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Abstract 
Fibrous materials have a variety of applications, such as filtration, fuel cell, 

textile fabric, fiber reinforced composite, and tissue scaffold. Recently, of particular 

interest are fibrous preforms composed of nanofibers and microfibers, which are 

tailored to meet a range of advanced requirements. For many applications, 

permeability of gas flow and diffusivity of vapor diffusion are two important mass 

transport behaviors observed. However, the characterization of the transport 

phenomena in realistic fibrous structures is challenging and still not fully understood, 

especially in nano- and micro-scale regimes. Therefore, the current work is aimed at 

systematically bridging the microstructures to the transport properties of nano- and 

micro-fibrous materials, by analytically solving transport equations in equivalent 

fibrous structures based on deterministic and statistical methods. 

Fibrous structures can be broadly classified into two types: single-scale and 

dual-scale. The absence of yarns makes the mean pore radius in single-scale mats of 

the same magnitude, and hence they can be characterized by a single permeability. 

However, after finer fibers or filaments are bundled into yarns, they are woven or 

stitched into different structures, which contain pore sizes in two distinctly different 

magnitudes and are therefore called dual-scale fibrous media. The single-scale 

fibrous medium is commonly referred to as a nonwoven web, which can be 

one-dimensional (1D: all fibers parallel with each other), two-dimensional (2D: all 

fibers parallel with the same plane), and three-dimensional (3D: all fibers distributed 

in different orientations in a cubic space) arrangements. Dual-scale fibrous media can 

be knitted or woven structures, which are always constructed by interlacing threads. 

The first part of this study was aimed at studying gas flow through single-scale 

fibrous materials. For highly porous fibrous media, gas permeabilities from 1D 

ordered structure to randomly located 2D or 3D fiber assembles were determined by 

http://phys.org/news/2011-04-carbon-allotrope-variety-applications.html
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Voronoi Tessellation Method and mixing laws. The slip flow on the fiber surface of 

nanofibers was particularly considered. For densely packed fibers, a modified scale 

estimate approach was utilized to predict the gas permeability. 

In the second part, a permeability model throughout the range of porosities was 

obtained for single-scale fibrous layers, whose pore size distribution was found to 

statistically follow the fractal power law. 

The third part investigated gas flow in dual-scale fibrous media, where 

complexities are introduced as the inter-yarn flow is coupled with the intra-yarn flow. 

A “slip” boundary at the interface between yarns and open channels was used to 

account for the coupled effect. A semi-analytical model was also provided for rapid 

predictions of permeabilities from unidirectionally aligned yarns to 3D woven 

fabrics. 

The fourth part presented an analytical model of vapor diffusivities for 1D, 2D, 

and 3D randomly distributed fibers. The model was established by extending the 1D 

regular model to 1D random array through Voronoi Tessellation Method, and to 2D 

and 3D structures by mixing rules.  

In the fifth part, a diffusivity model of nanofiber webs was derived as a function 

of porosity, fiber radius, and fractal dimensions, which statistically characterize the 

pore size distribution and tortuosity of fibrous media. To verify the proposed model, 

experimental measurements of water vapor diffusivities for electrospun nanofiber 

mats were conducted by inverted-cup test method. 

All the models established in this study were well validated by the results 

collected from experiments in present study or related literature, numerical 

simulations, and past theoretical models. Moreover, the effects of structural 

parameters were extensively analyzed, and the following conclusions can be made: 
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1. Gas permeability of microfibers scales with the square of fiber radius, while 

vapor diffusivity of microfibers is independent of fiber/pore size. 

2. In nanofiber mats, gas permeability is enhanced by slip effect, but vapor 

diffusivity is decreased due to Knudsen effect. Electrospun nanofibers are found 

to be good candidates of breathable materials experimentally and theoretically. 

3. Both gas permeability and vapor diffusivity are not sensitive with in-plane fiber 

orientation, but increase with increasing through-plane fiber orientation. 

4. In terms of fiber distribution, more random, more permeable, but less diffusive 

when porosity is high. 

5. Comparing with squarely packed fibers, fibers with hexagonal configuration are 

more transversely permeable but less axially permeable in low porosity range.  

6. Elliptical fibers with major axis parallel with flow direction are more transversely 

permeable than circular fibers, and they have similar permeability in the high 

porosity range. 

7. The intra-yarn permeability increases the overall permeability of dual-scale 

fibrous materials when the ratio between them is more than 0.01. 

Based on above models and findings, future work may be directed towards 

employing the models to specific uses, developing relevant software, improving 

models of coupled heat and moisture transfer, and designing optimized fibrous 

structures with controllable transport properties. 
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Chapter 1 Introduction  
1.1. Background 

In the past decades, fiber-based materials have attracted great attention from 

engineers and scientists in various areas, including filtration, fuel cells, functional 

clothing, thermal insulation, paper products, and medical science. Further 

development of various forms of fibrous products, particularly nano- and 

micro-fibrous materials and fiber reinforced composites, unfold a vigorous mass 

campaign for applications. Commonly, nanofiber has a diameter less than 1 micron 

(WIKI, 2012), and microfiber has a diameter of around 10 microns or less 

(Microfiber.com, 2012). 

 Among the applications, fibrous materials always serve as media, which allow 

air, vapor, particles, liquids, or heat to transfer through. Therefore, it is of great 

importance to understand the transport mechanisms in fibrous materials. 

 However, most of the structures of fibrous media are highly complex and 

difficult to describe. It is even more complicated to analyze the mass transfer 

behaviors within fibrous systems. Moreover, the range of the scales from nano to 

macro within one fibrous medium is huge, which further adds the complexity of 

transport behaviors. Modeling transport phenomena of fibrous media is therefore a 

great challenge and makes the present study interesting. 

1.2. Fibrous structure 

Fibrous medium is usually solid-void mixtures with the solid fibers in a slender 

circular/elliptical form, such as the one shown in Fig. 1-1. The unique properties of 

fibrous materials, different from some other categories of porous media, are their 
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breathability, compressibility, flexibility, and specific surface area. Particularly in 

textile science and engineering, fibrous materials can be mainly divided into two 

types: ordered fabrics and disordered nonwovens.  

 

Figure 1-1: An example of microscopic image of a fibrous medium 

Figure 1-2: Illustration of 1D, 2D, and 3D fibrous media 

Fibrous media in nonwoven form are generated by means of assembling fibers 

into a planar structure on the ground of research and applications. Although the 

nature of their structures are varied and complex, the nonwovens can be generally 

simplified as consisting of arrays of cylinders in three forms of formations, as shown 

in Fig. 1-2, viz. one-dimensional (1D) structure in which all fibers are parallel with 

one another; two-dimensional (2D) structure in which fibers lie in parallel planes 

with directional or random orientations; and three-dimensional (3D) structure in 
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which fibers are directionally or randomly oriented in space (Tomadakis and 

Robertson, 2005). 

Ordered fabrics are made up of bundles of fibers after arrangements, such as 

weaving, knitting, crocheting, and knotting. Among them, woven structures (see Fig. 

1-3) are the ones that are most widely applied in composites (Chen et al., 2006), 

which have additional features such as, unit cell, interlace spacing or gap, and 

interlace point (Mariatti et al., 2000). The popularity of woven composites is 

increasing due to the dual-scale structures that woven is made up of a bundle of 

filaments, known as yarns. The weaving of the yarns provides an additional 

interlocking which enhances strength better than what can be achieved by sole fiber 

matrix adhesion (Alavudeen et al., 2011).  

 

Figure 1-3: Unit cell of a plain weave fabric perform (Chen et al., 2006) 

In contrast to the conventional fibrous materials with fiber radius larger than 10 

microns, the radius of nanofiber is typically less than 0.5 micron or even smaller 

http://en.wikipedia.org/wiki/Weaving
http://en.wikipedia.org/wiki/Knitting
http://en.wikipedia.org/wiki/Crochet
http://en.wikipedia.org/wiki/Macram%C3%A9
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than 50 nanometers (Gibson et al., 2001). The nanofiber assembles are expected to 

possess nano-scale texture and a very high surface to volume ratio, leading to 

different modes of transport properties by comparing to the macro-scale porous 

materials (Gibson et al., 2001). Particularly, a new type of fibers named electrospun 

nanofibers joins the family of fibrous materials and have gained increasing attention 

in the past decade (Subbiah et al., 2005). Electrospinning applies a high electrical 

charge to produce super-fine fibers from polymer solutions or melt polymers 

(Reneker et al., 2000, Li and Xia, 2004). Most electrospun nanofibers are prepared 

in a nonwoven form, but it can also be twisted or woven into an ordered structure 

(Bazbouz and Stylios, 2008). A schematic of an electrospun nanofiber mat and a 

conventional nonwoven is presented in Fig. 1-4. 

(a)   

(b)  

Figure 1-4: SEM images of (a) Nylon 6 electrospun nanofiber mat and (b) 

conventional nonwoven 
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1.3. Transport properties 

Gas flow and vapor diffusion are the two main mass transport mechanisms 

involved in porous media (Bear and Bachmat, 1990), and also the targeted subjects 

in the present study. 

It is generally assumed that the slow flow through fibrous porous media is 

dominated by viscosity at low Reynolds number, and the effects of gravity and 

inertia become negligible (Kim and Reneker, 1999). From a macroscopic view, the 

viscous permeability of fibrous media can be defined by Darcy’s law (Darcy, 1856):  

,Ku p
µ

= − ∇                              (1-1) 

where K  is Darcy hydraulic permeability, µ  is the fluid viscosity, p∇  is the 

pressure gradient, and u  is the average fluid velocity. Darcy's equation, as an 

expression of conservation of momentum, originated from determining permeability 

of porous media empirically in 1850s (Darcy, 1856). It has been served as a starting 

point for studying viscous flow in porous media. 

The applicability of Eq. (1-1) is tarnished by the difficulty in accurately 

measuring the ratio of fluid flux against the directional pressure gradient through 

experimental measurements for different types of fibrous porous materials. In 

addition, it lacks of physical understanding of micro-structural influences on the 

permeability. To exactly describe the motion of fluid substances in a micro-scale 

regime, researchers employ Stokes equation, as follows (Gebart, 1992): 

2 0.p uµ−∇ + ∇ =                             (1-2) 

http://en.wikipedia.org/wiki/Conservation_of_momentum
http://en.wikipedia.org/wiki/Fluid
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Detailed fluid velocity distribution can be calculated based on solving Stokes 

equation with proper boundary conditions. 

For dual-scale porous media, such as woven composites made up of permeable 

yarns, analytical technique is not capable of solving Stokes equation in both inter- 

and intra- yarn regimes simultaneously, and numerical simulation suffers from 

expensive computation (Nabovati et al., 2010). The Brinkman equation (Brinkman, 

1947), dealing with the fluid flows in internal area of a porous medium by Darcy’s 

law and in its outer boundary layer by Stokes equation, is therefore proposed for 

reducing computational complexity (Ahn et al., 1991): 

2 0,
p

p u u
K
µµ−∇ + ∇ − =

                      
(1-3) 

where pK  is the Darcy permeability of the porous medium or the intra-yarn 

permeability in woven fabric. 

Different from the pressure-driven gas flow, the movement of vapor molecules 

caused by concentration difference in a porous medium is known as diffusion (Smith 

and Hashemi, 2006). It takes place when the concentration of the molecules is 

higher in one region than the other. Vapor molecules will not stop migrating until 

there is an equalized concentration configuration throughout the carrier. The moving 

paths of molecules during diffusive motion process are random, but the most 

preferred migration of molecules will be in the direction of decreasing concentration. 

Diffusivities are calculated by postulating flux moving from regions of high to low 

concentration by using Fick’s law (Smith and Hashemi, 2006): 

,b
CJ D
x

∂
= −

∂
                              (1-4) 
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where J  is the diffusion flux and measures the amount of migrated diffusive 

molecules, bD  is the bulk diffusion coefficient in open space without any 

confinement, C  is the concentration of diffusive molecules, and x  is the moving 

position. 

 Eq. (1-4) is analogous to Darcy’s law in mathematical form, and it also lacks of 

microscopic study of structural effects. To overcome it, Fick’s second law is applied 

(Nilsson and Stenstrom, 1995), viz.: 

2 0,C∇ =                                    (1-5) 

which is expressed in the form of Laplace equation. The accurate concentration 

distribution can be calculated based on solving Eq. (1-5) with proper boundary 

conditions. 

 

Figure 1-5: Air molecules near a nanofiber and a microfiber 
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(a)  

(b)  

Figure 1-6: Schematic drawing of a molecule in a cylindrical pore in the case of (a) 

bulk diffusion and (b) Knudsen diffusion 

To date, nanofibers and microfibers are being increasingly used in a range of 

novel applications. Unlike macroscopic problems in mass, momentum, or energy 

transport as described by traditional continuum equations, the movements and 

interactions of the nano-scale entities tend to be random walkers in microscopic 

world. For gas flow, the air molecule velocities are random near the surface of the 

fibers as seen in Fig. 1-5. The continuum theory assumes the average velocity of 

molecules fully in contact with the solid boundary of a microfiber is zero. This 

assumption is not strictly correct for nanofiber, as its radius is comparable to the 

mean free path (average distance covered by a moving particle between successive 

collisions) of fluid molecules and only a fraction of the air molecules actually contact 

the nanofiber (Smith, 2004). As such, the molecules without colliding with the 

nanofiber generate the slip flow (Smith, 2004).  

For diffusion in porous media with large pores, movement of molecules is 

mainly blocked by their intermolecular collisions, and thus bulk diffusion occurs. 
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However, when the pore radius is comparable with the mean free path of diffusion 

molecule, molecular-wall collisions suffering from greater transport resistances will 

dominate (Brown, 1993), and Knudsen diffusion occurs as seen from Fig. 1-6.  

1.4. Significance of transport properties in fibrous structures 

Fluid flow and vapor diffusion in fibrous materials are significant and valuable 

as they are involved in a wide range of practical applications, including textile fabric, 

resin transfer molding (RTM), fuel cell, biological interfaces, and filtration, to say a 

few. 

In textile and clothing engineering, fiber-based materials are dominantly used 

because fibrous structures have multifunctional characteristics, such as low weight 

and flexibility (Rantanen et al., 2000). More importantly, the fibrous structures can 

be tailored to meet a range of requirements, such as high moisture vapor diffusivity, 

controlled air permeability, and good thermal insulation. Therefore, fibrous materials 

have the great potential to be used as from protective clothing to daily wears with 

good comfort. 

Resin transfer molding (RTM) is a promising manufacturing process of 

composite materials, which make the varieties of complex shapes in few simple steps 

and have control over mechanical properties by short cycle period (Ngo and Tamma, 

2001). In RTM, the resin is drawn or injected into a shaped mold, which always 

contains the dual-scale woven preforms. Among the parameters, permeability is the 

critical processing factor which links the injection pressure with the mold filling time 

(Sadiq et al., 1995).  

Proton exchange membrane fuel cell (PEMFC) is considered to be one of the 

leading candidates for the power sources of mobile, stationary, and portable devices 
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(Wee, 2007). The gas diffusion layer (GDL) of PEMFCs is a fibrous porous material 

with a layered structure, which not only provides the support of the fuel cell 

membrane, but also allows transport of reactants products, such as that oxygen 

diffusions through the GDL from the gas channel (GC) to the catalyst layer (CL), 

where it is combined with the protons and electrons from the anode to produce water 

(Litster and McLean, 2004). The produced water moves in a viscous form, which 

could condense and even block the porous GDL. Therefore, the permeability of 

liquid water and the diffusivity of water vapor, oxygen, and hydrogen are critical to 

the fuel cell performance.  

Tissue engineering may allow for the reconstruction of breast, facial, skin, and 

other soft tissue defects in the human body (Gentleman et al., 2004). Fiber-based 

supporters are introduced to avoid the contraction of the scaffold by the constituent 

cells, which would severely reduce permeability and diffusivity of nutrient sources 

(Gentleman et al., 2004). Based on well predicted transport models, the incorporation 

of imposed fibers should enable the creation of larger constructs by allowing for 

greater nutrient transfer, and permit the creation of more complicated shapes of 

tissues. 

Filters are also used to collect particles from the bulk fluid (Wang et al., 2006). 

The most common filter type is fibrous, which removes particles from a gas stream 

via solid fibers. The filter is generally characterized by their collection efficiency and 

pressure drop for air filtration. Therefore, a good understanding of the flow field and 

the resulting pressure drop is crucial in design and optimization of selective filtration 

systems. 

1.5. Overall methodology 

The literature review in Chapter 2 reveals the gap in the area of modeling gas 
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flow and vapor diffusion in fibrous materials. In order to solve the remaining 

problems, a systematic study will be conducted based on the overall methodology 

summarized in Fig. 1-7.  

 

 

 

 

 

 

 

 

Figure 1-7: Outline of modeling methodology 

Both of deterministic and statistical approaches are used to solve governing 

equations of gas and vapor transport in the equivalent fibrous matrix. Analytical 

solutions can be found within the properly equivalised fibrous matrix, which is used 

to represent the realistic fibrous structures. The deterministic method considers the 

affecting geometric details systematically, and the solution is therefore considered to 

be accurate, although it is sometimes difficult to derive. The statistical models, which 

describe the complex internal microstructures probabilistically or statistically, can 

provide rapid predictions of the transport trends, although they may be not as 

accurate as deterministic models. Therefore, the two methods are both presented in 

Gas permeability and vapor diffusivity 

Statistical approach 

Equivalent fibrous structures 

Structural 
parameters 

Deterministic approach 
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this thesis, but the selection of the method depends on the specific end use of the 

fibrous structure. The predictions of all the models established in this study are 

compared with the data collected from the experiments in the present study or 

reported in the literature, previous numerical simulations, and existing theoretical 

models. Finally, the analysis of the structural parameters is conducted extensively. 

1.6. Objectives of this study 

The transport properties are very critical to the performance of fibrous materials, 

and this is the reason for the current intensive worldwide efforts to investigate 

transport phenomena in fibrous structures. To better characterize the relationship 

between the transport behavior and the fibrous medium, the present study aims to 

investigate the microscopic effect of fibrous structures towards the gas and vapor 

transfer mechanisms, and eventually provides macroscopic description of 

dependence of transport properties on structures. This thesis is focused on 

investigating transport properties in nano- and micro-fibrous materials, but all the 

models obtained in this study can also be used to deal with conventional or 

macro-scale fibrous preforms when the nano-scale effect is neglected. 

Literature review in Chapter 2 shows that researchers have proposed a great 

number of analytical and numerical models in addition to experimental work. 

However, most of the analytical work studies the single-phase transport based on 

over-idealized structures of fiber beds, while the numerical studies are lack of 

theoretical analysis when simulating transport behaviors in realistic fibrous materials, 

or dealing with coupled and multi-phase transport within simplified homogenous 

structures. Therefore, this study is aimed at bridging the existing research to the 

ultimate models for various applications, where coupled and multi-phase transport 

takes place in the realistic complex fibrous media (see Fig. 1-8). To this end, this 
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thesis will extensively explore gas flow and vapor diffusion, respectively, in complex 

and realistic fibrous materials. 

The studied morphological factors that are commonly used to describe fibrous 

media include: 1) porosity that is the ratio of the void volume to the total volume; 2) 

fiber radius; 3) fiber shape that is cross-section geometry of the fiber; 4) fiber 

orientation; 5) packing configuration that includes different packing arrangements; 6) 

nano-scale effect that describes unconventional phenomena arisen in nano- and 

micro-fibrous media; 7) randomness of fiber location that reveals the degree of 

disordered distribution of fibers; and 8) dual-scale effect that describes the influence 

of the intra-yarn flow on the system permeability.  

To sum up, the main objectives of this project include:  

1) To develop compact mechanistic models of gas permeability of 

single-scale fibrous materials from 1D to 3D structures, and investigate the 

affecting structural factors, such as porosity, fiber radius, fiber 

cross-sectional shape, fiber orientation, packing arrangement, slip flow, 

and randomness of fiber distribution. 

2) To theoretically model gas permeability of dual-scale fibrous structures 

from aligned yarns to 3D woven fabric, and to investigate the influences of 

fiber shape, packing arrangement, and intra-yarn permeability. 

3) To theoretically study vapor diffusion through fibrous media from 1D to 

3D structures with consideration of Knudsen effect in nano-fibrous layer, 

and to conduct experimental measurements of vapor diffusion in 

electrospun nanofiber mats to verify the proposed model. 
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This project will improve the fundamental understandings of gas flow and 

vapor diffusion in fibrous media, especially in nano- and micro-scale regimes. In 

addition, the theoretical models with new findings of structural effects can serve as a 

foundation in the scientific and engineering fields, such as thermal protective 

clothing, sleeping bags, building construction, aircraft, filters, GDLs, and RTM 

composites. The developed models can also be applied to design nano- and 

micro-fibrous battings with required transport properties by hierarchy arrangement, 

structural optimizations, and integrations of different transport mechanisms. 

 

 

 

 

 

 

 

 

Figure 1-8: Relationship between previous studies, present work and ultimate model 

1.7. Outline of this thesis 

The remainder of the thesis is divided into seven chapters. Chapter 2 introduces 

a full literature review of transport properties of fibrous materials with research 

Analytical study of single-phase 
transport based on simplified 
structures (i.e. 1D fiber array) 

Analytical study of single-phase 
transport in equivalent structure of 
realistic fibrous materials (present 
work) 

Numerical study of single-phase 
transport based on realistic simulated 
structure 

Numerical study of coupled and 
multi-phase transport based on 
homogeneous structures 

Ultimate models of coupled and 
multi-phase transport in realistic 
structures 
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methods and important conclusions. It ends with existing problems found in the 

literature. Chapter 3 and chapter 4 derive gas permeability models for single-scale 

fibrous materials based on deterministic and statistical approaches, respectively. 

Chapter 5 is focused on modeling dual-scale permeability. Chapter 6 obtains 

deterministic models of vapor diffusivity, and Chapter 7 presents a fractal model of 

vapor diffusivity. Chapter 8 summarizes the thesis and suggests the future work. 
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Chapter 2 Literature review 

In human endeavor to utilize fibrous materials, it is fundamental to search for 

optimized performance and novel functionality. Therefore, the link between the 

microstructures and the resulting transport phenomena, which serves as the 

foundation for design and application of fiber materials, is of great scientific and 

engineered importance. Therefore, numerous studies of this area have been 

conducted based on analytical, numerical, and experimental methods.  

This chapter reviews a class of representative publications with discussions and 

analysis. It is divided into five parts. The first part introduces different approaches 

employed to predict gas permeability of nonwoven fibrous materials. The second 

part refers to modeling gas flow in woven composites. The third part is focused on 

determining effective diffusivity of fiber assembles. The fourth part briefly discusses 

coupled heat and mass transfer in fiber-based materials. Existing problems are 

summarized in the fifth part. 

2.1. Effective permeability of nonwoven fibrous media 

Effective permeability, as a resulted property of slow viscous fluid flows, is one 

of key issues involved in applications of fibrous materials. Theoretical studies 

including pore-based model, cell-based model, scaling estimate model, and mixing 

rules, numerical simulations, and experimental measurements are critically reviewed. 

Effective permeability is a macroscopic scalar, but it lies in structural parameters 

such as porosity, fiber radius, fiber arrangements, and so forth. Hereby, the affecting 

microstructure factors are also analyzed. 

2.1.1. Pore-based model 
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Fibrous materials are typical porous media, which are made up of solids and 

open voids. Many attempts have been made to relate the hydraulic permeability to 

the readily observable features of fibrous media, such as porosity and fiber radius. 

Among them, Kozeny-Carman (KC) equation is one of the most broadly used models, 

which assumes that porous media as consisting of a bundle of long tortuous pore 

channels (Tomadakis and Robertson, 2005). KC equation is expressed as:  

2

,
4

p

c

R
K

K
ε

=
                        

(2-1) 

where ε is porosity, pR  is the pore radius, and cK  is the Kozeny constant. The 

mean pore radius pR  and porosity ε  can be measured by a porosimeter. 

 A modified KC model was later proposed by using fiber radius instead of pore 

radius, because fiber radius is easier to measure and its size distribution is more 

uniform (Tomadakis and Robertson, 2005). The permeability model for randomly 

distributed fibers is given by (Tomadakis and Robertson, 2005): 

( )
( ) ( )

2

2
22 ,

4 ln 1 1

c

p
c
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K r
c

ε εε
ε ε ε ε

+
−

=
 − + − 

                  (2-2) 

where, 0, 0, p cε = = for 1D parallel; 

0.33, 0.707, p cε = =  for 1D normal; 

0.11, 0.521, p cε = =  for 2D parallel; 

0.11, 0.785, p cε = = for 2D normal; 
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0.037, 0.661, p cε = = for 3D normal, 

where, pε  is the minimum porosity (or percolation threshold), and c  is a constant 

varying with fiber structures, which are derived from recording moving distances of 

random-walk diffusive molecules by Monte Carlo simulations in numerical fibrous 

media (Tomadakis and Sotirchos, 1993a).  

 

Figure 2-1: Representative diagram of two neighboring pore bodies and 

connecting throat (Gostick et al., 2007) 

However, KC assumption does not hold at high porosity limit because the void 

pores promote interconnected flow rather than conduit flow. An alternative 

pore-based approach named as pore network modeling was then presented (Gostick 

et al., 2007). The basic idea of this method is mapping an indicative pore space 

continuum onto a lattice regularly or irregularly, as seen in Fig. 2-1. The pore space 

of fibrous media was idealized as consisting of a network collection of pore bodies 

communicating through pore throats, based on size distributions measured by 

porosimetry (Gostick et al., 2007). Nevertheless, the lack of detailed information of 

pore structures limits the further development of pore network modeling. 
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2.1.2. Cell-based model 

Cell-based model assumes a representative unit cell, which is used to 

characterize the transport property of the whole fibrous system. The representative 

cell is regarded as existing repeatedly throughout the fibrous medium and has the 

same permeability with the whole system. With properly defined boundary 

conditions, accurate analytical solutions are available by solving Stokes equation, 

and the calculated permeability is always obtained without referring to tortuosity, 

specific surface area, and empirical shape factors. For a look at this area of literature, 

interested readers can be directed to a class of studies (Happel, 1959, Kuwabara, 

1959, Keller, 1964, Sangani and Acrivos, 1982, Drummond and Tahir, 1984, Gebart, 

1992, Tamayol and Bahrami, 2009). Among them, the lubrication approximation 

method, assuming the flow velocity is almost unidirectional, was always used to 

describe the channel flow between densely packed fibers with square and hexagonal 

manners. On the other hand, the effective medium approach, assuming all the regions 

outside the representative cell as an equivalent medium, was always employed to 

study the influences of neighboring fibers on the cell flow for loosely packed fibers. 

The representative models of cell-based methods are listed in Table 2-1. 

The permeability model is generally expressed as a function of porosity, fiber 

radius, pore radius, and fiber geometric arrangement. As the fiber radius is generally 

uniform, the permeability model is preferred to be expressed by a dimensionless 

function of fiber radius (Johnson et al., 1986): 

2/ ( ).K r f ε=                              (2-3) 
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Table 2-1: Summary of cell-based models of permeability 

Models Remarks 

(Kuwabara, 1959) 

( ) ( )
( )

2
20.25ln 1 0.25 0.25 1

4 1
K r

ε ε ε
ε

− − + − − −
=

−
 

·1D flow transverse to dilute 

ordered array 

·Zero vorticity at the cell 

boundary 

(Happel, 1959) 

( ) ( )
( )
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2

2
2

1 1
0.25ln 1 0.5
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K r

ε
ε

ε
ε

− −
− − +

− +
=
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·1D flow transverse to dilute 

ordered array 

·Zero shear stress at the cell 

boundary 

(Happel, 1959) 

( ) ( )
( )

2
20.25ln 1 0.25 0.25 1

2 1
K r

ε ε ε
ε

− − + − − −
=

−
 

·1D flow parallel with dilute 

ordered array 

·Zero shear stress at the cell 

boundary  

(Keller, 1964) 

( )

2.5

22 11 2
18 1

K rε
ε π

 −
= −  −  

 

·1D flow transverse to dense 

square array 

· Force-based lubrication 

technique 

(Sangani and Acrivos, 1982) 

( ) ( )
( )

2
20.25ln 1 0.262 0.887 1

4 1
K r

ε ε ε
ε

− − + − − −
=

−
 

·1D flow transverse to dilute 

square array 

·Least-squares technique 

(Sangani and Acrivos, 1982) 

( ) ( )
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4 1
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ε ε ε
ε
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=

−
 

·1D flow transverse to dilute 

hexagonal array 

·Least-squares technique 

(Drummond and Tahir, 1984) ·1D flow parallel with square 

array 
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( ) ( )
( )

2
20.25ln 1 0.251 0.25 1

2 1
K r

ε ε ε
ε

− − + − − −
=

−
 

·Distributed singularities 

approach 

(Drummond and Tahir, 1984) 

( ) ( )
( )

2
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2 1
K r

ε ε ε
ε

− − + − − −
=

−
 

·1D flow parallel with 

hexagonal array 

·Distributed singularities 

approach 

(Gebart, 1992) 
2.50.5
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·1D flow transverse to dense 

square array 

· Flux-based lubrication 

technique 

(Gebart, 1992) 
2.50.5

216 0.906 1
19 6

K r
επ

  = −  −   
 

·1D flow transverse to dense 

hexagonal array 

· Flux-based lubrication 

technique 

(Tamayol and Bahrami, 2009) 

Eq. (2-4) 

·1D flow transverse to square 

array 

· Modified lubrication 

technique 

·Studied cell aspect ratio 

(Tamayol and Bahrami, 2009) 

Eq. (2-5) 

·1D flow parallel with square 

·Modified lubrication technique 

·Studied cell aspect ratio 

The representative cell, which contains fibers arranged in a particular manner, is 

the smallest volume representing the basic characteristics of the dilute fibrous system, 

as shown in Fig. 2-2. This technique describes the structures of both square and 

hexagonal arrays of cylindrical fibers relying solely on the simple geometry and fiber 
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volume fraction. In 1959, Stokes equation for transverse permeability (i.e. 

permeability of fibers normal to flow) or parallel permeability (i.e. permeability of 

fibers parallel with flow) was solved with a zero shear stress boundary condition at 

the perimeter of circular cell (Kuwabara, 1959). Later, a similar approach was 

applied to study transverse permeability through 1D fibers, but with zero vorticity 

instead of zero shear stress (Happel, 1959). Kuwabara’s model was reported to be 

able to deal with randomly located fibers, but only the ordered and homogeneous 

structure satisfied his assumption that the permeability of the unit cell was equal to 

the mean permeability of the fibrous system. In 1982, a new analytical solution by 

means of drag force, which can be transferred to effective permeability, was derived 

based on Least-squares technique for fibrous media with high limits of porosity 

(Sangani and Acrivos, 1982), where both square and hexagonal arrangements of 

fibers were considered. Later, an accurate solution for the two structures was 

presented by the distributed singularities approach (Drummond and Tahir, 1984). 

(a)  (b)  

Figure 2-2: (a) Solid geometric and (b) plane geometric schematic of aligned 

cylindrical fibers in square pattern 

In addition, it is interesting to find that the permeability of these arrays parallel 
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with flow is almost exactly twice of that when the fibers are transverse to the flow 

for those loosely packed fiber arrays (Johnson et al., 1986). 

In order to predict the permeability of densely packing fibers, lubrication theory 

was applied by some researchers (Gebart, 1992, Keller, 1964). They found that most 

of the flow resistance or the pressure drop exists at the area near the narrowest slot 

between fibers. Keller considered the square array (Keller, 1964), while Gebart 

extended the square model to the hexagonal case (Gebart, 1992). 

However, none of the above models predict well the permeability at moderate 

porosity (Tamayol and Bahrami, 2009), because the effective medium approximation 

and the lubrication approximation are valid only for the loosely and densely packed 

fiber arrays, respectively. Recently, a modified lubrication method was proposed to 

capture the flow trend in moderate porosity range by relating the border velocity of 

the channels between fibers with the average velocity of the system (Tamayol and 

Bahrami, 2009). They also found that the transverse permeability increases with the 

increasing aspect ratio of fiber distances between normal to and aligned with the flow 

direction in the cell, but the parallel permeability is not sensitive with the aspect ratio. 

The models of transverse permeability and parallel permeability are given as follows, 

respectively (Tamayol and Bahrami, 2009): 
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where 0 4(1 )
πε
ε

=
−

. 

2.1.3. Scaling estimate model 

Based on the fact that most flow contributions exist near the narrowest gap 

between fibers (Gebart, 1992, Keller, 1964), Clague et al. (Clague et al., 2000) 

proposed a simple scaling estimate model of gas permeability based on Stokes 

equation. Clague et al. (Clague et al., 2000) selected the half distance minh  between 

cylindrical fibers as the characteristic length, over which the flow velocity changes 

rapidly. The scaling estimate model is given by (Clague et al., 2000): 

2
min ,K ch=

                       
(2-6) 

Later, Sobera and Klein (Sobera and Kleijn, 2006) argued that it is more proper 

to choose the actual velocity 0 /u u χ=  as the characteristic velocity, where χ  is 

the radio between the minimum to the total frontal area between fibers, hence: 

2
min .K c hc=                            (2-7) 

In addition, a correction factor was proposed to characterize the degree of disorder of 

fiber location (i.e., the variation of the distance between fibers (Sobera and Kleijn, 

2006). It revealed that disordered fiber assembles are more permeable than those of 

regularly structured cases for both 1D and 2D arrays at the same porosity. 

Recently, a tortuosity 1cτ ε −=  was added into the scaling estimate model of Eq. 

(2-7) to predict the permeability of fibrous materials from 1D to 3D structures 

(Tamayol and Bahrami, 2011). However, the scaling estimate model, which only 
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considers the critical geometric detail (i.e. minh ), indeed intends to avoid referring to 

the statistical parameters such as tortuosity or pore size distribution. In addition, 

although the model is well verified by the experimental results collected from the 

literature, the agreement may be ascribed to the two empirical constants c  and 1c , 

which can provide a more flexible fitting against the experimental values. 

2.1.4. Mixing rules 

Most cell-based and scaling estimate models are of high accuracy by comparing 

with the experimental and numerical results from the above literature, but neither of 

them can predict the permeability throughout the porosity range (Tamayol and 

Bahrami, 2009, Chai et al., 2011). To overcome this limitation, a mixed model was 

derived for transverse permeability of square array (Bruschke and Advani, 1993): 

,e e l lK c K c K= +                            (2-8) 

where
0.6281 exp(0.8 )
1ec

e
= − −

−
 and 

0.6281 exp(0.8 )
0.785lc

e
= − −

−
are combination 

coefficients, and eK  is the permeability model for loosely packed fiber, and lK  is 

the permeability model at low porosity (Bruschke and Advani, 1993). 

The hydraulic permeability of 1D ordered fibers parallel with or normal to flow 

direction has been readily determined. However, it is difficult to predict the 

permeability of 2D and 3D structures that the hydraulic resistances of the fibers in 

different directions are interdependent and coupled, especially for those dense 

systems (Mattern and Deen, 2008). Accurate theoretical solutions are almost 

impossible considering the complex systems. An estimate as a function of fiber 

fraction φ  was proposed for 3D arrays: ( ) ( ) ( ) 11 12 / 3 1/ 3norm paraK K Kφ φ φ
−− − = +  , 
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which was obtained based on mixing flow resistances of fibers in normal and parallel 

flow direction, respectively (Johnson et al., 1986) .  

2.1.5. Past experimental work 

The first attempt at explaining the transport phenomenon of slow flow in porous 

media was conducted early in 1856 (Darcy, 1856). Based on the experimental 

observation, a mathematical form relating the flow flux linearly with the pressure 

difference was obtained, known as Darcy’s law (Darcy, 1856). The fluid follows the 

Newton’s law of viscosity and the porous medium is approximated homogeneous and 

isotropic. The effect of inertia and gravidity are not included as the Darcy’s law 

focuses on viscous flows.  

Based on Darcy’s law, the permeability measurements require controlling either 

the pressure or fluid flux, and the most common experimental techniques include 

radial flow and channel flow measurements (Sharma and Siginer, 2010). 

Diverse applications of fiber materials and testing fluids were used in different 

fibrous structures (Gostick et al., 2006b, Wiggins et al., 1939, Sullivan, 1942, 

DAVIES, 1952, Ingmanson et al., 1959, Lord, 1955, Wheat, 1963, Kirsch and Fuchs, 

1967, Labrecque, 1968, Kostornov and Shevchuk, 1973, Sadiq et al., 1995, Rahli et 

al., 1997, Zhong et al., 2006). Fiber materials include glass rod, copper wire, glass 

wool, drill rod, copper wire, goat wool, hair, glass wool, kapok, rayon, Kapron fibers, 

and so forth. Testing fluids included water, air, alcohol, and so on. Fibrous geometric 

structures, from 1D parallel array to 3D assembles, from ordered structures to 

random matrix, from conventional fibers to nanofibers, from transverse flows to 

parallel, were all investigated. The permeability measurements are summarized in 

Table 2-2. Review work of experimental results is also available in literature 

(Jackson and James, 1986, Tomadakis and Robertson, 2005). 
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Darcy’s law is a phenomenological model at the macroscopic level, which 

cannot go into the effects of microstructures. However, it is still the most commonly 

used technique as it can provide good permeability estimates, such as the empirical 

model of transverse permeability of 2D randomly layered fibrous media (DAVIES, 

1952): 

( ){ } 11.52 3/ 16 1 1 56(1 ) .K r ε ε
−

 = − + −                 (2-9) 

Table 2-2: Summary of experimental measurement of nonwoven fibrous 

materials. 

Authors  Remarks 

(Wiggins et al., 1939) ·3D flow through random structure 

·Glass rod, copper wire, and glass wool 

·Water 

(Sullivan, 1942) ·1D flow transverse/parallel with 

ordered/random array 

·Drill rod, copper wire, goat wool, and 

hair 

·Air 

(DAVIES, 1952) ·2D flow transverse to random layer 

·Glass wool, kapok, and rayon 

·Air 

(Ingmanson et al., 1959) ·2D flow transverse to random layer 

·Nylon fiber 

·Air  

(Lord, 1955) ·2D transverse flow through random 
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layer 

·Silk, rayon 

(Wheat, 1963) ·2D transverse flow through random 

layer 

·Glass fiber 

·Air 

(Kirsch and Fuchs, 1967) ·1D flow transverse to ordered array 

·Kapron tube 

·Water 

(Labrecque, 1968) ·2D/3D flow through random structure 

·Nylon fiber 

·Water 

·Cross-section aspect ratio unimportant 

when less than 3  

(Kostornov and Shevchuk, 1973) ·2D flow transverse to random layer 

·Kapron fibers 

·Water and alcohol 

·Working fluid of water resulting in 

higher permeability than alcohol 

(Sadiq et al., 1995) ·1D flow transverse to square array 

·Nylon tube 

·Water 

(Khomami and Moreno, 1997) ·1D flow transverse to ordered array 

·Acrylic rod 

·Silicon oil 

(Rahli et al., 1997) ·3D flow through random structure 

·Bronze and copper rod 
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·Water 

(Zhong et al., 2006) ·1D flow transverse to ordered array 

·Acrylic rod 

·Glycerol-water 

(Gostick et al., 2006b) ·2D flow transverse/parallel with 

random layer 

·GDL 

·Air 

2.1.6. Numerical studies 

Previous theoretical studies have to rely on approximately ordered structures of 

fibrous materials, while numeral approaches can deal with more complex and 

realistic cases with the dramatically growth of computational resources. The digital 

matrix to resemble the realistic fibrous structure is constructed first, where transport 

equations are calculated by the powerful numerical solvers. The numerical 

calculation can be indeed regarded as a numerical experiment. 

Many attempts have been made to generate virtual structures that represent the 

studied fiber mat. A comprehensive model to describe the architecture of nonwoven 

network for use in tissue engineering and other applications was presented by 

Eichhorn and Sampson (Eichhorn and Sampson, 2005). Fibers were generally 

resembled as straight lines with given radius and length, and they were distributed 

by their core positions and orientations (Eichhorn and Sampson, 2005). Structural 

characteristics of fibrous network, such as the distribution of fibers, inter-fiber 

contacts, fiber contact distributions for integrity of the network systems, and the 

pore size distributions, were also provided (Eichhorn and Sampson, 2005). Later, 

Wang et al. (Wang et al., 2007a) applied the random generation-growth algorithm 
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and Monte Carlo method to construct random fibrous structures. After locating the 

fiber cores based on a core distribution probability and assigning an orientation for 

each fiber randomly, fibers keep growing until reaching given porosity of the system 

(Wang et al., 2007a). The morphology of simulating natural fibrous materials can be 

seen in Fig. 2-3. In 2005, Faessel et al. (Faessel et al., 2005) considered a 3D 

probabilistic random model, and the fibers are generated in a unit cell within a 

periodic elementary volume. Based on image analysis and X-ray tomography, the 

structural information about the fibrous system, such as fiber length, fiber diameter, 

curvature, orientation and position, can be easily extracted from the statistical 

distribution of the morphological properties of real fabrics (Faessel et al., 2005). 

(a)  (b)   

Figure 2-3: (a) Structure of a fibrous medium under SEM; (b) schematic illustration 

of grown fibers and parameters, with core position of fiber (red point), fiber length l , 

and fiber orientation θ  (Wang et al., 2007a)  

Table 2-3: Summary of numerical studies of permeabilities of nonwoven fibrous 

materials 

Authors  Remarks 

(Sangani and Acrivos, 1982) ·1D flow transverse/parallel with square array 

·Multipole Expansion Method 
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(Higdon and Ford, 1996) ·3D flow through ordered cell 

·Boundary Element Method 

(Clague and Phillips, 1997) ·3D flow through random structure 

·Slender Body Method 

(Spaid and Phelan, 1997) ·1D flow through hexagonal array 

·Lattice Boltzmann Method 

·Studied fiber cross-sectional shape 

(Koponen et al., 1998) ·2D flow through random layer 

·Lattice Boltzmann Method 

·Provided an exponent model 

(Papathanasiou, 2001) ·1D flow through ordered array 

·Finite Element Method 

·Provided an empirical model 

(Sobera and Kleijn, 2006) ·1D flow through one-layer random array 

·Finite Volume Method 

·Studied randomness of fiber distribution 

(Tahir and Tafreshi, 2009) ·2D/3D flow through random structure 

·Finite Volume Method 

·Studied fiber orientation 

(Nabovati et al., 2009) ·2D/3D flow through random structure 

·Lattice Boltzmann Method 

·Studied curvature and aspect ratio of fiber 

(Hosseini and Tafreshi, 2010) ·3D flow through random structure 

·Fluent 

·Studied slip flow 

(Yazdchi et al., 2011) ·1D flow transverse to 1D square array 

·Finite Element Method 
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·Studied aspect ratio of fiber axis distance 

 

Figure 2-4: A numerical 2D fiber-web sample (Koponen et al., 1998) 

The numerical studies on the flow through fibrous media are summarized in 

Table 2-3. Numerical simulation methods were also applied to more complex and 

realistic fibrous materials, covering a class of porosity ranges and fiber distribution 

from 1D to 3D structures. Viscous flow through ordered cylinders was numerically 

simulated based on different techniques (Sangani and Acrivos, 1982, Papathanasiou, 

2001). In 1996, Higdon and Ford (Higdon and Ford, 1996) employed the Spectral 

Boundary Element Method to calculate the hydraulic permeability of 3D ordered 

fibrous media, including simple cubic, body centered cubic, and face-centered cubic 

fiber arrangements. Later, 3D randomly distributed monodisperse and polydisperse 

fibers were first investigated by using the Slender Body Theory (Clague and Phillips, 

1997). Steady transverse flow through elliptical fiber array was investigated by the 

Lattice Boltzmann Method, demonstrating that the hydraulic permeability was not 

sensitive with a cross-sectional shape when the axis ratio was small (Spaid and 

Phelan, 1997). Later, Koponen et al. (Koponen et al., 1998) conducted Lattice 
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Boltzmann numerical simulations for layered structures (see Fig. 2-4), and they 

found that the overall permeability was dependent on porosity exponentially 

throughout a large range of porosities. To verify their scaling estimate model, Sobera 

and Kleijn (Sobera and Kleijn, 2006) applied Finite Volume Method to calculate the 

permeability of 1D and 2D ordered and random distributed cylindrical fibers, 

indicating that the overall permeability increases monotonously with the degree of 

randomness.  

 

Figure 2-5: Examples of fibrous media with varying orientation distribution of fibers 

as (a) layered, (b) low through-thickness anisotropic, (c) moderate through-thickness 

anisotropic and (d) isotropic (Tahir and Tafreshi, 2009) 

Recently, Stylianopoulos et al. (Stylianopoulos et al., 2008) modeled the 

permeability of fibrous media in terms of 3D artificial random networks using the 

Finite Element Method, and it was the first attempt to specifically examine the effect 
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of fiber orientation. It is showed that the highly aligned fibrous media are more 

permeable than moderately aligned ones when flow moves parallel to their preferred 

orientation, while the permeabilities of isotropic system and moderately or highly 

aligned ones are comparable with each other when they are perpendicular to the 

flow direction (Stylianopoulos et al., 2008). In 2009, Tahir and Tafreshi (Tahir and 

Tafreshi, 2009) studied the transverse permeability of fibrous systems and continued 

to evaluate the influence of fiber orientation (see fibers with different orientation in 

Fig. 2-5). They found that the permeability of fibrous media is in a positive 

relationship with the through-plane orientation of fibers, but is almost independent 

of the in-plane orientation. 

In 2009, Nabovati et al (Nabovati et al., 2009) presented a semi-empirical model 

to predict the permeability of 3D random fibrous matrixes based on Lattice 

Boltzmann Method. In addition, they found that both of the fiber curvature and the 

aspect ratio of long fibers negligibly affected the permeability of fibrous media. Later, 

the permeability was found to decrease with the aspect ratio of fiber axis distance 

between along and normal to the flow direction, as shown from their Finite Element 

simulation (Yazdchi et al., 2011). In 2010, Hosseini and Tafreshi (Hosseini and 

Tafreshi, 2010) numerically studied the slip flow through 3D nano-fibrous media, 

and adopted the Maxwell first order approximation to describe the slip condition on 

the fibers. The simulation results reveal that the gas permeability in nano-fibrous 

media with slip effect is larger than the conventional models for coarse fibers. 

2.2. Effective permeability of woven fibrous media  

Based on the structural integrity and fiber architecture, woven fabrics can be 

generally classified into four patterns: discrete (staple fiber), continuous (filament 

yarn), planar interlaced (2D), and fully integrated (3D) structures (AMSC and 
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CMPS, 2002). It is reported that the structure of woven fabrics is always too 

complex to be precisely described mathematically (Nabovati et al., 2010). Good 

review of woven structural arrangement is available (Hearle et al., 1969). Among 

them, the plain bi-axial weave pattern is one of the most widely used patterns for 

textile woven fabrics and RTM performs (Nabovati et al., 2010). 

One of the most unique features of woven fabrics is their fiber reinforcement 

interlaced and interloped in an ordered form, while nonwoven is in a more freely 

layered pattern. Another feature is that many woven performs are often made up of 

bundles of filaments, known as yarn. Those woven fabrics have two different length 

scales: radius of yarns and radius of filament. The yarn radius is about orders of 

magnitude larger than the filament radius. As a result, their transport properties 

become more difficult to formulate than single-scale fibrous materials, and 

numerical simulations are therefore widely adopted. 

2.2.1. Monofilament 

The geometric structure of different types of woven fabrics is difficult to 

formulate through mathematical descriptions. For computational purposes, the 

structure of woven fabric is generally approximated in a simple form of a periodic 

2D or 3D representative cell (Nabovati et al., 2010). The plain bi-axial weave 

pattern, which is known as the most widely applied woven fabrics and will be 

studied in this project (Nabovati et al., 2010), is reconstructed in Fig 2-6. The fabric 

is composed of perpendicular yarns aligned along the x and y axes, which are 

interwoven to form a planar fabric sheet in the x-y plane. 
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Figure 2-6: Schematic of the bi-axial plain woven fabric (Nabovati et al., 

2010). 

Pore-based models were always used to describe fluid flow through 

monofilament fabrics (Xu and Wang, 2005). However, the thickness of the fabric 

layer is roughly the same order of the yarn radius, which is not suitable for 

Hagen-Poiseuille law as used to describe the viscous flow through long tubes 

(Järvinen, 2007). In addition, the through-thickness pore between woven yarns is 

generally venture-shaped, which adds the difficulty in permeability determination.  

The flow through monofilament woven fabrics was determined by the so-called 

orifice analogy (Armour and Cannon, 1968). In the orifice model, the open pores 

inside the woven fabrics were treated as a series of submerged orifices, and a 

discharge coefficient was used to characterize the pore size variation (Armour and 

Cannon, 1968). In 1996, a modified discharge coefficient in orifice model was 

presented, based on numerical simulations by Fluent (Lu et al., 1996). Lu et al. (Lu 

et al., 1996) studied four basic types of plain-weave fabrics: fours yarns alternate 

from top to bottom vice versa; one warp and one weft alternate; two warp or weft 

yarns alternate; no yarns alternate. Gooijer et al. (Gooijer et al., 2003) continued the 
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study of the four woven structures of Lu et al. (Lu et al., 1996). They explored the 

relationship between the flow resistance and the woven structure by simplifying the 

discharge coefficient, and the prediction of the orifice model was in closely 

agreement with the experimental results. Recently, yarns with elliptical 

cross-sectional shape were studied numerically and the discharge coefficient was 

modified accordingly (Wang et al., 2007b). The through-thickness permeability was 

found to increase inversely with the aspect ratio (i.e. semi-major axis vs. semi-minor 

axis) when the semi-major axis was normal to flow direction. The studies of 

permeabilites of monofilament woven fabrics are summarized in Table 2-4. 

Table 2-4: Studies of permeabilites of monofilament woven fabrics 

Authors  Remarks 

(Armour and Cannon, 1968) ·3D flow through monofilament woven 

·Orifice analogy 

(Lu et al., 1996) ·3D flow through monofilament woven 

·Orifice analogy and finite volume method 

·Studied four typical woven fabrics 

(Gooijer et al., 2003) ·3D flow through monofilament woven 

·Modified orifice analogy  

(Xu and Wang, 2005) ·3D flow through monofilament woven 

·Haggen-Poisuile law  

(Wang et al., 2007b) ·3D flow through monofilament woven 

·Fluent 

·Studied yarn cross-sectional shape 

2.2.2. Multifilament  

Characterizing fluid flow in multifilament woven fabrics is a challenging work 
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considering its dual-scale nature. Early studies on this problem were focused on 1D 

flow through fibrous media rather than realistic 3D case. In 1997, a numerical study 

of permeability for square arrays of multifilament yarns was conducted by Boundary 

Element Method (Papathanasiou, 1997). The yarns were circular and the intra-yarn 

flow was found to have positive effect on the overall permeability of the system. 

Elliptical yarns for hexagonal and square packing were investigated numerically by 

a computational fluid dynamics package (Phelan and Wise, 1996, Ranganathan et al., 

1996) and Lattice Boltzmann Method (Spaid and Phelan, 1997). It was found that 

the overall permeability is not sensitive with cross-sectional shape of yarns when 

weave porosity is high, but increases with the axis ratio between the semi-major axis 

and the semi-minor axis of the elliptical yarn when fluid flows were parallel with the 

semi-major axis. Later, in order to express the numerical results in a predictable 

form, Papathanasiou (Papathanasiou, 2001) proposed a semi-analytical correlation 

of effective permeability for hexagonal packing configuration based on a great 

number of numerical values. The correlation is a function of inter-yarn and 

intra-yarn yarn permeabilities (Papathanasiou, 2001): 

( ) 0.89
int int int1 2.67 / ,eff er er raK K K K − = +                    (2-10) 

where effK  is the effective permeability of the multifilament fabric, int erK  is the 

weave permeability (i.e. the permeability of the fibrous system by assuming that the 

yarns are impermeably solid), int raK  is the permeability of the yarns. This 

relationship reveals the effects of inter-yarn permeability and intra-yarn permeability 

on the overall permeability of the fibrous system. 

In 2006, Stokes flow was simulated simultaneously in both intra- and inter yarn 

areas by Wang et al. (Wang et al., 2006), and the overall permeability was calculated 
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by substituting back the ratio of pressure gradient and flow flux into Darcy’s law. 

However, calculations of flows in the complex dual-scale structures are always 

time-consuming and computationally expensive (Nabovati et al., 2010). To reduce 

computational cost, some other researchers applied Stokes equation to compute the 

flow in the inter-yarn region of woven fabric, but applied Darcy’s law to directly 

describe the micro-scale flow inside the yarns (Grujicic et al., 2004). Continuum of 

velocity field at the interface layer between inter-yarn and intra-yarn regions is 

satisfied, but it is difficult to address the shear stress continuum due to incompatible 

differential operators between second-order Stokes equation and first-order Darcy’s 

law (Chen et al., 2010). 

In another approach, Brinkman equation, of the same order as Stokes equation, 

was employed to describe the intra-yarn flow rather than Darcy’s law. In 2000, Yu 

and Lee (Yu and Lee, 2000) developed an in-plane permeability model for woven 

fabric, in which 1D Brinkman equation and 1D Stokes equation were used to 

describe intra-yarn and inter-yarn flows, respectively, based on the rectangular unit 

cell. The predicted permeabilities were validated by experimental results and were 

found to be insensitive with microstructures of porous yarns. In the numerical 

models (Ranganathan et al., 1996, Phelan and Wise, 1996, Ngo and Tamma, 2001), 

Stokes equation was calculated in inter-yarn space and Brinkman equation was 

solved in intra-yarn region by powerful computational solvers. Song et al. (Song et 

al., 2004) used a control volume finite element method to predict the permeability 

tensor of woven fabrics, where the intra-yarn structure was assumed to be in the 

form of either square or hexagonal arrays of solid circular cylinders. The weave and 

yarn flow fields were computed separately, and the effect of the filament packing on 

the overall permeability was found to be small (Song et al., 2004). Experimental 

results were also obtained for the in-plane and out-of-plane permeability of plain 

woven fabrics and were found in good agreement with the simulated values (Song et 
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al., 2004). Tung et al. (Tung et al., 2002) employed the finite volume method for 

fluid flow simulation in the same basic weave geometries with Lu et al.’s (Lu et al., 

1996), but replaced the solid yarns with the permeable yarns.  

In 2006, a theoretical analysis was developed to characterize both inter-yarn 

permeability and intra-yarn permeability, and concluded that the two permeability 

values decide the time scales of resin impregnation between yarns and filaments 

(Zhou et al., 2006). In addition, the partially-saturated region was found to be a 

constant when the mold is sufficiently long (Zhou et al., 2006). Later, Song et al. 

(Song et al., 2009) studied the layer effect on transverse permeability of woven 

fabrics by a statistical analysis, and found that the mean permeability decreased with 

increasing number of fabric layers. The studies of permeabilites of multifilament 

woven fabrics are summarized in Fig. 2-5. 

Table 2-5: Studies of permeabilites of multifilament woven fabrics 

Authors  Remarks 

(Ranganathan et al., 1996) ·1D flow transverse to hexagonal array 

· Computational fluid dynamics package  

·Studied effects of intra-yarn permeability 

and fiber cross-sectional shape 

(Phelan and Wise, 1996) ·1D flow transverse to square array 

· Computational fluid dynamics package  

·Studied effects of intra-yarn permeability 

and fiber cross-sectional shape 

(Papathanasiou, 1997) ·1D flow transverse to square array 

·Boundary Integral Method 

·Studied intra-yarn porosity effect 
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(Spaid and Phelan, 1997) ·1D flow transverse to square array 

· Lattice Boltzmann Method 

·Studied intra-yarn permeability effect and 

yarn shape 

(Papathanasiou, 2001) ·1D flow transverse to ordered array 

·Boundary Element Mmethod 

·Provides a semi-analytical correction 

(Tung et al., 2002) ·3D flow through plain fabric 

·Fluent 

·Studied four types of basic woven fabric 

(Song et al., 2004) ·3D flow through braided preforms 

·Finite Volume Method 

·Solved Brinkman equation in intra-yarn area 

(Wang et al., 2006) ·3D flow through woven filter 

·Fluent 

·Simulated flow in inter- and intra-yarns 

simultaneously 

(Zhou et al., 2006) ·1D flow transverse to ordered array 

·Studied effect of intra-yarn permeability on 

saturated flow length  

(Song et al., 2009) ·3D flow through layered preforms 

· Studied layer number effect 

(Nabovati et al., 2010) ·3D flow through multifilament woven 

·Lattice Boltzmann method 

· Provided a semi-analytical correction 

 

2.2.3. Past experimental work 
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The process of measuring hydraulic permeability of woven fabrics is the same 

as that for nonwoven fabrics based on Darcy’s law. For example, Sadiq et al. (Sadiq 

et al., 1995) studied transverse flow through an array of square-packed yarns with 

circular cross sections. These yarns were constructed by combining many solid 

cylindrical nylon fibers with finer radius. 

 

Figure 2-7: Permeable wall and preform employed for measurement of 

transverse permeability  

Transverse permeability was always experimentally determined based on 

channel flow through a circular tube (Chae et al., 2007), as seen in Fig. 2-7. The 

main difference from previous experiment is that the circular tube contains thicker 

permeable compression plates, which provides an opportunity to measure the bulk 

and edge flow separately. The parallel circular channels in the compression loads 

also ensure a unidirectional fluid flows and make it possible to observe the edge 

effect directly (Chae et al., 2007). 
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Figure 2-8: Woven fabric tape 

In 2007, a modified method was presented to measure transverse permeability 

of fibrous media by a translation of an in-plane measurement approach based on the 

radial technology (Wu et al., 2007). The main difference is the layout of the fiber 

reinforcement location comparing with other conventional experimental methods. 

The fiber layers were wound and placed on a mold (see Fig. 2-8), and the radical 

fluid flows entered into the fiber reinforcement composite along the through-plane 

direction. The new approach made it easy to visually observe the flow trace (Wu et 

al., 2007). 

2.3. Effective diffusivity of fibrous materials 

Effective diffusion of porous media is one of the most common and important 

transport phenomena encountered in natural processes and engineering applications. 

Understanding and prediction of effective diffusivity in fibrous materials are 

therefore very critical. In this part, the previous work on vapor diffusion in fibrous 

materials is reviewed from 1D simple to 2D and 3D complex structures. 
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2.3.1. Effective diffusivity of 1D fibers 

A pore-scale model was applied to predict the effective diffusivity of 

unconsolidated 1D rectangular fibers (du Plessis et al., 2010). The tortuosity was 

expressed as the ratio of the diffusive path length to the streamwise displacement. 

However, the regular geometry of the diffusive streamlines in the pore-scale model 

differed from the actual concentration lines with curved shape by numerical 

simulations from Wang’s (Wang, 2000). 

Besides, Shen and Springer (Shen and Springer, 1981) calculated the diffusion 

equation through 1D impermeable cylinders with square packing configuration, and 

the model of effective diffusivity is expressed as follows: 

11 2 ,eff

b

D
D

e
π
−

= −                              (2-11) 

which was widely applied to evaluate the influence of water vapor diffusion on the 

mechanical properties of composites (Li et al., 2002). Nevertheless, this model 

implied that the moisture vapor diffusion only move past the shadowed rectangular 

with the cross-section equal to the minimum gap between cylinders, which leads to 

under-estimating the effective diffusivity (Ogi and Takeda, 1997).  

In 2002, Li et al. (Li et al., 2002) proposed an analytical model to describe gas 

diffusion of cylindrical system with both rectangular and hexagonal arrays 

arrangement. They assumed that gas diffusion traveled only in the voids between the 

solid fibers, and gas concentration at the every cross-section along the diffusion 

direction was uniform (Li et al., 2002). The fluid region was broken into zones in the 

cells repeating through the system, and diffusion equations were solved within them. 

The model was relied solely on porosity and structural geometry. Unfortunately, 
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their predicted effective gas diffusivity was smaller than previous experimental and 

numerical results for high porous media. Nilsson and Stenstrom (Nilsson and 

Stenstrom, 1995) also applied the unit cell method to represent the fibrous system, 

and obtained diffusivity model in terms of volume fraction of fibers by solving 

Laplace equation. It was further found that effective diffusivity is highly sensitive to 

the gap height between fibers at low porosity limit, but it varies less significantly 

with increasing porosity (Nilsson and Stenstrom, 1995).  

2.3.2. Effective diffusivity of 2D and 3D fibers 

For 2D and 3D fibrous materials, they are always assumed to consist of a bundle 

of tortuous channels, so the effective diffusivity can be related to the bulk diffusivity 

through porosity and tortuosity, given by a dimensionless form (Tomadakis and 

Sotirchos, 1993b): 

,eff

b

D
D

e
τ

=
                              (2-12) 

where bD  is the bulk diffusivity in the void, ε  is the porosity, and τ  is the 

tortuosity. Although the fiber volume fraction or porosity is easy to estimate or 

measure, the application of Eq. (2-12) is tarnished by the difficulty in accurately 

determining the value of tortuosity (Ahmadi et al., 2011). 

It is almost impossible to solve transport equations though randomly distributed 

1D fiber arrays and 2D or 3D performs. Thus, in order to model the diffusion through 

those realistic structures, a number of researchers turned to numerical techniques. 

Tomadakis and Sotirchos (Tomadakis and Sotirchos, 1993b) performed random-walk 

molecules simulations for 1D, 2D and 3D randomly positioned fibers. They 

measured the mean travelling distances of diffusive molecular inside the numerical 
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fibrous perform, and proposed the following semi-analytical model of effective 

diffusivity for randomly oriented fibrous systems (Tomadakis and Sotirchos, 1993b): 

,
1

c

eff p

b p

D
D

ee
e

e
 −

=   − 
                      (2-13) 

where, the parameters of the above equation c  and pε  were based on a least 

squares fit to the simulated results.  

In another numerical study, the local effective gas diffusivity of a GDL medium 

was determined as a function of the local porosity and the local water saturation by a 

network model, where the solid structure was simulated as layers of continuously 

fiber screens and each layer was shifted by a randomly selected distances in plane 

(Nam and Kaviany, 2003). In 2008, Becker et al. (Becker et al., 2008) reconstructed 

an artificial fibrous structure numerically based on the structural information from a 

3D tomography image of the GDL and proposed the model of effective gas 

diffusivity as a function of saturation coefficient of the GDL. Later in 2011, Becker 

et al. (Becker et al., 2011) extended their work to consider the effect of micro-porous 

layer coating (MPL). A class of numerical simulation schemes were also conducted 

in this field (Gostick et al., 2007, AlvarezRamirez et al., 1996, Hao and Cheng, 2009, 

Wang et al., 2010). In the PEMFC literature, the Bruggeman model was widely 

applied (Zamel et al., 2009), which is given by: 

1.5.eff

b

D
D

e=
                                    

(2-14) 

However, Bruggeman diffusion model was derived for uniformly packed spherical 

particles rather than the differently oriented cylindrical fibers used in PEMFC. 
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What mentioned above are all about gas diffusion in ordinary regime, where the 

pore size of the fibrous medium is much larger than the mean free path λ  of 

diffusive molecules and the repeated molecule-molecule collisions are dominate. 

When pore size is comparable with or smaller thanλ , molecule-wall collisions 

increase and Knudsen diffusion occurs, which hinders molecule diffusion in small 

pore (Clifford and Hillel, 1986). In this regime, the equivalent diffusivity equD  can 

be described by Bosanquet equation (Bosanquet, 1944): 

1
1 1 ,equ

b Kn

D
D D

−
 

= + 
 

                          (2-15) 

where Kn / dλ=  is Knudsen number, d  is the average pore diameter, and 

KnD  is Knudsen diffusivity. The value of bD  is given by kinetic theory as 

/ 3bD uλ=  when Kn<<1 in ordinary regime, and KnD  is expressed as 

/ 3KnD d u=  when Kn>>1, where u  is the mean molecular velocity (Zalc et al., 

2004). From Eq. (2-15), the ordinary diffusivity is found to be a constant, while the 

Knudsen effect would prevents the passage of diffusive molecules when the pore size 

becomes in Knudsen regime. When Kn 1 , the transition diffusivity TrD  is equal to 

1
1 1

b KnD D

−
 

+ 
 

. 

Eq. (2-15) shows that gas diffusion mechanisms are dependent on pore size. In 

many cases, the three types of diffusivities co-exist in a porous medium with a wide 

pore size distribution. The effective diffusivity is given by a composite form (Houst 

and Wittmann, 1994): 
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 1 2 3 ,eff b Tr KnD D D Deeee   = + +                       (2-16) 

where 1ε , 2ε , and 3ε  are the porosities in ordinary regime, transition regime, and 

Knudsen regime, separately. It is more accurate to consider the pore size distribution, 

but the porosities in different regimes are considerably difficult to measure. 

 In 2002, Mezedur et al. (Mezedur et al., 2002) proposed a 2D network model to 

investigate the effect of pore size, structure and randomness on the effective 

diffusivity of catalytic porous coatings. The model takes the variation of the lattice 

randomness to account for randomness effect of fiber distribution, and demonstrates 

that higher degree of randomness leads to lower effective mass diffusivity. 

In 2008, Mu et al. (Mu et al., 2008) proposed a 3D pore network model to 

determine effective diffusion coefficient in fibrous porous system where Knudsen 

diffusion took place. Their model reveals that the pore size distribution accounts for 

the Knudsen effect decoupled in bulk diffusivity, and thus the effective diffusivity is 

strongly dependent on pore size (Mu et al., 2008). 

2.3.3. Past experiment work 

As the most reliable method, experimental measurement is often conducted to 

determine the effective vapor diffusivity of fibrous materials, by calculating the 

diffusive flux against the directional concentration gradient. Early in 1940, 

through-plane diffusion coefficient of a steel wool sample was measured using 

carbon disulfide and acetone vapor (Penman, 1940). In 1984, Bateman at al. 

(Bateman et al., 1984) employed NO gas to transfer through a 2D cellulosic filter and 

calculated its effective diffusivity. Recently, Gibson et al. (Gibson et al., 2001) 

applied a dynamic diffusion test cell method to measure vapor diffusivity of fibrous 
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media. Two parallel gas flows with different water vapor humidity were inputs of a 

test cell, where vapor diffused through the sample between the gas flows, and the 

effective diffusivity was obtained by measuring the relative humidity of gas flows 

leaving the cell. Huang and Qian (Huang and Qian, 2007) modified the dynamic cell 

method by directly using a water vapor source on one side of the sample instead of 

one entered gas flow used by Gibson et al. (Gibson et al., 2001). The evaporative 

moisture vapor resistance, which inversely demonstrates the ability of diffusion, was 

determined by measuring evaporative heat loss from the water evaporation (Chen et 

al., 2004, Fan and Chen, 2002). In 2011, LaManna and Kandlikar  measured 

effective water vapor diffusion coefficient of GDLs considering the effect of 

microporous layer (MPL) coatings, GDL thickness, and polytetrafluorethylene 

(PTFE) loadings via the ex situ dynamic diffusion cell. However, the number of 

different kinds of potential fibrous samples throughout the range of porosity is very 

large, and the current experimental measurements are still complex and 

time-consuming. 

2.4. Coupled heat and mass transfer in fibrous materials 

In some applications of fibrous materials such as clothing and fuel cell, gas flow 

and vapor diffusion are coupled with heat transfer. For instance, the processes of heat 

and moisture transfer dynamically interact with each other in terms of moisture 

absorption/desorption and evaporation/condensation in clothing systems (Pan and 

Gibson, 2006). Heat transfer takes place through conduction in all of the phases, 

through radiation in the highly porous media, and through convection caused by 

moist air flow; moisture transfer occurs though diffusion, convection, 

absorption/desorption between the solid fiber and the surrounding air, and movement 

of condensed water (Pan and Gibson, 2006). The moisture absorption/desorption and 

phase change within the textile materials absorb or release heat, which further add 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DLaManna,%2520Jacob%2520M.%26authorID%3D35072879100%26md5%3D716635a5558f82267cc5cb113651e4ef&_acct=C000008818&_version=1&_userid=115085&md5=01f32e42e17ae96560341a9a9dcacecb
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DKandlikar,%2520Satish%2520G.%26authorID%3D7006403293%26md5%3D4f9477a2c4f618456e858afd7c3bb4af&_acct=C000008818&_version=1&_userid=115085&md5=1e19dd0ffc5fbec5de2f95a72f911936
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complexities of heat and moisture transfer. 

A mathematical model was reported to describe coupled heat and moisture 

transfer in porous textiles (Henry, 1939), which is expressed in two equations: 

( )
2

2 1 ,a a a
f

C D C
t x

εε ε
t

∂ ∂
= − − Γ

∂ ∂
                     (2-17) 

( )
2

2 1 ,v fab v f
T TC k
t x

ε λ∂ ∂
= + − Γ

∂ ∂
                     (2-18) 

where aC  is air density, vC  is vapor density, fabk  is thermal conductivity of 

fabric, fΓ  is moisture (de)sorption rate, and vλ  is heat of (de)sorption. The 

following assumptions were made: the local instantaneous temperature between fiber 

and moisture is in equilibrium; the concentration absorbed by fiber is promotional to 

local moisture vapor concentration; and the fiber volume is unaffected by moisture 

sorption (Henry, 1939). Henry’s work established a basic framework to describe 

coupled heat and moisture transfer in textiles and other fibrous materials. 

Later, the researchers considered more influencing factors. Motakef and Elmasri 

(Motakef and Elmasri, 1986) first modeled the transient heat and moisture transfer 

with condensation. Tao et al. (Tao et al., 1991) analyzed the frosting effect in an 

insulation slab with temperature below the triple point of water. Gibson and 

Charmchi (Gibson and Charmchi, 1997) developed a theoretical model by 

considering the effect of liquid water transport and accumulation, and flow 

convection. Fan et al. (Fan et al., 2000) considered the effect of water content on the 

effective thermal conductivity fibrous batting, and they also took radiative heat 

transfer into account. Li and Zhu (Li and Zhu, 2003) reported a new model to 

describe the coupled heat and moisture transfer with the additional condition of 

liquid diffusion, which was described as a diffusion process caused by the capillary 
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effect. Zhu et al. (Zhu et al., 2010) established a numerical model to simulate the 

coupled heat and liquid moisture transfer in hygroscopic fibrous media. 

Most of the models are based on 1D partial differential equation and assume the 

fibrous system homogeneous and isotropic, although the recent researchers consider 

more and more affecting factors. Therefore, lack of microstructure information of 

fibrous media in 3D space exists in previous models, which may influence their 

accuracy and applicability. 

2.5. Remaining problems 

Experimental measurements are the final proofs, but time-consuming; numerical 

simulations, as computational experiments, cannot fully reveal the underlining 

mechanisms; analytical models are predictive, but sometimes may not be possible for 

complex structures. Therefore, different research methods should be integrated 

together in order to take the advantages of each of them. By and large, a predictive 

model is usually welcome, and this thesis will focus on theoretical modeling and 

validation of the models based on results from experiments and simulations. 

Many theoretical studies have been conducted to study the transport properties 

of fibrous materials of 1D regularly structured array. However, the obtained models 

are based on over-idealized assumptions. With the increasingly development of 

computational techniques, it is feasible to model or reconstruct more complex and 

real fibrous media, and solve the transport equations by the powerful numerical 

solvers. Nevertheless, numerical simulations still cannot fully reveal the structural 

effects on transport mechanisms, especially in complicated nano- and micro-fibrous 

media. To sum up, four research gaps are identified from previous studies: 

1. Incomprehensive models exist for transport properties of fibrous media. The 
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theoretical models of both permeability and diffusivity for realistic 2D and 

3D fibrous structures are required, as the majority of past work is based on 

1D assumption with over simplification. 

2. The influences of different structural factors on transport properties of fibrous 

media have not been integrated systematically and therefore call for better 

understanding, as most of past studies tend to determine the resulting 

permeability or diffusivity rather than analyzing affecting parameters. 

3. There is a lack of theoretical models to address the dual-scale effects in 

fibrous materials made up of permeable yarns. Numerical simulations are 

able to determine dual-scale permeability, but they are unable to illustrate 

clearly the analytical relationship between microstructures and gas 

permeability of fibrous media. 

4. Few analytical studies are available for modeling transport behaviors in 

nano-scale fibrous media. Most studies are based on numerical simulations, 

which cannot provide a scale-dependent relationship between transport 

properties and microstructures of nanofibers.  
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Chapter 3 Deterministic models for 

flow through single-scale fibrous 

media 

3.1. Introduction 

Hydraulic permeability is one of the most important measures of characterizing 

transport phenomena in porous media. Although numerous studies have been 

conducted on this topic, accurate determination of hydraulic permeability taking into 

account of realistic and complicated structural influences of fibrous media remains 

challenging. 

The early analytical solutions could be mostly found based on 1D array of 

ordered fibers (Happel, 1959, Kuwabara, 1959). In 1988, numerical results were 

obtained for the hydraulic permeability of 1D array of fibers towards normal and 

parallel flows (Sangani and Yao, 1988), but the accuracy of their results was limited 

by the computer power at that time. Higdon and Ford (Higdon and Ford, 1996) 

conducted a numerical simulation of calculating hydraulic permeability of 3D 

networks of fibers on regular cubic lattices by spectral boundary element 

formulation. Koponen et al. (Koponen et al., 1998) applied Lattice Boltzmann 

method to simulate flow in 2D randomly fibrous layers across a wide range of 

porosities and developed a semi-empirical model. Sobera and Kleijn (Sobera and 

Kleijn, 2006) determined hydraulic permeability of both orderly and disorderly 1D 

and 2D fibrous performs based on a modified scaling estimate rule, which was 

originally suggested by Clague (Clague et al., 2000). Recently, Tahir and Tafreshi 
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(Tahir and Tafreshi, 2009) solved Stokes equation in virtual fibrous media using 

finite volume method and found the transverse hydraulic permeability was almost 

not affected by in-plane fiber orientation, but increased with increasing 

through-plane fiber orientation. 

From the above studies, it is clear that the theoretical studies are limited in the 

systems of ordered fiber arrays, and few analytical attempts try to link hydraulic 

permeability with the complex 2D and 3D geometry of fibrous media. The 

numerical studies can reconstruct the complex microstructures and determine the 

resulting permeability, but little theoretical analysis has been carried out so far to 

examine the influences of geometric structural factors. This is also becoming more 

of an important issue, thanks to the wide application of nanofiber and microfiber 

materials, for which the effect of slip flow should be addressed. Therefore, the 

current study is aimed at improving understanding of roles of different geometric 

formation factors including slip effect in gas flow through nano- and micro-fibrous 

materials. 

In this chapter, viscous fluids though fibrous materials at high porosity and low 

porosity are studied respectively by deterministic method. All the models are 

compared with experimental and numerical results, and the influencing factors of 

microstructures are extensively analyzed. Finally, all the results are summarized in 

concluding remarks. 

3.2. Fibrous structures with high porosity 

In this part, permeability predictions of high porous fibrous media are conducted, 

from simple and ordered to complicated and random structures step by step. First, 

representative cell as a circular is used to describe the transport properties of 1D 

ordered fiber arrays, considering slip flow on the fiber surface. Second, Voronoi 
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Tessellation Method, which illustrates randomness of fiber location, is employed to 

determine the hydraulic permeability for randomly distributed fibers. Finally, a 

reasonable mixing rule is used to extend the 1D model to 2D and 3D structures. The 

calculation process can be illustrated from the construction of 3D or 2D fibrous 

materials from 1D fiber array, as shown in Fig. 3-1. 

 

Figure 3-1: Illustration of 3D or 2D fibrous media as mixtures of 1D fiber arrays 

3.2.1. 1D Ordered structures 

A fibrous medium is assumed to be composed of periodical unit cells, which 

represent the geometric knowledge of the microstructure of the medium. The 

representative cell for 1D regular array of aligned fibers is shown in Fig. 3-2. With 

proper definitions of boundary conditions of the cell, an approximate solution is 

available by solving Stokes equation. 
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Figure 3-2: A unit cell in regular array of parallel fibers. The dotted circle is the 

unit cell with the same area as the square in dotted line. 

Under the condition of low Reynolds number, the steady flow through the 

representative unit cell can be governed by Stokes equation: 

2 0.p uµ−∇ + ∇ =                        (3-1) 

Derivation of Eq. (3-1) leads to Biharmonic equation in terms of stream 

function: 

4 0,ψ∇ =                          (3-2) 

where ψ  is the stream function using cylindrical coordinates ( l ,θ ) with velocity 

components ( lu , uθ ) as: 

1 , .lu u
l lθ
ψ ψ
θ

∂ ∂
= = −

∂ ∂
                    (3-3) 

On the fiber surface, the normal component of velocity vanishes, viz.:  

http://en.wikipedia.org/wiki/Biharmonic_equation
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1 0
l
ψ
θ

∂
=

∂
 for .l r=                          (3-4) 

Superfine fibers are fueling great interest in many fields and thus are 

particularly investigated in this work. The non-slip assumption is not strictly correct 

when fiber radius is comparable to the mean free path of fluid molecules (Huang et 

al., 2007). The slip flow, viz. the normal component of velocity is zero while the 

tangential velocity does not vanish, is therefore permitted to occur on the surface of 

the fibers (Huang et al., 2007). Note that rarefaction may also be a possibility of slip 

flow in micro porous system rather than in nano-scale regime, where mean free path 

of fluid molecules becomes much larger. It is found that Reynolds number Re , 

Mach number Ma  and Knudsen number Kn satisfy the relationship: 

( )Ma/ Re Kn 0.05⋅ ≈  (Morini et al., 2004). In this work, viscous flow through nano- 

and micro-fibrous materials makes Re 1<<  and Kn<1 , and thus it can be 

concluded that Ma 0.05<< , which is much lower than the threshold (i.e. 0.3) of gas 

compression and rarefaction (Anderson, 2001). Thus, the effect of compressibility 

and rarefaction of gas flow can be generally neglected in this study. For the flow 

around a fiber, the tangential velocity is proportional to the tangential stress when 

partial slip occurs, and the first-order slip boundary condition is applied (Brown, 

1993): 

,s
uu
n

λ ∂=
∂

                               (3-5) 

where su  is the slip tangential velocity on the surface of fibers, and n  

corresponds to the normal direction of fiber surface. Since the Kn is defined as 

Kn / rλ= , where λ  is mean free path of air molecules and is also defined as the 

slip coefficient, the slip tangential velocity can be therefore expressed as: 
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∂

                           (3-6) 

According to Eq. (3-6), the slip tangential velocity around the fiber surface can 

be calculated as 

1Κnr l
l l l l
ψ ψ∂ ∂ ∂ =  ∂ ∂ ∂ 

 for .l r=                  (3-7) 

For convenience and without losing generality, the unit cell can be assumed to 

be a square with an edge length cL . The porosity ε  for this arrangement of, both 

the unit cell and the whole fibrous media are determined by 

2

21 .
c

r
L
πε = −                          (3-8) 

Consider an imaginary circular cell, which is coaxial with the given fiber and 

has the same area as that of the square cell as shown in Fig. 3-1. The circular cell is 

assumed to share the same permeability with the square and the whole system 

considering the fibrous media as homogeneity. The radius of the imaginary circular 

cell is 
1c
rR
ε

=
−

. For the continuous flow on the surface of the circular cell, its 

velocity is equal with the mean velocity of the effective medium outside the 

representative cell (Kuwabara, 1959): 

1 cos ,
c

u
R

ψ θ
θ

∂
=

∂
                         (3-9) 

and its vorticity is found to be zero for flow because of the symmetry of flows 

between the adjacent representative cells, viz., 
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2 0.ψ∇ =                          (3-10) 

Particular solution of Eq. (3-5) is given by (Kuwabara, 1959): 

1 3
0 1 2 3( ln( / ) )sin ,A l A l A l l R A lψ θ−= + + +              (3-11) 

where 0A , 1A , 2A , and 3A  are constants to be determined by fulfilling the 

boundary conditions of Eqs. (3-6 to 3-10). The solution of 2A is readily obtained:  

( )( )
( ) ( ) ( ) ( )( )2 2 2

1 1 2Kn
.

0.5ln 1 0.25 0.25 1 2Kn 0.5ln 1 0.25 0.25 1

u
A

ε

ε ε ε ε ε

− +
=
− − + − − − + − − − + −

 (3-12) 

The drag acting on a unit length of fiber can be expressed as (Brown, 1993):  

2 ,cF R pp= ∇                           (3-13)                                    

or obtained by integrating stress components over the fiber surface with the help of 

Eq. (3-12) (Kuwabara, 1959), viz., 

24 .F Aπµ=                             (3-14) 

Substituting Eq. (3-13) to Eq. (3-14), one can calculate the dimensionless 

hydraulic permeability in the representative cell as: 

( ) ( ) ( ) ( )( )
( )( )

2 2

2
0.5ln 1 0.25 0.25 1 2Kn 0.5ln 1 0.25 0.25 1

.
4 1 1 2Kn

K r
ε ε ε ε ε

ε

− − + − − − + − − − + −
=

− +
 

(3-15) 
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Stokes equation of Eq. (3-1) is also used to compute the velocity parau  for flow 

parallel with the 1D fiber array. According to Eq. (3-6), the slip tangential velocity 

on the fiber surface aligned with flow direction can be expressed as 

Κn para
para

u
u r

l
∂

=
∂

 for l r= .                  (3-16) 

In addition, / 0parau n∂ ∂ =  is found on the bounder of the square due to the 

symmetry of flows between those square cells, where n  is the normal to the square 

border. As the square cell is approximated by the circular cell with radius cR , the 

following equation is obtained:  

0,parau
l

∂
=

∂
 for .cl R=                    (3-17) 

The velocity satisfies stokes equation (3-1) and the boundary conditions Eq. 

(3-16) and Eq. (3-17) can be computed as  

( )2 2 2 21 2 ln( / ) 2Kn ( / ) .
4para c cu p l r R l r r r R r
µ

 = ∇ − − + −           (3-18) 

The mean velocity is the ratio of total flow rate against the total cell area, which 

is given by:  

2

1 2 .cR

parar
c

u lu dl
R

p
p

= ∫                      (3-19) 

Substituting Eq. (3.19) into Darcy’s law, the dimensionless permeability in the 

representative unit cell for flow parallel with fibers is readily obtained: 
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           (3-20) 

3.2.2. 1D Random structures 

 

Figure 3-3: A unit cell in randomly distributed array of parallel fibers. The 

dotted circle is the unit cell with the same area as the voronoi polygon in dotted line. 

This part considers the slightly more complicated and realistic case, in which 

1D fiber arrays are randomly placed. Flows through the representative cells become 

more complex because of the disorder of cells. To characterize the effect of 

randomness, the Voronoi Tessellation Method (Ferenc and Neda, 2007) is applied in 

this study. A representative cell containing a fiber encircled by randomly located 

aligned fibers is shown in Fig. 3-3. Each fiber is assumed to be surrounded by a 

polygonal cell, whose boundaries are defined by the perpendicular bisectors of the 

lines joining each fiber axis with its nearest neighbor as defined by Voronoi 

Tessellation. 
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The mean area of the polygonal unit cell S  is: 

 ( )
2

,
1

rS Sf S dS π
ε

= =
−∫                    (3-21) 

where S  is area of a unit cell, and ( )f S  is the probability density distribution 

function of the polygonal cell with area S . Comparing with the previous study that 

used the nearest inter-fiber distance to describe randomness degree (Sobera and 

Kleijn, 2006), this method is more reasonable by using the area distribution of 

polygonal cells to characterize randomness of fiber packing, because fiber 

randomness is generated by all neighboring fibers around the fiber rather than the 

nearest neighboring fibers. For polygonal cells containing fibers with random 

distribution, ( )f S  are found to follow Gamma distribution (Chan et al., 1988). 

Moreover, the mean area square of the polygonal cells can be calculated as:  

( ) 22 2 .S f S S dS Sα= =∫                    (3-22) 

where, ( ) ( )
1

expSf S S
S S

β
β β β
β

−    
= −      Γ      

is a Gamma distribution function 

(Chan et al., 1988), ( )βΓ  is a Gamma distribution, β  is the scale parameter 

determined by α  based on 
( )

1
22expS S S dS S

S S

β
β β β α
β

−    
− =      Γ    

∫ . For fully 

random distribution of the fibers, the coefficients are calculated as 1.28α =  and 

3.61β =  (Ferenc and Neda, 2007); for regular fiber distribution, it is apparent that 

1α = . Hence, the parameter α , which determines ( )f S  based on Eq. (3-22), 

may provide a direct measure of the degree of randomness of fiber distribution. 
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And ( )f S  will be written as ( ),f S α  in the following parts. 

For a medium with 1ε = , the pressure gradient is surely constant throughout 

the medium. For fibrous system with extremely high porosity, it is also reasonable 

to assume the pressure gradient uniformly distributed in the porous medium. In 

addition, the pressure gradient in every representative cell is assumed to be equal to 

the macroscopic pressure gradient of the fibrous system based on the effective 

medium approximation. Therefore, an equivalent homogeneity (or 1D regular fiber 

array) is applied to calculate the hydraulic permeability as that of the original 1D 

randomly distributed fibers, which means that they share the same total Darcy 

permeability (or momentum of flow). Thus, the mean velocity of the random 

fibrous structure or the equivalent regular system is calculated based on 

conservation of momentum. The mean velocity of all polygonal cells u  is 

volume-weighted, viz., 

( ),
,

f S udS
u

S

α
= ∫                    (3-23) 

where S  is the mean area of polygonal cells.  

Substitute Eqs. (3-15), (3-20), and (3-23) to Darcy’s law, the dimensionless 

hydraulic permeability is obtained as 
( )2

2

,f S udS
K r

r p S

µ α
=

∇
∫  for flow through 1D 

fibers with a degree of randomnessα .  

Particularly, for flow normal to the fibers in 1D fully random (viz. 1.28α = ) 

fibrous system, the dimensionless permeability is given by        

app:ds:homogeneity
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( ) ( ) ( )
( )

( ) ( ) ( ) ( )( )
( )( )

2 22 22 2 2 2 2 2 2

2
2

2 2

,1.28 0.5 ln 0.75 0.25 2Kn 0.5 ln 0.25 0.25

4 1 2Kn

0.64ln 1 0.263 0.25 1 2Kn 0.64ln 1 0.097 0.25 1
        ,

4 1 1 2Kn

r rf S S r S S r S S r dS
S S

K r
r S

π ππ π π

π

ε ε ε ε ε

ε

     
− + − − + − − +     
      =

+

− − + − − − + − − − + −
=

− +

∫

 (3-24) 

and for flow parallel with the fibers, the dimensionless hydraulic permeability is 

obtained as follows: 

( ) ( ) ( )( )

( ) ( ) ( )
( )

2 2 22 2 2 2 2 2 2

2
2

2 2

,1.28 0.5 ln 0.75 0.25 Kn 2

2

0.64ln 1 0.263 0.25 1 0.28 Kn
        .

2 1

rf S S r S S r S r S r dS
S

K r
r S

π π π π π

π

ε ε ε ε

ε

  
− + − − + − +  

  =

− − + − − − + +
=

−

∫
        

(3-25) 

where ( )
2.61

3.61,1.28 27.4 exp 3.61S Sf S
SS

 
= −  

 
 and ( )2 1r Sπ ε= − . 

3.2.3. 2D and 3D structures 

This part studies 2D and 3D fibrous media with varying fiber orientation. It is 

impossible to obtain the exact permeability of realistic 2D and 3D fibrous structures 

(Tamayol and Bahrami, 2009). However, it was suggested that the macroscopic 

permeability can be calculated by adding the contribution of flow resistances in 

three principal direction into a total drag in cubic space (Jackson and James, 1986). 

Thus, one needs to solve a closure problem to map the local permeabilities into 

combined permeability. 

In this work, a fibrous medium is assumed to consist of network of 

representative cubic cells. In each cell, fibers may be located and oriented in 

different directions. The fiber orientation in the cubic cell can be statistically 
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characterized by the fractional length of the fibers oriented in x , y , or z  

direction, respectively (see Fig. 3-4), and the fiber fractional length is determined by 

the fiber fraction in the same direction. This assumption is used to model 2D and 3D 

permeabilities by combing the local flow contribution of 1D fibers in x , y , or z  

direction. The fibers are distributed regularly or randomly, and the microstructures 

are complex, but they can be considered as homogeneity at macro-scale. For the 

fibers oriented in the same principal direction and are regarded as a meso-scale 

system, they are also homogeneously located. Therefore, the whole system can be 

approximated as a collection of meso-scale systems, which are not overlapped by 

each other. The porosity of each meso-scale system is assumed identical with the 

overall porosity by considering the homogeneous feature of the whole system. It is 

difficult to find the exact solution of the system permeability as the meso-scale 

systems are interlaced. However, as the composite of the meso-scale systems, the 

overall fibrous system has upper and lower limits of permeability, viz. 

volume-averaged permeability model (or parallel network) and volume-averaged 

resistance model (or series network), respectively. Their relationship can be 

illustrated in Fig. 3-5. 

 

Figure 3-4: 3D view of fibrous media based on cubic lattice 
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Figure 3-5: Relationship between the present model, volume-averaged 

permeability model, and volume-averaged resistance model 

The volume-averaged permeability model is given by:  

( ) ( ) ( ) ( ),,
, , ,norm y parnorm x

p norm x norm y parK K K K
φ φφ

φ φ φ φ
φ φ φ

= + +
     

  (3-26)
 

and the volume-averaged resistance model is suggested as: 

( ) ( ) ( ) ( )
1

,, 1 1 1
, , .norm y parnorm x

r norm x norm y parK K K D
φ φφ

φ φ φ φ
φ φ φ

−

− − − 
= + + 
        (3-27) 

As the overall permeability of the fibrous system is between Eq. (3-26) and Eq. 

(3-27), an average estimate is adopted to estimate the system permeability. Its 

dimensionless form is given by 

( ) ( )2
2

1 .
2 p rK r K K

r
φ φ = +               

  (3-28) 

3.2.4. Results and discussion 
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The above-described models are compared with analytical expressions, 

numerical results and experimental data available in literature. For straightforward 

comparison, the reported results of drag coefficients, Kozeny constants or other 

relevant parameters are all converted into dimensionless permeability. In addition to 

model validation, this study also analyzes the affecting structural influences, 

particularly including degree of randomness, fiber orientation and Knudsen number 

(slip effect). 

In this study, the randomness degree of fiber location is characterized by the 

value of α . For simulating moderately random fibrous medium, α  is set as 1.07 ; 

and for highly random fibrous medium, 1.14α = . The distribution of fiber 

orientation and space dimension can be effectively controlled by xφ , yφ , and zφ . 

When 0y zφ φ= = , it demonstrates a 1D fibrous medium; when 0zφ = , 0xφ ≠ , and 

0yφ ≠ , it becomes a 2D fibrous medium; when 0zφ ≠ , 0xφ ≠ , and 0yφ ≠ , it 

refers to a 3D fibrous medium. In the 2D layered case, in-plane orientation varies 

from lowest to highest with xφ  decreasing from 1 2  (2D isotropic) to 0  (1D 

fiber array normal to flow direction). For 3D fibrous media, through-plane 

orientation changes from lowest to highest level with zφ  from 0  (2D isotropic) to 

1  (1D fiber array aligned with flow direction) while maintaining x yφ φ= . In 

addition, hydraulic permeabilities of fibrous media in continuum regime ( 2Kn 10−< ) 

and in slip flow regime ( 210 Kn 1− < < ) are discussed, respectively. Knudsen number 

is set as zero to study permeability of microfibers from Part A to Part C. 

A. 1D array of fibers 

The dimensionless permeability as a function of porosity for viscous flow 
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normal to 1D array of fibers is presented in Fig. 3-6 (a). The solid line is calculated 

using Eq. (3-15) for a regularly ( 1α = ) distributed fibrous medium; the dotted line, 

the dash-dot line and dashed line are calculated using Eq. (3-24) for fully ( 1.28α = ), 

highly ( 1.14α = ) and moderately ( 1.07α = ) random fibrous systems, separately. Fig. 

3-6 (a) reveals that the hydraulic permeability for flow normal to the axis of 1D array 

of fibers increases with increasing degree of randomness. In addition, the present 

calculations are compared with the theoretical, experimental, and computational 

results, which include Sobera and Kleijn’s (Sobera and Kleijn, 2006), who 

numerically obtained hydraulic permeability of randomly distributed system of a 

large amount of parallel cylinders using Finite Volume Method, Tomadakis and 

Robertson’s (Tomadakis and Robertson, 2005), who obtained semi-analytical 

permeability estimates of 1D, 2D and 3D randomly fibers based on Monte Carlo 

simulations, Tamayol and Bahrami’s (Tamayol and Bahrami, 2010b), who 

investigated transverse permeability of 1D ordered case analytically and 

experimentally, Kirsch and Fuchs’s (Kirsch and Fuchs, 1967), who measured the 

hydraulic permeability of square arrays of Kapron fibers, and Acrivos and Sangani’s 

(Sangani and Acrivos, 1982), who performed analytical studies of viscous 

permeability of square and hexagonal array of cylinders by multipole expansion 

method. It can be seen from Fig. 3-6 (a), the permeability prediction is in excellent 

agreement with the numerical values of Sobera and Kleijn (Sobera and Kleijn, 2006) 

for 1D fully random distributed fibrous media. For regular structure, the analytical 

and experimental data of regular structures by Tamayol and Bahrami (Tamayol and 

Bahrami, 2010b), the experimental measurements of Kirsch and Fuchs (Kirsch and 

Fuchs, 1967) as well as the computational and analytical results of Acrivos and 

Sangani (Sangani and Acrivos, 1982) agree closely with present model. In addition, 

permeability predictions of both square and hexagonal array of fibers (Sangani and 

Acrivos, 1982) are both identical with the proposed model, which reveals the fiber 
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arrangement of highly porous ordered structures is negligible. 

The experimental and theoretical results of hydraulic permeability for the flow 

parallel with the unidirectional fibers are shown in Fig. 3-6 (b). Like in Fig. 3-6 (a), 

hydraulic permeability of unidirectional fibers increases with increasing degree of 

the randomly of fibers. The collected data are from Sullivan’s (Sullivan, 1942), who 

reported data for the longitudinal viscous flow through randomly distributed wool,  

Sangani and Yao’s (Sangani and Yao, 1988), who solved the Stokes equation 

numerically for longitudinal viscous flow through regular and random arrays of 1D 

cylinders, and Tamayol and Bahrami’s (Tamayol et al., 2009), who calculated parallel 

flow through regular array of fibers numerically and theoretically, and also obtained 

another analytical model based on integral technique (Tamayol and Bahrami, 2009). 

The numerical results of Sangani and Yao (Sangani and Yao, 1988) are in good 

agreement with the present model, while the experimental results of Sullivan 

(Sullivan, 1942) are slightly greater than the perdition, which may be ascribed to the 

fact that the bundles of loose fibers became looser during experiment and eventually 

more big pores were generated. However, the prediction of Tomadakis and Robertson 

(Tomadakis and Robertson, 2005) is slightly larger than both previous experiments 

and the present model for longitudinal flow through 1D random structure.  

Fig. 3-6 reveals that randomly distributed fibrous media are more permeable 

than those less random for flow both normal and parallel to the direction of fiber 

array. This can be understood by the fact that the permeability increase in big cells of 

random structure is much higher than the permeability decrease in small cells, 

because flow permeability scales with cell areas or pore radius square. 
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(a) 

 

 

(b)  

 

 

Figure 3-6: Dimensionless (a) normal and (b) parallel permeability against porosity 

for 1D fibers with varying degrees of randomness. The experimental, numerical and 

analytical results from literature are also added for comparison. 
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B. 2D layered fibrous media 

The hydraulic permeability computed according to the present model for the 

flow normal to layered fibrous structures is compared with experimental 

measurements of past researchers in Fig. 3-7. Since conventional 2D fibrous webs 

are typically isotropic in the plane, 1 2x yφ φ= =  is adopted in the present model to 

represent the 2D layered fibrous structure. The following equation, which is 

calculated by Eq. (3-28), is the compact model of hydraulic permeability of 2D 

conventional layered fibrous web with fully random distribution of fibers: 

( ) ( ) ( ) ( )( )
( )( )

2 2

2
0.64ln 1 0.263 0.25 1 2Kn 0.64ln 1 0.097 0.25 1

,
4 1 1 2Kn

K r
ε ε ε ε ε

ε

− − + − − − + − − − + −
=

− +
 (3-29) 

which shares the same mathematical form with 1D random model of Eq. (3-24). 

Past experimental data are obtained from Ingmanson’s work (Ingmanson et al., 

1959), who investigated the viscous flow through 2D glass, nylon and paper fibers, 

Wheat’s work (Wheat, 1963), who measured the permeability of 2D layered fibrous 

mats, and Labrecque’s work (Labrecque, 1968), who investigated the effect of fiber 

cross section on hydraulic permeability. Davies’ empirical correlation (DAVIES, 

1952), which was fitting his experimental results of transverse permeability through 

high porous fibrous filters, is also added for comparison. As can be seen from Fig. 

3-7, experimental data including the empirical model fall closely to present model. 

In 2D layered fibrous media, the fraction of fibers in z-direction zφ  is 0  as 

the fibrous medium is 2D layered structure, but the fractions of fibers in x-direction 

xφ  or y-direction yφ  is generally not 0 . Fig. 3-8 presents that the calculated 

hydraulic permeability of 2D fully random fibrous media with different in-plane fiber 
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orientations. As the fraction of fibers in x-direction xφ  increases from 0  to 1 3, 

and then to 1 2 , the fibers are distributed from unidirectionally or high in-plane 

fiber orientation to a moderately unidirectionally, and then to isotropically or low 

in-plane fiber orientation, separately. In Fig. 3-8, the present calculation based on Eq. 

(3-28) indicates that the hydraulic permeability is not sensitive to the changes of xφ , 

i.e. in-plane fiber orientation. This phenomena was predicted by past researchers 

based on numerical simulations (Tahir and Tafreshi, 2009), but it was not verified by 

theoretical rigor until the present work. 

 

Figure 3-7: Dimensionless normal permeability as a function of porosity for 2D 

fibrous media. The experimental results and an empirical correlation from literature 

are also added for comparison. 
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Figure 3-8: Comparison of dimensionless permeability of 2D fibrous media with 

different in-plane fiber orientations 

C. 3D Fibrous media 

Fig. 3-7 compares the calculated results using the present model for 3D isotropic 

fibrous media ( 1 3x y zφ φ φ= = = ) with the experimental and numerical data available 

in the literature. The following equation, which is calculated by substituting Eq. 

(3-26) and Eq. (3-27) to Eq. (3-28), is the compact model of hydraulic permeability 

of 3D randomly distributed fibrous media: 

( ) ( )2
2

1 ,
2 p rK r K K

r
φ φ = +               

  (3-30) 

where, the volume-averaged permeability model is given by: 
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( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )( )

( )( )

2 2

2 2
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6 1
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              ,
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ε ε ε ε

φ
ε

ε ε ε ε ε

ε

− − + − − − + +
=

−

− − + − − − + − − − + −
+

− +

     
  (3-31)

 

and the volume-averaged resistance model is expressed as: 

( )

( )
( ) ( ) ( )

( )( )
( ) ( ) ( ) ( )( )

1

2 2

2 2

2 1

3 0.64ln 1 0.263 0.25 1 0.28 Kn
.

8 1 1 2Kn

3 0.64ln 1 0.263 0.25 1 2Kn 0.64ln 1 0.097 0.25 1

rK

ε

ε ε ε ε
φ

ε

ε ε ε ε ε

−
− 

  − − + − − − + +  
 =

− + +  − − + − − − + − − − + −   

 (3-32) 

Along with the prediction in Fig. 3-9 are the experimental results collected from 

Carman’s work (Carman, 1938), who conducted permeability measurements of 

randomly distributed beds of stainless steel wire crimps, Wiggins et al.’s work 

(Wiggins et al., 1939), who measured the hydraulic permeability of various 3D 

fibrous materials with several different kinds of test liquids, Brown’s work (Brown 

Jr., 1950), who measured flow resistance to dry gas through 3D glass wool, Higdon 

and Ford’s work (Higdon and Ford, 1996), who used a boundary element method to 

estimate the viscous hydraulic permeability of 3D networks of cylindrical fibers 

ordered in different cubic lattices, and more recently, Rahli et al.’s work (Rahli et al., 

1997), who experimentally investigated the hydraulic permeability of randomly 

oriented chopped fibers of bronze and copper wires. Fig. 3-9 shows that most 

experimental data, which are obtained based on different fiber materials and testing 

fluids, agree closely with the proposed 3D fully random model. It is also interesting 

phenomenon that the proposed model is similar with the volume-averaged 

permeability model and volume-averaged resistance model in Fig. 3-9. 
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Figure 3-9: Dimensionless permeability as a function of porosity for a 3D fibrous 

media. 1D, 2D, and 3D models for regular structures, and the numerical and 

experimental results are also added for comparison. 

To investigate the influence of the through-plane fiber orientation on the 

hydraulic permeability for flow normal to 3D fibrous media, a series of 3D structures 

with different through-plane fiber orientations are generated by changing the fraction 

of fibers in z -direction zφ  in steps, from 0  (2D layered random media with 

lowest through-plane orientation), to 1/3 (3D isotropic medium with moderate 

through-plane orientation), and then to 1 (1D fibers parallel to the flow with highest 

through-plane orientation), and maintaining the same fractions of fibers for x  and 

y -directions ( x yφ φ= ). The calculated results plotted in Fig. 3-10 show that the 

hydraulic permeability for the flow normal to the 3D fibrous media increases 
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significantly with increase in the through-plane fiber orientation. Therefore, the 1D 

fibers or 2D layers normal to flow direction have the highest flow resistances, 

followed by 3D fiber assembles, and 1D fibers aligned with flow direction are most 

permeable. 

 

Figure 3-10: Comparison of dimensionless permeability of 3D fibrous media with 

different through-plane fiber orientations 

D. Nanofiber arrays 

This section specifically considers the viscous flow through 1D parallel 

nanofibers considering slip effect, although the present model can also be readily 

applied to 2D and 3D cases using Eq. (3-28). The dimensionless hydraulic 

permeability and Darcy hydraulic permeability of 1D fibrous media with different 

Kn are calculated using this model and are shown in Fig. 3-11 and Fig. 3-12, 

respectively.  
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(a) 

 

 

(b)  

 

 

Figure 3-11: Comparison of dimensionless (a) normal and (b) parallel hydraulic 

permeability of 1D fibrous media with different Kn 
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(a) 

 

 

(b)  

 

 

Figure 3-12: Comparison of (a) normal and (b) parallel Darcy hydraulic 

permeability of 1D fibrous media with different Kn 
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From Fig. 3-11 (a), it shows that the partial slip flow on the fiber surface 

( 210 Kn 1− < < ) increases normal dimensionless hydraulic permeability as compared 

to the no-slip case ( 2Kn 10−<  or Kn=0 ). The effect of Kn  on the longitudinal 

dimensionless hydraulic permeability is even more significant, as shown in Fig. 3-11 

(b). This is understandable as all the partial slip flows on fiber surface are parallel 

with the macroscopic flow direction, and parallel flow suffers from more slip effect 

than transverse flow. However, both Fig. 3-12 (a) and 3-12 (b) reveal the Darcy 

hydraulic permeability of the fibrous media with higher Kn  (i.e. more partial slip) 

is still much lower than that with smaller Kn . This can be ascribed to that the 

Darcy hydraulic permeability is proportional to the square of fiber radius, which 

greatly suppresses the slip effect on increasing permeability. Therefore, the effect of 

Darcy hydraulic permeability caused by fiber radius is much greater than the 

accompanied influence of slip flow. It can also been seen from Figure 3-11 that the 

slip effect on the hydraulic permeability is less pronounced at higher porosity of the 

fibrous media, which may be ascribed to their less specific interaction with flows. 

3.3. Fibrous structures with low porosity 

This section develops the model of hydraulic permeability for low porosity 

fibrous media from simple and ordered to complicated and random structures. First, 

modified scaling estimate method is proposed to predict the hydraulic permeability 

of 1D ordered structures. Afterwards, Kozeney-Carman approach is used to 

determine the hydraulic permeability of randomly distributed fibrous assembles for 

2D and 3D. 

3.3.1. 1D fiber arrays 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJ7-48CFK24-1&_user=107833&_coverDate=05%2F31%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5303&_sort=d&_docanchor=&view=c&_searchStrId=1142953940&_rerunOrigin=google&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=b7a24048acf7c1e4dab38f1be3bb08b2#fig6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJ7-48CFK24-1&_user=107833&_coverDate=05%2F31%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5303&_sort=d&_docanchor=&view=c&_searchStrId=1142953940&_rerunOrigin=google&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=b7a24048acf7c1e4dab38f1be3bb08b2#fig7
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJ7-48CFK24-1&_user=107833&_coverDate=05%2F31%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5303&_sort=d&_docanchor=&view=c&_searchStrId=1142953940&_rerunOrigin=google&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=b7a24048acf7c1e4dab38f1be3bb08b2#fig7


80 
 

(a) (b) 

(c) (d) 

Figure 3-13: (a) Schematic of circular fibers in a square packing; (b) schematic of 

circular fibers in a hexagonal packing; (c) schematic of elliptical fibers in a square 

packing; (d) schematic of elliptical fibers in a hexagonal packing 

Fibrous media are assumed to be composed of periodical representative cells. The 

cell contains arrays of solid fibers with different cross-sectional shapes and packing 

configurations. Shown in Fig. 3-13 include aligned yarns with different architectures, 

and the elliptical yarns reported here are generated by imposing the axis ratio 

/ 2A B = , where A  is the major axis and B is the minor axis of an elliptical yarn.  

A. Transverse flow through aligned fibers  

Here, gas flow through an array of square packing circular fibers (see Fig. 3-14) 

is chosen as the example of performing solutions. The lubrication theory is employed 
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in this work. Lubrication theory describes fluid flow through a geometry in which 

one dimension is much smaller than the others, and here the velocity component in 

vertical direction (y-direction) is considered significantly smaller than that in 

horizontal direction (x-direction). Considering the flow in x-direction, Stokes 

equation can be simplified as (Chai et al., 2011): 

2

2 0.dp d u
dx dy

µ− =
                       

  (3-33) 

The half distance minh  was selected between cylindrical fibers as the 

characteristic length (Clague et al., 2000), over which the flow velocity varies 

dramatically. They presented a scaling estimate as follows: 

2
min

.
u

p
h

m∇ 

                         
(3-34) 

 

Figure 3-14: Circular yarns of square arrangement in the representative cell 

Later, (Sobera and Kleijn, 2006) argued that it is more proper choosing the actual 

velocity 0 /u u χ=  as the characteristic velocity, where χ  is the ratio between 
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the minimum area to the total frontal area as min2 / yh L . However, this prediction 

does not agree with experimental and numerical data in a wide range of porosities as 

shown in Section 3.3.3. It is believed that this is a consequence of neglecting effect 

of the curve shape of the fiber surface close to the area of the narrowest gap, which 

has been proven to have critical contribution of flow through fiber bundles (Gebart, 

1992). Indeed, it is more reasonable to scale the pressure difference against the flow 

velocity within a length difference instead of the total cell width, because the 

“channel width square”-dependent velocities are not uniform or even in the same 

magnitude along the flow direction. A more generalized local scaling estimate is 

therefore suggested as follows: 

( )
( )2 ,

u xdp
dx h x

µ
                           

(3-35) 

where ( )h x  is the half distance between fibers at the position of “ x ” along 

x-direction, and ( )u x  is the corresponding mean velocity. Eq. (3-35) captures more 

structural details than the previous studies 

Moreover, as the actual velocity ( )u x  along flow direction in the open channel, 

which are formed by neighboring fibers (see Fig. 3-14), can be expressed as 

( )/ 2yu L h x    based on conservation of flow flux, re-writing Eq. (3-35) yields 

( )3 ,yu L
dp c dx

h x
µ=

                       
(3-36) 

where yL  represents the side length of the representative cell in y-direction, and c  

is an empirical constant. Integrating Eq. (3-36) leads to the value of the pressure 



83 
 

difference between two positions 0x =  and x a=  in the channel: 

( )30

1 .
ayu L

p c dx
h xµ

∆ = ∫
                       

(3-37) 

For the fiber arrangement of Fig. 3-14, the half height of channel can be 

expressed as: 

( ) ( )min ,h x h y x= +
                       

(3-38) 

where ( ) 2 2y x R R x= − − . As most pressure drop or flow resistances take place 

within a gap distance x R<<  near minh , ( )y x  is therefore given by (Gebart, 

1992): 

( )
2 2

20( ) .
2 2
x xy x R R x
R R

 
= − − + ≈ 

                  
(3-39) 

Substituting Eq. (3-38) into Eq. (3-37) results in: 

( ) ( ) 330 0
min

1 1 ,
a a

dx dx
h x h y x

=
+  

∫ ∫
                  

(3-40) 

where ( )y x  is smaller than minh  in the region close to the narrowest gap between 

fibers, except those composed of extremely dense fiber arrays. If ( )y x  is neglected, 

Eq. (3-40) would induce to 2
minK h χ , which has the same form with Clauge et al.’s 

(Clague et al., 2000). Indeed, fiber surface shape or variation of ( )y x  has 

considerable effect on pressure drop through the open channel according to Eq. (3-37) 
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and Eq. (3-40). Therefore, ( )y x will not be neglected in this study. Substituting Eq. 

(3-39) into Eq. (3-40) leads to: 

( ) ( )
min2

min 33 30 0 2
min

1 1 12 .
1

aa
Rhdx Rh dt

h x h t
=

+
∫ ∫

             
 (3-41) 

where 
( )

min2
30 2

1

1

a
Rh dt

t+
∫  is a constant. Thus, rewriting Eq. (3-41) results in the 

following equation: 

2.5
min

.yu L R
p c

h
m∆ =

                     
  (3-42) 

As most of the pressure difference is found to exist within the small area close to 

minh , p∆  in Eq. (3-42) is reasonably equal with the total pressure difference 

throughout the representative cell. The hydraulic permeability of the representative 

cell is obtained as follows: 

2.5
min ,y

x

h L
K c

RL
=

                             
(3-43) 

where xL  is the side length of the representative cell in x-direction. The 

dimensionless form of hydraulic permeability of solid circular fiber assembles is:  

2.5
2 min/ .y

x

LhK R c
R L

 =  
                         

(3-44) 

Through a similar calculation process, the dimensionless permeability of solid 

elliptical fiber assembles is readily obtained, viz., 
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2.5
min/ .y

x

LhK AB c
B L

 =  
                       

  (3-45) 

For different fiber arrangements, minh  is a function of porosity, fiber radius, 

and cell side lengths xL  and yL : 

min 2
1

h Rπ
ε

 
= −  − 

 with x yL L=  for square packing circular yarns (Fig. 3-13a), 

( )min
3 2

2 1
h Rπ

ε

 
 = −
 − 

 with 2 3
3x yL L=  for hexagonal packing circular yarns 

(Fig. 3-13b), 

min 2
1

h Bπ
ε

 
= −  − 

 with 2x yL L=  for square packing elliptical yarns (Fig. 

3-13c), 

( ) ( )min
2 2 1

3 1 8 3 1
h B

x
π π
ε

 
 = − −
 − − 

 with 4 3
3x yL L=  for hexagonal 

packing elliptical yarns (Fig. 3-13d). 

B. Parallel flow through aligned fibers 

 For flow parallel with fibers, they can be approximately regarded as flow 

through tubes with different packing (Tomadakis and Robertson, 2005). The viscous 

flow through such an irregular pore was widely characterized by a hydraulic radius, 

as the ratio of pore area and perimeter (Jia et al., 2008). However, even for an 

equilateral triangle, the difference between hydraulic radius-based model and the 

exact solution is significant (Bergelin et al., 1950). The error may be ascribed to that 
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a longer perimeter as a result of irregular shape of a pore, would lead to a much 

smaller hydrauilic radius but not the effective flow radius. In this study, the inscribed 

radius ar  is chosen as the characteristic length, as most flow fluxes exist in the 

inscribed polygon, which can be shown from the numerical simulation of velocity 

distribution in square packing array of fibers in Fig. 3-15. The inscribed fiber and 

the velocity distribution are difficult to characterize through the channels between 

fibers with elliptical cross-sectional shape, especially for those with high axis ratio. 

As thus, elliptical cases will not be considered in present study. For circular fiber, 

the dimensionless permeability for parallel flow is obtained as follows: 

2
2/ .arK R c

R
ε =  

 
                        (3-46) 

 

Figure 3-15: Velocity distribution of parallel flow though fibers of square 

arrangement 

For different fiber arrangements, ar  varies depending on porosity, fiber radius, 

and packing configuration: 
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2 2
1ar Rπ

ε
 

= −  − 
 for square packing circular yarns (Fig. 3-13a), 

( )
2 3 2

3 1ar Rπ
ε

 
 = −
 − 

 for hexagonal packing circular yarns (Fig. 3-13b). 

3.3.2. 2D and 3D fiber mats 

It is difficult to characterize the structural information of 2D and 3D fibrous 

media at low porosity. However, their geometric parameters can be assumed to 

follow the Kozeny-Carman form that the fibrous systems are assumed as bundles of 

tortuous channels formed by the closely packed fibers. Here, Kozeny-Carman 

approximation is applied to permeability prediction, which yields: 

2

4
p

C

R
K

K
=                         (3-47) 

The mean pore size pR  is expressed as 
1pR rε

ε
=

−
 (Tomadakis and Sotirchos, 

1991). Considering the relationship between mean pore radius and fiber radius, Eq. 

(3-47) is re-written in the following form: 

( )

3
2

2/ ,
4 1C

K r
K

ε
ε

=
−

                     (3-48) 

or 

( )

3
2

2/ ,
1

K r c ε
ε

=
−

                       (3-49) 

where c  is a geometric factor, depending on microstructures of the fibrous system. 
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3.3.3. Results and discussion 

The present analytical model requires inputting geometric factors, which include 

fiber radius, porosity, fiber shape, packing configuration, etc. To evaluate the model, 

the model is applied to fit the values of numerical, experimental and analytical data 

available in the literature. For better comparison, all the collected data are converted 

to dimensionless permeability. As such, for circular fibers, the hydraulic permeability 

K  is divided by square of fiber radius 2R ; for ellipse fibers, the hydraulic 

permeability K  is divided by the product of semi-major and semi-minor axis AB . 

A. Transverse flow through circular fibers 

Aligned fibers are the simplest representations of fibrous porous media. For 

transverse flow though aligned solid fibers with square packing and circular 

cross-section, a comparison between the present model and previous studies is 

presented in Fig. 3-16 (a). Experimental data are collected from Bergelin et al.’ 

(Bergelin et al., 1950), who measured viscous permeability of heat exchange tubes, 

Sadiq et al.’s (Sadiq et al., 1995), who used nylon fibers. Numerical results are 

Sangani and Acrivos’s (Sangani and Acrivos, 1982), who applied numerical 

technique to predict the hydraulic permeability of periodic square arrays of fibers 

normal to flow direction. By fitting with experimental and numerical data, a constant 

0.4c =  is used in the model of dimensionless permeability based on Eq. (3-44): 

2.5

2 0.785/ 0.4 1 ,
1

K R
ε

 
= −  − 

 
                    

(3-50) 

which provides an excellent prediction over a wide range of porosities. Sobera and 

Kleijn’s estimate (Sobera and Kleijn, 2006) is also plotted for comparison. As can be 

seen in Fig. 3-16 (a) with logarithmic scale of permeability, Sobera and Kleijn’s 
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model has much greater deviation from the experimental data than the proposed 

model, which may be attributed to the fact that they did not consider the curved 

interface between the flow and the fiber near the region of the narrowest gap.  

The other ordered arrangement of fibers is hexagonal packing. Following 

Sangani and Acrivos’s numerical work (Sangani and Acrivos, 1982), Higdon and 

Ford (Higdon and Ford, 1996) applied spectral boundary element method to calculate 

the hydraulic permeability through parallel hexagonal circular cylinders. The 

calculated hydraulic permeability can be excellently fitted by the present model with 

0.2c = , as seen from Fig. 3-16 (b). Based on Eq. (3-44), the model for circular fibers 

in hexagonal packing is given by: 

2.5

2 0.907/ 0.2 1 .
1

K R
ε

 
= −  − 

 
                 

  (3-51) 

(a)  
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(b) 

 

Figure 3-16: (a) Comparison of the present model of transverse permeability with 

experimental and numerical results for circular solid fibers with square packing 

configuration; (b) comparison of the present model of transverse permeability with 

numerical data for circular solid fibers with hexagonal arrangement. Sobera and 

Kleijn’s estimate (Sobera and Kleijn, 2006) is also added for comparison. 

Large discrepancies are observed between the numerical data and Sobera and 

Kleijn’s model (Sobera and Kleijn, 2006) when porosity is small, as seen in Fig. 3-16 

(b). Comparing strictly with the square packing structure, the hexagonal matrix is 

more permeable when the fibers are packed densely. 

B. Transverse flow through elliptical fibers 

Next, the theoretical model for 1D elliptical fiber arrays is validated by past 

results obtained through computational fluid dynamic (CFD) simulation. A 
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computational fluid dynamics package called FIDAP was used to simulate fluid 

flows through 1D elliptical fiber arrays with square packing and a cross-sectional 

ratio of 2 and it was shown that the small regime close to the smallest gap captures 

most pressure gradient in a representative cell (Phelan and Wise, 1996). In Chapter 5, 

a compact theoretical model expressed as Eq. (5-23) is proposed and validated for 

squarely packed elliptical fibers, by solving Stokes equation strictly between the 

elliptical fibers in a representative cell. From Fig. 3-17 (a), the best fitted model of 

Eq. (3-45) is given by: 

2.5
0.785/ 0.21 1 ,
1

K AB
ε

 
= −  − 

 
                   

(3-52) 

which agrees perfectly well with the collected values and Eq. (5-23).   

 (a)  

 



92 
 

(b) 

 

Figure 3-17: (a) Comparison of the present model of transverse permeability 

with numerical values for elliptical solid fibers with square arrangement; (b) 

comparison of the present model of transverse permeability with numerical 

simulations for elliptical solid fibers with hexagonal arrangement 

In addition, the model of Eq. (3-45) for arrays of hexagonal packed elliptical 

yarns with axis ratio 2 is obtained: 

2.5
0.680 0.227/ 0.13 1 ,
1 1

K AB
ε ε

 
= − −  − − 

 
            

  (3-53) 

where the predicted values of which compare with the computed results by 

Ranganathan et al. (Ranganathan et al., 1996). Satisfactory agreement is found 

between prediction and simulation in Fig. 3-17 (b), indicating reliability of this 

prediction. 
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For the effect of fiber cross-sectional shape, the hydraulic permeability of 

parallel fibers with elliptical cross-section (major axis parallel with flow direction) is 

more permeable than the circular at the highly dense limit under the same porosity, 

which can be found by comparing Fig. 3-16 and Fig. 3-17. 

C. Parallel flow through circular fibers 

For parallel flow through ordered fibers, a comparison between the modified 

scaling estimate and previous results from literature is presented in Fig. 3-18. 

Experimental results are collected from Sullivan’s (Sullivan, 1942), who conducted 

measurements to study the fiber-touched structures for both square and hexagonal 

packed pattern, and from Skartsis et al.’s (Skartsis et al., 1992), who measured resin 

flow rate through square-packed carbon fibers. Numerical data are summarized from 

Shih’s (Shih, 1967), who simulated flow through fiber-touched structure with 

hexagonal packing, from Higdon and Ford’s (Higdon and Ford, 1996), who 

computed the hydraulic permeability of periodic square arrays of fibers aligned with 

flow direction, and recently, from Tamayol and Bahrami’s (Tamayol and Bahrami, 

2010a), who calculated axis permeability of ordered fibers by Fluent. By fitting the 

plots of experimental and numerical results, a constant 0.04c =  is adopted to 

provide the model of dimensionless permeability for square packing based on Eq. 

(3-46): 

2 2/ 0.04 2 ,
1

K R π ε
ε

 
= −  − 

 
                 

  (3-54) 

and 0.18c =  for hexagonal packing: 

( )

2

2 2 3/ 0.18 2 .
3 1

K R π ε
ε

 
 = −
 − 

 
                

   (3-55) 
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(a)  

 

(b) 

 

Figure 3-18: (a) Comparison of the present model of parallel permeability of square 

packing with experimental and numerical values; (b) comparison of the present 

model of parallel permeability of hexagonal packing with experimental and 
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numerical values collected from literature  

The proposed model provides an excellent prediction against a wide range of 

porosities. Comparing with square packing structure, hexagonal array is less 

permeable, which has an opposite trend with that of transverse permeability. 

D. Transverse flow through 2D and 3D fibrous media 

For transverse flow though 2D and 3D fibrous materials, a comparison between 

the model in this study and the collected experimental results are presented in Fig. 

3-19. In fact, few fibrous materials with densely packed fibers exist in actual 

applications, as the fibrous medium tends to be high porous media when fibers 

located randomly in 2D and 3D space. Kostornov and Shevchuk (Kostornov and 

Shevchuk, 1977) measured transverse flow through 2D randomly oriented fibers 

using testing fluids of alcohol and water. By fitting their experimental results using 

the present model, a constant 0.4c =  is found for the dimensionless permeability 

based on Eq. (3-49): 

( )

2
2

3/ 0.4 ,
1

K R ε
ε

=
−

 
                     

 (3-56)  

Rahli et al. (Rahli et al., 1997) carried out permeability measurements on 

randomly layers made by chopped fibers of bronze and copper wire. The constant 

value, 0.2c = , is adopted to fit the numerical data the best as seen from Fig. 3-19 (a). 

The corresponding model is expressed as: 

( )

2
2

3/ 0.2 .
1

K R ε
ε

=
−

 
                      

 (3-57) 
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(a) 

 
(b) 

 

Figure 3-19: Comparison of the present model of transverse permeability of (a) 

2D and (b) 3D fibrous materials with experimental results 
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3.4. Concluding remarks 

Discrepancies were found between existing analytical values and experimental 

results, as the past researchers applied 1D ordered model to predict permeability of 

the actual fiber beds, which indeed could be 2D and 3D. To overcome it, theoretical 

studies were conducted here to determine hydraulic permeability of realistic fiber 

beds based on properly equivalent structures. Note the challenge is to find the 

balance between simplifying realistic fibrous structures and solving governing 

equations analytically.  

Representative cell method, Voronoi Tessellation method, and mixing law were 

applied in steps to develop an analytical model of hydraulic permeability from 

simplified to realistic fibrous structures in high porosity range ( 0.7ε > ). The fibrous 

structures were characterized by equivalent fiber matrixes, where the fibers were in 

three principal directions with different degrees of randomness and different fiber 

fractions. The model was validated with the available theoretical, experimental and 

numerical results from literature. With the new model, the effect of Knudsen number 

or slip flow on the hydraulic permeability was also investigated. It can be concluded 

that hydraulic permeability increases with increasing degree of randomness of fiber 

distribution, and the hydraulic permeability of fibrous media is almost independent 

of in-plane orientation, but increases with increasing through-plane orientation. The 

slip flow increases the longitudinal permeability more significantly than the 

transverse permeability of 1D fiber arrays. 

Viscous gas flow through aligned fibers was also studied in means of modified 

scaling estimate method at relative low porosity area ( 0.6ε < ). This versatile and 

predicable model, considering the minimum distance between fibers as the most 

critical effect on transverse permeability, is in excellent agreement with 
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experimental, numerical and analytical results collected from literature. It is also 

found that permeability of aligned fibers with elliptical cross-sectional are similar 

with circular fibers at a constant porosity, but more permeable at the low porosity 

limit. For hexagonal packing configuration of fibers, their permeability is found to 

be slightly greater than the squarely located fibers. For parallel flow through fibers, 

the inscribed radius was selected as the characteristic length, as most of the flow 

fluxes exist within the inscribed regular polygon. The model shows that the 

hexagonal structure has more flow resistances than the square case at a constant 

porosity in low porosity range, which is opposite to the trend of transverse flow. 

Kozeny-Carman approximation was applied to predict the hydraulic permeability of 

2D and 3D densely packed fibers, and the models are all successfully verified by 

experimental and numerical results. 

However, a complete permeability model of fibrous materials covering 

porosities from high to low limit remains to be developed. Scaling estimate models 

for fibers with elliptical cross-section are not obtained, because it is difficult to 

accurately determine the inscribed radius between elliptical fibers, and the inscribed 

polygon may not be able to capture the most contribution of flows along fiber axis 

considering the extremely irregular geometry between fibers. 
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Chapter 4 Statistic models for flow 

through single-scale fibrous media 

4.1. Introduction 

It is difficult to propose a deterministic model of hydraulic permeability in 

fibrous materials throughout porosities. Fortunately, it is found that microstructures 

of disordered porous media can be statistically described by fractal geometry 

(Mandelbrot, 1982), which can be used to determine permeability of fibrous media 

in a wide porosity range.  

The disordered structures are analogous to a class of natural objects such as 

rivers, coastlines, and lakes, which are complex and difficult to describe using 

Euclidean geometry with integer dimensions 0-3. These objects are observed to 

demonstrate self-similar patterns, or fractal (Mandelbrot, 1982). They are generally 

not exactly self-similar, but statistical self-similar, which implies these objects 

exhibiting self-similarity in some average sense. A fractal object is always related to 

the length scale by a power law (Mandelbrot, 1982): 

( ) 0 ,DM l l∝                          (4-1) 

where 0D  is the fractal dimension, ( )M l  can be a quality, or length, or volume, 

or area of the object, and l  is the length scale.  

In this chapter, the pore size distribution, which is the integration of various 

structural parameters including fiber orientation, disorder of fiber distribution, and 

medium dimensions, is used to predict permeability of randomly distributed fiber 

http://en.wikipedia.org/wiki/Self-similar
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layers based on fractal theory. 

4.2. Model generation 

It is shown that the size distribution of pores in realistic porous media or fibrous 

materials follows the fractal power law (Yu and Liu, 2004): 

max( ) ( ) ,fDN L R R R≥ =                       (4-2) 

where, fD  is the pore area fractal dimension, 0 2fD< <  in two dimensions,  

and R  and maxR  is the pore radius and maximum pore radius, respectively. N  is 

the cumulative population of pores whose radiuses are greater than or equal to R . 

In order to make Eq. (4-2) practically manageable, the smallest pore radius observed 

is assumed as minR . Moreover, pores with radius smaller than minR  are ignored, 

which is reasonable as smaller channels are much less permeable than larger pores 

from Hagen-Poiseuille equation. Thus, the total number of pores tN , from minR  to 

maxR , can be expressed as: 

min max min( ) ( ) .fD
tN L R R R≥ =                       (4-3) 

Based on the equation above, the fractal dimension fD  in two-dimensional 

spaces is given by (Yu, 2008): 

( )max min

ln2 .
lnfD

R R
ε

= +                           (4-4) 

 Since the pore radius varies discretely considering the basic characteristic of 
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fractal geometry, it is appropriate to apply the difference approach to describe the 

relationship of pore numbers and pore radius. From Eq. (4-2), the difference on two 

adjacent pore numbers with respect to R  yields: 

1
max ,f fD D

fdN D R R dR− −= −                     (4-5) 

Substituting Eq. (4-3) into Eq. (4-5) leads to: 

1
min ( ) ,f fD D

f
t

dN D R R dR f R dR
N

− −− = =                 (4-6) 

where, 1
min( ) f fD D

ff R D R R− −=  is the probability density function of the pore radius, 

and it satisfies the following relationship: 

max

min

( ) 1.
R

R
f R dR =∫                                (4-7)                                  

Apparently, when the number of the pores is sufficiently large, it is reasonable 

that the variation of pore size is regarded as continuum variable. 

Real fibrous porous media are assumed to consist of a bundle of tortuous tubes, 

where the flow rate through a single tortuous tube, ( )q R , is given by 

Hagen-Poiseuille equation as follows (Denn, 1980): 

4

( ) ,
8

Rq R pp
µτ

= ∇
                        (4-8) 

where, τ  is tortuosity of the channel. The total flow rate tQ  through a 

cross-section can be obtained by integrations of arrays of individual flow rate based 

on Eq. (4-8): 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V3H-4NDVHBY-5&_user=107833&_coverDate=09%2F30%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=5731&_sort=d&_docanchor=&view=c&_searchStrId=989676856&_rerunOrigin=google&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=ceae38544a959d4e9f489f740b8a2872#fd8
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max

min

4
4 max
max

4
max

( ) ( )

          1
8 4

          .
8 4

f

R

R

D
f

f scale

f

f

Q R q R dR

D RR p
D R

D
R p

D

p
mτ

p
mτ

−

=

  
 = − ∇  −   

≈ ∇
−

∫

             (4-9) 

where 2 0fD> >  in the two-dimensional space, the exponent 4 2fD− > . It is 

apparent 
4

min

max

0
fD

R
R

−
 

→ 
 

 for generally min max0.1R R≤  in fibrous porous media, 

which can be observed in Fig. 1-4. The present study assumes min max0.1R R= .  

The porosity of every cross section is approximated as the total volume porosity, 

and the total cross area tA  is related to the total pore area pA  by (Yu, 2008): 

,pA
A

ε
=                              (4-10) 

where the total pore area pA  can be obtained by summing up: 

( )max

min

2 2
max 1 ,

2
R f

p R
f

D
A R dN R

D
p ε= = −

−∫                      (4-11) 

Therefore, the total cross sectional area tA  of a unit cell normal to the flow 

direction is 

2
max

1 .
2

f
t

f

D
A R

D
π ε

ε
−

=
−

                        (4-12) 

Thus, the mean velocity can be readily obtained: 
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2
max

21   .
8 4 1

t

f

f

Qu
A

D
pR

D
ε

mt ε

=

−
= ∇

− −

                          (4-13) 

In Eq. (4-13), all the parameters have clear physical meanings and no empirical 

constants exist. This model can be used to calculate average velocity of general 

porous media, and the flow rate is found to be strongly dependent on the maximum 

pore radius of the fibrous materials.  

However, the pore size of fibrous media is always difficult to measure, but not 

for fiber radius. The mean pore radius pR ′  is given by: 

max

min
min( ) ,

1
R f

p R
f

D
R Rf R dR R

D
′ = =

−∫                         (4-14) 

and be approximated by a function of porosity and fiber radius r  (Sampson, 2003): 

0.5

1 .
2 2lnpR rpp

ε
 ′ = − + 
 

                             (4-15) 

The mean hydraulic pore radius pR ′  as the ratio of pore area and pore 

perimeter, is usually larger than the mean flow pore radius pR  calculated from 

Hagen-Poiseuille law, and the relationship between them is given by (Lifshutz, 

2005): 

.
2.336

p
p

R
R

′
=                                (4-16) 

Substituting Eq. (4-16) into Eq. (4-15) leads to: 
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0.5

1
2 2ln .

2.336p

r
R

pp
ε

 − + 
 =                                (4-17) 

The tortuosity of 2D random fibrous porous media can be calculated by the 

following widely used equation from (Tomadakis and Robertson, 2005): 

0.7851 0.11( ) .
0.11

τ
ε
−

=
−

                          (4-18) 

Finally, the mean velocity is obtained by substituting Eq. (4-17) and Eq. (4-18) 

into Eq. (4-13): 

2 20.785 24 2 1 ( 0.11) 1.571 .
4 1 ln

f f

f f

D D ru p
D D

ε ε
ε ε µ

 − − −  = + ∇    − −   
          (4-19) 

 Therefore, the dimensionless permeability of fibrous media is given by: 

2 20.785
2 4 2 1 ( 0.11) 1.57/ 1 .

4 1 ln
f f

f f

D D
K r

D D
ε ε

ε ε
 − − −  = +    − −   

          (4-20) 

 Eq. (4-20) indicates that the permeability model of fibrous porous layer is a 

function of area fractal dimension and porosity, and every parameter has clear 

physical meaning. 

4.3. Results and discussion 

An abundance of experimental results and mathematical models are available 

for fluid flow normal to 2D fibrous porous media. In Fig. 4-1, the predicted 

permeability of Eq. (4-20) is compared with the experimental data from several 

literature sources (Johnson et al., 1996, Kostornov and Shevchuk, 1977, Ingmanson 

et al., 1959, Wheat, 1963, Gostick et al., 2006a). The experiments were conducted 

by using air or water within a variety of fibrous materials such as nylon fibers, glass 
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fibers and filter pads. As evident in Fig. 4-1, the permeability prediction agrees with 

the experimental data throughout the porosity ranges. The comparison between the 

present model and an empirical model (Johnston, 1998) also shows a comparable 

agreement in Fig. 4-1, although the empirical model over-predicts gas permeability 

in low porosity range. Therefore, the proposed analytical model, which is covered by 

the experimental data over the entire range of porosity, can provide a rapid 

prediction of transport trend of gas flow. 

 

Figure 4-1: Comparison between the fractal model and experimental results 

4.4. Concluding remarks 

A fractal approach was applied to model the permeability of 2D layered fibrous 

media. The model of dimensionless permeability is expressed as a function of 

porosity and fractal dimension, and the prediction of permeability agrees well with 
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the experimental results. It is also found that the overall permeability is great 

sensitive with the maximum pore size of the fibrous system. This statistical model of 

permeability predictions is available over the whole range of porosities, while the 

deterministic models reported in Chapter 3 are only applicable to fibrous materials at 

high porosity or low porosity regimens. Note that the fractal model is not as accurate 

as the deterministic models as it is based on statistical information of fibrous 

structures and estimate of the ratio between minimum and maximum pore sizes, but 

it can rapidly provide a qualitative prediction of transport trends.  

However, the fractal distribution of pore size is more like a phenomenology. 

Further physical understanding of the generation of fractal geometry in both natural 

and scientific areas is required. 
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Chapter 5 Deterministic models for 

flow through dual-scale fibrous 

media  

5.1. Introduction 

Fiber arrays and nonwovens can be considered as single-scale fibrous materials, 

which were studied in Chapter 3 and Chapter 4. In woven or knitted fabric materials, 

the void pores in the yarns and between the yarns are always in two different scales, 

which make the transport behaviors more complex. 

Apart from experimental measurements, previous models of dual-scale 

permeability of fibrous materials were based on numerical simulations of fluid flows 

in both intra- and inter yarns domains simultaneously (Wang et al., 2006). The 

overall permeability was then calculated by back substituting the ratio of pressure 

gradient and flow flux into Darcy’s law.  

To reduce computational cost, Brinkman equation was used to describe fluid 

flows in intra-yarn area. For instance, Phelan and Wise (Phelan and Wise, 1996) and 

Ngo and Tamma (Ngo and Tamma, 2001) performed numerical simulations based on 

Brinkman equation and Stokes equation inside and outside the porous yarns, 

respectively.  

Although great progress has been made in numerically determining dual-scale 

permeability of fibrous materials, it is still difficult but necessary to find the 

analytical link between the dual-scale microstructures and the resulting permeability. 
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To this end, this chapter is aimed at theoretically modeling gas flow through 

dual-scale fibrous materials. The inter-yarn permeability is determined by Stokes 

equation with a “slip” flow boundary in the interface between yarns and open 

channels, while the intra-yarn permeability is calculated by Darcy’s law instead of 

solving Brinkman equation numerically. Based on this modification, the overall 

transverse permeability of fibrous media is determined by a network treatment of 

interconnected sub-areas in terms of inter-yarn and intra-yarn permeabilities. The 

proposed dual-scale model is expressed as a function of porosity, fiber radius, fiber 

shape, and packing pattern. In addition, a simple but effective semi-analytical model 

is provided for quick prediction. The categories of important geometric factors 

considered in the dual-scale model are illustrated in Fig. 5-1. 

 

Figure 5-1: Category of geometric factors 

The assumptions in this study are necessarily made, viz.: 

1. The aligned yarns are made up of straight filaments. The cross-section of all 

filaments is circular. 

Model 

Cross-sectional 
shape 
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Packing 
configulation 
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Hexagonal 

Yarn quality 

Porous 
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2. All the filaments are impermeable, and the flow takes place only in the voids 

between filaments and yarns. 

3. The fiber radius is much larger than the mean free path of the fluid molecules, 

and thus continuum hypothesis of Newton’s law holds. 

5.2. Aligned yarns 

In dual-scale fibrous media, it is necessary to define the two relevant porosities: 

the yarn porosity yε , as the ratio of the void volume to the total volume of a yarn; 

and the weave porosity wε , as the ratio of the void volume to the total volume of the 

weave assuming all the yarns are solid. 

5.2.1. Model generation 

The permeabilities of inter-yarn and intra-yarn are determined respectively 

before conducting the network treatment. Higher fiber volume fractions are of most 

interest in composite applications (Phelan and Wise, 1996). Thus, the lubrication 

approach, dealing well with flow in densely packed particles or cylinders, is 

employed to calculate the inter-yarn permeability. The velocity component in vertical 

direction (y-direction) is found to be much smaller than that in horizontal direction 

(x-direction) (Li et al., 2002). Under such circumstance, Stokes equation can be 

simplified as: 

2

2 0.dp d u
dx dy

µ− =
                           

(5-1)  

The Brinkman relationship (Brinkman, 1947), which has been successfully and 

widely applied to calculate intra-yarn permeability in dual-scale porous materials 
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(Ngo and Tamma, 2001, Ranganathan et al., 1996, Phelan and Wise, 1996), is 

re-written as follows: 

2

2 0.p
e p

p

d udp u
dx dy K

µµ− + − =
                     

(5-2) 

where pK  is the intra-yarn permeability, pu  is the volume averaged velocity of 

intra-yarn region, and eµ  is the effective viscosity in the porous yarn. pK  can be 

determined by Eq. (3-50) and Eq. (3-51) for squarely and hexagonally packed fibers, 

respectively. Brinkman equation has the same order of differential operator with 

Stokes equation, so the continuity of shear stress across the fluid/porous interface is 

ensured. 

Beavers and Joseph (Beavers and Joseph, 1967) carried out experiments of 

measuring permeability in a hollow channel bounded by a porous medium at the 

interface and found the velocity at the interface different from the average filter 

velocity within the porous material. The interface velocity is named as “slip” velocity 

in this thesis. Beavers and Joseph (Beavers and Joseph, 1967) found the “slip”  

velocity proportional to the shear rate of the open channel flow at the interface by a 

scale analysis: 

( ) ,s
s p

p

du u u
dy K

α
= −

                        
(5-3) 

where, sα  is considered as slip coefficient, su  is the slip velocity at the interface, 

pu  is the average filter velocity in the porous medium.  

Parallel flows through an open channel and a bounding porous medium can be 
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seen in Fig. 5-2. The flow deep in the porous medium is dominantly pressure-driven, 

while the flow near the interface is mainly driven by the shear of the open-channel 

flow. The porous medium is assumed homogeneous, so the pressure gradient along 

the flow direction is uniformly distributed. The pressure gradient in the porous 

medium can be expressed as: p
p

dp p u
dx K

µ
= ∇ = − , which is substituted into Eq. 

(5-2). Therefore, the simplified Brinkman equation is given by: 

2

2 0.p
p e p

p p

d u
u u

K dy K
µ µµ+ − =

                       
 (5-4) 

 

Figure 5-2: Schematic of velocity profile in a porous medium and in the adjacent 

open channel 

Based on that ( )0u  is equal to ju  and ( )u y  increases to zero with 

decreasing y  ( 0y ≤ ) deep in the porous medium, the solution of Eq. (8) is 

obtained: 
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( ) ( ) .py K
p s p pu y u u e u= − +               (5-5) 

The penetration depth of flow in the porous medium is
 
of order pK  (Saffman, 

1971). In the intra-yarn space, it is found that pK r<  when 0.9yε <  in Fig. 3-6, 

and common yarns contain 1000 to 12000 filaments (Phelan and Wise, 1996). 

Therefore, the penetration depth is much smaller than the yarn radius and the 

intra-yarn flow can be approximately characterized by the Darcy permeability pK . 

There are several types of stress boundary conditions between the porous 

medium and the fluid layer (Alazmi and Vafai, 2001). The latest model of 

Ochoatapia and Whitaker’s (Ochoatapia and Whitaker, 1995) introduced a shear 

stress jump condition based on the non-local form of the volume-averaged Stokes 

equation: 

( )
0 0

0 ,p
p

py y

dudu u
dy dy K

µ µµ γ
ε = =

− =
      

        (5-6) 

where the effective viscosity of the porous medium is taken as /µ ε , and β  is an 

adjustable parameter related to microstructures of the porous medium. The parameter 

γ  on the order of one is always experimentally determined and varies with the flow 

velocity, which is always an unknown of the problem (Goyeau et al., 2003). It is 

shown that γ  has negligible effect on the results of flow velocity in fluid/porous 

layers (Alazmi and Vafai, 2001), so the exact determination of β  is not important 

for the present purpose of developing a simplified model of permeability. Therefore, 

it is assumed 0γ =  in this study and the interfacial condition of continuum shear 

stress is satisfied: 

0 0

0.p
e

y y

dudu
dy dy

µ µ
= =

− =
    

         (5-7)
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Substituting Eq. (5-3) and Eq. (5-5) into Eq. (5-7) results in /eα µ µ= . It is 

difficult to accurately determine /eµ µ  for any given porous system (Neale and 

Nader, 1974), but assuming eµ  equal to µ  provides satisfactory correlations of 

experimental and numerical results in a great many cases (Yu and Lee, 2000, 

Ranganathan et al., 1996, Phelan and Wise, 1996, Ngo and Tamma, 2001). Therefore, 

1α =  is considered here and the “slip” velocity is given by: 

.s p p
duu K u
dy

= +
               

        (5-8) 

 

Figure 5-3: Schematic of flows in the open channel between fibers in the 

representative cell 

Solving Eq. (5-2) and considering the boundary conditions of ( )0 su h u=    

and 
0

0
y

du
dy =

=  provides the parabolic velocity profile in the channel in Fig. 5-3:  
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( ) ( )
( ) ( )

2 2

2

11 ,
2 p p

h x y dpu x h x K K
h x dxµ

  
= − − + +                   

(5-9) 

where ( )h x  is the half height of the channel between yarns. The relevant inter-yarn 

permeability can be easily derived from Darcy’s law: 

( )
( ) ( )

2 2

21 .
2i p p

h x yK h x K K
h x

 
= − + +  

                
(5-10) 

The macro-scale flow flux Q  through the network is the sum of the sub-fluxes 

of inter-yarns ( iQ ) and intra- yarns ( pQ ), which reads, 

,y
i p

x

KL p
Q Q Q

Lµ
∆

= + =
                    

 (5-11) 

where 
0

2
h

i iQ K dy= ∫ , ( )2p y pQ L h K= − , and xL and yL  represent the side lengths 

of the representative cell in x-direction and y-direction, respectively. Thus, the 

pressure drop of the cell can be calculated as: 

( )
( ) ( )

/2

0 3 2

12 .2 2
3

xL

p y p

p Q x dx
h x h x K L K

µ∆ =
+ +

∫
         

 (5-12) 

where xL  and yL  represent the side lengths of the representative cell in 

x-direction and y-direction, respectively. With the total flow rate ( ) yQ x u L=  and 

Darcy’s law 
x

K pu
Lµ
∆

= , the general model of the overall permeability K  can be 

obtained based on Eq. (5-12): 
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( ) ( )

( ) ( )

0 3 2

/2

3 2

,
1

2 2
32

1
2 2 2
3

x

x

a

p y p

y L

a
p p

LK
dx

h x h x K L K
L

dx
h x h x K hK

=
 
 

+ + 
 
 
+ 

+ + 
 

∫

∫

    
(5-13) 

where a  is the largest cross-sectional length of the yarn along x-direction. Note that 

the yarns are considered as consisting of bundles of regularly parallel filaments, so 

Eq. (5-13) can also be applied to calculate the intra-yarn permeability with 0pK =  

with filaments instead of solid yarns. 

A. Circular yarns in square configuration 

The overall permeability of dual-scale fibrous materials with different packing 

arrangements and cross-sectional shapes can be calculated based on Eq. (5-13).  

(a) 
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(b) 

 

(c) 
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(d) 

 

Figure 5-4: (a) Circular yarns of square arrangement, (b) circular yarns of 

hexagonal arrangement, (c) elliptical yarns of square arrangement, and (d) elliptical 

yarns of hexagonal arrangement in the representative cell 

The model is expressed in terms of porosity and fiber radius, both of which are 

relatively easy to measure. Herein, the weave porosity wε  (assuming all yarns are 

solid) is written as: 

2

1 ,w
x y

R
L L
πε = −

                        
(5-14) 

where R  is the yarn radius. For square packing pattern of yarns in Fig. 5-4 (a), the 

side lengths of the representative in both x-direction and y-direction are equal, viz: 

.
1x yL L R π

ε
= =

−
                     

(5-15) 
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The half height of channel is 2 2( ) / 2yh x L R x= − − when x R≤ ; and 

( ) / 2yh x L>  when / 2xL x R≥ > . 

The form of the permeability model for square array of circular yarns ,s cK  can 

be simplified by neglecting the integration term between a  and / 2xL , i.e. setting 

a R=  in Eq. (5-15), because there is no solid surface in that area to apply any 

resistance against flow. The simplification is proved accurate in the next section. The 

models of other structures also follow this simplification. The model of circular yarns 

in square configuration is therefore given by: 

,

3 20
2 2 2 2

1 .12
2 1 12
3 2 1 2 1 1

s c R

p p

K
dx

R R x R R x K R Kppp 
ε ε ε

=

   
− − + − − +   − − −   

∫                      

(5-16) 

B. Circular yarns in hexagonal configuration 

Next, it comes to the question of hexagonal packing, which is presented in Fig. 

5-4 (b). Both of yarns of square and hexagonal packed configuration have filaments 

with square packing (see Fig. 5-5 (a)) or hexagonal packing (see Fig. 5-5 (b)). The 

pressure drop over each slot in the hexagonal array is apparently the same as in the 

square case, so the pressure drop over the representative cell is twice of square case 

in Eq. (5-14). 

The half height of the channel between yarns is 2 23( )
3 yh x L R x= − − when

x R≤ . The side lengths of the cell for hexagonal arrangement of yarns are as 

follows: 
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2 3 ,
3 1xL π

ε
=

−
                                                 (5-17) 

and 

 3 .
2 1yL R π

ε
=

−
 
     

                                         (5-18)

 Substituting Eqs. (5-16, 5-17 and 5-18) into Eq. (5-15) leads to the overall 

permeability of hexagonal structure ,h cK , which is given by: 

,

3 20

2 2 2 2

1 .12 3
2 3 3 32
3 2 1 2 1 2 1

h c R

p p

K
dx

R R x R R x K R Kppp 
ε ε ε

=

   
   − − + − − +
   − − −   

∫

 

               
                     (5-19) 

(a) 
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(b) 

 

(c) 
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(d) 

 

 

Figure 5-5: Schematic of (a) a circular yarn made up of squarely packed filaments, (b) 

a circular yarn made up of hexagonally packed filaments, (c) an elliptical yarn made 

up of squarely packed filaments, and (d) an elliptical yarn made up of hexagonally 

packed filaments 

C. Elliptical yarns in square configuration 

For more general cases such like compressed fibrous layers, yarns with elliptical 

cross-sectional geometry are considered. The studies reported here are generated by 

imposing a axis ratio / /e x yA B L Lλ = = , where A  is the major axis and B  is the 

minor axis of an elliptical fiber. 

The square arrays of elliptical yarns are demonstrated in Fig. 5-4 (c), where the 

yarns contain filaments with square packing (see Fig. 5-5 (c)) or hexagonal packing 

(see Fig. 5-5 (d)). The weave porosity is accordingly given by: 
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1 .w
x y

AB
L L
πε = −

                          
(5-20) 

The side lengths of the representative cell are calculated respectively as: 

1xL AB πλ
ε

=
−

 and .
1y

ABL π
λ ε

=
−

 
             

(5-21) 

The half height of channel in this case is 
2

2( ) 1 .y
xh x L B
A

= − −  

As most of the pressure difference comes from the narrow gap between fibers, 

the mathematical forms for elliptical yarns is simplified as the circular cases do, i.e. 

a A= : 

,

3 20 2 2

2 2

.12
2 1 2 1
3 1 1 1

s e A

p p

K
dx

AB x AB x ABB B K K
A A

λ

ppp 
λ e λ e λ e

=

   
− − + − − +      − − −   

∫
 

               
(5-22) 

D. Elliptical yarns in hexagonal configuration 

For hexagonally staggered array of elliptical yarns shown in Fig. 5-4 (d), the 

weave porosity is given by Eq. (5-20), but the side lengths in x-direction and 

y-direction respectively of the representative cell are expressed as: 

2 3 ,
3 1xL AB πλ

ε
=

−
                      (5-23) 

and 
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3 .

2 1y
ABL π
λ ε

=
−

 
                     

(5-24) 

One derives the half height of channel according to its structural configuration in 

Fig. 5-4 (d) as: 

2

2

2 2
2( ) 1 1

x

y

Lx
xh x L B B
A A

 − 
 = − − − − . 

Finally, the model for elliptical yarns in hexagonal arrangement is obtained: 

13
2

2

2 2

2
2

2/4

2 2/2

.

2 3 21 1
3 2 1

3 22 3 2 1 1
2 1

3
2 1

x

x

h

x

x
L

pL A

p

K

Lx
AB xB B

A A

Lx
AB xB B K dx

A A

AB K

λ

p
λ ε

p
λ ε

p
λ ε

−

−

=
     −    − − − − +  −  

    
     −    − − − −  −    

  
 
 +
 −
 
 
  
 

∫  

               
(5-25) 

5.2.2. Semi-analytical estimate 

The channel close to the narrowest gap between yarns is more or less aligned 

with the flow direction. The widths of the channel are assumed as parallel walls. As 

most inter-yarn flow resistances of solid yarns exist near the narrowest gap  

(Ranganathan et al., 1996, Sobera and Kleijn, 2006) and the intra-yarn permeability 

is commonly much less than the inter-yarn permeability, the overall permeability 

may be estimated within the short channel. The intra-yarn permeability pK  is 
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found to be an additional component of the overall permeability K  based on 

( ) ( ) ( )i pQ x Q x Q x= +
 
for parallel flows within the fluid/porous layers. Thus, the 

inter-yarn velocity without the additional term of pK  becomes: 

( )
( ) ( )

2 2

int 2

11 .
2er p

h x y dpu h x K
h x dxµ

  
= − − +      

 
              

(5-26) 

In Eq. (5-26), the term ( )
( )

2 2

21
2

h x y
h x

 
−  

 
 accounts for the permeability of 

impermeable solid yarns. The term ( ) ph x K  accounts for the “slip” effect at the 

interface, which is independent of the former term. Therefore, the overall 

permeability can be estimated as a sum of inter-yarn permeability for solid yarns, 

intra-yarn permeability, and “slip” term:  

  

Figure 5-6: Network of inter-yarn, “slip”, and intra-yarn permeabilities along the 

flow direction 

min ,i p pK K K jh K= + +
                     

(5-27) 

where minh is the minimum distance between yarns and j  is an empirical constant, 

and iK  represents inter-permeability for solid yarns. minh , close to which flow 

Intra-yarn permeability 

“Slip” permeability Flow 

Inter-yarn permeability 
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velocity varies dramatically, is selected as the characteristic length to satisfy the 

dimensional equilibrium of Eq. (5-27). For different fibrous arrangements, minh  has 

different definition as following: 

min 2
1

h Rπ
ε

 
= −  −   

for square packing circular yarns, 

( )min
3 2

2 1
h Rπ

ε

 
 = −
 −   

for hexagonal packing circular yarns, 

min 2
1

h Bπ
ε

 
= −  −   

for square packing elliptical yarns with 2λ = , 

and  

( ) ( )min
2 2 1

3 1 8 3 1
h B

x
π π
ε

 
 = − −
 − −   

for hexagonal packing elliptical yarns 

with 2λ = . 

5.2.2. Results and discussion 

In this Section, the comparison between the proposed model with those 

numerical, experimental and analytical results available in the literature is presented. 

The existing results are generally reported as Darcy permeability, ratio of overall and 

intra-yarn permeability, flow resistance, and so forth, but most of them are converted 

to dimensionless permeability against weave porosity for better comparison. 

Therefore, the permeability K  is conducted by dividing square of the yarn radius 

2R  for circular yarns or product of semi-major and semi-minor axis AB  for 

ellipses.  
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Before using the model of Eq. (5-15) to predict permeability of fibrous system, 

the effective limits of inter-yarn channels are particularly investigated based on Eq. 

(5-15). It is found that the pressure decreases dramatically near the domain of the 

smallest distance between fibers and thus a short distance of gap nearby or effective 

channel length s  is only necessarily considered, and the related model is greatly 

simplified for that (Gebart, 1992). However, this conclusion is questionable when the 

yarns become porous and permeable. To investigate the effect of the length of the 

channel (or gap) in the calculation on the predicted permeability, the permeability in 

x-direction with different chosen length of the channel (or gap) is computed by 

replacing R  with s  for circular yarns (see Fig. 5-7) and replacing A  with s  for 

elliptical yarns (see Fig. 5-8) based on Eq. (5-15).  
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(b) 

  

 (c) 

  

Figure 5-7: Effect of the effective channel length limit ( s ) on the dimensionless 
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permeability of the fibrous system. The fibrous systems of circular yarns with weave 

porosity 0.25, 0.3, and 0.4 have intra-yarn permeability (a) 0; (b) 0.001; (c) 0.01. 
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(c)  

 

Figure 5-8: Effect of the effective channel length limit ( s ) on the dimensionless 

permeability of the fibrous system. The fibrous systems of elliptical yarns of axis 

ratio 2 with weave porosity 0.25, 0.3, and 0.4 have intra-yarn permeability (a) 0; (b) 

0.001; (c) 0.01. 

As can be seen, the small domain close to the narrowest gap provides most 

contribution of fluid flows for the medium with sold yarns and low porosity. To 

accurately characterize the flow, however, it is important to take into account the full 

length of the channel (or gap) between the highly porous or elliptical yarns, whose 

effective channel length increases from Fig. 5-7 and Fig. 5-8. It is found that the 

lengths of the channel chosen in the calculation, viz. R  for circular yarns and A  

for elliptical yarns, are reasonable without losing accuracy. 

The predicted results calculated by employing Eq. (5-16) for square packing 

pattern, are tested by permeability results of four samples from Sadiq et al.’s (Sadiq 
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et al., 1995). The squarely packed arrays of yarns have circular cross-sectional shape 

and are made up of a class of circular nylon filaments (Sadiq et al., 1995). The 

detailed structural properties of these samples are summarized in Table 5-1. A good 

agreement between the permeability prediction and the experimental results can be 

found in Fig. 5-9. 

Table 5-1: Darcy permeability and structural parameters of dual-scale fibrous 

materials of Sadiq et al. (Sadiq et al., 1995) 

Sample 
wε  R  ( cm ) 

yε  r  ( cm ) K   ( 2m ) 

1 0.60 0.32 0.373 0.036 74.97 10−×  

2 0.60 0.32 0.310 0.036 74.76 10−×  

3 0.50 0.32 0.247 0.036 71.28 10−×  

4 0.49 0.32 0.247 0.036 71.27 10−×  

 

Figure 5-9: Comparison of the model for squarely packed circular yarns with 

those obtained from experiments by Sadiq et al. (Sadiq et al., 1995). 
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The dimensionless permeability, calculated by Eq. (5-19), is compared with the 

numerical values of hexagonal array of circular yarns by Papathanasiou 

(Papathanasiou, 2001). The yarns were made up of circular filaments in square or 

hexagonal arrangements. The numerical results were expressed as a function of 

weave porosity and yarn porosity. In this study, fibrous materials with two different 

weave porosities as 0.2 and 0.3, and 0.03r R=  are considered to evaluate present 

model. A close agreement between the model and the numerical results for square 

and hexagonal packing filaments are presented in Fig. 5-10 (a) and Fig. 5-10 (b), 

respectively. In addition, when the yarn porosity is smaller than 0.6 and the 

corresponding dimensionless permeability is less than 510− , the overall permeability 

is almost not sensitive to the intra-yarn flow. However, when the yarn porosity is 

greater than 0.6 and the ratio of intra-yarn permeability and inter-yarn permeability 

becomes larger than 0.01, the overall permeability increases significantly with the 

increase of intra-yarn permeability. 
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Figure 5-10: Comparison of the model of hexagonally packed circular yarns against 

numerical results by Papathanasiou (Papathanasiou, 1997). The yarns are made of 

filaments of (a) square and (b) hexagonal arrangement. 
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Figure 5-11: Comparison of the model and numerical data (Ranganathan et al., 1996) 

for hexagonal arrays of solid elliptical yarns with axis ratio (a) 2 and (b) 4. 

For yarns of elliptical cross-sectional shape, a computational fluid dynamics 

package is used by Phelan and Wise (Phelan and Wise, 1996). The yarns are of 

square packing and a cross-sectional ratio 2. The agreement between the present 

model of Eq. (5-22) and the numerical data is good for weave porosity 0.25 and 0.3, 

as shown in Fig. 5-11.  

In addition, predicted values of the present model are compared with those 

computed results by Ranganathan et al. (Ranganathan et al., 1996), who used arrays 

of hexagonal packed elliptical yarns of axis ratio 2 and 4. It was showed that the 

small regime close to the smallest gap captures most pressure gradient (Ranganathan 

et al., 1996). All these numerical values are non-dimensionalized with respect to 

product of semi-major axis and semi-minor axis. The results shown in Figs. 5-12 (a) 

and 5-12 (b) indicate good agreement between the proposed model and simulation 
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results. Moreover, the fibrous material with axis ratio 2 is found to be slightly less 

permeable than that of ratio 4 when yarns are densely packed. In the other range of 

porosities, their permeabilities are close to each other, and the effect of 

cross-sectional shape may be neglected. 

  

Figure 5-12: Comparison of the model of elliptical yarns of square packing 

against numerical results by Phelan and Wise (Phelan and Wise, 1996) 

The proposed model based on Eq. (5-25) is compared with experimental results 

of Merhi. et al. (Merhi et al., 2007). In their experiment, the hexagonal arrays of 

yarns were made up of bundles of glass filaments, with the major axis normal to the 

flow direction. The circular filaments were found mainly in a hexagonal packing 

configuration (Merhi et al., 2007). The glass volume fraction in a yarn was about 

60% and the all the samples were tested for the same total fiber volume fraction, e.g. 

20% (Merhi et al., 2007). The detailed structural properties of these samples are 

summarized in Table 5-2. Fig. 5-13 reveals a promising agreement between the 

prediction using the present model and the experimental results.  
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Table 5-2: Darcy permeability and structural parameters of dual-scale fibrous 

materials of Merhi et al (Merhi et al., 2007) 

Sample 
wε  2A ( mm ) 2B

( mm ) 

yε  r  ( mm ) K   ( 2m ) 

1 0.67 700 105 0.4 7.5 112.93 10−×  

2 0.67 743 100 0.4 7.5 112.90 10−×  

3 0.67 699 93 0.4 7.5 113.45 10−×  

4 0.67 782 107 0.4 7.5 114.25 10−×  

5 0.67 714 129 0.4 7.5 114.59 10−×  

 

 

Figure 5-13: Comparison of the model for hexagonal-packed elliptical yarns 

with those obtained from experiments by Merhi et al. (Merhi et al., 2007) 
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Figure 5-14: Dimensionless permeability of dual-scale fibrous systems as a function 

of intra-yarn permeability. The model is compared with numerical results of 

Ranganathan et al. (Ranganathan et al., 1996). The fibrous media are made up of 

yarns with hexagonal packing at different weave porosity. 

Fig. 5-14 presents the dimensionless permeability of hexagonal array of elliptical 

yarns of axis ratio 2 against intra-yarn permeability based on Eq. (5-26). The fibrous 

structures with weave porosities of 0.2, 0.3 and 0.4 are studied, and their predicted 

permeabilities are compared with those predicted using the existing model of 

Ranganathan et al. (Ranganathan et al., 1996). Ranganthan et al. (Ranganathan et al., 

1996) developed a semi-analytical model for staggered elliptical fibrous systems 

based on solving Stokes equation for external flows and Brinkman law in intra-yarn 

space. From Fig. 5-14, it can be seen that the prediction of the present model agrees 

very well with all data of Ranganthan et al. (Ranganathan et al., 1996). Increasing the 
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weave porosity promotes the overall permeability, but when the intra-yarn 

permeability is small, the overall permeability keeps being a constant until the 

intra-yarn permeability reaching a certain value. The intra-yarn permeability 

increases the overall permeability of dual-scale fibrous materials when the ratio 

between them is more than 0.01. in addition, for intra-yarn dimensionless 

permeability around 0.0001, its effect on the overall permeability with a weave 

porosity of 0.4 is very limited, but it greatly increases the permeability of the 

structure for a weave porosity of 0.2. It indicates that more fluids have to move 

through the yarns between yarns when the yarns are densely staggered. On the 

contrary, when the intra-yarn permeability becomes comparable with or larger than 

the inter-yarn permeability, the overall permeability increases almost linearly with 

the intra-yarn permeability. This phenomenon, nevertheless, is not common in reality 

because the intra-permeabilities in most dual-scale fibrous materials are much lower 

than the inter-yarn permeabilities. 
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(b) 

 

Figure 5-15: Empirical model fitted with the regular model. The yarns are packed 

squarely and hexagonally with (a) circular cross-section shape and elliptical 

cross-section shape of axis ratio 2. The black lines represent the square packing, 

while the blue demons. 

As Eq. (5-27) indicates that the permeability coefficient is a combination of 

solid inter-yarn permeability, “slip” permeability and intra-yarn permeability, the 

overall permeability is expressed in an empirical form of these contributors. A 

comparison between the semi-analytical expression of Eq. (5-27) and the regular 

models based on Eq. (5-13) is conducted in Fig. 5-15 (a) for circular yarns and in 

Fig, 5-15 (b) for elliptical yarns. For circular yarns, the empirical constant 
 
uses 

0.35 for square packing and 0.5 for hexagonal packing, respectively. For elliptical 

yarns, the empirical constant 
 
is 0.25 for square packing and 0.4 for hexagonal 

packing, respectively. Excellent fittings are found in Fig. 5-15, which indicates the 

reliability and predictability of the simple semi-analytical expression. 
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5.3. 3D woven fabric 

The model for the permeability of 3D woven fabric is based on the modified 

scale estimate method in Chapter 3 with consideration of “slip effect” of intra-yarn 

permeability. 

5.3.1. Model generation 

As the model would be compared with the numerical results from Nabovati et 

al.’s (Nabovati et al., 2010), the same plain bi-axial weave pattern was constructed as 

shown in Fig. 5-17. The woven fabric is made up of perpendicular yarns along x- and 

y-directions., and the created yarns have circular cross-sectional shape in the x-z and 

y-z planes along yarn axes. The distance between two adjacent yarns is aS . 

 

Figure 5-16: Schematic of 3D bi-axial plain woven fabric 

Based on the scale estimate method, the minimum distance (or gap) ( )h x  

between two circular yarns parallel with the same plane is selected as the 
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characteristic length. The pressure gradient of a channel within dx  along the 

x-direction is calculated as: 

( )

2

4 ,au S
dp dx

h z
µ=

                          
(5-6) 

where, the actual velocity ( )u z  in the channel between yarns is expressed as 

( )2 2/ 4au S h z    based on conservation of flux, and ( )2 24 / ah z S    
is ratio between 

the minimum to the total frontal areas in z-direction. 

Similar to the calculation process of the two scaling models of Eq. (3-43) and 

(3-45), integrating Eq. (5-28) yields 

( ) ( )
min

min2 2 2
3.54 3.50 0 2

min

21 1

1

RR
Rh

a a

Rh
p u S dx u S dt

h x h t
mm ∆ = =

+
∫ ∫ .  

                  
(5-7) 

Therefore, the dimensionless permeability of 3D woven fabric based on Eq. (5-29) 

is given by:  

0.5
2 3.5

min 2/ ,s
a

RK R ch
S

=
                        

(5-8) 

where 
( )2 1a

RS π
ε

=
−

 and 
( )min 2

2 1
Rh Rπ
ε

= −
−

. 

5.3.2. Results and discussion 

To our best knowledge, it is the first theoretical attempt to determine 
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permeability of 3D woven fabric made up of multi-filaments. Fig. 5-17 presents the 

proposed model as a function of weave porosity, which is compared with numerical 

results with different yarn porosity from Nabovati et al.’s (Nabovati et al., 2010). For 

solid yarns, the fitted dimensionless hydraulic permeability is obtained based on Eq. 

(5-30): 

( )
3.5

22 0.785/ 0.46 1 1 .
1sK R ε

ε
− = − − − 

 
                 

(5-31) 

 

Figure 5-17: Semi-analytical model of 3D woven fabric compares with numerical 

results by Nabovati et al (Nabovati et al., 2010) with different yarn porosity 

For woven fabric of permeable yarns, the empirical constant is selected as 

0.7j =  after fitting Eq. (5-27) with numerical data. When the yarns in the fabric are 

densely packed, the present estimates are slightly higher than the numerical results. 
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provides the proper trend of permeability over a wide range of weave porosities. Fig. 

5-17 also reveals that when the woven fabric becomes loose, the effect of intra-yarn 

permeability on the overall permeability is limited and eventually negligible. 

5.4. Concluding remarks 

Transverse flow through fibrous media made up of aligned arrays of permeable 

yarns has been theoretically investigated. The proposed model was based on a “slip” 

boundary in intra-yarn regime, which replaced the widely used Brinkman 

description in previous literature. This model was successfully validated by 

comparing the model prediction with rigorous numerical calculations and earlier 

experimental results with different yarn cross-sectional shapes and fiber packing 

configurations. The intra-yarn permeability increases the overall permeability of 

fibrous system when the ratio between them is higher than 0.01, and the effect is 

more significant when fibers are densely packed. It also shows that permeability of 

aligned yarns with elliptical cross-section is similar to that of aligned yarns with 

circular cross-section at the same porosity. The present work is also the first 

analytical attempt to model through-thickness permeability of 3D dual-scale woven 

fabric.. 
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Chapter 6 Deterministic models for 

diffusion through fibrous media  

6.1. Introduction 

Effective Diffusivity of fibrous media is greatly dependent on fibrous 

architecture. By measuring the drop of the gas concentration and diffusion flux rate, 

one can determine the gas diffusivity through a testing sample based on Fick’s law 

(Gibson et al., 2001, Huang and Qian, 2007, LaManna and Kandlikar, 2011). 

Although experimental works are reliable and informative, they are phenomenal and 

difficult to reveal the underlining physics. Theoretical and numerical studies are 

therefore essential to better rationalize the relationship between the structural 

parameters and the resulting gas diffusivity. 

 Bruggeman model is one of the most widely applied analytical models, but it is 

modeled for a porous medium composed of a collection of solid spheres (Zamel et 

al., 2009). Another popular model is derived by solving diffusion equation though 

periodically and regularly aligned cylinders (Nilsson and Stenstrom, 1995). For 

more general and realistic fibrous membranes, where fibers are randomly located or 

orientated, analytical solutions are difficult to find. Numerical techniques allow 

reconstruction of microstructures of fibrous membranes and simulate molecules 

diffusion in these structures (Tomadakis and Sotirchos, 1993a). Additionally, bulk 

diffusion at macro-scale and Knudsen diffusion at nano-scale can be simulated 

simultaneously in the same fibrous medium with a wide pore size distribution 

(Tomadakis and Sotirchos, 1993a). 

Although many theoretical studies have been conducted to predict gas 
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diffusivity of fibrous materials based on parallel fibers or layered spheres, they are 

limited by over-simplified assumptions. Computational technique as well as 

experimental trials, nevertheless, cannot fully reveal multi-scale mechanisms of gas 

diffusion, and the analytical relationship between the complex internal structures and 

the effective diffusivity. Therefore, a theoretical model of gas diffusion through 

nano- and micro-scale fibrous materials is desirable. 

In this chapter, fibers are assumed to distribute randomly to represent the 

microstructures of realistic fibrous materials. Cell-based method is firstly applied to 

determine the effective diffusivity of 1D ordered fiber arrays and then the Voronoi 

Tessellation method is used to model gas diffusion through 1D randomly distributed 

fiber array. Three mixing laws are adopted to extend the 1D model to 2D and 3D 

cases. 

6.2. Model generation 

Here, fibrous media are assumed to be composed of periodical representative unit 

cells. The assumptions of predicting effective diffusivity of fibrous media are made 

as follows: 

1. The fibrous matrix is made up of straight and circular fibers. 

2. All the fibers are impermeable and the gas diffusion takes place only in 

the void areas between fibers. 

3. The fiber radius is much larger than the mean free path of diffusive 

molecules, and Knudsen diffusion is not considered. 



145 
 

 

Figure 6-1: A unit cell in regular array of parallel fibers. The square has the same 

area with the circle in dotted line.  

The simplest representative cell for 1D fibrous media is regular array of parallel 

fibers, as shown in Fig. 6-1. The diffusivity in the open voids of the cell is equal to 

bulk diffusivity bD , which characterizes gas diffusion in bulk space without 

confinement. This representative cell is composed of an impermeable fiber and the 

gas matrix, surrounded by the effective medium with diffusivity effD , which is the 

same with the diffusivity of the whole system. For convenience and without losing 

generality, the representative cell is assumed to be a circle with the same area of the 

square containing the fiber. The porosity ε  for this arrangement of, both the unit 

cell and the whole fibrous system can be determined by the following equation: 

2

2 2

1 1 ,
c

r r
S R
πε = − = −

                             
(6-1) 

where r  is the fiber radius, cR  is the radius of the unit cell, 2
cS L=  is the area of 
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the square or the circular cell.  

In a steady state, the gas diffusion across the fiber array is defined by Laplace 

equation (Nilsson and Stenstrom, 1995): 

2 ( , ) 0,C l θ∇ =                              (6-2) 

where l  and θ  are the cylindrical coordinates. The appropriate solution of Eq. 

(6-2) for gas diffusion normal to a cell containing a fiber is given by (Gueribiz et al., 

2009): 

1

3
2

4

cos ,  (0 )

( , ) ( ) cos ,  ( ) ,

cos ,  ( )

Al l r
AC l A l r l R
l

A l R l

θ

θ θ

θ

< ≤
= + < ≤


<

                        (6-3) 

where 1A , 2A , 3A , and 4A  are unknown constants arising from boundary 

conditions. 

The continuity of the diffusive gas at the boundary between the impermeable 

fiber and the voids leads to: 

3
2 1( , ) 0,AC r A r A r

r
θ = + = =                       (6-4)                         

and there is no gas diffusion flux passing through the boundary of fiber surface, i.e., 

3
2 2

( , ) sin 0.AC r A r
l r
θ∂  = − = ∂  

                        (6-5) 

The continuity of the diffusive gas at the boundary of the unit cell results in: 
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3
2 4( , ) ,c

AC R A R A R
R

θ = + =                           (6-6) 

and the continuity of gas diffusion rate at the boundary of the unit cell is given by: 

3
2 42 .b eff

c

AD A D A
R

 
− = 

 
                            (6-7) 

Solving the equations of (6-4) to (6-7), the effective diffusivity for both the 

representative cell and the whole 1D regular fibrous system is readily obtained： 

2 2

2 2 ,eff c

b c

D R r
D R r

−
=

+
                                 (6-8) 

or in terms of porosity ε : 

.
2

eff

b

D
D

e
e

=
−

                                  (6-9) 

Then this study considers the more complicated and realistic structures, in 

which fibers are placed randomly. Diffusion process through the fibrous system 

becomes more complex because of the disorder of the fiber arrangement. To describe 

the randomness of fibers location, the Voronoi Tessellation method is applied (Chen 

and Hlavacek, 1994). In the fibrous system composed of randomly located fibers, 

one fiber is assumed to be contained by a polygonal cell whose boundaries are 

defined by the perpendicular bisectors of the lines joining each fiber with its nearest 

neighbor, as presented in Fig. 6-2. The polygonal cell is called Voronoi tessellation. 

Particularly, the areas of the unit cells are found well described by the Gamma 

distribution (Chen and Hlavacek, 1994). 
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Figure 6-2: A unit cell in randomly distributed array of parallel fibers. The voronoi 

polygon has the same area with the circle in dotted line. 

It is feasible macroscopically to assume the highly porous fibrous system to be 

homogeneity with a constant concentration gradient. However, the diffusion 

coefficient and diffusive flux of each cell are different with each other, and thus the 

effective diffusive flux effJ  of the system can be obtained in a volume-averaged 

form: 

( ) ( )
0

0

,

N

i i
i

eff N

i
i

J S SJdS J S S
J

SdS S

=

=

∆ ∆
= = =

∆

∑∫ ∑
∑∫ ∑

               (6-10) 

where ( )iJ S  and iS  is the flux and area of the ith unit cell, respectively, N  is 

the number of the unit cells in the system, and S  is the mean area of the unit 

cells. As N  is very large and iS  is very small comparing with the crossing area of 

the whole system, the effective diffusive flux effJ  can be expressed as a function of 
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probability density of unit cell area ( )f S  in an integral form: 

( ) ( ) .effJ J S f S dS= ∫                            (6-11) 

  Substituting Eq. (6-11) into Eq. (1-4) leads to the effective diffusivity: 

( ) ( ) .effD D S f S dS= ∫                          (6-12) 

Chen and Hlavacek (Chen and Hlavacek, 1994) found that Gamma distribution 

can properly describe the local void area distribution in the Voronoi Tessellation: 

( ) ( )
1

,
S
S

v
Sf S e

S

β β β

β

β
β

− −

=
Γ

                    (6-13) 

where ( )αΓ  is a Gamma distribution, and β  is the scale parameter. 

It satisfies the following relationship: 

( )2
.

r
Sf S dS S

π

∞
=∫                           (6-14) 

Here, the diffusivity of the voronoi polygon is approximated to be identical with 

the overlapped circle with the same area as seen from Fig. 6-2, and this assumption 

has been successfully used to determine the permeability of more structure-sensitive 

gas flow in Chapter 3. Substituting Eq. (6-8) and Eq. (6-14) into Eq. (6-12), the 

dimensionless through-plane effective diffusivity of 1D random fibrous media can be 

obtained: 

( )2

1
2

2 .
S
Seff

r
b

D S r S Se d
D S r S S

b
b b

π

π b
π b

−
−∞    −

=       + Γ    
∫          (6-15) 
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where 
2

1 r
S
πε = −  and Sx

S
= . The scale parameter is numerically determined as 

3.61β =  (Ferenc and Neda, 2007), which is adopted in this study: 

3.61 3.61

1

127.4 .
1

eff

b

D x x e dx
D xe

e
e

∞ −

−

− +
=

+ +∫                  (6-16) 

For gas diffusion parallel with fibers, the tortuosity of the 1D fibrous medium is 

found to be practically independent of its porosity, and the effective diffusivity for 

both regular and random 1D fiber beds is: 

.eff

b

D
D

e=                               (6-17) 

The effective diffusivity of 2D randomly layered fibrous structures, which are 

used widely in GDLs in PEMFC and other fields, will be predicted based on 2D 

model. The pressure-driven permeability of a porous medium was determined by a 

function of diffusivity, pore volume, and pore surfaces (Johnson et al., 1986, 

Tomadakis and Robertson, 2005). The pore volume and pore surfaces keep constant 

when the in-plane fiber orientation varies from 1D fibers to 2D (Tomadakis and 

Sotirchos, 1993b). Based on this relationship, it can be safely estimated that the 

dimensionless diffusivity is not affected by in-plane fiber orientation because the 

pressure-driven flow permeability is independent of in-plane fiber orientation, as 

proven both analytically in chapter 3 and numerically (Tahir and Tafreshi, 2009). 

Indeed, gas diffusion is much less sensitive than gas flow interacting with fibers, so it 

is reasonable to conclude that the effective diffusivity remains unchanged from 1D to 

2D as gas flow does. Therefore, the 2D randomly layered fibrous structure shares the 

same model with the 1D case as Eq. (6-16). 
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When the fibers orient more parallel with the total gas diffusion direction, such 

as gas diffusion through in-plane GDLs or 3D isotropic fibrous media, the exact 

solutions of gas diffusivity are almost impossible to find. In this study, the system 

diffusivity is considered as combined local diffusivities of 1D fiber array normal to 

and parallel with the diffusion direction to estimate the actual diffusivity (see Fig. 

6-3). The distribution of fibers is complex, but they can be considered homogeneous 

at macro-scale. For fibers oriented in different principal directions (x-, y- or 

z-direction), they share the same average porosity with the whole fibrous system. 

Three mixing rules, which were proposed for permeability prediction (Mattern and 

Deen, 2008), are used to determine effective diffusivities in this study based on 

mathematical analogy between Darcy’s law and Fick’s law. The three mixing rules 

based on different approximations and as functions of fiber fraction 1φ ε= −  are 

listed as follows: 

( ) ( ) ( ) ,parnorm
eff norm parD D D

fffff 
ff

= +                       (6-18) 

( ) ( ) ( )
1

1 1 ,parnorm
eff norm parD D D

fffff 
ff

−

− − 
= + 
 

                  (6-19) 

( ) ( ) ( ) ,
parnorm

eff norm parD D D
ff
fffff   =                            (6-20) 

where, norm and par mean normal to and parallel with the flux direction, respectively. 

In Eq. (6-18), the volume-weighted diffusivity assumes each fiber type as parallel 

resistors. The volume-weighted resistivity regards diffusive resistors as series in Eq. 

(6-19). In Eq. (6-20), the geometric mean is a mathematical blend. 
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Figure 6-3: Illustration of 3D or 2D fibrous media composed of 1D fiber arrays 

6.3. Results and discussion 

In this section, the proposed model is compared with numerical, experimental 

and analytical results available in the literature. However, the collected data were 

reported in terms of tortuosity, equivalent diffusivity, diffusive resistance, or related 

parameters. In order to directly compare them with the present predictions, they are 

converted to dimensionless effective diffusivity against porosity. For in-plane gas 

diffusion of 2D fibrous media, norm paraφ φ= , and for through-plane gas diffusion of 

3D fibrous media, 2 / 3, and 1/ 3norm paraφ φ= = . 
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Figure 6-4: Comparison of the model of 1D fibrous media with experimental, 

numerical, and analytical results. The blue line and the black line are present models 

of through-plane diffusion in 1D regular and 1D random structure, respectively. 

The dimensionless through-plane effective diffusivity, which is calculated for 

a periodic array of fibers for both regular and random packing, is presented in Fig. 

6-4. For regular case, the results of the present model match perfectly with numerical 

results of Perrins at al. (Perrins et al., 1979) and experimental data by Kharadly and 

Jackson (Kharadly and Jackson, 1953). However, the trend of the model is 

considerably different from Shen and Springer’s model (Shen and Springer, 1981), 

who did not consider the shape variation of void gap between fibers. The prediction 

of Li et al. (Li et al., 2002) is a little higher than the present model, which may arise 

from their over-idealized assumption that gas concentration is uniform at any 

cross-section of the void channel. Fig. 6-4 shows that the through-plane effective 

diffusivity of 1D random structure slightly lower than 1D regular case, which may be 
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due to that more random and disorder structures increases tortuosity. It should be 

noted that for viscous flow though fibrous media, hydraulic permeability increases 

with increasing degrees of randomness, where the trend can be ascribed to the 

increased mean pore size for random structure (Sobera and Kleijn, 2006). Therefore, 

when the fibers are more randomly located, the fibrous structures will have lower 

hydraulic permeability, but higher vapor diffusivity, making them good candidates of 

breathable materials.  

 

Figure 6-5: Comparison of the model of through-plane diffusion in 2D fibrous media 

with experimental and numerical results 

According to Eq. (6-9) and Eq. (14), the tortuosity of the present model for 

1D regular structure is equal to (2 )ε− . It can be expressed as 

1 .τ φ= +                                  (6-21) 

In analogy to the widely used equation for tortuosity of porous media (Koponen et al., 

1996), 1 0.8τ φ= + , Eq. (6-21) is extended to  estimate the tortuosity of randomly 
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located fibers by: 

1 ,eτ φ= +                               (6-22) 

where, e kφ φ=  is the equivalent fiber fraction for the random structure and k  is a 

geometrical factor. It can be seen in Fig. 4 that the semi-analytical model based on 

Eq. (6-22) matches perfectly with the 1D random model of Eq. (14) when 1.7k = . 

The semi-analytical model can therefore be expressed in the following form: 

.
2.7 1.7

eff

b

D
D

e
e

=
−

                        (6-23) 

In order to validate the present model, past numerical and experimental 

results of GDLs are plotted and compared with the prediction of the present model in 

Fig. 6-5. Tomadakis and Sotirchos (Tomadakis and Sotirchos, 1993b) investigated 

the diffusivities through 1D and 2D randomly located fiber assembles using Monte 

Carlo simulation and found that 1D and 2D through-plane diffusivities are similar. As 

can be seen from Fig. 6, both 1D and 2D through-plane diffusivities from Tomadakis 

and Sotirchos (Tomadakis and Sotirchos, 1993b) are close to our 2D (1D) 

through-plane model, which shows that 1D and 2D through-plane diffusivities are 

approximately independent of in-plane fiber orientation. It can be seen from the 

figure that this model prediction agrees well with the experimental data from Penman 

(Penman, 1940) and Moest et al. (Moest et al., 2009) and numerical results by Nam 

and Kaviany [21] and by Becker et al. (Becker et al., 2011, Becker et al., 2008). 

Nevertheless, it should be noted this model prediction deviates greatly from some 

experimental data in literature. This is due to the fact that chemical binders were 

applied in the samples of these experiments, but not considered in our model. The 

binder is used to bind carbon fibers together, can fill the voids between the fibers (see 

Fig. 7 from Ref. (Flueckiger et al., 2008)). Therefore, the effective diffusivities 

measured in these experiments (e.g. the experimental results of Toray TGP-060 
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carbon fibers by Flueckiger at al. (Flueckiger et al., 2008) and Toray TGP-120 

carbon fibers by  Moest et al. (Moest et al., 2009) and LaManna and Kandlikar 

(LaManna and Kandlikar, 2011) are significantly lower than the model prediction. 

Moest et al. (Moest et al., 2009) also measured effective diffusivity of Freudenberg 

FB-A-0 carbon fiber layers, which are bonded mechanically without chemical binder, 

and the experimental data are in agreement with the present model of Eq. (6-23). In 

addition, numerical simulations by Becker et al. (Becker et al., 2009) show that the 

virtually created GDL with binder converged on the fiber contacting area (V0) has 

higher diffusivity than the reconstructed GDL based on the tomographic image of 

real TGP-060 paper (T0). Therefore, high performance of PEMFCs with higher gas 

diffusivity can be achieved with lower binder used or less binder distributed in void 

pores between fibers. We also provide a semi-analytical model fitted by the 

diffusivities of existing TGP carbon fibers based on Eq. (6-22): 

.
7 6

eff

b

D
D

e
e

=
−

                             (6-24) 

 

Figure 6-6: Comparison of the mixing laws of in-plane diffusion through 2D 
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fibrous media with numerical results 

In Fig. 6-6, the diffusivity of a fibrous material, consisting of 1D random fibers 

half parallel and half normal to flux direction, predicted by the present model using 

three different mixing rules, is compared with the numerical results from Tomadakis 

and Sotirchos (Tomadakis and Sotirchos, 1993b) and Becker et al. (Becker et al., 

2008). It is interesting to see that there is only very small difference between the 

three mixing rules, and the model prediction using either of the mixing rules agree 

well with the numerical results. The volume-averaged diffusivity model and the 

volume-averaged resistance model are the upper and lower limits of diffusivity 

estimates, respectively (see Fig. 6-7), while the geometric mean is merely a 

mathematical estimate without physical meaning. Therefore, a better estimate would 

be the average of volume-averaged diffusivity model and volume-averaged 

resistance model, which is adopted in this study and is plotted in Fig. 6-6:  

( ) ( ) ( )

( ) ( )
1

1 1

1
2

1               .
2

parnorm
eff norm par

parnorm
norm par

D D D

D D

fffff 
ff

ff ff
ff

−

− −

 
= + 

 

 
+ + 

 

                (6-25) 

 

Figure 6-7: Relationship between the realistic model, volume-averaged 

diffusivity model, and volume-averaged resistance model 
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Based on Eq. (6-17), Eq. (6-23) and Eq. (6-25) the 2D in-plane diffusivity model 

can be expressed as: 

3.7 1.7 4 .
4 2.7 1.7 3.7 1.7

eff

b

D
D

ee
ee

− = + − − 
                        (6-26) 

Likewise, comparison of three different mixing rules is carried out for 3D 

fibrous structures in Fig. 6-8. The prediction of this model for the 3D fibrous 

structure, as assuming it consists of 1D random fibers with 1/3 parallel and 2/3 

normal to flux direction, agrees well with the numerical data by Tomadakis and 

Sotirchos (Tomadakis and Sotirchos, 1993b). Based on Eq. (6-17), Eq. (6-23) and 

Eq. (6-25), we can derive a semi-analytical model for 3D fibrous structure:  

4.7 1.7 9 .
6 2.7 1.7 6.4 3.4

eff

b

D
D

ee
ee

− = + − − 
                 (6-27) 

 

Figure 6-8: Comparison of the mixing laws of 3D fibrous media with numerical 

results  
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For the three types of random fiber mats, the effective diffusivity of this model 

increases with growing porosity and increasing orientation preference of fibers 

normal to diffusion direction, which has the same tendency with the effective 

permeability caused by viscous flow, as revealed in Chapter 3. 

6.4. Concluding remarks 

Theoretical models with semi-analytical forms have been proposed to predict 

the effective diffusivities of 1D, 2D, and 3D randomly distributed fiber assembles, 

which are widely used as GDLs in PEMFCs. The predicted effective diffusivities 

agree well with those of experimental measurements and past numerical simulations. 

It is particularly found that randomly distributed fibers have lower diffusivities than 

those ordered distributed. In addition, effective diffusivity is not sensitive with 

in-plane orientation, but positively increasing with increasing through-plane 

orientation. Using less binder or properly filling binder in GDLs can increases their 

effective diffusivities. This work provides an in-depth understanding of diffusion 

mechanisms in fibrous media and can simplify the process of design and 

optimization for GDLs and other applications. 
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Chapter 7 Statistical models for 

diffusion through fibrous media 

7.1. Introduction 

Modeling gas diffusion in nanofiber layers is challenging. In such media, the 

disordered nature of pore structures is difficult to describe, and further complexities 

are introduced as multiple mechanisms of gas diffusion exist simultaneously. In this 

work, an analytical model is proposed to study gas diffusion across nanofiber layers 

based on fractal theory. The fractal model is expressed in terms of pore area and 

tortuosity fractal dimensions, which enable to statistically characterize the internal 

geometric structures of nano-fibrous media. Knudsen diffusion in nano-scale 

channels is considered, and the Knudsen tortuosity factor is redefined to make it 

independent of diffusion mechanism. Thereafter, experiments of measuring the 

effective diffusivity of electrospun nano-fibrous mats and commercial nonwoven 

webs by the inverted-cup test method are conducted. Finally, the proposed model is 

compared with experimental results, and the influences of structural parameters are 

analyzed. 

7.2. Model generation 

Before development of the effective gas diffusivity of nanofiber layers, the 

following assumptions are made: (1) fibrous media are regarded as a collection of 

bundles of tortuous open channels; (2) all the fibers are impermeable; (3) all the 

fibers have the uniform radius; (4) gas diffusion is in steady state. 

For a fractal object, the following statistical relationship exists (Mandelbrot, 
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1982): 

( ) 0 ,DM L L∝                             (7-1) 

where, 0D  is the fractal dimension, ( )M L  can be a quality, such as length, 

volume, or area, and L  is the length scale. It is also shown that the pore number in 

the realistic fibrous porous media follows the fractal power law (Yu and Li, 2001): 

max( ) ( ) ,fD
pN L R R R≥ =                           (7-2) 

where, fD  is the pore area fractal dimension with 0 2fD< <  in two dimensions,  

and pR  and maxR  is the pore radius and maximum pore radius, respectively. The 

total number of pores tN , from the minimum pore radius minR  to maximum pore 

radius maxR , is therefore given by max min( ) fDR R . Additionally, the pore number with 

radius between pR  and p pR dR+  can be obtained: 

1
max .f fD D

f p pdN D R R dR− −= −                         (7-3) 

Hence, the total fluxes of gas diffusion dQ  can be obtained by integrating the 

individual diffusion flux ( )dq R  using Eq. (7-3): 

max

min

( ) .
R

d pR
Q q R dN= ∫                            (7-4) 

where, ( ) ( ) ( )d p p pq R j R A R= , ( )pj R is the diffusion rate of a single channel, and  

2( )p pA R Rp=  is the crossing area of a single pore. Similarly, the total crossing area 
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of pores pA  is obtained by integration: 

max

min

( ) .
R

p pR
A A R dN= ∫                             (7-5) 

And the total cross-sectional area tA  is derived by the definition of the system 

porosity (Yu, 2008): 

.p
t

A
A

ε
=                              (7-6) 

Gas diffusion rate ( )pj R  can be described by the following expression: 

( ) ( )( ) ,p equ p
p

Cj R D R
L R

=


                       (7-7) 

where, ( )equD R  is the equivalent diffusivity of a channel based on Eq. (2-15): 

1
1 1 1 .

3 2 1equ b
p

uD D
R Knλ

−
 

= + =   + 
                       (7-8) 

when pore size is much larger than mean free path of molecules, equ bD D→ ; when 

pore size is much smaller than mean free path of molecules, equ KnD D→ . Therefore, 

the equivalent diffusion captures the diffusive mechanisms through all range of pore 

length scales. And ( )L R  is the tortuous length of a channel seen in Fig. 7-1, which is 

related with pore radius (Yu, 2008): 

( ) ( )10 0( ) 2 ,t
DtD

p p pH R H R H Rt
−

= =                (7-9) 
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where tD  is the tortuosity fractal dimension, and 0H  is the straight length of a 

channel, which is equal to the thickness of the medium.  

 

Figure 7-1: Schematic of fibrous media composed of tortuous channels 

As the tortuosity defined and calculated above is solely determined by the 

geometric details of porous media, it should be independent of diffusive mechanisms. 

However, Knudsen tortuosity Knτ  is found to be greater than geometric tortuosity 

in bulk regime t  experimentally by Papadopoulos et al. (Papadopoulos et al., 

2007), and numerically and theoretically by Zalc et al. (Zalc et al., 2004). The 

mechanism-dependent tortuosity in Knudsen regime is due to different path 

distributions and wall reflections of gas molecules from that in bulk regime, and 

interested readers are referred to Zalc et al.’s work (Zalc et al., 2004). The modified 

tortuosity independent of diffusion mechanism can be obtained by a proper 

definition.It is particularly found 3Knt t=  in a single cylindrical tube (Zalc et al., 

2004), so the modified tortuosity can be expressed as 
1

Kn
M

Kn
Kn

t t
t

+
=

+
. Thus, the 

modified length of a tortuous channel is given by: 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX9-4T6CTGV-1&_user=1314101&_coverDate=08%2F12%2F2008&_alid=787388971&_rdoc=16&_fmt=high&_orig=search&_cdi=5585&_sort=d&_docanchor=&view=c&_ct=142&_acct=C000052297&_version=1&_urlVersion=0&_userid=1314101&md5=6726441fc9339ec8e340ff6eb25d08f6#fig1#fig1
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( ) ( )10 0
1 3 2 .

1 1
t

DtDKn
p p

Kn KnH R H H R
Kn Kn

tt  −+ +
= =

+ +
             (7-10)  

Substituting Eqs. (7-5 to 7-10) into Eq. (7-4), a compact fractal model of 

dimensionless diffusivity is obtained, viz., 
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+=

  
 −     

∫                 (7-11) 

In Eq. (7-11), all the parameters have clear physical meanings and no empirical 

constants exist. This model can be particularly used to calculate effective diffusivity 

of nanofiber layers, and can be also applied to general porous media.  

The pore size of fibrous media is difficult to measure, but it can be estimated 

from fiber radius. The relationship between the mean pore size and fiber radius in 

fibrous media is given by (Tomadakis and Robertson, 2005, Tomadakis and 

Sotirchos, 1991): 

,
1pR rε

ε
=

−
                      (7-12) 

where R  is the mean pore radius and r  is fiber radius. In addition, the mean 

pore radius can be computed as: 

max

min
min.( )

1
R f

p p pR
f

D
R Rf R dR R

D
= =

−∫                    (7-13) 

Based on Eq. (7-12) and Eq. (7-13), the minimum pore radius is given by 

min

1
1

f

f

D
R r

D
ε
ε

−
=

−
. It is set that max min /R R k= , where k  is the ratio between 
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maximum and minimum pore radius. Therefore, the dimensionless diffusivity in 

terms of fiber radius and fractal dimensions can be easily obtained: 
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7.3. Experimental 

The electrospinning set-up is shown in Fig. 7-2. The polymer solution was 

pushed out of the needle by a controlled syringe pump. The applied positive voltage 

was supplied to the metal tip of the needle via a copper wire from a DC high-voltage 

generator.  

 

Figure 7-2: Electrospinning set-up 

The nylon 6 particles were dissolved in formic acid with 20 wt% concentration 

at room temperature by continuous stirring for 24 hours. The potential differences 

between the needle tip and the counter electrode (collector) were controlled at 25 kV. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX9-4T6CTGV-1&_user=1314101&_coverDate=08%2F12%2F2008&_alid=787388971&_rdoc=16&_fmt=high&_orig=search&_cdi=5585&_sort=d&_docanchor=&view=c&_ct=142&_acct=C000052297&_version=1&_urlVersion=0&_userid=1314101&md5=6726441fc9339ec8e340ff6eb25d08f6#fig1#fig1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX9-4T6CTGV-1&_user=1314101&_coverDate=08%2F12%2F2008&_alid=787388971&_rdoc=16&_fmt=high&_orig=search&_cdi=5585&_sort=d&_docanchor=&view=c&_ct=142&_acct=C000052297&_version=1&_urlVersion=0&_userid=1314101&md5=6726441fc9339ec8e340ff6eb25d08f6#fig1#fig1
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A rotating mental drum covered with aluminum foil, placed 15 cm away from the 

needle tip, was used to collect the electrospun nanofibers. The typical ejection rate 

of the solution was 0.3 mL/h. The electrospinning process was conducted in the 

fume cupboard.  

The porosities of electrospun fiber web are calculated by the following 

equation:  

1 ,media

nylon

ρe
ρ

= −                            (7-15) 

where, ε  is the porosity of the electrospun web, mediaρ  is the density of fibrous 

media, and nylonρ  is the density of solid nylon 6. 

(a)  (b)  

Figure 7-3: SEM images of (a) Nylon 6 electrospun fibrous medium and (b) 

conventional nonwoven 

A FEI Sirion 200 field emission scanning electron microscope (FESEM) was 

used to image electrospun samples. An example is shown in Fig. 7-2, and a sample 

of conventional nonwoven was also added for comparison. Samples were coated 

with Au/Pd using a Polaron Range sputter coater prior to imaging. The thickness of 

app:ds:fuming%20cupboard
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electrospun nanofibers collected in this experiment is between 100 and 200 microns. 

ImageJ was used to measure individual fiber radius in each SEM micrograph. On 

average, 40 measurements were conducted on each sample to determine the average 

fiber radius. 

 

Figure 7-4: Inverted cup test set-up 

The moisture vapor diffusivity was measured using inverted-cup test method, 

seen as in Fig. 7-4. A cup with water was invertedly put in a test room with strictly 

constant temperature and humidity. To prevent the water in the cup from wetting and 

pressing the sample, a breathable hydrophobic PTFE membrane was covering the 

opening of the cup. Moisture vapor diffused from the liquid water in the cup (high 

concentration of vapor) to air out of the cup (low concentration of vapor) through 

fibrous samples. The cup assembly was weighed periodically every hour. The water 

closely next to the PTFE membrane avoids the additional time-dependent diffusive 

resistance of internal air between the layers and water.  

In the test room, the inverted cup test was conducted at an air temperature of 

20± 0.5°C and a relative humidity of 62 ± 1%. The diffusion coefficient of moisture 
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vapor in air bD  is 5 22.45 10 m /s−×  and the density of saturation vapor vρ  in air 

is 317.3g/m  (Bolz and Tuve, 1976), and the mean free path of vapor molecules λ  

is about 0.1 μm  (Phattaranawik et al., 2003). The diffusivity can be averaged based 

on the following form: 

                          (7-16) 

where, CD  is the concentration difference, 0J  is the diffusion rate of a layer of 

PTFE membrane, and iJ  is the diffusion rate of PTFE membrane and sample 

layers with total thickness ih . Diffusion rates with 0, 1, 2, and 3 layers of samples 

were measured, and the effective diffusivity was obtained based on Eq. (7-16). 

7.4. Results and discussion 

In this section, the proposed model is compared with experimental results, and 

the structural parameters of effective diffusivity in nanofiber media are analyzed. To 

calculate effective diffusivity using Eq. (7-14), the area fractal dimension fD  for 

layered fibrous membrane is necessarily determined, which is given by (Yu and Li, 

2001): 

( )max min

ln2
lnfD

R R
ε

= +                            (7-17) 

and the tortuosity fractal dimension is given by (Yu, 2005): 
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01 ln / ln ,
2t

p

HD
R

t= +                         (7-18) 

where, the average tortuosity for the layered random fibrous porous media can be 

estimated by (Tomadakis and Robertson, 2005, Tomadakis and Sotirchos, 1991):

0.7850.89( ) .
0.11

τ
ε

=
−

  

The fiber radius of the electrospun nanofiber in the present experiments is 

around 50nm , and the fiber radius of the conventional fibrous samples is 15 mm . 

Vapor diffusion through electrospun nanofiber media is affected by both Knudsen 

diffusion and bulk diffusion due to their wide pore size distribution from nano-scale 

to macro-scale, but only bulk diffusion exists in the conventional nonwoven media 

for their internal pores much larger than mean free path of vapor molecules. For an 

electrospun web with porosity 0.9 , as seen in Fig. 7-3 (a), the maximum pore 

radius is 5 mm  based on that the entire disordered pores in fibrous media are 

converted to area-equivalent circulars by ImageJ. The radius is comparable with the 

predicted value 2.1 mm , which is calculated using the formula max
4

1
rR e

e p
=

-
 

(He et al., 2007). Determination of minimum pore radius minR  in fibrous assemblies 

is difficult to conduct. Fortunately, the mean pore radius, as a function of minimum 

pore radius and area fractal dimension, can be used to determine the minimum pore 

radius with the help of Eq. (7-13). With maximum pore radius 5 mm  and 2.1 mm , 

the corresponding dimensionless effective diffusivities were calculated as 0.67  and 

0.70 , respectively, based on Eq. (7-14). The two diffusivities are indeed close to 

each other. Therefore, a reasonable estimate of ratio of minimum and maximum 

radius, 0.05k = , with maximum pore radius equal to 4.4 mm (between predicted 

2.1 mm and measured 5 mm ) in this case, is chosen in this study. Moreover, the 
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fractal theory holds because the probability density function satisfies that 

1( ) 99.72% 1
t

f R dR dN
N

)¥ )¥

-¥ -¥
= = »ò ò . The comparison between measured 

vapor diffusivities of electrospun nanofibers and two conventional nonwovens with 

predicted values shows a close agreement, which is seen in Fig. 7-5. 

 

Figure 7-5: Comparison of fractal model and experimental results 

The proposed model, which is based on Eq. (7-11) for general porous media, is 

also compared with the experimental data reported by Baker et al. (Baker et al., 

2006), who used a diffusion cell to measure the through-thickness water vapor 

diffusion rate in untreated TGP-H-060 carbon paper, and by Flueckiger et al. 

(Flueckiger et al., 2008), who obtained effective diffusivity of TGP-H-060 carbon 

paper by an electrochemical diffusimetry. The geometric parameters of TGP-H-060 

mat are listed in Table 1. In their experiments, TGP-H-060 mat was compressed to 

make variation of the mat porosity. Therefore, the thickness of compressed mat 

becomes 00.22 /(1 )Hε− , and the mean tortuosity becomes 0(1 ) / 0.22ε τ−  

assuming the tortuous diffusive distance unchanged during compression, based on 
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0 3.2τ =  when 0.78ε =  from Eq. (7-18). As the pore size changes approximately 

proportionally and k  is a constant accordingly, the maximum pore radius can 

obtained based on Eq. (7-13). Fig. 7-6 shows that the predictions of vapor diffusivity 

agree well with those experimental results. 

The effects of different geometric parameters on effective diffusivities of fibrous 

media are also analyzed. As shown in Fig. 7-7, the dimensionless diffusivity 

increases monotonously with the increase of porosity and fiber radius, and the 

resistance of Knudsen effect becomes important when the fiber radius is smaller 

than 500 nm . The effective diffusivity is independent of fiber radius when fiber 

radius is much larger than mean free path of diffusive molecules, i.e. around 0.1 

mm . According to the results plotted in Fig. 7-5 and Fig. 7-7, the effective 

diffusivity of layered electrospun nano-fibrous webs is smaller than conventional 

fibrous webs, but they are still in the same order. Therefore, electrospun 

nano-fibrous webs are potential candidates of breathable materials with their 

commonly thin thickness. 

Table 7-1: Structural parameters of TGP-H-060 carbon fiber mat (Shi et al., 2006) 

Parameter  Value  

maxR  54 10 m−×  

maxR  81.54 10 m−×  

ε  0.78  

0H  
41.9 10 m−×  

fD  1.9669  

tD  1.1447  
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Figure 7-6: Comparison of the present model with previous model and 

experimental data from literature 

 

Figure 7-7: Effect of the fiber radius on effective diffusivity versus porosity 
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Figure 7-8: Effect of the porosity on effective diffusivity versus fiber radius 

The effective diffusivities of fibrous webs with 0.6ε =  and 0.8ε =  are 

compared in Fig. 7-8, which indicates that fibrous media with higher porosity have 

higher diffusivity, but Knudsen effect reduces diffusivities more significantly at low 

porosity range.  

Fig. 7-9 shows the influence of thickness of the fibrous medium on effective 

diffusivity when 0.8ε =  and 0Kn = . When the thickness is much larger than the 

pore size, the effective diffusivity is independent of thickness. When thickness is 

comparable with pore size, the effective diffusivity becomes sensitive to thickness 

and increases with decreasing thickness. 

Fig. 7-10 plots the effective diffusivity versus porosity ε at different ratios of 

minimum and maximum pore radius k  by setting 50nmr = . It can be seen that 

the effective diffusivity increases with the increasing k , which may be attributed to 

the fact that when the ratio k  with given porosity becomes larger, more 
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opportunities are created for gas molecules to diffuse through the larger pores with 

less resistances or Knudsen effect. This trend is similar with viscous gas flow 

through fractal porous media reported in the literature (Shi et al., 2006). 

 

Figure 7-9: Effect of the thickness on dimensionless effective diffusivity 

 

Figure 7-10: Effect of ratio of min max/R R on dimensionless effective diffusivity 
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7.5. Concluding remarks 

A fractal approach was applied to model gas diffusion through nano- and 

micro-fibrous porous media considering Knudsen effect. This fractal model is 

expressed as an analytical function of porosity, fiber/pore radius and fractal 

dimensions. The prediction of the model shows good agreement with experimental 

data. It demonstrates that the effective diffusivity is reduced owing to Knudsen effect 

in nano-scale fibrous webs. In addition, the theoretical analysis illustrates that 

electrospun fibers are good candidates of breathable materials, because although their 

diffusivity is decreased due to Knudsen effect, but they have very small diffusion 

resistances considering their extremely thin thickness. The effective diffusivity is 

found to be almost independent of the thickness of the fibrous media when the 

thickness is far greater than the pore size, but is inversely related to web thickness 

when it is comparable with the pore size. The model also indicates that the effective 

diffusivity of the fibrous media increases slightly with the increasing ratio of 

minimum and maximum pore radius, when fiber radius is comparable with mean free 

path of diffusive molecules. 
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Chapter 8 Summary and future 

work 

In this thesis, gas permeability and vapor diffusivity of nano- and micro-fibrous 

materials were analytically studied based on deterministic and statistical methods. 

The thesis was first focused on modeling viscous gas flow though single-scale and 

dual-scale fibrous materials with structural analysis, and then investigating vapor 

diffusion in fibrous media theoretically and experimentally. The obtained models 

were compared with experimental, numerical, and analytical results obtained from 

literature over last decades and superior accuracy was observed. However, future 

work is still desirable, particularly in applications of the models and design of 

optimized fibrous structures. 

8.1. Summary 

The conclusive contributions of this thesis can be summarized as follows: 

Deterministic models were established to predict gas permeability from 

simplified structures to realistic fibrous materials in high porosity range ( 0.7ε > ). It 

is shown that gas permeability increases with increasing degree of randomness of 

fiber distribution, and is not sensitive to in-plane fiber orientation, but increases with 

increasing through-plane fiber orientation. The slip effect on increasing longitudinal 

permeability is higher than transverse permeability in 1D fiber beds. 

Gas permeability of fiber assembles was also studied at relatively low porosity 

range ( 0.6ε < ). The model considered the minimum distance (or gap) and the 

inscribed radius between fibers as the most critical parameter for transverse 
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permeability and longitudinal permeability, respectively. Permeability prediction by 

this model is in excellent agreement with experimental, numerical and analytical 

results collected from literature. It is also shown that permeability of elliptical fibers 

is similar to that of circular fibers in a wide range of porosities, but more permeable 

at the low porosity limit. Hexagonally packed fiber arrays are more transversely 

permeable than the squarely located fibers, while the relationship is opposite for 

longitudinal permeability. 

Meanwhile, a statistical model was presented to determine the permeability of 

fibrous layers based on fractal theory. The model is a function of porosity and fractal 

dimension, which is validated by the collected experimental results throughout the 

porosity range. In addition, the overall permeability is found to be greatly sensitive 

with increasing maximum pore size of the fibrous system. 

Calculation cost of computing permeability of dual-scale fibrous materials was 

reduced by applying a “slip” velocity at the interface between porous yarns and open 

channels between yarns. Based on that, the permeability models of 1D aligned yarns 

and 3D woven were successfully validated by comparing the model predictions with 

numerical calculations and experimental results. Particularly, it is found that the 

intra-yarn permeability has great influence on the overall permeability, especially for 

those with high degrees of packing. A semi-analytical expression for easy use was 

also proposed by fitting the numerical data.  

The predicted effective diffusivities agree very well with experimental 

measurements and numerical simulations. In addition, in-plane orientation is found 

to not affect the effective diffusivity, but increasing through-plane orientation 

reduces the diffusion resistance. Particularly, randomly located fibers have lower 

diffusivity than those ordered distributed fibers. 



178 
 

A fractal approach was applied to determine vapor diffusivities of nano- and 

micro-fibrous porous layers. The model is expressed in terms of porosity, fiber 

radius, and fractal dimensions. The prediction of the model shows good agreement 

with the measured diffusivities of nylon 6 electrospun layers by an inverted-cup test. 

The experimental and theoretical studies suggested that electrospun nanofibers are 

good candidates as breathable materials. It is also found that effective diffusivity is 

reduced owing to Knudsen effect in nano- and micro- fibrous web. Besides, 

effective diffusivity is not sensitive with the thickness of the fiber layer when the 

thickness is larger than its pore size. The model also indicates that the effective 

diffusivity increases slowly with increasing the ratio of minimum and maximum 

pore radius. 

8.2. Recommendations for future work 

Based on the progress achieved through the present study, the following further 

work is suggested: 

1. Apply present models to engineering problems such as clothing, filtration, 

fuel cells, resin molding transfer, and tissue engineering. Additionally, 

design optimal fibrous structures with required or max/min permeability, 

diffusivity, or production expense. Structural parameters, such as porosity, 

thickness, fiber size, fiber distribution, scale hierarchy, and layer 

arrangement, can be optimized based on the specific requirement. 

2. With the analogy theory, apply the models of effective permeability and 

diffusivity to heat transfer, electrical conduction, elastic, and so forth. In 

addition, extend the present models to investigate dynamic transport 

behaviors and transport properties in deformed fibrous structures. 
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3. Perform numerical simulations of coupled transport properties in complex 

fibrous structures from nano-scale to macro-scale and develop easy-to-use 

software to describe the complex transport phenomena. Computational cost 

of transport behaviors in realistic and complicated fibrous structures will be 

greatly reduced based on present models.  

4. Study additional structural parameters of fibrous systems on transport 

properties, including surface roughness, layer distribution, edge effect, 

inclusion influence and so forth. 

5. Explore the mechanism of generation of fibrous structures, which enables to 

better characterize fibrous structures and transport behaviors. 
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