

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

Game Strategy Indexing, Learning and Optimization

 in Real Time Strategy (RTS) Games

using Soft Computing Techniques

Ng Hiu Fung

Ph.D.

The Hong Kong Polytechnic University

2013

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

- 2 -

The Hong Kong Polytechnic University

Department of Computing

Game Strategy Indexing, Learning and Optimization

 in Real Time Strategy (RTS) Games

using Soft Computing Techniques

Ng Hiu Fung

A Thesis Submitted in Partial Fulfillment

of the Requirements for

the Degree of Doctor of Philosophy

April 2012

- 3 -

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and

that, to the best of my knowledge and belief, it

reproduces no material previously published or written,

nor material that has been accepted for the award of any

other degree or diploma, except where due

acknowledgement has been made in the text.

Signature:

Name of student: Ng Hiu Fung

4

Abstract of the thesis titled "Game strategy indexing, learning and optimization in real-

time strategy (RTS) games using soft computing techniques", Submitted by Peter H.F.

Ng for the degree of Doctor of Philosophy at the Hong Kong Polytechnic University,

April 2012.

Abstract

In real-time strategy (RTS) games, players position and maneuver units and structures

under their control to secure areas and destroy their opponents’ assets. Typical strategies

are resource gathering, units formation and positioning, base building, technology

development and path finding. All the movements, construction and researches take place

in real time, and players have a bird’s eye view to control and monitor units using their

own strategy. Selecting which strategy to use becomes one of the major challenges. This

research focuses on indexing, learning and optimization of these RTS games strategies

using soft computing techniques. Three game strategies are selected for the investigation,

and original techniques have been developed to tackle this strategy determination

problem. Based on our findings, development of RTS computer game software is better

understood and supported using soft computing techniques.

The first investigation is to develop a strategy to quickly position game units effectively

in a map so that they will create maximum casualty to enemies. A model integrating

artificial neural network (ANN), genetic algorithm (GA) and case-based reasoning (CBR)

is proposed and tested. The main idea is to evaluate the past strategies using GA, and

train up an ANN for fast retrieval of units’ locations. When new maps and new

conditions are presented, CBR is used to compute the adjustments needed for the new

locations. The key contribution here is the formulation of the RTS game strategy

selection as CBR planning using a neural-evolutionary model. A number of simulated

experiments with different maps and game unit settings are carried out to test the model.

The result demonstrated that the model provides an efficient and natural game strategy

indexing and determination scheme.

5

The second investigation is to develop a strategy to determine the types of game units to

be selected for production with the purpose to effectively combat with opponents’ troops.

A contribution is made here by considering how the order of production and feature

interaction of game units affect the result of playing RTS games. Due to complicated

game rules, extensive terrains and numerous playable items, exhaustive search or explicit

description of unit combination effects using analytical models, such as finite state

machines, Bayesian networks and decision trees may not be feasible. We developed a

machine learning model that extracts and evaluates game unit combination strategy from

past data. This model takes into account the sequence in which game units are produced

and the interaction among them. We combine fuzzy measure, fuzzy integral and genetic

algorithm to develop the model. Warcraft III battle data from real players are used in our

experiments. Compared with the traditional Choquet Integral, our new order-based fuzzy

integral gives a smaller training and testing error in RTS game strategy selection. A

dynamic Bayesian Network is also developed in learning game players’ behavior.

The third investigation is optimal path determination. This is complicated because RTS

game environment is hostile, dynamic and consists of many different types of game units

interacting with each other in the battle field. Traditional path searching algorithms like

min-max, alpha-beta pruning, hill climbing and A* are not suitable in such a complicated

dynamic game world. We modified the multi-agent potential field model by incorporating

the non-linear feature interaction property. The effect of unit cooperation can then be

described, and therefore taken into consideration in optimal path determination. Our

approach can identify the direction of positive and negative interaction for unit movement

planning and team composition in RTS games. A combination of using real data and

simulation experimental setting is used in this investigation. The results demonstrated

that our path determination method is much better than the traditional methods

implemented in Warcraft III.

As a summary, this PhD research focused on the investigation of RTS game strategies.

Three original models are developed, namely (i) a neural-evolutionary model for CBR

6

planning, (ii) an order-based fuzzy integral model, and (iii) a model of multi-agent

potential field with feature interaction. All these three models are tested experimentally

and promising results were obtained. A number of conference papers were published.

One journal paper is under second review while another one is under preparation.

Keywords: Real time strategy game; RTS game; Warcraft III; strategy planning; unit

formation planning; unit maneuver; fuzzy measure; fuzzy integral; genetic algorithm;

CMA-ES; potential field

7

Acknowledgements
Studying at HKPU COMP has been one of the most valuable and enjoyable time in my

life. By that time, I have worked with a great number of people whose contribution in the

research and the making of the thesis deserved special mention. It is a pleasure to convey

my gratitude to them all in my acknowledgment.

In the first place I would like to express my deepest thanks and gratitude to my supervisor,

Dr. Simon Chi Keung Shiu. I would like to thank him for his kind supervision,

continuous support and care during my PhD study. His truly scientist intuition and vision

has inspired my thinking and sharpened my research skill. The experience as his student

in these three years is great benefit to me for the rest of my life.

Next, I want to thank Prof. Xizhao Wang and Prof. Yan Li, who stayed up with our team

to teach us. They have given me many useful suggestions and comments about my

research project. It is the time that I formally acknowledge their contribution.

I would like to thank all the members of in our research group, Yingjie Li, Haibo Wang

and Ben Niu. I appreciate very much their feedbacks, discussions, assistances, advices,

and supports.

Thanks also to the board of examiners who spent their time and effort in assessing this

research work and provided many good suggestions for me to improve the thesis. They

are Prof. Man Leung Wong from Department of Computing and Decision Sciences in

Lingnan University, Prof. Ashish Ghosh from Machine Intelligence Unit in Indian

Statistical Institute and Dr. Korris Chung from Department of Computing in The Hong

Kong Polytechnic University.

Last, but not the least, I wish to express my deepest appreciation to my family for their

endless love, unwavering support and encouragement.

8

List of Publication
1. Peter H. F. Ng, Y. J. Li and Simon C. K. Shiu. Unit Formation Planning in RTS game

by using Potential Field and Fuzzy Integral. In: Proceeding of 2011 IEEE
International Conference on Fuzzy System (Fuzz-IEEE 2011), Taipei, Taiwan, 27-30
June 2011, pp.178-184.

2. Y.J. Li, Peter H.F. Ng, H.B. Wang, S.C.K. Shiu and Y. Li. Apply Different Fuzzy

Integrals in Unit Selection Problem of Real Time Strategy Game. In: Proceeding of
2011 IEEE International Conference on Fuzzy System (Fuzz-IEEE 2011), Taipei,
Taiwan, 27-30 June 2011, pp.170-177.

3. Peter H. F. Ng, Y. J. Li, H. B. Wang, Y. Li and Simon C. K. Shiu. Bottom-Up

Strategy Planning Model by applying Fuzzy Integral in RTS Game. In: Proceeding of
Joint 5th International Conference on Soft Computing and Intelligent Systems and
11th International Symposium on Advanced Intelligent Systems (SCIS & ISIS),
Okayama, Japan, 8-12 December 2010, pp.1579-1584. (Best Student Paper Award)

4. Y. J. Li, Peter H. F. Ng, H. B. Wang, Y. Li and Simon C. K. Shiu. Applying Fuzzy

Integral for Performance Evaluation in Real Time Strategy Game. In Proceeding of
2010 2nd International Conference on Information and Multimedia Technology
(ICIMT), Hong Kong, RPC China. 28-30 December 2010, pp.168-172.

5. Peter H. F. Ng, Simon C. K. Shiu and Haibo Wang. Learning Player Behaviors in

Real Time Strategy Games from Real Data. In: Proceeding of Twelve Rough Sets,
Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC), New Delhi,
India. 15-18 December 2009, pp.321-327.

6. Haibo Wang, Peter H. F. Ng, Ben Niu and Simon C. K. Shiu. Case Learning and

Indexing in Real Time Strategy Games. In: Proceeding of Fifth International
Conference on Natural Computation (ICNC), Tianjin, China, 14-16. Aug 2009,
pp.100-104.

7. Ben Niu, Haibo Wang, Peter H. F. Ng and Simon C. K. Shiu. A Neural-Evolutionary

Model for Case-Based Planning in Real Time Strategy Games. In: Proceeding of
Twenty Second International Conference on Industrial, Engineering & Other
Applications of Applied Intelligent Systems (IEA-AIE), Tainan, Taiwan, 24-27 Jun
2009, pp 291-300.

9

Table of Content

Abstract ... 4

Acknowledgements ... 7

List of Publication ... 8

List of Tables ... 12

List of Figures ... 13

Chapter 1 ... 16

Introduction ... 16

1.1 Computer games and AI development ... 16

1.2 Motivation and objective of this research ... 17

1.4 Methodologies and research ... 19

1.5 List of contribution ... 21

1.6 Thesis organization ... 22

Chapter 2 ... 23

Literature review ... 23

2.1 Real time strategy game research and development 23

2.2 Soft computing techniques applied to RTS games ... 29

2.3 Soft computing techniques used in this research .. 39

2.4 Other techniques used in this research ... 55

2.5 Summary ... 58

Chapter 3 ... 59

A fast indexing scheme for identifying game unit’s best location 59

3.1 Introduction .. 59

3.2 Tower defense problem in RTS game .. 60

10

3.3 Neural-evolutionary model ... 60

3.4 Experimental result and discussion .. 66

3.5 Summary ... 71

Chapter 4 ... 72

Learning player behaviors from .. 72

RTS game data .. 72

4.1 Introduction .. 72

4.2 Knowledge discovery problem in RTS game ... 73

4.3 Player behavior model .. 74

4.3.1 Behavior acquisition in replay data ... 74

4.3.2 Dynamic Bayesian network structure and parameters learning 76

4.3.3 Prediction in dynamic Bayesian network ... 77

4.4 Experimental result and discussion .. 78

4.5 Summary ... 82

Chapter 5 ... 83

An order-based fuzzy integral to model feature interactions in RTS games 83

5.1 Introduction .. 83

5.2 Macro control problem in RTS game ... 84

5.3 Bottom-up strategy planning model ... 86

5.4 Evaluating the non-linear property in unit combination 88

5.5 Applying different fuzzy integral in fitness function 99

5.6 Experimental result and discussion .. 110

5.7 Summary ... 127

Chapter 6 ... 128

Optimal path determination using ... 128

11

directional based fuzzy integral and potential field .. 128

6.1 Introduction .. 128

6.2 Micro control problem in RTS game .. 129

6.3 Min-Max strategy ... 130

6.4 Learning fuzzy measure by evolution strategy ... 132

6.4 Combining Choquet Integral and potential field .. 134

6.5 Combining directional based fuzzy integral and potential field 143

6.6 Experimental result and discussion .. 155

6.7 Summary ... 158

Chapter 7 ... 159

Conclusion and future works ... 159

7.1 Summary of the research problem .. 159

7.2 Summary of the research work ... 160

7.3 Future work... 163

Reference ... 167

12

List of Tables

TABLE 3.1 GA’s training time with different generation .. 68

TABLE 3.2 GA’s training time with different population ... 68

TABLE 3.3 Performance of GA and Neural-Evolutionary Model 70

TABLE 3.4 Training performance on different hidden layers 70

TABLE 4.1 Selected data for DBN structure ... 75

TABLE 4.2 Time of Learning and Prediction in DBN ... 78

TABLE 5.1 Data in Warcarft III Replay .. 92

TABLE 5.2 Sample of Warcarft III Replay .. 92

TABLE 5.3 Elements in ScoreWarcraft III ... 97

TABLE 5.4 Data nature of testing data cluster ... 110

TABLE 5.5 Mann-Whitney Test of Data Cluster 1 & 2 ... 111

TABLE 5.6 Mann-Whitney Test of Data Cluster 3 & 4 ... 112

TABLE 5.7 Bivariate correlation of Different Data Cluster ... 113

TABLE 5.8 Comparison of training error in GA and CMA-ES 119

TABLE 5.9 Comparison of testing error in GA and CMA-ES 119

TABLE 5.10 Comparison of training error in different Fuzzy Integral 121

TABLE 5.11 Comparison of testing error in different Fuzzy Integral 121

TABLE 5.12 Comparison of training time in different Fuzzy Integral 121

TABLE 5.13 Comparsion of AVG Error with Weighted Average 122

TABLE 5.14 Comparsion of AVG Error with Order based FI (CMA-ES) 123

TABLE 5.15 Fuzzy Measure in Data cluster 4 ... 126

TABLE 6.1 Relationship of Armor and Weapon Type in Warcraft III 141

TABLE 6.2 Armor and Weapon Type of unit type (partial) .. 141

TABLE 6.3 Comparison of different Micro Control .. 157

TABLE 7.1 Comparison of frequency with different magnitude in subset 163

13

List of Figures
Figure 2.1 Screen capture of RTS games .. 25

Figure 2.2 Tech-tree of Warcraft III (Human race) .. 26

Figure 2.3 Crossover of strategy cases by Ponsen .. 34

Figure 2.4 Structure of failure detection CBR by Mehta .. 34

Figure 2.5 Online learning model by Spronck .. 35

Figure 2.6 Sample potential field of Hagelback ... 37

Figure 2.7 Lebesgue Integral. w is the measure of a function ()f x 42

Figure 2.8 Choquet Integral. µ is the fuzzy measure of a function ()f x 43

Figure 2.9 Process of Genetic algorithm ... 46

Figure 2.10 The directional optimization of the CMA-ES algorithm 48

Figure 2.11 The step size improvement of the CMA-ES algorithm 50

Figure 2.12 A simple artificial neural network ... 51

Figure 2.13 A simple Hidden Markov Model ... 52

Figure 2.15 Motion of a robot in potential field ... 56

Figure 3.1 Neural-evolutionary model .. 61

Figure 3.2 Demonstration of the encoding in GA ... 62

Figure 3.3 Cannon distribution ... 62

Figure 3.4 Damage on the enemy ... 63

Figure 3.5 Encoding of Point A .. 65

Figure 3.6 ANN structure ... 66

Figure 3.7 Cannon distribution for different generations ... 67

Figure 3.8 Fitness on different generations and populations .. 67

Figure 3.9 Training and testing result of BP ANN ... 68

Figure 3.10 Training and testing result of RBF ANN .. 70

Figure 3.11 Training performance of BP .. 71

Figure 4.1 Work flow of player behavior simulation model ... 74

Figure 4.2 Structure of a DBN ... 77

Figure 4.3(a) Accuracy of 10 learning instances .. 80

Figure 4.3(b) Accuracy of 30 learning instances .. 80

14

Figure 4.3(c) Accuracy of 50 learning instances .. 80

Figure 4.4(a) Accuracy for the learnt DBN for Player B .. 81

Figure 4.4(b) Accuracy for the learnt DBN for Player C .. 82

Figure 5.1 Bottom-up strategy planning model .. 87

Figure 5.2 Warcraft III expansion, The Frozen Throne (WIII: TFT) 91

Figure 5.3 Learning fuzzy measure by GA ... 94

Figure 5.4 Learning fuzzy measure by CMA-ES ... 95

Figure 5.5 Fitness calculation of one chromosome... 96

Figure 5.6 Estimated score calculation ... 98

Figure 5.7 Comparison of CI and OI in three replay data ... 102

Figure 5.8 Finesses of GA in different population ... 116

Figure 5.9 Finesses of GA in different mutation rate .. 116

Figure 5.10 Finesses of GA in different generation ... 117

Figure 5.11 Finesses of CMA-ES in different population .. 118

Figure 5.12 Finesses of CMA-ES in different iteration ... 118

Figure 5.13 Training error of different fuzzy integral .. 124

Figure 5.14 Testing error of different fuzzy integral .. 124

Figure 6.1 Overview of the Min-Max strategy .. 131

Figure 6.2 Learn the fuzzy measure by GA ... 133

Figure 6.3 Choquet Integral with non monotonic fuzzy measure 135

Figure 6.4 Effect of the decay function, ((x,y),)iP Pϕ .. 137

Figure 6.5 Potential field of enemy .. 137

Figure 6.6 Effect of progressive function .. 138

Figure 6.7 Potential field of footman ... 139

Figure 6.8 Potential field of priest ... 140

Figure 6.9 Potential field of sorceress .. 140

Figure 6.10 Maneuver of player units .. 140

Figure 6.11 Potential field of enemy .. 142

Figure 6.12 Potential field of enemy .. 143

Figure 6.13 Potential field of enemy .. 143

Figure 6.14 Effect of the decay function, 0.5D = .. 144

15

Figure 6.15 Effect of the decay function, 2D = .. 144

Figure 6.16 Effect of the decay function, (,)i jP Pϕ ... 148

Figure 6.17 The shape of the affected area .. 150

Figure 6.19 Intermediate phase (Diversion Attack) ... 151

Figure 6.20 Centralized phase .. 152

Figure 6.21 Potential field with negative interaction ... 152

Figure 6.22 Potential field of player ... 153

Figure 6.23 Effect of progressive function, φ ... 154

Figure 6.24 Simulation in Warcraft III ... 155

Figure 6.25 Diversion and flank attack in Warcraft III .. 157

Figure 7.1 Usage count of subset selection for order-based FI in data cluster 1 164

Figure 7.2 Usage count of Subset selection for CI in data cluster 1 164

16

Chapter 1

Introduction
In this chapter, the background of this research is stated. Then, the overview of computer

game and AI development is introduced. After that, we focus on real time strategy (RTS)

game and its current situation is summarized. The motivation of this research and the

main research problem is stated. Finally, the methodologies of research and structure of

this thesis is explained.

1.1 Computer games and AI development
The first computer game was written by Douglas in 1952 for his Ph.D. thesis on human-

computer interaction in University of Cambridge. It was a tic-tac-toe game. The Artificial

intelligence (AI) could play against a human player. It was regarded as the first

connection of human and AI in computer games. In 1975, a group of Massachusetts

Institute of Technology (MIT) students developed an optimal strategy for the AI to play

Tic-Tac-Toe perfectly. Then, the development of computer game and AI has never been

stopped. In 1980s, computer gaming industry was started and grew rapidly. Numerous

2D games were published, such as Pac-Man and Donkey Kong. In 1985, Nintendo

released the first video game console and brought the computer game into our family.

Many 2D action games, such as Super Mario Bros became a success. Nearly all these

games consisted of AI to play with humans. As the game play and control were simple at

that time, decision tree and rule based system were widely used. AI development for each

specific game was easy. 1990s were regarded as an innovation decade of video gaming.

3D computer graphics raised the computer gameplay into another stage. Lots of new

gameplay were started, such as first person shooting (FPS), massively multiplayer online

role play game (MMORPG) and real time strategy (RTS) game. Thousands of games

were published each year afterwards. Therefore, technologies and theories had to be

generalized to fulfill the need of market, including computer graphics, multimedia,

network and AI. In fact, computer graphics and multimedia showed a significant

improvement at that time. In 2010s, the game developers were not only the people in the

17

game industry. The phenomenon of user-created modifications (MOD) games has begun.

It extended the life cycle of each game. One of the most important examples is Warcraft

III which is a RTS game by Blizzard. The elements that allow players to modify were not

only the graphics. Players could design and create new stories, battlefields, game rules

and logic in Warcraft III. Two famous gameplays created by the player are tower defense

(TD) and defense of ancients (DotA). TD becomes a standalone game in many platforms,

especially in mobile device. DotA is predecessor of World of Warcraft which is a well

known MMORPG. It occupies two-thirds of the MMORPG market. Another good

example of MOD game is Roblox which is a massively multi-player 3D game

environment. The players in Roblox build 5.4 million games in 2011. As MOD game

players are not professional programmer, a user friendly and powerful editor for

adaptable AI was strongly requested. Therefore, AI can be used in different battlefield

and gameplay easily.

1.2 Motivation and objective of this research

1.2.1 Driven force in game industry
The Game market grows rapidly in these few years. DFC Intelligence, which is a

strategic market research firm focuses on interactive entertainment, stated that the global

game market grows from USD$28.5 billion in 2005 to USD $66 billion in 2010. It grows

130% in these 5 years. DFC also forecasted that the market may reach $81 billion in 2016.

It is a market with huge potential and the development of game related technologies is

fast. In China, there are about ten new online games released each month. A special game

AI is necessary to give a special experience to the player as the graphics, physic,

gameplay and multimedia improvement are becoming saturated. Most of the games are

similar. Online game play could be a solution. It allows lots of human players to play

with each other. However, it is difficult to keep a certain amount of players that are

available in 24 hours a day and perform different behavior. Moreover, designing strong

Artificial Intelligence (AI) for computer games is also a very challenging task as it needs

to consider tremendous complexity of games rules. Modern computer game is a complex

environment which consists of multiple agents in 3D or even 4D dimension, especially in

real time strategy (RTS) game. To fulfill the need of the market, building a scalable and

18

various AI in an efficient way become an important need. “Scalable” means that AI can

change its level of intelligence. “Various” means that AI can perform different behaviors

in the same situation. “Efficient” means that it is easy to adapt in different games or battle

field with minimal human power.

1.2.2 Driven force in game research
RTS game is military simulation. Players fight for the resource, set up economics, expand

the base and tech tree, build an army and destroy the enemy base. Other computer games,

such as action game or RPG, can rely on graphics and multimedia to attract players.

However, successful RTS games mainly rely on game rule design. The role of AI in RTS

game is an importance part. Current AI performance in commercial RTS games is not

good enough to play with human player. It is lagging behind the gameplay and rule

development. AI is not able to handle complex decision making, interacting object,

partial information as well as fast-paced units maneuver. Further research and

improvement of AI in RTS game is necessary. A search in the IEEE Xplore using the key

word “real time strategy game” from 2000 to present gives 21,292 results. Many journals,

such as the new issued IEEE transaction on Computation intelligence and AI in games,

and many conferences, e.g. The Game Developers Conference, The International

Conference on Computer Games, Game AI conference, The International Conference of

AI for Interactive Digital Entertainment, etc, totally or partially focus on RST games.

Many researchers, such as Buro and Lucas [Buro 2004, Lucas 2009] have called for AI

research of RTS game in different conferences. They stated an important thing that RTS

game is a well defined environment to conduct experiment for different AI algorithm.

There are many low hanging fruits waiting for the researchers. Hence, RTS game is a

huge environment and many areas are under study. Researchers can focus on different

aspects, such as decision making, path find and scouting algorithm, unit maneuver

planning, pattern recognition of player behavior.

19

1.3.3 Research problem
The research problem of this research can be summed up to two questions. First one is

how to improve the Artificial Intelligence (AI) algorithms to learn new tasks and adopt in

RTS game. Therefore, various AI can be developed efficiently in both strategy planning

and units maneuver.

The second one is how to handle the reasoning about feature interaction in RTS game and

improve AI performance. Therefore, the feature interaction about the rules and elements

in RTS game can be formulated.

1.4 Methodologies and research
In our work, we focus on strategy indexing, learning and optimization in RTS game. We

selected tower defense which is a subgenre of RTS game play as our preliminary study.

The goal of tower defense is to set up the towers in suitable positions and stop enemies

from crossing a battlefield. As there is no specific rule to guide the setting, we proposed a

machine learning approach based on genetic algorithm and artificial neural network and

developed a neural-evolutionary model for case-based planning. We encoded the

battlefield information into a chromosome in genetic algorithm (GA). Throughout the

crossover and mutation, GA could find an optimized solution in different battlefields.

However, it is time consuming due to its random walk in new battlefield. It is not

applicable in RTS game. We created a model to adopted neural network (NN) into GA to

solve this problem.

After the preliminary study, we extended our work to RTS game play. We decoded and

extracted the data from the replay of Warcraft III which is a well known RTS game. We

adopted a Case-Based Reasoning (CBR) approach to create player behavioral models.

The proposed method analyzed and cleaned the data in RTS games. It converted the

learnt knowledge of one player into a probabilistic model, i.e., a Dynamic Bayesian

Network (DBN), for representation and prediction of player behaviors.

20

Although we have developed a model to learn player behaviors, there is lack of algorithm

to evaluate the performance of cases and handle the feature interaction in RTS game. To

overcome this problem, we divided the RTS game play into two types and performed the

research. First one is macro control which is about the strategy planning. Second one is

micro control which focuses on unit maneuver.

For the macro control, the success of strategy planning is largely determined by an

appropriate selection of a suitable mix of game unit types. However, there is no simple

optimal strategy existing and it is difficult to decide a mixed army to respond to opponent

group as the situation of intransitive superiority often occurs among different unit types.

We proposed a bottom-up approach for strategy planning in RTS game. It can avoid

defining the complex if-then statement. Action will be generated according to the

decision of unit combination. We extracted the strategies from real professional players

in Warcraft III and combined GA, CMA-ES, fuzzy measure and integral to learn the

performance of unit combination. Fuzzy measure of each subset is guided by the fuzzy

integral in the GA or CMA-ES training. Three new fuzzy integrals, Mean based, Max

based and Order based fuzzy integral are proposed to describe the feature interaction in

RTS game.

For micro control, it is more complicated than macro control, such as building and unit

production sequence. The environment is hostile and dynamic in RTS game. It consists of

a great quantity of possibilities. Hence, multiple targets and the non-additive property of

unit formation lead to a problem in the micro control. Traditional tree searching or A*

searching is unable to handle these two properties. They are time consuming in

development as there are too many weightings and each of them will interact with the

others. Hence, the model did not allow multiple criteria. We applied potential field, fuzzy

measure and integral to solve the micro-control. A new fuzzy integral, Directional based

fuzzy integral is proposed to descript the interaction in potential field. It optimizes the

path finding algorithm and provides the ability to perform flank and diversion attack in

RTS game.

21

1.5 List of contribution
In summary, we have developed the following soft computing based techniques for RTS

game.

1. A new location planning model is developed to quickly position game units

effectively in a map so that they will create maximum casualty to enemies. The key

contribution is the formulation of the RTS game strategy selection as CBR planning

using a neural-evolutionary model.

2. A new fuzzy integral, order based fuzzy integral, is developed to evaluate unit

combination for production. This integral considers the production sequence of game

units and the interaction among them. It reflects the player behavior is RTS game.

3. A new strategy planning model is built to extract and evaluate game unit combination

strategy from past data. This model provides effectively combat with opponents’

troops.

4. A new fuzzy integral, directional based fuzzy integral, is developed to evaluate unit

cooperation. This integral can identify the positive and negative interaction for unit in

RTS game.

5. A new path planning model is built to provide effective unit maneuver and team

compositions in RTS game. This model provides various unit movement, such as

flank and diversion attack.

22

1.6 Thesis organization
This thesis is divided into seven chapters. Chapter 2 is the literature review. It provides

the basic information of RTS game and the soft computing technologies that used in this

research. Importance contributes from other researchers and research trend are also

summarized and stated in this chapter. Chapter 3 is the preliminary study for identifying

game units’ best location problem. We combined GA and NN to create a neural-

evolutionary model. Chapter 4 is about how to learn the player behavior in RTS game.

We applied DBN to solve this problem. Chapter 5 explains our methodology of fuzzy

measure learning with different fuzzy integrals and how to solve the macro control

problem of RTS game. Chapter 6 presents our work on fuzzy integral and potential field

to solve the micro control problem in RTS game. Conclusion and future work are stated

in Chapter 7.

23

Chapter 2

Literature review
In this chapter, the history of real time strategy (RTS) game is stated with the core

elements and game play introduced. Moreover, four main research areas in RTS game are

highlighted and some importance contributions by other researchers are summarized.

Finally, soft computing techniques which used in this research are explained.

2.1 Real time strategy game research and development

2.1.1 History and gameplay of RTS game
Real time strategy (RTS) game is military simulations. Dune II: The Building of a

Dynasty (Figure 2.1(a)) is regarded as the first RTS game. It was published by Westwood

Studios in 1992. It consisted of all the key elements and mechanics of modern RTS game

and serves as a template of RTS game development. After Dune II’s success, two famous

RTS game series were then created. One was Westwood’s Command and Conquer.

Another was Warcraft and Starcraft series produced from Blizzard Entertainment, the

world second biggest gaming company in 2010. Their revenue is over 4,622 million.

Unlike other gaming companies, their products are limited. There are only 21 games

produced in these twenty years, while the biggest gaming companies, Nintendo and the

third one, Electronic Arts created more than 1000 games. The 21 games of Blizzard are

from three main franchises, Warcraft, Starcraft (Figure 2.1(c)) and Diablo. Each of them

provides a huge profit.

In 1994, Blizzard released Warcraft, a RTS game set in the realm of a fantasy. Two years

later, Warcraft II (1995) as shown in Figure 2.1(b), obtained one of the biggest successes

RTS genre. The game had a long value. Wargus was the academic version of Warcraft II

and famous in Game AI research. New RTS games since WARCRAFT II brought the

genre to a higher level. In 1998, Blizzard released Starcraft and in 2002, Blizzard

released Warcraft as shown in Figure 2.1(d).

24

We selected Warcraft III : The Frozen Throne in our study case. It was the official

expansion pack to Warcaft III: Reign of Chaos and published on 1st July 2003. There are

two main advances for being a testing bed of research. First, it provides fruitful

environment for AI development. Warcarft III consists of more than 100 units and

building types. Each unit consists of 40 to 50 properties. The games rules are complicated

and consists of many intransitive superiorities (A beats B, B beats C and C beats A

[Watson 2001]) and interactions among the unit. In fact, it won many prizes for its

gameplay, including the game of the year in GameSpot 2002 and strategy game of the

year in Academy of interactive Arts and sciences. Secondly, there are thousands of cases

available in the Internet. Warcraft III provides a replay function which record down all

the player input. Player can upload their replay and share with others. Hence, there is no

strategy or solutions can absolutely win. The styles of players are various. Therefore, it

provides sufficient data for research.

Element in RTS games

Although different RTS games provide different experience to the players, there are

common core elements found. Three of them are introduced in the following section.

World

First, a battlefield (or map) is given to all players. It is a virtual world with limited size

and consists of different obstacles and landscapes, including grassland, mountain, blight

and river. They affect the abilities of different units. For example, units in mountain

obtain an extra bonus when they attack the units in the grassland, undead units obtain an

extra regeneration bonus on blight area and only the air unit can go through the river, etc.

The battlefield also provides limited resources. Raising an army or developing new

weapons requires resources. Players have to fight for the resources and maintaining a

thriving economy.

Buildings and units

Buildings and units are the basic elements in RTS game. They consist of different

attributes and skills, for example, cost, hit points, speed, attack point, attack type, etc.

25

They have different strengths and weaknesses. One of the tricky points in RTS game is

the most expensive and powerful units which can easily be destroyed by some cheap

units. According to the game rules, players have a degree of freedom to choose his army

mix. Then, players control the units to attack or defense.

(a) Dune II (b) Warcraft II

(c) Starcraft (d) Warcraft III

Figure 2.1 Screen capture of RTS games

Rules

RTS games consist of complicated rules. They are different in each game. However, two

general rules could be found in all RTS games. They are development rule and

intransitive superiority rule. Elements in RTS game follow the development rules, such as,

include the construction of buildings, the research of new technologies and combat. A

tech tree is used to restrict the unit development. Players cannot create all the unit types

at the beginning. An example of tech tree in Warcraft III is shown in Figure 2.2. Players

26

need to flight for the resources and create different building or research to unlock the

advance unit.

Another common game rule is intransitive superiority. Each unit or skill is assigned to

one or more types. Each type is better or worse versus others. For example, if the

opposing player builds ranged attackers, then the natural counter will need to build melee

unitswhich have an attack bonus versus them. It encourages unit counters and unit mixing

in combat. Therefore, there is no strategy or solutions which can absolutely win.

Figure 2.2 Tech-tree of Warcraft III (Human race)

27

Gameplay of RTS game

The fundamental game play of a typical real time strategy (RTS) game is collecting and

allocating resources to build an army and destroy enemy units. Base on the game rules,

players are required to decide what buildings or units should be created, what kinds of

advanced skill or unit should be unlocked, when and where the units should attack the

opponents. We can divide these controls and decision into two types. They are

introduced as followings.

Macro control (Strategy)

Macro control or strategy is about the economic model of resource-gathering, base-

building and technology development. It tends to predict the future of the battle and the

overall situation.

Micro control (Tactics)

Micro control or tactics is about the maneuver of the units, including movement, attack,

defense and other special skills. It tends to predict the current situation of the battle and

individual status of units.

2.1.3 Research in RTS game
RTS game is a good testing bed for AI research as it consists of complicated game rules

and numerous kinds of units. There are many remaining challenges because of its

complex decision making under time pressure and uncertainty, such as resources

management in macro control or robust terrain analysis in micro control. Hence, the

search space of strategies is large and often involves complicated interactions or

intransitive superiorities among the game units and corresponding actions. According to

Buro [Buro 2003, 2004], there are four main areas of game AI research that is under

study. In the following session, a brief history of these research areas is introduced.

Resource management (Macro control)

The first one is resource management which is stated as macro control in our research. It

is the main part of RTS game research with most of researchers get interested in this part.

28

They focus on the decision making for the sequence of actions, including the time to

extend the base and upgrade the tech tree in RTS games. Rule based system is dominant

in current RTS game and earlier research such as [Jones 2001]. Genetic algorithm and

other evolution algorithms have also applied to search for a best fit sequence of actions in

macro control such as [Reynolds 2005]. In recent years, Aha and his group have applied

Case based reasoning (CBR) and provided many important contributions. CBR looks like

a promising starting point for macro control and its details are introduced in the next

session. Other researchers, such as Ontanon [Ontanon 2007] and Sharma [Sharma 2007],

have also followed CBR approach and continued its development.

Adversarial real time planning (Micro control)

The second one is adversarial real time planning which is stated as micro control in our

research. The search space of the units’ movement is nearly infinite in RTS game. The

first problem is how to determine the destination and the path. Miles [Miles 2006] and

Hagelback [Hagelback 2008] adopted potential field to solve this problem. The

destination and path can easily be indentified in the dynamic environment. It is easy to

adopt and efficient to compute in real time. Then, the research of micro control extends to

handle the unit grouping and details maneuver, such as flocking and tracking problem.

Potential field still have been widely used such as [Preuss 2010] and [Beume 2008]. In

these few years, some researchers improved the traditional path finding algorithm, so that,

it can provide inexact solution in a more efficient way for the real time game.

Baumgarten [Baumgarten 2009] applied simulated annealing as a fast converge method

to locate the destination. Mingliang [Mingliang 2010] has improved the A* path finding

to find multiple paths for tracking the enemy. Keaveney [Keaveney 2011] has applied

the backward reasoning approach in genetic programming to locate the destination.

Player and opponent modeling and learning

Opponent modeling and learning is mainly combined with the macro control. Usually, the

researchers turn the sequence of actions and the conditions from human player into cases

and learn by model. One of the advances is to allow the AI system to learn quicker.

Hence, by learning the opponent pattern, the performance of counter strategies could be

29

improved. Again, CBR is a common approach. Besides CBR, genetic algorithm,

Bayesian network and neural network have been applied to learn player and opponent

modeling, such as [Louis 2005, Jack 2006].

Spatial and temporal reasoning

Spatial and temporal relationship among the actions is difficult to investigate. In fact, all

the above research involves spatial and temporal reasoning but all of them are designed

for particular platform and cannot be generalized. Current RTS game AI has ignored

these issues and will be easily confused in common sense reasoning [Forbus 2002]. One

of the examples is the temporal reasoning among the action in CBR. CBR approach

groups the sequence of action into cases. Decision of actions is affected by time, player

and opponent control. They are correlated to each other and the time slices is highly

flexible. It caused the difficulty to reform the reasoning.

2.2 Soft computing techniques applied to RTS games

2.2.1 History and characteristics of soft computing techniques
Traditional rule based, game-tree searching and brute force approach is not suitable in

this dynamics environment. It is time consuming in both development and run time. In

RTS game, an efficient method is needed to provide a best fit solution as all the

conditions, targets and destinations will be changed in milliseconds. Soft computing

technologies become a reasonable approach. It was first introduced by Zadeh [Zadeh

1994]. The aim of soft computing is to provide inexact or best fit solution to

computationally hard tasks which is suitable to describe the situation in RTS game. In the

following session, we have selected some key contributions of applying soft computing

in RTS game.

30

2.2.2 Case-based planning in RTS game

Case Based Reasoning (CBR) is a suitable approach to deal with the strategy planning in

RTS game as it can handle the inexact strategy planning efficiently. We try to compare

three experiments. The first one is written by David W. Aha [Aha 2005]. Platform of his

experiment is Wargus, which is an academic version of Warcraft II. Second paper is

written by Santiago Ontañón [Ontanon 2007]. Platform is WARGUS, too. The third

paper is written by Ji-Lung Hsieh [Hsieh 2008]. Platform is starcraft.

The first challenge of applying CBR is to encode the complex and continuous

environment and then turn it into cases for offline learning, i.e., case representation

problem. Aha divides the game play into 20 states and 8 different AIs. He defines a case

as following.

Case = <Building State, Description, Tactic, Performance>.

Santiago defines a case as following.

Case = < State, Goal, Behavior groups>

Hsieh defines a case as following.

Case = <Building actions, States 1 2 6{ , ,... }a a aF F F , Performance>

In general, the authors turn the data from simulation or real game replay into cases. The

cases combine conditions, group of game actions and performance. Case clustering is

performed by using the game states. It can speed up the case retrieve process and control

the number of cases in a reasonable number.

The second challenge is how to compare the case similarity. Case is retrieved by

evaluating the similarity of current situation and its performance, which is usually the

score inside the game. For example: number of kills or number of destroys. Aha uses the

31

similarity of description and the value of performance to select the building state and

tactic in case base as Equation (2.1). Santiago uses similarity of game state and goal to

select the behavior groups as Equation (2.2). Goal is the building or tech tree

development in the cases. In another words, it is another kind of states. Hsieh uses

similarity of game state and the value of performance to select the building action as

Equation (2.3).

Pr(,) / (,) (,)eformance Description DescriptionSim C S C dist C S dist C S= −

where C is the case in case based

DescriptionC is the vector of case situation

Pr eformanceC is the score of case

S is the situation of new case

dist is the Euclidean distance

(2.1)

(,) (,) (1) (,)Description Description Goal GoalSim C S adist C S a dist C S= + −

where a is control weighting and 0.5a =

(2.2)

(,) / (,)Performance Description DescriptionSim C S C dist C S= (2.3)

The three equations are more or less the same. In general, case is retrieved by evaluating

the similarity of current situation and its performance. When there is a new situation, a

solution has to be seek accordingly. The new situation is compared with all the cases in

case based one by one. The case with the highest performance is chosen as the solution.

By observing the weighting of the above equations and compare the performance,

similarity will usually be dominant in the equation. It leads the number of alternative

cases become very little. Another weakness of the equations is that they do not

considerate the unit combination. Unit combination is a key element and will directly

affect the result of battle. It is difficult to involve in conditions as the combination is

numerous. The number of cases will increase sharply.

32

For the similarity, nearly all authors are using the Euclidean distance to compare the

differences between two cases. It is a simple calculation to find out the same cases.

However, if the input factors are not weighted and normalized, it may be then easily

dominant by some other fields. For example, the number of building in RTS game is less

than unit. Unit will be dominant in Euclidean distance but building in RTS game always

shows its importance in evaluating the similarity. Some authors choose to balance the

weight of input factors but they cannot show their reason of adjustment.

For the performance, it is usually calculated by number of kills or destroys in certain

cases. It is a general estimation for traditional game, such as Wargus, which is already 15

years old. In another words, it is an aggressive approach to lead the AI to win in the old

game. However, current RTS game contains complex game play; players can perform

complex strategy to trap the opponent by misleading. They can win the game with very

low scores,for example heroes rush and disturb strategy in Warcraft III. Hence, such kind

of performance calculation cannot be easily performed with a various AI in game. Finally,

equation is always an ad hoc solution for one game. The factor and the structure need to

tune in every RTS game. They do not have any theories or general methodologies behind.

2.2.3 Reinforcement learning in RTS game
Reinforcement learning (RL) in game AI is proposed by Szita, Spronck and Ponsen who

work with Aha. It is a framework that based on the process of punishing and rewarding

on game action. It is fast and easy to implement. The fitness function is used to evaluate a

performance for game AI and expressed in a numeric value that known as weight. The

higher the weight is the more suitable action. In another words, if the action is good,

reward it by increasing the weight value. If it is a bad action, punish it by decreasing the

weight. For each runtime, RL will try to maximize the frequency of rewards and

minimize the frequency of punishments. As a result, it tries to perform the best action and

condition pairs through the past experiment. Ponsen and Spronck [Ponsen 2005] have

shown a solid work about adopting RL in RTS game.

33

RL have improved the CBR, especially in the case revision and retain process. It can

evaluate the individual action in case. Therefore, actions from different cases can be

combined. Ponsen [Ponsen 2005] has considered long term effect of cases, /GC EC ,

and the military power of player and opponent as shown in Equation (2.4). Every cases

contain numerous of action in different states, i . Then, the performance of actions are

updated by a weighting, W , as shown in Equation (2.5) one by one. Based on W , he

also proposed a method to recombine the game action from different states automatically

by Genetic Algorithm. It helps CBR to achieve a better performance case. An example of

crossover is shown in Figure 2.3. Szita [Szita 2009] proposed a diverse case retrieve

process in game. Therefore, CBR will not perform the exact action in the same situation.

The game action is recombined and the fitness is calculated by cross entropy. Mehta

[Mehta 2009] also showed similar approach in his research. He proposed to detect the

failure pattern and publish the cases, such as continuously repeating behavior or wrong

sub-goal of the cases. The structure of his CBR is shown in Figure 2.4.

min ,

max ,

d

d o

d

d o

MGC b d lost
EC M M

F
Mb d win

M M

  
×  +  = 

 
  + 

where F is the fitness of action

M is the military power

o is the opponent, d is the player

/GC EC is used to ensure the case achieve a higher score in long term

b is the control weighting of minimum and maximum value

(2.4)

34

min

max

max , 0.3 0.7

min 0.3 0.7 ,
1 1

i
org

i
org

b Fb FW W P P F b
b b

W
F bF bW R R W F b

b b

 −− − − <   = 
−−  + + ≥  − − 

where orgW is the original weighting before learning

minW and maxW is the control weighting of minimum and maximum value

R is maximum reward and P is maximum punishment

iF is fitness of the rules at state i

(2.5)

Figure 2.3 Crossover of strategy cases by Ponsen

Figure 2.4 Structure of failure detection CBR by Mehta

35

2.2.4 Online learning in RTS game
Learning could be classified into online and offline. Offline learning is performed after

the game finished. Common methods are CBR, GA and Bayesian Network. They have

been widely used because they are good classifiers and able to return a higher rate of

accuracy. However, they are slow and request heavy computation process. In contrast,

online learning is preformed during the game. It is proposed by Spronck. The main

structure is shown in Figure 2.5. The whole process is similar to RL. All the action is

stored in a ruled base system. The reward value with the action and condition is stored in

lookup tables. A reward is given to the correct action. The correct action could be more

easier selected by the model. It is fast to achieve in the learning purpose.

Figure 2.5 Online learning model by Spronck

Online learning could apply to predict the player behavior and regards as a case indexing

method. A reward could be given to a player action condition pair. Currently, it is not

practical in RTS game as player behaviors vary a lot and the repeated action will not

appear so frequently in one battle. Anti-cheating algorithm is another application of

online learning especially in first person shooting and online role play game. The action

is generated by cheating machine and can be regarded as a special kind of player

behavior. The actions of cheating vary in each battle but they perform regular action and

36

condition pair pattern in one battle. Therefore, online learning could be applied to this

kind of researches, such as Chamber [Chamber 2005] and Yeung [Yeung 2006] research.

Hence, as the conditions in RTS game are complex, the dimension of the lookup is highly

increased. An alternative approach is using ANN to replace lookup table. It is a fast

indexing method for CBR. Such kind of process does not require preprocessing.

2.2.5 Multi-agent potentials field in RTS game
Unlike traditional path finding problem which only considers few conditions and a clear

destination, such as cost or time, path finding in RTS game does not have a clear

destination and need to consider lots of additional conditions, such as avoiding the

enemies attack. Hence, inside the dynamic environment of the game, all the conditions

are changed in every game cycle which is only few milliseconds. In every game cycle, 30

to 50 units need to update their paths. It is one of the heavy tasks in game AI. Traditional

A* path finding is resources intensive and difficult to fulfill the need in RTS game.

Hagelback and Johansson [Hagelback 2008, Johansson 2008] worked together to apply

potential field in micro control of RTS game. They called it as Multiple Agents Potential

Field (MAPF). The testing bed was ORTS which was an open platform for real time

strategy game. MAPF shows the ability to avoid colliding with the terrain and getting

stuck at other moving objects. It consists of six phases.

First one is the identification of objects, e.g., gold mines or enemies of the game. Second

one is the identification of the driving forces. It can be regarded as a weighting of object.

Third one is the process of assigning driving forces (or charge) to the objects’ coordinate.

It generates a potential field around itself. These fields of different objects are summed

up to form a total potential field that is used by the agents for navigation. For example,

the potential of base is an attractive force and is calculated as Equation (2.6) and Figure

2.6. Each object generates different charges.

37

5.25 37.5 4
() 3.5 25]4,7.14]

0 7.14
base

d d
P d d d

d

− ≤
= − ∈
 >

where d is the distance from a point to the closest base

(2.6)

Figure 2.6 Sample potential field of Hagelback

The forth one is the granularity of time and space in the environment. Hagelback did not

give a details description about this task. He only pointed out that ORTS is a simple

application and his experiment was able to use the full resolution and the time frame

without considering any time and space problem. Otherwise, MAPF should be limited in

a fixed resolution of battlefield or fixed time slot to implement. The fifth one is the agents

of the system. After all the objects are identified in the battlefield, the units that required

to perform path finding would be treated as an input and to calculat the distance for each

object. The unit will then move from high potential area to low potential area. Final one

is the scripting of the agents. It is the interface between agents and game server. In

another word, the system generated the actions for the units.

Hagelback compared MAPF with other AI in ORTS 2008 tank battle competition. The

averaged winning percentage is 99.25%. His bot won this game in the 2008 years’ ORTS

competition. MAPF shows a better approach for path finding in dynamic environment of

38

RTS game. It is not resource intensive but is able to implement in many kinds of

computer game. The main weakness is all the equations for the potential field are ad hoc

on only certain game play. The driven forces of object are assigned by experts. As a

result, it is a time consuming task for AI developers to try out the best parameters set.

They need to run the simulation repeatedly. Hence, it is also not practical in real RTS

game as it consists of many units. The weighing is highly depends on the developer.

Hence, as the equation is not generalized and without any theory to support, it is difficult

to adopt into other games. It is a good approach but we suggest using machine learning or

other soft computing techniques and theories for the equation and parameter learning.

Preuss [Preuss 2010] improved the efficiency of potential field. His testing bed was Glest

which is another open source RTS game published by Figueroa. He applied flocking idea,

FC , into potential field. Therefore, the number of calculation is decreased from the

number of units to the number of group (or unit type). As shown in Equation (2.7), the

driving force of unit is assigned by its hit point (HP) and attack strength (D), not by

human expert. However, the aggregator is still normal additive. Super additive and sub

additive could not be shown. They are commonly found in RTS game. Detailed micro

control or path finding cannot be shown.

1
F u uu F u F

C HP D
SEW ∈ ∈

= ∑ ∑

where u is the unit in the group F

1
SEW

 is the weighting to scale the aggressiveness of units

HP is the hit point of unit

D is the attack strength of unit

(2.7)

39

2.3 Soft computing techniques used in this research

2.3.1 Fuzzy measure and fuzzy integral
Fuzzy measure theory and Choquet Integral was introduced by Gustave Choquet

[Choquet 1953] in 1953. The concept of its fuzziness and regarded as fuzzy integral was

introduced by Sugeno [Sugeno 1974] in 1974. It can be regarded as generalization of the

classical probability measure, and has become an effective tool to describe the interaction

among the contributions from individual attributes or variables. A value is assigned to

each combination of variables, i.e., for n variables, there are 2 1n − parameters to be

determined.

There are three kind of fuzzy measures. The first one is non-additive fuzzy measure.

They are the original form (basic form) of fuzzy measure. The definition is shown as

following.

Definition of non-additive fuzzy measure

Let (,)X F be a measurable space. Set function : (,)Fµ → −∞ +∞ is called a fuzzy

measure (monotone measure) if the following criteria are all fulfilled, i.e., (2.8), (2.9) and

(2.10)

() 0µ φ = (2.8)

() 0Aµ ≥ for every A F∈ (2.9)

() ()A Bµ µ≥ whenever A F∈ , B F∈ , A B⊆ (2.10)

The essential difference between fuzzy measure and traditional measure is that the former

one does not need to satisfy the additive property. These conditions can be further

elaborated as follows.

Set functionµ is called non-monotonic fuzzy measure or efficiency measure [Wang 2008]

if it satisfies (2.8) and (2.9). µ is also called a signed efficiency measure if it satisfies

(2.8).

40

Throughout the development of fuzzy measure, there are two simplified fuzzy measure,

such as Sugeno-λ and k-additive fuzzy measure. Sugeno-λ fuzzy measure is a special

case of fuzzy measure, which can be obtained by determining only one parameter λ. The

definition is shown as following.

Definition of Sugeno-λ fuzzy measure

Let (,)X F be a measurable space and let (1,)λ∈ − ∞ . Sugeno-λ fuzzy measure is a

function g from ()P X to [0,1] with properties (2.8), (2.9), (2.10), (2.11) and (2.12)

() 1g X = (2.11)

() () () () ()g A B g A g B g A g Bλ λ λ λ λλ∪ = + + (2.12)

It reduces the complexity of fuzzy measure by defining (1,)λ∈ − ∞ and

1
1 (1)n

ii
gλ λ

=
+ = +∏ to represent relationship between all the interactions. Therefore, its

presentation ability is weaker than original non-additive fuzzy measure. If 0λ > , then µ

is super additive on all the 2 1n − subsets of X , i.e., the interactions among all the

variables in X are positive If 0λ < , then all µ will become sub additive. It is not

suitable for RTS game play, where some units work positively while some others work

negatively.

K-additive fuzzy measure is another approach to reduce the number of parameters in

determining a fuzzy measure to size k. The larger k represents the stronger presentation

ability. The definition is shown as following.

Definition of k-additive fuzzy measure

Let (,)X F be a measurable space. k-additive fuzzy measure, µ is defined on X with

properties (2.8) and Möbius representation (or inverse) of µ is another set function

defined by (2.13) and with properties (2.14), (2.15) and (2.16)

41

\() : (1) ()A B

B A
m A Bµ µ

⊆

= −∑ , A X∀ ⊆ (2.13)

The original set function is recovered through Zeta function () ()
B A

B m Bµ
⊆

= ∑ (2.14)

If its Möbius representation verifies () 0M E = where E k> for any E X⊆ (2.15)

There exists a subset F with k elements such that () 0M F ≠ (2.16)

We have performed some experimental study by using Sugeno-λ and k-additive fuzzy

measures. However, the learning result is not good because of their limited representation

ability and monotonic assumption, i.e., A B⊂ implies () ()A Bµ µ≤ . In this study, due to

the complex interactions among the unit types in RTS games, we suggest adopting the

original non additive fuzzy measure. Furthermore, we will elaborate the monotonic

assumption of µ when applying to modeling of RTS games.

Fuzzy integral

The fuzziness of fuzzy measure theory is inside fuzzy integral. As the subset of fuzzy

measure is huge, subset selection should be preformed. The accuracy of performance is

mainly based on the correct subset selection. Fuzzy integral is used to perform the subset

selection and provide an effective and efficient aggregation. It can be regarded as a

generation of classical Lebesgue integral corresponding to additive measure.

Choquet Integral (CI) is a commonly used fuzzy integral, which is a straightforward

expansion of Lebesgue Integral (LI). In a classical measure with no interaction involved,

CI is equal to LI as Figure 2.6. and Equation (2.17)

42

Measure

y

a1

a2

a3

w({x|f(x)=a1}) w({x|f(x)=a2}) w({x|f(x)=a3})

Figure 2.7 Lebesgue Integral. w is the measure of a function ()f x

(1) fd fdµ µ=∫ ∫ (2.17)

If 1 2{ , ..., }nX x x x= is finite, Lebesgue integral can be written as its discrete form, i.e., the

weighted sum as Equation (2.18)

1
({ }) ()n

i iiX
fd w x f xµ

=
=∑∫ (2.18)

Here, µ is additive, for any A X⊂ , 1
() ({ })n

ii
A w xµ

=
=∑ , ix A∈ . CI has been a general

tool for dealing with multiple criteria decision making problems and is able to model the

interactions among different criteria. Sugeno [Ishii 1985] [Murofushi 2000] has applied

it to the problem of prediction of wooden strength and plant operator. Both of them show

a better result than a linear regression. Peter [Peters 1999] has applied CI in software

cost estimation with multiple attribute. Suppose a fuzzy measure : (0,1)Fµ → and

() 0µ φ = , definition of CI, see Figure 2.7 and Equation (2.19), is shown as follows and ia

is the sorted increasing sequence of ()if x .

43

Measure

y

a1

a3

a2

μ({x|f(x)≥a1})

Choquet Integral

μ({x|f(x)≥a2})
μ({x|f(x)≥a3})

Figure 2.8 Choquet Integral. µ is the fuzzy measure of a function ()f x

11
() () () () ({ | () })n

i i ii
c f x X a a x f x aµ µ−=

= − ⋅ ≥∑∫  or

11
() () () () ()n

i ii
c f x X a a Fαµ µ−=

= − ⋅∑∫ 

where 0 0a = and 0 1 2 ... na a a a≤ ≤ ≤ and { | () }iF x f x aα = ≥

(2.19)

Some CI properties under non-monotonic fuzzy measure are shown as follows,

() 1 ()
A

c d Aµ µ=∫ (2.20)

If f g≤ ,then

() ()c fd c gdµ µ≤∫ ∫ (2.21)

If a is non-negative real number and b is a real number, then

() () () ()c af b d a c fd b Xµ µ µ+ = +∫ ∫

(2.22)

Michio [Michio 1994] and Kwon [Kwon 2000] had proven that CI and its properties were

also meaningful when the fuzzy measure was non-monotonic, i.e., efficiency measure.

Murofushi [Murofushi 2005] also stated that non-monotonic measures occur when there

are limited resources. RTS game is similar to this situation. Time and money of RTS is

limited. When the player wastes his resources to develop many unsuitable types, the

enemy will advanc and destroy the player’s resources. It is also confirmed by many game

reviews that: professional players will not create many different kinds of units in one

battle, but only concentrate on certain important combinations. This means that using

44

more unit types is not necessarily more powerful than using fewer unit types. Therefore,

the monotonity (2.10) is no longer satisfied in this particular application of RTS games.

Fuzzy integral is computed with respect to non-monotonic fuzzy measure. Besides, as

mentioned in Section II, the units must be built in a predefined sequence, and this

information should be taken into account in overall evaluation of unit combinations by

fuzzy integral. In this paper, we propose a new type of integral and compare it with

Choquet integral.

2.3.2 Genetic algorithm
Genetic Algorithm (GA) was introduced by Barricelli [Barricelli 1957] and Fraser [Fraser

1970]. It is a kind of evolutionary algorithm inspired by the biological evolution.

First, a population of string or called chromosomes is randomly generated. Traditionally,

each chromosome is represented by a binary string of 0s and 1s. Each chromosome

represents a solution. A fitness function, ()f x , is given to evaluate all chromosomes.

Based on the fitness value, selection is performed to choose a solution with better quality.

In our research, roulette wheel selection is used. The finesses of all chromosomes are

summed up. A proportion is then given to each chromosome. Therefore, weaker

individuals can be selected with a lower chance. The chromosomes are assigned to a

roulette wheel with its proportion. The roulette wheel is spun equal to the size of

population. Each time, a chromosome is chosen and put into the mating pool. The

solution with better quality will occur more frequently. There are other selection methods,

such as Boltzmann selection, tournament selection, rank selection and steady state

selection, random selection, etc. Roulette wheel selection was used as it is more natural

and with a few parameters. However, it will have a problem when the fitness values

differ very much. For example, if one of the chromosome finesses is dominant and

controls over 90% of area. The other chromosomes will have less chance to be selected.

However, it could be improved by increasing the number of population and mutation.

45

Then, a genetic operator, crossover is used to generate a solution with better quality for

next generation. More than one chromosome is selected as the parent. They are spliced

into pieces. The child chromosome is combined by part of its parent. There are numbers

of crossover operators, such as one point crossover, two point crossover, cut and splice,

uniform crossover, three parent crossover, etc. In our research, one point crossover is

used as we can observe clearly which part of the parent chromosomes can give a better

fitness. The steps of one point crossover is descripted in Figure 2.8. First, a random

position is selected in the parent. All data beyond that point in either organism string is

swapped between the two parent organisms. Throughout this crossover operator, global

optimization is preformed. All the chromosomes are trend to a better solution.

Then, another genetic operator, mutation, is used to avoid the searching mechanics fall

into a local maximum easily. A mutation rate α is given. For each bit, a random number

iR (0 1iR< <), the bit is converted into the opposite if iR is greater than α .

Throughout the two genetic operators, a new population of chromosomes is produced.

The next generation chromosome repeats the process of fitness calculation, selection,

crossover and mutation until the termination condition reached, such as the solution

satisfies minimum fitness error or a fixed number of generation reach. The solution is

regarded as best fit if the fitness cannot show significant improvement in certain

generation.

46

Figure 2.9 Process of Genetic algorithm

Chromosome Value Fitness ()f x % of Total
00010101 21 500 50
10101100 172 300 30
11100101 229 150 15
01010101 85 50 5

 Total 1000

Crossover

Mating Pool
0 0 0 1 0 1 0 1
0 0 0 1 0 1 0 1
0 0 0 1 0 1 0 1
0 0 0 1 0 1 0 1
0 0 0 1 0 1 0 1
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 1 1 0 0 1 0 1
1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1

0 0 0 1 0 1 0 1

1 1 1 0 0 1 0 1

0 0 0 1

0 1 0 1

Next Generation
1 1 1 0 0 1 0 0
0 0 0 1 1 1 0 1
0 0 0 1 0 1 0 1
0 0 0 1 0 1 0 1
0 0 1 1 0 1 0 1
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 1 1 0 1 1 0 1
1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1

Mutation

1 1 1 0 0 1 0 0

0 0 0 1

0 1 0 1

47

2.3.3 Covariance matrix adaptation evolution strategy
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) was introduced by Hansen

[Hansen 2001]. Similar to GA, it is another evolutionary algorithm for non-linear, non-

convex, non-separable and non smooth optimization problems in continuous domain.

First, a group of search point, for 1,...,k λ= , is randomly generated in a n dimensional

space where n is the number of features. It is regarded as the initial population. Function,

f , is used to calculate the fitness of all search points. All the search points are updated

in each generation and moved to a better fitness of solution. The basic equation of each

search point at a generation, g , is shown in Equation (2.23)

(1) () () ()~ (0,)g g g g
kx m N Cσ+ + for 1,...,k λ=

where ~ denotes the same distribution on the left and right side

2λ ≥ is the population size
1g

kx + is the k - th search point in generation 1g + of feature x

()g nm ∈ is the mean value of search distribution at generation g

()gσ +∈ is the overall standard deviation of step-size at generation g

()g n nC ×∈ is the covariance matrix of search distribution at generation g

()(0,)gN C is a multivariate normal distribution with zero mean and ()gC

(2.23)

There are three operators, m , σ and C , for the search points movement. They are

updated in each generation. m is the mean value updater for the global search. The

equation is shown in Equation (2.24). First, the finesses of all the search points are

calculated. The best µ search points are selected for calculating the new mean. w is the

positive weight coefficients for re-combination. If iw is sorted in ascending order, then

the movement is dominated by better fitness search points. If ... 1 /iw µ µ= , then m will

be the mean value of the best µ search points.

48

(1) (1)
:1

g g
i ii

m w xµ
λ

+ +
=

=∑

where µ λ≤ is the parent population size

1...iw µ += ∈ is the positive coefficients for recombination

1
1ii

wµ

=
=∑ and 1 2 ... 0w w wµ≥ ≥ ≥ >

(1)
:
g

ix λ
+ is the i - th best search point and (1) (1) (1)

1: 2: :() () ... ()g g gf x f x f xλ λ λ λ
+ + +≤ ≤ ≤

(2.24)

()gC is the covariance matrix of search distribution. By the adopting the concept of

Hessian and covariance matrices, () ()(0,)g gN Cσ is used to change the shape of search

point distribution from circle as shown in Figure 2.10(a) to directional ellipse as shown in

Figure 2.10(b). Therefore, CMA-ES provides a faster converge during the evolutions.

(a) 2(0,)N Iσ (b) (0,)N C

Figure 2.10 The directional optimization of the CMA-ES algorithm

The equation of covariance matrix update is shown in Equation (2.25). It is usually

combined by Rank- µ updater as shown Equation (2.26) and Rank one updater as shown

Equation (2.27). Rank-µ updater is used for global step-size control with a decay factor,

49

(1)cµ− . The sum of the outer products is min(,)nµ . Rank one updater is used to add the

maximum likelihood term into the covariance matrix, gC . The evolution path in Rank

one updater, cp , is shown in Equation (2.28). It is the search path of each search point. It

can be expressed as a sum of consecutive steps of the mean, m . History information is

accumulated in the coefficient, effµ , as shown in Equation (2.29). (2)c c effc c µ− is a

normalization factor for cp . By using an evolution path for the Rank one update, the

number of function evaluation is decreased from 2()O n to ()O n [Hansen 2003]. (1)gσ + is

the standard deviation of step size control as shown in Equation (2.30). The solid line of

Figure 2.11 shows the improvement. It tends to make the step conjugated after the

adaptation has been successful, i.e.,
(2) (1) (1) ()

1
(1) () ~ 0

Tg g g g

gg g

m m m mC
σ σ

+ + +
−

+

 − −
 
 

. It is

increased if and only if pσ is larger than the expected value and decreased if it is

smaller.

(1) (1) (1) (1) (1)

1 : : 11
(1)

T Tg g g g g g
i i i c ci

C c c C c w x x c p pµ
µ µ λ λ

+ + + + +
=

= − − + +∑
where cµ and 1c is the control weighting

(2.25)

(1) (1)
: :1

(1)
Tg g g

i i ii
c C c w x xµ
µ µ λ λ

+ +
=

− + ∑ (2.26)

(1) (1)

1 1(1)
Tg g g

c cc C c p p+ +− + (2.27)

(1) ()

(1) ()
()(1) (2)

g g
g g

c c c c c eff g

m mp c p c c µ
σ

+
+ −

= − + −
(2.28)

() 1
2

1eff ii
wµµ

−

=
= ∑

(2.29)

50

(1) () exp 1
(0,)

g g pc
d E N I

σσ

σ

σ σ+
  

= × −      

(2.30)

/ 3c nσ ≈ is the backward time horizon for the evolution path pσ
n is the number of problem dimension

1dσ ≈ is the damping parameter

(0,)E N I is the Euclidean norm of a distributed random vector, (0,)N I

2

(0,) 2 ((1) / 2) / (/ 2)

(0,) 1 1/ (4) 1/ (21)

E N I n n

E N I n n n

= Γ + Γ

 ≈ − + 

Figure 2.11 The step size improvement of the CMA-ES algorithm

Again, similar to GA, the next generation search point repeats all the process until the

termination condition reached, such as the solution satisfies minimum fitness error or a

fixed number of iteration reach. The solution is regarded as best fit if the fitness cannot

show significant improvement in certain generations.

51

2.3.4 Artificial neural network
Artificial Neural Network (ANN) was first introduced by Hebb in 1949 [Hebb 1949]. It

was concerned into neural networks by Minsky in 1954 [Minsky 1954]. ANN is a

simplified emulation of the connections of the human brain, which can be used for

learning purposes in an artificial environment.ANN is usually used on offline learning. It

learns the relationship of input and output by past experiences throughout the network as

shown in Figure 2.12. A hidden layer is used as an aggregator. The output, ky , is equal to

the weighted sum of input and hidden nodes, , ,

1, 1 1, 1

j k n j
jk nj nj k n j

w w x
= = = =∑ ∑ . It is flexible and

able to solve non-deterministic and non-linear evaluation. ANN is relatively unexplored

technique in computer games and is becoming a hot tool for game AI research as they are

complicated to understand and is very resource intensive. It is difficult to find a suitable

variable. Those reasons create gaps for the AI research to fill up and can be used for

many purposes such as learning, classification and pattern recognition.

Figure 2.12 A simple artificial neural network

njw
1x

2x 1y

ky

.

.

.

.

.

.
.
.
.

jkw

∑

∑

∑

Input Layer Hidden Layer Output Layer

nx

52

2.3.5 Hidden Markov model and dynamic Bayesian network
Hidden Markov Model (HMM) and Dynamic Bayesian Network (DBN) were first

introduced by Baum [Baum 1966]. They are known as directed acyclic graphical model

that involves conditional probability distribution (CPD). The simplest kind of DBN is a

Hidden Markov Model (HMM), which has one discrete hidden node and one discrete or

continuous observed node per slice. The model assumes that each state can be uniquely

associated with an observable event as shown in Figure 2.13. CPD is assigned to each

relationship.

Figure 2.13 A simple Hidden Markov Model

Once an observation is made, the state of the system is then trivially retrieved. This

model, however, is too restrictive to be of practically use for most realistic problems. To

make the model more flexible, we assume that the outcomes or observations of the model

are a probabilistic function of each state. Each state can produce a number of outputs

according to a probability distribution, and each distinct output can potentially be

generated at any state. These are known a Hidden Markov Models (HMM) asthe state

sequence is not directly observable; it can only be approximated from the sequence of

observations produced by the system. HMM consists of 5 elements. The first is a set of

hidden node, 1 2{ , ,..., }NN n n n= . The second is a set of output symbols in observation

node, 1 2{ , ,..., }MM m m m= . The third one is an initial state probabilities matrix, { }iΠ = Π

and []i i iP q nΠ = = . We use tq to represent a state of a hidden node at time t and tO to

Hidden
Node
H1

Hidden
Node
H2

Hidden
Node
H3

Observed
Node O1

Observed
Node O2

Observed
Node O3

…

53

represent a state of a observation node. The forth one is a state transition probabilities

matrix, { }ijA a= and 1[|]ij t j t ia P q n q n+= = = where tq is the state of hidden node at time

t . The last one is a symbol emission probabilities matrix, { ()}jB b k= and

() [|]j t k t kb k P O m q n= = = . Forward algorithm is the most common algorithm to train

up probabilities matrix. It starts at the first node, 1t = , and initializes the forward

probabilities as the joint probability of state 1n and initial observation 1O , i.e.,

1 1 1 1()a b O= Π . Then, induction is performed to each node and calculate the probabilities,

1 1 11
() () ()N

t t ij j ti
a j a i a b O+ + +=

 =  ∑ . It terminates until all the probabilities are calculated,

1
()N

Ti
a i

=∑ . DBN is similar but consists of more than one hidden nodes and it is usually

used to present sequences of variables with time series.

2.3.6 Case-based reasoning
Case based reasoning (CBR) was first introduced by Schank and Abelson [Schank 1977].

It solves the problem from previous human experience. It is useful in dynamic

environment and powerful to solve the problem that does not have an actual solution. In

brief, it encodes the situations into cases and applies reasoning technique for case

retrieval. Then, it performs learning by case revise and retains technique as shown in

Figure 2.14.

Before the knowledge can be used, they are converted into a case. This is called case

representation.A case usually consists of three elements. First one is situation which

contains different feature to describe the problem. The second one is solution which

contains the process to solve the problem. The third one is the result which describes the

state of situation after the case occurred. Cases may also consist of indices to speed up

the process of case retrieval.

54

Figure 2.14 Case based reasoning cycle

There are four main processes in CBR. First one is case retrieval. When a new case is

given, CBR should retrieve the most similar cases to the current situation. The similarity

of each previous case and the new case is computed by Euclidean equation as shown in

Equation (2.31). Nearest neighbor is found by comparing the weighted features in the

situation.

1

1

(,)n N R
i i ii

n
ii

w sim f f

w
=

=

×∑
∑

where sim is the Euclidean equation
N

if is the i -th of feature of new case

R
if is the i -th of feature of retrieve case

iw is the weighting of feature

n is the number of feature

(2.31)

Retrieve

Reuse

Revise

Retain

Suggested Solution

Solved
Case

Learned
Case

New
Case

Previous
Cases

Similar
Case

Repaired
Case Suggested Solution

55

The solution of the nearest neighbor is reused in case reuse process or the suggested

solution is revised in case revise process and become a new solution in the new world.

After the solution has been adapted to the problem, the result is stored as a new case in

the case based.

2.4 Other techniques used in this research

2.4.1 Potential field
Potential Field is a concept from robotics that was first introduced by Khatib [Khatib

1986]. The main idea is to use the algorithm to divide the battlefield into grids. Every

point of the gird is given a fitness value that describes certain conditions. It navigates

multiple units from low potential area to high potential area. For example, assume the

robot, target and obstacles are all put in a zero potential field. The target generates the

positive force while the obstacles generate the negative force. The force affects the area

nearby and all the force is summed up at each point in potential field. Then, the robot is

attracted by the positive potential and repulsed by the negative potential. Therefore, a

path can be generated. The basic equation of attractive force, attU , is shown in Equation

(2.32). It affects the each point in the potential field. While the repulsive force, repU , is

shown in Equation (2.33). It only affects the point at certain distance. The resultant force

is calculated by combining attU and repU . Figure 2.15 shows a sample potential field.

Robot moves toward the highest potential and avoid passing through the repulsive force.

21 ()
2att gU p qξ=

where ξ is the gain coefficient
2 ()gp q is the Euclidean distance between the robot location and the target

(2.32)

56

2
0

0

0

1 1 1() ()
2 ()

0 ()
rep

p q p
p q pU

p q p

η − ≤= 
 >

where η is the gain coefficient

()p q is the minimum distance between the robot and obstacle affected area

0p is affected area of obstacle

(2.33)

Figure 2.15 Motion of a robot in potential field

Robot

Target

57

2.4.2 Mann-Whitney test
Mann–Whitney U test (also called the Mann–Whitney–Wilcoxon (MWW) or Wilcoxon

rank-sum test) was first introduced by Gustav Deuchler in 1914 and extended by

Wilcoxon [Wilcoxon 1945] for equal sample sizes. It is a non-parametric statistical

hypothesis test to prove two sets of data, a and b , are independent observations to each

other. First, the two data sets are combined into a set of a bN n n= + . All the data is

ranked from the lowest to highest for one feature only. Then, the rank is summed up

separately as aR and bR . The value of U is calculated by (1)
2

a a
a a

n nU R +
= − and

(1)
2

b b
b b

n nU R +
= − . Two-tailed test is then preformed. If the value of asymptotic 2-

tailed is lower than 0.05, we can reject the null hypothesis. The two data sets have

significant differences in these features.

2.4.3 Bivariate correlation test
Bivariate correlation is used to measure the strengths of association between two features,

X and Y . In another words, there is interaction among the two features. In our research,

Pearson correlation, p , is used as shown in Equation (2.34). Correlation is regards a \s

significant at the 0.05 level (2-tailed).

,
[()()]cov(,)corr(,) X Y

X Y
X Y X Y

E X YX Yp X Y µ µ
σ σ σ σ

− −
= = =

where Xµ and Yµ are the expected values

Xσ and Yσ are the expected values

E is the expected value operator

cov is covariance

(2.34)

58

2.5 Summary
Comparing to traditional hard computing schemes, soft computing techniques, such as

neural networks, SWARM intelligence, and decision trees induction could help AI to deal

with the uncertainly and partial truth environment. However, most of them are mainly

formulated on the minimization of Euclidean distance-based error functions. The

parameters used in these functions are all normal additive in nature and the model is

unable to describe the non-linear effects among parameters which is easily found in RTS

game. Hence, there is a lack of methodology to predict the possibilities of win during the

RTS game in an efficient way. Current path finding algorithm is unable to provide

detaild planning on units maneuver.

59

Chapter 3

A fast indexing scheme for identifying

game unit’s best location

Development of real time strategy (RTS) game AI is a challenging and difficult task as

real-time constraint and large searching space are required to find its best strategy. This

chapter is a preliminary study of game AI in RTS game. We selected tower defense game

as our research problem. It is a part of RTS game-plays which focuses on allocating the

game unit for a best location and attack. We proposed a machine learning approach based

on genetic algorithm (GA) and artificial neural network (ANN) for developing a neural-

evolutionary model in tower defense game. This model provides efficient, fair and natural

game AI to identify the game unit’s best location. With the hybrid GA-ANN approach,

the game AI can acquire the knowledge automatically by learning from the previous

cases iteratively and memorize the successful experiences to handle future situations just

like humans do instead of relying the predefined IF-THEN rules for action.

3.1 Introduction
The goal of tower defense game is to allocate the attack units, e.g., towers, to a suitable

location. The player needs to build the tower and kill the enemy units when they pass by.

Nowadays, tower defense game is not only found in RTS game. It has been produced as a

standalone game in many platforms. However, the AI algorithms now used in computer

games are mostly heuristic-based so that the current architecture of game applications

cannot fully support in various contents. Thus, the probability of the algorithms is not

very well. The game AI can perform well on a predefined map by following the heuristic

rules specified by the game developer but it may fail to behave correctly on a new map

due to the lack of the rules. To address this deficiency, we proposed a machine learning

component for the tower defense game so that the game AI is able to learn from data

directly without using the heuristics.

60

GA is used in this model. However, GA is time-consuming and is not suitable in RTS

games. Thus, we proposed a fast indexing technique and encoded the results of GA as the

input of ANN for case indexing. As a result, when a new battlefield is given, the solution

can be quickly obtained by consulting trained ANN without going through the GA

process again. It saves a lot of retrieval time.

3.2 Tower defense problem in RTS game
In the chapter, we simulated a battlefield with following situations for the tower defense

game.

1. Two teams are created in a battlefield. One is the attack team, i.e., enemy. Another

one is the defense team, i.e., player.

2. Enemy must move to the base of the defense team and attack.

3. Defense team is able to set up a number of cannons in the battlefield to kill the enemy

when they are approaching their base.

4. Attack team chooses a path which can minimize the hurt from the towers

5. The goal is to allocate the towers and creates the maximum casualty to the enemy no

matter which path they choose to approach the base.

3.3 Neural-evolutionary model
Our proposed neural-evolutionary model is given in Figure 3.1. First, the battlefield is

encoded as a chromosome which is the input of GA. GA solves the cannon distribution

problem by selection, crossover and mutation. After certain generations, the best off-

springs, i.e., cannon distributions, is produced through the fitness evaluation and become

the input of ANN for training. Afterwards, cannon location prediction in new terrain can

be suggested quickly and directly by the trained ANN for new battlefields.

61

Defense problem
(Given battlefield)

Solving by GA

Encoding

Best Cannon
Distribution

Training by ANN Trained ANN

A new defense problem
(new battlefield)

Cannon Distribution

Decoding

Transform to ANN input

Remember solution of GA

Predict by ANN

Figure 3.1 Neural-evolutionary model

3.3.1 Chromosome formation in GA
We encoded the solution of tower locations into chromosomes. The length required for

the encoding depends on the area of the battlefield and the possible barriers. Here we use

an example to demonstrate the encoding idea and is shown in Figure 3.2. A map with 5x5

units is used and five cannons are set in the battlefield. White circles represent the open

area that cannon can be set, i.e., location. The black circles represent the barrier which is

unable to be set up a cannon. The grey circles represent the positions which the cannons

are set up in this solution, i.e., chromosome. The total bits of the encoding depend on the

size of the open area, i.e., Encoding bit = Total area – Barrier area. In this example, it is

13 bits. Five cannons are set on the map randomly as shown in Figure 3.2. The

chromosome is 0101010100010 in this example.

62

Figure 3.2 Demonstration of the encoding in GA

3.3.2 Fitness value determination in GA
Another crucial component is the fitness function which to evaluate the solution. The

map is treated by Voronoi decomposition after all cannons are set. All possible paths are

generated. The enemy finds the best path to travel and minimize the damage from the

cannons and attack the player’s base as shown in Figure 3.3.

Figure 3.3 Cannon distribution

As shown in Figure 3.3. Defense base is set on the upper part of the map. Enemy moves

towards the base from the lower part of the map. A limited number, N , of cannons are

63

set. They try to give maximum damage to the enemy no matter which the travelling path

it uses. Enemy is given a certain velocity (v) as well. It receives damage, i.e., fitness

function within the attack range of each cannon, i , as shown in Figure 3.4. The degree of

damage is calculated using equation (3.1).

1
Fitness Cannon Power(Hit point per second)N i

i

d
v=

= ×∑

where N is the number of cannon

d is the distance in the attack area

v is the velocity of enemy

(3.1)

Figure 3.4 Damage on the enemy

The total damage is calculated by summing up all individual damages caused by different

cannons. It becomes the fitness value of this simulation. The higher the damage did to the

enemies, the better the fitness of the cannons’ positions. Cannon distribution is ranked by

this fitness value and used to produce off-springs. Therefore, the fitness value is

proportional to the damage on the enemies.

For crossover operator, each bit of off-springs is chosen from corresponding bit of parent

chromosome randomly. If the total number of "1" is not equal to the cannon number, we

randomly select a bit (If it is greater, then select "1", otherwise select "0") and replace

with the opposite bit. The process repeats until the condition is fulfilled.

64

For mutation operator, we supposed that the mutation rate isα , 0.05. For each bit, we

generated a random number iR (0 1iR< <), the bit is converted into the opposite if iR is

greater thanα . If the total number of "1" is not equal to cannon number, same method as

shown above will be used again.

3.3.3 Case indexing by neural network
GA is time-consuming and cannot be implemented in RTS game. To overcome this

problem, we suggest using artificial neural network (ANN) to speed up the whole process.

Compare with the other traditional indexing methods, such as B+-tree, R-tree or Bayesian

Model, Sankar and Simon [Sankar 1994] stated three advantages of using neural network

for cases indexing. First, ANN improves the case searching and retrieval efficiency.

Moreover, it is very robust in handling noisy case data with incomplete or missing

information which is the situation of strategy game. Finally, it is suitable for

accumulating data in RTS game.

We use the best solution (cannon distribution) from GA previously as the inputs to the

ANN. Every point of the best case with a certain radius is treated as one of the inputs to

the ANN. We use an example to illustrate our idea as shown in Figure 3.5. A map with

5x5 units is used again and five cannons are set in the battlefield. White circles represent

the open area that cannon can be set. The black circles represent the barrier that is unable

to set up the cannon. The grey circles represent the position which the cannons are set up

in the best off-spring by GA. Every point of the open area is a training case of ANN. We

use point A as an example. The eight points which surround point A is encoded. “-1”

represents the barrier while “1” represents the open area. The final digit represents the

distance between the point A and the base of the player. In this example, the encoding

becomes [-1 1 -1 -1 -1 -1 1 -1 2]. This is the input of training case.

65

Figure 3.5 Encoding of Point A

1
(Point A)

l
n r
i

f e
−

=
=∑

where

2 2
1 1 2 2() ()i il A K A K= − + − and r is a control parameter

1 2(,)A A is the coordinate of point A

1 2(,)i iK K is the coordinate of cannon i

(3.2)

Equation (3.2) shows the computation of each point A. The objective of the ANN

learning is to approximate the best location. Therefore, the equation is based on the

relationship of point A and the GA solution. 1 2(,)A A is the coordinate of point A while

1 2(,)i iK K is the coordinate of cannon i . l is the distance of point A and cannon i . n is

the total number of cannon, i.e., 5n = in this case. r is a parameter for controlling the

spread of (Point A)f . The higher value of (Point A)f , the better location for setting up

a cannon. In another word, if point A is nearest to all cannons of GA solution, the

distance, l will be smaller and (Point A)f will be larger. Therefore, it is recommended

to set up cannon in point A.

The ANN training is using back-propagation and log-sigmoid output function. The

number of the hidden layer is calculated as the square root of the encoding string’s length.

In this example, it is 9 as shown in Figure 3.6.

66

Figure 3.6 ANN structure

3.4 Experimental result and discussion

3.4.1 Experimental result of GA
This simulation is done by using an Intel Pentium IV 2.4 GHz machine with 1.5 GB Ram

under Windows XP. MathWorks Matlab 7.0 is used as the simulation tool. Figure 3.7

shows the cannon distribution of different generations. In our simulation, GA does not

have a significant change in enemy damages after 60 generations as shown in Figure. 3.8.

The result is similar to [Chuen-Tsai 1994] and [Yi 2006]. Population is another concern.

The process is very time-consuming if it is poorly designed. In our simulation, 50

populations are chosen because of its faster convergence. If the population size increases,

the training time increases exponentially as well, as shown in table 3.2. However, it

cannot show a significant improvement on fitness, as shown in Figure. 3.8. The weakness

of GA is time-consuming. The run time of GA is around 1000 seconds for 100

generations which is unacceptable in RTS games and real world battlefields.

67

Figure 3.7 Cannon distribution for different generations

Figure 3.8 Fitness on different generations and populations

68

TABLE 3.1
GA’S TRAINING TIME WITH DIFFERENT GENERATION
Generations Training time (second)

1 10
20 205
60 610
100 1012

TABLE 3.2

GA’S TRAINING TIME WITH DIFFERENT POPULATION
Population Training time (second)

50 856
100 1750
150 2168
200 3443

3.4.2 Experimental result of ANN optimization
After ANN training, our machine learning component becomes very useful. Figure. 3.9

shows an example that is commonly found in RTS games. The training time is around 24

seconds for the ANN to remember the GA solution. When a new terrain is given, the time

for distributing cannons in the new battlefield is 0.04 seconds only.

Figure 3.9 Training and testing result of BP ANN

69

After the neural-evolutionary model is trained, ten battlefields are generated for testing.

The time and the damages of enemies are accorded for comparison and shown in the

Table 3.14. The higher damages are meant to represent the better solution.

GA obtained a better solution. The average of damages was 150. The neural-evolutionary

model provided similar results. The average of damages was 140. The difference was

6.65% ((140.4761-150.4954)/150.4954). The average time for GA to compute a solution

was 2949s, while the neural-evolutionary model was only 0.036s. The neural-

evolutionary model is fast and practical in RTS game.

TABLE 3.3
PERFORMANCE OF GA AND NEURAL-EVOLUTIONARY MODEL

 Genetic Algorithm Neural-evolutionary Model
 Damage Time (s) Damage Time (s)
Map1 246.9430 1996 240.3382 0.0158
Map2 234.6570 2664 237.1426 0.0165
Map3 128.2711 2208 120.0705 0.0133
Map4 127.8631 2707 147.7751 0.0224
Map5 126.4970 2371 101.6419 0.0170
Map6 125.9645 3951 110.5593 0.0724
Map7 147.7750 3521 91.1507 0.0510
Map8 126.1231 3515 127.6389 0.0588
Map9 127.6389 3214 124.1221 0.0416
Map10 113.2131 3345 104.3221 0.0473

Average 150.4954 2949.2 140.4761 0.03561

Training and recall time of BP & RBF models

Back Propagation (BP) and Radial Basis Networks (RBF) models have been commonly

used in Neural Network systems. In our experiment, BP results are shown in Figure 3.9.

RBF results are shown in Figure 3.10. They show similar results in cannon distribution

and fitness.

70

Figure 3.10 Training and testing result of RBF ANN

The main differences of BP and RBF are the training time and recall time. The drawback

of BP is the long training time while RBF shows a 40% improvement. [Wang 2006] had

performed similar comparison; they showed a 10% improvement on Text Classification.

However, the recall time of RBF is 50% more than BP. Although the difference is only

0.02s, it becomes a heavy workload for the RTS game as it needs to complete each game

cycle in every 0.02 to 0.03 second. As a result, we suggest using BP for RTS game

because of its faster recall time. Figure 3.11 and table 3.3 also shows the training

performance of BP using different number of neurons. The results are similar in different

number of neurons.

TABLE 3.4
TRAINING PERFORMANCE ON DIFFERENT HIDDEN LAYERS FOR

253 X 1334 INPUT AND 1000 EPOCHS
Hidden Layer Training time (second)

11 24.3
16 24.6
21 32.0

71

Figure 3.11 Training performance of BP

3.5 Summary

A neural-evolutionary model for case-based planning in real time strategy games is

developed and shown in this chapter. We believe that this research direction can provide

an efficient, fair and natural AI development for RTS games. Base defense is part of our

evaluations in our current and future works. We will extend the idea and combine with

other key components in RTS games, such as resource management and battle strategies,

in our future research.

72

Chapter 4

Learning player behaviors from

RTS game data

This chapter is another preliminary study of game AI in RTS game. It illustrates our idea

of learning and building player behavioral models in real time strategy (RTS) games from

replay data by adopting a Case-Based Reasoning (CBR) approach. The proposed method

analyzes and cleans the data in RTS games and converts the learnt knowledge into a

probabilistic model, i.e., a Dynamic Bayesian Network (DBN), for representation and

prediction of player behaviors. Each DBN is constructed as a case to represent a

prototypical player’s behavior in the game. The use of these cases is to predict the

behavior by applying a junction tree mechanism. Sixty sets replay data of a prototypical

player are used to test our idea. Fifty cases are used for learning and another ten cases are

for testing. Experimental result is shown to prove our work.

4.1 Introduction
Nowadays, multiplayer online games and virtual community are popular as players enjoy

the game with other real players in a virtual world. However, it is very difficult for game

companies to maintain a huge number of players, with varied styles, online at the same

time. Therefore, to improve attractiveness, many avatars and characters in the game or

virtual community need to be controlled by AI techniques. However, developing different

behavioral styles from scratches to real players’ simulation are difficult and time-

consuming. To help accomplish this goal, we develop a method to learn them from real

data. We used the Blizzard Warcraft III Expansion: The Frozen Throne (WIII: TFT)

which is a well known and best selling RTS game in recent years to test our idea.

Experimental result is shown and discussed in this chapter.

73

4.2 Knowledge discovery problem in RTS game
RTS game consists of complex game rules and hence, data of player input are noisy. One

of the possible solutions to extract the knowledge is using Case-based reasoning (CBR).

CBR has been studied for many years and its applications in computer games are

becoming more popular. For example, Hsieh [Hsieh 2008] used professional game

players’ data of up to 300 replays to train a case-based decision system in one single

battlefield. Ontanon [Ontanon 2007] introduced similar case-based reasoning framework

for RTS game. Aha [Aha 2005] and Ponsen [Ponsen 2004] focused on strategies of

building sequences in their case-based planning model. In general, the predicted accuracy

in CBR systems greatly depends on the number of learnt cases and their qualities, i.e., the

more the cases with higher qualities, the better the accuracy. However, as response time

is critical in RTS games, there is always a tradeoff between accuracy and efficiency.

Bayesian network (BN) can be viewed as a mathematical model that describes the

relationships between antecedents and consequences using conditional probabilities. It

has been used quite extensively for representing the probabilistic relationships between

diseases and symptoms. Dynamic Bayesian network (DBN) is one form of BNs that

represents sequences of variables and is usually time-invariant. Some related works of

using BNs for user modeling are by Ranganathan [Ranganathan 2003] and Montaner

[Montaner 2003]. They implemented BN into their SMART Agents and proved its

possibility to analyze user behaviors. Kuenzer [Kuenzer 2001] and Schiaffino [Schiaffino

2000] also did similar user behavior modeling on web applications using BN.

Furthermore, Gillies [Gillies 2009] combined BN with finite-state machine to improve

the use of motion capture data. Other uses of BN on games include Albrecht’s [Albrecht

1998] BN structure to adventure games and Yeung’s [Yeung 2006] BN technique to

detect cheats in first person shooting games. In this research, we use DBN and junction

tree algorithm as a case and similarity calculation respectively for predicting user

behaviors. We believe that this is a promising direction for game developers and

publishers that require varied styles of avatar behaviors.

74

4.3 Player behavior model
We proposed a player behavior model as shown as Figure 4.1. First, sets of replay data

are collected from the internet. Information inside these replays are filtered, cleaned and

summarized. Player actions and useful battle information are gathered from the replays,

while the repeated data and useless information are discarded. The information is then

used to build a DBN structure. Prediction of user behaviors is carried out afterwards. We

use an example of a typical player called “Player A” to illustrate our approach.

Figure 4.1 Work flow of player behavior simulation model

4.3.1 Behavior acquisition in replay data
Thousands of Warcraft III replays can be collected on the Internet. All the player’s

actions are recorded in the replay data. In this chapter, Solo Ladder (1 versus 1) battle in

Battlen.net is chosen. It is the official game site and provides a fair environment for the

players to fight against each other. Fifty replays of a player called “Player A” (name is

removed) are collected. They describe the behavior of Player A against different

opponents in different maps. For the purpose of reusing the player behavior model in

different maps and games, the data is analyzed with meanings as described in Table 4.1.

 Data cleaning / filtering

 Summarize in every time slice

Bayesian Network of
Player A behavior

E.g. :2,1,2,2,2,2,1,1,1,1,1,5,2,2,2,2,2,2,1,1,1,1,10,6…

Warcraft 3
Battle Enemy &

Environment
Situation

Behavior
 Generator

E.g. : AB = true : 0.62024 , AB = false : 0.37976.

 50 replays of a Player A

Player Behavior Model

Behavior acquisition Behavior simulation

75

TABLE 4.1
SELECTED DATA FOR DBN STRUCTURE

PLAYER ACTION

Set Name Description
Attack All kinds of attack commands with target data. Data of player A

(A) and opponent ('A) is both collected. For example: attack
unit (UA , 'UA), attack base (BA , 'BA), etc. Each element of

[,]A True False∈ .

Create Building All kinds of create building commands and their numbers in the
same time slice. Data of player A (B) and opponent ('B) is
both collected. For example: build base (BB , 'BB), build
research centre (RB , 'RB), etc.
Each element of [0,1, 2...Upper Limit]B∈ where upper limit is
the maximum number of buildings that are created in the time
slice.

Create Unit All kinds of create unit command and their numbers in the same
time slice. Data of player A (U) and opponent ('U) is both
collected. For example: create piercing unit (PU , 'PU), create
siege unit (SU , 'SU), etc.
Each element of [0,1, 2...Upper Limit]U ∈ where upper limit is
the maximum number of units that are created in the time slice.

DEMOGRAPHIC INFORMATION
Set Name Description
Race There are 4 races that are provided by Warcraft III, where

[1,2,3,4]R∈ . Data of player A (R) and Opponent ('R) is both
collected

Unit Current numbers of the alive units in time slice t∆ . Rounding up
to the nearest 10, where [0,1,2...Upper Limit]N ∈ , with upper
limit equals to the maximum number of units that are created in
the replay. Data of player A (N) and Opponent ('N) is both
collected

Map (M) There are 13 official battle fields that are provided by Battle.net,
where [0,1,2...13]M ∈

76

As an observation, professional players in Warcraft III usually focus on a few types of

units in the battles. They seldom create many different kinds of unit because they want to

save the resources for upgrading the power. Therefore, to reduce the complexity of DBN,

all unused commands of player A are filtered, i.e., if player A does not create any siege

unit in 50 replays, the field of siege unit (sU) is neglected and will not become a

component of the DBN. Unit Number (U) is suggested to estimate the player situation.

Our model focuses on the relationship of different commands with respect to the game

play.

Then, actions of Player A are summarized in every fixed time slice (t∆). In this study,

t∆ is set as 15 seconds which is the minimum time to create a unit in Warcraft III.

Selected fields for each t∆ becomes the components in DBN are represented as a set of

numeric data (a sample: 2,1,2,2,2,2,1,1,1,1,1,5,2,2,2,2,2,2,1,1,1,1,10,6…). The average

time of Player A’ replay is 20 minutes. Therefore, there are around 80 instances in each

replay. Upper limit for field (B), (U) and (N) is also be set according to the maximum

number of productions in t∆ . It can reduce the parameters of the tabular nodes in the

DBN.

4.3.2 Dynamic Bayesian network structure and parameters learning

A DBN consists of a structure and a number of parameter. The analyzed field in the

previous process becomes the tabular nodes of the DBN structure. Intra-slice topology

(within a slice) and inter-slice topology (between two slices) are defined according to the

game play of Warcraft III. For example, if the player wants to create certain units, he

needs to build certain buildings first. The relationship between the nodes is shown in

Figure 4.2.

Parameters of DBN are represented as conditional probability distribution (CPD). It

defines as the probability distribution of a node given by its parents, i.e., 1 1(, ,...)t tP A U+ +

1 1 1 1(| parent()) (| parent())...t t t tP A A P U U+ + + += All instances from 50 replays are used to

perform parameters learning. As the data from the replays are fully observed and the

77

structure is known, maximum likelihood estimation algorithm is used to compute a full

DBN. A DBN that contains multidimensional CPD in each node is considered as a “case”

to represent player A’s behavior.

Figure 4.2 Structure of a DBN

4.3.3 Prediction in dynamic Bayesian network
Having created the DBN of Player A, it can be used for prediction. In this research,

junction tree algorithm is used. Its purpose is to find out the probability of attack

(1()tP A +), create building (1()tP B +) and create unit command (1()tP U +) of Player A

based on his previous behavior. The calculation of probabilities is based on all the

78

previous time slices of their parents, i.e., 1 1(| parent())t tP A A+ + , 1 1(| parent())t tP B B+ + and

1 1(| parent())t tP U U+ + . In every t∆ , enemy and environment situation information

(, , ', , ', ', ', 'M R R N N A B U) are summarized and sent to the DBN as a fact to compute the

marginal distribution for each node (, ,A B U). Marginal distribution contains the

probabilities of all parameters in each node. For example, the attack base command (BA)

only contains 2 parameters ([,]A True False∈). Therefore, the marginal distribution of

BA are represented as 0.62024BA true= = land 0.37976BA false= = . The parameters

with the highest probability is chosen and passed to the behavior generator, e.g., building

base.

4.4 Experimental result and discussion
To calculate the prediction accuracy, ten new cases of Player A are prepared for testing.

The simulation was run by using Matlab version 2008b with the BN toolbox that was

written by Kevin Murphy. The machine used was a Core 2 Duo 2.13GHz with 4 GB Ram

PC. In this simulation, 18 nodes (8 nodes in create buildings commands (B), 5 in create

units (B) and 5 in attack actions (A)) of Player A was required to be predicted in every

t∆ . The running times for the learning and the average prediction for each t∆ are shown

in Table 4.2. The prediction time is stable as the time depends on the complexity of the

BN structure (Dimensions of the CPD) and is independent of the number of learning

instances. The constant performance of this prediction time fits the game implementation

requirement.

TABLE 4.2
TIME OF LEARNING AND PREDICTION IN DBN

Number of cases 10 20 30 40 50

Learning Time (S) 245.15 516.35 649.90 770.38 968.72

Prediction Time (S) 0.1143 0.1373 0.1025 0.1033 0.1038

79

The highest prediction probability of each node is taken as the predicted command which

was then compared with the actual command of Player A. The accuracy is calculated in

every t∆ using equation (4.1) which is similar to [Albrecht 1998].

1 1

1 Predicted command = actual command of Player A1 1
0 Otherwise

n N

i jn N = =





∑∑

where n is number of testing replays, i.e., 10n = and N is the number of nodes

that is required to be predicated in every t∆ , i.e., 18N = .

(4.1)

The accuracy against time slices with different numbers of learning instances are plotted

in Figure. 4.3. We observed that if the number of learning instances are insufficient, the

probabilities of computed marginal distribution would be closed to 1/(number of choices

in the node) , e.g., 0.5391BA true= = and 0.4609BA false= = where [,]A True False∈).

As a result, the accuracy decreases. In this case, we suggested executing the predicted

command if the probability reaches a certain threshold level in Warcraft III. For example:

20 % increment, i.e., () 0.6BP A > or 40 % increment, i.e., () 0.6BP A > . DBN could be

improved accordingly if the number of learning instances increases. As shown in Fig 4.3c,

the curves are similar in shapes and getting and closer to each other.

80

Figure 4.3(a) Accuracy of 10 learning instances

Figure 4.3(b) Accuracy of 30 learning instances

Figure 4.3(c) Accuracy of 50 learning instances

81

The learnt DBN represented one player (Player A) behavior. The predictability decreased

for other players.

We have collected the replays from two professional players (Player B, WE.Pepsi.TED

and Player C, YzU.weishawang) to test the learnt DBN. Three players used the same race

but their behaviors are different, such as the building sequence, strategy and movement.

In Figure 4.4(a), the lower blue line shows accuracy of the learnt DBN for Player B while

the upper red line shows accuracy for Player A. The predictability of Player B was much

lower than Player A. It is below 50% most of the time. The situation of Player C was

similar as shown in Figure 4.4(b).

Computing a DBN for one player is time consuming and cannot be easily applied to other

players. This is the driven force to develop an efficient model to evaluate the strategy

combat as stated in Chapter 5.

Figure 4.4(a) Accuracy of the learnt DBN for Player B

82

Figure 4.4(b) Accuracy of the learnt DBN for Player C

4.5 Summary

In this paper, we presented a Case-based reasoning framework to learn players’ behavior

in RTS games. The advantages of applying DBN and junction tree technique to RTS

games are shown. Many players in multiplayer online games or virtual communities are

not looking for challenging AIs but varied AIs. Our approach shows a possibility to

develop varied AIs in games as well as the virtual world which is efficient and useful.

Future work of our research will focus on a larger scale of learning in more different

types of replays and to construct a useful case library for simulating various players of

different styles. We plan to combine DBN with other soft computing techniques, such as

artificial neural networks and genetic algorithms for faster learning, indexing and

similarity calculations in player models.

83

Chapter 5

An order-based fuzzy integral to model

feature interactions in RTS games

A contribution is made in this chapter by considering how the order of production and

feature interaction of game units affect the result of playing RTS games. Explicit

description using analytical models, such as finite state machines, Bayesian networks and

decision trees may not be feasible due to complicated game rules, extensive terrains and

numerous playable items. We present a machine learning model that extracts and

evaluates game unit combination strategy from data in the past. This model takes the

sequence into account which game units are produced and the interaction among them.

We combine fuzzy measure and fuzzy integral with two different evolutionary algorithms

to develop the learning model. The first one is genetic algorithm (GA) and the second one

is covariance matrix adaptation evolution strategy (CMA-ES). Warcraft III battle data

from real players are used in our experiments. Compared with the traditional Choquet

Integral, our new order-based integral gives a smaller training and testing error in RTS

game strategy selection.

5.1 Introduction
The fundamental game play of a typical real time strategy (RTS) game is collecting and

allocating resources to build an army to destroy enemy units. From this perspective, the

game play can be divided into two types: (1) macro control which consists of the

development of resource gathering plans, base building decisions and technology upgrade

paths, and (2) micro control which involves directing unit movements, path selection and

the combats encounter. The success of these actions is largely determined by an

appropriate selection of a suitable mix of game unit types. Many players may consider

using a balanced army with many unit types. However, professional players seldom use

84

this strategy in real game competition because such approach is unable to gain massive

destroy power in a short period of time. Therefore, they develop “unbalanced” army

units, which possess excellent killing power to certain kinds of enemy units but these

units might be easily killed by another special kind of enemy units. Hence, it is very

difficult to rate the combined action of different unit types as they may have completely

different skills, e.g., healer units Thus, knowing the effect of unit combination becomes

one of the major learning exercises and challenges to real game players in macro control.

There are two more considerations when deciding what units to build. First, game units

can only be produced following some specific orders of production sequence, i.e., some

cheaper units must be produced first before the advance units can be unlocked. Second,

the combined power of units cannot be simply computed using weighted average. This

gains difficulty on how to model and understand the non-additive properties of unit

combinations. In this research, we present a machine learning model that extracts and

evaluates game unit combination strategy from past data.

This chapter is organized in seven main sections. This section is introduction. The next

section is the problem statement. Section three is bottom-up strategy planning model.

Section four explains how to evaluate the non-linear property in unit combination.

Section five explains the proposed fuzzy integral, section six explain our experimental

design and the conclusion is presented in section seven.

5.2 Macro control problem in RTS game
Macro control (macro management) can be regarded as game strategy development and

selection. It consists of resource gathering plans; base building decisions and technology

upgrade paths. It focuses on economic development and the future of the game, while

micro control is focus on game unit control and the present of the game.

Aha [Aha 2005] used case-based reasoning to construct cases for strategy prediction. He

used the stage of base development to cluster relevant cases and developed a network of

cases in the case library for future use. Hsueh [Hsueh-Min 2009] constructed a Belief

85

measure network to control nonplayer characters (NPC). Preuss’s [Preuss 2010] combat

strength of team composition and Keaveney’s [Keaveney 2011] spread coordination

measure are all important metrics. All of the above researchers share a same view on

strategy selection. Comparing the power of unit combination is one of the main

criterions. However, it remains a challenge as the combined power of units consists of

non-additive properties. Hence, the intransitive superiority (A beats B, B beats C and C

beats A [Watson 2001]) always occurs in RTS game play. It is difficult to evaluate a unit

combination which consists of different unit types.

Our approach is applying fuzzy measure and integral to describe the interaction in RTS

game. Although there have been many reports about the application of non-linear

integrals in machine learning algorithm design, for example, constructing classifiers by

non-linear integral projections in [Xu 2003] and Choquet integral with fuzzy-valued

integrand in [Yang 2007]. However, there are very few reports in RTS game. Some

recent advances can be found in [Avery 2010] where authors successfully demonstrated

the use of coevolving influence maps to generate coordinating team tactics for a RTS

game and in [Preuss 2010], authors specified that team composition for battling spatially

distributed opponent groups can be supported by a learning self-organizing map (SOM)

that relies on an evolutionary algorithm (EA) to adapt it to the game. In addition, authors

in [Keaveney 2011] showed that evolutionary computation techniques (genetic

programming in this case) can be used to evolve coordination in RTS games.

Our new idea which is differentiating from existing ones is that in a RTS game the

cooperation and interaction within a team are measured by a non-linear integral which

defines the maximum potential fighting-power of the team and helps / guides to evolve

the team coordination.

It is really important to identify the opponents' strategies as fast and accurate as possible

in RTS games so that an effective response can be scheduled. Regarding to the

opponent’s strategy identification, there are very few reports [Kabanza 2010,

Genter2011] in the literature. In [Kabanza 2010], the authors conducted a preliminary

86

behavior recognition based on the probability of behavior and influence map. In

[Genter2011], inductive learning was used to perform the recognition of opponents'

strategies which were represented with the extracted learning rules. In addition, authors in

[Wang 2010] studied a reinforcement learning NPC team for playing domination games

in which a Q-learning-style algorithm was used to learn the optimal decision-making

policy. Our proposed idea here is to measure the opponent power by the previously

defined non-linear integral and to learn the opponent’s inner interaction (positive or

negative) by fuzzy measure, fuzzy integral and genetic algorithm [Wang 2001, Wang

2009, Wang 2011]. The final goal is to show that inductive learning with evolutionary

computing techniques can lead to robust, flexible, challenging opponents that learn from

human game-play.

5.3 Bottom-up strategy planning model
Traditional top-down strategy planning divides the battle into different time slices or

stages [Aha 2005]. It compared the situation and select a suitable action for the next stage

and so on. This counter strategy is easily to be developed but it cannot provide a large-

scale strategic maneuvering. The idea of strategy, such as rushing strategy or defense

strategy cannot be shown easily. We proposed bottom-up strategy planning model. First,

a unit combination representing the idea of chosen strategy is selected. Then, all the

corresponding actions are generated to achieve this unit combination. This planning

model could perform a various behaviors in RTS game. The flow of the bottom-up

strategy planning is shown in Figure 5.1.

87

Figure 5.1 Bottom-up strategy planning model

First, all previous cases are converted into the strategy case base and used to train the

fuzzy measures as the label 1 in Figure 5.1. When there is a new battle case, pilot unit

combination is used to start the game as label 2. Then, at each certain time step, situation

of player and enemy are extracted and pass to the decision making modules as shown in

label 3. Combined power of units is calculated by fuzzy integral, trained fuzzy measures

and enemy unit types. Other alternative unit combination which contains similar

situation of enemy and player are filtered out and the best unit combinations are

selected and shown in label 4. Decision making module evaluates the additional

resources, time and combined power that are required for each case as shown in label 6.

Weighted sum calculation could be applied here and to perform a vary strategies control.

For example, if we want to select an aggressive unit combination or rushing strategy, the

weighting of additional time should be increased. Finally, the action generator is

responsible to perform all the actions according to the game play, e.g., massive basic unit

will be produced if rushing strategy is selected. Programmer can only focus on this part

and program the actions for each kind of unit type without handling any strategy planning.

Thus, the bottom-up strategy model can reduce the complexity of AI programming.

88

5.4 Evaluating the non-linear property in unit combination
The objective of our chapter is to model feature interactions of different unit type

combinations in RTS game using real replay data. If this problem is viewed from the

statistical machine learning perspective, for example using Bayesian networks, the model

developed describes the probabilistic state transitions among different unit types but not

their non-linear interactions. Besides, the learning of the joint probability distributions

among unit combinations requires very detailed temporal information about the changes

of states and their frequencies. This is very difficult to extract from the replay data.

Furthermore, we also need to associate the effectiveness of using these unit combinations

in the game. This association is difficult to represent in a Bayesian network. There are

many learning algorithms including neural networks, SWARM intelligence, decision

trees induction techniques and the traditional searching approaches. All these techniques

are formulated on the minimization of some Euclidean distance-based error functions.

The parameters used in these functions are all additive in nature and the model is unable

to describe the non-linear effects among parameters. For example, the Back-propagation

learning algorithm in multi-layer perceptron neural network sums up all the weighted

inputs and projects the answer in the output space using various activation functions and

the gradient descent technique. The concept of power set and feature combinations will

be extremely difficult to encode in these commonly used neural network models.

Our motivation of using fuzzy measure and integral are listed as follows:

1. Fuzzy integral is an efficient aggregation operator to sum up all the fuzzy measure.

This integral can be seen as the effect of using the chosen unit type combinations in

the game.

2. Feature interactions can be determined by trying out various fuzzy integrals. The best

integral then describes the additive, super-additive, and sub-additive properties in the

chosen unit type combinations.

89

3. We also need to consider the quantity of each unit produced in each game. These

quantities are measured by the resources needed to produce them rather than their

physical count. This transformation can also be captured by the integral function as a

weight to each fuzzy measure.

We have mentioned that fuzzy measure is defined as a mapping: : () [0,1]P Xµ → ,

where ()P X is the power set of X , i.e., all the (2 1n −) subsets of X . Here in this RTS

game research, a subset of X denotes a possible unit combination. Thus, after learning

the fuzzy measure, the contribution of each unit combination can be obtained. Fuzzy

integral is then be used to sum up all the subsets’ fuzzy measures. The final integral can

be regarded as the “outcome” of all the unit combinations being used.

Our main idea is to formulate a suitable fuzzy integral which only sums up all those

meaningful subsets, i.e., all the unit combinations that have been used in a particular

game play. Moreover, the fuzzy measures of these subsets demonstrate the unit’s

interaction properties, i.e., super-additive, additive or sub-additive. Our methodology is

briefly described as following.

Unit type combination

We define unit type combination in a game as the creation of a suitable army mix. For

example, given three unit types {peasants}, {footman}, {rifleman}, the power set is:

{peasants}, {footman}, {rifleman}, {peasants, footman}, {peasants, rifleman}, {footman,

rifleman}, {peasants, footman, rifleman}. If only these three unit types were produced in

a game, and assuming that they were used to attack similar types of enemies, then we can

hypothesize that the “outcome” of the battle shall be similar. Therefore, the learning of

the effectiveness of different unit combinations is possible.

Clustering of game data

A total of 2,649 Warcraft III game logs were collected and clustered based on the player

and enemy unit types. Since the battles in Warcarft III involve combats among different

races, the players are fighting with each other using different types of units from different

90

races. Therefore, the learnt fuzzy measure and integral tell us what unit type

combinations in a particular race is outperform what unit type combinations in another

race.

Learning fuzzy measure

Each chromosome in GA or search point in CMA-ES encodes a power set of fuzzy

measures, (i.e., 2 1n − fuzzy measures in one chromosome, where n is the total number of

unit types). We used genetic algorithm and covariance matrix adaptation evolution

strategy to search the best fuzzy measures guided by the fitness function. In Warcraft III,

each game log provides a final score to both players. This score tells how many enemies

were killed, buildings were destroyed, resources being collected and the lands being

conquered. Therefore, the higher the score, the better the performance, and it also tells

who wins the game. We use this score as the measure of the fitness of a chromosome in

GA or search point in CMA-ES. Throughout the iterations, the optimized unit type

combination is identified.

Design fuzzy integral

Fuzzy integral can be regarded as an aggregation operator. Different integrals perform

the aggregation differently based on the problem on hand. Some common fuzzy integrals

include Choquet Integral and Sugeno Integral. In this research, we design some new

integrals that are suitable to aggregate the fuzzy measures.

Performance based on feature interaction

We use 2,649 sets of Warcraft III data to perform the experiments. They were selected

from a larger set of 8,130. The selected ones are more homogenous in unit type

combinations which are also commonly used by players. These data are clustered into

several clusters based on the similarities of the unit types that the enemy used. Learning

of fuzzy measures is carried out using genetic algorithm. Aggregation of these measures

is done by fuzzy integral. We use 70% of the data for training and 30% for testing. 20

cross validation cycles are performed. The result shows that there are feature interactions

91

among unit types. New fuzzy integral are defined to model such interaction in RTS

games. Details are explained in the section 5.6.

5.4.1 Data collection and preprocessing
In our research, we select the Warcraft III replays in professional one versus one

competition from 2007 to 2010, see Figure 5.2(a). We created a program to decrypt and

extract data from these replays, see Figure 5.2(b).

(a) (b)

Figure 5.2 Warcraft III expansion, The Frozen Throne (WIII: TFT)

The replay data is a binary file which consists of a header which contains some

demographic data and some actions blocks. Each block stores all the player actions at 250

milliseconds’ interval. All the random events are generated by a random seed that is

given at the beginning of the battle. Table 5.1 shows the elements in Warcraft III replays.

Table 5.2 shows a detailed example of it. The example shows that there are some

building actions with XY coordinates, technological upgrade, unit productions, unit

selections, unit movement commands with XY coordinate, and unit skills, etc. We have

created a C# program to decrypt and extract the data from these replays, see Figure 5.2.

92

TABLE 5.1
DATA IN WARCARFT III REPLAY

 Element
Header Player Record, Game Name, Map Settings, Map Record, Map

& Creator Name, Player Count, Game Type, Language ID,
Player List, Game Start Record, Slot Record, Random Seed

Actions Block Player ID, Action ID, Action Arguments

TABLE 5.2
SAMPLE OF WARCARFT III REPLAY

Time Action
00:00:02:002 Player 1 train 1 Peasant
00:00:02:253 Player 1 select 5 [Peasant]
00:00:02:503 Player 1 Right Click with 0x58a8 at(7296,2432)
00:00:15:241 Player 2 build Altar of Darkness at(-1376,6240)

Player 1 produces 1 Peasants, then select 5 Peasants and move to (X: 7296, Y: 2432). Player 2 builds Altar
of Darkness at(X: -1376, Y: 6240)

The data that extracted from the replay are (1) unit type combination, (2) enemy units and

player races and (3) the final scores. These three attributes are called one case for our

training. Its definition is as follows.

Case = {Unit Type Combination, Situation, Scores}

Unit Type Combination refers to a suitable army mix, i.e., a suitable unit combination

with certain proportion, e.g., 10% peasants, 40% footman and 50% rifleman. Situation

refers to some common circumstances the player is dealing with. This information is used

for clustering cases. Score refers to the points obtained after the game. It is used for

evaluating the outcome of the Warcraft III battle, and is used to guide the training of

fuzzy measure.

93

5.4.2 Learning fuzzy measure by GA

We used Genetic Algorithm (GA) to obtain the fuzzy measure. The technique used is

similar to [Wang 1997, Wang 1998, Wang 1999, Cheng 2000]. We selected GA to obtain

fuzzy measure as it has been widely used with its efficiency proven. The chromosome

can be defined to represent all the subsets in a power set, i.e., all unit type combinations

can be represented. Fuzzy measures can be associated with each subset easily. Genes in

the chromosome are grouped in pairs while each pair represents the unit type

combination and its associated fuzzy measures.

The chromosome consists of many subsets of fuzzy measure and they are highly related.

A strong unit combination in RTS game is usually come from a success unit type. For

example, 1 2{ , }x x is usually high if 1{ }x and 2{ }x is high. The crossover concept of GA

provides a natural way to produce solutions with high qualities by two successful fuzzy

measures within a few generations. However, the search space of fuzzy measure is large

and our replay data is insufficient. We can only obtain the partial information from the

replays. The strength of GAs is providing a parallel global search in fuzzy measure.

Through roulette wheel selection and the mutation operators, even weak fuzzy measure

may have chances to be part of the future candidate solutions. It can avoid the local

minimum problem.

We combined fuzzy measure and integral with GA by the following steps. First, an initial

population of chromosome is randomly generated and their fitness is computed by fuzzy

integral and compared with the real game data. Selection, crossover and mutation

operators are applied to these chromosomes to generate children for the next generation.

After certain amount of generations or meeting the termination condition, optimized

fuzzy measures is obtained and used for testing, see Figure 5.3.

94

Initialize a population of chromosome
for the first generation

Terminate
Condition

Fitness Computing by Fuzzy Integral

Replay

Selection

Crossover

Mutation

No

Yes

Next Generation

End
(Optimized Fuzzy Measure μ(Unit Combination) is obtained)

μ{x1}

0.32

μ{x2}

0.51

μ{xn}

0.1

μ{x1,x2}

0.34

μ{x1,x3}

0.41

μ{x1...xn-1}

0.51
... ...

100000 110011 001010 010010 101001 110011

Convert to Binary Form

100000110011...110011 One Chromosome

Combine

Figure 5.3 Learning fuzzy measure by GA

5.4.3 Learning fuzzy measure by CMA-ES
We also use Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to obtain the

fuzzy measure. The technique has been used to evaluate different functions [Hansen

2004, Shir 2006, Liang 2005]. In Black-Box Optimization Benchmarking (BBOB)

competition of Genetic and Evolutionary Computation Conference (GECCO) 2009

[Hansen 2010] and 2010 [Auger 2010], CMA-ES has been proven to be better than other

evolutionary algorithms in about 90% of the cases and is more effective to evaluate non-

linear function. Therefore, we combine fuzzy measure and integral with CMA-ES.

CMA-ES provides the information in global search by the mean of selected points and

local information by the covariance matrix of each search point. We combine fuzzy

measure and integral with CMA-ES by the following steps. First, an initial population of

95

search points is randomly generated in a 2 1n − dimensional matrix, where n is the

number of unit type. Again, their fitness is computed by fuzzy integral and compared

with the real game data. A group of better solution is selected to computer mean vector,

step size and covariance matrix. The search points are updated by these three parameters

for the next generation. After certain amount of generations or meeting the termination

condition, the fuzzy measures are used for testing, see Figure 5.4.

Initialize a population of search points in
2n-1 dimensional matrix for the first generation

Terminate
Condition

Fitness Computing by Fuzzy Integral

Replay

Update mean vector, step size,
covariance matrix by selected point

No
Yes

Next Generation

End
(Optimized Fuzzy Measure μ(Unit Combination) is obtained)

μ{x1}

0.32

μ{x2}

0.51

μ{xn}

0.1

μ{x1,x2}

0.34

μ{x1,x3}

0.41

μ{x1...xn-1}

0.51
... ...

(0.32, 0.51, …, 0.1, … , 0.51) One Search Point

Combine

Update all search points in
2n-1 dimensional matrix

Sort and select high quality solution

Figure 5.4 Learning fuzzy measure by CMA-ES

96

5.4.4 Fitness value determination

Extract and Process by normalized function f

Extract

Replays

Average

μ(Unit Combination)

Unit Combination of Player
(f(Unit CombinationReplay i,Player))

Score(s)Estimate[f(Unit CombinationReplay(s),Player)]

Fitness Value

Differences between player and enemy
(Score(s)(Unit CombinatonReplay i,Player)

Score(s)Differences

Differences

Fuzzy Integral

Figure 5.5 Fitness calculation of one chromosome

Figure 5.4 shows the step of fitness calculation. First, the exact quantity produced by

each unit type is extracted from the game data. These quantities are normalized by a

normalization function f . For example, given three unit types: 10% peasant, 40%

footman and 50% rifleman, let 1 2 3{ , , }X x x x= , and 1 2 3, ,x x x denotes peasant, footman

and rifleman respectively. Then 1() 0.1f x = ; 2() 0.4f x = and 3() 0.5f x = . Noted that the

quantity here is measured by the amount of resources used instead of the physical

97

quantity count. For example, the resources needed to produce a footman is twice as much

as a peasant, therefore even the physical count is one footman and one peasant, f the

values of them is 2 versus 1.

Next, the total score defined as ()WarcraftIIIScore r is extracted from each replay, r . Table 5.3

and Equation (5.1) shows its detail components.

() Unit score + Resource score + Hero scoreWarcraftIIIScore r =
where r stands for replay r

(5.1)

 TABLE 5.3
ELEMENTS IN SCOREWARCRAFT III

Type Element
Unit score Units Produced, Units Killed, Buildings Produced, Buildings

Razed
Resource score Gold Mined, Lumber Harvested
Hero score Experience Gained

We define ()Score r , as the differences between player’s and enemy’s scores, as shown

below in Equation (5.2).

, ,() () ()WarcraftIII player WarcraftIII enemyScore r Score r Score r= − (5.2)

Positive ()Score r means the player is performing better in the battle than his enemy and

vice versa. ()Score r is also normalised in our study. Estimated score is calculated by the

fuzzy integral based on the learned fuzzy measures and the quantity produced in each unit

type, i.e., ()f x . See Figure 5.5.

98

Fuzzy Measure

Value

μ{x1}
0.32

μ{x1,x3}
0.41

μ{x1...xn-1}
0.51

...

μ{x1,x3,x5}
0.41

μ{x1,x3,x6}
0.41

Case
f(x1)=0.3, f(x2)=0.2, x3=0.1, f(x4)=0,

f(x5)=0, f(x6)=0.4, f(x7)=0

Choquet Integral /
New Fuzzy Integral Estimated Scores

...

...

...

Figure 5.6 Estimated score calculation

[() ()]EstimateScore f x Xµ∫  is denoted as the estimated score. The difference between the

real score (from data) and the estimated score is denoted as Equation (5.3).

() [() ()] ()Different EstimateScore r Score f x X Score rµ= −∫  (5.3)

The fitness of each chromosome is defined in Equation (5.4). It is the root mean square

average of the score differences between the actual score and the estimated score.

Fitness value =
1

1 e
−

+
where

1
2 2

1

1(())N
Differenti

e score i
N =

= ∑ (5.4)

99

5.5 Applying different fuzzy integral in fitness function

5.5.1 Choquet Integral
We demonstrate our above idea by using the following example. Given that the number

of unit type is 7, i.e., 7n = and the unit combination of the replay is:

1 2 3

4 5 6 7

() 0.1, () 0.3, () 0.6,

() 0, () 0, () 0, () 0

f x f x f x

f x f x f x f x

= = =

= = = =

For the Choquet Integral, the ascending order sorting of ()f x is 1 4() 0a f x= = ,

2 5() 0a f x= = , 3 6() 0a f x= = , 4 7() 0a f x= = 5 1() 0.1a f x= = , 6 2() 0.3a f x= = ,

7 3() 0.6a f x= = where 1 2 ... na a a≤ ≤ ≤ . Suppose, the fuzzy measure obtained are

3 2 3() {..., ({ }) 0.74, ({ , }) 0.98,...X x x xµ µ µ= = = 1 2 3, ({ , , }) 0.71,...}x x xµ =

If we use Choquet integral,

7

1
1

1 0 1

5 4 5

1 2 3 2 3 3

(c) () ()

() ({ | () })

(() ({ | ())}) ...
0 (() ({ | ())}) ...
0.1 ({ , , }) 0.2 ({ , }) 0.3 ({ })
0.1 0.71 0.2 0.98 0.3 0.74
0.489

i i i
i

f x X

a a x f x a

a a x f x a
a a x f x a

x x x x x x

µ

µ

µ
µ

µ µ µ

−
=

= − ⋅ ≥

= − ⋅ ≥ +
= + − ⋅ ≥ +
= ⋅ + ⋅ + ⋅
= × + × + ×
=

∫

∑



The original score provided by Warcraft III is 0.41. Therefore, the error is 0.079.

100

5.5.2 Motivation to develop new fuzzy integrals
CI is useful in many applications because of its generalised mean operator and the

assumption that every combination of features is considered to be possible. Furthermore,

from its definition, the aggregation put more emphasis on those subsets which have

smaller values of ia . This assumes that the feature interactions are considered more

important if the set contains features with smaller values of ia . We have some doubt that

whether this will work well in RTS games in which the larger the values of ia the more

important the unit w.r.t. and the ability to fight with enemy. This is the motivation why

we want to develop other aggregation operators and compare them with CI.

There is usually a sequence in building up resources in a typical RTS game, i.e., labour

units will be produced before the other simple military units being generated.. Different

kinds of advance unit will be unlocked further after some resources threshold. We believe

that the advance units are important and shall carry heavier interactions with other units.

We developed two new integrals for investigation. They are explained in the following

sections.

5.5.3 Mean based fuzzy integral
Mean based Fuzzy Integral (Mean based FI or ()m) which is defined in Equation (5.5).

Suppose a fuzzy measure µ on X . Mean based FI of a function :f X +⇒  can be

written as following form.

1 1

1() () () (())in m
i iji j

i

m f x X x S
m

µ µ
= =

= ×∑ ∑∫ 

where i ijx S∈ and , 0,ijx S x∀ ∈ ≠ n is number of unit type,

m is the number of sets which consist of ix

(5.5)

101

Mean based FI tries to find out all the interactions that involve the selected unit type with

an average being taken. Compared with CI, it shows a better result in both training and

testing. One of the weaknesses is the heavier computed load with longer training time as

it needs to search the corresponding subset, ()ijSµ , for m time in 2 1n − search space.

Compare it with CI, no additional searching is required.

5.5.4 Max based fuzzy integral
Max based Fuzzy Integral (Max based FI or ()M) which is defined in Equation (5.6).

Suppose a fuzzy measure µ on X . Max based FI of a function :f X +⇒ 
can be

written as following form.

1
() () () max(())n

i iji
M f x X x Sµ µ

=
= ×∑∫ 

where i ijx S∈ and , 0,ijx S x∀ ∈ ≠ n is number of unit type,

m is the number of sets which consist of ix

(5.6)

As we mentioned before, we concern with the powerful unit type in unit combination. We

design Max based FI and consider the highest value subset. Again, it obtains a better

result but it is more time consuming.

5.5.5 Order based fuzzy integral
As the resource weighting in the advance unit is higher, usually the proportion is usually

dominated by them as shown in Figure 5.6 as they are the core of the army mix. Other

units should collaborate with the advance units. We put this in priority order with the

most important as the top consideration. Order based FI focuses on the highest proportion

units (i.e., highest resources units) first and calculates their interactions with all other

units and so on.

102

Figure 5.7 Comparison of CI and OI in three replay data

Order based Fuzzy Integral (Order based FI or ()o) considers the order of unit type

production and is defined in Equation (5.7).

Suppose a fuzzy measure µ on X . Max based FI of a function :f X +⇒  can be

written as following form.

1
() () () ({ | 0 () })n

i ii
o f x X a x f x aµ µ

=
= ⋅ < ≤∑∫  or

1
() () () ()n

i ai
o f x X a Fµ µ −=

= ⋅∑∫ 

Where 1,..., na a is the sorted 1(),..., ()nf x f x , 1 1... 0n na a a−≥ ≥ ≥ > and

 F
α− is the complement set of F

α+ and { | 0 () }iF x f x a
α− = < ≤

(5.7)

103

Here we used an example to illustrate our idea. Given the number of unit type is 7, i.e.,

7n = and the unit combination of this replay is

1 2 3

4 5 6 7

() 0.1, () 0.3, () 0.6,
() 0, () 0, () 0, () 0

f x f x f x
f x f x f x f x

= = =
= = = =

Then, descending order sorting is performed, i.e. 1 3() 0.6a f x= = , 2 2() 0.3a f x= = ,

3 1() 0.1a f x= = , where 1 2 3a a a≥ ≥ . As the fuzzy measure is trained by Order based FI,

the values are shown below,

1 1 2() {..., ({ }) 0.54, ({ , }) 0.42,...X x x xµ µ µ= = = 1 2 3({ , , }) 0.43,...}x x xµ =

The Order based FI will give

4

1

1 1 2 3 2 2 3 3 3

3 1 2 3 2 1 2 1 1

() () ()

() ({ | 0 () })

(({ , , })) (({ , })) (({ }))
(({ , , })) (({ , })) (({ }))

0.6 0.43 0.3 0.42 0.1 0.54
0.438

i i
i

o f x X

a x f x a

a a a a a a a a a
x x x x x x x x x

µ

µ

µ µ µ
µ µ µ

=

= ⋅ < ≤

= + +
= + +
= × + × + ×
=

∫

∑



The original score that given by Warcraft III is 0.41 and the error is 0.028. Compared

with the error computed by CI, 0.079, Order based FI gives a better performance

prediction in this case.

5.5.6 Properties of order based fuzzy integral
Let 1 2{ , ,..., }nX x x x= and : () [0,)P Xµ → ∞ is a non-monotonic measure, i.e., efficiency

measure on the power set of X . Ordered based fuzzy integral is a non-linear integral. It

also satisfies some basic properties of common fuzzy integrals, which are listed as

following.

104

() 1 ()
X

o d Xµ µ=∫ (5.8)

For any [0,)c∈ ∞ , () ()o c fd c o fdµ µ⋅ = ⋅∫ ∫ (5.9)

() ()o fd o gdµ µ<∫ ∫ if () ()f x g x≤

for every x X∈ and () () () ()f x f y g x g y≤ ⇒ ≤

(5.10)

Proof:

For finite set 1 2{ , ,..., }nX x x x= and ()if x , then it is sorted in a descending order,

i.e., * * *
1 2() () ... ()nf x f x f x≥ ≥ ≥ , where * * *

1 2{ , ,..., }nx x x is a permutation of X .

Since () () () ()f x f y g x g y≤ ⇒ ≤ , we have ()g x also maintains the order of

function value * * *
1 2() () ... ()ng x g x g x≥ ≥ ≥

Based on the definition of Order based FI,

* *
1
* * * * * * * * *
1 1 2 2 2

()

() ({ | 0 () ()})

() (, ,...,) () (,...,) ... () ()

n
i ii

n n n n

o fd

f x x f x f x

f x x x x f x x x f x x

µ

µ

µ µ µ
=

= ⋅ < ≤

= + + +

∫
∑

* *
1
* * * * * * * * *
1 1 2 2 2

()

() ({ | 0 () ()})

() (, ,...,) () (,...,) ... () ()

n
i ii

n n n n

o gd

g x x f x f x

g x x x x g x x x g x x

µ

µ

µ µ µ
=

= ⋅ < ≤

= + + +

∫
∑

Because f g< , we have () ()f x g x< , for every x X∈ , then * *() ()i if x g x≤ , for

1, 2,...,i n=

It is obvious that () ()o fd o gdµ µ<∫ ∫ holds.

If () () () ()f x f y g x g y≤ ⇒ ≤ does not hold, () ()o fd o gdµ µ<∫ ∫ may not be

true even if () ()f x g x≤ , for every x X∈

105

Example:

Let 1 2 3{ , , }X x x x= , 1 2 3() 10, () 7, () 3f x f x f x= = = ,

1 2 3() 2, () 6, () 5g x g x g x= = = ,

1 2 3 1 3 1 2 3() 1, (,) 3, (,) 10, (, ,) 5x x x x x x x xµ µ µ µ= = = =

1 1 2 3 2 2 3 3 3

()

() (, ,) () (,) () ()
10(5) 7(3) 3(1)
74

o fd

f x x x x f x x x f x x

µ

µ µ µ= + +
= + +
=

∫

2 1 2 3 3 1 3 1 1

()

() (, ,) () (,) () ()
6(5) 5(10) 2(1)
82

o gd

g x x x x g x x x g x x

µ

µ µ µ= + +
= + +
=

∫

() ()o fd o gdµ µ<∫ ∫ does not hold even if () ()f x g x≤ , for every x X∈

If α is a non-negative real value, b is a real value,

then () () () ()o af b d a o fd b Xµ µ µ+ = +∫ ∫

(5.11)

() ()o fd o fdµ ν≤∫ ∫ if () ()A Aµ ν≤ for every A X⊆ (5.12)

() ()
A B

o fd o fdµ µ≤∫ ∫ , where A B⊆ and µ is a monotonic fuzzy measure (5.13)

Proof:

Let 1 2{ , ,..., }nA x x x= , 1 2{ , ,..., }mB y y y= and A B⊆ , n m<

A and B is then sorted in descending order ,

i.e., * * *
1 2{ , ,..., }nA x x x= and * * *

1 2() () ... ()nf x f x f x≥ ≥ ≥

i.e., * * *
1 2{ , ,..., }nB y y y= and * * *

1 2() () ... ()nf y f y f y≥ ≥ ≥

106

Since A B⊆ , we have * *,j ix A y B∀ ∈ ∃ ∈ , such that * *
j ix y= , j i≤ , i.e.,

* *() ()j if x f y= as µ is monotonic,

* *

* * * *
1 21,2,...,

* * * *
1 2|

* * * *
1 21,2,...,

()

() ({ , ,.., })

() ({ , ,.., })

() ({ , ,.., })

()

j i

A

j jj n

i ii x x

i ii m

B

o fd

f x x x x

f x x x x

f x x x x

o fd

µ

µ

µ

µ

µ

=

=

=

= ⋅

≤ ⋅

≤ ⋅

=

∫
∑
∑
∑
∫

If µ is non-monotonic, the above property is not necessarily true.

Example:

Let {1,3}A = , {1, 2,3}B = , A B⊆

(1) 1µ = , (1, 2) 3µ = , (1,3) 10µ = , (1, 2,3) 5µ = , µ is non-monotonic

()

1(1) 3(10)
31

A
o fdµ

= +
=

∫

()

1(1) 2(3) 3(5)
22
31

B

A

o fd

fd

µ

µ

= + +
=
≤

≤

∫

∫

if and only if() 0o fdµ =∫ 



for A X∀ ⊆ with () 0Aµ > , there exists x A∈ such

that () 0f x = , that is ({ | () 0}) 0x f xµ > =

(5.14)

[0,)a∀ ∈ ∞ , () () () ()o f a d o fd o adµ µ µ+ ≥ +∫ ∫ ∫ (5.15)

107

 Proof:

 Assume there exits * * *
1 2() () ... ()nf x f x f x≥ ≥ ≥ ,

then * * *
1 2() () ... ()nf x a f x a f x a+ ≥ + ≥ ≥ +

* *
1
* * * * * * * *
1 1 2 2
* * * * * * * * * * *
1 1 2 2 1

() ()

() ({ | 0 () ()})

() (,...,) () (,...,) .. () ()

() (,...,) () (,...,) .. () () [(,...,) ... (

n
i ii

n n n n

n n n n n n

o f a d

f x a x f x f x

f x a x x f x a x x f x a x
f x x x f x x x f x x a x x x

µ

µ

µ µ µ

µ µ µ µ µ

=

+

= + ⋅ < ≤

= + ⋅ + + ⋅ + + + ⋅

= ⋅ + ⋅ + + ⋅ + +

∫
∑

* * * * * * * *
1 1 2 2

)]

() (,...,) () (,...,) ... () () ()

() ()
n n n nf x x x f x x x f x x a X

o fd o ad

µ µ µ µ

µ µ

≥ ⋅ + ⋅ + + ⋅ +

= +∫ ∫

()f g d fd gdµ µ µ+ = +∫ ∫ ∫ may not hold as Order based FI is non-linear. Based

on the priority sorting, the subset selection a different.

(5.16)

In the experiment of this chapter, µ is set as a bounded variation, and ()f x as a

normalized unit proportion within 0 and 1. The resulting upper bound and lower bound of

Order based FI are 0 and 1 respectively.

5.5.7 Subset selection for different fuzzy integral
The main difference of the three fuzzy integrals is the subset selection. They select

different sets for summation. Finding the subset selection could provide a better

understanding of fuzzy integral. Hence, the training of fuzzy measure is a time

consuming task. In the RTS game, some unit combination will never be used due to the

game play design. Finding the subset selection can reduce the length of chromosome and

the dimension of search point.

According to [Wang 1996], all the subsets in the fuzzy measure could be generated by the

following equation as shown in (5.17). iK is generated for each i and represents a subset

108

in fuzzy measure,µ . The order is 1{ }x , 2{ }x , 1 2{ , }x x , 3{ }x , 1 3{ , }x x , 2 3{ , }x x ,

1 2 3{ , , }x x x , 4{ }x ,…, 1 2{ , ,..., }nx x x . iK represents the complement set of iK . The

advantage for using this equation is that the set can be directly indicated by using i .

: 0.5, 1
2 2i k k

i iK k k n  = − ≥ ≤ ≤    

{ }1,2, ,i iK n K= −

Where 1,2, , 2 1ni = − and 1,2,...k n= , n is the number of feature, a   denotes

integer part for a non-negative number a

(5.17)

Base on Equation (5.17), the set selection of CI could be expressed in Equation (5.18),

where iδ is the set selection operator for each set. In our study, we try to convert the

Equation (5.18) into Equation (5.19) for better understanding and comparison. Subset

selection of Order based FI is shown in Equation (5.20). Mean Based FI is shown in

Equation (5.21) and Max Based FI is shown in Equation (5.22) for reference.

109

max(min () max (),0)
i i

i k kk K k K
f x f xδ

∈ ∈
= −

(5.18)

min () max (), min () max ()

0, min () max ()
i ii i

i i

k k k kk K k Kk K k K
i

k kk K k K

f x f x f x f x

f x f x
δ

∈ ∈∈ ∈

∈ ∈

− >
=  ≤

Assume min () max () 0k kk k
f x f x

φ φ∈ ∈
= =

(5.19)

max (), max () min ()

0, max () min ()
i i i

i i

k k kk K k K k K
i

k kk K k K

f x f x f x

f x f x
δ

∈ ∈ ∈

∈ ∈

<=  ≥

(5.20)

avg ()
i

i k
k K

f xδ
∈

=

(5.21)

max ()

i
i kk K

f xδ
∈

=

(5.22)

5.5.8 Extrapolation of fuzzy measures for missing points
As stated before, some unit type combinations do not exist. We called such subset as

missing data set. We need a method to extrapolate such fuzzy measures. The

extrapolation of fuzzy measure is performed. First, starting from the set with the smallest

number of elements, each missing data set, α , is extrapolated by taking the average of its

neighborhood,
1

EE α
α

µ
⊂
∑ where E X∀ ⊂ and 1E α= − . For example, the fuzzy

measure of set {4,6,8} can be estimated by the taking an average of set {4,6}, {4,8} and

{6,8}. The missing data set could be found by Equation (5.19) and Equation (5.20).

110

5.6 Experimental result and discussion

5.6.1 Brief description of testing data

2,649 strategy cases of one versus one battle are collected. Useful information is

decrypted and extracted from the replay data. In Warcraft III, there are 73 unit types

which consist of different attributions and skills. They are regarded as different

attributions and are divided into four different races. Each race has a unique set of units,

structures, technologies, and base-building methodologies. Clustering is performed based

on player and enemy unit type as the following two reasons. First, unit combination is

intransitive superiority; the combined power is affected due to the enemy unit type.

Second, it can reduce the number of unit types, n in fuzzy measure. Top five unit

combinations are selected for the experiment as shown in Table 5.4.

TABLE 5.4
DATA NATURE OF TESTING DATA CLUSTER

Data Cluster 1 2 3 4 5

Player race Undead Undead Orc Orc Elf

Enemy unit Fm, P Dr, Fm,

P

Pr, So,

Sb, P

Fm, P Fm, P

No. of unit type (n) 7 7 11 8 8

Fuzzy measure Size (2 1n −) 127 127 2047 255 255

No. of case 162 65 1004 549 869

No. of Combination 23 16 60 31 31

Fm – Footman, P – Peasant, Dr, Dragon rider, Pr – Priest, So – Sorceress, Sb – Spell breaker

We preformed the U-Test on the same race. By observing asymptotic significance, 65%

of the features are below 0.05. Results of the Mann-Whitney Test of are shown in Table

5.5 and 5.6. Therefore, the data set is not identical. To prove if there are interactions

among the attributions, bivariate correlation is used to measure the relationship between

the two variables as shown in Table 5.7. 40% of correlation is significant in our data set.

111

TABLE 5.5
MANN-WHITNEY TEST OF DATA CLUSTER 1 & 2

RANK
Unit Type Data Cluster No of Case Mean Rank Sum of Ranks
Acolyte 1 174 103.07 17933.50

 2 65 165.33 10746.50
 Total 239

Ghoul 1 174 115.59 20113.50
 2 65 131.79 8566.50
 Total 239

Fiend 1 174 121.26 21098.50
 2 65 116.64 7581.50
 Total 239

Gargoyle 1 174 101.91 17732.50
 2 65 168.42 10947.50
 Total 239

Wagon 1 174 115.48 20093.00
 2 65 132.11 8587.00
 Total 239

Obsidian 1 174 111.64 19425.50
 2 65 142.38 9254.50
 Total 239

Destroyer 1 174 116.38 20250.50
 2 65 129.68 8429.50
 Total 239

Score 1 174 126.81 22064.50
 2 65 101.78 6615.50
 Total 239

TEST STATISTICS

Unit Type Mann-Whitney U Wilcoxon
W Z Asymp. Sig. (2-

tailed)
Acolyte 2.708E3 1.793E4 -6.333 .000
Ghoul 4.888E3 2.011E4 -1.621 .105
Fiend 5.436E3 7.582E3 -.512 .609

Gargoyle 2.508E3 1.773E4 -8.154 .000
Wagon 4.868E3 2.009E4 -3.446 .001

Obsidian 4.200E3 1.943E4 -3.251 .001
Destroyer 5.000E3 2.025E4 -1.690 .091

Score 4.470E3 6.616E3 -2.491 .013

112

TABLE 5.6
MANN-WHITNEY TEST OF DATA CLUSTER 3 & 4

RANK
Unit Type Data Cluster No of Case Mean Rank Sum of Ranks

Peon 3 1004 802.53 805737.00
 4 549 730.32 400944.00
 Total

Grunt 3 1004 884.83 888373.00
 4 549 579.80 318308.00
 Total

Troll 3 1004 783.56 786696.00
 4 549 765.00 419985.00
 Total

Demolisher 3 1004 744.40 747380.00
 4 549 836.61 459301.00
 Total

Raider 3 1004 983.04 986976.50
 4 549 400.19 219704.50
 Total

Tauren 3 1004 778.64 781755.00
 4 549 774.00 424926.00
 Total

Shaman 3 1004 782.72 785846.00
 4 549 766.55 420835.00
 Total

Doctor 3 1004 777.82 780931.50
 4 549 775.50 425749.50
 Total

Spirit Walker 3 1004 939.28 943040.50
 4 549 480.22 263640.50
 Total

Kodo Beast 3 1004 858.81 862246.50
 4 549 627.39 344434.50
 Total

Wind Raider 3 1004 766.89 769954.00
 4 549 795.50 436727.00
 Total

Score 3 1004 796.07 799256.00
 4 549 742.12 407425.00
 Total

113

TEST STATISTICS

Unit Type Mann-Whitney U Wilcoxon
W Z Asymp. Sig. (2-

tailed)
Peon 2.500E5 4.009E5 -3.120 .002
Grunt 1.673E5 3.183E5 -13.004 .000
Troll 2.690E5 4.200E5 -3.650 .000

Demolisher 2.400E5 7.400E5 -5. 547 .000
Raider 6.873E4 2.197E5 -24.803 .000
Tauren 2.740E5 4.249E5 -1.814 .070
Shaman 2.699E5 4.208E5 -2.445 .014
Doctor 2.748E5 4.257E5 -1.282 .200

Spirit Walker 1.127E5 2.636E5 -19.789 .000
Kodo Beast 1.935E5 3.444E5 -13.874 .000
Wind Raider 2.654E5 7.700E5 -2.557 .011

Score 2.564E5 4.074E5 -2.266 .023

TABLE 5.7
BIVARIATE CORRELATION OF DIFFERENT DATA CLUSTER

DATA CLUSTER 1
 Acolyte Ghoul Fiend Gargoyle Wagon Obsidian Destroyer
Acolyte Pearson Correlation

1
.092 .083 -.100 .090 .057 .056

Sig. (2-tailed) .228 .276 .190 .237 .458 .465
Ghoul Pearson Correlation .092

1
-.422** -.019 .092 .013 .089

Sig. (2-tailed) .228 .000 .800 .225 .866 .244
Fiend Pearson Correlation .083 -.422**

1
-.273** -.003 -.137 -.248**

Sig. (2-tailed) .276 .000 .000 .968 .072 .001
Gargoyle Pearson Correlation -.100 -.019 -.273**

1
-.034 -.238** -.177*

Sig. (2-tailed) .190 .800 .000 .655 .002 .020
Wagon Pearson Correlation .090 .092 -.003 -.034

1
.168* .210**

Sig. (2-tailed) .237 .225 .968 .655 .027 .005
Obsidian Pearson Correlation .057 .013 -.137 -.238** .168*

1
.886**

Sig. (2-tailed) .458 .866 .072 .002 .027 .000
Destroyer Pearson Correlation .056 .089 -.248** -.177* .210** .886**

1
Sig. (2-tailed) .465 .244 .001 .020 .005 .000

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

114

DATA CLUSTER 2
 Acolyte Ghoul Fiend Gargoyle Wagon Obsidian Destroyer
Acolyte Pearson Correlation

1
.021 .000 .074 -.208 .154 .109

Sig. (2-tailed) .866 .996 .559 .096 .221 .387
Ghoul Pearson Correlation .021

1
.065 -.047 -.171 .094 .029

Sig. (2-tailed) .866 .604 .709 .174 .457 .816
Fiend Pearson Correlation .000 .065

1
-.112 .443** -.196 -.235

Sig. (2-tailed) .996 .604 .373 .000 .118 .059
Gargoyle Pearson Correlation .074 -.047 -.112

1
-.126 -.128 -.126

Sig. (2-tailed) .559 .709 .373 .319 .310 .319
Wagon Pearson Correlation -.208 -.171 .443** .029

1
-.126 -.128

Sig. (2-tailed) .096 .174 .000 .817 .319 .310
Obsidian Pearson Correlation .154 .094 -.196 -.515** -.126

1
.923**

Sig. (2-tailed) .221 .457 .118 .000 .319 .000
Destroyer Pearson Correlation .109 .029 -.235 -.508** -.128 .923**

1
Sig. (2-tailed) .387 .816 .059 .000 .310 .000

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

DATA CLUSTER 4

 Peon Grunt Troll Demolisher Raider Doctor Kodo Wind
Peon Pearson Correlation

1
-.006 .215** -.072 .018 -.069 -.008 -.135**

Sig. (2-tailed) .893 .000 .091 .680 .107 .847 .002
Grunt Pearson Correlation -.006

1
-.026 -.068 .026 .039 -.053 -.146**

Sig. (2-tailed) .893 .540 .111 .542 .360 .216 .001
Troll Pearson Correlation .215** -.026

1
-.049 -.034 -.059 -.036 .011

Sig. (2-tailed) .000 .540 .250 .433 .171 .405 .803
Demolisher Pearson Correlation -.072 -.068 -.049

1
.054 .180** .303** -.010

Sig. (2-tailed) .091 .111 .250 .207 .000 .000 .815
Raider Pearson Correlation .018 .026 -.034 .054 1 -.012 .173** -.031

Sig. (2-tailed) .680 .542 .433 .207 .776 .000 .473
Doctor Pearson Correlation -.069 .039 -.059 .180** -.012

1
-.022 -.109*

Sig. (2-tailed) .107 .360 .171 .000 .776 .613 .010
Kodo Pearson Correlation -.008 -.053 -.036 .303** .173** -.022

1
-.031

Sig. (2-tailed) .847 .216 .405 .000 .000 .613 .474
Wind Pearson Correlation -.135** -.146** .011 -.010 -.031 -.109* -.031

1 Sig. (2-tailed) .002 .001 .803 .815 .473 .010 .474

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

115

DATA CLUSTER 5
 Wisp Archer Huntress Glaive Dryad Claw Talon Chimaeras
Wisp Pearson Correlation

1
.023 -.007 .073* .268** .161** -.118** .027

Sig. (2-tailed) .501 .837 .031 .000 .000 .000 .424
Archer Pearson Correlation .023

1
-.311** -.151** -.084* -.092** .097** -.004

Sig. (2-tailed) .501 .000 .000 .013 .006 .004 .897
Huntress Pearson Correlation -.007 -.311**

1
.173** -.142** -.090** -.112** -.044

Sig. (2-tailed) .837 .000 .000 .000 .008 .001 .197
Glaive Pearson Correlation .073* -.151** .173**

1
-.037 -.077* -.063 -.025

Sig. (2-tailed) .031 .000 .000 .282 .023 .064 .469
Dryad Pearson Correlation .268** -.084* -.142** -.037

1
.393** -.078* -.032

Sig. (2-tailed) .000 .013 .000 .282 .000 .021 .344
Claw Pearson Correlation .161** -.092** -.090** -.077* .393** 1 -.054 -.021

Sig. (2-tailed) .000 .006 .008 .023 .000 .112 .534
Talon Pearson Correlation -.118** .097** -.112** -.063 -.078* -.054

1
.137**

Sig. (2-tailed) .000 .004 .001 .064 .021 .112 .000
Chimaeras Pearson Correlation .027 -.004 -.044 -.025 -.032 -.021 .137**

1
Sig. (2-tailed) .424 .897 .197 .469 .344 .534 .000

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

5.6.2 GA operators
Roulette wheel selection is used to avoid local minimum and provide chances for weak

candidates to crossover. One-point crossover has also been applied. It is easier to observe

the development of the next generation.

All the fuzzy integrals are evaluated by different populations (from 5 to 100) and

different mutation rates (from 0.01 to 0.20). The finesses are similar by increasing the

number of mutation rate and the population (after 50) in Figure 5.7 and Figure 5.8. For

the generation, all fuzzy integrals cannot show significant improvement after 100

generation as shown in Figure 5.9.

Therefore, the mutation rate of this research used is 0.05. The GA process is repeated

until the fitness value is stable or the maximum generations reached. The maximum

generation used is 100 and the population size is 50 in each generation.

116

Figure 5.8 Finesses of GA in different population

(Mutation rate: 0.05, Generation: 100)

Figure 5.9 Finesses of GA in different mutation rate

(Population: 50, Generation: 100)

117

Figure 5.10 Finesses of GA in different generation

(Mutation rate: 0.05, Population: 50)

5.6.3 CMA-ES operators
CMA-ES with rank one and rank mu update is used. All the fuzzy integrals are evaluated

by different populations (from 5 to 100) and different iterations (from 50 to 5000). The

finesses are similar by increasing the number of the population (after 50) in Figure 5.10.

Half of the best populations are then selected for next generation. The initial step size is

set to a half of the initialization intervals, i.e., 0.5. For the iteration, all fuzzy integrals

cannot show significant improvement after 2000 in Figure 5.11.

Therefore, the population of CMA-ES used is 50. The run is stopped at 2500 function

evaluations as the time cost is similar to the GA test.

118

Figure 5.11 Finesses of CMA-ES in different population

(Iteration: 1000)

Figure 5.12 Finesses of CMA-ES in different iteration

(Population: 50)

119

5.6.4 Comparison of GA and CMA-ES

TABLE 5.8
COMPARISON OF TRAINING ERROR IN GA AND CMA-ES

Data Cluster 1 2 3 4 5 Average
GA 0.15225 0.18975 0.16375 0.148 0.0925 0.14925

CMA-ES 0.13075 0.141 0.1129 0.14325 0.089 0.12338

TABLE 5.9
COMPARISON OF TESTING ERROR IN GA AND CMA-ES

Data Cluster 1 2 3 4 5 Average
GA 0.18825 0.26175 0.16875 0.159 0.0925 0.17405

CMA-ES 0.1865 0.284 0.141 0.16275 0.0925 0.17335

Table 5.8 and 5.9 show that the training and testing error of GA and CMA-ES. CMA-ES

can obtain better quality solution with better computation efficiency.

GA and CMA-ES begin with a randomly generated population, a fitness value is given to

evaluate each chromosome or search point in the population. GA provides the global

search by combining two successful chromosomes. This concept is suitable for searching

a fuzzy measure as mentioned in Chapter 5.4.2. We can observe the change of fuzzy

measure easily. However, the fuzzy measure of next generation is heavily based on their

parents. Although mutation and the roulette wheel selection provide the ability to select

other possible solutions, the improvement is limited in our data set as the dimension is

high and GA cannot provide a guided value in the random walk. Therefore, it will be

easily converge to an optimized solution and the fitness is stop. In Figure 5.9, the finesses

of all the fuzzy integrals are stopped nearly at the first 20 generations.

CMA-ES provides a de-randomized concept by using a mean updater in global search

and covariance matrix updater in local search. These two parameters provide extra

information during the search. Hence, the mean updater of selected points provides

information sharing mechanism for the convergence. Thus, CMA- obtain solution with

better quality and computation efficiency. In our case, the mean updater is affected by the

population size. CMA-ES cannot perform very well when the population is less than

120

(2 1) / 5n − as shown in Figure 5.10, where n is the number of unit type and 2 1n − is the

number of subset in fuzzy measure. A large initial population is therefore recommended.

CMA-ES Restarts [Auger & Hansen 2005] could also improve this problem by increasing

population size in each iteration.

5.6.5 Comparison of different fuzzy integral
We use 70% of the data for training and 30% for testing. 20 cross validation cycles are

performed. Error is calculated as the average of the difference between the actual scores

in Warcraft III and estimated scores by fuzzy integral. Then experiments are done as

follows.

Experiment 1 is designed for testing weighted average. It is similar as Yeung’s [Yeung

2004] methodology. We assign a weighting, w , to each unit type. Then, we computed

the combined power of unit combination by summing up all the weighted unit

proportions together and took an average as shown in Equation (5.23). Neural Network

with 3 hidden layers and 9 neurons was also performed for comparison.

1

1() n
i ii

f X w x
n =

= ∑ (5.23)

Then, we set up four more experiments by using Choquet Integral, Mean based Fuzzy

Integral, Mas based Fuzzy Integrals and Order based Fuzzy Integral respectively. GA is

used to obtain the fuzzy measure. Another four sets of experiment is done by using

CMA-ES. The average of training error, testing error and training time of our new fuzzy

integral and CI are summarised in Table 5.10, 5.11 and 5.12 and provided the following

experimental conclusions.

121

TABLE 5.10
COMPARISON OF TRAINING ERROR IN DIFFERENT FUZZY INTEGRAL

Data Cluster 1 2 3 4 5 Average
Weighted Average 0.512 0.576 0.799 0.497 0.463 0.569
Neural Network 0.152 0.214 0.047 0.146 0.057 0.123
Choquet Integral (GA) 0.181 0.200 0.456 0.187 0.054 0.215
Mean based FI (GA) 0.138 0.181 0.078 0.133 0.061 0.118
Max based FI (GA) 0.16 0.245 0.048 0.14 0.197 0.158
Order based FI (GA) 0.130 0.133 0.073 0.132 0.058 0.105
Choquet Integral (CMA-ES) 0.140 0.146 0.2535 0.146 0.067 0.150
Mean based FI (CMA-ES) 0.127 0.133 0.074 0.136 0.066 0.107
Max based FI (CMA-ES) 0.140 0.195 0.058 0.167 0.167 0.145
Order based FI (CMA-ES) 0.116 0.090 0.0661 0.124 0.056 0.090

TABLE 5.11
COMPARISON OF TESTING ERROR IN DIFFERENT FUZZY INTEGRAL

Data Cluster 1 2 3 4 5 Average
Weighted Average 0.505 0.683 0.752 0.498 0.490 0.586
Neural Network 0.166 0.228 0.064 0.148 0.046 0.130
Choquet Integral (GA) 0.198 0.328 0.461 0.191 0.048 0.245
Mean based FI (GA) 0.185 0.237 0.067 0.145 0.054 0.219
Max based FI (GA) 0.187 0.234 0.064 0.15 0.212 0.157
Order based FI (GA) 0.183 0.248 0.083 0.150 0.056 0.167
Choquet Integral (CMA-ES) 0.203 0.337 0.312 0.177 0.068 0.245
Mean based FI (CMA-ES) 0.181 0.290 0.081 0.155 0.080 0.137
Max based FI (CMA-ES) 0.178 0.248 0.077 0.168 0.168 0.169
Order based FI (CMA-ES) 0.184 0.261 0.094 0.151 0.054 0.144

TABLE 5.12
COMPARISON OF TRAINING TIME IN DIFFERENT FUZZY INTEGRAL

Data Cluster 1 2 3 4 5
Choquet Integral 22.906S 10.644S 183.96S 64.723S 96.047S
Mean based FI 1712S 1572S 34450S 3727S 4014S
Max based FI 1698S 1474S 32340S 3511S 3973S
Order based FI 23.809S 10.960S 190.26S 67.722S 99.701S

122

1. Improvement was calculated by percentage change of the average error in the five

data sets. For example, the improvement of the training error by Order based FI

(CMA-ES) was 84.2% ((0.56-0.09)/0.56). Compared with the weighted average

model, all fuzzy integrals with CMA-ES show a decrease in both training and testing

error on all the five data clusters as shown in Table5.13.Therefore, fuzzy integral may

have a better ability on predicting the power of unit combination in Warcraft III data.

In another word, interactions exist in these data.

TABLE 5.13
IMPROVEMENT OF FUZZY INTEGRAL (COMPARED WITH WEIGHTED AVERAGE)

Data Cluster Training Error Testing Error
Choquet Integral (CMA-ES) 73.6% 58.2%
Mean based FI (CMA-ES) 81.2% 76.6%
Max based FI (CMA-ES) 74.5% 71.2%
Order based FI (CMA-ES) 84.2% 75.4%

2. Mean based FI presented a better result in all data as it considered more options in set

selection. The performance was stable among all five sets of data. The average

training errors were 0.118 in GA and 0.107 in CMA-ES. Comparing with Choquet

Integral (CMA-ES), Mean base FI (CMA-ES) has 28.6% ((0.15-0.107)/0.15)

improvement in training error and 44.0% ((0.245-0.137)/0.245) improvement in

testing error.

3. The main weakness of Mean based FI is time consuming as shown in Table 5.12. The

training time of Mean based FI is 40 to 180 times longer than CI. Mean based FI

needs to search for the whole power set of unit types, ()P X while, the subset

selection process of CI is directed by Equation (5.19). There is no additional search.

4. Training time of Order based FI remains the same as CI because it is also directly

addressing the required subset by Equation (5.20). Thus, no additional searching is

required. The training and testing error were similar to Mean based FI. Compared

with Mean based FI (CMA-ES), Order based FI (CMA-ES) has 15.9% improvement

in training error and difference of testing error is 5.1% as shown in Table 5.14.

Although the test error of Order based FI (CMA-ES) was not as good as Mean based

FI (CMA-ES), Order based FI (CMA-ES) provide an efficient evaluation. It is 40 to

123

180 times faster than Mean based FI (CMA-ES) and it is more importance in RTS

game.

TABLE 5.14
IMPROVEMENT OF ORDER BASED FI (CMA-ES)

Data Cluster Training Error Testing Error
Weighted Average 84.2% 75.4%
Choquet Integral (CMA-ES) 66.7% 41.2%
Mean based FI (CMA-ES) 15.9% -5.1%
Max based FI (CMA-ES) 37.9% 14.5%
Neural Network 26.7% -10.1%

5. Testing error of Order based FI is similar to training error. It shows the generalization

ability of order based FI is good.

6. Comparing with fuzzy measure with GA, fuzzy measure with CMA-ES could obtain

a better solution in most of the case. According to Table 5.8, CMA-ES has 17%

((0.14925-0.12338)/0.14925) improvement in average training error. It shows the

improvement in all the testing examples. According to Table 5.9, CMA-ES has 0.4%

((0.17405-0.17334)/0.17405) improvement in average testing error.

7. Comparing with neural network (NN), Order based FI (CMA-ES) has 26.7% of

improvement in training error and 10.7% difference in testing error. Although, testing

error of Order based FI (CMA-ES) was not as good as neural network, there are two

main reasons to use the fuzzy approach instead of ANN. Firstly, ANN is a black box

optimization. The weightings of ANN may be difficult to interpret by game developer

and involves the human reasoning. In contrast, the fuzzy measure stated all the unit

combination in the subset. It is easier for a player / AI developer to understand the

relationship of interactions. Secondly, the ANN required data for training. It is hard to

gather the data before the game is launched. Therefore, it is impossible to use ANN at

an early stage of game AI development. Instead, fuzzy measure could be assigned by

game designers before the game is launched. It could be used without any training

data.

124

Figure 5.13 Training error of different fuzzy integral

Figure 5.14 Testing error of different fuzzy integral

125

5.6.6 Observe the usage count of subsets in different fuzzy integrals
If the subset is selected by fuzzy integral during the training process once, the number of

counts will be increased by one. By observing table IX, the number of counts in subset

selection with more elements drops sharply in both CI and Order based FI. Most of the

unit type subsets cannot be trained by our replay data as professional players prefer using

an unbalanced army with 3 to 4 different unit types in each battle instead of developing a

balanced army with many different kinds of units.

The main difference between Choquet Integral and the Order based fuzzy integral is the

way in set selection as shown in Equation (5.19), min () max ()
i i

k kk K k K
f x f x

∈ ∈
> and Equation

(5.20), max () min ()
i i

k k
k K k K

f x f x
∈ ∈

< . The number of sets is the same in each integral calculation

but they select different sets. Data cluster 4 is used to show a concept of subset selection

in Table 5.14.

Set selection of Order based FI, equation (5.20), select the unit type with the smallest

proportion first, i.e., {1} (labour) which then shows the unit production sequence in

Warcraft III. The subset {1, 2} is much higher than other sets that contain two unit types

and then so on. Super-additive, such as {1,2} and sub-additive, such as {1,3} could be

easily found in the learned fuzzy measure. Importance unit combination, such as, {1,2,4,5}

could be identified by its highest fuzzy measure. It helps the analyser to identify which

unit type is better at unit production development.

In contrast, CI could not capture the production sequence. It is assumed that every

combination of unit types is possible to be produced in the game play, this is not

reasonable in RTS games as the ultimate unit costs many resources and needs longer time

to unlock. Some sets that represent the ultimate unit, such as {8}, {2,8} {4,8} , are not

produced alone in RTS game but they are used in CI.

126

TABLE 5.15
FUZZY MEASURE IN DATA CLUSTER 4

Fuzzy Measure Order based FI Choquet Integral

 Weighting No of
count Weighting No of count

{1} 0.196875 412 0.5 23
{2} 0. 32751 20 0.617188 343
{3} 0.34375 23 0.929688 37
{4} 0.046875 14 0.742188 56
{5} 0.421875 3 0.867188 0
{6} 0.765625 18 0.992188 6
{7} 0.25 0 0.476563 0
{8} 0.492188 0 0.789063 37
{1,2} 0.67821 297 0.679688 241
{1,3} 0.539063 88 0.796875 14
{2,3} 0.476563 3 0.992188 84
{1,4} 0.53125 57 0.851563 1
{2,4} 0.46875 2 0.96875 80
{3,4} 0.19532 0 0.976563 12
{1,5} 0.679688 4 0.683594 0
{2,5} 0.374692 0 0.984375 1
{3,5} 0.039063 2 0.898438 0
{1,6} 0.828125 63 0.746094 0
{2,6} 0.65625 2 0.101563 36
{3,6} 0.875 1 0.976563 1
{4,6} 0.375 11 0.796875 5
{1,7} 0.117188 4 0.488281 0
{4,7} 0.359375 0 0.609375 1
{1,8} 0.539063 15 0.289063 8
{2,8} 0.671875 0 0.375 39
{4,8} 0.539063 0 0.71875 6

…
{1,2,3} 0.453125 110 0.992188 116
{1,2,4} 0.625 63 0.859375 48
{1,3,4} 0.015625 14 0.28125 4
{2,3,4} 0.380211 0 0.882813 24
{1,2,5} 0.632813 5 0.40625 2
{1,3,5} 0.367188 2 0.79296 0
{2,4,5} 0.890625 0 0.0625 3
{1,2,6} 0.625 45 0.921875 33
{1,3,6} 0.09375 6 0.839844 0
{2,3,6} 0.039063 1 0.757813 8
{1,4,6} 0.578125 49 0.90625 1

…
{1,2,3,4} 0.867188 28 0.984375 31
{1,2,3,5} 0.023438 1 0.890625 2

127

{1,2,4,5} 0.992188 1 0.53125 1
{1,3,4,5} 0.804688 1 0.710938 0
{1,2,3,6} 0.507813 16 0.390625 14
{1,2,4,6} 0.164063 77 0.992188 71

…
{1,2,3,4,5} 0.695313 1 0.164063 1
{1,2,3,4,6} 0.828125 17 0.945313 20
{1,2,3,4,7} 0.023438 1 0.921875 1
{1,2,4,5,7} 0.210938 1 0.8125 1
{1,2,4,6,7} 0.335938 1 0 1
{1,2,3,6,8} 0.96875 1 0.515625 0
{1,2,4,6,8} 0.796875 1 0.664063 1
{2,3,4,6,8} 0.257813 0 0.265625 1

…
{1,2,3,4,6,8} 0.679688 1 0.820313 1

…
{1,2,3,4,5,6,7,8} 0.03906 0 0.523438 0
1 – PEON (LABOUR), 2 – GRUNT (BASIC MELEE UNIT), 3 – DEMOLISHER (ADVANCE SIEGE UNIT), 4 – RAIDER
(ADVANCE MELEE UNIT), 5 SHAMAN (ADVANCE MAGIC UNIT), 6 – SPIRIT WALKER (ADVANCE SUPPORT
UNIT), 7 – KODO BEAST (ADVANCE SUPPORT UNIT).), 8 – WIND RIDER (ULTIMATE AIR UNIT) NUMBER OF
COUNT OF ORDER BASED FI AND CI = 0 ARE OMITTED IN THIS TABLE.

5.7 Summary
In this chapter, we have developed an evaluation model of unit combinations in RTS

games which uses the concepts of fuzzy measure and fuzzy integral. GA and CMA-ES

algorithm are applied to learn fuzzy measure from collected replay data of Warcraft III.

Based on the obtained fuzzy measure, fuzzy integral is then used to compute the overall

power of combined unit types. Since classical Choquet integral does not consider the

characteristics of unit production ordering in RTS games, i.e., basic units must be

produced before advanced units, we defined a new type of fuzzy integral called ordered-

based FI. This new integral can evaluate the unit combinations and analyse ordering data

well. Experiments are carried out to compare ordered-based FI, mean-based and CI

integrals. Different interactions such as super-additive or sub-additive can be observed.

For the scores estimation, Order based FI is 80% better than weighted average and 41 %

better than Choquet Integral. The future work will focus on applying the result of feature

interaction to the potential field technique.

128

Chapter 6

Optimal path determination using

directional based fuzzy integral and

potential field

Unit formation planning and target of attack is the cores of micro control in real time

strategy (RTS) game. It is more complicated than macro control, such as building and

unit production sequence. It consists of a great quantity of possibility. Multiple targets

and the intransitive superiority of unit formation lead the micro-control to remain a

problem. Traditional tree searching or A* searching is unable to handle these two

properties. There are too many weightings and each of them will interact with the others.

In this chapter, we applied potential field, fuzzy measure and integral to solve the micro

control problem. Potential field is suitable for complicated and various environment with

multiple targets. However, it does not consider non-additive property. We integrated it

with fuzzy measure and integral to extend simple additive property to non-additive

property. It provides the ability to handle interaction among different targets. We have

also proposed a new fuzzy integral, directional based fuzzy integral, to support the flank

and diversion attack in micro control. It can avoid the trap and siege of enemy units, and

maximize the combined power of player units.

6.1 Introduction
As stated in chapter 5, control of RTS game can be classified into two types. We have

applied fuzzy measure and integral to improve the macro control problem, i.e., the unit

production planning. In this chapter, we extended the usage of trained fuzzy measure and

applied to the micro control, i.e., tactics. Micro control involves planning of the unit

movement and control. We combined the potential field and fuzzy integral to solve

planning for the unit formation and target of attack. Hence, by using the proposed

129

Directional based fuzzy integral. Detail micro control could be performed in potential

field, such as flank and diversion maneuver. It improves the capabilities of risk analysis

in potential field. We simulated our experiment in Warcraft III. Detail steps and

experimental result are included in this chapter.

This chapter is organized in seven main sections. This section is an introduction. The next

section is the problem statement. Section three is the proposed min-max strategy. Section

four explains the steps of combined Choquet integral (CI) and potential field. Section five

explains proposed Directional based fuzzy integral. Section six explains our experimental

design and the conclusions are presented in section seven.

6.2 Micro control problem in RTS game

More and more researchers such as [Buro 2004], [Lucas 2009] and [Alexander 2007], are

interested in RTS game and have recently generated many important outputs in the

community. They shared the same view on RTS game environment. It is hostile and

dynamic. Counter maneuvers need to be implemented under uncertainty and time

pressure. Potential Field is designed for searching the next movement location in multiple

targets and various environments under the time pressure. It is suitable for RTS game

environment. The classic potential field consists of two virtual forces [Weijun 2010, Yin

2008]. One is attractive potential force, 21()
2att gU q pξ= , whereξ is a positive constant

scaling factor and g gp q q= − is the Euclidean between the object and the target.

Another force is repulsive potential force,
2

0

1 1 1() ()
2 ()repU q

p q p
η= − where η is a

positive constant scaling factor, ()p q is the minimum distance from the object to the

obstacle and 0p is a positive constant that presents the influence distance of the

obstacles. Multi-agents potential fields of Hagelback [Hagelback 2008, Johansson 2008]

and Johan [John 2009] showed the importance to micro control and tactics development.

Their experiment result had been proven in the event, such as Open Real Time Strategy

(ORTS) AI competitions. They showed a possible solution on micro control in RTS

130

game. However, potential field is normal additive. Therefore, it may not have the ability

to handle interaction among different targets, especially the sub additive problem, i.e.,

1
() ()n

ii
f X f x

=
≤∑ . Details unit maneuver, such as flank and diversion cannot be

implemented easily.

Many researches have been done to prove the ability of interaction handling [Sugeno

1985, Murofushi 2000, Peter 1999]. We have also implemented fuzzy integral to evaluate

the combined power of units. It is an efficient way to handle the interaction problem in

RTS game. However, the aggregator of fuzzy integral has not been investigated and

visualized very well. Our proposed idea here is to measure the opponent power by the

fuzzy integral and provide a planning model for micro control.

6.3 Min-Max strategy
We proposed a Min-Max strategy for the micro control planning. The main ideas of this

model are to minimum the interaction of enemy units and maximize the interaction of

player units. For minimizing the enemy interaction, area of diversion and flank maneuver

are to be predicated. Diversion is used to block the area of enemy units. Flank maneuver

is used to evade the high risk area and avoid the siege of enemy units. The flow of the

Min-Max strategy is shown in Figure 6.1.

First, fuzzy measure of enemy and player is trained individually by GA as shown in label

1. The working step is similar to chapter 5.4. All the cases are clustered by the four races.

Only the unit combination and scores are be extracted to evaluate the combined power.

The reason of this filtering is to simplify the training procedure. Micro control in RTS

game is highly dynamic and consists of lots of objects. The possibilities are numerous. If

we involve the terrain information or other game rules in the training, the subset of the

fuzzy measure will be increased exponentially. Therefore, we assume interaction only

occurs in the unit type. The effect of terrain information and other games rules is

concerned in the potential field only.

131

Replay Data from
W3 competition

GA and Fuzzy
Integral Training

μ(Enemy)

μ(Player)

Generate Enemy
Potential Field

Enemy Unit Proportion, f(x)

Player Unit Proportion, f(y)

New Battle Case

Generate Potential
Field(s) for each

player unit type(s)

Evaluate contribution
of different unit type

in Fuzzy Integral
(Enemy)

Evaluate contribution
of different unit type

in Fuzzy Integral
(Player)

BAttack

BDefense

Decay Value, 1/d
Sector Angle, θ

Determine the army
to fight or escape

(Order based
Fuzzy Integral)

Scripting

1

2

3

4

5

Figure 6.1 Overview of the Min-Max strategy

Second, when there is a new battle case, player and enemy unit combination are extracted.

Order base fuzzy integral is used to compare the combined power by the fast aggregator

as shown in label 2. If the combined power of player is low, the army should escape and

132

search for another unit combination as stated in bottom-up strategy planning in chapter

5.2. If the combed power of player is high, the min-max strategy should be preformed to

generate the decision of target and unit formation of the player.

Then, the contribution of subset in fuzzy integral is investigated as shown in label 3 and

becomes a point of interest in potential field. Potential field of enemy and player are

generated individually. Then the potential fields are combined with the effect of terrain

and game rules as shown in label 4. Two potential fields are compared. Finally the target

of attack and the path are generated by the scripting.

6.4 Learning fuzzy measure by evolution strategy
Usually, the charge in potential field is provided by expert or game designer [Hagelback

2008, Johansson 2008]. However, it is difficult to assign all the weighting and interaction

of units one by one. Learning the charge by simulation is also a time consuming task.

Therefore, we use the Warcraft III replay and learn the interaction first and assign the

result into the potential field.

6.4.1 Data collection and preprocessing
All the replays of data cluster 3 and 4 that were stated in chapter 5 are selected. They are

the competition of two races. The race of enemy is orc while the race of player is human.

The number of cases is 1553. For each replay, r , unit proportions and scores are

extracted. In this chapter, 1 2{ , ,... }nX x x x= is used to represent the enemy unit proportion,

i.e., orc. 1 2{ , ,... }nY y y y= is used to represent the player unit proportion, i.e., human. n is

total number of unit type and 12n = . These quantities here are measured by the amount

of resources used instead of the physical quantity count. Then it is normalized by a

normalization function f .The total score defined as , ()WarcraftIII PlayerScore r and

, ()WarcraftIII PlayerScore r is extracted from each replay, r .

133

6.4.2 Setting and operators of evolution strategy
Fuzzy measure is used to represent the combined power. Fuzzy measure of enemy is

defined as a mapping: : () [0,1]P Xµ → , where ()P X is the power set of X , i.e., all the

(2 1n −) subsets of X . The fuzzy measure of player is defined as a mapping:

: () [0,1]P Yµ → with the same condition. ()Xµ and ()Yµ are trained separately by GA

or CMA-ES as shown in Figure 6.2. The steps are the same as Chapter 5.4.

Using Evolution Strategy
and fuzzy Integral to train

the fuzzy measure

Fuzzy Measure, μ(Enemy)

Orc: μ(x2) = 0.4297
μ(x6) = 0.5625

...
μ(x2,x6) = 0.8984
μ(x10) = 0.1406
μ(x2,x10) = 0.3125
μ(x6,x10) = 0.5859

…

Enemy Unit Proportion, f(x1), f(x2),... f(x12)

Enemy Score

Using Evolution Strategy
and fuzzy Integral to train

the fuzzy measure

Fuzzy Measure, μ(Player)

HM: μ(y2) = 0.1953
μ(y5) = 0.2188

...
μ(y2,y5) = 0.8125
μ(y6) = 0.5859
μ(y2,y6) = 0.9453
μ(y5,y6) = 0.3281

...

Player Unit Proportion, f(y1), f(y2),... f(y12)

Player Score

Figure 6.2 Learn the fuzzy measure by GA

For GA, a number of chromosomes are generated randomly. Each chromosome

represents a fuzzy measure with 2 1n − subset. Fuzzy measure is combined with unit

proportion by using fuzzy integral. Estimated score is calculated and compared with the

real score case by case. Finally, the sum of difference, as shown in Equation (5.4)

becomes the fitness value. The population is set as 50, the mutation rate is 0.05 and

generation is 100. Roulette wheel selection is used. 20 cross validation cycle have been

run.

For CMA-ES, 50 search points are generated randomly in a 2 1n − dimensional matrix.

Again, their fitness is computed by fuzzy integral and compared with the real game data.

134

25 better solutions are selected to computer mean vector, step size and covariance matrix.

The search points are updated by these three parameters for the next generation. After

2500 iteration, the fuzzy measures will be used for testing.

All the cases, i.e., 1553 are used for training. The fuzzy measures of GA and CMA-ES

are compared. The fuzzy measures with the lower training error are selected to generate

the potential field.

6.4 Combining Choquet Integral and potential field

6.4.1 Evaluating the contribution of each unit type
We have obtained the fuzzy measure of enemy, ()Xµ , by GA and Choquet Integral.

Then the contribution of each unit type in Choquet Integral should be investigated and

defined as a point of interest (POI) in potential field. The purpose is to determine which

type of enemy unit contributes the most in the Choquet Integral. Then we should attack it

first and minimize the interaction effect of enemy.

We demonstrate our above idea by using the following example. Suppose the enemy

army is combined by three unit types, i.e., Grunt (2x), Raider (6x) and SP-Walker (10x).

The unit proportion is given as follows, 2() 0.5f x = , 6() 0.3f x = and 10() 0.2f x = .

Sorting is performed and suppose 1 2 3a a a≤ ≤ , thus, 1 10() 0.2a f x= = , 2 6() 0.3a f x= =

and 3 2() 0.5a f x= = . The Choquet Integral is computed as follows.

3
11

1 1 2 3 1 2 2 3 3 2 3

() ()

() () ()

() (| ())

() (, ,) [() ()] (,) [() ()] ()
i i ii

c f X d

c f x X

a a x f x a

f a a a a f a f a a a f a f a a

µ

µ

µ

µ µ µ
−=

=

= − ⋅ ≥

= + − + −

∫
∫

∑



The contribution of 1a , 2a and 3a is distributed in different places. It is difficult to

present in potential field. Therefore, we converted Choquet Integral into another form as

135

shown in Equation (6.1). ()iC a is used to represent the contribution of unit type ia . Its

equation is shown in Equation (6.2).

11
() [(| ()) (| ())]n

i i ii
a x f x a x f x aµ µ +=

⋅ ≥ − ≥∑ (6.1)

[]1() () (| ()) (| ())i i i iC a a x f x a x f x aµ µ += × ≥ − ≥ (6.2)

Now, the Choquet Integral of the example is converted as follows.

1 1 2 3 2 3 2 2 3 3 3 3

() ()

[(, ,) (,)] [(,) ()] ()

c f X d

a a a a a a a a a a a a

µ

µ µ µ µ µ= − + − +
∫

Therefore, []1 1 1 2 3 2 3() (, ,) (,)C a a a a a a aµ µ= × − , []2 2 2 3 3() (,) ()C a a a a aµ µ= × − and

3 3 3() ()C a a aµ= × .

a1

a2

a3

a1μ(a1,a2,a3)

[a2-a1]μ(a2,a3)

[a3-a2]μ(a3)

a1[μ(a1,a2,a3)-μ(a2,a3)]

a3μ(a3)

a2[μ(a2,a3)-μ(a3)]

μ(a1,a2,a3)

μ(,a3)μ(,a2,a3)

μ(a1,a2,a3)

μ(,a2,a3) μ(,a3)

(a) (b)

Figure 6.3 Choquet Integral with non monotonic fuzzy measure

The left side of Figure 6.3 shows the visual meaning of Choquet Integral. The right hand

side shows the visual meaning of another form, Equation 6.1. The area represents the

contribution of different unit types. As the fuzzy measure is non-monotonic, the

136

contribution of unit type, ()iC a , may be negative. For example, if 2 3 3(,) ()a a aµ µ≤ ,

then 2 2 3 3() (,) ()C a a a aµ µ= − will be negative. It is presented as the white area in Figure

6.3(b). Therefore, the weak interaction of enemy could be identified.

6.4.2 Assigning charge to potential field

Potential field of enemy
The contributions of enemy unit type are assigned to potential field with its coordinate.

This charge is in a ring around the object with a radius. All the potential is summed up:

the highest potential, and the highest contribution in the CI. It is the most attractive

destination. When the player attacks this unit type, it can minimize the enemy interaction

in a short time.

A potential field with size S S× is generated. The equation of each point in potential field

is shown in the following Equation (6.3). The contribution of each unit type, ()iC a , is

used as a point of interest (POI). Its coordinate, iP , is extracted in the battle. A decay

function, ((,),)iP x y Pϕ , is added to each POI. If the point, (x,y)P is far away from the

iP , the power will be decreased sharply. 2 2 1(log([(x) (x)] [(y) (y)]))i iD P P P P −× − + − .

Euclidean distance is used for calculation. D is a weighting to control area of the

affected. The larger the D , the smaller affected area. Two examples are shown in Figure

6.4 for 0.5D = and 2D = . Figure 6.5 shows the potential field of example in Chapter

6.4.1. The highest value in the potential field represents the greatest contribution in the

Chqouet Integral. Player should attack this point. Therefore, combined power of enemy

could be minimizing in a short time.

1
(x,y) () ((x,y),)i n

i ii
P C a P Pϕ=

=
= ×∑

where n is the total number of unit type, iP is the coordinate of ia

2 2 1((x,y),) (log([(x) (x)] [(y) (y)]))i i iP P D P P P Pϕ −= × − + −

D is the weighting to control area of affected, 1D =

(6.3)

137

(a) 0.5D = (b) 2D =

Figure 6.4 Effect of the decay function, ((x,y),)iP Pϕ

Figure 6.5 Potential field of enemy (3 0.5a = , 2 0.3a = , 1 0.2a = and ()Xµ)

Potential field of player
We have generated the potential field of enemy. Then, new potential field should be

generated to each player unit type. The purpose is to determine which player unit types

should get closer together for cooperation. In other words, it is the formation of player

unit.

1()C a

2()C a

3()C a

138

For each player unit type p , the contributions of other unit type are determined into a

new potential field. Its own contribution, ()pC b , is not concerned. It is because we are

concerning the movement of unit type p . The potential field and scripting will be

confused if its own value is added. The equation is shown in (6.4). A progressive function,

(,)p qP Pφ , is added. Figure 6.6(a) shows the original potential field. If the unit is far away

from the others, the potential will be increased as shown in Figure 6.6(b). The potential of

teammate become more attractive. Therefore, the unit will not get away and the enemy

will not break the formation easily.

1
(x,y) () ((x,y),) (,)i n

i q p qi
P C a P P P Pϕ φ=

=
= × ×∑

where n is the total number of unit type,

pP is the coordinate of pb , qP is the coordinate of other unit type

2 2 1((x,y),) (log([(x) (x)] [(y) (y)]))q i iP P D P P P Pϕ −= × − + −

2 2(,) [(x) (x)] [(y) (y)]p q p q p qP P P P P Pφ = − + −

D is the weighting to control area of affected, 1D =

(6.4)

(a) (b)

Figure 6.6 Effect of progressive function, (,)p qP Pφ

139

We demonstrate our above idea by using the following example. Suppose the player army

is combined by Footman (2y), Priest (5y) and Sorceress (6y). Unit proportion is stated

as 3 2() 0.5b f y= = , 2 5() 0.3b f y= = and 1 6() 0.2b f y= = where 1 2 3b b b≤ ≤ . The

potential field of 3b , 2b and 1b is computed by Equation (6.4) and shown in Figure 6.7 ,

6.8 and 6.9. Positive and negative contributions are shown in the figures. Player should

go to the point with highest potential. It is the most attractive destination to maximize the

player interaction. Therefore, greater combined power could be obtained. By observing

Figure 6.7 and 6.8, Footman, 2b and Priest, 3b should work together. Sorceress, 1b is not

a good combination with Footman or Priest. They should stay behind the Priest as shown

in Figure 6.9. Maneuver of player units is shown in Figure 6.10.

Figure 6.7 Potential field of footman (1b , 2b and ()Yµ)

1()C b

2()C b

140

Figure 6.8 Potential field of priest (1b , 3b and ()Yµ)

Figure 6.9 Potential field of sorceress (2b , 3b and ()Yµ)

Figure 6.10 Maneuver of player units

3()C b

2()C b

3()C b

3()C b

2()C b

3()C b

1()C b

141

6.4.3 Assigning game rule to potential field
As mentioned before, we assumed that the relationship of game rule and the unit are

linear. We use the armor and weapon type as an example. Every unit in the Warcraft III

was assigned to an armor type and attack type. Each attack type is better or worse versus

other armor types as shown in Table 6.1. It is known as bonus. For example, the attack

type of Grunt is normal, which does 150% damage versus medium armor units like the

Archer, Rifleman, Troll Headhunter, and Crypt Fiend. The Archer has a Pierce attack,

which does 100% extra damage versus light armor units like the Gryphon Rider. It is

used to perform intransitive superiority and commonly found in computer games. It

encourages unit counters and unit mixing in combat. If the opposing player builds ranged

attackers, then the natural counter would be to build melee units, which have an attack

bonus versus them.

TABLE 6.1
RELATIONSHIP OF ARMOR AND WEAPON TYPE IN WARCRAFT III

 Armor Type
 Light Medium Heavy Fort Hero
 Normal 100% 150% 100% 70% 100%

W
ea

po
n

Ty
pe

 Pierce 200% 75% 100% 35% 50%
Siege 100% 50% 100% 150% 50%
Magic 125% 75% 200% 35% 50%
Chaos 100% 100% 100% 100% 100%
Spells 100% 100% 100% 100% 70%
Hero 100% 100% 100% 50% 100%

TABLE 6.2
ARMOR AND WEAPON TYPE OF UNIT TYPE (PARTIAL)

Symbol Name Armor Type Weapon Type
1a Grunt Heavy Normal

2a Raider Medium Siege

3a SP-Walker Unarmored Magic

1b Footman Heavy Normal

2b Priest Unarmored Magic

3b Sorceress Unarmored Magic

142

The armor and weapon type of the unit that mentioned in Chapter 6.4.1 and 6.4.2 are

shown in Table 6.2. ,i pB , is selected from Table 6.1 to present the bonus for enemy unit

type i and player unit type p . Equation (6.3) is modified. For each player unit type p , a

new potential field of enemy is combined with the bonus as shown in Equation(6.5). The

equation of each point in potential field is shown in the following equation. The new

potential fields for enemy are shown in Figure 6.11, 6.12 and 6.13. In this case, enemy

unit, 2a , is the attack target.

,1
(x,y) () ((x,y),)i n

i p i ii
P B C a P Pϕ=

=
= × ×∑

where n is the total number of unit type, iP is the coordinate of ia

2 2 1((x,y),) (log([(x) (x)] [(y) (y)]))i i iP P D P P P Pϕ −= × − + −

D is the weighting to control area of affected, 1D =

,i pB is the bonus for enemy unit type i and player unit type p

(6.5)

Figure 6.11 Potential field of enemy (for player unit type 3b)

143

Figure 6.12 Potential field of enemy (for player unit type 2b)

Figure 6.13 Potential field of enemy (for player unit type 1b)

For each player unit type, two potential fields are generated. One is for player unit

formation, the other is for the target of attack. The highest points of the two potential

fields are compared. The highest one is chosen as the target of attack or destination of

cooperation.

6.5 Combining directional based fuzzy integral and potential field
Potential field is designed for dynamic and complex environment. It provides an efficient

way to search for the target and path. We proposed a methodology to learn the potential

144

of enemy unit. However, details movement or maneuver still could not perform in attack

planning even the interaction is determined by CI. The reason is the decay function is

difficult to define and the normal additive aggregator cannot fulfill the representation of

interaction. Figure 6.14 and 6.15 shows an example. If the decay function is too small,

the highest potential will become the center of all units as shown in Figure 6.14. It is

damager as player unit will be easily surrounded by the enemy. On the other hand, if the

decay function is too large, only the centers of unit are significant in the potential field as

shown in Figure 6.15. The idea of interaction cannot be presented. Potential field will be

meaningless as the path will be a straight line to one of the units. The destination and path

are not optimized. Flanking or diversion attack cannot be planned.

Figure 6.14 Effect of the decay function, 0.5D =

Figure 6.15 Effect of the decay function, 2D =

145

6.5.1 Evaluating the individual contribution and interaction
Although the Choquet Integral could present the positive and negative interaction among

the unit type, the priory sorting of ()f x , it is difficult for the game developer to

understand the meaning of ()iC a where 1() (| ()) (| ())i i iC a x f x a x f x aµ µ += ≥ − ≥ . The

contribution is related to the subset of ia and its upper term 1ia + . The contribution of ia

and the interaction to the other unit are mixed together. Therefore, we developed

Directional base fuzzy integral (Directional base FI or () ()d f x dν∫). It is used to

describe the correlation of two unit types. The entire equation is shown in Equation (6.6).

{ }
{ }

1 1,

1 1,

() ()

() () ()[(,) ()]

() () [(,) ()]

n n
i i i i j ji j j i

n n
i i i j ji j j i

d f x d

f x x w f x x x x

f x x w x x x

ν

ν ν ν

ν ν ν

= = ≠

= = ≠

= + −

= + −

∫
∑ ∑

∑ ∑

or

1

1,

() () ()

() ()

()[(,) ()]

n

i

i i
n

i i j jj j i

d f x d O I

O f x x

I w f x x x x

ν

ν

ν ν

=

= ≠

= +

=

= −

∑∫

∑
where () 0, () 0i jf x f x≠ ≠

(6.6)

The integral is divided into two parts. The first part, () ()i iO f x xν= , is its individual

contribution. The second part,

1,
()[(,) ()]n

i i j jj j i
I w f x x x xν ν

= ≠
= −∑ , is used to describe

all the correlation of unit types. No priority sorting is required. w is the weighting to

enlarge effect of interaction effect. In our experiment, it is set as 10. New fuzzy measure

of player and enemy are trained again. The producers are the same as Chapter 6.4.2.

146

6.5.2 Properties of directional based fuzzy integral
Let 1 2{ , ,..., }nX x x x= and : () [0,)P Xµ → ∞ is a non-monotonic measure, i.e., efficiency

measure on the power set of X . Directional based fuzzy integral is a non-linear integral.

It also satisfies some basic properties of common fuzzy integrals, which are listed as

follows.

() 1 ()
X

d d Xν ν=∫ (6.7)

For any [0,)c∈ ∞ , () ()d c fd c d fdν ν⋅ = ⋅∫ ∫ (6.8)

() ()d fd d gdν ν<∫ ∫ if () ()f x g x≤ (6.9)

If α is a non-negative real value, b is a real value,

then () () () ()d af b d a d fd b Xν ν ν+ = +∫ ∫

(6.10)

() ()d fd d fdµ ν≤∫ ∫ if () ()A Aµ ν≤ for every A X⊆ (6.11)

() ()
A B

d fd d fdν ν≤∫ ∫ , where A B⊆ and ν is a monotonic fuzzy measure (6.12)

if and only if() 0d fdµ =∫ 



for A X∀ ⊆ with () 0Aµ > , there exists x A∈ such

that () 0f x =

(6.13)

[0,)a∀ ∈ ∞ , () () () ()d f a d d fd d adν ν ν+ ≥ +∫ ∫ ∫ (6.14)

()f g d fd gdν ν ν+ = +∫ ∫ ∫ (6.15)

147

6.5.2 Assigning charge to enemy potential field
The individual contribution and interaction can be indicated independently and combined

with the decay function, ϕ . Finally, it is assigned to the potential field. The equation of

each point in potential field is expressed as Equation (6.16).

,1
(x,y) (((x,y),)) (,))n

i p i i ji
P B O P P I P Pϕ ϕ

=
= × × + ×∑

where n is the total number of unit type, iP is the coordinate of ia

,i pB is the bonus for enemy unit type and player unit type p

2 2 1(,) (log([(x) (x)] [(y) (y)]))i j i j i jP P D P P P Pϕ −= × − + −

D is the weighting to control area of affected, 1D =
w is the weighting to enlarge effect of interaction effect, 10w =

(6.16)

The potential, I , represents the contribution of ix to jx . (,)i jP Pϕ is a decay function

which is used to enlarge the potential if the enemy unit is closer to each other. Figure

6.16 (a) shows the potential generate for 1P to 2P , the potential, 1 1 2 2()[(,) ()]f x x x xν ν− ,

is enlarged when it is closer to 2P . Similarity, Figure 6.16 (b) shows the potential

generate for 2P to 1P , the potential, 2 1 2 1()[(,) ()]f x x x xν ν− , is enlarged when it is closer

to 1P . Figure 6.16 (c) and (d) show the combined potential. If 1P and 2P is getting away,

the potential will drop sharply as shown in Figure 6.16 (e) and (f).

i

148

(a) (b)

(c) (d)

(e) (f)

Figure 6.16 Effect of the decay function, (,)i jP Pϕ

2P 1P 1P 2P

149

The affected area of individual contribution, () ()i if x xν , is presented as a circle which is

similar to the original potential field. However the affected area of interaction part,

1,
()[(,) ()]n

i i j jj j i
I w f x x x xν ν

= ≠
= −∑ , is presented as a sector of circle and points to

another unit. The Equation (6.16) is modified to Equation (6.17). The interaction part is

generated in the area in between two points as the expression (6.18) and within a degree,

α , as the expression (6.19). Figure 6.17 shows the interaction part of 1x to 2x and 3x .

,1

,1

(((x,y),)) (,)) (6.18), (6.19) is true
(x,y)

(((x,y),)) Otherwise

n
i p i i ji

n
i p ii

B O P P I P P
P

B O P P

ϕ ϕ

ϕ
=

=

 × × + ×= 
× ×

∑
∑

where n is the total number of unit type, is the coordinate of

,i pB is the bonus for enemy unit type and player unit type p

2 2 1(,) (log([(x) (x)] [(y) (y)]))i j i j i jP P D P P P Pϕ −= × − + −

is the weighting to control area of affected,
w is the weighting to enlarge effect of interaction effect, 10w =

(6.17)

2 2 2 2[(x) (x)] [(y) (y)]) [(x) (x)] [(y) (y)])j j i j i jP P P P P P P P− + − ≤ − + −

(6.18)

(,) ((,),) (,)i j i i jP P P x y P P Pθ α θ θ α− ≤ ≤ +

 where 1 2
1 2

1 2

() ()(,) arctan
() ()

P y P yP P
P x P x

θ
 −

=  − 
 and / 4α π=

(6.19)

iP ia

i

D 1D =

150

Figure 6.17 The shape of the affected area

6.5.3 Flanking and diversion attack
Based on the above methodology, the interaction can be indicated easily in the potential

field. The highest potential is the destination. Flanking and diversion attack can be

suggested. Suppose all the interaction is positive. Figure 6.18 shows the enemy formation

is in a decentralized phase. They are far away from each other. Thus, (,)i jP Pϕ is small

and the interaction, (,)i jI P Pϕ× is not significant. We regarded the interaction in this case

does not occur. The highest potential tends to be the greatest individual contribution of

enemy units, i.e., highest potential

max(() ())i if x xν= and become the target of attack. To

avoid the siege of enemy, the area of the sector of circle, potential

(,)i jI P Pϕ≥ × , is not

recommended to be passing through. Flanking attack could be performed based on this

setting as shown in the path of Figure 6.18.

Figure 6.19 shows the enemy formation is in an intermediate phase. They are getting

closer to each other. Thus, (,)i jP Pϕ is increasing and the interaction, (,)i jI P Pϕ× is

growing up sharply. We regarded the interaction or cooperation of enemy is going to

happen. The highest potential is much higher than the greatest individual contribution of

enemy units, i.e., highest potential max(() ())i if x xν≥ . If we do not prevent this situation,

enemy will get close to each other and the combined power will be sharply increased. To

1x

2x

3x

151

avoid this situation, diversion attack should be performed. Player unit is suggested to go

to the highest potential, i.e., I , and attack the enemy as shown in Figure 6.19.

Figure 6.18 Decentralized phase (Flank attack)

Figure 6.19 Intermediate phase (Diversion Attack)

Figure 6.20 shows the enemy formation is in a centralized phase. They are close to each

other. Thus, (,)i jP Pϕ is large and the interaction, (,)i jI P Pϕ× is high. We regarded the

interaction or cooperation of enemy occurs and the combined power is high. The highest

potential is higher than the greatest interaction of enemy, i.e., highest potential

()max () (,) ()i i j if x x x xν ν ≥ −  . It is difficult to break the enemy formation and prevent

Player

Player

152

any flank or diversion attack. Player unit is suggested to attack the highest potential as

soon as possible. Therefore, the interaction of enemy can be minimized in a short time.

Figure 6.20 Centralized phase

Figure 6.21 shows the enemy potential field with negative interaction. Negative

interaction is regarded as the bad unit combination. Player cannot obtain high reward

when they attack these areas. It wastes the time. Therefore, the player unit is not

suggested to go through any area of negative potential.

Figure 6.21 Potential field with negative interaction

Player

153

6.5.3 Assigning charge to player potential field
The procedure of assigning the Directional based FI to player potential field is similar to

previous session. There are two main differences. First, the individual contribution, O , is

not considered as the value will confuse the scripting and maneuver. The other is

progressive function,φ , is used instead of a decay function. The reason is that we want to

keep the good unit combination close together. The equation is shown in (6.20). Figure

6.22 shows the player potential field. The highest potential that is generated by Equation

(6.10) is able to keep the player unit in a reasonable distance, i.e., the area in between the

two units. If the units are getting away from each other, φ will be increased sharply and

will attract the units as shown in Figure 6.23.

1
((,)) (6.18), (6.19) is true

(x,y)
0 Otherwise

n
p qi

I P P
P

φ
=

 ×= 


∑

where n is the total number of unit type, is the coordinate of

2 2(,) [(x) (x)] [(y) (y)]p q p q p qP P P P P Pφ = − + −

is the weighting to control area of affected,
w is the weighting to enlarge effect of interaction effect, 10w =

(6.20)

Figure 6.22 Potential field of player

iP ia

D 1D =

154

Figure 6.23 Effect of progressive function, φ

6.5.4 Scripting for micro control
After the enemy and player potential field are generated, scripting is needed to decide the

action of each unit type, such as flanking, diversion, direct attack or cooperation. First the

highest potential of enemy and player are compared. One of them is selected. If the

potential of player is higher, cooperation is performed to maintain the unit formation. On

the other hand, if the potential of enemy is higher, the player will perform the flank attack

(highest potential max(() ())i if x xν=) or diversion attack (highest potential

max(() ())i if x xν≥) or direct attack (highest potential max(() (,) ())i i j if x x x xν ν ≥ − ).

The highest potential will become the destination and the path is generated. All the

process is updated at certain time slot. Destination and path is continually updated.

155

6.6 Experimental result and discussion

6.6.1 Experiment Setting
To prove the performance of potential field and fuzzy integral, we used Warcraft III to

simulate the experiment. First, all the replays of data cluster 3 and 4 that were stated in

chapter 5 are selected. They are the competition of two races, orc and human. The

number of cases is 1553. The number of unit types is 12 for each race. Therefore, the size

of each fuzzy measure is 122 1 4095− = . The number of unit, ()f x , and scores for each

case are extracted and used to train the fuzzy measure. GA and CMA-ES are both tested.

The result of CMA-ES is used for better training and testing result. Orcµ and Humanµ are

the fuzzy measure trained by Choquet integral while Orcν and Humanν are the fuzzy

measure are trained by Directional based fuzzy integral.

(a) (b)

Figure 6.24 Simulation in Warcraft III

The initial setting of one verse one battle is presented as following. First, a battle field

with 32 32× unit is generated as shown in Figure 6.24(a). Three unit types are randomly

selected for each side. The number of unit in each type is randomly assigned but the total

amount of the army is fixed to 20, i.e., 3

1
() 20ii

f x
=

=∑ . Their locations are randomly

assigned in the red square and blue square as shown in shown in Figure 6.24(b). The

units in the blue square are regarded as enemy. They are control by the rule based system

of Warcraft III. They will not perform any actions until the units in red square move into

Attack

Counter
Attack

156

the blue square. The unit in the red square is regarded as player and will move into the

blue square and attack. The battle is terminated until all units of one side are killed or the

time of battle exceeds ten minutes. Fifty battles are set up for testing. Half of them are orc

attack human and another half are human to attack orc. For each battle, three experiments

are set up for testing.

For the first experiments, player is controlled by original rule based system. The player

will directly go into the blue square. Therefore, there is no planning for the unit maneuver.

During the movement, the unit will attack the nearest enemy until the enemy is dead and

control by the scripting of Warcraft III.

For the second experiments, it is guided by potential field with Choquet Integral. The

highest potential will become the destination. Again, the unit will attack the nearest

enemy until the enemy is dead. Potential field will be updated for each 10 seconds.

For the third experiments, it is guided by potential field with Directional based fuzzy

integral. The highest potential will become the destination. Scripting is stated in Chapter

6.5.3. Flanking and diversion attack will perform if the condition meets. Potential field

will be updated for each 10 seconds.

6.6.2 Results and visualization
For each experiment, 50 battles are preformed. The result has been stated in Table 6.3.

The winning percentage of potential field with Directional based fuzzy integral is the

highest. Compared with rule based system, potential field with Choquet Integral has a 29%

improvement and the potential field with Directional based fuzzy integral has a 48%

improvement. The performance of micro control is optimized. By observing the battle,

both potential fields with fuzzy integral can locate the support unit, such as Priest in

Human and Raider in Orc. The combined power will be decreased by stopping their

support. In another word, kill them at once can increase the possibility of win.

157

Potential field with Directional based fuzzy integral cannot show significant different

when the unit is closed together, i.e., potential ()max () (,) ()i i j if x x x xν ν ≥ −  . In

another word, interaction has already occurred in the enemy, However, it showed a

significant improvement when flank and diversion attack can be performed. Diversion

attack can isolated some enemy units as shown in the circle of Figure 6.24(a). As the

enemy support is blocked, the isolated enemy will be easily killed. The player can retain

more units for the remaining battle. Flank attack could also improve the possibility of win

as the player does not need to face all the enemy units at the same time Figure 6.24(b).

TABLE 6.3
COMPARISON OF DIFFERENT MICRO CONTROL

Micro Control Wining
Rule based System 42%
Potential field and Choquet Integral 54%
Potential field and Directional based fuzzy Integral 62%

(a) Diversion (b) Flank Attack

Figure 6.25 Diversion and flank attack in Warcraft III

158

6.7 Summary
In this chapter, we have developed an adversarial real time planning model for micro

control in RTS game. We have extended the normal additive properties to non-linear for

potential field. Interaction of different units in the battle has been considered. Since

classical Choquet integral cannot be visualized the interaction in potential field easily.

We defined a new type of fuzzy integral called Directional-based FI. This new integral

can evaluate the correlation of different unit combinations. Individual contribution and

interaction of different unit type can be determined and assigned to potential field easily.

Experiments are carried out to compare rule based system, potential field with CI and

potential field with Directional based FI. By using the proposed integral, different

interactions such as super-additive or sub-additive can be visualized in potential field.

The performance of path finding in micro control is optimized. Details unit maneuver,

such as flank and diversion attack can be performed. For the winning percentage,

compared with rule based system, potential field with Choquet Integral has a 29%

improvement and the potential field with Directional based fuzzy integral has a 48%

improvement. The future work will focus on extending the result of feature interaction in

perform more advance unit maneuver in RTS game, such as tracking problem.

159

Chapter 7

Conclusion and future works

7.1 Summary of the research problem
The game market and related technologies grow rapidly in these few years. Graphics

improvements are becoming saturated. However, artificial intelligence (AI) development

in game remains a grand challenge for researchers, especially in real time strategy (RTS)

game. The fundamental game play of a typical RTS game is collecting and allocating

resources to build an army and destroy enemy units. Strategy refers to a sequence of

above actions to achieve this goal. It depends heavily on the current opponent and spatial

information. It is difficult to formulate a model as it consists of complicated game rules

and numerous kinds of interacting units. The search space is large and often involves

complicated interaction among the game units and corresponding actions. In the game

industry, strategy planning is usually handled by rule based system or tree searching. It is

hard to manage and easily discovered by human players. Moreover, it could only support

the action level and lack for abstract thinking to control the sequence of actions.

Soft computing techniques are efficient to search the inexact solution under time pressure

and uncertainty. However, current techniques, such as neural networks, SWARM

intelligence, and decision trees induction are formulated on the minimization of

Euclidean distance-based error functions. The parameters used in these functions are all

normal additive in nature and the model is unable to describe the non-linear effects

among parameters. It is not suitable to present the intransitive superiority situation in

RTS game.

Case based reasoning (CBR) is another important tracks in game AI development. It

reduced the workload and the development time for strategy planning. Unlike, NN, GA

or other AI technologies, expert assistance could be easily involved. Decisions and

actions could be learnt from human players. There are two main disadvantages. First one

160

is the huge quantities of data which are required at the beginning stage. Another problem

is the algorithm for case retrieval has not yet been formulated very well in RTS game.

The algorithm will tend to a constant number when the number of cases or the dimension

of the problem spaces increases. It cannot identify the difference among situations and

find a most suitable one.

7.2 Summary of the research work
In our work, we focus on strategy indexing, learning and optimization in RTS game. For

the indexing problem, we improved the random walk of GA and reduced the recall time

for searching an optimized solution. We have also created a model to learn the player

decisions and actions. It improved the learning ability by considering the interaction

inside the features. Finally, we developed four fuzzy integrals to optimize the case

retrieval of strategy planning model and action behavior of object in RTS game.

We selected tower defense which is a subgenre of RTS game play as our preliminary

study. We created a model to adopt neural network (NN) into GA to solve this problem.

The optimized solutions that provided by GA are encoded, memorized and indexed by

NN. Comparing with GA, the training time of the new model has a 49.8% of

improvement. GA required 800 to 1000 seconds to obtain the solution of tower

distribution, while the recall time of the new model is only 0.04 second to 0.06 second.

This model provides efficient, fair and natural game AI to tackle the game problems.

Simulation results are provided to support our idea.

After the preliminary study, we extended our work to RTS game play. We decoded and

extracted the data from the replay of Warcraft III which is a well known RTS game. We

adopted a Case-Based Reasoning (CBR) and Bayesian Network (DBN) approach to

create player behavioral models. The model achieved the average accuracy of 84.0%. The

prediction time is around 0.1 second in a Core 2 Duo 2.13GHz machine with 4 GB Ram.

It is efficient in runtime. However, most of the unit types and attributes of RTS game

cannot be classified into discrete or Gaussian distributions. The structure of DBN is huge

161

and the joint distributions are unmanageable. The player behavioral models are hard to

turn into a strategy planning model.

Although we have developed a model to learn player behaviors, there is lack of algorithm

to evaluate the performance of cases and handle the feature interaction in RTS game. To

overcome this problem, we divided the RTS game play into two types and performed the

research. First one is macro control. It consists of the development of resource gathering

plans, base building decisions and technology upgrade paths. Another is micro control

which involves in directing unit movements, path selection and the combats encounter.

For the macro control, we extracted the strategies from real professional players in

Warcraft III. A total of 2,649 replay files of professional one-versus-one competitions are

selected for the experimental training and testing. We combined GA, CMA-ES, fuzzy

measure and integral to learn the performance of unit combination. Fuzzy measure of

each subset is guided by the fuzzy integral in the GA or CMA-ES training. The value of

each subset can be fully observed and managed. Finally, the model is able to evaluate the

new situation in the complex environment and gives a score for the strategy. Fuzzy

measure and technique also optimized the strategy planning model by considering super-

additive and sub-additive in the feature. Thus, the model is able to search an optimized

strategy in the intransitive superiority situation.

Traditional Choquet Integral is useful in many applications because of its generalized

mean operator. However, it could not obtain a good result in the scores estimation as the

aggregation put more emphasis on those subsets that have smaller values. Therefore,

three new fuzzy integrals have been proposed as an aggregation operator to sum up all

the fuzzy measures and to model the interaction among the feature in RTS game. We

developed mean based and max based fuzzy integral to evaluate the performance of

strategies in macro-control. Mean based fuzzy integral considers all the interactions that

involve the selected unit type in the fuzzy measure and then take an average. It has 78%

and 38% improvement, compared with weighted average and Choquet Integral. Max

based fuzzy integral considers the maximum value of the subset. It has 73.0% and 20.0%

162

improvement, compared with weighted average and Choquet Integral. One of the

weaknesses of these two integral is the training time. It is about 40 to 180 times more

than Chouqet Integral. We also developed Order based fuzzy integral to reduce the

training time of Mean based fuzzy integral. It considers resource weighting and

development of RTS game units. The aggregation operator focuses on the highest

proportion units, i.e., highest resources units first and calculates their interactions with all

other units and so on. Compared with Mean based fuzzy integral, the training time and

memory complexity is reduced from 2()O n to ()O n where n is the number of unit type.

The performance is similar to the Mean based fuzzy integral. It has 80% and 40%

improvement, compared with weighted average and Choquet Integral. Compare with NN,

it has 7.5% improvement and the concept of power set and feature combinations can be

easily shown to programmer or AI developer. We also transformed the fuzzy integral into

different mathematical forms to provide a better understanding of sub-set selection.

For micro control, we applied potential field, fuzzy measure and integral to solve the

micro-control. Potential field is suitable for complicated and various environment with

multiple targets. However, aggregation operator does not consider non-additive property.

It is unable to perform the flanking attacks and diversions. We integrated potential field

with fuzzy measure and Choquet integral and provided the ability to handle interactions

among different targets. It improved the behavior of the unit formation. Cooperative

behavior emphasizes the importance of interaction between the units. Hence, we

developed directional based fuzzy integral for potential field. It could identify the

direction of positive and negative interactions for movement planning and team

composition in micro-control. Flank and diversion attack can be preformed. This

planning model removes the needs for designing complicated rule set or finite state

machine. Compared with rule based system, potential field with Choquet Integral has a

29% improvement and the potential field with Directional based fuzzy integral has a 48%

improvement.

163

7.3 Future work
Both RTS game and interaction are under study problem in research area. Our research

can be extended to different aspect for further study. We have the following suggestions.

Simplify fuzzy measure

Throughout the development of fuzzy measure, there are two simplified fuzzy measure,

such as Sugeno-λ and k-additive fuzzy measure. K-additive fuzzy measure reduces the

number of parameters in determining a fuzzy measure to size k. For example, for k equals

to 1, the subset with magnitude equal to 1, such as 1{ }x , 2{ }x , 3{ }x , etc, is found or set up

by expert first. The remaining interactions, such as 1 2{ , }x x , 2 3{ , }x x , 1 3{ , }x x , 1 2 3{ , , }x x x ,

are then described by 1{ }x , 2{ }x , 3{ }x and the equation that stated in (2.13) of Chapter 2.

In our work, it shows similar phenomenon. The role of the subset with smaller magnitude

is more important. Usage count of these subset selections is higher as shown in Figure 7.1,

7.2 and Table 7.1. Most of the subsets with higher magnitude does not occur in the real

cases. The reason behind is that the advance unit requires many resources and technology

updated. A professional player will only focus on a few advance units and of course, they

will not produce balance army with many unit combinations. Therefore, the size of fuzzy

measure could be simplified by the subset selection, such as Equation (5.10) and

Equation (5.11). It can reduce the training time of GA and CMA-ES. A further study

could be done on formulating and designing the simplified fuzzy measure for the real

cases.

TABLE 7.1
COMPARISON OF FREQUENCY WITH DIFFERENT MAGNITUDE IN SUBSET

Magnitude Or-based FI Choquet Integral
1 23.28571 23.85714
2 7.714286 8.000000
3 4.000000 3.942867
4 2.142857 2.085714
5 0.619408 0.666667
6 0 0

164

Figure 7.1 Usage count of subset selection for order-based FI in data cluster 1

(X-axis is the set. Statring from the left, they are the set which only contains one element, i.e. , {x2},

{x3}…etc. Then they are the sets which contain more elements, i.e., {x1, x2}, {x1, x3},…, { x1, x2, x3},

etc. The last one on the right is the set which involves the whole set of elements. i.e., { x1, x2, …, xn})

Figure 7.2 Usage count of Subset selection for CI in data cluster 1

Maximum algorithm for priority sorting in fuzzy integral

We have developed an efficient way to evaluate the unit combination. However, it is

difficult to find the unit combination that can maximize the combined power. Let ()f x

be a function on []1 2, ... nx x x . Fuzzy integral consists of priority sorting. The subset of

165

fuzzy measure, 1 1 2 1(),..., (,),... (...)nx x x x xµ µ µ in the fuzzy integral will be change based

on sorting of ()f x . It is a non-linear calculation. Therefore, traditional mathematical

equation cannot find a suitabitity of []1 2, ... nx x x to get the maximum value of fuzzy

integral, i.e., ()max ()c fdµ∫ . Currently, only some EA methods could be used to find the

best fit answer. There is lack of methodologies to search the maximum value in fuzzy

integral in an efficient way.

Trapping in unit maneuver

Trapping in the RTS game is a special “strategy” looking good in the short term but has

bad consequences in the long term for the enemy. The study on traps in RTS is very little

and the existing models in literatures regarding the trap as a static obstacle. Miles and

Louis [Miles 2004, Louis 2005] applied the genetic algorithm and combined with case-

based reasoning is used to the trap avoidance. Naveed [Navved 2011] applied Markov

decision process in the trap recognition. Mingliang [Mingliang 2010] was the only one

proposed trapping planning. He has improved the A* path finding to find multiple paths

for tracking the enemy. However, it is only for well defined and finite path which is not

suitable for the dynamic battlefield in RTS game.

Design and recognition of a trap could produce an advance unit maneuver planning. It is

more like a human beginning. We could indicate the special cases with high evaluations

at shallow episodes and with a low evaluation at the maximum episode, where the

evaluation can be measured by the degree of enhancing the own power and/or destroying

the opponents' power. The feature and the action of the special cases could be modeled.

Currently, potential field only focuses on instance unit planning. By combining with CBR,

the theory of potential field could be extended to deal with the time series.

Unit balancing and gameplay design problem in game design

In our work, we considered game unit type as our basic unit for interaction. In fact, there

are many skills and properties in each unit type. Interaction also occurs in this level and

under study. The gaming companies spend huge resources to fine tune the value of skills

166

and properties. We called it as unit balancing. It is a big issue in game industry. Another

big issue is the gameplay design. Nowadays, the investment of game development is

huge and some of them are counted in billion US dollar. A good evaluation model or

algorithm for gameplay and unit balancing design is still missing.

Interaction in other domain field

Feature interaction is not only in game industry. Another good example is in social

network. How the structure ties the users together and what kind of knowledge could be

found in the interaction of users are popular research trend. Lots of funding is provided

by US Government to investigate the deep belief networks. DBN, fuzzy measure and

integral is possible to combine together and provide an efficient interaction extraction.

167

Reference
[Aha 2005] D. Aha, M. Molineaux, M. Ponsen, "Learning to Win: Case-Based Plan

Selection in a Real-Time Strategy Game." Lecture notes in Computer Science, 3620: 5,

2005

[Albrecht 1998] D. Albrecht, I. Zukerman, “Bayesian models for keyhole plan

recognition in an adventure game” User modeling and user-adapted interaction 8(1): 5-

47, 1998

[Alexander 2007] N. Alexander, “Game AI is Dead. Long Live Game AI!”, Intelligent

Systems, IEEE 22(1): 9-11, 2007

[Auger 2005] A. Auger, A, N. Hansen, “A Restart CMA Evolution Strategy With

Increasing Population Size,” In Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2005, pp.1769-1776, 2005

[Auger 2010] A. Auger, D. Brockhoff, N. Hansen, “Benchmarking the (1, 4)-CMA-ES

with mirrored sampling and sequential selection on the noisy BBOB-2010 testbed”,

Workshop Proceedings of the GECCO Genetic and Evolutionary Computation

Conference 2010, ACM, pp. 1625-1631, 2010

[Avery 2010] P. Avery, S. Louis, “Coevolving team tactics for a real-time strategy game,”

In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC-2010),

Barcelona, July 18-23, pp. 1-8, 2010

[Barricelli 1957] Nils Aall Barricelli, "Symbiogenetic evolution processes realized by

artificial methods", Methodos: 143–182, 1957

168

[Baum 1966] L. Baum, T. Petrie, “Statistical Inference for Probabilistic Functions of

Finite State Markov Chains”, The Annals of Mathematical Statistics 37 (6): 1554–1563,

1966

[Bakkes 2009] S. Bakkes and P. Spronck, “Rapid and Reliable Adaptation of Video

Game AI”, IEEE Transactions on Computational Intelligence and AI in Games, 1(2): 93-

104, 2009

[Baumgarten 2009] R. Baumgarten, S. Colton, “Combining AI Methods for Learning

Bots in a Real-Time Strategy Game” International Journal of Computer Games

Technology, 2009

[Beume 2008] N, Beume, T. Hein, “Intelligent anti-grouping in real-time strategy games”,

IEEE Symposium on Computational Intelligence and Games (CIG 2008), 2008

[Buro 2003] M. Buro, “Real-time strategy games: A new AI research challenge”,

International Joint Conference on Artificial Intelligence, vol 18, pp. 1534-1535, 2003

[Buro 2004] M. Buro, “Call for AI research in RTS games”, Proceedings of the AAAI-

04Workshop on Challenges in Game AI, pp. 139–142, 2004

[Chamber 2005] C. Chamber, W. Feng, D. Saha, “Mitigating information exposure to

cheaters in real-time strategy games” Proceedings of the international workshop on

Network and operating systems support for digital audio and video, pp 7-12, 2005

[Chen 2000] Ting-Yu Chen, Jih-Chang Wang, and Gwo-Hshiung Tzeng, “Identification

of General Fuzzy Measures by Genetic Algorithms Based on Partial Information”, IEEE

Transaction on Systems, Man, and Cybernetic—part B, vol. 30, no. 4, 2000

[Choquet 1953] G. Choquet , “Theory of Capacities”, Annales de l'Institut Fourier 5:

131–295, 1953

169

[Chuen-Tsai 1994] S. Chuen-Tsai, Y.H. Liao, J.Y. Lu, F.M. Zheng, “Genetic algorithm

learning in game playing with multiple coaches”, IEEE World Congress on

Computational Intelligence, Proceedings of the First IEEE Conference on Evolutionary

Computation, 239-243, 1994

[Fraser 1970] A. Fraser; D. Burnell, “Computer Models in Genetics”, New York:

McGraw-Hill. ISBN 0-07-021904-4, 1970

[Forbus 2002] K. Forbus,, J. V. Mahoney, “How qualitative spatial reasoning can

improve strategy game AIs.” IEEE Intelligent Systems, 17(4): 25-30, 2002

[Genter2011] K. Genter, S. Ontañón, A. Ram, “Learning opponent strategies through first

order induction,” In Proceedings of the 2011 Florida Artificial Intelligence Research

Society Conference (FLAIRS-2011), Florida, May 18-20, pp. 482-483, 2011

[Gillies 2009] M. Gillies, “Learning Finite-State Machine Controllers From Motion

Capture Data”, IEEE Transactions on Computational Intelligence and AI in Games, 1(1):

63-72, 2009

[Hagelback 2008] J. Hagelback and S. Johansson, “Using multi-agent potential fields in

real-time strategy games”, Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems-Volume 2, pp 631-638, 2008

[Hansen 2001] N. Hansen, A. Ostermeier, “Completely Derandomized Self-Adaptation in

Evolution Strategies”, Evolutionary Computation, 9(2), pp. 159-195, 2001

[Hansen 2004] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on

multimodal test functions,” Parallel Problem Solving from Nature (PPSN VIII), pp. 282-

291, 2004

170

[Hansen 2003] N. Hansen, M. Koumoutsakos, “Reducing the Time Complexity of the

Derandomized Evolution Strategy with Covariance Matrix Adaptation”, Evolutionary

Computation, 11(1) pp1-18, 2003

[Hansen 2010] N. Hansen, A. Auger, R. Ros, S. Finck, P. Posik, “Comparing Results of

31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009”,

Workshop Proceedings of the GECCO Genetic and Evolutionary Computation

Conference 2010, ACM, pp. 1689-1696, 2010

[Hebb 1949] D. Hebb, “The organization of behavior: A neuropsychological theory”,

Lawrence Erlbaum, 1949

[Hsieh 2008] J.L. Hsieh, and C.T. Sun, “Building a player strategy model by analyzing

replays of real-time strategy games”, International Joint Conference on Neural Networks

2008 (IJCNN), 2008

[Hsueh-Min 2009] C. Hsueh-Min, S. Von-Wun, "Planning-Based Narrative Generation in

Simulated Game Universes." Computational Intelligence and AI in Games, IEEE

Transactions on 1(3): 200-213, 2009

[Ishii 1985] K. Ishii, M. Sugeno, “A model of human evaluation process using fuzzy

measure”, Int. J. Man-Machine Studies, 22:19-38, 1985.

[Jack 2006] Yi Jack, Y. and J. Teo, “An Empirical Comparison of Non-adaptive,

Adaptive and Self-Adaptive Co-evolution for Evolving Artificial Neural Network Game

Players”, IEEE Conference on Cybernetics and Intelligent Systems, 2006

[John 2009] H. Johan. “A Multiagent Potential Field-Based Bot for Real-Time Strategy

Games”, International Journal of Computer Games Technology, 2009

171

[Johansson 2008] J. Hagelback, S. Johansson, “Demonstration of multi-agent potential

fields in real-time strategy games,” International Foundation for Autonomous Agents and

Multiagent Systems Richland, SC, 2008

[Jones 2001] H. Jones, M. Snyder, “ Supervisory control of multiple robots based on a

real-time strategy game interaction paradigm”, IEEE International Conference on

Systems Man and Cybernetics, vol 1, pp 383-338, 2001

[Kabanza 2010] F. Kabanza, P. Bellefeuille, F. Bisson, “Opponent behavior recognition

for real-time strategy games,” In Proceedings of the 2010 Conference on Artificial

Intelligence (AAAI-2010), Georgia, July 11-15, pp. 29-36, 2010

[Keaveney 2011]D. Keaveney and C. O'Riordan, “Evolving Coordination for Real-Time

Strategy Games.” IEEE Transactions on Computational Intelligence and AI in Games,

3(2): 155-167, 2011

[Khatib 1986] O. Khabit, “Real time obstacle avoidance for manipulation and mobile

robots”, Int. J Robotics Res, vol 5.1, pp.90-98, 1986

[Kuenzer 2001] A. Kuenzer and C. Schlick, “An empirical study of dynamic bayesian

networks for user modeling”, Proceeding of the UM’2001 Workshop on Machine

Learning for User Modeling, 2001

[Kwon 2000] S. Kwon, M. Sugeno, “A hierarchical subjective evaluation model using

non-monotonic fuzzy measures and the Choquet integral”, Fuzzy Measures and

Integrals—Theory and Applications: 375–391, 2000

[Liang 2005] J. Liang, P. Suganthan, K. Deb, “Novel composition test functions for

numerical global optimization”, In Proceedings of IEEE Swarm Intelligence Symposium

(SIS 2005), 2005

172

[Louis 2005] S. Louis, C. Miles, “Playing to learn: case-injected genetic algorithms for

learning to play computer games”, IEEE Transactions on Evolutionary Computation, 9(6):

669-681, 2005

[Lucas 2009] S. M. Lucas, “Computational Intelligence and AI in Games”, IEEE

transaction on Computational Intelligence and AI in Games, VOL. 1, 1-3, 2009

[Mehta 2009] M. Mehta, and A. Ram, “Runtime Behavior Adaptation for Real-Time

Interactive Games”, IEEE Transactions on Computational Intelligence and AI in Games,

1(3): 187-199, 2009

[Michio 1994] Murofushi Michio, T. and M. Machida, “Non-monotonic fuzzy measures

and the Choquet integral”, Fuzzy Sets and Systems 64(1): 73-86, 1994

[Miles 2004] C. Miles, S.J. Louis, R. Drewes, “Trap avoidance in strategic computer

game playing with case injected genetic algorithms”, Lecture Notes in Computer Science,

3102, pp. 1365-1376, 2004.

[Miles 2004] C. Miles, S.J. Louis, N. Cole, “ Learning to play like a human: Case

injected genetic algorithms for strategic computer gaming”, In Proceedings of the 2004

International Congress on Evolutionary Computation (CEC-2004), Portland, June 19-23,

pp. 1441-1448. 2004.

[Miles 2006] C. Miles, S. J. Louis, “Co-evolving real-time strategy game playing

influence map trees with genetic algorithms”, Proceedings of the International Congress

on Evolutionary Computation, Portland, Oregon, 2006

[Mingliang 2010] X. Mingliang, P. Zhigeng, “Moving-Target Pursuit Algorithm Using

Improved Tracking Strategy”, IEEE Transactions on Computational Intelligence and AI

in Games, 2(1): 27-39, 2010

173

[Minsky 1954] M.L. Minsky, “Theory of neural-analog reinforcement systems and its

application to the brain-model problem”, Princeton University, 1954

[Montaner 2003] M. Montaner, “A taxonomy of recommender agents on the internet”,

Artificial intelligence review 19(4): 285-330, 2003

[Murofushi 2000] T. Murofushi and M. Sugeno, “The Choquet integral in multiattribute

decision making”, Fuzzy measures and integrals: theory and applications, pp 333-47,

2000

[Murofushi 2000] T. Murofushi, M. Sugeno, “The Choquet integral in multiattribute

decision making”, Fuzzy measures and integrals: theory and applications: 333-47, 2000

[Murofushi 2005] T. Murofushi and M. Sugeno, “Fuzzy measures and fuzzy integrals”,

Fuzzy measures and integrals: theory and applications: 3–41, 2005

[Naveed 2011] M. Naveed, A. Crampton, D. Kitchin, “ Real-time path planning using a

simulation-based Markov decision process”, In Proceedings of the 2011 SGAI

International Conference on Innovative Techniques and Applications of Artificial

Intelligence, England, December 13-15, 2011

[Ontanon 2007] S. Ontanon and K. Mishra, “Case-Based Planning and Execution for

Real-Time Strategy Games”, Lecture notes in Computer Science, 4626L:164, 2007

[Peter 1999] J. Peters, L. Han and S. Ramanna, “The Choquet integral in a rough

software cost decision system”, Fuzzy Measures and Integrals: Theory and Applications,

Studies in fuzziness and soft computing, pp 392, 1999

[Peters 1999] J. Peters, L. Han, S. Ramanna, “The Choquet integral in a rough software

cost decision system”, Fuzzy Measures and Integrals: Theory and Applications, Studies

in fuzziness and soft computing: 392, 1999

174

[Preuss 2010] M. Preuss, N. Beume, Holger Danielsiek, T. Hein, B. Naujoks, N.

Piatkowski, R. Stüer, A. Thom, and S. Wessing, “Towards Intelligent Team Composition

and Maneuvering in Real-Time Strategy Games.” IEEE Transactions on Computational

Intelligence and AI in Games, 2(2): 82-98, 2010

[Ponsen 2004] M. Ponsen, “Improving adaptive game AI with evolutionary learning”,

Delft University of Technology, 2004

[Ponsen 2005] M. Ponsen, H. Muz-Avila, “Automatically acquiring domain knowledge

for adaptive game AI using evolutionary learning”, Menlo Park, CA; Cambridge, MA;

London; AAAI Press; MIT Press, 2005

[Ponsen 2007] M. Ponsen, P. Spronck, “Knowledge acquisition for adaptive game AI”,

Sci. Comput. Program. 67(1): 59-75, 2007

[Ranganathan 2003] A. Ranganathan and R. Campbell, “A middleware for context-aware

agents in ubiquitous computing environments”, Springer-Verlag New York, Inc. New

York, NY, USA, 2003

[Reynolds 2005] R. Reynolds, Z. Kobti, “Unraveling ancient mysteries: reimagining the

past using evolutionary computation in a complex gaming environment”, IEEE

Transactions on Evolutionary Computation 9(6): 707-720, 2005

[Sankar 2004] K. Sankar, Simon C.K. Shiu, “Foundations of Soft Case-Based

Reasoning”, Wiley-interscience, 2004

[Schank 1977] R. Schank and R. Abelson, “Scripts, Plans, Goals and Understanding”,

Erlbaum, Hillsdale, New Jersey, US, 1977

175

[Schiaffino 2000] S. Schiaffino and A. Amandi, “User profiling with case-based

reasoning and bayesian networks”, Proceeding of the International Joint Conference, 7th

Ibero-American Conference, 15th Brazilian Symposium on AI, IBERAMIA-SBIA 2000,

Open Discussion Track Proceedings on AI, 2000

[Sharma 2007] M. Sharma, M. Holmes, “Transfer learning in real-time strategy games

using hybrid CBR/RL”, Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence, pp 1041 -1046, 2007

[Shir 2006] O. Shir and T. Back , “Niche radius adaptation in the cma-es niching

algorithm”, Parallel Problem Solving from Nature (PPSN IX), pp. 142-151, 2006

[Sugeno 1974] M. Sugeno, “Theory of fuzzy integrals and its applications. Ph.D. thesis”,

Tokyo Institute of Technology, Tokyo, Japan, 1974

[Sugeno 1985] K. Ishii and M. Sugeno, “A model of human evaluation process using

fuzzy measure”, Int. J. Man-Machine Studies, 22:19-38, 1985

[Szita 2009] I. Szita, M. Ponsen, “Effective and Diverse Adaptive Game AI”, IEEE

Transactions on Computational Intelligence and AI in Games, 1(1): 16-27, 2009

[Wang 1996] Jia Wang, Zhangyuan Wang, “Using Neural Networks to Determine

Sugeno Measure by Statistics”, International Journal of Neural Network, Vol.10, No.1,

pp. 183-195, 1996

 [Wang 1997] Z. Wang, K.S. Leung, J. Wang, “Genetic algorithms used for determining

nonadditive set functions in information fusion”, Proc. IFSA'97, vol. 1, pp. 518-521,

1997

176

 [Wang 1998] W. Wang, Z. Wang and George J.Klir, “Genetic algorithms for

determining fuzzy measures from data”, Journal of Intelligent and Fuzzy Systems 6 171-

183, 1998

[Wang 1999] Z. Y. Wang, K. Xu, J. Wang, “Using genetic algorithm to determine non-

negative monotone set functions for information fusion in environments with random

perturbation”, International Journal of Intelligent System, 14: 949-962, 1999

[Wang 2001] X.Z. Wang, D.S. Yeung, E.C.C. Tsang, “A comparative study on heuristic

algorithms for generating fuzzy decision trees,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, 31(2), pp. 215-226, 2001

[Wang 2006] Z. Wang, Y. He, “A Comparison among Three Neural Networks for Text

Classification”, 8th International Conference on Signal Processing, 2006

[Wang 2008] Z. Wang, R. Yang, K. Lee, K. Leung, “The Choquet integral with respect

to fuzzy-valued signed efficiency measures”, IEEE International Conference on Fuzzy

Systems, 2008

[Wang 2009]X.Z. Wang, C.R. Dong, “Improving generalization of fuzzy if-then rules by

maximizing fuzzy entropy,” IEEE Transactions on Fuzzy Systems, 17 (3), pp. 556-567,

2009

[Wang 2010] H. Wang, Y. Gao, X.G. Chen, “RL-DOT: A reinforcement learning NPC

team for playing domination games,” IEEE Transactions on Computational Intelligence

and AI in Games, 2(1), 17-26, 2010

[Wang 2011]X.Z. Wang, L.C. Dong, J.H. Yan. “Maximum ambiguity based sample

selection in fuzzy decision tree induction,” IEEE Transactions on Knowledge and Data

Engineering, DOI:10.1109/TKDE.2011.67, 2011

177

[Weijun 2010] S. Weijun, M. Rui and Y. Chongchong, “ A Study on Soccer Robot Path

Planning with Fuzzy Artificial Potential Field”, 2010 International conference on

Computing, Control and Industrial Engineering, pp 386, 2010

[Watson 2001] R.Watson and J. Pollack, “Coevolutionary dynamics in a minimal

substrate,” Proc. Genetic Evol. Comput. Conf., 2001.

[Wilcoxon 1945] F. Wilcoxon, “Individual comparisons by ranking methods”, Biometrics

Bulletin 1 (6): 80–83, 1945

[Xu 2003] K.B. Xu, Z.Y. Wang, P.A. Heng, K.S. Leung, “Classification by nonlinear

integral projections,” IEEE Transactions on Fuzzy Systems, 11(2), pp. 187-201, 2003

[Yang 2007]R. Yang, Z.Y. Wang, P.A. Heng, K.S. Leung, “Classification of

heterogeneous fuzzy data by Choquet integral with fuzzy-valued integrand. IEEE

Transactions on Fuzzy Systems, 15(5), pp. 931-942, 2007

[Yeung 2004] D. Yeung, X. Wang, Eric Tsang, “Handling interaction in fuzzy production

rule reasoning”, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on 34(5): 1979-1987, 2004

[Yeung 2006] SF. Yeung, J. Liu, J. Liu, J. Yan, “Detecting cheaters for multiplayer

games: theory, design and implementation”, 3rd IEEE Consumer Communications and

Networking Conference, 2006

[Yin 2008] L. Yin and Y. Yin, “An Improved Potential Field Method for Mobile Robot

Path Planning in Dynamic Environment”, Proceeding of the 7th World Congress on

Interlligent Control and Automation, pp 4847, 2008

178

[Yu 2006] J. Yu, and J. Teo, “An Empirical Comparison of Non-adaptive, Adaptive and

Self-Adaptive Co-evolution for Evolving Artificial Neural Network Game Players”,

IEEE Conference on Cybernetics and Intelligent Systems. 1-6, 2006

[Yeung 2006] S. Yeung, J. Lui, “Detecting cheaters for multiplayer games: theory, design

and implementation”, 3rd IEEE Consumer Communications and Networking Conference,

2006. CCNC, 2006

[Zadeh 1994] Zadeh, A. Lotfi, “Fuzzy Logic, Neural Networks, and Soft Computing”,

Communication of the ACM, March 1994, Vol. 37 No. 3, pages 77-84, 1994

	The Hong Kong Polytechnic University
	Abstract
	Acknowledgements
	List of Publication
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	1.1 Computer games and AI development
	1.2 Motivation and objective of this research
	1.2.1 Driven force in game industry
	1.2.2 Driven force in game research
	1.3.3 Research problem

	1.4 Methodologies and research
	1.5 List of contribution
	1.6 Thesis organization

	Chapter 2
	Literature review
	2.1 Real time strategy game research and development
	2.1.1 History and gameplay of RTS game
	2.1.3 Research in RTS game
	Resource management (Macro control)
	Adversarial real time planning (Micro control)
	Player and opponent modeling and learning
	Spatial and temporal reasoning

	2.2 Soft computing techniques applied to RTS games
	2.2.1 History and characteristics of soft computing techniques
	2.2.2 Case-based planning in RTS game
	2.2.3 Reinforcement learning in RTS game
	2.2.4 Online learning in RTS game
	2.2.5 Multi-agent potentials field in RTS game

	2.3 Soft computing techniques used in this research
	2.3.1 Fuzzy measure and fuzzy integral
	2.3.2 Genetic algorithm
	2.3.3 Covariance matrix adaptation evolution strategy
	2.3.4 Artificial neural network
	2.3.5 Hidden Markov model and dynamic Bayesian network
	2.3.6 Case-based reasoning

	2.4 Other techniques used in this research
	2.4.1 Potential field
	2.4.2 Mann-Whitney test
	2.4.3 Bivariate correlation test

	2.5 Summary

	Chapter 3
	A fast indexing scheme for identifying game unit’s best location
	3.1 Introduction
	3.2 Tower defense problem in RTS game
	3.3 Neural-evolutionary model
	3.3.1 Chromosome formation in GA
	3.3.2 Fitness value determination in GA
	3.3.3 Case indexing by neural network

	3.4 Experimental result and discussion
	3.4.1 Experimental result of GA
	3.4.2 Experimental result of ANN optimization

	3.5 Summary

	Chapter 4
	Learning player behaviors from
	RTS game data
	4.1 Introduction
	4.2 Knowledge discovery problem in RTS game
	4.3 Player behavior model
	4.3.1 Behavior acquisition in replay data
	4.3.2 Dynamic Bayesian network structure and parameters learning

	/
	4.3.3 Prediction in dynamic Bayesian network
	4.4 Experimental result and discussion
	4.5 Summary
	Chapter 5
	An order-based fuzzy integral to model feature interactions in RTS games
	5.1 Introduction
	5.2 Macro control problem in RTS game
	5.3 Bottom-up strategy planning model
	5.4 Evaluating the non-linear property in unit combination
	5.4.1 Data collection and preprocessing
	5.4.2 Learning fuzzy measure by GA
	5.4.3 Learning fuzzy measure by CMA-ES
	5.4.4 Fitness value determination

	5.5 Applying different fuzzy integral in fitness function
	5.5.1 Choquet Integral
	5.5.2 Motivation to develop new fuzzy integrals
	5.5.3 Mean based fuzzy integral
	5.5.4 Max based fuzzy integral
	5.5.5 Order based fuzzy integral
	5.5.6 Properties of order based fuzzy integral
	5.5.7 Subset selection for different fuzzy integral
	5.5.8 Extrapolation of fuzzy measures for missing points

	5.6 Experimental result and discussion
	5.6.1 Brief description of testing data
	5.6.2 GA operators
	5.6.3 CMA-ES operators
	5.6.4 Comparison of GA and CMA-ES
	5.6.5 Comparison of different fuzzy integral
	5.6.6 Observe the usage count of subsets in different fuzzy integrals

	5.7 Summary

	Chapter 6
	Optimal path determination using
	directional based fuzzy integral and potential field
	6.1 Introduction
	6.2 Micro control problem in RTS game
	6.3 Min-Max strategy
	6.4 Learning fuzzy measure by evolution strategy
	6.4.1 Data collection and preprocessing
	6.4.2 Setting and operators of evolution strategy

	6.4 Combining Choquet Integral and potential field
	6.4.1 Evaluating the contribution of each unit type
	6.4.2 Assigning charge to potential field
	6.4.3 Assigning game rule to potential field

	6.5 Combining directional based fuzzy integral and potential field
	6.5.1 Evaluating the individual contribution and interaction
	6.5.2 Properties of directional based fuzzy integral
	6.5.2 Assigning charge to enemy potential field
	6.5.3 Flanking and diversion attack
	6.5.3 Assigning charge to player potential field
	6.5.4 Scripting for micro control

	6.6 Experimental result and discussion
	6.6.1 Experiment Setting
	6.6.2 Results and visualization

	6.7 Summary

	Chapter 7
	Conclusion and future works
	7.1 Summary of the research problem
	7.2 Summary of the research work
	7.3 Future work

	Reference

