
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



The Hong Kong Polytechnic University

Department of Electronic & Information Engineering

MODELING, ANALYZING AND IMPROVING THE

PERFORMANCE OF BITTORRENT SWARMING SYSTEMS

QINGCHAO CAI

A thesis submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

September 2012

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.



Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other

degree or diploma, except where due acknowledgement has been made in

the text.

(Signed)

Qingchao Cai (Name of student)

ii



I dedicate this dissertation to my parents, sisters, girl friend, family,

professor and friends.



Abstract

BitTorrent is one of the most popular peer-to-peer content distribution

systems, and plays a dominant role with respect to the Internet traffic.

Although BitTorrent is very effective in terms of bandwidth utilization,

it is confronted with a serious problem that in many BitTorrent swarms,

peers cannot complete the download due to the lack of some content blocks.

Therefore, it is very important to find solutions to this problem, which we

call content availability, as they can significantly enhance the service capa-

bility and performance of BitTorrent swarms.

This work aims to develop an insightful understanding to the performance

of BitTorrent swarming systems, and explore how it can be improved, with

a special focus on content availability. In this study, we first perform a

comprehensive study on the modeling and analysis of BitTorrent swarms.

We derive the closed-form expressions for the performance metrics of Bit-

Torrent swarms related to content availability, and investigate the influence

of bundling on content availability. It is shown that bundling could greatly

improve the availability of content, and that in a bundled swarm, peers

could complete the download earlier than they would do in the individual

swarm, given an appropriate number of files are bundled. In addition, the

altruistic behavior of peers is also studied. We present an analysis on how

peers’ altruistic behavior affects the length of the residual active period af-

ter the leave of the publisher, and quantify the impact of bundling on the

residual active period in the presence of peers’ altruistic behavior.

iv



Next, we carry out an in-depth investigation on the feasibility of using

network coding to ameliorate content availability of BitTorrent swarms.

We first present a mathematical analysis on the potential improvement in

the content availability and bandwidth utilization induced by two existing

network coding schemes. The analysis reveals that network coding has a

large potential to improve content availability, but both of the existing two

schemes are not feasible as they either incur a very high coding complexity

and disk operation overhead or cannot effectively leverage the potential of

improving content availability. In this regard, a simple sparse network cod-

ing scheme is proposed, which addresses both the drawbacks in the existing

schemes, and a new block scheduling algorithm is also developed in order

to accommodate the proposed coding scheme into BitTorrent. The exten-

sive simulation results demonstrate the effectiveness of the proposed coding

scheme in terms of improving content availability.

Finally, as motivated by the recent development of private BitTorrent com-

munities, we conduct a detailed survey on one of the largest private Bit-

Torrent communities, CHDBits. First, we characterize torrents from the

perspectives of age, size, popularity and average user download rate, and

then profile the different aspects of CHDBits users, e.g., diurnal access pat-

tern, user traffic, seeding and leeching time. We also develop an in-depth

understanding to how CHDBits users participate in downloading and up-

loading. The survey results suggest some new findings with regard to user

behavior: low bandwidth users are more likely to participate in torrents

with a smaller content size or a higher popularity, and compared with low

bandwidth users, high bandwidth users tend to participate in more torrents,

but spend less time in seeding.

v



List of Publications

[1] Qingchao Cai and Kwok-Tung Lo. Two blocks are enough: on the

feasibility of using network coding to ameliorate the content availability

of BitTorrent swarms. IEEE Transactions on Parallel and Distributed

Systems, accepted to appear.

[2] Qingchao Cai and Kwok-Tung Lo. An analysis of user behavior in a

private BitTorrent community. International Journal of Communica-

tion Systems, accepted to appear.

[3] Qingchao Cai and Kwok-Tung Lo. Modeling and analysis of content

availability and bundling in BitTorrent-like file swarming systems. Un-

der submission.

[4] Qingchao Cai and Kwok-Tung Lo. A detailed survey on a large private

BitTorrent community. Under submission.

[5] Qingchao Cai and Kwok-Tung Lo. Incentivize BitTorrent peers to

simultaneously upload to more neighbors. Under submission.

vi



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my

supervisor, Professor Kwok-Tung Lo, for his continuous support during

my Ph.D. study, for his patience, encouragement and advice, which enable

me to proceed through the doctoral program. His guidance helped me

throughout my Ph.D. study and in writing of this dissertation, and will

continue to help me in my future research.

I wish to thank my parents and sisters for their understanding, endless pa-

tience and unconditional support. Their love is one of my greatest fortune.

I also wish to express deep gratitude to my girl friend for her consistent

support, uncomplaining waiting, and encouragement when it was most re-

quired, all of which have been and continue to be my driving force.

My sincere thanks are due to Dr. Xue-Jie Zhang, the director of my

master’s thesis, for his substantial help in my research and study during

master’s program at Yunnan University, and encouraging me to pursue a

Ph.D. degree.

I would like to thank my colleagues at Hong Kong Polytechnic University

for the nice time that we had in the last three years. I also wish to thank

my friends and relatives for their help and moral support.

vii



viii



Contents

Page

Abstract iv

List of Publications vi

Acknowledgements vii

Contents xii

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Content availability and bundling in BitTorrent swarms . . . . . . . . . . . 5

1.2.2 The applications of network coding to peer-to-peer networks . . . . . 6

1.2.3 Private BitTorrent community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 11

2.1 Peer-to-peer networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 BitTorrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 BitTorrent protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Performance study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Protocol design and improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



CONTENTS

2.3 The applications of network coding to peer-to-peer networks . . . . . . . . . . . . . . 22

2.4 Private BitTorrent community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Modeling and Analysis of Content Availability and Bundling in

BitTorrent-like File Swarming Systems 27

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Content availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Active Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Content Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Average Sojourn Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.5 The impact of bundling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Using Network Coding to Ameliorate the Content Availability of

BitTorrent Swarms 47

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Analyzing the Effect of Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 A Simple Sparse Network Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Block Scheduling Algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

x



CONTENTS

4.5.2 Control Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.3 Content Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.4 Bandwidth Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.5 Decoding Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.6 Different values of α and β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 A Detailed Survey on a Large Private BitTorrent Community 79

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 CHDBits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Survey methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Survey results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Torrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.2 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.3 An analysis of user behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusion and Future Work 113

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.1 Bundled swarm vs. individual swarm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 Content propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.3 Strategic manipulation of upload slots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.4 Exploration on other feasible linear network coding schemes . . . . . . 115

Appendix A Modeling and Analysis of Content Availability and Bundling

in BitTorrent-like File Swarming Systems 117

A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xi



CONTENTS

A.2.1 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.3 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2.4 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2.5 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2.6 Proof of Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2.7 Proof of Lemma 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2.8 Proof of theorem 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Appendix B Mathematical Analysis on the Effect of Network Coding

on the Performance of BitTorrent Swarms 127

B.1 Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2 Proof of Theorem 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.3 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.4 Proof of Theorem 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.5 Proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.6 Proof of Theorem 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.7 Proof of Theorem 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.8 Proof of Theorem 4.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 137

xii



List of Figures

3.1 The length of active periods under different scenarios (The red and blue

columns represent the simulation result and theoretical result, respec-

tively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Content availability under different scenarios (The red and blue columns

represent the simulation result and theoretical result, respectively) . . . . . . . 42

3.3 Average sojourn time of peers under different scenarios (The red and

blue columns represent the simulation result and theoretical result, re-

spectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 The impact of bundling on performance metrics of BitTorrent swarms . . . 45

4.1 The percentage of throughput composed of control overhead in different

implementations of BitTorrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The lengths of the active periods in different implementations of BitTorrent 66

4.3 The CDF of peer population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Distributions of download time under different peer arrival rates . . . . . . . . . 69

4.5 Average download time of peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Number of peers completing the download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Distribution of peers’ download time under different download abortion

rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 The generation rate of new blocks under different peer inter-arrival in-

tervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 The impact of different values of α and β on the lengths of the active

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 The impact of different values of α and β on the average download times 75

xiii



LIST OF FIGURES

5.1 The variation of traffic in CHDBits during the period 2011/08/28-2011/09/06 81

5.2 The distribution of torrent age in CHDBits (CDF). . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 The distribution of the content size in CHDBits (CDF) . . . . . . . . . . . . . . . . . . . 84

5.4 The distribution of the population of snatches, of seeders and of leechers

in CHDBits (CDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 The average download rate of users in each torrent . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 User level distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 The variation of the number of seeders, leechers and active users during

2011/08/28-2011/09/06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 The distribution of the number of the completed downloads of each user

(CDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Distribution of the number of user arrivals per hour (CDF) . . . . . . . . . . . . . . . 91

5.10 The average and the relative standard deviation of the number of user

arrivals in different time periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.11 Distribution of the interval between two consecutive arrivals of a single

user (CDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.12 Probability distribution of the number of daily arrivals per user . . . . . . . . . . 94

5.13 Top 10 upload users and top 10 download users . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.14 The distribution of the upload and download traffic of each user . . . . . . . . . 97

5.15 The distribution of user time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.16 Per torrent seeding time for each user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.17 The distribution of user share ratio and S/L ratio (CDF) . . . . . . . . . . . . . . . . . 102

5.18 Distribution of the snatches and the corresponding upload traffic with

respect to share ratio (CDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.19 The distribution of user participations with respect to torrent size (CDF) 104

5.20 The distribution of user participations with respect to torrent popularity

(CDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiv



LIST OF FIGURES

5.21 The distribution of user among different classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.22 Number of completed downloads versus user age and bandwidth . . . . . . . . . 107

5.23 The influence of user age and bandwidth on upload and download traffic 109

5.24 The influence of user age and bandwidth on seeding and leeching time. . . 111

xv



LIST OF FIGURES

xvi



List of Tables

3.1 Mathematical notations and their meanings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Mathematical notations and their meanings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 User hierarchy in CHDBits. The symbols d, r and t in this table repre-

sent the download traffic, share ratio and the time that a user has been

registered, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xvii



LIST OF TABLES

xviii



Chapter 1

Introduction

1.1 Background

Content distribution is one of the most important and popular classes of Internet appli-

cations. The traditional client-server based approach for content distribution is known

to be unable to scale with the client demand as the quality of service provided by the

server dramatically degrades with the increase of demand. In addition, the high cost

in the server also poses an obstacle to the individuals who intend to disseminate their

own content using this approach.

The emergence of peer-to-peer paradigm provides an alternative way for content

distribution, and BitTorrent [27] is the most widely used peer-to-peer application for

content distribution and plays an important role in terms of the traffic generated [8, 88].

As reported in [8], there are hundreds of millions BitTorrent users, accounting for a

significant amount of today’s Internet traffic.

The key idea of BitTorrent is to leverage the outgoing bandwidth of participants,

which significantly reduces the load and cost on the content publisher and enhances

the scalability, as more participants also imply an increase in the overall available

outgoing bandwidth. By splitting a file into many blocks, BitTorrent enables peers

with an arbitrary number of blocks to exchange blocks with other peers, provided

that peers involved in exchange have different blocks. Therefore, the bandwidth of

participating peers can be effectively utilized in BitTorrent swarms1. BitTorrent is also

highly scalable as more participating peers lead to an increase in the overall bandwidth

resources, and thus accelerate the process of file distribution.

1A BitTorrent swarm is composed of all the peers that participate in the distribution of the content.

1



CHAPTER 1

Although the effectiveness of BitTorrent in utilizing the outgoing bandwidth of par-

ticipating peers has been shown in many studies by the means of quantitative analysis

[98, 83, 69], and measurement [54, 13], BitTorrent is confronted with a serious problem

that significantly influences user-perceived quality of service. This problem is that,

as identified in [70], many BitTorrent swarms suffer a high degree of content unavail-

ability1, and peers in these swarms cannot complete the download as a consequence

of lost blocks. Therefore, it is of significant importance to find potential solutions to

enhance the availability of content in BitTorrent swarms, which would in turn improve

the service capability and performance of BitTorrent swarms.

Content bundling is a potential way to improve the availability of content in BitTor-

rent swarms. As the name implies, content bundling is a content publish strategy that

bundles several similar contents, e.g., a TV season, a series of movies acted by the same

person, and publish them in a single BitTorrent swarm. This strategy has been now

widely adopted by many BitTorrent users in publishing content, and can be observed

in a great number of BitTorrent swarms [42, 43]. Moreover, in bundled swarms, many

peers tend to download almost the whole bundle, even if they are given the freedom to

select which files to download[42].

Although content bundling might be originally developed to facilitate the collection

of contents of interest for BitTorrent users, it in fact has the ability to enhance the

content availability. Specifically, in a swarm where several related files (contents) are

bundled together, peers interested in each file might come, which means an increase

in peer arrival rate, and peers may have to stay longer in the swarm to complete the

download as the bundle is of a larger size than the individual content. Therefore,

content bundling can substantially increase the number of participating peers, which in

1The content is available in a BitTorrent swarm when all the blocks of the target file (content)
are available, and if there is at least one missing block, we say that the content is not available in the
swarm, as the remaining blocks cannot reconstruct the original content.

2



1.1 Background

turn reduces the possibility that chunks, i.e., blocks1, are lost when there is no seeder2

in the swarm, thereby enhancing the availability of content.

It is thus interesting to quantify how much bundling could enhance the content

availability of BitTorrent swarms. Menasche et al. [70] studied this problem by model-

ing BitTorrent swarms as M/G/∞ queues. However, most results of [70] were derived

based on the assumption that the population threshold, the minimum number of leech-

ers 3 to have all chunks, is equal to one, which is not realistic since a peer could complete

the download only when there is at least one seeder or two leechers. Therefore, it is

necessary to investigate this problem in a more realistic scenario in which the popu-

lation threshold is larger than one, which corresponds to the first contribution of this

work.

Linear network coding is another possible way to enhance the content availability

of BitTorrent swarms. When using network coding, the blocks transferred among peers

are linear combinations of the original blocks, and the content can thus be recovered

from the encoded blocks as long as the rank of the coefficient vectors of these encoded

blocks is equal to the number of original blocks by solving a system of linear equations.

However, accompanying the improvement in the content availability is the cost of addi-

tional disk read/write and computation involved in the encoding and decoding process.

This motivates us to investigate the feasibility of using linear network coding to en-

hance the availability of content from the perspectives of performance enhancement

and the cost of computation and disk read/write incurred by linear network coding,

which corresponds to the second contribution of this work.

Content being unavailable only occurs in the swarm where there are no seeders,

and if there is at least one seeder in the swarm, then the availability of content can be

guaranteed, as a seeder has all blocks. However, BitTorrent does not provide incentives

1Throughout the dissertation, we use these two words interchangeably.
2A seeder is a peer who has all the file blocks, and a peer becomes a seeder when it completes the

download.
3A leecher is a peer who has not completed the download.

3



CHAPTER 1

to encourage peers to stay at the swarm as seeders after completing the download. As a

result, due to the nature of unwillingness to contribute without being rewarded, many

peers immediately leave the swarm at the time when the download is completed, and

the content thus may become unavailable quickly after the leave of the content publisher

which initiates the swarm. Therefore, the mechanism that encourages or forces peers

continue to stay at the swarm after completing the download is a very effective way to

promote the availability of content.

Such mechanisms have been implemented in private BitTorrent communities by the

means of only allowing the specific peers to download the content and bringing in a

stringent restriction on how much data a peer should upload to others. A private Bit-

Torrent community is mainly composed of users who have some common interest, and

in general, only the contents of interest, e.g., high definition movies, animation, music,

TV episodes, are allowed to be published and disseminated in the community. In a

private BitTorrent community, only the registered users can browse and download the

torrent files of this community. Users must maintain a minimum share ratio, namely

the ratio of uploaded data volume to downloaded data volume, to prevent from being

warned or banned, which is known as SRE (Share Ratio Enforcement). Due to the ex-

istence of peer admission policy and SRE, peers in private BitTorrent communities can

enjoy a high download rate, and the content of many torrents remains available even

after a long time since the release of the torrents [18]. For these reasons, private Bit-

Torrent communities have experienced a rapid development in recent years. According

to [102], there have been over 800 active private BitTorrent communities. Motivated

by the recent significant development of private BitTorrent communities, we conduct

a detailed survey on one of the most representative private BitTorrent communities,

which corresponds to the third contribution of this work.

4



1.2 Contributions and previous work

1.2 Contributions and previous work

This work aims to develop an insightful understanding to the performance of BitTorrent

swarming systems, and explore how it can be improved, with a special focus on content

availability.

1.2.1 Content availability and bundling in BitTorrent swarms

Menasche et al.[71] analyzed chunk availability in BitTorrent swarms by modeling down-

load process as a tandem Jackson network. Susitaival et al.[96] presented an insightful

view of content availability by considering the periods when content was available as

busy periods of an M/G/∞ queue. This view of content availability is also adopted

in [70]. The authors of [70] further quantified content availability and the impact of

bundling on availability and average sojourn time. However, in [70], most of the re-

sults were derived based on the assumption that the population threshold is equal to

one, and only the result of the active period was provided for the cases in which the

population threshold is larger than one.

There also existed some studies on content bundling in BitTorrent network. [41]

argued that many contents can be bundled together due to the high similarity among

them. It was further pointed out in [43] that content bundling is now very common

in BitTorrent swarms, and the impact of content bundling on the performance metrics

of BitTorrent swarms was empirically studied in [42]. [72] investigated the bundling

strategies for publishers, and [55], on the other hand, carried out an analysis on the

file selection strategies for peers in bundled swarms. In addition, a dynamic bundling

system which requires peers to download the files in additional to those of their interest

to enhance the content availability was presented in [103].

In this study, we first perform a comprehensive study on the modeling and analysis

of BitTorrent swarms. We derive the closed-form expressions for the performance met-

rics of BitTorrent swarms related to content availability, and investigate the influence

5



CHAPTER 1

of bundling on content availability. It is shown that bundling could greatly improve the

availability of content, and that in a bundled swarm, peers could complete the down-

load earlier than they would do in the individual swarm, given an appropriate number

of files are bundled. In addition, the altruistic behavior of peers is also studied. We

present an analysis on how peers’ altruistic behavior affects the length of the residual

active period after the leave of the publisher, and quantify the impact of bundling on

the residual active period in the presence of peers’ altruistic behavior. This part of our

work extends [70] by re-deriving the performance metrics related to content availability

and quantifying the impact of bundling based on the assumption that the population

threshold is larger than one, and thus complements [70].

1.2.2 The applications of network coding to peer-to-peer networks

Network coding was originally proposed in information theory [10], and thereafter it was

introduced to peer-to-peer networks [25] [49]. Since then, network coding has gradually

demonstrated its power in improving the overall performance of peer-to-peer networks.

In [38], a file sharing protocol called Avalanche was proposed, which uses random linear

network coding to accelerate the download process and facilitate the block scheduling

among neighbors. In [100], Wang et al. proposed a live peer-to-peer streaming protocol,

R2, which also implemented random network coding to enable the coded blocks to be

randomly push between neighbors without block availability information. There are

also some commercial peer-to-peer streaming softwares [65] using network coding for

effective content distribution.

The random network coding adopted in Avalanche [38] can also improve content

availability. With the random linear network coding adopted in [38], each coded block is

a linear combination of all plain blocks of the file, and the original file can be recovered

as long as the dimension of the space spanned by the coding coefficient vectors of the

coded blocks in the swarm is equal to the number of plain blocks, which occurs with

high probability even the number of coded vectors is exactly the same as that of original

6



1.2 Contributions and previous work

blocks. In addition, a sparse form of random linear network coding is proposed in [76],

in which only two random plain blocks are used to generate new blocks.

In our second part of our work, we carry out an in-depth investigation on the feasi-

bility of using network coding to ameliorate content availability of BitTorrent swarms.

We first present a mathematical analysis on the potential improvement in the content

availability and bandwidth utilization induced by two existing network coding schemes

[38, 76]. The analysis reveals that network coding has a large potential to improve con-

tent availability. However, we also show that both of the existing two schemes are not

feasible as they either incur a very high coding complexity and disk operation overhead

or cannot effectively leverage the potential of improving content availability due to the

slow generation rate of new blocks. In this regard, a simple sparse network coding

scheme is proposed, which addresses both the drawbacks in the existing schemes, and

a new block scheduling algorithm is also developed in order to accommodate the pro-

posed coding scheme into BitTorrent. The extensive simulation results demonstrate the

effectiveness of the proposed coding scheme in terms of improving content availability.

1.2.3 Private BitTorrent community

Due to its increasing prevalence, private BitTorrent communities received much atten-

tion recently. A couple of studies were carried out to characterize these communities.

In the recent work [102, 22, 73, 46], it was found that in private BitTorrent communi-

ties, the ratio of seeders to leechers is much higher than that in public communities.

Compared with users in public communities, users in private BitTorrent communities

tend to perceive a better download performance, and meanwhile maintain a higher

share ratio. [64] and [22] also explored the effectiveness of share ratio enforcement

(SRE), a policy commonly adopted in private BitTorrent communities, in improving

the user share ratio. However, it was stated in [47] that the existence of SRE may result

in users having to seed for an extremely long time in order to keep their share ratio

upon a specific level, and different strategies were proposed in [46] for users of private

7



CHAPTER 1

BitTorrent communities to effectively improve their share ratios. An economic expla-

nation to private BitTorrent communities was presented in [50]. In addition, targeting

on the phenomenon that some malicious users may cheat the tracker by reporting a

modified amount of traffic, Liu et al. [64] further presented an upload entropy scheme

for deterring collusion among users. However, in these studies, only limited information

about user traffic was presented, and the other two important respects of user behavior:

seeding and leeching time, and download history, were not investigated. In addition,

in the existing literature, how user behavior is influenced by user age and bandwidth

was still unknown, as well as the impact of the content size and popularity of torrents

on user behavior.

As motivated by the recent development of private BitTorrent communities, we con-

duct a detailed survey on one of the largest private BitTorrent communities, CHDBits

[9], in the last part of our work. First, we characterize torrents from the perspectives

of age, size, popularity and average user download rate, and then profile the different

aspects of CHDBits users, e.g., diurnal access pattern, user traffic, seeding and leeching

time. We also develop an in-depth understanding how CHDBits users participate in

downloading and uploading, and how user participation is affected by the various fac-

tors, such as user bandwidth, and the content size and popularity of torrents, thereby

bridging the gaps in the existing literature [102, 22, 73, 46]. The survey results reveal

some new findings with regard to user behavior: low bandwidth users are more likely to

participate in torrents with a smaller content size or a higher popularity, and compared

with low bandwidth users, high bandwidth users tend to participate in more torrents,

but spend less time in seeding.

1.3 Thesis structure

The remainder of this thesis is organized as follows. We present a comprehensive

review on the literature related to our thesis in Chapter 2. Chapter 3 studies the

8



1.3 Thesis structure

content availability of BitTorrent swarms, and how it can be improved by bundling

and peers’ altruistic behavior. In Chapter 4, we explore the feasibility of using network

coding to ameliorate the content availability of BitTorrent swarms. In Chapter 5, we

present a detailed survey on a large private BitTorrent community, revealing some new

findings with respect to user behavior. Chapter 6 concludes this thesis, and presents

some directions for future work.

9



CHAPTER 1

10



Chapter 2

Literature Review

In this chapter, a comprehensive review of the studies related to BitTorrent is

presented. We first introduce the taxonomy of peer-to-peer networking, and position

BitTorrent in the taxonomy. We then investigate the two major classes of BitTorrent

study: performance analysis, and protocol design; private BitTorrent community, which

is becoming increasingly popular in recent years, is also explored. Finally, we discuss

the applications of network coding to peer-to-peer networking.

2.1 Peer-to-peer networking

Peer-to-peer networking is one of the most important computing paradigms in today’s

Internet. In a peer-to-peer network, each peer is both the provider and consumer of ser-

vice, which is different from the traditional client/server paradigm in which the service

provider and consumer are strictly differentiated, and the system load is distributed

among all the peers, which renders peer-to-peer networking much more scalable than

client/server paradigm, as more participating peers means more service capacity.

In a peer-to-peer network, an overlay is built on the top of physical network topology.

According to the overlay organization, peer-to-peer networks can be divided into two

categories: structured peer-to-peer network and unstructured peer-to-peer network. In

structured peer-to-peer networks, peers and documents are mapped into a same address

space using distributed hash table, and a peer is responsible for the management of

information 1 about the documents with the similar address (this is why such networks

are “structured”), responds the query with the information about matched documents,

1The information generally includes the ip address and port of the peer owning the document,
which can be used for the query requester to retrieve the document from this peer. In addition, this
information is also likely to include the meta-data of the document.

11



CHAPTER 2

and forwards the queries for a document to a neighbor which is topologically closer to

the peer responsible for the management of the document if no matched document is

found. Some representatives of such systems are Chord [93], CAN [84], Pastry [87] and

Tapestry [104].

The unstructured peer-to-peer networks can further be divided into three sub-

categories according to the management of the overlays. The first one is centralized

peer-to-peer networks, which consists of two components: central index server and

peers. The central index server maintains the information about the documents of all

the peers. A peer who wants to acquire a document, must first ask the central server

to get a list of peers having the desired document, and then contact these peers to

retrieve the document. Therefore, the central server is vital to the centralized peer-to-

peer networks. The most well-known representatives of this category are Napster and

BitTorrent [2].

The second one is decentralized peer-to-peer network, in which the system load is

uniformly distributed among all the peers. In a decentralized peer-to-peer network,

each peer, connects to a subset of other peers, is responsible for management of its

own documents, and does not know the information regarding the documents hosted

in other peers, which is unlike the structured peer-to-peer networks in which each peer

knows the location of the document. Upon receiving a query, a peer compares the query

string with its own documents, returns the information about the matched documents,

and forwards the query to its neighbors. The two examples of this kind of network are

Gnutella [4] and Freenet [3].

The last one is hybrid unstructured peer-to-peer networks, a combination of the

centralized and decentralized peer-to-peer networks. In a hybrid peer-to-peer network,

peers are divided into two classes: super peers, and normal peers. The super peers

have the information about the documents of its neighboring normal peers, and are

responsible for routing the queries. Upon receiving a query, either form its neighboring

12



2.2 BitTorrent

normal peers or super peers, a super peer forwards the query to the neighboring normal

peers where the matched documents can be found, and to other super peers. When

a normal peer receives a query from a neighboring super peer, it only returns the

information about the matched documents to this super peer without forwarding to

other peers. The determination of super peer can be in various ways, e.g., capacity-

based and round robin. Kazaa[5] is a representative of hybrid unstructured peer-to-peer

network.

2.2 BitTorrent

2.2.1 BitTorrent protocol

As we have mentioned, the key idea of BitTorrent is to leverage the outgoing band-

width of participating peers, including both the seeders and leechers. To achieve this

goal, the distributed file is split into many blocks with equal size, and each peer is

able to send their own blocks to others as long as they have not yet acquired these

blocks. Therefore, in BitTorrent swarms, the participating peers can get their outgoing

bandwidth effectively utilized after receiving a small number of blocks. In addition,

BitTorrent is also highly scalable as more participating peers lead to an increase in the

overall bandwidth resources, and their service requests can thus be satisfied with little

influence on the perceived service quality.

To initiate the deployment of a BitTorrent swarm, a file with the extension of

.torrent is necessary. This file contains the meta-data information of the file(s) to be

distributed, including the file/directory name, block size, a list of hash values of blocks,

path and length of each file in the directory1, and the announce url of the tracker. The

tracker is another important component for the initiation of a BitTorrent swarm. It

records the identification information, i.e., IP address/port pair, for each participating

peer, and helps organize and maintain the topology of the BitTorrent swarm. In order

1This information is available when multiple files are bundled together.

13



CHAPTER 2

to join a BitTorrent swarm, one first needs to acquire the corresponding .torrent file,

which can be done by downloading from a torrent publish site, e.g., The Pirate Bay

[7], and then periodically requests the announce url of the tracker to obtain a list of

current participating peers. After that, it can connect to some other peers and start

data transfer.

In general, a BitTorrent peer simultaneously unchokes only a part of neighbors1, i.e.,

connected peers, and it is thus necessary for BitTorrent peers to decide which neighbors

are to be unchoked. BitTorrent employs a tit-for-tat reciprocal algorithm to help make

this decision: at the beginning of each unchoking round, with a default duration of 10

seconds, the peer unchokes a specific number of, typically 4, neighbors from which it

has downloaded most among all neighbors during the last two rounds.

Once a peer has been unchoked by a neighbor, it first finds the block that is owned by

this neighbor and least distributed among all neighbors, and then sends the request for

this block to the neighbor, which is known as the rarest-first block scheduling algorithm.

After receiving the requested block from the neighbor, this peer will send the request

for another block to this neighbor to saturate the underlying connection.

Besides the regular unchokes which are determined by the tit-for-tat reciprocal

algorithm, each BitTorrent peer unchokes another neighbor, which is called optimistic

unchoke, in order to find if there is any other neighbor that can provide better download

performance, and the selection of optimistic unchoke is performed once every three

unchoking rounds. In addition, once a peer has obtained all but the last few blocks, it

enters the endgame mode, and sends the requests for all missing blocks to all neighbors.

In order to save bandwidth, upon receiving a block, a peer in the endgame mode will

invalidate the requests for this block by sending a cancel message to all neighbors.

1In the context of BitTorrent, a peer unchoking a neighbor implies that it allows this neighbor to
download from itself, and the unchoked neighbors are sometimes simply called the unchokes.

14



2.2 BitTorrent

2.2.2 Performance study

There have been a great amount of work studying the performance of BitTorrent from

various aspects. Generally, these studies can be divided into two classes according to

the methodology adopted: mathematical analysis and measurement study.

2.2.2.1 Mathematical models of BitTorrent swarming systems

In the pas decades, a number of studies were carried out to model the BitTorrent

systems. The transient characteristics of a simple file swarming system was analyzed in

[98, 91] using different methods. Veciana and Yang [98] adopted a branching process in

the study, and Simatos et al.[91] presented an urn and ball model in their analysis. The

system studied in these two works can be viewed as a simplified version of a BitTorrent

swarming system: while both seeders(servers) and leechers can provide service to the

leechers in real BitTorrent swarming systems, in the system studied in [98, 91], a peer

can only download from the servers, and cannot provide service to others until after

becoming the server, i.e., completing the download. Veciana and Yang [98] also studied

the steady-state performance of BitTorrent swarms by using a Markovian model.

Motivated by [98], Qiu and Srikant [83] investigated peer evolution and the scalabil-

ity of BitTorrent swarms by using a simple fluid model, and further indicated that the

swarming efficiency of BitTorrent is particularly high. The same fluid model was also

used in [82] to validate the existence of the steady-state and global stability of BitTor-

rent swarming systems. Another fluid model based on stochastic differential equation

was presented in [36] to analyze the steady-state behavior of BitTorrent swarming sys-

tems. Liu and Chen [66] derived the same result regarding peer evolution as [83] by

a statistical model. The evolution of peer in a BitTorrent swarm was also extensively

studied in [69, 97]. Massoulie and Vojnovic [69] studied two swarming system scenar-

ios with and without exogenous peers by modeling such systems as coupon replication

systems in which users are characterized by their current collection of coupons and

15



CHAPTER 2

exchange coupons with other users to collect the missed coupons, and it was argued

in [69] that the swarming performance of BitTorrent-like file swarming systems does

not critically rely on altruistic peer behavior, i.e., peer continuing to serve others after

completion of the download, or the block scheduling algorithm such as the built-in

rarest-first policy of BitTorrent. Ye et al. [97] derived the distribution of peers in

different states with respect to the size of file they have downloaded, and discussed the

impact of departure behavior of seeders and leechers on this distribution. Arthur and

Panigraphy [12] modeled the BitTorrent swarming system as a graph, and leveraged

this model to investigate the swarming efficiency of several block scheduling algorithms.

Menasche et al.[71] analyzed chunk availability in BitTorrent swarms by modeling

the BitTorrent swarm as a Jackson network consisting of n + 1 queues, where n is

the number of chunks. In this Jackson network, a peer with k chunks belongs to

the k-th queue, and is routed to (k + 1)-th queue when it acquires the next chunk.

Susitaival et al.[96] presented an insightful view of content availability by considering

the periods when content was available as busy periods of an M/G/∞ queue. This view

of content availability is also adopted in [70], and the authors of [70] further quantified

content availability and the impact of bundling on availability and average sojourn

time. However, in [70], most of results were derived based on the assumption that

the population threshold is equal to one, and only the result of the active period was

provided for the cases in which the population threshold is larger than one. Our work

in chapter 3 extends [70] by re-deriving the performance metrics related to content

availability and quantifying the impact of bundling based on the assumption that the

population threshold is larger than one, and thus complements [70].

In addition, there also have been some studies aiming to predict the average down-

load performance of BitTorrent swarms. Kumar and Ross [52] used a simple fluid model

to derive the minimum file distribution time in scenarios similar to BitTorrent swarm.

A simple model is used in [59] to predict the average download time in a heterogeneous

16



2.2 BitTorrent

BitTorrent swarm. In [23], It was pointed out that the traditional estimation of average

download time of peers in a BitTorrent swarm based on the average service capacity

was shown to be inaccurate due to the heterogeneous service capacity of different source

peers and the fluctuation in the service capacity of a single source peer.

2.2.2.2 Measurement and simulation studies

There were also many studies analyzing the performance of BitTorrent swarming sys-

tems through measurement- and simulation-based methods. On the basis of tracker

traces, the evolution of torrents and service quality perceived by peers were investi-

gated in [40, 39, 45], and it was pointed out in [40, 39] that due to the exponential

decrease of peer arrival rate, service may soon become unavailable. As in the mathe-

matical study [83], the high bandwidth utilization of BitTorrent peers was also identified

in some measurement studies [40, 81, 14]. Dale and Liu [29] presented a microscopic

explanation to the high bandwidth utilization of BitTorrent peers by investigating the

distribution and evolution of data chunks in the BitTorrent swarm. The phenomenon

that peers with similar bandwidth in downloading may cluster together when down-

loading the same torrent was discussed in [53] and [58]. Neglia et al. explored in [75]

the availability of trackers in BitTorrent swarms and the influence of multiple trackers

on load balance. The availability of content was measured in [51], which stated that a

small fraction (23.5 percent) of peers could complete the download without the pres-

ence of seeds. By studying the performance of a number of BitTorrent swarms, Legout

et al. [54] argued that the BitTorrent’s built-in block scheduling policy and incentive

mechanism are enough to guarantee a good performance. The resource supplied and

consumed by users in several BitTorrent communities were examined in [11], and it

was found in this study that users who supplied more resources tended to consume

more. Stutzbach and Rejaie [94] studied the characteristics of churn of peers in several

peer-to-peer systems, and found that most active peers were stable while other peers

exhibited a high churn rate.

17



CHAPTER 2

The recent trends on BitTorrent traffic and the topology over which BitTorrent

traffic flows were comprehensively investigated in [77, 88]. Although both studies indi-

cated that there was a moderate decrease in the fraction of Internet traffic accounted

for by BitTorrent, it was also pointed out in [88] that BitTorrent still generated the

most Internet traffic than any other Internet applications in all continents except South

America, where BitTorrent is only second to another peer-to-peer file sharing applica-

tion, Ares [1]. The torrent popularity and content distributed in BitTorrent swarms

was intensively explored in [8] based on the information of 2.7m torrents hosted in the

largest BitTorrent tracker, PublicBT tracker. It was revealed in [8] that a small number

of torrents accounted for a significantly large proportion of BitTorrent users, and the

most popular contents were movie, pornography and television, which corresponded to

11.2m, 3.2m and 2.4m seeders and leechers, respectively.

2.2.3 Protocol design and improvement

In what follows, we will review the studies on the protocol design and improvement

of BitTorrent from four perspectives: block scheduling algorithm, incentives, topology

awareness, content bundling and extensions to peer-to-peer streaming.

2.2.3.1 Block scheduling

Although BitTorrent was proven to be effective in terms of bandwidth utilization in

many studies [83, 54, 14, 29, 81], there were still some studies aiming to improve block

scheduling algorithm for a better download performance. Chan et al. [21] presented

a graph-based dynamic weighted maximum-flow algorithm trying to distribute data as

much as possible among peers in each cycle given the constraints of bandwidth and

block distribution information of peers. Wu et al. [101] proposed a block scheduling

policy which gives the highest priority to blocks desired by the neighbors with most

blocks. A Proportional Fair Scheduling algorithm was presented in [74] which can be

deployed in the seeders to accelerate the block distribution in BitTorrent swarms.

18



2.2 BitTorrent

Some other studies aimed to decrease the average download time of peers in a

BitTorrent swarm by strategically selecting the service receivers. A swarm partition

algorithm was presented in [60] to decrease the average download time by grouping

the peers in a BitTorrent swarm into several disjoint sets according to their bandwidth

characteristics and disabling data exchange between peers in different sets. In [44], an

adaptive neighbor selection strategy was presented which provides more opportunity

for being unchoked1 to the fresh peers than the tit-for-tat policy of BitTorrent.

2.2.3.2 Fairness and incentives

The issues regarding the fairness and incentives of BitTorrent have been intensively

studied. Although it was argued in [27, 54] that the built-in tit-for-tat incentive mech-

anism of BitTorrent works fine, numerous studies indicated that BitTorrent cannot pro-

vide fairness to peers and is vulnerable to the strategic behavior of BitTorrent peers.

Jun and Ahamad [48] stated that BitTorrent does not reward and punish peers prop-

erly, which results in free riding. In [61], three selfish behaviors, which are downloading

only from seeds, downloading only from the fastest peers and advertising false blocks,

were implemented, and their effectiveness was also evaluated. Although it appears that

BitTorrent is resistant to these three exploits, a new strategic behavior was devised

in [92, 67] which successfully renders it feasible to free ride in BitTorrent swarms. It

was reported in these two studies that by connecting to much more neighbors than

default value, a peer can finish the download without contributing to others. Although

it was pointed out in [57, 67] that in swarms with leechers accounting for the most

population, free-riders would perceive a much poorer download performance than the

non-free-riders, Sirivianos et al. [92], however, demonstrated that even there is only

one seed, a free-rider can perceive almost the same download performance as the non-

free-riders by connecting to all the peers in the swarm.

1A peer unchoking a neighbor means that this peer is able to accept and serve the download request
from this neighbor.

19



CHAPTER 2

There also existed some studies exploiting the incentives mechanism of BitTorrent,

i.e., tit-for-tat, to achieve a better download performance. A BitTorrent variation,

BitTyant, was presented in [79] which enables peers to increase download rate by dy-

namically adjusting the number of neighbors to be unchoked and bandwidth allocated to

each active connection. Two other mechanisms presented in [56] can also be leveraged

to achieve a better download performance. They are: (1) intelligently underreport-

ing the block availability information to prolong the interest, and (2) rewarding each

unchoked neighbor with a proportional bandwidth share.

Many incentive mechanisms have been proposed to enhance the fairness and deter

free riders. A family of incentive techniques, including discriminating server selection,

maxflow-based subjective reputation and adaptive stranger policies, were proposed in

[37], and it was argued that a combination of these techniques is able to foster the

cooperation among rational peers. Two price-based mechanisms were presented in [33]

to improve the fairness. With the proposed mechanisms in [33], peers would receive a

download performance proportional to their upload capacity. A block-based tit-for-tat

policy was presented in [13], which stipulates that a peer unchokes a neighbor only

when the number of blocks that this peer contributed to this neighbor does not exceed

the sum of the number of blocks that this peer downloaded from this neighbor and a

specific parameter. The proportional share policy, i.e., a peer rewarding a neighbor with

a bandwidth share proportional to the bandwidth share previously allocated to this peer

by this neighbor, was also claimed to be able to achieve fairness and robustness [56].

A one hop reputation protocol, which propagates the reputation through at most one

level of intermediary to extend the knowledge for peers to make decisions on whether

to cooperate, was presented in [80]. In order to prevent free riders from downloading

too much data from seeders1, Chow et al. [26] presented a simple approach which

forces the seeders to serve leechers with a specific fraction of blocks to realize a more

1A seeder serves the leechers which could download at the highest rate from it, or in a round robin
manner, both of which are exploitable to free riders.

20



2.2 BitTorrent

intelligent usage of seeders’ capacity. In general, the enhancement in fairness implies a

degradation in swarming efficient [13, 59], and the trade-off between the fairness and

efficiency was extensively discussed in [59, 35].

2.2.3.3 Topology-awareness

Due to high throughput generated by BitTorrent, many studies have been conducted

recently to enhance the BitTorrent locality and thus reduce inter-ISP traffic. Cuevas

et al. [28] estimated to what degree the inter-ISP traffic can be reduced by studying

millions of BitTorrent peers distributed in 11K autonomous systems, and argued that

more than half of inter-ISP traffic can be saved at a cost of a less than 6% increase in

the download time. In general, in order to decrease the inter-ISP traffic generated by

BitTorrent peers, an intuitive way is to enable BitTorrent peers to establish neighbor-

hood with peers in the same ISP. Different approaches have been proposed to achieve

this goal. In [15, 16, 62], BitTorrent trackers are configured to return the peers in

the same ISP as the requester in response to the announcement from the requester.

In addition, Liu et al. also [62] presented some modifications to block scheduling and

neighbor unchoking algorithms of BitTorrent, in which a peer unchokes the neighbors

topologically closest to it and also downloads a piece from the closest unchoked neigh-

bor with this piece. A topology-aware BitTorrent client, TopBT, was developed in [85],

which leverages some network tools, e.g., ping, and tracert, to discover the network

proximity among different peers and connect to topologically proximate peers. A novel

CDN-based peer selection policy is presented in [24] which enables a peer to connect

to those exhibiting similar CDN redirection behavior. All of these studies have shown

that their approaches can not only reduce the inter-ISP, but also improve the download

performance perceived by peers.

21



CHAPTER 2

2.2.3.4 Content bundling

Content bundling is effective in terms of improving the availability of content in BitTor-

rent swarms by attracting more peers to join the swarm and prolonging the download

time. Han et al. [41] argued that many contents can be bundled together due to the

high similarity among them. It was further pointed out in [43] that content bundling

is now very common in BitTorrent swarms, and the impact of content bundling on the

performance metrics of BitTorrent swarms was empirically studied in [42]. [72] inves-

tigated the bundling strategies for publishers, and [55], on the other hand, carried out

an analysis on the file selection strategies for peers in bundled swarms. In addition, a

dynamic bundling system which requires peers to download the files in additional to

those of their interest to enhance the content availability was presented in [103].

2.2.3.5 Extensions to peer-to-peer streaming

Due to the high bandwidth utilization, there were many studies on the feasibility of

streaming media over BitTorrent. Several studies [19, 99, 90] have modified the rarest-

first block scheduling algorithm to make it accountable for the playback deadline of data

blocks and thus support the live streaming applications. Some other studies [68, 30, 89]

were carried out to leverage BitTorrent to deliver on-demand media to multiple peers,

and the corresponding design space was studied in [78] in detail.

2.3 The applications of network coding to peer-to-peer

networks

Network coding was originally proposed in information theory [10], and thereafter it

was introduced to peer-to-peer networks [25] [49]. Since then, network coding has

gradually demonstrated its power in improving the overall performance of peer-to-peer

networks. In [38], a file sharing protocol called Avalanche was proposed, which uses

random linear network coding to accelerate the download process and facilitate the

22



2.3 The applications of network coding to peer-to-peer networks

block scheduling among neighbors. In Avalanche, the content publisher first generates

at least n coded blocks, where n is the number of plain (original) blocks, and each

coded block is a linear combination of all plain blocks, with the coding coefficients

randomly selected from a finite field. The intermediate peers, i.e., those other than the

publisher, are also able to generate new coded blocks. Upon receiving a coded block, an

intermediate peer can generate a new coded block by computing a linear combination

of all the coded blocks it has, with the coding coefficients also randomly selected from

the finite field. In [100], Wang et al. proposed a live peer-to-peer streaming protocol,

R2, which also implemented random network coding to enable the coded blocks to be

randomly push between neighbors without block availability information. There are

also some commercial peer-to-peer streaming softwares [65] using network coding for

effective content distribution.

The random network coding adopted in Avalanche [38] can also improve content

availability. With the random linear network coding adopted in [38], each coded block is

a linear combination of all plain blocks of the file, and the original file can be recovered

as long as the dimension of the space spanned by the coding coefficient vectors of the

coded blocks in the swarm is equal to the number of plain blocks, which occurs with

high probability even the number of coding coefficient vectors is exactly the same as

that of original blocks.

However, as we will show, with regard to the coding complexity, the coding strategy

in Avalanche is not feasible for implementation. To alleviate the overhead, a sparse

form of random linear network coding is proposed in [76], in which only two random

plain blocks are used to generate new blocks. Nevertheless, due to the slow generation

rate of new blocks and the limited diversity of blocks, the potential of improving content

availability of this scheme cannot be fully exploited.

23



CHAPTER 2

2.4 Private BitTorrent community

As a normal public BitTorrent community, a private BitTorrent community also pro-

vides two main services. It serves as an HTTP server hosting the torrent files for its

users to download, and has a BitTorrent tracker in responsible for the organization

and maintenance of the BitTorrent swarms. In contrast to the public BitTorrent com-

munities which allow an arbitrary user to access, the private community1 only serves

the users who have already registered with the community. An outside user can join

a private BitTorrent community by registering an account when the community opens

up for registration, or getting invited by a registered user of the community. In general,

it is not difficult to gain access to private communities, but for those high-level private

communities, the account is very hard to obtain since the channel for free registration

is closed and the registered users tend to send the invitations to those who are capable

to justify the potential for making contribution to the community. Moreover, many

private communities only allow the registered users with significant contributions to

the community (e.g., those with high upload traffic) to give out invitations, which also

increases the difficulty for outside users to join the community.

In BitTorrent swarms, peers periodically report the upload and download traffic

to the tracker by requesting the tracker announce url, and in response to the request,

the tracker would return a random list of online peers to the requesting peer. Thus

it is necessary for the private BitTorrent tracker to reject the invalid requests and

thereby not disclose the information of registered users. To this end, almost all private

BitTorrent communities import a passkey system. Each valid user, i.e., registered user,

is assigned with a unique passkey, and when a registered user downloads a torrent,

its passkey is imprinted in the tracker announce url of the torrent. In this way, the

private tracker is able to correctly identify the valid users by verifying the passkey in

1We may sometimes use “community” or “private community” to refer to “private BitTorrent
community” for the ease of expression, if without ambiguity.

24



2.4 Private BitTorrent community

the announce url.

For each user1, the private BitTorrent community keeps tracks of the accumulative

upload and download traffic, as well as the accumulative seeding and downloading time,

to determine the contribution of this user. Many private communities require users

to maintain a minimum share ratio, namely the ratio of upload traffic to download

traffic, to prevent from being warned or banned, which is known as SRE (share ratio

enforcement). Due to the existence of SRE, many users choose to seed the leechers

after completing the download in the hope of improving the share ratio, which leads

to a high ratio of seeders to leechers and enhances the availability of the distributed

files as well. SRE, however, may also render the survival of a part of users (e.g., the

ADSL users with the upload bandwidth far less than the download bandwidth) difficult

as the upload rates of these users are very slow. In order to improve this situation,

many private communities offer some preferential torrents. When downloading these

torrents, the download traffic would be counted at a discount, while the upload traffic

would be counted normally.

In addition to SRE, there are another two common measures to encourage seeding

in private BitTorrent communities. The first one is to reward seeding peers with points

which can be used to trade for invitations and upload traffic, and the second measure is

that by improving the upload traffic and share ratio, users can be entitled to multiple

privileges, e.g., unlimited download slots, uploading torrents, giving out invitations,

protecting the profile from being accessed by other users.

Due to its increasing prevalence, private BitTorrent communities received much at-

tention recently. A couple of studies were carried out to characterize these communities.

In the recent work [102, 64, 22, 73], it was found that in private BitTorrent communi-

ties, the ratio of seeder to leechers is much higher than that in public communities, and

that compared with users in public communities, users in private BitTorrent communi-

1If no ambiguity raises, the term “user” will be used when we refer to the “register user” for the
simplicity of expression.

25



CHAPTER 2

ties tend to perceive a better download performance, and meanwhile maintain a higher

share ratio. [64] and [22] also explored the effectiveness of share ratio enforcement

(SRE), a policy commonly adopted in private BitTorrent communities, in improving

the user share ratio. However, it was stated in [47] that the existence of SRE may

result in users having to seed for an extremely long time in order to keep their share

ratio upon a specific level. Different strategies were proposed in [46] for users of private

BitTorrent communities to effectively improve their share ratios. An economic expla-

nation to private BitTorrent communities was presented in [50]. In addition, targeting

on the phenomenon that some malicious users may cheat the tracker by reporting a

modified amount of traffic, Liu et al. [64] further presented an upload entropy scheme

for deterring collusion among users. However, in these studies, only limited information

about user traffic was presented, and the other two important respects of user behavior:

seeding and leeching time, and download history, were not investigated. In addition,

in the existing literature, how user behavior is influenced by user age and bandwidth

was still unknown, as well as the impact of the content size and popularity of torrents

on user behavior.

26



Chapter 3

Modeling and Analysis of Content Availability

and Bundling in BitTorrent-like File Swarming

Systems

3.1 Introduction

The content availability has been extensively studied in [70]. However, most of the

results in [70] were derived based on the assumption that the population threshold,

the minimum number of leechers to have all chunks, is equal to one, which is not

realistic since a peer could complete the download only when there is at least one seed

or two leechers. In this chapter, we extend [70] by re-deriving the performance metrics

related to content availability under a more realistic assumption that the population

threshold is larger than one. In particular, we first re-derive the closed-form expression

for the duration of active periods using the result of residual busy period in [70], and

then quantify the content availability and average sojourn time of peers based on the

derived result of the duration of active periods. Moreover, we also derive the closed-

form expression for the duration of the residual active period1 in the swarms where

peers continue to serve other peers after they complete the download, by modeling

such swarms as an open Jackson network.

We also carry out an investigation on the impact of bundling on the performance of

BitTorrent swarms. We quantify the impact of bundling on the length of the residual

active period in the swarms with and without peers’ altruistic behavior, and show

that in the swarms without peers’ altruistic behavior, the increase in the length of the

1The residual active period is the interval between the departure of publisher, i.e., the seed initiating
the swarm, and the time when the content becomes unavailable, when the publisher will not return to
the swarm. The residual active period has the same meaning of the residual busy period in [70].

27



CHAPTER 3

residual active period resulted from bundling N files is strictly larger than N , and that

in swarms with peers’ altruistic behavior, bundling N files could increase the length of

the residual active period by a factor of eΘ(N2). In addition, we also demonstrate that

given an appropriate number of files are bundled in the swarm, the average sojourn

time of peers can be reduced, as a result of the improvement in content availability. We

finally perform extensive simulations to examine the validity of our theoretical analysis,

and the simulation results exhibit a high conformity to our theoretical analysis.

The remainder of this chapter is organized as follows. We study the performance

metrics related to content availability of BitTorrent swarms on the basis of some simple

models in Section 3.2, and then carry out extensive simulations to validate our analysis

in Section 3.3. Finally, we conclude this chapter in Section 3.4.

3.2 Models

3.2.1 Model description

In our model, the notations shown in Table 3.1 are introduced to describe the char-

acteristics of BitTorrent swarms. In addition, to simplify our analysis, we make the

following assumptions:

1. Peers arrive at the swarm according to a Poisson process.

2. The download time of each peer is exponentially distributed with the mean of s
u .

3. The download proceeds only in active periods, and is interrupted in passive pe-
riods.1. The interrupted download will resume when the publisher re-enters the
swarm initiating another active period.

4. Peers depart immediately after the completion of download; this assumption will
be relaxed in Section 3.2.2.4, in which peers’ altruistic behaviors are taken into
consideration.

1In fact, download can still proceed in passive periods as long as different peers have different chunks;
however, it will sooner or later get stuck until the publisher enters the swarm, and the memoryless
property guarantees that the residual download time has the same distribution of the download time.
Therefore, assuming the download process is interrupted in passive periods has no impact on our
analysis.

28



3.2 Models

Table 3.1: Mathematical notations and their meanings

notation meaning

λ the arrival rate of new peers.

1
γ the mean duration of publisher idle period, i.e., the interval between the

publisher’s departure and its next arrival, we assume the duration is an
exponentially distributed random variable.

1
β the mean of publisher residence time.

u average download rate of peers.

s size of the file to be distributed.

r population threshold, the minimum number of online leechers which are
enough to have all chunks.1

R the length of the residual active period after the departure of the pub-
lisher, given that the publisher will not return, i.e. 1

γ →∞; the bundled
counterpart is denoted by R.

A the duration of an active period; the bundled counterpart is denoted by
A.

P content unavailability; the bundled counterpart is denoted by P.

T average sojourn time of peers; the bundled counterpart is denoted by T.

1According to BitTorrent specifications, peers always preferentially download the blocks which are
least distributed among the neighbors. In this regard, the download behavior of peers, and hence the
distribution of the blocks they have are determinate. Therefore, it is likely to determine the availability
of content given the number of leechers.

29



CHAPTER 3

5. Under the above assumptions, a BitTorrent swarm can be viewed as an M/M/∞
queue. We assume that this queue is in steady state when the publisher departs.1

6. A peer departs the swarm only after it completes the download, i.e., no peers
abort the download.

7. The bundled files are of the same size, and bundling N files will cause both the
arrival rate and the mean of download time increasing N times.

8. Bundling files exerts no impact on the population threshold; the rationale behind
this assumption is that bundling files will lead to peers spending more time on
downloading, and thus a peer in the bundled swarm tends to hold more chunks
than a peer in the individual swarm does.

3.2.2 Content availability

3.2.2.1 A model for active periods

Since content availability is the fraction of swarm lifespan accounted for by active

periods, we need to derive an expression of the active period duration first. An active

period, as mentioned before, is a period when at least one seed is available or no less

than r peers exist in the swarm to guarantee no chunks are lost, and such a period

begins during which the publisher enters the swarm and ends with a peer exiting the

swarm leaving behind less than r peers and no seeds.

As peers immediately exit the swarm after the completion of download, there is

at most one seed, i.e., the publisher, in the swarm. Once the publisher departs, if the

number of remaining peers is greater than or equal to r, the swarm remains in the active

period, otherwise it falls into a passive period. In the former case, we need to figure out

the length of residual active period. To this end, we first consider the situation that

the publisher will not enter the swarm again2, i.e., 1
γ → ∞. Under this situation, the

active period is terminated when the number of peers falls below r, and thus during

1In real-world BitTorrent systems, since the intention of the publisher is to distribute its own
content, it is natural to assume that the publisher departs only when there have been multiple peers
completing the download, at which time the swarm has run for a long time, and the corresponding
queue model is thus highly likely in steady state.

2Unless otherwise stated, when we talk about the length of the residual active period after the
departure of the publisher, we assume that the publisher will never return to the swarm, i.e., 1

γ
→∞.

30



3.2 Models

the residual active period the peer population is always above level r − 1. Assuming

that peer population is in steady state when the publisher departs, we have

Lemma 3.1 When 1
γ → ∞, the expected duration of the residual active period after

the departure of the publisher in the individual swarm is

E[R] =
∞∑
i=r

e−
λs
u (λsu )i

i!

i−1∑
j=r−1

j!

λ(λsu )j

∞∑
k=j+1

(λsu )k

k!
(3.1)

and in the swarm with N files bundled, the expected duration of the residual active

period after the departure of the publisher is

E[R] =
∞∑
i=r

e−
N2λs
u (N

2λs
u )i

i!

i−1∑
j=r−1

j!

Nλ(N
2λs
u )j

∞∑
k=j+1

(N
2λs
u )k

k!
(3.2)

Proof. Please refer to Appendix A.2.1.

We then continue to discuss the residual active period taking into consideration

that the publisher will go back to the swarm after leaving. If the publisher rejoins

the swarm before peer population drops below r, another active period is initiated by

the arrival of the publisher and has the same distribution with the original one since

we have assumed that the publisher’s residence time is an exponentially distributed

variable and the peer population is in steady state when the publisher departs. By

assuming the length of the residual active period after the departure of the publisher

fluctuates slightly around its mean, we have

Theorem 3.2 The expected length of an active period in the individual swarm is

E[A] = (
1

β
+

1

γ
)eγE[R] − 1

γ
(3.3)

31



CHAPTER 3

and the expected length of an active period in the swarm with N files bundled is

E[A] = (
1

β
+

1

γ
)eγE[R] − 1

γ
(3.4)

where E[R] and E[R] are given in equation (3.1) and (3.2), respectively.

Proof. Please refer to Appendix A.2.2.

We can find that the only difference between equation (3.3) and (3.4) lies in the

mean of R, which means that the impact of bundling on E[R] determines to what

extent bundling can increase the expected length of active periods.

If the publisher will not return to the swarm once it departs, i.e., 1
γ →∞, then the

expected length of an active period, E[A], is equal to 1
β +E[R], as can be deduced from

the definition of the active period. This can also be derived from equation (3.3), since

lim
1
γ
→∞

E[A] = lim
γ→0

1

β
eγE[R] + lim

γ→0
(eγE[R] − 1)

1

γ

=
1

β
+ γE[R]

1

γ
=

1

β
+ E[R]

The similar result also holds for the bundled swarm.

We further examine the impact of bundling on the duration of active periods by

considering the situation that the publisher will not reenter the swarm after departure.

By comparing equation (3.1) with equation (3.2), we have

Theorem 3.3 When 1
γ →∞, bundling N files could lead to the expected length of the

residual active period increasing at least N times, i.e.,

E[R] > NE[R] (3.5)

where E[R] and E[R] are given in equation (3.1) and (3.2), respectively.

Proof. Please refer to Appendix A.2.3.

32



3.2 Models

Combined with equation (3.3) and (3.4), it can be observed that in a swarm where

the publisher will come back to the swarm after leaving, bundling N files can lead to

a remarkable increase in the length of an active period. The reason behind this rapid

increase is that bundling files can not only improve the popularity, i.e., the arrival rate

of peers, but also increase the download time1. Therefore, compared with the individual

swarm, there are much more peers in the bundled swarm, and thus peer population is

less likely to drop below level r, which implies a longer active period.

Since the length of publisher idle period has the same mean in both individual

swarms and bundled swarms, the fraction of swarm lifespan accounted for by active

periods in the bundled swarm is thus much larger than that in the individual swarm,

and the availability of content is therefore significantly improved by bundling.

3.2.2.2 A model for content availability

We have mentioned that content availability can be derived by calculating the fraction

of swarm lifespan accounted for by active periods. As the expected length of an active

period is given, and the length of publisher idle period is exponentially distributed with

the mean of 1
γ , it is easy to see that

Theorem 3.4 Content availability in the individual swarm, P , is

P = 1− 1

γ( 1
β + 1

γ )eγE[R]
(3.6)

and the availability of content in the swarm with N files bundled, P, is

P = 1− 1

γ( 1
β + 1

γ )eγE[R]
(3.7)

where E[R] and E[R] are given in equation (3.1) and (3.2), respectively.

1Note that the download time represents the time only spent in active periods. Thus the download
time always increases as more files are bundled in the swarm; however, this may not hold for the
sojourn time as we will show that, in swarms with content highly unavailable, bundling could reduce
the average sojourn time, although the download time increases.

33



CHAPTER 3

Proof. Please refer to Appendix A.2.4.

To appreciate to what extent bundling could improve content availability, we con-

sider two swarms with different levels of publisher availability. The publisher in the

first swarm is highly available, i.e., 1
β �

1
γ , while the publisher in the second swarm is

highly unavailable, i.e., 1
γ � E[R], which also implies 1

γ �
1
β . For content availability

in the first swarm, we have

P = 1− 1

γ( 1
β + 1

γ )eγE[R]
≈ 1− 1

γ
β e

γE[R]
> 1− β

γ

As 1
β �

1
γ , the content availability, P , nearly equals to 1. Therefore, there is little space

for improvement of content availability in a swarm with high publisher availability.

In the second swarm where the publisher is highly unavailable, the content avail-

ability is given by

P = 1− 1

γ( 1
β + 1

γ )eγE[R]
≈ eγE[R] − 1

eγE[R]

and if N files are bundled in this swarm, the content availability is then given by

P = 1− 1

γ( 1
β + 1

γ )eγE[R]
≈ eγE[R] − 1

eγE[R]

Thus, it follows that

P

P
≈ (eγE[R] − 1)/eγE[R]

(eγE[R] − 1)/eγE[R]
=
eγE[R](eγE[R] − 1)

eγE[R](eγE[R] − 1)
≈ eγE[R] − 1

γE[R]eγE[R]

As E[R] increases at least N times by bundling N files, when the number of bundled

files, N , is large enough, we then have P ≈ eγE[R]−1
eγE[R] ≈ 1, and thus P

P ≈
1

γE[R] . Therefore,

the improvement of content availability is very remarkable when 1
γ � E[R], and it also

shows that, as long as enough files are bundled, the content availability will tend to 1,

regardless of publisher availability.

34



3.2 Models

3.2.2.3 A model for peer sojourn time

Once a swarm is initiated by the publisher, interested peers then join the swarm to

download the file, and depart the swarm after completing their downloads. As the

publisher owns all the content, a swarm begins with an active period, and enters a

passive period when a peer departs the swarm and leaves behind no seeds and not

enough peers to have all the chunks. When the publisher enters the swarm again1,

the passive period is terminated and another active period is initiated. Therefore, the

lifetime of a swarm always alternates between active periods and passive periods, and

the sojourn time of a peer in the swarm consists of two parts: the time spent in active

periods and the time spent in passive periods.

Peers may come to the swarm in either an active period or a passive period. For

peers arriving in a passive period, they must wait for the publisher to become available,

and for those arriving in an active period, they will also spend some time in passive

periods if they cannot complete their downloads in the active period. According to

the definition of the active period, at most r − 1 peers are left when the swarm enters

a passive period. Therefore, the fraction of peers accounted for by those who cannot

finish the download in an active period is about r−1
C , where C represents the number

of peers appearing in the same active period.

As the rarest-first policy is used in BitTorrent to determine which chunk to be

requested, chunks tend to be uniformly distributed among peers, and a small number

of peers can own all the chunks, which means r takes a small value. Therefore, we can

simply assume that r � C, and thus neglect the impact of peers crossing two or more

active periods on the analysis of average sojourn time. In other words, the sojourn time

of a peer mainly depends on the download time and the waiting time before starting

download. The former is exponentially distributed with the mean of s
u , and the latter

1We omit the possibility that other peers will re-enter the swarm after completing their downloads
as this is unlikely to happen.

35



CHAPTER 3

is also exponentially distributed with the mean of 1
γ if this peer arrives in a passive

period and is 0 if this peer arrives in an active period.

The mean sojourn time is thus given by:

Theorem 3.5 The mean of peer sojourn time in the individual swarm, E[T ], is

E[T ] =
s

u
+

β/γ

(β + γ)eγE[R]
(3.8)

and the mean of peer sojourn time in the swarm with N files bundled, E[T], is

E[T] =
Ns

u
+

β/γ

(β + γ)eγE[R]
(3.9)

where E[R] and E[R] are given in equation (3.1) and (3.2), respectively.

Proof. Please refer to Appendix A.2.5.

We also investigate under what condition peers can benefit from bundling with

regard to average sojourn time.

Theorem 3.6 The average sojourn time of peers can be reduced if the number of bun-

dled files satisfies the following condition:

2 ≤ N ≤ β/γ

(β + γ)eγE[R]

(
1− e−γE[R]

) u
s

+ 1 (3.10)

where E[R] is given in equation (3.1).

Proof. Please refer to Appendix A.2.6.

3.2.2.4 Altruistic Behavior

A peer may continue to stay in the swarm after completion of the download, and

upload to other peers as a seed. We assume the length of this seeding period is an

36



3.2 Models

exponentially distributed variable with a mean of 1
θ . In this case, the swarm can be

viewed as a Jackson network consisting of two M/M/∞ queues. The first queue consists

of leechers, i.e., peers who have not finished the download, and the second queue consists

of all the seeds other than the publisher; the output of the first queue is the input of

the second queue. According to Burke’s Theorem [17], the output of an M/M/∞ queue

in steady state is a Poisson process, and the departure rate is same as the arrival rate.

We also assume the Jackson network is in steady state when the publisher departs.

Lemma 3.7 When 1
γ → ∞, in the individual swarm, the expected length of residual

active period after the departure of the publisher is

E[R] =
∞∑
i=1

e−λ/θ(λθ )i

i!

i∑
j=0

j!

λ(λθ )j

∞∑
k=j+1

(λθ )k

k!
+

1− Pr
Pr

eλ/θ

λ
(3.11)

where Pr = e−λs/u
∑r−1

i=0
(λs/u)i

i! , and in the swarm with N files bundled, we have

E[R] =
∞∑
i=1

e−Nλ/θ(Nλθ )i

i!

i∑
j=0

j!

Nλ(Nλθ )j

∞∑
k=j+1

(Nλθ )k

k!
+

1− Pr

Pr

eNλ/θ

Nλ
(3.12)

where Pr = e−N
2λs/u

∑r−1
i=0

(N2λs/u)i

i! .

Proof. Please refer to Appendix A.2.7.

We can derive the expression of other metrics, e.g., content availability and average

peer sojourn time, in the swarms with altruistic peers by using the above two equations.

We also want to examine the impact of bundling on E[R] in swarms with altruistic

peers, and this can be accomplished by comparing equation (3.11) with (3.12).

Theorem 3.8 When 1
γ →∞, bundling N files could lead to an increase of eΘ(N2) on

E[R] in the presence of peers’ altruistic behavior, i.e.,

log
E[R]

E[R]
= Θ(N2) (3.13)

37



CHAPTER 3

where E[R] and E[R] are given in equation (3.11) and (3.12), respectively.

Proof. Please refer to Appendix A.2.8.

3.3 Simulation

In order to verify our analytical results, we have performed extensive simulations us-

ing the BitTorrent simulator [32], which is built on Network Simulator [6], and the

simulation results exhibit a high conformity to our theoretical analysis.

3.3.1 Experimental Setup

In [70], a file with a size of only 4MB is disseminated in the individual swarm, and this

could lead to the download process suffering a high uncertainty as the download time

may highly depend on the network condition, e.g., network congestion, rather than peer

arrival rate and access bandwidth. In order to decrease the influence of the network

condition on peers’ download time, in the simulation, we deploy a BitTorrent swarm

where a file with a size of 100MB is distributed, and 30,000 peers with a homogeneous

access bandwidth of 50KB/s arrive according to a Poisson process. The publisher’s

residence time is exponentially distributed with a mean of 5 hours, i.e., 18,000s, which

is long enough for the swarm entering the steady state. We run the simulation for many

times, and in each running, the arrival rate of peers and the value of 1
γ , i.e, the mean

length of publisher idle period, are adjusted to explore the performance variance of the

swarm under different conditions.

As there are many control messages, other than chunks, to be transmitted in Bit-

Torrent swarms, and the upload bandwidth of newly participating peers cannot be

effectively utilized, the practical download time of peers is slightly longer than the

theoretical result, s/u, which takes the value of 100000/50 = 2000s in the simula-

tions. According to the simulation results, the residence time of peers is about 2500

seconds given that the content is available. Therefore, in the calculation of proposed

38



3.3 Simulation

expressions, we also set the value of s/u to 2500 seconds in order to keep consistent

with simulation.12 It remains to determine the value of population threshold, r. The

simulations indicate that λ×s
u is a good estimation of r, where s, u, λ denote the file

size, access bandwidth and peer arrival rate, respectively.3 Since in our settings, λ×s
u

fluctuates around 30 in all swarms, we let the population threshold take the value of

30 for simplicity.

3.3.2 Active Periods

The analysis of active periods plays a central role in our work, as the derivations of other

performance metrics are all based on this analysis. Thus the accuracy of the analysis

of active periods to a large extent determines the validity of our overall analysis.

Fig. 3.1 demonstrates both the simulation result and the theoretical result of the

length of active periods under different combinations of peer inter-arrival interval, 1/λ,

and the length of publish idle period, 1/γ. It can be clearly observed from this figure

that under most scenarios, the length of active periods obtained from simulations is

roughly the same as that obtained from equation (3.3), which indicates that the result

obtained from our theoretical analysis is a good approximation to the simulation result.

Another observation can be drawn from this figure is that both the theoretical result

and the simulation result of the length of active periods vary in the same way as 1/λ

and 1/γ change.

However, there also exist some scenarios in which the simulation result exhibits

a manifest difference from the theoretical result. These scenarios are: (1) 1/λ =

60s, 1/γ = 3000s, (2) 1/λ = 60s, 1/γ = 6000s, (3) 1/λ = 70s, 1/γ = 3000s and (4)

1Although the adjustment of s/u may vary in different system settings, the adjustment we did for
our simulation is a good indication.

2The assumption that the download time of peers is exponentially distributed is relaxed in the
simulation.

3This formula for population threshold may not be applicable to other system settings, as the
population threshold can be affected by these factors, i.e., file size, access bandwidth and arrival rate,
in other manners. Nevertheless, we believe this formula can provide some hints for the estimation of
the population threshold.

39



CHAPTER 3

 0

 100

 200

 300

 400

 500

3000 6000 9000 12000 15000

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

ho
ur

)

1/γ (second)

(a) 1/λ = 60s

 0

 10

 20

 30

 40

 50

3000 6000 9000 12000 15000

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

ho
ur

)

1/γ (second)

(b) 1/λ = 70s

 0

 2

 4

 6

 8

 10

 12

3000 6000 9000 12000 15000

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

ho
ur

)

1/γ (second)

(c) 1/λ = 80s

 0

 1

 2

 3

 4

 5

 6

 7

 8

3000 6000 9000 12000 15000

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

ho
ur

)

1/γ (second)

(d) 1/λ = 90s

 0

 1

 2

 3

 4

 5

 6

3000 6000 9000 12000 15000

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

ho
ur

)

1/γ (second)

(e) 1/λ = 100s

Figure 3.1: The length of active periods under different scenarios (The red and blue
columns represent the simulation result and theoretical result, respectively)

40



3.3 Simulation

1/λ = 80s, 1/γ = 3000s.

For the first case, the theoretical result is 33608, and is not shown in Fig. 3.1.a

since it is too large. In fact, the real difference between the simulation result and

theoretical result in this case is much smaller than that shown in Fig. 3.1. The total

running time of the simulation corresponding with the first case is 500 hours, which is

the product of peer inter-arrival interval, 60s and peer population, 30000. As shown in

Fig. 3.1.a, the simulation result of the length of active periods is also 500 hours, which

implies that there is only one active period through the simulation. We also find from

this simulation that only one peer cannot complete the download since all other peers

immediately departs after completing the download. Thus we can say that the only

active period is initiated by the publisher and terminated at the epoch when the last

departing peer left behind only one peer. In other words, the swarm will remain in the

active period as long as peers continue to arrive at the same rate.

It can be shown that the difference between the simulation result and the theoretical

result only appears in scenarios with shorter publisher idle period. This may be because

E[A] is an exponential function of the length of publisher idle period, and thus a slightly

shorter publisher idle period could lead to a dramatic increase of E[A].

3.3.3 Content Availability

The content availability of swarms under different scenarios is shown in Fig. 3.2. It

is straightforward to observe from the figure that the result measured from simulation

is almost the same as that derived from the theoretical analysis, which justifies our

analysis on the content availability. We can also observe that increasing the value of

peer inter-arrival interval, 1/λ, by 10 seconds has the similar effect on the content

availability as increasing the value of the length of publisher idle period, 1/γ, by 3000

seconds. This is because they play different roles in the equation (3.3) and (3.6), and

thus exert different impact on the content availability.

41



CHAPTER 3

 0

 0.2

 0.4

 0.6

 0.8

 1

3000 6000 9000 12000 15000

C
on

te
nt

 a
va

ila
bi

lit
y

1/γ (second)

(a) 1/λ = 60s

 0

 0.2

 0.4

 0.6

 0.8

 1

3000 6000 9000 12000 15000

L
en

gt
h 

of
 a

ct
iv

e 
pe

ri
od

s 
(h

ou
r)

1/γ (second)

(b) 1/λ = 70s

 0

 0.2

 0.4

 0.6

 0.8

 1

3000 6000 9000 12000 15000

L
en

gt
h 

of
 a

ct
iv

e 
pe

ri
od

s 
(h

ou
r)

1/γ (second)

(c) 1/λ = 80s

 0

 0.2

 0.4

 0.6

 0.8

 1

3000 6000 9000 12000 15000

L
en

gt
h 

of
 a

ct
iv

e 
pe

ri
od

s 
(h

ou
r)

1/γ (second)

(d) 1/λ = 90s

 0

 0.2

 0.4

 0.6

 0.8

 1

3000 6000 9000 12000 15000

L
en

gt
h 

of
 a

ct
iv

e 
pe

ri
od

s 
(h

ou
r)

1/γ (second)

(e) 1/λ = 100s

Figure 3.2: Content availability under different scenarios (The red and blue columns
represent the simulation result and theoretical result, respectively)

42



3.3 Simulation

3.3.4 Average Sojourn Time

Fig. 3.3 illustrates the average sojourn time of peers under different scenarios. As

shown in the figure, the theoretical results is a good estimation of the corresponding

simulation result. We can also draw from the figure that in most scenarios, the the-

oretical result is slightly less than the corresponding simulation result. This can be

explained in the following two aspects. First, as we mentioned above, there are many

control messages transmitted in BitTorrent swarms, and the upload bandwidth of new

participants cannot be effectively utilized as they own little chunks, both of which can

extend the download process. Second, the number of passive periods is limited in the

simulations in cases in which peer inter-arrival interval and the length of publisher idle

period are small, and thus the average length of passive periods, which are exponen-

tially distributed with the mean of 1/γ, may exhibit a significant difference with its

mean. The second explanation can also be inferred from the figure as we can see that

as the increase of the length of public idle period, the difference between the simulation

result and the corresponding theoretical result experiences a slight decrease.

3.3.5 The impact of bundling

We also have run simulations to validate our analysis of the impact of bundling on

the performance metrics. In order to demonstrate the impact, we deploy a swarm

with a high unavailability of content: The peer inter-arrival interval and the mean of

publisher idle period, i.e., 1/γ, are 600 seconds and 72000 seconds respectively, and

the assumption that bundling N files increases peer arrival rate by a factor of N also

applies in this section.

Fig. 3.4 shows the impact of bundling on the performance metrics of BitTorrent

swarms. From this figure, we can see that when three files are bundled, the length

of active periods is nearly 40 times larger than that in the individual swarm, and the

content availability is also greatly improved to about 0.95. Furthermore, when three

43



CHAPTER 3

 0

 2000

 4000

 6000

 8000

 10000

3000 6000 9000 12000 15000

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e 
(s

ec
on

d)

1/γ (second)

(a) 1/λ = 60s

 0

 2000

 4000

 6000

 8000

 10000

3000 6000 9000 12000 15000

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e 
(s

ec
on

d)

1/γ (second)

(b) 1/λ = 70s

 0

 2000

 4000

 6000

 8000

 10000

3000 6000 9000 12000 15000

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e 
(s

ec
on

d)

1/γ (second)

(c) 1/λ = 80s

 0

 2000

 4000

 6000

 8000

 10000

3000 6000 9000 12000 15000

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e 
(s

ec
on

d)

1/γ (second)

(d) 1/λ = 90s

 0

 2000

 4000

 6000

 8000

 10000

3000 6000 9000 12000 15000

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e 
(s

ec
on

d)

1/γ (second)

(e) 1/λ = 100s

Figure 3.3: Average sojourn time of peers under different scenarios (The red and blue
columns represent the simulation result and theoretical result, respectively)

44



3.3 Simulation

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4

L
en

gt
h 

of
 a

ct
iv

e 
pe

ri
od

s 
(h

ou
r)

Number of files bundled

(a) Length of the active period

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

C
on

te
nt

 a
va

ila
bi

lit
y

Number of files bundled

(b) Content availability

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4

A
ve

ra
ge

 s
oj

ou
rn

 ti
m

e 
(s

ec
on

d)

Number of files bundled

(c) Average sojourn time

Figure 3.4: The impact of bundling on performance metrics of BitTorrent swarms

45



CHAPTER 3

files are bundled, the average sojourn time of peers decreases significantly as a result

of the enhanced content availability, although peers have to download the file with a

size of 300MB. When four files are bundled, the content is always available throughout

the simulation, 1 but the average sojourn time is increased contrast with that in the

swarm with three files bundled, since in the swarm with three files bundled, as a result

of high content availability, peers spend the majority of the time in downloading. All

of these observations highly coincides with our analysis on the impact of bundling,

which provides a positive evidence for the correctness of our discussion on the impact

of bundling.

3.4 Conclusion

In this chapter, we have presented a re-derivation for the length of the active period,

content availability and average peer sojourn time of BitTorrent swarms based on the

result of the congestion period of the M/M/∞ queue [86] and the result of the residual

busy period in [70]. We have also quantified the effect of bundling by showing that

bundling N files could increase the length of the residual active period after the de-

parture of the publisher by at least N times, and that the average peer sojourn time

can be reduced by bundling an appropriate number of files. In addition, we also de-

rive the length of the residual active period after the departure of the publisher and

the improvement in this metric caused by bundling in the presence of peers’ altruistic

behavior. We finally validate our analysis through extensive simulations.

1There are 30,000 peers arriving at a rate of 1/150 peers/sec.

46



Chapter 4

Using Network Coding to Ameliorate the

Content Availability of BitTorrent Swarms

4.1 Introduction

It has already been shown that network coding [10] can be used in peer-to-peer net-

works to accelerate the download process and facilitate block scheduling [38] [100].

Nevertheless, the impact of network coding on the availability of content is not well

understood. Specifically, neither the probability of content being available when using

network coding nor to what extent network coding improves content availability has

been investigated. In this chapter, both metrics will be explored to reveal the influence

that network coding exerts on content availability.

In this chapter, we aim to investigate the feasibility of using network coding to

ameliorate the content availability of BitTorrent swarms. Two network coding schemes

are discussed in this chapter. The first one is using all the original blocks to generate

new blocks, which is adopted in [38], and the second one is a sparse form of random

linear network coding proposed in [76], in which only two random plain blocks1 are

used to generate new blocks.

We first conduct theoretical analysis of the impact of the two network coding

schemes on the content availability and bandwidth utilization as these two metrics

exert an important influence on the overall performance of BitTorrent swarms. It is

found that both schemes are able to not only increase the probability of content being

available, but also improve the usability of peers, which implies a higher bandwidth

utilization. Our analysis, however, also demonstrates that both schemes have their own

1Throughout the rest of chapter, we will use “original blocks” and “plain blocks” interchangeably.

47



CHAPTER 4

drawbacks which degrade the feasibility of being incorporated into practical BitTorrent

system. The first scheme, in which a coded block is a linear combination of all plain

blocks, is infeasible in terms of the overhead incurred by the computation and disk

operation. In the second coding scheme, the potential of improving content availability

cannot be effectively exploited due to the slow generation rate of new blocks and the

limited diversity of blocks.

In order to achieve a high content availability while keeping the incurred overhead at

a low level, we propose another simple but very effective sparse network coding scheme

which also uses only two plain blocks to generate new blocks. Different from the second

coding scheme in which the new blocks are generated from two random plain blocks,

our scheme stipulates that a plain block can only be combined with another fixed plain

block to generate new blocks, and once a peer has downloaded two coded blocks with

the same two underlying plain blocks, it can then reconstruct the two original blocks

which can further be used to generate new coded blocks. In this way, the generation

rate of new coded blocks is very fast, and the diversity of blocks is also enhanced.

As the transmission unit is a combination of plain blocks when network coding

is imported, the original block scheduling policy in BitTorrent, rarest-first, no longer

works. In order to keep the high bandwidth utilization, we propose a simple variant of

the rarest-first policy in BitTorrent, which computes the importance of coded blocks

according to their underlying plain blocks: those coded blocks consisting of plain blocks

less distributed among neighbors will be assigned with a higher priority to be requested.

We further differentiate among the coded blocks with the same underlying plain blocks

but linearly independent coding vectors.

Through extensive simulations, we demonstrate that, compared with pure BitTor-

rent swarms, the number of peers needed to sustain the download process is much less

when the proposed coding scheme is imported, which means our way of using network

coding is very effective in terms of improving content availability of BitTorrent swarms.

48



4.2 Analyzing the Effect of Network Coding

Although the coding scheme may lead to a slight increase in the size of control messages,

the average download time is hardly affected as the control messages account for only

a small part of whole throughput, which is also confirmed in simulations. Furthermore,

since each coded block is generated from two blocks, the number of disk operation is

only twice the number in BitTorrent, and the complexity of computation involved in

coding and decoding process for each peer is also far less than that in Avalanche[38],

which render our coding scheme more realistic and feasible in applications. Compared

with the coding scheme proposed in [76], our coding scheme, combined with the pro-

posed block scheduling algorithm, enables new blocks to be generated at a higher rate,

which in turn enhances the block diversity significantly.

The remainder of the chapter is organized as follows. In Section 4.2, we analyze

the impact of network coding on the content availability of BitTorrent swarms and

bandwidth utilization. A simple sparse network coding scheme is presented in Section

4.3. To make BitTorrent be able to effectively work with the proposed network coding

scheme, in Section 4.4, we propose an algorithm for block scheduling. The improve-

ment of content availability induced by the proposed coding scheme and algorithms is

validated in Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 Analyzing the Effect of Network Coding

Network coding is able to improve bandwidth utilization and content availability. While

the improvement in bandwidth utilization is demonstrated in [38] and [100] through

simulations and real traces, the fact that network coding can ameliorate the availability

of content is not well understood. In this section, we present a theoretical analysis of

the impact of network coding on the usability of coded blocks, which to a large degree

determines the utilization of network resources, and the impact of network coding on

the content availability is also explored.

49



CHAPTER 4

4.2.1 Background

We first give a brief introduction to the two network coding schemes [38, 76] which will

be discussed in our analysis. Consider a peer A wants to disseminate a file with n plain

blocks. Denote the n plain blocks by a vector b = [b1, b2, . . . , bn]. If network coding is

used, n coded blocks, from which the original file can be recovered, will be generated

by peer A for distribution. Under both coding schemes, each coded block, b, can be

represented by a linear combination of the plain blocks, i.e.,

b =
n∑
i=1

cibi

where ci, which is selected from a finite field, is the coding coefficient of the i-th plain

block, bi, and the vector c = [ci, c2, . . . , cn] is the coding coefficient vector of coded block

b. The difference between the first and second coding scheme in this coding process

lies in the number of non-zero coding coefficients. The first scheme [38] requires that

there is at least one non-zero coding coefficient, while the second one [76] stipulates

that there are exactly two non-zero coding coefficients. In order to recover the original

file, the dimension of the space spanned by the set of coding coefficient vectors of n

coded blocks must be equal to n.

Once a peer other than A has downloaded more than one coded blocks, it may be

able to use these coded blocks to generate new coded blocks. For simplicity, we use the

term recoding process to represent the generation of new coded blocks, i.e., the coded

blocks generated by peers other than A. The recoding processes of the two coding

schemes are also different. Under the first scheme, any two or more coded blocks can

be used to generate coded blocks in the following way:

b′ =
k∑
i=1

cibi, 1 < k ≤ n

50



4.2 Analyzing the Effect of Network Coding

where bi is a coded block owned by this peer, with the coding coefficient being ci, which

is also randomly selected from the underlying finite field. Again, there is at least one

non-zero coding coefficient in this equation. Under the second coding scheme, however,

in order to guarantee that the newly generated coded blocks also contain the informa-

tion of exactly two plain blocks, two coded blocks can be used to generate new coded

blocks only if they share at least one common underlying plain block. More specifically,

two coded blocks sharing one common plain block can be used to generate only one

new coded block, and multiple new coded blocks can be obtained from different linear

combinations of two coded blocks with the same two underlying plain blocks, provided

that the coding coefficient vectors of the two coded blocks are linearly independent.

4.2.2 Analysis

Table 4.1: Mathematical notations and their meanings

notation meaning

n the number of plain blocks into which the original file is split, we assume
n is even.

l the number of peers in the swarm.

pi the number of blocks hosted at peer i.

Ai,j the event that the first peer who has downloaded i blocks is of no use to
the second peer which has j blocks.

The mathematical notations that will be used in the following analysis are shown in

Table 4.1. To study the effect of network coding, we further assume that the probability

distribution of pi, i.e., the number of blocks at peer i, is given by

Pr(pi = k) =
1

n+ 1
, 1 ≤ i ≤ l, 0 ≤ k ≤ n (4.1)

and the set of coding coefficient vectors of blocks at each peer is linearly independent.1

1For a plain block bi, the i-th element of the corresponding coding coefficient vector is 1, and other
elements are all zero.

51



CHAPTER 4

Since all peers have the same probability distribution of the number of blocks, we will

omit the subscript of pi in circumstances where there is no ambiguity.

4.2.2.1 The Impact on the Usability of Peers

Suppose a peer has already downloaded i blocks. Without network coding, a plain

block is usable to this peer with probability n−i
n , and a peer is of use to another peer

with probability logn
n [83]. When network coding is used, a coded block is usable to

this peer if this block is not a linear combination of the coded blocks hosted at this

peer, which, as we will show later, occurs with a probability larger than n−i
n , even only

two plain blocks are used to generate coded blocks.

We first consider the coding scheme in [38], in which a coded block contains the

information of all plain blocks. In this case, we have

Lemma 4.1 a peer with i coded blocks is unusable to a peer with j blocks, i.e., Ai,j

occurs, with the probability:

Pr(Ai,j) =


1, i = 0∏i
k=0

qj−qk
qn−qk , 0 < i ≤ j

0, j < i ≤ n

(4.2)

where q is the size of the underlying Galois field, and throughout the section, we assume

q > 2.

Proof. Please refer to Appendix B.1.

Given equation (4.1) and (4.2), we can then derive the probability that a peer is of

use to another peer.

Theorem 4.2 The probability that a peer is usable to another one is larger than n−1
n+1 .

Proof. Please refer to Appendix B.2.

52



4.2 Analyzing the Effect of Network Coding

We then consider the case in which only two original blocks are used to generate

new blocks. Under this coding scheme, the probability of Ai,j is given in the following

lemma.

Lemma 4.3 The probability of the event Ai,j occurring is

Pr(Ai,j)


= 1, i = 0

≤
(
j
n

)2i
, 0 < i ≤ j

= 0, j < i ≤ n

(4.3)

Proof. Please refer to Appendix B.3.

Now we can derive the probability that a peer is usable to another peer when only two

original blocks are combined to generate new blocks.

Theorem 4.4 Under the coding scheme which generates new coded blocks using only

two plain blocks, the probability that a peer is usable to another one is larger than n−2
n+1 .

Proof. Please refer to Appendix B.4.

From Theorem (4.2) and (4.4), it is straightforward to obtain that peer usability is

very high under both coding schemes, which implies a high bandwidth utilization.

4.2.2.2 The Impact on the Availability of Content

We then conduct analysis on the probability of content being available using different

network coding schemes. Since the content is trivially available if a peer has n blocks,

we focus our attention on the situation that each peer has at most n − 1 blocks, and

the number of blocks at each peer is uniformly distributed in [0, n− 1]. Suppose there

are l peers in the swarm, and the distribution of blocks among peers is represented

by a l-dimension vector p = [p1, p2, . . . , pl], where pi is the number of blocks at peer

i. We further let Pp denote the probability of content being available given the block

53



CHAPTER 4

distribution vector p. In order to distinguish among different coding schemes, we will

refer to this probability as P̄p when the first coding scheme is used, and when the second

scheme is used, P̂p will be used.

The probability of content being available when network coding is not used, Pp,

can be obtained by simply using the inclusion-exclusion principle, which is shown as

follows:

Pp = 1−
n−1∑
i=1

(−1)i+1

(
n

i

) l∏
j=1

(
n−i
pj

)(
n
pj

)
with the convention that

(
i
j

)
= 0 when i < j.

We then take the two network coding schemes into consideration. For the first

coding scheme, we first consider the case that pi = 1, 1 ≤ i ≤ l, and in this case, we

have

Lemma 4.5 The probability of content being available, denoted by P̄p, is given as fol-

lows:

P̄p ≥ max

{
1−

(
1

q − 1
− n

qn − 1

)∑l
i=1 pi−n+1

, 0

}
(4.4)

Proof. Please refer to Appendix B.5.

We then extend the above result by allowing a peer to own more than one block.

Given a block distribution vector p = [p1, p2, . . . , pl], where 1 ≤ pi < n, we can construct

a vector p′ = [p′1, p
′
2, . . . , p

′∑l
i=1 pi

], which satisfies that p′i = 1, and

Theorem 4.6

P̄p ≥ P̄p′ ≥ max

{
1−

(
1

q − 1
− n

qn − 1

)∑l
i=1 pi−n+1

, 0

}
(4.5)

Proof. Please refer to Appendix B.6.

In addition, we also want to quantify to what degree the availability of content is

enhanced by this network coding scheme.

54



4.2 Analyzing the Effect of Network Coding

Theorem 4.7 For any block distribution vector p which satisfies
∑l

i=1 pi = m ≥ n,

we have

1− Pp
1− P̄p

≥ (n−m+ c(n− 1))n−c(q − 1)m−n+1 (4.6)

where c = d m
n−1e − 1.

Proof. Please refer to Appendix B.7.

Remark. From the above theorem we can easily derive that

1− Pp
1− P̄p

≥ n− 1

n
(q − 1)

since
1− Pp
1− P̄p

≥ (n−m+ c(n− 1))n−c(q − 1)m−n+1

≥ (n− (c(n− 1) + 1) + c(n− 1))n−c(q − 1)c(n−1)+1−(n−1)

= (n− 1)(q − 1)(c−1)(n−1)+1n−c

≥ n− 1

n
(q − 1)

We now consider the case in which the second coding scheme is used. Denote the

probability of content being available given the block distribution vector p by P̂p. At

this moment, we are only able to give the comparison between Pp and P̂p when all the

elements of p are equal to 1, and in this case, we have

Theorem 4.8

P̂p ≥ Pp (4.7)

Proof. Please refer to Appendix B.8.

Theorem (4.7) and (4.8) demonstrate that both coding schemes could improve the

content availability, and the improvement induced by the first coding scheme is rather

55



CHAPTER 4

substantial: if there are no less than n blocks in the swarm, using the first coding

scheme could reduce the probability of content being unavailable by a factor of at least

(n−1)(q−1)
n .

4.3 A Simple Sparse Network Coding Scheme

Although both network coding schemes exhibit performance enhancement with respect

to bandwidth utilization and content availability, there are intrinsic drawbacks in both

schemes which render them infeasible to be incorporated into BitTorrent. The first

coding scheme, i.e., the one using all plain blocks to generate coded blocks, incurs a very

high coding complexity and disk operation overhead, and the potential of improving

content availability in the second coding scheme cannot be fully exploited due to the

slow generation rate of new blocks.

To show the complexity of computation and the overhead of disk operations in-

volved in the first coding scheme, consider a peer intends to split a k bytes file into n

blocks for distribution. Since a coded block is a linear combination of all n plain blocks,

this peer should read k bytes from disk and perform k multiplications and (n−1)k
n ad-

ditions for each uploading; hence this peer should read at least nk bytes and perform

nk multiplications and (n − 1)k additions to render content available. While in Bit-

Torrent, this peer needs to read only k bytes and perform no arithmetic calculations.

Moreover, the decoding process is also a computation-intensive operation. When a peer

has downloaded n linearly independent coded blocks, in order to recover the original

file, it should first compute the inverse of the coding matrix, with a time complexity

of O(n3), and then perform nk multiplications and (n− 1)k additions. In BitTorrent,

no computation is needed in order to recover the original file. As a result, when the

distributed file is very large, e.g., with a size of 1 GB, the overhead incurred by this

coding scheme is not acceptable for most users.

The second network coding scheme postulates a high heterogeneity of blocks. In

56



4.3 A Simple Sparse Network Coding Scheme

other words, the number of different coded blocks should be kept at a high level. In

order to achieve a high block heterogeneity, the generation of new blocks must be fast.

In the second coding scheme, however, since a coded block consists of only two plain

blocks, a peer can generate a new block only after it has downloaded at least two coded

blocks, each sharing a common underlying plain block with another one. If a peer has

downloaded n
2 blocks, each with two underlying plain blocks not contained in other n

2−1

blocks, then it has to download one more block in order to generate the first new coded

block. Thus, in the worst case, a peer may make no contribution to the improvement

of block heterogeneity in half of its download time. More importantly, as a peer can

generate only one new coded block from two coded blocks which share one common

underlying plain block, many coded blocks generated at different peers are identical,

which significantly restricts the block heterogeneity. Although the first problem may be

addressed by the block request policy which preferentially requests blocks from which

new coded blocks can be generated, the second situation is unavoidable.

In order to accelerate the generation of new blocks and thus improve the heterogene-

ity of blocks, we propose another simple but effective sparse network coding scheme.

Unlike the aforementioned second network coding scheme, in which a coded block is

generated from two random plain blocks, we stipulate that a plain block can only be

combined with another fixed plain block for generating coded blocks, and in this way,

any two coded blocks either have the same two underlying plain blocks or share no

common plain blocks. The rationale behind using two blocks for generating new coded

blocks is that a peer only needs to download two coded blocks with the same underlying

plain blocks in order to generate new coded blocks, which leads to a high generation

rate of new coded blocks.

To specifically describe how the proposed network coding scheme works, suppose a

peer intends to distribute a file with n plain blocks, each with a size of k bytes. With a

little abuse of notations, we represent these n plain blocks by a set S = {b1, b2, . . . , bn}.

57



CHAPTER 4

This peer then generates n coded blocks in the following way. It first groups the n

plain blocks into n
2 disjoint sets, each with two plain blocks that are not included in

other sets. For each set s = {bi, bj}, this peer selects two linearly independent vectors,

ci = [ci1, ci2] and cj = [cj1, cj2], and in both vectors, all elements are non-zero and

selected from a finite field. Then two new blocks are generated by:

 b′i = ci1bi + ci2bj

b′j = cj1bi + cj2bj

(4.8)

In this way, the n coded blocks generated by this peer can be used to reconstruct the

original file.

Once a peer has downloaded two coded blocks, denoted by b′i and b′j , with the

same underlying plain blocks, it can use b′i and b′j to recover the two underlying plain

blocks, and further generate a new coded block from b′i and b′j . Since the two coding

coefficients of each coded block are randomly selected from a finite field, the probability

that the coding coefficient vectors of two coded blocks are linearly dependent is 1
q−1 ,

which implies that any two coded blocks which are generated by different peers and

have the same underlying plain blocks can be decoded with a probability of q−2
q−1 .

We now give an analysis on the overhead of the proposed coding scheme. Since a

peer can generate a new block only when it has downloaded two blocks with the same

underlying plain blocks, the number of new blocks generated at this peer is n
2 , and thus

this peer needs to read n blocks from the disk and perform nk multiplications and nk
2

additions. Moreover, the plain blocks can be obtained by solving a linear system of

equations with the same structure as equation (4.8), which has the same computation

complexity with the generation of a new block. In order to recover the original file,

one only needs to solve n
2 such linear systems of equations. Therefore, the proposed

coding scheme incurs an overhead with a complexity of O(nk), and this complexity

is much less than that of the overhead incurred in the first coding scheme, which is

58



4.3 A Simple Sparse Network Coding Scheme

O(n2k). Moreover, the overhead of the proposed coding scheme can be further reduced

by applying lazy coding [76]. By using lazy coding, a peer creates a virtual code block

after downloading two coded blocks with the same underlying blocks, and generates the

corresponding real code block upon request. In this way, the blocks which have not been

requested during a peer’s lifetime are not generated, which reduces both computation

and disk read operations.

We then analyze the probability of a peer with i blocks is of no use to another peer

with j blocks, i.e., Pr(Ai,j), under the proposed coding scheme. It is easy to see that

Pr(Ai,j) takes the largest value when the peer with j blocks can recover j plain blocks,

i.e., each of j blocks has the same underlying plain blocks with another one. In this

case, Pr(Ai,j) =
(ji)
(ni)

, which is equal to that in original BitTorrent swarms. Therefore,

the usability of peers is enhanced with the proposed network coding scheme.

The proposed coding scheme is also able to improve the content availability. With-

out loss of generality, we stipulate that under the proposed coding scheme, the plain

block b2i−1 can only be combined with block b2i to generate new blocks. For each plain

block bi in a swarm without network coding, we replace it with b′i in the following way:

b′i =

 c1bi−1 + c2bi, if i mod 2 = 0

c1bi + c2bi+1, otherwise

Furthermore, in the replacement, if a peer owns both b2i and b2i−1, the two coded

blocks used to replace these two plain blocks must have linearly independent coding

coefficient vectors.

We now demonstrate how the probability of content being available varies as a

result of replacement. Consider two plain blocks b2i and b2i−1. If both blocks reside

at the same peer before the replacement, the availability of them remains the same

after the replacement. If there is no peer owning both blocks before the replacement,

the probability of both blocks being available before replacement is max{0, 1 − 21−t},

59



CHAPTER 4

where t is the number of peers owning either b2i or b2i−1, and after the replacement,

this probability will become max{0, 1 − q1−t}, where q is the size of the finite field.

Therefore, it can be easily shown that the probability of content being available after

the replacement is no smaller than that before replacement, and we can thus conclude

that although the proposed coding scheme is very simple, it can improve the availability

of content.

4.4 Block Scheduling Algorithm

In order to integrate the proposed coding scheme with BitTorrent, we need to modify the

block scheduling policy of BitTorrent as the original policy does not support network

coding. Since the original rarest-first block scheduling policy of BitTorrent exhibits

a high bandwidth utilization, in the hope of reserving this nice feature, we propose

a variant of the original rarest-first policy, which computes the importance of blocks

according to their underlying plain blocks. The proposed block scheduling algorithm

is shown in Algorithm 1.

The main function of Algorithm 1 is to determine which block located at a specific

neighbor is to be requested. Given the block availability information of a neighbor id,

the local peer assigns a weight to each useful block located at id, and then selects a

block with the least weight for request. The weight of a block b is determined according

to the distribution of the blocks with the same underlying plain blocks as b among all

neighbors. Specifically, in the execution of the algorithm, each time a block with the

same underlying plain blocks as b is found, the weight of b will be increased by a

value which is determined according to whether the new found block and b are linearly

independent or not. The weight of b will be increased by β if the new found block and b

are linearly independent, and α otherwise. We also stipulate that β < α since we want

to give preference to blocks which have less linearly dependent counterparts in other

neighbors.

60



4.4 Block Scheduling Algorithm

Algorithm 1: Block scheduling algorithm

Input: Block availability information at each neighbor, and the neighbor to
which the local peer will send request, denoted by id

foreach coded block i at id do
weighti = 0;
if this block is useful to local peer then

foreach neighbor nj do
if there is a coded block k at nj with the same underlying plain
blocks as i then

if there exists a non-zero c such that i = ck then
weighti = weighti + α;

end
else

weighti = weighti + β;
end

end

end

end

end
Randomly select a block with the smallest non-zero weight, i.e., an element of
the set {r|0 < weightr ≤ weightr′ ,∀r′ : weightr′ > 0};
Send a request for this block to id;

To see the reason why β < α, consider a scenario that there are two blocks, b and

b′, with the same underlying plain blocks at neighbor id, both of which are useful to

the local peer, and in other neighbors, there is only one block b′′ which has the same

underlying plain blocks as b and satisfies b′′ = ib, where i is non-zero and selected from

the finite field. In this case, it is more appropriate to request b′ than to request b as b

and b′′ are actually the same and thus a more copy of b′ would result in the identical

number of copies of b and b′. In the proposed algorithm, the existence of b′′ would

result in the weight of b and b′ being increased by α and β respectively, and thus in

order to assign a higher priority to b′, β must be smaller than α since the block with

smallest weight would be requested, as specified in the algorithm.

We then discuss the time complexity of Algorithm 1. In the proposed coding scheme,

the n plain blocks are grouped into n
2 sets. Without loss of generality, we consider a

61



CHAPTER 4

coding scheme in which the 2i-th plain block can only be combined with (2i + 1)-th

plain block to generate a coded block. Thus each peer is able to store the downloaded

coded blocks in an array in the way that a coded block generated from j-th plain

block and (j + 1)-th plain block is stored at the j-th or (j + 1)-th position.1 Under

this coding scheme, the second “if” statement can be carried out in constant time,

and the third “if” statement can also be carried out in constant time as it is only a

determination of the linear dependence of two 2-dimension vectors. Moreover, the first

“if” statement is a combination of the second and third “if” statements. Therefore, all

three “if” statements can be carried out in constant time, and thus the time complexity

of Algorithm 1 is O(mn), where m is the number of neighbors and n is the number of

coded blocks at neighbor id.

4.5 Performance Evaluation

In this section, computer simulations are performed to evaluate the performance of

our proposed scheme. In our experiments, four BitTorrent implementations, which

are 1) the original BitTorrent, 2) BitTorrent with adaptive neighbor selection [44], 3)

BitTorrent with FEC and 4) BitTorrent with the proposed coding scheme, are compared

with respect to the amount of control messages, content availability and bandwidth

utilization2. For simplicity, the four implementations are respectively represented by

“Pure BT”, “Adap BT”, “FEC”, and “BT+NC” in the figures of the following sections.

The simulation results reveal that the proposed coding scheme is very effective and

greatly outperforms the other three implementations with regard to content availability

1For any other approach of block combination, we can renumber the plain blocks such that the
2i-th plain block is combined with (2i + 1)-th plain block after renumbering, and when all the plain
blocks have been decoded, the original file can be reconstructed by reversely renumbering the plain
blocks. In this regard, all approaches of block combination are equivalent.

2The reason we choose the second and third implementations for comparison purposes is that
they can both enhance the performance of BitTorrent swarm in some specific aspect, as we will show.
Besides, we also have considered the modifications proposed in [79, 56]. However, as we mentioned
before, if all peers in the swarm run the same BitTorrent variation (either [79] or [56]), the overall
bandwidth utilization will be lower than that of peers running the original BitTorrent clients [56, 20].

62



4.5 Performance Evaluation

at a cost of a very slight increase in the control overhead.

4.5.1 Experimental Setup

As a large peer population and a long swarm lifetime could more accurately reveal

the essential characteristics of the swarms, we deploy multiple swarms where a file

with a size of 100MB is distributed, and 5000 peers with a homogeneous bandwidth of

50KB/s participate in the download. Peers arrive the swarm at a rate of λ, according

to a Poisson process, and abort the download at a rate of θ. The residence time of

publisher 1 is 5 hours, which is enough for the swarm entering the steady-state, and all

the other seeds immediately leave the swarm as soon as they complete the download.

All the seeds, including the publisher, would not return to the swarm after departure.

Hence there is no seed after the departure of the publisher. The size of a block is set

to 128KB, and thus the total number of the plain blocks in the swarm is 800. The

other parameters used in the simulation are the default value in BitTorrent settings.

The variables in Algorithm 1, i.e., α and β, are set to 2 and 1, respectively, and the

impact of the different values of α and β is discussed in Section 4.5.6. The finite field

used in simulations is GF(256).

In the FEC implementation of BitTorrent, besides the 800 plain blocks, the pub-

lisher also generates 50 additional blocks, each being a linear combination of all plain

blocks, such that any 800 blocks can be used to reconstruct the original file. The rea-

son why the number of additional blocks is set to 50 is twofold. First, as explained in

Section 4.3, the overhead of computation and disk operation incurred in the process of

reconstruction grow quickly as the increase of the number of additional blocks, which

has a negative impact on the feasibility. Second, the increase of the number of addi-

tional blocks may reduce the opportunity of a block being requested, which in turn

decreases the survival time of blocks.

1we use publisher to represent the seed initiating the swarm.

63



CHAPTER 4

4.5.2 Control Overhead

 0

 0.1

 0.2

 0.3

 0.4

 0.5

60 90 120 150 180

Pe
rc

en
ta

ge
 o

f 
th

ro
ug

hp
ut

Peer inter-arrival interval (unit: second)

Pure BT
Adap BT
FEC
BT+NC

Figure 4.1: The percentage of throughput composed of control overhead in different
implementations of BitTorrent

Fig 4.1 describes the control overhead incurred by different implementations of

BitTorrent. In all four implementations, the control overhead is mainly caused by the

announcement of the availability of new downloaded or generated blocks. From this

figure we can see that although the proposed coding scheme incurs a slight higher

control overhead than the other three implementations do, it is still practically feasible

as the amount of control overhead is very limited, only accounting for less than 0.5% of

the total throughput. The reason to the higher overhead of the proposed coding scheme

is that in other three implementations, a peer needs to only tell its neighbors the id of

the newly downloaded block in order to announce the availability of this block, while

in the implementation with the proposed coding scheme, the coding coefficients of the

two plain blocks also have to be transmitted in order to announce the availability of a

coded block. As the reduction of peer arrival rate, the control overhead incurred by the

proposed coding scheme experiences a moderate decrease, and meanwhile narrows the

difference between itself and the overhead incurred by other implementations. This is

due to that the decrease of peer arrival rate reduces the number of neighbors of each

64



4.5 Performance Evaluation

peer, and thus decreases the amount of transmitted control messages.

4.5.3 Content Availability

Let R(t) denote the dimension of the space spanned by the set of coding coefficient

vectors of the blocks existing in the swarm at time t. If R(t) = n, where n is the

number of plain blocks of the original file, then the content is available at time t, since

the original file can be recovered from the existing coding blocks.

Then we intend to show the length of the period during which the availability of

content equals 1 since it can decide the service capability of the swarm, i.e., the number

of peers able to complete the download. For simplicity of expression, we use “active

period”1 to represent the period during which the content is available. The longer

the active period is, the more peers the swarm can serve. Since in the simulations all

the seeds would never return after departure, the active period is actually the interval

between the time that the swarm is initiated and the first time that Rank falls below

n. Suppose the publisher initiates the swarm at time 0. Then the length of the active

period of this swarm, denoted by LAP , is

LAP = inf{t|R(t) < n} (4.9)

The lengths of the active periods in different BitTorrent implementations are shown

in Fig. 4.2. From Fig. 4.2 it is easy to see that, with respect to the length of the active

period, the implementation with the proposed coding scheme performs better if not

the same as the other three implementations in all scenarios. When 1/θ = 1800s, the

proposed coding scheme could increase the length of the active period by about 10

hours, provided 1/λ = 60s, and for other peer arrival rates, all four implementations

exhibit the same performance regarding the length of the active period. In the cases

1The “active period” defined here is in essence the same as the counterpart defined in Chapter 3.

65



CHAPTER 4

 0

 2

 4

 6

 8

 10

 12

 14

 16

60 90 120 150 180

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

un
it:

 h
ou

r)

Peer inter-arrival interval (unit: second)

Pure BT
Adap BT
FEC
BT+NC

(a) 1/θ = 1800s

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

60 90 120 150 180

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

un
it:

 h
ou

r)

Peer inter-arrival interval (unit: second)

Pure BT
Adap BT
FEC
BT+NC

(b) 1/θ = 3600s

 0

 20

 40

 60

 80

 100

 120

 140

60 90 120 150 180

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

un
it:

 h
ou

r)

Peer inter-arrival interval (unit: second)

Pure BT
Adap BT
FEC
BT+NC

(c) 1/θ = 5400s

 0

 20

 40

 60

 80

 100

 120

 140

60 90 120 150 180

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

un
it:

 h
ou

r)

Peer inter-arrival interval (unit: second)

Pure BT
Adap BT
FEC
BT+NC

(d) 1/θ = 7200s

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

60 90 120 150 180

L
en

gt
h 

of
 th

e 
ac

tiv
e 

pe
ri

od
 (

un
it:

 h
ou

r)

Peer inter-arrival interval (unit: second)

Pure BT
Adap BT
FEC
BT+NC

(e) 1/θ =∞

Figure 4.2: The lengths of the active periods in different implementations of BitTorrent

66



4.5 Performance Evaluation

that 1/θ ≥ 3600s, the content keeps available during the whole lifetime of the swarms1

with the proposed coding scheme, provided that the peer inter-arrival interval equals

60s. In contrast, in order to reserve the availability of content during the lifetime of

the swarms with FEC implementation when 1/λ = 60s, it should be satisfied that

1/θ ≥ 5400s, while under the same condition, the content is always available in the

swarms with the proposed coding scheme as long as 1/λ ≤ 90s. Moreover, if peers

never abort the download, i.e., 1/θ =∞, in the swarms with 1/λ ≤ 120s, the proposed

coding scheme is able to render the content available all the time, and in the swarm

with 1/λ = 150s, the proposed coding scheme enables the content to remain available

for a long time, namely 50 hours, after the departure of the publisher. By contrast,

the content in the swarms with the other three BitTorrent implementations becomes

unavailable as soon as the publisher departs in the cases that 1/λ ≥ 120s.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
n
ta

g
e 

o
f 

p
ee

r 
p
o
p
u
la

ti
o
n
 (

C
D

F
)

Number of peers

1/λ=60s

1/λ=90s

1/λ=120s

1/λ=150s

1/λ=180s

Figure 4.3: The CDF of peer population

We then show how many peers in the swarm are necessary in order to render content

available by investigating the distribution of peer population before the content being

1The lifetime of a swarm is roughly the product of the peer inter-arrival interval and the number of
peers in the swarm. Since the number of peers in each swarm in 5000, the lifetimes of the swarms with
the peer inter-arrival interval being 60s, 90s, 120s, 150s and 180s are roughly 83 hours, 125 hours, 167
hours, 208 hours and 250 hours, respectively.

67



CHAPTER 4

unavailable. Fig. 4.3 illustrates the distributions of peer population in the swarms with

no peer aborting the download before completion. Since the proposed coding scheme

has little effect on the probability distribution of peer population in the swarm1, only

the probability distribution of peer population in the swarms with the proposed coding

scheme is shown in Fig. 4.3. As shown in Fig. 4.2, in the original BitTorrent swarm, the

content soon becomes unavailable after the departure of the publisher when 1
λ ≥ 90s,

and it can thus be inferred that without the presence of seeds, the content tends to

be unavailable in the original BitTorrent swarms when the number of peers in the

swarm is less than 40. In contrast, If the proposed coding scheme is integrated with

BitTorrent, the content is highly likely to be available even there are only less than 15

peers in the swarm, as Fig. 4.2 demonstrates that even when 1
λ = 150s, the content

remains available in nearly 50 hours after the departure of the publisher. Therefore,

the proposed coding scheme is very effective in regard to improving the availability of

content in the swarm with an unpopular file distributed, i.e., a low peer arrival rate.

4.5.4 Bandwidth Utilization

We then discuss bandwidth utilization in different implementations of BitTorrent. The

distributions of download time under different peer arrival rates, denoted by λ, are

given in Fig. 4.4. The download time in FEC implementations is not provided since it

has almost the same distribution as peer download time in original BitTorrent. From

this figure we can obtain that when 1/λ = 60s, 28% of peers complete the download in

2700s in the swarm with the proposed coding scheme, while in the BitTorrent swarm,

peers with the download time less than 2700s only account for about 3 percents of peer

population. However, under the same peer arrival rate, the average download time

of peers in swarm with the proposed coding scheme is very close to that of peers in

1As we will show in next section, the download time keeps nearly unchanged when using the
proposed coding scheme as BitTorrent itself is very effective with regard to bandwidth utilization, and
thus the peer population in the swarm is also unchanged when using the proposed network coding
scheme.

68



4.5 Performance Evaluation

BitTorrent swarm, and the “Adap BT”, which exhibits the best performance among all

the implementations, only decreases the average download time by less than 1 minutes,

as shown in Fig. 4.5. This is because the BitTorrent protocol itself is very effective in

respect of bandwidth utilization, and thus there is little space for improvement [13].

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2400  2600  2800  3000  3200  3400  3600

P
er

ce
n
ta

g
e 

o
f 

p
ee

r 
p
o
p
u
la

ti
o
n

 (
C

D
F

)

Download time (unit: second)

1/λ=60s

1/λ=90s

1/λ=120s

1/λ=150s

(a) BitTorrent

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2400  2600  2800  3000  3200  3400  3600

Pe
rc

en
ta

ge
 o

f 
pe

er
 p

op
ul

at
io

n 
(C

D
F)

Download time (unit: second)

1/λ=60s
1/λ=90s
1/λ=120s
1/λ=150s

(b) Adap BT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2400  2600  2800  3000  3200  3400  3600

P
er

ce
n
ta

g
e 

o
f 

p
ee

r 
p

o
p

u
la

ti
o

n
 (

C
D

F
)

Download time (unit: second)

1/λ=60s

1/λ=90s

1/λ=120s

1/λ=150s

(c) BT with proposed coding scheme

Figure 4.4: Distributions of download time under different peer arrival rates

In Fig. 4.4, only the download times of peers who complete the download are

gathered, and the number of peers completing the download is shown in Fig. 4.6.

Nevertheless, when taking into consideration the peers which have not completed the

download at the time content becomes unavailable, we can say that the proposed coding

scheme could indeed reduce the download time of peers. Specifically, when 1/λ ≥

69



CHAPTER 4

 2500

 2600

 2700

 2800

 2900

 3000

60 90 120 150

A
ve

ra
ge

 d
ow

nl
oa

d 
tim

e
 (

un
it:

 s
ec

on
d)

Peer inter-arrival interval (unit: second)

Pure Bt
Adap BT
BT+NC

Figure 4.5: Average download time of
peers

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

60 90 120 150
N

um
be

r 
of

 c
om

pl
et

ed
 d

ow
nl

oa
ds

Peer inter-arrival interval (unit: second)

Pure Bt
Adap BT
BT+NC

Figure 4.6: Number of peers completing
the download

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2400  2600  2800  3000  3200  3400  3600

Pe
rc

en
ta

ge
 o

f 
pe

er
 p

op
ul

at
io

n 
(C

D
F)

Download time (unit: second)

1/θ=∞
1/θ=7200s
1/θ=5400s
1/θ=3600s

(a) BitTorrent

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2400  2600  2800  3000  3200  3400  3600

Pe
rc

en
ta

ge
 o

f 
pe

er
 p

op
ul

at
io

n 
(C

D
F)

Download time (unit: second)

1/θ=∞
1/θ=7200s
1/θ=5400s
1/θ=3600s

(b) Adap BT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2400  2600  2800  3000  3200  3400  3600

P
er

ce
n
ta

g
e 

o
f 

p
ee

r 
p

o
p

u
la

ti
o

n
 (

C
D

F
)

Download time (unit: second)

1/θ=∞

1/θ=7200s

1/θ=5400s

1/θ=3600s

(c) BT with proposed coding scheme

Figure 4.7: Distribution of peers’ download time under different download abortion rates

70



4.5 Performance Evaluation

90s, as shown in Fig. 4.2, the active period of swarms with the proposed coding

scheme is much longer than the active period of swarms with the other three BitTorrent

implementations, which means that the number of peers able to complete the download

experiences a great increase when the proposed coding scheme is adopted, as shown

in Fig. 4.6. Since after the content becomes unavailable, many peers may choose to

wait for a seed to supplement the lost blocks, our coding scheme could eliminate or

significantly decrease this waiting time by prolonging the length of the active period

and thereby enabling more peers to complete the download before content becomes

unavailable. In this regard, the download time of peers is decreased by the proposed

coding scheme.

We can also draw from this figure that in the swarm with the proposed coding

scheme, the increase of peer inter-arrival interval, 1/λ, from 60s to 90s, slightly increases

the peer download time. The reason to the increase of download time is that, as we

will show in Fig. 4.8, the generation rate of new blocks slows down due to the increase

of 1/λ. The continual increase of 1/λ, however, has little effect on the download time.

In the swarms with the other two BitTorrent implementations, it can be seen that

the increase of peer inter-arrival interval leads to an increase in the variance of peer

download time.1

We also investigate the effect of peers aborting the download on the download time

of peers. Fig. 4.7 illustrates how peers’ abortion of download affects the distribution of

the download time of peers which complete the download in swarms with 1/λ = 60s.

As in Fig. 4.4, the distribution of peer download time in FEC implementation is also

not provided in this figure since it is roughly the same as that in original BitTorrent.

From this figure, we can see that the peers’ abortion of download hardly affects the

1As shown in Fig. 4.2, the active periods in BitTorrent swarms with 1/λ ≥ 1.2s last only 5 hours,
and thus there are roughly 18000λ peers able to complete the download in these swarms, which may
lead to the slight difference between the distribution of peer download time in these swarms and the
distribution in BitTorrent swarms with 1/λ ≤ 90s. For the same reason, we do not plot the distribution
of peer download time in both implementations with 1/λ = 180s.

71



CHAPTER 4

peer download time in BitTorrent swarm, but incurs a slight increase in the average

download time of “Adap BT” peers. For the swarm with the proposed coding scheme,

the distribution of peer download time keeps almost unchanged when 1/θ varies from

∞ to 5400s. This can be attributed to the high block diversity in the corresponding

swarms: once a peer aborts the download, its neighbors could always find alternatives

from which they can download the desired blocks. When 1/θ decreases to 3600s, the

download time experiences a slight increase, and this is probably because the com-

paratively high download abortion rate may lead to a degraded block diversity, which

renders it not so easy for peers to find the alternative to the blocks of failed neighbors

from other neighbors.

4.5.5 Decoding Process

In the proposed coding scheme, two coded blocks consisting of the same plain blocks

can be used to reconstruct the two corresponding plain blocks and generate a new coded

block. Consequently, each peer would generate n/2 new coded blocks in the download

process, and it makes more contribution to improving block diversity to generate new

coded blocks earlier. In this section, we examine the generation of new blocks under

different peer inter-arrival intervals, denoted by 1/λ, and show that new coded blocks

are generated at a high rate, which provides a sound evidence to the improvement of

content availability induced by the proposed coding scheme.

In the simulations, the number of plain blocks is 800 since the file for distribution

has a size of 100MB and the block size is 128KB. We explore how many blocks have been

downloaded before a constant number of new coded blocks being generated at each peer

and plot its distribution in Fig. 4.8. The line labeled by “Top-c” corresponds to the

distribution of the number of blocks that have been downloaded before the first c new

coded blocks being generated. From this figure we can see that the generation of new

blocks is relatively slow at the start of the download: there are roughly 50 blocks that

have been downloaded before the generation of the 10-th new block when 1/λ = 60s,

72



4.5 Performance Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  40  80  120  160  200  240  280  320  360  400  440

P
er

ce
n
ta

g
e 

o
f 

p
ee

r 
p

o
p

u
la

ti
o
n

 (
C

D
F

)

Number of downloaded blocks

Top-10, 1/λ=60s
Top-10, 1/λ=90s
Top-20, 1/λ=60s
Top-20, 1/λ=90s
Top-40, 1/λ=60s
Top-40, 1/λ=90s
Top-80, 1/λ=60s
Top-80, 1/λ=90s
Top-160, 1/λ=60s
Top-160, 1/λ=90s

Figure 4.8: The generation rate of new blocks under different peer inter-arrival intervals

and this number goes to about 60 when the peer inter-arrival interval increases to 90

seconds. This is easy to understand since when a peer has only a few blocks, it is

less likely for this peer to hold blocks with the same underlying plain blocks. As the

download proceeds, the generation of new blocks also accelerates: most peers have

generated more than 80 new blocks when they complete the download of the first 240

blocks, and when a peer has downloaded 380 blocks, it is almost certain that this peer

has already generated more than 160 new blocks. Therefore, we come to a conclusion

that although the proposed coding scheme stipulates that only two fixed plain blocks

can be combined, this stipulation exerts little negative impact on the diversity of blocks.

The increase of peer inter-arrival interval has a negative effect of the generation of

new blocks. As shown in Fig 4.8, before the generation of a constant number of new

blocks, a peer in the swarm with 1/λ = 90s downloads about 20 more blocks than

a peer in the swarm with 1/λ = 60s does. This is also easy to understand since the

increase of peer inter-arrival interval would lead to the reduction in the number of online

peers, which in turn slows down the generation of new blocks. The deceleration of the

generation of new blocks also explains the increase of peer download time shown in Fig.

4.4c. We also obtain from the figure that this negative effect will weaken as more blocks

73



CHAPTER 4

are downloaded. Moreover, as we observe from the simulations, when 1/λ ≥ 90s, the

continual increase of peer inter-arrival interval exerts litter impact on the generation

of new blocks, which also coincides with that the peer download time keeps nearly

unchanged when 1/λ varies from 90s to 150s, as can be observed in Fig. 4.4c. For this

reason, we do not plot in Fig. 4.8 the distribution for swarms with 1/λ ≥ 120s.

4.5.6 Different values of α and β

The preceding simulations are run under the settings that α and β equal to 2 and 1

respectively. In this section, we explore whether different values of α and β influence

the performance of the proposed coding scheme. The lengths of the active periods and

the average download times when α and β take different values are demonstrated in

Fig. 4.9 and 4.10.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

60 90 120 150 180

L
en

g
th

 o
f 

th
e 

ac
ti

v
e 

p
er

io
d

 (
u

n
it

: 
h

o
u
r)

Peer inter-arrival interval (unit: second)

α=3, β=2
α=2, β=1
α=3, β=1
α=4, β=1

Figure 4.9: The impact of different values of α and β on the lengths of the active periods

From Fig. 4.9, we can obtain that concerning the length of the active period, the

swarms with different values of α and β perform a little differently in the case that

the peer inter-arrival interval, i.e., 1/λ, is 150s, while in other cases that the peer

inter-arrival interval is less than or equal to 120s, different values of α and β exert no

influence on the length of the active period. Meanwhile, it can be observed from Fig.

74



4.5 Performance Evaluation

4.10 that the average download time keeps unchanged as the variation of the ratio of α

to β. Therefore, we can conclude that the different values of α and β have little impact

on the proposed coding scheme, with respect to the length of the active periods and

the average download time.

 0

 500

 1000

 1500

 2000

 2500

 3000

60 90 120 150

D
o

w
n

lo
a
d
 t

im
e
 (

u
n
it

: 
se

c
o

n
d

)

Peer inter-arrival interval (unit: second)

α=3, β=2
α=2, β=1
α=3, β=1
α=4, β=1

Figure 4.10: The impact of different values of α and β on the average download times

The explanation to the above observations is that the new coded blocks generated

at peers will always have a higher priority to be requested than the old ones, as long

as α > β. When a peer generates a new coded block b, it is unlikely that there exists

a block b′ in the swarm such that b = cb′, where c is a non-zero element selected from

the finite field. As a result, when one neighbor of this peer, A, executes Algorithm 1,

if block b is useful to peer A, this block will be assigned with a weight of mβ, where

m is the number of blocks which have the same underlying plain blocks as b and are

owned by the neighbors of peer A. Since

mβ ≤ m1α+m2β,

∀α,m1,m2 : α > β, 0 ≤ m1, 0 ≤ m2,m1 +m2 = m

the block b has the highest priority to be requested among all the m blocks. Conse-

75



CHAPTER 4

quently, the new generated coded blocks can be disseminated quickly after birth, which

not only contributes to the block diversity, but also improves the bandwidth utilization

of the peers generating these blocks.

4.6 Conclusion and Discussion

Although there are numerous BitTorrent swarms deployed in BitTorrent, many of them

suffer from content unavailability. We aim to investigate the feasibility of using network

coding to improve the availability of content in this chapter. We first analyze the impact

of network coding on the availability of content and the usability of a peer to other

peers, and show that network coding has the potential to ameliorate the availability of

content of BitTorrent swarms.

In order to leverage this potential of network coding and keep the overhead incurred

at a low level, a simple sparse network coding scheme is proposed, in which a plain

block can only be combined with another specific plain block to generate a new coded

block. Since only two plain blocks are involved in the generation of new blocks, the

computation complexity and disk operation overhead in the coding process are kept at a

low level, and new blocks can be generated at a peer when it has downloaded two coded

blocks with the same underlying plain blocks, which implies that the generation rate

of new blocks is very fast and thus the block heterogeneity in the swarm is improved.

A block scheduling algorithm based on the BitTorrent’s built-in rarest-first policy is

presented to adapt BitTorrent to the proposed coding scheme.

The effectiveness of the proposed coding scheme on the availability of content in the

BitTorrent swarms has been demonstrated through extensive simulations and perfor-

mance comparisons. With the proposed network coding scheme, the duration of period

during which no seed is present but content is available is greatly prolonged, and only

a few peers are enough to render the content available.

The proposed coding scheme may also find its application in peer-assisted online

76



4.6 Conclusion and Discussion

hosting systems [63] [95]. Since with the proposed coding scheme, only a few peers

are enough to render the content available in a swarm, the server could reduce the

bandwidth allocated to this swarm, and uses the saved bandwidth resource to serve

more swarms. In such a way, both the service capability of the server and the service

quality perceived by peers are enhanced.

77



CHAPTER 4

78



Chapter 5

A Detailed Survey on a Large Private

BitTorrent Community

5.1 Introduction

As we identified in Section 2.4, there have been several studies on private BitTorrent

communities [102, 22, 73, 46]. However, the behaviors of users in private BitTorrent

have not been examined comprehensively in the existing studies , and there is lack of

an analysis on the inter-relationships among different respects of user behavior.

This chapter presents a thorough survey on one of the largest private BitTorrent

community, CHDBits [9]. We study the torrent and user behavior from a variety of

aspects, and present an in-depth analysis of user behavior, thereby bridging the gap

existing in the literature [102, 22, 73, 46]. The main contributions of this study are

summarized as follows.

We first present a detailed analysis of the torrents of CHDBits. We find that

although there are a great number of torrents with a very long age, 95 percent of

torrents have at least one seed, showing a high content availability in CHDBits. By

studying the distribution of seeders and leechers, we show that most torrents have a

high ratio of seeders to leechers. We also investigate the download rate of users in each

torrent, and obtain that most users could download at a satisfactory rate. We then

study the user behavior from various perspectives. First, we present the distribution

of the number of users in different levels. By investigating the variation of the number

of active users in a ten-day period, we infer that a great number of users participate

in downloading and uploading as soon as they can. We also study the number of

completed downloads for each user, and observe that most users are very enthusiastic

79



CHAPTER 5

for downloading: 90 percent of users have completed the downloads of more than 16

torrents. By exploring the upload and download traffic of each user, we show that,

as a result of participation in many torrents, most users have a huge amount of both

upload and download traffic, and maintain a share ratio above 1. The seeding and

leeching time of each user are also inspected, and it is found that almost all users have

demonstrated a great willingness to serve leechers after the completion of download,

and thus achieve an extremely high ratio of seeding time to leeching time.

We finally present an in-depth analysis of user behavior by investigating the influ-

ence of user age and bandwidth on users’ participation in torrents, on user traffic and

on seeding and leeching time. We observe that compared with higher bandwidth users,

lower bandwidth users more often participated in the torrents with smaller content

sizes, and are more likely to participate in high-popularity torrents. We also obtain

that higher bandwidth users tend to participate in more torrents, and hence generate a

larger amount of traffic than lower bandwidth users. However, we find that the seeding

time of high bandwidth users does not correspond to number of torrents they have par-

ticipated in: compared with low bandwidth users, many high bandwidth users with the

similar age have spent much less time in seeding, although they may have participated

in more torrents.

The remainder of this chapter is organized as follows. In Section 5.2, we give an

introduction to CHDBits. The methodology of data collection is given in Section 5.3.

We present the survey result and the corresponding analysis in Section 5.4, and finally

conclude this chapter in Section 5.5.

5.2 CHDBits

CHDBits [9] is one of the most popular and largest private BitTorrent communities

in China. On 2011/09/07, there are more than 38,000 torrents in CHDBits, and this

number is still increasing, as each day some new torrents would be uploaded by CHDBits

80



5.2 CHDBits

users. Since most of contents distributed in CHDBits are HD movies, the corresponding

files of torrents are likely to have a large size, and by 2011/09/07, the aggregate size

of files distributed among community users has already exceeded 360 TB. In addition,

CHDBits has more than 30,000 registered users, and has contributed almost 100 PB of

Internet traffic by 2011/09/07.

Fig. 5.1 demonstrates the variation of traffic in CHDBits during the period 2011/08/28-

2011/09/06. It can be observed from this figure that CHDBits generates roughly 214

TB of upload traffic per day, which means the average aggregate upload rate of the

community exceeds 20 Gbits/s. We can also obtain from this figure that the overall

download traffic is about one quarter of the aggregate upload traffic, and this is be-

cause the download traffics of many torrents are counted at a discount, and moreover,

for many popular torrents, in a specific time period after their releases, the download

traffic is not counted at all.

 95

 96

 97

 98

 99

 100

08/28
00:00

08/29
00:00

08/30
00:00

08/31
00:00

09/01
00:00

09/02
00:00

09/03
00:00

09/04
00:00

09/05
00:00

09/06
00:00

09/07
00:00

 24

 24.2

 24.4

 24.6

 24.8

 25

A
gg

re
ga

te
 u

pl
oa

d 
tr

af
fi

c 
(P

B
)

A
gg

re
ga

te
 d

ow
nl

oa
d 

tr
af

fi
c 

(P
B

)

Time

 95

 96

 97

 98

 99

 100

08/28
00:00

08/29
00:00

08/30
00:00

08/31
00:00

09/01
00:00

09/02
00:00

09/03
00:00

09/04
00:00

09/05
00:00

09/06
00:00

09/07
00:00

 24

 24.2

 24.4

 24.6

 24.8

 25

A
gg

re
ga

te
 u

pl
oa

d 
tr

af
fi

c 
(P

B
)

A
gg

re
ga

te
 d

ow
nl

oa
d 

tr
af

fi
c 

(P
B

)

Time

Figure 5.1: The variation of traffic in CHDBits during the period 2011/08/28-2011/09/06

Users in CHDBits are classified according to the download traffic, share ratio and

registration time, and different privileges are granted to users in different levels. The

details of the user hierarchy in CHDBits are shown in Table 5.1.

81



CHAPTER 5

user level requirements

d ≥ 10GB and r ≤ 0.6
d ≥ 50GB and r ≤ 0.7

Peasant d ≥ 100GB and r ≤ 0.8
d ≥ 200GB and r ≤ 0.9
d ≥ 400GB and r ≤ 1.0

User new registered user

Power user d ≥ 50GB, r ≥ 3.05, and t ≥ 5 weeks

Elite user d ≥ 120GB, r ≥ 3.55, and t ≥ 10 weeks

Crazy User d ≥ 300GB, r ≥ 4.05, and t ≥ 15 weeks

Insane user d ≥ 500GB, r ≥ 4.55, and t ≥ 20 weeks

Veteran user d ≥ 750GB, r ≥ 5.05, and t ≥ 25 weeks

Extreme user d ≥ 1TB, r ≥ 5.55, and t ≥ 25 weeks

Ultimate user d ≥ 1.5TB, r ≥ 6.05, and t ≥ 30 weeks

Nexus master d ≥ 3TB, r ≥ 6.55, and t ≥ 30 weeks

Table 5.1: User hierarchy in CHDBits. The symbols d, r and t in this table represent the
download traffic, share ratio and the time that a user has been registered, respectively.

5.3 Survey methodology

Elaborate information of torrents and users of CHDBits can be directly obtained from

the torrent publish site. For each torrent, CHDBits records the size of the corresponding

content, age, number of both seeders and leechers, and more importantly, the detailed

information of each completed download corresponding to this torrent, known as a

snatch in BitTorrent community, is also available. In addition, for each user, CHDBits

preserves the accumulative upload and download traffic, as well as the accumulative

seeding and leeching time.

The comprehensive information of torrents and users available in CHDBits signif-

icantly facilitates our survey. We crawl the CHDBits website to retrieve the afore-

mentioned information and store it into a database to simplify the analysis. The data

collection is performed multiple times during the period 2011/08/03/-2011/09/07, and

each time we were able to collect more than 5,500,000 download records, which mani-

fests a high level of participation of CHDBits users in downloading and uploading.

82



5.4 Survey results and analysis

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  12  24  36  48  60  72  84  96  108  120  132  144

Pe
rc

en
ta

ge
 o

f 
to

rr
en

ts

Age of torrent (week)

Figure 5.2: The distribution of torrent age in CHDBits (CDF)

5.4 Survey results and analysis

5.4.1 Torrent

The torrents in CHDBits are studied in the respects of torrent age, torrent size and

popularity.

5.4.1.1 Torrent evolution

As mentioned before, in CHDBits, there are more than 38,000 torrents, and each day

there are some new torrents added by users. The cumulative distribution function

(CDF) of torrent age in the snapshot 2011/09/031 is shown in Fig. 5.2, from which we

can obtain that a large fraction of torrents have a very long age, e.g., almost half of

torrents have been alive for more than 40 weeks. Another observation of this figure is

that the growth rate of the number of torrents becomes higher with time, and this is

mainly due to the increasing user number of CHDBits.

1If not otherwise stated, the data in the snapshot of CHDBits collected on 2011/09/03 will be used
in the figures presenting the status of CHDBits at a specific time. The selection of snapshot time exerts
little impact on system status, since CHDBits has run for a long time.

83



CHAPTER 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 20 21 22 23 24 25 26 27 28 29 210

Pe
rc

en
ta

ge
 o

f 
to

rr
en

ts

Content size of torrent (GB)

Figure 5.3: The distribution of the content size in CHDBits (CDF)

5.4.1.2 Distribution of torrent content size

The aggregate torrent content1 size of CHDBits is a little more than 360 TB on

2011/09/03, and the distribution of content size of each torrent in snapshot 2011/09/03

is demonstrated in Fig. 5.3. Since there are many high definition movies in CHDBits,

many torrents have a large content size. As shown in this figure, while the contents of

only about 15 percent of torrents are less than or equal to 1GB, there are more than

half of torrents with content size larger than 4 GB, and 18 percent of torrents have

a content size larger than 16 GB. Moreover, torrents with content size larger than 64

GB compose 1 percent of total torrent population. Besides, we also notice that the top

10 percent of torrents, with regard to the content size, account for almost half of the

aggregate content size.

5.4.1.3 Torrent popularity and content availability

We also investigate the popularity of the torrents by examining the number of snatches,

seeders and leechers in each torrent. As stated before, a snatch represents a completed

1The content of a torrent is the distributed file corresponding to this torrent.

84



5.4 Survey results and analysis

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 20 21 22 23 24 25 26 27 28 29 210 211 212 213 214

Pe
rc

en
ta

ge
 o

f 
to

rr
en

ts

Number

snatches
seeders
leechers

Figure 5.4: The distribution of the population of snatches, of seeders and of leechers in
CHDBits (CDF)

download of the corresponding torrent content. Thus the number of snatches of a

torrent can to a large degree reflect the popularity of this torrent. As demonstrated in

Fig. 5.4, the content of more than 95 percent of torrents has been downloaded for more

than 16 times, and the total number of the torrents, with the corresponding content

being downloaded for more than 512 times, is 2,745, which is 7 percent of the torrent

population. Again, the top 10 percent of torrents, regarding the number of snatches,

account for almost 50 percent of the completed downloads, although not very obvious

in the figure.

The distributed contents in CHDBits are highly available. As can be observed

from Fig. 5.4, more than 95 percent of torrents have at least one seeder. Taking into

consideration that almost half of the torrents were released 40 weeks ago, it is effortless

to conclude that for most torrents, the release time has little influence on the availability

of the corresponding content.

Compared with the seeders, leechers are rather sparsely distributed. Fig. 5.4 shows

that only about 20 percent of torrents have leechers, and the torrents with more than 4

85



CHAPTER 5

leechers only make up 0.85 percent of torrent population. This is partly because most

users are only interested in the new torrents, and pay little attention to the old ones

[40]. Another reason is that as implied in the distribution of the number of snatches,

many users only focus on a small part of torrents, and the other torrents are thus

unfrequented. The sparse distribution of leechers leads to a high ratio of seeders to

leechers in most torrents, and the downloading users, i.e., leechers, can benefit from

this situation since they have multiple data sources and thus be able to download at a

high rate.

5.4.1.4 Download rate of users in each torrent

Fig. 5.5 depicts the average download rate of users in each torrent. In this figure, the

torrents are numbered in the increasing order of the average user download rate. It

can be observed that there are about 12,500 torrents with the average user download

rate less than 256 Kbytes/s, out of which 50 percent have an average user download

rate less than 128 Kbytes/s. There are roughly the same number (10,500) of torrents

with the average user download rate in the range from 256 Kbytes/s to 512 Kbytes/s

as there are with the average user download rate in the range from 512 Kbytes/s to 1

Mbytes/s. In addition, the average download rates of users in more than 5,300 torrents

are higher than 1Mbytes/s. We can thus be able to conclude that users in most torrents

could download at a satisfactory rate.

The small part of torrents, which have a low average user download rate, may

correspond to those with an unstable publisher1. If the publisher becomes offline for

many times before all the content of the torrent has been uploaded to others, the

average user download rate of the corresponding torrent will be prolonged accordingly.

1The user who uploads a torrent to CHDBits and serves as the original seed for this torrent is
called the publisher of this torrent

86



5.4 Survey results and analysis

20

22

24

26

28

210

212

214

 0  5000  10000  15000  20000  25000  30000  35000

A
ve

ra
ge

 u
se

r 
do

w
nl

oa
d 

ra
te

 (
K

by
te

s/
s)

Torrent

Figure 5.5: The average download rate of users in each torrent

5.4.2 User

Since a part of users prevent their profiles from being accessed from other users, we

were not able to collect the data of all users. Fortunately, these users only form 18

percent of the total population, and the profiles of the rest 82 percent users, namely,

about 24,600 users, are still available.

5.4.2.1 User level distribution

The distribution of user level in snapshot 2011/09/03 is given in Fig. 5.6, in which

ten user levels listed in Table 5.1 are numbered from 1 to 10 in the increasing order

of download traffic requirement, with peasant being the level 1 user and nexus master

being the level 10 user. We can obtain from Fig. 5.6 that there are most users in

level 3 and level 4: each level has more than 7,000 users, and accounts for roughly a

quarter of the total population. As the requirement of user level promotion becomes

more stringent, from the fourth level, there are less users in higher levels, opposite to

the variation trend of user number in the first four levels. Fig. 5.6 also implies that

the majority of users maintain a satisfactory share ratio as only less than 200 users are

87



CHAPTER 5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 u

se
rs

User level

Figure 5.6: User level distribution

peasants.

5.4.2.2 Seeders, leechers and active users

The degree of participation of CHDBits users in uploading and downloading can be

reflected by the variations of the numbers of seeders, leechers and active users in CHD-

Bits. A user is active if it is being involved in at least one torrent, as either a seeder or a

leecher. Since users may participate in multiple torrents, an active user may thus corre-

spond to multiple seeders and/or leechers. Fig. 5.7 shows how the numbers of seeders,

leechers and active users varied during a ten-day period (2011/08/28-2011/09/06). As

shown in this figure, all the three numbers demonstrated nearly the same diurnal pat-

tern during the period, and the two ratios, namely, the ratio of seeders to leechers and

the ratio of seeders to active users, were thus stable during the whole period, being

about 18 and 27, respectively.

Another observation of this figure is that the variation of the three numbers during

the weekdays1 is different from that during the weekends. On weekdays, all three

numbers first experience an obvious decrease from 0:00 to 7:00, as this is the sleep

1During the ten-day period, 08/28, 09/03, and 09/04 are weekend.

88



5.4 Survey results and analysis

104

105

106

08/28
00:00

08/29
00:00

08/30
00:00

08/31
00:00

09/01
00:00

09/02
00:00

09/03
00:00

09/04
00:00

09/05
00:00

09/06
00:00

09/07
00:00

N
um

be
r

Time

active users
leechers
seeders

Figure 5.7: The variation of the number of seeders, leechers and active users during
2011/08/28-2011/09/06

time for most users. However, even at 7:00, there are still about 13,000 active users.

Starting from 7:00, the numbers begin arising steadily until 12:00, and then keep almost

unchanged in the following 6 hours. The three numbers experience another increase

from 18:00, which corresponds to the time that people come back from work, and arrive

at their maximum values at 24:00. At weekends, the variations of the numbers before

8:00 are roughly the same as what happens in the same time period during weekdays.

However, at weekends, the increase rates of the numbers during 8:00-12:00 are much

higher than they are on weekdays, and all three numbers attain their maximum values

at 12:00, in contrast to 24:00 on weekdays, and then stay at that level during the rest

of the day. Therefore, it can be inferred that many users, who participate in seeding

and/or leeching during 18:00-24:00 on weekdays, become active during 8:00-12:00 at

weekends, showing their great enthusiasm for uploading and downloading.

5.4.2.3 The download history of users

For each user, we count the number of snatches in which it is involved, and then plot

the distribution of this number in Fig. 5.8. It can be observed from the figure that

89



CHAPTER 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 22 24 26 28 210 212 214

Pe
rc

en
ta

ge

Number of completed downloads

Figure 5.8: The distribution of the number of the completed downloads of each user
(CDF)

there are only about 10 percent of users with the number of completed downloads

less than or equal to 16. This is because these users are mainly those registered the

account in recent time, and it is highly likely that the number of completed downloads

of these users would increase with time. Among the rest 90 percent of users, more

than 40 percent were involved in more than 128 snatches, and users with the number

of completed downloads larger than 256 make up 20 percent of the total population. In

addition, there exists a user with the number of completed downloads larger than 8192,

and we find from the survey data that this user has already completed the download

of more than 12,000 torrents, and the daily average number of completed downloads

of this user is about 12. Moreover, since each snatch corresponds to one completed

download, the number of snatches in which a user is involved might be less than the

number of torrents this user has participated in as this user may abort some downloads

before completion.

90



5.4 Survey results and analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

Fr
ac

tio
n 

of
 h

ou
rs

Number of user arrivals

raw data
fitting curve

Figure 5.9: Distribution of the number of user arrivals per hour (CDF)

 100

 200

 300

 400

 500

 600

 700

 800

 0  4  8  12  16  20  24
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 n
um

be
r 

of
 u

se
r 

ar
ri

va
ls

R
el

at
iv

e 
st

an
da

rd
 d

ev
ia

tio
n 

(%
)

Time period

average

 100

 200

 300

 400

 500

 600

 700

 800

 0  4  8  12  16  20  24
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 n
um

be
r 

of
 u

se
r 

ar
ri

va
ls

R
el

at
iv

e 
st

an
da

rd
 d

ev
ia

tio
n 

(%
)

Time period

relative standard deviation

Figure 5.10: The average and the relative standard deviation of the number of user
arrivals in different time periods

91



CHAPTER 5

5.4.2.4 User arrival pattern

Figure 5.9 shows the cumulative distribution function of the number of hourly user

arrivals. It can be shown from this figure that in most (more than 80 percent) hours

during the five-month period, the number of user arrivals is almost uniformly dis-

tributed in the range between 175 and 750, and there are more than 750 users arriving

in the remainder hours.

In order to show the relationship between time and user arrival rate, we divide a

day into 24 time periods, with the i-th time period representing the i-th hour of a day,

and calculate the average number of arrivals in each time period. The calculation result

is presented in Figure 5.10. It can be obtained that the number of user arrivals in each

time period remains relatively steady, as the relative standard deviation of the number

of user arrivals in each time period is about 30%. In addition, we can also observe

that the user arrival rate dovetails well into users’ daily schedule. For example, In the

first six time periods of a day, the number of user arrivals experienced a significantly

decrease as these time periods are the sleep time for most users, and in the following

four time periods, the number of user arrivals undergoes a rapid increase with the

increase rate similar to the decrease rate of user arrivals in the sleep time. In addition,

it can be obtained from this figure that CHDBits users arrive at a higher rate in the

morning than they do in the afternoon and evening.

We now investigate the arrival pattern of individual users. During the investigation,

we exclude the 2,071,132 records of completed download tasks with unavailable user

information, and from the remainder records, we identify 23,500 users, which form

the basis of the investigation. Figure 5.11 shows the interval between two consecutive

arrivals of an identified user. As shown in this figure, the probability that an user

arrival took place in the same day as the last arrival of the same user did is about 0.55.

We can thus infer that if one day a user issued a new download task, it is with more

than half possibility that this user would launch one or more download tasks in the

92



5.4 Survey results and analysis

same day; in other words, individual users arrive in a burst way.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  10  20  30  40  50  60

Fr
ac

tio
n 

of
 u

se
r 

ar
ri

va
l i

nt
er

va
ls

 

Day

Figure 5.11: Distribution of the interval between two consecutive arrivals of a single user
(CDF)

Figure 5.12 describes the probability distribution of the number of daily arrivals per

user, and it is found in this figure that a user issues no download task in a day with a

probability of 0.766636. Using this probability distribution, we can estimate how many

days are needed for all CHDBits users to issue at least one download task. Let Xi

represent the number of days passed until the next arrival of the i-th user, and assume

that all Xi have the same probability distribution. It can thus be easy to see that Xi

is a geometrical random variable with the following probability density function:

P{Xi = k} = (1− p)k−1p, k = 1, 2, . . . ,

where p = 0.233364, as a user issues no download task in a day with a probability of

about 0.766636. Let Mn denote the number of days for n users to issue at least one

download task, and we thus have Mn = max{X1, X2, . . . , Xn}. According to [34], the

93



CHAPTER 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20

Pr
ob

ab
ili

ty

Number of daily arrivals per user

Figure 5.12: Probability distribution of the number of daily arrivals per user

expectation of Mn satisfies the following condition:

− 1

log(1− p)

n∑
k=1

1

k
< EMn < 1− 1

log(1− p)

n∑
k=1

1

k
(5.1)

As we mentioned before, there were 31,399 users registered with CHDBits in 2011/11/16.

By substituting n and p in equation (5.1) by 31,3991 and 0.233364 respectively, we can

obtain that 41.1366 < EMn < 42.1366, which means all CHDBits users are expected

to launch at least one download task in about 42 days.

5.4.2.5 User traffic

The user level distribution cannot accurately reflect the upload and download traffic

of users, since many users with a great amount of upload traffic also belong to low

levels, which occurs when their download traffics do not achieve the requirement for

level promotion, or are too large such that the share ratio requirement is not satisfied.

1This number will increase as new users are invited to join CHDBits; however, the increasing rate
is rather slow [18]. Moreover, as can be inferred from equation (5.1), increasing n by 1 only results

in an increase of − log−1(1−p)
n+1

in EMn, and thus for large n, the increase of n has only a very limited
influence on the expectation of Mn.

94



5.4 Survey results and analysis

It is thus necessary to independently investigate the distribution of the upload and

download traffic of users.

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 5 6 7 8 9 10

T
ra

ff
ic

 m
ea

su
re

d 
in

 T
B

User rank

download traffic
upload traffic

Figure 5.13: Top 10 upload users and top 10 download users

Fig. 5.13 shows the top 10 upload users and top 10 download users. It is obvious

that the user with the largest upload traffic has already contributed roughly 1.2 PB of

data, which makes up more than 1 percent of total traffic generated at CHDBits1, and

the aggregate upload traffic contributed by top 10 upload users exceeds 4 PB.

Compared with the upload traffics of the top 10 upload users, the download traffics

of the top 10 download users are far less. The user ranking first with respect to

download traffic has downloaded about 50 TB of data, and the download traffics of

the top 10 download users amount to about 320 TB, which is only roughly 8 percent

of the aggregate upload traffic of the top 10 upload users. However, considering that

the overall content size of all torrents is a little more than 350 TB, we can say that

these users are very active in joining the download. Moreover, as the download traffics

of many torrents are counted at a discount, which we have mentioned above, the real

1Recall that the total traffic generated by CHDBits users was a little less than 100 PB on
2011/09/03, as shown in Fig. 5.1.

95



CHAPTER 5

download traffics of the top 10 download users may be much more than that exhibited

in Fig. 5.13. For instance, we notice that the user ranking second with respect to

download traffic has completed the download of the contents of more than 12,000

torrents, which correspond to a real download traffic of 77.45 TB.

Fig. 5.14a shows the distribution of accumulative upload and download traffic of

users. It can be inferred from Fig. 5.14a that most users have a large download

traffic: more than 90 percent of users have downloaded more than 64 GB of data, and

users with the download traffic more than 1 TB compose more than 20 percent of the

total population. Compared with the download traffic, many users have an even larger

upload traffic. More than 90 percent of users have contributed more than 128 GB of

upload traffic, and there are about half of users with an upload traffic more than 1 TB,

out of which 14 percent have uploaded more than 8 TB of data. In addition, We can

also find that users with more than t GB of download traffic constitute roughly the

same fraction of the total population as users with the upload traffic more than 2t GB

do.

There are also a small part of users with far less download or upload traffic, and

this may have several reasons. These users may have their accounts registered lately,

and thus there is little time for them to improve their traffic statistics. In addition,

they may have a low network bandwidth, which renders earning traffic difficult, and

the third reason is that these users may be inactive in downloading and uploading.

We also explore the average traffic a user generated in each day, and plot the

corresponding distribution in Fig. 5.14b. It is shown in Fig. 5.14b that more than

95 percent of users have either a daily average download traffic of more than 128 MB,

or a daily average upload traffic of more than 256 MB. About half of users generate

a download traffic more than 1 GB each day on average, and by contrast, there are

70 percent of users with a daily average upload traffic of more than 1 GB. The user

with the largest daily average upload traffic contributes more than 1 TB of data per

96



5.4 Survey results and analysis

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 23 26 29 212 215 218 221

Pe
rc

en
ta

ge
 o

f 
us

er
s

Accumulative user traffic (GB)

download traffic
upload traffic

(a) The distribution of accumulative user traffic (CDF)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 23 26 29 212 215 218 221

Pe
rc

en
ta

ge
 o

f 
us

er
s

Daily average user traffic (MB)

download traffic
upload traffic

(b) The distribution of daily average user traffic (CDF)

Figure 5.14: The distribution of the upload and download traffic of each user

97



CHAPTER 5

day on average, and we can thus infer that the bandwidth of this user is at least 12

Mbytes/s. We also notice in Fig. 5.14b that there are roughly the same number of

users with the daily average download traffic more than t MB as there are with the

daily average upload traffic of more than 2t MB do, the same observation as pointed

out in Fig. 5.14a.

An interesting observation can be derived by comparing Fig. 5.14a with Fig. 5.14b.

Let U , u, D and d denote accumulative upload traffic, daily average upload traffic,

accumulative download traffic and daily average download traffic of each user, respec-

tively, and all the four traffic metrics are measured in MB. Then for each integer i, we

have

|Pr(d ≤ 2i)− Pr(D ≤ 2i+9)| ≤ 0.04

|Pr(u ≤ 2i)− Pr(U ≤ 2i+9)| ≤ 0.06

In other words, u and d have the similar probability distribution to U/29 and D/29,

respectively.

5.4.2.6 User time

We then investigate the degree of users’ participation in downloading and uploading by

examining the seeding and leeching time of each user. Fig. 5.15 shows the distributions

of accumulative user time and daily average user time, in the same way as how user

traffic is shown in Fig. 5.14. It can be shown from Fig. 5.15a that users have spent

much more time in seeding than in leeching. There are 5 percent of users with the

leeching time less than 1 week, and more than half of users spending less than 16 weeks

in downloading. In sharp contrast, almost all users have seeded for at least one week,

and users with the seeding time longer than 16 weeks constitute roughly 90 percent of

population. In addition, there are more than 10 percent of users with the seeding time

longer than 1024 weeks, in contrast to only 3 thousandths of users who have leeched

98



5.4 Survey results and analysis

for more than 1024 weeks.

We also study how much time a user spends in seeding and leeching each day,

and show the corresponding distribution in Fig. 5.15b. It can be shown that while

more than 10 percent of users spend an average time less than or equal to 1 hour in

downloading each day, there are few users with the daily average seeding time less than

1 hour. Furthermore, 80 percent of users spend less than 16 hours in downloading each

day on average, and by contrast, there are about the same fraction of users with the

daily average seeding time longer than 16 hours. In addition, more than 20 percent of

users have a daily average seeding time longer than 256 hours, which means that these

uses have to seed for almost 24 hours each day, provided that the number of seeding

torrents is no more than 11.

The seeding strategies of users are also investigated. Fig. 5.16 describes per torrent

seeding time for each user. In this figure, we exclude users with the number of completed

downloads less than 10, as we intend to get more samples for each user. The number

of rest users is 23,413, implying only less than 5 percent of users have completed

less than 10 downloads. From Fig. 5.16, it can be obtained that after completing a

download, about 85 percent of users seed for an average time of more than 64 hours in

the corresponding torrent, and users with the average per torrent seeding time longer

than 256 hours compose 55 percent of the total population. Moreover, there are almost

1,000 users with the per torrent seeding time more than 100 days on average, which

seems to be unimaginable for public BitTorrent communities.

5.4.2.7 Ratios

We now conduct the analysis on the two types of ratios with respect to user traffic

and user time: the share ratio and the ratio of seeding time to leeching time. For

simplicity of expression, we represent the latter type of ratio as S/L ratio. Fig. 5.17

depicts the distribution of these two ratios. From this figure, it is obvious to see that

most users maintain a satisfactory share ratio: about 88 percent of users upload more

99



CHAPTER 5

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 22 24 26 28 210 212 214

Pe
rc

en
ta

ge
 o

f 
us

er
s

Accumulative user time (week)

leeching time
seeding time

(a) The distribution of accumulative user time (CDF)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 22 24 26 28 210 212 214

Pe
rc

en
ta

ge
 o

f 
us

er
s

Daily average user time (hour)

leeching time
seeding time

(b) The distribution of daily average user time (CDF)

Figure 5.15: The distribution of user time

100



5.4 Survey results and analysis

20

22

24

26

28

210

212

214

 0  4000  8000  12000  16000  20000  24000

A
ve

ra
ge

 s
ee

di
ng

 ti
m

e 
pe

r 
to

rr
en

t (
ho

ur
)

User

Figure 5.16: Per torrent seeding time for each user

data than they download. Moreover, users with the upload traffic more than twice the

download traffic account for more than half of the total population, out of which 20

percent possess a share ratio larger than 8.

Compared with only 12 percent of users with the share ratio less than 1, there

are even less (7 percent) users with the S/L ratio less than 1, and in contrast to less

than 60 percent of users with the upload traffic more than twice the download traffic,

users with S/L ratio larger than 2 form nearly 90 percent of the total population. This

staggering contrast between user share ratio and S/L ratio is due to that as shown in

Fig. 5.4, in 80 percent of torrents, there are no leechers downloading the corresponding

content, and thus by seeding these torrents, users cannot earn upload traffic, whereas

the seeding time increases. In addition, as we have shown in Fig. 5.7, the overall ratio

of seeders to leechers is roughly 18, which implies each seed has only a little opportunity

to serve leechers. Fig. 5.17 also tells that there are about 30 percent of users with a

S/L ratio larger than 32, out of which almost half have seeded for 64 times longer than

they have leeched, showing a high degree of participation in seeding of these users.

Fig. 5.18 depicts the distribution of snatches and the corresponding upload traffic

101



CHAPTER 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

20 21 22 23 24 25 26 27 28 29 210

Pe
rc

en
ta

ge
 o

f 
us

er
s

Ratios

share ratio
S/L ratio

Figure 5.17: The distribution of user share ratio and S/L ratio (CDF)

with respect to per snatch share ratio1. As shown in this figure, the 25 percent of

snatches with least share ratio almost contribute no upload traffic, and the 73 percent

of snatches, with the share ratio less than or equal to 1, account for only less than 20

percent of total upload traffic, which implies that a small part of users may contribute

the majority of upload traffic in many torrents. Counter to the intuition that only the

high bandwidth users may be able to maintain a share ratio higher than 1 in a single

snatch, there are 22,464 users involved in snatches with the share ratio larger than

1, and this is because besides the bandwidth, the upload traffic of a user in a snatch

also depends on when this user joined the corresponding torrent and the corresponding

leeching and seeding time.

1Unlike the user share ratio, the share ratio in each snatch is derived from the upload traffic and
the size of the content corresponding to the torrent. In other words, the download traffic in each snatch
is counted at no discount

102



5.4 Survey results and analysis

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2-8 2-6 2-4 2-2 20 22 24 26 28
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f 
sn

at
ch

es
 (

C
D

F)

Pe
rc

en
ta

ge
 o

f 
up

lo
ad

 tr
af

fi
c 

(C
D

F)

Share ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2-8 2-6 2-4 2-2 20 22 24 26 28
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Pe
rc

en
ta

ge
 o

f 
sn

at
ch

es
 (

C
D

F)

Pe
rc

en
ta

ge
 o

f 
up

lo
ad

 tr
af

fi
c 

(C
D

F)

Share ratio

Figure 5.18: Distribution of the snatches and the corresponding upload traffic with
respect to share ratio (CDF)

5.4.3 An analysis of user behavior

In this section, we present a detailed analysis on how the bandwidth1 and age of users

influence their behaviors. We conduct this analysis from microscopic and macroscopic

perspectives. For microscopic analysis, we intend to find the relationship between

the bandwidths of users and the torrents in which they participated; for macroscopic

analysis, we want to find the influence of the bandwidth and age of users on their overall

seeding and leeching behavior.

5.4.3.1 Microscopic analysis

A torrent is characterized by the content size and popularity, i.e., the number of users

completing the download of the corresponding content. We first investigate the rela-

tionship between the bandwidths of users and the content sizes of the torrents that

they participated in. To simplify the analysis, we classify users and torrent into 8 and

1Since in each snatch, the information of the corresponding user and torrent, and the corresponding
upload and download rate are available, we obtain for each user the download and upload rate in all
snatches in which this user is involved, and use the maximum value of all these measured rates as the
bandwidth of this user.

103



CHAPTER 5

10 classes, respectively. In particular, a user with a bandwidth of n Kbytes/s belongs

to class min{max{0, dlog2
n

256e}, 7}, and a torrent with a content size of s GB belongs

to class min{max{0, dlog2 se}, 9}.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9

Pe
rc

en
ta

ge
 o

f 
us

er
 p

ar
tic

ip
at

io
ns

Torrent class

class 0 users
class 1 users
class 2 users
class 3 users
class 4 users
class 5 users
class 6 users
class 7 users

Figure 5.19: The distribution of user participations with respect to torrent size (CDF)

Fig. 5.19 demonstrates the distribution of user participations1 with respect to

torrent size. It is clearly shown in this figure that lower class (bandwidth) users partici-

pated in the torrents with smaller content sizes more often than higher class (bandwidth)

users. This is probably because downloading the torrent with a large content size is

less cost-effective for lower bandwidth users than for higher bandwidth users. More

specifically, it is difficult to earn upload traffic for low bandwidth users, and moreover,

downloading the torrent with a large content size will result in a significant increase in

the download traffic, which in turn dramatically decreases the share ratio.

We then explore the distribution of users of different classes in torrents with different

popularities. To this end, we first re-classify torrents into 41 classes in the way that

a torrent with the number of user participations being n belongs to class min{d n
100e −

1, 40}, and then plot the distribution of user participations with respect to torrent

1A user participation corresponds to a snatch.

104



5.4 Survey results and analysis

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20  24  28  32  36  40

Pe
rc

en
ta

ge
 o

f 
us

er
 p

ar
tic

ip
at

io
ns

Torrent class

class 0 users

class 1 users

class 2 users

class 3 users

class 4 users

class 5 users

class 6 users

class 7 users

Figure 5.20: The distribution of user participations with respect to torrent popularity
(CDF)

class in Fig. 5.20. It can be observed from this figure that lower bandwidth users are

more likely to participate in high-popularity torrents than higher bandwidth users. This

is easy to understand. For high bandwidth users, it is not difficult to earn upload

traffic even there are only a few peers in the torrent, and hence they are less sensitive

to torrent popularity in choosing which torrents to participate in. However, for low

bandwidth users, it is much easier to earn upload traffic in high-popularity torrents

than in low-popularity ones, as there are much more peers in high-popularity torrents.

5.4.3.2 Macroscopic analysis

We now investigate how the overall seeding and leeching behavior of users are influenced

by users’ bandwidth and age. To this end, we classify the users according to the age

and bandwidth in the way that a user with an age of m weeks and with a measured

bandwidth of n Kbytes/s belongs to class (i, j), where i and j are defined as follows:

i = max{0, dlog2me}

j = min{max{0, dlog2

n

256
e}, 7}

105



CHAPTER 5

In addition, We stipulate that a class (i1, j1) is higher than class (i2, j2) if one of

the following two conditions is satisfied.

i1 > i2, and j1 ≥ j2,

i1 ≥ i2, and j1 > j2,

The distribution of users among different classes is shown in Fig. 5.21. It can be

shown that there are at least 2 users in each class, and only 7 classes have a number

of users less than 10. Thus for most classes, there are enough samples for us to study

the overall behaviors of users in the same class.

20
21

22
23

24
25

26
27

28

28

29

210

211

212

213

214

215

20
22
24
26
28

210
212

N
um

be
r 

of
 u

se
rs

User age (week)

Bandwidth
(Kbytes/s)

N
um

be
r 

of
 u

se
rs

20

22

24

26

28

210

212

Figure 5.21: The distribution of user among different classes

We first study how user age and bandwidth exert influence on the number of com-

pleted downloads. We average the numbers of completed downloads of users in each

class, and show the result in Fig. 5.22. It can be seen from this figure that both the

106



5.4 Survey results and analysis

age and bandwidth of a user may affect this user’s download behavior. While it is

natural that an older user tends to participate in more torrents than a younger one,

it may seem to be a little out of expectation that a user is likely to have completed

less downloads of torrents than users with a higher bandwidth have done. As can be

observed in Fig. 5.22, for users belonging to the class (i, j), where i ≥ 3, the average

number of completed downloads is larger than that of users in the class (i, k), where

k < j. This can be attributed to that the high bandwidth users may join multiple

torrents simultaneously in order to get their bandwidths effectively utilized.

20
21

22
23

24
25

26
27

28

28
29

210
211

212
213

214
215

20
22
24
26
28

210
212

N
um

be
r 

of
 c

om
pl

et
ed

 to
rr

en
ts

User age (week)Bandwidth
(Kbytes/s)

N
um

be
r 

of
 c

om
pl

et
ed

 to
rr

en
ts

20212223242526272829210211

Figure 5.22: Number of completed downloads versus user age and bandwidth

The average number of completed downloads of some classes may be larger than

that of higher classes. E.g., users in class (2, 4) tend to have completed more downloads

than users in class (2, 5) or (3, 4) have done. This may have multiple reasons. First,

the users in these classes have joined CHDBits for a short period, and thus the aver-

age number of completed downloads of these classes may not be able to reflect users’

107



CHAPTER 5

long-term download behavior. Second, as shown in Fig. 5.21, there are only a few

users in some classes, which may result in a deviation in the average number of com-

pleted downloads in these classes. Third, as we just stated, users may simultaneously

participate in multiple torrents, and as a consequence, the bandwidth of these users is

shared by multiple tasks, which leads to the measured bandwidth being less than the

real value. Finally, there may exist some very active users in a particular class, which

have participated in much more torrents than users in higher classes have done.

We then conduct an investigation on the influence of the age and bandwidth of a

user on its traffic. Fig. 5.23a and 5.23b demonstrate the average upload and download

traffic of users in the same class, respectively, and it can be shown that both figures

highly coincide with Fig. 5.22. More specifically, the average user upload and download

traffic correspond to the average number of completed downloads of users in the same

class, and vice versa.

It can also be shown that Fig. 5.23b dovetails more with Fig. 5.22 than Fig. 5.23a

does. As can be observed from these figures, the age of users exerts more influence

on download traffic and number of completed downloads of users than user bandwidth

does, while with respect to the upload traffic, both the age and bandwidth of a user have

similar impact. This is also easy to understand. The download traffic of a user almost

completely depends on the torrents it participated in. However, the upload traffic a

user contributes in a torrent also depends on its bandwidth, and generally, a user with

a higher bandwidth earns more upload traffic than a user with lower bandwidth does

in the same torrent. Consequently, the upload traffic of a high bandwidth user may

be similar to, or even more than that of a low bandwidth user who has participated in

much more torrents than the high bandwidth user has done.

There also exists inconsistence between Fig. 5.22 and Fig. 5.23a. For example,

while the number of completed downloads of users in class (0, 1) is roughly the same

as that in class (0, 2), the average user upload traffic of class (0, 1) is abnormally much

108



5.4 Survey results and analysis

20
21

22
23

24
25

26
27

28

28
29

210
211

212
213

214
215

2022242628210212214216218

U
pl

oa
d 

tr
af

fi
c 

(G
B

)

User age (week)Bandwidth
(Kbytes/s)

U
pl

oa
d 

tr
af

fi
c 

(G
B

)

20
22
24
26
28
210
212
214
216
218

(a) User upload traffic versus user age and bandwidth

20
21

22
23

24
25

26
27

28

28
29

210
211

212
213

214
215

20
22
24
26
28

210
212
214

D
ow

nl
oa

d 
tr

af
fi

c 
(G

B
)

User age (week)Bandwidth
(Kbytes/s)

D
ow

nl
oa

d 
tr

af
fi

c 
(G

B
)

20
22
24
26
28
210
212
214

(b) User download traffic versus user age and bandwidth

Figure 5.23: The influence of user age and bandwidth on upload and download traffic

109



CHAPTER 5

higher than that in class (0, 2); a similar phenomenon also exists between class (1, 0)

and (1, 1). This may also be attributed to user’s simultaneous downloading of multiple

torrents, or the existence of very active users in some particular user classes. Another

explanation to this abnormal phenomenon is that some users may cheat the tracker

by reporting the modified traffic. In order to confirm this conjecture, we examine the

user data of snapshot 2011/09/03, and find that a class (0,1) user with the measured

bandwidth of 451 Kbytes/s and the total user time of 275 hours claims that it has

uploaded more than 800 GB of data. Moreover, the data collection carried out on

2011/09/09 reveals that while the total time this user spends in seeding and leeching

doubled in the six-day period, the upload traffic was increased by only 12 GB.

The effects of user age and bandwidth on user time are also described in Fig. 5.24.

As a result of the participation in more torrents, older users are likely to spend more

time on seeding and leeching than younger users do. However, contrary to what it

does to user traffic and average number of completed downloads, the bandwidth of user

exerts a negative influence on user’s seeding time. As shown in Fig. 5.24, for i ≥ 3, the

seeding time of class (i, j) users is less than that of users in class (i, k), given k < j,

although users in the former class tend to participate in more torrents than users in

the latter class. This can probably be attributed to the policy that CHDBits users are

allowed to trade the points, which can be earned by seeding, for upload traffic. This

policy may have little attraction for high bandwidth users for two reasons. First, the

high bandwidth users can earn a great amount of upload traffic in a short time when

there are enough leechers present, since at this time their outgoing bandwidth can be

effectively utilized. Second, when most leechers complete the download, continuing to

seed would not result in a proportional increase in upload traffic, which can also be

inferred from Fig. 5.4. However, the low bandwidth users may seem to be motivated

by this policy, since it may be difficult for them to get enough upload traffic via seeding

and leeching, and this policy provides another way to increase the upload traffic.

110



5.4 Survey results and analysis

20
21

22
23

24
25

26
27

28

28
29

210
211

212
213

214
215

2-2
20
22
24
26
28

210
212

Se
ed

in
g 

tim
e 

(w
ee

k)

User age (week)Bandwidth
(Kbytes/s)

Se
ed

in
g 

tim
e 

(w
ee

k)

2-2
20
22
24
26
28
210
212

(a) User seeding time versus user age and bandwidth

20
21

22
23

24
25

26
27

28

28
29

210
211

212
213

214
215

2-4
2-2
20
22
24
26

L
ee

ch
in

g 
tim

e 
(w

ee
k)

User age (week)Bandwidth
(Kbytes/s)

L
ee

ch
in

g 
tim

e 
(w

ee
k)

2-42-32-22-12021222324252627

(b) User leeching time versus user age and bandwidth

Figure 5.24: The influence of user age and bandwidth on seeding and leeching time

111



CHAPTER 5

In addition, for i ≥ 5, the high bandwidth users in class (i, j) may spend less time

on leeching than users in class (i, k), where k < j, and this is easy to understand since

high bandwidth users could download at a higher rate than low bandwidth users do.

5.5 Conclusion

Private BitTorrent community is becoming increasingly popular, and generates a huge

amount of Internet traffic. In this chapter, we present a thorough survey on a famous

private BitTorrent community, CHDBits. We find that the content of most torrents

are available, although many torrents may have been released for a very long time, and

we also obtain that users in most torrents could download at a high rate. By studying

user profiles, we show that many users have participated in multiple torrents, thereby

generating a great amount of upload and download traffic. The user profiles also reveal

that almost all users maintain a high share ratio, and are willing to contribute to

content distribution by spending more time in seeding than in leeching. Our survey

suggests that the bandwidth of a user have a significant impact on user behavior. Low

bandwidth users are more likely to participate in the torrents with a smaller content

size or a higher popularity; compared with low bandwidth users, high bandwidth users

tend to participate in more torrents, but spend less time in seeding.

112



Chapter 6

Conclusion and Future Work

In this thesis, we have carried out a study on the analysis and improvement of the

performance of BitTorrent swarms, with a special concentration on content availability.

In Chapter 3, we quantify the performance metrics related to content availability of

BitTorrent swarms and the implications of content bundling. The analysis reflects that

bundling is a promising way to enhance the content availability and can even reduce the

sojourn time of peers under some specific scenarios where content is highly unavailable.

We then perform a study on the feasibility of using network coding to ameliorate the

content availability of BitTorrent swarms in Chapter 4. This study shows that net-

work coding has significant potential to enhance the content availability of BitTorrent

swarms, but the existing coding schemes are not feasible due to some fundamental defi-

ciencies. To overcome these deficiencies, we present a sparse network coding scheme and

a block scheduling algorithm, and verify the efficiency of the proposed coding scheme

and algorithm by performing extensive simulations. In Chapter 5, we present a de-

tailed survey on a large private BitTorrent community, which is becoming increasingly

popular recently. By examining multiple different aspects of torrents and users, our

survey demonstrates the promising performance of swarms in this community, develops

an in-depth understanding to how users participating in downloading and uploading,

and reveals some new findings with respect to user behaviors.

113



CHAPTER 6

6.1 Future work

6.1.1 Bundled swarm vs. individual swarm

Although there has been study [42] empirically comparing the performance of bundled

swarms and that of individual swarms, the comparison, however, is not conducted

in a fair way, as there is no correlation between the content distributed in bundled

swarms and that in individual swarms. Therefore, how BitTorrent users’ selection of

files to be downloaded is affected in bundled swarms has not yet been reflected, and the

improvement in content availability caused by content bundling in real-world scenarios

is also open.

6.1.2 Content propagation

A great amount of content, originated from BitTorrent swarms, has become available

in Internet [31]. It is interesting to study how this content propagates to Internet. In

addition, this propagation improves the availability of content, and another interesting

question is thus to quantify this improvement and to leverage this improved availability

of content in Internet to enhance the download performance of BitTorrent peers.

6.1.3 Strategic manipulation of upload slots

The number of upload slots of many BitTorrent peers is set to four by default; however,

it is unlikely that four upload slots could saturate the outgoing bandwidth of peers,

especially in the heterogeneous BitTorrent swarms. Therefore, for many peers, there

may exist some bandwidth resource that has not been effectively utilized. By allocating

this idle bandwidth resource to neighbours other than those already being unchoked, a

peer can increase the probability of being unchoked by these extra unchoked neighbors

in the following rounds, thereby enhancing the download performance. As a result,

increasing the number of upload slots leads to a double win situation since the overall

swarming efficiency is also improved due to more bandwidth resource. Therefore, it is

114



6.1 Future work

of great help to explore the manipulation space of upload slots for peers with different

bandwidth resource, and see if there exists a strategy which leads to Nash equilibrium

where optimal swarming efficiency is achieved.

6.1.4 Exploration on other feasible linear network coding schemes

Although we have already presented a feasible linear network coding scheme which can

significantly improve the content availability of BitTorrent swarms while incurring lin-

ear computation and disk read/write cost, there might exist some other coding schemes

that are also feasible from the perspectives of the improvement and cost incurred. We

intend to explore and design different sparse coding schemes which incur acceptable

computation and disk read/write costs, and then perform mathematical analysis and

extensive experiments to investigate their impact on the content availability of Bit-

Torrent swarms. For the feasible coding schemes, we will characterize their common

features, and use these features to guide the design of feasible coding schemes.

115



CHAPTER 6

116



Appendix A

Modeling and Analysis of Content Availability

and Bundling in BitTorrent-like File Swarming

Systems

A.1 Background

We base our analysis on the result of the C-congestion period of an M/M/∞ queue

reported in [86], in which a C-congestion period is defined as “the period starting at

the epoch that an arriving customer finds C customers in the system, until the first

time that a departing customer leaves behind C customers.”

In an M/M/∞ queue with the arrival rate and mean service time being λ and 1
µ ,

respectively, let Λt denote the number of customers in the queue at time t, and let

Dj(i) := inf{∆t : Λt0+∆t = j|Λt0 = i}, i > j (A.1)

Then, as shown in [86],

Dj(i) =
i−1∑
k=j

Dk(k + 1) (A.2)

where Dk(k + 1) is exactly a k-congestion period. According to [86] and the result of

residual busy period in [70], we further have

E[Dk(k + 1)] =
k!

λρk

∞∑
j=k+1

ρj

j!
(A.3)

where ρ = λ
µ .

117



APPENDIX A

A.2 Proof

A.2.1 Proof of Lemma 3.1

Proof. Given that 1
γ →∞, and peers immediately depart the swarm once they finish

the download, if there are i, i ≥ r, peers left when the publisher departs the swarm,

then by its definition, Dr−1(i) is exactly the duration of residual active period after the

leave of the publisher, and the mean of Dr−1(i) can be derived by using equation (A.2)

and (A.3) as follows:

E[Dr−1(i)] =
i−1∑

j=r−1

j!

λ(λsu )j

∞∑
k=j+1

(λsu )k

k!
(A.4)

When the publisher leaves, the number of online peers is Poisson distributed with

mean of λs
u since we have assumed peer population is in steady state at that time.

Thus, given 1
γ → ∞, the mean length of the residual active period after the leave of

the publisher in the individual swarm with selfish peers, E[R], is

E[R] =
∞∑
i=r

(λsu )i

i!
e−

λs
u E[Dr−1(i)]

=

∞∑
i=r

(λsu )ie−
λs
u

i!

i−1∑
j=r−1

j!

λ(λsu )j

∞∑
k=j+1

(λsu )k

k!

(A.5)

The proof of equation (3.2) is same as above.

A.2.2 Proof of Theorem 3.2

Proof. An active period starts when the publisher enters the swarm terminating the

current passive period. Once the publisher departs the swarm, as we have assumed that

the length of residual active period fluctuates slightly around its mean, the publisher

will reenter the swarm before peer population falls below r with a probability about

1− e−γE[R]. In this case, another active period is initiated with the same mean as the

118



A.2 Proof

original one. When the number of peers drops below r, if the publisher has not arrived,

the active period is then terminated.

Let H denote the event that the publisher reenters the swarm before peer population

falls below r, and let H̄ denote the complementary event of H. H occurs with a

probability of 1 − e−γE[R], and H̄ occurs with a probability of e−γE[R]. Let t denote

the length of publisher idle period. The mean length of active periods, E[A], thus can

be given by

E[A] =
1

β
+ P (H)(E[t|H] + E[A]) + P (H̄)E[R] (A.6)

The conditional probability density of t is

f(t|H) =


γe−γt

1−e−γE[R] , if t ≤ E[R]

0, if t > E[R]
(A.7)

Then the conditional mean of t is

E[t|H] =

∫ E[R]

0

γe−γt

1− e−γE[R]
t dt

=
1

γ
− e−γE[R]

1− e−γE[R]
E[R]

(A.8)

Substituting equation (A.8) into (A.6) yields

E[A] =
1

β
+ (1− e−γE[R])(

1

γ
− e−γE[R]

1− e−γE[R]
E[R] + E[A]) + e−γE[R]E[R] (A.9)

Equation (3.3) can be obtained by solving this equation.

Equation (3.4) can be proved in the same way.

A.2.3 Proof of Theorem 3.3

Proof. Let

mj =
j!

λ(λsu )j

∞∑
k=j+1

(λsu )k

k!
(A.10)

119



APPENDIX A

Mj =
j!

Nλ(N
2λs
u )j

∞∑
k=j+1

(N
2λs
u )k

k!
(A.11)

It is easy to see that

Mj =
j!

λ(λsu )j

∞∑
k=j+1

(λsu )k

k!
N2(k−j)−1

>
N × j!
λ(λsu )j

∞∑
k=j+1

(λsu )k

k!
= Nmj

(A.12)

and equation (3.1) and (3.2) ca be rewritten as

E[R] =
∞∑
i=r

e−
λs
u (λsu )i

i!

i−1∑
j=r−1

mj =
∞∑

j=r−1

mj

∞∑
i=j+1

e−
λs
u (λsu )i

i!
(A.13)

E[R] =
∞∑
i=r

e−
N2λs
u (N

2λs
u )i

i!

i−1∑
j=r−1

Mj =
∞∑

j=r−1

Mj

∞∑
i=j+1

e−
N2λs
u (N

2λs
u )i

i!
(A.14)

In order to show E[R]
E[R] > N , it suffices to prove

∑∞
i=j+1

e−
λs
u (λs

u
)i

i! <
∑∞

i=j+1
e−

N2λs
u (N

2λs
u

)i

i! .

Since
∞∑
i=0

e−
λs
u (λsu )i

i!
=
∞∑
i=0

e−
N2λs
u (N

2λs
u )i

i!
= 1 (A.15)

we only need to prove
∑j

i=0
e−

λs
u (λs

u
)i

i! >
∑j

i=0
e−

N2λs
u (N

2λs
u

)i

i! . To this end, we first

assume
∑j

i=0
e−

λs
u (λs

u
)i

i! ≤
∑j

i=0
e−

N2λs
u (N

2λs
u

)i

i! .

As i increases, e−
N2λs
u (N

2λs
u )i grows faster than e−

λs
u (λsu )i. Thus, for all i >

e(N
2−1)λs

2u lnN ,

e−
N2λs
u (

N2λs

u
)i > e−

λs
u (
λs

u
)i

and for all i < e(N
2−1)λs

2u lnN ,

e−
N2λs
u (

N2λs

u
)i < e−

λs
u (
λs

u
)i

120



A.2 Proof

Since
∑j

i=0
e−

λs
u (λs

u
)i

i! ≤
∑j

i=0
e−

N2λs
u (N

2λs
u

)i

i! , and N > 1, we have

e−
N2λs
u (

N2λs

u
)j > e−

λs
u (
λs

u
)j

Thus, j > e(N
2−1)λs

2u lnN , and for all i > j, e−
N2λs
u (N

2λs
u )i > e−

λs
u (λsu )i. Then we have

j∑
i=0

e−
λs
u (λsu )i

i!
+

∞∑
i=j+1

e−
λs
u (λsu )i

i!
<

j∑
i=0

e−
N2λs
u (N

2λs
u )i

i!
+

∞∑
i=j+1

e−
N2λs
u (N

2λs
u )i

i!
(A.16)

which contradicts equation (A.15).

A.2.4 Proof of Theorem 3.4

Proof. By its definition, the content availability in the individual swarm, P , is

P =
E[A]

E[A] + 1
γ

= 1− 1/γ

( 1
β + 1

γ )eγE[R]
= 1− 1

γ( 1
β + 1

γ )eγE[R]

Equation (3.7) can be proved in the same way.

A.2.5 Proof of Theorem 3.5

Proof. As stated before, the sojourn time of a peer primarily depends on the download

time and the waiting time before it can start download. Since peer arrival process is a

Poisson process, according to PASTA property (Poisson Arrivals See Time Averages),

the proportion of peers accounted for by those arriving in passive periods is exactly the

same as the proportion of the length of passive periods to the swarm’s lifetime, which

by its definition is content unavailability. Therefore, the average sojourn time of peers

in the individual swarm is given by

E[T ] = Tdownload + Twaiting =
s

u
+

1

γ
(1− P ) =

s

u
+

β/γ

(β + γ)eγE[R]

Equation (3.9) can be proved in the same way.

121



APPENDIX A

A.2.6 Proof of Theorem 3.6

Proof. If 2 ≤ N ≤ β/γ

(β+γ)eγE[R]

(
1− e−γE[R]

)
u
s + 1, then

E[T]− E[T ] =
(N − 1)s

u
− β/γ

β + γ

(
e−γE[R] − e−γE[R]

)
<

(N − 1)s

u
− β/γ

β + γ

(
e−γE[R] − e−γNE[R]

)
≤ (N − 1)s

u
− β/γ

β + γ

(
e−γE[R] − e−2γE[R]

)
≤ 0

A.2.7 Proof of Lemma 3.7

Proof. Given that 1
γ → ∞, when the publisher leaves the swarm, the residual active

period can be divided into several sub-periods. The period between the leave of the

publisher and the epoch that the last seed in the second queue leaves is the first sub-

period. If there are k seeds in the second queue at the departure of the publisher,

then the length of the first sub-period is D0(k). As we have assume that the Jackson

network is in steady state when the publisher leaves, we can thus apply the method

described in the proof of Lemma 3.1 in solving the mean length of the first sub-period.

By setting the value of r to 1 and replacing s
u with 1

θ in equation (3.1), we get the

expression of the mean length of the first sub-period

E[Rfirst] =
∞∑
i=1

e−λ/θ(λθ )i

i!

i∑
j=0

j!

λ(λθ )j

∞∑
k=j+1

(λθ )k

k!
(A.17)

The second sub-period follows the first one if there are no less than r leechers in

the first queue at the end of the first sub-period. In the second sub-period, a leech in

the first queue will sooner or later complete the download and then enter the second

queue instantaneously. Assuming the first queue is in steady state at the beginning

122



A.2 Proof

of the second sub-period1, the input of the second queue is still a Poisson process,

and the peer finishing the download earliest among all leechers in the first queue will

enter the second queue and initiate a busy period; the second sub-period ends with

the termination of this busy period. Therefore, the second sub-period consists of the

waiting time before the first peer enters the second queue, which is an exponentially

distributed variable with the mean of 1
λ , and a busy period initiated by the arrival of

this peer. Thus the mean length of the second sub-period is

E[Rsecond] =
1

λ
+
eλ/θ − 1

λ
=
eλ/θ

λ
(A.18)

At the end of the second sub-period, if the last departing seed in the second queue

once again finds no less than r leechers existing in the first queue, another sub-period,

which is identical to the current one, i.e., the second sub-period, will be initiated. As

a result, given that there are no less than r peers in the first queue at the end of the

first sub-period, the number of occurrence of the second sub-period is geometrically

distributed. In addition, at the end of each sub-period, as the Jackson network is

in steady state, the probability that peer population falls below r, denoted by Pr, is∑r−1
i=0

(λs/u)i

i! e−λs/u.

Given above statements, we have

E[R] = E[Rfirst] +
1− Pr
Pr

E[Rsecond] (A.19)

Substituting equation (A.17) and (A.18) into (A.19) yields (3.11). Equation (3.12) can

be proved in the same way.

1In fact, at the end of the first sub-period, the first queue is in steady state, but the second sub-
period is initiated only if there are at least r peers in the first queue at this time. Thus, at the
beginning of the second sub-period, the probability that there are k, k ≥ r, peers in the first queue

is (λs/u)k/k!∑∞
i=r(λs/u)

i/i!
, which indicates that the first queue is not in steady state. However, as long as the

mean of the length of the first queue is much greater than population threshold, r, the possibility that
peer population falls below r in steady state is negligible, and thus the distribution of peer population
at the beginning of the second sub-period is nearly the same as the distribution in steady state.

123



APPENDIX A

A.2.8 Proof of theorem 3.8

Proof. For short-hand notation, we let

R1 =
∞∑
i=1

e−λ/θ(λθ )i

i!

i∑
j=0

j!

λ(λθ )j

∞∑
k=j+1

(λθ )k

k!
(A.20)

R2 =
1− Pr
Pr

eλ/θ

λ
(A.21)

R1 =
∞∑
i=1

e−Nλ/θ(Nλθ )i

i!

i∑
j=0

j!

Nλ(Nλθ )j

∞∑
k=j+1

(Nλθ )k

k!
(A.22)

R2 =
1− Pr

Pr

eNλ/θ

Nλ
(A.23)

where Pr = e−λs/u
∑r−1

i=0
(λs/u)i

i! , and Pr = e−N
2λs/u

∑r−1
i=0

(N2λs/u)i

i! . Then equation

(3.11) and (3.12) can be rewritten as

E[R] = R1 +R2 (A.24)

E[R] = R1 + R2 (A.25)

As R1 and R2 are functionally independent of N , we have E[R] = Θ(1). We then

discuss the bounds of R1 and R2. For R1, we have

R1 =
∞∑
i=1

e−Nλ/θ(Nλθ )i

i!

i∑
j=0

j!

Nλ(Nλθ )j

∞∑
k=j+1

(Nλθ )k

k!

=
1

Nλ

∞∑
i=1

e−Nλ/θ(Nλθ )i

i!

i∑
j=0

∞∑
k=1

(Nλθ )k

(k+j)!
j!

<
1

Nλ

∞∑
i=1

e−Nλ/θ(Nλθ )i

i!

i∑
j=0

∞∑
k=1

(Nλθ )k

k!

<
1

Nλ

∞∑
i=1

e−Nλ/θ(Nλθ )i

i!
(i+ 1)eNλ/θ

=
1

Nλ

∞∑
i=1

(i+ 1)(Nλ/θ)i

i!
< (

1

Nλ
+

1

θ
)eNλ/θ

124



A.2 Proof

and since

lim
N→∞

Nλ× Pr = lim
N→∞

Nλ× e−N2λs/u
r−1∑
i=0

(N2λs/u)i

i!

< lim
N→∞

Nλ× e−N2λs/u
r−1∑
i=0

(N2λs/u)i

< lim
N→∞

(N2λs/u)re−N
2λs/u

we have

lim
N→∞

R2 = lim
N→∞

1− Pr

Pr

eNλ/θ

Nλ
= lim

N→∞

1

NλPr
eNλ/θ > lim

N→∞

eNλ/θ+N
2λs/u

(N2λs/u)r

Therefore,

lim
N→∞

logE[R] > lim
N→∞

logR2 > lim
N→∞

log
eNλ/θ+N

2λs/u

(N2λs/u)r
= Θ(N2) (A.26)

On the other hand, since r > 1,

R2 =
1− Pr

Pr

eNλ/θ

Nλ
<

1

e−N2λs/u

eNλ/θ

Nλ
=
eNλ/θ+N

2λs/u

Nλ

and thus

logE[R] < log

(
(

1

Nλ
+

1

θ
)eNλ/θ +

eNλ/θ+N
2λs/u

Nλ

)
= Θ(N2) (A.27)

Since E[R] = Θ(1), given (A.26) and (A.27), we are able to conclude that

log
E[R]

E[R]
= Θ(N2)

125



APPENDIX A

126



Appendix B

Mathematical Analysis on the Effect of Network

Coding on the Performance of BitTorrent

Swarms

B.1 Proof of Lemma 4.1

Proof. It is easy to see that when i = 0, Pr(Ai,j) = 1, and Pr(Ai,j) = 0 if i > j.

To validate the reminder of (4.2), consider the sets of coded blocks at two peers: b =

{b1, b2, . . . , bi}, and b′ = {b′1, b′2, . . . , b′j}. Each element in set b is a linear combination of

elements in set b′, which also implies i ≤ j. Now suppose the first peer has downloaded

a new coded block bi+1. Since i blocks can generate qi linear combinations, the new

block bi+1 is restricted to be selected from qn − qi other blocks, out of which there

are qj − qi blocks that are linear combinations of elements of set b′. Therefore, the

probability of Ai+1,j conditioned on Ai,j is

Pr(Ai+1,j |Ai,j) =
qj − qi

qn − qi
(B.1)

and thus Pr(Ai,j) can be derived as follows:

Pr(Ai,j)

= Pr(Ai,j |Ai−1,j)Pr(Ai−1,j)

= Pr(Ai,j |Ai−1,j)Pr(Ai−1,j |Ai−2,j) . . .Pr(A1,j |A0,j)Pr(A0,j)

=
qj − qi−1

qn − qi−1

qj − qi−2

qn − qi−2
. . .

qj − 1

qn − 1

127



APPENDIX B

B.2 Proof of Theorem 4.2

Proof.

Pr(a peer is usable to another peer)

=
n∑
i=0

Pr(p = i)
n−1∑
j=0

Pr(p = j)(1− Pr(Ai,j))

=
1

(n+ 1)2

n−1∑
j=0

n∑
i=0

(1− Pr(Ai,j))

=
n(n+ 1)

(n+ 1)2
− 1

(n+ 1)2

n−1∑
j=0

j∑
i=0

Pr(Ai,j)

>
n(n+ 1)

(n+ 1)2
− 1

(n+ 1)2

n−1∑
j=0

j∑
i=0

1

q(n−j)i

>
n(n+ 1)

(n+ 1)2
− 1

(n+ 1)2

n−1∑
j=0

(1 +
1

qn−j
)

>
n(n+ 1)

(n+ 1)2
− n+ 1/q

(n+ 1)2
>

n2 − 1

(n+ 1)2
=
n− 1

n+ 1

(B.2)

B.3 Proof of Lemma 4.3

Proof. It is not difficult to solve the probability of Ai,j when i = 0 or j < i ≤ n. We

therefore focus on the situation when 0 < i ≤ j. When i = j = 1, it is easy to show

that Pr(Ai,j) = 2
qn(n−1) ≤

1
n2 for any q, n > 2, and for any j coded blocks with j > 1,

we can construct several disjoint connected graphs to represent the relationship of the

underlying plain blocks in the following way. Consider each plain block covered in the

j coded blocks as a node, and use an edge to connect two nodes if there is a coded

block consisting of the two corresponding plain blocks. We then obtain some disjoint

connected graphs with at most one cycle in each graph. The graph with a cycle implies

that the plain blocks corresponding with the nodes in this graph can be recovered,

since the number of edges is equal to that of nodes, and the set of the coding coefficient

128



B.3 Proof of Lemma 4.3

vectors of j blocks is linearly independent.

Next we divide the plain blocks into several disjoint sets according to the graphs,

i.e., the plain blocks with the corresponding nodes occurring in the same graph will

be put into the same set, and then merge the set with the recoverable blocks, i.e.,

those blocks represented by the nodes which are in the graph with a cycle. Denote the

obtained collection of sets by {S0, S1, . . . , Sk}, where S0 contains all the recoverable

blocks, and each other set contains some blocks that cannot be recovered. The number

of elements in Si is li, and satisfy

li ≥ 2, ∀i : 0 ≤ i ≤ k∑k
i=0 li − k = j

The second equation holds because the number of edges in the graphs corresponding

with S0 is equal to that of nodes, and the number of edges in the graphs corresponding

with Si, i > 0, is one less than that of the nodes. At this moment, we can express the

probability of A1,j as follows:

Pr(A1,j) =
1(
n
2

) ((l0
2

)
+

1

q

k∑
i=1

(
li
2

))

Since
(
a
2

)
+
(
b
2

)
<
(
a+b−1

2

)
, for all a, b ≥ 2, we further have

Pr(A1,j) =
1(
n
2

) ((l0
2

)
+

1

q

k∑
i=1

(
li
2

))
≤ 2

n(n− 1)

k∑
i=0

(
li
2

)

≤ 2

n(n− 1)

(∑k
i=0 li − k

2

)
=

2

n(n− 1)

(
j

2

)
=
j(j − 1)

n(n− 1)
≤ j2

n2

(B.3)

Given the above equation, in order to show Pr(Ai,j) ≤
(
j
n

)2i
, it suffices to prove

that Pr(Ak,j |Ak−1,j) ≤ Pr(A1,j), which is intuitive to see since given the occurrence of

event Ak−1,j , the occurrence of event Ak,j implies the k-th block of the first peer is a

129



APPENDIX B

linear combination of the j blocks of the second peer, which is identical to the event

A1,j .

B.4 Proof of Theorem 4.4

Proof.

Pr(a peer is usable to another peer)

=
n∑
i=0

Pr(p = i)
n−1∑
j=0

Pr(p = j)(1− Pr(Ai,j))

=
1

(n+ 1)2

n−1∑
j=0

n∑
i=0

(1− Pr(Ai,j))

=
n(n+ 1)

(n+ 1)2
− 1

(n+ 1)2

n−1∑
j=0

j∑
i=0

Pr(Ai,j)

≥ n(n+ 1)

(n+ 1)2
− 1

(n+ 1)2

n−1∑
j=0

j∑
i=0

(
j

n

)2i

>
n(n+ 1)

(n+ 1)2
− 1

(n+ 1)2

n−1∑
j=0

(
1 +

j2

n2 − j2

)

>
n2

(n+ 1)2
− 1

(n+ 1)2

n−1∑
j=0

2j2

n2

=
n2

(n+ 1)2
− 1

(n+ 1)2

2n(n− 1)(2n− 1)

6n2

>
n2 − n

(n+ 1)2
>

(n+ 1)(n− 2)

(n+ 1)2
=
n− 2

n+ 1

(B.4)

B.5 Proof of Lemma 4.5

Proof. Since there is only one block at each peer, this block can thus be considered

to be randomly selected from the whole block collection. We let Fi represent the event

that the first i blocks, i.e., the collection of the blocks owned by one of the first i peers,

render the content available. Therefore, the probability of content being available given

130



B.5 Proof of Lemma 4.5

the block distribution vector p, can be expressed as:

P̄p = Pr(F1) +

l∑
i=2

Pr(Fi|F̄i−1) (B.5)

where F̄i is the complement of the event Fi. Since Pr(Fi) = 0, 1 ≤ i < n, equation

(B.5) can be rewritten as:

P̄p =
l∑

i=n

Pr(Fi|F̄i−1) (B.6)

Since each block can be expressed as
∑n

i=1 cibi, where bi is the i-th plain block, and ci

is the coding coefficient of bi, Fi means that the dimension of the space spanned by the

set of the coding coefficient vectors of the first i blocks equals n. Denote the coding

coefficient vector of the i-th block by Ci, and denote di as the dimension of the space

spanned by {Ck|1 ≤ k ≤ i}. We further let Pi = Pr(dj+1 = i + 1|dj = i), and let

P ′i = Pr(dj+1 = i|dj = i). Then we have

Pr(Fi|F̄i−1) =

(
n−1∑
k=1

P ′k

)i−n n−1∏
j=0

Pj (B.7)

Since

Pi = Pr(dj+1 = i+ 1|dj = i) =
qn − qi

qn − 1
(B.8)

P ′i = Pr(dj+1 = i|dj = i) =
qi − 1

qn − 1
(B.9)

131



APPENDIX B

Pr(Fi|F̄i−1) can then be computed by:

Pr(Fi|F̄i−1) =

(
n−1∑
k=1

P ′k

)i−n n−1∏
j=0

Pj

=

(
n−1∑
k=1

qk − 1

qn − 1

)i−n n−1∏
j=0

(
1− qj − 1

qn − 1

)

≥

(
qn−q
q−1 − (n− 1)

qn − 1

)i−n1−
n−1∑
j=0

qj − 1

qn − 1


=

(
1

q − 1
− n

qn − 1

)i−n(
1−

(
1

q − 1
− n

qn − 1

))
(B.10)

Therefore, the probability of content being available is given by

P̄p =

l∑
i=n

Pr(Fi|F̄i−1)

≥
l∑

i=n

(
1−

(
1

q − 1
− n

qn − 1

))(
1

q − 1
− n

qn − 1

)i−n
= 1−

(
1

q − 1
− n

qn − 1

)l−n+1

(B.11)

B.6 Proof of Theorem 4.6

Proof. In both cases, there are
∑l

i=1 pi blocks in the swarm. We consider the blocks

are generated sequentially, which has no impact on the probability of content being

available. Denote the dimension spanned by the set of coding coefficient vectors of

the first generated i blocks in the case corresponding with p by di, and denote the

counterpart in the case corresponding with p′ by d′i. We then have

n∑
i=k

Pr(dj = i) ≥
n∑
i=k

Pr(d′j = i), 0 ≤ k ≤ n, 0 ≤ j ≤
l∑

i=0

pi (B.12)

132



B.6 Proof of Theorem 4.6

We prove this equation by induction on the number of blocks generated. Since when

there is no block in the swarm, Pr(d0 = 0) = Pr(d′0 = 0) = 1, and equation (B.12) is

satisfied trivially. Assume equation (B.12) is true when there are i blocks generated in

both cases. When (i+ 1)-th block is generated, we can show that

Pr(di+1 = t|di = t) =
qt − qi−

∑k
j=1 pj

qn − qi−
∑k
j=1 pj

Pr(d′i+1 = t|d′i = t) =
qt − 1

qn − 1

Pr(di+1 = t|di = t) + Pr(di+1 = t+ 1|di = t) = 1

Pr(d′i+1 = t|d′i = t) + Pr(d′i+1 = t+ 1|d′i = t) = 1

where k satisfies
∑k

j=1 pj ≤ i <
∑k+1

j=1 pj , and it is thus easy to see that Pr(di+1 =

t+ 1|di = t) ≥ Pr(d′i+1 = t+ 1|d′i = t) for all t. Furthermore, for each k ≥ 1, we have

n∑
j=k

Pr(di+1 = j) =
n∑
j=k

Pr(di = j) + Pr(di = k − 1)Pr(di+1 = k|di = k − 1)

and

n∑
j=k

Pr(d′i+1 = j) =

n∑
j=k

Pr(d′i = j) + Pr(d′i = k − 1)Pr(d′i+1 = k|d′i = k − 1)

We then discuss the relationship between
∑n

j=k Pr(di+1 = j) and
∑n

j=k Pr(d′i+1 = j)

in the following two cases: (1) Pr(di = k−1) ≥ Pr(d′i = k−1), and (2) Pr(di = k−1) <

Pr(d′i = k − 1). In the former case, we have

n∑
j=k

Pr(di+1 = j)− Pr(d′i = k − 1)Pr(d′i+1 = k|d′i = k − 1)

≥
n∑
j=k

Pr(di = j) ≥
n∑
j=k

Pr(d′i = j)

133



APPENDIX B

In the latter case, we have

n∑
j=k

Pr(di+1 = j)− Pr(d′i = k − 1)Pr(d′i+1 = k|d′i = k − 1)

≥
n∑
j=k

Pr(di = j) + Pr(di = k − 1)− Pr(d′i = k − 1)

≥
n∑

j=k−1

Pr(d′i = j)− Pr(d′i = k − 1) ≥
n∑
j=k

Pr(d′i = j)

Combined with that
∑n

j=0 Pr(di+1 = j) =
∑n

j=0 Pr(d′i+1 = j) = 1, we can conclude

that
n∑
j=k

Pr(di+1 = j) ≥
n∑
j=k

Pr(d′i+1 = j), 0 ≤ k ≤ n

and thus equation (B.12) has been proven. Based on equation (B.12), we can directly

obtain

P̄p =
n∑

k=n

Pr(d∑l
i=1 pi

= k) ≥
n∑

k=n

Pr(d′∑l
i=1 pi

= k) = P̄p′

B.7 Proof of Theorem 4.7

Proof. We first consider the probability of content being available when network cod-

ing is not used, i.e., Pp. To this end, we sort the vector p in non-decreasing order.

Assume the resulting vector p′ = [p′1, p
′
2, . . . , p

′
l]. We then select an element p′i from p′

such that p′i < n−1, and p′j = n−1 for all j < i, and construct a new block distribution

vector p̂, with elements given by

p̂k =


p′k, k 6= i, k 6= l

p′i + min{p′l, n− 1− p′i}, k = i

max{0, p′i + p′l − n+ 1}, k = l

According to the above equation, we can assume that there are m−min{p′l, n−1−p′i}

134



B.7 Proof of Theorem 4.7

blocks that have been generated, and form the distribution vector

p′′ = [p′1, p
′
2, . . . , p

′
l−1,max{0, p′l + p′i − n+ 1}]. Then we consider the generation of the

remaining r = min{p′l, n − 1 − p′i} blocks. If the remaining r blocks are generated in

peer i, the resulting block distribution vector is p̂, and if the last r blocks are generated

in peer l, the resulting block distribution vector is p. Let di denote the number of

different blocks when the i-th block of the remaining r ones is generated. In the former

case, the generation of the j-th block of the remaining ones will increment the number

of different blocks with the probability

Pr(dj = k|dj−1 = k − 1) =
n− k + 1

n− (p′i + j − 1)

and in the latter case, this probability is

Pr(dj = k|dj−1 = k − 1) =
n− k + 1

n− (max{0, p′l + p′i − n+ 1}+ j − 1)

Therefore, the probability in the first case is larger than that in the second case, and

following the proof of equation (B.12) we can derive Pp = Pp′ ≤ Pp̂. By repeating the

construction of new block distribution vector in this way, we finally will get a block

distribution vector, p̄, with the following elements:

p̄i =


n− 1, 1 ≤ i < d m

n−1e

m− (n− 1)
(
d m
n−1e − 1

)
, i = d m

n−1e

0, i > d m
n−1e

It is simple to see that for any other block distribution vector p̆ = [p̆1, p̆2, . . . , p̆l], which

satisfies
∑l

i=1 p̆i = m, we have

Pp̄ ≥ Pp̆

135



APPENDIX B

Moreover, it is easy to see that

Pp̄ = 1−
(

1

n

)c−1 n−m+ c(n− 1)

n
= 1− (n−m+ c(n− 1))n−c

where c = d m
n−1e − 1, and according to equation (4.4) and (4.5), we have P̄p ≥ 1 −(

1
q−1

)m−n+1
. Therefore, we can directly obtain that

1− Pp
1− P̄p

≥ (n−m+ c(n− 1))n−c(q − 1)m−n+1

B.8 Proof of Theorem 4.8

Proof. Assume that the generation of the blocks is in sequential. Let Si denote the set

of coding coefficient vectors of the first i blocks generated, and denote the dimension

of the space spanned by Si by di. According to equation (B.3), it is easy to show that

if the second coding scheme is used,

Pr(di+1 = t+ 1|di = t) ≥ 1− t2

n2

Pr(di+1 = t+ 1|di = t) + Pr(di+1 = t|di = t) = 1

and in the original BitTorrent protocol, we have

Pr(di+1 = t+ 1|di = t) = 1− t

n

Pr(di+1 = t|di = t) =
t

n

Using the same method in the proof of equation (B.12), it is not difficult to derive

equation (4.7).

136



Bibliography

[1] Ares p2p. http://www.aresp2p.net.

[2] Bittorrent. http://www.bittorrent.com/.

[3] The freenet project. http://freenetproject.org/.

[4] Gnutella. http://www.gnutella.com/.

[5] Kazaa. http://www.kazaa.com/.

[6] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[7] The pirate bay. http://thepiratebay.se.

[8] An estimation of infriging use of the internet. Technical report, En-

visional Ltd, January 2011. http://documents.envisional.com/docs/

Envisional-Internet_Usage-Jan2011.pdf.

[9] Chdbits. http://chdbits.org, Retrieved September 7, 2011.

[10] R. Ahlswede, Ning Cai, S. Y. R. Li, and R. W. Yeung. Network information flow.

IEEE Transactions on Information Theory, 46(4):1204–1216, July 2000.

[11] Nazareno Andrade, Elizeu Santos-Neto, Francisco Brasileiro, and Matei Ripeanu.

Resource demand and supply in bittorrent content-sharing communities. Com-

puter Networks, 53(4):515–527, March 2009.

[12] David Arthur and Rina Panigrahy. Analyzing bittorrent and related peer-to-peer

networks. In Proceedings of the seventeenth annual ACM-SIAM symposium on

Discrete algorithm, pages 961–969, New York, NY, USA, 2006. ACM.

137

http://www.aresp2p.net
http://www.bittorrent.com/
http://freenetproject.org/
http://www.gnutella.com/
http://www.kazaa.com/
http://www.isi.edu/nsnam/ns/
http://thepiratebay.se
http://documents.envisional.com/docs/Envisional-Internet_Usage-Jan2011.pdf
http://documents.envisional.com/docs/Envisional-Internet_Usage-Jan2011.pdf
http://chdbits.org


BIBLIOGRAPHY

[13] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and improv-

ing a bittorrent networks performance mechanisms. In Proceedings of the IEEE

INFOCOM 2006 Conference, Barcelona, Spain, April 2006.

[14] Ashwin R. Bharambe, Cormac Herley, and Venkata N. Padmanabhan. Some

observations on bittorrent performance. In Proceedings of the 2005 ACM SIG-

METRICS international conference on Measurement and modeling of computer

systems, pages 398–399, New York, NY, USA, 2005. ACM.

[15] Ruchir Bindal, Pei Cao, William Chan, Jan Medved, George Suwala, Tony Bates,

and Amy Zhang. Improving traffic locality in bittorrent via biased neighbor

selection. In ICDCS’06, pages 66–75, Lisboa, Portugal, 2006.

[16] Stevens Le Blond, Arnaud Legout, and Walid Dabbous. Pushing bittorrent lo-

cality to the limit. Computer Networks, 55(3):541 – 557, 2011.

[17] Paul J. Burke. The output of a queueing system. Operations Research, 4:699–704,

1956.

[18] Qing-Chao Cai and Kwok-Tung Lo. A detailed survey on a large private bittorrent

community. Technical report.

[19] Qingchao Cai, Xiaolu Zhang, and Xuejie Zhang. Streaming live media over bit-

torrent. In WRI International Conference on Communications and Mobile Com-

puting, volume 3, pages 44–49, Kunming, China, January 2009.

[20] D. Carra, G. Neglia, P. Michiardi, and F. Albanese. On the robustness of bit-

torrent swarms to greedy peers. IEEE Transactions on Parallel and Distributed

Systems, 22(12):2071 –2078, 2011.

[21] J.S.K. Chan, V.O.K. Li, and King-Shan Lui. Performance comparison of schedul-

138



BIBLIOGRAPHY

ing algorithms for peer-to-peer collaborative file distribution. IEEE Journal on

Selected Areas in Communications, 25(1):146–154, January 2007.

[22] Xiaowei Chen, Yixin Jiang, and Xiaowen Chu. Measurements, analysis and mod-

eling of private trackers. In The 10th IEEE International Conference on Peer-to-

Peer Computing (IEEE P2P’10), Delft, Netherlands, 2010.

[23] Yuh-Ming Chiu and Do Young Eun. Minimizing file download time in stochastic

peer-to-peer networks. IEEE/ACM Transactions on Networking, 16:253–266,

April 2008.

[24] David R. Choffnes and Fabián E. Bustamante. Taming the torrent: a practical

approach to reducing cross-isp traffic in peer-to-peer systems. In Proceedings of

the ACM SIGCOMM 2008 conference, pages 363–374, Seattle, WA, USA, August

2008. ACM.

[25] P. Chou, Y. Wu, and K. Jain. Practical network coding. In Proceedings of the

Allerton Conference on Communication, Control, and Computing, Monticello,

IL, USA, 2003.

[26] Alix L. H. Chow, Leana Golubchik, and Vishal Misra. Improving bittorrent: a

simple approach. In Proceedings of the 7th international conference on Peer-to-

peer systems, 2008.

[27] Bram Cohen. Incentives build robustness in bittorrent. In P2PECON’03, Berke-

ley, CA, USA, 2003.

[28] Ruben Cuevas, Nikolaos Laoutaris, Xiaoyuan Yang, Georgos Siganos, and Pablo

Rodriguez. Deep diving into bittorrent locality. In Proceedings of the IEEE

INFOCOM 2011 Conference, Shanghai, China, 2011. IEEE.

139



BIBLIOGRAPHY

[29] C. Dale and Jiangchuan Liu. A measurement study of piece population in bittor-

rent. In IEEE GLOBECOM, pages 405 –410, November 2007.

[30] C. Dana, D. Li, D. Harrison, and C.-N. Chuah. Bass: Bittorrent assisted stream-

ing system for video-on-demand. In Proceedings of the 7th IEEE Workshop on-

Multimedia Signal Processing, 2005.

[31] Prithula Dhungel, KeithW. Ross, Moritz Steiner, Ye Tian, and Xiaojun Hei.

Xunlei: Peer-assisted download acceleration on a massive scale. In Passive and

Active Measurement, volume 7192 of Lecture Notes in Computer Science, pages

231–241. Springer Berlin Heidelberg, 2012.

[32] Kolja Eger, Tobias Hoßfeld, Andreas Binzenhöfer, and Gerald Kunzmann. Ef-

ficient simulation of large-scale p2p networks: packet-level vs. flow-level simula-

tions. In Proceedings of the Second Workshop on Use of P2P, GRID and Agents

for the Development of Content Networks, pages 9–16, Monterey, California, USA,

2007.

[33] Kolja Eger and Ulrich Killat. Bandwidth trading in bittorrent-like p2p networks

for content distribution. Computer Communications, 31(2):201–211, February

2008.

[34] Bennett Eisenberg. On the expectation of the maximum of iid geometric random

variables. Statistics & Probability Letters, 78:135–143, February 2008.

[35] Bin Fan, Dah-ming Chiu, and John Lui. The delicate tradeoffs in bittorrent-

like file sharing protocol design. In Proceedings of the 2006 IEEE International

Conference on Network Protocols, pages 239–248, Washington, DC, USA, 2006.

IEEE Computer Society.

[36] Bin Fan, Dah-Ming Chiu, and John C. S. Lui. Stochastic analysis and file avail-

140



BIBLIOGRAPHY

ability enhancement for bt-like file sharing systems. In 14th IEEE International

Workshop on Quality of Service, pages 30–39, Yale University, USA, 2006.

[37] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust incentive

techniques for peer-to-peer networks. In Proceedings of the 5th ACM conference

on Electronic commerce, pages 102–111, 2004.

[38] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content dis-

tribution. In Proceedings of the IEEE INFOCOM 2005 Conference, pages 2235–

2245, Miami, FL, USA, 2005.

[39] Lei Guo, Songqing Chen, Enhua Tan, Xiaoning Ding, and Xiaodong Zhang. Mea-

surements, analysis, and modeling of bittorrent-like systems. In Proceedings of

the 2005 Internet Measurement Conference, pages 35–48, Berkeley, CA, USA,

October 2005.

[40] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding, and Xiaodong

Zhang. A performance study of bittorrent-like peer-to-peer systems. IEEE Jour-

nal on Selected Areas in Communications, 25(1):155–169, January 2007.

[41] Jinyoung Han, Taejoong Chung, Hyunchul Kim, T. Kwon, and Yanghee Choi.

Systematic support for content bundling in bittorrent swarming. In IEEE INFO-

COM Student Workshop, San Diego, CA, USA, March 2010.

[42] Jinyoung Han, Taejoong Chung, Seungbae Kim, Hyunchul Kim, Ted Taekyoung

Kwon, and Yanghee Choi. An empirical study on content bundling in bittorrent

swarming system. arXiv:1008.2574v1, 2010.

[43] Jinyoung Han, Taejoong Chung, Seungbae Kim, Ted Taekyoung Kwon, Hyun-

Chul Kim, and Yanghee Choi. How prevalent is content bundling in bittorrent.

In Proceedings of the ACM SIGMETRICS joint international conference on Mea-

141



BIBLIOGRAPHY

surement and modeling of computer systems, pages 127–128, New York, NY, USA,

2011.

[44] Kun Huang, Li’e Wang, Dafang Zhang, and Yongwei Liu. Optimizing the bittor-

rent performance using an adaptive peer selection strategy. Future Generation

Computer Systems, 24(7):621–630, 2008.

[45] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garces-

Erice. Dissecting BitTorrent: Five months in a torrent’s lifetime. In Passive and

Active Measurements, Antibes Juan-les-Pins, France, April 2004.

[46] A.L. Jia, X. Chen, X. Chu, and J.A. Pouwelse. From user experience to strate-

gies: how to survive in a private BitTorrent community. Technical Report PDS-

2011-004, September 2011. http://www.pds.ewi.tudelft.nl/fileadmin/pds/

reports/2011/PDS-2011-004.pdf.

[47] A.L. Jia, R. Rahman, T. Vinko, J.A. Pouwelse, and D.H.J. Epema. Fast download

but eternal seeding: The reward and punishment of sharing ratio enforcement.

In Proc. IEEE P2P, pages 280–289, Kyoto, Japan, August 2011.

[48] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free riding. In

Proceedings of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer

systems, pages 116–121, Philadephia, PA, USA, August 2005.

[49] Jain Kamal, Lovasz Laszlo, and Chou Philip. Building scalable and robust peer-

to-peer overlay networks for broadcasting using network coding. Distributed Com-

puting, 19(4):301–311, March 2007.

[50] Ian A. Kash, John K. Lai, Haoqi Zhang, and Aviv Zohar. Economics of bittorrent

communities. In Proceedings of WWW, pages 221–230, New York, NY, USA,

2012.

142

http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2011/PDS-2011-004.pdf
http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2011/PDS-2011-004.pdf


BIBLIOGRAPHY

[51] Sebastian Kaune, Ruben Cuevas Rumin, Gareth Tyson, Andreas Mauthe, Car-

men Guerrero, and Ralf Steinmetz. Unraveling bittorrent’s file unavailability:

Measurements and analysis. In the 10th IEEE International Conference on Peer-

to-Peer Computing, Delft, Netherlands, 2010. IEEE.

[52] R. Kumar and K.W. Ross. Peer-assisted file distribution: The minimum distri-

bution time. In Proceedings of the 1st IEEE Workshop on Hot Topics in Web

Systems and Technologies, pages 1 –11, November 2006.

[53] Arnaud Legout, Nikitas Liogkas, Eddie Kohler, and Lixia Zhang. Clustering and

sharing incentives in bittorrent systems. In Proceedings of the 2007 ACM SIG-

METRICS international conference on Measurement and modeling of computer

systems, pages 301–312, New York, NY, USA, 2007. ACM.

[54] Arnaud Legout, Guillaume Urvoy-Keller, and Pietro Michiardi. Rarest first and

choke algorithms are enough. In Proceedings of the 2006 Internet Measurement

conference, pages 203–216, Rio de Janeiro, Brazil, 2006.

[55] N. Lev-tov, N. Carlsson, Zongpeng Li, C. Williamson, and Song Zhang. Dynamic

file-selection policies for bundling in bittorrent-like systems. In Proceedings of

18th International Workshop on Quality of Service (IWQoS), Beijing, China,

June 2010.

[56] Dave Levin, Katrina LaCurts, Neil Spring, and Bobby Bhattacharjee. Bittorrent

is an auction: analyzing and improving bittorrent’s incentives. In Proceedings

of the ACM SIGCOMM 2008 Conference, pages 243–254, Seattle, WA, USA,

August 2008.

[57] Minglu Li, Jiadi Yu, and Jie Wu. Free-riding on bittorrent-like peer-to-peer file

sharing systems: Modeling analysis and improvement. IEEE Transactions on

Parallel and Distributed Systems, 19(7):954 –966, July 2008.

143



BIBLIOGRAPHY

[58] Q.H. Li and John C. S. Lui. On modeling clustering indexes of bt-like systems.

In Proceedings of the 2009 IEEE international conference on Communications,

pages 1292–1297, Piscataway, NJ, USA, 2009. IEEE Press.

[59] Wei-Cherng Liao, Fragkiskos Papadopoulos, and Konstantinos Psounis. Perfor-

mance analysis of bittorrent-like systems with heterogeneous users. Performance

Evaluation, 64:876–891, October 2007.

[60] Ma Lingjun, Pui-Sze Tsang, and King-Shan Lui. Improving file distribution per-

formance by grouping in peer-to-peer networks. IEEE Transactions on Network

and Service Management, 6(3):149 –162, September 2009.

[61] Nikitas Liogkas, Robert Nelson, Eddie Kohler, and Lixia Zhang. Exploiting bit-

torrent for fun (but not profit). In Proceedings of IPTPS, Santa Barbara, CA,

USA, February 2006.

[62] Bo Liu, Yi Cui, Yansheng Lu, and Yuan Xue. Locality-awareness in bittorrent-like

p2p applications. IEEE Transactions on Multimedia, 11:361–371, April 2009.

[63] Fangming Liu, Ye Sun, Bo Li, and Baochun Li. Quota: Rationing server resources

in peer-assisted online hosting systems. In IEEE International Conference on

Network Protocols, pages 103–112, Princeton, New Jersey, USA, 2009.

[64] Zhengye Liu, Prithula Dhungel, Di Wu, Chao Zhang, and Keith W. Ross. Un-

derstanding and improving ratio incentives in private communities. In the 30th

IEEE International Conference on Distributed Computing Systems, pages 610–

621, Washington, DC, USA, 2010. IEEE Computer Society.

[65] Zimu Liu, Chuan Wu, Baochun Li, and Shuqiao Zhao. Uusee: Large-scale opera-

tional on-demand streaming with random network coding. In Proceedings of the

IEEE INFOCOM 2010 Conference, pages 1–9, San Diego, CA, USA, 2010.

144



BIBLIOGRAPHY

[66] Ziqian Liu and Changjia Chen. Modeling bittorrent-like peer-to-peer systems.

IEEE Communications Letters, 10(7):513 –515, July 2006.

[67] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free

riding in bittorrent is cheap. In Proceedings of HotNets-V, Irvine, California,

USA, November 2006.

[68] Jianming Lv, Xueqi Cheng, Qing Jiang, Jing Ye, Tieying Zhang, Iming Lin, and

Lei Wang. Livebt: Providing video-on-demand streaming service over bittorrent

systems. In PDCAT, pages 501 –508, 2007.

[69] Laurent Massoulie and Milan Vojnovic. Coupon replication systems. IEEE/ACM

Transactions on Networking, 16(3):603–616, 2008.

[70] Daniel S. Menasche, Antonio A. A. Rocha, Bin Li, Don Towsley, and Arun

Venkataramani. Content availability and bundling in swarming systems. In the

5th International Conference on Emerging Networking Experiments and Tech-

nologies, pages 121–132, New York, NY, USA, 2009.

[71] Daniel Sadoc Menasche, Rosa M. Meri Leao, Antonio A. A. Rocha, Don Towsley,

Edmundo De Souza E, and Arun Venkataramani. Modeling chunk availability in

p2p swarming systems. Performance Evaluation Review, 37(2):30–32, 2009.

[72] D.S. Menasche, G. Neglia, D. Towsley, and S. Zilberstein. Strategic reasoning

about bundling in swarming systems. In Proceedings of International Conference

on Game Theory for Networks, pages 611 –620, Istanbul, Turkey, May 2009.

[73] M. Meulpolder, L. D’Acunto, M. Capotă, M. Wojciechowski, J. A. Pouwelse,

D. H. J. Epema, and H. J. Sips. Public and private bittorrent communities: a

measurement study. In the 9th International Workshop on Peer-to-peer Systems,

San Jose, CA, USA, 2010.

145



BIBLIOGRAPHY

[74] Pietro Michiardi, Krishna Ramachandran, and Biplab Sikdar. Modeling seed

scheduling strategies in bittorrent. In Proceedings of the 6th international IFIP-

TC6 conference on Ad Hoc and sensor networks, wireless networks, next genera-

tion internet, pages 606–616, Berlin, Heidelberg, 2007. Springer-Verlag.

[75] Giovanni Neglia, Honggang Zhang, Don Towsley, Arun Venkataramani, and John

Danaher. Availability in bittorrent systems. In Proceedings of the IEEE INFO-

COM 2007 Conference, pages 2216–2224, Anchorage, Alaska, USA, 2007.

[76] Christian Ortolf, Christian Schindelhauer, and Arne Vater. Paircoding: Improv-

ing file sharing using sparse network codes. In the 2009 Fourth International

Conference on Internet and Web Applications and Services, pages 49–57, Wash-

ington, DC, USA, 2009.

[77] John S. Otto, Mario A. Sánchez, David R. Choffnes, Fabián E. Bustamante, and

Georgos Siganos. On blind mice and the elephant: understanding the network

impact of a large distributed system. In Proceedings of the ACM SIGCOMM

2011 conference, pages 110–121, Toronto, Ontario, Canada, August 2011. ACM.

[78] K.N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson. Insights on me-

dia streaming progress using bittorrent-like protocols for on-demand streaming.

IEEE/ACM Transactions on Networking, 20(3):637 –650, june 2012.

[79] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and

Arun Venkataramani. Do incentives build robustness in bittorrent? In Proceed-

ings of the 4th USENIX Symposium on Networked Systems Design & Implemen-

tation (NSDI), pages 1–14, Cambridge, MA, USA, 2007.

[80] Michael Piatek, Tomas Isdal, Arvind Krishnamurthy, and Thomas Anderson.

One hop reputations for peer to peer file sharing workloads. In Proceedings of

146



BIBLIOGRAPHY

the 5th USENIX Symposium on Networked Systems Design and Implementation,

pages 1–14, Berkeley, CA, USA, 2008. USENIX Association.

[81] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The Bittorrent

P2p File-Sharing System: Measurements And Analysis. In Proceedings of the 4th

International Workshop on Peer-to-Peer Systems (IPTPS), Ithaca, New York,

USA, 2005.

[82] Dongyu Qiu and Weiqian Sang. Global stability of peer-to-peer file sharing sys-

tems. Comput. Commun., 31:212–219, February 2008.

[83] Dongyu Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like

peer-to-peer networks. In Proceedings of the ACM SIGCOMM 2004 conference,

pages 367–378, Portland, Oregon, USA, August 2004.

[84] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content-addressable network. In Proceedings of the ACM

SIGCOMM 2001 conference, pages 161–172, San Diego, CA, USA, August 2001.

ACM.

[85] Shansi Ren, Enhua Tan, Tian Luo, Songqing Chen, Lei Guo, and Xiaodong

Zhang. Topbt: a topology-aware and infrastructure-independent bittorrent client.

In Proceedings of the IEEE INFOCOM 2010 Conference, pages 1523–1531, San

Diego, CA, USA, 2010.

[86] Frank Roijers, Michel Mandjes, and Hans van den Berg. Analysis of congestion

periods of an m/m/∞-queue. Performance Evaluation, 64(7-8):737–754, 2007.

[87] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms, pages

329–350, Heidelberg, Germany, November 2001. Springer-Verlag.

147



BIBLIOGRAPHY

[88] Hendrik Schulze and Klaus Mochalski. Internet study 2008/2009. Technical

report, ipoque. http://www.ipoque.com/sites/default/files/mediafiles/

documents/internet-study-2008-2009.pdf.

[89] Improving VoD server efficiency with bittorrent. Choe, yung ryn and schuff, derek

l. and dyaberi, jagadeesh m. and pai, vijay s. In Proceedings of the 15th interna-

tional conference on Multimedia, pages 117–126, Augsburg, Germany, 2007.

[90] P. Shah and J.-F. Paris. Peer-to-peer multimedia streaming using bittorrent. In

IPCCC, pages 340–347, 2007.

[91] Florian Simatos, Philippe Robert, and Fabrice Guillemin. A queueing system

for modeling a file sharing principle. In Proceedings of the 2008 ACM SIG-

METRICS international conference on Measurement and modeling of computer

systems, pages 181–192, New York, NY, USA, 2008. ACM.

[92] Michael Sirivianos, Jong Han, Park Rex, and Chen Xiaowei Yang. Free-riding

in bittorrent networks with the large view exploit. In Proceedings of IPTPS,

Bellevue, WA, USA, February 2007.

[93] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of the ACM SIGCOMM 2001 conference, pages 149–160, San Diego,

CA, USA, August 2001. ACM.

[94] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks.

In Proceedings of the 2006 Internet measurement conference, pages 189–202, New

York, NY, USA, 2006. ACM.

[95] Ye Sun, Fangming Liu, Bo Li, Baochun Li, and Xinyan Zhang. Fs2you: Peer-

assisted semi-persistent online storage at a large scale. In Proceedings of the IEEE

INFOCOM 2009 Conference, pages 873 –881, Rio de Janeiro, Brazil, April 2009.

148

http://www.ipoque.com/sites/default/files/mediafiles/documents/internet-study-2008-2009.pdf
http://www.ipoque.com/sites/default/files/mediafiles/documents/internet-study-2008-2009.pdf


BIBLIOGRAPHY

[96] Riikka Susitaival, Samuli Aalto, and Jorma T. Virtamo. Analyzing the dynamics

and resource usage of p2p file sharing by a spatio-temporal model. In Proceed-

ings of the International Conference on Computational Science, pages 420–427,

University of Reading, UK, 2006.

[97] Ye Tian, Di Wu, and Kam Wing Ng. Modeling, analysis and improvement for

bittorrent-like file sharing networks. In Proceedings of the IEEE INFOCOM 2006

Conference, Barcelona, SPAIN, 2006. IEEE.

[98] Gustavo De Veciana and Xiangying Yang. Fairness, incentives and performance

in peer-to-peer networks. In Proceedings of the Forty-first Annual Allerton Con-

ference on Communication, Control and Computing, pages 150–164, Monticello,

IL, 2003.

[99] A. Vlavianos, M. Iliofotou, and M. Faloutsos. Bitos: Enhancing bittorrent for

supporting streaming applications. In Proceedings of the IEEE INFOCOM 2006

Conference, 2006.

[100] Mea Wang and Baochun Li. R2: Random push with random network coding in

live peer-to-peer streaming. IEEE Journal on Selected Areas in Communications,

25(9):1655–1666, 2007.

[101] Chi-Jen Wu, Cheng-Ying Li, and Jan-Ming Ho. Improving the download time of

bittorrent-like systems. In ICC’07, pages 1125 –1129, Glasgow, Scotland, 2007.

[102] Chao Zhang, P. Dhungel, Di Wu, Zhengye Liu, and K.W. Ross. Bittorrent dark-

nets. In Proceedings of the IEEE INFOCOM 2010 Conference, San Diego, CA,

USA, 2010.

[103] Song Zhang, N. Carlsson, D. Eager, Zongpeng Li, and A. Mahanti. Towards a

dynamic file bundling system for large-scale content distribution. In Proceedings

149



BIBLIOGRAPHY

of the 19th IEEE International Symposium on Modeling, Analysis Simulation

of Computer and Telecommunication Systems, pages 472 –474, Raffles Hotel,

Singapore, July 2011.

[104] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,

and John Kubiatowicz. Tapestry: a resilient global-scale overlay for service de-

ployment. IEEE Journal on Selected Areas in Communications, 22(1):41–53,

2004.

150


	Abstract
	List of Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Contributions and previous work
	1.2.1 Content availability and bundling in BitTorrent swarms
	1.2.2 The applications of network coding to peer-to-peer networks
	1.2.3 Private BitTorrent community

	1.3 Thesis structure

	2 Literature Review
	2.1 Peer-to-peer networking
	2.2 BitTorrent
	2.2.1 BitTorrent protocol
	2.2.2 Performance study
	2.2.3 Protocol design and improvement

	2.3 The applications of network coding to peer-to-peer networks
	2.4 Private BitTorrent community

	3 Modeling and Analysis of Content Availability and Bundling in BitTorrent-like File Swarming Systems
	3.1 Introduction
	3.2 Models
	3.2.1 Model description
	3.2.2 Content availability

	3.3 Simulation
	3.3.1 Experimental Setup
	3.3.2 Active Periods
	3.3.3 Content Availability
	3.3.4 Average Sojourn Time
	3.3.5 The impact of bundling

	3.4 Conclusion

	4 Using Network Coding to Ameliorate the Content Availability of BitTorrent Swarms
	4.1 Introduction
	4.2 Analyzing the Effect of Network Coding
	4.2.1 Background
	4.2.2 Analysis

	4.3 A Simple Sparse Network Coding Scheme
	4.4 Block Scheduling Algorithm
	4.5 Performance Evaluation
	4.5.1 Experimental Setup
	4.5.2 Control Overhead
	4.5.3 Content Availability
	4.5.4 Bandwidth Utilization
	4.5.5 Decoding Process
	4.5.6 Different values of  and 

	4.6 Conclusion and Discussion

	5 A Detailed Survey on a Large Private BitTorrent Community
	5.1 Introduction
	5.2 CHDBits
	5.3 Survey methodology
	5.4 Survey results and analysis
	5.4.1 Torrent
	5.4.2 User
	5.4.3 An analysis of user behavior

	5.5 Conclusion

	6 Conclusion and Future Work
	6.1 Future work
	6.1.1 Bundled swarm vs. individual swarm
	6.1.2 Content propagation
	6.1.3 Strategic manipulation of upload slots
	6.1.4 Exploration on other feasible linear network coding schemes


	Appendix A Modeling and Analysis of Content Availability and Bundling in BitTorrent-like File Swarming Systems
	A.1 Background
	A.2 Proof
	A.2.1 Proof of Lemma 3.1
	A.2.2 Proof of Theorem 3.2
	A.2.3 Proof of Theorem 3.3
	A.2.4 Proof of Theorem 3.4
	A.2.5 Proof of Theorem 3.5
	A.2.6 Proof of Theorem 3.6
	A.2.7 Proof of Lemma 3.7
	A.2.8 Proof of theorem 3.8


	Appendix B Mathematical Analysis on the Effect of Network Coding on the Performance of BitTorrent Swarms
	B.1 Proof of Lemma 4.1
	B.2 Proof of Theorem 4.2
	B.3 Proof of Lemma 4.3
	B.4 Proof of Theorem 4.4
	B.5 Proof of Lemma 4.5
	B.6 Proof of Theorem 4.6
	B.7 Proof of Theorem 4.7
	B.8 Proof of Theorem 4.8

	Bibliography



