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Dedication 

The original contributions reported in this thesis are as follows: 

 

1. Performance evaluation for different types of images (Chapter 3, Section 3.4). 

We have performed a detailed study on the effect of image content on camera 

identification.  Using a two-dimensional Gaussian model, the identification 

accuracy can be obtained for different types of image content.  This study helps 

to quantify the seriousness of image content effect and relates that to the 

identification accuracy. 

 

2. Two dimensional classification method (Chapter 3, Section 3.5). 

As the threshold used in the binary hypothesis test for camera identification 

depends on the image content, we introduced a 2D classifier to give a flexible 

threshold setting according to the image content. In particular, the predicted 

correlation is used in the 2D classifier to show the seriousness of the image 

content effect so that different thresholds are set for different types of image 

content.  Experimental results show that the 2D classifier gives better 

identification accuracy than the traditional identification methods.   

 

3. Confidence map and a pixel-based weighted correlation (Chapter 4, Section 4.4). 

We have extended the image content effect characterization from block level to 

pixel level.  A non-linear regression model using the kernel principal 

component analysis is used to formulate the image content effect.  Then, a 

confidence map is generated to indicate the reliability of each pixel in PRNU 
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estimation.  By using the confidence map as a weighting function, a large 

weighting is assigned to reliable pixels and vice versa.  Experimental results 

show that the proposed confidence map is able to achieve an accurate camera 

identification result.   
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Abstract 

  With the large number of digital imaging devices nowadays, the use of digital 

photos in court keeps on increasing. One might want to authenticate the origin of the 

photo (i.e., whether it is downloaded or produced from a certain camera).  Source 

camera identification thus becomes important in digital forensic applications.  

Camera identification can generally be classified into two types, namely source model 

identification and individual source camera identification. Both of them try to extract 

device signature and check whether that signature can be found in a given photo.  

But the former can only determine the brand and the model of the camera while the 

latter can uniquely identify each individual camera.  The focus of this thesis is on the 

individual source camera identification. 

  Existing source camera identification methods use a type of pattern noise called the 

photo response non-uniformities (PRNU) noise.  It is caused by manufacturing 

imperfections and is presented in every image taken by the device. The PRNU is 

extracted through image denoising.  In particular, it is obtained as the difference 

between the original image and its denoised version.  One major problem is that the 

PRNU can be affected by image content.  For example, the PRNU is completely 

absent in saturated area. Previous studies have found that the image content can 

seriously affect the identification accuracy.  The objective of this study is to 



v 

 

investigate ways to compensate for the scene content effect in PRNU estimation. 

  A possible solution to deal with the image content is to use the correlation predictor.  

It tries to quantify the seriousness of the scene content effect on the pattern noise. We 

have performed a detailed study on the relation between the predicted correlation and 

the identification accuracy.  Using 2D Gaussian modeling, the identification 

accuracy can be obtained for different image content as characterized by the predicted 

correlation.  Using this result, a 2D classifier is proposed for individual source 

camera identification.  The 2D classifier uses the predicted correlation as one of the 

features to quantify the scene content effect.  It helps setting different correlation 

thresholds for different types of image content.  Experimental result shows the 

identification accuracy increases by about 4% as compared to the traditional 

identification methods. 

  The correlation predictor is able to characterize the image content effect in a 

block-based manner only.  We extended the characterization to a pixel level.  In 

particular, a non-linear regression model is used to formulate the scene content effect.  

Then, a confidence map is generated which indicates the reliability of each pixel in 

the PRNU estimation.  By using the confidence map as a weighting function in 

correlation calculation, the scene content effect can be compensated.  Experimental 

results show that the proposed confidence map is able to achieve an accurate camera 
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identification result.  As compared with state-of-the-art identification methods, our 

proposed method can achieve about 2%-5% and 4%-20% improvement in detection 

accuracy at JPEG quality factor of 90 and 70 respectively. 
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Chapter 1 Introduction 

1.1 Introduction 

  Due to the rapid development of technologies, digital imaging devices continuously 

replace their traditional analogue counterparts. In fact, the number of digital imaging 

devices is increasing all over the world. Even mobile phones nowadays are common 

to have a digital camera embedded in it. With the large number of digital imaging 

devices, digital photos can easily be used as an evidence of crime in court. For 

example, in child pornographic cases, digital photos involved would be one of the 

major evidences of the crime. In such cases, identifying the camera that took those 

photos would particularly be useful to prove whether the photos are downloaded or 

produced by the suspect.  Despite that, the reliability of the digital photos is a major 

issue.  One needs to authenticate the origin of the photo and prove that the photo is 

untampered.  This makes digital forensics and digital camera identification getting 

important in recent years. 

  Although many digital photos nowadays contain the Exchangeable Image File 

(EXIF) headers that provide information such as the camera model and the setting 

used to took the photos, the headers can easily be modified or removed. Furthermore, 

EXIF only indicates the model of the camera taking the image but not the individual 

camera. Some more reliable methods should be used to authenticate the source of the 
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photos and prove the reliability of the digital photos. 

  Digital watermarking [57] has been proposed as a tool to provide authenticity to 

digital photos as well as to indicate the source camera. However, this technique is not 

popular. One of the main reasons is that this approach requires support of the camera 

manufacturer. The digital camera needs to insert the watermark into the photo at the 

time when the image is captured. Majority of the digital images nowadays do not 

contain watermark, and this situation is likely to continue in the future. Thus, passive 

techniques should be used to authenticate the source camera in the absence of 

watermark.    

  In recent years, many researchers started to use image processing techniques for 

digital camera identification [1-31].  The source camera identification can be roughly 

classified into two main groups: source model identification [15-31] and individual 

source camera identification [1-14]. For the source model identification, component 

forensics [15-31] is often used to examine the signature left in different components 

along the camera pipeline. For the individual source camera identification, the main 

trend is to use the sensor noise produced by the image sensor [1-14]. For most 

forensic applications, knowing the exact source camera is much more important than 

only knowing the model due to the fact that there are plenty of cameras of same 

model. As camera identification based on camera sensor noise has an edge on 
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identifying individual cameras even for the same brand and same model, this thesis 

focuses on the camera sensor noise for individual source camera identification.  

 

1.2 Problems 

  The individual source camera identification using pattern noise was based on image 

denoising technique. The pattern noise is simply the difference between the original 

image and its denoised version.  Recent researches [1-3] show that the pattern noise 

is capable of characterizing individual camera.  Besides, the noise is stable in time 

and is robust against manipulations such as JPEG compression and filtering.  Despite 

that, one of the main problems in the denoising-based pattern noise estimation is that 

the scene content was found to be left in the extracted pattern noise. For example, the 

saturated area (i.e., image intensity reaches its maximum value) or the textured area of 

the images contaminate the extracted pattern noise.  As a result, the identification 

result could be affected. Despite the scene content is highly related to the 

identification accuracy, traditional identification method using pattern noise[1] did not 

consider the scene content of the testing images.  

  Recent studies [2-3] used the correlation predictor to deal with the scene cotnent 

effect.  The idea is to extract features such as image intensity and texture information 

from an image.  These features are then used to predict the correlation between the 



4 

 

PRNU of the testing image and the reference PRNU from a particular camera.  

Existing method uses the predicted correlation to provide a weighting mechanism so 

as to reduce the scene content effect on camera identification.  For image region with 

less scene content effect left in the pattern noise, a larger weighting is applied in the 

correlation calculation.  As for image region with serious content contamination on 

the pattern noise, a lower weighting is applied. In this way, a reliable signal detection 

can be achieved.  Despite some successes, this block based approach is not flexible 

enough as the image content within each block can have a large variation which limits 

the effectiveness of the weighting mechanism.  

  Another method proposed to deal with the scene content effect is to use the phase 

component of the pattern noise [4]. The scene content of this phase pattern noise is 

suppressed as compared with the original pattern noise. Due to the reduction of the 

scene content effect, the identification performance of the phase pattern noise is better 

than that of the original pattern noise. Besides modifying the pattern noise, different 

denoising techniques [35-38] have been proposed to remove the scene content effect 

in the pattern noise. However, all these approaches use a single feature for the source 

camera identification which is the correlation value for the threshold setting in the 

camera identification. The identification performance still has room for further 

improvement.  
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1.3 Objectives 

  Our focus is on the individual source camera identification using sensor pattern 

noise.  As discussed in Section 1.2, one of the main problems in sensor pattern noise 

for individual source camera identification is the scene content effect on the pattern 

noise.  The objective of this thesis is to investigate methods to compensate for the 

scene content effect on the source camera identification.  We will first demonstrate 

how the scene content affects the pattern noise estimation and investigate how it 

relates to the camera identification accuracy.  Then, we will investigate two ways to 

make use of the correlation predictor to incorporate the scene content effect into the 

camera identification problem.  The first approach is to use the correlation predictor 

as one of the features in a 2D classifier.  It helps setting flexible threshold values 

according to the type of scene content.  The second approach is to extend the 

formulation of the scene content effect to pixel level so that the reliability of the 

pattern noise for each pixel in an image can be characterized.  Using this pixel-level 

reliability information, a weighted correlation is formulated so that a large weighting 

is applied to reliable pixels and vice versa. 

 

1.4 Organization of the thesis 

  The rest of the thesis is organized as follows. In Chapter 2, the image capture 
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model will first be introduced. Then, existing camera identification methods including 

lens distortion [27-31] and demosaicing artifacts [15-16] will be followed. Afterwards, 

the use of pattern noise for source camera identification [1, 2, 4] will be described in 

details. 

  In Chapter 3, the importance of the image content in the source camera 

identification will be introduced. This is followed by the correlation predictor which 

is used to quantify the characteristics of the image content effect. A detailed study on 

the relation between the predicted correlation and the camera identification accuracy 

will be described.  Afterwards, our proposed 2D classifier is presented.   

  Chapter 4 introduces our second approach for compensating the scene content 

effect on camera identification.  The formulation of the scene content effect using a 

non-linear regression model is given.  Then, we will describe how the pixel-level 

characterization of the scene content effect is generated and used to indicate the 

reliability of each pixel in calculating the correlation between pattern noises.  A 

conclusion and future direction will be given in Chapter 5.  The contribution of the 

thesis will also be summarized. 
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Chapter 2 Literature Review 

  Source camera identification can be classified into two types, namely the source 

model identification and the individual source camera identification. Source model 

identification attempts to determine the brand/model of the image source while the 

individual source camera identification tries to find out the exact source camera used 

to take the images.   

  In this chapter, image capture model of digital camera will first be given in Section 

2.1. Then, the source camera identification based on features from different parts of 

in-camera processing will be discussed. In particular, the use of lens distortion for 

camera identification will be introduced in Section 2.2. Then, the use of demosaicing 

artifacts will be followed in Section 2.3. Afterwards, the use of camera pattern noise, 

which is one of the most reliable approaches in this research area, will be described in 

detail in Section 2.4. Finally, Section 2.5 summarizes different approaches for camera 

identification.   
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2.1 Image capture model 

  Despite that cameras from different manufacturers always have different in-camera 

processing, the simplified model shown in Figure 2.1 provides an accurate model for 

digital output from most cameras in use nowadays.  Light from the scene passes 

through the lens, optical filter and color filter array (CFA) before reaching the image 

sensor. The lens focuses the incident light onto the image sensor such that the image 

captured is in focus. Then, the optical filter is used to filter some high frequency light 

such as infrared and ultraviolet to ensure that the camera responds to the light that can 

be detected by the human visual system. Besides, in many digital cameras, CFA is 

used in order to capture different color components in a single image sensor. There are 

two main reasons in using CFA. The first reason is due to the high cost in producing a 

full resolution sensor for each color component. The second reason is due to the 

substantial difficulty in perfect matching of different color components to form the 

true color. After the light passing through the CFA, it illuminates the image sensor. 

The image sensor is a light sensitive device which converts the photons from the 

incident light into charge. For every pixel in the image sensor, the charges 

accumulated within the exposure time are converted to voltage which will be 

quantized. The sensor output signal then undergoes various in-camera processing such 

as CFA interpolation, white balancing and gamma correction etc.  
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  In digital camera identification, researchers examined different components that 

might contain device characterization, and had developed different kinds of 

identification methodology. Next part of this section will first introduce the use of lens 

distortion as a feature for camera identification. 

 

 

Figure 2. 1 Digital camera output mode.  

 

2.2 Lens distortion 

  Due to the design and manufacturing process, lens produces radial distortion in the 

captured image. The radial distortion causes straight lines in the object space rendered 

as curved lines on camera sensor. There are two main types of radial distortions, 

namely the barrel distortion and pincushion distortion. Barrel distortion occurs when 

magnification of scene decreases with off-axis image distance while pincushion 

distortion occurs when magnification of scene increases with off-axis image distance. 

Figure 2.2 shows examples of barrel distortion and pincushion distortion.    
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Figure 2. 2 Distortions of a rectangular grid. From left to right: undistorted, barrel distorted 

and pincushion distorted grids [27]. 

   

  Studies [27-28] used these kinds of radial distortion as features to identify different camera 

brands or models. A second order radial symmetric model was used to quantify the distortion 

as follows,   

r� = 	
 + �r
� + ��r
�,      (2.1) 
where r� and 	
  are the undistorted radius and distorted radius respectively, k1 and 

k2 are the first order and second order distortion parameters respectively. The radius is 

the radial distance ��� + �� of a point (x,y) from the center of distortion where the 

center of distortion is assumed to be the center of the image. 

  Study [27] used the straight line method introduced by Devernay [31] to compute 

the radial distortion. The method is based on a simple property that if a lens does not 

have radial distortion, every straight line in space should be projected as a straight line 

onto an image. By using this property, an iterative process can be used to estimate the 
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distortion parameters k1 and k2. These distortion parameters can be solely used as 

features for the classifier or combined with other statistical image features [23-26] to 

identify different cameras.  

  The main restriction of the method is that the captured images must contain straight 

lines in order to estimate the distortion parameters. Besides, lens from camera are 

manufacturer dependent. Cameras from the same model or same series may use the 

same types of lens.  In this case, individual camera cannot be identified. 

 

2.3 Color Filter Array (CFA) and demosaicing artifacts 

  A digital image consists of three color channels, including red, green and blue. 

However, the digital camera nowadays are usually equipped with a single CCD or 

CMOS sensor.  In such cases, CFA is always used to capture color images using a 

single imaging sensor. Most CFAs employ three color filters including red, green and 

blue. The filter pattern is usually 50% green, 25% red and 25% blue as human vision 

is more sensitive to green color. The most common CFA pattern used among digital 

cameras is the Bayer pattern which is shown in Figure 2.3. 
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Figure 2. 3 Bayer pattern. 

   

  As each pixel of the imaging sensor only contains one color component and the 

other two color samples are missing, demosaicing or CFA interpolation has to be used 

to estimate the missing color components using information from neighboring pixels.  

Simple demosaicing methods treat different color channels separately and employ 

some kernel-based interpolation methods in each color component such as bilinear or 

bicubic interpolation [54]. Other sophisticated methods interpolate pixel along the 

direction of edges to achieve a better visual quality [53]. Regardless of the 

demosaicing methods used, images using same demosaicing method would introduce 

similar statistical correlation among pixels. This kind of correlation can be treated as a 

type of digital signature.  

  In [15], the authors used the expectationmaximization (EM) algorithm to estimate 

the interpolation coefficients by re-interpolating digital images after down-sampling. 

Experimental results show that the estimated interpolation coefficients can help to 
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distinguish different interpolation algorithms.  

As some adaptive CFA interpolation methods may perform differently in 

different image regions, Swaminathan [16] proposed to divide an image into different 

types of regions based on the gradient feature. Let Vx,y and Hx,y be respectively the 

vertical and horizontal gradient level at a particular pixel (x,y) as follows,  

��,� = ���,��� + ��,��� − 2��,��      (2.2) 

��,� = �����,� + ����,� − 2��,��     (2.3) 

where Ix,y is the image intensity at pixel (x,y). Then for each pixel, the image region 

R1,R2 and R3 can be classified as follows: 

 R1: $��,� − ��,�% < −'R2: $��,� − ��,�% > '             R3: − T < (��,� − ��,�) < ',      (2.4) 

where T is a threshold which is chosen experimentally. Region R1 represents the 

region with significant horizontal gradient. Region R2 represents the region with 

significant vertical gradient and region R3 represents the region with smooth content. 

For each type of region, the authors establish a linear model to solve for the 

interpolation coefficients. Let the linear model to be, 

Ax=b,        (2.5) 

where A is the intensity values of neighboring pixels that are used to estimate the 

interpolation coefficients, x consists of interpolation coefficients and b is the actual 
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intensity value at a particular pixel . If there are M elements in a particular region type 

and the number of neighboring pixels used to estimate the interpolation coefficients 

are N, then A will be in the dimension of M × N, x will be in the dimension of N × 1 

and b will be in the dimension of M × 1.  

  Assuming that, M≥N which means the number of observations is larger than the 

unknown needed to be solved, then the interpolation coefficients can be estimated by 

using least squares method [16] or singular value decomposition (SVD) [18]. The 

CFA pattern of an image is determined by searching over all valid CFA patterns 

which minimizes the resulting error. The interpolation coefficients are then put into 

the support vector machine (SVM) for camera identification. The identification 

accuracy was larger than 85 percent in identifying images from 16 camera-models 

under different compression levels [16]. 

  This method is useful for identifying the model of a camera taking a particular 

image.  However, for identifying individual cameras within the same model, the 

identification methods based on CFA interpolations may not work. In fact, for 

cameras with same models or even same brands, as long as they used the same CFA 

interpolation algorithms, the camera identification process would fail.   Some other 

unique characteristics have to be used in order to identify individual cameras. 
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2.4 Sensor Pattern Noise  

  There are two types of pattern noises in image sensor, one is the dark signal 

non-uniformity (DSNU) and the other one is the photo response non-uniformity 

(PRNU) noises.  

  The DSNU is caused by dark current and corresponds to pixel to pixel difference 

without illumination of light. The initial work in using sensor pattern noise for camera 

identification was done by Kurosawa who used the DSNU for camera identification 

[11]. In the testing, only blank images with low intensity level were tested as DSNU 

only survives in dark scene. Despite some success, DSNU is a weak signal.  It is not 

easy to accurately extract the DSNU from natural images which hinders the practical 

application of DSNU in camera identification. 

  A reliable camera identification method using sensor pattern noise was first 

introduced by Lukas [1] who used PRNU instead of DSNU for identification. The 

PRNU corresponds to pixel-to-pixel difference under illumination of light.  It is 

caused by the inhomogeneity of silicon wafers and manufacturing imperfection [26]. 

These kinds of imperfections make the images taken by a particular camera 

containing the same kind of pattern noise which acts like a fingerprint of camera. A 

further study by Chen [3] used the maximum likelihood approach to estimate the 

camera fingerprint. Recently a phase pattern noise was proposed by Kang [4] who 
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used the phase component of the pattern noise for camera identification. For 

simplicity, in this thesis, the original method by Lucas is called the Basic Approach. 

The modified versions by Chen and Kang are called the MLE (maximum likelihood 

estimation) approach and the Phase Approach respectively. 

  In the next section, the sensor model would first be introduced. Then, the Basic 

Approach for source camera identification would be followed. Afterwards, the idea of 

MLE approach and Phase Approach would be discussed. Finally, a chapter summary 

is given.  

  

2.4.1 The Sensor model  

  The key component of the individual source camera identification is the sensor 

pattern noise. Therefore, knowing the sensor model is important to understand the 

idea and the operation of the identification method. In this section, the sensor output 

model will first be introduced and then the assumptions of generating a simplified 

camera output model for identification will be given. 

 

2.4.1.1 Sensor noise and the sensor output model  

  There are different sources of noise in camera sensor during image capture. Let 

Y(i,j) and Z(i,j) be the ideal sensor output and actual sensor output from a particular 
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color channel respectively. Figure 2.4 shows different types of sensor noise in 

affecting the ideal output signal Y(i,j).    

 

 

Figure 2. 4 Different types of sensor noise and the sensor output model. 
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  In the image sensor model, the pixel non-uniformities exist in camera output 

because of the inhomogeneity of silicon wafers and manufacturing imperfection. This 

kind of imperfection shows up a pixel-to-pixel variation in sensor when responds to 

the light. The sensor characteristics can be represented by a constant term called 

PRNU (K(i,j)) which is fixed but different for each pixel. Hence, the sensor output 

signal after considering the PRNU becomes,  

 (1+K(i,j))Y(i,j).        (2.6) 

  The component of the pattern noise caused by dark currents is called the DSNU.  

Even in the absence of light, dark currents cause the electrons to accumulate in pixel 

wells. In general, the charge caused by the dark current consists of a random part and 

a constant part. The constant part signal is called the DSNU while the random part is 

called the shot noise. In fact, the dark current varies with temperature and exposure 

time, but it is independent of the photoelectrons generated. Therefore, the dark current 

noise can be treated as an additive noise to the sensor output signal. Let D(i,j) and 

S(i,j) be the DSNU and the shot noise respectively, then the sensor output signal 

becomes, 

 (1+K(i,j))Y(i,j)+D(i,j)+S(j,j).     (2.7) 

 After the charges accumulated in sensor pixels, they will be transferred to the 

output amplifier. The amplifier transforms the charge collected at each pixel into a 



19 

 

measurable voltage first and this process will generate an additive noise with zero 

mean. After that, the amplifier will apply a gain, g, to the signal and this gain factor 

will also amplify the signal noise. Let the amplifier noise be R(i,j), the sensor output 

signal becomes, 

 ((1+K(i,j))Y(i,j)+D(i,j)+S(i,j)+R(i,j))g .    (2.8) 

  The signal passing through the amplifier is subsequently sampled and digitized by 

the analog to digital converter. The quantization noise Q(i,j) will be introduced as an 

additive noise as follows,  

( (1+K(i,j) Y(i,j))+D(i,j)+S(i,j)+R(i,j))g+Q(i,j).    (2.9) 

Equation (2.9) models the output signal from the camera pipeline.  We can see that 

the PRNU is a multiplicative noise while other noises are additive in nature. 

 

2.4.1.2 Simplified camera output model 

  Since signal processing chain in digital cameras is very complex and varies with 

camera brands and models, only white balance and gamma correction are considered 

in the camera model output.  A gain factor G is used to adjust the sensitivity of 

intensity in different color channels to obtain a correct white balance and - is the 

gamma correction factor. Finally ./(�, 0) is added to the output model to represent 

the quantization noise at camera output. Let I(i,j) be the signal of a particular color 
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channel. Then mathematically, with the consideration of gamma correction and white 

balance to the model in equation (2.9), the camera output becomes, 

�(�, 0) = 1(((1 + 2(�, 0))3(�, 0) + 4(�, 0) + 5(�, 0) + 6(�, 0))7 + 8(�, 0))9:; + ./(�, 0) (2.10) 

  Grouping all the additive noises (dark current noise, shot noise and read out noise) 

together, the camera output model in equation (2.10) can be written as,  

�(�, 0) = 9;1$1 + 2(�, 0)%3(�, 0) + Ʌ(�, 0):; + ./(�, 0).   (2.11) 

Dropping the pixel indices for better readability, the camera output model in equation 

(2.11) is given as follows: 

� = 9;1(1 + 2)3 + Ʌ:; + ./.    (2.12) 

  To further simplify equation (2.12), the authors in [1] factorize Y out. As (2 + Ʌ>)  

is a very small positive number and -	 ≅ 0.45, Taylor expansion approximation can 

be used to keep the first two terms only. Hence equation (2.12) can be simplified as 

follows: 

         � = (93);[(1 + 2) + Ʌ>]; + ./ 

				= (93); C(1 + -2) + -Ʌ3 D + ./	 
      = �(E) + �(E)2′ + 	.,          (2.13) 

where �(E) = (93);, 2G = -2 and . = (93); H;Ʌ> I + ./.  
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  J′ is the PRNU feature that is often used as a fingerprint for camera identification. 

Given the model in equation (2.13), one wants to extract J′ from camera output � 
without knowing the actual input �(E). Different methods have been proposed to 

extract J′, for example the Basic Approach and the MLE Approach which will be 

described in the next section. 

 

2.4.2 Basic Approach 

  The Basic Approach is a simple but effective way to make use of the pattern noise 

for individual source camera identification. It was the first reliable approach proposed 

for extracting the sensor pattern noise.  The general framework developed for 

camera identification is still used by subsequent camera identification methods. In this 

section, the general flow of the identification method will first be given. After that, 

each step in the identification process will be discussed in details. 

 

2.4.2.1 General flow of the identification procedure 

  Figure 2.5 shows the general flow of the identification method of the Basic 

Approach. To decide whether a photo is taken by a particular camera C, the method 

requires a set of photos taken from C and another set of photos taken by some other 

cameras. The set of photos from C is divided into two subsets, i.e., subset A and 

subset B. Images first undergo image denoising so that the PRNU feature can be 
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extracted by calculating the difference between the original image and the denoised 

image. The PRNU feature from images in subset A is used to estimate the reference 

PRNU for C and that from subset B is used to obtain the probability density function 

(PDF) of the correlation between the PRNU feature extracted from images in subset B 

and the reference PRNU. Similarity, the PRNU extracted from other cameras would 

be used to obtain another probability density function. Using these two PDFs and 

Neyman Pearson theorem, a threshold is obtained for a pre-defined false rejection rate 

(FRR) which minimizes the false acceptance rate (FAR). Hence this threshold can be 

used to judge whether the photo is taken by a particular camera C or not. Besides, the 

FRR estimated can be used for performance evaluation.  
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Figure 2. 5 Flow of the identification method of the Basic Approach. 
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2.4.2.2 Feature extraction by denoising 

  To extract the PRNU feature of the photos, a denoising filter [34] is used.  The 

noise residue W is obtained by subtracting the original image I from the denoised 

image KL(M), i.e.,  

W =	K − KL(M)           

=KJ′ + K(M) − KL(M) + (K(M) − K)J′ + 	N	     

=KJG + O,               (2.14) 

where ε is the sum of . and two additional terms introduced by the denoising filter. 

Assume that ε can be modeled by white Gaussian noise (WGN) with variance σ� 

and is independent of KJG. This noise residue can be used to estimate the reference 

PRNU of a particular camera and for feature comparison. 

 

2.4.2.3 Camera Fingerprint and Correlation detection 

  To generate a reference fingerprint for a particular camera, simple averaging 

technique can be used. Let RST be the reference fingerprint for a particular camera C, 

it can be obtained as the average of the noise residue RU from N images taken by the 

camera C, i.e.,  

RST = ∑ RUWUXYZ , (2.15) 
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The larger number of N in generating the reference fingerprint, the better the 

estimation is. Despite that, the estimation of reference fingerprint converges with 

increasing number of N, the fingerprint estimation with 100 images and 200 images 

are in fact very similar. Based on the study by Lukas[1], it would be good enough for 

N≥50.    

  After generating the reference fingerprint for the camera C, it is necessary to have a 

way to measure the similarity of PRNU feature between the reference camera and the 

testing images. Lukas [1] proposed to use Pearson’s correlation to decide whether a 

photo is taken by a particular camera C, and this technique is still a common way for 

PRNU comparison. 

  To decide whether a particular photo P is taken by a specific camera C, the 

reference fingerprint RST of camera C should first be calculated using equation (2.15). 

Then the same denoising filter [34] should be used to extract the noise residual R[ 

from a testing photo as equation (2.14): R[ = K[J′[ + O\. The correlation detector 

calculates the correlation between K[J] T	^_`	R[	as follows:  

�a(b) = cd		$R[,RT% = $R[�R[eeeee%ʘ$RT�RT%gR[�R[eeeeeg	gRT�RTg 	.   (2.16) 

where R[eeeee denotes mean of R[, ʘ denotes dot product, and ||.|| denotes the h� 

norm. The correlation measures the similarity between the reference PRNU and 

the PRNU extracted from a particular photo P.  If the photo is taken by that camera, 
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the correlation value calculated should be large.  If the photo is not taken by that 

camera, the value should be small.  A threshold is thus required to decide whether 

the photo is taken by the camera C.  The setting of this threshold and system 

performance evaluation method will be introduced in next section. 

 

2.4.2.4 Neyman Pearson theorem for threshold decision 

  Assume that there are some photos taken by camera C, and some other photos not 

taken by camera C. For a particular photo P, one wants to know whether it comes 

from C or not.  The problem is then formulated as a binary hypothesis test as, 

i								�E:		�j^7k	_d�	�	dj	l�:		�j^7k		�	dj	l   (2.17)  

  By using the correlation detector in equation (2.16), a set of correlation values can 

be obtained which is used to obtain the probability density function (PDF) of the 

correlation between the camera fingerprint (m]n) and the noise residual of the testing 

photo (m\).  In other words, two PDFs are generated: PDF of p(�|�E) and that of 

p(�|�).  The PDF of p(�|�E) is the distribution of the correlation values for testing 

photos not coming from camera C while the PDF of p(�|�) is that coming from 

camera C.  Figure 2.15 shows a sample plot of the two PDFs.  We can see that the 

correlation values p(�|�E) are generally smaller than p(�|�E).  By setting the FAR 

tolerance at a particular small value, e.g., 10��, a threshold �p can be set to decide 
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whether a photo is taken by the camera C. Besides, with the pre-set FAR value, FRR 

can be used to evaluate the system performance.  

  The digital camera identification method using PRNU feature has an edge on 

identifying individual cameras even though they might be of the same brand and 

model. The accuracy of identification greatly depends on the number of pixels used 

for PRNU feature extraction. For typical digital cameras, the resolution of digital 

images is usually very high with more than millions of pixels.  This makes the 

identification accuracy often larger than 90 percent as reported by many researches 

[1-14]. 

2.4.3 MLE (Maximum likelihood estimation) Approach 

  The MLE Approach makes certain modification on the Basic Approach to try to 

enhance the identification result. For example, a PRNU processing was adopted to 

suppress the similar artifacts appeared in the same model camera. Besides, the feature 

used for camera identification was changed to be the multiplicative PRNU factor 

within the noise residue. Furthermore, a maximum likelihood estimation framework 

was used for the fingerprint estimation. Finally, a modified statistical detection 

method which involves a weighting mechanism was also introduced for camera 

identification.  
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2.4.3.1 Maximum Likelihood (ML) estimation 

  Assuming a set of digital images from a particular camera is available. The PRNU 

J′ can be determined from N given images, �, … , �Zunder a maximum likelihood 

framework. From equation (2.14), with the assumption that the noise term Or can be 

modeled by white Gaussian noise (WGN) with variance σ� and is independent of 

KJG. Then, for each image k=1,…, N, we have: 

              
RUKU = JG + sUKU	.        (2.18) 

  The log-likelihood of observing 
tuvu  given J′ is 

h(JG) = − Z� ∑ wd7 H�xyzKU{ I − ∑ |RUKU �J}~
z

zyzKUz
Zr� 	Zr� .   (2.19) 

  By taking partial derivatives of equation (2.19), the PRNU can be estimated as 

follows: 

��(�G)��G = �{∑ (RU − KUJG)KU = 0Zr�   

 =>J] = ∑ RUKUZuX�∑ (KU){ZuX� .     (2.20) 

  Images used for estimating the PRNU should be those with high luminance and 

small variance.  For example, out-of-focus images of bright blue sky would be the 

best.  The number of photos used, i.e., N, should be large enough to provide a 

reliable fingerprint estimation. It was suggested that N should be larger than 50 for 
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those blue sky photos.  If natural images are used, N should be larger in order to 

have a reliable estimation. 

2.4.3.2 PRNU Processing 

  The noise residue W in equation (2.14) is not only containing the artifact unique for 

each sensor, but also other artifacts shared among cameras with same brand/model. 

Such artifacts can make the PRNU extracted from different cameras of the same 

model slightly correlated with each other and hence reduce the identification accuracy. 

These common artifacts include those from 1) Color interpolation, 2) Row and 

column noise of the sensor and 3) Blocking artifact of JPEG image. 

 

  Color interpolation: Most cameras nowadays are equipped with Color Filter Array 

(CFA). Each pixel of the image sensor captures only a single color component. The 

other missing color components are generated by color interpolation from neighboring 

pixels. The CFA and its corresponding interpolation methodology generate a periodic 

pattern in the extracted PRNU.  Hence, cameras equipped with the same 

interpolation methodology would have the same periodic pattern. 

 

  Row and column noise: Due to the row-wise and column-wise operation of the 

image sensor and the processing circuit, the output images contain bias for each row 
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and column.  Hence cameras of the same brand/model carry the same bias. 

 

  Blocking artifact of JPEG images: JPEG is one of the common formats in storing 

digital images. Due to the block-based processing and quantization, blocking artifact 

is often left in the JPEG-compressed images.  

 

  To solve the problem, some processing operations can be used to suppress the 

unwanted artifacts. Zero mean operation for every row and column can be done to 

remove the row and column artifact. Each pixel in the column is subtracted by its 

column average. Similarly, each pixel in the row is subtracted by its row average. To 

remove the structural artifact from color interpolation and blocking artifact, the 

zero-meaned PRNU is transformed into Fourier domain and then filtered with the 

Wiener Filter. Let the zero mean operation of the PRNU be ZM(JG) where 2G is the 

PRNU multiplicative factor, then the Wiener Filtering in Fourier domain can be 

expressed as, 

WF(ZM(JG))=F
-1

{F(ZM(2G)-W(F(ZM(JG))},  (2.21) 

where W is the 3x3 Wiener filter, F and F
-1

 are the Fourier transform and inverse 

Fourier transform respectively. 
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2.4.3.3 A Weighting mechanism 

  Equation (2.14) is valid for images with smooth content only.  For natural images, 

the noise term ε should be modeled as a colored Gaussian noise ε� with unequal 

variance σ�� as the noise is strongly influenced by image texture.  Besides, there 

should have an attenuation factor T to the PRNU term.  Therefore, the noise residue 

model in equation (2.14) should be modified as, 

W =TIK+	ε�. (2.22) 

Note that T is a pixel-wise multiplicative attenuation factor.  As it is difficult to 

estimate the two non-stationary quantities T and ε� at every pixel due to insufficient 

data, a simplified approach is to estimate these quantities in a block based manner. 

The testing images are divided into M disjoint blocks and T and ε are assumed to be 

constant within each block. The binary hypothesis test problem becomes, 

i �E:	m = 	O											�:		m = '� + 	O (2.23) 

where ε[i], i ∈ Bb, is white Gaussian noise (WGN) with zero mean and known 

variance ����and X 

The optimal detector for equation (2.23) is the generalized matched filter, i.e.,  

� = ∑ �������  (2.24) 

where 
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�� =
�]�
���{ ||��||	||R�||

�∑ 	�]����{��X� ||��||{	�∑ 	 ����{��X� ||R�||{
 (2.25) 

and		�� = cd		(��,m�).  Shaping factor Tb and ���	can be estimated under H1 as, 

�� = ��‖��‖z���⨀��
‖��‖���{‖��‖{������⨀���‖��‖{	

 

(2.26) 

  As ε� is zero mean and independent of Xb, the mixed term is small as compared to 

other terms in equation (2.26).  This implies, 

�� ≈ ��‖��‖
‖��‖{���{‖��‖{�‖��‖{	 =


�� g��g{��{g��g{	

 (2.27) 

��{‖��‖{‖��‖{ = �����{
 (2.28)

 

From equations (2.22) and (2.28), �]� and ��� can be expressed as 

���� = ���{|��| ‖R�‖�, �]� = ��‖��‖ ‖R�‖. (2.29) 

  The estimates, T and O, depend on �� , which is only known under hypothesis H1 

instead of H0. This problem can be solved by constructing a correlation predictor to 

predict the normalized correlation based on the image features. 
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2.4.3.4 Correlation Predictor 

  The correlation predictor is constructed on small blocks for images from the same 

cameras as the reference camera.  It is constructed as a mapping from the image 

feature vector to the predicted correlation value.  In other words, one tries to find the 

predicted correlation value by using a set of image features.  The authors from [3] 

found out three factors which affect the correlation the most. They are image intensity, 

texture, and signal flatting. 

  As shown in equation (2.13), the PRNU is a multiplicative term to the image 

intensity as �(E)2′. The correlation is directly proportional to the image intensity. 

However, due to the finite numbers of bits used in digital image representation, the 

PRNU is absent in the saturated area, i.e. when the intensity is 255 for an eight bit 

intensity representation. The correlation is also attenuated at pixels near saturated area, 

as the PRNU near the saturated area affects the PRNU extraction from de-noising. 

The intensity feature is defined as:  

�v = |��|∑ ^��(�[�])�∈��  (2.30) 

where ^��(�[�]) is the attenuation function given by, 

^��(�[�]) = �												k�(v[�]�v����){/ ), �[�] > �n¡�¢v[�]v���� ,										�[�] < �n¡�¢ 		 (2.31) 

where �n¡�¢ and £ are chosen experimentally. 



34 

 

  Due to the use of wavelet-based de-noising filter, the texture feature is extracted in 

the wavelet domain. The three wavelet high frequency bands at the first scale, i.e., LH 

HH and HL are combined to generate a high pass image F. The texture is then 

calculated as,   

�¤ = |��|∑ �¥¦¡§(¨[�])	�∈�� , (2.32) 

where ©^	�(ª[�]) is the variance of F in the 5x5 neighborhood of pixel i.  

  For flattened area in an image, the predictor will always overestimate the 

correlation. Therefore, the third feature �« is used to model this phenomenon. This 

feature is defined as the ratio of the number of pixels in a block with an average local 

variance below certain threshold, i.e.,  

�« = |��| |{� ∈ �|�v[�] < c�[�]}| (2.33) 

where c is the threshold which is chosen experimentally, �v[�] is the local variance of 

image intensity �[�] at pixel � estimated from a local 5x5 neighborhood. 

  Sometimes, the intensity and the texture cannot be treated separately. For example, 

a highly textured region can also be a high-intensity region. Therefore, a combined 

texture-intensity feature is used which is defined as, 

�¤v = |��|∑ ¦¢¢(v[�])�¥¦¡§(¨[�])�∈��  (2.34) 

  The four features are then modeled in second order to estimate the correlation �(�) 
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as:  

 �(�) = ¯E + ¯�v + ¯��¤ + ¯��« + ¯°�¤v + ¯��v�v + ¯±�v�¤ +⋯+³[�]			(2.35) 

where ³[�] is the noise term and	¯  is the feature coefficient. In matrix form, 

equation (2.35) can be written as, 

      ´ = F	µ +  ¶        (2.36) 

where F is the matrix of features, µ is the vector of unknown feature coefficient and ¶ 

is the noise term.  By using least square estimator (LSE), the feature coefficients can 

be solved, i.e., 

     µ =	 $FFFF�FFFF%�YFFFF�´        (2.37) 

The image feature can then be used to predict the correlation and thus achieve the 

weighting purpose as stated in Section 2.4.3.3.  

 

2.4.4 Phase Approach 

  Phase pattern noise can be used to suppress the image content in camera fingerprint. 

Studies have found that the large magnitude values in the extracted pattern noise often 

come from the image content.  Removing the magnitude of the pattern noise in 

frequency domain can help reducing the influence of the image content effect in 

camera identification.  
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2.4.4.1 Phase pattern noise 

  For phase PRNU approach [4], the noise residue mr first undergoes Discrete 

Fourier Transform (DFT), i.e.,  

m̧ r = 4ª'(mr),  (2.38) 

where DFT() denotes the discrete Fourier transform operation. Then, the phase 

information is kept while the magnitude information is changed to be a constant as 

follows, 

m∅r = tºu|tºu|,  (2.39) 

where |m̧ r| is the Fourier magnitude of m̧ r. Afterwards, it is transformed back into 

spatial domain using Inverse DFT, i.e.,  

m\r = 	k^w(�4ª'H(m∅r)I)  (2.40) 

where IDFT() denotes the inverse discrete Fourier transform operation and real() 

means only the real part is kept because the imaginary part is very small and can be 

ignored. This frequency whitened noise residue is called the phase pattern noise. The 

whitening process can remove the contaminations in the frequency domain from the 

image details as well as periodic noise component and linear pattern. The reference 

phase pattern noise can be obtained by the following equation,   
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m\n = 	k^w(�4ª' »¼ t∅u½uX�Z ¾), (2.41) 

where N is the total number of images used in the camera fingerprint extraction. 

Similar to the Basic Approach, the signal detection can be done by using correlation 

but with the phase pattern noised instead of the PRNU feature in equation (2.20). 

 

2.5 Chapter Summary 

  This chapter gives a general review of different methods for camera identification. 

Digital camera identification can be solved using characteristics from different 

components in the camera. Lens distortion, CFA interpolation and image sensor noise 

for source camera identification have been discussed. Among these methods, only 

image sensor noise can identify individual camera with the same brand and model. 

For most digital forensic applications, identifying exactly the source camera is much 

more important than knowing only the camera brand/model.  Due to this reason, the 

sensor pattern noise is often used in camera identification nowadays.  

  Details of using PRNU feature for source camera identification has been discussed. 

In particular, three common approaches, namely the Baisc Approach, the MLE 

Approach and the Phase Approach have been discussed.  Table 2.1 shows the 

similarities and differences for these three approaches in camera identification. The 

Basic Approach gives the overall framework for the identification process. Later, 
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some common artifacts which share among for cameras of the same model were 

found affecting the accuracy of camera identification. PRNU processing was then 

used to suppress these artifacts. Besides, the use of maximum likelihood estimation 

(MLE) for the reference camera fingerprint was proposed.   The MLE Approach 

also provides a weighting framework to deal with the scene content effect in the 

pattern noise, i.e. a weighting is applied in a block-based manner.  This block-based 

processing is, however, not flexible enough. Until now, the scene content effect on the 

pattern noise is still a big problem. Recently, the Phase Approach was proposed. It 

examines the phase of the pattern noise in frequency domain. Studies [4] found that 

the phase only pattern noise can suppress the image content and remove some 

structural pattern such as JPEG artifact and the demosaicing artifact.  

  These three approaches are state of the art techniques for camera identification 

using PRNU. This thesis is a further study on the individual source camera 

identification. The scene content is the problem this thesis targeted to solve. In the 

next chapter, a way that formulates the image content effect on the correlation will be 

introduced and combined into the identification procedure. 
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Table 2.1 Similarities and differences among three different approaches for camera 

identification. 

 

 Basic Approach 

 

MLE Approach Phase Approach 

Feature 

extraction 

Wavelets denoising 

Feature used Pattern noise Multiplicative factor 

K from the pattern 

noise 

Phase only 

pattern noise 

PRNU processing No Yes Yes 

Fingerprint 

estimation 

method 

Averaging Maximum likelihood 

estimation 

Averaging 

Signal Detection 

method 

Normalized 

correlation 

Normalized 

correlation 

/Generalized matched 

filter 

Normalized 

correlation 

Threshold 

Decision 

Neyman Pearson theorem under binary hypothesis test 
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Chapter 3 Image content effect on the camera identification 

performance  

3.1 Introduction 

Traditional camera identification using PRNU mainly consists of three components: 

1) PRNU extraction, 2) PRNU comparison and 3) probability density function 

estimation and threshold setting. The reference PRNU for a particular camera is 

extracted from a number of images taken by that camera using approaches such as the 

Basic or the MLE approaches as discussed in Section 2.4.2 and Section 2.4.3.  Two 

probability density functions (PDFs) are generated, one for hypothesis H0 (p(x|H0)) 

and the other for H1 (p(x|H1)) as described in Section 2.4.2.4.  Using these two PDFs, 

the false acceptance rate (FAR) is set for the false tolerance of the system. At a given 

FAR, a threshold can then be set to minimize the false rejection rate (FRR).  In fact, 

FRR can be used for performance evaluation.  With this threshold, source camera 

identification can be achieved by calculating the correlation between the reference 

PRNU and the pattern noise of a testing photo. 

The estimation of the two PDFs is very important.  If the two PDFs are not 

estimated properly, the accuracy of camera identification will be seriously affected.  

It is found that p(x|H1) is highly dependent on the image content of the testing images. 

It is because the image content can be left in the extracted PRNU through denoising. 
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If the set of images used to generate the p(x|H1) is “good”, i.e., plain images with 

smooth content, the separation between p(x|H1) and p(x|H0) would be large. If the 

images used to generate p(x|H1) are highly textured images, then separation between 

p(x|H1) and p(x|H0) would be small. As a result, if the image content effect is not 

properly accounted for, the decision threshold would be over conservative for the 

“good” images but too optimistic for the “bad” images. 

To address this problem, correlation predictor can be used.  The idea is to extract 

features such as image intensity and texture information from an image.  These 

features are then used to predict the correlation between the PRNU of the testing 

image and the reference PRNU from a particular camera.  A detailed study on the 

relation between the predicted correlation and the identification accuracy is carried 

out.  With the predicted correlation, the testing images can be classified according to 

their contents.  Using this result, a 2D classifier is proposed so that the predicted 

correlation can be used to set the decision threshold according to the image content.   

This chapter is organized as follows.  Section 3.2 studies the image content effect 

on the two PDFs.  Section 3.3 introduces the image feature formulation by the 

correlation predictor.  Section 3.4 discusses the way of evaluating the identification 

performance according to the image feature. The proposed two-dimensional 
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classification method will be discussed in Section 3.5. Finally, Section 3.6 concludes 

the chapter. 

3.2 Effect of Image content on Camera Identification 

The PRNU feature is a key to the camera identification. However, the estimated 

PRNU through denoising can easily be contaminated by the image content. Figure 

3.1(a) shows an example of an indoor image and Figure 3.1(b) shows its 

corresponding noise residue. Scene structure such as the edge of the water pile and 

ceiling can be seen clearly in Figure 3.1(b). In fact, the noise residue always contains 

the image content, irrespective of the kind of image used.  The question is how 

serious the image content is left in the extracted PRNU feature. 

Traditional camera identification methods [1-14] do not consider the kind of image 

content used in camera identification. In fact, the content of the images used in the 

experiment contributes to a major impact in the identification accuracy. As described 

in Section 2.4.2.4, the threshold decision of the identification system depends on two 

PDFs: PDF for hypothesis H0 (p(x|H0)) and that for hypothesis H1 (p(x|H1)), where H0 

refers to images which are not from the same camera as the reference PRNU and H1 

refers to image from the same camera as the reference PRNU. The PDF p(x|H1) in fact 

is dependent of the image content. Figure 3.2 shows an example of the effect of image 

content on histogram of correlation of H0 and H1 for a particular camera. The 
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histogram of H1 was generated by two set of images. One set is indoor images with 

smooth content while the other set is outdoor hill images with textured content. Figure 

3.2(e) shows that the distance between histograms of H0 and H1 are different for 

different sets of testing images. Histograms of H0 and H1 are more separated when 

images for H1 have smooth content. Histograms of H0 and H1 are much closer to each 

other when images for H1 have texture content. If the system uses H0 and H1 with 

smooth content for testing and sets the threshold at 0.03, the identification accuracy is 

100%. However, if one ignores the image content and still uses the same threshold, 

the result could be bad for other cases.   For example, H1 with textured content is 

used for testing, the identification accuracy will drop a lot as evident in Figure 3.2 (e) 

if the threshold is set at 0.03. There will be a lot of wrong identification cases.  This 

threshold is thus too optimistic for the “bad” images. Alternatively, if someone sets 

the threshold for H1 with textured images at 0.01, this threshold will be too 

conservative for those “good” images.  Hence, the scene content effect needs to be 

properly considered. 

 

(a) (b) 

Figure 3. 1(a) the ceiling image and (b) its noise residue. 
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Figure 3. 2 Histogram of H0, H1 with ‘poor’ images and H1 with ‘good’ images for 

camera Minolta DiMAGE X.  (a) smooth content images, (b) histogram of H1 from 

images in (a), (c) textured images, (d) histogram of H1 from images in (c), (e) 

histograms of H0, H1 in (b), H1 in (d) for Minolta DiMAGE X.   

 (b) 
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3.3 Image Content effect formulated by Correlation predictor 

As discussed in Section 3.2, distribution of H1 can easily be affected by the image 

content such as image intensity and texture.  To take into account the image content 

effect, researcher [2-3] applied attenuation factors to the PRNU.  In particular, a 

correlation predictor is used to assign different weightings to different image regions 

as discussed in Section 2.4.3.3.  An image is first divided into a number of 

non-overlapping blocks.  For each block, three types of features are extracted. They 

are intensity in equation (2.30), texture in equation (2.32) and signal flatting in 

equation (2.33).  Besides, the correlation between the PRNU feature in each block 

and the reference PRNU is calculated. Then, a linear prediction model is built to take 

into account the effect of the image feature to the correlation, i.e., 

´ = ¿À,  (3.1) 

where ´ is a column vector consisting of correlation terms from different image data,  

À is a column vector consisting of coefficients associated with each feature and �	is 

a matrix whose row and column contain respectively the image features and the 

number of image data. By using least square estimator, the coefficients term À	for 

each feature can be solved. With the trained coefficients, the predicted correlation can 

be calculated by eq. (3.1) for any testing image by using the same type of image 

features. 
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The predicted correlation is a way to quantify the reliability of the correlation 

obtained.  If the predicted correlation is large in magnitude, it implies that the 

correlation obtained for that block is reliable.  Hence, a large weighting will be given 

to the block.  Similarly, a small weighting is assigned to the block with a low 

predicted value. Therefore, the weighted correlation, which is the sum of the 

normalized weighted non-overlapping block correlation for the image, can be used to 

characterize the similarity between two pattern noises.  

 

3.4 Relation Between Image Content and Identification Accuracy 

As discussed in Section 3.2, the camera identification accuracy can vary a lot with 

different image content used in testing. If the identification system is trained with 

“good” images but tested with “poor” images, the identification result can be very 

misleading. This section introduces a way to relate the identification accuracy and the 

image feature. The method will be described in Section 3.4.1 and Section 3.4.2 will 

show the experimental result.      
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3.4.1 Methodology 

The general framework of the identification process follows the Basic Approach 

described in Figure 2.5 in Section 2.4.2.1. The reference PRNU for a particular 

camera is first generated by a set of images from that camera. Afterwards, another set 

of images from that camera is used to train the correlation predictor as described in 

Section 3.3. This correlation predictor aims to formulate the seriousness of image 

content effect on the extracted PRNU.  

For each image, the PRNU feature is first extracted by the wavelet based filter [34]. 

This PRNU is then divided into M non-overlapping blocks. For each block, the 

correlation is calculated by equation (2.16). Let the correlation for each block be 

�(�) where � =1,2,…M. Then, the actual correlation for an image is obtained as, 

� = ∑ �(�)����     (3.2) 

The actual correlation represents the average of the similarity between the pattern 

noise of a testing image and the reference PRNU over all the blocks in an image.  

Using the actual correlation and the image features in each block, Á in eq. (3.1) is 

trained for a particular camera. Using the trained coefficients in Á , predicted 

correlation can be obtained for any testing image by analyzing its image features.  

Hence, the correlation predictor can then be used to estimate the seriousness of image 

content effect. Let the predicted correlation for each block be ρ�(�)  where � 
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=1,2,…M. Then, the predicted correlation for each image can be obtained as the 

average over all the blocks, i.e.,  

�� = ∑ ÃÄ(�)����  (3.3) 

Figure 3.3 shows a plot of the actual correlation against the predicted correlation 

for two sets of images. The block size used to train the predictor was 128x128 and the 

image size used for testing was 512x512. The first set of the images consisted of 400 

images (represent by blue dot) taken from the same camera (Minolta DiMAGE X) 

that generated the reference PRNU. The other set of images (represent by green dot) 

consisted of 400 photos taken by each of the following cameras: Digital Canon IXUS 

65 and Sony DSC T-500. For same camera case, the actual correlation is linearly 

proportional to the predicted correlation.  However, for different camera case, the 

predicted correlation is not related to the actual correlation.  In the Basic Approach, 

only the actual correlation is used for identification.  At low actual correlation values, 

it is difficult to make a concrete judgment regarding the origin of the testing image as 

the distance between blue and green dots is very small. In this case, the histogram 

shown in Figure 3.4, which is generated with actual correlation only, will be used to 

generate the PDFs of p(x|H0) and p(x|H1). We can see that the separation of the 

correlation values of H0 and H1 is small.  If the identification system uses a threshold 

at 0.008, FAR and FRR are equal to 0.01 and 0.05 respectively for data in Figure 3.4. 
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In fact, the FRR should be varied with the image content as we can clearly see from 

Figure 3.3 that the overlapping between blue and green dots happens when predicted 

correlation is smaller than 0.03. Hence, the FRR should be set adaptively depending 

on the predicted correlation.  In other words, FRR should be 0 for predicted 

correlation larger than 0.03 and FRR should increase when predicted correlation is 

smaller 0.03. As the performance of the identification depends on the image content, 

this section studies the relation between the scene content effect and identification 

accuracy by making use of the correlation predictor.  

 

Figure 3. 3 Plot of � vs �� for 400 images from Minolta Minolta DiMAGE X (blue 

dot) and 800 images from other cameras (green dot) using predictor trained from 

another 50 images from Minolta DiMAGE X. 
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Figure 3. 4 Histogram of actual correlation using data in Figure 3.3 

 

As the actual correlation is independent of predicted correlation for the H0 

hypothesis (images from other camera), the probability density function of H0 

hypothesis can simply be modeled by one dimensional Gaussian distribution. Using 

the simple one dimensional Gaussian model fitting, the following equation can be 

obtained: 

b(�|�0) = √�xÆ k�(ÇÈÉ){{Ê{ , (3.4) 

where  

É	 = 	 Z∑ Ç�∈Ë� , (3.5) 

Ì� = Z∑ (Ç − É)��∈Ë� . (3.6) 
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x is actual correlation, u and Ì� are respectively the mean and variance of x.   

 

For the alternative hypothesis H1, its probability density function is modeled by a 

two dimensional Gaussian model. The following equations can be used to solve for 

the model parameters, 

b(Ç|ÍÎ) = �x|∑|� {Ï 	k�b	{− � (Ç − É)¤∑�(Ç − É)},  (3.7) 

where  

 Ç = [ÇYÇz],  (3.8) 

É	 = 	 Z∑ Ç�∈Ë� ,		  (3.9) 

∑ = Ð{(Ç − É)(Ç − É)¤}.  (3.10) 

ÇYis the predicted correlation, Çz is the actual correlation, u is the mean vector and 

∑ is the covariance matrix.  Let  

É = [ÉYÉz]  (3.11) 

∑=[∑ ∑�∑� ∑��]  (3.12) 

Then, the conditional parameters for p(x2|x1) are given by 

É�| = É� + ∑�∑�(Ç − É) (3.13) 

∑�| = ∑�� − ∑�∑�∑� (3.14) 

These two values are the mean and variance of the PDF of H1at a particular predicted 

correlation.     
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Figure 3.5 shows the 2D Gaussian model fitting for the H1 hypothesis based on the 

data in Figure 3.3. By using the concept of generating the 1D Gaussian from the 2D 

Gaussian [55], we can find the relation between scene content and identification 

accuracy at different predicted correlations. Figure 3.6 shows an example of the 

conditional PDF of p(x2|H1,x1=0.03) and the PDF of H0 p(x|H0). In such case, the 

relation can be obtained as p(x|H0) and p(x|H1) can be generated for different image 

content.    

 

 

Figure 3. 5 Two dimension Gaussaian modeling on H1 for data in Figure 3.3  
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Figure 3. 6 PDF of other camera and PDF of same camera at predicted correlation 

=0.03. 

 

 

3.4.2 Experimental Results 

The cameras used in the experiment were Minolta DiMAGE X, Digital Cannon 
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correlation. Then, for each predicted correlation, the Gaussian PDF for H0 and H1 can 

be obtained as described in Figure 3.5 and Figure 3.6. By using this information, 

identification accuracy can be obtained. The FAR for H0 case is set to 0.001. By 

examining the error rate, the detection accuracy (accuracy in correctly identify images 

from same camera) can be obtained at each predicted correlation. Figure 3.7 shows 

the flow of obtaining the detection accuracy at different predicted correlation. 

 

(a)         (b) 

 

(c) 

Figure 3. 7 The flow to obtain the detection accuracy at different predicted correlation.  

(a) Step 1: generating the Gaussian model for the data; (b) Step 2: At each predicted 

correlation, obtain the PDF for both H0 and H1 and (c) Step 3: By setting a 
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pre-defined FAR value, obtain the detection rate for each predicted correlation. 

 Figure 3.8 to Figure 3.10 show the experimental results for three different 

cameras. These figures show the changes of performance of the identification system 

with respect to different types of image content. For example, if the testing image is 

highly textured which leads to a low predicted correlation, the detection rate will be 

low. If the image content is smooth, the predicted correlation will be large and hence, 

the detection rate will be high. The detection rate is in fact related to the image 

content in which traditional identification method simply ignores. Our study clearly 

indicates the relation between the scene content (as indicated by the predicted 

correlation) and the detection accuracy.  For example, if the testing image with a 

predicted correlation larger than 0.02 is found for camera Minolta DiMAGE-Xt, the 

identification result is reliable as the detection rate is nearly 100%. Otherwise, the 

identification is not reliable as the detection accuracy drops sharply when predicted 

correlation is less than 0.02 which indicates the image content contaminates the 

PRNU feature seriously.    
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Figure 3. 8 Detection accuracy vs predicted correlation with FAR = 0.001 for camera 

Minolta DiMAGE X.   

 

Figure 3. 9 Detection accuracy vs predicted correlation with FAR = 0.001 for camera 

Digital Cannon IXUS 65.  
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Figure 3. 10 Detection accuracy vs predicted correlation with FAR = 0.001 for camera 

Sony DSC T-500.   
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image content effect so that a flexible threshold setting scheme can be obtained. 

 

3.5.1 Methodology 

As discussed in Section 2.4.3.4, the predicted correlation is used to decide the 

weights for the correlation in different blocks [2-3]. Indeed, it can be used to classify 

images according to their features. In this section, the usage of the predicted 

correlation is extended in the classification procedure. The predicted correlation is 

considered as another feature used together with the actual correlation to give a 

two-dimensional classification.   

Figure 3.3 shows an important feature of the correlation predictor, i.e., the 

predicted value is close to the actual correlation if that image comes from the same 

camera as the reference PRNU. Otherwise, the predicted value is independent of the 

actual correlation. This suggests that the strategy used to classify images from the 

same camera and different cameras should vary with the predicted correlation value.  

If using solely the actual correlation, the identification process can only have a 

single value for threshold decision. In other words, if the actual correlation is greater 

than this threshold, we consider that the testing image comes from the same source.  

However, Figure 3.3 shows that the distance between the blue dots and the green dots 

increases with the predicted correlation value. Therefore, the optimal threshold 
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decision should also vary with the predicted correlation value. To have different 

thresholds for different predicted correlation values, the prediction correlation which 

takes image content effect into account should also be considered in the identification 

process.  Hence, we extend the traditional 1D classification method to a 2D 

classification.  The traditional classifier only uses the actual correlation for decision.  

In our 2D classifier, we used both actual and predicted correlation for decision.  For 

both classifiers, the support vector machine (SVM) is used. It was implemented with 

Matlab default statistical learning toolbox. The kernel function used was the radial 

basis function. 

  To show the advantage in using the proposed 2D classifier as compared to the 

traditional classifier, the 2D classifier was trained from half of the data in Figure 3.3. 

To give a more reasonable range for the training threshold, some artificial data were 

generated in SVM training to give an upper and lower bound for the threshold. The 

artificial data at upper bound was set to have the actual correlation equals to 1.5 times 

the maximum of the actual correlation from different cameras while that at lower 

bound was set to 0.  Figure 3.11 shows the training results. The traditional method 

has a fixed threshold irrespective of the predicted correlation value (as shown by a 

straight horizontal line at actual correlation equals to 0.006).  However, the 

thresholds in the 2D classifier vary with the predicted correlation.  The new 
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threshold is larger than the traditional threshold at mid predicted correlation values 

while it is smaller than the traditional threshold at low predicted correlation value.  

Hence, the threshold setting can be made adaptive to the scene content. 

  After training, the second half of the data in Figure 3.3 was used to test the trained 

classifier.  Both of the traditional and the 2D classifiers were set to have the same 

false rejection rate (FRR). Figure 3.12 shows a plot of the threshold values of the 

traditional and the 2D classifiers.  For the traditional classifier, the same threshold 

value is used for all the predicted correlation values.  Data at high predicted 

correlation were easily falsely accepted by the traditional classifier.  In contrast, our 

2D classifier adopts different threshold values according to the predicted correlation 

and the actual correlation.  Those falsely accepted data were correctly identified by 

our proposed 2D classifier.  This shows the advantage of our proposed 2D classifier 

which can identify images not solely based on the actual correlation but also based on 

the prior knowledge of the image content. Figure 3.12 considered the FAR by fixing 

the FRR.  In fact, similar improvement on FRR can be found by fixing the FAR. 
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Figure 3. 11 A close up of the proposed threshold and traditional threshold using half 

of the data in Figure 3.3 for training.  

 

 

Figure 3. 12 Classifying result using the trained results in Figure 3.11. 
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3.5.2 Experimental Result 

  The experimental settings adopted and the data used were the same as that in 

Section 3.3. As discussed in Section 2.4.2.4, the classification problem is a binary 

hypothesis problem. Note that H0 represents the hypothesis that the testing image and 

the reference PRNU are from different cameras while H1 represents the hypothesis 

that they are from the same camera. For each camera, there were 800 images for 

hypothesis H0 and 400 for hypothesis H1. For images in hypothesis H0, there are 400 

images from each of the other cameras in the experiment. To train the 2D classifier, 

half of the data from hypothesis H0 and hypothesis H1 were randomly picked for 

training. Some artificial data were generated as mentioned in Section 3.5.1 to give the 

upper and lower bound for the training threshold. Afterwards, the other half of the 

data from hypothesis H0 and hypothesis H1 were used for classification. The average 

time for running the whole identification process was 30 minutes, 45 minutes and 60 

minutes respectively for the Basic approach, the MLE approach and our proposed 

approach. As the result of SVM classifier varies with different training sets and 

classifying sets, the SVM training and classifying processes were repeated 50 times 

with the same pool of data but with random combination in training set and 

classifying set in order to achieve a reliable result.  
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To compare the performance of our proposed 2D classifier with the traditional 

classifier using either Basic Approach [1] or MLE approach [2,3], the FAR in the 2D 

classifier was used to set the threshold in the traditional classifier in the same training 

set. The FAR, FRR and accuracy are then compared in the classifying set.  

Table 3.1 shows the average performance of our proposed 2D classifier and the 

traditional classifier over 50 trials for different training and classifying sets. In terms 

of accuracy and FRR, our proposed method shows improvement in camera 2 but has 

comparable performance in camera 1 and camera 3. The reason is that, under the case 

of high accuracy, the overlapping area for null hypothesis and alternative hypothesis 

data is low.  Hence, the performance of using the same threshold and the varying 

threshold values would be similar. For the case of low accuracy as in camera 2, the 

advantage of using flexible threshold of the 2D classifier is obvious. The accuracy 

increases by about 1% to 2% as compared to the Basic or MLE approach. 

We have also compared the performance for a smaller block size.  By using a 

smaller block size, the overlapping area between null hypothesis and alternative 

hypothesis data will increase. The experiment was repeated at 128x128 block size and 

the result is shown in Table 3.2. From Table 3.2, we can see the improvement in 

camera 2 is significant in which the accuracy improves by 6% and 4% as compared to 

the Basic and the MLE Approaches respectively.  
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Table 3. 1 Average performance in terms of FAR, FRR and accuracy of the proposed 

2D classifier and the traditional classifier with a block size of 512x512. 

  Camera1 Camera2  Camera3 

FAR (%) Basic approach [1] 0.25 0.23 0.26 

MLE [2] 0.23 0.28 0.28 

Proposed Method 0.13 0.11 0 

FRR (%) Basic Approach [1] 1.32 7.08 1.11 

MLE [2] 1.31 5.65 1.51 

Proposed Method 1.42 4.79 1.24 

Accuracy 

(%) 

Basic Approach [1] 98.43 92.69 98.63 

MLE [2] 98.46 94.07 98.21 

Proposed Method 98.45 95.10 98.76 

 

Table 3. 2 Average performance in terms of FAR, FRR and accuracy of the proposed 

2D classifier and the traditional classifier with a block size of 128x128. 

 

  Camera1 Camera2  Camera3 

FAR (%) Basic Approach [1] 2.13 2.42 4.23 

MLE [2] 2.14 2.44 4.28 

Proposed Method 2.13 2.40 4.16 

FRR (%) Basic Approach [1] 11.82 21.41 20.27 

MLE [2] 11.90 19.36 18.47 

Proposed Method 11.46 15.54 17.95 

Accuracy 

(%) 

Basic Approach [1] 86.05 76.17 75.5 

MLE [2] 85.96 78.20 77.25 

Proposed Method 86.41 82.06 77.89 
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3.6 Chapter Summary 

 In this chapter, we have investigated the relation between the scene content effect 

and the identification accuracy.  We have shown that the PDF of H1 can greatly be 

affected by the image content.  Hence, it is important to find a way to characterize 

the scene content effect.  We have used a 2D Gaussian function to model the data.  

The statistics of H0 and H1 can be obtained at different predicted correlation values.  

Hence, the detection accuracy can be obtained.  Using this method, the relation 

between the scene content effect and the identification accuracy can be obtained.  

Our experimental results have shown that the detection accuracy will be dropped 

significantly at low predicted correlation value. 

As the predicted correlation is able to characterize the scene content, we have 

extended the traditional classifier to a 2D classifier.  There are two features used in 

the 2D classifier, they are the actual correlation and the predicted correlation.  The 

actual correlation shows the similarity of the pattern noise of a testing image with the 

reference PRNU of a particular camera while the predicted correlation shows the 

seriousness of the scene content effect.  Experimental results show that the proposed 

2D classifier provides a flexible threshold setting mechanism according to the 

seriousness of the scene content.  Hence, the 2D classifier is able to provide an 

accurate source camera identification. 
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Chapter 4 A Confidence Map and Pixel-Based Weighted 

Correlation for PRNU-based Camera Identification  

4.1 Introduction 

In Chapter 3, the scene content effect for testing images is formulated by a 

correlation predictor. Its objective is to determine the reliability of the PRNU feature 

for each block in an image. However, the scene content effect model from the 

correlation predictor only gives an overall model for the whole image, it cannot 

determine precisely which small area in a block of an image is reliable. Therefore, in 

this chapter, the study of scene content effect is extended to a finer level where the 

scene content effect can be assessed to the pixel level.    

  In this chapter, a confidence map and a pixel-based weighted correlation method 

for digital camera identification using the photo-response non-uniformity (PRNU) is 

proposed. In traditional camera identification method, a simple denoising technique is 

used to extract the PRNU feature as the difference between the original image and its 

denoised version. One of the major problems is that the image content is left behind in 

the noise residue which affects the correlation calculation for identifying the source 

camera. In order to solve the problem, this chapter first studies the image content 

effect by examining the relation between different image features and correlation. 

Afterwards, the image content effect is formulated by a non-linear regression model. 
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Then this relationship is used to obtain a confidence map for the testing images. The 

aim of the confidence map is to show the reliability of each pixel in correlation 

calculation. It can then be used as a weighting function so as to give a higher weight 

for pixel which is more reliable and a lower weight for less reliable pixel.  

The rest of this chapter is organized as follows. Section 4.2 first describes the 

image content effect on camera identification using pattern noise. A non-linear 

regression model will be discussed in Section 4.3. The confidence map and weighted 

correlation will be given in Section 4.4. Experimental results are shown in Section 4.5. 

The use of the confidence map in existing PRNU-based camera identification is 

discussed in Section 4.6 while a comparative study is described in Section 4.7.  

Finally, Section 4.8 concludes this chapter. 

   

4.2 The Image Content Effect 

  Image content can seriously affect the accuracy of the camera identification. There 

are mainly two factors, namely the image intensity and the image texture. The PRNU 

is a multiplicative factor to the intensity as shown in equation (2.14). The PRNU 

characteristics can be detected easily with the increase in the image intensity. 

However, if the image intensity reaches the maximum level, i.e., it is saturated, the 

PRNU feature would be lost completely in such a case. Figure 4.1(a) and Figure 4.1(b) 
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show respectively an image of the sun and its corresponding noise residue. As 

evidenced in Figure 4.1(b), the PRNU feature is completely missing in the saturated 

area of the sun.  

  Besides, image texture is another factor affecting the PRNU extraction. For 

texture/edge regions, the high frequency components will be left in the noise residue 

after denoising.  These high frequency terms contaminate the extracted PRNU. 

Figure 4.2(a) and Figure 4.2(b) show respectively an outdoor street scene and its 

corresponding noise residue. Tree details are clearly left in the noise residue. These two 

examples show that scene characteristics can be left in the noise residue which in turn 

affects the extracted PRNU. Thus, the effect of the scene content on the correlation 

should be studied. In particular, this section investigates the relationship between the 

correlation and image features.  We considered both image intensity and image 

texture. 

 

(a)  (b)  

Figure 4. 1 (a) the sun image and (b) its noise residue W.  
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(a) (b) 

Figure 4. 2 (a) an outdoor street image and (b) its noise residue W.  

 

  To obtain the correlation, an image is divided into a number of non-overlapping 

blocks.  The block size was set to be 128x128 in order to have a homogeneous 

content within each block and at the same time have a statistically stable correlation 

calculation. The image intensity feature ���  and image texture feature ��¢  are 

defined respectively as, 

��� = |��| ∑ (�1�:)�∈�� ,  (4.1) 

��¢ = |��| ∑ �¥¦¡§(v1�:)	�∈�� ,  (4.2) 

where � is the pixel block used to calculate the correlation, I[i] is the intensity 

value at pixel i and ©^	�(�[�]) is the variance of intensity I at pixel i in the 5x5 

neighborhood. The image intensity feature and texture feature have been defined 

differently as those in Chapter 2. The definition for intensity and texture features in 
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equations (4.1) and (4.2) has been simplified as compared to their corresponding 

definition in equations (2.30) and (2.32).  For example, there is no attenuation 

function defined in the intensity feature in equation (4.1) so that there is no need to 

determine the parameters �n¡�¢ and £.  Besides, the texture feature is extracted in 

the spatial domain rather than the wavelet domain so that the computational 

complexity is reduced.   

  Figure 4.3 and Figure 4.4 show respectively the variation of the correlation with 

respect to the image intensity feature and image texture feature for camera Minolta 

DiMAGE X. The correlation generally increases with the image intensity, but drops 

when the intensity is nearly saturated. The correlation also drops sharply when the 

image texture feature is bigger than about 0.6. Due to the nonlinearity shown in 

Figure 4.3 and Figure 4.4, the linear prediction model in equation (2.3.5) in Section 

2.4.3.4 is not appropriate. Therefore, we propose to use the Kernel principal 

component analysis (KPCA) to model and formulate the scene content effects. The 

KPCA is a nonlinear prediction model in which image features can be projected to a 

high dimensional space to deal with the nonlinear relation between image feature and 

the correlation. Hence KPCA uses more components for the regression model as 

compared to the linear model which can help to achieve a better regression result [50].  
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Figure 4. 3 Plot of correlation vs ��� for 100 images with each image containing ten 

128x128 blocks in Minolta DiMAGE X and the 4
th

 degree estimation for the 

relationship.  

 

 

Figure 4. 4 Plot of correlation vs ��¢ for 100 images with each image containing ten 

128x128 blocks in Minolta DiMAGE X and the 4
th

 degree estimation for the 

relationship.  
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4.3 Formulation of Image Content Effect Using Kernel Principal Component 

Analysis (KPCA) 

  Because of the nonlinear relation between the correlation and the image features 

including both intensity and texture, KPCA is proposed to study the image content 

effect. Let Φ(X) be a nonlinear mapping of X from input space Y to the feature space 

F, where X ∈ 3 and Φ(X)	∈ ª. Then the regression model can be expressed as, 

G=Φ(X)w+e  (4.3) 

where G is a column matrix consisting of correlation between the PRNU from the 

reference camera and the pattern noise from the training images, Φ(X) is a matrix 

whose column consisting of image features and row corresponding to the training data, 

w is a column matrix consisting of weighting for each feature and e is a column 

matrix corresponding to noise. The nonlinear mapping function Φ(X) is not easy to 

determine. In KPCA, a kernel matrix K is constructed so that there is no need to 

estimate Φ(X). The kernel matrix is defined as the inner product of Φ(X) in the feature 

space [50], i.e., 

K=Φ
T
(X) Φ(X). (4.4) 

where Φ
T
 denotes the transpose of Φ .  Performing standard principal component 

analysis (PCA) on the kernel matrix gives, 
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K=Ñ4ÑT 
(4.5)

 

where columns of U are the eigenvectors of K and D is a diagonal matrix with 

eigenvalues in the diagonal elements. The principal axes of Φ(X) can be written as, 

Y=Φ(X)	Ñ4��{. (4.6) 

  The principal component Φ] (X) of Φ(X) can be obtained and expressed in terms of 

K,	U	and	D as follows,  

Ø](X)= Y
T
Φ(X) 

=4��{Ñ¤	Ø¤(X)	Φ(X) (4.7) 

= 4��{Ñ¤2 

From equation (4.7), the principal component Ø](X) of Φ(X) can be estimated 

without knowing Φ(X). Now the KPCA regression model becomes, 

G=Ø](X)w+e. (4.8) 

Similar to the linear correlation predictor in equation (2.35) in Section 2.4.3.3, the 

weighting w in each feature can be solved under a least squares framework, i.e., w can 

be obtained by, 

w=(Ø](X)
T	Ø](X))

-1	Ø](X)
T
G.  (4.9) 

  Afterwards, the estimated w and the KPCA projected features can be used to predict 

the correlation between the PRNU from the reference camera and the pattern noise 
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from the testing image. Mathematically, the predicted correlation can be written as,  

9L=Φ] (X)w. (4.10) 

  The predicted correlation can be used to determine the severity of image content 

effect. A low predicted correlation means a large amount of image content is left in 

the noise residue. Hence, the image content mixes with the PRNU characteristics in 

that region. On the other hand, a large predicted correlation means that the region 

does not suffer from image content effect and hence the PRNU characteristics 

estimated from the region is reliable.  

 

4.4 Confidence map  

 The KPCA method can be used to quantify the seriousness of the image content 

effect and the reliability of each pixel in correlation calculation.  For example, a 

saturated region will have a low predicted value which implies that the region is 

unreliable in correlation calculation. Hence, equation (4.10) can be used to obtain the 

predicted correlation and determine whether the pixel is suitable for camera 

identification or not. There are two phases in the proposed estimation process, namely 

the training phase and the testing phase. In the training phase, an image is divided into 

a number of non-overlapping blocks. For each block, two image features are obtained. 

They are the image intensity and image texture features as in equation (4.1) and 
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equation (4.2) respectively. Besides, the correlation between the PRNU from the 

reference camera and the pattern noise from the training image can be obtained as in 

equation (2.16) in Section 2.4.2.3. After that, the weighting w can be obtained from 

equation (4.9). In order to have a good estimation in correlation, the block size cannot 

be too small. However, the block size cannot be too large to avoid a heterogeneous 

content within the block. The block size was chosen to be 128×128. In fact, similar 

results can be obtained if the block size is 64×64.  

  In the testing phase, the block size is set to be 1×1 so that a pixel-based reliability 

analysis can be achieved. In particular, the confidence map is generated using 

equation (4.10) for a testing image. This confidence map is able to characterize the 

reliability of each pixel in correlation calculation. In other words, a more reliable 

pixel in the testing image will have a larger value in the confidence map. This 

pixel-based weighting mechanism is much more flexible than the block-based 

weighting mechanism in [2,3] as it is able to quantify the image content effect in each 

pixel and determine the reliability of each pixel in the testing image in correlation 

calculation.  

  Figure 4.5(a) shows an image of a snow mountain. The image contains saturated 

regions, as well as low and high variance regions. As discussed, these kinds of image 

content will affect the correlation calculation. Figure 4.5(b) shows the corresponding 
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confidence map. The intensity of the confidence map shows the reliability of each 

pixel in calculating the correlation. The bright area in the confidence map means a 

reliable location for PRNU estimation and vice versa. From Figure 4.5(b), we can see 

that pixels in the sky area are more reliable than that in the mountain in PRNU 

estimation as the intensity level is higher in the sky region. The edge of the mountain 

shows a dark area in the confidence map because the texture complexity would affect 

the extracted PRNU. Besides, the saturated area of the snow mountain also shows a 

dark intensity level in the confidence map since there is no PRNU feature in the 

saturated area. In this example, the testing image contains different types of image 

features. The confidence map is able to determine the suitability of different parts of 

the image for camera identification.  

To incorporate the confidence map information into the camera identification 

framework, a weighted function is applied in calculating the correlation. For each 

pixel, the reliability is different due to the image feature at that pixel. A weighted 

function can be used to give weighting according to the reliability of the pixel so as to 

reduce the effect of image content contamination to the PRNU feature. The 

confidence map can help to achieve such purpose. The predicted correlation 9L in the 

confidence map can be treated as a weighting function. Let the noise residue, image 

intensity of the testing image, and the reference PRNU be m\ , �\  and 2]n 
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respectively. Then the weighted correlation by incorporating the confidence map 9L  

is defined as,  

cd		$m\, �\2]n; 9L% = (ÚL$tÛ�tÛeeee%ʘH	vÛÜ]��vÛÜ]�I)
Ý�ÚL(tÛ�tÛeeee)Ý	Ý�ÚL(vÛÜ]��vÛÜ]�)Ý.   (4.11) 

cd		$m\, �\2]n; 9L% can help reducing image content effect as a low weighting (i.e., 

small 9L	value in certain pixels) would be given to saturated regions or highly textured 

regions. In some cases, 9	] could be very small for the whole image. This implies poor 

reliability caused by serious image content effect over the whole image which would 

cause numerical instability in equation (4.11). So a threshold l is set such that if the 

average of 9	] is greater than l, the weighted correlation in equation (4.11) is calculated, 

otherwise correlation in equation (2.16) is used instead. 

 

(a) (b) 

Figure 4. 5 (a) A testing image and (b) its confidence map. 
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4.5 Experimental Results 

  There were six cameras used in the experiment. Table 4.1 summarizes the camera 

model, sensor type, resolution and picture format of these cameras. Images were 

acquired in default camera setting and were taken under different environments, from 

indoor to outdoor at different times and locations. To evaluate the performance of 

identifying images from the same camera model, three iphone 4S were included in the 

experiment.  

  For each camera, 100 images were used to estimate the PRNU fingerprint. To 

evaluate the KPCA regression method, another 100 images were used for selecting the 

kernel coefficients as well as the feature weightings in the regression model. Another 

100 images were then used for evaluating source camera identification performance. 

The classification method was a binary hypothesis test. The classification was done 

for each camera. In each classification, 100 images from the same camera were 

treated as the positive samples, and 100 images from each of the other cameras were 

treated as the negative samples. 
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Table 4. 1 Camera Details used in the experiment 

Camera model Sensor Resolution Format 

Konika Minolta 

DiMAGE X 

1/2.7” CCD 2816x2112  

 

JPEG Cannon IXUS 65 1/2.5” CCD 2048x1536 

Sony DSC T-500 1/2.3” CCD 3048x2736 

Apple iphone 4S  

(3 iphones) 

1/3.2” CCD 3264x2448 

 

A Performance of regression model 

  The root mean square error (RMSE) between the predicted correlation and the 

actual correlation was used to evaluate the performance of the regression model. It is 

defined as, 

RMSE=(∑ ÚL(¢)�Ú(¢)½�X�∑ Ú(¢)½�X� )�{, (4.12) 

where N is the total number of the testing images, 9L(�) and 9(�) are the predicted 

correlation and the actual correlation of the t-th testing image respectively. The 

heavy-tailed Radial Basis Function (RBF) was selected as the kernel function in the 

KPCA regression because of its good performance as compared to the polynomial or 

Gaussian radial basis kernel [50]. The heavy-tailed RBF is defined as, 
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2(xß,	xà) = k�b$−∑ |�(_)�¦Zá� − �(_)â¦|�%.  (4.13) 

where x(n)ß and x(n)à are the ith and jth input image feature of the nth correlation 

observation. There are two parameters in RBF, namely a and b. By using different 

combinations of a and b, the one that achieves the minimum RMSE would be used in 

the KPCA regression model.  

  In the experiment, 100 images were used to train the regression model. For each 

image, four 128x128 image blocks were used for feature extraction and correlation 

calculation. Half of the images were randomly selected to train the weighting of the 

features for different combinations of a and b in equation (4.13). Then another half of 

the images were used to test the performance of the regression model for each 

combination of a and b.  

  Table 4.2 shows the average change of RMSE of the proposed regression model 

among all cameras as compared to the traditional regression model in Section 2.4.3.4. 

The block size for calculating the predicted correlation G](t)  and the actual 

correlation G(t) was 512x512. The negative value in RMSE means that the proposed 

method has a better performance than the traditional regression model in modeling the 

image content effect. Table 4.2 shows that the combination a=0.5 and b=1 has the 

best performance in the data set. Hence they were chosen for the non-linear model in 

subsequent experiments. 
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Table 4. 2 Percentage change in RMSE of the proposed KPCA regression model as 

compared to the traditional regression method. 

 b=2 b=1 b=0.5 

a=1 0.026 -2.34   -2.63 

a=0.5 -2.32   -2.66   -2.61 

a=0.25 -1.31   -2.41   -2.50 

a=0.125 -0.62   -1.93  -2.51 

  

B. Performance of the weighted correlation 

  The kernel parameters having the minimum RMSE is used to project the image 

features in the pixel domain into a higher dimension in the KPCA model. By using the 

regression model in equation (4.10), a confidence map for each testing image can be 

generated. Weighted correlation using the confidence map is calculated according to 

equation (4.11). Table 4.3 shows the average correlation and the weighted correlation 

of the testing images with its corresponding source camera using a block size of 

512x512. We can see that the correlation of images from same camera increased by 

using the confidence map. This indicates that the proposed weighting function based 

on the confidence map can eliminate the image content effect according to the image 



82 

 

features of the testing images. For weighted correlation between the reference PRNU 

and pattern noise of testing images from different cameras, as the two pattern noises 

are independent of each other, the weighting function does not have any effect on the 

weighted correlation calculation.  In other words, the correlation and the weighted 

correlation values are more or less the same. 

  

Table 4. 3 Average correlation and weighted correlation on the same camera cases for 

100 images with a block size of 512x512. 

Camera Average correlation Average weighted 

correlation 

Konika Minolta 

DiMAGE X 

0.0352 0.0369 (4.8%) 

Cannon IXUS 65 0.0274 0.0286 (4.4%) 

Sony DSC T-500 0.0217 0.0219 (0.9%) 

iphone 4S -A  0.0570 0.0576 (1.1%) 

iphone 4S -B 0.0760 0.0782 (2.9%) 

iphone 4S -C 0.0362 0.0373 (3.0%) 
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C. Overall Performance 

Using the trained results as discussed in subsections A and B, we tested the 

performance of the proposed confidence map on source camera identification.  The 

Receiver Operating Characteristics (ROC) curve is obtained by using LIBSVM tool 

[51] in the implementation.  Figure 4.6 and Figure 4.7 show the overall ROC curve 

for different cameras with a block size of 512x512 and 256x256 respectively.  We 

can see that the true positive rates are improved by using the proposed confidence 

map at all false positive rates.  Hence, the proposed method is able to enhance the 

existing PRNU-based identification methods and achieves a better performance in 

terms of ROC curves. This improvement is consistent with different image sizes. 

Besides, the compression effect on the proposed method was also examined. The 

same set of images was used but compressed at the quality factor of 90, 70 and 50 in 

JPEG format. Results were shown in Figure 4.8 to Figure 4.13. As the PRNU feature 

is affected by the compression, the accuracy is reduced in general. But still, the 

proposed method is able to enhance the results. The identification accuracy is 

improved by using the proposed weighting scheme through the confidence map, at all 

the compression ratios and for all block sizes. This proves the effectiveness of the 

proposed scheme in reducing the scene content effect in camera identification.  
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Figure 4. 6 Overall ROC curves using a block size of 512x512. 

 

Figure 4. 7 Overall ROC curves using a block size of 256x256. 
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Figure 4. 8 Overall ROC curves using a block size of 512x512 at JPEG quality factor 

of 90. 

 

Figure 4. 9 Overall ROC curves using a block size of 256x256 at JPEG quality factor 

of 90. 
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Figure 4. 10 Overall ROC curves using a block size of 512x512 at JPEG quality factor 

of 70. 

 

Figure 4. 11 Overall ROC curves using a block size of 256x256 at JPEG quality factor 

of 70. 
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Figure 4. 12 Overall ROC curves using a block size of 512x512 at JPEG quality factor 

of 50. 

 

Figure 4. 13 Overall ROC curves using a block size of 256x256 at JPEG quality factor 

of 50. 
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4.6 Use of Confidence Map in other PRNU-based Camera Identification Methods 

  In Section 4.5, the results were based on the maximum likelihood approach (MLE) 

[2,3]. In fact, the proposed confidence map can work with other existing PRNU-based 

camera identification methods. In this part, the proposed weighting scheme was 

applied to three different existing PRNU-based camera identification methods. They 

are the Basic approach (Section 2.4.2) [1], the phase PRNU approach (Section 2.4.4) 

[4] and Li’s methods [13]. For Li’s method, we selected model 3 and model 5 which 

have the best performance in their study for comparison. To use the confidence map 

in other state of the art camera identification technology, we replace the correlation in 

equation (2.16) by the weighted correlation in equation (4.11).  The experimental 

settings remain the same as those in Section 4.5. 

  Figure 4.14 and Figure 4.17 show the ROC curve for different cameras with a block 

size of 512x512 and 256x256 respectively.  Similar to the results obtained for MLE 

approach, we can see that the true positive rates are improved by using the proposed 

confidence map at all false positive rates.  Hence, the proposed weighting scheme is 

able to enhance the existing identification methods and achieve a better performance.  

We have also examined the compression effect.  Figure 4.18 to Figure 4.29 show the 

results.  We can see that the identification accuracy is improved by using the 

confidence map for all the methods and at all the quality factors.   
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Figure 4. 14 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 512x512. 

 

Figure 4. 15 Overall ROC curves for Li’s model3 and model 5 with a block size of 

512x512. 
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Figure 4. 16 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 256x256. 

 

Figure 4. 17 Overall ROC curves for Li’s model3 and model 5 with a block size of 

256x256. 
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Figure 4. 18 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 512x512 at JPEG quality factor of 

90. 

 

Figure 4. 19 Overall ROC curves for Li’s model3 and model 5 with a block size of 

512x512 at JPEG quality factor of 90. 
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Figure 4. 20 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 256x256 at JPEG quality factor of 

90. 

 

Figure 4. 21 Overall ROC curves for Li’s model3 and model 5 with a block size of 

256x256 at JPEG quality factor of 90. 
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Figure 4. 22 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 512x512 at JPEG quality factor of 

70. 

 

Figure 4. 23 Overall ROC curves for Li’s model3 and model 5 with a block size of 

512x512 at JPEG quality factor of 70. 
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Figure 4. 24 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 256x256 at JPEG quality factor of 

70. 

 

Figure 4. 25 Overall ROC curves for Li’s model3 and model 5 with a block size of 

256x256 at JPEG quality factor of 70. 
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Figure 4.26 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 512x512 at JPEG quality factor of 

50.  

 

Figure 4.27 Overall ROC curves for Li’s model3 and model 5 with a block size of 

512x512 at JPEG quality factor of 50.  
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Figure 4.28 Overall ROC curves for the Basic approach and the phase approach using 

the proposed confidence map with a block size of 256x256 at JPEG quality factor of 

50.  

 

Figure 4.29 Overall ROC curves for Li’s model3 and model 5 with a block size of 

256x256 at JPEG quality factor of 50.  
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4.7 Comparative Studies 

 A detailed comparative study was performed at 0.01 and 0.05 false positive rates 

(FPRs).  Table 4.4 shows the results of the three different methods at 256x256 block 

size with default camera setting. We can see that the true positive rate (TPR) 

improves for all the methods at the two FPRs. The improvement at 0.01 FPR is better 

than that at 0.05 FPR for the MLE, the phase approach and Li’s models.  However, 

the improvement at 0.05 FPR is better than that at 0.01 FPR for the Basic approach. 

  Table 4.5 to Table 4.7 show the TPR rate at FPR=0.01 and FPR=0.05 for the 

testing images recompressed at JPEG format with different quality factor, i.e. 90, 70 

and 50. For a high quality factor such as 90, the improvement of the proposed method 

is modest for all the three approaches.  The percentage improvement in TPR is 

around 2 to 8%.  However, for a medium to low quality factor such as 70 and 50, the 

improvement of the proposed method is significant.  For example, for the 

recompressed images at a quality factor of 70, Table 4.6 shows that there are 6.7% 

and 4.4% overall improvement in TPR at FPR equals to 0.01 and 0.05 respectively 

when combining the proposed confidence map with the Basic approach. The 

improvements for combining the proposed confidence map with MLE method are 

13.6 % and 10.7% in TPR at FPR equals to 0.01 and 0.05 respectively. When 

combining the proposed confidence map with the phase method, the improvements 
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are 17.3% and 6.5% in TPR at FPR equals to 0.01 and 0.05 respectively. Similar 

improvement can be found with Li’s models. From Table 4.5 to Table 4.7, we can see 

that our proposed confidence map and weighted correlation method is able to achieve 

a consistent improvement to the existing methods for all different JPEG quality 

factors. 

  One interesting observation in the experiment is that the Basic method is having the 

best result as compared with some newly proposed methods such as the MLE and the 

phase approaches. It may probably be due to the removal of the linear pattern which 

also attenuates the PRNU feature for classification. Despite that, if the linear pattern 

leads to misclassification from the same camera model but not the same camera, it is 

necessary to use the newly approaches such as MLE and phase approaches to avoid 

this kind of problem. Irrespective of which methods the experiments were using, 

experiment results show that the proposed confidence map is able to consistently 

provide accurate source camera identification. Also, the improvement at high 

compression ratio is always more significant than that at low compression ratio. 

  At high compression ratio, images are often suffered from blocking artifacts and 

the loss of high frequency content.  It is caused by the quantization within the 8 by 8 

blocks of an image in the JPEG scheme.  The quantization causes most of the ac 

components within the 8 by 8 block to be truncated to zero.  As PRNU is a weak 
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signal, the PRNU feature would be lost after quantization because of the heavy 

compression.  Figure 4.30(a) shows a compressed image with JPEG quality factor of 

70.  Within the region marked with a red color box, Figure 4.30(b) shows the values 

of the image texture feature in equation (4.2).  The white color pixels in Figure 4.30 

(b) indicate the complete lost of the PRNU feature caused by the removal of the ac 

components in the quantization.  We can see that about 30% of pixels do not carry 

any PRNU characteristics.  Figure 4.30(c) shows the corresponding confidence map 

in which these pixels are marked as unreliable and hence are excluded from the 

weighted correlation calculation.  In this way, our proposed weighting scheme helps 

to compensate for the lost of PRNU feature caused by heavy compression.  In 

addition, our confidence map is able to compensate for the effect of blocking artifacts.  

As shown in Figure 4.31(a), blocking artifacts would appear in the estimated PRNU 

under high compression.  After applying the confidence map as a weighting function 

as in Figure 4.31(b), we can see that the blocking artifacts are compensated by 

marking these regions as unreliable regions.  As a result, the identification accuracy 

increases for all the PRNU-based methods using our proposed weighting scheme. 
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(a) 

 

(b) (c) 

Figure 4.30 (a) An image recompressed with JPEG quality factor of 70, (b) the image 

texture feature of the red block region in Figure 4.30(a) and (c) the corresponding 

confidence map  

 

 

(a) (b)  

Figure 4.31 (a) The estimated PRNU from a set of highly compressed images and 

(b) the weighted PRNU  
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Table 4. 4 TPR at FPR=0.01 and FPR=0.05 for the basic, MLE and phase methods 

with a block size of 256×256. 

 

 FPR=0.01 FPR=0.05 

Basic approach 0.925 0.962 

Proposed confidence map with the basic approach 0.933(0.86%) 0.975(1.35%) 

MLE 0.883 0.938 

Proposed confidence map with the MLE 

approach 

0.913(3.39%) 0.945(0.75%) 

Phase approach 0.907 0.942 

Proposed confidence map with the phase 

approach 

0.932(2.76%) 0.955(1.38%) 

Li’s model3 0.88 0.95 

Proposed confidence map with Li’s model3 0.92(5.1%) 0.97(1.6%) 

Li’s model5 0.86 0.92 

Proposed confidence map with Li’s model5 0.88(1.5%) 0.93(1.4%) 

 

 

Table 4. 5 TPR at FPR=0.01 and FPR=0.05 for the basic, MLE and phase methods 

with a block size of 256×256 at JPEG quality factor=90. 

 

 FPR=0.01 FPR=0.05 

Basic approach 0.913 0.950 

Proposed confidence map with the basic approach 0.935(2.4%) 0.968(1.89%) 

MLE 0.831 0.913 

Proposed confidence map with the MLE 

approach 

0.861(3.61%) 0.930(1.86%) 

Phase approach 0.846 0.901 

Proposed confidence map with the phase 

approach 

0.863(2.00%) 0.945(4.88%) 

Li’s model3 0.86 0.92 

Proposed confidence map with Li’s model3 0.93(8.1%) 0.97(5.4%) 

Li’s model5 0.81 0.88 

Proposed confidence map with Li’s model5 0.85(5%) 0.91(3.4%) 
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Table 4. 6 TPR at FPR=0.01 and FPR=0.05 for the basic, MLE and phase methods 

with a block size of 256×256 at JPEG quality factor=70. 

 FPR=0.01 FPR=0.05 

Basic approach 0.823 0.900 

Proposed confidence map with the basic approach 0.878(6.7%) 0.940(4.4%) 

MLE approach 0.641 0.783 

Proposed confidence map with the MLE 

approach 

0.728(13.6%) 0.938(19.8%) 

Phase approach 0.654 0.812 

Proposed confidence map with the phase 

approach 

0.767(17.3%) 0.865(6.5%) 

Li’s model3 0.63 0.80 

Proposed confidence map with Li’s model3 0.74(18%) 0.84(5.9%) 

Li’s model5 0.61 0.74 

Proposed confidence map with Li’s model5 0.66(8%) 0.81(9.7%) 

 

 

 

Table 4. 7 TPR at FPR=0.01 and FPR=0.05 for the basic, MLE and phase methods 

with a block size of 256×256 at JPEG quality factor=50. 

 

 FPR=0.01 FPR=0.05 

Basic approach 0.525 0.711 

Proposed confidence map with the basic approach 0.526(0.19%) 0.725(1.96%) 

MLE 0.398 0.560 

Proposed confidence map with the MLE 

approach 

0.401(0.75%) 0.568(1.42%) 

Phase approach 0.388 0.520 

Proposed confidence map with the phase 

approach 

0.481(24.0%) 0.690(32.7%) 

Li’s model3 0.45 0.57 

Proposed confidence map with Li’s model3 0.55(20%) 0.70(22%) 

Li’s model5 0.38 0.52 

Proposed confidence map with Li’s model5 0.47(23%) 0.65(25%) 
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4.8 Chapter Summary 

  The accuracy of PRNU-based camera identification method can easily be affected 

by image content. We have shown that image intensity values and image texture are 

two main factors that can affect the correlation calculation.  Hence, a non-linear 

regression model was built to formulate the image content effect. In particular, the 

image content effect was first studied in block based manner. Then with the use of the 

kernel principal component analysis, a confidence map was generated which can be 

used to quantify the reliability of each pixel in PRNU estimation. By using the 

confidence map as a weighting function in correlation calculation, the image content 

effect can be reduced as weighting was given according to the image feature.  Thus, 

a large weight is applied to reliable pixels while a small weight is applied to 

unreliable pixels which are believed to be affected seriously by scene image.   

  The confidence map was applied to state-of-the-art PRNU-based identification 

methods including the Basic approach, the MLE approach, the phase approach and 

Li’s method [14]. Experimental results show that the proposed confidence map is able 

to enhance all these existing methods to achieve an accurate source camera 

identification result. As the camera fingerprint may be affected by the JPEG 

compression, experiments at a high compression level were also carried out. Based on 
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the experimental results, the improvement achieved by the proposed method 

maintains a good performance at a high compression level. 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

  With the increasing popularity of digital imaging devices such as digital camera 

and mobile phone, camera identification has become an important topic in digital 

forensic applications.  Existing methods of digital camera identification can be 

divided into two types: source model identification and individual source camera 

identification. The former uses proprietary image formation operations such as the 

color interpolation algorithm to determine the brand and the model of the camera 

while the latter finds patterns caused by manufacturing imperfections such as pattern 

noise to uniquely identify each individual camera.  Due to the importance of 

identifying the exact camera in forensic applications, this thesis focused on the 

individual source camera identification using photo-response non-uniformity noises 

(PRNU). 

  PRNU is present in every image irrespective of image content.  Existing 

algorithms extract PRNU through image denoising. A major problem of the 

PRNU-based identification method is the scene content left in the PRNU after 

denoising. Examples have been given in this thesis to show that the extracted PRNU 

feature is contaminated by saturated regions and highly textured regions in an image. 

This thesis thus studied the scene content effect in camera identification as well as 
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proposed some solutions in solving the scene content problem. 

  We have studied the effect of scene content on the accuracy of camera 

identification. The PRNU-based camera identification method is based on a binary 

hypothesis test: H0 (the testing image is considered to be from other cameras) and H1 

(the testing image is from the reference camera). The separation between the 

probability density functions of H0 and H1 influences the accuracy of the 

identification performance.  It is found that the probability density function of H1 

highly depends on the scene content in the images. If images for H1 contain smooth 

content, the PRNU is less affected by the scene content which makes a large 

separation between the PDFs of p(x|H0) and p(x|H1).  However, if images for H1 are 

highly textured, the scene content will be left in the PRNU after denoising.  This 

narrows the separation between p(x|H0) and p(x|H1). As the performance of the 

identification accuracy depends on the overlap area between the two PDFs, a narrow 

separation implies that a wrong camera classification can easily occur.  Hence, the 

identification method has to consider the scene content of the testing images. 

 To demonstrate the idea clearly, we have performed a detailed study on the 

relations between the seriousness of scene content effect and the identification 

accuracy.  In particular, the predicted correlation is used to characterize the scene 

content effect.  Our study indicates clearly that a low detection accuracy is obtained 
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if the scene content effect is serious.  Using this result, a 2D classifier is proposed for 

individual camera identification.  The 2D classifier uses two features for camera 

identification.  The first feature is the correlation between the PRNU of the testing 

image and the reference PRNU from a particular camera.  It represents the similarity 

of two pattern noises.  The second feature is the predicted correlation which 

characterizes the seriousness of the scene content effect.  The predicted correlation 

helps setting different correlation thresholds for different types of image content.  

Experimental results show that the proposed 2D classifier can have a more flexible 

threshold setting mechanism which gives better identification accuracy as compared 

to the traditional identification methods. 

  Although the predicted correlation is able to characterize the scene content effect, 

the formulation is not flexible enough as the characterization is done in a block-based 

manner.  Therefore, we refined the correlation prediction model so that it can 

describe the scene content effect in pixel level. In other words, the severity of scene 

content effect on each pixel can be quantified.  In our proposed method, kernel 

principal component analysis is used to model the non-linear relationship between the 

image features and the correlation.  Then a confidence map is generated which 

indicates the reliability of each pixel in the PRNU estimation.  The confidence map 

can be used as a weighting function in which the weighting is given according to the 
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seriousness of the scene content effect.  In other words, a large weighting is given to 

reliable pixels in PRNU estimation and verse versa.  Experimental results show that 

the proposed confidence map is able to quantify the severity of scene content effect 

and hence it achieves accurate camera source identification even at high compression 

ratios. 

  In conclusion, we have considered two ways of compensating the scene content 

effect in individual source camera identification.  The first method uses the predicted 

correlation as one of the features in a 2D classifier which helps setting the threshold 

according to the scene content for the camera identification. The second method 

extends the block-based scene content characterization to pixel level so that the 

reliability of each pixel in correlation estimation can be quantified.  Through these 

two methods, the scene content effect can be properly taken into account into the 

camera identification problem.  Experimental results and comparative studies with 

existing methods have shown the effectiveness of these two methods.   

 

5.2 Future works 

 

  Besides source camera identification, image tampering detection is another 

important research topic in digital forensics.  Image tampering detection aims to 

determine whether the image content has been modified.  The basic idea of image 
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tampering detection can be very similar to source camera identification.  One tries to 

determine whether there are any statistical inconsistencies among blocks in an image.  

For example, a tampered region will have different PRNU feature as compared to the 

same region in the reference PRNU.  Thus, if the correlation is smaller than certain 

value, it is likely that an image tampering has occurred.  In order to demonstrate the 

idea, a simple example is given in Figure 5.1.  Figure 5.1(a) and Figure 5.1(b) show 

an outdoor image and its tampered version respectively. Figure 5.1(b) is tampered 

with a back view of a man adding into the original image. In order to detect the 

tampered region, PRNU characteristics of the image in Figure 5.1 (b) is extracted with 

a block size of 100×100.  Then the correlation between the extracted PRNU and the 

reference pattern noise is calculated.  Figure 5.2 shows the resultant correlation 

values in the image. A bright intensity indicates a high correlation value and vice 

versa.  We can see that the tampered area (i.e., the back view of the man) has a lower 

intensity in the correlation map than other areas. This shows the statistical 

inconsistencies between the detected PRNU in the testing image and the reference 

pattern noise.  However, the over-exposed area on the right hand corner also has a 

low intensity. It is because the PRNU feature is lost in the over-exposed area. Hence 

the correlation values cannot be used solely to determine the tampered region.  To 

distinguish whether the low correlation value corresponds to a tampered region or due 
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to the contamination of the image content on the PRNU feature, we need a measure 

that can indicate the reliability of the obtained correlation.  In fact, the confidence 

map proposed in this thesis is able to quantify the reliability of each pixel in the 

PRNU estimation.  Hence it can be combined with the correlation values in Figure 

5.2 to achieve reliable tampered region detection.  

   Figure 5.3 shows the confidence map of the tampered image in Figure 5.1(b). In 

order to have a direct comparison between the confidence map and the correlation 

values in Figure 5,2, the new confidence map is obtained by performing averaging 

with a block size of 100×100 as shown in Figure 5.4.  The averaged confidence map 

is used to quantify the seriousness of image content effect and hence characterize the 

reliability of the obtained correlation. The high intensity pixels indicate a reliable 

correlation value.  In other words, the region for the back view of the man is a 

reliable region while the over-exposed area is an unreliable region.  Then, by 

comparing Figure 5.2 and Figure 5.4, it can be seen that the low correlation value for 

the over-exposed area in Figure 5.2 is caused by the image content as the 

corresponding value in the confidence map is low, while the low correlation value for 

the man is not caused by the image content, thus the low correlation values in this 

area is likely to be caused by image manipulation. 
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(a)  (b) 

Figure 5. 1(a) An outdoor image and (b) its tampered version. 

 

 

 

 

Figure 5. 2 Correlation between the PRNU extracted in image in Figure 5.1(b) and the 

reference PRNU with a block size of 100 x100. 
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Figure 5. 3 Confidence Map of Figure 5.1(b). 

 

 

 

Figure 5. 4 Averaged Confidence Map in Figure 5.3 with a block size of 100x100. 

   

  In summary, we notice that the scene content affects not only the source camera 

identification, but also image manipulation detection using pattern noise. For example, 

the textured area or the over-exposed image region is easily classified into tampered 

region. In order to solve the problem, we will apply our study of scene content effect 
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on camera identification to image manipulation detection. We plan to use the 

confidence map discussed in Section 4.4 to decide whether the low value in the 

correlation map corresponds to a tampered image region or due to the scene content 

contamination on the pattern noise.  
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