

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

Department of Computing

Group-based Techniques for Identifying Top-K Degrees

in Hidden Bipartite Graphs

by

Jianguo Wang

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

August 2012

(Temporary Binding for Examination Purposes)

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF

ORIGINATLITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

.

Jianguo Wang

August 2012

i

ii

Abstract

Graphs are of fundamental importance in modeling data in various domains.

Usually, graphs have both their vertices and edges available, which we refer to

as explicit graphs. However, in applications such as bioinfomatics, graphs may

only have vertices available (e.g., proteins), while the edges are unknown initially

(e.g., interactions among proteins), which are called hidden graphs. Thus, the

edge probe tests (e.g., biological experiments) are required to detect the presence

of edges.

This work studies the kMCV (k most connected vertices) problem on a

hidden bipartite graph G(B,W) where B and W are two independent vertex

sets. The kMCV problem aims to find the top k vertices in B that have the

maximum degrees. It has applications in spatial databases, graph databases,

and bioinformatics. There is a prior work on the kMCV problem, which is based

on the “2-vertex test” model, i.e., an edge probe test can only reveal the existence

of an edge between two individual vertices.

We study the kMCV problem, in the context of a more general edge probe

test model called “group test”. A group test can reveal whether there exists

some edge between a vertex and a group of vertices. If the group test model is

used properly, a single invocation of a group test can reveal as much information

as multiple invocations of 2-vertex tests. We discuss the cases and applications

where the group test model could be used, and make the following contributions.

iii

iv

1. We propose an algorithm, namely, GMCV, that adaptively leverages the

group test model to solve the kMCV problem.

2. We derive cost models for our algorithm GMCV and the prior algorithm.

3. We conduct extensive experiments on both synthetic and real life datasets,

and show that our GMCV outperforms the prior algorithm significantly.

List of Publications

• J. Wang, E. Lo, and M. L. Yiu. Identifying the Most Connected Vertices

in Hidden Bipartite Graphs using Group Testing. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 2012.

v

vi

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to those

who helped me during my studies.

First of all, I am grateful to have two excellent supervisors during my studies,

Dr. Man Lung Yiu and Dr. Eric Lo. Not only because of their constant support

and patient supervision, but also because they introduced me to the academic

world. I am thankful for their insightful suggestions and guidance on how to

proceed at every stage during my studies. Without them, the work would not

have been completed!

Next, I would like to thank my many friends. In particular, I would like

to thank Jeppe Thomsen, a very nice and helpful guy. Also, I thank my group

mates Duncan Yung, Andy Ho and Yu Li.

Finally, I deeply thank my parents and my sister for their love, support and

encouragement, which have made me even more motivated to complete the work.

vii

viii

Contents

Declaration i

Abstract iii

List of Publications v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 8

ix

x CONTENTS

1.3 Thesis Organization . 9

2 Related Work 13

2.1 Hidden Graph . 13

2.2 Group Test . 14

2.2.1 General Group Test . 14

2.2.2 Group Test on Hidden Graph 15

2.3 kMCV Problem on Hidden Bipartite Graph 16

3 Algorithm 19

3.1 Dealing with Research Issue R1 21

3.2 Dealing with Research Issue R2 24

3.3 Algorithm: GMCV . 25

4 Cost Model 33

4.1 External Test Cost of GMCV . 34

4.2 External Test Cost of SOE . 36

4.3 Cost Comparison . 37

5 Experiments 41

5.1 Experimental Results on Real Datasets 45

5.2 Experimental Results on Synthetic Datasets 49

CONTENTS xi

5.2.1 Sparseness . 49

5.2.2 Scalability . 49

6 Conclusion and Future Work 53

6.1 Conclusion . 53

6.2 Future Work . 54

6.2.1 Generalized Group Testing Model for kMCV 54

6.2.2 Incremental Maintenance of kMCV with respect to Updates 56

7 Appendix 59

7.1 Proof of Lemma 2 . 59

7.2 Proof of Lemma 3 . 61

7.3 Proof of Lemma 8 . 62

Bibliography 65

xii CONTENTS

List of Figures

1.1 A (hidden) bipartite graph G(B,W); edges are not explicitly given 2

1.2 Example of a road network . 2

3.1 A hidden bipartite graph . 24

3.2 Running example . 24

4.1 Derived costs of SOE and GMCV 39

5.1 Degree distribution for PPI data 43

5.2 Degree distribution for Germany data 43

5.3 Degree distribution for Actor-W data 44

5.4 Degree distribution for Actor-D data 44

5.5 Results on PPI data, varying k 46

5.6 Results on Germany data, varying k 47

5.7 Results on Actor-W data, varying k 48

xiii

xiv LIST OF FIGURES

5.8 Results on Actor-D data . 49

5.9 Varying graph sparseness with k = 10 50

5.10 Varying num. of black vertices |B|, with |B| = |W| and k = 10 . . 51

6.1 Example of a hidden graph . 55

6.2 Search tree built for Figure 6.2 56

6.3 Adding vertices and edges . 57

List of Tables

1.1 Applications that can apply group test 4

1.2 Summary of notations . 11

2.1 Summary of related work . 13

2.2 Detailed execution steps of SOE on Figure 1.1 18

3.1 Detailed execution steps of GMCV on Figure 3.1 28

3.2 Summary of the purposes of theorems and lemmas 28

5.1 Statistics of real graphs . 42

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

A graph is called hidden if the edges are not explicitly given and edge probe

tests are required to detect the presence of edges [18]. Recently, Tao et al. [29,

28] studied the k most connected vertices (kMCV) problem on hidden bipartite

graphs. Specifically, given a hidden bipartite graph G with two independent

vertex sets B (black vertex set) and W (white vertex set), the kMCV problem

is to find the top k vertices in B that have the maximum degrees. Figure 1.1

shows a hidden bipartite graph G, where B = {b1, b2} andW = {w1, w2, . . . , w8}.

The 1MCV returns vertex b1 as the result since it has the largest degree. The

problem is trivial on conventional bipartite graphs but not in the case of hidden

graphs because edge probe tests are usually expensive operations (e.g., biological

experiments, graph operations). The applications of finding the kMCV on a

hidden bipartite graph include distance join on road networks, bioinformatics,

1

2 1.1. MOTIVATION

and graph pattern matching [29, 28].

b
1

b
2

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

hidden edge

Figure 1.1. A (hidden) bipartite graph G(B,W); edges are not explicitly given

b
1

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

b
2

11 11

5 3

1

7

7 5 3

Figure 1.2. Example of a road network

Application 1: Distance Join on Road Networks.

Let B and W be the hotel set and scenic spot set, which constitute a bipartite

graph G(B,W). The distance join between B and W gives a collections of pairs

⟨b, w⟩ (b ∈ B, w ∈ W), where b and w satisfy a join predicate [23]. A hotel b ∈ B

and a scenic spot w ∈ W has an edge if their distance is less than a threshold

θdist, e.g., 5 km, where the distances are shortest path distances. Therefore, the

kMCV problem could help discover the most convenient hotels. While the edges

on G are not given initially, a shortest path algorithm could be executed to detect

CHAPTER 1. INTRODUCTION 3

their presence. Figure 1.2 shows a road network. Figure 1.1 is the hidden graph

representation of distance join on Figure 1.2, using θdist = 5. To detect whether

hotel b1 and scenic spot w2 have an edge connecting in Figure 1.1, we can run a

shortest path algorithm as the edge probe test to find the shortest path between

b1 and w2 in Figure 1.2. In this example, the shortest path distance between b1

and w2 is 2, thus after the execution of the shortest path algorithm, the edge

that connects b1 and w2 in Figure 1.1 becomes explicit. Shortest path queries on

large graphs are usually computationally expensive [30]. Therefore, the goal of

kMCV is to find the answer using an efficient strategy.

Application 2: Bioinformatics.

In bioinformatics, interactions between proteins are often represented as graphs.

Specifically, the interactions between bait proteins (B) and prey proteins (W),

could form a hidden bipartite graph G(B,W) [21, 22]. An edge (b, w) represents

a bait protein b interacts with a prey protein w and this interaction could be

discovered by carrying out an edge probe test in the form of a biological experi-

ment, which may take hours or days [17]. The kMCV problem is to find the most

active proteins. And it would be beneficial if there is a way to get the answer

efficiently.

Application 3: Graph Pattern Matching.

Applications like drug discovery often need to identify the graph patterns that

match the most number of data graphs [29, 28]. The discovery process usually

involves testing whether a graph pattern b is a sub/super-graph of a data graph

w. An edge is present if such a containment relationship exists between b and w.

Such information, however, remains hidden unless an explicit sub/super-graph

4 1.1. MOTIVATION

Table 1.1. Applications that can apply group test
Application Meaning

of the
Black
Vertex
Set B

Meaning
of the
White
Vertex
Set W

Meaning
of a Hid-
den Edge
(b, w)

Meaning of a Group
Test Q(b,W)

External
Cost of
a Group
Test

Distance join locations
(hotel
sets)

locations
(spot
sets)

the dis-
tance of b
and w is
less than a
threshold
θdist

Run shortest path algo-
rithm: the distance of b
and at least one vertex in
W is less than θdist

sub-linear
to group
size

Bioinformatics
bait
proteins

prey
proteins

b interacts
with w

Conduct biological experi-
ment: b interacts with at
least one vertex in W

constant

Graph
pattern
matching

data
graphs

data
graphs

b is a
sub/super-
graph of
w

Query on graph index: b
is a sub/super-graph of at
least one data graph in W

sub-linear
to group
size

containment test is carried out. Unfortunately, such testing is known to be

expensive, e.g., a subgraph isomorphism test is NP-complete [9, 27]. Therefore,

it is necessary to devise an efficient algorithm for the kMCV problem to speed

up the drug discovery process.

As the pioneering work, [29, 28] developed an algorithm, SOE1, to solve the

kMCV problem. SOE is based on 2-vertex edge probe test, or simply 2-vertex

test [7], i.e., each edge probe test Q(b, w) takes as inputs one black vertex b ∈ B

and one white vertex w ∈ W, and returns 1 if b possesses an edge with w in the

hidden bipartite graph G and 0 otherwise. In many applications [11, 13, 32, 7],

the more general vertex-group edge probe test is used as a replacement of the

2-vertex model. Specifically, a vertex-group edge probe test, or simply, a group

test, takes as inputs one black vertex b ∈ B and a group of white verticesW ⊆ W,

denoted as Q(b,W), and returns 1 if there exists at least one white vertex w ∈W

1Actually, [29, 28] proposed two algorithms: SS (Sample-and-Sort) and SOE (Switch-on-
Empty). Since SOE outperforms SS in both theory and in practice, we therefore focus on SOE
only.

CHAPTER 1. INTRODUCTION 5

possessing an edge with b in the hidden graph G and 0 otherwise. We observe that

such a test model is also applicable to the kMCV problem (in above applications).

• In the distance join application, if a road network index [19, 25, 31] is

available, a group test Q(b,W) can be implemented by asking the road

network index the nearest neighbor of a vertex b (denoted as wnn) in a

given group of vertices W . With the road network index (e.g., distance

signature in [19]), we do not need to calculate the distance between b with

every vertex in W , because the index can prune those unpromising results

as we only concern about the nearest one. If dist(b, wnn) > θdist, we learn

that all vertices in W are beyond θdist of b, therefore none of the vertices

in the group W connects with b in the hidden graph, i.e., Q(b,W) = 0.

Otherwise, we get Q(b,W) = 1.

• In bioinformatics, literature does show that many biological experiments

can be set up to tell whether there are reactions between a protein b and a

set of proteins W [22, 7].

• In the graph matching application, a graph index IW (e.g., FG-index [9],

cIndex [8], GPTree [33]) can be built on a set of data graphs W. A group

test Q(b,W) can be regarded as a pattern query b on the set W ⊆ W to

check whether there exists a data graph w ∈ W such that b and w satisfy

the containment relationship. If yes, then Q(b,W) = 1, and Q(b,W) = 0

otherwise. Notice that W corresponds to a particular subtree of the index

IW . Thus, the group test can be implemented by issuing b as a graph query

to the corresponding subtree of IW . In this case, the graph index can avoid

the test between b and every vertex in W , because the index can prune

6 1.1. MOTIVATION

those unpromising results.

Table 1.1 gives a summary of how the above applications associated with

the kMCV problem in the context of the group test model.

The applicability of the group test model on the kMCV problem raises a very

interesting research question: Can we leverage the group test model to solve the

kMCV problem more efficiently? Specifically, a group test Q(b,W) returning 0 is

equivalent to revealing many hidden edges in a row: Q(b, w1) = 0, Q(b, w2) = 0,

..., Q(b, wi) = 0, for all wi ∈ W . If an algorithm can leverage it smartly and

correctly, the number of tests can be significantly reduced. However, although

the use of group test may reduce the number of tests in solving the kMCV

problem, we have to ensure that the actual cost of solving the kMCV problem

can essentially be reduced. That is because the cost (e.g., monetary cost, running

time) of a group test execution, in which we call that as external cost, may be

more than the external cost of a 2-vertex edge probe test execution, because

the former may take more than two white vertices as input. Fortunately, in all

of the applications that we concern, the external cost of a group test is indeed

sub-linear to or even independent of the input size. For example, in the distance

join application and the graph pattern matching application, it has been shown

that the external cost (running time) of checking the nearest neighbor between

a vertex b and a set of vertices W using a road network index, and the external

cost (running time) of checking the containment relationship between a pattern

b and a set of data graphs W using a graph index, are sub-linear to the size of

W [19, 25, 31, 9, 8, 33], because of the indices’ high pruning effectiveness. In

bioinformatics, it is a well known fact that the external cost of a group test, no

CHAPTER 1. INTRODUCTION 7

matter in terms of the monetary cost (e.g., the cost of the chemical used) or the

time to finish an experiment, is independent of the number of input chemicals

involved in the experiment [4, 5, 3, 15].

To leverage the group test model, we have to design the algorithm carefully

because it is tricky to determine the input size of the white vertex set, i.e., |W |,

for each group test. Even though the external cost of a group test is usually

sub-linear to or independent of the group size, we still should not deliberately

include a lot of vertices in each group test because that would increase the chance

of the test result being 1. Such a result is actually not informative because it does

not reveal any hidden edge between any pair of black vertex and white vertex.

However, if a very small group size is used, the power of the group test model

may not be well exploited. Therefore, it is challenging to leverage the group test

model in a productive manner.

Based on the discussions above, we propose an algorithm, GMCV, that lever-

ages the group test model to solve the kMCV problem. Note that if the group

size |W | is always set to 1, a group test is the same as 2-vertex test. Therefore,

GMCV is more general than SOE. GMCV adaptively controls the group sizes

based on the data characteristics during execution. For applications like distance

join and graph pattern matching, GMCV can be regarded as a usual computer

algorithm which aims to solve the kMCV problem efficiently. For applications

like bioinformatics, GMCV can serve as an offline human-involving tool like [24]

that assists human (scientists) in scheduling their actions (experiments) using

the least amount of external resources. Specifically, GMCV can suggest a sci-

entist what experiment should to be done after finishing the current experiment

(which may take days).

8 1.2. PROBLEM DEFINITION

1.2 Problem Definition

We formally define the kMCV (k most connected vertices) problem under

the group test model.

Let G = (B,W, E) be a bipartite graph, where B is a set of black vertices,

W is a set of white vertices, and E is a set of edges connecting vertices in B and

W. G is hidden if E is not explicitly given. An edge probe test, or simply a test,

can be carried out to detect the presence of edges.

Definition 1 (2-vertex test) An edge probe test Q(b, w) is called a 2-vertex

test if it asks whether a black vertex b ∈ B connects with a white vertex w ∈ W:

Q(b, w) =

 1 , if (b, w) ∈ E

0 , if (b, w) /∈ E

The 2-vertex test method is used by SOE [29, 28]. As mentioned earlier, in

many applications, e.g., distance join, protein-protein interaction, we can test a

group of vertices together.

Definition 2 (group test) Let W be a group of white vertices, an edge probe

test Q(b,W) is called a group test if it asks whether a black vertex b ∈ B connects

with at least one white vertex w ∈W :

Q(b,W) =

 1 , if ∃w ∈W, (b, w) ∈ E

0 , if ∀w ∈W, (b, w) /∈ E

When |W| = 1, a group test is the same as a 2-vertex test. Hence, a 2-vertex

CHAPTER 1. INTRODUCTION 9

test is a special case of a group test. Depending on the actual applications, the

cost of a group test may or may not depend on the input sizes.

Definition 3 (external test cost β) Let Q(b,W) be a group test, the external

cost (e.g., monetary cost, running time) of carrying out such a test is denoted

as β(b,W). Furthermore, we assume β(b,W) is a function of its input size, i.e.,

β(|W|).

Definition 4 (kMCV) Given a hidden graph G = (B,W, E), a user-threshold

k, identify a minimal result set R ⊆ B such that:

1. |R| ≥ k; and

2. di > dj for any bi ∈ R and bj ∈ B \R, where di is the degree of bi.

The goal of this work is to minimize the total external test cost of solving

the kMCV problem using the group test model.

1.3 Thesis Organization

The rest of the work is organized as follows. We review the related work in

Chapter 2. Then, we present the technical contributions in the following order:

• First, we present the details of GMCV, a more general algorithm for solving

the kMCV problem, in Chapter 3.

• Then, we present cost models of GMCV and SOE, in Chapter 4. Notice

that the total external test cost of an execution of GMCV not only depends

10 1.3. THESIS ORGANIZATION

on (i) the number of group tests executed, but also (ii) the input size to

each group test and (iii) the implementation of the group test. For example,

the time complexity of a group test in the distance join application is sub-

linear to the input group size. However, in bioinformatics, a group test

is an actual (chemical/biological) experiment, in which its cost (running

time/monetary cost) is independent of the group size.

• Finally, we experimentally evaluate GMCV in Chapter 5. The evaluation

is done on both real life datasets and synthetic datasets. The experimental

results align with our theoretical results and show that GMCV is a good

general alternative to SOE.

After presenting the above contributions, we conclude the work in Chapter 6

and include certain lemmas and their proofs in the Appendix (Chapter 7). Table

1.2 summarizes the symbols used in the subsequent chapters.

CHAPTER 1. INTRODUCTION 11

Table 1.2. Summary of notations
Symbol Meaning

B black vertex set

W white vertex set

B subset of B
W subset of W

W j
i (W

j) the j-th test set of bi (b)

R result set

b a black vertex

w a white vertex

bi a black vertex in R

bj a black vertex not in R

d (di) the degree of b (bi)

τ the k-th largest degree in R

µ
the maximum degree upper bound

of vertices not in R

Q(b, w) 2-vertex test of b and w

Q(b,W) group test of b and W

β(b, w) or β(1) external test cost of Q(b, w)

β(b,W) or β(|W |) external test cost of Q(b,W)

12 1.3. THESIS ORGANIZATION

Chapter 2

Related Work

This work is related to hidden graph (Chapter 2.1), group testing (Chapter

2.2) and the prior work solving the kMCV problem (Chapter 2.3). We summarize

the related work in Table 2.1.

Table 2.1. Summary of related work
graph problem non-graph problem

2-vertex test kMCV [29, 28] blood test [11]

group test

kMCV [this work]
hamiltonian circuit [18]

graph testing [16]
graph reconstruction
[3, 4, 5, 21, 7, 22]

denial-of-service [32]
finding defective items

[11, 6, 12, 26, 13]

2.1 Hidden Graph

A graph G is composed of two components: a vertex set V and an edge set

E. Usually, both V and E are available for a given graph G. However, this is

13

14 2.2. GROUP TEST

not the case in some applications, e.g., bioinformatics, where V denotes proteins

and E denotes interactions among proteins. In this scenario, G is called a hidden

graph because only V is available but E is unknown initially.

Hidden graph has been an active research topic in the computing theory

community [18, 4, 3]. Applications of hidden graph are mostly bioinformatic

related. One branch of hidden graph research is graph testing : given a hidden

graph G, the objective is to test whether G possesses a certain property (e.g.,

k -colorable [16]) using a minimal number of edge probe tests (e.g., biological

experiments). Another branch of hidden graph research is graph learning : given

a hidden graph G, the objective is to reconstruct the whole graph using a minimal

number of edge probe tests [18, 4, 3, 7, 15]. As argued by [29, 28], the kMCV

problem is different from those work because it neither tests the possession of

any property of the hidden graph, nor reconstructs the whole graph.

2.2 Group Test

2.2.1 General Group Test

Group test is motivated for uncovering the unknown items from a given

collection of items. It was first proposed to solve the blood test problem [11]

as follows. Suppose in a city with a large population, some people are infected

with a kind of disease (called “defective” members). A blood sample is drawn

from each member. The problem is to identify all the defective members with

minimum number of blood tests [11]. The simplest way is to test one by one,

which is very time consuming in practice, motivating the group test model. The

CHAPTER 2. RELATED WORK 15

idea is that, divide the large population into different groups, and (all the blood

samples of) each group is subjected to testing. If the outcome is negative, it

means that all members in the group are free from infection which could save

many unnecessary tests. Otherwise, each member making up the group needs

to be further examined. Interesting readers are recommended to [12] for more

information. In our problem, the solid edges between the black vertex set B and

the white vertex setW are considered as “defective” members. This is because, a

blood test returning 1 means that the subjected blood must contain at least one

defective member; while in our example, a group test returning 1 means there

exist at least one solid edge. As mentioned above, we may not need to find out

all the solid edges (i.e., defective members) to solve the problem.

2.2.2 Group Test on Hidden Graph

On hidden graphs, the edges are regarded as the unknown items. The group

test model is also applicable to solve the hidden graph related problems, e.g.,

[12, 4, 5, 3, 7] aim to detect whether a set of vertices induce any edges. As

mentioned above, previous research on hidden graphs are mostly on graph testing

and learning, which are different from us, regardless of whether the group test

model is used.

Furthermore, previous research on the group test model assume that the

cost of a group test is a constant [12, 4, 5, 3, 7, 13, 32], i.e., independent of

the group size, which is true in the applications they concerned, e.g., biological

experiments. Thus, the costs of those algorithms are analyzed based on the

number of tests they invoked. However, the assumption may or may not hold in

16 2.3. KMCV PROBLEM ON HIDDEN BIPARTITE GRAPH

our data engineering applications, like Applications 1 and 3 in the introduction.

Therefore, we consider the actual test costs with regard to the group size.

2.3 kMCV Problem on Hidden Bipartite Graph

Tao et. al [29, 28] is the first to study the applications of hidden graph in

the data engineering domain. The algorithm SOE (Switch-on-Empty) in [29, 28]

is built to solve the kMCV problem, upon the premise that each edge probe test

can detect the presence of an edge between two vertices. Let Q(b, w) be an edge

probe test between a vertex b ∈ B and w ∈ W. We get Q(b, w) = 1 if the test

confirms that an edge (b, w) is present in the hidden graph G, or get Q(b, w) = 0

if that edge is not present. The basic idea of SOE is that, it continues testing

a black vertex b with an unseen white vertex w until Q(b, w) = 0 and then

switches to examine another black vertex. The algorithm is executed iteratively

until enough information is gathered to answer the kMCV problem. We use

Figure 1.1 as an example to illustrate how the SOE algorithm works.

The degree of each vertex b, denoted by deg(b), is initialized to the range

[0, |W|] (which represents the minimum and maximum possible value of deg(b)).

SOE operates iteratively and gradually tightens the range of deg(b). A new

iteration starts when all vertices in B have been visited once.

• Iteration 1. Probe b1 with w1, i.e., Q(b1, w1). Since Q(b1, w1) = 1 then

SOE continues testing b1 with other unseen white vertices until the test

returns 0. Hence, the following tests are Q(b1, w2), Q(b1, w3), Q(b1, w4)

and Q(b1, w5). As Q(b1, w5) = 0 (an empty edge detected), SOE switches

CHAPTER 2. RELATED WORK 17

to probe b2. In this example, since Q(b2, w1) = 0, the first iteration finishes,

with the following information: (i) the degree of b1 is at most 8 − 1 = 7

and at least 4, i.e., deg(b1) ∈ [4, 7]; (ii) the degree of b2 is at most 8−1 = 7

and at least 0, i.e., deg(b2) ∈ [0, 7].

• Iteration 2. A new iteration starts with b1 again and continues the prob-

ing between b1 and the other white vertices in W. Therefore, the probe

sequence in this iteration is: Q(b1, w6) = 0, Q(b2, w2) = 0. And this iter-

ation finishes with the following new information: (i) deg(b1) ∈ [4, 6]; (ii)

deg(b2) ∈ [0, 6].

• Iteration 3. The probe sequence is: Q(b1, w7) = 0, Q(b2, w3) = 0. The

degree information after this iteration is: (i) deg(b1) ∈ [4, 5]; (ii) deg(b2) ∈

[0, 5].

• Iteration 4. The probe sequence is: Q(b1, w8) = 0, Q(b2, w4) = 0. The

degree information after this iteration is: (i) deg(b1) ∈ [4, 4]; (ii) deg(b2) ∈

[0, 4].

• Iteration 5. In this iteration, since vertex b1 has probed all white vertices,

it starts with Q(b2, w5). Since Q(b2, w5) = 0, meaning that deg(b2) ∈ [0, 3].

SOE grabs this chance to prune b2 because the degree of b1 (which is 4) is

larger than the upper degree bound of b2 (which is 3). At this point, SOE

terminates.

Table 2.2 illustrates the detailed execution steps.

SOE is based on the “2-vertex” model to solve the kMCV problem. This

work aims to further improve it by using the group test model. Comparing with

18 2.3. KMCV PROBLEM ON HIDDEN BIPARTITE GRAPH

Table 2.2. Detailed execution steps of SOE on Figure 1.1

Iterations Vertex
Test

Sequence
Discovered
Vertices

Degree
Bound

0
(initialization)

b1 - - [0,16]

b2 - - [0,16]

1 b1

Q(b1, w1) = 1
Q(b1, w2) = 1
Q(b1, w3) = 1
Q(b1, w4) = 1
Q(b1, w5) = 0

w1, w2

w3, w4

w5

[4,7]

b2 Q(b2, w1) = 0 w1 [0,7]

2 b1 Q(b1, w6) = 0 w6 [4,6]
b2 Q(b2, w2) = 0 w2 [0,6]

3 b1 Q(b1, w7) = 0 w7 [4,5]
b2 Q(b2, w3) = 0 w3 [0,5]

4 b1 Q(b1, w8) = 0 w8 [4,4]
b2 Q(b2, w4) = 0 w4 [0,4]

5 b1 - - [4,4]
b2 Q(b2, w5) = 0 w5 [0,3]

SOE [29, 28], the use of the group test model raises at least two new technical

aspects:

1. In terms of algorithm design, a kMCV algorithm that exploits the group

test model has to determine the group size carefully, in which algorithms

that based on the 2-vertex model do not.

2. In terms of solution analysis, the analysis has to base on the external test

cost, which depends on (i) the number of executed group tests, (ii) the

group size, and (iii) the cost function of various group test implementations.

Chapter 3

Algorithm

In this chapter, we present our GMCV algorithm that solves the kMCV

problem by the use of group test, which aims to reduce the external test cost.

We first put down the relevant definitions.

Definition 5 (hidden vertex & hidden edge) For a vertex pair (b, w) where

b ∈ B and w ∈ W, w is a hidden vertex of b if the connection between b and w

in the hidden graph G is unknown. If w is a hidden vertex of b, then (b, w) is a

hidden edge.

Definition 6 (solid & empty vertex) For a vertex pair (b, w) where b ∈ B

and w ∈ W, if (b, w) ∈ E, then w is a solid vertex of b; otherwise w is an empty

vertex of b.

Definition 7 (completed) A black vertex b is completed if it has no hidden

edges.

19

20

GMCV finds the top k black vertices with the highest degree in iterations.

In each iteration, it examines the black vertices b1, b2, · · · , b|B| in B one-by-one.

For a black vertex bi, some group tests are carried out between it and some white

vertices W ⊆ W in order to tighten the degree bounds of bi, except when bi is

completed, or when bi is deliberately skipped in that iteration because of the poor

chance for bi being in the final result (more on this later). After one iteration,

another iteration starts and the black vertices b1, b2, · · · , b|B| in B are examined

once again. Similar to most top k processing algorithms (e.g., [14, 20]), GMCV

maintains the degree upper bound (denoted as bi.maxDeg) and lower bound

(denoted as bi.minDeg) of each black vertex bi ∈ B throughout the execution

and stops when the following condition holds:

Property 1 (Stop condition) Let τ be the k-th largest degree in the result set

R, and µ be the maximum degree upper bound of vertices not in R, GMCV can

stop and return R when τ > µ.

With the skeleton of GMCV in place, we study the following research issues:

R1 In an iteration, when a black vertex bi is being examined by GMCV, how

to leverage the group test model in order to refine bi’s degree bounds?

Specific issues include (a) how to determine the group of white vertices that

should be tested with bi? and (b) when shall GMCV stop examining bi in

this iteration and switch to another black vertex?

R2 Black vertices with low degrees are unlikely to be in the top k result set R,

thus, the question is: how to avoid unnecessary test for low-degree vertices?

CHAPTER 3. ALGORITHM 21

3.1 Dealing with Research Issue R1

GMCV follows the “switch-on-empty” principle [29, 28] to deal with research

issue R1(b). Within an iteration, it continues to work on bi until a test returns

“empty”, i.e., Q(bi,W) = 0, or bi becomes completed. For a black vertex bi, let

WCUR be the set of white vertices that bi is going to carry out the group test

with, and WPRE be the previous set of white vertices that bi carried out the

group test with.

To deal with research issue R1(a), GMCV adaptively identifies WCUR based

on WPRE and the two possible “states” associated with bi: expanding, and identi-

fying. Initially, the state of every bi ∈ B is expanding, WPRE is set to empty, and

WCUR is set to one random white vertex. For other cases (except initialization),

WCUR is determined as follows:

When bi is in the expanding state, the objective of the group test

between bi and a set of white vertices is to reveal as many hidden vertices of bi

as possible.

• [Case EXP-(a)]: if Q(bi,W
PRE) = 0, the number of white vertices that

should be involved in the upcoming group test, denoted as |WCUR|, is set

as twice the size of |WPRE|, i.e., |WCUR| = 2 · |WPRE|. This is called

the doubling strategy, which is commonly used in problems to dynamically

adjust the value of some unknown parameters [6, 10]1. The rationale is

that, if Q(b,WPRE) = 0, it implies bi might have a low degree. Thus,

1In fact, other strategies such as multiplying the group size by 3 [12] or 4 [26] do exist.
However, the literature does emphasis on the doubling strategy [12] because of its stableness.
I.e., in our problem, it performs well no matter the degree is low or high.

22 3.1. DEALING WITH RESEARCH ISSUE R1

GMCV can aim higher in this test—set bi to test with a larger group of

white vertices and hope that can reveal even more hidden vertices of bi.

The set WCUR is then randomly chosen from bi’s hidden vertices.

• [Case EXP-(b)]: if Q(bi,W
PRE) = 1 and |WPRE| = 1, it means bi is a

potentially high-degree vertex, so GMCV keeps |WCUR| = 1.

• [Case EXP-(c)]: if Q(bi,W
PRE) = 1 and |WPRE| > 1, it implies that

GMCV were too aggressive in the previous group test. In this case, bi

enters the identifying state.

When bi is in the identifying state, the objective of the group test

becomes to identify at least one of the solid vertices in WPRE of bi. Therefore,

• [Case IDF-(a)]: if |WPRE| > 1 and Q(bi,W
PRE) = 1, GMCV will devote

some more tests to locate the white solid vertex in WPRE. To do so,

GMCV splits WPRE into two halves: WPRE
L and WPRE

R , and sets WCUR

to be WPRE
L and saves WPRE

R as an unexplored set WU .

• [Case IDF-(b)]: if |WPRE| = 1 and Q(bi,W
PRE) = 1, that means a white

solid vertex of bi in WPRE has been identified; in this case, GMCV resets

bi’s state back to the expanding state.

• [Case IDF-(c)]: if Q(bi,W
PRE) = 0, GMCV explores the unexplored set

by setting WCUR to be WU , but the test result of Q(bi,W
CUR) is explicitly

encoded as 1.

After identifyingWCUR, GMCV then executes such a group testQ(bi,W
CUR).

As mentioned, GMCV follows the switch-on-empty principle, so it may carry out

CHAPTER 3. ALGORITHM 23

a number of group tests, between bi and a number of groups of white vertices,

before it switches to another black vertex in the same iteration.

Figure 3.2 shows an example that illustrates some of the cases above. The

corresponding input hidden graph is shown in Figure 3.1. In the first iteration,

b1 is first considered and WCUR = {w1} (a random white vertex) (Iteration

1-a). After the first group test Q(b1,W
CUR), it is found that w1 is a solid

vertex of b1. This falls into [Case EXP-(b)] described above, resulting WCUR

is set to another random vertex w2 (Iteration 1-b). After the next group test

Q(b1,W
CUR), it is found that w2 is an empty vertex of b1. So, GMCV follows

the switch-on-empty principle and considers b2 (Iteration 1-c). Since b2 is first

visited by GMCV, its WCUR is set as {w1}, like what happened to b1. After the

group test Q(b2,W
CUR), it is found that w1 is an empty vertex of b2. Therefore,

GMCV has to switch to another vertex, leading to Iteration 2, which considers

b1 again (Iteration 2-a). At that point, for b1, W
PRE = {w2} (refer to Iteration

1-b), so, it falls into [Case EXP-(a)] described above, causing the size of WCUR

to be doubled (Iteration 2-a). After the group test Q(b1,W
CUR), it is found

that w3, or w4, or both, are solid vertices of b1, so, it falls into [Case EXP-(c)]

described above, b1’s state is thereby switched to identifying (Iteration 2-b). At

that point, for b1, W
PRE = {w3, w4}, so it falls into [Case IDF-(a)] described

above, resulting WCUR is set as {w3}. After the group test Q(b1,W
CUR), it is

found that w3 is an empty vertex of b1 (which then also implies w4 is a solid

vertex of b1), which triggers GMCV to switch to b2 (Iteration 2-c). After the

group test Q(b2,W
CUR), it is found that both w2 and w3 are empty vertices of

b2, making GMCV switches to b1 again (Iteration 3-a). By that time, although

Q(b1,W
CUR) supposes to test with w4, it falls into the case of [Case IDF-(c)],

24 3.2. DEALING WITH RESEARCH ISSUE R2

b
1 b

2

w
13

w
2

w
3

w
5

w
4

w
6

w8 w9w7 w
10

w
11

w
12

w
14

w
15

w
16

w
1

Figure 3.1. A hidden bipartite graph

Iteration 1

Iteration 3

Iteration 2

(a) [Initialization] (b) [Case EXP-(b)] (c) [Initialization]

(a) [Case EXP-(a)] (b) [Case IDF-(a)] (c) [Case EXP-(a)]

(a) [Case IDF-(c)] (b) [Case EXP-(b)]

b1 b2

w6w1 w2 w5w4w3

…

b1.state: expanding

b1

w1

WCUR

WCUR

b1 b2

w6w1 w2 w5w4w3

…

b1.state: expanding

b1

1

WPRE

w2

WCUR

b1 b2

w6w1 w2 w5w4w3

…

b2.state: expanding

b2

w1

WCUR

b1 b2

w6w1 w2 w5w4w3

…

b1.state: identifying
b1 b2

w6w1 w2 w5w4w3

…

b1.state: expanding
b1 b2

w6w1 w2 w5w4w3

…

b2.state: expanding

b1 b2

w6w1 w2 w5w4w3

…

b1.state: identifying
b1 b2

w6w1 w2 w5w4w3

…

b1.state: identifying

Q(b1,W
CUR)

= 1
Q(b1,W

CUR)
= 0

Q(b1,W
CUR)

= 1

Q(b1,W
CUR)

= 1

b11 b11identifying
b2

b11identifying
b11identifying

WPRE
WCURWCURWW WPRE WPRE

WCUR

w2 w3
WCURWW

WPRE

w4

WCUR WPRE

w5

WCUR

Q(b1,W
CUR)

= 1

Q(b1,W
CUR)

= 0

…

Q(b2,W
CUR)

= 0

Q(b2,W
CUR)

= 0

Figure 3.2. Running example

in which the test result is already encoded as 1 without even testing. So, after

that, GMCV continues testing between b1 and another white vertex w5 (Iteration

3-b), and the process goes on until the stopping condition (Property 1) holds.

3.2 Dealing with Research Issue R2

For each black vertex bj /∈ R, the “necessary” tests are to reduce its degree

upper bound, until below τ . In other words, it should not have any further tests

CHAPTER 3. ALGORITHM 25

once its degree upper bound below τ , as it is not part of the result set. However,

the value of τ is unknown in advance, therefore, bj may get redundant tests even

if bj .maxDeg is really less than τ during the execution.

Thus, the question is, for any bj /∈ R (i.e., low-degree vertex), how to prevent

it from any further unnecessary tests even though τ is unknown beforehand? In

other words, how to guarantee for any bj /∈ R, it does not have any unnecessary

tests once bj .maxDeg < τ?

GMCV employs a skipping policy to achieve the goal. If Q(bj ,W
CUR) = 0,

then, bj is skipped for a skip factor of |WCUR|− 1 iterations. E.g., if at iteration

i, Q(b, {w1, w2, w3}) = 0, then, GMCV skips b in the iterations i+1 and i+2. In

Theorem 1, we will show that, with our skipping policy, vertices not in the result

set do not have unnecessary tests. Then, we will show in Lemma 4 that the skip

factor |WCUR| − 1 is the optimal one among all the possible choices, so GMCV

will use that as the skip factor. In the following, we first present the algorithm

GMCV.

3.3 Algorithm: GMCV

The pseudo-code of GMCV is listed below. It is self-explanatory. It employs

a skip factor of |WCUR| − 1. Each black vertex b is associated with a field skip,

which gets incremented whenever a group test has identified a group of b’s empty

vertices in a single group test, resulting in the skipping of processing b in a number

of subsequent iterations.

Algorithm GMCV

26 3.3. ALGORITHM: GMCV

Input

G(B,W): Hidden bipartite graph; k: User-threshold

Output

R: k black vertices that have the maximum degree

1 τ : the degree of the k-th ranked vertex in R

2 µ: the maximum degree upper bound for those vertices not inR, i.e., maxb/∈R b.maxDeg

3 R is initialized to k dummy vertices with degree −1

4 for each b ∈ B do

5 b.minDeg ← 0 /*degree lower bound*/

6 b.maxDeg ← |W| /*degree upper bound*/

7 b.skip← 0 /*implement the skip policy*/

8 repeat

/*start an iteration*/

9 for each b ∈ B do

10 if b is completed then continue

11 if b.skip > 0 then /*skip policy*/

12 b.skip ← b.skip − 1

13 continue

14 find a group of white vertices WCUR to test /*Chapter 3.1*/

15 if Q(b,WCUR) = 0 then /*external test*/

16 b.maxDeg ← b.maxDeg − |WCUR|

CHAPTER 3. ALGORITHM 27

17 b.skip← b.skip+ (|WCUR| − 1)

18 else

19 if |WCUR| = 1 then

20 b.minDeg ← b.minDeg + 1

21 goto line 10

22 let C be the completed vertices in this iteration

23 R← R ∪ C

24 update τ /*k-th largest degree in R*/

25 R← {bi ∈ R : di ≥ τ} /*update the result set R*/

26 update µ /*upper-bound score of vertices not in R*/

27 until µ < τ

Table 3.1 shows the detailed execution steps of GMCV in finding the 1MCV

of the hidden graph presented in Figure 3.1. The final τ value is 10, which is the

degree of b1 but is unknown till the end of GMCV. After the fourth iteration,

b2.maxDeg = 9, which is below τ . Since then, b2 is skipped for any further tests,

until the end of GMCV.

Next, we show the correctness of our algorithm (regardless whether it applies

skipping or not) in Lemma 1 and the choice for the skip factor. We show in Table

3.2 the purposes of the related theorems and lemmas.

28 3.3. ALGORITHM: GMCV

Table 3.1. Detailed execution steps of GMCV on Figure 3.1

Iterations Vertex
Test

Sequence
Discovered
Vertices

Skip
Degree
Bound

0
(initialization)

b1 - - 0 [0,16]

b2 - - 0 [0,16]

1 b1
Q(b1, w1) = 1
Q(b1, w2) = 0

w1, w2 0 [1,15]

b2 Q(b2, w1) = 0 w1 0 [0,15]

2 b1
Q(b1, w3w4) = 1
Q(b1, w3) = 0

w3 0 [1,14]

b2 Q(b2, w2w3) = 0 w2, w3 1 [0,13]

3 b1
Q(b1, w5) = 1
Q(b1, w6) = 0

w4, w5, w6 0 [3,13]

b2 - - 0 [0,13]

4 b1 Q(b1, w7w8) = 0 w7, w8 1 [3,11]

b2 Q(b2, w4w5w6w7) = 0
w4, w5

w6, w7
3 [0,9]

5 b1 - - 0 [3,11]
b2 - - 2 [0,9]

6 b1

Q(b1, w9w10w11w12) = 1
Q(b1, w9w10) = 1
Q(b1, w9) = 0

w9 0 [3,10]

b2 - - 1 [0,9]

7 b1

Q(b1, w11) = 1
Q(b1, w12) = 1
Q(b1, w13) = 1
Q(b1, w14) = 1
Q(b1, w15) = 1
Q(b1, w16) = 1

w10, w11

w12, w13

w14, w15, w16

0 [10,10]

b2 - - 0 [0,9]

Table 3.2. Summary of the purposes of theorems and lemmas
Name Purpose

Lemma 1 correctness of GMCV

Theorem 1 do not have unnecessary tests

Lemma 4 optimal skip factor

CHAPTER 3. ALGORITHM 29

Lemma 1 GMCV correctly reports the results, i.e., black vertices with top k

maximum degrees.

Proof. We show that (by Definition 4), R (R ⊆ B) is a minimal set of vertices

that satisfy (1) |R| ≥ k; and (2) for for any bi ∈ R and bj ∈ B \R, di > dj .

First, we show that R satisfies the above two conditions. (1) |R| ≥ k is

trivial as it already contains the vertex with the k-th largest degree τ ; (2) The

stopping condition µ < τ (Property 1) guarantees that, for any vertices not in R

will not have a higher degree than those in R.

Next, we show that R is a minimal set of vertices satisfying the two condi-

tions. Let R′ be any set of vertices satisfying the two conditions, we show that

R ⊆ R′. Equivalently, for any black vertex b, if b ∈ R, then b ∈ R′. We prove it

by contradiction. If b /∈ R′, by the condition (2), the degree of b deg(b) is smaller

than any vertices in R′, i.e., deg(b) < τ . However, since b ∈ R, deg(b) ≥ τ , which

is a contradiction. Thus, R is a minimal set of set of vertices satisfying the two

conditions.

Theorem 1 In GMCV, a black vertex bj /∈ R stops any further tests, once its

degree upper bound is just smaller than the final τ .

Proof. The statement is equivalent to, any black vertex bj /∈ R stops for any

further tests once the number of empty vertices it has detected is greater than

or equal to |W| − (τ − 1). Let θ = |W| − (τ − 1).

Formally, let Ebj be the number of empty vertices detected with bj during

GMCV, then Ebj is increasing during the execution of the algorithm. Let Embj be

30 3.3. ALGORITHM: GMCV

the value of Ebj after the m-th change of Ebj . (Thus, Embj ≤ E
m+1
bj

). Let Ezbj be

the value of Ebj of the last change of Ebj before GMCV terminates, we have (I)

Ezbj ≥ θ and (II) Ez−1
bj

< θ.

We prove (I) by contradiction. At the end of GMCV, if Ebj < θ (i.e.,

Ezbj < θ), we have bj .maxDeg = |W| − Ezbj > |W| − θ = τ − 1. In order words,

bj .maxDeg ≥ τ . According to the stop condition of GMCV (Property 1), µ < τ ,

where µ is the the maximum degree upper bound of vertices not in R, meaning

that bj .maxDeg < τ , which is a contradiction.

Next, we will prove (II) Ez−1
bj

< θ by contradiction. Let us assume

Ez−1
bj
≥ θ (3.1)

We state the supplementary Lemmas 2 and 3, which are proved in the ap-

pendix.

Lemma 2 Let the (z−1)-th change of Ebj value occurs at the end of iteration-I

of GMCV, if bj .skip = 0, then iteration-I is the last iteration of GMCV.

Lemma 3 Let the (z−1)-th change of Ebj value occurs at the end of iteration-I

of GMCV, if bj .skip > 0, then at the end of the iteration-(I + bj .skip), GMCV

must have terminated.

With Lemma 2 proven, it implies that the (z−1)-th change of Ebj is the last

change of Ebj , which contradicts the fact that Ezbj is the last change of Ebj .

With Lemma 3 proven, and together with the fact that the value of Ebj does

not change between iteration-I and iteration-(I+ bj .skip) (because by that time

CHAPTER 3. ALGORITHM 31

bj .skip > 0 and thus bj is skipped), so the value of Ebj at iteration-(I+bj .skip) is

equal to the value of Ebj at the end of the iteration-I, which is equal to Ez−1
bj

. So,

if we can prove that GMCV has terminated by that time, it implies that Ez−1
bj

is

the value of Ebj before GMCV terminates, which contradicts the fact that Ezbj is

the last change of Ebj .

With Lemmas 2 and 3 proven, we can conclude that the assumption Ez−1
bj
≥ θ

(3.1) is false and the proof is completed.

Lemma 4 Setting the skip factor to be |WCUR| − 1 is optimal in GMCV.

Proof. Each b ∈ B has a sequence of group tests and stops when the stopping

condition (Property 1) is met. Obviously, for a bi in the final result set R, its

whole sequence of group tests must be carried out. So, we care about only those

bj not in the final result set R. For bj /∈ R, its degree upper bound, denoted as

bj .maxDeg, gets reduced along the iterations when more tests are done.

Its corresponding aggregated external test cost is the minimum if its test

sequence stops once bj .maxDeg is just smaller than τ . We denote that cost as

minCbj , which is proved in Theorem 1.

32 3.3. ALGORITHM: GMCV

Chapter 4

Cost Model

Although SOE is proven to be instance-optimal (i.e., for any given problem

instance, it incurs at most a constant factor of tests of the optimal solution), it is

not applicable to the context with group test. In SOE, minimizing the number of

tests is equivalent to minimizing the total external test cost because the external

cost of a 2-vertex test function is a constant. However, the overall external cost

of a group test function depends not only on the number of tests invoked, but

also on the input size to each test as well as the implementation of the group test.

In this Chapter, we provide cost models to capture the total external test

costs of GMCV (Chapter 4.1) and SOE (Chapter 4.2), and compare their external

costs based on different group test cost functions (Chapter 4.3). For every black

vertex bi, we assume that its degree di ̸= 0 and di ̸= |W|, as it is trivial to deal

with these two cases.

33

34 4.1. EXTERNAL TEST COST OF GMCV

4.1 External Test Cost of GMCV

In an execution of GMCV, a particular black vertex bi ∈ R is associated

with a series of expanding-and-identifying processes that may span across mul-

tiple iterations. Initially, a test Q(bi,W
1
i) is carried out. If Q(bi,W

1
i) = 0,

another group test Q(bi,W
2
i) is carried out. The expanding phase Q(bi,W

1
i) =

0, Q(bi,W
2
i) = 0, · · · , continues until the s-th test in which Q(bi,W

s
i) = 1 (while

all the previous tests return 0), where s is called the turning point in the pro-

cess. After that, the identifying phase starts: Q(bi,W
s+1
i), · · · , Q(bi,W

2s−1
i),

i.e., recursively drill into the set W s
i to locate the solid vertex.

Lemma 5 Let Cji be the external test cost of the j-th expanding-and-identifying

process of bi, and s be the turning point, then Cji = 2
∑s−1

j=1 β(2
j−1) + β(2s−1).

Proof. Note that the size of the vertex set W j
i has the following property

|W j
i | =

 2j−1 , 1 ≤ j ≤ s

22s−j−1 , s < j ≤ 2s− 1

As Cji denotes the external test cost of the j-th expanding-and-identifying

process of bi, then Cji =
∑2s−1

j=1 β(|W j
i |) = 2

∑s−1
j=1 β(2

j−1) + β(2s−1).

Lemma 6 For bi ∈ R, the total external test cost Cost(bi) associated with bi is:

Cost(bi) = di · Cji

where di is the degree of bi.

CHAPTER 4. COST MODEL 35

Proof. Lemma 5 gives the external test cost of any expanding-and-identifying

process. Since in GMCV, every black vertex bi in R is completed, i.e., it has the

exact degree di, and each expanding-and-identifying process locates one solid

vertex, the cost of bi ∈ R is thus di · Cji .

Next, we discussion about how to set the turning point s in an expanding-

and-identifying process Cji . An expanding-and-identifying process reveals 1 solid

vertex plus at least
∑s−1

j=1 2
j−1 = 2s−1− 1 empty vertices, a total of at least 2s−1

vertices. Let ω = 2s−1. Since GMCV algorithm randomly picks white vertices

to carry out the group test on bi, ω can be approximated as |W|/di. So, we have

s−1 = ⌊lg |W|
di
⌉, i.e., s = ⌊lg |W|

di
⌉+1. We use randomized rounding here because

s is an integer.

Next, we derive Cost(bj), the external test cost associated with a vertex

bj /∈ R. Before that, we define A(t) be the accumulated external test cost in

order to identify t empty vertices through a series of group tests whose results

are all zero (i.e., the external test costs spent on the doubling strategy during

the expanding phase). It is thus trivial to see that A(t) =
∑⌊lg t⌋

j=0 β(2j).

Lemma 7 For bj /∈ R, the external test cost Cost(bj) associated with bj is:

Cost(bj) = λj · Cji +A(θ − λj · (2s − 1))

where θ = |W| − τ + 1, λj = ⌊ θ
|W|
dj

−1
⌋, and dj is the degree of bj.

Proof. In Theorem 1, we show that a black vertex bj /∈ R does not need any

further test in GMCV, once its degree upper bound is smaller than τ . Meaning

36 4.2. EXTERNAL TEST COST OF SOE

that bi needs to detect |W|− (τ −1) empty vertices. Let θ = |W|− (τ −1). Next,

the analysis is redirected to analyze the external test cost of detecting θ empty

vertices for bj /∈ R.

As mentioned, an expanding-and-identifying process discovers 1 solid vertex

plus at least 2s−1 − 1 empty vertices, where s = ⌊lg |W|
di
⌉ + 1. Thus, in order to

detect θ empty vertices, it requires ⌊ θ
2s−1−1

⌋ = ⌊ θ
|W|
di

−1
⌋ (denoted as λ) expanding-

and-identifying processes.

For the remaining θ − λ · (2s − 1) empty vertices, it requires a follow-up

expanding phrase, which costs A(θ − λ · (2s − 1)).

Summing up the external test cost gives the result, which completes the

proof.

Theorem 2 The external test cost of GMCV is:

CostGMCV =
∑
bi∈R

Cost(bi) +
∑
bj /∈R

Cost(bj) (4.1)

where Cost(bi) and Cost(bj) are defined in Lemma 6 and Lemma 7 respectively.

4.2 External Test Cost of SOE

According to [29, 28], the number of tests NSOE consumed by SOE for a

hidden partite graph with |B| black vertices and |W| white vertices is

CHAPTER 4. COST MODEL 37

NSOE = |R| · |W|+
|B|∑

i=|R|+1

(|W| − τ + 1)(|W|+ 1)

li · |W|+ 1

= |R| · |W|+
|B|∑

i=|R|+1

θ(|W|+ 1)

|W| − di + 1

(4.2)

where li = 1− di
|W| .

Since each 2-vertex test has the cost of β(1), the external test cost of SOE

is:

CostSOE = NSOE · β(1) (4.3)

4.3 Cost Comparison

We compare the external test costs of GMCV and SOE based on the cost

models established in Equations (4.1) and (4.3). Following [29, 28], we assume

the degrees of the bipartite graph follow power-law distribution such that for

each b ∈ B, its degree equals d (between 0 and |W|) has the probability:

Pr(d) =
1/(d+ 1)γ∑|W|
i=0 1/(i+ 1)γ

(4.4)

where γ is the skewness factor to control the sparseness of a graph (γ > 0). The

smaller the γ is, the denser the graph is.

We consider four group test implementations:

(I) Const, where β(|W |) = β(1)

38 4.3. COST COMPARISON

(II) Log, where β(|W |) = lg |W | · β(1)

(III) Sqrt, where β(|W |) =
√
|W | · β(1)

(IV) Linear, where β(|W |) = |W | · β(1)

The Const implementation is to simulate the group test implementation in

the biological domain, in which both the monetary cost and the running time

of an experiment is a constant [17]. The Log and the Sqrt implementations are

to simulate the group test implementations in the graph pattern matching and

distance join applications, where the external cost (running time) is sub-linear

to the input size. Applications for the Linear group test implementation are not

clear; however, we include it in our study to show that GMCV should not be

misused in applications where the external cost of a group test is (super) linear

to its input size.

Figure 4.1 plots the external test costs of GMCV and SOE (k = 10) based on

Equations (4.1) and (4.3), on hidden partite graphs of varying sizes (|B| = |W|)

and different sparseness γ. It can be seen that GMCV outperforms SOE in almost

all graph sizes and graph sparseness, except when the graphs are unusually dense

(γ is close to 0)1 or when GMCV is deliberately misused on applications where

the external cost of a group test is (super) linear to the size of the input. In

those cases, we found GMCV and SOE have comparable performance.

1Normally, γ is larger than 2.0 in real graphs [1, 2].

CHAPTER 4. COST MODEL 39

GMCV-Const

GMCV-Linear

GMCV-Log GMCV-Sqrt

SOE

104

105

106

107

 0 0.5 1 1.5 2 2.5 3

ex
te

rn
al

 te
st

 c
os

t

γ

104

105

106

107

108

 0 0.5 1 1.5 2 2.5 3

ex
te

rn
al

 te
st

 c
os

t

γ
(a) |B| = |W| = 1000 (b) |B| = |W| = 5000

105

106

107

108

109

 0 0.5 1 1.5 2 2.5 3

ex
te

rn
al

 te
st

 c
os

t

γ

105

106

107

108

109

1010

 0 0.5 1 1.5 2 2.5 3

ex
te

rn
al

 te
st

 c
os

t

γ
(c) |B| = |W| = 10000 (d) |B| = |W| = 50000

106

107

108

109

1010

1011

 0 0.5 1 1.5 2 2.5 3

ex
te

rn
al

 te
st

 c
os

t

γ
(e) |B| = |W| = 100000

Figure 4.1. Derived costs of SOE and GMCV

40 4.3. COST COMPARISON

Chapter 5

Experiments

In this chapter, we evaluate GMCV on both real life datasets and synthetic

datasets.

PPI 1. It consists of the interactions between Yeast proteins, where B and

W represent all the proteins. Particularly, a protein b ∈ B connects with w ∈ W

if they can interact with each other.

Germany2. It is a real road network from Germany. In our problem

setting, B and W contains all the nodes. A vertex b ∈ B and a vertex w ∈ W

has an edge if their distance (in terms of the shortest path distance) is less than

a predefined threshold, which is set to 10km by default.

Actor-W 3. It is an actor collaboration network data based on IMDB4. In

which, B and W include all the actors. In particular, two actors b and w have

1http://turing.cs.iastate.edu/PredDNA/dataset.html
2www.maproom.psu.edu/dcw
3http://www.datatang.com/DataRes/Detail.aspx?id=1624
4http://www.imdb.com

41

42

an edge if they have co-appeared in at least one movie.

Actor-D, available from [29, 28]. It is derived from the actor collaboration

social network data by extracting 10,000 actors that have the largest number of

collaborators, i.e., B andW. Two actors b and w have an edge if they have 2-hop

relationship, i.e., either they appeared in at least one common movie, or they

have a common collaborator.

Table 5.1 summarizes the properties of the four real datasets above. Actor-D

is unusually dense—in a hidden graph with only 10,000 black and 10,000 white

vertices, a black vertex connects to more than 7,000 white vertices on average. In

fact, Actor-D does not follow power-law distribution as its γ < 0. Furthermore,

for a better understanding of the datasets used, we plot the degree distributions

in Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4.

Table 5.1. Statistics of real graphs
dataset # black vertices # white vertices # edges avg. deg. raw data size

PPI 2,617 2,617 11,855 4.53 68KB

Germany 28,867 28,867 30,429 1.05 113KB

Actor-W 392,340 392,340 29,088,772 74.14 189MB

Actor-D 10,000 10,000 73,801,472 7,380 352MB

Synthetic Data. We follow [29, 28] to generate graphs of different sizes

and sparseness. By default, |B| = |W| = 5, 000.

Following [29, 28], we simulate the implementation of a (group) test. We use

the four group test functions Const, Log, Sqrt, and Linear mentioned in Chapter

4.3. For example, we regard the external cost of a group test with an input of

4 vertices is 2, if the Sqrt group test function is used. The experimental results

are reported in terms of external test cost.

CHAPTER 5. EXPERIMENTS 43

 1

 10

 100

 1 10 100 1000 10000

de
gr

ee

rank

Figure 5.1. Degree distribution for PPI data

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

de
gr

ee

rank

Figure 5.2. Degree distribution for Germany data

44

 1

 10

 100

 1000

 10000

100 101 102 103 104 105 106

de
gr

ee

rank

Figure 5.3. Degree distribution for Actor­W data

 100

 1000

 10000

 1 10 100 1000 10000

de
gr

ee

rank

Figure 5.4. Degree distribution for Actor­D data

CHAPTER 5. EXPERIMENTS 45

5.1 Experimental Results on Real Datasets

Figure 5.5 shows the external test costs of GMCV (based on different group

test cost functions) and SOE of different k values, on the PPI dataset. It is

clear that, GMCV outperforms SOE significantly, except when the inappropriate

Linear group test is deliberately used. Specifically, the costs of GMCV are 36

times (Const), 10 times (Log), and 7 times (Sqrt) less than SOE, respectively.

Since their costs differ so much and we cannot see the effect of k when putting

them together in one graph, so we plot their individual costs as well (smaller

graphs). We can observe that all methods scale well with the value of k.

The experimental results on Germany and Actor-W datasets are are shown

in Figure 5.6 and Figure 5.7. We can also observe that GMCV outperforms SOE

significantly, again except when the Linear group test function is deliberately

used.

Figure 5.8 shows the external test costs of GMCV and SOE on Actor-D. We

can see that, even on such an unusually dense dataset, SOE and GMCV have

comparable performance. This is because, GMCV uses the doubling strategy to

adaptively determine the group size based on the outcome of the previous test,

i.e., double the group size if the previous test result is 0 and halve the group size

otherwise. On dense graphs, however, a group test has a high chance to return 1.

Therefore, GMCV seldom employs the doubling strategy, which makes GMCV

behave like SOE, but with a little overhead.

46 5.1. EXPERIMENTAL RESULTS ON REAL DATASETS

 0

 20

 40

 60

 80

 100

 120

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

05)

k

SOE
GMCV-Const

GMCV-Log

GMCV-Sqrt
GMCV-Linear

 1.81
 1.82
 1.82
 1.83
 1.83
 1.84
 1.84
 1.85
 1.85
 1.86

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

05)

k

GMCV-Const

(a) All (b) GMCV-Const

 6.54

 6.56

 6.58

 6.60

 6.62

 6.64

 6.66

 6.68

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

05)

k

GMCV-Log

 9.28
 9.30
 9.32
 9.34
 9.36
 9.38
 9.40
 9.42
 9.44
 9.46

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

05)

k

GMCV-Sqrt

(c) GMCV-Log (d) GMCV-Sqrt

 103.0

 103.5

 104.0

 104.5

 105.0

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

05)

k

GMCV-Linear

 66.0
 66.2
 66.4
 66.6
 66.8
 67.0
 67.2
 67.4
 67.6
 67.8
 68.0
 68.2

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

05)

k

SOE

(e) GMCV-Linear (f) GMCV-SOE

Figure 5.5. Results on PPI data, varying k

CHAPTER 5. EXPERIMENTS 47

 8
 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

06)

k

SOE
GMCV-Const

GMCV-Log

GMCV-Sqrt
GMCV-Linear

 15.97

 15.98

 15.99

 16.00

1 10 50 100
ex

te
rn

al
 te

st
 c

os
t (

×1
06)

k

GMCV-Const

(a) All (b) GMCV-Const

 68.08

 68.10

 68.12

 68.14

 68.16

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

06)

k

GMCV-Log

 110.88
 110.89
 110.90
 110.91
 110.92
 110.93
 110.94
 110.95
 110.96
 110.97

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

06)

k

GMCV-Sqrt

(c) GMCV-Log (d) GMCV-Sqrt

 1750.8
 1750.9
 1751.0
 1751.1
 1751.2
 1751.3
 1751.4
 1751.5
 1751.6

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

06)

k

GMCV-Linear

 830.0

 830.2

 830.4

 830.6

 830.8

 831.0

 831.2

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

06)

k

SOE

(e) GMCV-Linear (f) GMCV-SOE

Figure 5.6. Results on Germany data, varying k

48 5.1. EXPERIMENTAL RESULTS ON REAL DATASETS

 1

 4

 16

 64

 256

 1024

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

09)

k

SOE
GMCV-Const

GMCV-Log

GMCV-Sqrt
GMCV-Linear

 0.5965

 0.5970

 0.5975

 0.5980

 0.5985

 0.5990

 0.5995

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

09)

k

GMCV-Const

(a) All (b) GMCV-Const

 3.038

 3.040

 3.042

 3.044

 3.046

 3.048

 3.050

 3.052

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

09)

k

GMCV-Log

 7.245

 7.250

 7.255

 7.260

 7.265

 7.270

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

09)

k

GMCV-Sqrt

(c) GMCV-Log (d) GMCV-Sqrt

 314.7
 314.8
 314.9
 315.0
 315.1
 315.2
 315.3
 315.4
 315.5
 315.6

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

09)

k

GMCV-Linear

 152.4

 152.5

 152.6

 152.7

 152.8

 152.9

 153.0

 153.1

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

09)

k

SOE

(e) GMCV-Linear (f) GMCV-SOE

Figure 5.7. Results on Actor­W data, varying k

CHAPTER 5. EXPERIMENTS 49

 0

 50

 100

 150

 200

1 10 50 100

ex
te

rn
al

 te
st

 c
os

t (
×1

05)

k

SOE
GMCV-Const

GMCV-Log
GMCV-Sqrt

GMCV-Linear

Figure 5.8. Results on Actor­D data

5.2 Experimental Results on Synthetic Datasets

5.2.1 Sparseness

Figure 5.9 shows the external test costs of GMCV and SOE running on

synthetic graphs of different sparseness. The skewness factor γ ranges from 0.1

(average degree is 2,389) to 4.0 (average degree is 0.108). We can see that GMCV

outperforms SOE from sparse to dense graphs, except when the improper Linear

group test function is deliberately used. SOE is comparable with GMCV only

when the graph is extremely dense (γ = 0.1).

5.2.2 Scalability

In this experiment, we evaluate the scalability of GMCV on synthetical

graphs of different sizes (from 5,000 black vertices and 5,000 white vertices to

50 5.2. EXPERIMENTAL RESULTS ON SYNTHETIC DATASETS

104

105

106

107

108

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ex
te

rn
al

 te
st

 c
os

t

γ

SOE

GMCV-Const

GMCV-Log

GMCV-Sqrt

GMCV-Linear

Figure 5.9. Varying graph sparseness with k = 10

500,000 black vertices and 500,000 white vertices). The graphs here are generated

using γ = 2.0, which is found in many real life graph data [1, 2]. Figure 5.10

shows the external test costs of GMCV running on synthetic graphs of different

sizes. We can see that GMCV scales well on graphs of different sizes.

CHAPTER 5. EXPERIMENTS 51

105
106
107
108
109

1010
1011
1012

 5 10 20 100 500

ex
te

rn
al

 te
st

 c
os

t

num. of black vertices (×103)

GMCV-Const
GMCV-Log
GMCV-Sqrt

GMCV-Linear

Figure 5.10. Varying num. of black vertices |B|, with |B| = |W| and k = 10

52 5.2. EXPERIMENTAL RESULTS ON SYNTHETIC DATASETS

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work studies the kMCV (k most connected vertices) problem on hidden

bipartite graphs in the context of the group test model. Group test is a common

test model in hidden graph literature. Instead of testing the presence of edge

between only two vertices (which is called the 2-vertex test model), a group test

takes as input a group of vertices and returns whether there is any edge among

them. If the group test model is used properly, a single group test can reveal

the same information as multiple 2-vertex tests. Therefore, if the external cost

of a group test is constant to or sub-linear of the input size, the external cost of

solving an kMCV problem can be significantly reduced.

To that end, an algorithm that based on group test, called, GMCV, is de-

veloped. GMCV adaptively determines the size of the vertices to be input to

each group test based on the data characteristics. Our cost analysis as well as

53

54 6.2. FUTURE WORK

experimental results show that GMCV outperforms SOE, a 2-vertex test based

kMCV algorithm, except in some extreme cases (e.g., when the linear implemen-

tation of group test is deliberately used or the graphs are unusually dense). In

those cases, GMCV still has comparable performance with SOE, making GMCV

a robust and more effective choice than SOE in the usual settings.

6.2 Future Work

Next, we present some possible research directions on this topic.

6.2.1 Generalized Group Testing Model for kMCV

In this work, each group test takes as inputs one black vertex and multiple

white vertices. While, an even more general group testing model can testmultiple

(instead of one) black vertices and multiple white vertices within one group test.

Formally, let B (B ⊆ B) and W (W ⊆ W) be a group of black and white

vertices, a test Q(B,W) can reveal whether there exist some edge between B

and W :

Q(B,W) =

 1 , if ∃b ∈ B,∃w ∈W ; (b, w) ∈ E

0 , if ∀b ∈ B,∀w ∈W ; (b, w) /∈ E

The generalized group testing model is even more powerful, however, it

adds new challenges in solving the kMCV problem efficiently. Of course, one

can simply choose |B| = 1 every time, which is exactly the situation considered

CHAPTER 6. CONCLUSION AND FUTURE WORK 55

in our work.

We present some preliminary ideas via building a search tree T to solve the

problem with the generalized group testing model, assuming |B| ≤ |W|. Next,

we describe how to construct of the search tree T .

Each node in the tree represents a group test. The root of the tree T is the

group test Q(B,W), i.e., it tests the entire black and white vertices. If the test

result of a node say Q(B,W) returns 1, split it into two child nodes as follows.

Suppose |B| ≤ |W |, split W into two halves W1 and W2 (otherwise, halve B).

Then, the two child nodes are Q(B,W1) and Q(B,W2). A node is a leaf node

is the test result returns 0 or the size of both B and W are 1.

After that, we can execute the tests by traversing the search tree in depth

search manner or breadth search manner.

We use an example to illustrate it. Figure 6.2 is the corresponding search

tree built for Figure 6.1.

b
1

b
2

b
3

b
4

w
1

w
2

w
3

w
4

w
5

w
6

w
8

w
7

Figure 6.1. Example of a hidden graph

56 6.2. FUTURE WORK

b1...b4; w1…w8

b1...b4; w1…w4 b1...b4; w5…w8

b1b2; w1…w4 b3b4; w1…w4 b1b2; w5…w8 b3b4; w5…w8

b1b2;

w1w2

b1b2;

w3w4

b3b4;

w5w6

b3b4;

w7w8

b1;

w1w2

b2;

w1w2

b2; w1 b2; w2

b4;

w7w8

b3;

w7w8

b3; w7 b3; w8

Figure 6.2. Search tree built for Figure 6.2

6.2.2 Incremental Maintenance of kMCV with respect to Up-

dates

This work assumes the underlying graph is static, what if the graph is evolv-

ing with nodes and edges added or deleted? E.g., Figure 6.3 addes a black vertex

b5 and three edges associated with b5 compared with Figure 6.1. Initially, the

1MCV in Figure 6.1 gives b3. However, after the graph is updated in Figure 6.3,

the 1MCV becomes b5.

The research question is, how to efficiently maintain the kMCV on dynamic

graphs? The naive solution is to re-compute kMCV from scratch. However, it is

unnecessary to do so. E.g., the results of some previous tests (applied on Figure

6.1) are still applicable to the updated graph.

CHAPTER 6. CONCLUSION AND FUTURE WORK 57

b
1

b
2

b
3

b
4

w
1

w
2

w
3

w
4

w
5

w
6

w
8

w
7

b
5

Figure 6.3. Adding vertices and edges

We need to differentiate different cases. (1) Only add nodes to B; (2) Only

delete nodes from B; (3) Only add nodes to W; (4) Only Delete nodes from W;

(5) Add nodes to both B and W; (6) Delete nodes from both B and W; (7) Add

nodes to B, delete nodes from W; (8) Add nodes to W, delete nodes from B.

58 6.2. FUTURE WORK

Chapter 7

Appendix

7.1 Proof of Lemma 2

Proof. We further state one more supplementary Lemma 8:

Lemma 8 At the end of the iteration-I of GMCV, for a black vertex bj that

is not completed, (a) if bj .skip = 0 then I = Ebj ; and (b) if bj .skip > 0 then

I < Ebj . Thus, for any case, we have I ≤ Ebj .

In order to prove that iteration-I is the last iteration of GMCV, we show

that, the result set R contains the top k vertices, otherwise, the algorithm will

still continue. It suffices to show that the k-th ranked vertex bk is in R by the

end of iteration-I. According to GMCV, bk is inserted into R when (I) it is

completed; and (II) deg(bk) > µ, where deg(bk) is the degree of the vertex bk.

59

60 7.1. PROOF OF LEMMA 2

For (I), if bk is not completed, by Lemma 8,

I ≤ Ebk (7.1)

While bj .skip = 0, by Lemma 8, we have

I = Ez−1
bj

(7.2)

Thus,

deg(bk) ≤ |W| − Ebk

≤ |W| − I ◃ by (7.1)

= |W| − Ez−1
bj

◃ by (7.2)

≤ |W| − θ ◃ by (3.1)

= |W| − (|W| − τ + 1) ◃ by definition of θ

= τ − 1

(7.3)

We now reach a contradiction because deg(bk) = τ , i.e., the k-th degree.

Therefore, we can conclude that bk is completed.

For (II), we have deg(bk) = τ , which means, we have to show τ > µ. Recall

that µ is the maximum degree upper bounds for vertices not in R, which consists

of two parts: vertices in B but not yet completed; and vertices are completed but

not yet in R. Let µ1 and µ2 be the maximum degree upper bounds for the former

and the latter cases, respectively. Then µ = max{µ1, µ2}. We have τ > µ2 (by

line 25 of GMCV). Next, we show τ > µ1.

CHAPTER 7. APPENDIX 61

Let b be a vertex that is not completed yet. By Lemma 8, we have,

I ≤ Eb (7.4)

Furthermore,

b.maxDeg = |W| − Eb

≤ |W| − I ◃ by (7.4)

= τ − 1 ◃ by (7.3)

Thus, µ1 = maxb∈B b.maxDeg ≤ τ − 1, i.e., µ1 < τ , together with µ2 < τ ,

thus, µ = max{µ1, µ2} < τ , which completes the proof of (II).

7.2 Proof of Lemma 3

Proof. We have to prove that the result setR contains the top k vertices. Similar

to Lemma 2, we need to show that the k-th rank vertex bk is in R by the end

of iteration-(I + bj .skip). So, we have the following two statements: (I) bk is

completed otherwise, it cannot be in R; and (II) deg(bk) > µ.

For (I), at the end of the iteration-(I+bj .skip), the number of empty vertices

discovered is Ez−1
bj

, hence

deg(bk) ≤ |W| − Ez−1
bj

≤ |W| − θ ◃ by (3.1)

= τ − 1 ◃ by definition of θ

62 7.3. PROOF OF LEMMA 8

We reach a contradiction because deg(bk) is supposed to be τ . Thus, we

conclude that bk is completed.

Similar to the case (II) in the proof of Lemma 2, we can prove (II).

7.3 Proof of Lemma 8

Proof. We prove it by induction. Let bj be a vertex not completed yet, first, we

prove Lemma 8(a) if bj .skip = 0, we have I = Ebj .

Let t be the number of times that bj .skip = 0 by the end of the iteration-I

during GMCV. We show that, when t = 1, I = Ebj (initialization). We assume

that I = Ebj holds when t > 1. We prove that at the (t + 1)-th time that

bj .skip = 0, I = Ebj still holds.

Proof of Lemma 8(a) via induction. When t = 1, i.e., by the end of the

first iteration (because every vertex has to identify one empty vertex unless it is

completed), here I = Ebj = 1. That is, the equation holds for the initialization;

Assume it is true during the t-th time that bj .skip becomes 0 while GMCV is at

the end of iteration-I; Next, we show it holds for the (t + 1)-th time. Suppose

during the iteration-(I+1), x empty vertices were detected of bj (x ≥ 1 unless bj

is completed). We consider the case when x > 1 as is trivial for x = 1. Meaning

that, Ebj is increased by x. While according to GMCV, its skip is increased by

x− 1, hence, from iteration-(I + 2) to iteration-(I + x), bj (since bj .skip > 0) is

skipped and no new empty vertices are detected, therefore, Ebj does not change

compared to the end of the iteration-(I + 1). Therefore, we still have I = Ebj

since both are increased by x. Therefore, it holds for the (t+ 1)-th time.

CHAPTER 7. APPENDIX 63

Next, we prove Lemma 8(b) that if bj .skip > 0 at the end of iteration-I,

then I < Ebj . First, before iteration-I, we know there must be an iteration-I ′

(just before iteration-I) where bj .skip = 0. Furthermore, let E ′bj be the number

of empty vertices detected at the end of iteration-I ′, from (a), we have

I ′ = E ′bj (7.5)

Let x be the number of empty vertices detected during the iteration-(I ′+1)

(i.e., bj .skip = x− 1). Then, at the end of iteration-(I ′ + 1), we have

Ebj = E
′
bj
+ x (7.6)

Since at the end of iteration-I, bj .skip > 0, we have

I < I ′ + x

= E ′bj + x ◃ by (7.5)

= Ebj ◃ by (7.6)

This completes the proof.

64 7.3. PROOF OF LEMMA 8

Bibliography

[1] L. A. Adamic and B. A. Huberman. Power-law distribution of the world

wide web. Science, 287:2115, 2000.

[2] R. Albert, H. Jeong, and A. L. Barabasi. The diameter of the world wide

web. Nature, 401:130–131, 1999.

[3] N. Alon and V. Asodi. Learning a hidden subgraph. SIAM Journal on

Discrete Mathematics (SIDMA), 18:697–712, 2005.

[4] N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov. Learning a hidden

matching. SIAM Journal on Computing (SICOMP), 33:487–501, 2004.

[5] D. Angluin and J. Chen. Learning a hidden graph using O(log n) queries

per edge. Journal of Computer and System Sciences (JCSS), 74:546–556,

2008.

[6] A. Bar-Noy, F. K. Hwang, I. Kessler, and S. Kutten. A new competitive

algorithm for group testing. Discrete Applied Mathematics, 52(1):29–38,

1994.

65

66 BIBLIOGRAPHY

[7] M. Bouvel, V. Grebinski, and G. Kucherov. Combinatorial search on graphs

motivated by bioinformatics applications: A brief survey. In International

Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages

16–27, 2005.

[8] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu. Towards graph

containment search and indexing. In Proceedings of Very Large Data Bases

(VLDB), pages 926–937, 2007.

[9] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free

query processing on graph databases. In Proceedings of ACM Management

of Data (SIGMOD), pages 857–872, 2007.

[10] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersec-

tions, unions, and differences. In Proceedings of the Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 743–752, 2000.

[11] R. Dorfman. The detection of defective members of large populations. The

Annals of Mathematical Statistics, 14:436–440, 1943.

[12] D. Du and F. K. Hwang. Combinatorial group testing and its applications.

World Scientific Press, 2000.

[13] D. Eppstein, M. T. Goodrich, and D. S. Hirschberg. Improved combinatorial

group testing algorithms for real-world problem sizes. SIAM Journal on

Computing (SICOMP), 36:1360–1375, 2006.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for

middleware. In Proceedings of ACM Symposium on Principles of Database

Systems (PODS), pages 102–113, 2001.

BIBLIOGRAPHY 67

[15] W. I. Gasarch and C. H. Smith. Learning via queries. Journal of the ACM

(JACM), 39:649–674, 1992.

[16] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connec-

tion to learning and approximation. Journal of the ACM (JACM), 45:653–

750, 1998.

[17] E. Golemis and P. Adams. Protein-protein interactions: a molecular cloning

manual. Cold Spring Harbor Laboratory Press, 2005.

[18] V. Grebinski and G. Kucherov. Reconstructing a hamiltonian cycle by

querying the graph: application to DNA physical mapping. Discrete Applied

Mathematics, 88:147–165, 1998.

[19] H. Hu, D. L. Lee, and V. C. S. Lee. Distance indexing on road networks. In

Proceedings of Very Large Data Bases (VLDB), pages 894–905, 2006.

[20] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query pro-

cessing techniques in relational database systems. ACM Computing Surveys

(CSUR), 40(4):1–58, 2008.

[21] N. T.-M. Laurent, L. Trilling, and J. louis Roch. A novel pooling design for

protein-protein interaction mapping, 2004.

[22] Y. Li, M. T. Thai, Z. Liu, and W. Wu. Protein-protein interaction and

group testing in bipartite graphs. International Journal of Bioinformatics

Research and Applications, 1:414–419, 2005.

[23] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spa-

tial network databases. In Proceedings of Very Large Data Bases (VLDB),

2003.

68 BIBLIOGRAPHY

[24] A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis, and

J. Widom. Human-assisted graph search: it’s okay to ask questions. Pro-

ceedings of the VLDB Endowment (PVLDB), 4(5):267–278, 2011.

[25] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance

browsing in spatial databases. In Proceedings of ACM Management of Data

(SIGMOD), pages 43–54, 2008.

[26] J. Schlaghoff and E. Triesch. Improved results for competitive group testing.

Combinatorics, Probability and Computing, 14:191–202, 2005.

[27] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:

an efficient algorithm for testing subgraph isomorphism. Proceedings of the

VLDB Endowment (PVLDB), 1:364–375, 2008.

[28] C. Sheng, Y. Tao, and J. Li. Exact and approximate algorithms for the

most connected vertex problem. ACM Transactions on Database Systems

(TODS), 37(2):1–39, 2012.

[29] Y. Tao, C. Sheng, and J. Li. Finding maximum degrees in hidden bipartite

graphs. In Proceedings of ACM Management of Data (SIGMOD), pages

891–902, 2010.

[30] J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective caching of shortest

paths for location-based services. In Proceedings of ACM Management of

Data (SIGMOD), pages 313–324, 2012.

[31] F. Wei. TEDI: Efficient shortest path query answering on graphs. In Pro-

ceedings of ACM Management of Data (SIGMOD), pages 99–110, 2010.

BIBLIOGRAPHY 69

[32] Y. Xuan, I. Shin, M. Thai, and T. Znati. Detecting application denial-of-

service attacks: A group-testing-based approach. IEEE Transactions on

Parallel and Distributed Systems (TPDS), pages 1203–1216, 2010.

[33] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for efficient super-

graph query processing on graph databases. In Proceedings of Extending

Database Technology (EDBT), pages 204–215, 2009.

