every OD-pair

and travel capacity on each link. The demand and capacity depend heavily on various

uncertain parameters, such as weather, accidents, etc. Let Ξ ⊆ RL denote the set of
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uncertain factors. Let (bξ)i > 0 denote the stochastic travel demand on the ith OD pair

and (cξ)k denote the stochastic capacity of link k.

The link travel time function T (ξ, v) is a stochastic vector and each of its entries

Ta(ξ, v) is assumed to follow a generalized Bureau of Public Roads (GBPR) function,

Ta(ξ, x) = t0a(1 + ba(
va

(cξ)a

)na), (6.1.2)

where t0a, ba and na are given parameters, and (cξ)a denotes the stochastic capacity on

the link a for uncertainty ξ ∈ Ξ. The path travel cost function is defined by

F (ξ, x) = η1∆
T T (ξ, ∆x), (6.1.3)

where η1 > 0 is the time-based operating costs factor.

A traffic network consists of a set of nodes and a set of links. We denote by W

the origin-destination (OD) pairs and K the set of all paths between OD-pairs. The

network in Figure 6.1 from [65] has 5 nodes, 7 links, 2 OD-pairs (1 → 4, 1 → 5) and 6

paths p1 = {3, 7, 6}, p2 = {3, 1}, p3 = {4, 6}, p4 = {3, 7, 2}, p5 = {3, 5}, p6 = {4, 2}.

4

3

1

5

2
1

2

3

4

5

6
7

Figure 6.1: The 7-links, 6-paths network

For a realization of random vectors bξ ∈ R2 and cξ ∈ R7, ξ ∈ Ξ, an assignment of

flows to all paths is denoted by the vector x ∈ R6, whose component xj denotes the

flow on path j, while an assignment of flows to all links is represented by the vector v
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whose component vk denotes the stochastic flow on link k. The incidence matrices for

the network in Figure 6.1 are given respectively as follows.

∆ =




0 1 0 0 0 0

0 0 0 1 0 1

1 1 0 1 1 0

0 0 1 0 0 1

0 0 0 0 1 0

1 0 1 0 0 0

1 0 0 1 0 0




A =


 1 1 1 0 0 0

0 0 0 1 1 1


 .

If nk = 1, then F (ξ, x) = Mξx + q, where

Mξ = 0.15η1∆
T diag

(
t0k

(cξ)k

)
∆ and q = η1t

0
1∆

T e.

Moreover, for Figure 6.1, we note that rank(∆)=5 for any ξ ∈ Ξ. Mξ ∈ R6×6

is a positive semi-definite matrix with rank(Mξ) = 5. Obviously, E[Mξ] is positive

semi-definite, but condition (4.1.5) used in [2] does not hold.

In a stochastic environment, ξ belongs to a set Ξ representing future states of knowl-

edge. In general, we cannot find a vector x̄ such that f(ξ, x̄) = 0 for all ξ ∈ Ξ. The

ERM formulation is to find a vector x∗ which minimizes the expected value of f(ξ, x̄)

over Ξ. The main role of traffic model is to provide a forecast for future traffic states.

The solution of the ERM formulation is a “here and now” solution which provides a

robust forecast and has advantages over other models for long term planning.

6.1.2 Efficiency of the ERM formulation

In this section, we give sufficient conditions on A and bξ that guarantee that Assump-

tions 2.2.1, 2.2.2, 4.1.1, 4.1.2 and 5.2.1 hold. Such conditions hold for the OD-path

incidence matrix and random demand vector.
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Definition 6.1.1 [22] A set S ⊆ Rm is a meet semi-sublattice under the componentwise

ordering of Rm if

u, v ∈ S ⇒ w = min(u, v) ∈ S.

The vector w is called the meet of u and v.

Lemma 6.1.1 [22] If S is a nonempty meet semi-sublattice that is closed and bounded

below, then S has a least element.

Theorem 6.1.1 Suppose prob{bξ > 0, ‖bξ‖∞ ≤ β} = 1 for some β > 0 and A can be

split into two submatrices AK and AJ , where AK is an m×m M-matrix and AJ is an

m× (n−m) nonnegative matrix whose columns have only one positive entry. Let

γ0 = min
i,j
{(A−1

K AJ)ij | (A−1
K AJ)ij > 0, j ∈ J, 1 ≤ i ≤ m}, γ = max(1, γ−1

0 )β‖A−1
K ‖∞.

Then,

Xξ ⊆ {x | 0 ≤ x ≤ γe} =: U0. (6.1.4)

Further, if for some κ > 0 and any u ∈ U0, prob{‖F (ξ, u)‖∞ ≤ κ} = 1, then Assump-

tion 2.2.1 holds with Q(ξ, u(ξ, x)) = bT
ξ z(ξ, u(ξ, x)) and

‖z(ξ, u(ξ, x))‖∞ ≤ θ = κ max(1, γ−1
0 )‖A−T

K ‖∞ (6.1.5)

for any x ∈ D and almost every ξ ∈ Ξ.

Proof. Let P be n×n permutation matrix such that AP = [AK , AJ ]. For fixed ξ ∈ Ξ,

consider a vector x ∈ Xξ with xj0 = maxj xj = ‖x‖∞. By definition,

A−1
K bξ = A−1

K APPx = A−1
K [AK , AJ ]Px = [I, A−1

K AJ ]Px. (6.1.6)

Since [I, A−1
K AJ ] is a nonnegative matrix and its each column has at least one positive

element, [I, A−1
K AJ ]Px ≥ 0. Hence, there is a positive element (I, A−1

K AJ)i,j0 = Bi,j0 ≥
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min(1, γ0), such that

min(1, γ0)‖x‖∞ ≤ Bi,j0xj0 ≤ ‖[I, A−1
K AJ ]Px‖∞ ≤ ‖A−1

K bξ‖∞ ≤ ‖A−1
K ‖∞β a.s.

This implies Xξ ⊆ U0 a.s.

Let Sξ,u = {z |AT z + F (ξ, u) ≥ 0} denote the feasible set. For w, v ∈ Sξ,u, let

s = min(w, v) be their meet. We consider an arbitrary index i ∈ {1, · · · , n}. By the

assumptions of this theorem, there is at most one positive element aki > 0. Without

loss of generality, we assume sk = vk. Then,

(AT s + F (ξ, u))i = Fi(ξ, u) +
m∑

j 6=k

ajisj + akisk

≥ Fi(ξ, u) +
m∑

j 6=k

ajivj + akivk

≥ 0.

This establishes the feasibility of the vector s and the meet semi-sublattice property of

Sξ,u.

Let e ∈ Rm and ẽ ∈ Rn be vectors with all of their elements 1. Let t = κ max(1, γ−1
0 )A−T

K e.

Note that AT
J A−T

K is a nonnegative matrix. Then

PAT t = κ max(1, γ−1
0 )


 e

AT
J A−T

K e


 ≥ κẽ ≥ −PF (ξ, u) a.s.

Hence t ∈ Sξ,u and thus Sξ,u is nonempty, a.s.

Let C = [A−T
K , 0] ∈ Rm×n. For any z ∈ Sξ,u,

CP (AT z + F (ξ, u)) = z + CPF (ξ, u) ≥ 0,

which implies

z ≥ −CPF (ξ, u) ≥ −LA−T
K e ≥ −max(1, γ−1

0 )κA−T
K e. (6.1.7)
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Hence Sξ,u is closed and bounded below. By Lemma 6.1.1, Sξ,u has a unique least

element z(ξ, u), a.s. Moreover, by the assumption bξ > 0 a.s., z(ξ, u) is the unique

solution of (2.2.3) a.s.

Furthermore, using z(ξ, u) ≤ t and (6.1.7),

‖z(u, ξ)‖∞ ≤ κ max(1, γ−1
0 )‖A−T

K ‖∞ = θ a.s. (6.1.8)

which completes the proof.

In traffic flow problem [1, 65, 69], we often have the following constraints

Xξ = {x |
∑
j∈Ii

xj = (bξ)i, i = 1, · · · ,m} (6.1.9)

with
m⋃

i=1

Ii = {1, 2, · · · , n}, Ii ∩ Ij = ∅, i 6= j,

where bξ is a demand vector which comes with uncertainties due to weather, accidents,

etc., xj, j ∈ Ii are traffic flows on the j path connecting the i-th original-destination

(OD) pair. The constraints (6.1.9), can be written as Ax = bξ, where A is called the

OD-path incidence matrix. Each column of A has only one nonzero element 1 and the

ith row has |Ii| elements. Such matrix satisfies the assumption on A in Theorem 6.1.1.

Moreover, if bξ > 0, then from AT z + F (ξ, u) ≥ 0, the solution z(ξ, u) of (4.1.3) has a

closed form

zi(ξ, u) = max{−Fj(ξ, u), j ∈ Ii}, i = 1, · · · ,m. (6.1.10)

Moreover, If F (ξ, x) = Mξx + qξ, then ϕ is a convex function.

Now, we define a smoothing function of

f(ξ, x) = u(ξ, x)T F (ξ, u(ξ, x)) +
m∑

i=1

bi(ξ) max
j∈Ii

{−Fj(ξ, u(ξ, x))}. (6.1.11)
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Consider the following nonsmooth function for a vector y ∈ Rk

p(y) = max
1≤i≤k

{yi}.

We define a smoothing function of p as follows [47]: for µ > 0,

p̃(y, µ) = µ ln(
k∑

i=1

eyi/µ).

Lemma 6.1.2 [19] p̃ is continuously differentiable with respect to x for any fixed µ > 0.

Moreover, the following hold.

(i)

0 ≤ p̃(y, µ)− p(y) = µ ln
( k∑

i=1

e
yi−p(y)

µ
) ≤ µ ln k.

(ii) { lim
z→x, µ↓0

∇xp̃(z, µ)} is nonempty and bounded. Moreover, p̃ satisfies the gradient

consistent property, that is,

{ lim
y→ȳ,µ↓0,

∇yp̃(y, µ)} ⊂ ∂p(ȳ),

where ∂p denotes the Clarke generalized gradient.

Lemma 6.1.3 The directional derivative p̃′µ(y; h) of p̃ satisfies

lim
µ↓0

p̃′µ(y; h) ≤ p′(y; h), ∀ y, h ∈ Rk. (6.1.12)

Proof. For any given y, h ∈ Rk, let K = {i | yi = p(y) } and h0 = maxi∈K hi. The

directional derivative p′(y; h) = h0. For µ > 0, p̃ is continuously differentiable and

lim
µ↓0

p̃µ(y; h) = lim
µ↓0

∇p̃µ(y)T h =
k∑

i=1

hi

k∑
j=1

1

e(yj−yi)/µ
≤ 1

|K|
∑
i∈K

hi ≤ h0 = p′(y; h).

This completes the proof.
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Let

f̃(ξ, x, µ) = u(ξ, x)T F (ξ, u(ξ, x)) + µ

m∑
i=1

(bξ)i ln
∑
j∈Ii

e−Fj(ξ,u(ξ,x))/µ. (6.1.13)

Theorem 6.1.2 When Xξ is defined by (6.1.9) and f̃ is defined by (6.1.13), the as-

sumptions of Theorem 6.1.1 hold and ϕµ and ΦN
µ are smoothing functions of ϕ and ϕ̂N ,

respectively. Moreover, Q(ξ, u(ξ, x)) is regular in x for any fixed ξ ∈ Ξ and f̃ satisfies

(3.3.11).

Proof. The matrix A can be split into two submatrices AK and AJ , where AK = I ∈
Rm×m whose i-th column is the first column of AIi

and AJ is an m×(n−m) nonnegative

matrix whose columns have only one positive element.

From Lemma 6.1.2, it is easy to verify that f̃ is a smoothing function of f defined

in (6.1.11). By definitions, ϕµ and ΦN
µ are smoothing functions of ϕ and ϕ̂N .

The regularity of Q(ξ, u(ξ, x)) =
∑m

i=1 bi(ξ) maxj∈Ii
{−Fj(ξ, u(ξ, x))} follows directly

from the Chain Rule [21, Theorem 2.3.9] since bξ > 0, p is convex and F is continuously

differentiable.

Next, we show (3.3.11) holds. Note that by the regularity of f , df(ξ, x; h) =

f ′(ξ, x; h). Since the first term of f is continuously differentiable, we only need to

consider the second term. Without loss of generality, we assume I1 = K = {1, · · · k} and

thus z1(ξ, u) = max{−Fj(ξ, u), j ∈ K}. For a fixed ξ, let g(u) = (−F1(ξ, u), · · · ,−Fk(ξ, u))T

and q(u) = p(g(u)) = max(g1(u), · · · , gk(u)). Since bi(ξ) > 0, for i = 1, · · · ,m, it is

sufficient to show that

lim
µ↓0

q̃′µ(u; h) ≤ q′(u; h), ∀ u, h ∈ Rk. (6.1.14)

By continuously differentiability of g, the directional derivative of q satisfies

q′(u, h) = lim
t↓0

p(g(u + th))− p(g(u))

t
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= lim
t↓0

p(g(u) + tg′(u)h + o(t))− p(g(u))

t
= p(g(u); g′(u)h).

For µ > 0,

lim
µ↓0

q̃′µ(u; h) = lim
µ↓0

∇p̃µ(g(u))T g′(u)h ≤ p(g(u); g′(u)h) = q(u; h)

that follows from Lemma 6.1.3.

6.2 Numerical experiments

In this section, Xξ is defined by (6.1.9) and f̃ is defined by (6.1.13). The EV formulation

for the examples is to find an x ∈ X = {x |Ax = E[bξ] } such that

(y − x)T E[F (ξ, x)] ≥ 0, y ∈ X. (6.2.15)

We solve the following minimization problem

min
x∈X

g(x) := max{(x− y)T E[F (ξ, x)] | y ∈ X} (6.2.16)

and set a minimizer to be xEV.

For the ERM formulation, we solve the ERM problem (2.1.1) and set xERM =

(I − A†A)x∗ + A†E[bξ], where x∗ is a solution of (2.1.1).

We use the residual function f and conditional value-at-risk(CVaR) to compare the

two formulations; for fixed x,

α∗(x) ∈ argmin
α∈R

CVaR(x, α) := α +
1

1− β
E{[f(ξ, x)− α]+}.
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6.2.1 SSAA methods

Example 6.2.1 This example is the 7-link, 6-paths problem in Figure 6.1. The free

travel time t0k and the mean of the capacity E[ck(ξ)] of the network are the same as those

used in [65], which are listed in Table 6.1.

Table 6.1: Link cost parameters in Figure 6.1
Link number k 1 2 3 4 5 6 7
Free-flow time Tk 6 4 3 5 6 4 1

Mean Ck 15 15 30 30 15 15 15

For the travel demand vector, we set E[bξ] = [200 220]T , where the components

follow the order of the OD-pairs 1 −→ 4 and 1 −→ 5. The link capacity and the

demand vector both have a beta distribution. For the demand vector bξ, the lower bound

is b = [150 180]T and the parameters for the beta distribution are α = 5, β = 1. For

the link capacity cξ, the lower bound is c = [10 10 20 20 10 10 10]T and the parameters

for the beta distribution are α = 2, β = 2.

Results in Table 6.2 and Table 6.3 were obtained by using the same sampling with

size N = 1000. Table 6.2 gives EV and ERM solutions for different values of na. Table

6.3 lists robustness and risk criteria for the EV and ERM solutions in Table 6.2; x∗ξ

means solution of the variational inequalities for each fixed ξ ∈ Ξ.

Table 6.2: Solutions for sampling size N=1000
na = 2 na = 4

xEV xERM x∗ xEV xERM x∗

x1 18.85 27.28 16.61 2.89 14.87 23.60
x2 90.32 88.11 77.44 95.09 92.38 101.12
x3 90.83 84.61 73.95 102.03 92.75 101.49
x4 26.61 28.29 10.95 20.37 19.64 17.31
x5 99.65 97.53 80.20 104.87 102.73 100.40
x6 93.74 94.18 76.85 94.76 97.63 95.30
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Table 6.3: Criteria for x = xEV , x = xERM , x = x∗ with N = 1000, β = 0.9
na = 2 na = 4

ε = 4.5E3 ε = 5E5
xEV xERM x∗ xEV xERM x∗

prob{f(ξ, x) ≤ ε} 0.58 0.61 0.61 0.56 0.59 0.59
E[‖x− x∗ξ‖] 46.94 39.63 54.00 35.28 33.01 36.65

E[‖u(ξ, x)− x∗ξ‖] 47.03 39.72 39.72 35.41 33.15 33.15
E[f(ξ, x)] 4.316E3 4.198E3 4.198E3 5.064E5 4.907E5 4.907E5

α∗(x) 7.395E3 7.132E3 7.132E3 1.071E6 1.037E6 1.037E6
CVaR(x, α∗(x)) 8.691E3 8.515E3 8.515E3 1.254E6 1.229E6 1.229E6

In Figure 6.2, we graph prob{f(ξ, x) ≤ ε} with different values of ε. We can see the

ERM formulation has higher probability than the EV formulation for each ε.
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Figure 6.2: prob{f(ξ, x) ≤ ε} with different values of ε for xEV and xERM.

Example 6.2.2 This example uses the Nguyen and Dupuis network given in Figure

6.3, which contains 13 nodes, 19 links, 25 paths and 4 OD movements.
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Figure 6.3: Nguyen and Dupuis Network

We use the free-flow travel time t0a, the mean E[cξ], the coefficient of variation

CV [(cξ)a] and the free-flow travel time t0a are given in Table 6.4.

Table 6.4: Link cost parameters

Link Free-flow travel time Link capacity, ca

t0a Mean Coefficient of Variation
1 7.0 800 4
2 9.0 400 2
3 9.0 200 2
4 12.0 800 4
5 3.0 350 2
6 9.0 400 2
7 5.0 800 2
8 13.0 250 2
9 5.0 250 2
10 9.0 300 2
11 9.0 550 4
12 10.0 550 4
13 9.0 600 2
14 6.0 700 4
15 9.0 500 4
16 8.0 300 2
17 7.0 200 2
18 14.0 400 2
19 11.0 600 2

The mean of the demand vector E[bξ] of the network is E[bξ] = [400, 800, 600, 450]T .

The link capacity has three possible scenarios which denotes different conditions of the

network such as weather, accidents and so on, and we give the three scenarios with

probability p1 = 1
2
, p2 = 1

4
and p3 = 1

4
.
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c1
a = 100× [8, 3.2, 3.2, 8, 4, 3.2, 8, 2, 2, 2, 4, 4, 8, 6, 4, 4, 1.6, 3.2, 8]T ;

c2
a = 100× [10, 4.4, 1.4, 10, 3, 4.4, 10, 2, 2, 4, 7, 7, 7, 7, 4, 3.5, 2.2, 4.4, 7]T ;

c3
a = 100× [4, 4, 2, 4, 4, 4, 4, 4, 4, 2, 4, 4, 2, 8, 8, 1, 2, 4, 2]T .

The demand vector follows the beta distribution bξi ∼ b+ b̂∗beta(α, β) with the lower

bound b = [300, 700, 500, 350]T and parameters α = 50, β = 10 and b̂ = [120, 120, 120, 120]T .

We rely on the Monte-Carlo method to randomly generate N samples of (bξi , (cξi)a) for

i = 1, 2, · · · , N , where (cξi)a is sampled from the three possibilities with given probability

and bξi is sampled from the beta distribution.

We list the probability prob{f(ξ, x) ≤ 3.3∗103}, the total residual E[f(ξ, x)] and the

risk criteria in Table 6.5. Form the table, we can find that solutions of ERM solution

has better properties than that of EV formulation.

Table 6.5: Criteria for β = 0.9, na = 2, ε = 3.3E3
xEV xERM

prob{f(ξ, x) ≤ ε} 0.508 0.952
N = 103 E[f(ξ, x)] 3.498E3 2.938E3
µ = 10−4 α∗ 7.935E3 3.226E3

CVaR(x, α∗) 8.154E3 3.333E3
prob{f(ξ, x) ≤ ε} 0.510 0.908

N = 5 ∗ 103 E[f(ξ, x)] 3.498E3 2.983E3
µ = 10−5 α∗ 7.918E3 3.286E3

CVaR(x, α∗) 8.121E3 3.403E3
prob{f(ξ, x) ≤ ε} 0.509 0.927

N = 104 E[f(ξ, x)] 3.505E3 2.976E3
µ = 10−6 α∗ 7.978E3 3.253E3

CVaR(x, α∗) 8.168E3 3.359E3

Example 6.2.3 We consider the Sioux Falls network as shown in Figure 6.4 (left),

which consists of 24 nodes, 76 links, 528 OD movements. The total of 1179 paths are

pre-generated as possible travel routes between different OD pairs. The parameters of

the GBPR function are the same as that in [69] except na=4. We consider the stochastic

settings for the OD demands and the capacity of the links. Each (bξ)i is supposed to

follow a log-norm distribution, and the coefficients of variation for each (bξ)i are 5. For

the capacity, we use the beta distribution to generate the samples. The link flow patterns
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obtained by the ERM (2.1.1) are displayed in Figure 6.4 (right). Here the link flow is

displayed on each link with the unit 1.0 ∗ 103, and the width of each link is proportional

to the link flow. By the property of xERM , we know that the ERM flow patterns satisfy

the average of travel demand as AxERM = E[bξ]. Moreover, the ERM flow patterns

satisfy the stochastic travel demand on all OD pairs with high probability:

0.848 ≥ prob{(AxERM − bξ)i ≥ 0} ≥ 0.780, i = 1, · · · , 528.
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Figure 6.4: Sioux Falls Network

6.2.2 Moreau-Yosida regularization for stochastic linear VI

To demonstrate the properties of the ERM formulation, we employ the proximal quasi-

Newton method [15] to get a solution xERM of the ERM formulation (4.1.3) for the

Moreau-Yosida regularization.

The Nguyen and Dupuis network, which contains 13 nodes, 19 directed links, and

4 OD movements 1 −→ 2, 1 −→ 3, 4 −→ 2, and 4 −→ 3, is used in our numerical

experiments. See Figure 6.3.

We use the free-flow travel time t0a given in [66]. The demand vector bξ and the

link capacity cξ both follow log-norm distributions. The mean E[cξ], the coefficient of

variation CV [(cξ)a] and the free-flow travel time t0a are the same as that in [66], and we

list them in Table 6.4.
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The mean of the demand vector bξ is given as E[bξ] = [400, 800, 600, 450]T . We set

bξ,1 = 1
2
c1(ξ), bξ,2 = c1(ξ), bξ,3 = 3

4
c1(ξ) and bξ,4 = 9

16
c1(ξ). From this, we know that the

stochastic vectors bξ and cξ are dependent which means the co-variance matrix of bξ and

cξ are not 0. We employ the sample size N = 10, 000 and the Tikhonov regularization

parameter ε = 0.01 in our numerical experiments. We show the link flow patterns of the

ERM formulation and the EV formulation in Figure 6.5, and we can see the difference

between the two patterns.

1

4

2

3

5

12

6 7 8

9 10 11

13

1

524.35

475.65

680.01

569.99

859.13

345.23

830.77

181.21

340.28

490.49

663.08

641.07

274.15 536.92455.37

152.86

408.93

322.79

641.07

Origin

Origin

Destination

Destination

1

4

2

3

5

12

6 7 8

9 10 11

13

1
510.86

489.14

614.34

635.66

820.65

304.54

804.55

105.25

211.64

592.91

611.64

754.54

185.66 588.36290.91

89.14

295.46

400.00

754.54

Origin

Origin

Destination

Destination

Legend: Link flow

500  veh/hr

750  veh/hr

1,000  veh/hr

250  veh/hr

Figure 6.5: Link flows for the ERM formulation (left) and the EV formulation (right)

In Figure 6.6, we graph prob{f(ξ, x) ≤ δ} with different values of δ. We can see the

ERM formulation has higher probability than the EV formulation for each δ.
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Figure 6.6: prob{f(ξ, x) ≤ δ} with different values of δ for xEV and xERM.

In Table 6.6, we list the values E[f(ξ, x)], E[||x−xξ||] and E[||V −Vξ||], which denote

the distance of a traffic assignment pattern under uncertainty to the Wardrop’s user
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equilibrium for each scenario. From Table 6.6, we can see that the expected distance

between xERM and Wardrop’s user equilibrium assignment for all possible realizations

is smaller than that of xEV .

Table 6.6: Robust criteria of various traffic assignment patterns
Various criteria xERM xEV

E[f(ξ, x)] 5.855E+05 5.887E+05
E[||x− xξ||] 1.197E+03 1.248E+03
E[||V − Vξ||] 2.672E+03 2.697E+03

Remark 6.2.1 The three examples are often used in transportation research. They

satisfy all our assumptions of the theoretical analysis for the ERM formulation in the

above chapters. Moreover, our preliminary numerical results show that the ERM solu-

tion performs better than the EV solution both as far as robustness and risk analysis

are concerned.
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