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Abstract 

Spin-lattice dynamics (SLD) study of the effects of spin vibrations on 

physical properties in body-centred-cubic (BCC) iron has been performed in the 

thesis. Since the exchange integral governing spin-spin correlation depends on 

the atomic distance, the degrees of freedom of spin and lattice in BCC iron are 

coupled, so that the participation of spins leads to the change of anharmonicity of 

the crystal potential of BCC iron for both lattice dynamics and spin dynamics. 

Consequently, through the spin-lattice coupling, the enhanced phonon- and 

magnon scattering give rise to the more softening and shorter lifetimes for both 

elementary thermal excitations, which are revealed from the dispersion curves 

for phonons and magnons, respectively. For instance, the spin-lattice coupling 

results in the shift of Curie temperature from ~1100K to ~1000K. In addition, the 

spin stiffness confirms such effects in spin dynamics.  

By using the thermodynamic integration method, we calculated the free 

energy and other thermodynamic quantities, e.g. entropy and heat capacity are 

calculated.  The  results  show  that  the  spin  vibrations  give  rise  to  not  only  the  

energetic contribution, but also entropic contributions, which leads to the 

anomalous temperature dependence of the thermal, magnetic and mechanical 

properties in BCC iron, especially near FM/PM phase boundary. Examples are 

the thermal expansion coefficient, Grüneisen parameter, specific heat, as well as 
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the isothermal elastic constants. Contributions from spin vibrations are 

particularly large compared with the effects of multi-phonon interactions.  

The effects of spin vibrations are studied in the self- and mono-vacancy 

diffusion in BCC iron. Based on the scheme of SLD and modified 

thermodynamics integration (TI) method, the free energies of vacancy migration 

and formation are calculated over a wide range of temperature, across FM/PM 

phase boundary in BCC iron, from which the attempt frequency of vacancy 

migration is calculated for the first time atomistically. The non-Arrhenius 

behavior of vacancy activation is also first time found from the atomistic 

simulation, from which the migration enthalpy increases ~0.15eV attributed to 

the long-range magnetic order. The results are in good quantitative agreement 

with other calculations and experimental data. Furthermore, the effects of spin 

vibration on vacancy formation and migration entropies and enthalpies are 

investigated by using the modified conjugated gradient (MCG) and TI methods. 

It is found that the change of spin configuration is the principal origin to the 

energetic change in vacancy migration and formation. Otherwise, the dynamical 

relaxation  of  spin  vibrations  near  Curie  temperature  gives  arising  to  the  extra  

heat dissipation during the vacancy formation and migration processes, which 

result in the cusps of temperature dependence of entropies of vacancy migration 

and formation. Our calculation results are in principle consistent with the 

theoretic predictions.  
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CHAPTER I 

INTRODUCTION 

1.1  Magnetic Effects  

Magnetic  effect  plays  a  pivotal  role  in  almost  all  physical  properties  of  

ferromagnetic materials. For instance, magnetic phase instability of the 

iron-based steel is considered to be a possible cause to its loss of strength at 

elevated temperatures, and the consequent collapse of the U. S. World Trade 

Center in the 9.11 disaster [1]. In another aspect, the body-centred cubic (BCC) 

crystal structure of iron at zero-Kelvin is induced by magnetic effect. Otherwise, 

the stable structure of iron could be hexagonal closed packed (HCP) structure 

instead [2,3,4]. The investigation of magnetic effects has been extended to a 

much larger interdisciplinary research field studying coupled multi-physical 

properties, such as thermal, mechanical and electromagnetic. Representative 

phenomena include thermal-magnetic, magnetomechanics and magnetostriction, 

and the list goes on.  

In non-magnetic materials, anharmonic phenomena such as thermal 

expansion are induced by phonon-phonon interaction, which depends on the 

phonon density as a function of temperature. However, the participation of 
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magnons in ferromagnetic material, such as BCC iron, brings out addition 

anharmonicity due to scattering of phonons by magnon, thus producing changes 

in many physical properties related to processes involving the atomic lattice, 

especially near the FM/PM phase boundary. The interaction between the two 

elementary excitations is the result of the spin-dependent exchange correlation 

interaction among the valence electrons of neighboring atoms. The challenge 

associated with the mechanistic studies of magnetic effects of this kind is the lack 

of an accurate thermodynamic description of the strongly coupled spin and lattice 

degrees of freedom in these materials at the high temperatures, especially across 

the ferro/paramagnetic (FM/PM) phase boundary. Such a thermodynamic picture 

requires processing of the microscopic dynamical information of the full 

ensemble of spins and atoms. Solving this problem is the subject of this thesis. 

1.2  Overview  

Many peculiarities of the physical properties of magnetic materials, such as 

those mentioned in the foregoing, may be traced to their strong crystalline 

anharmonicity due to the scattering of phonons by the magnons.  

First discovered by Joule [5] in 1842, the typical example of this magnetic 

effect on anharmonicity is the magnetostrictive effect, namely, the isotropic or 

anisotropic structural deformation in crystalline solid caused by spontaneous 

magnetic transition or forced by an external magnetic field. The Invar alloy, i.e. 
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quenched FCC Fe65Ni35, is the famous application of magnetostrictive effect 

[6,7,8,9], whose thermal expansion coefficient is near zero in a wide range of 

temperatures. In addition to phase instabilities of iron-based steel, magnetic 

effects are also suggested to be responsible for the structures of radiation defects 

in transition metals. For instance, self-interstitial defects in iron adopt the 110  

dumbbell configuration rather than the common 111  crowdion configuration 

in other non-magnetic BCC metals [10,11]. Furthermore, the famous “Stage III” 

controversy, whether it is due to the migration of vacancies or self-interstitials in 

resistivity recovery experiment of iron [12], have been debated for over thirty 

years in literatures [13]. Besides, the interpretation for the curved Arrhenius’ plot 

of the self-diffusion experiment [14] in iron is another challenge.  

It has been recognized that effects of phonon-magnon interaction are closely 

related to the free energy required for the corresponding atomic process. Not only 

the energetic impact is involved, but the entropic impact associated with the heat 

transferred is also involved. To elucidate the role played by phonon-magnon 

interaction in these processes, it requires the implementation of the full dynamics 

of spin and lattice in the coupled system. However, in atomistic simulations, the 

treatments of the coupled spin and lattice systems are almost always based on the 

adiabatic approximation that the phonon, electron and magnon reside on different 

relaxation time scales, so that a simple separation of phonon and magnon 

excitations can be used in the free-energy calculations.  
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Antropov et al. [15,16] suggested that the interactions between the spin and 

lattice systems can be modeled by using ab initio spin dynamics (SD) based on 

the local spin density approximation (LSDA) and ab initio molecular dynamics 

(MD). Later on, Stokes et al. [17] introduced the non-collinear spin states by 

using the constrained local moment method to model the spin-lattice dynamics at 

finite temperature. Körmann et al. [18] separated the free energy of the coupled 

spin and lattice system into vibrational, electronic and magnetic parts based on 

the adiabatic approximation mentioned above, in which the vibrational and 

electronic free energies are evaluated under the harmonic approximation, and the 

magnetic part is calculated by many-body Heisenberg Hamiltonian under 

mean-field approximation. Similarly, Lavrentiev et al. [ 19 ] proposed the 

magnetic cluster expansion (MCE) model for spin dynamics, while the lattice 

degrees of freedom are carried out by the harmonic treatment. 

However, in the fore-going calculations, the self-consistent nature of the 

relationship between the crystal field that governs the lattice dynamics and the 

molecular field that controls the spin dynamics has to be carefully taken into 

account. In particular, at temperatures near FM/PM phase transition, the 

molecular field tends to vanish, and the characteristic frequencies of the spin 

waves are shifted down towards those of the lattice waves [20]. When the two 

dynamics are significantly correlated, the accuracy of the adiabatic 

approximation may become questionable.  
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The  correlated  dynamics  of  the  spin  and  lattice  systems,  i.e.,  with  

phonon-magnon interaction fully accounted for, is best treated with their 

different degrees of freedom considered on equal footing in their equations of 

motion. Ma, Woo and Dudarev (MWD) [21] developed the spin-lattice dynamics 

(SLD) simulation model for this purpose. By treating the exchange interaction as 

a function of the interatomic separation, MWD successfully realized a 

description of the interactive nature of spin and lattice dynamics, from which the 

SLD simulation scheme is developed [21,22]. SLD provides a useful tool for the 

study of magnetic effects, particularly where the coupling between the spin and 

lattice dynamics is strong. 

1.3  Objective 

In this thesis, we first present the effective Hamiltonian for the 

ferromagnetic iron, involving the interactive spin and lattice degrees of freedom. 

The thermodynamics of phonon and magnon, respectively, associated to the 

lattice and spin vibrations underlying our investigations are reviewed, followed 

by the origin of the coupling between phonons and magnons. To identity effects 

on the lattice and the spin subsystem separately, the effective Hamiltonian is 

resolved into the spin, lattice and spin-lattice interaction components.  

Subsequently, we briefly review the statistical thermodynamics and the 

simulation scheme of SLD, from which phase-space trajectories are obtained for 
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calculating the corresponding physical properties as functions of temperature. In 

addition, the thermodynamic integration (TI) method is introduced for the 

calculations of free energies in the atomic process, linking the thermodynamics 

with micro-dynamics in this way for understanding changes of physical 

properties near magnetic transitions.  

We then present our results and findings. Firstly, the phonon and magnon 

spectra are calculated at finite temperatures, with and without the impacts of 

phonon-magnon interaction. We find for first time effects of anharmonicity, 

arising from the phonon-magnon interaction at finite temperatures, on the 

dispersion relations and lifetimes for both elementary excitations in 

ferromagnetic materials. Secondly, the thermodynamic, magnetic and mechanical 

properties near FM/PM transition of the ferromagnetic material are investigated 

to examine the role of phonon-magnon on the thermodynamics and 

anharmonicity. Finally, we calculate the free energies in the mono-vacancy and 

self-diffusion processes by using the modified TI method to investigate the 

contributions from magnons to migration and formation processes of vacancy.  
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CHAPTER II 

REVIEW OF BASIC THEORY 

In  this  Chapter,  we  will  review  the  effective  Hamiltonian  for  BCC  iron,  

involving the spin and lattice degrees of freedom. Subsequently, the lattice 

dynamics is presented to investigate the relevant physical properties arising from 

the lattice vibration, i.e. phonon. Correspondingly, magnetic excitations are 

treated classically as correlated spin vibrations, i.e. spin waves or magnons. 

Finally,  the  free  energy  of  BCC  iron  is  presented,  with  the  participation  of  

magnons and the mutual interactions between phonons and magnons.  
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2.1  Effective Hamiltonian of Ferromagnetic Iron 

2.1.1 Condensed matter Hamiltonian 

In condensed matter, the physical properties can be roughly divided into two 

categories: those determined by the valence electrons and the rest associated with 

the vibrations of ion core, *  i.e. nuclei and core electrons, around their 

equilibrium positions. The many-body Hamiltonian of condensed matter 

involving interactive electrons and nuclei is generally written as [1] 

22 2
2

,

22
2

1ˆ
2 2

1
2 2

ˆ ˆ ˆ ˆ ˆ

I
i

i i j I ie i Ii j

I J
I

I I Jn I J

e e e e n n n n

Z eeH
m

Z Z e
M

T V V T V

r Rr r

R R
,     (2.1) 

where the uppercase and lowercase subscripts label the nuclei and electrons, 

respectively;  is the reduced Plank’s constant; nM  and em  are the 

respective nuclear and electronic mass; IR † is the nuclear position and IZ  is 

the atomic number of ion I ; ir  is the electronic position, in which the 

electronic spin operator is involved. In Eq. (2.1), the canonical kinetic and 

potential energy operator for nuclei and electrons can be defined as: 

2
2ˆ

2e i
i e

T
m

,            (2.2a)  

                                                
* The meaning of ion core or nuclear is equivalent to lattice in this Chapter. 
† Here and in the rest of this thesis, bold-face variables denote vectors. 
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21ˆ
2e e

i j i j

eV
r r

,            (2.2b)  

2

,

ˆ I
e n

I i i I

Z eV
r R

,            (2.2c)  

2
2ˆ

2n I
I n

T
M

,            (2.2d)  

21ˆ
2

I J
n n

I J I J

Z Z eV
R R

,            (2.2e)  

where êT  and n̂T  are the electronic and nuclear kinetic energy, respectively; 

ê eV  is the electron-electron interaction, involving the spin-spin exchange 

interaction arising from partial filled electrons, e.g., 3d-electrons in BCC iron; 

ê nV  is the Coulombic attraction between electrons and nuclei; n̂ nV  is the 

Coulombic repulsion energy of the nuclei. The Hamiltonian in Eq. (2.1) operates 

on the many-body wave-function in position representation ,I iR r , i.e. the 

so-called Schrödinger equation in the form: 

ˆ , ,I i tot I iH ER r R r ,         (2.3)  

where totE  is the total energy of the nuclei and electrons, being the eigenvalue 

corresponding to , which should be antisymmetric under the exchange of 

electrons due to the requirement of Pauli’s exclusion principle. By solving Eq. 

(2.3), all the information of the condensed matter can be derived from the 

spectroscopy of totE . However, direct solution of Eq. (2.3) is difficult, thus 
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approximations have to be called for to reduce it as manageable.  

2.1.2 Born-Oppenheimer approximation  

We may rewrite the Hamiltonian in Eq. (2.1) in the form,  

0
ˆ ˆ ˆ

nH T H ,             (2.4)  

where 0Ĥ  containing the electronic kinetic energy and the total Coulombic 

energy of electrons and nuclei, as 

0
ˆ ˆ ˆ ˆ ˆ

e e e e n n nH T V V V .          (2.5)  

We recognize that 0Ĥ  does not involve the momentum operator of nuclei, so 

that it can be treated as the electronic Hamiltonian at a fixed nuclei configuration, 

IR . Since the kinetic energy of nuclear n̂T  is very small due to its larger mass, 

it can be treated as a perturbation of 0Ĥ  in Eq. (2.1) and the total energy totE  

can be obtained by using the perturbation theory [2].  

If we only consider the zero-order approximation, the Hamiltonian Ĥ  is 

reduced as 0Ĥ . As shown in Eq. (2.4), 0Ĥ  only involves the static positions of 

the nuclear. For determining the electronic motions in Eq. (2.4), n̂ nV  is treated 

as constant and the configuration of nuclear IR  is effectively treated as a set 

of external parameters. ê nV  is usually regarded as an external potential, extV̂ , 

imposed on the electrons for a fixed nuclear configuration, so that the electronic 
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Hamiltonian is usually written as 

ext
ˆ ˆ ˆ ˆ

el e e eH T V V .            (2.6)  

Physically, due to the high mass, the nuclei move much slower than the 

electrons.  If  nuclei  move  away  from  their  equilibrium  positions,  then  the  

electrons  can  instantaneously  adjust  their  positions  at  any  given  time,  but  with  

higher total energy. However, the electron system remains in a ground state 

corresponding to the nuclei configuration. If the nuclei return to their initial 

positions, then the energy expended is fully restored without any excitation of the 

electron system. In this regard, the total energy totE  as  a  function  of  nuclei  

configuration plays the role of a potential for the atomic motion, in the form: 

22 1
2 2

I JI
tot el I

I I JI I J

Z Z eE E
M
P R

R R
,       (2.7)  

where the first and second terms are the nuclei kinetic and potential energy, 

respectively; el IE R  is the electronic total energy determined by ˆ
elH , 

which depends on the nuclei configuration in a parametric way. This is the 

Born-Oppenheimer, or adiabatic, approximation [3].  

Under this approximation, when we consider the motions of electrons, the 

motions of nuclei can be ignored. On the other hand, when we consider the 

motions of nuclei, the electrons is regarded as a distribution, i.e. electron cloud, 

in which the nuclei are immersed, inducing the effective interactions between 
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nuclei through the electron cloud. Such effective interactions depend on the 

electron configurations. Separating the motions of electrons and nuclei, the 

Born-Oppenheimer approximation necessarily neglects the electron-phonon 

interactions, which, however, is out of the scope of this thesis.  

2.1.3 Exchange integral of electrons  

We focus on the electronic total energy in this subsection. We rewrite the 

electronic Hamiltonian in Eq. (2.5) as 

2
2

ˆ ˆ ˆ ˆ

ˆˆ
2

ˆ ˆ

el e ext e e

i i e e
i

i e e
i

H T V V

v V

h V

,          (2.8)  

where 
2

2
ext

ˆ ˆ ˆ ˆ
2i e i ih T V v  only depends on the electronic coordinate of 

ir , with îv  being  the  potential  energy  of  the  thi  electron provided by nuclei. 

Otherwise, ê eV  depends  on  pairs  of  electrons,  which  cannot  separate  variables  

in  the  Schrödinger  equation.  However,  we  could  assume  that  the  electron  does  

not  interact  with  other  electrons  one  by  one,  but  with  the  averaged  density  of  

electrons based on mean-field theory, which is so-called Hartree Approximation, 

so  that   

ˆ ˆe e i i
i

V g r ,             (2.9)  
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where ˆ i ig r  is the density operator of the thi  electron provided by other 

electrons.  

In this regard, the electronic Hamiltonian can be totally expressed as the sum 

of single-electronic Hamiltonian, i.e.  

2
2ˆ ˆˆ ˆ

2el i i i i
i i

H v g H ,       (2.10) 

and then the many-electron Schrödinger equation can be solved as N  

independent one electron equations: 

ˆ
i i i iH r r            (2.11)  

where ir  is the electronic wave-function involving the spin-polarization 

with the energy i . And the total electronic wave-function involving N  

electrons is thus written as 

el i i
i

r r            (2.12)  

In this regard, the total electronic energy under Hartree approximation is given 

by,   

Hartree
ˆˆ ˆ

ˆ

1 1
2

el el el i i e e el i
i

i i i
i

i j i j
i j

E H h V

h

r r

r r

r r r r
r r

   (2.13) 



II. Review of Basic Theory  WEN, Haohua 

 17  

where the second term is called Coulomb integral, or Coulomb energy, i.e. 

* *
1 2 1 2 1 2

1 2

1

1 d d

ij i j i j

i j i j

C r r r r
r r

r r r r r r
r r

.     (2.14) 

However, we recognize that electrons are fermions. Due to the Pauli’s 

exclusion  principle,  no  two particles  can  be  described  by  the  same one  particle  

function. The total wave-function el  for  the  electron  system  must  be  an  

antisymmetric sum of all the products which can be obtained by interchanging 

electron labels. Therefore, rather than the form in Eq. (2.12), el  can be 

represented as a determinant, namely Slater determinant, as 

1 1 2 1 1

1 2 2 2 2
1 2

1 2

1, , ,
!

N

N
el N

N N N N

N

r r r
r r r

r r r

r r r

.   (2.15) 

Substitute Eq. (2.15) into the total energy equation (Eq. (2.13)), we have the 

so-called Hartree-Fock electronic energy in the form as 

1 1 1

ˆ ˆ

1
2

el el el el elHF
N N N

i ij ij
i i j

E H H

C J
        (2.16)  

where  

2
* 2 ˆ d

2i i i i ivr r r         (2.17)  
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and ijC  is the Coulomb integral defined above, and ijJ  is the exchange 

integral, i.e. 

* *
1 2 2 1 1 2

1 2

1 d dij i j i jJ r r r r r r
r r

.     (2.18) 

Notice that ijJ  is similar in form to ijC , but with the one-electron wave 

functions i  and j  exchanged. Also, electrons i  and j  have to be of the 

same spin-polarization for ijJ  to be non-zero due to the orthogonality of their 

spin parts. In addition, ijC  is the purely electrostatic interaction of two charge 

densities for electrons i  and j , whereas ijJ  has no classical analogue and is a 

direct result of the determinantal form of antisymmetric el  which sums all 

possible products of permutations of electrons among orbitals.  

If we substitute Eq. (2.16) into Eq. (2.6), the total energy of nuclei and 

electrons in the non-magnetic materials is thus written as 

22

1 1 1

2

1 1
2 2 2

2

N N N
I JI

tot i ij ij
I I J i i jI I J

I
I

I I

Z Z eE H C J
M

U
M

P
R R

P R
  (2.19) 

where IU R  is the potential of nuclei, involving the electronic properties. 

Eq. (2.19) shows the atomic nuclei motions are associated with the properties of 

the electron system. Therefore, the details of the electronic properties are firstly 

calculated in atomistic simulation, to derive the potential for the atomic nuclei 
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motions.  Properties  of  the  solid  associated  with  the  atomic  motion  can  then  be  

deduced. For instance, the developed interatomic potential for metals based on 

embedded atomic method (EAM) contains the electronic density as a function of 

atomic nuclei coordinates. Although the exact mathematical formulation of this 

potential is complicated, to obtain the physical properties associated with the 

thermal excitations in solids, it just requires a general formalism which enables 

equations of motion to be formulated and solved for an arbitrary potential.  

2.1.4 Heisenberg exchange Hamiltonian  

As discussed in the foregoing, the total wave function el  of electron 

system has to be antisymmetrical according to the Pauli’s exclusion principle, i.e. 

the determinant form in Eq. (2.15), which, however, is only applicable to the case 

of  parallel  spin.  In  addition,  the  symmetry  properties  of  el  are profoundly 

modified by inclusion of the spin. We note that, the electronic wave function i  

can be expressed as the product of the orbital component i  and spin 

component i  while  neglecting  the  ‘magnetic’  coupling  between  the  spin  and  

orbital, i.e. i i i , where i  has only two characteristic values, i.e. 1
2  for 

spin-up and 1
2  for spin-down. Take two-electron system for an example. If the 

electronic spins are parallel, i.e. both are spin-up or spin-down, the orbital wave 

function must be antisymmetrical, taking the form as Eq. (2.15),  
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1 1 1 2
ant

2 1 2 2

1 1 2 2 1 2 2 1

1
2!

1
2

r r
r r

r r r r

.       (2.20a) 

Otherwise,  if  the  spins  are  antiparallel,  i.e.  one  is  spin-up  and  the  other  is  

spin-down, the orbital wave-function must be symmetrical, as 

sym 1 1 2 2 1 2 2 1
1
2

r r r r .      (2.20b) 

Substitute Eqs. (2.20) into the Schrödinger equation as expressed in Eq. 

(2.16), the electronic energy of the system involving two interactive spins is 

given by 

12 1 2 12 12
1
2

E C J ,          (2.21)  

where 1  and 2  are  given  as  the  expression  in  Eq.  (2.17),  which  are  

independent of the symmetry; and the remaining term, int 12 12E C J  is the 

characteristic value of the electron-electron interaction, ê eV . int 12 12E C J  

while two electronic spins are parallel, namely the triplet state, otherwise, 

int 12 12E C J  while two electronic spins are anti-parallel, namely the singlet 

state.   

Let 1Ŝ  and 2Ŝ  be the electronic spin operators, we can obtain the 

Hamiltonian of exchange interaction between two electrons. According to rule of 

quantum mechanics,  
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2 2 2
1 2 1 2

1 1ˆ ˆ ˆ ˆ ˆ1 4 1
2 2

S S S S S      (2.22a) 

where 1 2
ˆ ˆ ˆS S S  is  the  total  spin  operator;  1  and 1  correspond  to  the  

eigenvalue of Ŝ : 1S  and 0S ,  respectively.  Here,  we  have  used  the  

identities to derive Eq. (2.21),  

2ˆ 1S SS + ,             (2.22b)  

2 2
1 2

1 1 3ˆ ˆ 1
2 2 4

S S .           (2.22c)  

In  this  regard,  the  Hamiltonian  of  two  electron  system  having  the  

characteristic value of 12E  in Eq. (2.21) can be given as 

12 1 2 12 12 12 1 2
1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ2
2

H h h C J J S S        (2.23) 

where 1̂h  and 2̂h  are the Hamiltonian of non-interactive electrons given by Eq. 

(2.8); 12Ĉ  is the operator of Coulombic interaction, having the characteristic 

value of 12C  as Eq. (2.14); 12Ĵ  is the operator of exchange integral, having the 

characteristic value of 12J  as Eq. (2.18). The final term in Eq. (2.23),  

12 1 2
ˆ ˆˆ ˆ2exH J S S ,            (2.24)  

is so-called the Heisenberg exchange Hamiltonian, first proposed by Heisenberg 

[4]. More rigorous deduction from the many-electron Hamiltonian by quantum 

mechanics is given by Dirac [5]. Subsequently, Anderson [6] proved that 
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Heisenberg model can be also available in the cases of 1/ 2S . It should be 

noted that ˆ
exH  has an electrostatic origin, with a quantum mechanical nature 

arising from the exchange interaction term of electron-electron Coulombic 

potential. It should be distinguished from the direct magnetic dipole-dipole 

interaction between electronic magnetic moments, although such an angle 

dependent interaction can be found as one term of the mutual potential energy of 

two dipoles, 1  and 2 , i.e.  

1 1 2 21 2
3 5

3
E

r r
r

.         (2.25)  

However, the strength of ˆ
exH  depends on the exchange integral ijJ , the 

overlapping of two electronic wave functions,  which is much stronger than that 

of Eq. (2.25). 

2.1.5 Effective Hamiltonian of ferromagnetic iron 

Eq. (2.24) shows the explicit exchange interaction between two electronic 

spins. Nevertheless, it can be generalized to the entire solid consisting of the 

so-called magnetic atoms having non-zero spins, such as in transition metals.  

For a transition metal, the spin-polarized electronic structure comes from the 

d-electrons in the partially filled d-shell [7]. According to Hund’s rule, the stable 

electronic configuration of an isolated atom is adopted to be the one with a 

maximum magnetic moment (MM) [8]. For instance, there are 6 d-electrons in an 
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isolated iron in 5 d-electronic orbitals, involving 10 spin-polarized electronic 

states.  The  Hund’s  rule  and  Pauli’s  exclusion  principle  allow the  net  MM of  an  

isolated iron atom to be B4  ( B  is the Bohr magneton‡), which there are 5 

electrons at spin-up states and the remaining one at spin-down state. Yet, due to 

the hopping of the electrons of the neighboring atoms and hybridization between 

3d and 4s electrons, the MM per atom in the crystalline iron with BCC structure 

is reduced to B2.2  at the ground state [9]. In this regard, the individual iron 

atom has non-zero total spins and an associated MM, causing the magnetization 

observed macroscopically [10].  

The exchange interaction between the spins of neighboring atoms in BCC 

iron is thus described commonly by the Heisenberg Hamiltonian in the form 

[11],[12]:  

1
2S IJ I I J

I J
H J R S S          (2.26)  

where IS  is the spin vector of atom I , and IJ I JJ J R R  is the 

exchange integral between atoms I  and J  determined by the overlapping the 

electronic wave-functions, depending on the ionic configuration IJR . The MM 

of atom I  has a magnitude I B IM g S  where 2.0023g  is the electronic 

g-factor, and B1.1IS  is the magnitude of its spin, whose direction is 

                                                
‡Bohr magneton is a consequent physical constant in Niels Bohr’s atom model, representing for 
the magnitude of an electron’s spin magnetic moment.  



II. Review of Basic Theory  WEN, Haohua 

 24  

opposite to the MM by convention. As interpreted by Dirac [5], the vector model 

in Eq. (2.26), which is formally equivalent to the quantum mechanical exchange 

effect in Eq. (2.24), enables us to picture and also to follow quantitatively the 

effects of the exchange interaction, for instance the classical treatment of spin 

waves, discussed in the following section. The detail of this issue can be seen in 

the short description given in Ref. [13].  

Depending on the sign of the exchange integral IJJ , two types of magnetic 

interactions can be described by the Heisenberg Hamiltonian in Eq. (2.26). With 

a positive IJJ , neighboring atomic spins experience forces aligning the spins and 

stabilizes the ferromagnetic phase, such as BCC iron. In contrast, with a negative 

IJJ , anti-parallel atomic spins are encouraged, giving rise to an 

antiferromagnetic ground state, which frequently occurs among transition metal 

compounds or oxides, for instance, iron manganese alloy (FeMn) and nickel 

oxide (NiO). 

Consequently, the effective Hamiltonian in ferromagnetic iron, which is 

treated as an ensemble of Heisenberg particles involving the motions of atomic 

lattices and spins, is thus written as 

2 1
2 2H i ij i i j

i i ji

H U J
m
p R R S S .     (2.27) 

Here and in the rest of this thesis, lowercase denotes the atomic index unless 
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otherwise stated. We note that Eq. (2.27) is derived based on the 

Born-Oppenheimer approximation, in which the electronic configuration is 

adiabatically subsumed into the effective potential IU R . The spin and 

lattice are coupled through the exchange integral ij iJ R , which depends on 

the lattice configuration iR . In this picture, Eq. (2.19) may be treated as the 

lattice Hamiltonian,  

2

2
i

L
i i

H U
m
pR R ,          (2.28)  

and the Hamiltonian describing the spin-spin interaction as in Eq. (2.26) can be 

expressed as 

1
2S ij i j

i j

H JS R S S ,         (2.29)  

where iR R  and iS S  stand for the lattice and spin configuration, 

respectively. R  is usually regarded as parameter in the spin Hamiltonian SH . 

In the following sections, we will review the thermodynamics related to the 

lattice and spin dynamics starting from these two Hamiltonians.  

2.2  Lattice Dynamics 

We review in this section some fundamental aspects of lattice dynamics and 

the relevant physical properties due to the related thermal excitation, i.e. phonon. 

More details on this subject can be found in Ref. [14,15,16,17,18]. 
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2.2.1 Harmonic approximation of the crystal potential  

In  this  subsection,  we  will  discuss  the  lattice  vibration  under  the  harmonic  

approximation, which the ion-core vibration around its equilibrium position is 

very  small.   

We consider a crystal containing the infinite number of parallelepipedic unit 

cells defined by three non-coplanar vectors 1a , 2a  and 3a , where there is only 

one  atom  in  the  unit  cell.  If  we  denote  0
lR  and lu  as the atomic equilibrium 

position and its displacement, respectively, in the l th  unit  cell,  where  

1 2 3, ,l l l l , the instantaneous position l tR  of atom at time t  is given by 

0
l l lt tR R u , 

3

1
l i i

i
lx a .         (2.30)  

In this regard, the kinetic energy of lattice vibrations is written as 

,

1
2 l l

l

T mu u   , ,x y z         (2.31)  

where lu  is the  component of lu  in Cartesian coordinate system. 

Since the atomic displacements are very small in the harmonic region of the 

potential, the total potential U  governing the lattice motions (See in Eq. (2.28)) 

is then expanded in a Taylor series of the atomic displacements up to the second 

order only, by neglecting terms of third and higher order, i.e.  
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1 2
0

, , ,

1 ,
2l l l

l l l

U U U l u U l l u u .    (2.32) 

Here, 0U  is a constant, representing the ground-state potential energy of the 

crystal with all the atoms staying in their equilibrium positions, which is not 

related to the lattice vibrations due to the thermal fluctuations. The first 

derivative of the potential in Eq. (2.32),  

1

0

0
l

UU l
u

,           (2.33)  

because the total force on any atoms must be zero in the equilibrium 

configuration labeled by the subscript zero. Here the variable l  in 1U l  is 

the abbreviation of lR . The second derivative,  

2
2

0

,
l l

UU l l
u u

  , , ,x y z ,     (2.34) 

is the force constant tensor. The lattice Hamiltonian in Eq. (2.28) is then given by  

2
0

, , ,

1 1 ,
2 2L l l l l

l l l

H T U p p U U l l u u
m

,  (2.35) 

where l lp mu  is the conjugate mechanical quantity of lu . From Eq. (2.35), 

the equation of motion can be derived in the form,  

2

,

,l l
l

mu U l l u ,           (2.36)  
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which are the linear coupled vibration equations involving 3N  degrees of 

freedom, N  being the number of atoms in the crystal.  

Under the periodic boundary condition, the crystal has translational 

symmetry, and the solution of Eq. (2.36) should have the form of plane waves, 

according to Bloch’s law, as 

0i1 c.c.
2

l t
lu A e

Nm
qq Rq q e q ,     (2.37) 

where q  is the wave-vector, and q  and e  are corresponding angular 

frequency and polarization vector, respectively; A q  is  the  amplitude,  and  

c.c.  denotes the complex-conjugate. Substituting Eq. (2.37) into the space 

Fourier transform of the right-hand side of Eq. (2.36) leads to the dynamical 

matrix D q ,   

0 0
0i21 0, l

l
D U l e

m
q R Rq ,       (2.38) 

which is the Fourier transform of the interatomic force constant tensor. Here we 

set 0l  since the summation is over all values of l  and the crystal is infinite, 

periodic, and the origin cell is arbitrary. In this way, Eq. (2.36) is translated into 

an eigenvalue problem,  

2D e eqq q q .          (2.39)  
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Since D q  is Hermitian, the characteristic frequencies of vibration modes 

q  are real. 

2.2.2 Normal modes and phonons    

We can introduce normal modes Q q  by rewriting the displacements as 

i1
l

l Q e e
Nm

q R

q

u q q q         (2.40)  

with   

i i*1
2

q qt tQ A e A eq q q        (2.41) 

The Hamiltonian of lattice vibration vibH  can be written as 

* 2 *
vib 0

1
2L qH H U P P Q Q

q

q q q q    (2.42) 

where P q  is the conjugate normal momentum, i.e. P Qq q . The 

equation of motion as Eq. (2.36) is reduced as the one for uncoupled harmonic 

oscillator, i.e. 

2 0qQ Qq q .            (2.43)  

According to quantum mechanics, P q  and Q q  can be regarded as the 

canonical momentum and position operators, respectively. However, we can 

simplify the lattice Hamiltonian by introducing the annihilation and creation 
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operators q̂b  and q̂b , i.e. 

*
ˆ

2 iq

P
b Q

q q
q

q
,          (2.44a)  

*
ˆ

2 iq

P
b Q

q q
q

q
.         (2.44b)  

In the occupation number representation, the annihilate or create a quantum of 

excitation for the mode s q , 

ˆ , , , 1,s s s sb n n n ,         (2.45a)  

ˆ , , 1 , 1,s s s sb n n n .       (2.45b) 

In  this  regard,  the  vibrational  Hamiltonian  is  rewritten  as  the  form of  a  sum of  

uncoupled quantum harmonic oscillators, i.e. 

vib
1 1ˆ ˆ ˆ
2 2s s s s s

s s
H b b n ,     (2.46) 

where ˆ ˆˆs s sn b b  is the number operator, and  

ˆ , , , 1,s s s sn n n n .         (2.47)  

Within the above description, we have introduced the concept of a phonon as 

a quantized excitation of lattice vibration mode s q , which is a quasi-particle 

obeying Bose-Einstein statistics at finite temperature T , i.e. 
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B
1/ˆ 1s k T

s Tn e .            (2.48)  

In addition, we can see in Eq. (2.46), even when the phonons are all in their 

ground state at 0KT , the vibrational system still possesses 1
2  of energy 

per  mode,  corresponding  to  zero-point  motion,  which  is  attributed  solely  to  the  

quantum mechanical nature of lattice vibrations.  

2.2.3 Thermodynamics of harmonic phonon system  

In order to connect the vibrational properties with the thermodynamics of 

crystals,  we  will  recall  the  relations  for  thermodynamics  properties  of  phonons,  

but without deriving them, in this subsection. One can find more detail of the 

standard results in many textbook, e.g. Ref. [19,20,21]. 

In the foregoing, we present that the small lattice vibrations around their 

equilibrium positions due to the thermal fluctuation in the crystal involving N  

atoms can be described by 3N  normal vibration modes, i.e. Eq. (2.40). Such a 

vibrational system is equivalent to the set of independent quantum harmonic 

oscillators with specific vibration frequencies s , i.e. Eq. (2.47). The total 

vibrational energy vibE  is derived from the standard Schrödinger equation,  

vib vib
1
2s s s s s

s
H n E n n n .      (2.49) 

The energy spectrum s  of this vibrational system is thus given by 
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1
2s s sn .            (2.50)  

where vib s
s

E . According to statistical thermodynamics (See the detail 

description in the following Chapter), all the thermodynamic properties can be 

determined by the energy spectrum through the partition function Z  or free 

energy vibF , i.e. 

B/
vib B Bln ln s k T

s
F k T Z k T e .      (2.51) 

Substitute Eq. (2.50) into Eq. (2.51), we have  

B

B

/2

/1

s

s

k T

k T
s

eZ
e

,            (2.52a)  

B/
vib B

1 ln 1
2

s k T
s

s s
F k T e .      (2.52b) 

Therefore, the total free energy involving the ground-state potential is given by 

B

0 vib

/
0 B

1 ln 1
2

s k T
s

s s

F U F

U k T e
.      (2.53) 

It should be noted that 0U  and s  would modified by the changes of 

atomic equilibrium positions due to the deformation of crystal. If we consider the 

isotropic  deformation  and  denote  it  by  the  total  volume of  crystal  V , both 0U  

and s  in Eq. (2.53) are functions of V . In this regard, the entropy and energy 
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can be derived from the total free energy, i.e.  

V

FS
T

,             (2.54a)  

B

B
0 B /

/1
2 1s

V

s
s k T

s s

FE F TS F T
T

k TU k T
e

.       (2.54b) 

The heat capacity is written as the derivative of energy against temperature, as 

B

B

2 /
B

B 2/

/

1

s

s

k T
s

V k TsV

k T eEC k
T e

.      (2.55) 

Apparently, when 0KT , 1
0 2 s

s
E U  in Eq. (2.54b), consistent with 

the foregoing discussion. However, at the high temperature, where B sk T , 

the  total  energy  can  be  expanded  in  a  Taylor  series  of  the  term  B/sx k T , 

and we have the approximated expression, i.e. 

0 B
1 3
2 s

s
E U Nk T ,          (2.56)  

thus B3VC Nk .  These  relations  reflect  the  classical  equipartition  law,  and  the  

consequent Dulong-Petit law, which is valid at high temperature, where the 

vibrational modes are excited to high energy level, and where quantum effects 

are unimportant.  

Furthermore, at high temperature of classical limit, the zero-point energy can 
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be neglected, and the distribution of the occupation number for the normal mode 

tends to obey the Boltzmann distribution, i.e. 

B/s k T
sn e ,             (2.57)  

and the free energy can be simplified as 

0 B
B

ln s

s
F U k T

k T
,          (2.58)  

Especially when imposing the Einstein mode, in which all the vibration modes 

frequency are assumed to be equal to the unique one, i.e. 0s , thus 

0 B3 lnF U Nk T   0 B/ k T .      (2.59) 

Consequently, the energy and entropy is approximately given by 

BE Nk T ,              (2.60a)  

B3 1 lnS Nk   B/s k T .      (2.60b) 

The above description, i.e. Eq. (2.58), (2.59) & (2.60), are the typical results of 

an ensemble of classical harmonic oscillators with a uniform natural frequency 

0 , which is independent of the total volume.  

2.2.4 Anharmonic effects  

In the foregoing description, the lattice potential is truncated at the quadratic 
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order, from which we translate the coupled lattice dynamics into the uncoupled 

vibration modes of the crystal, or phonons, that depend only on the 

force-constants. In the harmonic approximation, the lattice displacements away 

from their equilibrium position are so small that higher order terms in the Taylor 

series of expansion of lattice potential are negligible, causing the vibration 

frequencies of phonons are not related to the vibrational amplitudes. However, at 

the higher temperature, the vibrational amplitudes are large enough to sample the 

anharmonic region of the potential, where the high-order terms of the expansion 

of potential cannot be neglected. Anharmonicity results in the scattering among 

phonons, and is the cause of finite thermal conductivity and thermal expansion in 

solids described by the thermal expansion coefficient , i.e. 

1 d
d P

V
V T

.             (2.61)  

Also force-constant and elastic constants are functions of temperature or pressure. 

In addition, the isothermal elastic constants are not equal to the adiabatic elastic 

constants.   

Although the vibrational frequencies of normal modes are no longer good 

quantum number  due  to  the  anharmonicity  of  the  crystal  potential,  one  can  still  

use the description of vibrations in terms of phonons with characteristic 

frequencies written as [20] 
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0 iq q q q ,         (2.62)  

where q  is the so-called “renormalized” phonon frequency, 0 q  is the 

harmonic frequency. The term i q  represents the damping effect due to 

multi-phonon scattering, and q  is the broadening of the phonon spectral 

density which can be measured by neutron scattering experiment, from which the 

phonon lifetime  can be deduced, 12 . A finite phonon life time is the 

cause of a finite thermal conductivity due to the phonons. q  denotes the 

frequency shift due to the anharmonicity of the crystal potential.  

We consider the simple case that a one-dimensional oscillator suffers a 

potential involving the anharmonicity, which is 

2 2 3 41
2

U x m x gx hx ,          (2.63)  

where higher order term are neglected. In the harmonic case, 0g h , it results 

in the energy 1/ 2nE n . If we apply the quantum mechanical 

perturbation theory to the state n  at 0KT , we have the energy shift nE , 

which can be written  

23 4
4

n
n n n n

n gx hx n
E n hx n

E E
.      (2.64) 

Here 3 0n gx n , since the integral in this term is an odd function of x  and 

the integration is over the negative and positive x . The contribution of 4hx  in 
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the last term of the right hand side in Eq. (2.64) is smaller than that of 3gx , 

which  can  be  dropped.  However,  it  is  necessary  to  keep  both  of  these  non-zero  

terms associated with 3gx  and 4hx , respectively, denoted by 3  and 4 , 

since 3gx  is in a higher-order perturbation contribution. Therefore, by 

neglecting damping of the phonons, we have  

0 2 3 4 ,          (2.65)  

where 0  is the harmonic frequency at the reference volume, and 3  and 

4  are the frequency shifts due to explicit anharmonic terms in potential, 

whereas 2  is related to the change in force-constants due to the softening or 

stiffening of the parabolic potential, respectively, arising from thermal expansion 

or applied external pressure. The so-called quasi-harmonic approximation is that 

only 0 2  is retained in Eq. (2.65).  

In thermodynamics, the Grüneisen parameter is defined to describe the 

anharmonic effect, i.e., the volume dependence of the change in phonon 

frequency, 

ln ,
,

ln
V T VV T
V V

,       (2.66) 

where it is assumed all the phonon modes are of equal volume dependence. 

However, it is burdensome task to calculate the Grüneisen parameter using Eq. 

(2.66). In this regard, the widely used formula of Grüneisen parameter is derived 
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from the thermodynamics relations as 

33, ST

V P

VBVBV T
C C

,          (2.67)  

where TB  and SB  are the isothermal and adiabatic bulk moduli, respectively, 

and VC  and PC  are the heat capacity at constant volume and constant pressure, 

respectively. Eq. (2.67) is often adopted for convenience. However, the 

Grüneisen parameter is firstly derived from Mie-Grüneisen’s equation of state 

[22] in the form 

0

vib

d
d
UV P

E V
,            (2.68)  

where 0U  and vibE  are the ground state potential energy and vibrational 

energy, respectively, and P  is the pressure. In the first approximation,  does 

not depend on the magnitude of the change in V  for small compression or 

expansion around the reference volume, and the temperature dependence comes 

through the dependence of the reference volume on temperature, i.e. 

,V V T P . However, while there are other thermal excitations, i.e. spin wave 

(magnon) that will be discussed in the following Section, the temperature 

dependence of  is possibly complicated.  

2.2.5 Elastic properties  

In  this  subsection,  we  will  present  the  basic  relations  of  the  elasticity  of  
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crystalline solid, and its thermodynamic description. Detailed derivations can be 

found from the standard textbooks, such as Ref. [2,20,21]. 

Within the continuum elastic theory, i.e., neglecting the discrete nature of the 

crystal lattice, elastic properties can be treated as the long-wavelength limit of 

lattice vibrations. According to Hook’s law, the elastic strain kl  is related to the 

stress ij , i.e. 

3

, 1
ij ijkl kl

k l

c ,             (2.69)  

where , ,i j k  and l  are indices running from 1 to 3, representing Cartesian 

components, i.e. x, y, and z, respectively. ijklc c  is a fourth-rank stiffness 

tensor, containing 81 elements ijklc , namely the elastic constants. For convention, 

they are usually arranged in a 6 6  matrix with elements of c , so that Eq. 

(2.69) can be written as 

6

1

c ,             (2.70)  

where the summation index  running from 1 to 6, defined by 

1 ; 2 ; 3 ; 4 ; 5 ; 6xx yy zz yz zx xy .    (2.71) 

Due to the symmetry of the crystal, not all the elements of c  are 

independent. For instance, there are only three independent elements in a cubic 
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crystalline solid, i.e. 11c , 12c  and 44c , and its stiffness tensor is written as 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c c
c c c
c c c

c
c

c
c

.       (2.72) 

At finite temperature, the deformation process due to the application of an 

external stress , is a thermodynamic process, accompanying with the change 

in energy dE  and heat transfer dT S , which can be described by the relation  

6

1
d d dE T S V .           (2.73)  

It  is  obvious  that  if  the  strain  is  applied  adiabatically,  i.e.,  with  no  heat  transfer  

( d 0S ), the stress tensor is given by 

1

S

E
V

,             (2.74)  

where the subscript S  means that the derivation is taken at constant entropy. In 

this regard, the elastic constants c  can be given by 

21
S

S S

Ec
V

,         (2.75)  

Therefore, elastic constants c  derived from Eq. (2.75) are called adiabatic 

elastic constants. On the other hand, we can also define the isothermal elastic 
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constants in an isothermal deformation process, starting from the Helmholtz free 

energy F , i.e. 

6

1
d d dF S T V .           (2.76)  

With constant temperature condition ( d 0T ), the isothermal elastic constants 

are given by 

21
T

T T

Fc
V

.         (2.77)  

In the above description, the deformation is sufficiently small so that Hook’s 

law,  i.e.  Eq.  (2.69),  is  valid.  Otherwise,  in  the  non-elastic  region,  the  elastic  

constants would be the function of the applied stress or strain. In addition, within 

the harmonic approximation, these two set of elastic constants are equal to each 

other, i.e. 
S T

c c , and both are temperature independent. However, as 

mentioned in the foregoing, anharmonicity results in 
S T

c c  and the 

temperature dependence of c  [23].  

2.3  Spin Dynamics 

In Section 2.1.5, the Heisenberg Hamiltonian for ferromagnetic metals that 

have a net atomic spin is deduced in Eq. (2.29). In this Section, we will give a 

brief review of the thermodynamic contributions from the spin degrees of 

freedom, by introducing the low-lying magnetic excitation, i.e. spin wave 
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(magnon) [24].  

2.3.1 Frozen lattice ground state of the ferromagnetic system 

Let’s consider the isotropic ferromagnetic system involving N  atoms, each 

with spin S . The atoms are frozen in their equilibrium positions, so that the 

Hamiltonian is given by the Heisenberg-type exchange interaction, i.e.  

1 ˆ ˆ
2S ij i j

i j

H J S S .           (2.78)  

In quantum mechanics, the components of spin operator ˆ ˆ ˆ ˆ, ,x y z
i i i iS S SS  obey 

the following commutation relation,  

ˆ ˆ ˆ, ix y z
i j i ijS S S , (with , ,x y z  circle).      (2.79) 

In addition, we can define the spin operators, ˆ
iS  and ˆ

iS , respectively, as 

ˆ ˆ ˆix y
i i iS S S  and ˆ ˆ ˆ+ix y

i i iS S S , with the relations  

ˆ ˆ ˆ, z
i j i ijS S S ,            (2.80a)  

ˆ ˆ ˆ, 2 z
i j i ijS S S .            (2.80b)  

If ˆ
iS  and ˆ

iS  act on the single spin state ,S m , which is the eigen-state of 

ˆ ˆ, z
i iSS , we have  

ˆ , 1 , 1iS S m S m S m S m ,      (2.81a) 
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ˆ , 1 , 1iS S m S m S m S m .      (2.81b) 

Therefore, the Hamiltonian in Eq. (2.78) can be rewritten as  

1 1ˆ ˆ ˆ ˆ ˆ ˆ
2 2

z z
S ij i j i j i j

i j

H J S S S S S S ,      (2.82) 

It can be rigorously proved that the ground state of ferromagnetic material 

( 0ijJ ) can be defined as  

1 2
0 i NS S S S ,   ,i iS S m S .   (2.83) 

The ground state energy 0E  of the spin system is thus given by 

2
0

1 1ˆ ˆ0 0 0 0
2 2

z z
S ij i j ij

i j i j

H J S S J S E ,    (2.84) 

where we have used the relation, ˆ 0 0iS , and 2S  results from the maximum 

eigenvalue of ˆ z
iS , i.e. m S , at the ground state 0 .   

Apparently, for other spin configurations different from the ground state, 

there is at least one spin with m S , leading to a total energy larger than 0E . In 

this regard, the state 0  with all the spins parallel along z-axis is indeed the 

ground state of ferromagnetism.  

2.3.2 Holstein-Primakoff transformation  

Correspondingly, the first excited state is the spin configuration that the 
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projection along the quantized axis of one arbitrary spin, i.e. im , deviates from 

its maximum value S  to 1S , such as 

1
1 1

i i j N
S S S S S ,        (2.85) 

However, the effect of the term ˆ ˆ
i jS S  in SH  causes the disappearance of such 

deviation at spin i , and creates a new deviation at spin j , so that the state 

1 iS  becomes 1
j

S  (See in Fig. 2.1),  

1
1 1

j i j N
S S S S S .       (2.86) 

 

Fig. 2.1: The schematic of the propagation of spin deviation from spin i  to j  due to the 

effects of coupling term ˆ ˆ
i jS S  in the Hamiltonian, Eq. (2.82). 

In this regard, the deviation of the spin-state is not concentrated at one spin, 

but spreads and propagates along the whole magnetic crystal due to the coupling 

terms in Eq. (2.82), in the form of collective excitations, namely spin waves, 

which is similar to the case of lattice waves (See in Fig. 2.2).  

ˆ ˆ
i jS S  

i j

i j
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Fig. 2.2: The classical picture of spin wave with a specific wave-vector: (a) stereogram and (b) 

top view. There is an equal phase difference between the adjacent spins, which is determined by 

the product of their spacing and the wave-vector.  

In order to diagonalize the coupled Hamiltonian in Eq. (2.82), we introduce 

the deviation n  to represent a spin state, and the corresponding annihilation and 

creation operators, â  and â , in analogy to the case of phonons, as 

n S m   0, 1, ,m S ,       (2.87) 

ˆ 1a n n n , ˆ 1 1a n n n ,      (2.88) 

Therefore, the spin operators ˆ zS , Ŝ  and Ŝ  can be expressed in terms of â  

and â , respectively, as 

ˆ ˆ ˆ ˆ2S S a a a ,            (2.89a)  

ˆ ˆ ˆ ˆ2S a S a a ,           (2.89b)  

ˆ ˆ ˆzS S a a .             (2.89c)  

(a) Stereogram 

(b) Top view 
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This is the Holstein-Primakoff (HP) transformation. Accordingly, Eq. (2.81) can 

be rewritten as,  

ˆ 2 1 1S n S n n n ,         (2.90a)  

ˆ 2 1 1S n S n n n .          (2.90b)  

From these relations, we can obtain the second quantized Heisenberg 

Hamiltonian, 

1 ˆ ˆ ˆ ˆ
2

1 ˆ ˆ ˆ ˆ ˆ2 2
2
1 ˆ ˆ ˆ ˆ ˆ ˆ2 2
2

S ij i i j j
i j

i i i j j j

i i i j j j

H J S a a S a a

S a a a a S a a

a S a a S a a a

.       (2.91) 

Eq. (2.91) involves the square root term of ˆ ˆa a , corresponding to the 

deviation quantum number n , giving rise to the complexity of the Hamiltonian. 

The excited states ( 0n )  are  difficult  to  solve  rigorously  as  the  eigen-state  of  

SH . Fortunately, approximate solutions can be obtained for low-lying excited 

states, which are sufficient for low temperature considerations far from the 

magnetic transition point, where the spin deviation is small, i.e. ˆ ˆ 2a a n S .   

2.3.3 Low-lying excited state: spin wave   

At low temperatures, the square root terms in Eq. (2.91) can be replaced by 

2S  approximately, and the zero-order Hamiltonian 0H  can be written as  
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0 0
,

1ˆ ˆ ˆ ˆ ˆ ˆ
2ij i i ij i j i j

j i i j i j

H E J Sa a J S a a a a ,    (2.92) 

where, the first term in the right hand side is the ground state energy, and the 

second term represents the energy arising from the deviation of the thi  spin, 

whereas the third term is the coupling between different spins, which is similar to 

the  harmonic  Hamiltonian  of  lattice  dynamics,  shown  in  Eq.  (2.35).  Therefore,  

by introducing the Fourier transform of ˆia  and ˆia , as  

0
1

i2ˆ ˆi
q i

i
b N e aq R ,            (2.93a)  

0
1

i2ˆ ˆi
q i

i
b N e aq R ,            (2.93b)  

we can diagonalize 0H ,   

0 0

0

0

0

1ˆ ˆ ˆ ˆ ˆ ˆ0
2
1ˆ ˆ ˆ ˆ ˆ ˆ0 1
2

1ˆ ˆ0
2

ˆ ˆ

H E J Sb b J S b b b b

E J Sb b J S b b b b

E J J Sb b J S

E b b

q q q q q q
q q

q q q q q q
q q

q q
q q

q q q
q

q

q

q q
,   (2.94) 

where q  is the frequency of spin wave, thus q  is  a  quantum  of  the  spin  

wave, or magnon,  

0q J J q S ,           (2.95)  
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with 0 0exp iij i j
j

J q J q R R . Here in Eq. (2.94), 0J S
q

q , 

there is thus no zero-point energy in ferromagnetic magnon. If only the 

first-nearest-neighbor (1st-NN) spin-spin interaction is considered in a cubic 

crystal, Eq. (2.95) can be simplified as 

1NN 1q ij qZJ S ,           (2.96)  

with the structure factor of spin wave q , 

1 i
q Z e q   0 0

i jR R ,       (2.97) 

where Z  is the coordinate number of 1st NN.  

2.3.4 Spin dispersion relation at long-wavelength limit   

The dispersion relation of the magnons, i.e., the relation between the 

frequency q  and its wave-vector q , can be derived from Eq. (2.96). Therefore, 

at low temperature and for long wave-length, i.e. 1, we have 

1NN

21NN

21NN

1NN 1 2 2 2

1

11
2

cos ,

q ij q

ij

ij

ij

ZJ S

J S Z

J S

J SZ q Z q

.       (2.98) 

In cubic crystal, i.e. simple cubic (SC), body-centered cubic (BCC) and 

face-centered cubic (FCC), we have 
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1NN 2 2
q ijJ Sa q ,            (2.99)  

where 2cos , 1/ 3  and 2 26Z a , a  being the lattice parameter. 

Obviously, BCC iron involving both 1st- and 2nd-NN spin-spin interactions can 

be  regarded  as  the  sum of  a  BCC sub-crystal  containing  1st-NN with  exchange  

strength being 1NN
ijJ  and an SC sub-crystal containing 1st-NN with exchange 

strength being 2NN
ijJ , which both sub-crystals have the same lattice constant a . 

Therefore the dispersion relation can be written as 

1NN 2NN 2 2
q ij ijJ J Sa q ,         (2.100) 

from which the so-called spin stiffness D  is given by 

1NN 2NN 2
ij ijD J J Sa ,           (2.101)  

Thus, 2
q Dq  at the long-wavelength limit. Here we have assumed the 

frequency of spin wave q  is not related to the direction of q  due to the 

isotropic nature of ijJ . 

2.3.5 Anharmonic effects in ferromagnetic system   

As shown in Eq. (2.94), 0H  is  called  the  Hamiltonian  under  spin-wave  

approximation, where ˆ ˆ ˆq q qb b n  represents the occupation operator of magnon, 

whose eigen-value is the occupation number of magnon of q . Since magnons 

are bosons, the occupation number ˆqn  obeys  the  Bose-Einstein  distribution  at  
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finite temperature T ,   

B
1/ˆ 1q k T

q T
n e .           (2.102)  

On  the  other  side,  if  we  expand  the  square  root  terms  in  Eq.  (2.91)  in  the  

form   

2
ˆ ˆ ˆ ˆ ˆ ˆ1 11 1
2 2 2 8 2
a a a a a a

S S S
,      (2.103) 

and take account the high order terms of operators, then  

0 1SH H H ,            (2.104)  

where the term 1H  is written as 

1
, ,

ˆ ˆ ˆ ˆ2
4 q k q q k q q k q k q q

q q k

ZJH b b b b
N

,     (2.105) 

which stands for the magnon-magnon interactions, and which produces 

anharmonic effects in the system of spin waves. From Eq. (2.94), the spin-wave 

is just the linear solution of the time dependent Schrödinger equation,  

0

ˆ
ˆ ˆi ,q
q q q

b
b H b

t
.         (2.106) 

Therefore, in considering the perturbation incurred by 1H , the Schrödinger 

equation is corrected by introducing the temperature dependent magnon energy 
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q T , as 

ˆ
ˆi q

q q

b
T b

t
,            (2.107)  

where  

1NN 1q ij qT ZJ S f T ,        (2.108) 

1 e T
f T

S
, with 1 ˆ1 q q T

q

e T N n .   (2.109) 

From Eq. (2.108), it can be seen that the correction factor f T , due to the 

magnon-magnon interactions incurred by 1H , decreases with increasing 

temperature, resulting in the softening of magnon modes, which finally may 

become unstable at higher temperatures near magnetic transition boundary, i.e. 

Curie temperature.  

In addition, there are other higher order terms neglected in Eq. (2.104), 

representing the multi-magnon interactions. Similar to the case of phonons, with 

the temperature increases, those multi-magnon interactions become important, 

which, accompanying with 1H , can produce a shift of the characteristic magnon 

frequencies, and a reduction of the magnon lifetime, as expressed in Eq. (2.62).  

2.3.6 Classical treatment of spin dynamics   

In this subsection, we will present an alternate treatment of spin dynamics, 
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starting also from the general translationally invariant exchange Hamiltonian,  

1
2S ij i j

i j

H J S S ,           (2.110)  

by treating the spins as c-numbers of fixed length i SS . Therefore the 

equation of motion of spin kS  can be derived as 

B

d i ,
d

1

1

k
S k

N

ik i k
i k

k k

H
t

J

g

S S

S S

H S

,          (2.111)  

where kH  represents the effective magnetic field acting on spin kS , 

determined by the strength of exchange integral ikJ  and the surrounding spins 

iS , which is defined as 

B

1 N

k ik i
i k

J
g

H S .            (2.112)  

Eq. (2.111) shows the classical dynamics picture in which the atomic spin is 

regarded as a classical vector, and precesses around an effective magnetic field 

due to its neighbors. The magnetization observed macroscopically is given by the 

ensemble average of the spin vector. Thermal fluctuations of the precession angle 

increase with increasing temperature, reducing collinearity from the saturation 

value at 0K. At the Curie temperature, collinearity is lost altogether and the 
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system crosses over from the FM into the PM phase. Collectively, the dynamics 

of all the spins are correlated, the motion of neighboring spins being coupled by 

the exchange interaction. Low-lying collective excitations below Curie 

temperature are in the form of spin waves, which the detailed classical derivation 

can be seen in Ref. [25]. The classical solution of spin wave of q  is  written  as   

0i i
q i

i
S t S t e q R   ,x y ,      (2.113) 

which is the classical expression for Eq. (2.93). In this regard, the spins can be 

pictured as the classical vectors rotating in the Oxy -plane, with equal phase 

difference between the adjacent spins, determined by 0
iq R , which is the origin 

of the classical picture of spin wave, as shown in Fig. 2.2. 

2.3.7 Thermal properties  

Analogous to phonons, the thermodynamic functions, e.g. free energy, 

entropy, etc., of the magnon system can be derived from the magnon partition 

function, constructed from thermal energy spectrum of the magnons, i.e. 

th q q T
q

E T n ,           (2.114)  

which is similar to the phonons, but without the zero point energy. Therefore, the 

thermodynamic functions have the similar forms as those for phonons, which we 

will not go into the details here.  
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At low temperatures, the density of magnons is low, and the spin-wave 

approximation gives a good description of magnetic properties in general. For 

instance, the magnetization obeys the so-called Bloch’s 3/2T  law at low 

temperatures. However, since the magnon density increases with temperature, 

multi-magnon  interactions  cannot  be  neglected.  In  this  regard,  it  is  difficult  to  

apply  the  spin-wave  approximation  at  high  temperatures,  especially  near  the  

magnetic phase transition boundary. Within the classical picture of spin motion in 

the foregoing, the thermal behavior at high temperatures can be described based 

on the mean-field theory [26,27].  

Eq. (2.112) defines the effectively field governing the spin motions. Within 

the mean field approximation, we may write  

B

N
z

k ik i
i k

g J ZJSH S ,          (2.115)  

by replacing the instantaneous spin vector iS  by its mean value zSS , with 

ikJ J . Since the magnetization is given by BgM S , the effective field is 

proportional to the magnetization, i.e. kH M , which is the Weiss molecule 

field. In this approximation, the effective field is assumed homogeneous and all 

the spins are aligned. The energy of a single spin k  is given by 
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B

1 1
2 2
1 1
2 2

k ik i k ik k i
i i

z z
ik k ik k

i i

k k

J J

J S J S

g

S S S S

S S

H S

.      (2.116) 

In this description, we translate the interactive spin system into an ensemble 

of uncoupled paramagnets in an external field, i.e. z z
k ik

i
J S eH , ze  being 

the unit vector along the z-axis, the quantized axis of spins. Apparently, the 

magnitude of such an external field varies with the temperature dependence of 

magnetization, i.e. B/z
kH S M T g . The partition function is then given 

by 

B

B

cosexp d

sinh
4

k k
k

g H SZ
k T

x
x

, B B/k kx g H S k T   (2.117) 

from which the corresponding free energy per spin is given by 

B

B

ln

sinh
ln 4

S kF k T Z

x
Nk T

x
,  B B/k kx g H S k T .  (2.118) 

Other thermodynamic functions can be thus derived from SF . In particular, 

when T  ( 0x ), the spins are totally random, i.e. 0kS , and the 

energy of the spin system tend to be zero. In addition, the entropy of such totally 

random spin system is given by [25] 
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B

0

0

0

dlim lim
d

sinh
limln 4

sinhdlim ln 4
d

ln 4 lim

ln 4

S S

T T

x

x

x

S F
k T

x
x

x
T

T x

TL x

,       (2.119) 

where 
0

lim sinh / 1
x

x x , and 
0

lim 1/ / 3
x

L x x x , with  

coth 1/L x x x ,           (2.120)  

being the so-called Langevin function. The significance of Eq. (2.119) is 

apparent,  since  the  phase-volume  of  the  totally  random  spin  system  with  fixed  

spin magnitude is equal to the spatial angle, i.e. 4 , so that the entropy is 

given by B Bln ln 4S k k , according to the Boltzmann’s definition. 

It should be noted that the mean-field theory reviewed above is a 

one-particle model, and only consider the effects arising from single spin motion 

in  the  average  field  of  the  neighboring  spins.  This  means  it  cannot  describe  the  

effects of collective excitations at low temperatures. As a result, the 

magnetization decays exponentially with temperatures at low temperatures, 

instead of obeying the experimental 3/2T  law. However, the mean-field theory 

does provide a good description of the thermal properties of spin dynamics at 

high temperatures. 
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2.4  Phonon-Magnon Interaction 

In the foregoing Sections, we have presented the thermodynamic natures of 

lattice and spin dynamics separately, in terms of phonons and magnons. However, 

as reviewed in Section 2.1.5, in a ferromagnetic system, the degrees of freedom 

of spin and lattice interacts. In this Section, we will discuss the contributions 

from spin-lattice coupling to the free energy of the whole system.  

2.4.1 Spin-lattice coupling   

From the equation of motion of a single spin in Eq. (2.111), the dynamics of 

spin system is determined by the exchange integrals, ijJ .  It  is  well  known that  

ijJ , being related to the overlap of the atomic orbits, is sensitive to the separation 

between atoms i  and j .  In  the  framework  of  density  function  theory  (DFT),  

Sabiryanov et al. [28] calculated the dependence of exchange integral on 

intra-atomic distance of BCC-iron by using the linear-muffin-tin-orbital (LMTO) 

method, in which the 1st- and 2nd-NN exchange integrals are almost the linear 

function of the intra-atomic distance. However, the more detailed calculations of 

Wang et al. [29], show different atomic distance dependence between 1st-NN 

and 2nd-NN exchange integrals. In their calculation results, 1st-NN exchange 

integral includes the contributions from electron exchanges involving overlaps of 

both the 2gt  and ge  electronic states, whereas the 2nd exchange integral 

involves the contribution from the overlap of ge  states  only.  Moreover,  the  
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overlapping of the 2gt  states decreases much faster with the atomic distance 

increasing than that of ge  states. In this regard, the complexity of the exchange 

integral as a function of intra-atomic distance is a many-body effect, due to the 

angular dependence of the electron charge distributions in the crystal structure.  

At the same time, the MM calculated by WIEN2K and LMTO Green 

function vanishes as the lattice constant is compressed to around 2.3 angstrom, 

due to the limitation of available space for the onsite electrons to stay away from 

each other to minimize the effects of Pauli’s exclusion and remain aligned. As the 

local atomic volume increases, the onsite electrons can avoid each other to 

minimize the coulomb repulsion and stay aligned to, increasing the MM. In this 

way, the local atomic volume determines the magnitude of the atomic MMs via 

the  spin  polarization  of  the  on-site  electrons.  For  example,  a  shift  in  the  Curie  

temperature from 350K to 750K is observed experimentally in iron-rich 

compounds undergoing a volume expansion of ~6% [30]. At the same time, the 

dynamics of the atomic lattice is coupled to that of the atomic spins via the 

exchange interaction, giving rise to the phonon-magnon interaction [31]. In this 

regard, for a ferromagnetic material, i.e. BCC iron the phonon-magnon 

interaction affects the thermodynamics of both lattice (phonon) and spin 

(magnon) subsystem. 

2.4.2 Hamiltonians and free energies  
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To separate the dynamics related to the spin and lattice degrees of freedom in 

the system of Heisenberg particles, the Hamiltonian HH  in  Eq.  (2.27)  is  

rewritten as  

( , ) ( ) ( , )H L SH H H Hp R S R S ,        (2.121) 

where LH  and SH  are the Hamiltonians only containing the lattice and spin 

degree of freedom, respectively, whereas H  represents their interaction. 

Assuming H  is small compared with LH  and SH , HH  is nearly separable, 

and then the corresponding partition function HZ  of the system in a canonical 

ensemble is thus derived as 

B

B

, /

//

d d d

d d d

L S

L SB

H H H k T
H

H H k TH k T

L S

Z e

e e

,p R S R S p R S

p R S
      (2.122) 

where L S  is the ensemble average over the phase space  governed by 

the Hamiltonian L S L SH H H . Here, mid-point theorem of integration is 

used in the deduction of Eq. (2.122), in which / BH k Te  varies more slowly than 

/L S BH k Te  by assuming BH k T . In this regard, HZ  is decomposed into 

three parts,  

,H L SZ Z Z             (2.123)  

with 

/ BH k T

L S
e            (2.124a)  



II. Review of Basic Theory  WEN, Haohua 

 60  

B/ d dLH k T
LZ e ,p R p R           (2.124b)  

B/ dSH k T
SZ e S S            (2.124c)  

Therefore, the free energy HF  derived from the partition function, HZ , can be 

expressed as the summation of the corresponding free energies,  

H L SF F F F ,            (2.125)  

where 

B/
B Bln ln d dLH k T

L LF k T Z k T e p R       (2.126a) 

B/
B Bln ln dSH k T

S SF k T Z k T e S       (2.126b) 

/
B Bln ln BH k T

L S
F k T k T e        (2.126c) 

Therefore, we can define the Hamiltonians LH , SH  and H  in the forms,  

2

1 2

N
i

L
i i

H U
m
pR R           (2.127a)  

1( )
2

N

S ij i j
i j

H JS R S S          (2.127b) 

1( , )
2

N

ij i j
i j

H JR S S S          (2.127c) 

where ij ij ijJ J JR R  is the fluctuation of ijJ R  around ijJ R , the 

one at the mean (time-averaged) lattice configuration R .   
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In this regard, the coupling of the spin and lattice degrees of freedom is 

separated in an ensemble of Heisenberg particles, and the free energy are 

thermodynamically decomposed into LF , SF  and F , based on which the 

contribution of lattice waves (phonons), spin waves (magnons), and their mutual 

coupling, can be studied respectively with LH , SH  and H .   
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CHAPTER III 

METHODOLOGY 

Finite-temperature solid-state physical properties of ferromagnetic materials 

are intimately related to spin waves (magnons) and their interaction with lattice 

waves (phonons). Their manifestations are most clearly seen in the 

thermodynamics that can be expressed in terms of the free energy and other 

thermodynamic quantities. Statistical thermodynamics provides the tool for 

accessing such information via the phase space trajectories of the degrees of 

freedom of the ensemble of magnetic atoms. A brief introduction will be 

presented in Section 3.1. Spin-lattice dynamics scheme is presented in Section 

3.2, for generating the phase-space trajectories of the system involving the 

dynamic coupled of spin and lattice degrees of freedom, as well as the 

temperature and stress controlling algorithms for the realization of various 

ensembles. Based on the phase-trajectories, the thermodynamic integration 

method for the free energy calculations is presented in Section 3.3. Taken 

together, the methodology introduced in this Chapter forms the foundation of the 

calculations in this thesis. 
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3.1  Statistical Thermodynamics  

Thermodynamics (in this thesis, we consider only equilibrium or quasi- 

equilibrium thermodynamics) is the phenomenological theory expressing general 

laws governing the spontaneous transformation of one kind of energy into others, 

in the forms of heat and work done, the usage of which describes how the states 

of systems respond to changes in their environment. Statistical mechanics, on the 

other hand, applies the probability theory, which includes mathematical tools for 

dealing with large populations, to the field of mechanics, which is concerned 

with the motion of particles or objects when subjected to a force. It provides an 

interpretation of thermodynamic quantities, such as work, heat, linking the 

thermodynamic properties of materials with the spectroscopic data of individual 

molecules. The goal of statistical thermodynamics is to understand and interpret 

the measureable macroscopic properties of materials in terms of the properties of 

their constituent particles and the interactions between them.  

3.1.1 Thermodynamics 

Of the four laws in thermodynamics, the first- and second-law are widely 

used in classical thermodynamics. For an infinitesimal process, these two laws 

are respectively written as: 

d d dE Q W             (3.1a)  
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d dQ T S              (3.1b)  

where dE  is the changes in internal energy of the system of interest; dQ  is 

the heat absorbed by the system; dW  is the work done on the system; T  is the 

absolute temperature, and dS  is the change in entropy. Here, dW  is not an 

exact differential [1], but can be expressed in terms of generalized coordinates 

X  and force Y  in a reversible process,  

d dW Y X              (3.1c)  

If we consider a PVT  system, i.e. ideal gas, the work done of the system on the 

surrounding is usually written as 

d dW P V             (3.1d)  

where P  is the pressure, and dV  is the change in volume. Combining Eqs. 

(3.1a)-(3.1d), the first- and second-law can be written together in the form: 

d d dE T S P V             (3.2)  

Eq. (3.2) is by far the most important relation in classical thermodynamics, 

which simply expresses a relationship among the state variables of a system and 

the difference between the values of these variables for two neighboring 

equilibrium states. Consequently, the thermodynamics state functions are derived 

from Eq. (3.2) to analyze the thermodynamics relationship on certain processes. 
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For example, the defined Helmholtz free energy F , 

F E TS              (3.3)  

is minimized at a equilibrium state for a system in thermal contact with a 

reservoir kept at constant volume. The Gibbs free energy G , on the other hand, 

is defined for an isothermal-isobaric process,  

G E TS PV ,            (3.4)  

whose decrease is equal to the maximum energy that can be used for work done.  

In principle, all the thermodynamics of the system can be derived from the 

relation in Eq. (3.2) and its deduced relations, as long as the equation of state of 

the system is known. However, classical thermodynamics provides little insight 

into the systems. For example, the isochoric heat capacity VC , representing the 

capability of heat absorbed by the system, can be derived as 

d
dV

V

EC
T

,             (3.5)  

if the temperature dependence of internal energy at the constant volume is known, 

which is beyond the scope of thermodynamics.  

3.1.2 Statistical thermodynamics 

In  statistical  thermodynamics,  each  given  macrostate  can  be  the  result  of  a  
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larger number of microstates. Under a given constraint, the equilibrium 

macrostate has the maximum thermodynamics probability. In this regard, all the 

microstates corresponding to the equilibrium macrostate are combined as a 

statistical ensemble, covering the whole phase-space, ,  which  is  a  

multi-dimensional space, constructed by all degrees of freedom in a given system, 

, ,i i iR p S ,  with  each  particle  i  described by its position iR , 

momentum ip  and spin momentum iS . The basic idea of statistical 

thermodynamics is that the macroscopic quantities are the statistical ensemble 

averages of the corresponding microscopic quantities, as 

d

d

, , , , d d d

, , d d d

A
A

A R p S R p S R p S

R p S R p S

      (3.6)  

where , ,R p S  is the probability of the microstates. Here, iR R , 

ip p , and iS S . The probability  depends on the ensemble selected 

in dynamic simulations, corresponding to the thermodynamic constraints applied 

on the system. 

In micro-canonical ensemble, where the total energy E , volume V , and 

the number of particles N  are fixed, the probability of each microstate are 

identical, as 1/E E  at an equilibrium state, where the entropy of the 

system is maximized, 
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B lnS k E .             (3.7)  

Since each microstate is equally probable in microcanonical ensemble, it is not 

easy to gain all accessible microstates for atomistic simulations. In this regard, 

the canonical ensemble is preferred in atomistic simulations. 

In canonical ensemble, keeping the number of particles N , volume V  and 

temperature T  constant, the probability of each microstate, usually denoted by 

the energy level sE  instead, follows the Boltzmann distribution, 

s s

s

E E

s E

s

e eE
e Z

          (3.8)  

where B1/ k T , and sE

s
Z e  is the partition function, the Laplace 

transformation of the total number of available microstates. Arising from the fact 

that the system keeps thermal contact with the heat bath, the temperature T  is 

theoretically treated as a parameter denoting the Boltzmann distribution for a 

canonical ensemble. The entropy of the system can be written in terms of the 

probability,  

B lns s
s

S k .            (3.9)  

It should be realized that the total energy fluctuates, accompanying with the 

heat transportation between the system and the heat bath. In this regard, the mean 

energy E  is treated as the internal energy in thermodynamics, which can be 
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derived from the partition function, 

ln
s s s

s

ZE E E ,         (3.10)  

and the Helmholtz free energy F , 

B lnF k Z .             (3.11)  

Furthermore, the thermodynamic force, for instance the pressure P  in the 

PVT  system, can also be derived from the partition function, 

B
,

d ln
d

s
s

s T N

E ZP k
V V

        (3.12)  

From the deductions above, it can be seen that the key quantity in canonical 

ensemble  is  the  partition  function,  from  which  the  state  variables  of  a  

thermodynamic system can be derived. However, it is too difficult to obtain the 

exact  value  of  partition  function,  since  it  is  associated  with  the  phase-space  

volume. However, based on the ergodic hypothesis that the time average is equal 

to the statistical ensemble average, thermodynamic quantities are calculated from 

the phase-space trajectories obtained by SLD simulations, the implementation of 

which is presented in the following section, 
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0

0

, , , , d d d

, , d d d

1lim d
t t

t
t

A
A

A
t

R p S R p S R p S

R p S R p S
.      (3.13) 

It should be noted that Eq. (3.13) is available only when the system is at 

equilibrium state, and the probability  for this ensemble is stationary.  

3.2  Spin-Lattice Dynamics  

3.2.1 Conventional molecular dynamics 

Developed in 1950s, molecular dynamics (MD) [2] is a computer simulation 

of physical movements of atoms and molecules, whose trajectories are 

determined by numerically solving the Newton’s equations of motion for those 

interactive particles in a given ensemble [3],  

2

2

d d
d d

i
i

i

Um
t
R

R
,             (3.14)  

where the forces between the particles and potential energy are defined by 

molecular mechanics force field U [4].   

In the early version [5,6] of MD, pair-wise interatomic potentials, e.g., 

Lennard-Jones potential [7], have been widely used, which is, however, used 

exclusively in modeling the rare gas, and is inappropriate for metals involving 

the many-body interaction. Consequently, embedded atom methods [8] (EAM) 
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were used to describe the complex atomic environment in metals, by introducing 

an atomic embedded potential as the function of electron density and its relevant 

form based on Jellium model approximation [9], 

EAM
1

1
2

N N

i ij
i i j

U F V R         (3.15)  

where i iF A  is the embedded potential in terms of the electron 

density, 
,

N

i ij
j j i

f R , as the function of interatomic distance ijR . For 

example, the EAM-type Finnis-Sinclair potential [10,11] were successfully 

applied to the studies of transition metals [12].  

Unfortunately, the semi-empirical potentials of EAM formalism are not 

always useful for the study of magnetic properties in the case of ferromagnetic 

iron [13], since it is very difficult to separate from the total energy of interaction 

between atoms [14], the magnetic component due to the strong exchange 

interactions between the magnetic moments of neighboring atoms. Based on 

Stoner’s  model,  Dudarev  and  Derlet  (DD)  constructed  a  many-body  ‘magnetic’  

interatomic potential [ 15 , 16 ] for BCC-iron, where the ferromagnetism is 

involved in the embedded part F , expressed in terms of electron density, to 

describe the local magnetic structure of the environment of a given atom, 

1
ln 2 C

C

BF A ,     (3.16) 
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where A  and B  are constants; x  is the Heaviside step function, with 

C  being the critical electron density where magnetism disappears. 

3.2.2. Spin-lattice dynamics scheme 

In order to account for the spin dynamics and their interactions with lattice 

dynamics in the magnetic materials, Ma, Woo and Dudarev (MWD) developed 

the SLD scheme [17], where the dynamics of spin and lattice degrees of freedom 

are solved on the equal footing. In this regard, SLD scheme is essentially a 

reformulation of conventional MD to incorporate the spin degrees of freedom.  

Starting from the Hamiltonian of the ferromagnetic system involving 

interactive spins and lattices, which have been described in detail in Chapter II, 

i.e., 

2

1

1
2 2

N N
i

H i ij i i j
i i ji

H U J
m
p R R S S ,     (3.17) 

Here, ip , iR , and iS  are respectively the momentum, instantaneous positions 

and intrinsic spin of the so-called Heisenberg particles, which dynamically 

interact via a many-body potential 1, , N iU UR R R . The corresponding 

equations of motion for the spin and lattice degrees of freedom are derived as 

[17], i.e., 
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B

d
d

d 1
d 2

d
d

k kH

k k

N
k H

ij i j
i jk k k

N
k

ik i k k k
i j

H
t m

H U J
t

J g
t

R p
p

p S S
R R R

S S S H S

.     (3.18) 

The trajectories of the Heisenberg particles are numerically solved from Eq. 

(3.18), by simultaneously integrating the position, momentum and spin vectors 

over a certain discrete time-step, following Suzuki-Trotter decomposition [18] 

(STD) integration algorithm [19]. In general, the time-step in SLD simulation is 

set as 1510  second, which are two orders of magnitude smaller than the typical 

atomic vibration cycle of 0.1 pico-second ( 1310 s) and spin precession cycle 

around 0.01 pico-second ( 1410 s), to avoid the significant discretization error 

[17]. In practice, the system attains thermodynamic equilibrium with the 

environment and maintains constant temperature and/or pressure. To realize such 

thermodynamic constraints, it is necessary to import the temperature and stress 

controlling algorithms into SLD scheme. 

3.2.3 Temperature controlling algorithm 

To control the temperature of the lattice and spin subsystems, the SLD 

adopts the Langevin thermostat based on the fluctuation-dissipation theorem, in 

which the Langevin equations replaces the deterministic equation (Eq. (3.18)) to 

account for the stochastic nature of atomic motions,  
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2

2

d d dd
d d d d

k k k
k k

k

Um t
t t t

p R R f
R

,      (3.19a) 

B
d
d

k
k k k k k kg

t
S H h S S H S ,    (3.19b) 

where U  represents the intra-atomic potential plus the exchange interaction 

term; d
d

k

t
R  and k kS H  are respectively frictional forces for the 

lattice and damping field for spin, acting as dissipative forces due to electrons in 

the vicinity of the atom k .  and  are respectively the viscosity and 

damping coefficient; k tf  and kh  are the Langevin forces for the lattice and 

magnetic field for spin precession, respectively, with delta-correlated relations 

given by,  

2
k k kkt t t tf f ,         (3.20a)  

2
k k kkt t t th h ,         (3.20b)  

where  and  are  the  strengths  of  kf  and kh , respectively. According to 

fluctuation dissipation theorem, the ,  ordered pair in lattice subsystem and 

,  ordered pair in spin subsystem should satisfy the following relationships, 

respectively,  

2
B6 k T ,             (3.21a) 

2
B B2 kg S k T ,           (3.21b) 
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when the system reaches the thermodynamic equilibrium state at the desired 

temperature T . In this regard, the dissipative and random natures of electron 

scattering result in the energy transformation between the system and heat 

reservoir, driving the whole system to Gibbs distribution labeled by the desired 

temperature.  

3.2.4 Stress controlling algorithm 

For  the  stress  control,  Berendsen  barostat  [20]  is  adopted  in  our  SLD  

simulations, where the volume is scaled to modify the stress of the whole system 

to be the desired one. The  component of atomic stress tensor i  is 

defined following the Virial theorem [21] in SLD simulation,  

1 1
2

i
i ij ij

i ji

m v v f r
V

        (3.22)  

where iV  is the atomic volume; v  is the velocity; ijf  and ijR  are 

respectively the atomic force and separation between atoms i  and j  along  

and  Cartesian directions. For a cubic crystal, the stress tensor is diagonal in 

rectangular coordinate system formed by the surface normals, which is identical 

to the principal coordinate system. In this case, Berendsen barostat uses a scale 

factor ,  which  is  a  function  of  the  normal  stress  iS ,  to  scale  the  

lengths along  direction in the system: 
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i x i

i x i

i x i

L L
x x
y y
z z

,             (3.23)  

with 

01
3
C

s

t S S          (3.24)  

where t  is the integrator time-step; s  is  the  ‘rise  time’  of  the  barostat;  C  

isothermal compressibility of the system; and 0S  is the desired value of stress. 

After a sufficiently long running time, the average atomic stress in the system 

would balance the external applied stress, gradually adjusting to the dimensions 

following Eq. (3.23).  

3.3  Thermodynamic Integration Method 

As the most fundamental of all thermodynamic functions, the free energy 

determines relative phase stability and derives other thermodynamic quantities, 

serving as a generating function. Unlike simple thermodynamic quantities such 

as  internal  energy,  pressure,  etc.,  which  can  be  obtained  from  the  statistical  

average of the corresponding micro-quantities as a function of phase trajectories 

generated from SLD simulations (see Eq. (3.13)), the free energy is associated 

with the phase-space volume itself, and cannot directly be calculated in this way. 

Instead, several indirect methods have been proposed to calculate the free energy, 
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(see review in Ref. [22]), among which thermodynamic integration (TI) method 

[23] is a robust approach used in atomistic simulations, and essentially the 

Kirkwood’s [24] coupling parameter method for calculating the free energy 

difference, rather than the absolute free energy.  

In  TI  method,  to  calculate  the  free  energy  of  a  system of  interest 1H , one 

can first construct a thermodynamic path H , connecting 1H  and a reference 

system 0H  of known free energy, i.e.  

1 01H H H ,           (3.25)  

where 0,1  is a tunable parameter, so that 0H H  with 0 , and 

1H H  with 1 . Subsequently, the free energy difference between 1H  

and 0H  is calculated from an integral over the path from 0  to 1 ,   

1
1 0

0

dHF F F ,         (3.26)  

where 1F  and 0F  are the free energies of 1H  and 0H , respectively, and 

A  represents the ensemble average of operator A  performed over the 

phase-space trajectories governed by H . Since 0F  is known already, the free 

energy 1F  of system 1H  can be obtained finally. 

In practice, a series of MD-type simulations with H  for each  and the 

evaluation of the ensemble average are required to obtain the integrand in Eq. 
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(3.26). Here, the ensemble average ensures the system governed by each H  

being in equilibrium. However, a dense series of points of  is necessary to 

keep the accuracy for integration, and a sufficiently long simulation run is 

required to reduce the statistical error in ensemble average, which requires a 

correspondingly high computational burden.  

Watanabe and Reinhardt [25] suggested an intrinsically dynamic scheme, 

namely the adiabatic switching approach, in which  varies  with  the  elapsed  

time t  in dynamic simulation, and the integration in Eq. (3.26) is replaced by  

1 0

0

d d
d

st

t

HF F F t
t

        (3.27)  

where st  is  the  ‘switching’  time.  If  the  Hamiltonian,  H ,  is  changed  slow  

enough compared to the natural time scale of the system, i.e. 13~ 10 s  in a 

typical lattice vibration, the switching process can be regarded as under 

quasi-equilibrium. Accordingly, the functional form of t  determines the 

numerical  stability  of  this  scheme.  A more  detailed  discussion  of  the  approach,  

including analysis of errors, can be found in the authoritative book by Frenkel 

and Smit [26]. In this thesis, t  is set as the form as in Ref. [27], 

5 4 3 270 315 540 420 126      (3.28) 
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where  is the scaled time as / st t , so that 0  at 0t , and 1  at 

st t .   

It should be noted that the thermodynamic path is not limited to be a 

physical path that can be followed in experiments. In addition, all the parameters 

in the Hamiltonian can be used as thermodynamic variables to construct a 

thermodynamic path for particular purposes. For instance, the Hamiltonian itself 

is treated as the thermodynamic variable in Eq. (3.25). In the thermodynamics 

points of view, the free energy is equal to the work done for an isothermal 

reversible process, i.e.  and H  in Eq. (3.26) respectively correspond 

to the generalized coordinate X  and force Y  in the definition of work done in 

Eq. (3.1c), which shows the subtle relation between the thermodynamics and 

mechanics.  
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CHAPTER IV 

PHONON AND MAGNON SPECTRA 

In this Chapter, the phonon and magnon dispersion spectra, the spectral line 

broadening and the corresponding lifetimes of BCC iron are calculated over a 

wide temperature range. Anharmonic effects and phonon-magnon interaction are 

fully accounted for. Both spectra are found to soften with increasing temperature, 

especially near the Brillouin zone boundary. Line broadening for both spectra is 

also found to increases with increasing temperature, which can be traced to 

anharmonicity of the lattice and spin vibrations, as well as the phonon-magnon 

interaction. Interaction with magnons does not affect the phonon frequencies 

very much, but line broadening is significantly enhanced, resulting in substantial 

reduction in the phonon lifetime. Significant magnon softening and line 

broadening (lifetime reduction) due to interaction with phonons is seen. 

Softening leads to the lowering of the Curie temperature, from ~1100K to 

~1000K. At the same time, the spin stiffness is also substantially reduced near the 

Curie temperature. 
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4.1  Chapter Introduction  

Phonons and magnons are respectively elementary excitations of a 

ferromagnetic crystal in the form of vibrations of the lattice and the spins. They 

are the origins of temperature dependence of materials properties involving the 

crystal lattice or the spin, which include all thermal, magnetic, mechanical and 

properties arising from their coupling [1], such as phase transformation, electrical 

resistance, magnetostriction, etc. Typical examples are the complex temperature 

dependencies of such fundamental material properties as electric and thermal 

conductance, expansivity, heat capacity, elastic moduli, particularly near the 

FM/PM phase transition point [2,3]. In this regard, a clear understanding of the 

vibrational thermodynamics [4] associated with the lattice and spin waves 

(phonons and magnons) is of paramount importance in the materials properties of 

ferromagnetic materials.  

Current knowledge of vibrational thermodynamics is mostly derived from 

the statistical mechanics of a harmonic lattice [5], which, strictly speaking, is 

restricted only to non-magnetic materials and at low temperatures. Within the 

harmonic approximation, phonons and magnons in magnetic materials are 

non-interacting, and the contributions of lattice and spin vibrations to 

thermodynamics of the ferromagnetic crystal can be added linearly. However, at 

high temperatures, particularly near the magnetic transition points, anharmonicity 
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is so important that the effects of phonons and magnons are not simply additive, 

which presents a much bigger challenge. 

To further elaborate, we begin with the simplest case of non-magnetic metals 

at low temperatures, where there are no magnons and the phonon density is so 

low that phonons are practically free (non-interacting). Their spectral frequencies 

are well-defined and the corresponding lifetimes practically infinite, as measured 

by the reciprocal of the power spectral density broadening. As temperature 

increases, so does the phonon density and the probability of their mutual 

interaction. This interaction has its origin in the anharmonicity of the restoring 

forces that the vibrating atoms experience at these temperatures due to the 

increasing amplitude. Multi-phonon scattering shifts the characteristic phonon 

frequencies, which at the same time becomes less well-defined (broadened) due 

to the admixture of nearby phonon states resulting from the anharmonic 

perturbation [6]. In the quasi-harmonic temperature range, most of the phonon 

frequency shift (but not the line broadening) is caused by the change in the 

equilibrium mean atomic volume arising from the multi-phonon scattering. At 

higher temperatures, the influence of other contributions becomes important [5]. 

This is particularly true near phase transition points where serious phonon 

softening occurs. The change of phonon states with temperature is the 

fundamental reason for the temperature dependence of thermodynamic state 

functions involving the crystal lattice and hence all physical properties associated 
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with it. Indeed, using a damped harmonic oscillator model, the characteristic 

frequency shift can be shown to be given by [5],  

( ) ( ) ( ) ( )0 iω ω ω= + Δ − Γq q q q         (4.1) 

where ( )ω q  is the characteristic frequency of phonon involving anharmonic 

effect, whereas ( )0ω q  is the harmonic frequency, and ( )ωΔ q  is the 

corresponding frequency shift, and ( )Γ q  is the broadening.  

In ferromagnetic materials, the thermal energy is shared between phonons 

(lattice waves) and magnons (spin waves). The thermodynamics of these 

materials must take into account contributions from the phonons, magnons and 

their coupling. The coupling introduces into the phonon and magnon 

thermodynamics additional anharmonic effects, resulting in a host of so-called 

magnetic anomalous phenomena [7,8], such as magnetostriction, invar effects, 

large temperature sensitivity near the FM/PM transition in the heat capacity, 

thermal conductivity, and elastic moduli, etc.  

We note that although the dynamics of the lattice and the spins are coupled 

via the same exchange field in the Heisenberg Hamiltonian, effects of the 

coupling on the phonons and magnons could be different, such as in their 

strength and temperature dependence. Thus, the softening of magnons and the 

decrease of their lifetimes in BCC iron due to the FM/PM transition, which have 
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been observed in numerous neutron scattering experiments, does not necessarily 

happen with the phonons.  

Due to the difficulty in treating the dynamically coupled lattice and spin 

vibrations, various approximations have been adopted to calculate its effects on 

the lattice and magnetic properties. Typically, effects of the coupling on lattice 

properties are studied at temperatures far away from the magnetic transition point, 

where effects on the atomic force constants due to the deviation from perfect 

alignment of the spins can be treated within the frozen magnon scheme [9]. 

Effects of the coupling have been studied by Akhiezer [10] by introducing into 

the exchange integral small dipolar terms in the power series expansion of the 

ionic displacement. Based on this interaction Hamiltonian, Yakovlev [ 11 ] 

calculated the damping of spin waves due to the phonons. Later on, Elliott and 

Stern [12] studied various interactions that contribute to the line widths of the 

spin wave and phonon spectra. It should be noted that these calculations are also 

restricted to the low temperature regime. In this temperature regime, atomistic 

simulations based on ab initio density functional theory (DFT) are also widely 

used to obtain information of the spin system, such as the spin configuration at 

ground state [13 ,14], and magnon spectra [15 ,16], etc., by adiabatically 

separating the magnetic interaction from the coupled spin and lattice systems. By 

using the LMTO method, Halilov et al. [17] and Savrasov [18] calculated the 

magnon spectrum of iron based on the frozen-magnon approximation. However, 
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the dynamic influence of lattice vibrations on the magnon excitations is 

neglected. In this regard, Sabiryanov et al. [19] suggested the frozen-magnon 

frozen-phonon scheme, where lattice vibrations are treated under harmonic 

approximation. In addition, Bergman et al. [ 20 ] combined first-principle 

calculations with atomistic spin dynamics simulations and concluded that the 

change in exchange interaction strength was responsible for the softening of 

magnon. Yet these calculations are based on the assumption that the dynamics of 

the spin and lattice vibrations can be treated independently and simply added, 

which is questionable at high temperatures near the FM/PM phase boundary, 

where non-linear effects becomes apparent. 

In this Chapter, large scale spin-lattice dynamics (SLD) [21] simulations are 

performed to obtain the dispersion curves of both phonons and magnons, and 

their lifetimes over a wide temperature regime including the FM/PM transition 

point. Comparison with separate spin dynamics (SD) and molecular dynamics 

(MD) calculations are also performed to evaluate the effects of phonon-magnon 

coupling on the phonon and magnon excitations.  

4.2  Simulation Scheme 

The Dudarev-Derlet (DD) potential [22] ( )DDU R  is used to describe the 

ground-state intra-atomic interactions, in which the atomic spins are collinear. In 

terms of DDU , ( )U R  in Eq. (2.17) is given by 
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( ) ( ) ( )DD
1
2

N

ij
i j

U U j
≠

⎧ ⎫
= − −⎨ ⎬

⎩ ⎭
∑R R R        (4.2) 

where ( ) ( )ij ij i jj J S S≡R R , in which ( )ijJ R  is the exchange field. Substituting 

Eq. (4.2) into the Hamiltonians HH  and LH  for the SLD scheme in Eqs. (2.27) 

& (2.28), we may write  

( ) ( )( )
2

1

1 1
2 2

N N
i

H DD ij i j
i i ji

H U j
m= ≠

= + + − ⋅∑ ∑p R R e e     (4.3a) 

( ) ( )
2

1

1
2 2

N N
i

L DD ij
i i ji

H U j
m= ≠

= + +∑ ∑p R R        (4.3b) 

where ie  is the unit vector representing the spin-direction of atom i . It is 

obvious that the potential in Eq. (4.3a) reduces to the DD potential, because the 

spin system is collinear at 0K. Here, the exchange integral ( )ijj R  has the form 

given in Ref [21], obtained by best fitting of the data from ab initio calculations: 

( ) ( ) ( )3

0 1 /ij ij c c ijj j= − Θ −R R R R R        (4.4) 

where 0j  is the fitting parameter, and Å3.75c =R  is the cut-off radius, located 

between the second and the third nearest neighbor distance in BCC iron, ( )xΘ  

is the Heaviside step function. LH  is the lattice Hamiltonian that describes the 

lattice dynamics in the absence of spins. The corresponding Heisenberg 

Hamiltonian used for the spin dynamics in the absence of lattice vibrations is 

given by 
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1
2

N

S ij i j
i j

H j
≠

= − ⋅∑ e e .           (4.5) 

The simulation cell contains 20 BCC unit cells along each dimension in 

Cartesian coordinate system with 16000 atoms. Periodic boundary conditions are 

applied to avoid surface effects. Simulation of the canonical ensemble is carried 

out with Langevin thermostat [21,23] to keep the system at a prescribed 

temperature. The atomic volume is taken as the temperature dependent 

equilibrium one in SLD simulations, whereas in SD simulations the lattice 

parameter is fixed as the one at ground state, i.e. 2.8 Å665a =  [22] in DD 

potential at 0K. The computation is performed using the Suzuki-Trotter 

decomposition [24] with a time step of 1 femto-second (fs, 1510− s). At least 2 

nano-seconds (ns, 910− s) of equilibrium are maintained to allow for the critical 

slowing down [25] of the spin subsystem near Curie temperature. After sufficient 

equilibration, the spin and lattice phase-space trajectories are obtained for HH , 

LH  and SH , from which the corresponding dispersion curves of phonon and 

magnon excitations are calculated for various temperatures.  

According to the Nyquist-Shannon theorem [26], the length of sampling 

time t  determines the resolution of the spectra of waves, whereas the sample 

time-interval tΔ  determines the maximum frequency. Accordingly, 65pst =  

(1ps=10-12s) and 1fstΔ =  are set in the current calculations, thus 

2 / 0.10THztω πΔ = ≈  and max 2 / 3140THztω π= Δ ≈ . 
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4.3  Calculations of Power Spectra Density 

In this chapter, the superscript p denotes phonons, and superscript m denotes 

magnons. In an isotropic periodic crystal, the instantaneous atomic velocities can 

be represented by superposition of all the available phonon modes ( ),p sω q , 

denoted by wave vector q  and polarization s  in real space [27],  

( ) ( ) ( ) ( ) ( ){ }, , ,= cos sinj s s j s jt t t−⋅ + − ⋅∑ q q
q

v v q R v q R    (4.6) 

where ,j sv  is the projection of the velocity of atom j  on the direction of the 

corresponding polarization vector, and jR  is its position; ( ),s tqv  and ( ),s t−qv  

represent the lattice waves propagating in the positive and negative direction, 

respectively. If we apply an inverse rotational Fourier transform over the space 

domain onto both sides of Eq. (4.6), the wave-form of ( ),s tqv  and ( ),s t−qv  in 

the reciprocal space can be obtained, 

( ) ( ) ( ) ( ){ }, ,
1

1 cos sin
N

s j s j j
j

t t
N =

= ⋅ + ⋅∑qv v q R q R      (4.7a) 

( ) ( ) ( ) ( ){ }, ,
1

1 cos sin
N

s j s j j
j

t t
N−

=

= ⋅ − ⋅∑qv v q R q R     (4.7b) 

Following the Wiener-Khintchin theorem [28], the power spectra density 

( ),p
s ωΦ q  of phonon with specific wave-vector can be obtained from the 

Fourier transformation of the time-correlation function ( ),p
sC tq  of ( ),s t±qv  

[29,30], 
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( )
( ) ( )

( ) ( )
, ,

, ,

0
,

0 0
q s q sp

s
q s q s

s

v t v
C t

v v
=

∑
q ,        (4.8) 

according to  

( ) ( )

( )

,

i

2 i i
,

2

, ,

, , d

d
p
q s

p p t
s s

t t
q s

p
q s q s

C t e t

v e e t

v

ω

ω ω

ω

δ ω ω

−

− ⋅ −

Φ =

=

= −

∫
∫

q q

.        (4.9) 

From Eq. (4.9), the phonon mode frequency ,
p

sω±q  with a specific wave vector 

and polarization direction can be found from the location of peaks in ( ),p
s ωΦ q , 

which gives the phonon dispersion relation. Here, for an isotropic crystal, the 

frequency of phonon mode is the scalar function of wave-vector, and is 

independent of the direction, that is , ,
p p

s sω ω−=+q q . The atomic velocity is 

preferred for calculating the phonon modes, since the time-series of ( ),j s tv  is a 

wide-sense stationary random process [31] under equilibrium.  

Similar to phonons, the magnon power spectra density ( )m ωΦ q,  of a 

specific wave-vector q  in the reciprocal space can also be obtained from the 

corresponding Fourier transform of the time-correlation function ( ),C tα q  of 

the spin wave ( )qS tα  (α = x or y) [32],  

( ) ( )

( )

i

2 i i

2

, d

d
m
q

m t

t t
q

m
q q

C t e t

S e e t

S

α ω

ωα ω

α

ω

δ ω ω

− ⋅

Φ =

=

= −

∫
∫

q, q

,        (4.10) 
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with  

( ) ( ) ( )i

1

j
N

t
q j

j
S t S t eα α − ⋅

=

= ∑ q R ,          (4.11) 

and 

( ) ( ) ( ) ( ) ( ), 0 0q q q qC t S t S S t Sα α α α α= −q .     (4.12) 

Therefore, the magnon dispersion relation ( )mω ω= q  is obtained by locating 

the peaks of ( )m ωΦ q, , like in Eq. (4.9). Since the longitudinal fluctuations of 

the spin moments are neglected in the conventional Heisenberg model [33] (See 

Eq. (2.29)), only two degenerate branches of transverse spin waves are left, 

without the longitudinal branch, corresponding to two degrees of freedom of the 

spin subsystem. 

Figs. 4.1 show examples of ( )tqv  of longitudinal lattice wave and ( )tα
qS  

of spin wave for a given wave vector q  along the [ ]100  direction with value 

max0.1q q= , where max 2 /q aπ=  and a  is the equilibrium lattice parameter at a 

given temperature under stress-free condition. The vibration frequencies of the 

spin waves, i.e. the corresponding magnon energy, can be seen to be much higher 

than those of the lattice waves, i.e. the corresponding phonon energies, at 

temperatures far from CT , e.g. 300K. The frequencies of the spin waves decrease 

with increasing temperature. The general wave form is not purely sinusoidal. At 

temperatures below the FM/PM transition, it has beats indicating superposition 
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of a spread of frequencies. Above the FM/PM phase boundary, e.g., 1100K the 

corresponding correlation function shown in Fig. 4.2(e) reveals that the wave 

pattern of ( )tα
qS  at 1100K is like a damped wave.  

Plotted in Figs. 4.3 are the Fourier transforms of the autocorrelation 

functions of Figs. 4.2 (Eqs. (4.7) & (4.11)). They are the corresponding power 

spectral densities, shown in Eqs. (4.8) & (4.9), where the peaks indicate the 

characteristic frequencies of phonons or magnons of wave-vector q. The 

broadening of the power spectra, indicated by the so-called full width at half 

maximum (FWHM), translates into the width of the corresponding spectral line, 

which is related to the phonon or magnon life times. In general, shown in Figs. 

4.3, the power spectra density of both phonon and magnon can be fitted by 

Lorentzian function [34],  

( )
( )2

2

,

1

I
q ω

ω ω
Φ =

−
+

Γ

q

q

q

,          (4.13) 

where ωq  is the characteristic frequency of phonon or magnon, and Γq  is the 

broadening, with Iq  being the intensity of the power spectra density. The 

lifetime of the thermal excitations τ  can be obtained as the reciprocal of the 

corresponding broadening of its power spectra density, i.e. ( ) 12τ −= Γ . 
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Fig. 4.1: Amplitudes of (a) longitudinal lattice wave at 300K (black) and spin waves at (b) 300K 

(red), (c) 900K (blue), (d) 1000K (magenta) and (e) 1100K (orange) with q = 0.1qmax along [100] 

direction, where qmax =  2 /a and a is the equilibrium lattice parameter at the given temperature 

under stress-free condition, obtained from SLD simulations. The vibrational frequencies of spin 

waves are much higher than that of lattice wave at the temperature far from the FM/PM transition 

point, e.g. 300K.  
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Fig. 4.2: The autocorrelation functions of the corresponding waves plotted in Fig. 4.1, obtained 

from SLD simulations, (a) longitudinal lattice wave at 300K (black) and the spin waves at (b) 

300K (red), (c) 900K (blue), (d) 1000K (magenta), and (e) 1100K (orange). The general wave 

forms are not purely sinusoidal, indicating superposition of a spread of frequencies. Whereas, the 

autocorrelation function of 1100K reveals the wave pattern is like a damped wave.  
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Fig. 4.3: The power spectra of the corresponding waves shown in Fig. 4.1: (a) longitudinal 

lattice wave at 300K (black square), spin waves at (b) 300K (red circle), (c) 900K (blue upward 

triangle), (d) 1000K (magenta downward triangle), and (e) 1100K (orange diamond), obtained 

from SLD simulations. Green solid lines are the corresponding Lorentzian fitting. The location of 

peaks corresponds to the characteristic frequencies of the specific waves, whereas the full-width 

at half maximum (FWHM) are related to the lifetimes.  
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In Figs. 4.3, the characteristic frequencies of spin waves can be seen to 

decrease with increasing temperature, indicating the softening of the magnons. 

Line broadening, on the other hand, increases with temperature, due to 

anharmonic effects caused by the increasing amplitudes of the thermal 

fluctuations. However, near the Curie temperature at 1100K, the spin wave stops 

to show a clear peak, due to vanishing long-range magnetic order. 

It should be noted that, in Fig. 4.3(d), mΦ  at 1000K shows a peak centered 

at 0meV, which has also been observed in neutron scattering experiments [35], 

and other calculations [36]. Such a central peak is associated with the zero 

energy transfer among magnons with short wave-length or at high temperatures, 

which can be fitted by Gaussian-type curve as suggested in Ref. [34] as 

( )2 2exp /c cG I ω= − Γ ,          (4.14) 

where cI  and cΓ  are the intensity and broadening. Therefore, mΦ  of 1000K, 

as shown in Fig. 4.4, can be fitted as  

( )
( )

2 2 0
2

0
2

exp /
1

c c
IG L I ω

ω ω
Φ = + = − Γ +

−
+

Γ

.     (4.15) 

Since the central peak is not related to the dispersion relation of magnons, we 

will not show such a fitting in the following, for example, the magnon power 

spectra density at 1100K in Fig. 4.3(e). 
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Fig. 4.4: The illustration of zero energy transfer central peak at high temperature, i.e. 1000K, of 

the magnon spectral density. Green solid line represents the fitting curves, which consists of 

Gaussian fitting (magenta dashed dot) and Lorentzian fitting (red dashed). 

Repeating the forgoing procedures for each q, the dispersion curves and 

spectral line broadening, as well as the lifetime, of both phonons and magnons 

can be obtained. It will be further discussed in the following. 

4.4  Power Spectra Density of Phonons  

Figs. 4.5 shows the spectra densities of longitudinal phonons along [100] 

direction at various temperatures for max/q q =0.1, 0.5 and 0.9 for HH  and LH , 

i.e., with and without phonon-magnon interaction. The characteristic frequencies 

pω  and broadening pΓ  are obtained by fitting to the Lorentzian function (Eq. 
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(4.12)). The results are listed in Table 4.1. It can be seen that both pω  and pΓ  

are increasing functions of wave-vector q . In addition, the phonon frequency 

pω  shifts lower as temperature increases, for example, from 8.45meV at 300K 

to 7.22meV at 900K for the phonons of max/ 0.1q q =  for LH , from which the 

anharmonic nature of the crystal potential is apparent. However, the frequency 

shift becomes less significant at high temperatures. This is likely due to the 

inaccuracy of the DD potential used in the current calculations, which does not 

produce the BCC to FCC structural phase transition of iron at 1183K [22]. 

Meanwhile, the anharmonicity causes the broadening of power spectra density, as 

shown in Eq. (4.1). In Figs. 4.5, pΓ  increases with temperature, i.e. from 

0.31meV at 300K to 1.05meV at 1100K for the phonons with max/ 0.1q q = , 

showing the increasing importance of the multi-phonon interaction due to the 

increasing density of phonons at higher temperatures.  

The same behavior discussed in the foregoing can also be seen in the results 

for HH , i.e. with phonon-magnon coupling. As shown in Figs. 4.6, the coupling 

produces extra phonon scattering, which results in a larger broadening of power 

spectra density of phonons with large wave-vectors at high temperatures. For 

instance, the broadening increases from 0.31meV to 0.39meV for the phonons 

with max/ 0.1q q =  at 300K, and from 3.74meV to 5.72meV for the phonon with 

max/ 0.9q q =  at 1100K, with almost 50% increase. Consequently, the phonon 

lifetime (at max/ 0.1q q = ) of ~1ps at 300K is reduced an order of magnitude to 
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100fs at 1100K. In addition, the larger the wave-vector, the shorter is the lifetime 

of phonons. Despite the strong influence on the phonon-life time, 

phonon-magnon interaction does not seem to have a strong effect on the phonon 

frequency shift, as shown by comparing the values of pω  in Table 4.1. This 

may be the result of cancelation between the quasi-harmonic effects with other 

anharmonic effects.   

TABLE 4.1:  Longitudinal phonon frequency, broadening and lifetime 

along [100] direction in BCC iron, without (HL) and with (HH) the 

phonon-magnon interaction.  

maxq
q 300KT =  900K  1000K  1100K  

LH  HH  LH  HH  LH  HH  LH  HH  

pω  

(meV) 

0.1 8.45 8.10 7.22 7.23 7.20 7.20 7.20 7.02 

0.5 31.6 30.6 28.0 28.0 27.7 27.6 27.7 27.5 

0.9 32.9 32.8 30.6 30.6 30.5 30.4 30.5 30.4 

pΓ  

(meV) 

0.1 0.31 0.39 0.66 0.95 1.05 1.18 1.05 1.19 

0.5 0.54 1.01 2.26 3.55 2.91 4.22 4.18 5.87 

0.9 1.36 1.56 3.24 4.56 3.43 5.14 3.74 5.72 

pτ  

(fs) 

0.1 1062 843.9 498.6 346.4 313.4 278.9 313.4 276.6

0.5 609.5 325.8 145.6 92.71 113.1 77.99 78.73 56.07

0.9 242.0 211.0 101.6 72.17 95.95 64.03 88.00 57.54
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Fig. 4.5: The power spectral density 
of longitudinal phonons with q/qmax = 
0.1 (black square), 0.5 (red circle), 0.9 
(blue triangle) along [100] direction at 
(a) 300K, (b) 900K, (c) 1000K and (d) 
1100K, without (HL, left) and with 
(HH, right) the impacts of magnon. 
Green solid lines are the corresponding 
Lorentzian fitting. 
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Fig. 4.6: The power spectral density 
of phonons with q/qmax = 0.1 (black 
square), 0.5 (red circle), 0.9 (blue 
triangle) along [100] direction at (a) 
300K, (b) 900K, (c) 1000K and (d) 
1100K, without (left) and with (right) 
the impacts of magnon. Green solid 
lines are the corresponding Lorentzian 
fitting. 
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Figs. 4.7 show the phonon dispersion curves at various temperatures 

obtained for HH  and LH , i.e. with and without the impacts of magnons. 

Noting the general phonon softening with temperature increase, the 300K results 

in Fig. 4.7(a) indicates good agreement with ab initio results [37]. Comparison 

between Figs. 4.7(a) & (b) again shows obvious phonon softening as temperature 

increases, consistent with Figs 4.5 & 4.6. 
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Fig. 4.7: The phonon dispersion curves without (data points, HL) and with (solid lines, HH) 

magnons at various temperatures: (a) 300K, (b) 900K, (c) 1000K, and (d) 1100K. Ab initio 

calculation results [37] (Dashed lines) corresponding to 0K are presented in (a) for comparison. 
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On the other hand, phonon dispersion shows little obvious change when 

temperature increases. This could be due to the excessive "hardness" of the DD 

potential used in the current calculations, giving rise to strong harmonicity as 

discussed in the foregoing. Comparison of the phonon dispersion curves between 

LH  and HH  reveals the relatively small effects of magnon excitations on the 

phonon spectrum, even at the temperature near CT , i.e. 1100K. Nevertheless, a 

small amount of softening of the transverse phonon branch along [110] direction, 

i.e. “T1” branches, can be seen in Figs. 4.7.  
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Fig. 4.8: The full-width at half maximum (FWHM) of the longitudinal phonons along [100] 

direction at various temperatures, without (data points, HL) and with (solid lines, HH) the impacts 

of phonon, respectively. 
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Fig. 4.8 shows the line widths pΓ  of phonons along [100] direction in 

terms of the FWHM. At a low temperature like 300K, the vibrations of atom are 

small and can be treated as harmonic. Multi-phonon interaction is unimportant, 

so that the line widths are relatively small. As temperature increases, the 

increased amplitude of the lattice vibrations begins to experience the 

anharmonicity of the crystal potential. Interaction among phonons broadens the 

line width  pΓ   (~3-6 meV) due to admixture (scattering), especially for the 

phonons with large wave-vectors. Likewise, interaction with magnons further 

increases the phonon line width significantly by ~50% (~3-6 meV). The increase 

of line width is temperature dependent increasing from ~0.3meV at 300K to 

~2meV at 1100K.  

4.5  Power Spectra Density of Magnons  

The power spectral density of magnons with wave-vectors max/q q =0.1, 0.5 

and 0.9 along [100] direction at various temperatures are plotted in Figs. 4.9, 

with and without interacting with the phonons. Magnon softening with increasing 

temperature is clear, leading to the FM/PM phase transition. For example, mω  

for magnons of max/q q =0.1 decreases from ~15meV at 300K to ~1meV at 

1100K. At the same time, the magnon line width mΓ  increases due to enhanced 

magnon scattering. Meanwhile, interaction with phonons in HH , plotted in Figs. 

4.9, causes more magnon scattering, giving rise to a larger mΓ  and a smaller 
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mω , i.e. more softening. These phonon-effects on magnons softening are 

significant at high temperatures near the magnetic phase transition, i.e. from 900 

to 1100K (See in Table 4.2). The range of magnon lifetime is much wider than 

that of the phonons, namely, from ~3ps to ~2fs, revealing the stronger 

anharmonicity of the spin vibrations. The results are in good general agreement 

with the experimental data [35,40,41].  

TABLE 4.2:  Magnon frequency, broadening and lifetime along [100] 

direction in BCC iron, without (HS) and with (HH) the impacts of phonons.  

maxq
q 300KT =  900K  1000K  1100K  

SH  HH  SH  HH  SH  HH  SH  HH  

mω  

(meV) 

0.1 15.5 15.3 10.15 9.12 7.84 5.61 3.63 0.54 

0.5 273.1 272.7 197.2 187.3 174.9 150.3 120.0 46.8 

0.9 459.3 458.5 370.6 352.4 335.6 300.9 230.7 171.4

mΓ  

(meV) 

0.1 0.10 0.10 1.03 2.24 1.66 3.50 2.36 3.62 

0.5 2.88 3.62 47.6 67.4 59.8 75.5 80.0 89.7 

0.9 4.61 5.38 58.1 77.9 96.2 122.3 128.8 164.6

mτ  

(fs) 

0.1 3291 3291 319.5 146.9 198.3 94.03 139.5 90.91

0.5 114.3 90.91 6.914 4.883 5.503 4.359 4.114 3.669

0.9 71.39 61.17 5.664 4.225 3.421 2.691 2.555 1.999
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Fig. 4.9: The magnon power spectra density of q/qmax = 0.1, 0.5 and 0.9 along [100] direction, without (HS) and with (HH) the impacts of phonon, at various temperatures: 
300K (black square), 900K (red circle), 1000K (blue upward triangle) and 1100K (pink downward triangle). Green solid lines are the corresponding Lorentzian fitting. 
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Fig. 4.10 shows the magnon dispersion curves along [100] direction for 

various temperatures, with and without phonon-magnon interaction. We note that 

the energies of magnons are much larger than those of the phonons due to the 

much higher magnon frequencies. 
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Fig. 4.10: The magnon dispersion curves along [100] directions with (solid lines, HH) and 

without (data points, HS) the impacts of phonons at various temperatures. 

Magnon softening with increasing temperature is clear in Fig. 4.10, 

occurring at a much faster rate than the phonon counterpart, especially near the 

Brillouin zone boundary. This reflects the stronger anharmonicity of the spin 

vibrations. It is obvious that interaction with phonons also softens the magnon 

spectrum. The amount of softening obtained in the current calculations is 
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consistent with other theoretical predictions, such as the classical spin 

dynamics-study of magnon near CT  of Landau and co-workers [38,39].  

It should be noted that only short-range magnetic ordering exists in the PM 

phase, confirmed by neutron scattering experiments of Lynn [35]. This is also 

apparent from the magnon dispersion curves at 1100K in Fig. 4.10, where the 

magnon energy is nearly zero for magnons with small wave-vectors, indicating 

the instability of magnetic order of long-wave length, leading to the magnetic 

phase transition from FM to PM. Compared to the results of SH , phonon 

scattering in HH  enhances the magnon softening significantly. For example, 

due to the scattering with phonons, the energy of a magnon near FM/PM phase 

boundary decreases from ~370meV to ~350meV at 900K, and from 280meV to 

~170meV at 1100K (Fig. 4.10). Of course, at low temperatures, such as 300K, 

due to the small number of both phonons and magnons, phonon scattering of the 

magnons is relatively rare, so that the magnon dispersion curves of HH  and 

SH  are practically the same. In this regard, in BCC iron, the effects of phonons 

on magnon dispersion are significant only at high temperatures, where the 

phonon-magnon interaction is strong enough to affect the spin wave stiffness 

significantly.  
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Fig. 4.11 shows the line width of magnons along [100] direction at various 

temperatures, with and without the influence of phonon, respectively, obtained 

from HH  and SH . 
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Fig. 4.11: The full-width at half maximum (FWHM) of magnons along [100] direction at various 

temperatures, without (data points, HS) and with (solid lines, HH) the impacts of phonon, 

respectively. 

It can be seen from Fig. 4.11, that the phonon scattering generally results in 

the broadening of the magnons’ line width, which increases with increasing 

temperature. The broadening is particularly significant for the magnons near 

FM/PM phase boundary. For example, the increase is only ~5meV at 900K, but 
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becomes ten-fold to~50meV at 1100K (Fig. 4.11). In addition, such an effect of 

phonon-magnon interaction is larger for the magnons with larger momentum. 
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Fig. 4.12: The magnon dispersion curves at various temperatures with the impacts of 

phonon-magnon interaction, obtained from SLD simulations, compared to the longitudinal 

phonon at 300K (dashed line) obtained by the same routine, and the experimental measurements 

(297K) done by Collins et al. [40] and Mook et al. [41] (Green solid line). (Note that the unit of 

wave-vector is different between the previous figures) 

Fig. 4.12 plots the magnon dispersion curves at various temperatures, 

calculated using HH , compared with neutron scattering measurements done by 

Collins et al. [40] and Mook et al. [41]. The longitudinal phonon dispersion 

curve at 300K is also shown for comparison. It can be seen that the calculated 
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results are in good general agreement with the experimental measurements. In 

addition, the phonon frequency is much smaller than that of the magnons, and 

there is apparent overlapping only at the temperatures near CT  as expected. 

4.6  Spin Stiffness  

In Section 2.3, the spin wave stiffness D  is an important quantity 

describing the dynamics of spin system, which can be obtained from the magnon 

dispersion curves. 
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Fig. 4.13: The spin stiffness obtained from fitting the magnon dispersion curve from HS is 

compared with the experimental data measured by Collins et al. [40] and Mook et al. [41]. 

Here, due to the isotropic nature of the BCC structure and the exchange 

integral governing the spin dynamics, as shown in the Hamiltonian SH  (Eq. 
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(4.5)), the magnon frequency only depends on the magnitude of wave-vector, but 

independent of its direction. Approximating the dispersion relation in the small 

wave-vector region ( 1qa , with a  being the lattice parameter) by  

( )2 21m
q Dq qω β= −            (4.16) 

where β  is a fitting parameter, one can obtain a spin stiffness 318meVD = ⋅Å2 

and 0.9β = Å2 by fitting to the data points of magnon dispersion curves of SH  

at 300K (See in Fig. 4.13). The results are in good agreement with the 

experimental data [40,41].  
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Fig. 4.14: The temperature dependence of spin stiffness, without (HS) and with (HH) the impact of 

phonons over the temperature regime across the FM/PM phase boundary. Here, the values of spin 

stiffness at 1300K in both cases are set as zero for the purpose of obtaining a complete curve to 

guide the eye. 
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The spin stiffness as a function of temperature is plotted in Fig. 4.14, with 

( HH ) and without ( SH ) the phonon-magnon interaction over a wide temperature 

range from 1K to 1300K. Here, the values of spin-stiffness in both cases are set 

as zero artificially at 1300K, just to guide the eye. This is valid since there is no 

long range magnetic order maintained in the PM phase [35]. It can be seen from 

Fig. 4.14, that the value of D  for both SH  and HH  gradually decreases from 

~350meV·Å2 at 1K to ~200meV·Å2 at 900K, then decreases sharply to nearly 

zero at the temperature region between 1000K to 1100K, near the FM/PM phase 

boundary. The difference in the values of D  between SH  and HH  is 

relatively small, i.e. ~10meV·Å2, except for the temperatures near CT , i.e. 

~50meV·Å2 at 1050K.  
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Fig. 4.15: The temperature dependence of reduced magnetization, without (HS) and with (HH) the 

impacts of phonon in a wide temperature region across the FM/PM phase boundary. 
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It is obvious that the phonon-scattering of magnons does produce a shift of 

CT  with a value ~50K, from ~1100K in SH  to ~1050K in HH , which is also 

revealed in the reduced magnetization ( )Tξ , i.e. ( ) ( ) ( )/ 0T M T Mξ = , plotted 

in Fig. 4.15. In the coupled system involving interactive spin and lattice 

described by HH , anharmonicity caused by the phonon-magnon interaction 

changes the thermal expansion and causes the temperature dependence of the 

atomic environment of the interactive spins. In addition, the dependence of 

exchange integral in Eq. (4.4) on atomic distance decreases with increasing 

temperature, so that the spin-stiffness is smaller than that in SH , where the 

lattice parameter is kept constant in the whole temperature region. Here, the 

thermal expansion due to phonon-magnon scattering shows anomalous 

temperature dependence near CT , which will be discussed in the following 

Chapter. 

As shown in Figs. 4.14 & 4.15, the temperature dependence of spin stiffness 

is similar to that of reduced magnetization. In fact, for the case of small spin 

vibration amplitude [42], the magnon dispersion relation in a BCC crystal 

containing the first- and second-nearest-neighbor (1st- and 2nd-NN) spin-spin 

interactions, is expressed as in Eq. (2.100), i.e. 

( )1NN 2NN 2 2 2
q ij ijJ J Sa q Dqω = + ≡ .        (4.17) 

Therefore, the spin stiffness D  is given by  
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( )1NN 2NN 2
ij ijD J J Sa= + ,          (4.18) 

with 1NN
ijJ  and 2NN

ijJ  being respectively the 1st- and 2nd-NN exchange integral, 

determined by the functional form of Eq. (4.4). Here, it should be noted that, in 

classical model, S  in Eq. (4.18) is the projection of atomic spins along the 

quantized axis, i.e. z-axis in our calculations. In this regard, the spin stiffness at 

finite temperature is expressed as  

( ) ( )
( ) ( )

1NN 2NN 2

1NN 2NN 2 /

z
ij ij

ij ij

D T J J a S

j j a T Sξ

= +

= +
,        (4.19) 

where ( )zS S Tξ=  and 2
ij ijj J S= . 
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Fig. 4.16: The calculated spin stiffness (see in Fig. 4.14) compares to the theoretical prediction 

following Eq. (4.19), without (HS) and with (HH) the impacts of phonons. The solid line is the 

expected asymptote. 
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Fig. 4.16 shows the relation between the spin stiffness ( )D T  predicted by 

Eq. (4.19) and that obtained from the magnon dispersion curves. The good 

agreement shows good consistency of our calculation with theoretical predictions, 

despite the impacts of phonons. On the other hand, the general expression of the 

magnon dispersion relation can be safely promoted to the case involving 2nd-NN 

spin-spin interactions. 

4.7  Chapter Conclusion 

In this Chapter, the power spectra density of phonons and magnons, and the 

resulting dispersion curves and the full-width at half maximum (FWHM) are 

calculated, and the influence of phonon-magnon coupling at various temperatures 

is investigated. For phonons, interaction with magnons produces little effects on 

the dispersion curves, but results in significant increase of the FWHM at the 

temperature region near CT , thus decreasing the lifetimes of phonons. On the 

other hand, interaction with phonons causes the magnons softened as temperature 

increases, with simultaneous line broadening. In addition, the phonon-magnon 

interaction gives rising to the shift of CT , due to the change in atomic 

environment and the exchange integral governing the spin dynamics, so that the 

temperature dependence of the spin-stiffness reveals apparent change near the 

FM/PM phase boundary. The calculation results mentioned above are in good 
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general agreement with the available experimental measurements and other 

calculations.  
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CHAPTER V 

THERMAL AND MECHANICAL 
PROPERTIES NEAR MAGNETIC-PHASE 

TRANSITION 

We have shown in Chapter VI that our calculated phonon and magnon 

dispersion relations show strong evidence of phonon-magnon interaction arising 

from the spin-lattice coupling due to the exchange field. As a result, thermal, 

mechanical and magnetic properties of BCC iron are simultaneously affected by 

magnon excitations and are thus coupled. The effects are particularly significant 

near the FM/PM transition point. This is the subject of study of the present 

Chapter. The free-energy change of the associated atomic processes will be 

calculated from the corresponding phase-space trajectory obtained from 

large-scale spin-lattice dynamics (SLD) simulations, using the modified 

thermodynamic integration (TI) method.  
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5.1  Chapter Introduction  

In a spin-polarized solid, the excitation of spin vibrations brings both 

energetic and entropic contributions to its free energy, adding to those coming 

from the lattice vibrations. The added contributions also include the interaction 

between lattice and spin degrees of freedom via the exchange field. The coupling 

between the two types of excitations in atomic processes results in correlations 

among thermal, mechanical and magnetic properties of the solid. A convenient 

entry point of such investigations is the free energy of a canonical ensemble, 

which allows the use as a common parameter the temperature T  to label the 

degrees of excitations of both the lattice and the spins.  

Conventionally, the free energy of an ensemble of interacting particles is 

calculated based on the adiabatic approximation [1,2] assuming that the phonon 

and magnon excitations reside on different time scales and the lattice and spin 

degrees of freedom are separable. Two approaches are commonly adopted. In one, 

the magnetic entropy mS  is derived from the heat capacity mC  by integrating 

the thermodynamic relation d / d /m mS T C T . The temperature-dependent heat 

capacity  is  obtained  either  from  experiments  [3,4],  or  from  empirical  relations,  

such as in Inden [5,6], Hillert and Jarl [7] and Chuang et al. [8]. Within this 

approach, Lavrentiev et al. [9] developed an ab initio parameterized magnetic 

cluster expansion model from which the magnetic free energy is evaluated from 
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the calculated specific heat. In these calculations, the coupling between spin and 

lattice is not explicitly taken into account. In the other approach, entropies are 

calculated as the logarithm of the density of states of magnons and phonons, 

which  can  be  obtained  from  ab initio calculations within the harmonic 

approximation [10,11,12]. Application of both approaches is restricted to the 

low-temperature regime, in which the phonon and magnon densities are both low, 

and anharmonic effects, including those due to their mutual interactions are 

negligible. Calculated this way, the resulting heat capacity cannot be expected to 

be accurate near the FM/PM transition temperature [13], missing the sharp peak 

across the FM/PM phase boundary, for example, found in experiments [3,4].  

In  this  regard,  evaluating  the  free  energy  of  ferromagnetic  metals  at  higher  

temperatures, particularly near the magnetic transition point, requires the 

treatment of the full anharmonicity of the coupled spin and lattice vibrations. 

Such an implementation is now achievable via the recent development of the 

spin-lattice dynamics (SLD) [14] scheme. More accurate and better-based free 

energy changes for atomic processes can be calculated from the phase trajectories 

obtained from large-scale SLD simulations, via the modified thermodynamic 

integration (TI) method [16]. Our study in the following sections is performed 

following  this  approach,  in  which  the  free  energy  changes  associated  with  the  

atomic processes related to the thermal, magnetic and mechanical properties in 

BCC iron are calculated.  
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5.2. Formulation and Methodology 

5.2.1. Hamiltonians  

In  Chapter  II,  the  total  Hamiltonian  HH  of the ensemble of Heisenberg 

particles are divided into LH , SH , and H  (See Eq. (2.127)), with  
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H ij i j
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1( , )
2

N

ij i j
i j

H JR S S S ,          (5.1d)  

where U R  is the interatomic potential, which can be derived from the 

Dudarev-Derlet (DD) potential [17] in the form of Eq. (4.2). The details have 

already been discussed in Chapter IV, and will not be repeated here. 

5.2.2. Thermal energy  

The energy change of a canonical ensemble arising from a temperature 

change can be calculated from the change of the statistical mean of the micro 

internal energy in a large-scale dynamical simulation. However, the contribution 
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due to thermal vibration, i.e., the vibrational energy vibE ,  must  exclude  the  

mechanical work due to the re-establishment of the new equilibrium lattice 

configuration caused by the temperature change. In this regard, equilibrium 

lattice positions within the quasi-harmonic approximation [18] are assumed to be 

temperature-dependent to reflect the ensuing thermal expansion/contraction. The 

total energy 
, 0V T P

E T of the canonical ensemble at T can then be written as a 

sum of the static energy 0E T  and the vibrational energy vibE T , i.e., 

0 vibE T E T E T ,           (5.2)  

where the static energy 0E T  is  the  "ground-state"  energy  at  T, with static 

spins and atoms at the time-averaged (quasi-harmonic equilibrium) spin-lattice 

configuration at temperature T . vibE T  is the vibrational energy gained by 

the crystal when it is brought under zero pressure from the "ground state" to the 

thermal excited state at T . We note that 0E T  contains the work done due to 

the change of the static lattice as a function of temperature, which is unrelated to 

the excitation of the vibrational states due to heat transfer to and from the 

ensemble  [18].  Energies  of  the  thermal  excitations,  such  as  phonons  for  the  

lattice subsystem and magnons for spin subsystem, are not contained in 0E T , 

but in vibE T , which may be identified as the thermal energy thE T . 
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Thermal properties, such as the constant-pressure specific heat PC T  and 

heat transfer coefficient, are derived from the temperature dependence of thE  

according to [18]  

thPC T E T
T

,            (5.3)  

rather than from the total energy that also contains the static energy 0E T , the 

temperature dependence of which is derived from that of the atomic volume. It is 

obvious that the thermal properties are directly related to the interacting magnon 

and phonon subsystems, and through them, to mechanical stresses and strains, 

and magnetization. The underlying cause of the correlation among the thermal, 

mechanical and magnetic properties in ferromagnetic materials is then clear. 

5.2.3 Grüneisen parameter and thermal expansion coefficient 

Many  fundamental  thermal  properties  of  materials  [19],  such  as  thermal  

conductivity, expansivity, and in general heat dissipation in atomic processes, 

originate from the associated anharmonicity. In a harmonic lattice, for example, 

phonons do not interact and has an infinite lifetime, as discussed in Chapter IV. 

There is zero thermal expansion and infinite thermal conductivity. Anharmonicity 

in this regard can be measured in terms of 0E  and vibE  of the phonon 

subsystem, by the Grüneisen parameter , according to Mie-Grüneisen’s 

equation of state [20],  
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0

vib

d
d
EV P

E T
           (5.4)  

where the hydrostatic pressure P  is zero in the current calculations.  

The thermal expansion coefficient  is also an indicator of anharmonicity, 

derived from the temperature dependence of the equilibrium atomic volume V  

of the system under a constant hydrostatic pressure P  (usually set 0P ),   

1 d
d P

V
V T

            (5.5)  

The constant hydrostatic pressure condition in our simulations is realized by 

using the Berendsen barostat [21] algorithm described in Chapter III. 

5.2.4 Free energy and entropy  

Thermodynamically, material properties are derived from free energy 

changes of the atomic process involved. The TI method [15,16] uses the fact that 

the free energy change between two equilibrium states is given by the work done 

in bringing the system, via any reversible path, from one state to the other [22]. 

Thus, given a reference state govern by a Hamiltonian 0H  with free energy 0F , 

the free energy 1F  of a nearby state govern by Hamiltonian 1H  can be 

calculated according to, 

1
1 0 0

0

dHF F F F ,         (5.6)  
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where 1 01H H H  is the transit Hamiltonian responsible for the 

resistance along the integration path (see Chapter III for details). We follow the 

usual practice and use the Einstein solid [15] as the reference lattice subsystem. 

The paramagnetic ensemble [23] is used as the reference spin subsystem. 

Accordingly, the reference Hamiltonian 0H  is  a  sum  of  0
LH  for the lattice 

subsystem and 0
SH  for the spin subsystem, where [15,23] 

2 20 2 0
0

1 1

1
2 2

N N
i

L i i
i i

H E m
m

p R R       (5.7a)  

0
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1

N

S i
i

H g H S            (5.7b)  

Here, 0E  is  the  static  energy  defined  in  Eq.  (5.2),  134 10 Hz  (near the 

Debye frequency of iron [24]) is taken as the uniform vibration frequency of the 

Einstein solid. iR  and 0
iR  represent the instantaneous position and lattice site 

of atom i , and ext 300TH  is a specified external magnetic field. It has been 

verified that the results are not sensitive to the specific values of extH  chosen, 

up to 3000T. The reference free energies are given by [15,23] 

0
0 B

B

3 lnLF E k T
k T

          (5.8a)  

0
B
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ln 4S

x
F k T

x
,   B ext

B

ig H Sx
k T

.   (5.8b) 
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Consistent  with  the  interpretation  of  the  total  energy  within  the  

quasi-harmonic approximation [18], the free energy can also be defined as the 

sum of the static energy 0E  and the thermal free energy thF T , i.e. 

0 thF E F . thF  is the free energy responsible for the thermal excitations. The 

energy increase thE  and the heat dissipation in terms of entropy S  are 

produced by the relaxation of the microstates during the excitation. From the free 

energy F T , the entropy S T  can be calculated using the thermodynamic 

relationship / VS F T . However, as explained in the foregoing 

paragraphs, the temperature dependence of the static energy 0E  contained in 

F  is not related to the thermal excitations [18]. It should thus be discounted 

when calculating the entropy. Besides, differentiating among finite data points of 

free energy could introduce very substantial numerical error. Thus, in the present 

work, the alternate relationship th th /S E F T  is used instead. 

5.2.5. Calculation of the isothermal elastic constants  

The linear elastic properties of a cubic crystal such as BCC iron can be 

described by the three elastic constants 11c , 12c  and 44c . Equivalently, the bulk 

modulus 11 122 / 3B c c  and the tetragonal shear modulus 11 12 / 2c c c  

can also be used, instead of 11c  and 12c  [25]. The isothermal elastic constants 

measure the resistances to small elastic strains at constant temperature, which 

can be derived from the free energy change due to isothermal straining of the 
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atomic lattice [26]. Thus, the bulk modulus B  can be obtained by applying a 

uniform hydrostatic strain  of infinitesimal magnitude,  

0 0
1 0 0
3

0 0
,            (5.9)  

where  is the magnitude of the strain. Then the free energy of the strained 

sample is given by 

2 310
2

F F BV O ,         (5.10)  

where 0F  is the unstrained free energy and V  the instantaneous volume 

under the strain. Similarly, c  can be derived from a isochoric tetragonal shear 

strain , in the form: 

2

0 0
0 0

0 0 1 1

,          (5.11)  

with the corresponding free energy written as  

2 30 6F F c V O .         (5.12)  

And 44c  is calculated from the isochoric orthorhombic shear strain 

2 2

0 0
0 0

0 0 / 1

,          (5.13)  
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with the corresponding free energy 

2 3
440 2F F c V O .         (5.14)  

The quadratic coefficients of F  give the corresponding elastic 

constants.  However,  such  a  free  energy  change  due  to  a  small  strain  is  usually  

small compared with the intrinsic thermal fluctuations of the large number of 

atoms in the system. To overcome such difficulties, the TI method [15,16] is 

adopted as described briefly in the following. 

We consider a thermodynamic process, in which a strain  is incrementally 

applied onto an unstained equilibrium crystal, according to 0=  with 

0 1.  Since  the  applied  strain  would  affect  the  interatomic  distance  in  MD  

scheme, if ijr  represents the interatomic distance between atom i  and j  

under the intermediate state with strain , we can write  

0
ij ijr            (5.15)  

where 0
ijr  denotes the interatomic distance under the stress-free condition and 

I  is the identity matrix. Therefore, according to the TI method, the free energy 

change can be rewritten as 
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where /ij ijHf r  is the interatomic force of atoms i  and j  at the 

intermediate state defined by H , the Hamiltonian with the applied strain 

0= . In this regard, 0 1
0 0

,
ij ij

i j

Y  can be treated as the 

corresponding thermodynamic force versus the generalized thermodynamic 

coordinate , that measures the resistance of the deformation of . Hence, the 

accumulate work done during this thermodynamic process  

0 1
0 00

,

dij ij
i j

W        (5.17) 

is the mechanical work done with the crystal deformed from 0=  to = . 

For example, in the calculation of bulk modulus, the free energy of the uniformly 

strained crystal with strain  can be written as 

0

0

,0

0 d

0 dij ij
i j

F F Y

F f r
.       (5.18) 
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5.3  Simulation Scheme 

Phase trajectories used for calculating the mean energies and for TI are 

obtained for various temperatures via SLD, MD and SD simulations. NVT 

simulations are carried out with temperature-dependent equilibrium lattice 

parameters, which are obtained by NPT simulations beforehand, and Langevin 

thermostat [14,27] to keep the system at a pre-set temperature. The computation 

is performed using the Suzuki-Trotter decomposition [28] with a time-step of 1 

femto-second. Canonical ensemble averages in Eq. (4.5) between 500K and 

1300K are obtained using the phase-space trajectories, a temperature range that 

may be considered sufficiently wide for a credible analysis in the neighborhood 

of  the  FM/PM  transition.  We  note  that  the  BCC  structure  remain  stable  in  this  

temperature range because the DD potential [17] used in our calculations does 

not reproduce the expected BCC to FCC structural phase transition at 1183K for 

iron [9]. 

The simulation cell contains 16000 atoms in a box of 20 20 20  BCC unit 

cells in Cartesian coordinate system. Periodic boundary conditions are applied to 

avoid surface effects. To allow for the slowing down of the spin subsystem near 

CT  [29], at least 2 nano-seconds of equilibrium time is set. To obtain the 

equilibrated atomic volume under stress-free conditions, the dimension length 

along each direction in Cartesian coordinate system is sampled within the NPT 
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ensemble by Langevin thermostat and Berendsen barostat [30] in the sampling 

time range of 1 nano-second after equilibrium. In addition, for the calculations of 

free energy and elastic constants, another 2 nano-seconds is applied for the 

adiabatic switching process [31] in the TI, based on the equilibrium spin and 

lattice configurations, in which both forward and backward processes [32] are 

performed with time-step of 1 femto-second. Doubling the integration time and 

increasing the simulation box to 54000 atoms resulted in the free energy 

variations within 2% and 1.5%, respectively. 

5.4  Thermal Properties 

5.4.1 Temperature dependence of the effective crystal potential 

In a crystalline solid, the lattice atoms vibrate around their equilibrium 

positions, acted on by pair-wise and many-body forces from the surrounding 

atoms. The crystal potential experienced by the vibrating atoms at low 

temperatures and zero pressure may be assumed harmonic, with fixed restoring 

force constants. However, the amplitude of the atomic vibration increases as 

temperature increases, and one can no longer ignore the anharmonicity in the 

crystal potential, which leads to amplitude-dependence in the force constants and 

a temperature-dependent effective crystal potential. This is reflected in the 

temperature dependence of the phonon spectral frequencies and line broadenings 
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as discussed in Chapter IV. A contributing reason is the change of the equilibrium 

atomic volume, or thermal expansion [33].  

With the participation of spins, the spin-lattice interaction via the exchange 

field  gives  rise  to  two effects,  namely,  (1)  the  change  of  the  crystal  potential  to  

include the influence of the exchange field and (2) the interaction of the thermal 

excitations of the lattice and the spin. The first effect produces temperature 

dependence of the atomic volume via spin-spin correlation, while the second one 

increases  energy  dissipation  due  to  scattering  of  the  lattice  and  spin  waves.  For  

illustration, we plot in Fig. 5.1 the ground-state crystal potential at 0K as a 

function of atomic volume, with and without the exchange field.  
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Fig. 5.1: The interatomic potentials in HL and HH (with time averaged spin-correlation at 0K) 

plotted as functions of atomic volume. The shaded area indicates the minimum region 

approximately, corresponding to the equilibrium atomic volume at finite temperatures. 
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Seen from Fig. 5.1, the exchange field provides an attractive component to 

the ground-state crystal potential, producing a contraction in the equilibrium 

atomic volume. An asymmetry in the force constant in regard to expansion and 

contraction of the atomic volume [34] is also apparent.  

The  same  effect  for  the  thermally  excited  states  is  shown  in  Fig.  5.2,  in  

which the equilibrium atomic volume for HH  (with magnon excitation) and 

LH  (without magnon excitation) is plotted as a function of temperature.  
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Fig. 5.2: The equilibrium atomic volume under the stress-free condition, with and without the 

magnon excitation. The results are compared to the experimental measurements done by Ridley 

and Stuart [35]. 

Comparison clearly shows volume contraction caused by the attractive 

exchange interaction between parallel spins [21]. At temperatures below 600K, 

the volume contraction is ~3% and is almost constant. At higher temperatures, 
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magnon softening (reduction of spin stiffness) leads to a loss of spin correlation 

when long-range magnetic order starts to disappear, with the reduction of the 

contraction from ~3% at 600K to less than 1% above the Curie temperature. The 

residual contraction is likely the result of the short-range magnetic order. Our 

results in Fig. 5.2 are in good agreement with the experimental data [35]. 

The second effect, one that is due to the enhanced dissipation caused by the 

increased scattering of the thermal excitations, namely, the lattice and spin waves, 

due to the spin-lattice interaction will be considered in the following subsections. 

5.4.2 Thermal energy  

The  static  and  thermal  energies  of  the  systems  for  HH , LH  and SH  

under the stress-free condition are calculated and respectively plotted in Figs. 5.3 

and 5.4, as functions of temperature. The lack of temperature dependence of 0E  

for LH  is  noted.  It  is  due  to  the  harmonicity  of  the  DD  potential.  The  

temperature dependence of 0E  for HH  is relatively small but distinctly visible, 

particularly near the FM/PM phase transition. This shows that most of the 

temperature dependence of the atomic volume mainly comes from the inter-site 

exchange interaction, the strength of which is proportional to the temperature 

dependent spin correlation.   

If atomic vibrations are simple harmonic, the total vibrational energy is 

given by vib B / 2E nk T , according to the virial and equipartition theorems [36], 

where n  is total degrees of freedom in the system [19], so that vib B3E k T  per 
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atom for the lattice subsystem and vib B1E k T  per atom for the spin subsystem. 

Due to anharmonicity, LE  and SE  in Fig. 5.4 are both larger than the 

respective simple harmonic values of B3k T  and B1k T . Similar to 0E , vibE  of 

the spin subsystem also shows much stronger temperature dependence than that 

of the lattice subsystem, particularly near the magnetic phase transition 

temperature. Indeed, comparing LE  with   HE  in Fig. 5.4 shows that the 

excitation of magnons increases the total thermal energy by ~50%, contributing 

about a third of the total thermal energy. Comparing L SE  with HE  identifies a 

thermal energy of about B0.3k T  that can be attributed to the interaction between 

phonons and magnons near the magnetic phase transition. This is consistent with 

the enhanced phonon line broadening in this region discussed in Chapter IV.   
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Fig. 5.3: The static energy E0 of HL and HH at various temperatures, ranging from 500K to 

1300K. The temperature dependence of E0 comes from the change in equilibrium atomic volume 

under the stress-free condition. 



V. Thermal and Mechanic Properties near Magnetic-Phase Transition WEN, Haohua 

 145  

400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

PMFM

Th
er

m
al

 E
ne

rg
y,

 E
th
 / 

k B
T 

Temperature (Kelvin)

 EL          ES

 EL+S       EH

 

Fig. 5.4: The thermal energies in the unit of kBT as functions of temperature. 

5.4.3 Grüneisen parameter 

As discussed in Chapter II, anharmonicity of the crystal potential causes the 

frequencies of the lattice vibrations to depend on the equilibrium atomic volume 

V . To describe the resulting physical effects, the Grüneisen parameter for a 

vibration mode with frequency i  is defined as  

d ln
d ln

i
i V

.              (5.19)  

In non-magnetic materials, the Grüneisen parameter is completely 

determined by the lattice vibrations (phonons). Thermodynamically, under the 

quasi-harmonic approximation, the Grüneisen parameter can be shown to be 

related to thermal and mechanical properties of the solid, according to,  
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T

V

VB
C

,              (5.20)  

where  and TB  are the thermal expansion coefficient and isothermal bulk 

modulus, respectively, which would be discussed in detail in the following 

sections; and VC  is the specific heat. However, in ferromagnetic materials, e.g. 

BCC  iron,  the  free  energy  of  the  solid  also  contains  contributions  from  the  

magnons  (see  Eq.  5.1d),  which  would  therefore  also  show  up  in  the  Grüneisen  

parameter [20]. The magnetic Grüneisen parameter should describe the coupling 

among magnetic, thermal and elastic properties, such as magnetocaloric, 

magnetoelastic, and thermo-elastic properties.  

However, an explicit expression of the magnetic Grüneisen parameter in a 

form similar to that in lattice dynamics, i.e. Eq. (5.20) is not available, awaiting 

further work. Fortunately, the Mie-Grüneisen equation, as introduced in Eq. (5.4), 

provides a possible approach to study the effects of spin vibrations on the 

Grüneisen parameter. Fig. 5.5 plots the calculated Grüneisen parameter as a 

function of temperature by using Mie-Grüneisen equation. 
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Fig. 5.5: The calculated Grüneisen parameter  associated with LH  and HH , the defined 

m H L  represents contribution from the magnons. 

In Fig. 5.5, L  and H  are respectively associated with LH  and HH . 

L  measures the effect of lattice anharmonicity without the participation of spin 

dynamics, while H  includes the impact of magnons. The value of L is smaller 

than 1 for the whole temperature range, which is relatively small compared to a 

normal  value  of  between  1  and  3  in  normal  metals.  This  also  points  to  the  

possibility that the restoring forces produced by the DD potential might have 

been overly linear. Indeed, this is consistent with our difficulty to produce the /  

phase transition at the right temperature due to insufficient phonon softening. 

The  values  of  H  are in general agreement with values for the Earth core 

derived from the seismic data (~1.8 [37] or ~1.4 [38]). We also plot m H L  

in Fig. 5.5 to show the effect of the magnon phonon interaction. Physically, 
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contributions due to the spin dynamics are realized through the highly non-linear 

exchange field in the Heisenberg Hamiltonian. Compared with L , it is clear that 

effects of magnon excitation, as expressed by m  is dominant throughout the 

entire temperature range examined. Since the amplitudes of lattice vibration 

increase with increasing temperature, the increase of L  with  temperature  is  

expected [39]. m  behaves similarly in the FM phase except for a much larger 

value at the lowest temperatures considered, where the amplitude of the lattice 

vibration is small. This is likely to be the result of the larger spin correlation at 

lower temperatures. Unlike L , m  does not increase with temperature 

monotonically. It maximizes at CT  and starts to drop off as the long-range 

magnetic order disappears. Despite the increase of the mean phonon-energy, 

further temperature increase in the PM phase sees the reduction of m . 

It should be noted that the Mie-Grüneisen equation is derived based on the 

Einstein model in which all vibration modes share the same vibration frequency. 

Apparently, neglecting the distribution of vibrational spectrum is an assumption 

that  might  be  oversimplified.  In  future  work,  we  would  try  to  calculate  the  

magnetic Grüneisen parameter directly from the magnon spectra beyond the 

approximation in current calculation, which may provide more information about 

the effects of spin vibrations on thermal and mechanical properties in 

ferromagnetic materials.  
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Thermodynamically, the Grüneisen parameter can be derived from the 

following thermodynamic relation as shown in Eq. (5.20). However, Eq. (5.20) is 

based on the assumption that all the frequency changes with volume are equal. 

Fig. 5.6 shows the comparison of Grüneisen parameters obtained from Eq. (5.4) 

(abscissa axis) and Eq. (5.20) (ordinate axis). It can be seen that, the values of  

in HH  is generally consistent with each other, but the value of  in LH  

obtained from M-G equation is smaller than those from the thermodynamic 

relation as Eq. (5.20), which may result from the different assumption taken in 

these two methods.  
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Fig. 5.6: The comparison of Grüneisen parameters obtained from Mie-Grüneisen equation as Eq. 

(5.4) (abscissa axis) and the thermodynamic relation as Eq. (5.20) (ordinate axis) of BCC iron in 

both case with (HH,  blue solid circle) and without (HL, black solid squares) spin-vibrations. The 

red dashed line is the expected asymptote.   
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5.4.4 Thermal component of the free energy and entropy 

From the calculated free energies (see Section 5.2) the thermal component 

thF  can be derived by subtracting off the static energy 0E . The results are 

plotted  in  Fig.  5.7  for  various  temperatures.  The  continuity  of  thF  throughout 

the entire temperature range confirms the second-order nature of the FM/PM 

transition,  which  is  consistent  with  experiments  and  other  calculations  [13].  

Noting the relatively small temperature-dependence of th B/E k T  (Fig. 5.4), it is 

obvious that most of the temperature dependence of th B/F k T  in Fig. 5.7 has to 

come from the entropy changes when the system is heated up [25]. 
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Fig. 5.7: The thermal free energy thF  in units of Bk T , obtained from th 0F F E  with 

TI method. 

The resulting entropies are plotted in Fig. 5.8. It is important to note that all 
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the entropies are temperature dependent, in contrast to the constant value usually 

assumed in many investigations. The entropy contribution SS  from magnon 

excitations doubles, for example, from 1.2 Bk  at 500K to 2.5 Bk  at 1300K. 

Comparison of L SS  and HS , on the other hand, shows that the increase of the 

total entropy due to phonon-magnon interaction decreases as the magnon softens 

and disappears with increasing temperature. For example, it is ~1 Bk  at 500K, 

but practically disappears above 1200K.  
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Fig. 5.8: The entropy S for various models. The solid line represents the Einstein Model (Eq. 

5.21) using the entropy at 500K as reference and assuming the phonon modes is temperature 

independent. 

The Einstein solid adopts the harmonic approximation, in which the atomic 

force constant is constant and the atomic vibration frequency is independent of 
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the lattice wave length. The corresponding entropy at temperature T  can be 

expressed as 0 B 03 ln /S T S T k T T  [40], where 0S T  is the entropy 

at the reference temperature 0T . The increasing entropy with temperature comes 

from the increased phase-space volume sampled by the system as the vibration 

amplitude increases. Equivalently, the entropy increase comes from the increase 

in the number of phonon in the system. Accordingly, the entropy in the Einstein 

approximation for LH  is given by [40] 

0 B 03 ln /h
L LS T S T k T T .         (5.21)  

Taking 0 500KT , the entropy in Eq. (5.21) is in good agreement with the 

calculated entropies from LH  in Fig. 5.8. Nevertheless, it is obvious that 

LS T  has a slightly stronger temperature dependence due to phonon softening 

(see Eq. 2.60b). Comparison between L SH  and HH  clearly shows the effect 

of phonon-magnon interaction in increasing the entropy due to the increased 

scattering. Reduction of the effect due to the disappearance of the long-range 

spin correlation is also apparent, when system crosses over from the FM phase to 

the PM phase.  

Unlike the lattice system, the energy SE  and entropy SS  of a 

ferromagnetic spin system are both monotonic functions of temperature, so that 

SS  can be expressed as a function of SE , as commonly done in literatures [41,]. 

In Fig. 5.9, SS  is plotted as a function of the reduced magnetic energy 0/S SE E , 
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0
SE  being the energy of spin system at ground state (0K). 
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Fig. 5.9: The entropy of spin system plotted as function of reduced magnetic energy. 

Since the spin system is totally disordered at sufficiently high temperatures, 

we must have lim 0ST
E . The high-temperature limit of SS  in a classical 

vector model is Blim / ln 4
T

S k , as expressed in Eq. (2.119) [40]. This is 

consistent with our results in Fig. 5.9. In Fig. 5.10, we plot 1/S SS E  against 

T  and verify their equality, thus confirming the thermodynamic relation 

/ 1/S SS E T  in our results. 
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Fig. 5.10: The calculated 
1/S SS E  against T  for verifying the thermodynamic relation 

/ 1 /S SS E T  in our results. The solid line is the expected asymptote. 

5.4.5 Specific Heat 

Fig. 5.11 shows the specific heats of the lattice system LH , the spin system 

SH  and the Heisenberg particle system HH , respectively calculated by 

differentiating the corresponding the thermal energy thE  in Fig. 5.4, as a 

function of temperature.  
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Fig. 5.11: The specific heat (a) in various models, experimental measurement [3,4] are plotted for 

comparison; (b) the enlarged region near Curie temperature. 

Our spin system only has two degrees of freedom, so that the specific heat of 

the classical spin system far away from the transition point is about 1 Bk  in the 

FM phase and tends to zero in the PM phase due to the loss of long-range spin 
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correlation [19,42]. These characteristics are reflected in the calculated SC  in 

Fig.  5.11(a),  which  measures  the  heat  capacity  due  to  magnon  excitations.  The  

lattice specific heat LC  due to phonon excitations, on the other hand, is nearly 

flat in the whole temperature regime, with a value only slightly larger than the 

classical value of B3k  [19,20] arising from a small amount of multi-phonon 

interactions. HC  contains contributions from thermal excitations due to both 

magnons and phonons, including effects due to their mutual interaction. 

The difference of the specific heats HC  of  the  Heisenberg  particle  system  

and L SC  in Fig. 5.11(b), is due to the interaction between the phonons and 

magnons. In this regard, HC  and L SC  show good consistency with each other 

in the whole temperature regime except near the FM/PM transition, where 

slowing down of the spin vibrations [29] brings the frequencies of the magnons 

sufficiently close to those of the lattice vibrations. We note that, even with the 

Heisenberg model, the calculated values are only about half of the experimental 

values [3,4]. This may be due to the inadequacy of the simple model of the 

exchange function [14] we used in this work. 

5.5  Thermomechanical Properties 

In  the  foregoing  sections,  we  have  seen  how  the  participation  of  spins  can  

affect the free-energy change of atomic processes in a ferromagnetic metal like 

BCC iron. The participation of the exchange field can alter the free-energy 
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change of the process, by changing the effective crystal potential, particularly the 

anharmonicity. The participation of magnons in atomic processes may also 

change the entropic contributions from the phonons due to magnon-scattering. In 

this regard, magnon softening due to FM/PM phase transition will produce 

changes in all related lattice properties in BCC iron. Magneto-volume and 

magneto-elastic phenomena are typical examples, which will be discussed in the 

following. 

5.5.1. Magneto-volume effect  

The magneto-volume effect is the volume change of a crystalline solid, 

caused by spontaneous magnetic transition or forced by an external magnetic 

field. This effect is characterized by the anomalous temperature dependence of 

the thermal expansivity near the FM/PM phase transition.  

Experimentally, Joule [43], in 1842, first reported such effects in the length 

of ferromagnetic rods. One of the important applications of magneto-volume 

effects is Invar alloy [44,45,46,47], such as quenched FCC Fe65Ni35, whose 

thermal expansion coefficient is near zero in a wide range of temperatures. Based 

on the experimental data, Lee [48], as well as Campbell and Creuzet [49], gave a 

comprehensive review for magneto-volume effects caused by local moments and 

other mechanisms. For systems with strong local moments, such as iron and 

nickel, Moriya and Usami [50] demonstrated that it is the local moments effect 
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that dominates the magneto-volume behavior, rather than itinerant electrons. 

In addition to the empirical descriptions of magneto-volume effects, 

theoretical models had also been developed in the last few decades. For instance, 

Callen and co-workers [51,52] proposed a standard model based on quantum 

mechanics to describe the magneto-volume effects in ferromagnetic materials, 

involving interactions between phonon and magnon excitations at low 

temperatures. However, it is expected that the coupling between phonon and 

magnon excitations are strong at high temperatures, especially near the FM/PM 

phase boundary [53].  

The role of magnon excitations in magneto-volume effects can be 

understood from a thermodynamic point of view [54]. Energetic and entropic 

contributions to the free-energy of the atomic ensemble, arising from both 

phonons and magnons and their mutual interactions, can be obtained from 

atomistic simulations. In previous atomistic calculations [55,56] based on the 

mean-field approximation, the spin degrees of freedom are adiabatically [1,1] 

decoupled from the lattice system, and the dependence of the exchange field on 

atomic environment is realized only in a time-averaged sense by assuming a 

uniform lattice expansion [57,58,59]. In such treatments, the dynamic nature of 

the atomic positions and the effects of spin dynamics are neglected.  

Grossmann and Rancourt [60] recently proposed a microscopic approach to 
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account for the magneto-volume effect, in which molecular dynamics (MD) 

simulation for the lattice vibration was combined with Monte Carlo (MC) 

simulation for Ising-model-based spin dynamics. Nevertheless, the magnetic 

effects on lattice dynamics are still adiabatically treated as a perturbation and the 

motions of spin and lattice are not solved on equal footing. The entropic 

contribution due to the coupling of spin and lattice cannot be described 

appropriately, which is believed to be important in determining the mechanical 

properties at higher temperatures, i.e. near Curie temperature.  

To examine the role of magnon excitations in the magneto-volume effect, we 

calculate the corresponding thermal expansivity following Eq. (5.5) from the 

equilibrium atomic volumes of BCC iron under stress-free conditions, with and 

without the influences of magnon excitations, at temperatures across the FM/PM 

phase boundary (See in Fig. 5.2). The results are plotted in Fig. 5.12, together 

with the experimental measurements [35]. Here, L  is derived from LH , 

reflecting the thermal expansivity due to pure phonon effects caused by the 

anharmonic nature of DD potential [17] used in our simulations. In this case, the 

strength of anharmonicity increases steadily with increasing temperature as the 

phonon density increases with the amplitude of the lattice vibrations. A similar 

trend can also be found in the curve of H  derived from HH , involving the 

influence of magnon excitations, except near the FM/PM phase boundary 

( ~1020K  in current calculation), in which H  first increases with temperature, 
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reaching a maximum value around 680 10 / K ,  then  drops  off  to  a  around  

645 10 / K  in  the  boundary  of  PM phase,  before  finally  increasing  again  to  a  

constant value around 653 10 / K  at 1300K. 
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Fig. 5.12: The thermal expansion coefficients L  and H  obtained from the Hamiltonians 

LH  and HH , respectively, with M  is simply defined by M H L . The black solid 

line is the thermal expansion coefficient derived from the experimental measurements [35]. 

Seen from Fig. 5.12, the temperature dependence of our calculated H  is 

generally comparable with the experimental data [35]. The contribution from the 

magnetic excitation can be seen from the quantity M H L . The 

anharmonicity caused by the participation of magnons is of the same order of 

magnitude as that caused by pure phonon-phonon interactions in the FM phase. 

The non-zero value of M  in the PM phase reveals the existence of short range 
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magnetic order, which has been confirmed as persisting by neutron scattering 

experiments [61,62]. 

In this regard, the accelerated increase of thermal expansivity in 

ferromagnetic iron near the FM/PM phase boundary can be understood as the 

result of the enhanced phonon scattering by magnons with lowered frequencies, 

where the disappearance of long-range magnetic order gives rise to an abrupt 

decrease of thermal expansion coefficients. It should be noted that the current 

calculations only involve the effects due to the spontaneous magnetic phase 

transition in ferromagnetic material. Such effects can also arise from applied 

external magnetic field on magneto-volume (also named Joule’s magnetostriction 

in literatures). 

5.5.2. Magneto-elastic effect 

We have seen the enhancement effect of magnons on the anharmonicity of 

BCC iron in the foregoing sections, such as the anomalous temperature 

dependence of thermal expansivity and Grüneisen parameter. Another important 

consequence of anharmonic effect on mechanical properties is the temperature 

dependence of the elastic constants [34]. The effect of magnetic state on the 

elastic properties falls under the namely magneto-elasticity, which is the subject 

of our study in the present section. 
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As discussed in the foregoing section, the isothermal elastic constants 

correspond to the resistance to the isothermal straining processes, during which 

the  system  suffered  an  applied  small  strain  in  the  elastic  region.  The  

corresponding free energy change consists of three parts, namely (1) the static 

energy  change  due  to  the  lattice  distortion  [26];  (2)  the  thermal  energy  change  

arising from the frequency shift of elementary excitations [18], such as phonon 

or magnon in ferromagnetic materials; and (3) the heat dissipation in term of 

entropy change, associated with the relaxation of elementary excitations. For 

harmonic vibrations, the frequencies of thermal excitations are independent of 

the atomic volume [18], and the changes of both thermal energy and entropy are 

negligible, so that the principal contribution to the strain free energy is arising 

from the static strain energy. The elastic constants derived from strain energies 

alone are called adiabatic elastic constants [63]. As expected, due to the 

participation of magnon excitations in ferromagnetic materials, the heat 

dissipation, arising from the scattering between phonons and magnons, has to be 

taken into account, especially near the FM/PM phase boundary. In this regard, 

the isothermal elastic constants can be treated as important indicators of 

anharmonicity due to the magnetic effects in ferromagnetic materials.  

Calculating the free energy with sufficient accuracy is a challenging task. 

This  is  the  static  strain  energy  is  customarily  used  for  the  calculation  of  elastic  

constants in the literature [64,65,66], despite missing the entropic contribution. 
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Consequently, the adiabatic elastic modulus is calculated rather than the 

isothermal one, which is consistent with the experimental one only at 0K or 

within the harmonic approximation [19]. Another challenge of calculating 

isothermal elastic constants BCC iron is the lack of appropriate simulation 

scheme  treating  the  spin  and  lattice  degrees  of  freedom  in  a  self-consistent  

framework [60]. In the following, we present our results by using the SLD [14] 

simulations based on the modified TI method (See in Section 5.2.5). 

Fig. 5.13 shows the resistant force Y  and the hydrostatic strain free 

energy F  as a function of strain  at 900K without (Fig. 5.13a) and with 

(Fig. 5.13b) magnons. Seen from Fig. 5.13, the relation between Y  and  

is closely linear, particularly when 0 .  For values of 210  outside 

the elastic region, the relation shows a small downward curvature. The free 

energy F  is basically a quadratic function of  at the elastic region. 

Higher-order terms can be seen to appear for larger strains in the inelastic region. 

Comparing with the quadratic fitting curve in Fig. 5.12 from which the 

isothermal bulk modulus is derived following Eq. (5.10), it is interesting to note 

that F  is asymmetric to contraction and expansion. 
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Fig. 5.13: The calculated resistance force (Solid circles) and the corresponding strain free energy 

(Open circles) at various applied strain on the designed path for the system, (a) without and (b) 

with the influence of magnon excitations for BCC iron at 900K. The solid lines represent the least 

squared quadric fitting in the range of 3 35 10 5 10  (Shaded region) by following 

Eq. (5.10), respectively, with the values of B  as ~161.2GPa and ~150.8GPa. 

The isothermal bulk modulus B  is calculated as a function of temperature, 
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with and without spin vibrations, and plotted in Fig. 5.14. Without magnons, the 

value of B  decreases almost linearly with increasing temperature, from 

~170GPa at 300K to ~155GPa at 1300K. According to lattice dynamics, such a 

negative temperature dependence is the result of phonon softening due to 

anharmonicity  of  crystal  potential,  which  is  consistent  with  the  calculated  

phonon dispersion curves presented earlier in Chapter IV. On the other hand, 

with the participation of magnons, the calculated bulk modulus shows a much 

stronger temperature dependence at temperatures above 600K. In Fig. 5.14, B  

gradually decrease with increasing temperature, reaching a minimum (~140GPa) 

near the Curie temperature (~1020K), and then increases in the PM phase, with 

values comparable to the calculated results of LH . Compared to the 

experimental measurements of Dever [67], the current calculated results are 

quantitatively  in  good  agreement  in  the  FM  phase,  whereas  the  larger  value  of  

the  data  in  the  PM  phase  is  probably  a  result  of  the  inaccuracy  of  the  DD  

potential [17] in the anharmonic region, which fails to reproduce the phonon 

softening near the BCC-FCC phase boundary, i.e. 1183K [9].  
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Fig. 5.14: The temperature dependence of isothermal bulk modulus calculated by using modified 

thermodynamic integration method from LH  and HH  respectively, comparing with the 

experimental measurement done by Dever [67]. The solid lines are guides for eye. 

In  addition,  the  values  of  B  calculated from the magnetic Hamiltonian 

HH  are smaller than that of LH  in the temperature range considered and such 

difference reaches a maximum ( 20GPa ) near the Curie temperature as shown 

in Fig. 5.14. As stated in the previous section, three components contribute to the 

free  energy  during  the  isothermal  straining  process.  However,  the  difference  

between the thermal energy changes should be negligible due to the isothermal 

condition [18]. In addition, the static strain energy difference between LH  and 

HH  is expected to have the same temperature dependence as the spin thermal 

energy, which is positive. Consequently, it is reasonable to speculate that the 

negative downward cusp in the temperature dependence of B  with magnons is 

mainly  due  to  heat  dissipation,  associated  with  the  relaxation  of  spin  
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configuration during the hydrostatic deformation process.  

The tetragonal shear modulus c  is plotted in Fig. 5.15, in which the values 

of LH  and HH  more than doubles the experimental values in the temperature 

region from 300 to 1300K. This is expected, since c  tending  to  be  zero  at  

temperatures higher than CT , reveals the softening of phonon modes along 

110  direction, which is typical of the structural phase transition from BCC to 

FCC at 1183K [68]. However, as stated earlier in the foregoing paragraph, the 

DD potential [17] used in our simulations does not produce such a phase 

transition, even at higher temperature. In addition, the temperature dependence of 

c  is consistent with experimental results [67]. The magnetic effect brings about 

a negative contribution to c  in the FM phase by comparing HH  to LH , 

which gradually decreases with temperature increase. As discussed in bulk 

modulus, this magnetic contribution can be regarded as effects on the strain 

energy during the isochoric deformation process, by changing the force constant 

suffered by the atomic lattice. Due to the disappearance of the long range 

magnetic order in the PM phase, c  of HH  is almost equal to that of LH , 

revealing that the short range magnetic order has no contribution to the free 

energy change during the isochoric deformation process.  

A similar phenomenon can also be seen in the temperature dependence of 

orthorhombic shear modulus 44c , plotted in Fig. 5.16, in which 44c  of both LH  
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and HH  is almost constant in the PM phase, with a value of ~98GPa, which is 

comparable with the experimental data [67]. Compared to the results of LH , the 

magnon excitations involved in HH  result in a steeper decreasing trend in the 

FM phase, i.e. from ~110GPa at 300K to ~100GPa at 1000K. In contrast to c , 

magnons gives rise to a positive contribution to 44c  as shown in the difference 

of 44c  between LH  and HH  in Fig. 5.16. Interpreted by Dever [67], such 

converse contributions to c  and 44c  due to spin order is from the different 

dependence on strains between tetragonal and orthorhombic shear deformations.  
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Fig. 5.15: The temperature dependence of tetragonal shear modulus in BCC iron, by comparing 

with the experimental measurement [67]. The solid lines are guides for eye. 
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Fig. 5.16: The temperature dependence of orthorhombic shear modulus in BCC iron, by 

comparing with the experimental measurement [67]. The solid lines are guides for eye. 

5.6  Brief Conclusion 

The atomistic study of effects of magnon excitations on thermal, magnetic 

and mechanical properties of BCC iron is performed within the SLD framework, 

where an isotropic interatomic-distance dependent exchange integral is 

introduced to describe the coupling of spin and lattice. The associated quantities 

are calculated from the phase-space trajectories generated via MD, SD and SLD 

simulations, in which atoms are modeled as Heisenberg particles, involving 

phonons, magnons, and their interactions. 

The second order nature of the FM/PM phase transition, for instance, the 

continuity of free energy, and the divergence of heat capacity near Curie 
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temperature, is revealed in our results.  

The interaction between vibrations of the lattice and the spins introduce 

additional anharmonicity of the crystal potential. This has appreciable effects on 

lattice properties near the FM/PM phase transition region, such as thermal 

expansion, temperature dependence of the specific heat and isothermal elastic 

constants. Our results are in good agreement with either the theoretic predictions 

or experimental measurements. 

Indeed, due to the atomic-distance dependent exchange integral, the 

excitation of magnons gives rise to the enhancement of phonon-scattering, 

especially near FM/PM phase boundary. Such magnetic effects significantly 

change the anharmonicity of BCC iron. For instance, the Grüneisen parameter, 

thermal expansivity and specific heat all show anomalous temperature 

dependence near FM/PM phase boundary. Moreover, the contributions from 

magnon excitations are practically large comparable with that due to the pure 

phonon-phonon interactions.  

In this chapter, the role played by magnon excitations in the temperature 

dependence of isothermal elastic constants has been studied. During the 

hydrostatic straining process, the heat dissipation arising from dynamical 

relaxation of magnon excitations gives rise to a negative contribution to the strain 

free energy, and plays the principal role in the temperature dependence of bulk 
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modulus, which is a typical example of magneto-elastic effects. In the isochoric 

deformation processes, the spin order changes the force constant between lattice 

atoms, and the resulting strain energy due to the lattice distortion is regarded as 

the main contribution to the strain free energy, whereas the heat dissipation 

associated with the entropic change is almost negligible in determining the 

temperature dependence of shear moduli. The short-range magnetic order has 

little appreciable effects on the shear modulus.  

In conclusion, the participation of magnons in BCC iron causes the 

magnon-phonon interaction, and changes the properties related to lattice 

dynamics, e.g. thermal expansion and elastic constants. At the meanwhile, the 

magnon itself also gives extra contributions to the thermodynamic properties of 

the whole coupled system, e.g. the free energy and entropy. 
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CHAPTER VI 

EFFECTS OF SPIN VIBRATIONS IN SELF- 
AND MONO-VACANCY DIFFUSION 

The change of the self-diffusion activation energy of BCC iron across the 

FM/PM phase boundary is a well-known phenomenon. While this has long been 

suggested to be due to the magnetic effect on the activation process, mechanistic 

details have yet to be developed. In this Chapter, the role played by spin 

dynamics on the activation of vacancy diffusion is considered by performing 

atomistic simulations of the migration of a single vacancy in BCC iron across the 

FM/PM phase boundary using spin-lattice dynamics, allowing active 

participations of the interacting dynamics of the lattice atoms and spins. Effects 

due to the spin dynamics on vacancy formation and migration processes are 

monitored and analyzed with corresponding lattice-only and spin-only 

calculations. We find that spin vibrations play a very important role in the 

thermodynamics of the atomic processes involved with vacancy formation and 

migration, and that the non-Arrhenius vacancy diffusion anomaly of 

ferromagnetic  iron  can  be  attributed  to  the  effects  of  changed  spin  dynamics  at  

the FM/PM phase boundary. 
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6.1  Chapter Introduction  

6.1.1 Introductory remarks  

Monovacancy (simply called vacancy in the following) is one of the simplest 

but most fundamental point defects in crystalline solids. As shown in Fig. 6.1, a 

vacancy  refers  to  the  vacant  site  left  behind  by  an  atom  moved  from  its  lattice  

site inside the crystal to the surface. Vacancies form due to the thermal vibration 

of  atoms  as  an  excited  state  of  the  crystal.  They  spontaneously  exist  in  

thermodynamic equilibrium in a concentration determined by its free energy of 

formation and the ambient temperature, or during irradiation by energetic 

particles such as neutrons and electrons, etc., as well as plastic deformation. The 

state of the vacancy is associated with the relaxation of the neighboring atoms or 

ions, the rearrangement of the electron distribution, the change in the vibrational 

dynamics, and so on. In this regard, the vacancy plays essential roles in the 

dimension, microstructure, and practically all physical properties of the 

crystalline solid [1]. Furthermore, vacancy migration is important as a facilitator 

of mass transport and microstructure evolution in a crystalline solid. 

Self-diffusion (or tracer diffusion), for example, is achieved via vacancy 

diffusion. A remarkably wide scope of effects can be traced to the migration of 

vacancies, ranging from irradiation damage accumulation [2,3], microelectronic 

circuit  failures  [4],  to  stress  relaxation  [5]  and  creep  [6],  embrittlement  [7]  and  
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fracture [8], and the list goes on. Indeed, the relevance of vacancies goes far 

beyond academic interest on the defect itself, and is linked to a large area of 

science and technology in the solid state. The comprehensive understanding of 

the above-mentioned issues with respect to vacancy can be achieved from 

classical textbooks such as Borg and Dienes [9], and Nowick and Burton [10], as 

well  as  the  work  of  Woo  and  others  [11,12].  The  brief  introduction  of  the  

theoretical description in vacancy is presented here. 

 

Fig. 6.1: Schematic of vacancy in crystalline solid. 

In  thermal  equilibrium,  the  vacancy  can  exist  in  a  solid  with  a  temperature  

dependent concentration C T , i.e. B/FF k TC T e , where F F FF E TS  is 

the formation free energy, associated with the formation energy FE  required to 

break the bonds between an atom inside the crystal and its nearest neighbor 

atoms, and the heat dissipated in term of formation entropy FS , during the 

vacancy creation process. In general, both FE  and FS  are temperature 

dependent. However, for metals that can be regarded as harmonic solids, e.g., 

BCC tungsten [13,14], these parameters are nearly temperature independent, over 

vacancy 
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a wide temperature range up to the melting point, so that the logarithm of the 

concentration is linearly proportional to the reciprocal of temperature, i.e. 

ln 1/C T T .  In  experiments,  such  a  relation  is  often  used  to  estimate  FE  

and FS . 

In another aspect, the diffusive displacement of the vacancy is described by 

the temperature dependent diffusion coefficient D T , associated with the 

average jump frequency T .  In  general,  the  diffusion  coefficient  is  a  second 

rank tensor. For instance, the diffusivity tensor of vacancy in HCP crystal without 

external stress in the principle crystallographic system can be written as [15] 

0 0
0 0
0 0

a

a

c

D
D

D
D ,            (6.1)  

where aD  and cD  are the diffusion coefficients along a-axis (in-plane) and 

c-axis (out-of-plane), respectively. However, the diffusivity tensor reduces to a 

scalar quantity in the case of cubic and isotropic lattices. Microscopically, D T  

can be determined by the atomic information following the Einstein relation, i.e. 

in the isotropic case,   

2

6
rD

t
             (6.2)  

where 2r  is the mean square displacement of the vacancy during the time 

interval t . Since the jump of vacancy is from one lattice site to another, the 
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jump length  is unique in BCC structure, i.e. 3 / 2a , a  being the 

lattice parameter. Thus, 

2 / 8D a .              (6.3)  

The first investigation of  was done by Eyring [16] via chemical reactions in 

gases, based on which West [17], Zener [18] and Vineyard [19] developed the 

"absolute" rate theory for crystals. In this model, the jump frequencies of the 

vacancy is related to its migration energy ME  and entropy MS  as 

B

B B

/
0

/ /
0

M

M M

F k T

S k E k T

T e

e e
,           (6.4)  

where 0  is called attempt frequency, MF  is the migration free energy, i.e. 

M M MF E TS . As sketched as in Fig. 6.2, ME  corresponds to the potential 

barrier between the saddle point state (C) and the equilibrium state (A or B). 

 

Fig. 6.2: The sketched migration energy during vacancy jump process. 

B 

C 

A 

EM 
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For a stable crystal structure away from transitions, e.g., BCC tungsten, the 

atomic vibration can be assumed harmonic. Absent anharmonicity, the energy 

and entropy changes associated respectively with the statics and dynamics of the 

configuration change during the migratory process essentially only depends on 

the temperature independent interatomic potential. In this case, the Arrhenius plot 

of D  is a straight line, as experimentally found in most simple metals with a 

non-spin-polarized electronic structure [13,14]. For instance, the self-diffusivity 

in BCC tungsten obtained from experimental measurement [20], as well as the 

atomistic calculations based on Ackland potential [21] and BND potential [22], 

respectively, shows linear Arrhenius-type behaviors in Fig. 6.3(a). Otherwise, 

due to anharmonicity arising from phonon softening [23,24], the Arrhenius plot 

of self-diffusivity in HCP Zirconium [23] shows the curvature near the structural 

phase transition point from HCP to BCC, as shown in Fig. 6.3(b). 
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Fig. 6.3: The Arrhenius plot of self-diffusivity of (a) BCC tungsten and (b) HCP zirconium, 

obtained from experimental measurements and atomistic calculations based on the empirical 

interatomic potential. Here, “ACK” and “BND” respectively represent the Ackland [21] and 

BND [22] potentials used. 
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6.1.2 Vacancy in ferromagnetic iron  

In Chapters IV and V, the participation of spin vibrations in the 

thermodynamics of ferromagnetic iron has been shown to produce extra 

anharmonicity arising from the phonon-magnon interaction, especially near the 

FM/PM phase boundary. Consequently, the corresponding entropy and enthalpy 

of self-diffusion are expected to be temperature dependent. The influence of 

magnetic effects was recognized since the 1960’s. Borg and Birchenal [25] found 

the non-Arrhenius behavior of self-diffusion in his experiment with BCC iron. 

Later on, Hettich et al. [26] made more accurate measurement over a wide range 

temperature down to 259K below Curie temperature, and found a sharp change 

of slope near the FM/PM phase boundary The corresponding activation energy 

reduced from 2.9eV (FM) to 2.5eV (PM). This change is often discussed in the 

debate of whether vacancy or self-interstitial is responsible for the “stage III” 

resistivity recovery, a controversy that has lasted for fifty years [27,28,29,30,31]. 

The  physical  origin  of  this  magnetic  diffusion  anomaly  has  been  the  subject  of  

many investigations, which have been comprehensively reviewed up to year 

1990 in Ref. [32].  

The first model of self-diffusion in BCC iron was proposed by Zener [18], in 

which the activation free energy is related to the isothermal work done during the 

activation process in terms of the change in an appropriate elastic modulus, and 
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the temperature dependence of activation entropy and energy are expressed by 

the "so-called" Zener’s equation. Varotsos et al. [33] then developed the cB  

model based on the idea of Zener. However, the measured elastic constants of 

Dever [34] failed to support these continuum mechanical models, whereas the 

vacancy activation is associated with the local lattice distortion. On the other 

hand, in analogy to the atomic ordering transition in alloys, Girifalco and 

co-workers [35,36] added an empirical term proportional to the square of 

spontaneous magnetization, i.e. the mean magnetic moment (MM) per unit 

volume, to the non-magnetic migration enthalpy to taking into account the 

magnetic effects. Ruch et al. [37] fitted the diffusion data in self-diffusion 

experiment of iron, but failed to achieve the physical picture due to the 

empiricism involved. Besides, the short range magnetic order (SRMO) was 

neglected, despite its importance shown in Ising model predictions [38,39,40].  

Across the magnetic phase boundaries, change of anharmonicity caused by 

the instability of the correlated spin dynamics (magnetic phase), and the coupling 

between the spin and lattice subsystems, could lead to important consequences. 

Therefore, while one may comfortably treat simple metals using ab initio 

calculations, modeling atomic processes in ferromagnetic iron across the FM/PM 

phase boundary could offer a much bigger challenge, particularly in regard to the 

thermodynamics  involved  [ 41 ].  In  another  aspect,  a  description  of  the  

finite-temperature behavior of electrons [42] with the Fermi distribution is 
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accurate when the interactions among the electrons, the spins and the lattice 

systems and their elementary excitations are sufficiently weak, which almost 

certainly excludes the strong-interaction regime near phase transitions. Being 

able to produce a thermodynamically accurate picture of the dynamical behavior 

of an atomic ensemble, MD calculations are widely used to study atomic 

processes. In the case of ferromagnetic materials with interacting spin and lattice 

subsystems, approximations involving either frozen spins [43], or frozen lattice 

(spin dynamics simulations [40]), have been used.  

In the following Sections, based on the developed spin-lattice dynamics 

(SLD)  scheme  [44],  the  free  energies  of  the  lattice  and  spin  subsystems  in  the  

activation processes of vacancy formation and migration are evaluated following 

the discussions in Section 3.3, by using the thermodynamic integration (TI) 

method [45,46,47]. The temperature-dependent enthalpies and entropies of 

vacancy formation and migration are then estimated to reveal the mechanism of 

magnetic effect on vacancy activation process in BCC iron. 

6.2. Theory and Methodology  

6.2.1. Hamiltonians 

As discussed in Chapter III, the interactive spin and lattice coupling system, 

i.e. BCC iron, is described by HH ,   
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2

1

1
2 2

N N
i

H ij i j
i i j

H U J
m

p R R S S .       (6.5a)  

Contributions from the lattice and spin vibrations to the respective free energies 

can be represents by the models LH , SH , and H , respectively,  

2

1 2

N
i

L
i i

H U
m
pR R           (6.5b)  

1( )
2

N

S ij i j
i j

H JS R S S ,          (6.5c)  

1( , )
2

N

ij i j
i j

H JR S S S ,          (6.5d)  

where U R  is the interatomic potential, which can be derived from the 

Dudarev-Derlet (DD) potential [48] in the form as stated in Eq. (4.2).  

6.2.2. Calculations of the diffusivity parameters 

In the absolute rate theory [18,19,49], the self-diffusion coefficient sdD  via 

vacancy mechanism is defined in terms of the free energies of vacancy formation 

FF  and migration MF  and the attempt frequency 0 , 

2
0

B

exp
6

sd m F M
f

Z F FD Z l
k T

        (6.6)  

where fZ  is the number of equivalent ways of forming a vacancy type, mZ  is 

the number of equivalent diffusion paths, and l  is  the  jump  distance.  For  a  
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mono-vacancy formation and migration in BCC structure, 1fZ , 8mZ  and 

3 / 2l a , with the lattice parameter a . 

Based on the principles of statistical mechanics, the TI method is widely 

used to calculate the free energy of a canonical ensemble of atoms, from the 

phase-space trajectory, such as that derived from a MD-type simulation (See 

Section  3.3).  Consequently,  using  the  TI  method,  the  activation  probability  of  a  

thermodynamic process at a finite temperature T  between two well-defined 

states is obtainable from the free energy difference. However, the difficulty of 

this approach is that the difference is usually very small compared with the 

intrinsic thermal fluctuations of a system containing a large number of atoms. 

This  is  especially  true  for  the  case  of  vacancy,  where  only  a  small  number  of  

atoms participate in this process. In the following, the TI method is modified to 

overcome this difficulty within the MD-type simulation scheme. 

a) Vacancy migration free energy 

Vacancy migration refers to the process in which an atom m  in the vicinity 

of vacancy overcomes an energy barrier and performs a migratory jump into the 

vacant site. Following the statistical interpretation made by Vineyard [19], MF  

is equal to the reversible work done required to bring the atomic system from 

equilibrium to the saddle-point state along a constrained path in the hyper-surface, 

with displacements along the migration direction forbidden. Indeed, such a 
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constraint approach is also adopted in the optimization numerical calculation, i.e. 

conjugated gradient (CG) method [ 50 ], for calculating the energy and 

configuration of the saddle point state, as well as the migration energy. In 

addition, the migration entropy in the usual harmonic approximation is also 

expressed via the vibration modes under this constraint condition. 

Within the framework of the adiabatic switching TI method [51], the 

migration free energy can be obtained by performing dynamical atomistic 

simulations, in which the migrating atom m  is slowly moved from its 

equilibrium lattice position e
mR  towards the saddle-point position s

mR  [52], 

along the path mR , where  

e s e
m m m mR R R R ,           (6.7)  

by varying  from 0 to 1. Here mR  is treated as the switching parameter 

accompanying . During the switching process, the instantaneous position mR  

of atom m  is constrained in the following relation,  

0m mR n n R            (6.8)  

where n  is  the  unit  jump  displacement  vector  s e
m mR R . Consequently, the 

switching Hamiltonian H  can be defined as 

KH E U             (6.9)  
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where KE  is  the  kinetic  energy  and  i mU U R R  is the constrained 

interatomic potential, in which all atoms are acted on by the atomic force due to 

U , except the atom m  is constrained according to Eq. (6.8). It should be noted 

that, in models involving the spin dynamics, i.e. HH  in Eq. (6.5a), U  should 

be the sum of interatomic potential and the exchange interactions, i.e.  

1
2

N

i m ij i m i j
i j

U U JR R R R S S .     (6.10) 

It is clear that H  refers to the relaxed equilibrium state when 0  and 

saddle-point state when 1 .  In  this  regard,  the  free  energy  difference  during  

the process, which is equal to the migration free energy MF , can be derived as 

following based on Eq. (3.26),  

1

0

1

0

1

0

d

d

d

M

m

m

s e
m m m

HF F

H r
r

f R R

         (6.11)  

where 
mm Hrf  is the force on atom m  exerted by the surrounding atoms 

in the intermediate state . mf  can be interpreted as the thermal force, so 

that the accumulated work done with the displacement s e
m mR R  can be 

expressed as 
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0

ds e
m m mW f R R ,         (6.12)  

when the atom m  moves from e
mR  to mR . In this regard, the mechanic and 

thermodynamic interpretations of the TI process are consistent. 

The starting position of atom m  in the above-mentioned TI process should 

be e
mR , which is difficult to pre-determine in the dynamic simulation [52]. The 

reference perfect lattice position 0
mR  of atom m  is thus preferred in practice, 

from which the error introduced has been examined to be less than 1%. Moreover, 

the constraint mentioned above is enhanced by disallowing the velocity of atom 

m  along the jump direction, and the in-plane relaxations and vibrations 

perpendicular to the jump direction are allowed, to ensure the system to reach the 

corresponding minimum free energy state of each H . 

The activation free energy from the spin subsystem, i.e. SH  in Eq. (6.5c), is 

estimated using the ensemble average TI method with the frozen lattice 

configuration. In this case, the Hamiltonians of initial and final states in Eq. (3.26) 

while implementing the TI method, are written as 0
e

SH H R  and 

1
s

SH H R , where e e
iR R  and s s

iR R  are respectively the 

equilibrium and saddle point lattice configurations of HH  obtained from 

modified CG calculations [ 53 ]. The -Hamiltonian is defined as 

1 01H H H  ( 0 1), which is different from the one used in lattice 
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dynamic estimations mentioned in Eq. (6.9). In addition, the average atomic 

volume used in the modified CG calculations is obtained by equilibrating the 

spin-lattice in HH  at corresponding temperatures under zero-pressure. 

b) Attempt frequency  

Vineyard interpreted [19] the attempt frequency 0  as an effective quantity 

having the unit of frequency, associated with the impact of vacancy migration on 

the phonon modes in harmonic approximation. Readers are referred to the 

detailed analysis in Ref. [19,54]. In atomistic simulations for a specific crystal, 

0  is usually assumed to be temperature independent, and is estimated using 

either the Debye frequency, or Einstein frequency, or the lowest frequency peak 

in the vibrational spectrum along the diffusion direction [55]. Wen and Woo [52] 

suggested an alternate determination of 0  during adiabatic switching TI 

process for the calculation of migration free energy.  

Because of thermal fluctuations, the actual vacancy migration paths are not 

unique. However, the most probable paths should still statistically concentrate 

near the constrained states with minimum free energy governed by H  defined 

in Eq. (6.9). In addition, selecting 0
mR  rather than e

mR  as the starting position 

of atom m  in Eq. (6.12) would result in a near-parabolic accumulated 

work-done curve. For instance, the calculated data points of accumulated work 
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done is plotted against the reduced atomic coordinate in Fig. 6.4 for the TI 

process of in-plane vacancy jump in hexagonal closed packed (HCP) Zr. 
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Fig. 6.4: The accumulated work done profile near e
mR  of the in-plane vacancy jump at 800K 

of HCP Zr during the adiabatic process of vacancy migration. Data points (solid points) are the 

calculation results following Eq. (6.12), with the least square parabolic fitting (solid line) 

following Eq. (6.13). 

In this regard, 0  can be obtained from the fitting curvature around the 

minimum of mW WR , by assuming harmonicity, as 

22
0

1 2
2

e e
mm mmW W m RR RR .     (6.13) 

The calculated 0  is found to be temperature dependent, and is associated with 

the crystalline structure, as well as the anharmonicity induced by multi-phonon 

interactions or other effects. For instance, Fig. 6.5 shows the temperature 
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dependence of 0  in both cases of in-plane and out-of plane jumps in HCP Zr, 

obtained  from  MD  simulations.  It  can  be  seen  that  the  calculated  values  of  0  

following Eq. (6.10) are different from the corresponding Debye frequency, i.e. 

6.06D THz of Zr [56]. In addition, the structural anisotropy of HCP Zr results 

in the different temperature dependences of 0  between in-plane and 

out-of-plane jumps. The strong decrease of 0  of the in-plane jump is believed 

to be caused by phonon softening near the structure phase transition boundary 

from HCP to BCC in Zr [52].  
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Fig. 6.5: The temperature dependence of vacancy attempt frequencies in both cases of in-plane 

and out-of-plane jumps in HCP Zr. Solid points are the calculation results following Eq. (6.13), 

while the solid lines are guides for eye. 

c) Free energy of vacancy formation 
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In atomistic simulations built up with periodic boundary condition, FF  is 

usually defined as [57] 

1
1vac per

F N N
NF F F

N
          (6.14)  

where 1
vac

NF  is the free energy of the vacancy system containing 1N  atoms 

and a vacancy inside, and per
NF  is the free energy of the prefect system with N  

atoms. As stated in the foregoing paragraph, the straightforward estimation of 

FF  following Eq. (6.11) is prone to error arising from the intrinsic uncertainties 

due to the thermal fluctuation at finite temperatures. In this regard, the so-called 

vacancy creation approach [58] based on TI method is adopted in the current 

calculations, presented in the following. 

Within the framework of TI method, a thermodynamic path is defined in the 

system of  atoms connecting  the  initial  and  final  states,  in  which  all  interactions  

between a specific atom  and all its neighboring atoms exist and vanish 

respectively. The free energy difference between them is equal to the formation 

free energy of vacancy. In this regard, the Hamiltonian during such a process can 

be defined by 1 1H H H , with 0 1, where 

0 ,K i iH E U R S           (6.15a)  

1 ,K i i refiH E U UR S         (6.15b)  
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are the Hamiltonians of initial and final states, respectively. 0H  describes the 

perfect system containing N  interactive atoms, and 1H  refers to the system 

with 1N  interactive atoms and atom  converted into a non-interacting 

reference atom described by the potential refU . Here the choice of reference 

potential depends on the degrees of freedom involved in the models, such as 

harmonic oscillator for lattice dynamics and paramagnet in an external field for 

spin dynamics, whose detail can be referred to the discussion in Chapter V. 

In addition, the reference potential introduced is for the purpose of avoiding 

the divergence of free energy calculation. In practice, the presence of atom  

tends to be oblivious to its neighboring atoms as 1 , so that the distance 

between them may get too close, resulting in the divergence of the path integral 

[57,59]. To solve this problem, the velocities of the surrounding atoms are 

immediately reversed if motion into the vacancy is detected. Further, the 

switching process is only applied for 0 0.9 . The ensemble average 

approach is applied to obtain the integrant for 0.9 1, meanwhile the cubic 

spline extrapolation approach is also suggested in Ref. [59]. Due to the 

insignificant difference in the final results, the former technique is adopted in the 

current calculation. 

Consequently, the free energy difference in this thermodynamic process is 

obtained by  
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1

0

1

1

d

1 1

vac per
N ref N

vac per per
N N ref N

F ref b

HF

F F
NF F F

N N
F

,       (6.16) 

where ref  and b  are the free energies of the reference atom and the single 

bulk atom governed by 0H , respectively, whose calculations are already done in 

Chapter V. FF  is then obtained by 

F ref bF F .            (6.17)  

d) Diffusivity via dynamical simulation  

As stated  in  Section  6.1,  the  migration  of  vacancy  can  also  be  treated  as  a  

random-walk process of a single particle in a crystalline solid. Therefore, in an 

atomistic simulation, the vacancy jump frequency can be obtained from the 

waiting time t  between jumps for each temperature in a series of NVT MD 

simulation runs [60]. Assuming an exponential distribution for the probability 

p t  of the waiting time t , i.e.
 

/1 tp t e , the mean waiting time T  

can be calculated by fitting to the simulation results, from which the mean 

successful vacancy jump frequency T  at temperature T  is calculated, thus 

the diffusion coefficient following Eq. (6.3).  

6.3  Simulation Scheme  
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In the following calculations, the atomic system is set as containing 16000 

iron  atoms  in  a  box  of  20 20 20  BCC unit cells in Cartesian coordinate 

system, with periodic boundary conditions applied to avoid surface effects. To 

ensure the complete relaxation of the spin and lattice degrees of freedom, at least 

2 nano-seconds of equilibrium time is set in the canonical ensemble, realized by 

Langevin thermostat [44,61 ] and quasi-harmonic approximation [ 62 ]. The 

equations of motion is solved by using Suzuki-Trotter decomposition [63] with a 

time-step of 1 femto-second. In the calculations of free energies, based on the 

equilibrium spin and lattice configurations, another 2 nano-seconds are applied 

for the adiabatic switching TI process, in which both forward and backward 

processes are performed. In addition, to facilitate dynamical measurement of the 

vacancy  diffusion  coefficient,  at  least  10  nano-seconds  of  sampling  time  are  

applied to obtain the stationary distribution of waiting time of vacancy jump.  

6.4  Vacancy Migration and Formation Enthalpy and Entropy  

6.4.1 Vacancy migration  

The free  energies  of  migration  obtained  using  TI  are  plotted  in  Fig.  6.6  for  

various temperatures. L
MF  (for LH ) is calculated excluding spin dynamics and 

H
MF  (for HH ), including spin dynamics. The general trend for both L

MF  and 

H
MF  can be compared with the classic case in which both the entropy and 

enthalpy are constants, yielding a free energy versus temperature graph that is a 

straight line with negative slope. The curvatures seen in Fig. 6.6 signify 
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significant temperature dependency of the entropies and enthalpies. The effect of 

spin vibrations is most noticeable in the FM phase where there is long-range 

correlation. Away from the FM/PM transition temperature, spin vibrations 

apparently act to increase the entropy of the system. As one moves closer to the 

transition temperature, the entropy can be seen to increase faster than the energy, 

as the spin vibrations slowly lose their long-range correlation, leading to the large 

cusp of H
MF  near the magnetic phase transition at CT .  This  will  give  rise  to  a  

discontinuous first temperature derivative [38,39,40].  Across the transition 

point in the PM phase, the effect of spin vibrations starts to disappear due to the 

loss of correlation of the spin vibrations. The ensuing temperature dependence is 

similar to that found in the elastic bulk modulus in experimental measurement. In 

Ref. [34], this discontinuity was attributed to the FM/PM phase transition of the 

spin-lattice coupled system.  
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Fig. 6.6: The temperature dependence of migration free energies of vacancy calculated by using 

the modified TI method, without (HL) and with (HH) the influence of magnetic effects. 
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Fig. 6.7: The temperature dependence of attempt frequencies of vacancy migration derived from 

the work done during the corresponding adiabatic switching TI processes, without and with the 

impacts of magnetic effects, respectively, described by LH  and HH . 

Following Eq. (6.13), the attempt frequency of vacancy migration is derived 

from the corresponding work done during the adiabatic switching TI processes, 

which is plotted in Fig. 6.7, with and without spin vibrations. It can be seen that 

both 0
L  and 0

H  decrease with increasing temperature, i.e. from ~3.5THz at 

850K to ~2.3 THz at 1300K for 0
L , and ~2.8THz at 850K to ~2.3 THz at 1300K 

for 0
H . With spin vibrations, 0

H  is smaller than 0
L  by about 10% to 20% in 

the temperature regime considered, showing the effects of the correlated spin 

vibrations in softening the crystal force constant that governs the lattice vibration 

frequencies [64]. Compared to the insignificant difference between L
MF  and 

H
MF  in the PM phase, the difference between 0

L  and 0
H  in the same regime 

demonstrates the complexity of the magnetic effect on the crystal potential. The 

values of the calculated attempt frequencies are only around one-third of the 
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Debye frequency of iron ( 9.385D THz) [65] at room temperature. This is not 

surprising, since the Debye frequency is the largest frequency of phonon modes 

of the perfect crystal in the Debye model, whereas the attempt frequency of 

vacancy migration 0  is the most probable vibration frequency of the vacancy 

system at its ground state, closely related to the phase trajectory which is 

determined by the interatomic interaction and thermodynamic conditions (i.e. T  

and V ) [19]. In this regard, the attempt frequency does not have to be close to 

the Debye frequency. In addition, with increasing temperature, thermal expansion 

of the atomic volume weakens the strength of the interatomic interaction, causing 

phonon softening [64], so that 0
L  monotonically decreases. On the other hand, 

spin vibrations give rise to negative contribution of attempt frequency, as seen in 

Fig. 6.7. Moreover, enhanced interaction between the spin and lattice vibrations 

near the FM/PM phase boundary due to magnon softening results in the 

complicated temperature dependence of 0
H . 

Vacancy diffusivities, LD  and HD , obtained respectively from the waiting 

time and TI methods are compared in Fig. 6.8. The consistency between the 

results by these two independent methods is excellent, and lends credibility to the 

present methodology. Absent spin vibrations, vacancy diffusion coefficient LD  

is a straight line in Arrhenius’ plot. In comparison, the temperature dependent 

HD  shows an  abrupt  change  of  slope  across  the  FM/PM phase  boundary.  This  

comparison clearly shows that the non-Arrhenius behavior is indeed a 

manifestation of the effect of correlated spin dynamics, particularly near the 

FM/PM transition [35,36,37].  
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Fig. 6.8: The Arrhenius plot of vacancy diffusion coefficients obtained by both dynamical 

simulation (D.S. in the figure, open data points) measurements and TI method (T.I. in the figure, 

solid data points), respectively, of without ( LH )  and  with  ( HH ) the influence of magnetic 

effects. The solid lines are guides for eye. 

The migration enthalpies, L
ME  and H

ME , obtained by fitting to the slopes of 

the corresponding Arrhenius’ plots in Fig. 6.5 [18], are given by 

0.02
0.1

B

0.64 eVln 14.08LD
k T

,         (6.18a)  

and 

0.03
0.3

B
0.02

0.2

B

0.82 eV 12.10 ,
ln

0.65 eV 14.14 ,

C

H

C

T T
k T

D
T T

k T

.     (6.18b) 

In this regard, the fitted migration enthalpies are 0.64 0.02L
MQ eV without 
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spin vibrations. Including the spin vibrations, the corresponding enthalpies 

change according to the spin correlations, with 0.82 0.03H
MQ  in  the  FM  

phase  and  = 0.65 0.02 eV in the PM phase. The migration entropies estimated 

from the pre-exponential factor B/2
0 0 / 8 S k

mD Z a e , are B1.13 0.2L
MS k  

without spin vibrations. When spin vibrations are taken into account, the spin 

correlation has a large impact on the entropy. In such cases, 3.17 0.3H
MS  in 

the FM phase and = B1.24 0.2k  in the PM phase. It is clear that in the PM phase, 

where the long-range magnetic order due to correlation of the spin vibrations is 

lost, neither the entropy nor the and enthalpy [38,39,40] of the vacancy activation 

processes are affected. Our results are in good agreement with those obtained 

from resistivity recovery measurements [66,67] and with other simulation results 

[43,48,68,69,70,71,72], listed in Table 6.1. We emphasize that, Q  and S  

obtained this way, from direct simulation by the Arrhenius-type fitting, are only 

valid assuming temperature independence.  

6.4.2 Vacancy formation and self-diffusion  

In the foregoing discussions, spin-dynamics is found to play an important 

role in vacancy migration In a similar way, spin vibrations are also expected to 

contribute to the vacancy formation and self-diffusion processes in BCC iron. To 

consider this possibility, we use the “so-called” vacancy creation approach to 

obtain the temperature-dependent formation free energies, i.e. L
FF  and H

FF , via 

a TI approach. The results, with and without spin dynamics, are compared in Fig. 
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6.9, from which the impacts of spin dynamics can be measured.  

In the temperature range from 850K to 1300K, L
FF  (without spin vibrations) 

is a linear function of temperature, decreasing from 1.56eV at 850K to 1.43eV at 

1300K. With spin vibrations taken into account, H
FF  also follows a similarly 

decreasing trend with increasing temperature, falling from 1.63eV at 850K to 

1.43eV at 1300K. However, the participation of spin vibrations generally 

increase the formation free energy, with a kink around CT ,  which  can  be  seen  

from Fig. 6.9. Similar to vacancy migration, the anomalous temperature 

dependence of H
FF  is  believed  to  also  come  from  the  relaxation  of  spin  

subsystem during the vacancy formation process [35,36]. The current results are 

generally comparable to values obtained from positron annihilation experiments 

[73] and other simulations [48,69,70,73,74,75] (See in Table 6.1). It should be 

noted that, most of the formation enthalpy and entropy listed in Table 6.1 are 

obtained by subtracting the corresponding migration enthalpy and entropy from 

the corresponding self-diffusion entities, which are calculated by fitting the 

curves  of  Arrhenius  plot  in  the  same  way  as  migration  ones  in  Eqs.  (6.18a)  &  

(6.18b). 
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Fig. 6.9: The temperature dependence of vacancy formation free energies calculated by using 

the vacancy creation approach, without and with the influence of magnetic effects, respectively, 

described by HL and HH.   
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Fig. 6.10: The Arrhenius plot for Self-diffusion of BCC iron, calculated by direct simulation 

measurements (D.S. in the figure, open data points) and modified TI method (T.I. in the figure, 

solid data points), without and with the impacts of magnetic effects, respectively, described by 

LH  and HH . A comparison with the experimental data (solid triangle) is also presented in this 

figure. The solid lines are guides for eye. 
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Finally, according to Eq. (6.6), the coefficients of self-diffusion obtained 

from  wait-time  in  direct  simulations  (MD  and  SLD),  TI  method,  and  direct  

experimental measurements [25,26,32,76], are compared in Fig. 6.10. Compared 

to sd
LD , the non-Arrhenius temperature dependence of sd

HD T , of both TI 

calculation and dynamical simulation measurements near CT , reveals that the 

presence of the long-range magnetic ordering from the correlated spin dynamics 

are indeed crucial to account for the self diffusion anomaly in BCC iron. Seen 

from Fig. 6.10, the calculated sd
HD  are quantitatively comparable with the 

self-diffusion experimental data, consistent with the expectation that 

self-diffusion in BCC iron is a vacancy mechanism, rather than an interstitial one. 

However, the values of sd
HD  in the PM phase are smaller than the corresponding 

experimental values [26,32,76,77], but with similar slopes (See in Table 6.1). We 

speculate that the migration entropy associated with the atomic vibrations is 

probably overestimated in the current calculations. 

Thus, the free energies of formation and migration of mono-vacancy in 

-iron, as well as the attempt frequencies for various temperatures are calculated, 

respectively with spin vibrations included and excluded. By simply fitting the 

resulting diffusion coefficients, the corresponding migration enthalpy and 

entropy are derived. Quantitative agreement with other calculated and 

experimental results is good. We found that it is the loss of long-range correlation 

in the spin vibrations across the FM/PM phase transition boundary which results 

in the slope change in both self- and mono-vacancy diffusion in -iron. In these 
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results, the consistency between self-diffusion results and the corresponding 

experimental data shows that self-diffusion in -iron is achieved by means of 

vacancy rather than self-interstitial. The smaller values of calculated 

self-diffusion coefficient at PM phase are speculated to be caused by the 

overestimation of the migration entropy, associated with the atomic vibrations 

governed by the used interatomic potential. 
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TABLE 6.1  The enthalpies and entropies of vacancy and self-diffusion 

 
LH  HH  Reference 

FM PM FM PM 

ME  (eV) 0.64 0.02  0.82 0.03  0.65 0.02  0.55 [66,67]  

    0.57~0.91 [43,48,69] 

FE  (eV) 1.87 0.04  2.15 0.07   1.91 0.05   2.0 [73]  1.79~1.89 [73]  

    1.81~2.18 [43,48,69] 

AE  (eV) 2.33 0.02  2.97 0.04   2.56 0.03   2.87~3.02 [32,76] 2.57~2.68 [32,76] 

    2.79~3.12 [48,68,69,70] 

MS  ( Bk ) 1.13 0.2  3.17 0.3   1.24 0.2   2.3 [71], 2.06 [72]  

FS  ( Bk ) 3.71 0.4  4.94 0.8  3.81 0.6   2.1 [74], 3.5[75]  

AS  ( Bk ) 4.84 0.2  8.21 1.1   5.05 0.8   5.00 [77]  
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6.5  Direct and Indirect Effects of Spin Vibrations  

In the previous section, the participation of spin vibrations in BCC iron has 

been shown to be an important component in vacancy diffusion and 

self-diffusion.  In  the  following,  we  will  further  consider  the  mechanistic  details  

by separating such effects into those due to the spins alone, and others due to the 

interaction between the spin and lattice via the electron exchange interaction of 

nearby atoms.  

6.5.1 Brief review  

The energies of vacancy migration and formation are usually estimated using 

the Arrhenius law based on the assumed temperature independence of the 

enthalpy and entropy. However, this procedure is no longer valid if temperature 

dependence is strong. Flynn [78] proposed an empirical equation that can be used 

to derive the migration energy based on the continuum model, in which magnetic 

effects occur through lattice vibrations via the affected elastic constants. Schober 

et al. [79] suggested using the Green function to estimate the migration energy, 

but fail to consider the effects of spin dynamics. Such a difficulty is also faced in 

atomistic simulations using density functional theory (DFT). Although ab initio 

calculations can be performed to calculate ME  (or FE ) of BCC iron at the 

ground state (0K) [43], there is no appropriate method to include the dynamical 

effects needed to extend the validity to higher temperatures, such as near the 
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FM/PM transition. In this regard, many authors tend to adopt the Ruch’s model 

[37], in which the magnetic contributions to ME  and FE  is taken into account 

within the framework of the molecular field approximation, i.e.  

2
0

2 0M F M F M F

M T
E T E

M
,          (6.19)  

where 0
M FE  is  the  non-magnetic  contributions  of  the  migration  (formation)  

energy. M T  is the temperature dependent magnetization that vanishes in the 

PM state; M F  is an empirical parameter, associated with the strength of 

exchange integral. Following Eq. (6.19), Pérez et al. [80] estimated ME  and 

FE , as well as M F  by fitting to the experimental data. However, the influence 

of short-range magnetic ordering (SRMO) [81,82], which does not vanish in the 

PM phase, is not taken into account. By using the Ising model, Fähnle et al. 

[38,39] and Khatun et al. [40]  have  demonstrated  the  importance  of  SRMO  in  

both migration and formation processes of vacancy. In conventional MD 

simulations such as Mendelev et al. [83], there is no effective scheme to treat 

contributions from the spin dynamics [44].  

In another aspect, in the harmonic approximation, migration/formation 

entropies can be expressed in terms of the phonon frequency change during the 

corresponding atomic process [19],  
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where vac
i  is the thi  normal frequency for the crystal containing a single 

vacancy with N  lattice sites in the equilibrium state; sad
i  is the thi  normal 

frequency for the same crystal in a saddle-point configuration, as shown in Fig. 

6.2. per
i  stands for the frequencies in a non-vacancy crystal containing N  

atoms. Using Eq. (6.20b), Hatcher et al. [84] successfully calculated FS  for 

vacancy formation in BCC iron and obtained a value B~ 2.1k . However, there is 

no direct calculation of MS  following Eq. (6.20a) [85], which is usually 

estimated by fitting to the Arrhenius plot of vacancy diffusion, either from 

experiments or atomic simulations. For example, Tsai et al. [86] performed 

molecular dynamics simulations to measure the vacancy diffusivity of BCC iron, 

but obtained a negative B1.4MS k , which is in conflict with theoretical 

predictions. Mendelev et al. [83] considered the anharmonicity due to 

phonon-phonon interaction, and calculated both FS  and MS  but without the 

participation of spins.  

Indeed, most of the first-principle calculations are performed with static 

spins in the fully ordered ferromagnetic state, where the activation energy and 

entropy of self-diffusion are estimated within the harmonic approximation. The 
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calculations, without accounting for the anharmonicity due to the spin dynamics, 

suffer from accuracy issues in the high temperature region, especially near the 

FM/PM phase boundary. We performed SLD simulation to investigate the role of 

spin dynamics in the temperature dependence of entropies and energies in 

vacancy migration and formation. 

6.5.2 Direct contribution from spin dynamics   

Fig. 6.11 (a) & (b) show the free energies of vacancy migration and 

formation, MF  and FF , obtained from SH  in Eq. (6.5c) by using the modified 

TI method for a temperature range from 850K to 1300K. It can be seen that both 

MF  and FF  show similar temperature dependence, decreasing respectively 

from 17 to 1meV and from 80 to 5meV when the temperature increase from 

850K to 1300K. The inflexions indicate the disappearance of long range 

magnetic ordering near CT  (~1020K in the current calculations). It should be 

noted that in SH , there is not only the entropic information, but also the 

energetic dissipation due to the relaxation of the spin subsystem during the 

vacancy migration and formation processes.  
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Fig. 6.11: The temperature dependence of free energies of (a) migration and (b) formation of 

vacancy in spin dynamics.  

By differentiating the free energies with respect to temperature, i.e. 

/M F M FS F T , the corresponding entropies are obtained. As respectively 

shown in Fig. 6.12(a) & (b), both MS  and FS  show strong temperature 

dependence with a singular behavior near FM/PM phase boundary, which is 

believed to be the result of spontaneous magnetic phase transition in spin 

subsystem and the divergence of correlation length. From Figs. 6.12, it can be 

seen that the values of FS , i.e. B~ 2.0k  at 850K and B~ 5.0k  near CT , are 

about 4 times larger than that of MS , i.e. B~ 0.6k  at 850K and B~ 1.0k  near 

CT . The non-zero values in MS  and FS  reveals the importance of SRMO, as 

claimed by Fähnle et al. [38,39] and Khatun et al. [40]. Using the 

thermodynamic relation E F TS , the corresponding migration and formation 

energy due to the relaxation of spin subsystem can be obtained and plotted in Fig. 

6.13(a) & (b), respectively. Similar to the entropies, cusps are present in 
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temperature dependent curves of ME  and FE  near CT . FE  is around 5 times 

larger than ME  in the temperature range considered. The current calculations 

results about free energies, entropies and energies in vacancy migration and 

formation are quantitatively in good agreement with the theoretical prediction of 

two-dimensional Ising models [38,39,40]. 
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Fig. 6.12: The temperature dependence of (a) migration and (b) formation entropies due to the 

spin dynamics, derived from the free energies shown in Fig. 6.8. The results are in good 

agreement with the theoretical predictions by two-dimension Ising model. 
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Fig. 6.13: The temperature dependence of (a) migration and (b) formation energies due to the 

spin dynamics, derived from the free energies shown in Fig. 6.8. The results are in good 

agreement with the theoretical predictions by two-dimension Ising model. 
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6.5.3 Indirect contribution from spin dynamics 

Obtaining the free energies for spin subsystem, the contributions of the 

phonon-magnon interaction to the free energies in vacancy migration and 

formation processes can be estimated by comparing the results of L SH  to that 

of HH . Plotted in Fig. 6.14 (a) & (b), the temperature dependence of MF  and 

FF  are present, respectively, in the models of LH , L SH  and HH . It can be 

seen that the results of L SH , either L S
MF  or L S

FF , are comparable with those 

of HH , in the whole temperature region except the cusps near FM/PM phase 

boundary, which indicates that the effects of phonon-magnon interaction is 

significant. 

800 900 1000 1100 1200 1300 1400

0.52

0.54

0.56

0.58

0.60

0.62

0.64
(a)

PMFM

M
ig

ra
tio

n 
Fr

ee
 E

ne
rg

y,
 F

M
  (e

V
)

Temperature (Kelvin)

 F L
M

 F L+S
M

 F H
M

800 900 1000 1100 1200 1300 1400
1.40

1.45

1.50

1.55

1.60

1.65

1.70

(b)

PM

 F L
F

 F L+S
F

 F H
F

Fo
rm

at
io

n 
Fr

ee
 E

ne
rg

y,
 F

F (e
V

)

Temperature (Kelvin)

FM

 

Fig. 6.14: The temperature dependence of free energies of vacancy (a) migration and (b) 

formation in HL, HL+S and HH, respectively. The solid lines are guides for eye. 

In principle, the energy of vacancy migration and formation, with respect to 

the lattice dynamics, can be also estimated by using the thermodynamic relation, 
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i.e. / 1/M F M FE F T T . Nevertheless, the volume change during the 

vacancy migration should be taken into account, which is difficult to consider in 

the dynamical simulations. In addition, the energetic contributions originated 

from the changes in phonon modes during the vacancy migration and formation 

processes are regarded as the high order perturbation for transition metal [79]. 

Consequently, the change in potential energy in the above-mentioned atomic 

processes is the dominant one, which is consistent with the interpretation in 

absolute rate theory [17,18,19]. Therefore, in the current calculations, the 

migration energy is regarded as the static potential difference between the 

configurations of equilibrium and saddle point states generated by using the 

modified conjugated gradient (MCG) method [50,53], whereas the formation 

energy is treated as the energy difference between the relaxed vacancy 

equilibrium configuration and the corresponding non-defect configuration.  

Fig. 6.15 (a) & (b) plot the temperature dependence of migration and 

formation  energies  in  the  models  of  LH , L SH  and HH , respectively. Due to 

the anharmonicity originated from pure phonon-phonon interaction, both L
ME  

and L
FE  linearly increase as temperature increasing, respectively, from 0.86eV 

and 1.91eV at 850K to 0.93eV and 1.95 eV at 1300K. The current results are 

comparable with the calculation results done by Mendelev et al. [83] by using 

quasi-harmonic approximation. In addition, the cusps present in the temperature 

dependent curves of H
MF  and H

FF , due to the full dynamical interactions 
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between phonon and magnon excitations, demonstrate the effects of spontaneous 

FM/PM phase transition. Furthermore, the defined L S
ME  and L S

FE  represent 

the contributions from the non-interactive phonon and magnon excitations, i.e. 

, , ,
L S L S
M F M F M FE E E , from which the contributions due to the phonon-magnon 

interaction can be estimated by comparing to ,
H
M FE . It can be seen that such 

interactive effect decreases the migration energy of ~0.06eV and decrease of 

formation energy of ~0.04eV, respectively, in the temperature range from 850 to 

1300K. The values of the current calculation results are in good agreement with 

experimental data and other calculations, shown in Table 6.1. 
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Fig. 6.15: The temperature dependence of vacancy (a) migration and (b) formation energies. The 

solid lines are guides for eye. 

Similar to the energies, the entropies in vacancy migration and formation 

with respect to lattice dynamics is preferred by using the expression, i.e. 

/M F M F M FS E F T , rather than /M F M F V
S F T  to avoid the 

error due to vacancy migration volume change during the migration (formation) 
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process. Fig. 6.16(a) & (b) show the temperature dependence of migration and 

formation entropies in the models of LH , L SH  and HH , respectively.. In 

absence of the magnon excitations, both L
MS  and L

FS  reveal slightly linear 

temperature dependence in a wide temperature range, with the values of B~ 3.2k  

and B~ 4.0k  respectively. In addition, the migration entropy due to magnon 

excitations S
MS  is around one-third of L

MS , whereas S
FS  is as large as 

comparable to L
FS  in the FM phase, as shown in Figs. 6.13. That reveals the 

heat dissipation originated from the relaxation of spin subsystem is significant in 

the vacancy migration and formation processes. As a result, both L S
MS  (or 

L S
FS ) and H

MS  (or H
FS ) show the same temperature dependence, similar to that 

of S
MS  (or S

FS ), whose values is larger than L
MS  (or L

FS ) at low temperatures, 

but equal to L
MS  (or L

FS ) in the PM phase, due to the disappearance of the long 

range magnetic ordering. In addition, the difference between L S
MS  (or L S

FS ) 

and H
MS  (or H

FS ), due to the effect of phonon-magnon interaction, i.e. H  in 

Eq. (6.1d), is very small to be negligible except at the temperature near CT .   
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6.5.4 Brief conclusion  

In summary, atomistic studies have been performed to discuss the effects of 

phonon and magnon excitations in vacancy migration and formation processes by 

using the modified thermodynamic integration (TI) method and modified 

conjugated gradient (MCG) method. The relaxation of spin subsystem gives rise 

to the strong temperature dependence of both entropies and energies in migration 

and formation, with a singular behavior near FM/PM phase boundary. This is a 

typical consequence originated from magnetic phase transition, which has been 

demonstrated by theoretical analysis in Ising model. In addition, the pure 

phonon-phonon interaction, giving rise to anharmonic effects, results in slightly 

temperature dependence in both entropies and energies. Furthermore, the effects 

due to phonon-magnon interaction have little contributions except near Curie 

temperature. 
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CHAPTER VII 

SUMMARY AND CONCLUSION 

Spin-lattice dynamics (SLD) study of the effects of spin dynamics on the 

physical properties of BCC iron at finite temperatures, especially near the 

FM/PM phase transition point, have been performed in this thesis. Due to the 

anharmonicity of the crystal potential, lattice waves in BCC iron, i.e. phonons, 

soften (decreasing frequency) with shortened lifetimes as temperature increases. 

With anharmonic interaction between spins, spin waves (magnons) also behave 

similarly, especially near Curie temperatures, at which the characteristic 

frequencies  and  the  lifetimes  of  magnons  almost  decrease  to  be  zero,  with  the  

loss of the long range magnetic order. Interaction between the spin and the lattice 

caused by the exchange interaction of electrons with parallel spins between 

neighboring atoms, enhances phonon- and magnon-scattering, and results in 

more softening and shorter lifetime of both phonons and magnons. On the other 

hand, it is found that the spin-lattice coupling has little effects on the phonon 

dispersion  relation,  but  affects  the  spin  waves  giving  rise  to  a  shift  of  Curie  

temperature from ~1100K to ~1000K. The temperature-dependent spin stiffness 

confirms such effects in spin dynamics, which is examined to be consistent with 

the theoretical predictions by mean-field theory. 
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By using the thermodynamic integration method, the free energies of BCC 

iron involving spin vibrations are calculated at finite temperatures, across Curie 

temperature. From the free energies, temperature-dependent vibrational energies 

and entropies and the related thermal, mechanical and magnetic properties are 

derived. The second-order nature of magnetic phase transition is shown in our 

results, e.g. the continuity of free energy, and the divergence of heat capacity 

near FM/PM phase boundary. In BCC iron, anomalous magnetic phenomena near 

the magnetic transition point are found to be results of spin-vibration enhanced 

anharmonicity. Examples are the complicated temperature dependence of thermal 

expansion  coefficient,  isothermal  elastic  constants,  specific  heat,  as  well  as  the  

Grüneisen parameter. Contributions from magnon excitations are particularly 

large compared with those from multi-phonon interactions. Moreover, the 

magnon excitations do not only provide the energetic contributions, but also the 

entropic contributions to the thermomechanical properties in BCC iron. For 

instance, the downward cusp in the curve of isothermal bulk modulus near Curie 

temperature is believed to be caused by the heat dissipation due to the 

microstates relaxation of magnons during the hydrostatic deformation process.  

Based on SLD scheme, magnetic effects on the temperature dependence of 

self- and mono-vacancy diffusion in BCC iron have been studied. Using the 

modified thermodynamic integration method, the free energies in vacancy 

migration and formation are calculated at various temperatures, from which the 
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attempt frequency of vacancy migration is calculated for the first time 

atomistically. By simply fitting the resulting diffusion coefficients, the 

corresponding enthalpies and entropies of self- and mono-vacancy diffusion are 

calculated.  Very  good  quantitative  agreement  with  other  calculation  results  and  

experimental data is obtained, which demonstrates the fact that the spin-lattice 

coupling gives rise to the magnetic diffusion anomaly near the FM/PM phase 

boundary, and self-diffusion in -iron is indeed by means of vacancy rather than 

self-interstitial. The smaller values of calculated self-diffusion coefficients in the 

PM phase are speculated to be caused by the overestimation of the migration 

entropy, associated with the atomic vibrations governed by the used interatomic 

potential.  

Furthermore, using the modified conjugated gradient method, the spin 

correlation effects on the temperature dependence of both entropies and 

enthalpies in vacancy formation and migration processes have been investigated 

over a wide temperature range, across the FM/PM phase boundary. The principal 

energetic contributions to vacancy migration and formation come from the 

changes in spin configurations, whereas no appreciable effects are provided by 

the spin-lattice coupling. Otherwise, the effects of frozen-magnon-enhanced 

phonon scattering and the spin-lattice coupling on entropies are not as important 

as the dynamical influence of spin correlation. Especially, the dynamical 

relaxation of spin configuration near the FM/PM phase boundary results in the 
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cusps of the temperature dependence of migration and formation entropy of 

vacancy, which is consistent with the theoretical predictions by the 

two-dimensional Ising models.  

In a conclusion, due to the atomic distance dependent exchange interactions, 

the spin vibrations, varying with temperature due to the spontaneous phase 

transition in BCC iron, brings out the energetic and entropic contributions to the 

physical properties, i.e. thermodynamic, magneto-mechanic, and the properties 

related to point defects. In particular, the entropic effects are significant near the 

FM/PM phase boundary, which result in many anomalous magnetic phenomena.  
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