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Abstract 

The thesis investigates the thermomechanical properties of ferromagnetic 

body-centered cubic iron under various external magnetic field strengths, using 

spin-lattice dynamics (SLD) simulations implemented with graphics processing 

units, emphasizing the external field effect on the magnetic phase transition 

around the transition temperature regime. Simulation results are presented in 

terms of ensemble averages of thermodynamic quantities and their derivatives, 

together with the spectra derived from lattice and spin motions. Then, three 

major perspectives are sought to analyze the external field effect: classical spins, 

magnons, and spin-lattice coupling. From the analysis of classical spins, the 

simulation results show that an external field can reinforce the long range 

magnetic ordering reflected by the atomic magnetization, and can increase the 

magnetic phase transition temperature. In addition, the application of an external 

field allows the SLD magnetization to emulate the mean field magnetization 

because spin precession modeled by SLD is then suppressed. According to the 

magnon analysis, an external field inhibits magnon-magnon interaction and 

maintains the spin stiffness, whose effects are more discernible around the 

transition temperature regime. Finally, an external field has an insignificant effect 

on spin-lattice coupling, originated from the more harmonic interatomic potential 

adopted in our simulations, which cannot reproduce the structural phase-

transition from BCC to FCC at 1183K, thus showing stiff lattice vibration. 

However, both the variation of transition temperature and the magneto-volume 

effect are observed more prominently around the critical region. As a result, it 
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can be said classically that an external magnetic field varies the separation 

dependence of the interatomic potential, which leads to the reduction of the 

atomic volume. Alternatively in quantum physics, an external field alters the 

atomic volume because it alters the magnon-magnon interaction, bringing about 

the change in phonon scattering by phonon-magnon interaction. In short, SLD 

can model the magneto-volume effect of ferromagnetic materials under an 

external field, and can help to estimate the resulting transition temperature due to 

the increased magnetic ordering and inhibited magnon-magnon interaction.  
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Chapter 1:  Introduction 

1.1  Motivation 

Magnetic materials are playing an increasingly important role in modern 

industry. Magnetic data storage requires magnetic materials to control the bit to 

save. Electric machinery requires magnetic materials to control its output power, 

and the list goes on. In addition to their use in room temperature environment, 

materials in the magnetic phase, such as ferritic steels, are also employed as 

structural materials in high temperature environment, such as nuclear fusion and 

fission reactors, because of their ability to stand damage due to neutron 

bombardment. Yet, phase changes lead to drastic changes of their physical 

properties and adversely affect the applicability of their designed function. 

Magnetic materials are characterized by the magnetic phase transition across 

the ferro/paramagnetic (FM/PM) phase boundary, which defines the transition 

temperature. The transition temperature is determined by the thermal excitations 

of the spin and lattice subsystems in terms of spin and lattice waves and the 

associated interaction. Physically, the interaction between the two systems comes 

from the quantum exchange interaction that couples the electron spins of 

neighboring atoms. Accordingly, changes in the spin subsystem affect the lattice 

subsystem, leading to changes of the lattice properties. 

The behavior of thermomechanical properties of ferromagnetic iron under an 

external applied magnetic field is an interesting subject, both in terms of its 

scientific merit and technical use. We are particularly interested in the 
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temperature regime around the transition temperature. Investigations of this type 

can be carried out using the lately developed Spin-Lattice dynamics (SLD) 

simulation [1],[2], which is what we shall attempt in this thesis. 

1.2  Nature of Electron Spin 

Magnetism in materials comes from the electron spin. The spin of an atom of 

a transition metal originates from the electrons of the incomplete d-shells, in 

which a maximum magnetic moment is established according to the Hund’s rule. 

Given an isolated iron atom as an example, 6 d-electrons has to be put in a d-

shell of 5 d-electronic orbitals with 10 spin-polarized electronic states. By Pauli’s 

exclusive principle, 5 of the 6 d-electrons are put in each d-orbital with an up-

spin, and the remaining one in a d-orbital with a down-spin. Since each electron 

has a magnetic moment of B1µ , where Bµ  is the Bohr magneton, the net 

magnetic moment of an isolated iron atom is B4µ  after cancelling up and down 

spin states in one of the orbitals. However, the atoms in a crystalline iron solid 

has a magnetic moment of just B2.2µ , as a result of the exchange coupling 

between intra-atomic d-electrons and the hybridization between 3d and 4s 

electrons. 

In a spin-polarized solid, atomic spins interact quantum mechanically via the 

exchange correlation effect, which is associated with the overlap of the electronic 

wave-functions. Readers may refer to texts about condensed matter physics, such 

as the one by Blundell [3], for a better understanding of this topic.  
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Suppose there are two atoms, each with one electron. While the atomic 

spacing is sufficiently close, the overlap of the electronic orbitals forces the 

electrons in these two atoms to stay in the same orbital with opposite spin 

directions, according to Pauli’s exclusion principle. In this case, the material is 

non-magnetic macroscopically, as shown in Fig. 1.1 as a schematic diagram.  

 

Fig. 1.1 – Spin alignment (black arrows) in anti-parallel configuration when two atoms (red dots) 

get close to each other. 

On the other hand, if the same atoms are put farther away from each other, 

the electrons would keep a larger distance to minimize electron-electron 

repulsion. Since the two electrons no longer stay at the same orbital, their spins 

simply align in parallel to achieve the lowest energy. A material is ferromagnetic 

if the spins are parallel, and long range magnetic order is established. Fig. 1.2 

illustrates this condition schematically.  

 

Fig. 1.2 – Spin alignment (black arrows) in parallel configuration when two atoms (red dots) are 

far apart. 
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The spins interact via the exchange interaction as described by the 

Heisenberg Hamiltonian: 

1

2 ij i j
i j

H J
≠

= − ⋅∑ S S ,           (1.1) 

where ijJ  is the exchange integral and iS  is the spin of atom i  , whose 

magnitude is determined by the magnetic moment Bi iM g Sµ= , where 

2.0023g =  is the electronic g-factor. It is noted that the direction iM  is opposite 

to that of iS . All spins would align in parallel at the ground state, but thermal 

fluctuation would disrupt the spin orientation to depart from perfect alignment, 

so that ( ) ( ) B0 2.2iM T M µ< = . Further thermal fluctuation due to an increasing 

temperature can completely destroy the long range magnetic ordering, and the 

FM/PM phase transition occurs. Conversely, an applied magnetic field forces the 

atomic spins to align in the same direction and opposes the randomness due to 

thermal fluctuation. Accordingly, the magnetic moment is a function of 

temperature and external field strength.  

1.3  Magnetic Effect due to External Field 

Once an external field extH  is applied on a magnetic material, spin 

alignment is enhanced leading to a larger magnetization. Also, the energy 

contribution by magnetism includes one more term due to the external field, with 

a value of ext
B i

i

gµ ⋅∑H S . Many authors have investigated the effect of the 

external field on the magnetic phase transition and structural transformation. 

Thus, Holsten and Primakoff [4] formulated the Hamiltonian of a ferromagnetic 
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material in domain scale by considering the exchange interaction between 

magnetic atoms. Wojtowicz and Rayl [5] provided a mean-field analysis of the 

external field dependence of magnetization and heat capacity in a toroid of cubic, 

isotropic and ferromagnetic materials, from which an increase of the transition 

point with the applied field was deduced. Choi et al. [6] applied the mean field 

theory and the field-induced magnetization of iron under a field of decades of 

Tesla, and then confirmed the increase in temperature of the austenite/ferrite 

phase transition when an applied magnetic field exists. Koch [7] reviewed that 

the phase transition temperature of Iron-based alloys between the FCC and BCC 

phases is a few Kelvins per Tesla of field strength applied. He also suggested that 

the application of an external field helps to control the desired structure of a 

material. 

1.4  Spin-Lattice Coupling 

It can be inferred from the Heisenberg exchange Hamiltonian that the 

strength of the distance-dependent exchange interaction ( )ij ijJ R , determined by 

the degree of atomic orbital overlap, determines the spin stiffness that dictates 

the collective vibration of the spins, the Curie temperature, and the dynamics of 

the spin system. In fact, it also determines the lattice dynamics through spin 

correlation i j⋅S S  using the exchange integral, leading to the coupling of spin 

and lattice subsystems, from which the free energies required for atomic 

processes would carry contributions from spin system as well as from spin-lattice 

coupling, especially near the FM/PM transition.  
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Through the years, researchers have strived to incorporate the effect of spins 

on the lattice degrees of freedom by diverse approaches, so that a dynamic 

system of particles can reflect magnetic behavior, especially at the FM/PM phase 

boundary. For example, Antropov et al. [8] attempted to model both spins and 

lattices by using ab initio molecular dynamics and spin dynamics based on the 

local spin density approximation (LSDA). Stokes et al. [9] improved the model 

of Antropov et al. [8], which is restricted to ground states, by introducing non-

collinear spin states using the constrained local moment (CLM) method. 

Körmann et al. [10] calculated the vibrational, electronic, and magnetic free 

energy separately, with the first and second one found by finite-temperature 

density-functional theory (DFT) under quasi-harmonic approximation, and the 

third one by many-body Heisenberg Hamiltonian in the mean-field 

approximation. Sandoval et al. [11] investigated phonon softening during the 

Bain transformation by using the Meyer-Entel potential generated by the 

embedded-atom method, in which both effects of electronic density and effective 

charges are considered, yet no magnon contribution is included explicitly in this 

potential. To further study the same transformation, Okatov et al. [12] adopted 

the projected augmented waves (PAW) and the generalized gradient 

approximation (GGA) in the electronic density functional, together with the spin 

spirals (SS) model to represent the varying magnetic order, and with the 

disordered local moments (DLM) method to describe paramagnetic states of 

spins, respectively. To model the same transformation, Lavrentiev et al. [13] 

attempted the magnetic-cluster-expansion (MCE) model, whose Hamiltonian 

includes non-magnetic interaction parameters up to the second nearest neighbors 

and magnetic interaction parameters up to the fifth nearest neighbors, all of 
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which are obtained by fitting to DFT calculations. From the above treatments, it 

is noted that explicit magnon contributions are either contained separately from 

the lattice subsystem or simply not existent, meaning that real spin-lattice 

coupling has not yet been modeled at elevated temperatures.  

Spin-lattice coupling under a magnetic field was also studied. Matthews and 

LeCraw [14] measured the magneto-elastic coupling constant in single-crystal 

yttrium iron garnet by pulse-echo method, and deduced that magnon-phonon 

interaction was responsible for this coupling. Pomerantz [ 15 ] succeeded in 

exciting spin waves by using microwave phonons with the same frequency.  

To achieve real coupling of spin and lattice degrees of freedom in atomistic 

simulation, Ma, Dudarev and Woo (MWD) [ 16 ] developed the spin-lattice 

dynamics (SLD) simulation scheme, whose main idea is the distance-dependent 

exchange interaction through which lattice subsystem bridges the spin 

counterpart. Indeed, the notion of the distance-dependent exchange interaction is 

confirmed by Wang et al. [17], who suggested a complex functional form of the 

exchange interaction determined by the pair orientation of spins resulting from 

many-body effects instead of from pairwise contribution. With SLD, the 

magnetic effects of materials can be modeled to investigate phonon-magnon 

interaction with temperature, especially at the boundary of magnetic phase 

transition. This method is also useful for analyzing the free energy of 

ferromagnetic materials, which is believed to be dependent on the proper 

treatment of spin-lattice coupling, particularly across the magnetic phase 

boundary. 
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One consequence of spin-lattice coupling is the magneto-volume effect, 

which is the structural deformation, isotropic or anisotropic, in response to the 

change of magnetization followed by spontaneous or forced magnetic phase 

transition due to the effect from electrons through phonon-magnon interaction 

[18]. In fact, according to Takahashi and Shimizu [19], it is the thermodynamic 

relations obtained by minimizing the free energy F  in terms of the number of 

electrons N , the total magnetic moment M , and the volume V , i.e.,  

( )

( )

, ,
0

, ,
0

F N M V

M
F N M V

V

∂
= ∂


∂ =
 ∂

           (1.2) 

that determine the equilibrium configuration arising from the magneto-volume 

effect. Disordered invar alloy such as the quenched FCC Fe65Ni35 [20] is an 

application of this effect because its thermal expansion coefficient is nearly zero 

in a certain temperature range due to phonon scattering magnetic excitations. 

Many research workers support the notion of spin-lattice coupling leading to 

the effect. Donaldson [21] suggests that the exchange interaction depends on the 

material volume that further alters the dependence of temperature on both the 

magnetic order and the specific heat, despite his claim that his derivation is just 

useful at or below the Curie temperature. Tanji [22] claimed experimentally that 

it is the change of the magnetic exchange force, or the derivative of the exchange 

interaction with respect to interatomic distance, d dJ r , that leads to the 

anomalous volume behavior. Oomi and Mōri [23] conducted an experiment to 

understand the effect in invar alloys under high pressure, which can induce a 
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change in magnetization, but have not mentioned sufficiently the effect at the 

magnetic phase transition. Mikhailov and Kazantsev [24] conducted a neutron 

scattering experiment to show that low-energy magnetic excitation in the form of 

longitudinal spin fluctuations affects the magneto-volume effect. 

In summary, it can be seen from the foregoing discussion that magnetic and 

mechanical effects at elevated temperatures, resulting from an external magnetic 

field, is not completely understood. The accompanying magneto-volume effect 

also needs studying at the atomistic level. More is expected to be done to 

understand the contribution of an external magnetic field on both spin and lattice 

properties in ferromagnetic materials, and to investigate the effect originated 

from an external magnetic field, especially by atomic simulation approach that 

considers spin-lattice coupling.  

1.5  Objective 

Based on the shortcomings in the existing work on the effect on the external 

magnetic field, the thesis adopts the SLD simulation to study the effects of 

external field on magnetic ordering in BCC iron at elevated temperatures. In 

addition, the temperature dependence of magneto-volumetric effect is also 

investigated.  

The thesis is organized as follows. Chapter 2 provides a preliminary 

discussion of statistical thermodynamics, as the basis to analyze the forthcoming 

computer experiment results. It also mentions spin-lattice dynamics as a tool to 

investigate atomic behavior under a magnetic field. This chapter finally 

illustrates the necessity and implementation of a computer system relying on 
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graphics processing units when one wants to solve molecular-level problems. 

Chapter 3 describes the methodology of the study. It begins with the simulation 

settings for the study, followed by collection and analysis of data for 

interpretation. The final section of this chapter explains the method of finding 

data averages, phonon and magnon spectra, and derivatives of observables. 

Chapter 4 discusses the temperature dependence of magnetic ordering realized by 

SLD simulation. This issue is analyzed by magnetization, spin correlation 

coefficients, spin temperature, and magnon spectra. Many of them can 

demonstrate the change of the transition temperature in the presence of an 

applied field. It also discusses the effect of spin-lattice coupling, which can be 

observed by the magneto-volume effect, by means of an analysis of the resulting 

volume change. It can be regarded that it is the compromise between the 

temperature and the external field strength that determines the equilibrium 

volume of a piece of ferromagnetic material. Chapter 5 is the summary and 

conclusion of the thesis.  
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Chapter 2:  Background Knowledge 

2.1  Thermodynamics Quantities 

1.  Statistical Thermodynamics 

Classical thermodynamics studies macroscopic thermodynamic quantities in 

equilibrium states via the laws that govern their behavior and the relations among 

them, without the linkage to their microscopic atomistic origin. Through the 

brilliant works of Boltzmann, Einstein, Gibbs, and many others, statistics was 

found to be able to provide the missing link between the macroscopic 

thermodynamics properties and microscopic atomistic information. Interested 

readers may refer to texts such as the ones by Mandl [1] and Reif [2] for a 

preliminary understanding of this topic. In this thesis, statistical thermodynamics 

will be the basis of our methodology, through which we obtain the thermo-

mechanical properties of a ferromagnetic metal from the dynamics of the spin 

and lattice degrees of freedom of the atoms obtained from atomistic simulations.  

A microstate of a system of particles is a specific state defined by the 

particle conditions and controlled by their probability of occurrences. Within the 

phase space concept, each microstate is represented by a point in the phase space 

of nN  dimensions, constituted by N  particles each having n  degrees of 

freedom. For example, in an Einstein solid with N atoms vibrating as N 

independent harmonic oscillators with a unique frequency, the phase space has 

6N  dimensions, and each oscillator is described by the 6 degrees of freedom of 
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its position ir  and momentum ip . A microstate is then regarded as a point 

{ } { }( ),i is = r p  in the phase space determined by the position space { }ir  and 

momentum space { }ip . The time series of the phase space points is called the 

phase trajectory { } { }( ),i iΓ r p .  

In contrast, a macrostate is a set of all the microstates representing a 

particular probability of occurrences. A statistical ensemble is the set of 

microstates that belong to the same macrostate, such as with the same volume 

and energy. It can be regarded as a collection of the phase-space points belonging 

to a given macrostate.  

Observables are used as a general description of all atoms, implemented by 

ensemble averaging. Suppose that a physical quantity has a certain probability 

distribution { } { }( ),i iP r p . The ensemble average of an observable A  is defined 

using the distribution as  

{ } { }( ) { } { }( ) { } { }( )
{ } { }( )ensemble

d d , ,
,

d d ,

N N
i i i i i i

i i N N
i i i i

A P
A

P
= ∫ ∫

∫ ∫

r p r p r p
r p

r p r p
. (2.1) 

However, if the system is ergodic, i.e. if every possible phase space coordinate is 

accessible as is assumed in atomistic simulations, the ensemble average is equal 

to the time average, i.e., 

{ } { }( ) { } { }( )obs

obstime 0
obs

1
, lim , d

t

i i i i
t

A A t
t→∞

= ∫r p r p ,    (2.2) 
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with obst  being the time period of observation. In fact, time averages are often 

used in molecular simulations to evaluate an observable.  

Two common ensembles are available, NVE and NVT ensembles. If the 

system has a fixed number of atoms N  at constant volume V  and constant 

energy E , a microcanonical (NVE) ensemble is specified. This ensemble is 

isolated since it does not allow material or energy exchange with the 

surroundings. Statistical thermodynamics assumes that each microstate has an 

equal a priori probability, which means that every microstate is equally likely to 

occur. Therefore, the probability of occurrence of a macrostate depends on the 

statistical weight ( ), ,N V EΩ , which is the number of microstates in that 

macrostate. In statistical thermodynamics, the largest probability of occurrence 

belongs to the equilibrium state having the largest statistical weight. The entropy 

S  of the NVE ensemble is defined as 

( ) ( )B, , ln , ,S N V E k N V E= Ω ,        (2.3) 

where Bk  is the Boltzmann constant. From this definition, maximum entropy 

occurs at equilibrium with the largest number of microstates. From the foregoing, 

the linkage between the microscopic and macroscopic behaviors of a system is 

established.  

When a system interacts with its environment, energy and momentum 

exchange occurs. In thermal equilibrium the system attains the same temperature 

and/or pressure as its environment. Such a system is called a canonical ensemble, 

in which the number of atoms N, the volume V and the temperature T are kept 
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fixed and are well-defined quantities, but not its total energy E. In a canonical 

ensemble, the probability iP  of a macrostate with energy Ei obeys the Boltzmann 

distribution, i.e.  

iE
iP e Zβ−= ,            (2.4) 

where B1/ k Tβ =  is the temperature parameter, with Bk  being the Boltzmann 

constant, and Z  is so-called the partition function, 

iE

i

Z e β−=∑ ,            (2.5) 

which can be treated as the normalized factor, such that 1i
i

P =∑ . The entropy is 

given by 

B lni i
i

S k P P= − ∑ ,           (2.6) 

which is regarded as a generalization of Eq. (2.3) because the probability of 

occurrence of a state no longer has to be equally likely.  

Due to the heat transfer between the system and its environment, the total 

energy of a canonical ensemble in thermal equilibrium fluctuates around a 

specific value, so that the average total energy is usually defined to correspond to 

the internal energy in thermodynamics, i.e.  

1 ln
iE

i i i
i i

Z
E PE e E

Z
β

β
− ∂= = = −

∂∑ ∑ .       (2.7) 
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2.   Vibrational Energy 

Energy added to a system of atoms produces excitations in their collective 

vibratory motion, in the form of additional components from higher-frequency 

modes.  The result is an increase of the energy and temperature of the system. 

However, the energy supplied to the system does not necessarily all go to excite 

the atoms, because part of it might have to be expended in doing work in relation 

to the volume change of the system due to the anharmonicity of restoring forces 

experienced by atomic displacements. 

Indeed, the total energy of the system is the sum of the static energy of the 

atoms due to the interatomic potential plus the kinetic energy from the atomic 

vibrations (vibrational energy) vibE . The thermodynamic meaning of these 

mechanical energies can be understood by referring to the phase diagram in Fig. 

2.1, which describes a thermal expansion process under stress-free condition. An 

infinite number of thermodynamic paths are available to achieve thermal 

expansion from state A at ( )0 0,T V  to state B at ( )1 1,T V , where 0 1T T<  and 0 1V V< . 

Specifically, the curly path in Fig. 2.1 describes the reversible process in which 

 

 

Fig. 2.1 – Phase diagram explaining 
the definition of vibrational energy. 
The heat absorbed during process 
CB is the vibrational energy at 
constant volume from temperature T0 
to T1.  
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both the temperature and volume are simultaneously changed under quasi-

equilibrium conditions. The process can be decomposed into two processes as 

represented in Fig. 2.1, by straight lines AC and CB, respectively, where C is the 

intermediate state at temperature 0T  and volume 1V . The vertical line AC is the 

constant-temperature process associated with the work done by the system 

( )1 0W V V−  when its volume changes from 0V  to 1V . The horizontal line CB is 

the constant-volume process associated with the increase of the amount of heat 

( )1 0Q T T−  in the system associated with the change in entropy due to the 

relaxation of microstates when the temperature is raised from 0T  to 1T . Taking 

( )0 0,T V  as the reference state, the stress-free total energy at temperature eqT  and 

atomic volume eqV  can be written as  

( ) ( ) ( )eq eq eq eq,E T V Q T W V= + .        (2.8) 

One may equate the isothermal W to the change in static energy, and the 

isovolumetric Q with the change in vibrational energy. The specific heat ( )VC T  

of the system at this state is the temperature gradient of the vibrational energy, 

rather than the total energy ( )eq eq,E T V , i.e., 

( )
vibd

dV
V V

Q E
C T

T T

 ∂ = =    ∂   
.         (2.9) 
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2.2  Hamiltonian and Formulations 

A ferromagnetic crystal in an external magnetic field is classically regarded 

as a dynamical system of N atoms with 9N degrees of freedom from their 

instantaneous momenta, positions and spins. The Hamiltonian can be written as 

[3-4]  

{ }( ) { }( )
2

ext
B

,

1

2 2
i

ij i j i
i i j ii

H U J g
m

µ= + − ⋅ + ⋅∑ ∑ ∑
p

R R S S H S  (2.10) 

where { }( )ijJ R  is the exchange field depending on the atomic position space of 

the N atoms { }R . im  is the mass of atom i , ip  is its momentum and iS  its spin. 

In this thesis, we assume that iS  has a fixed magnitude corresponding to a 

magnetic moment of B1.1µ (BCC iron). extH  is the external field, and { }( )U R  is 

the interatomic magnetic potential. 

The corresponding equations of motion can be derived from classical 

mechanics: 

d

d
k k

k k

H

t m

∂= =
∂

R p
p

,           (2.11) 

{ }( ) { }( )( )
,

d 1

d 2
k

ij i j
i jk k k

UH
J

t

∂∂ ∂= − = − + ⋅
∂ ∂ ∂ ∑

Rp
R S S

R R R
,   (2.12) 

eff
B

d 1
.

d i ig
t

µ= ×iS
S H
ℏ

          (2.13) 
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We remind that although the equations of motion is derived classically, spin and 

spin-spin interaction via the exchange field are all quantum concepts. In Eq. 

(2.13), ℏ  is the reduced Planck constant, and  

eff ext

B

1
i ij j

j

J
gµ

= −∑H S H          (2.14) 

is treated as the effective magnetic field experienced by an atom i  due to the 

external field and the internal interaction field by neighboring spins. It is noticed 

that the equations of motion of momenta and position follow the conventional 

MD approach. Exchange interaction due to spins is entirely a phenomenon of 

quantum mechanics, so its equation of motion must be solved quantum 

mechanically by applying the Poisson Brackets [ ]…  to the Hamiltonian due to 

spin dynamics  

{ }( )spin ext
B

,

1

2 ij i j i
i j i

H J gµ= − ⋅ + ⋅∑ ∑R S S H S ,     (2.15) 

and obtain the equation of motion of spin in Eq. (2.13), using  

spind
,

d
i

i

i
H

t
 =  

S
S

ℏ
           (2.16) 

The effect of an external field on spin-lattice coupling can be realized from 

the equations of motion. According to Eq. (2.13), the external field extH  changes 

the norm of the effective magnetic field and the angle between the external field 

and the spins, in order that the spin motion is altered. The resulting spin vectors 
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are substituted to Eq. (2.12) to change the particle motion, which further changes 

the atomic separation found by Eq. (2.11). 

2.3  Spin-Lattice Dynamics (SLD) 

1.   Introduction 

Conventional molecular dynamics simulation is based on lattice dynamics, 

and fails to model magnetic materials due to the dynamical effects of spin-lattice 

interaction, even with the help of a magnetic potential developed by Chiesa, 

Derlet and Dudarev [5]. In view of this problem, Ma, Woo and Dudarev [3-4] 

developed the SLD scheme that treats lattice and spin subsystems on equal 

footing, which is discussed in this section  

2.   Hamiltonian and Equations of Motion 

The SLD algorithm we used assumes a constant magnitude of the atomic 

spin, and it just focuses on the spin orientation. Rather than implementing Eq. 

(2.10), the SLD algorithm simply process the Hamiltonian as 

{ }( ) { }( )
2

ext
B

,

1

2 2
i

ij i j i
i i j ii

H U j g S
m

µ= + − ⋅ + ⋅∑ ∑ ∑
p

R R e e H e   (2.17) 

where { }( ) { }( ) 2
ij ijj J S=R R  is the exchange integral subsuming the magnitude 

S  of both spins i  and j . After the spin magnitudes are absorbed, each spin is 

now treated as a unit spin vector ie  with 2 spin degrees of freedom, from which 

the magnetic energy of each atom i  due to neighboring spins j  is defined. In 
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SLD, the exchange integral considers the first and second nearest neighbor atoms; 

effects due to farther atoms are ignored.  

The equations of motion used in SLD are then expressed in terms of the unit 

spin vectors as 

d

d
k k

k k

H

t m

∂= =
∂

R p
p

,           (2.18) 

{ }( ) { }( )( )
,

d 1

d 2
k

ij i j
i jk k k

UH
j

t

∂∂ ∂= − = − + ⋅
∂ ∂ ∂ ∑

Rp
R e e

R R R
,   (2.19) 

eff
B

d 1
.

d i ig S
t

µ= ×ie
e H
ℏ

,          (2.20) 

with  

eff ext

B

1
i ij j

j

J
gµ

= −∑H e H          (2.21) 

3.   Integration Algorithm 

The phase trajectory is obtained by solving the equations of motion, in 

which the Suzuki-Trotter decomposition (STD) is used for integrating the 

position, velocity, and spin velocity operators simultaneously in SLD scheme. 

Suppose that the generalized coordinate x  is related to the Hamiltonian operator 

Ĥ  in Eq. (2.10) by  

ˆd
H

dt
=x

x .             (2.22) 
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If we set ( )ˆˆ ˆ ˆH P F S= + +x x , where P̂ , F̂ , and Ŝ  are operators resulting the 

solutions to the momentum, force, and spin orientation, respectively, such that  

{ }( ) ( )
,

ext

B

ˆ

1ˆ
2

1ˆ

ij
i j

i j

i i
i

P
m

JU
F

S J
gµ

≡

∂∂≡ − + ⋅
∂ ∂

 
≡ × − 

 

∑

∑

p
x

R
x e e

R R

x e e H

,       (2.23) 

then according to the general solution to x , 

( ) ( )Ĥ tt t e t∆+ ∆ =x x ,           (2.24) 

and STD, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆ ˆ ˆˆ ˆˆ /2 /2 3P F S t P F tS t S tH te t e t e e e t O t
+ + ∆ + ∆∆ ∆∆ = = + ∆x x x .  (2.25) 

Since motion of a spin depends on neighboring spins, the spin velocity operator 

can be expressed as the sum of all individual spin operators: 

1 2 1
ˆ ˆ ˆ ˆ ˆ

N NS S S S S−= + + + +⋯ .         (2.26) 

The spin motion is thus found, according to STD, by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 2 1

1 2 1

ˆ ˆ ˆˆ /2 /2 /2

ˆ ˆ ˆ ˆ/2 /2 /2 3 .

N

N N

S t S t S tS t

S t S t S t S t

e t e e e

e e e e t O t

−

−

∆ ∆ ∆∆

∆ ∆ ∆ ∆

=

× + ∆

x

x

⋯

⋯

   (2.27) 
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4.  Temperature Control 

SLD simulation adopts the Langevin thermostat on the lattice and spin 

subsystem, governed by the fluctuation-dissipation theorem [ 6 ], which is 

justified for modeling the physical phenomenon of metallic ions and electrons. In 

essence, the Langevin thermostat models the stochastic nature of atomic motions 

instead of using the deterministic equations of motion in Eq. (2.18) to Eq. (2.20). 

In metals, free electrons leave the atoms and move randomly around the positive 

ions remaining. In this case, the free electrons can be regarded as providing the 

random forces to the positive ions, which dissipate their energy due to the 

electron ‘viscosity’. Under thermal equilibrium, the exchange of energy by this 

way is stabilized, and the temperature reaches a constant value. The 

implementation of Langevin thermostat is to replace the deterministic equation of 

motion stated in Eqs (2.12) and (2.13) by the Langevin equation. The equation 

for the lattice subsystem is rewritten as 

( )d

d

U
m t

t
γ∂= − − +

∂
v

v f
r

∼

,          (2.28) 

where v  is the velocity of an atom, and U
∼

 is the total potential including both 

lattice and spin contributions. The first term on the right hand side of Eq. (2.28) 

represents the interatomic force provide by the atomic potential, whereas the 

second term is the frictional force with coefficient of friction γ , and the third 

term is the random force f  with a delta-correlation, 

( ) ( ) ( )' 't t t tµδ⋅ = −f f .         (2.29) 
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Here, µ  is the amplitude of this random force. The random force increases the 

kinetic energy while the frictional force decreases it. However, these two forces 

would balance finally at a preset temperature when the system reaches a 

thermodynamic equilibrium state. To find the relation between the coefficient of 

friction, the random force amplitude, and temperature, one may map Eq. (2.29) 

into a Fokker-Planck equation. Under thermal equilibrium, as the system follows 

Gibbs distribution, µ , γ  and T  should satisfy such a relationship  

B6 k Tµ γ= .             (2.30) 

The absolute temperature at equilibrium is thus determined. In other words, the 

friction and fluctuation properties determine the temperature; one simply controls 

these properties to maintain the desired temperature.  

Similarly, for the spin subsystem, the temperature can be controlled within 

the corresponding Langevin thermostat, where the Langevin equation for spin 

dynamics is written in the form 

( ) ( )eff effd 1

d
k

k k k k k kt
η = × + − × × 

S
S H h S S H

ℏ
,     (2.31) 

where η  is the damping coefficient of friction for dissipation purpose, and kh  is 

the fluctuation of the effective field eff
kH , which is delta-correlated with random 

noise amplitude as  

( ) ( ) ( )' '' ' ''i j ijt t t tξδ δ⋅ = −h h .         (2. 32) 
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Here, ijδ  is the Kronecker delta. The spin Langevin thermostat bases on the 

fluctuation-dissipation theorem, and permits the exchange of spin energy and 

angular momentum with the system. To determine the random noise amplitude, 

Eq. (2.32) is mapped to the Fokker-Planck equation. In thermal equilibrium of 

spin subsystem, Gibbs distribution is established, and we map the distribution to 

the mapped equation to obtain the random noise amplitude as 

B2 kk Tξ η= Π ,            (2.33) 

where kΠ  is the spin angular momentum.  

5.  Stress Control 

SLD employs the Berendsen barostat [7], which is essentially a pressure bath 

and the volume is slowly scaled to the desired one with fluctuations of volume 

being introduced, which improves simple volume scaling. In SLD scheme, the 

atomic stress experienced by an atom i  is derived according to the virial theorem 

[8] as,  

1 1

2
i

i ij ij
i ji

m v v f r
Vαβ α β α βσ

≠

 
= + 

 
∑ ,         (2.34) 

where α  and β  represent Cartesian components, iV  is the atomic volume, vα  

and vβ  are the velocities, ijf α  is the atomic force component between atom i  

and j  along α  direction, and ijr α  is the atomic separation between atom i  and 

j  along α  direction. To scale the average atomic stress i
αασ  to the desired 
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stress sαα in barostat along α direction, the box size { }Lα  is multiplied by a 

factor αχ  at each time step t∆ ,  

i x i

i x i

i x i

L L

x x

y y

z z

α α αχ
χ
χ
χ

′ =
 ′ =
 ′ =
 ′ =

,             (2.35) 

with 

( )c

R

1
3

it
s

tα αα αα
βχ σ∆= − − .          (2.36) 

Here, cβ  is the compressibility of the bulk, Rt  is the relaxation time 

characterizing the stabilizing rate of the barostat. 

2.4 Parallel Processing and Graphics Processing Units (GPUs) 

1. Practical Values of GPUs 

Computational power has been a bottleneck of atomistic simulations. For 

example, early computers for molecular dynamics simulations could only process 

hundreds of atoms. However, in recent years, larger systems can be implemented 

in view of the rapid development of computation technology. Novel parallel 

computation implementations have been breaking the record of processing speed. 

For example, in 2011, Tianhe-1 supercomputer of China has been capable of 

computing the interactions between 110 billion atoms simultaneously at 1.87 

petaflops. During the period of rapid development, parallel computation can be 
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regarded as a promising approach due to its utilization of memory dedicated to 

computation process. In this process, the computing task is speeded up by 

organizing a big computation problem into a number of threads, which are 

processed concurrently. The value from each thread is then summed up for the 

final answer to a problem.  

It has to be addressed that large-scale computations in the last decades have 

been taken part in CPU constrained by the expensive cache memory and by the 

required sequential processing. Moreover, CPU computation has exhibited its 

physical limit, as the size of a CPU has already reached the quantum limit. 

Fortunately, the first GPU developed by NVIDIA in 1999 could tackle the 

problems in CPU by employing parallel computing capabilities. Together with 

the GPU-specific parallel programming language CUDA launched in 2006, the 

true power of parallel computation was realized by worldwide GPU developers.  

The advantage of using GPU is that more memory resources are devoted to 

computations, rather than to the communication between various computation 

chips. Also, the power efficiency of GPU is superior because such a chip can 

generate computations of gigaflops per Watt. Accordingly, GPU is employed as 

a popular tool for atomistic simulations, as is done in the thesis. 

In fact, independence for parallel computation can be achieved in SLD by 

considering partitions of atom groups according to the cut-off distance of spin 

and lattice interactions, such that each of these groups shows no effect on others 

[9]. The whole phase space is then changed accordingly at each time step after all 
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groups are computed concurrently, and parallel computation continues in the 

next time step.  

Readers may consult Kirk and Hwu [10] for the key features of a GPU, 

which is briefly discussed briefly in Sections 2 and 3 below. Section 4 will 

demonstrate a method to build a GPU server for computational purposes.  

2. Hardware Structure 

Because more transistors are devoted to computations in GPU than in a 

central processing unit (CPU), while those for cache and control units are 

reduced, GPUs are suitable for parallel computations according to the 

architecture. This design is advantageous because the enhanced computation 

power is enough to cover the rise of memory latency due to fewer memory 

resources. After all, GPU advocates data-parallel processing on each core; 

communication among the cores by cache and memory is less important.  

NVIDIA GPU adopts the Single Instruction Multiple Data (SIMD) 

architecture. All 8 cores in a multiprocessor perform the same instruction, but 

calculate on different sets of data. All these 8 cores have attached their own 

register for processing data quickly, and communicate with each other by the 

same shared memory in the multiprocessor. All multiprocessors in a GPU chip 

use the same device memory. Fig. 2.2 shows this architecture schematically.  
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Fig. 2.2 – Key features of hardware configuration in an NVIDIA GPU multiprocessor. 

3. Programming Structure 

The author will adopt NVIDIA hardware in this thesis, so Compute Unified 

Device Architecture (or CUDA) is relied on, which is the programming language 

for such computational hardware units. In this programming architecture, a 

process is divided into a number of computational groups called threads, and 

CUDA handles all these threads concurrently to achieve speedup. CUDA is 

scalable in that thread blocks of a program are allocated to each GPU core 

automatically. Therefore, the run time for a given program is reduced by using a 

GPU with more cores.  

In CUDA, the heterogeneous programming model is adopted, in which the 

host (CPU) controls the device (GPU) by means of kernels. In this model, the 

CPU instructs the GPU to allocate memory for forthcoming data, and commands 
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the GPU to execute threads concurrently. The CPU then copies the data to the 

GPU for computation. GPU executes the computation steps and saves the results 

in GPU memory. Lastly, the CPU would copy the results in the GPU memory to 

the CPU memory. In this regard, the programmer has to determine the program 

sections which allow and disallow parallel processing. Those permitting parallel 

processing go to the GPU, and those forbidding parallel processing go to the 

CPU. As a reminder, the host accepts C and C++ programming language, while 

the device accepts CUDA only.  

GPU programming involves handling of threads in some predefined order in 

the programming stage, achieved by defining a number of grids which store a 

number of independent blocks, each containing at most 1,024 threads [11]. Fig. 

2.3 shows the organization of threads allowed in CUDA. In this figure as an 

example, there is a grid with 4 blocks in x-direction and 2 blocks in y-direction, 

respectively. In each of the blocks, there are 4 threads in x-direction and 5 

threads in y-direction, respectively. The programmer just instructs the GPU cores 

to loop over every thread by traversing every block in every grid and by 

executing a kernel on each thread. To ensure that all threads in a block have 

completed a task before continuing further, we may use __syncthreads() 

command in the kernel. In turn, to ensure that changes in the global memory and 

shared memory are visible to all threads in a grid, we may use 

__threadfence() command in the kernel.  
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Fig. 2.3 – Thread block organization in a grid. 
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4. Assembly and Configuration of GPU System 

Although dedicated GPU servers are obtainable from many IT solution 

companies at a prohibitive cost for ordinary people, we can still build a GPU 

server on our own, according to our budget and needs. This section describes the 

way of building a GPU server in tens of thousands of dollars. 

In the first step, choose NVIDIA GPU cards to execute CUDA. One may 

refer to the specifications of the cards at the NVIDIA official website [12], and 

purchase the cards that fit the budget and that suit the computational needs. 

NVIDIA GeForce series is the most popular graphics card category in the public, 

readily available in computer stores. The most powerful GeForce single-GPU 

card to date is GTX 680, comprising a GPU chip with 1,536 CUDA cores. GTX 

580 cards are used as a demonstration in this section instead.  

Then, select a motherboard that supports 2 CPU chips and 4 pieces of 2-slot 

GPU cards, so that the server can undertake more computations concurrently 

while performing other tasks by CPU during GPU computation. Tyan 

S7025WAGM2NR motherboard is of such a type because it is mainly used in 

servers.  

Given the selected Tyan motherboard, take 2 pieces of CPU for controlling 

the server system. Intel Xeon E5620 is the choice because it is the cheapest CPU 

for server-class computers to date, which has 4 cores each. So a server has 

altogether 8 CPU cores. A CPU core is required to control one GPU chip, so 

there are still 4 CPU cores remaining for other CPU-based tasks when all 4 GPU 

chips are performing computations. We bear in mind that CPU just helps to 
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bridge GPU with the operating system, so it is unnecessary to rely on it directly 

for GPU computations, so the choice of CPU is thus less important in a GPU 

server configuration in a tight budget.  

Reserve enough random access memory (RAM) for the server. To the 

author’s experience, a GPU should have 4 GB of random access memory for 

efficient data transfer between CPU and GPU, so that a server of 4 GPU cards 

should have at least a total of 16 GB memory for good computational 

performance. Note that error-correcting code (ECC) memory is needed for 

server-grade computers. In view of the memory requirement in GPU 

computation, an operating system of 64-bit version should be installed in order to 

utilize the 16 GB memory.  

Assemble two hard drives for providing enough storage space. MD 

simulations involve generating phase space coordinates at each time step to find 

their time average, so it is worth spending more money on storage. The server 

uses 2 pieces of Hitachi 2 TB hard drives. A server thus contains 4 GB of storage; 

only a small portion goes to the operating system. After the operating system is 

installed on one hard drive, remember to mount the other drive to the operating 

system.  

Adopt a power supply unit (PSU) capable of driving all GPU cards as well 

as other computer components. Check the power required for each component 

from their manuals beforehand to estimate the total power required at full load. 

To the author’s experience, the PSU should be of the highest wattage one can 

find in an ordinary computer store. A 1500 W PSU, for example SilverStone 
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Strider 1500W, is one of the most powerful PSU’s available in conventional 

computer stores to date. For safety, we must use only the power cords provided 

by the PSU in the assembly because they are more capable of withstanding the 

high current provided by the PSU.  

Fig. 2.4 shows the bench test settings of the internal components. The 

components except the computer case are fully prepared and connected. The 

bench test is useful to inspect the functionality of the components in an easier 

way. Otherwise the components have to be fixed to or removed from the 

computer case during functionality checking.  

 

Fig. 2.4 – Bench testing of components before assembly on the computer case. 

Beware of ventilation of GPU cards, especially when one wants to install 

multiple GPU cards in a single server. The easiest way to ensure good ventilation 

is use a computer case with more fans. Cooler Master HAF-X is such an example 

to date because it contains a big fan on the side cover that cools down the GPU 

cards. Fig. 2.5 shows the additional fans on the top and the side cover of the 
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computer case, which are the key features of enhanced cooling proposed by the 

Cooler Master HAF-X. In fact, an aluminum computer case is another choice in 

assembling a GPU server, as it can further remove heat by conduction. Fig. 2.6 

shows the components assembled inside a computer case.  

 

Fig. 2.5 – Two additional fans on the top and 1 additional fan on the side cover to ensure 

satisfactory cooling.  

 

Fig. 2.6 – A GPU server with hardware components installed. 
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Install a free Linux operating system after assembly. To date, Ubuntu 12.04 

LTS (64-bit version) is recommended because it can accommodate 4 GPU cards 

with minimum tuning, according to the author’s experience. Another reason for 

using Ubuntu is its technical support from worldwide developers.  

Download the required CUDA installers after the installation of Ubuntu 

12.04 at CUDA Zone [13 ]. The whole set of installers should include the 

developer driver, CUDA toolkit, and CUDA GPU System Development Kit 

(SDK). The toolkit version to date is CUDA 4.2. One should install the developer 

driver first, followed by the toolkit and finally the SDK. Remember to confirm 

the completion of installation at the end by entering a command nvcc -V in the 

shell prompt. The version number of the CUDA toolkit installed would be 

displayed. A complete set of instructions detailing the installation steps can be 

found on the internet [14]. Fig. 2.7 is a set of 3 GPU servers, each with 4 double-

slot GPU cards, connected by a KVM switch. Altogether there are 12 GPU cards, 

allowing 12 computation tasks concurrently with maximum performance. 

One may check the temperature of each GPU card at runtime by typing 

nvidia-smi -a in the command prompt. The GPU cards should be below 50 

°C in idle time, and around 90 °C in execution time. If the cards are too hot in 

execution time, one should consider storing the server in an air-conditioned room.  
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Fig. 2.7 – The complete set of GPU servers.  



Chapter 2: Background Knowledge 

39 

  

2.4  References 
                                                 
[1] F. Mandl, Statistical Physics, 2nd ed. (John Wiley & Sons, Essex, 1988). 

[2] F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 

New York, 1965). 

[3] P.-W. Ma, C. H. Woo, and S. L. Dudarev, Phys. Rev. B 78, 024434 (2008). 

[4] P.-W. Ma, S. L. Dudarev, A. A. Semenov, and C. H. Woo, Phys. Rev. E 82, 

031111 (2010). 

[5] S. Chiesa, P. M. Derlet, and S. L. Dudarev, Phys. Rev. B 79, 214109 (2009). 

[6] R. Kubo, Rep. Prog. Phys. 29, 255 (1966). 

[7] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Di Nola and J. 

R. Haak, J. Chem. Phys. 81, 3684 (1984). 

[8] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford 

University Press, New York, 1987). 

[9] P.-W. Ma and C. H. Woo, Phys. Rev. B 79, 046703 (2009).  

[10] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors – 

A Hands-on Approach (Morgan Kaufmann, Burlington, 2010). 

[11] NVIDIA, NVIDIA CUDA C Programming Guide Version 4.0, available on 

http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C

_Programming_Guide.pdf 



Chapter 2: Background Knowledge 

40 

  

                                                                                                                                    
[12] NVIDIA, http://www.nvidia.com  

[13] NVIDIA, http://developer.nvidia.com/category/zone/cuda-zone 

[14] T. Arildsen and T. Larsen, Installing CUDA Under Ubuntu 10.04, available 

on 

http://wiki.accelereyes.com/wiki/index.php/Installing_CUDA_Under_Ubuntu_1

0.04 



Chapter 3: Methodology 

41 

  

Chapter 3:  Methodology 

3.1  Simulation settings 

In the following, the interatomic interaction in BCC iron is described by the 

magnetic many-body potential developed by Chiesa, Derlet and Dudarev (CDD) 

[1], based on the embedded atomic method (EAM) [2], in which the spins are all 

parallel at the ground state. In this regard, the interatomic potential U  in the 

Hamiltonian of ferromagnetic iron, 

{ }( ) { }( )
2

ext
B

,

1

2 2
i

i ij i i j i
i i j ii

H U j g S
m

µ= + − ⋅ + ⋅∑ ∑ ∑
p

R R e e H e , (3.1) 

is implemented by  

{ }( ) { }( ) { }CDD
,

1

2i i ij i
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U U j
 

= − − 
 

∑R R R ,       (3.2) 

to remove the ground state energy of the spin subsystem at absolute zero 

temperature, so that U  is solely responsible for the lattice subsystem. The spin 

energy contribution to the Hamiltonian would then come from the spin vector ie . 

By doing so, the interatomic forces can be defined correctly at absolute zero 

temperature [3]. Therefore, the Hamiltonian becomes 
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To investigate the temperature dependence of magnetic effect in spin-lattice 

coupled system, the cubic simulation cell containing 54000 iron atoms with spins 

was built up by a box of 30×30×30 BCC unit cells of about 85×85×85 Å3, with 

periodic boundary conditions [4] applied to avoid the surface effects. The degrees 

of freedom of spin and lattice in the system were initialized at zero Kelvin by 

exposing the bulk to a fixed magnetic field along +z axis, whose magnitude 

ranges from 0 T to 1000 T. Later on, the system was thermalized at a given 

temperature, ranging from 300 K to 1400 K by Langevin thermostat [5] applied 

on both lattice and spins subsystems [3]. Suzuki-Trotter decomposition (STD) 

algorithm [6-11] was used for solving the equations of motion with the time-step 

being 1 femtosecond (fs), in order to obtain the phase space trajectory.  

To determine the equilibrium atomic volume at a given temperature under 

non-stressed condition, the NPT ensemble was adopted with Berendsen barostat 

[12] and Langevin thermostat [5] respectively maintained at zero pressure and at 

a pre-set temperature. The thermalization time was set at least 2 ns, in order to 

allow the critical slowing down relaxation [13-14] of the spin subsystem to occur 

near the ferro/paramagnetic (FM/PM) phase boundary, with the time-step of 1 fs. 

After obtaining the equilibrium spin and lattice configurations, the atomic 

volume was calculated by ensemble average within the sampling time of 1 ns, 

from which the thermal expansion coefficient was determined.  

In the calculations of magnetization and the related equilibrium 

thermodynamic quantities, i.e. energy etc., the NVT ensemble was adopted, 

where the atomic volume was chosen as the equilibrium one at the given 

temperature range mentioned above. The relaxation time and sampling time in 
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obtaining the statistical stationary data was similar as mentioned above to ensure 

the completion of the critical slowing down of spins.  

3.2  Data Collection and Processing 

1.  Thermodynamic Properties 

(i)  Atomic Volume 

Under the stress-free condition, the system is thermalized at a given 

temperature and applied external magnetic field, in which the equilibrium atomic 

volume is the result arising from the free energy minimized. In practice, the 

equilibrium atomic volume is derived from the relation 

( ) ( ){ }3
eq ext ext, , / 2V T H a T H=  for BCC crystal structure [ 15 ], where 

( )ext,a T H  is the equilibrium lattice parameter as the function of temperature T  

and external field extH . After equilibrium in the NPT ensembles, the lattice 

constant a  of the bulks were obtained from the bulk dimensions for different 

temperatures and external magnetic field strengths by dividing the box length by 

the number of unit cells forming the BCC structure. 

(ii)  Magnetization and Energy 

The atomic magnetization allows us to inspect spin collinearity, which 

relates to long range magnetic ordering. If the atomic magnetization approaches 

zero, long range magnetic ordering tends to vanish and the bulk turns to the 

paramagnetic state. Also, the spin-spin correlation functions and effective 

magnetic field strength per atom represent the short range magnetic ordering 
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around an atom, which would drop with decreasing spin correlation. On the other 

hand, the magnetic energy is a quantity specifying the response of spins to the 

external field, which changes the value of the spin-spin correlation function 

i j⋅e e  and the atomic magnetization.  

The atomic magnetization is determined by  

eq eq
B

,

1 z
i

i T V

M g S e
N

µ= ∑ ,         (3.4) 

where the angle brackets eq eq,T V
⋯  represent the ensemble average obtained at 

equilibrium temperature eqT  and equilibrium volume eqV , N  is the number of 

atoms in a system, S  is the magnitude of a classical spin, and z
ie  is the z-

component of the unit spin vector of atom i . On the other hand, the atomic 

magnetic energy from the Hamiltonian at eqT  and eqV  has the form of an 

ensemble average as 

{ }( )
eq eq

magnetic ext
B

, ,

1 1

2 ij i i j i
i j i T V

E j g S
N

µ= − ⋅ + ⋅∑ ∑R e e H e .  (3.5) 

Again, bear in mind that the spin has an opposite direction to the magnetic 

moment.  

In summary, the ensemble averages were obtained from the time averages, 

so that the magnetization and spin-spin correlation functions could be derived 

from the phase-space trajectories obtained from SLD simulations after the 

equilibrium spin and lattice configurations are achieved.  
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(iii)  Vibrational Energy 

The heat capacity can be derived from the vibrational energy at constant 

volume, which is associated with the heat absorbed during the corresponding 

thermodynamic process. The ensemble average of the vibrational energy is 

derived in two steps, according to its definition in Chapter 2. First we obtained 

the total energy ( )eq eq,E T V  at equilibrium from the NPT ensembles in terms of 

ensemble averaging. In the Hamiltonian used here, the total energy per atom can 

be written as  

( )

{ }( )
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= + − ⋅
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∑

p
R

R e e

H e

   (3.6) 

The static energy staticE  per atom is equal to the total energy of an atom at 

equilibrium volume ( )eq0,E V  and absolute zero temperature,  

( ) { }( )static eq 0 ext
CDD B

1
0, iE E V U g S

N
µ = = −

 
R H ,    (3.7) 

where { }0
iR  is the lattice configuration with all the lattice being frozen at their 

lattice sites at eqV , and S  is the magnitude of the spin vector. In this regard, the 

defined vibrational energy is associated with the energy increase due to the 

thermal fluctuations of the degrees of freedom of spin and lattice in the coupling 

system, expressed as  
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( ) ( )vib tot static eq eq eq, 0,E E E E T V E V= − = − .     (3.8) 

2.  Quantities Related to Derivative 

The thermal expansion coefficient comes from the temperature derivative of 

volume, whereas the heat capacity from that of vibrational energy, both of which 

are solved numerically from simulation results. However, numerical 

differentiation is sensitive to fluctuation of data points, which could lead to a 

large variation of the trend of the derivatives. Data smoothing is thus necessary 

to interpolate more data points and to provide a more gentle transition between 

successive data points; a smoother yet reliable trend of the derivative would be 

obtained afterwards.  

(i)  Heat Capacity 

Temperature dependence of the heat capacity can characterize the second-

order phase transition by identifying the temperature of abrupt change or of 

divergence.  

The heat capacity at constant pressure P , known as PC , was found by [16]  

vibd

dP
P P

Q E
C

T T

 ∂ = =    ∂   
,          (3.9) 

where Q  is the heat absorbed, and T  is the absolute temperature, obtained from 

the derivative of the vibrational energy with respect to temperature. In 

determining the heat absorbed at equilibrium volume, the vibrational energy vibE  
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is used instead. There are as many such curves as the number of magnetic field 

strength attempted.  

(ii)  Thermal Expansion Coefficient 

Just as the atomic volume can realize the magnetic effect of materials on 

temperature and field strength, the thermal expansion coefficient is another such 

quantity. This coefficient is a derivative which enables us to visualize the volume 

change more clearly than using the atomic volume, and the peaks on the 

derivative curve also indicate the transition temperature at which the magnetic 

ordering is no longer varied by temperature.  

The thermal expansion coefficient α  at constant pressure P  was evaluated 

as [17], i.e. 

1 d

d P

V

V T
α  =  

 
,            (3.10) 

where V  is the instantaneous volume at temperature T  and 0P =  throughout 

the simulations in the thesis. The coefficient was found by first finding the 

atomic volume against temperature, and then by evaluating the derivative of the 

atomic volume with respect to temperature. After that, the derivative obtained 

was divided by the atomic volume at its corresponding temperature. There are 

also as many such curves as the number of magnetic fields attempted.  
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3.  Thermal Excitations Spectra 

(i)  Magnon Density of States 

When a classical spin rotates about its axis of rotation at a finite temperature, 

it generates a spin wave, whose quantization is called a magnon. Fig. 3.1 shows 

the generation of a spin wave of one wavelength long by collective spin 

precession.  

 

Fig. 3.1 – Spin wave formation. The orange line represents a spin wave generated by collective 

spin precession.  

The solution to the spin equation of motion in one dimension can be 

obtained as below. The energy of a classical spin nS  with index n  is 

( )1 12n n n nE J − += − ⋅ +S S S ,          (3.11) 

where J  is the exchange integral. Since the magnetic moment is Bn ngµ= −µ S , 

the above equation is rewritten as 

( )1 1
B

2
n n n n

J
E

gµ − +

 −= − ⋅ + 
 

µ S S .         (3.12) 
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By comparing with eff
n n nE = − ⋅µ H , where eff

nH  is the effective magnetic field 

on nS , one may get 

( )eff
1 1

B

2
n n n

J

gµ − +
−= +H S S .          (3.13) 

The equation of motion of classical spins is  
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Approximation is necessary for solving it. First we resolve nSɺ  into Cartesian 

components as 

( ) ( )1 1 1 1

2
Sx y z z z y y

n n n n n n n

J
S S S S S S− + − +

 = + − + 
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( ) ( )1 1 1 1

2y x z z z x x
n n n n n n n

J
S S S S S S S− + − +

 = − + − + 
ɺ

ℏ
,     (3.16) 

( ) ( )1 1 1 1

2z x y y y x x
n n n n n n n

J
S S S S S S S− + − +

 = + − + 
ɺ

ℏ
.      (3.17) 

Here, nSα  is the Cartesian component of nS  ( , ,x y zα = ). Then we assume that 

only small excitation exists, i.e. ,x y
n nS S S≪ . Then we have z

nS S= , and ignore 

the cross terms due to xnS  and y
nS . So, 



Chapter 3: Methodology 

50 

  

1 1
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0z
nS =ɺ .              (3.20) 

We expect a wavelike solution to it again as 

( )expx
nS A i nqa tω= −   ;   ( )expy

nS B i nqa tω= −   , .  (3.21) 

where q  is the wave-vector, A  and B  are constants, ω  is the spin wave 

frequency, t  is time, i  is the imaginary unit, and a  is the lattice constant. By 

substituting the wavelike solutions in Eq. (3.21) into Eqs. (3.18) and (3.19), two 

expressions are obtained:  

( ) ( )
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We again require non-trivial solutions to A and B, so 
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or 

( )4 1 cosJS qaω = −ℏ .          (3.25) 

Eq. (3.25) returns the dispersion relation of spin waves. When only long 

wavelengths exist, 1qa≪ . The dispersion relation reduces to 

( )2 22JSa qω =ℏ ,            (3.26) 

which can be expressed as 

2Dqω = ; 
22JSa

D =
ℏ

.          (3.27) 

Here, D  is called the spin wave stiffness, characterizing the tendency of the 

classical spin to deviate from perfect alignment. A high value of D  shows that 

the spin tends to stay aligned with its easy direction. In fact, the above 

derivations apply to a cubic lattice by considering nearest-neighbor interactions 

[18], forming the basis of the discussions of body-centered cubic (BCC) lattices 

in later chapters.  

To indicate the amplitude of the spin waves at different frequencies, the 

power spectrum of magnons, known as the magnon spectrum, can be obtained 

from the time-dependent autocorrelation function of the spin moment. In practice, 

the normalized autocorrelation function is  
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This is similar to understanding the lattice wave, whose quantization is 

called a phonon, using a phonon spectrum generated from the normalized 

velocity autocorrelation function (VACF) expressed as 
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         (3.29) 

where iv  is the atomic velocity of atom i .  

The power spectrum generated by this way is also called the density of states 

(DOS), which represents the relative strengths of phonon and magnon 

frequencies, or energy levels, available in the time-varying phonon and magnon 

waves, respectively.  

Readers may refer to signal processing texts such as that by Proakis and 

Manolakis [19] for a detailed mathematical exposition of power spectra. Here, 

just a brief idea of the method in calculating the phonon and magnon spectra is 

presented. The autocorrelation function of a time-dependent stochastic signal 

( )x t  representing some vibrational quantity, such as atomic velocity and spin 

wave amplitude, is defined as 
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( ) ( ) ( )dR x t x t tτ τ
+∞

−∞
= +∫ ,         (3.30) 

which gives the information about the similarity between the values of x  at time 

t  and at time τ  later. According to Wiener-Khintchine theorem [20], the Fourier 

transform of ( )R τ  returns the power spectral density or the power spectrum 

( )G ω  of ( )x t  as  

( ) ( ) di tG R e tωω τ
+∞

−∞
= ∫  ,          (3.31) 

where i  is the imaginary unit, showing the signal power at a certain frequency.  

In the thesis, the autocorrelation of spin moment may not fluctuate around 

zero at finite temperature in the ferromagnetic phase, at which the spin waves 

exhibit stronger long range ordering, and hence a larger spin correlation. 

However, we are concerned about the time-varying component of spin waves in 

the physical point of view. In this regard, the magnon spectrum should have the 

direct current (DC) component removed, which represents the shift of the 

waveform value in time domain to zero on average, achieved by subtracting the 

average value of the autocorrelation under the amplitude-time curve from the 

instantaneous amplitude.  

After the shifted amplitude-time curve was obtained, the DOS was generated 

using the Fast Fourier transform (FFT) algorithm in 214 = 16384 points, which 

should be enough to analyze the spectral behavior of spin waves. According to 

the simulation results, an FFT in over 16384 points has no further improvement 
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in the resulting spectra; a higher frequency resolution is unnecessary in the 

current work.  

(ii)  Magnon Dispersion Relations 

A magnon dispersion relation shows the magnon energy against wave-vector, 

which is measured on the reciprocal lattice established by the Fourier transform 

of the direct lattice in the spatial domain. Expressed in the reciprocal domain, a 

quantity ( )n r  in the direct lattice with translation symmetry, determined by 

position r , has the form 

( ) ( )expn n i= ⋅∑ G
G

r G r ,          (3.32) 

where G  is a reciprocal lattice vector for a given structure, and nG  is the 

complex coefficient of Fourier series for each G  in the reciprocal lattice. The 

wave-vectors to be mentioned in the derivation of the magnon dispersion 

relations are simply the G ’s in the reciprocal domain.  

In addition, the reciprocal lattice is usually represented by the first Brillouin 

zone, defined as the Wigner-Seitz cell of a reciprocal lattice point, bounded by 

the perpendicular planes in the midway between that point and each neighboring 

reciprocal lattice point. It is known that the standard primitive vectors in the 

direct BCC lattice, expressed in Cartesian coordinates using the lattice constant 

a , are  

1

1 1 1
, ,

2 2 2
a a a

 = − 
 

a , 2

1 1 1
, ,

2 2 2
a a a

 = − 
 

a , 3

1 1 1
, ,

2 2 2
a a a

 = − 
 

a , (3.33) 
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expressed in Fig. 3.2.  

 

Fig. 3.2 – Primitive lattice vectors of a BCC structure.  

Then, the primitive vectors in the reciprocal BCC structure, defined by 

2 3
1

1 2 3

2
a a

a a a
π ×=

⋅ ×
b , 3 1

2
1 2 3

2
a a

a a a
π ×=

⋅ ×
b , 1 2

3
1 2 3

2
a a

a a a
π ×=

⋅ ×
b ,   (3.34) 

become 

1

1 1
2 0, ,

a a
π  =  
 

b , 2

1 1
2 ,0,

a a
π  =  
 

b , 3

1 1
2 , ,0

a a
π  =  
 

b .   (3.35) 
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For a BCC structure, there are four major points on the first Brillouin zone: 

Г being the origin, H being the edge on [100] direction, P being the edge on [111] 

direction, and N being a point in [110] direction. The direction ∆ represents that 

from Г to H, Λ from Г to P, and Σ from Г to N. Other high symmetry points and 

directions of a BCC reciprocal lattice are given in Table 3.1.  

Label 
Cartesian 

Coordinates 
Lattice Coordinates 

Range of 

x  

Г ( )2
0,0,0

a

π
 0 N/A 

H ( )2
0,1,0

a

π
 ( )1 2 3

1

2
− +b b b  N/A 

P ( )1,1,1
a

π
 ( )1 2 3

1

4
+ +b b b  N/A 

N ( )1,1,0
a

π
 3

1

2
b  N/A 

∆ ( )2
0, ,0x

a

π
 ( )1 2 3

1

2
x − +b b b  0 1x< <  

F ( )( ), 2 ,x x x
a

π −  ( ) ( ) ( )( )1 2 3

1
2 3 2 2

4
x x x− + − + −b b b  0 1x< <  

Λ ( ), ,x x x
a

π
 ( )1 2 3

1

4
x + +b b b  0 1x< <  

Σ ( ), ,0x x
a

π
 3

1

2
xb  0 1x< <  

D ( )1,1,x
a

π
 ( )( )1 2 3

1
2

4
x x x+ + −b b b  0 1x< <  

Table 3.1 – High symmetry points in a BCC reciprocal lattice. 

Fig. 3.3 shows the first Brillouin zone containing points and directions in 

Table 3.1.   
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Fig. 3.3 – First Brillouin zone of a BCC structure. 

The reciprocal lattice is helpful to obtain the spin stiffness for various field 

strengths, which are represented by the magnon dispersion relation. For a 

description of the method of obtaining dispersion relations, one may refer to the 

text by Kittel [21] and Dove [22] for the theory behind it. Below is a brief 

discussion of the concept.  

For an atom m , the spin wave x
mS  along the x-component can be expressed 

in a reciprocal lattice by  



Chapter 3: Methodology 

58 

  

( ) ( ) ( )expx x
m m mS t S i tω = ⋅ − ∑ q

q

q q r ,       (3.36) 

where ( )x
mS q  is the amplitude of the spin wave of atom m  with frequency ωq  

and wave-vector q  along the x-component, mr  is the position vector of atom m , 

and t  is time. Inverse Fourier transform of the reciprocal domain is applied to Eq. 

(3.36) to obtain 

( ) ( ) ( )
1

1
exp

N
x x
m m m

m

S S t i t
N

ω
=

= − ⋅ −∑ qq q r ,       (3.37) 

where N  is the total number of atoms in a system.  

By the definitions of the reciprocal lattice vectors, the smallest interval of a 

wave-vector for each Cartesian direction is 

( )2
1,0,0xq

Na

π∆ = , ( )2
0,1,0yq

Na

π∆ = , ( )2
0,0,1zq

Na

π∆ = .   (3.38) 

Then the wave-vectors along the three major directions, ∆, Λ, and Σ are 

( )2
: 0, ,0lq k

Na

π∆ ∆ =  for 0,1,2, ,l N= ⋯ ;      (3.39) 

( )2
: , ,lq k k k

Na

πΛ ∆ =  for 0,1,2, ,
2

N
l = ⋯ ;      (3.40) 

( )2
: , ,0lq k k

Na

πΣ ∆ =  for 0,1,2, ,
2

N
l = ⋯ .      (3.41) 
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Since a BCC lattice has an isotropic structure, it is just necessary to inspect 

the magnon dispersion relation on, for example, the [100] direction on a Brillouin 

zone (∆ in Fig. 3.3) which can basically describe the whole structure.  

In practice, the dispersion relation graph could be generated from a given 

DOS by locating the frequency (i.e. energy) at which the peaks exist. We then 

transformed the peak indices as the wave-vectors, given by 

31 2

1 2 3

2
, ,

ll l

a N N N

π  
=  

 
q ,          (3.42) 

where 1N , 2N , and 3N  are unit cell dimensions in x-, y-, and z-directions, 

respectively, and 1l , 2l , and 3l  are positive integers smaller than 1N , 2N , and 3N . 

For example, in a cubic box of 30 unit cells along each dimension, the first six 

peaks in the magnon spectrum have the wave-vectors 

( )1

2
1,0,0

30a

π=q , ( )2

2
1,1,0

30a

π=q , ( )3

2
1,1,1

30a

π=q ,  

( )4

2
2,0,0

30a

π=q , ( )5

2
2,1,0

30a

π=q , ( )6

2
2,1,1

30a

π=q .    (3.43) 

The magnitude of the wave-vectors can be found by all these values of q ’s. After 

that, the magnon energy against the norm of the wave-vectors were plotted to 

obtain the dispersion relations.  
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Chapter 4:  Results and Discussions 

4.1  Introduction 

This chapter considers the effect of an external magnetic field on the 

magnetic properties in the coupled spin and lattice system, i.e. BCC iron, by 

performing large-scale spin-lattice dynamics (SLD) simulations. The discussion 

starts from the external field effect on the long range magnetic ordering and the 

transition temperature, which exhibit a direct response to an external field. Then, 

the resulting transition temperatures should help to investigate the reduced 

temperature dependence of magnetization, and to show its relation with the 

applied field strength. The analysis of long range ordering helps to demonstrate 

the drawback of the mean field theory (MFT) to model ground state magnetic 

energy and reduced magnetization. Similarly, the short range magnetic ordering 

is another direct response to an external field, which can be represented by the 

spin-spin correlation functions and the effective magnetic field strength. Next, 

the discussion goes to the external field effect of magnons, in an attempt to 

analyze the magnetic ordering by considering magnon-magnon interaction and 

by interpreting the magnon density of states and the magnon dispersion relations. 

In addition, temperature dependence of the spin stiffness and of the uniform 

precession mode, both derived from the magnon dispersion relations, help to 

illustrate the field-induced magnetic ordering. Changes in magnetic ordering 

would result in the magneto-volume effect caused by the spin-lattice coupling, 

which is discussed in the last section of this chapter. Temperature dependence of 

the heat capacity and thermal expansion coefficient, obtained from the magneto-
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volume effect, are used to demonstrate the external field effect. An explanation 

of the field-induced magneto-volume effect is presented finally by integrating the 

observations in this chapter.  

4.2  Effects on Classical Spins 

1.  Long Range Magnetic Ordering 

The long range magnetic ordering refers to the presence of correlation in the 

atomic spin alignment at large distances. The ordering is high if the spins 

separated by a large distance are still aligned in a similar direction. However, if 

the ordering is low for a large separation, the system is disordered. In a bulk of 

ferromagnetic iron, the long range magnetic ordering is represented by the 

macroscopic magnetization. It is common to express the overall magnetization 

using the mean field theory (MFT), which is a method to treat the interaction 

between atomic spins, called the exchange field, as coming from an external 

magnetic field. The idea of MFT is to simplify the many-body interactions, with 

each atom experiencing an effective field, to a one-body problem characterized 

by just a mean field. Since there is only one mean field, MFT has ignored the 

spin correlation along the directions other than the spin precession direction, 

making this approximation less accurate. Fortunately, SLD has already been 

developed as a tool to improve the shortcoming of MFT because SLD essentially 

considers spin motions including those along precession directions.  

In the following, we first provide a brief introduction of MFT. Then we then 

present the results of SLD and compare it with the predictions of MFT, in an 



Chapter 4: Results and Discussions 

64 

  

attempt to analyze the cooperative effect of spins. The temperature dependence 

of magnetization will be adopted as a measure of both SLD and MFT for a 

comparison with the resulting Curie temperatures.  

MFT assumes that each atom is exerted by an exchange field EB  related to 

the magnetization M  proportionally as 

E λ=B M ,             (4.1) 

where λ  is a temperature-independent mean field constant. The magnetic 

susceptibility χ  can then be related to λ  and current temperature T  by 

ext
C

M C

H T T
χ = =

−
,           (4.2) 

where CT Cλ=  is the Curie temperature. Here, extH  is the external magnetic 

field strength, and C  is the Curie constant depending on the material.  

According to MFT, the connection between the exchange integral J  and the 

Curie temperature in quantum mechanics is given by 

( )
B C3

2 1

k T
J

zS S
=

+
,            (4.3) 

where z  is the number of nearest neighbor atoms, Bk  is the Boltzmann constant, 

and S  is the spin quantum number. It can be understood from Eq. (4.3) that the 

magnetic energy experienced by each atom can be related to the Curie 

temperature by 
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( ) B C

3
1

2
zJS S k T+ = .           (4.4) 

The left hand side of Eq. (4.4) represents the atomic magnetic energy because it 

is the sum of the magnetic energy ( )mag
0K 1E zJS S= +  for all z  neighbor atoms. 

The proportionality constant between the atomic magnetic energy and CT , 

according to MFT, is thus B3 / 2k .  

In addition, under MFT, the temperature dependence of magnetization in 

ferromagnetic materials can be derived from the molecular field [1-3]. Suppose 

that an atom experiences the effective magnetic field strength effH  along the z-

component, whose magnitude is ext
zH . Then the normalized mean field 

magnetization ( ) ( )0ze M T M≡  is obtained by iteration starting from an initial 

guess of 1, using 

( ) ( )
( ) ( )

exp exp 1

exp exp
ze

ζ ζ
ζ ζ ζ

+ −
= −

− −
,         (4.5) 

where eff
B Bg H k Tζ µ=  with eff ext

B

1 z
ij z

i

H e J H
gµ

= −∑ , until convergence is 

attained. For BCC iron, the exchange integral in the effective field experienced 

by atom j , ( )ij ij
i

J R∑ , dependent on lattice separation ijR , is determined by 

( ) ( ) ( )8 3 2 6ij ij ij ij
i

J R J a J a= +∑ ,       (4.6) 
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where ( )8 3 2ijJ a  represents the integral due to first nearest neighbor (1nn) 

atoms and ( )6 ijJ a  the integral due to second nearest neighbor (2nn) atoms.  

Similar to MFT, SLD is another method to evaluate the temperature 

dependence of average magnetization by simulations in atomic level. Based on 

the Curie temperature expression for MFT in Eq. (4.4), it is possible that the 

magnetic energy at absolute zero temperature, called the ground state magnetic 

energy mag
0KE , from SLD calculation should also be able to form at least an 

empirical relation to the transition temperature.  

This section will compare the SLD simulation results with the MFT 

counterpart by observing the temperature dependence of field-induced 

magnetization to obtain the corresponding transition temperature. Then the 

section compares the atomic magnetic energy and the reduced magnetization 

found by both methods. After the analysis, it is believed that the ability of SLD to 

model ferromagnetic iron more closely to experimental results comes from its 

consideration of spin precession in forming the collective spin wave, which is not 

so in MFT.  

(i)  Magnetization 

Magnetization, related to long range magnetic ordering, is about the 

collinearity of the spins microscopically. As is known, the magnetization in zero-

field ferromagnetic iron is temperature-dependent, which vanishes at 

ferro/paramagnetic (FM/PM) phase boundary. In addition, the external field also 

affects the magnetization. Fig. 4.1 shows the temperature dependence of atomic 
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magnetization M  in Bµ  under various external fields ranging from 0 T to 1000 T. 

The overall magnetization for all field strengths drops with increasing 

temperature, starting with B2.2µ  at 0 Kelvin, but a stronger field results a higher 

magnetization, whose effect is found to be more apparent at higher temperature 

range attempted. One may observe the inflexion point of the magnetization curve 

by inspection, at which the curve changes its convexity, to represent the phase 

transition temperatures [4-5] and to understand its change due to the external 

field. The inflexion points observed from Fig. 4.1 are about 1020 K at 0 T, 1025 

K at 10 T, 1050 K at 50 T, 1090 K for 100 T, and far beyond 1400 K at 1000 T. In 

fact, the inflexion point of the zero-field magnetization occurs at the temperature 

where long range magnetic ordering vanishes, hence the conventional definition 

of the Curie temperature of the zero-field condition. Since the inflexion point 

from the zero-field magnetization is close to the Curie temperature of body-

centered cubic (BCC) Fe at 1043 K, it is believed that the points of inflexion for 

other field-induced magnetization curves should also relate to their respective 

FM/PM phase transition, which will be discussed later.  
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Fig. 4.1 – Atomic magnetization along the z-component for various magnetic fields tried. The 

transition temperatures, determined as the points of inflexion, increases with the field.  

Instead of using Fig. 4.1, the overall effect of the external field can be 

visualized more clearly in Fig. 4.2, which shows the reduced magnetization 

( ) ( )0M T M  against the reduced temperature CT T  for various external fields 

attempted (0 T, 10 T, 50 T, and 100 T), where CT ’s are the corresponding 

inflexion points. Experimental data under zero-field condition by Crangle and 

Goodman [6] are also presented as a comparison. It is noted that the SLD 

simulation results are departed from the experimental result because the quantum 

spins are treated classically in the SLD formulation [7]. First, one can notice that 

the reduced magnetization has nearly the same temperature dependence below 

C0.9T∼ , meaning that the external field has little effect on the reduced 

magnetization below the transition temperatures determined this way. On the 
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other hand, the effect of the external field on reduced magnetization starts to 

become more prominent near the beginning of the critical region at around C0.9T , 

at which the magnetization is maintained above zero in the presence of an 

external field. Besides, a stronger external field would retard the abrupt drop of 

magnetization in the critical region more effectively. Comparing to the trend of 

the zero-field reduced magnetization, because the field-induced reduced 

magnetization starts to drop more abruptly around the CT ’s determined above, 

the role of the inflexion points on the field-induced magnetization curves to 

represent the transition points is supported.  

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

M
(T
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M

(0
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T/T
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Fig. 4.2 – Reduced magnetization against 
C/T T  showing the beginning of the abrupt change near 

the critical region at 
C0.9T T= . The experimental result comes from Ref. [6]. A more abrupt 

variation of reduced magnetization occurs near the transition temperature regime, justifying the 

location of the transition temperature by the inflexion points.  
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(ii)  Atomic Magnetic Energy 

Once the transition temperature can be determined from the temperature 

dependence of magnetization, its relation to the external field strength is to be 

found, from which the extent of a magnetic field to shift the transition 

temperature can be understood, using the ground state magnetic energy.  

According to Hamiltonian of the SLD system in Eq. (2.17), the atomic 

magnetic energy at ground state with an external field, mag
0KE , is written as  

( )mag ext ext
0 B

,

1

2K ij
i j

E j g S
N

µ= − −∑H H ,       (4.7) 

where N  is the number of atoms in a magnetic system, and the direction of extH  

is opposite to that of S . In Eq. (4.7), the term 
,

1

2 ij
i j

j
N

− ∑  represents the ground 

state atomic magnetic energy per atom, and is found to be about -0.175 eV from 

SLD simulation using CDD potential [8]. Fig. 4.3 shows the simulated value of 

mag
0KE  for various extH  attempted in SLD simulations. It can be seen from Fig. 

4.3 that mag
0KE  is linearly dependent on extH , as expected in Eq. (4.7).  
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 Fig. 4.3 – Ground state magnetic energy against field strength according to Eq. (4.7), showing a 

linear relationship between these two quantities.  

Following the location of the inflexion points for various field strengths 

shown in Fig. 4.1, it is possible to speculate a linear relationship between the 

external field and the transition temperature by 

mag
0K B CE k Tγ− = ,             (4.8) 

where γ  is a proportionality constant to be estimated that connects mag
0KE  and CT . 

Combining Eq. (4.7) and (4.8), we have  

ext
B C B

,

ext
B

,

1

2

1

2

ij
i j

ij
i j

k T j g S
N

j g S
N

γ µ

µ

 
= − − − 

 

= +

∑

∑

H

H

,       (4.9) 

from which we may further reduce it to  
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ext
CT P Q′ ′= + H ,           (4.10) 

where 
,B

1 1
'

2 ij
i j

P j
k Nγ

= ∑  and B
B

1
'Q g S

k
µ

γ
=  are the intercept and the slope of 

the linear equation in Eq. (4.10), respectively. After linear fitting for P′  and Q′  

by means of the observed CT ’s and the applied fields, γ  is found to be around 

2.00 from both P′  and Q′ . Fig. 4.4 shows the fitting results, and verifies the 

linearity speculation, which is reasonable because the ground state magnetic 

energy in Fig. 4.2 also varies linearly with applied field strength. It is thus 

possible to suggest that 2.00γ ≈  could demonstrate the linear relation between 

extH  and CT . The proportionality constant 2.00γ ≈  is larger from the quantum 

mechanical calculation of 1.5 for the zero-field case (See Eq. (4.4)), which 

should result from the absence of spin correlation along x and y components in 

MFT calculations.  
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Fig. 4.4 – Linear external field dependence of the transition temperature. The choice of 2.00γ =  

is suggested according to Eq. (4.9), with the straight line showing the fitting results for 2.00γ = .  

(iii)  Reduced Magnetization 

Since SLD is already known for accurately estimating the zero-field Curie 

temperature by considering the correlation of x and y spin components, as 

opposed to MFT, it is interesting to further realize the extent of an external field 

for MFT to emulate SLD.  

The MFT reduced magnetization in Eq. (4.5) is used as an indicator of the 

deviation between MFT and SLD. Note that the lattice constants a  used in Eq. 

(4.6) to obtain Eq. (4.5) come from SLD simulations at elevated temperatures 

and field strengths. It is noticed that the calculation results of the reduced 

magnetization from SLD are departed from the predictions of MFT, as shown in 
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Fig. 4.5. It is seen that the inflexion points of magnetizations calculated from 

SLD simulations occurs at a lower temperature than the predictions of MFT. In 

addition, the Curie temperature of the zero-field BCC iron found by SLD (1020 

K) is closer to the experimental value of 1043 K than the MFT result with 

thermal expansion does (1250 K). Accordingly, at least for the external field 

strengths considered, MFT provides an underestimate of the abruptly decreasing 

trend of magnetization, such that generally a higher temperature is required by 

MFT to result in the magnetization value that SLD approach already achieves at 

a lower temperature. This happens probably because in MFT there is no 

correlation between x and y components of a spin vector, which is involved in the 

three dimensional Heisenberg model used in our SLD calculations. In another 

perspective, one may realize that a strong magnetic field allows the reduced 

magnetization from SLD to approach that from the MFT closer by comparing the 

dots and lines belonging to that field strength, because the external field 

contribution to the total effective field becomes more significant than the x and y 

spin components. This interpretation confirms the insignificance of the spin 

correlation along x and y components in MFT.  
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Fig. 4.5 – Temperature dependence of reduced magnetization from both SLD and MFT at varying 

volume. Dots represent the SLD results, whereas the lines represent the MFT results. The MFT 

generally results in a higher transition temperature than SLD does, probably due to the negligence 

of the correlation along the precession components in MFT.  

Even though the SLD results are departed from the MFT one, it is possible to 

define a scale for describing the effect due to correlations with x and y 

components, such that the calculated results of magnetization by MFT can be 

consistent with the corresponding SLD results in Fig. 4.1. This idea can be 

realized by adjusting the scale of the effective field used in the mean field theory, 

such that  

eff ext

B

z

ij z
i

e
H A J H

gµ
 

= − 
 

∑ ,         (4.11) 
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where A  is the scaling factor, and put this scaled effective field in the MFT 

equation in Eq. (4.5) for iteration.  

The scaling factor A  could be determined by fitting the scaled MFT results 

to those found by SLD, such that the mean field magnetization curves show little 

discrepancy with the SLD simulation results. The scaling factors in Table 4.1 rely 

on three methods as the convergence criteria: (a) most approximate integration 

area under curve, (b) least algebraic sum of residuals, and (c) least squared sum 

of residuals. Here, the residual refers to the difference between iterated MFT 

magnetization and the SLD magnetization. The values of the scale factor show 

that A  increases with the external field strengths attempted here for all three 

convergence criteria, and the field strength dependence of the scaling factor 

indicates the increasing resemblance of MFT to SLD under strong fields, in 

which case the uncorrelated portion of the effective field dominates the 

molecular field. The fact that 1A ≤  implies that the mean field should reduce its 

effect on the z-component and instead make more contribution to the x and y spin 

components, in order to make MFT more consistent to SLD.  

Table 4.1 – Scaling factor A of the effective field in the mean field theory to match the 

SLD results in different convergence criteria. 

Field (Tesla) 0 10 50 100 

A  (approximate area) 0.81801 0.84303 0.89546 0.92311 

A  (algebraic residual) 0.81855 0.84271 0.88856 0.91114 

A  (squared residual) 0.81805 0.83801 0.88477 0.90609 
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If the scaling factors are plotted against the external field strength, as is 

done in Fig. 4.6, one can determine the scaling factor at any field strength 

between 0 T and 100 T along the curves, such that MFT can emulate SLD. All 

three methods return similar scaling factors. It should be noted from Fig. 4.6 that 

the scaling factor is associated with the strength of external field. It is also 

reasonable to expect that an external field much greater than 100 T is needed to 

let the MFT results conform to the SLD one, such that A  equals 1, at which 

condition the spin-uncorrelated part of the effective field contributes most.  
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Fig. 4.6 – Scaling factor of the effective field in MFT to resemble the SLD results, as shown in 

Eq. (4.11). A larger value of the scaling factor is needed for a stronger external field, such that the 

SLD results resemble the MFT counterpart without considering precession.  

Fig. 4.7 shows the fitting results for each scaling factor used in Table 4.1 

graphically, with those three fitting criteria mentioned above, showing that the 

fitting is satisfactory over the temperature range attempted regardless of the field 
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strengths applied, and supporting the idea that the disagreement in normalized 

magnetization between SLD and MFT could be modeled by an external-field-

dependent scaling factor.  

From the above discussion, the scale factor A  can be loosely regarded as the 

proportion of the mean field that should be contributed to the external field 

direction, whereas ( )1 A−  can be treated as the mean field responsible for spin 

precession. By introducing A , the MFT can resemble SLD.  

In summary, the external magnetic field maintains the long range magnetic 

ordering, especially beyond the transition temperature. Also, this section has 

suggested an empirical relation to determine the transition temperature from the 

ground state magnetic energy and the external field, and has compared SLD 

magnetization with the MFT counterpart, addressing the importance of 

considering spin correlations in an atomistic simulation method to model zero-

field or field-induced magnetization more pertinently to meet experimental 

results.  
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Fig. 4.7 (a) 
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Fig. 4.7 (b) 
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Fig. 4.7 (c) 

Fig. 4.7 – Individual fitted results of the scaled effective field in MFT, compared with SLD, in (a) 

approximate area approach, (b) algebraic residual approach, and (c) squared residual approach, 

respectively.  

2.  Short Range Magnetic Ordering 

Short range magnetic ordering, similar to the long range counterpart, is 

another perspective resulting from the classical spins. Two quantities can reflect 

the short range ordering: spin correlation functions and the effective magnetic 

field strength, because they depend on the neighboring spins but not on all spins 

in a given bulk.  
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The spin correlation function i j⋅e e  acts as an indicator of short range 

magnetic ordering, from which their dependence on temperature and field 

strength can be noticed. It is expected that the external field effect on the short 

range ordering exhibits a similar trend as the long range counterpart because 

short range orderings also come from spin collinearity, which can be controlled 

by an external field. Fig. 4.8 (a) and (b) shows the ensemble average of the spin-

spin correlation functions, i j⋅e e , due to the first and second nearest neighbors 

of BCC Fe atoms, respectively. The graphs show that the external field maintains 

the spin-spin correlations, just as it maintains the atomic magnetization, and that 

the applied field increases the transition temperature determined by the inflexion 

points, whose values are similar to those from Fig. 4.1. The agreement of the 

transition temperatures in these two graphs indicates the consistency of long-

range and short-range magnetic ordering in reflecting the temperature 

dependence of magnetic behavior. The non-zero values of the correlation 

functions far beyond the transition temperature indicate the existence of short 

range ordering that can hardly be removed completely by thermal excitations.  
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Fig. 4.8 – Spin-spin correlation function of BCC Fe within (a) the first nearest neighbors (1nn) 

and (b) the second nearest neighbors (2nn) against temperature under various magnetic fields 

tried. Both graphs can indicate the increase in the transition temperature with the applied field as 

the temperature dependence of magnetization does.  
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The total effective magnetic field is also characteristic of the short-range 

magnetic ordering because it depends on the spin orientation of the nearest 

neighbor spins. In fact, it can be shown that the effective magnetic field has the 

same purpose on spin dynamics as the force constant does on lattice dynamics. 

Note that the atomic spin motion has the form 

eff
B

1i
i i

d
g

dt
µ= ×S

S H
ℏ

,          (4.12) 

and the lattice motion has the form 

i
i i

d
k

dt
= −p

r ,             (4.13) 

where ik  is the force constant of atom i . By comparison with these two 

equations, the effective magnetic field can be treated as an operator on the spin 

that governs the spin stiffness, just as the force constant can be treated as an 

operator on the displacement that governs the lattice elasticity. 

For an understanding of the external field effect on the effective field, Fig. 

4.9 is prepared to show the temperature dependence of the z-component of 

effective magnetic field eff
zH  in eV along the z-axis, which is the direction of the 

applied field. From this graph, the atomic effective field can be strengthened by 

the applied magnetic field, which gives the minimum free energy after its 

alignment with spins. On the other hand, the transition temperatures found on 

this graph, recognized again by the inflexion points, have comparable values to 

those found from Figs. 4.1 and 4.8, suggesting that the external field shifts up the 

transition temperature, in response to the decrease of short range magnetic 



Chapter 4: Results and Discussions 

84 

  

ordering. From Fig. 4.9, it is possible to observe the converging trend of the 

effective field strength to around 0.08 eV at sufficiently high temperature, 

showing that the short range ordering cannot be removed completely by thermal 

excitation, as is already found in Fig. 4.8, even if the temperature is far beyond 

the transition temperature determined by the inflexion points.  
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Fig. 4.9 – z-component of average atomic effective magnetic field at elevated temperatures, 

which reflects similar temperature dependence as the long range ordering does. 

It can be realized that the applied external field has little contribution to the 

effective magnetic field, which can be understood in the following explanation. 

Considering the definition of the effective field,  

eff ext

B

1
i ij j

j

J
gµ

= −∑H S H ,         (4.14) 
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the quantity is composed of the internal magnetic field 
B

1
ij j

j

J
gµ ∑ S , contributed 

by the temperature-dependent spin moment jS , and the external field extH . 

Therefore, the resultant norm depends on both the strength of each field 

component and the value of the included angle between the internal and external 

fields. Fig. 4.10 shows schematically the vector relation.  

 

Fig. 4.10 – Vector sum of the molecular and external fields to form an effective magnetic field, 

showing that the external field can do little to change the norm of the effective field.  

It is possible to understand how small the effect of the external field on BCC 

Fe is from Figs. 4.9 and 4.10, which shows the z-component of the atomic 

effective field against temperature. From this graph, the effective field 

components are of 110−  order of eV regardless of the external field strength. 

Given that Table 4.2 shows effH  in eV for various external fields ( )eff
Bg SHµ , 

together with the vector relation in Eq. (4.14), we deduce that the internal field 
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component 
B

1
ij j

j

J
gµ ∑ S  should have a much larger magnitude compared to that 

due to the external field, regardless of the included angle size. We can recognize 

from Table 4.2 and Eq. (4.14) that it is only the external field component of 1000 

T that is possible to change the resultant effective field vector to a larger extent. 

As a result, the external field generally has an insignificant contribution to spin 

dynamics of BCC Fe at elevated temperatures attempted, regardless of the 

included angle between the internal and external fields. Indeed, the internal 

magnetic field estimated here is already modeled by Weiss’s molecular field 

theory, which determines the magnetic field due to spin interactions that is strong 

enough to achieve magnetization in the absence of an external field [9].  

Table 4.2 – Norm of the external field extH  in eV. 

Field (T) 0 50 100 1000 

extH  (eV) 0 0.00636 0.0127 0.127 

In summary, the external magnetic field maintains the short range magnetic 

ordering, but for the temperatures and fields tested it has an insignificant effect of 

altering the effective magnetic field.  

4.3  Effects on Magnons 

A magnon can be considered as a collective excitation of spins, which can be 

regarded as a quantized spin wave. Since it is known that the magnetic energy is 

changed by an external field, one may realize the effect of an external field on 

the magnon energy by observing the magnon properties of BCC iron.  
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1.  Magnon Spectra 

Fig. 4.11 shows 4 stacked magnon spectra at elevated external fields, 

keeping the temperature constant at 300 K, 800 K, 1050 K, and 1200 K, 

respectively.  

It is observed in each graph of Fig. 4.11 that the applied field brings about 

the collective shift of peaks to higher frequencies, which is due to the spin 

hardening effect with the applied magnetic field. As the magnetic field increases, 

the spins further reinforce their alignment by decreasing the azimuthal angle 

between the spin vector and the external magnetic field, reducing the moment of 

inertia of the classical spins about an axis parallel to the external field. Then, the 

spin rotation speed increases when the moment of inertia decreases, according to 

the conservation of angular momentum. The spin wave thus has more energy 

according to the Heisenberg exchange interaction in Eq. (1.1).  

 



Chapter 4: Results and Discussions 

88 

  

0 100 200 300 400 500 600

0 100 200 300 400 500 600

 

S(
ω)

 (
a

rb
. 

un
it)

ω (meV)

0 T

50 T

 

100 T

 

Η = 1000 T 300 K

 

(a)

0 100 200 300 400 500 600

0 100 200 300 400 500 600

 

S(
ω)

 (
a

rb
. 

un
it)

ω (meV)

0 T

50 T

 

100 T

 

Η = 1000 T
 800 K

 

(b)

 

0 100 200 300 400 500 600

0 100 200 300 400 500 600

 

S(
ω)

 (
a

rb
. 

un
it)

ω (meV)

0 T

50 T

 

100 T

 

Η = 1000 T
 1050 K

 

(c)

0 100 200 300 400 500 600

0 100 200 300 400 500 600

 

S(
ω)

 (
a

rb
. 

un
it)

ω (meV)

0 T

50 T

 
100 T

 

Η = 1000 T
 1200 K

 

(d)

 

Fig. 4.11 – Mangon spectra for BCC iron at (a) 300 K, (b) 800 K, (c) 1050 K, and (d) 1200 K, 

respectively, under various magnetic fields. The decay of magnetic ordering can be demonstrated 

by the diminishing linewidth and the prominence of the low-frequency peaks. 
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On the other hand, the applied field slightly increases the spacing between 

any two successive peaks, known as the linewidth, given the same temperature. 

In fact, this is the evidence that an external field inhibits magnon-magnon 

interaction that lead to more magnon frequencies available. When the 

temperature is further increased while fixing the external field strength (i.e. we 

focus on spectra of the same color), the energy gaps are diminished due to the 

vigorous magnon-magnon interaction at high temperature that generates more 

mangons of varying frequency, leading to magnon scattering such that magnetic 

phase transition is identified. In fact, the collapse of the peaks at elevated 

temperatures can also reflect the disappearance of the long range magnetic 

ordering and the prominence of the remaining short range ordering.  

2.  Magnon Dispersion Curves 

Shown in Fig. 4.12, the variation of the magnon dispersion relations with the 

applied magnetic field strengths are plotted at various temperatures in each sub-

figure, i.e. 300 K, 900 K, 1000 K, and 1100 K, respectively. The curvature of the 

lines in each graph represents the spin stiffness, determined by fitting the data 

points with the dispersion relation for small wave-vector being 

2Dqω = ∆ +ℏ ,             (4.15) 

where ℏ  is the reduced Planck constant, ω  is the magnon energy, ∆  is the 

deviation of the magnon dispersion from zero energy value, D  is the spin 

stiffness to be fitted, and q  is the norm of the wave-vector. It is found by 

inspection that at a temperature below 1000 K, which is still below the magnetic 
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phase transition temperature of 1043 K, the applied field strength just varies the 

curvature of the lines indicating the spin stiffness inappreciably. However, by 

observing the increasing curvature of the fitted dispersion curves with increasing 

field at the transition temperature range (i.e. 1000 K and 1100 K for Fig. 4.12(c) 

and (d)), the applied magnetic field is able to realign the spins appreciably, such 

that magnetic ordering can be recovered and the spin stiffness is increased. It is 

noted that the deviation of the magnon energy points found at 1000 K and 1100 

K with the fitted trend results from the difficulty locating the peak frequency 

from the magnon spectra of each corresponding wave-vector manually, where 

random error of the peak frequencies is more prominent in the magnetic phase 

transition boundary with greatest magnon-magnon interaction. The scattering of 

the magnon energy plot also indicates the disappearance of the long range 

magnetic ordering and the prominence of the short range ordering, as the magnon 

DOS can show us.  
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Fig. 4.12 – Magnon dispersion relations under various external magnetic field strengths, given 

constant temperature. Further maintenance of the magnetic ordering can be achieved by an 

applied field of increasing strength.  

Fig. 4.13 exhibits the temperature dependence of spin stiffness D  over a 

wide temperature range, obtained by the magnon dispersion curves such as those 

presented in Fig. 4.12, following the relation shown in Eq. (4.15). The deviation 

of the spin stiffness points with the fitted trend beyond the critical region results 

from the strong scattering of magnons at this temperature range. In this figure, 

the stiffness at room temperature is in agreement with the ab initio result in You 

et al. [10] of 237 
2o

meV A  and Liechtenstein et al. [11] of 294 
2o

meV A . Then the 

spin stiffness D  generally begins with a linearly decreasing trend as temperature 

increases, with the value of 275 
2o

meV A  at 300 K, and starts to vanish in the PM 

phase. The falling trend of the temperature dependence resembles those for long 
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and short range magnetic ordering. At temperatures far lower than the transition 

point found in Chapter 4.2, the external field has no appreciable contribution to 

the spin stiffness, as is the cases of magnetic ordering in Figs. 4.1, 4.8 and 4.9. 

Instead, the spin stiffness tends to converge at around 25 
2o

meV A  for all field 

strengths attempted here. The possible reason for such a convergence value in the 

PM phase is that there is still short range magnetic ordering contributing to the 

spin waves (see Fig. 4.8 (a) and 4.8 (b)). In short, we may claim that the 

application of an external magnetic field is helpful to maintain the spin stiffness, 

especially at temperatures around the transition point. However, the maintenance 

is weakened beyond the transition temperature.  
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Fig. 4.13 – Spin stiffness at elevated temperatures, given constant applied field strength. The 

trend lines are obtained by fitting with the calculated D  values. The temperature dependence of 

D  can also be an indicator of magnetic ordering.  
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It can be seen from each sub-figure of Fig. 4.12 that the magnon energy at 

zero wave-vector, ∆ , indicated by the intercept at the ordinate axes, rises with 

the applied magnetic fields attempted. It seems from each sub-figure that a given 

external magnetic field shifts up the whole set of curves, such that ∆  should be 

more dependent on field strength than on temperature. By noting that the zero 

wave-vector corresponds to an infinite wavelength λ → ∞  according to 
2π
λ

=q , 

which exists in an infinite bulk, we may incorporate ∆  to the magnon dispersion 

relation in [12] to become 

( )4 1 cosJS qaω = ∆ + −ℏ ,          (4.16) 

which returns the energy value of ∆  for a zero-vector at 0q = . In addition, 

according to the Cartesian spin wave components forming Eq. (4.16), the spin 

wave at 0q =  would have the same phase for all time [12]. Accordingly, this 

field-dependent energy refers to the uniform precession mode, in which all the 

spins precess at the same frequency and the same phase [13-14].  

Fig. 4.14 plots the uniform precession mode ∆  at elevated temperatures for 

various field strengths. In general, the applied magnetic field can bring about a 

larger ∆  than without its presence, as in the case of increased magnetic ordering 

by an external field. Since ∆  simply comes from one of the spin wave 

components ( )0q =  in a bulk, it follows that ∆  also exhibits the characteristics 

of magnetic ordering, especially the overall trend of spin precession. At 

temperatures below the transition point found in Chapter 4.2, ∆  drops slightly 

for all field strengths tested. However, a sudden decline of this energy value is 
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inspected starting from the critical region at about 800 K, followed by some 

fluctuations at even higher temperatures, suggesting that ∆  can be treated as an 

indicator of magnetic phase transition by showing slight temperature dependence. 

It is noted that some negative values of this energy at 0 T should come from the 

fitting error, which is also the consequence of random error in locating the peak 

frequency in a scattered magnon spectrum after the magnetic phase transition has 

been reached.  
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Fig. 4.14 – Uniform precession mode energy ∆  at elevated temperatures, given constant applied 

field strength. Data points represent the simulation results, and the lines represent their predicted 

trends. Temperature dependence of ∆  can indicate magnetic ordering as well.  

Guirreiro and Rezende [ 15 ] suggested that this intercept ∆  has an 

approximate relation to the applied field H  as 
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ℏ

ℏ
ℏ

,           (4.17) 

according to quantum theory without considering temperature effect. By Eq. 

(4.17), the theoretical values of ∆  at elevated applied field strengths ignoring 

temperature effect are those listed in Table 4.3. It is shown from the table that, 

below the transition point of each field, ∆  obtained from the simulations seems 

to be about 2 meV larger than those from theory for each external field 

considered, but is consistent with each other at the temperature near the critical 

region at around 1000 K. The discrepancy of 2 meV might be due to the 

capability of SLD to consider temperature effects, especially before the transition 

point.  

Table 4.3 – Theoretical uniform precession mode energy. 

extH  (T) 0 10 20 50 100 

∆  (meV) 0 1.158 2.135 5.788 11.577 

In summary, we understand that the applied magnetic field increases spin 

stiffness by constraining spin precession and by inhibiting magnon-magnon 

interactions. The spin stiffness and the uniform precession mode can also serve 

as the indicator of magnetic phase transition reliably.  
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4.4  Effects on Spin-Lattice Coupling 

1.  Phonon Spectra 

In a magnetic system, the equations of motion in Chapter 2 suggest that the 

external field changes spin precession originally in the zero-field case, which in 

turn varies the atomic configuration by spin-lattice coupling. This section 

investigates the contribution of the applied field to the coupling effect, especially 

that revealed in the magnetic phase transition.  

Fig. 4.15 shows the phonon spectra at a fixed temperature and varying 

magnetic field strengths, serving as a tool of visualizing collective lattice 

vibrations. In each graph, the external field hardly changes the phonon spectrum 

at a given temperature. In other words, the applied magnetic field has little use of 

altering lattice vibration, at least for the temperatures and field strengths tried. 

Indeed, this observation complies with that by other researchers. For example, a 

similar remark has been given by Sabiryanov and Jaswal [16] on BCC Fe, 

according to their numerical simulations. Also, Biegala and Ulner [17] also 

believe that spin-lattice coupling is hard to exhibit its effect on lattice vibration. 

The observation here seems to indicate that the phonon-magnon interaction in 

BCC Fe is insignificant, at least according to the approach of SLD simulations. 

However, this might happen because of the more harmonic interatomic potential 

used here, which fails to model the anharmonic part pertinently. The potential 

used in the simulations is too stiff or too harmonic, since the structural phase-

transition from BCC to FCC at 1183K cannot be reproduced [18]. Excited  
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Fig. 4.15 – Phonon spectra for BCC iron at (a) 300 K, (b) 800 K, (c) 1050 K, and (d) 1200 K, 

respectively, under various magnetic fields from 0 T to 1000 T. The phonon spectra are almost 

invariant with the application of an applied field, showing that the spin-lattice coupling is limited 

if the current interatomic potential is used.  

magnons are then too hard to interact with the phonons to change phonon 

vibration frequencies.  

2.  Vibrational energy and heat capacity 

As stated in Chapter 2, the vibrational energy is related to the heat absorbed 

at constant volume from the ground state to the excited state, from which the heat 

capacity at constant volume can be derived for understanding the temperature 

dependence of the magnetic phase transition. Fig. 4.16 is the plot of the 

temperature dependence of equilibrium atomic vibrational energy for various 
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magnetic fields, which exhibits more appreciable anomaly around the critical 

region. It seems that the applied field is generally unable to alter the temperature 

dependence of vibrational energy, except around the critical region between 800 

K and 1200 K in which a stronger field further suppresses the increase in the 

vibrational energy slightly. The graph confirms that spin-lattice coupling can 

only be found more prominently around the critical region.  
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Fig. 4.16 – Ensemble average of field-induced atomic vibrational energy at elevated temperatures. 

The vibrational energy can exhibit magnetic phase transition around the critical region.  

On the other hand, Fig. 4.17 is a plot of the heat capacity at constant pressure 

of zero, PC  , determined by the temperature dependence of the equilibrium 

vibrational energy. In fact, PC ’s were evaluated as the equilibrium-volume heat 

capacity VC  at respective temperatures under stress-free condition ( )0P = . Note 

that curve smoothing has been performed on Fig. 4.16 first for the production of 
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Fig. 4.17, so that a more decent trend of heat capacity can be presented from a 

limited number of data points shown in Fig. 4.16. Fig. 4.17 exhibits the rise of 

the transition temperature, located at the point of abrupt change as the magnetic 

field strength increases, together with the suppression of the heat capacity value 

with increasing field strength, so that the maximum heat capacity value decreases 

with the applied magnetic field strength. In addition, the transition temperatures 

determined by the abrupt changes in Fig. 4.17 are generally consistent with those 

values found in graphs describing the magnetic ordering and by the empirical 

relation in Eq. (4.10) with 2.00γ = . The PC  graph is attributed by the decreased 

entropy due to the applied field, which limits the spin orientations and hence the 

spin energy to be absorbed from the heat reservoir.  
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Fig. 4.17 – Fitted ensemble average of field-induced heat capacity at constant pressure of zero at 

elevated temperatures. This graph shows the higher shift of the transition temperature with the 

external field.  
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3.  Magneto-volume Effect 

Magnetic effect that alters the atomic volume is identified during thermal 

expansion. Fig. 4.18 shows the temperature dependence of the stress-free 

( )0P =  atomic volume under various magnetic fields, giving us an intuitive 

understanding of thermal expansion under magnetic fields. Note that isotropic 

volume change was obtained during simulation because the exchange integral ijJ  

employed in SLD is isotropic. The figure shows that the atomic volume atomV  

increases roughly linearly with temperature despite an offset of about 11.8 
3o

A  at 

0 K, regardless of the applied field. The offset is near the value found in Friák et 

al. [19] and Ekman et al. [20], which is 11.72 
3o

A  from ab initio calculations and 

78.15 (a.u.)3, or 11.58 
3o

A , respectively. The zero-field SLD result is able to 

return a Curie temperature similar to the experimental measurements of the zero-

field atomic volume of BCC Fe derived from the zero-field lattice constants 

measured by Ridley and Stuart [21]. Accordingly, an applied field serves for 

suppressing the rising trend of all the curves at elevated temperatures, with a 

stronger field suppressing the increase in atomic volume more severely, so that 

the anomaly at the transition temperature is less discernible. Except the 1000 T 

case, such suppressions are merely more prominent between 800 K and 1300 K, 

but are less pronounced beyond this temperature range. In addition, this graph 

confirms that the phonon-magnon interaction is negligible except around the 

critical region, which is consistent with the experimental results.  
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Fig. 4.18 – Temperature dependence of stress-free atomic volume of BCC iron on temperature 

under various magnetic fields. The experimental results derived using the lattice constants 

measured by Ridley and Stuart [21] in orange are used as a comparison. The SLD results can 

simulate the anomaly of the trend around the critical region.  

Derived from Fig. 4.18, Fig. 4.19 shows the fitted volumetric thermal 

expansion coefficients α  of BCC Fe at elevated temperatures under a number of 

magnetic field strengths (0 T, 10 T, 50 T, 100 T, 1000 T), so that the magneto-

volume effect can be visualized more clearly. The experimental thermal 

expansion coefficients were derived by the thesis author, according to the atomic 

volume in Fig. 4.18 from Ref. [21]. Again, the number of simulated data points 

are far from sufficient to provide a smooth derivative of atomV  with respect to T , 

so curve smoothing is adopted on the thermal expansion coefficients here to 

provide a possible trend of this quantity at elevated temperatures. From the graph, 

one may note the similarity of the phase transition temperature from the zero-
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field SLD result to that from Ref. [21], corroborating the validity of the SLD 

technique in estimating the transition temperature. The simulated α ’s for various 

field strengths at room temperature (300 K) are about 6 135 10 K− −× , close to the 

experimentally derived value in zero-field condition by Ridley and Stuart [21]. 

From the graph, one can observe similar values of transition temperature to those 

found by magnetic ordering in Figs. 4.1, 4.8, and 4.9, all of which indicate 

roughly the same transition temperatures. Similar to the case of magnetic 

ordering, an external field hardly changes α  if the temperature is below the 

critical region. In addition, the magnetic field increases the temperature of abrupt 

change and suppresses the rise of the coefficient values compared to the zero-

field case, as is the case of heat capacity in Fig. 4.17. As a minor point, the rising 

trend of α  derived from Ref. [21] after about 1,050 K is due to the 

corresponding rising trend of the atomic volume beyond that temperature (see 

Fig. 4.18). Compared to the experimental results in atomic volume and thermal 

expansion coefficient, it appears that the magnetic potential used in the thesis can 

only stress the magnetic phase transition, but lacks consideration of the condition 

beyond the transition.  



Chapter 4: Results and Discussions 

103 

  

0 200 400 600 800 1000 1200 1400 1600

20

30

40

50

60

70

α 
(1

0-6
K

-1
)

T (K)

 Ridley and Stuart
 0 T
 10 T
 50 T
 100 T
 1000 T

Fig. 4.19 – Temperature dependence of the fitted volumetric thermal expansion coefficient of 

BCC iron under various magnetic fields. The experimental results derived from [2121] were 

plotted in orange as a comparison. This graph can also indicate the increase in the transition 

temperature with the applied field.  

The external field effect on the equilibrium atomic volume can be explained 

as follows by summarizing the previous results and discussions, in terms of both 

classical and quantum mechanics.  

A classical explanation is given first. A magnetic field maintains the long 

and short magnetic ordering shown in Fig. 4.1 and 4.8, and then increases the 

spin precession frequency and energy, according to the spin equation of motion 

in Eq. (2.20). After that, the reinforced magnetic ordering comes into the 

momentum equation of motion in Eq. (2.19), and then decreases the magnitude 

of the restoring force among atoms, leading to the reduced lattice separation 

according to the position equation of motion in Eq. (2.18). Consequently, the 
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bulk shrinks. As the lattices get closer, the exchange interaction ijJ  increases due 

to the increased electron wave-function overlap, and the spin orientations are 

maintained further. The shrinkage process will repeat in the above order, until the 

competition between thermal expansion and magnetic contraction is balanced to 

arrive at the equilibrium volume. It can be summarized that the external field 

changes the separation dependence of the interatomic potential, e.g. CDD 

potential [8] in this case, especially of the anharmonicity portion responsible for 

thermal expansion, such that the equilibrium separation of atoms is decreased.  

A brief quantum explanation is given below. An external magnetic field 

inhibits magnon-magnon interactions and increases the magnon frequency, as 

demonstrated in the increased linewidth in Fig. 4.11. Besides, increase in 

magnon frequency can also be reflected by the increased spin stiffness and 

uniform precession mode in Fig. 4.13 and 4.14, respectively. Increase in magnon 

frequency further inhibits phonon-magnon interactions and hence phonon 

scattering, though the external field effect is only more apparent around the 

critical region. With inhibited phonon scattering due to the external field, thermal 

expansion is suppressed.  

In summary, the applied magnetic field can only bring about little effect on 

the phonon-magnon interactions, so the resulting magneto-volume effect is not 

apparent except around the critical region, which can be reflected by the 

temperature dependence of heat capacity and thermal expansion coefficient.  



Chapter 4: Results and Discussions 

105 

  

4.5  References 

                                                 
[1] J. Hubbard, Phys. Rev. B, 19, 2626 (1979). 

[2] J. Hubbard, Phys. Rev B, 11, 4584 (1979). 

[3] J. H. Van Vleck, Rev. Mod. Phys. 17, 27 (1945). 

[4] J. S. Dyck, Č. Drašar, P. Lošt’ák, and C. Uher, Phys. Rev. B 71, 115214 

(2005).  

[5] G. L. Zuppardo and K. G. Ramanathan, J. Opt. Soc. Am. 61, 1607 (1971).  

[6] J. Crangle and G. M. Goodman, Proc. Royal Soc. London Ser. A, Math. Phys. 

Sci., 321, 477 (1971).  

[7] P.-W. Ma, C. H. Woo, and S. L. Dudarev, Phys. Rev. B 78, 024434 (2008).  

[8] S. Chiesa, P. M. Derlet, and S. L. Dudarev, Phys. Rev. B 79, 214109 (2009). 

[9] S. Chikazumi, Physics of Ferromagnetism, 2nd. ed. (Oxford University Press, 

New York, 1997), p. 118.  

[10] M. V. You, V. Heine, A. J. Holden, and P. J. Lin-Chung, Phys. Rev. Lett. 44, 

1282 (1980).  

[11] A. I. Liechtenstein, M. I. Katsnelson, and V. A. Gubanov, J. Phys. F: Met. 

Phys. 14, L125 (1984). 



Chapter 4: Results and Discussions 

106 

  

                                                                                                                                    
[12] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, New York, 

2005), p. 332. 

[13] R. M. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961). 

[14] D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Applications 

(Springer, New York, 2009), p 144.  

[15] S. C. Guerreiro and S. M. Rezende, Revista Brasileira de Física 1, 207 

(1971).  

[16] R. F. Sabiryanov and S. S. Jaswal, Phys. Rev. Lett. 83, 2062 (1999).  

[17] L. Biegala and J. Ulner, Z. Phys. B: Condens. Matter 50, 45 (1983).  

[18] M. Y. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 81, 

184202 (2010).  

[19] M. Friák, M. Šob, and V. Vitek, Phys. Rev. B 63, 052405 (2001). 

[20] M. Ekman, B. Sadigh, K. Einarsdotter, and P. Blaha, Phys. Rev. B 58, 5296 

(1998). 

[21] N. Ridley and H. Stuart, Brit. J. Appl. Phys. 1, 1291 (1968).  



Chapter 5: Summary and Conclusion 

107 

  

Chapter 5:  Summary and Conclusion 

Ferromagnetic materials have shown an increasing importance in our daily 

lives, whose area of interest is the ferro/paramagnetic phase transitions at the 

transition temperature due to the exchange coupling between atomic spins. On 

the other hand, the external magnetic field effect of ferromagnetic materials, 

realized by enhancement of the magnetic ordering, has its scientific and technical 

value. One consequence of the application of an external field is the magneto-

volume effect. However, no suitable mathematical approaches can describe the 

magneto-volume effect due to spin-lattice coupling achieved by a distance-

dependent exchange integral, until the recent development of spin-lattice 

dynamics (SLD) simulation. It is the purpose of this thesis to realize the 

contribution of an external magnetic field on ferromagnetic iron in body-centered 

cubic (BCC) structure by using SLD simulation.  

 The background knowledge needed for understanding the external magnetic 

field effect has been introduced. First, statistical thermodynamics has been 

briefly discussed in an attempt to obtain thermodynamic properties from an 

ensemble of atoms. The Hamiltonian of a system of ferromagnetic iron atoms are 

stated, together with the equations of motions of the position, momentum and 

spin degrees of freedom. The SLD method follows, which involves the 

integration algorithm, temperature and pressure control. Parallel computing 

basics using graphics processing units (GPU) has been introduced, followed by 

the assembly and configuration of a GPU server applied to the computation 
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processes in the thesis for an efficient treatment of tens of thousands of atoms in 

simulations. 

 Next, simulation settings for the thesis has been mentioned, by means of the 

magnetic Chiesa-Derlet-Dudarev potential in the Hamiltonian. Data collection 

and processing steps have been discussed, including the evaluation of ensemble 

averages of energies and magnetization, the numerical calculations of derivatives, 

and the determination of thermal excitation spectra and magnon dispersion 

relations.   

By SLD simulation of BCC iron, the effect of an external magnetic field can 

be analyzed in three perspectives: classical spins, magnons, and spin-lattice 

coupling. First, an external field reinforces both the long and short range 

magnetic ordering, and from such maintenance an empirical relation between the 

external field strength and the magnetic phase transition temperature is 

determined. In addition, the shortcoming of the mean field theory (MFT) in 

modeling spin precession can be understood by comparing the scaled MFT 

magnetization with the SLD counterpart. Second, an external field inhibits 

magnon-magnon interaction and stiffens the classical spins, whose effects are 

more pronounced in the critical region, according to the derived spin stiffness 

and the uniform precession mode. Finally, an external field can lead to the 

magneto-volume effect but it is only more discernible at the critical region, 

according to the temperature dependence of the heat capacity and of the thermal 

expansion coefficients. The limited magneto-volume effect observed could be 

attributed by the stiff interatomic potential used in the simulations. The resulting 

magneto-volume effect happens because the external field changes the separation 
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dependence of the interatomic potential, especially of the anharmonicity part, so 

that the atomic volume in equilibrium is reduced. Alternatively, the magneto-

volume effect is attributed to the inhibited phonon-magnon interaction originated 

from the field-induced magnon-magnon interaction, leading to a decreased 

equilibrium atomic volume.  

In conclusion, the thesis studies the external magnetic field effect of 

ferromagnetic BCC iron lattices using SLD. It is observed that an external field 

reinforces the magnetic ordering, and it is believed that the correlation in 

longitudinal spin precession is crucial for a more pertinent modeling of 

ferromagnetism. Besides, an external field inhibits magnon-magnon interactions 

that result in an increased value of spin stiffness and uniform precession mode. 

The inhibited magnon interactions would bring about the magneto-volume effect 

by means of the weak effect of phonon-magnon interactions around the critical 

region, though changes in the transition temperature can still be observed. The 

cause of the magneto-volume effect should be the change of distance dependence 

of the interatomic potential due to an external magnetic field.  




