
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

THE IMPACT OF SHADOW 

ENHANCEMENT ALGORITHMS ON 

REMOTELY SENSED IMAGES OF 

COMPLEX URBAN ENVIRONMENTS 

 

 

 

 

 

 

WAN CHEUK YAN 

 

 

 

 

M.Phil 

The Hong Kong Polytechnic University 

2013 

 

  

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.



ii 

 

The Hong Kong Polytechnic University 

 

Department of Land Surveying and 

Geo-Informatics 

 

 

The Impact of Shadow Enhancement 

Algorithms on Remotely Sensed Images of 

Complex Urban Environments 

 

 

Wan Cheuk Yan 

 

A thesis submitted in partial fulfillment of the 

requirements for the degree of Master of Philosophy 

 

 

 

 

August, 2012 

 

 



iii 

 

CERTIFICATE OF ORIGINALITY 

 

I hereby declare that this thesis is my own work and that, to the 

best of my knowledge and belief, it reproduces no material 

previously published or written, nor material that has been 

accepted for the award of any other degree or diploma, except 

where due acknowledgement has been made in the text. 

 

 

 

 

 

 

 

                               

 

   WAN Cheuk Yan              

  



iv 

 

Abstract 

Large portions of shadowed areas in satellite images of urban areas can affect the 

accuracy of classification and thus reduce an image’s effectiveness in urban remote 

sensing applications. This is particularly acute in cities such as Hong Kong where dense 

high-rise buildings cast many long shadows across a variety of different surface types. 

One solution to this problem is to enhance shadowed areas so their spectral range 

becomes closer to their corresponding non-shadowed areas. In this thesis the Spectral 

Shape Index was used to identify shadowed areas and two techniques, Gamma 

Correction and Linear Correlation Correction, were applied for the enhancement of 

three study sites of 2.4m spatial resolution multispectral Quickbird image. The selected 

study sites represent typical urban types of Hong Kong, ranging from high-rise 

commercial to low-rise residential areas. The performance of the shadow detection 

algorithm and its limitations are discussed. The histograms of the corresponding 

non-shadowed areas, the original and the enhanced shadow areas are used to compare 

the spectral range. Problems associated with shadow enhancement are discussed and 

the possibility of using a non-linear model for enhancement is examined. The results 

show that Linear Correlation Correction is more suitable when applied to complex 

environments and the enhanced areas as in band ratios, such as NDVI, show greater 

similarity after enhancement. For shadows that are still darker after enhancement, a 
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second iteration was performed and the results were examined. It was found that when 

the shadows are extremely dark the spectral information will be damaged and cannot 

be enhanced effectively. 
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Chapter 1. Introduction  

1.1 The importance of shadow enhancement 

1.1.1 Negative effects of shadows 

From a spectral signature point of view, shadows that exist in satellite images will 

affect the spectral signature. When less reflected energy is received by the sensor, 

spectral signature will normally be narrower and darker than those under sunlight. It 

would not be a problem for human eyes to identify ground features even when they are 

under shadows, but training the computers to identify various types of shadows is 

more difficult. For example, shadows on a bright surface and dark surface will have 

different behavior in the RGB brightness. If the dark pixels are considered only, 

shadows on bright surfaces cannot be extracted. For a complex urban environment, 

different types of surface like asphalt, concrete, metallic and vegetation, the 

brightness pattern in each band will behave differently. This spectral signature can be 

used to recognize features, but when it is being affected, identification and extraction 

of certain land surfaces cannot be done correctly. This situation will be more 

complicated and serious when more surface types are involved in an urban area. 

 

Shadow compensation is one of the solutions to minimize the shadow effect and extract 

useful information within. Two major steps are involved to deal with these effects, 
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shadow detection followed by enhancement. Pixel values after enhancement should be 

much closer to its surrounding so that part of the details within shadows can be 

recovered. Shadow enhancement can provide better visualization, and different 

algorithms of shadow enhancement have been investigated for this purpose. However, 

the enhanced areas may still appear darker and the spectral signature cannot be 

preserved. Any information loss during the shadow enhancement procedure will 

produce insignificant improvement for further applications like classification or 

feature extraction. This research is to examine if the effect of shadows can be 

minimized by such a process and be used for further image analysis tasks. 

 

1.1.2 Previous research on the impact of shadows in satellite imagery  

According to Massalabi et al. (2004a), with very high spatial resolution urban images, 

small features can be observed with more details, but the amount of shadow also 

increases due to the presence of tall buildings and trees. They also reported that, no 

matter when the satellite images (day time) were taken, shadows could not be avoided. 

Chen et al. (2007) mentioned that the existence of shadows in an image strongly disturb 

the image analysis results. Low reflected energy also causes information loss. Arevalo 

et al. (2006) also commented on the shadow problems that radiometric information may 

be totally lost which leads to failed analysis results. This suggested that higher 
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radiometric resolution is preferable for shadow enhancement as it allows more details 

to be preserved after radiometric correction of shadowed pixels.  

 

Yamazaki et al. (2009) pointed out that the presence of shadows has a negative effect on 

the accuracy of urban change detection. When multi-temporal images are used, the 

time and seasonal effect of image acquisition leads to change in shadow direction and 

shape. “Changes” will then be found near these shadows and wrong analysis results 

may be carried out even when there are no structural changes in a time series. This 

agrees with Xia et al. (2009), who mentioned that shadows cause wrong color tone and 

thus affect image processing performance. In Hong Kong, the land cover map of urban 

areas cannot be generated by image classification easily due to the problems of 

occlusion and shadows caused by high-rise buildings. As the surfaces (including roads, 

buildings, vegetation, water and bare ground) are under shadow, training software to 

identify certain land covers becomes a very difficult task. Especially for water bodies 

and shadows with similar spectral signature, existing algorithms for extracting water 

bodies in urban areas are application specific and shadows formed by tall buildings 

could hardly be avoided (Nath & Deb, 2010). 

 



4 

 

1.1.3 Importance of spectral signature 

Satellite images are the main data sources of remote sensing applications. There are 

many sensors carried by remote satellites which may be combined to produce a range 

of image types, one of the most useful being the multispectral image. For satellite 

images, one of their valuable features is that multi-spectral sensors are available on the 

satellite; sensors are sensitive to different spectral energy. Different bands of reflected 

energy can be captured by the sensor and the resulting image can then be separated into 

different layers. In order to classify different land covers, there are many algorithms 

developed, including various spectral classification methods and band ratios. No 

matter which algorithm is applied, the classification accuracy strongly depends on the 

accuracy of the per-pixel recorded band energies. As the presence of shadows will 

affect the energy received from the sensor, the classification accuracy will also be 

affected. 

 

1.1.4 The Hong Kong situation 

Hong Kong is a small but famous city, with limited flat land available. Buildings are 

usually tall in order to maximize the use of land resources. In urban areas, it is 

common to find commercial and residential buildings having more than 30 storeys. 

Besides the buildings’ height, building density is another issue that makes Hong Kong 
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a complex urban environment. Buildings and constructions with different 

functionalities are closely packed within an area. For example, small recreation areas 

may be surrounded by 60 storey commercial buildings. This unique structure makes 

Hong Kong a representative place for studying shadow enhancement in complex 

urban environment. 

 

Figure 1-1 presents a typical urban area in Hong Kong. It can be seen that the building 

density is high and long shadows are formed by tall buildings. When we want to 

develop an environmental assessment within this area using the satellite image, the 

existence of shadows would be a problem when the sampling location exactly falls 

onto the shadows inside the image. When this is the case, the correlation 

establishment using in-situ sampling data would be affected. Also, for shadow 

enhancement, the existence of water surfaces, asphalt roof tops and the difference in 

illuminating condition would have serious impact on classifying shadows and other 

non-shadow dark surfaces. 
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Figure 1-1 Typical urban area in Hong Kong 

 

Although there are successful cases of shadow enhancement in different countries, an 

application in Hong Kong is a more challenging task. Three typical urban areas of Hong 

Kong are selected for case study. These areas contain complex environments that are 

representative of most of the extreme cases in shadow enhancement. Parts of them are 

surrounded by polluted water so that shadows and water may easily get misclassified. 

There are cases that shadows fall onto water surfaces. Besides that, the high-rise 

buildings are densely distributed so that a large portion of land surface is under shadow 

and the land covers are more complicated than found in previous studies.  

 

1.1.5 Problems associated with shadows in Hong Kong satellite imagery 

Figure 1-2 is used to illustrate the problem of shadows in Hong Kong urban imagery. 

As mentioned before, water features are easily mixed with shadows when image 
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classification is being done. In Hong Kong, some districts (as shown in figure 1-2 

yellow circle) are close to water bodies and sometimes shadows even fall onto the 

surface. The water quality varies from location to location, making the separation 

process of water and shadow a difficult task. 

 

Land covers in Hong Kong are rather complicated and some of the shadow 

enhancement algorithms are not likely to work. The red circle in figure 4-7 shows that a 

rather long shadow falls onto the ground. Within that shadowed areas, land covers 

include vegetation, flyover, road, bare ground and pavements. Under this situation, an 

algorithm such as histogram matching cannot work efficiently (Dare, 2005). For 

histogram matching, the minimum, mean and maximum pixel values of a shadowed 

region are adjusted close to the same type of surface. If the shadows only fall onto one 

certain land cover, histogram matching can be applied easily. However, in this case, the 

spectral range of all the land covers within the shadows has to be considered, and it 

involves the process of classifying shadows based on their land covers. 
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Figure 1-2 problems associated with urban imagery 

 

1.1.6 Significance of this study 

The presence of shadows in images will make the pixels much darker than the 

surrounding and thus have lower pixel values. The differences in color tone affect the 

accuracy of image classification and feature extraction. For in-situ data sampling, 

correlation is made with the pixel values on corresponding locations in the satellite 

image. Shadows may be found and would strongly affect the correlation accuracy. 

Shadow information restoration can help to correct these darker pixels so they can 

become brighter and natural to its surrounding regions. With much closer color tone to 

its surrounding area, these negative impacts of shadows can be reduced.  

 

Although the colors of shadow regions can be restored, the spectral properties may still 

be damaged during the process as the negative effect of shadows may not be eliminated 
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successfully. This study provides proof that if spectral properties can also be preserved 

through different algorithms, scientists can make full use of these enhanced regions 

during their analysis. This also indicates whether shadow enhanced images can be used 

as an image source for further analysis in an image covering a densely built-up area. 

The existence of shadows will then have less impact on the image analysis process. 

 

1.2 Research objectives 

To examine the shadow enhancement results in complex urban areas, two different 

enhancement algorithms (Gamma Correction and Linear Correlation Correction) will 

be compared and tested to see if they are suitable for further image analysis (through 

simple band ratios). The possibilities of iterating enhancement process and the 

performance of modified shadow enhancement algorithm will be tested. 

 

1.3 Structure of this thesis 

This report is divided into six parts. After the introduction, the significance of the study 

and the research objective are stated. Some of the previous studies are then discussed. 

The research methodology is delineated, followed by the results and analysis. The 

report ends with the discussion and conclusion. 
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Chapter 2. Procedures and techniques for 

shadow enhancement 

2.1 Shadow detection 

According to Massalabi et al. (2004b), shadow detection methods mainly make use of 

the color and spectral properties, and geometric properties can be used to improve the 

accuracy of shadow detection. Xia et al. (2009) also commented that an accurate 

shadow detection algorithm is necessary for any uses of shadow information. They also 

pointed out that training computers to identify shadows effectively is a difficult task 

when many different types of surfaces are involved. For the two existing approaches, 

properties based and model based detection algorithms, they commented that the 

properties based required less geometrical information (urban structures) and is more 

commonly used. Cai et al. (2010) summarised shadow detection methods into two 

types: model based and shadow attribute (properties) based. They pointed out that 

model based detection is used for special situations that acquire much higher detection 

accuracy while attribute based detection makes use of the knowledge of shadow 

properties and is applied more generally. They also commented that using model 

based detection requires more knowledge and information about urban structures 

(buildings’ models) and lighting conditions (azimuth angle, season and time when the 

image is taken), which can be used to improve the detection accuracy. 
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2.1.1 Properties based shadow detection 

According to Cai et al. (2010), properties based shadow detection makes use of spectral 

and geometric characteristics to detect shadows. The spectral characteristics can be 

regarded as the intensity of shadow pixels and geometric information such as shadow 

orientation, angle and its position to improve the detection accuracy. By different 

band ratios and colour spaces used, the shadows can be detected and extracted if the 

image histogram has more than one peak that is able to isolate most of the shadows.  

 

Cai further illustrated that it requires a threshold value for separating target features 

from shadows and stated that shadows usually have low intensity, high saturation and 

high hue value. In Cai’s study, 3 different indices based on HSI transformation were 

suggested and the uses of NDVI were combined in order to extract shadow areas by 

choosing a suitable threshold value. They found that the shadow detection accuracy is 

improved compared with HSI transformation only. However, in most of studies, some 

coverage such as non-shadow dark surfaces and polluted water surfaces will be 

misidentified due to the fact that they have similar spectral properties. 

 

Sarabandi et al. (2004) suggested using Color Invariant Indices for classifying shadows. 
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C1C2C3 color space (Gevers & Smeulders, 1999) was transformed from RGB. Texture 

and edge filter were then applied to the C3 layer in order to classify the shadow 

boundaries. Arevalo et al. (2006) also made use of C3 color space for shadow detection, 

while they commented that this component is quite noisy and not stable for certain 

color values. With the help of RGB and HSI spaces and the use of region growing 

techniques, shadows can be detected. Although their study showed that the number of 

false positives decrease, some of the shadow edges were not successfully detected.   

 

Tsai (2006) compared the effectiveness of different invariant color spaces for shadow 

detection, including HSI, HSV, HCV, YIQ and YCbCr models. He concluded that HSI, 

YIQ and YCbCr are the most suitable color spaces for shadow detection. However, the 

study only covered small areas for testing. It is necessary to examine its ability to deal 

with complex situations like water bodies and dark surface. 

 

Chen et al. (2007) suggested another algorithm to deal with the misclassification 

between water bodies and shadows. They introduced five sets of indices to separate 

water and shadows and named the one with better performance “Spectral Shape 

Index”. However, in Chen et al.’s (2007) study, the Spectral Shape Index being 

recommended (Red+Blue-2×Green) did not produce fair shadow detection results in 



13 

 

the preliminary test using Hong Kong satellite image. In fact, another formula 

([Green-Red] ÷ [Red+NIR]) produces more reasonable shadow detection results that 

shadows can be separated from water features, and the name Spectral Shape Index is 

adopted for this formula and used for the rest of the thesis. All the formulas are listed 

in Appendix A. 

  

Wang & Wang (2009) suggested the use of Principal Component Analysis (PCA) to 

transform RGB image into luminance and chrominance components. Histogram 

threshold was used to detect shadows in the luminance layer. Although some bright 

surfaces under shadow cannot be detected, the techniques of PCA can be applied to 

reduce the number of spectral bands involved. For example, a RGB image (3 bands: 

Red, Green and Blue) is represented using 2 principal components luminance and 

chrominance. If an image contains many spectral bands, PCA can be used to reduce 

the number of layers involved. The new layers are called principal components and 

are able to explain most of the variations within an image (dataset). 

 

2.1.2 Model based shadow detection 

Model based detection makes use of extra information in order to best simulate the 

real situation and estimate the shadows location, size and direction. The information 
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may include digital building model (DBM), digital terrain model (DTM), together 

with sun azimuth angle, season and time of image taken. With this information, higher 

shadow detection accuracy can be obtained, but what kind of information needed and 

its availability may vary from place to place. 

 

In Zhou’s (2005) study of true orthoimage generation that deals with occlusions, 

shadows and incorrect building’s spatial position, he considered the problem of 

self-shadow (shadow cast on the object by itself) and made use of digital building 

model (DBM) and digital surface model (DSM) to accurately simulate the urban area so 

that shadow detection can be made. Nakajima et al. (2002) made use of Airborne Laser 

Scanning data and Digital Surface Model of the urban area for shadow simulation. 

They also combined the sun angle and azimuth information of the image acquisition 

time in order to estimate the location of shadows in the image. However, asphalt 

surfaces that are mixed with shadows cannot be distinguished easily. Nakajima et al. 

commented that the algorithm used requires a high accuracy DSM/DEM to produce a 

fair result.  

 

Based on the DSM model derived from ALS data, Zhan et al. (2005) applied the 

object-based approach for shadow detection. Each pixel is considered to have 4 
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connections (4 sides of a pixel square). The pixel values are compared to identify if 

they belong to the same object. Shadow objects smaller than a certain size will be 

eliminated for fear that noises are treated as shadows. Both studies require an accurate 

DSM/DEM which is not available to the public in Hong Kong; it would be a problem 

especially when dealing with a hilly landform with densely distributed buildings.  

 

2.1.3 Other shadow detection algorithms 

In this section, the way of how images are being classified and the use of extra 

information for shadow detection will be discussed. They can be classified as 

improvement of detection accuracy. 

Xia et al. (2009) made use of Affinity Propagation Clustering for shadow detection 

based on the HSI color space. The possible center of cluster is calculated for HSI layer 

and the shadow detected images can be produced. According to the author, this 

algorithm provide better detection accuracy than K-means clustering and traditional 

histogram threshold segmentation, and is able to distinguish dark objects from shadows 

which is suitable for the case study of Hong Kong. However, the author also 

commented that applying Affinity Propagation to the image directly will consume large 

amount of system resources and is necessary to divide the image into smaller portions 

before clustering. It would be another concern of how the images are being divided 
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and how small the areas should be in order to give better results. Further investigation 

is needed for the image dividing mechanism. 

 

Guo et al. (2008) made use of the sun angle and the direction of the shadows to develop 

structure lines for shadow edges. After the line constraint was established, statistical 

comparison of grey levels along these lines was used to decide whether those pixels 

along the lines belong to shadow or not. More customized constraints are then used to 

extract the boundary of shadows. However, the straight shadow edges of low-rise 

buildings are not clear and may not have a unique pattern which means that many more 

constraints may have to be considered in order to produce an accurate result. 

 

2.2 Shadow enhancement 

There are three shadow enhancement algorithms that are commonly used: Histogram 

Matching, Gamma Correction and Linear Correlation Correction. Histogram 

Matching is the most common algorithm that adjusts the pixel values’ mean and 

variance of shadowed areas so that they are closer to the non-shadowed areas. Gamma 

Correction treats shadow as a multiplicative noise source that affects the pixel 

brightness and can enhanced using specific equation with a Gamma parameter 

estimated from training datasets. Linear Correlation Correction makes use of pixel 



17 

 

values from both shadowed and representative non-shadowed areas to create different 

sets of linear regression model for enhancement purpose.  

 

These three techniques plus the more recent Retinex techniques and the problems 

associated with shadow enhancement will be discussed in the following sections. 

 

2.2.1 Histogram Matching 

According to Sarabandi et al. (2004), histogram matching works by correcting the 

brightness distribution of two given images so they become as close as possible. For 

shadow detection, the brightness of shadowed and non-shadowed areas of the same 

class will be compared and adjusted. With the use of two same size windows for 

comparison and correction, they commented that the window size would affect the 

shadow enhancement quality. Quad-Tree partitioning was used to automatically 

identify suitable window size. Sarabandi compared the three enhancement algorithms 

listed above and commented that histogram matching is capable for shadow 

enhancement, but it is not as effective as Linear Correlation Correction. Tsai (2006) 

made use of histogram matching for shadow detection in aerial images but noted that 

the resulting image is quite noisy. The problem of dark surfaces is not discussed. Dare 

(2005) commented that neighboring shadows will be agglomerated into single shadow 
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region. The algorithm only works well while the histogram information of nearby 

regions is used; local equalization parameters should be used, not global ones. Zheng & 

Wang (2008) reported that it is difficult to extract histogram information of the same 

type of surfaces and that the resulting image quality will be degraded when histogram 

stretching is applied due to limited number of pixels being involved.  

 

2.2.2 Gamma Correction 

According to Sarabandi et al. (2004), Gamma Correction treats shadow as a source of 

noise that affects the brightness of shadowed pixels. For an 11-bit image, the Gamma 

Correction equation can be written as:  

         
𝐷𝑁𝑛𝑜𝑛 𝑠ℎ𝑎𝑑𝑜𝑤 

2047
=
(𝐷𝑁𝑠ℎ𝑎𝑑𝑜𝑤)

1

𝛾

2047
                         (1) 

DN refers to the pixel number. One Gamma parameter γ for each image band is 

estimated based on the average pixel values of shadowed and non-shadowed areas. The 

highest possible pixel value (2047) is used to standardize the differences between 

each band. 

 

For the effectiveness of Gamma Correction, Nakajima et al. (2002) reported that trees 

and ground surfaces can be correctly enhanced, but asphalt surfaces (roads / roof tops) 

cannot be successfully enhanced due to the fact that these surfaces cannot be identified 



19 

 

correctly during shadow detection. Massalabi et al. (2004a) had a different result 

showing that the precision of the land-use map created increases when a Gamma 

Corrected image is used. This agrees with Sarabandi et al. (2004) who commented that 

Gamma Correction is capable of shadow enhancement, but Linear Correlation 

Correction produces better final results.  

 

2.2.3 Linear Correlation Correction (LCC) 

According to Sarabandi et al. (2004), if shadow is treated as a combination of additive 

and multiplicative noise, the brightness of shadows can be enhanced by a linear 

function. Chen et al. (2007) further explained the algorithm that radiance recorded by 

satellite sensors consists of three components, reflectance of atmosphere (Rs), 

reflectance of object by direct sunlight (Rdr), and reflectance of object by scattered 

sunlight (Rsr). As sunlight is the primary source of energy, Rs and Rsr are assumed to 

be proportional to Rdr. Radiance in the shadow area and non-shadow area should then 

have a linear relationship. It is also the relationship of illumination condition between 

the shadow areas and non-shadow areas. Chen et al. (2007) established the linear 

equations based on the mean and standard deviation of grey values in shadowed and 

non-shadowed areas. Yamazaki et al. (2009) established the equations simply by using 

linear regression model obtained from 11 pairs of pixel values (under sunlight and 
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shadow). Each spectral band will have its own linear equation for enhancement use; the 

enhanced image will be fused with the original image. For the visible RGB bands, a 

stronger linear relationship between shadow and non-shadow areas can be observed, 

and for Near-Infrared band the relationship is not as strong as the visible bands, but 

linear regression can still be used for enhancement. 

 

For the effectiveness of Linear Correlation Correction, Sarabandi et al. (2004) 

compared the enhancement result using Histogram Matching, Gamma Correction and 

Linear Correlation Correction. He pointed out that Linear Correlation Correction gave 

the closest pixel value with respect to its neighbor pixels. However, only one set of 

sampling data was used for the comparison so the claim is not well supported by 

evidence. Zheng & Wang (2008) also compared the effectiveness of the three 

approaches. From a visualization point of view, they commented that Linear 

Correlation Correction preserves more details within the shadow area than Gamma 

Correction and the color tone is similar to its surrounding. They also commented that it 

is not easy to find sampling areas with the same surface type for Histogram Matching 

in urban areas. The resulting image tone may easily be distorted.  
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2.2.4 Retinex technique 

Retinex is a technique that is usually applied in computer graphics. Huang et al. (2004) 

stated that Retinex Theory is used for removing discrepancy between observation and 

image. According to Wang & Wang (2009), the goal of Retinex is to decompose the 

brightness information into a reflectance image and an illuminance image so that the 

effect of shadow can be cancelled separately. A luminance image is formed by 

multiplying an illuminance image and a reflectance image. They used PCA for 

separating different components and pointed out that only luminance (brightness) is 

being enhanced but the chrominance layers remain unchanged and are transformed 

back to RGB image by inverse PCA.  

 

For the effectiveness of Retinex, Wang & Wang (2009) commented that this approach 

can distinguish greenish objects from shadows and improve the visibility of features in 

shadowed areas without affecting non-shadow areas. This is an approach worth using 

as it can distinguish objects with similar color tone. However, the algorithm has to be 

implemented in programs like MATLAB. These studies made use of aerial photos 

which normally consist of RGB layers only, but high-resolution satellite images 

usually contains an additional Infrared band. The mechanism of defining luminance 

and chrominance layers using images with infrared band will be different. Further 
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investigation is required on the performance of enhancing the Infrared layer using 

Retinex. 

 

2.2.5 The penumbra problem (semi-shadow region) 

According to Dare (2005), when high-resolution images are used, it is not appropriate 

to assume the light source as a point at infinity and it is necessary to consider shadow 

umbra and penumbra. Umbra (shadow) is the region where sunlight is totally blocked 

while penumbra (semi-shadow) is the region around the umbra where sunlight is 

partially blocked. Penumbra is thus slightly darker than its non-shadowed surrounding 

without sharp edges and is not easy to be separated. Dare (2005) reported that the 

width of penumbra is proportional to the building height and approximately 1 pixel 

penumbra region will be created for a 50m tall building. Shu & Freeman (1990) 

suggested solving the penumbra problem by considering the semi-shadow regions 

during shadow detection (shadow, semi-shadow and non-shadow areas). The 

enhancement can then be done on each region individually. However, Dare (2005) 

believed that under complex structural urban areas, it is difficult to distinguish these 

classes clearly and thus may not produce better enhancement results.  

 

Zheng and Wang (2008) observed that the shadow edges will look brighter if 
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enhancement is involved within the edges, but they will look darker when shadow 

detection cannot successfully extract these edges. They suggested that a buffer zone 

should be set up at the shadow edges and a median filter is applied until the gradient is 

within a given threshold. 

 

Guo et al. (2008) considered the companion area of shadow for the edges and both 

umbra and penumbra regions are involved for Gamma Correction enhancement. 

Although the color tone after enhancement was not close to its surrounding, it was 

found that the penumbra region was already taken into account and the color tone 

difference is due to the enhancement algorithm. 

 

In fact, different color tone of enhanced penumbra regions could hardly be avoided. In 

this study, the problems associated with penumbra regions were not tackled 

specifically and some of these regions were enhanced while some were not. The effect 

of penumbra regions under complex urban structure can be observed in the results 

presented in later sections.  

 

2.3 Quality assessment of shadow enhancement 

In an ideal shadow enhancement result, for any type of surface, the pixel value 
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distribution within shadowed areas should be almost the same as the one in 

non-shadowed areas. The smaller the differences between enhanced pixel and 

non-shadowed pixel values, the higher the enhancement quality. Quality assessment 

plays an important role that reflects the performance of each algorithm. With higher 

enhancement quality, the negative effect of shadowed regions could be reduced and 

those regions may be used normally. These results also reflect how good these 

enhanced regions can be classified and extracted in further process. Common 

assessment techniques include Bias of Mean (BM) that compares the average pixel 

values; Entropy, which measures information changes; and band ratios (vegetation 

index is used in this study), which reflect the ability of classifying shadowed regions 

after enhancement. 

 

Sarabandi et al. (2004) examined how close the pixel value of enhanced shadow area 

and its neighbor are. However, only one set of data from the final image is used to draw 

the conclusion, which is not scientific enough. Zhan et al. (2005) presented the 

histogram of one of the sampling data before and after enhancement to show the pattern 

of each spectral band. Most of the studies considered the visual-improvement after 

enhancement is done. 
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Massalabi et al. (2004a) suggested the use of classification to assess the quality of 

enhanced image, and concluded that classification on shadow enhanced image 

increases the precision of the land use map produced. Yamazaki et al. (2009) compared 

the NDVI image before and after enhancement, which shows that more vegetation can 

be identified from the image. Unsupervised classification was then carried out showing 

that no shadow class exists after enhancement.   

 

In Han et al.’s (2008) studies on image fusion techniques, they suggested using Bias of 

Mean (BM) and Correlation Coefficient to assess the spectral fidelity and made use of 

Entropy to assess the information after image fusion. The concept of Bias of Mean can 

be used to assess the spectral properties between enhanced areas and non-shadow areas 

of the same surface material. An ideal value of Bias of Mean is 0, which indicates that 

two areas (equal size) have the same mean pixel value. The Correlation Coefficient 

between enhanced shadow and its neighbor non-shadow areas can also be used to 

assess the spectral fidelity. For correlation coefficient, selected areas are close to each 

other and have the same surface type to ensure that the effect of sunlit condition in 

different locations can be minimized. Entropy is a measure of information and has been 

used for assessing the information changes during image processing. Han et al. (2008) 

commented that if the Entropy increases after image processing, more information is 
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available in the resulting image. However, Lau et al. (2001) pointed out that the extra 

information available can be in the form of noise which may not be useful. It is still 

possible to use Entropy to assess the information content of a shadow enhanced image, 

not by comparing the whole image before and after enhancement, but by comparing the 

enhanced shadow and its non-shadow neighbor (same size and type of surface). 

To summarize the quality assessment techniques on spectral fidelity, most research 

related to shadow enhancement focused on visual improvement rather than spectral 

preservation. Some of them compared the histogram pattern before and after shadow 

enhancement, and some of them calculated the vegetation index to examine the 

usefulness of the final enhanced image.   
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Chapter 3. Design of experiments for comparative 

analysis of shadow enhancement 

3.1 General Strategy 

In order to achieve the objectives of this research, several steps have to be taken. 

Firstly, the shadows must be extracted in order to separate shadows from 

non-shadows and water features so that different processes can be applied to 

these areas. Shadow detection algorithms used should minimize the omission 

error and commission error of shadows identification. However, in complex 

urban environments, these errors are unavoidable and can only be reduced. The 

effects of penumbra were varied and the impact on the enhancement will be 

illustrated by example in section 4.2.3, but the corresponding solution requires 

further investigation and is not addressed in this paper. 

 

Secondly, shadow enhancement algorithms are applied to the extracted shadows. 

Two methods will be compared: Gamma Correction and Linear Correlation 

Correction. As mentioned in section 2.2.1, Histogram Matching is not likely to 

work in complex urban environments and therefore only two methods are 

compared. Previous studies compared the performance of these two methods but 

their relative performance in complex urban environments was not clear. 
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Histogram Matching was not compared due to the fact that surface types under 

shadows were hidden, errors will be introduced in data sampling process. When 

one single shadow casted on several surface types, it would not be easy to select 

appropriate non-shadowed areas for a reference histogram. 

 

Finally, the spectral fidelity testing assessment methods will be studied. It was 

observed that most of the techniques used for spectral fidelity assessment can be 

found in image fusion related papers but not many focused on shadow 

enhancement. In order to examine the quality of spectral preservation for the final 

product, quantitative analysis is necessary. How the assessment can be made will 

be a key issue for this research. 

 

3.2 Work flow 

After the selection of source images, a shadow mask will be created. Unlike the 

Spectral Shape Index used by Chen et al. (2007) the Spectral Shape Index used 

here will be calculated from the Red, Green and Infrared bands in order to isolate 

water bodies from shadows. Spectral Shape Index (eq. 2) is listed as below: 

                                         = (         )  (    𝑁  )            (2) 

 The shadow mask will then be applied to each spectral band to extract shadow 
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regions and is followed by the various shadow enhancement processes for each 

spectral band. The enhanced image will be merged with the non-shadow image in 

order to produce the shadow enhanced image. Different techniques will then be 

used to examine the quality of the enhanced image produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original image 

Image with shadow enhanced 

Spectral fidelity assessment 

Layer stacking 

Shadow enhancement 

Enhanced shadow 

Shadow mask 

Separate image into shadow and 

non-shadow regions 

Shadow region 

The performance of using Spectral Shape Index (SSI) and C3 image to isolate 

shadows from water is examined. Shadowed areas are extracted from the 

image with better ability to classify shadows and non-shadows. 

Possible shadow 

Non-shadow 

including water 

Figure 3-3-1 Flowchart of the research process 
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3.3 Selection of study areas 

Two sets of Quickbird images with 2.4m spatial resolution covering different parts of 

Hong Kong are used in this study. One of the images (figure 3-2) covers the whole of 

the Kowloon Peninsula and part of northern Hong Kong Island and the other (figure 

3-3) covers the Ma On Shan area. As the images contain both urban and non-urban 

areas the results of using the whole images would not be representative of complex 

urban areas. Instead, 3 districts which cover most of the complex scenarios of Hong 

Kong were selected. They are Central, Ma On Shan and Sham Shui Po. An overview 

map of the selected areas is given in figure 3-4. 

 

3.3.1 Central 

Central (figure 3-5) is located in the northern part of Hong Kong Island, and lies 

between the mountainous terrain of The Peak and Victoria Harbor. It is the CBD of 

Hong Kong and is made up of high rise residential buildings inland and even taller 

commercial buildings (including the world’s 10
th

 tallest building, the Two 

International Finance Centre, 88 storeys, 415m tall) close to the coastline. Buildings in 

this district are built up to 50 or even 60 storeys high. Some of the road surfaces can 

hardly be seen in the satellite image. Victoria Harbor is the water body close to Central 

and from figure 3-2, it can be seen that the water is slightly polluted. Shadows in 

Central are mainly caused by buildings and fall across a variety of surfaces including 
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low vegetation, asphalt roads and concrete. 

 

 

Figure 3-2 Coverage of the Kowloon Peninsula and Hong Kong Island Quickbird image 
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Figure 3-3 Coverage of the Ma On Shan Quickbird image 

 

 

Figure 3-4 Overview map of the selected study areas 
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Figure 3-5 The Central study area (IFC located inside the red circle) 

 

3.3.2 Ma On Shan 

Ma On Shan (figure 3-6) is a newly developed town located in the north east of Hong 

Kong with lower building density. It is beside a country park and close to natural coast. 

Not many buildings in this district are tall. Some of them are around 30-40 storeys tall 

while most of the others are lower. Water depth within this area is much less compared 

with that in Central. Beach side and natural coast can be found. Shadows in Ma On 

Shan are from buildings and mountainous terrain within the country park. Only part of 

the original image is being used because shadows by mountainous terrain have similar 

behavior and the remaining portion is representative enough. 
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Figure 3-6 The Ma On Shan study area 

  

 

Figure 3-7 The Sham Shui Po study area 
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3.3.3 Sham Shui Po 

Sham Shui Po (figure 3-7) is located in the center of the Kowloon Peninsula of 

Hong Kong. It is an early developed area with high building density and narrow roads. 

Sham Shui Po is not close to the coastline and the terrain is rather flat. Most of the 

buildings in Sham Shui Po are around 10 storeys tall and are closely packed into regular 

building blocks. Shadows are formed in this district mainly by buildings. 

 

3.4 Selection of images 

In order to perform shadow enhancement, satellite images with high radiometric 

resolution are preferable (Arevalo et al., 2006). As the spectral signature under 

shadowed areas is usually narrower and darker than for non-shadow areas, more 

grey levels available can ensure that small differences between pixels’ brightness 

can be recorded. If small variations in pixel brightness are ignored and represented 

by the same pixel values, only one single color tone can be obtained within the 

enhanced shadows and no details can be recovered.  

 

Two Quickbird multispectral satellite images were used. One image covers the 

Kowloon Peninsula and northern Hong Kong Island and another covers the Ma 

On Shan area. Both images are of 2.4m resolution at the nadir and 11bit (0-2047) 
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radiometric resolution saved as 16 bit image format so that details within shadowed 

areas can be preserved better.  

 

A 0.6m panchromatic sharpened image was also available for the Kowloon and 

Hong Kong areas but not used. According to Chen et al. (2008), remote sensing 

image fusion is a tradeoff process and spatial visualization and spectral property 

cannot be improved and preserved at the same time. In order to avoid any 

information loss due to the image fusion process affecting the quality of the end 

product, the 2.4m Quickbird multispectral image is selected. Another reason for not 

using fused imagery is that the file size of each spectral band is large. Considering 

the processing time and storage space, using smaller files is more efficient.  

 

3.5 Selection of algorithms for shadow detection 

Shadow detecting can be divided into two types; one is based on shadow properties, 

while the other is based on models. Model based detection usually aims at 

applications that require high shadow detection accuracy. Digital Surface Model 

(DSM) and 3D building model are required to estimate the shadow areas. 

Considering that an accurate DSM was not available, and simple 3D models cannot 

adequately represent the complex shape of urban buildings, properties based 
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detection was used.  

 

For properties based shadow detection, different color spaces are used to 

distinguish target features. The performance of Color invariant index (C1C2C3) 

and Spectral Shape Index (SSI) were examined so that shadowed areas can be 

extracted based on the supervised classification technique. The most commonly 

used supervised classification technique, Maximum Likelihood, was selected for 

this task due to its algorithm simplicity and ease of application. 

 

3.6 Selection of algorithms for shadow enhancement 

There are three existing approaches for shadow enhancement (or restoration), 

namely, Gamma Correction, Histogram Matching and Linear Correlation 

Correction. After reviewing the effectiveness of the enhancement result, Histogram 

Matching will not be used in the study. Histogram Matching makes use of the same 

class of value to estimate the range and mean of shadowed pixel. Since land covers 

in Hong Kong are complex and mixed, it is difficult to decide which land covers 

should be involved and how to classify them effectively. From the visualization 

point of view, enhancement using Gamma Correction may not give natural color 

tone when compared with its neighbor pixels, but it is worth testing if it could be 
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used in this study. Apart from these reasons, Linear Correlation Correction has been 

proved that it gives more reliable results (Sarabandi et al., 2004; Zheng & Wang, 

2008). Shadowed pixels will be recalculated based on the linear regression model 

between shadowed and non-shadowed areas. As Quickbird imagery is used, 4 linear 

equations will be generated for all spectral bands.  17 pairs of sample areas with 

size 4x4 pixels covering a variety of shadowed and adjacent non-shadowed areas 

were selected from each case study area. The average pixel value from each pair 

of sampling area is used to establish both Gamma parameters and linear regression 

models for each spectral band. The average Gamma parameter estimated from the 

17 sampling data is used to enhance the whole image. After the extracted shadows 

are enhanced, an image that contains shadows only is overlaid on the non-shadow 

image and the two parts are merged together into one completed shadow enhanced 

image. The enhancement quality by the two algorithms can then be compared. 

 

3.7 Selection of algorithms for assessment 

The spectral range of common land covers is used as an indicator to show if the 

enhanced areas were darker than non-shadowed areas. The histogram pattern of 

enhanced shadow areas was assessed and compared with its neighbor pixels. 

Similar to the approach in data sampling for model establishment, average pixel 
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value was extracted from 17 pairs of sample areas with the size 4x4 pixels 

covering enhanced shadowed areas and adjacent non-shadowed areas. The 

differences between each pair of sampling areas are used to judge the 

enhancement quality. Vegetation index is used to examine whether the shadow 

enhancing process can improve the performance of using band ratio and this is also 

an indicator to check if shadow enhanced image is capable for further analysis. 

 

3.8 Selection of software platforms  

3.8.1 ER Mapper 

ER Mapper mainly focuses on raster data image processing, with many built-in 

functions that help in image analysis. An advantage of using ER Mapper is that 

procedures of training data for classification are not complicated. Also, it allows a 

pixel to have a value of “NULL”, which makes calculation easier and avoids 

misleading classification results. No matter how many spectral bands are involved, 

two files are used to store the information of one set of images. Image files can then 

be managed more efficiently. However, there are fewer functions for vector data 

modeling. For example, the overlay of boundary data (vector) onto the raster 

image and extract useful information cannot be done using ER Mapper. 
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3.8.2 IDRISI 

IDRISI is a cheaper software and all-round more functional software compared to 

ER Mapper. There are many conversion functions for data transformation between 

different common file formats. It also provides built-in functions for image 

processing and raster vector conversion so that extraction of image values is 

possible. Both raster data and vector data can be used in spatial analysis. 

 

An advantage of IDRISI is that image segmentation is available and there are many 

statistical analysis tools that can be chosen. Calculating band ratio in IDRISI is 

rather flexible. Spectral bands are stored individually so that mathematic and 

logical operators can be used. There are no limits to the number of bands used for 

calculation. Unlike ERMapper, “NULL” values cannot be set for a pixel; they may 

only be assigned a value of “0” which can sometimes produce misleading results. 

As spectral bands are stored individually, file management is sometimes not very 

convenient. 

 

One of the problems of IDRISI is the registration points used to define the image 

coordinate system are different from ER Mapper. Therefore conversion between 

data formats may affect its georeference information. The resulting image will 
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have incorrect coordinates which means it cannot be overlaid with other map data. 

However, ER Mapper can be used to alter/modify its georeference information by 

correcting the registration points’ coordinates.  

 

3.8.3 ArcMap 

As different remote sensing software is involved for image processing, ArcMap is 

used to display satellite images in order to ensure the georeferencing is correct. It 

has been found that the georeference of the satellite image will have problems 

during format conversion from IDRISI to ERMapper, due to the difference in 

coordinate system origin of software used. When two layers cannot be directly 

overlaid, each spectral layer cannot be stacked and form a RGB image. Therefore, it 

is necessary to correct the georeference information of the .ERS file. 
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Chapter 4. Comparative analysis of shadow enhancement 

processes 

4.1 Comparative analysis of shadow detection algorithms  

4.1.1 Results by color invariant index C3 and Spectral Shape Index (SSI) 

Both color invariant index layer C3 and Spectral Shape Index were applied in order to 

examine which one produces the better shadow extraction result. Figure 4-1 presents 

the C3 image of Central area and figure 4-2 refers to the Spectral Shape Index. In 

Figure 4-1, light blue refers to shadows; dark blue represents non-shadows while 

orange is water feature. In Figure 4-2, yellow refers to shadows; blue represents 

non-shadows while orange is water. 

 

Figure 4-1 Color invariant index (C3) of Central 
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Figure 4-2 Spectral Shape Index of Central 

 

After comparing the two images created, it can be seen that C3 layer is quite noisy and 

some of the shadows have similar values as water features. From figure 4-2, it can be 

seen that the shadows, non-shadows and water features are more uniform than the C3 

image. The SSI image is also smoother. The image histograms (figure 4-3) illustrate 

the difference in performance between the two methods. They show that the SSI 

image has much clearer peaks than that of color invariant index C3 layer. This also 

indicates the ease SSI provides when classifying images. Water features will have a 

larger value while non-shadow land features will be lowest and shadows are in 

between. 
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Figure 4-3 Histogram of C3 layer (left) and Spectral Shape Index (right) 

 

Although the color invariant index layer C3 has been recommended for shadow 

detection after applying low pass filter to smooth the noise, the differences between 

features are not clear when compared to the resulting image produced by the Spectral 

Shape Index. Three classes are created as supervised classification training datasets. 

They are “water”, “shadow” and “non-shadow” (“non-shadow” refers to neither water 

nor shadow). Supervised classification result of the C3 layer (figure 4-4) shows that 

some of the shadows are wrongly classified as water, while some of the water features 

are classified as shadows. Since only three classes were used in the supervised 

classification process, it may require more classes if color invariant index C3 is being 

used.  
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Figure 4-4 Supervised classification result of C3 layer (blue: water; red: non-shadows; green: shadows) 

 

 

Figure 4-5 Supervised classification result of Spectral Shape Index (blue: water; red: non-shadows; 

green: shadows) 

 

In comparison, the result generated by the Spectral Shape Index (figure 4-5), water 

surfaces are extracted with less omission error, except for those shadows that fall onto 
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the water surfaces. It is also observed that even water features such as swimming pools 

(appearing in blue within the yellow circle in figure 4-5) can be identified using the 

Spectral Shape Index. Most of the noise in the image is on the water surfaces, especially 

when shadows fall onto it. Based on these results, the color invariant index layer C3 is 

not used for the other two study areas. Only Spectral Shape Index is applied to create 

the shadow mask for the later shadow enhancement procedure. 

 

4.1.2 Shadow detection results of each study area 

Supervised classification was done on the Spectral Shape Index image. Class “shadow” 

was used to create the shadow mask while both “water” and “non-shadow” class were 

treated as non-shadow regions. For shadows that fall onto water surface, most of them 

are classified as shadow. The shadow mask was created for extracting shadowed 

regions so that these regions could be enhanced, while the pixel values of 

non-shadowed regions remain unchanged. The shadow masks created for each study 

area are presented in figure 4-6, 4-7 and 4-12 for the Central, Ma On Shan and Sham 

Shui Po study areas respectively. 
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Central 

  

Figure 4-6 Original image and shadow mask of Central (shadows are white in the mask image) 

 

In figure 4-6, it can be seen that a large amount of shadows are caused by buildings 

within Central area and almost 50% of the areas is under shadow. For misclassification, 

not all the shadows that fall onto water surfaces can be extracted. It appears to be quite 

noisy for those areas. If the surfaces are naturally dark like those made of asphalts (roof 

surfaces), the Spectral Shape Index is not able to identify all of them correctly. It is also 

found that the edges of the coastline are classified as shadows, which are not easy to be 

justified using bare eyes. This is due to the fact that maximum likelihood decision rule 

is based on the probability that a pixel belongs to a particular class under the 

assumption that these probabilities are equal for all classes (Myint et al., 2011). 

Average pixel values obtained from the training dataset are used to judge whether a 

pixel should be assigned to a particular class. As it concerns how to classify a pixel, 
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the spatial autocorrelation of nearby pixels is ignored.   

 

Ma On Shan 

 

Figure 4-7 Original image and shadow mask of Ma On Shan 

 

For Ma On Shan, shadows formed by mountainous areas and buildings are extracted. 

However, the natural coast areas are being misclassified as shadows. These areas are in 

fact shallow water (shown in figure 4-7). The shadow detection results show that the 

Spectral Shape Index algorithm is not able to identify shallow water from sandy seabed. 

These misclassified shadows can also be seen in the histogram (figure 4-8); it is 

observed that, unlike the Central study area, there is no sharp peak between water 

features and non-shadow land features. Figure 4-99 andFigure 4-1010 show an 

enlarged view of the Ma On Shan image and its corresponding Spectral Shape Index 

image. It is noticed that the algorithm applied for shadow detection is able to identify 

water features like the swimming pool circled and most of the sea surfaces, but is not 
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able to deal with shallow water surfaces. Salt water with a sandy bottom (0.5m depth) 

will have a higher reflectance than deep water (2m depth); the sandy background will 

dominate most of the spectral properties of the water surface (YCEO, 2012). When 

the SSI equation [Green-Red] ÷ [Red+NIR] is used, water surface (deep) has larger 

pixel values in the Green band and lower pixel values in Red and NIR will result in 

higher SSI value. However, the pixel values of sandy background water are increased 

in all 3 bands (sharp increase for green band) so the numerator will decrease while the 

denominator will increase. The SSI obtained will be much lower than that of deep 

water surface.   

 

 

Figure 4-8 Image histogram of Ma On Shan Spectral Shape Index image 

Non-shadow shadow water 
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Figure 4-9 Enlargement of Ma On Shan 

 

 

Figure 4-10 Enlargement of Spectral Shape Index image of Ma On Shan 

 

Sham Shui Po 

Compared to the previous two districts, this selected part of Sham Shui Po does not 

have significant water features and shadows are mainly formed by buildings. The 

absence of water features can also be supported by the image histogram (figure 4-11) 

which shows there are two sharp peaks which correspond to shadow and non-shadow 

classes. For the size of shadows, except for one large shadow in the lower left corner, 
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all are small in size. The shadow extraction result is as shown in figure 4-12. 

 

 

Figure 4-11 Image histogram of Sham Shui Po Spectral Shape Index image 

 

 

Figure 4-12 Original image and shadow mask of Sham Shui Po 

 

 

4.2 Comparative analysis of shadow enhancement algorithms 

4.2.1 Gamma correction 

4.2.1.1 Gamma value estimation 

For Gamma correction, a number of area pairs are randomly selected in each study 
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area and their average pixel values in each spectral band are recorded. Each pair 

consists of a 4 pixel by 4 pixel (around 10m by 10m on ground) square of shadowed 

area and adjacent non-shadowed area. The Gamma equation (eq. 2) was used and is 

listed as below: 

                             𝐷𝑁𝑜𝑢𝑡𝑝𝑢𝑡 = 2047 × (𝐷𝑁𝑖𝑛𝑝𝑢𝑡  2047)
1

𝛾              (2) 

DNoutput refers to the pixel values of non-shadow regions, while DNinput is the pixel 

values of shadow regions having the same surface material. When the average pixel 

values are recorded, the value of Gamma (γ) is able to be calculated using simple 

logarithm function. Each average pixel value is calculated from 16 pixels in order to 

minimize the effect of extreme pixel values of noise. With a fixed sampling size of 4 

pixel by 4 pixel, the number of sampling data is limited under such a high building 

density area. For example, the distance between two shadows is too close and 

adjacent non-shadowed regions are small for data sampling. Some shadows are large 

and fall across side of buildings so it is not easy to confirm the adjacent 

non-shadowed regions are of the same surface type. A minimum of 16 sampling pairs 

are made when the surface type can be identified in both shadowed and adjacent 

non-shadowed area.  
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Table 4-1 Overall Gamma value estimation result of Central 

Central Gamma 

Min 

Gamma 

Max 

Average Gamma 

value 

Standard 

deviation 

Blue 1.046 1.587 1.201 0.152 

Green 1.112 2.396 1.402 0.326 

Red 1.166 2.472 1.433 0.326 

NIR 0.915 2.987 1.573 1.463 

 

Table 4-2 Overall Gamma value estimation result of Ma On Shan 

Ma On Shan Gamma 

Min 

Gamma 

Max 

Average Gamma 

value 

Standard 

deviation 

Blue 1.015 1.480 1.170 0.139 

Green 1.044 2.045 1.357 0.295 

Red 1.064 2.049 1.439 0.296 

NIR 1.095 2.237 1.680 0.283 

 

Table 4-3 Overall Gamma value estimation result of Sham Shui Po 

Sham Shui Po Gamma 

Min 

Gamma 

Max 

Average Gamma 

value 

Standard 

deviation 

Blue 1.096 1.225 1.163 0.034 

Green 1.197 1.472 1.326 0.072 

Red 1.214 1.579 1.398 0.113 

NIR 1.351 1.715 1.553 0.089 

 

For Central, a total of 16 pairs of sampling area and thus 16 Gamma values are 

calculated for each spectral band. The number of sampling data for Ma On Shan and 

Sham Shui Po is 18 and 17 respectively and the overall Gamma value estimations are 

presented in table 4-1 to table 4-3.  
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As the Gamma values are estimated using different surface materials randomly 

selected, it is difficult to choose a single Gamma measurement representing the whole 

spectral band. From the above tables, it can be seen that the range of Gamma values in 

some of the spectral bands are large. Most of the standard deviations are small except 

the NIR band in Central. This is because the average shadow pixel value is larger than 

the average non-shadow pixel value and the Gamma value calculated is less than 1. 

Z-test was used to detect outliers and it was found that only Gamma values computed 

from extreme bright surface in Central were classified as outliers (Gamma values 

were almost twice as much as the average value in one set of sampling data). These 

surfaces are highly reflective and the pixel values recorded are abnormally high 

compared to the rest of the sampling data. Although the Gamma values estimated 

were large, they were real data from the complex environments in Central and were 

not omitted.   

 

It is possible to further sub-divide the study areas into smaller regions so as to 

compute the Gamma parameters more accurately for that specific area, but the 

problems of different land covers within shadows cannot be solved. It resulted in the 

fact that one Gamma value is being applied to all land covers within a small region 

and the shadow enhancement result may vary a lot. Some previous studies suggested 
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that the image can be classified according to the surface types and one Gamma value 

is used for each land cover. However, in a complex environment (like Hong Kong), 

this will involve classifying shadowed regions before they are enhanced. Considering 

the complexity of sub-dividing the study area and the possibility of classifying 

shadows, the average Gamma value of each spectral band will be used for enhancing 

shadow regions. 

 

4.2.1.2 Results by Gamma Correction 

Since the average Gamma values are used, it is expected that the shadow 

enhancement results will not be satisfactory for some regions. However, the resulting 

image is able to show whether Gamma correction can be applied with high 

complexity land covers. The shadow enhancement results are presented below: 

 

Central 

Upon comparing the image enhanced by Gamma Correction (figure 4-13) and the 

original Central image (figure 3-5), it is clear that the visual improvement is not 

significant. From figure 4-13, it is found that all the shadows are much brighter than 

the original dark pixels. However the color tone is not natural and appears to be hazy 

compared to its surrounding. Details within shadows cannot be seen after 
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enhancement. A zoomed in view of Central image is presented in figure 4-14, with the 

original portion on the left. 

 

 
Figure 4-13 Shadow enhancement by Gamma correction – Central 

 

 

Figure 4-14 Enlargement view of part of the Central by Gamma Correction 
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Ma On Shan and Sham Shui Po 

 
Figure 4-15 Shadow enhancement by Gamma correction - Ma On Shan 

 

Similar to Central, the shadow enhanced regions of both Ma On Shan (figure 4-15) 

and Sham Shui Po (figure 4-16) appeared grey and hazy. The color tone of the 

enhanced areas is not natural compared to its neighbor. No matter which land cover it 

is, the enhanced regions looks similar and is like replacing the dark pixels with 

brighter grey pixels. For Gamma Correction, it is expected that the grey level of the 

enhanced regions is uniformly increased. Previous studies also pointed out that this 

uniform grey level will lead to larger color differences between enhanced regions and 

adjacent non-shadowed regions with different surface type. 
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Figure 4-16 Shadow enhancement by Gamma correction - Sham Shui Po 

 

4.2.2 Linear Correlation Correction 

4.2.2.1 Establish linear regression model 

Unlike the Gamma correction where only one Gamma value is applied to the whole 

image, Linear Correlation Correction made use of all the area pairs to generate the 

regression model. For example, 16 shadow and non-shadow pairs in Central (the same 

data as in Gamma correction) are used to form the linear regression model for each of 

the 4 bands – one each for the Red, Green, Blue and Near-Infrared band respectively. 

The linear regression models (where x is the DN of shadows and y is the DN of 

non-shadows) and their corresponding correlation coefficients are presented as 

follows (All relevant graphs are presented in Appendix B): 
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Table 4-4 Linear regression model of Central (16 pairs of sampling data) 

Central Regression model by 16 data pairs Correlation coefficient 

Blue y = 3.624𝑥  497.13 0.947 

Green y = 4.445𝑥  727.62 0.943 

Red y = 5.672𝑥  442.62 0.933 

NIR y = 7.552𝑥  525.31 0.950 

 

Table 4-5 Linear regression model of Ma On Shan (18 pairs of sampling data) 

Ma On Shan Regression model by 18 data pairs Correlation coefficient 

Blue y = 3.396𝑥  426.79 0.981 

Green y = 4.144𝑥  600.49 0.975 

Red y = 5.404𝑥  372.94 0.958 

NIR y = 7.765𝑥  489.00 0.913 

 

Table 4-6 Linear regression model of Sham Shui Po (17 pairs of sampling data) 

Sham Shui Po Regression model by 17 data pairs Correlation coefficient 

Blue y = 2.795𝑥  317.17 0.881 

Green y = 3.463𝑥  484.84 0.850 

Red y = 5.37𝑥  443.57 0.905 

NIR y = 4.179𝑥  175.67 0.888 

 

All the linear regression models were locally derived, and it could be seen that the 

equation of the same spectral band (e.g. equations of all NIR band) appeared to be 

different. It is not suitable to use one set of global formulas for all study areas due to 

the fact that the urban environments vary from location to location. Although there is 
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a strong correlation between shadow and non-shadow pairs, there are some problems 

associated with these regression models such as the penumbra regions and they will 

be discussed in section 4.2.3 and 4.2.4. 

 

4.2.2.2 Results by Linear Correlation Correction 

Two mask images are created for each study area, shadow mask and non-shadow 

mask. The regression models are applied to the image that only contains shadowed 

regions. After enhancing the shadowed regions in each spectral band, a simple image 

overlay is performed in order to merge the enhanced regions with the non-shadowed 

regions. The shadow enhancement results are shown below:  

 

Central 

Figure 4-17 (the enhancement results of Central) shows that the visual improvement is 

more significant compared to the one by Gamma correction. Part of the details under 

shadows can be seen after the enhancement process. The red circle in figure 4-17 is an 

example of successful shadow enhancement (zoomed in view in figure 4-18). 

Vegetation has similar color tone compared to its neighbor. Although the color of a 

flyover nearby is slightly darker after enhancement, it is much better compared to the 

original image. The yellow circle in figure 4-17 shows one of the regions that is still 
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dark even after enhancement was performed. This indicates that the linear regression 

model used is not able to enhance this and similar regions correctly. 

 

 

Figure 4-17 Shadow enhancement by Linear Correlation Correction – Central 

 

 

Figure 4-18 Enlargement view of linear enhanced Central image 
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In order to explain why the enhancement results have such a big difference, the 

building structures of the two circled regions are compared. Central is the main CBD 

of Hong Kong. Here buildings are tall and the distances between buildings are small, 

which results in a special form of building structure – walled buildings. It refers to 

buildings that are constructed like a wall, which block the view of other buildings, 

block the sunlight penetrating through gaps between buildings and block air 

ventilation channels. In this case, the presence of walled buildings block all the sun 

energy penetrating between buildings and no other surfaces can reflect sun energy to 

these shadows. In the open space within the red circle, no buildings block the 

direction of sun light (bottom right), making the shadows within less dense than those 

in the yellow circle area. The difference in enhancement of the two areas, despite 

being within a short distance of each other, implies that using one set of regression 

model may not be able to enhance all the regions properly, giving rise to the idea of 

using locally derived regression models in different areas. The issue of when and how 

different regression models should be applied then comes up. The use of different 

regression models and its results will be discussed in chapter 5. 
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Ma On Shan 

 

Figure 4-19 Shadow enhancement by Linear correlation correction - Ma On Shan 

 

For Ma On Shan, except for the natural coast areas being wrongly extracted and 

enhanced, most of the shadows are natural to its surrounding. After enhancement, 

road features can be viewed as one object, not broken into several segments by 

shadows. Compared to the enhancement results by Gamma correction, shadows 

enhanced by Linear Correlation Correction are more similar to their surroundings 

demonstrated by significant visual improvement. Because of the lower building height 

and density compared to Central, one set of regression models is able to give 

promising results. 
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Sham Shui Po 

 

 

Figure 4-20 Shadow enhancement by Linear Correlation Correction - Sham Shui Po 

 

Sham Shui Po has high building density and shadows are formed between buildings. 

This is similar to the condition in Central, but the buildings are much lower, meaning 

that the shadows mostly fall across roads and very few fall across mixed surfaces. 

Therefore, the regression models are mainly generated from asphalt surface pairs. 

Very few vegetated pairs can be found and, therefore, the enhancement of such areas 

as shown for a park area (yellow circle in figure 4-20) appears significantly different 

to its surroundings. The result also shows that when sun energy is blocked by 
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walled-buildings, shadows are not likely to be enhanced successfully. However, the 

enhanced shadows in yellow circle show some more details and higher contrast. It is 

considered that these areas could be further enhanced by establishing another set of 

regression models. 

 

4.2.3 Penumbra enhancement 

Enhancement of the penumbra regions produced variable results. Across the three 

study areas it was seen the penumbra were not easily detected by the shadow 

detection algorithm. In the Central image (figure 4-18), some of these edges were 

extracted and enhanced, with the result that the enhanced edges were brighter than 

both non-shadow regions and enhanced shadow regions. Prior to enhancement the 

penumbra was not obvious. When they are extracted, the linear regression model will 

make these edges brighter due to the fact that penumbra regions are not as dark as 

shadows. When they cannot be extracted during shadow detection, it remains dark 

compared to the enhanced regions. The amount and appearance of penumbra will 

strongly be affected by the urban structure and lighting condition. If low pass filter is 

applied, some of the details may be lost after processing. It is suggested that specific 

smoothing filter is applied to the edges in order to lower the difference in between, 

because either extracting penumbra or enhancing the edges separately have not been 
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well developed yet.  

 

4.2.4 Problems of using Linear Correlation Correction 

Although the enhancement by Linear Correlation Correction gave better visual 

improvement, some problems were found afterwards. Apart from the penumbra effect, 

it was observed that some of the pixels are not being enhanced when the regression 

model is applied. This problem is found mostly in the red and near infrared bands. 

Pixel values are lowered after enhancement was done. Both Central and Ma On Shan 

encountered this problem. Take Central as an example, one of the darkest shadowed 

pixels is located on a road surface and has the pixel value 53 in the infrared band. 

When the value 53 is substituted into the equation listed in table 4-4, which is 7.552 × 

(53) - 525.31, the result will be -125.054. For some other bright surfaces under 

shadows, the pixel values after enhancement (figure 4-21) will exceed 2047, which is 

the maximum value with an 11-bit image. Even when extreme pixel values are 

involved during sampling process, averaging 16 pixel values and fitting it into a linear 

regression model will lower such a large difference. There is no doubt that more 

pixels involved in sampling process will reduce the effect of extreme pixel brightness, 

but balancing the number of pixels, a specific surface type can be recognized and the 

number of sampling data, 16 pixels (10m by 10m ground resolution) is considered to 
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be an optimum sampling size. This out-of-range circumstance is found in the red and 

near infrared band of both Central and Ma On Shan image. If the scale of each 

spectral band is not the same, it would have problems when calculating band ratios 

such as vegetation index. Therefore, it is necessary to keep the pixel values of all 

spectral bands within the 0-2047 level. 

 

Figure 4-21 Histogram of NIR after Linear Correlation Correction 

 

The first attempt to deal with this issue is to set cut off values. If any pixel values 

exceed the boundary of 0-2047, either 0 or 2047 is assigned to that pixel depending on 

whether it is smaller than 0 or larger than 2047. However, the enhanced pixel values 

are of relative sense, and it is not likely to obtain pixel values 0 or 2047 within a 

normal image. This is the simplest way to deal with this situation, but there are certain 

drawbacks. If the pixel values are lower than 0, setting it as 0 means that pixel values 
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are not being enhanced. A pixel having value 53 may become 0 in this case, which is 

not increased. Using 0 as a cut off value will also result in inaccurate band ratios 

calculations. For example, vegetation index NDVI will have extreme negative or 

positive values which are not within the range -1 to +1.  

 

The second attempt is to reconstruct the pixel values range (-140 to 2299 as shown in 

figure 4-21) by keeping their relative difference. This is done by first getting the range 

information of this raster dataset, then computing the percentage for each pixel values 

and finally multiplying by 2047. For example, if the lowest pixel value is -140, the 

minimum pixel value “-140” is subtracted, then divide by 2439 (range of this dataset) 

and then multiplied by 2047. The output value will become 0. Although the relative 

difference between each pixel value is maintained, the pixel values that originally 

satisfy the linear regression model are altered. When the pixel values of these shadow 

enhanced regions are compared with their surrounding non-shadow areas, the 

difference in between will be enlarged. The effect of Linear Correlation Correction is 

thus being cancelled out.  

 

The third attempt is to use the original shadowed pixel values to replace the enhanced 

results under the condition that the pixel value after enhancement is lower than the 

original one. For pixel values that exceed the number 2047, the maximum pixel 
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values from the original unprocessed image are used to replace the enhanced results. 

This method can ensure that all the pixel values after enhancement are within the 

range 0-2047, and most of the results being linearly enhanced are maintained. 

However, replacing original pixel values with the enhancement pixels will result in 

these pixels not being enhanced at all. When they are used for further image 

interpretation like the making of vegetation index map, these regions may not have 

any changes compared to the original image. 

 

4.3 Assessment of enhancement results 

4.3.1 Comparison of the enhancement results 

After the enhancement process, the pixel values from the original image, Gamma 

correction and Linear Correlation Correction were compared. Similar to the process of 

establishing linear correlation model and computing Gamma parameters, a number of 

areas pairs (4 pixels by 4 pixels) for both non-shadows and enhanced shadows were 

randomly selected for comparison. Each pair of areas is of the same type of surface 

based on the users’ judgments and interpretations and was not used in the 

enhancement process. The means and standard deviations of the pixel value 

differences (enhanced shadow minus non-shadow) for each image band was 

computed for assessing the spread of the difference among each enhancement 
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algorithm. The results are presented in Table 4-7 to 4-9. 

Table 4-7 Statistics before and after enhancement - Central 

Central Mean of the pixel value difference  Standard Deviation of the difference 

 Original Gamma 

correction 

Linear 

regression 

Original Gamma 

correction (% 

change from 

Original) 

Linear 

regression 

Blue -70 -3 -14 31.70 28.53 (10%) 31.39 (1%) 

Green -151 -4 -28 66.94 60.75 (9%) 54.04 (19%) 

Red -144 -15 -41 67.60 58.52 (13%) 50.62 (25%) 

NIR -227 -32 -125 97.48 85.87 (12%) 80.04 (18%) 

 

 

Table 4-8 Statistics before and after enhancement - Ma On Shan 

MOS Mean of the pixel value difference  Standard Deviation of the difference 

 Original Gamma 

correction 

Linear 

regression 

Original Gamma 

correction (% 

change from 

Original) 

Linear 

regression 

Blue -78 4 -2 73.24 67.91 (7%) 21.58 (71%) 

Green -166 14 -11 141.99 130.40 (8%) 37.28 (74%) 

Red -157 4 -15 123.51 106.82 (14%) 34.56 (72%) 

NIR -252 -10 -36 97.61 84.58 (13%) 58.16 (40%) 

 

 

Table 4-9 Statistics before and after enhancement - Sham Shui Po 

SSP Mean of the pixel value difference  Standard Deviation of the difference 

 Original Gamma 

correction 

Linear 

regression 

Original Gamma 

correction (% 

change from 

Original) 

Linear 

regression 

Blue -68 13 20 32.46 29.90 (8%) 19.87 (39%) 

Green -141 32 38 68.73 64.04 (7%) 50.72 (26%) 

Red -143 15 14 53.24 44.74 (16%) 41.96 (21%) 

NIR -195 9 -9 52.49 46.69 (11%) 41.10 (22%) 
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For an ideal situation, the mean of the difference would be 0 after shadow 

enhancement algorithm is applied. As expected, the mean of the difference for the 

original shadows is large and this can be seen in the tables corresponding to Central, 

Ma On Shan and Sham Shui Po respectively. Also, a larger standard deviation of the 

difference between original shadows and their neighboring non-shadows is observed. 

The standard deviation is lowered after enhancement. This larger standard deviation is 

also expected when shadows are formed under different illumination conditions. The 

contrast between shadows and non-shadows can have large variations. For example, 

the shadows formed under walled-buildings in Central have higher contrasts with 

their surroundings. This makes the standard deviation of the differences larger.  

 

From the enhancement results shown in the above tables the mean values for Gamma 

Correction is lower than Linear Correlation Correction and closer to zero. However, 

this is due to the fact that the variation is quite large in the difference. There are 

extreme values within; therefore the mean values may not be a good indicator to judge 

the quality of enhancement. For example, two extreme values are obtained in the 

green band dataset of Central by Gamma correction; one is 90.44 while the other one 

is -156.4. It could also be seen that there is no pattern observed for the mean values 

among all the spectral bands and study areas. 
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Under this circumstance, standard deviation is used to examine the spread of the 

difference. For an ideal enhancement result, the pixel value differences should be 

small and close to zero and thus resulting in smaller standard deviation. Table 4-7 to 

4-9 show that the standard deviation decreases when enhancement was done. This can 

be explained by the extremely dark pixels under walled-buildings; the difference after 

enhancement is still large compared to other testing areas. For Gamma Correction, the 

standard deviation of difference is slightly lower than that of the original shadows 

while Linear Correlation Correction gives much lower standard deviations. 

Comparing the results in Central and Sham Shui Po which contains high building 

density, the standard deviation is only slightly lowered. However, in Ma On Shan 

which is of lower building density, there is a large decrease in standard deviation 

when Linear Correlation Correction is applied. However, the large difference 

observed in Ma On Shan could be also due to the fact that it is from a different set of 

image, but the performance of Gamma Correction and Linear Correlation Correction 

can also be seen and compared. 
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Table 4-10 Standard deviation of all pixel values in the sampling data in Central 

Central Standard Deviation 

 Non-shadow shadow Gamma 

enhanced 

Linear enhanced 

Blue 51.95 21.62 24.80 78.33 

Green 95.85 30.86 37.63 137.18 

Red 85.43 20.20 30.55 114.55 

NIR 111.45 18.03 33.97 133.11 

 

Table 4-11 Standard deviation of all pixel values in the sampling data in Ma On Shan 

MOS Standard Deviation 

 Non-shadow shadow Gamma 

enhanced 

Linear enhanced 

Blue 101.46 29.16 34.30 99.01 

Green 185.17 44.33 55.88 183.72 

Red 150.06 27.63 44.50 149.30 

NIR 111.66 16.18 32.02 125.62 

 

Table 4-12 Standard deviation of all pixel values in the sampling data in Sham Shui Po 

SSP Standard Deviation 

 Non-shadow shadow Gamma 

enhanced 

Linear enhanced 

Blue 47.02 16.96 19.89 47.38 

Green 88.22 25.33 31.68 87.73 

Red 68.32 17.28 27.24 92.79 

NIR 61.01 12.37 22.43 51.69 
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In fact, it is possible that the smaller standard deviation of differences between 

shadowed pixels and non-shadowed pixels is due to a brightness shift. Therefore, the 

standard deviations of the sampling data are used for further support. In table 4-10 to 

4-12, comparing the spread of data between non-shadowed regions and shadowed 

regions, the standard deviation of linear enhanced regions is more similar to the 

non-shadowed regions. These tables show that Linear Correlation Correction is more 

capable than Gamma Correction to reproduce the spread of pixel values within 

shadowed regions. 

 

 

Figure 4-22 Relationship between enhanced shadows and non-shadows - Ma On Shan (Red) 
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Figure 4-23 Relationship between enhanced shadows and non-shadows - Ma On Shan (NIR) 

 

For an ideal situation, the enhanced results should be close to its surrounding. Figure 

4-22 and 4-23 show the graphs of the two selected bands, red and near-infrared, from 

Ma On Shan. It is observed that the regression line by Linear Correlation Correction 

is the closest to the ideal situation while the one by Gamma Correction is nearly 

parallel to the original one. These graphs show that the large variation of difference in 

Gamma Correction, which can also be seen visually from the enhancement result, is 

not satisfactory. The graphs for all three study areas are listed in Appendix C.  

 

The problems of Linear Correlation Correction with respect to the darkest group of 

pixel values being reduced rather than enhanced have been discussed in the previous 

section. It can also be shown in the above two figures. From the graph, it is expected 
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that the regression line of the original shadows and the linear enhanced shadow will 

have an intersection when the original pixel values are small. Even if the darkest pixel 

is involved in the sampling process, averaging 16 pixel values will reduce its effect in 

the dataset. In fact, both blue band and green band have similar graph behavior 

(figures 4-24 and 4-25). However, the darkest pixel value will not be lower than the 

original data after enhancement. Although the behavior of Linear Correlation 

Correction is closer to the ideal case, it is also observed that the pixel values are 

generally lower than that of the surrounding environment (regression line of Linear 

Correlation Correction is beneath the ideal case). 

 

 

Figure 4-24 Relationship between enhanced shadows and non-shadows - Ma On Shan (Blue) 
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Figure 4-25 Relationship between enhanced shadows and non-shadows - Ma On Shan (Green) 

 

Table 4-13 Assessment result of Linear Correlation Correction (data from Central image) 
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NIR enhanced RED enhanced GREEN enhanced BLUE enhanced 

 

Surrounding Shadow Surrounding shadow Surrounding shadow Surrounding shadow 

Road 

        Min 164 75.00 174 124.54 299 214.70 236 209.53 

Max 379 290.32 361 323.05 482 432.50 329 292.88 

Mean 261.02 142.52 251.53 195.44 373.00 325.68 268.51 248.49 

Median 266.46 108.64 255.81 174.94 378.35 321.05 270.88 238.51 

         Bare ground 

        Min 244 101.51 228 209.61 368 330.27 266 245.77 

Max 483 297.87 429 328.72 502 485.84 326 325.50 

Mean 307.81 188.94 287.84 254.77 411.69 390.87 287.63 275.39 

Median 295.35 192.02 276.68 254.74 403.59 388.00 284.98 267.26 

         vegetation 

        Min 256 146.83 109 50.81 228 205.81 193 184.16 

Max 572 554.64 206 215.29 334 356.94 233 238.52 

Mean 425.45 321.30 138.87 154.31 268.37 294.54 207.08 218.27 

Median 412.77 320.47 127.95 163.89 258.64 312.07 203.00 223.87 
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Table 4-13 shows the pixel values difference between enhanced (Linear Correlation 

Correction) shadows and its adjacent non-shadows. Data were collected using Central 

image. Three classes: road, bare ground and vegetation were selected and statistics 

from the enhanced image were recorded. It can be seen that the pixel values after 

enhancement are generally darker than its surrounding areas.  

 

4.3.2 Assessment based on band ratios – vegetation index 

To examine if the spectral properties within enhanced regions are capable of 

improving classification accuracy in shadowed areas, the performance of the 

commonly used vegetation index NDVI is tested. The NDVI images of the original, 

the Gamma enhanced and the Linear enhanced were compared to examine if the 

vegetation under shadows can be extracted after shadow enhancement process. 

 

For Central, a total number of 4 images are presented to illustrate the results of using 

NDVI for vegetation detection. They are the original image, gamma enhanced image, 

and two linear enhanced images (with and without correcting the boundary pixel 

values of the red and NIR band). 
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Central 

 

Figure 4-26 Original NDVI of Central 

 

 

Figure 4-27 Gamma enhanced NDVI of Central 
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Figure 4-28 Linear enhanced NDVI of Central (without correcting red and NIR band) 

 

 

Figure 4-29 Linear enhanced NDVI of Central (with red and NIR band corrected) 

 

The normal range of NDVI is from -1 to +1 (standardized) and values larger than 0.2 
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are classified as vegetation. In figure 4-26 the original NDVI image inside the grey 

circle is a grassed garden and a footbridge. The part which is not under shadow has a 

higher NDVI value (~0.5) compared to the part under shadow (~0.09) and can be seen 

by the color difference. Comparing figure 4-27 (Gamma enhanced image) with figure 

4-26, the results appear to be similar in that the vegetation under shadow cannot be 

detected. Although the pixel values were increased after Gamma Correction, it can be 

seen that the spread of data in Gamma Correction is similar to the original shadow 

(figures 4-22 and 4-23). Therefore, the NDVI computed within shadowed regions will 

not have a significant change and thus the range of NDVI remains the same (lowest 

and highest NDVI are obtained from non-shadowed regions). Figure 4-28 shows the 

NDVI image created from the Linear Correlation Correction enhanced image where 

the range of pixel values in red and NIR bands were not adjusted to the range 0-2047. 

The NDVI values calculated are not within -1 to +1 due to the inconsistent scale used 

in the two different spectral bands. When the problems associated with wrong scale is 

fixed, figure 4-29 shows a more reasonable image. Within the blue circle in figure 

4-29, part of the vegetation is under shadow while the other part can be detected by 

the NDVI. Comparing the amount of vegetation detected in two circles, it can be seen 

that figure 4-29 shows more detected vegetation than the one in figure 4-26 (original) 

and figure 4-27 (Gamma). With a wider spread of pixel values, the NDVI values 
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calculated using Linear Correlation Correction image have more significant changes. 

The location of the footbridge in grey circle is now clearly seen.  

 

The results indicate that an image with shadows enhanced by Linear Correlation 

Correction is able to show vegetation to a higher degree of accuracy when compared 

to the Gamma Correction. However, from figure 4-29 there are certain areas having 

the value -1, showing a large contrast with the surrounding. How this situation is 

caused mainly depends on the way the range in red and NIR band are being adjusted. 

In figure 4-29, cut off value 0 is applied to those pixel values lower than 0. When 

computing NDVI, zero value in one of the spectral bands will lead to extreme NDVI 

value (NDVI equals 1 or -1). The result can be validated by the scanned aerial photo 

of Central from Hong Kong Guide (2005) (Figure 4-30) where the circled area is 

vegetated. 

 
Figure 4-30 Aerial photo of Central 
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Ma On Shan 

The results of original NDVI and Gamma enhanced NDVI in Ma On Shan are similar 

to that of Central, but the result by Linear Correlation Correction in figure 4-33 is 

slightly different. In fact, in this set of images, the method used to deal with 

out-of-range pixel values is not the same as in Central. Figure 4-34 shows the Ma On 

Shan NDVI image adjusted by replacing any pixel values that are lowered after 

enhancement (algorithm same as the Central NDVI in figure 4-29). For those values 

that are larger than 2047, the original local maximum is used. From figure 4-33, it can 

be seen that the NDVI calculated is having extreme value of -1 and +1. In fact, the 

shadows in the mountainous area are vegetated and contain the darkest group of pixel 

values, but the NDVI image shows a large difference in between. The NDVI values in 

the non-shadowed areas are around 0.4-0.6, while those being linearly enhanced are 

+1. Although the areas inside the circle can be extracted as vegetation, the values are 

misleading and would become a serious problem for image interpretation process.  
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Figure 4-31 Original NDVI of Ma On Shan 

 

 

Figure 4-32 Gamma enhanced NDVI of Ma On Shan 
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Figure 4-33 Linear enhanced NDVI of Ma On Shan (corrected by setting cut off value) 

 

 

Figure 4-34 Linear enhanced NDVI of Ma On Shan (corrected by replacing original pixel value) 
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Figure 4-35 Aerial photo of Ma On Shan 

 

Different from the algorithm that use cut-off value, NDVI obtained in figure 4-34 

(replacing original pixel values) are much closer to its surrounding and are less 

misleading than applying cut-off value. However, replacing original pixel values 

means that some of the NDVI values would be the same as the original NDVI image 

and would not be able to classify as vegetation. This indicates the importance of 

choosing a suitable method to deal with the scale problem when Linear Correlation 

Correction is being used. Although the scanned aerial photo of Ma On Shan (Figure 

4-35) is not able to cover the same area size as the satellite image, the circled area (in 

purple) is vegetated and only Linear Correlation Correction is able to extract it 

successfully.  
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Sham Shui Po 

 
Figure 4-36 Original NDVI of Sham Shui Po 

 

 
Figure 4-37 Gamma enhanced NDVI of Sham Shui Po 
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Figure 4-38 Linear enhanced NDVI of Sham Shui Po 

 

 

Figure 4-39 Aerial photo of Sham Shui Po 

 

In Sham Shui Po, the result of Gamma Correction slightly improves the results of 

NDVI (figure 4-37). Although the NDVI range is the same as in original image, the 
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NDVI obtained within enhanced shadows were slightly increased. It could be seen in 

the circle that vegetation under shadows has a much closer values to its surrounding, 

but the color difference is still significant. However, when compared the results with 

Linear Correlation Correction (figure 4-38), the NDVI values obtained is similar to 

that of the surrounding. Although the enhancement result of Sham Shui Po by Linear 

Correlation Correction (figure 4-20) appears to be much darker for some regions, use 

of vegetation index is able to extract information required. Among three study areas, 

those vegetated areas covered by shadows were not correctly identified in their 

original NDVI image and was marginally improved by the Gamma Correction 

algorithm. However, when Linear Correlation Correction was used, the improvement 

in the NDVI image is significant in all study areas. The aerial photo (Figure 4-39) can 

be used to show that vegetation exists in the circled area. 

 

To summarize, shadow enhancement process should not only consider the visual 

improvement, but also fulfill the needs for further analysis or process. Here the impact 

of different enhancement algorithms on vegetation index (NDVI) is demonstrated. It 

was found that the enhancement result produced by Linear Correlation Correction was 

more capable of identifying vegetated areas than that of Gamma Correction as long as 

out-of-range pixel values are properly managed. 
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Chapter 5. A second experimental test 

5.1.1 Shadow enhancement for the second time (Iteration) 

From the results shown in the previous part, the tone of shadow enhanced regions are 

much closer to but are still darker than those of their non-shadowed counterparts, and 

parts of the enhanced areas do not show much difference after the process. If shadow 

enhancement is considered to be an automated process in later development, then it is 

possible that the slightly darker regions will get closer to their non-shadowed 

counterparts when the process is repeated. In order to test this idea, the image of 

Central was selected to be enhanced again. The reason for using Central instead of the 

other two images is that the Central image shows different levels of enhanced results. 

Some regions cannot be enhanced (those in deep shadow) while some others show a 

good enhancing result.  

 

Similar to the previous procedures, the shadows have to be extracted first. By using 

the Spectral Shape Index presented above, the Central image having undergone linear 

enhancement is being classified once again. The previous shadow mask is not used 

again because the brightness of some of the enhanced shadows is natural compared to 

its adjacent non-shadowed regions. If the previous shadow is used, it is possible that 
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some of the regions are over enhanced. Figure 5-1 shows the classification results on 

the Spectral Shape Index of enhanced Central image.  

 

 

Figure 5-1 Classification results on SSI of Linear enhanced Central image 

 

Different from the previous results which created 3 classes in total (one of them being 

shadows), 4 classes are produced using supervised classification due to the fact that 

the brightness of shadows were changed after the first enhancement. Shadows can be 

further classified into 2 groups based on their brightness. Inspection of the 
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multispectral image revealed the classes representing water, dark shadow, bright 

shadow and non-shadow. It can be seen that part of the shadows that were enhanced 

the first time are no longer classified as shadows. After the shadows were extracted, 

the same algorithm was used to establish the linear regression models and recorded 

the average pixel values of shadowed and non-shadowed area pairs. Once again, the 

area pairs were randomly selected from the whole image and generated the regression 

model for each spectral band. 

 

Table 5-1 Gamma value and Linear regression models for 2nd-iteration  

 Gamma Min Gamma Max Linear regression model Correlation 

coefficient 

Blue 1.005 1.091 y = 1.213x – 23.068 0.76 

Green 1.046 1.234 y = 1.104x + 38.561 0.68 

Red 1.110 1.297 y = 1.284x + 38.587 0.81 

NIR 1.281 1.641 y = 1.298x + 128.100 0.66 

 

In table 5-1, the Gamma values are also presented and it can be seen that the variation 

among training dataset is less than the first iteration. However, it is still difficult to 

select one representative Gamma values for the whole images to follow. An 

exploratory study of applying gamma values revealed that shadows from the resulting 

images are of different brightness of grey. Different from the original image, the 

newly established regression models are not likely to make the pixel values lower 

after enhancement. For Red and NIR band, it is observed that both equations contain a 
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positive constant that the resulting pixel value must be enlarged. The results are as 

shown below: 

 
Figure 5-2 1

st
-iteration of Central by Linear Correlation Correction (image cropped) 

 

 

Figure 5-3 2
nd

-iteration of Central by Linear Correlation Correction (image cropped) 
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The result presented in figure 5-2 and 5-3 shows that the image quality is degraded 

after the second iteration was done and the water surfaces appear quite noisy. 

However, the areas within the two circles also show that the brightness of the shadows 

becomes closer to the surrounding. This indicates that shadows can be further 

enhanced, but the overall image quality may be lowered. 

 

Figure 5-4 Central NDVI (2
nd

-iteration) 

 

The corresponding NDVI image (figure 5-4) shows similar result compared to the 

first iteration. It may not be easy to observe any changes in the NDVI image, 

therefore the difference between two NDVI images is presented (figure 5-5). It is 

observed that the linear regression models established here are quite different from the 

previous ones. The pixel values are no longer being reduced. Therefore, from figure 
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5-5, larger differences are found in the places where the darkest group of pixels is 

located. 

 
Figure 5-5 NDVI difference between two set of images - Central 

 

5.1.2 Iteration using regression models from high contrast sampling area pairs 

From the Central image having undergone first iteration of shadow enhancement, the 

enhanced shadows can be classified into two groups, dark shadows and bright 

shadows. This difference can only be observed after the first enhancement process. It 

is not easy to judge from the original image. In this part, the linear regression models 

are established based on the dark shadows and their corresponding non-shadows. The 

area pairs therefore have high contrast. The regression models for the randomly 
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selected and high contrast cases and their correlation coefficients are listed in table 

5-2. 

 

Table 5-2 Regression models 

Central Regression models 

(random selected) 

Regression models (high 

contrast) 

Correlation 

coefficient 

Blue y = 1.213x – 23.068 y = 2.716x – 266.87 0.82 

Green y = 1.104x + 38.561 y = 3.511x – 394.08 0.85 

Red y = 1.284x + 38.587 y = 4.112x – 116.15 0.79 

NIR y = 1.298x + 128.1 y = 4.325x – 61.502 0.67 

 

From the above table, it can be seen that the selection of sampling areas have a 

significant impact on the regression models. Using the darkest and brightest shadow 

pixel values in Red band as an example, pixel value 53 and 300 will behave very 

differently in the two regression models. Pixel value 53 and 300 will become 106.6 

and 423.7 respectively when the regression model used is from random sampling 

areas. However, for the high contrast regression models, the results will become 101.8 

and 1117.3 respectively. The resulting pixel value of the darkest group of pixels is 

similar, but for those brighter shadows, they will become even brighter in the 

produced image. The enhanced image is as shown in figure 5-6.  
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Figure 5-6 Shadow enhancement using high contrast linear regression model 

 

The image quality is degraded when using the regression models established from 

high contrast sampling areas. It can be seen that some of the shadows are brighter than 

their adjacent non-shadowed areas (as shown in the green circle). This enhancement 

result shows that when shadow enhancement is an iterative process, regression models 

establishment should consider the brighter shadows first. For those originally darkest 

groups of pixels, the resulting image shows that enhancement quality is not 

satisfactory. This suggested that when the energy is being totally blocked and dark 

shadows are formed, information under these shadows is already damaged and can 

hardly be retrieved. 



98 

 

5.1.3 Shadow enhanced by non-linear functions 

The problems associated with Linear Correlation Correction have been discussed 

previously. The darkest group of pixels is not being correctly enhanced and results in 

pixel values exceeding 0-2047. The problems are found to be serious mostly in the 

Red and NIR band, and from the distribution of the sampling data pairs. It raises the 

question whether a polynomial regression model is more suitable for these two bands.  

 

Figure 5-7 and figure 5-8 presented both linear and non-linear regression models of 

the two spectral bands in question. From the two linear regression lines, it is clear that 

if the pixel values are low, the enhanced pixel values will be lowered, in some cases to 

less than zero. However, for the darkest pixels, polynomial (n=2) regression is closer 

to the reality that the pixel values are increased.  

 

The resulting image in figure 5-9 shows that the shadow enhancement in overall 

visual aspect is not better than by using linear regression models (figure 5-10). 

However, it is observed that the dark shadows (as shown in red circle) are brighter 

when non-linear regression model is applied.  
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Figure 5-7 Relationship between shadow and non-shadow pairs in Central - Red 

 

 

Figure 5-8 Relationship between shadow and non-shadow pairs in Central – NIR 
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Figure 5-9 Shadow enhanced by non-linear regression model - Central 

 

 

Figure 5-10 Shadow enhanced by linear regression model - Central 
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In order to obtain better results, it is suggested that polynomial regression is applied 

only on the darkest group of pixels. However, it would be another study directed at 

the method of separating pixel brightness into two groups and applying different 

regression models.  
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Chapter 6. Conclusions 

6.1 Summary of shadow detection using Spectral Shape Index 

The shadow detection algorithm applied in this study is that of the Spectral Shape 

Index. Under complicated environments and land covers, the detection algorithm is 

able to distinguish water surfaces and shadows from non-shadowed areas. However, 

for some surfaces that are inherently dark, they may be wrongly identified as shadows. 

This issue is well-known and to date has not been solved completely.  

 

Supervised classification is selected for classifying shadows from non-shadows. 

However, several algorithms could be used to classify the Spectral Shape Index image. 

Since the study is mainly focused on the shadow enhanced image quality and 

improvement in identifying features under shadows, advanced classification 

techniques are not considered. With the use of Spectral Shape Index, most of the 

water features can be extracted, but it cannot accurately detect shallow water with 

sandy seabed. For this issue, image segmentation resulting from different color space 

such as HSI, HSV, C1C2C3 and YIQ can be integrated to improve the detection 

accuracy. In fact, only the problem of identifying shallow water is observed and 

presented, but other surface types may also encounter the same problem so various 

testing is required on images from different locations and satellite sensors (only 
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Quickbird image is used in this study).  

 

6.2 Summary of various enhancement results 

Two out of three common shadow enhancement algorithms have been presented and 

tested. Histogram Matching was not selected due to the reported issues related to its 

application in complex environments. Data sampling made use of area instead of 

point to extract the average pixel values and to calculate Gamma parameters together 

with the linear regression models. Using only one pixel for establishing the regression 

models or estimating the Gamma values will have the chance that the selected pixel is, 

in fact, noise in the image. If this is the case, Gamma values estimation and linear 

regression models establishment will be biased. If data sampling by fixed size area, 

this effect should be able to be minimized.  

 

One special concern regarding the use of area pairs is how large a sampling area can 

be. This will affect both Gamma estimation and the regression models. The spatial 

resolution of the images used is 2.44m at nadir, with 4 pixels by 4 pixels size. It is 

around 10m by 10m on ground. However, in places like Central, it is not easy to find 

shadowed and adjacent non-shadowed regions with 10m by 10m size from the 

satellite image. Considering the number of pixels in each sampling area and the 
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environment limitation, 10m by 10m is almost the maximum sampling size in Hong 

Kong urban area. In some other cities and countries, larger sampling size can be used 

instead.  

 

For the use of Gamma Correction, the shadow enhanced image is not satisfactory. The 

main issue is that the Gamma values estimated vary with different land covers. An 

ideal solution would be for each land cover to have its own set of Gamma values. 

When the aim of shadow enhancement is to make the classification of shadowed areas 

more reliable, classifying shadows before they are enhanced is a challenging task. 

 

Generally speaking, Linear Correlation Correction is able to give better visual 

improvement and the image can be further used in vegetation mapping. This suggests 

that the Linear Correlation Correction is more capable in the enhancement of 

shadowed areas in satellite images that cover complicated environments. However, 

the results also show that choosing suitable sampling regions for regression models 

establishment is a critical issue. An iterative approach to the application of Linear 

Correlation Correction was presented. The results showed that while some 

enhancement was achieved, a more accurate shadow detection algorithm is required 

and the image quality may be degraded. If the image contains extreme dark pixels, the 
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Linear Correlation Correction method will not be able to enhance them and pixel 

values may exceed the normal range of 0-2047 (11 bit image). 

 

In this study, the Central image has undergone Linear Correlation Correction twice 

and the results are presented. From the figures presented in the previous section, 

Linear Correlation Correction is much closer to the ideal enhancement curve while 

Gamma Correction is nearly parallel to the original curve. The impact of iterating the 

Gamma Correction was not assessed so it should be considered for further attention.   

 

Linear Correlation Correction is not able to give good results under special cases like 

shadows on water surfaces. The correlation between shadows on water and 

non-shadow water surfaces has been investigated, and was found that the correlation 

coefficient is lower than 0.5 in Red, Green and Blue bands. The current result of 

enhancing shadows on water surface was not satisfactory and further investigation is 

needed on specific solution to this issue.  

 

6.3 Summary of the assessment methods 

The pixel values from a number of testing areas are used to compare the performance 

before and after; the vegetation index map is also used to support the findings. 

However, there are some other ways of measuring the information recovery quality; 
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for example, the concept of entropy is not discussed here for it is not easy to judge 

whether the information is noise or other useful details. The assessment method is 

limited to comparing pixel values (Bias of mean) and the probability to go one step 

further (NDVI performance). It may not fulfill all the expectations from different 

aspects. 

 

6.4 Conclusions 

In this study, three typical complex urban areas of Hong Kong demonstrating different 

characteristics are selected for studying shadow enhancement performance. These 

include high density tall buildings (more than 30 storeys), low density medium 

buildings (around 30 storeys or less) and high density lower buildings (mostly 8-9 

storeys). The environments are complex due to the fact that shadows of a single 

building can fall across several types of surface (including vegetation, asphalt roads, 

concrete buildings, bare ground, etc.). Spectral Shape Index is used as the shadow 

detection method and is found that it gives acceptable classification result when both 

water surfaces and shadows appear in the satellite image. However, the ability of 

classifying shadows varies due to the differences in environments. 

 

The performance of two existing shadow enhancement algorithms, Gamma 

Correction and Linear Correlation Correction are tested and compared. Results show 
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that Linear Correlation Correction is more capable for environments having 

complicated land covers and gives better visual improvement. Although Linear 

Correlation Correction shows significant improvements in further analysis like NDVI, 

there are some critical issues affecting the overall quality of the enhancement. Certain 

solutions have been suggested, but they have their own limitations and further 

investigation is needed. The possibilities of iterating shadow enhancement using 

Linear Correlation Correction is discussed and the improvement of bright shadows is 

significant, but it is also a trade-off between the image quality and the recovered 

information. The use of non-linear regression models is tested, but the results are not 

satisfactory. Further investigation on combining linear and non-linear regression 

models could be done for better enhancing results. 

 

To conclude, shadow enhancement could be done on urban areas having complex 

structure. The resulting image has its value for studying and information retrieval. 

When dealing with shadow enhancement in complex environments, many more issues 

need to be considered. The overall results show that Linear Correlation Correction is 

more capable in dealing with shadow enhancement in complex environments than 

Gamma Correction. However, the enhancement quality of dark shadows is not 

satisfactory and modified algorithm is tested and the result is slightly improved. 
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6.5 Limitations and recommendations 

The use of Spectral Shape Index is demonstrated and the performance is discussed, 

but there are also drawbacks regarding the identification of some specific surfaces. 

From the Ma On Shan result, shallow water was wrongly classified as shadow. This 

indicates that the algorithm of Spectral Shape Index has to be revised and tested in 

more different environments. Only Quickbird images are used in the experiment, the 

performance of shadow enhancement using other satellite images should also be 

examined in the future. 

 

No matter which shadow enhancement algorithm was used, the impact of penumbra 

(semi-shadow) could not be minimized. The penumbra size will be affected by the 

building’s height. This is due to the fact that the distance between the object (occluder) 

and the surface is different. Lower buildings will have smaller penumbra size on the 

surface and the contrast between shadows and non-shadows is higher, while taller 

buildings will cast longer penumbra regions and more gradients can be observed in 

between. The current results leave some bright edges (being enhanced) and dark edges 

(not being enhanced) to some of the shadows boundaries. Therefore, further 

investigation is needed to examine whether applying smoothing filter or edge 

detection followed by specific enhancement would give better visual improvement. 
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From the enhancement point of view, the focus for future studies should be on how to 

classify the images by different illumination conditions of the scene environments. 

Although Linear Correlation Correction shows better visual improvement and is 

capable for further analysis, the pixel values in those darkest pixels cannot be 

correctly enhanced. If the image can be classified based on its illumination condition, 

two or more regression models can be established and applied separately. This will 

ensure that those darkest pixels are being enhanced to a certain extent. They do not 

remain as dark as before and are able to reduce the number of iteration required.  

 

The problems of pixel values exceeding the normal range (dependent upon 

radiometric resolution) is discussed, and is mostly found in red and near-infrared 

bands. Some possible solutions are suggested, but they also have certain 

disadvantages and limitations. This is an important issue if it is intended that the 

enhanced image be used in further processes and be critical component for the 

products’ quality. For this issue, it is suggested that non-linear regression models 

could be involved only for those darkest pixels. Linear regression model would be 

applied on the rest of them. Limited work has been done on testing the possibilities of 

combining two types of regression models for shadow enhancing.  
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Appendices 

A. 5 sets of indices suggested for Spectral Shape Index 

Index 1:       0.5(Green+NIR) ÷ Red -1 

Index 2 (used in this study):   (Green-Red) ÷ (Red+NIR) 

Index 3:       (Green+NIR-2×Red) ÷ (Green+NIR+2×Red) 

Index 4:       (Red+Blue) ÷ Green -2 

Index 5 (suggested by Chen, et al.): Red+Blue-2×Green 

 

B. Correlation between shadows and non-shadows 

Central 
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Ma On Shan 
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Sham Shui Po 
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C. Graphical representation of shadow enhancement performance  
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