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ABSTRACT

Demand uncertainty usually increases the difficulty in managing inventory and pro-

duction for system managers. Under a buy-and-sell environment, a desirable in-

ventory replenishment policy, which achieves balanced trade-offs between inventory

cost and order processing cost, can achieve a good system performance. Under a

make-to-order environment, by contrast, no inventory is kept, and the production

decisions play an important role in system control especially when the customers

are delay-sensitive.

In this thesis, we study optimization models under a buy-and-sell setting and a

make-to-order setting with a Poisson demand process. It comprises two essays. The

first essay focuses on the inventory control in a buy-and-sell environment. Specifi-

cally, we consider the long-run average profit maximization problem in a single-item

inventory system under continuous review. We assume constant replenishment lead

time and partial backlogging of unmet demand. The special case with complete

backlogging, which is a classical problem, is revisited first. The original objective

function is transformed into a new one, namely “effective profit.” By exploring the

optimal policy under this new objective function, we show that the (s, S) policy is

optimal to the original problem and can be obtained by binary search algorithms.

Furthermore, this new approach enables us to obtain near closed-form solutions and

nice economic interpretations of the optimal reorder point, which are obtained for

the first time in the literature. This new method is then extended to the gener-

al model with partial backlogging, and a well-performed heuristic is developed to

determine the (s, S) policy and the average profit.

The second essay focuses on the production control in a make-to-order environ-



ment. The two main features are fixed set-up cost and delay-sensitive customers.

The latter is incorporated into the make-to-order system control for the first time.

The production system is modeled as an M/M/1 queue with N -policy, where N

is the waiting-customer-order threshold which triggers the production and is the

control variable. Delay-sensitive customers make decisions on staying or leaving ac-

cording to their expected waiting times, which depend on the information provided.

Two information scenarios are considered, depending on whether the queue length

of customer orders is observable or not. Customers’ equilibrium strategies are ob-

tained, which is a complement to the literature on queueing systems. The average

cost function with strategic customers is obtained in closed form, which is either

convex or piecewise convex in N when the waiting list of customer orders is not

observable, but may not be convex when the waiting list is observable. The impact

of strategic customer behavior on the average cost and the value of revealed infor-

mation is demonstrated via numerical studies. We observe that if the customers are

impatient, the system manager should be more cautious in making decisions on the

choice of the threshold N and on whether revealing the information on the waiting

list of customer orders.



PUBLICATIONS ARISING

FROM THE THESIS

Guo, P., Q. Li. 2013. Strategic behavior and social optimization in partially-

observable Markovian vacation queues. Operations Research Letters 41 277–

284.

Li, Q., Q. Ding, P. Guo, C.-L. Li. 2012. (s, S) policy revisited with binary search

algorithms, near closed-form solutions, and economic interpretations. Submit-

ted for publication.

Li, Q. 2012. Managing make-to-order production systems with set-up cost and

delay-sensitive customers. Working paper (coauthored with P. Guo, C.-L. Li,

and J. Song).



ACKNOWLEDGEMENTS

I owe my deepest gratitude to my chief supervisor, Prof. Chung-Lun Li, who offered

me an opportunity to pursue the PhD study and has been providing excellent guid-

ance in these years. Starting with a clear picture of the global structure and focusing

on the major issues, Prof. Li can always make it easier for me to start working on

the research topics. I am grateful every time having discussion with him. Besides

patiently helping me settle the specific problems, he is also more than willing to

share his experience. Learning from him to develop the essential characteristics in

conducting research benefits me a lot. During the training process in these year, I

have been deeply impressed by his broaden knowledge, expertise, enthusiasm, and

personality. It is truly lucky to have Prof. Li be my supervisor. I can never imagine

a better one.

I am sincerely thankful to have Dr. Pengfei Guo be my co-supervisor in the last

year of my PhD study. His tutoring on expertise knowledge and acute sense in

research has greatly improved the efficiency of my research study. It would not be

easier to finish this thesis without his help.

I appreciate the experience of working with Dr. Qing Ding from Singapore Man-

agement University, who is not only a coauthor but also an advisor. It is memorable

that he can always examine research problems from his unique viewpoint, and that

he has given me a lot of encouragement when I encountered difficulties.

I am grateful to cowork with Dr. Jinwen Ou from Jinan University. It is an

efficient and pleasant experience, which has greatly helped in accomplishing my

confirmation of registration. As my academic brother, he also gave me some valuable

suggestions on academic career development.



I would like to thank some professors in PolyU. Thanks to Dr. Daniel Ng, who

was the examiner of my confirmation and kindly gave me helpful suggestions. He is

always willing to talk with our research students and offer help if possible. Thanks to

Dr. Li Jiang and Dr. Xiaowen Fu, whose lectures equip me with necessary knowledge.

I would also like to thank some professors outside PolyU. Thanks to Prof. Y-

ouhua Chen, who patiently answered my questions and provided detailed informa-

tion when I took the cross-institutional course in CUHK. Thanks to Prof. Paul

Zipkin and Prof. Jeannette Song, who kindly spared time discussing research topics

and providing comments and suggestions during their academic visit to Hong Kong.

My thanks also go to my classmates and friends, Yifan Zhang, Xiaofan Lai,

Wen Jiao, Bin Shen, Xiutian Shi, Jinxiu Tian, Yujie Wang, and Ming Zhao, for

their careness and encouragement. Independent life in Hong Kong is much easier

with their accompany. In particular, I want to thank Ciwei Dong, with whom the

discussions on research methods and on programming benefit me a lot.

Finally, I am indebted to my husband, Ruixin Zhuang, for his continuous support

in these years, and I heartfully appreciate the encouragement from all the other

family members. My PhD study would never be easier without their understanding

and support.



Contents

1 Introduction 1

1.1 Background of Research . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature on Stochastic Inventory Models and the (s, S) policy . . . 4

1.3 Literature on Queueing Systems and Optimal Control of Production 7

PART I. Inventory Control in a Buy-and-Sell Environment 10

2 The (s, S) Policy and the Model 11

3 Preliminary Results 14

3.1 An Alternative Formulation . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Solving Problem Porig for the Zero-Lead-Time Case . . . . . . . . . 17

4 The Complete Backlogging Case 23

4.1 The Auxiliary Problems . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Solving the Auxiliary Problems . . . . . . . . . . . . . . . . . . . . . 28

4.3 Determining the Optimal Policy . . . . . . . . . . . . . . . . . . . . 38

5 The Partial Backlogging Case 41

5.1 Properties of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 The Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Effectiveness of the Heuristic . . . . . . . . . . . . . . . . . . 55

5.3.2 Comparison with Other Heuristics . . . . . . . . . . . . . . . 56

i



PART II. Optimal Control in a Make-to-Order Environment 60

6 Model Description 61

7 System with Unobservable Queue Length 64

7.1 The equilibrium arrival rates . . . . . . . . . . . . . . . . . . . . . . 64

7.2 The expected average cost and optimal decision . . . . . . . . . . . . 71

8 System with Observable Queue Length 83

8.1 The customer equilibrium strategy . . . . . . . . . . . . . . . . . . . 84

8.2 The expected average cost and optimal decision . . . . . . . . . . . . 89

9 The Impact of Information 96

CONCLUSIONS 101

REFERENCES 106

ii



List of Figures

3.1 The inventory process and function g(·, φ). . . . . . . . . . . . . . . . 18

3.2 Function P(I, φ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Function g(I, φ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Description of problem APn. . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Functions G0(s1, Q) and ΔG0(s1, Q). . . . . . . . . . . . . . . . . . . 30

4.3 Marginal effective profit in the complete backlogging model. . . . . . 31

4.4 Comparison of algorithms AL,1, AF-Z, and AIntuitive. . . . . . . . . . 39

5.1 The planning horizon of the heuristic. . . . . . . . . . . . . . . . . . 49

5.2 The inventory cost rate and revenue rate. . . . . . . . . . . . . . . . 51

5.3 Numerical results of the partial backlogging case. . . . . . . . . . . . 58

7.1 MTO system with unobservable queue length . . . . . . . . . . . . . 65

7.2 Waiting time versus arrival rate . . . . . . . . . . . . . . . . . . . . . 69

7.3 Case 1 with ρ ≥ 1 and ν ≤ 2 + ρ. . . . . . . . . . . . . . . . . . . . . 77

7.4 Case 2 with ρ ≥ 1 and ν > 2 + ρ. . . . . . . . . . . . . . . . . . . . . 79

7.5 Case 3(ii) with ρ < 1 and 2 + ρ < ν ≤ 2
1−ρ . . . . . . . . . . . . . . . 81

7.6 Case 3(iii) with ρ < 1, ν > 2 + ρ, and ν > 2
1−ρ . . . . . . . . . . . . . 82

8.1 The expected waiting time. . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 AC versus N for the system with observable queue length. . . . . . . 95

9.1 The impact of information, ΔAC∗, versus ρ. . . . . . . . . . . . . . . 98

9.2 The impact of information, ΔAC∗, versus ν. . . . . . . . . . . . . . . 100

iii



List of Tables

2.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Results of numerical tests. . . . . . . . . . . . . . . . . . . . . . . . . 56

9.1 The impact of information for different values of ρ. . . . . . . . . . . 97

9.2 The impact of information for different values of ν. . . . . . . . . . . 99

iv



Chapter 1

Introduction

1.1 Background of Research

Managing inventory and production under demand uncertainty is a challenging task

for any operations manager. Under a buy-and-sell environment, inventory replen-

ishment decisions directly impact the overall performance of the system, where good

performance comes from low inventory level, minimum order processing, and high

service level. On the other hand, under a make-to-order environment where inven-

tory holding is unnecessary, good control of the production process is important,

especially when customers are delay-sensitive, as the production decisions directly

affect the waiting time of the customers.

In this thesis, we study optimization models for a buy-and-sell setting and a

make-to-order setting. In particular, our study focuses on “threshold policies” for

Poisson demand processes. The thesis comprises two essays. The first essay studies

a buy-and-sell environment via analyzing an inventory control model with Poisson

demand, constant replenishment lead time, and partial backlogging. The focus of

this study is to analyze the well-known (s, S) policy and its economic interpretations.

The second essay studies a make-to-order environment via analyzing a production

system, which is modeled as an M/M/1 queue, where the production is triggered

when the number of waiting customer orders has accumulated to a certain threshold

level.
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In the first essay, we focus on a single-item continuous review inventory system

with an objective of maximizing the long-run average profit. We assume Poisson

demand and constant lead time, and we allow unsatisfied demand to be partially

backlogged. We first analyze the special case with complete backlogging. This

special case is a classical inventory problem, and various numerical algorithms have

been developed to search for optimal inventory policies. We revisit this old problem

with a new approach. Specifically, the given average-profit-maximization objective

is first transformed into a new objective which we refer to as the “effective profit.”

The (s, S) policy is then shown to be optimal to the original problem and can be

obtained through efficient binary search algorithms. Besides this computational

advantage, our approach also generates near closed-form expressions for the optimal

reorder point, which can be nicely explained by a marginal cost-benefit analysis. We

then extend our analysis to the general partial backlogging case and provide a well-

performed heuristic. This study makes the following contributions to the inventory

literature:

1. For the case with zero lead time and partial backlogging, we obtain the opti-

mal (s, S) policy in closed form, and provide economic interpretations of the

optimal reorder point and the order-up-to level. The optimal reorder point

balances the specific revenue rate, which we refer to as the “effective revenue

rate,” and the inventory cost rate for negative inventory levels, whereas the

optimal order-up-to level balances the effective revenue rate and the inventory

cost rate for positive inventory levels.

2. For the classical model with constant lead time and compete backlogging, we

show that the optimal reorder point can be obtained via a marginal profit

analysis. Such a marginal profit analysis has some similarities to the classical

newsvendor model, but it takes a more complex form. Specifically, the optimal

reorder point balances the effective revenue rate and the inventory cost rate at

the end of the lead time period. Furthermore, the optimal reorder point can

be expressed in near closed-form expressions. To the best of our knowledge,

no such economic interpretation of the (s, S) policy or closed-form expressions
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exist in the literature.

3. We develop a simple heuristic for determining the (s, S) policy and the average

profit for the general partial backlogging model with constant lead time. We

demonstrate that our heuristic is highly effective via a computational study.

In the second essay, we focus on a make-to-order production system with set-

up cost and delay-sensitive customers. Due to the existence of the set-up cost,

we assume production begins only when the number of waiting customers in the

system reaches a threshold N , and once production starts, it will continue to fill

customers’ orders until all customers are served. We model such a make-to-order

system as an M/M/1 queue with N -policy. Customers are delay-sensitive, and they

decide to wait or leave according to the anticipated waiting time, which depends

on the information level provided to the customers by the system. We consider

two information scenarios depending on whether the queue length is observable

or not. For each information scenario, we analyze the equilibrium strategies of

the customers and develop the expected average cost of the production system.

Numerical studies are also conducted to compare the system performance measures

between the two information scenarios. This study makes the following contributions

to the literature:

1. We conduct equilibrium analysis of customers’ queueing decision with par-

tial information provided to them. Specifically, when customers only know

the server’s status, we show that the avoid-the-crowd behavior exists when

they see a busy server; that is, a customer’s tendency of joining is decreasing

with others’ tendency. However, when incoming customers see an idle server,

their tendency of joining is increasing with others’ tendency, thus exhibiting

the follow-the-crowd behavior. For the information scenario where the queue

length is observable, we show that no matter the server status is observable

or not, the equilibrium is the same.

2. Regarding the optimal control of a make-to-order system, our work differs

from the literature by allowing customers to make decentralized purchasing
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decisions, and we also consider the impact of information on the average cost.

The expected average costs are obtained in closed forms. The expected average

cost is shown to be either piecewise convex or convex in the threshold when

the queue length is unobservable, but it may not be convex when the queue

length is observable. We show by numerical tests that if the customers are

impatient, the system manager needs to be more cautious in making decisions

on the choice of the threshold N and on whether revealing the information on

the queue length. Another interesting observation is that it is possible that

when N is set to its optimal value, customers exhibit a paradoxical behavior:

they stay if the server is idle but leave if the server is busy.

In the following subsections, we review the literature which is relevant to this

thesis.

1.2 Literature on Stochastic Inventory Models and the

(s, S) policy

There is a rich literature on stochastic inventory models and the (s, S) policy. For

a comprehensive review, please refer to Zipkin (2000) and Porteus (2002). In the

following, we only emphasize those works that are closely related to our research,

and we focus on models with positive replenishment lead time. Note that an (r,Q)

policy is equivalent to an (s, S) policy if the inventory position always hits the

reorder point exactly, and therefore some of the works that we review involve (r,Q)

policies.

We first give an overview on those works with complete backlogging. Those

studies can be roughly divided into two types: (i) analyzing or proving the optimality

of a policy, and (ii) analyzing the characteristics of a given policy and determining

the policy parameters. For the first type, a number of classical papers such as Scarf

(1960), Iglehart (1963), and Veinott (1966) study the optimality of the (s, S) policy

for inventory models with backlogging and zero replenishment lead time, and their

results that are extendible to the positive (constant) lead time case. Beckmann
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(1961) shows the optimality of the (s, S) policy for a general demand arrival process

with arbitrary intervals between demands and independently distributed demand

quantities, where the replenishment lead time is constant, and order decision is made

only after a demand occurs. Hordijk and Van der Duyn Schouten (1986) show the

optimality of the (s, S) policy for the situation where the demand process comprises

a compound Poisson process and a continuous process, the lead time is constant, and

the order decision can be made at any time epoch. Song and Zipkin (1993) consider

a model where the lead time is stochastic and the demand rate varies with an

underlying state-of-the-world variable, and they show that a world-dependent (s, S)

policy is optimal. Bensoussan et al. (2010) consider a model with a Poisson demand

process and constant lead time, and they show that the (s, S) policy is optimal

under the constraint that there is at most one order outstanding. For the second

type, Sivazlian (1974), Richards (1975), and Sahin (1979) examine the steady-state

distribution of the inventory position under an (s, S) policy. Archibald and Silver

(1978), Sahin (1982), and Zheng and Federgruen (1991) discuss the determination

of the optimal values of s and S for various models with backlogging. Feng and Xiao

(2000) examine the model in Federgruen and Zheng (1992), and they develop a more

efficient algorithm by introducing an auxiliary function and analyzing the properties

of the optimal solution. Federgruen and Zheng (1992) consider an (r,Q) model with

Poisson demand and develop a search algorithm for obtaining the optimal r and Q

values. Zheng (1992) further analyzes this model and derives optimality conditions

for the policy parameters.

Next, we review those works with lost sales. Again, some studies specifically ad-

dress the optimality of the inventory policy. Karlin and Scarf (1958) study periodic

review models with backlogging and lost sales. They develop some fundamental re-

sults and provide bounds on the optimal decisions and performance measures, which

are further improved by Morton (1969). However, in general, the (s, S) policy need

not be optimal for lost-sales inventory models with lead time; see, for example, Hill

and Johansen (2006). Recently, Zipkin (2008a,b) studies inventory systems with

lost sales and periodic review. Zipkin (2008a) tests some heuristics and shows that

none of them are perfect, even though some of them work well for a backlogging sys-
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tem. Zipkin (2008b) studies some structural properties of the system. By using the

concept of “L�-convexity,” new bounds on the optimal policy are developed. There

are studies which focus on analyzing the characteristics of a given policy and the

determination of the policy parameters. These include the classical work of Hadley

and Whitin (1963), who derive the average cost function of an (r,Q) continuous

review system with Poisson demand, and some more recent work such as Archibald

(1981), Johansen and Thorstenson (1993), Hill and Johansen (2006), etc. For a

comprehensive review on lost-sales inventory models, see Bijvank and Vis (2011). A

common assumption in the lost-sales models with continuous review is that there is

at most one outstanding order, which is also adopted in the first essay.

In contrast to the enormous literature on inventory models with either complete

backlogging or complete lost sales, studies on models with partial backlogging are

less common. There are a number of studies which focus on deterministic EOQ-

type models with partial backlogging; see Taleizadeh et al. (2012) and the references

therein. For inventory problems with stochastic demand, generally speaking, there

are three types of models to describe partial backlogging. The first type simply

assumes that a fraction of the unmet demands are backlogged; see, for example,

Nahmias (1979), Kim and Park (1985), and Pang (2011). The second type assumes

that there exists an upper bound on the backordered quantity, below which the

excess demand is backlogged, and above which the excess demand is lost; see, for

example, Rabinowitz et al. (1995) and Chu et al. (2001). The third type considers

the partial backlogging case to be characterized by a choice probability associated

with customers encountering stockouts as described in the introduction. Moinzadeh

(1989) considers such a definition of partial backlogging and develops steady s-

tate operating characteristics for an (S − 1, S) system which allows multiple orders

outstanding during the lead time period. Ding et al. (2011) also consider such a

definition of partial backlogging and develop an algorithm to determine the optimal

rationing policy with multiple classes of customers and zero lead time. To the best

of our knowledge, the questions on what the optimal policy is and how to calculate

the optimal solution under our partial backlogging setting are not well addressed.

As mentioned above, Ding et al. (2011) study an inventory rationing problem
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with multiple-class demand and partial backlogging. They develop a dynamic pro-

gram to determine the optimal rationing policy for the zero-lead-time case. Their

rationing policy turns to the optimal inventory control policy if demand class re-

duces to one. Our study focuses on the inventory problem with single-class demand

and positive lead time. The single-class demand assumption makes it possible to do

theoretical analysis, but the positive lead time assumption makes the analysis more

complicated. Our study resembles Ding et al.’s work on the aspect that the original

average profit function is changed into another form. The new form allows us to

obtain nicer expressions (closed-form in some special cases) for optimal decisions

for the complete backlogging case and develop an effective algorithm for the general

partial backlogging case.

It is worth mentioning that besides the study of the (s, S) and (r,Q) policies,

there are also other streams of stochastic inventory research which study the op-

timality of other inventory policies. One such stream is about the joint inventory

replenishment and pricing problems, where an (s, S, p) policy has been shown opti-

mal to some inventory models; see Chen and Simchi-Levi (2012) for a comprehensive

review of related literature. Another stream is about serial inventory models, where

policies such as (r, nQ), (r, nQ, T ), and (s, T ) policies are considered; see, for exam-

ple, Shang and Zhou (2010).

1.3 Literature on Queueing Systems and Optimal Con-

trol of Production

There are two related streams of literature closely related with the optimal control

of the make-to-order production system with strategic customers.

The first stream is about the optimal control of production systems. An M/G/1

queueing modeled production system is presented by Heyman and Sobel (1984,

p. 336), and the optimal threshold that triggers production is obtained in closed

form. Note that queueing systems are usually used to model the production systems

to analyze the steady-state distribution of the system, and that with the presence of

set-up cost, the threshold policy and server vacations need to be considered. Thus,
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the works on the optimal control of queueing systems with threshold policy and

server vacations are relevant to our study. Kella (1989, 1990) considers the M/G/1

queue with server vacations, in which the condition of the optimal threshold policy

and the optimal control of the vacation scheme are obtained. Federgruen and So

(1991) prove that the threshold policy is optimal in single server vacation queuing

systems. Zhang (2006) shows that the average cost is convex in an M/G/1 queue

with two-threshold policy vacations. Several searching algorithms have also been

developed for determining the optimal control policy for some complicated queueing

systems; see, for example, Lee and Srinivasan (1989), Zhang et al. (1997), and Ke

(2003). The main difference between these works and our work is that we consider

strategic customer behavior, whereas the foregoing works assume a stable demand

process.

The second stream is about customers’ strategic queueing behaviors in service

systems. Such study is pioneered by Naor (1969), who shows that admission fee can

be used to induce a socially optimal strategy in a fully observable M/M/1 queuing

system. A similar model with an unobservable queue is studied by Edelson and

Hildebrand (1975). For a comprehensive review of queueing models with strategic

customers, see Hassin and Haviv (2003). Recently, Guo and Hassin (2011) consider

a single-server vacation queueing model with N -policy, and they obtain the equilib-

rium and optimal strategies for identical customers. Guo and Hassin (2012) extends

the study to the case with heterogeneous customers. These two studies consider

the no-information and full-information scenarios. Our make-to-order production

system is also modeled by a queueing system with N -policy, but we consider non-

heterogeneous customers under two partial information scenarios. On the one hand,

the equilibrium analysis in our work is a supplementary to that in Guo and Hassin

(2011). On the other hand, the cost structure in our production system is more

complicated, and we also further analyze the average cost function with respect to

the threshold value N . There are also some studies on strategic queueing behaviors

in the system where the service rates depend on the system congestion level, and

such a system can be regarded as an extension of vacation queue with N -policy, since

the service rate in the latter changes between 0 and a higher value. Economou et
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al. (2011) and Dimitrakopoulos and Burnetas (2011) study such systems, and both

equilibrium strategies and socially optimal strategies are obtained and compared.

A major difference between these systems and our system is that our system has a

different cost structure, which includes a production set-up cost, a system operat-

ing cost, etc. Guo and Zhang (2012) consider a multi-server queueing system with

congestion-based staffing policy with the presence of several kinds of costs incurred

in switching the staff modes. They conduct an equilibrium analysis with an unob-

servable queue. Equilibrium analysis is also conducted on an observable queueing

system with setup/closedown times by Sun et al. (2010), and on a clearing queueing

system in alternating environment by Economou and Manou (2011).
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PART I

Inventory Control in a

Buy-and-Sell Environment
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Chapter 2

The (s, S) Policy and the Model

Readers are probably all familiar with the (s, S) inventory policy. Under this policy,

the manager places an order to increase the inventory position to S whenever the

current inventory level drops below s. Research on this model can be roughly

classified into two types. The first type concerns the optimality of this policy for

a given setting, whereas the second type concerns how to determine the values of

the policy parameters s and S. This policy has been proven to be optimal in many

situations. For example, it is optimal to inventory systems with zero lead time

under very general settings of demand process and cost parameters, regardless of

whether the unmet demand is backlogged or lost (see, e.g., Cheng and Sethi 1999).

If there exists a replenishment lead time, the (s, S) policy has also been shown to be

optimal to some backlogging inventory systems. However, the optimal decisions have

to be searched numerically, and the optimal decisions on s and S have never been

expressed in closed forms mainly owing to the complexity of the cost functions. Our

work, therefore, focuses on the following challenging issues: Is there an alternative

way to determine the optimal (s, S) policy more efficiently? And, if so, is there any

intuitive expression for the policy parameters?

In this essay, we will revisit the (s, S) policy by a new method. The setting that

we consider is a single-product inventory model with continuous review, infinite

horizon, Poisson demands, and constant lead time. A special feature of our model

is that we consider partial backlogging. We model partial backlogging by model-
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ing customers’ behavior as independent Bernoulli trials: A customer encountering

stock-out will choose to stay (i.e., be backlogged) with a probability γ or choose to

leave (i.e., be lost) with a probability 1− γ. This setting reflects many real-life sit-

uations, particularly in the retail business, where the customers make wait-or-leave

decisions randomly and independently when the product is out of stock. Note that

the complete backlogging case and the complete lost-sales case are two special cases

of our model, with the choice probability γ being 1 and 0, respectively.

Specifically, we assume demand arrives according to a Poisson process with rate

λ. Unmet demand is backlogged with probability γ and lost with probability 1− γ,

where 0 ≤ γ ≤ 1. The replenishment lead time is constant. We say that a demand is

realized if it is satisfied either from on-hand inventory or from a later replenishment.

Backlogged demand is realized, whereas lost demand is not. The cost parameters

are listed in Table 2.1.

Table 2.1: Notation.

System Parameters:

λ Demand rate

L Replenishment lead time

γ Probability that an unmet demand is backordered

Cost Parameters:

K Fixed set-up cost per order

p Net profit per unit product

h Holding cost per unit product per unit time

b Backorder cost per unit product per unit time

� Lost sales penalty per unit product

p̃ = γp− (1− γ)� Expected revenue from an arriving customer

encountering stock-out

The replenishment decisions are made immediately after demand arrival epochs.

Regarding the replenishment lead time, in order to ensure tractability of the model,

we assume that there is at most one order outstanding at any point in time (i.e., the

manager cannot place another order if he/she has not received the current order),

which is a common assumption in the literature (see, e.g., Fricker and Goodhart 2000

12



and Pang and Chen 2009). We assume p − h
λ > 0, such that the largest expected

profit of satisfying a unit of demand from on-hand inventory is positive (attained

when the inventory level is one). The objective is to determine the optimal inventory

policy such that the long-run average profit is maximized.

Because the partial backlogging model is a generalization of the lost-sales/ back-

logging case, it therefore poses even more challenges in deriving the performance

measures and finding the optimal policies. The difficulty can be explained as follows.

When demands arrive according to a Poisson process, the stationary distribution

of the inventory position, and, consequently, the expected profit, can be readily de-

rived for the complete backlogging case, because the inventory position always drops

by one unit whenever a demand occurs. In a partial backlogging model, however,

the inventory position changes in a more complex way. When on-hand inventory is

positive, the inventory position drops by one unit when a demand arrives, but when

a demand faces a stock-out, the inventory position either drops by one unit owing to

the backlogged demand or stays unchanged owing to the lost sales. Consequently,

the stationary distribution function of the inventory position in the partial back-

logging case takes a more complex form, and the expression for the average profit

is even more complex. Therefore, we will fully demonstrate our new method with

the special case with complete backlogging, and then we extend the analysis to the

general partial backlogging model.

In our analysis, we let x+ = max{x, 0} and x− = max{−x, 0} for any real number

x, and we use �·� and �·� to denote the floor and ceiling functions, respectively.

13



Chapter 3

Preliminary Results

In this chapter, we first present an alternative formulation which enables us to

conduct the analysis more easily, and we then apply the new formulation to solve

the zero-lead-time case of our problem.

3.1 An Alternative Formulation

Let ξ be an arbitrary stationary inventory policy. Denote Π(ξ, t) as the total profit

accumulated during time period [0, t] under inventory policy ξ. The long-run average

profit is given by limt→+∞
Π(ξ,t)

t . According to the renewal theory, the long-run

average profit equals the average profit in one order cycle (Ross 1996). Denote Tξ

as the expected length of an order cycle. Denote Πξ as the expected profit in the

order cycle when the fixed ordering cost is ignored. Then,

lim
t→+∞

Π(ξ, t)

t
=

Πξ −K

Tξ
.

Our problem is to determine ξ so as to maximize this long-run average profit; that

is,

Porig : max
ξ

{
Πξ −K

Tξ

}
. (3.1)

Unfortunately, this objective function usually does not have nice structures. Typi-

cally, a numerical grid search over the policy parameters is needed.
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Similar to Ding et al. (2011), we reformulate this average-profit-maximization

problem as a new maximization problem with the objective function being an ac-

cumulative value. Let φ∗
orig be the optimal objective value to the original problem

Porig. A new problem Pnew is defined as follows:

Pnew : max
ξ

{Πξ − φ∗
origTξ}. (3.2)

We have the following theorem.

Theorem 1 The optimal objective value of problem Pnew is K. Furthermore, the

optimal policy for problem Pnew is also an optimal policy for problem Porig.

Proof: Let ξ∗orig be an optimal policy of problem Porig and ξ∗new be an optimal policy

of problem Pnew. On the one hand, the optimal objective value of problem Porig,

φ∗
orig, is achieved by policy ξ∗orig. Thus,

φ∗
orig =

Πξ∗orig −K

Tξ∗orig
,

or equivalently,

Πξ∗orig − φ∗
origTξ∗orig = K.

Because ξ∗orig is a feasible policy for Pnew, we have Πξ∗new − φ∗
origTξ∗new ≥ Πξ∗orig −

φ∗
origTξ∗orig . Hence,

Πξ∗new − φ∗
origTξ∗new ≥ K. (3.3)

On the other hand, ξ∗new is a feasible policy for Porig. The objective value satisfies

Πξ∗new −K

Tξ∗new
≤ φ∗

orig,

which implies

Πξ∗new − φ∗
origTξ∗new ≤ K. (3.4)

Inequalities (3.3) and (3.4) imply that

Πξ∗new − φ∗
origTξ∗new = K;
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that is, the optimal objective value of problem Pnew is K. Furthermore,

Πξ∗new −K

Tξ∗new
= φ∗

orig.

Therefore, ξ∗new is also an optimal policy for problem Porig.

The input parameter φ∗
orig can be obtained by an iterative algorithm. This

iterative algorithm solves a more general problem defined as Pφ:

Pφ : max
ξ

{Πξ − φTξ} . (3.5)

Problem Pφ differs from problem Pnew only in that φ∗
orig is replaced by φ. The term

φTξ can be viewed as the opportunity cost in time period Tξ with profit rate φ. We

refer to the term Πξ − φTξ as the effective profit in this time period. The iterative

algorithm is summarized in the following theorem. Its validity follows directly from

Theorem 1 in Ding et al. (2011).

Theorem 2 For any given φ, denote Π(φ) and T (φ) as the expected profit and

length, respectively, of a cycle if the system is running under the optimal policy

for problem Pφ. Define J(φ) = Π(φ) − φT (φ). Then, J(φ) is decreasing, and

J(φ∗
orig) = K.

Proof: Consider any φ1 and φ2 such that 0 ≤ φ1 < φ2. We have

J(φ2) = Π(φ2)− φ2T (φ2) < Π(φ2)− φ1T (φ2) ≤ Π(φ1)− φ1T (φ1) = J(φ1),

where the first inequality holds because φ1 < φ2, and the second inequality holds

because Π(φ1) − φ1T (φ1) is the optimal objective value of problem Pφ1 . Thus,

J(φ) is decreasing. Furthermore, by Theorem 1, we have J(φ∗
orig) = Π(φ∗

orig) −
φ∗
origT (φ

∗
orig) = K.

According to this theorem, φ∗
orig can be obtained easily via a binary search.

Remark 1 From Theorem 1, for any given profit rate φ, the optimal objective value

of Pφ can be regarded as the fixed set-up cost that the system can tolerate if the

maximum profit rate we want to attain is φ.
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Remark 2 Transforming the objective of problem Porig to the objective function

of problem Pnew actually follows the basic idea of solving a fractional programming

problem by using parametric approaches (see, e.g., Schaible and Ibaraki 1983, pp.

331-332). For our particular inventory problem, some specific properties can be

developed. Thus, we introduce Theorems 1 and 2 in detail, and we structure them

in a different way such that they can be easily applied in our later analysis.

Remark 3 The parametric approaches in fractional programming have been applied

to the determination of inventory replenishment policies by Feng and Xiao (2000),

in which an algorithm has been developed to calculate the optimal (s, S) policy pa-

rameters in a single item inventory system with complete backlogging. Lemma 1

there establishes a similar property as that in our Theorem 1, except that our The-

orem 1 is more generally applicable. Feng and Xiao’s study focuses on the average

cost obtained from the limiting behavior of inventory positions in an (s, S) policy,

whereas our work is on the new form of the objective function. With the new ob-

jective function, we do not need to restrict our attention to the average cost/profit

in one order cycle. Instead, we can decompose the objective into effective profits in

smaller time intervals. Such a nice property allows us to apply marginal analysis

in determining the decision variables and to obtain economic interpretations, which

are not available in Feng and Xiao (2000) or any other work in the literature.

3.2 Solving Problem Porig for the Zero-Lead-Time Case

In this section, we consider the special case of our model with zero lead time. Ac-

cording to Ding et al. (2011), the optimal policy is an (s, S) policy. Hence, we

restrict our attention to (s, S) policies and focus on deriving the optimal s and S.

Suppose the inventory level at time zero is I. We define an initial cycle as the time

period from time zero to the time point when the inventory level first drops to s.

Let Tξ(I) be the expected length of the initial cycle and Πξ(I) be the expected profit

accumulated in the initial cycle. Following the form of (3.5), define

g(I, φ) = max
ξ

{Πξ(I)− φTξ(I)} ,
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which is the maximum effective profit in the initial cycle; see Figure 3.1.
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Figure 3.1: The inventory process and function g(·, φ).

Let P(I, φ) be the net benefit from a realized demand at inventory level I, given

that the profit rate is φ. Then,

P(I, φ) =

⎧⎨
⎩ p− φ+hI

λ , if I ≥ 1;

1
γ (p̃− φ−bI

λ ), if I ≤ 0.
(3.6)

This equation can be explained as follows. If I ≥ 1, then the revenue brought by

a realized demand is p. However, there is an expected cost of φ+hI
λ during the

inter-arrival time period 1
λ . Next, consider the case I ≤ 0, in which an arriving

demand could be lost before it becomes a realized demand. The realized demand

and lost demand follow Poisson processes with rates γλ and (1− γ)λ, respectively.

The expected inter-arrival time of realized demands is 1
γλ . Hence, the expected

cost during the inter-arrival time period of two realized demands is φ−bI
γλ . The

expected revenue rate per unit time is λp̃, which implies that the expected revenue

rate per realized demand is p̃
γ . Therefore, in this case, the expected net benefit

is 1
γ (p̃ − φ−bI

λ ). Figure 3.2 depicts the function P(I, φ). (Note: The domain of

function P(I, φ) should be discrete. For simplicity, Figure 3.2 treats the domain as

continuous. The same simplification applies to some other figures in the thesis.)

Note that the effective profit in the initial cycle is equal to the total effective profit

obtained from the realized demands when the inventory level is I, I − 1, . . . , s + 1
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Figure 3.2: Function P(I, φ).

(see Figure 3.1). The effective profit in the initial cycle is maximized if the reorder

point s is optimally determined. Let s∗(φ) and S∗(φ) be the optimal reorder point

and order-up-to level, respectively. Then,

g(I, φ) =

I∑
k=s∗(φ)+1

P(k, φ). (3.7)

In this equation, the effective profit in the initial cycle is decomposed into the

effective profits in smaller time intervals. At the end of an initial cycle, the inventory

level is raised to the order-up-to level S. After the replenishment, the effective profit

in the next order cycle is g(S, φ), which is maximized when S = S∗(φ). Hence,

function g(I, φ) is maximized when I reaches S∗(φ), as depicted in Figure 3.3.

Because P(I, φ) is increasing when I ≤ 0 and is decreasing when I > 0, function

g(I, φ) is convex when I ≤ 0 and concave when I > 0. Thus, g(I, φ) is quasi-concave

in I.

The optimal reorder point and order-up-to level can be obtained as follows. Here,

P(I, φ) can be regarded as the marginal effective profit at inventory level I. The

optimal order cycle includes all the inventory levels which are positively contributed

to the total effective profit. If p̃ ≥ φ
λ , then equation “P(I, φ) = 0” has two roots

(see Figure 3.2). The optimal reorder point s∗(φ) is the largest integer which is

no greater than the smaller root, and the optimal order-up-to level S∗(φ) is the

largest integer which is no greater than the larger root. Thus, the optimal reorder
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Figure 3.3: Function g(I, φ).

point and order-up-to level can be obtained by solving the equation “P(I, φ) = 0.”

If p̃ < φ
λ , then the optimal reorder point s∗(φ) is zero, and S∗(φ) can be obtained

from the unique root of “P(I, φ) = 0.” The following theorem provides closed-form

expressions for these two quantities.

Theorem 3 Consider any φ and γ such that 0 ≤ φ ≤ λp and 0 ≤ γ ≤ 1. The

optimal reorder point and optimal order-up-to level for problem Pφ are

s∗(φ) = min

{⌊
φ− λp̃

b

⌋
, 0

}
(3.8)

and

S∗(φ) =
⌊
λp− φ

h

⌋
. (3.9)

Proof: We first show that the optimal reorder point must be non-positive. Suppose

the inventory system is running under an (s, S) policy with S > s ≥ 1. Consider

the (s − 1, S − 1) policy. Under the two inventory policies, the expected revenue

earned and the expected length of an order cycle are the same, whereas the inventory

holding cost is always lower by h per unit time under the second policy. Thus, the

(s− 1, S − 1) policy is better than the (s, S) policy. Therefore, the optimal reorder

point satisfies s∗(φ) ≤ 0.

Note that the optimal reorder point should maximize g(I, φ) given by (3.7).
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Thus, the optimal reorder point s∗(φ) satisfies⎧⎨
⎩ P(s∗(φ) + 1, φ) > 0,

P(s∗(φ), φ) ≤ 0.
(3.10)

Function P(k, φ) is linearly increasing in k when k ≤ 0. Hence, if P(0, φ) ≤ 0,

inequality set (3.10) has no negative solution. In this case, s∗(φ) = 0. If P(0, φ) > 0,

then s∗(φ) ≤ −1. In this case, both P(s∗(φ), φ) and P(s∗(φ) + 1, φ) belong to the

second case of (3.6), and inequality set (3.10) implies that

p̃− φ− b[s∗(φ) + 1]

λ
> 0 and p̃− φ− bs∗(φ)

λ
≤ 0.

Thus, φ−λp̃
b − 1 < s∗(φ) ≤ φ−λp̃

b , or equivalently, s∗(φ) =
⌊φ−λp̃

b

⌋
. Summarizing, we

have s∗(φ) = min
{⌊φ−λp̃

b

⌋
, 0
}
.

The maximizer of g(I, φ) is the optimal order-up-to level S∗(φ) (with tie broken

by choosing the larger one). Specifically, it satisfies

g(S∗(φ)− 1, φ) ≤ g(S∗(φ), φ) and g(S∗(φ), φ) > g(S∗(φ) + 1, φ),

or equivalently,

P(S∗(φ), φ) ≥ 0 and P(S∗(φ) + 1, φ) < 0.

From these two inequalities, we obtain λp−φ
h − 1 < S∗(φ) ≤ λp−φ

h . Therefore,

S∗(φ) =
⌊λp−φ

h

⌋
.

The optimal reorder point and order-up-to level can also be explained by the

following marginal benefit analysis. Note that from (3.8), if the optimal reorder

point s∗(φ) is negative, then it satisfies

b[−s∗(φ)− 1] < λp̃− φ ≤ b[−s∗(φ)],

where λp̃ is the revenue rate at negative inventory levels, and b[−s∗(φ) − 1] and

b[−s∗(φ)] are the inventory cost rates at inventory levels s∗(φ) + 1 and s∗(φ), re-

spectively. We refer to the revenue rate less the given profit rate φ as the effective

revenue rate. Then, the optimal reorder point balances the effective revenue rate and
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inventory cost rate for negative inventory levels. Similarly, from (3.9), the optimal

order-up-to level S∗(φ) satisfies

hS∗(φ) ≤ λp− φ < h[S∗(φ) + 1],

where λp is the revenue rate at positive inventory levels. Therefore, the optimal

order-up-to level balances the effective revenue rate and inventory cost rate for

positive inventory levels.

For any given φ, the optimal reorder point and order-up-to level of problem Pφ

can be calculated instantaneously from (3.8) and (3.9). By Theorem 2, the following

binary search algorithm converges to φ∗
orig.

Algorithm A0,γ:

Initialization: Set φ = 0, φ̄ = λp, and the tolerance level ε.

Iteration:

Step 1. Let φ = (φ+ φ̄)/2.

Step 2. Calculate s∗(φ) and S∗(φ) according to (3.8) and (3.9); determine Π(φ),

T (φ), and J(φ).

Step 3. If |J(φ) − K| < ε, stop. If J(φ) < K, then set φ̄ = φ, otherwise set

φ = φ; go to Step 1.

Optimal Policy: Calculate the optimal policy of problem Pφ for the optimal φ

obtained.

This binary search algorithm can be applied to the general models with positive

lead time and partial backlogging. For notational convenience, we let Ax,y denote

a binary search algorithm for the model with the lead time x and the backlogging

probability y.
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Chapter 4

The Complete Backlogging Case

In this chapter, we consider the situation with a constant lead time and complete

backlogging, i.e., γ = 1. We start with an arbitrary inventory policy and then show

that, under some mild conditions, the optimal policy is an (s, S) policy. A binary

search algorithm is then used for determining the optimal s and S values. In the

next chapter, we will consider the general partial backlogging case.

Throughout this chapter and the next chapter, φ is a default parameter. Unless

otherwise noted, it is omitted for simplicity. For any function f(x), let Δ be the

difference operator, i.e., Δf(x) = f(x) − f(x − 1). For any two-variable function

f(x, y), we use Δ to denote the difference operator with respect to the second

variable, i.e., Δf(x, y) = f(x, y)−f(x, y−1). We also use Δ2 to denote the second-

order difference operator with respect to the second variable if it is applied to any

two-variable function.

In Section 4.1, we define some easy-to-solve auxiliary problems with different

numbers of ordering opportunities. In Section 4.2, the optimal solutions of the

auxiliary problems are presented. In Section 4.3, the binary search algorithm is

discussed.

4.1 The Auxiliary Problems

Consider a time period [t, t0], where t0 is the time point at which the inventory

level drops to s∗ (i.e., the optimal reorder point for the zero-lead-time case) and the
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decision maker decides to finish the planning. For any integer n ≥ 1, we define the

auxiliary problem APn to be the inventory problem which maximizes the effective

profit on [t, t0], with a constraint that the number of orders placed during this period

must be exactly n. As n becomes large, the planning horizon of problem APn (i.e.,

t0−t) approaches infinity, and problem APn approaches the original problem where

the effective profit on [t,+∞) is maximized.

For the APn problem, the time horizon is divided into time intervals by reorder-

ing and order arrival epochs. The index is numbered backwards. For i = 1, 2, . . . , n,

let ti be the time point where the (n − i + 1)st order is placed. This order arrives

at time ti + L. By the assumption that there is at most one order outstanding at

any time, the following inequalities hold:

t ≤ tn < tn + L ≤ · · · ≤ t2 < t2 + L ≤ t1 < t1 + L ≤ t0.

For i = 1, 2, . . . , n, let si and Qi be the reorder point and order quantity for the

(n − i + 1)st order (see Figure 4.1(a)). Let s∗0 = s∗ denote the inventory level at

time t0.

The objective of problem APn is the total effective profit on [t, t0], which is the

sum of the one on the time period [t, tn] and those on the full order cycles [ti, ti−1]

(i = 1, 2, . . . , n). Suppose the initial inventory level at time t is I. Let ν be an

arbitrary (not necessarily stationary) inventory policy. Let Tν(I) = t0 − t be the

length of the planning period [t, t0], and let Πν(I) be the total profit obtained in

this period. Thus,

APn : max
ν

{Πν(I)− φTν(I)} .

To solve problem APn, we need to determine the optimal si and Qi for all i =

1, 2, . . . , n. In the following, we will show that the optimal policy is stationary; that

is, the si’s are the same for i = 1, 2, . . . , n, and so are the Qi’s (except for Q1).

Let gn(I) be the optimal objective value of problem APn. The initial value g0(I)

is equal to g(I), the maximum effective profit in the initial cycle of the zero-lead-time

case studied in Chapter 3. The optimality equation for gn(I) is

gn(I) = max{g0n(I), g1n(I)}, (4.1)
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Figure 4.1: Description of problem APn.

where g0n(I) is the maximum effective profit given that no order is placed at inventory

level I, and g1n(I) is the maximum effective profit given that an order is placed at

inventory level I.

We now derive the formulas for g0n(I) and g1n(I). First, we consider the case

where no order is placed at inventory level I, i.e., tn > t. In this case,

g0n(I) = P(I) + gn(I − 1), (4.2)

where P(I) (which is the same as P(I, φ) with parameter φ omitted) is the expected

effective profit of fulfilling the first demand unit arrived at inventory level I, while

gn(I − 1) is the maximum effective profit-to-go after serving the first demand unit,

which is the optimal objective value of the problem APn with initial inventory level

I − 1. Next, we consider the case where an order is placed at inventory level I, i.e.,
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tn = t and sn = I. In this case,

g1n(I) = L(I) + max
Q

{Gn−1(I,Q)}, (4.3)

where L(I) is the expected effective profit during the lead time period, while Gn−1(I,Q)

is the expected maximum effective profit-to-go in period [tn+L, t0] if the order size is

Q (see Figure 4.1(b)). In the complete backlogging case, all of the arriving demand

will be realized. Let D be the realized demand during the lead time period. It is a

random variable and has the same distribution function as the lead-time demand,

which follows a Poisson distribution with mean λL. Then,

Gn−1(I,Q) = ED
[
gn−1(I +Q−D)

]
. (4.4)

Equations (4.1)–(4.4) provide the recursion to solve for gn(I).

Let ψ(·) and Ψ(·) be the probability mass function (pmf) and cumulative distri-

bution function (cdf), respectively, of the lead-time demand, and let Ψ̄(·) = 1−Ψ(·).
Define δ(x) =

∑x+

k=0(x
+ − k)ψ(k), which is the expected leftover inventory if we at-

tempt to satisfy the lead-time demand with x units of inventory. Define δ̃(x) =∑+∞
k=x++1(k − x+)ψ(k), which is the expected unmet demand incurred in the lead

time period if we attempt to satisfy the lead-time demand with x units of inventory.

In particular, if x ≤ 0, then δ(x) = 0 and δ̃(x) = λL. The expected effective profit

in the lead time period can be obtained in closed form, as stated in the next lemma.

Lemma 1 is a special case of Lemma 4. Thus, the proof of the former is incorporated

into that of the latter.

Lemma 1 Function L(I) satisfies

L(I) =
⎧⎨
⎩ (λp− φ)L− (I − λL

2 )hL− h+b
2λ

[
λLδ̃(I)− Iδ̃(I + 1)

]
, if I ≥ 1;

(λp− φ)L+ (I − λL
2 )bL, if I ≤ 0;

and

ΔL(I) = −I+ − δ(I)

λ
h+

δ̃(I)

λ
b. (4.5)

The marginal effective profit in the lead time period, ΔL(I), given by (4.5) can

be explained as follows. If an order is placed at inventory level I rather than I − 1,
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one more unit of holding cost and one less unit of backordering cost will be charged

in the in-stock and stock-out periods, respectively. From the definitions of δ(I) and

δ̃(I), we can view the expected duration of these two periods as [I+ − δ(I)]/λ and

δ̃(I)/λ, respectively.

Lemma 2 When I ≥ 0,

Δ2L(I + 1) = −h+ b

λ
Ψ̄(I). (4.6)

Furthermore, ΔL(I) is convex decreasing on [0,+∞) and converges to −hL as I →
+∞.

Proof: Recall that δ̃(x− 1)− δ̃(x) = Ψ̄(x− 1) if x ≥ 1. Also, from the definition of

δ(·), it is easy to check that δ(x)− δ(x− 1) = Ψ(x− 1). From (4.5), when I ≥ 0,

Δ2L(I + 1) = ΔL(I + 1)−ΔL(I)

= −1− δ(I + 1) + δ(I)

λ
h+

δ̃(I + 1)− δ̃(I)

λ
b

= −h+ b

λ
Ψ̄(I) < 0.

Thus, ΔL(I) is decreasing. Note also that Ψ(I) is increasing in I over [0,+∞), which

implies that Δ2L(I + 1) is increasing in I. Therefore, ΔL(I) is convex decreasing

in I over [0,+∞).

Next, we obtain the value of ΔL(I) as I → +∞. Because δ̃(I) = λLΨ̄(I − 1)−
IΨ̄(I) and δ(I)− δ̃(I) = I − λL when I ≥ 1, we have

lim
I→+∞

δ̃(I) = lim
I→+∞

[
λLΨ̄(I − 1)− IΨ̄(I)

]
= 0

and

lim
I→+∞

[
I − δ(I)

]
= lim

I→+∞
[
λL− δ̃(I)

]
= λL.

Therefore,

lim
I→+∞

ΔL(I) = lim
I→+∞

[
− I − δ(I)

λ
h+

δ̃(I)

λ
b

]
= −λL

λ
h+

0

λ
b = −hL.
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4.2 Solving the Auxiliary Problems

In this section, we determine the optimal policy for the auxiliary problems. We first

discuss the optimal policy for problem AP1. We then extend the result to problem

APn for n = 2, 3, . . ..

We first introduce a mild condition on the order quantity. For each order, we

require the order size to be sufficiently large such that the inventory position imme-

diately after ordering (i.e., the sum of inventory level immediately before ordering

and the order size) is no less than the mean of lead-time demand. Under this condi-

tion, the expected inventory level immediately after an order arrival is nonnegative,

which is reasonable in practice. Mathematically, given an arbitrary reorder point s,

this condition requires the order quantity Q to satisfy

s+Q ≥ λL.

We now consider problem AP1. The decision problem is to determine s1 and

Q so as to maximize the expected effective profit on [t, t0]. We adopt a sequential

approach: First fix s1 and find the optimal Q; then determine the optimal s1.

According to (4.3),

g11(s1) = L(s1) + max
Q

{G0(s1, Q)}.

Recall that G0(s1, Q) = ED[g0(s1+Q−D)] and that g0(·) is quasi-concave. Although
the quasi-concavity is not preserved after taking expectation, function G0(s1, Q) has

some nice properties which assure the uniqueness of a local maximizer, as summa-

rized in the following theorem.

Theorem 4 Under the condition that s1 +Q ≥ λL, problem AP1 and its optimal

order size Q∗
1(·) have the following properties:

(i) ΔG0(s1, Q) is concave in Q.

(ii) s1 + Q∗
1(s1) is independent of s1, where Q∗

1(s1) is the local maximizer of

G0(s1, Q). (Note: We only consider integer values for Q∗
1(s1). Thus, if we

treat G0(s1, Q) as a continuous function, then even when there is a unique
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local maximizer Q̂, the two integer points �Q̂� and �Q̂� may give the same

function value. In such a case, we select �Q̂� to be the local maximizer of the

function.)

Proof: (i) From (3.7), (4.4), and the definition of ΔG0(s1, Q), we have

ΔG0(s1, Q) = ED
[
g0(s1 +Q−D)− g0(s1 +Q− 1−D)

]
=

s1+Q−s∗0−1∑
d=0

P(s1 +Q− d)ψ(d).

To show that ΔG0(s1, Q) is concave in Q for those values of Q such that s1+Q ≥ λL,

it is sufficient to show that Δ2G0(s1, Q+1) is decreasing in Q for Q ≥ λL−s1. Note

that

Δ2G0(s1, Q+ 1) =

s1+Q−s∗0−1∑
d=0

ΔP(s1 +Q+ 1− d)ψ(d) + P(s∗0 + 1)ψ(s1 +Q− s∗0)

=− h

λ

s1+Q∑
d=0

ψ(d) +
b

λ

s1+Q−s∗0−1∑
d=s1+Q+1

ψ(d) + P(s∗0 + 1)ψ(s1 +Q− s∗0).

Clearly, the first term in this expression is decreasing in Q. Because ψ(·) is the

pmf of a Poisson distribution with mean λL, function ψ(x) is decreasing in x if

x ≥ λL. Note that s∗0 ≤ 0. Thus, under the condition that s1 + Q ≥ λL, both∑s1+Q−s∗0−1
d=s1+Q+1 ψ(d) and ψ(s1+Q−s∗0) are decreasing in Q. Note also that P(s∗0+1) >

0. Hence, all three terms in the above expression are decreasing in Q. We conclude

that Δ2G0(s1, Q+ 1) is decreasing in Q.

(ii) Since ΔG0(s1, Q) is concave in Q, for any given s1, the local maximizer

Q∗
1(s1) is unique. Let X be the value of s1 +Q that (locally) maximizes G0(s1, Q).

From (4.4), G0(s1, Q) is a function of s1 +Q. Thus, s1 +Q∗
1(s1) = X for any given

s1. In other words, s1 +Q∗
1(s1) is independent of s1.

From the concavity of ΔG0(s1, Q), the equation “ΔG0(s1, Q) = 0” has at most

two roots if Q is allowed to be any real number; see Figure 4.2. The larger root is the

local maximizer of G0(s1, Q), and the smaller root is the local minimizer. We have

conducted an extensive numerical study, and the results indicate that the objective
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Figure 4.2: Functions G0(s1, Q) and ΔG0(s1, Q).

value of the local maximizer is usually much larger than the that at the boundary

point λL− s1. Thus, we restrict our attention to the local maximizer of G0(s1, Q).

Let Q̂ be the larger root of the equation “ΔG0(s1, Q) = 0,” where

ΔG0(s1, Q) =

s1+Q−s∗0−1∑
d=0

P(s1 +Q− d)ψ(d)

(see the proof of Theorem 4). The optimal order quantity, Q∗
1(s1), equals either �Q̂�

or �Q̂�, whichever gives a higher G0(s1, ·) value (equals �Q̂� when there is a tie).

Property (ii) of Theorem 4 indicates that, for different reorder points, the optimal

decisions of the order quantity will increase the inventory position to the same level,

which is the optimal order-up-to level of problem AP1. We denote this optimal

order-up-to level as S∗
1 . Note that the optimal effective profit-to-go in time period

[t1+L, t0] depends on the order-up-to level and is independent of the reorder point.

Hence, for different reorder points, the optimal effective profit-to-go are identical.

Therefore, the optimal reorder point should be selected in such a way that the

effective profit in period [t, t1 + L] is maximized.

We next present a marginal benefit analysis of the effective profit in period

[t, t1 + L] to derive the optimal reorder point. Consider the ordering decision at

the inventory level I. If an order is placed, an effective profit L(I) is obtained. If

no order is placed, then an ordering decision is made at inventory level I − 1, and

the effective profit is P(I) + L(I − 1), where P(I) is the benefit due to a realized
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demand. Thus, the optimal reorder point can be determined by comparing the

marginal effective profit in the lead time period, i.e., ΔL(·), with the effective profit

from a realized demand, i.e., P(·). Figure 4.3 depicts both functions ΔL(·) and

P(·). Function P(I) is piecewise linear in I (see Figure 3.2). Function ΔL(I) is

equal to bL on (−∞, 0], convex decreasing on [0,+∞), and converges to −hL as

I → +∞. The two curves have at most two intersections. The smaller intersection

represents the reorder point, because ordering is more beneficial for all the inventory

levels below it. It is also possible that, if L is very large, the curve of P(·) lies below
the curve of ΔL(·). In such a case, ordering is always better off, and the policy

is reduced to be a periodic review policy (i.e., when receiving orders after L time

units, place another order immediately). Hence, the optimal reorder point, denoted

as s∗1, satisfies

ΔL(s∗1) ≥ P(s∗1) and ΔL(s∗1 + 1) < P(s∗1 + 1). (4.7)
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Figure 4.3: Marginal effective profit in the complete backlogging model.

Remark 4 Figure 4.3 also provides an important observation on the reorder point.

Note that when φ is sufficiently large, the two curves has one unique tangent point

at Ψ−1( b
b+h), which can be obtained by solving the equation Δ2L(I + 1) = −h

λ (and

ignoring the integrality requirement of I), where Δ2L(I + 1) represents the slope of
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ΔL(·) between points I and I+1. The value Ψ−1( b
b+h) can be regarded as the optimal

order size of a newsvendor problem facing a lead-time demand. Since the reorder

point always lies on the left hand side of the tangent point no matter what the value

of φ is, this “newsvendor order size” is an upper bound on the optimal reorder point.

In other words, it suggests that under no circumstances an order should be placed if

the current inventory level exceeds this “newsvendor order size.”

Based on inequalities (4.7), we can derive a simple condition/expression for the

optimal reorder point. Suppose an order is placed at inventory level I, where I is

an integer. Recall that D is the realized demand during the lead time period. Let

C(I) = hED[(I −D)+] + bED[(I −D)−]

be the expected inventory cost rate at the end of the lead time period, where

ED[(I − D)+] and ED[(I − D)−] are the expected leftover inventory level and ex-

pected backorder level, respectively, at the end of the lead time period. From the

definitions of δ(x) and δ̃(x), it can be shown that

C(I) = hδ(I) + b[δ̃(I) + I−],

where I− is the amount of backorder, if any, at the beginning of the lead time period.

In particular, if I ≤ 0, then C(I) = b(λL − I). The optimal reorder point can be

expressed in terms of C(·), as stated in the next theorem.

Theorem 5 For problem AP1, the optimal reorder point s∗1 satisfies

C(s∗1 + 1) < λp− φ ≤ C(s∗1). (4.8)

In particular, if λL + φ−λp
b < 0, then s∗1 can be expressed in the following closed

form:

s∗1 =
⌊
λL+

φ− λp

b

⌋
≤ −1. (4.9)

Proof: Because γ = 1, by (3.6),

P(I) =

⎧⎨
⎩ p− φ+hI

λ , if I ≥ 1;

p− φ−bI
λ , if I ≤ 0.

(4.10)
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We consider two different cases.

Case 1: p− φ
λ > bL (i.e., λL+ φ−λp

b < 0). In this case, as shown in Figure 4.3,

the optimal reorder point s∗1 is negative. Using (4.5) and (4.10), inequalities (4.7)

can be rewritten as

b[λL− (s∗1 + 1)] < λp− φ ≤ b(λL− s∗1), (4.11)

or equivalently,

λL+
φ− λp

b
− 1 < s∗1 ≤ λL+

φ− λp

b
.

More specifically, we have s∗1 =
⌊
λL+ φ−λp

b

⌋ ≤ −1. Because C(x) = b(λL−x) when

x ≤ 0, inequalities (4.11) can be rewritten as C(s∗1 + 1) < λp− φ ≤ C(s∗1).
Case 2: p − φ

λ ≤ bL. In this case, the optimal reorder point s∗1 is nonnegative

(see Figure 4.3, where s∗1 becomes positive if the curve of ΔL(I) is raised above the

point p− φ
λ). Using (4.5) and (4.10), inequalities (4.7) can be rewritten as

hδ(s∗1 + 1) + bδ̃(s∗1 + 1) < λp− φ ≤ hδ(s∗1) + bδ̃(s∗1),

or equivalently, C(s∗1 + 1) < λp− φ ≤ C(s∗1).
Summarizing the above, s∗1 satisfies (4.8), and it satisfies (4.9) if λL+ φ−λp

b < 0.

In (4.8), λp− φ is the effective revenue rate, and C(·) is the expected inventory

cost rate at the end of the lead time period. Thus, in this positive lead time case, the

optimal reorder point s∗1 balances the expected inventory cost rate and the expected

effective revenue rate.

Once the optimal reorder point s∗1 is determined, the optimal objective value

of problem AP1 with any initial inventory level I, i.e., g1(I), can be specifically

formulated by the recursive equations (4.2) and (4.3). We have

g1(I) =

⎧⎨
⎩
∑I

k=s∗1+1 P(k) + g1(s
∗
1), if I > s∗1;

L(I) + G0(I, S
∗
1 − I), if I ≤ s∗1.

Based on g1(·), we can then solve problem AP2, following the same approach

as solving AP1. The above approach can be generalized into solving problem APn

from gn−1(·). The results are summarized in the next theorem.
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Theorem 6 For n ≥ 2, under the condition that si + Q ≥ λL (i = 1, 2, . . . , n),

problem APn and its optimal order size Q∗
n(·) have the following properties:

(i) Either ΔGn−1(sn, Q) or Gn−1(sn, Q) (or both) is concave in Q.

(ii) sn + Q∗
n(sn) is independent of sn, where Q∗

n(sn) is the local maximizer of

Gn−1(sn, ·) (see Theorem 4 for tie-breaking rule).

(iii) s∗n = s∗1, which is determined by (4.8).

Proof: We prove properties (i)–(iii) by induction. Clearly, property (iii) is valid

when n = 1. By Theorem 4, properties (i) and (ii) are also valid when n = 1.

Consider any n ≥ 2. Suppose that for i = 1, 2, . . . , n − 1, the optimal policy of

problem APi satisfies the following:

(a) Either ΔGi−1(si, Q) or Gi−1(si, Q) (or both) is concave in Q;

(b) si +Q∗
i (si) is independent of si;

(c) s∗i = s∗1.

We will show that properties (a), (b), and (c) also hold for i = n.

Given the optimal reorder point s∗n−1, by (4.2) and (4.3), the optimal objective

value of problem APn−1 is given as

gn−1(I) =

⎧⎨
⎩
∑I

k=s∗n−1+1 P(k) + gn−1(s
∗
n−1), if I > s∗n−1;

L(I) + Gn−2(I,Q
∗
n−1(I)), if I ≤ s∗n−1.

(4.12)

Note that according to (b), I+Q∗
n−1(I) is independent of I. From (4.4), Gn−2(I,Q

∗
n−1(I))

is a function of I+Q∗
n−1(I). Thus, in the second case of (4.12), the term “Gn−2(I,Q

∗
n−1(I))”

is independent of I. Hence, for I ≤ s∗n−1, we have

Δgn−1(I) = ΔL(I).

Next, consider the first case of (4.12). We have

Δgn−1(I) = P(I)
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for I ≥ s∗n−1 + 1. Using these two equations and equation (4.4), we obtain

ΔGn−1(sn, Q) = ED[Δgn−1(sn +Q−D)] =
+∞∑
d=0

Δgn−1(sn +Q− d)ψ(d)

=

sn+Q−s∗n−1−1∑
d=0

P(sn +Q− d)ψ(d) +

+∞∑
d=sn+Q−s∗n−1

ΔL(sn +Q− d)ψ(d).

(4.13)

Denote Q̃ = sn +Q− s∗n−1. We have

Δ2Gn−1(sn, Q+ 1)

=

Q̃−1∑
d=0

ΔP(sn +Q+ 1− d)ψ(d) +
[P(s∗n−1 + 1)−ΔL(s∗n−1)

]
ψ(Q̃)

+
+∞∑

d=Q̃+1

Δ2L(sn +Q+ 1− d)ψ(d). (4.14)

Consider those values of Q such that sn + Q ≥ λL. We consider two different

cases. Case 1: s∗n−1 < 0. In this case, we prove that ΔGn−1(sn, Q) is concave in Q.

It suffices to show that Δ2Gn−1(sn, Q+1) is decreasing in Q for Q ≥ λL−sn. When

s∗n−1 < 0, we have sn + Q + 1 − d < 0 for all d ≥ Q̃ + 1. From (4.5), ΔL(I) = bL

for I ≤ 0, which implies that Δ2L(sn +Q+ 1− d) = 0 for all d ≥ Q̃+ 1. Hence, in

this case, equation (4.14) can be rewritten as

Δ2Gn−1(sn, Q+ 1) = −h

λ

sn+Q∑
d=0

ψ(d) +
b

λ

Q̃−1∑
d=sn+Q+1

ψ(d)

+
[P(s∗n−1 + 1)−ΔL(s∗n−1)

]
ψ(Q̃) (4.15)

(as ΔP(I) = −h
λ when I ≥ 1 and ΔP(I) = b

λ when I ≤ 0; see Figure 3.2). The first

term on the right hand side of (4.15) is decreasing in Q. Function ψ(x) is decreasing

in x if x ≥ λL. Thus, under the condition that sn +Q ≥ λL, both
∑Q̃−1

d=sn+Q+1 ψ(d)

and ψ(Q̃) are decreasing in Q. Note that

P(s∗n−1 + 1)−ΔL(s∗n−1) = P(s∗n−1 + 1)−ΔL(s∗n−1 + 1)

= P(s∗1 + 1)−ΔL(s∗1 + 1) > 0,
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where the inequality follows from (4.7). Hence, all three items on the right hand

side of (4.15) are decreasing in Q. Therefore, Δ2Gn−1(sn, Q+1) is decreasing in Q.

Case 2: s∗n−1 ≥ 0. By Lemma 1, ΔL(I) is decreasing when I ≥ 1. From (4.5),

ΔL(I) = bL for I ≤ 0. Moreover,

ΔL(1) =− 1− δ(1)

λ
h+

δ̃(1)

λ
b

=− 1− δ(1)

λ
h− λL− δ̃(1)

λ
b+ bL < bL.

Thus, ΔL(I) is non-increasing for any I. Hence, Δ2L(sn +Q + 1 − d) ≤ 0 for any

d. Therefore, in this case, equation (4.14) implies that

Δ2Gn−1(sn, Q+1)

≤
Q̃−1∑
d=0

ΔP(sn +Q+ 1− d)ψ(d) +
[P(s∗n−1 + 1)−ΔL(s∗n−1)

]
ψ(Q̃)

= −h

λ

Q̃−1∑
d=0

ψ(d)− [ΔL(s∗n−1)− P(s∗n−1 + 1)
]
ψ(Q̃).

By (3.6), (4.7), and the induction assumption that s∗n−1 = s∗1, we have

ΔL(s∗n−1)− P(s∗n−1 + 1) = ΔL(s∗1)− P(s∗1 + 1) ≥ P(s∗1)− P(s∗1 + 1) =
h

λ
> 0.

This implies that Δ2Gn−1(sn, Q) < 0. Hence, Gn−1(sn, Q) is concave in Q.

Summarizing Cases 1 and 2, we conclude that property (a) holds for i = n.

Thus, the local maximizer Q∗
n(sn) is unique (see Theorem 4 for tie-breaking rule).

Let X be the value of sn + Q that (locally) maximizes Gn−1(sn, Q). From (4.4),

Gn−1(sn, Q) is a function of sn + Q. Thus, sn + Q∗
n(sn) = X for any given sn. In

other words, sn +Q∗
n(sn) is independent of sn; that is, property (b) holds for i = n.

The optimal reorder point s∗n satisfies

g1n(s
∗
n) ≥ g0n(s

∗
n) and g1n(s

∗
n + 1) < g0n(s

∗
n + 1); (4.16)

that is, ordering at s∗n should be no worse than not ordering, whereas not ordering

at s∗n + 1 should be better than ordering. Consider the first inequality in (4.16).
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From (4.1), (4.2), and (4.3), we have

g0n(s
∗
n) = P(s∗n) + gn(s

∗
n − 1) ≥ P(s∗n) + g1n(s

∗
n − 1)

= P(s∗n) + L(s∗n − 1) + max
Q

{Gn−1(s
∗
n − 1, Q)}. (4.17)

Note that we have already shown that property (b) holds for i = n; that is,

s∗n + Q∗
n(s

∗
n) = s∗n − 1 + Q∗

n(s
∗
n − 1). This, together with (4.4), implies that

maxQ{Gn−1(s
∗
n, Q)} = maxQ{Gn−1(s

∗
n − 1, Q)}. This, together with (4.3), implies

that

g1n(s
∗
n) = L(s∗n) + max

Q
{Gn−1(s

∗
n − 1, Q)}. (4.18)

From (4.17), (4.18), and the first inequality in (4.16), we have ΔL(s∗n) ≥ P(s∗n).

Similarly, from the second inequality in (4.16), together with the fact that gn(s
∗
n) =

g1n(s
∗
n), we can show that ΔL(s∗n + 1) < P(s∗n + 1). Therefore, the optimal reorder

point s∗n satisfies

ΔL(s∗n) ≥ P(s∗n) and ΔL(s∗n + 1) < P(s∗n + 1).

This condition is identical to that on s∗1 given by (4.7). This implies that s∗n = s∗1.

Hence, property (c) also holds for i = n.

From property (ii) of Theorem 6, the optimal order quantity Q∗
n(s

∗
n) maximizes

the effective profit in time period [tn + L, t0], see Figure 4.1(b). Note that the

maximum effective profit in time period [tn−1, t0] can be attained once the values of

si and Qi, 1 ≤ i ≤ n−1, are optimally determined. Thus, Q∗
n(s

∗
n) actually maximizes

the effective profit in time period [tn+L, tn−1]; that is, the period between the order

arrival and the next order placement.

Properties (ii) and (iii) of Theorem 6 imply that the optimal replenishment

policy is a stationary (s, S) policy. Regarding the optimal reorder point, it can be

determined from a neat form (i.e., (4.8)) with intuitive economic interpretation; that

is, the optimal reorder point balances the effective revenue rate (i.e., λp − φ) and

the expected inventory cost rate at the end of the lead time period (i.e., C(·)). This
economic interpretation of the optimal reorder point has some similarities to that

of the classical newsvendor model. To the best of our knowledge, such an economic
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interpretation is obtained for the (s, S) inventory system for the first time. It can

be obtained mainly due to the fact that we introduce the concept of the “effective

profit,” which is further taken as the new objective function. Regarding the order

quantity, once the replenishment policy is stationary, function ΔGn−1(s
∗
n, Q) can be

simplified to

ΔGn−1(s
∗
n, Q) =

Q−1∑
d=0

P(s∗n +Q− d)ψ(d) +

+∞∑
d=Q

ΔL(s∗n +Q− d)ψ(d)

(see (4.13) in the proof of Theorem 6 and by the fact that s∗n = s∗n−1). With

this expression, the optimal order size can be obtained by solving the following

inequalities:

ΔGn−1(s
∗
n, Q) ≥ 0 and ΔGn−1(s

∗
n, Q+ 1) < 0. (4.19)

4.3 Determining the Optimal Policy

Theorem 6 implies that for a given φ, the optimal policy is a stationary (s, S) policy.

Specifically, for any given profit rate φ, we can determine the reorder point from

condition (4.8) and the order quantity from condition (4.19). Then, according to

Theorem 2, the optimal φ can be obtained through a binary search algorithm AL,1,

which is similar to algorithm A0,γ presented in Section 3.2. Note that in algorithm

AL,1, if λp is taken as an upper bound of the average profit rate φ, it is possible

that φ is too large such that condition (4.8) has no solution. In such a case, we can

simply let the upper bound Ψ−1( b
b+h) (see Remark 4) be the reorder point. This

would not affect the determination of the final optimal profit rate.

We have conducted numerical tests on the binary-search algorithm AL,1 by com-

paring its performance with that of an algorithm developed by Federgruen and Zheng

(1992), which we denote as AF-Z. The model considered in Federgruen and Zheng

(1992) is the same as the complete backlogging case of our model. Algorithm AF-Z

determines the optimal (r,Q) policy. It considers the objective function in the form

of (3.1) for a given (r,Q) policy, which is a sum of some unimodal functions. It enu-

merates the order quantities until the criterion of determining the optimal reorder

point is achieved.
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In our numerical tests, we set the cost parameters to p = 15, h = 0.5, b = 2,

λ = 2, and K = 40, and we vary the lead time from 0 to 5. The results obtained

from the two methods are depicted in Figure 4.4. The results from our algorithm

AL,1 fully coincide with those obtained from AF-Z, indicating that the restriction

“s + Q ≥ λL” on the order quantity is a mild condition. We have also conducted

extensive numerical studies with other parameter settings and did not find any

instance in which AL,1 and AF-Z generate different results.
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Figure 4.4: Comparison of algorithms AL,1, AF-Z, and AIntuitive.

Figure 4.4 also depicts the results generated by another heuristic, which we

denote as AIntuitive. This heuristic applies the optimal policy of the zero-lead-time

model but adjusts the reorder point and order-up-to level by the expected lead-time

demand. Specifically, s∗0 + λL is taken as the reorder point, and S∗
0 + λL is taken

as the order-up-to level, where (s∗0, S∗
0) is the optimal policy for the zero-lead-time

system (with complete backlogging). The closed forms of s∗0 and S∗
0 are given in

Theorem 3 with γ = 1 (i.e., p̃ = p).

We present this heuristic because of the interesting observation from the closed-

form reorder points of the zero-lead-time model and the positive-lead-time model

(i.e., (3.8) and (4.9)). Note that in a complete backlogging inventory system, no

demand will be lost. Thus, it is intuitive to believe that we can apply the replen-

ishment decision of a zero-lead-time model to a positive-lead-time model but make
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the ordering in advance by L time units. As the lead-time demand is stochastic, it

seems that we can increase the reorder point and order-up-to level by the expected

lead-time demand as an approximation. This seems to be consistent with the re-

order points given in closed forms; that is, for any given profit rate φ (and ignoring

the integrality requirement of the reorder point), the reorder point (4.9) is greater

than the reorder point (3.8) by λL units, which is the expected lead-time demand.

However, the optimal average profit should decrease as the lead time increases (see

Figure 4.4(a)). Thus, the optimal value of φ in (4.9) should be smaller than that

in (3.8). Therefore, the difference of the optimal reorder points given by (3.8) and

(4.9) should be less than λL. This can be observed from Figure 4.4(b); that is,

the non-positive reorder points of AL,0 are smaller than those of AIntuitive. From

this figure, we can also observe that the relationship between the two reorder points

holds even when the reorder points are positive. In addition, the order-up-to levels

of AL,0 are larger than those of AIntuitive.

Summarizing the above observations, we conclude that AIntuitive is a simple

heuristic for the positive-lead-time model. As shown in Figure 4.4(a), it performs

well, especially when the lead time is short. However, to achieve a better solution, we

need to adjust the reorder point downward and adjust the order-up-to level upward.
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Chapter 5

The Partial Backlogging Case

In this chapter, we provide a simple heuristic to determine the (s, S) policy for the

partial backlogging model with constant lead time. The heuristic is developed from

the insights of the optimal solution of the complete backlogging model. Numerical

comparisons show that the heuristic performs well. Before presenting the heuristic,

we first present some properties of the partial backlogging model.

5.1 Properties of the Model

Let ψB(i|I) be the probability that the on-hand inventory drops to zero during the

lead time period and that i demand units are backlogged, given that inventory level

at beginning of the lead time period is I. Note that in the lead time period, the first

I+ arriving demand units are realized from on-hand inventory, and the following

demand units are partially backlogged. The probability of k demand units facing

stock out is ψ(k+ I+). Each of these k units is either backlogged with probability γ

or lost with probability 1− γ. Thus, the probability of backlogging i units of them

is
(
k
i

)
γi(1− γ)k−i, which is the binomial probability of achieving i successes out of

k trials with success rate γ. Hence,

ψB(i|I) =
+∞∑
k=i

(
k

i

)
γi(1− γ)k−iψ(k + I+).
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In particular, if I ≤ 0, then

ψB(i|I) =
+∞∑
k=i

(
k

i

)
γi(1− γ)k−iψ(k) = e−γλL (γλL)

i

i!
,

which is a Poisson probability with mean γλL. One key property of the pmf ψB(·|I)
is summarized in the following lemma.

Lemma 3 For any given I, there exists a mode, MB(I), of the pmf ψB(i|I) such

that ψB(i|I) is decreasing in i on [MB(I),+∞).

Proof: If I ≤ 0, ψB(·|I) is equal to the pmf of a Poisson distribution with mean γλL.

In this case, let MB(I) = �γλL�. Then, ψB(i|I) is decreasing in i on [MB(I),+∞).

Next, we consider the case where I ≥ 1. The proof utilizes the variation dimin-

ishing property of a totally positive function introduced by Karlin (1968). Let S(·)
be the function of number of sign changes (see Song 1994, p. 608). Then, for any

(weakly) unimodal function f and any real number x, S(f−x) ≤ 2. Furthermore, if

S(f−x) = 2, then the sign sequence is “−,+,−”; if f is decreasing and S(f−x) = 1,

then the sign sequence is “+,−”.

For integers k, i = 0, 1, 2, . . ., let

ω(k, i) =

(
k

i

)
γi(1− γ)k−i =

(
k

i

)(
γ

1− γ

)i

(1− γ)k.

Consider any integers i1 < i2 < · · · < ir and k1 < k2 < · · · < kr, where r is an

arbitrary integer. We have∣∣∣∣∣∣∣∣∣
ω(k1, i1) · · · ω(kr, i1)

...
...

ω(k1, ir) · · · ω(kr, ir)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

(
k1
i1

) · · · (kri1)
...

...(
k1
ir

) · · · (krir)

∣∣∣∣∣∣∣∣∣
·
(

γ

1− γ

)∑r
�=1 i�

(1− γ)
∑r

�=1 k� ≥ 0,

where the inequality holds because
(
k
i

)
is a totally positive function (Karlin 1968,

p. 137). Thus, ω(k, i) is a totally positive function. Because I ≥ 1, we have

ψB(i|I) =
+∞∑
k=i

(
k

i

)
γi(1− γ)k−iψ(k + I+) =

+∞∑
k=i

ω(k, i)ψ(k + I).

Hence,

ψB(i|I)− x =

+∞∑
k=i

ω(k, i)[ψ(k + I)− x],
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for any real number x. Note that ψ(k+ I) is a truncated Poisson distribution which

is either (weakly) unimodal or decreasing. Thus, S(ψ(k+I)−x) ≤ 2. Note also that

ω(k, i) is totally positive. According to the variation diminishing property, we have

S(ψB(i|I) − x) ≤ 2. If there exists a real number x̃ such that S(ψB(i|I) − x̃) = 2,

then the sign sequence of ψB(i|I)− x̃ must be “−,+,−”, which is the same as that

of ψ(k + I)− x̃. In this case, ψB(i|I) is first increasing and then decreasing in i. If

we let MB(I) be the mode (or the larger mode if there are two) of the pmf ψB(i|I),
then ψB(i|I) is decreasing in i on [MB(I),+∞). If no such x̃ exists, then ψB(i|I)
is decreasing in i (note: ψB(·|I) cannot be a constant function). If we let MB(I)

be the mode of the pmf ψB(i|I), i.e., MB(I) = 0, then ψB(i|I) is decreasing in i on

[MB(I),+∞).

We also generalize some notations defined in Section 4. Recall that C(I) is the

expected inventory cost rate at the end of the lead time period, given that the order

is placed at inventory level I. In the partial backlogging case, the expression for

C(I) should be generalized to

C(I) = hδ(I) + b[γδ̃(I) + I−], (5.1)

where γδ̃(I) is the expected backordered quantity out of the unmet lead-time de-

mand. Consider L(I), i.e., the expected effective profit in the lead time period given

that an order is placed at inventory level I. We have the following lemma.

Lemma 4 Function L(I) satisfies

L(I) =
⎧⎨
⎩ (λp− φ)L−(p−p̃)δ̃(I)−(I− λL

2 )hL− h+γb
2λ

[
λLδ̃(I)−Iδ̃(I + 1)

]
, if I ≥ 1;

(λp̃− φ)L+ (I − γλL
2 )bL, if I ≤ 0;

and

ΔL(I) =
⎧⎨
⎩ − I−δ(I)

λ h+ δ̃(I)
λ γb+ (1− γ)(p+ �)Ψ̄(I − 1), if I ≥ 1;

bL, if I ≤ 0.
(5.2)

Proof: Function L(I) is the expected effective profit in the lead time period. The

expectation is taken on the lead-time demand. Let L(I|k) be the expected effective
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profit, given that the initial inventory level is I and a total of k ≥ 0 demand units

arrived during the lead time period. Then, L(I) =∑+∞
k=0 L(I|k)ψ(k).

Suppose that there are k demand units arrived in the lead time. Let the starting

point of the lead time be τ0 = 0; let the arrival time of the ith demand units be τi

(1 ≤ i ≤ k); and let τk+1 = L. Then,

0 = τ0 < τ1 < τ2 < · · · < τk < τk+1 = L.

Note that τ1, τ2, . . . , τk have the same distribution as the order statistics correspond-

ing to k independent random variables uniformly distributed on the interval (0, L)

(see Ross 2010, p. 66). Note also that the ith order statistic from a random sample

of size n from the Uniform(0, 1) population has a Beta(i, n − i + 1) distribution

(Arnold et al. 1992, sec. 4.7), the mean of which is i
n+1 . Thus, for i = 1, 2, . . . , k,

E[τi] =
i

k + 1
L. (5.3)

Next, we consider two different cases.

Case 1: I ≤ 0. In this case, each arriving demand is realized with a probability

γ. Consider the inventory level immediately after the arrival of the ith demand at

time τi. For 0 ≤ j ≤ i, the probability that j demands are realized in the time period

(0, τi] is
(
i
j

)
γj(1− γ)i−j . This is the binomial probability of achieving j success out

of i trials with success rate γ. The expectation of this binomial distribution is γi.

Thus, the expected inventory level immediately after time τi is I − γi. Hence,

L(I|k) = E

[
bIτ1 +

k∑
i=1

[
p̃+ b(I − γi)(τi+1 − τi)

]− φL

]

= kp̃+ E

[ k∑
i=0

b(I − γi)(τi+1 − τi)

]
− φL

= kp̃− E

[
bγ

k∑
i=0

i(τi+1 − τi)

]
+ E

[
bI

k∑
i=0

(τi+1 − τi)

]
− φL

= kp̃− bγ

(
kL−

k∑
i=1

E[τi]

)
+ bIL− φL

= kp̃+
(
I − γk

2

)
bL− φL, (5.4)
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where the last equality follows from equation (5.3). Taking expectation on the

lead-time demand k, we have

L(I) = λLp̃+
(
I − γλL

2

)
bL− φL. (5.5)

Case 2: I ≥ 1. In this case, the calculation of L(I|k) depends on whether k ≤ I

or k ≥ I + 1. If k ≤ I, all the demands are satisfied by on-hand inventory. For

i ≤ k, the inventory level immediately after time τi is I − i. Thus,

L(I|k) =E

[
− hIτ1 +

k∑
i=1

[
p− h(I − i)(τi+1 − τi)

]
− φL

]

=kp−
(
I − k

2

)
hL− φL, (5.6)

where the derivation of the second equality follows the same steps as (5.4). If

k ≥ I + 1, then the first I demands are satisfied by on-hand inventory, while each

of the following k − I demands is realized with a probability γ. Note that the Ith

demand arrives at τI . During the period (0, τI), there are I− 1 demand units which

are all satisfied by on-hand inventory. Hence, by (5.6), the expected effective profit

during this period is

E
[
(I − 1)p− (I − I − 1

2
)hτI − φτI

]
.

At time τI , a profit p is obtained from the Ith demand unit. During the period

(τI , L), there are k− I demand units each of which is realized with a probability γ.

Hence, by (5.4), the expected effective profit during this period is

E
[
(k − I)p̃+ (0− γ(k − I)

2
)b(L− τI)− φ(L− τI)

]
.

Therefore,

L(I|k) = E

[
(I−1)p−

(
I − I−1

2

)
hτI − φτI + p+ (k−I)p̃

+
(
0− γ(k−I)

2

)
b(L−τI)− φ(L−τI)

]

= Ip+ (k − I)p̃− hL
I(I + 1)

2(k + 1)
− γbL

(k − I)(k − I + 1)

2(k + 1)
− φL.
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By taking expectation of L(I|k) on the lead-time demand k, we obtain

L(I) =
I∑

k=0

L(I|k)ψ(k) +
+∞∑

k=I+1

L(I|k)ψ(k)

=

I∑
k=0

[
kp−

(
I − k

2

)
hL− φL

]
ψ(k)

+
+∞∑

k=I+1

[
Ip+ (k − I)p̃− hL

I(I + 1)

2(k + 1)
− γbL

(k − I)(k − I + 1)

2(k + 1)
− φL

]
ψ(k)

(5.7)

Note that

I∑
k=0

kpψ(k) +
+∞∑

k=I+1

Ipψ(k) =

[ +∞∑
k=0

kψ(k)−
+∞∑

k=I+1

(k − I)ψ(k)

]
p = [λL− δ̃(I)]p,

I∑
k=0

(
I − k

2

)
hLψ(k) +

+∞∑
k=I+1

hL
I(I + 1)

2(k + 1)
ψ(k)

= hL

+∞∑
k=0

(
I − k

2

)
ψ(k) + hL

+∞∑
k=I+1

[I(I + 1)

2(k + 1)
−
(
I − k

2

)](λL)k
k!

e−λL

=
(
I − λL

2

)
hL+

h

2λ

+∞∑
k=I+1

[
I(I + 1)− 2I(k + 1) + k(k + 1)

]
ψ(k + 1),

and

+∞∑
k=I+1

γbL
(k − I)(k − I + 1)

2(k + 1)
ψ(k)

= γbL

+∞∑
k=I+1

(k − I)(k − I + 1)

2(k + 1)
· (λL)

k

k!
e−λL

=
γb

2λ

+∞∑
k=I+1

[
I(I + 1)− 2I(k + 1) + k(k + 1)

]
ψ(k + 1).

Thus, equation (5.7) can be rewritten as

L(I) = [λL− δ̃(I)]p+ δ̃(I)p̃−
(
I − λL

2

)
hL

− h+ γb

2λ

+∞∑
k=I+1

[
I(I + 1)− 2I(k + 1) + k(k + 1)

]
ψ(k + 1)− φL.
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It is easy to check that λLδ̃(I)− Iδ̃(I + 1) =
∑+∞

k=I+1

[
I(I + 1)− 2I(k + 1) + k(k +

1)
]
ψ(k + 1). Hence,

L(I) = (λp−φ)L− (p− p̃)δ̃(I)−
(
I − λL

2

)
hL− h+ γb

2λ

[
λLδ̃(I)− Iδ̃(I +1)

]
. (5.8)

It is easy to check that equation (5.8) is also valid when I = 0.

Next, we derive the expression for ΔL(I). If I ≤ 0, then from (5.5), ΔL(I) = bL.

For the case where I ≥ 1, from (5.8), we have

ΔL(I) =[δ̃(I − 1)− δ̃(I)
]
(p− p̃)− hL

− h+ γb

2λ

{
λL
[
δ̃(I)− δ̃(I − 1)

]− Iδ̃(I + 1) + (I − 1)δ̃(I)
}
.

From the definitions of δ(·) and δ̃(·), it is easy to check that, if x ≥ 1, δ̃(x) =

λLΨ̄(x− 1)− xΨ̄(x), δ̃(x− 1)− δ̃(x) = Ψ̄(x− 1), and δ(x)− δ̃(x) = x− λL. Note

also that p− p̃ = (1− γ)(p+ �). Thus,

ΔL(I) = (p− p̃)Ψ̄(I − 1)− hL− h+ γb

2λ

[
− λLΨ̄(I − 1) + IΨ̄(I)− δ̃(I)

]
= (p− p̃)Ψ̄(I − 1)− hL+

h+ γb

λ
δ̃(I)

= −λL− δ̃(I)

λ
h+

δ̃(I)

λ
γb+ (p− p̃)Ψ̄(I − 1)

= −I − δ(I)

λ
h+

δ̃(I)

λ
γb+ (1− γ)(p+ �)Ψ̄(I − 1).

Lemma 1 is a special case of Lemma 4 when γ = 1. Recall that δ(x) = 0 and

δ̃(x) = λL if x ≤ 0. Hence, if γ = 1, then the function ΔL(I) can be uniformly

expressed as

ΔL(I) = −I+ − δ(I)

λ
h+

δ̃(I)

λ
b.

This completes the proof of Lemmas 1 and 4.

The first case of the marginal effective profit in the lead time period, given by

(5.2), can be explained as follows. Suppose an order is placed at inventory level

I rather than I − 1. Then, one more unit of holding cost will be charged in the

in-stock period. The expectation of this additional cost is I−δ(I)
λ h, where I−δ(I)

λ

is the expected length of the in-stock period. In the stock-out period, either one
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less unit of backlogging cost will be charged (with probability γ) or one more unit

demand will be realized (with probability 1− γ). Thus, the expected cost saving is

γ δ̃(I)
λ b + (1 − γ)(p + �)Ψ̄(I − 1), where δ̃(I)

λ is the expected length of the stock-out

period, p+ � is the benefit of earning the revenue from a realized demand plus the

saving from one less lost demand, and Ψ(I− 1) is the probability that the stock-out

occurs.

For any integer I and profit rate φ, let

R(I) = λpΨ(I − 1) + λp̃Ψ̄(I − 1)− φ. (5.9)

This is the expected effective revenue rate at the end of the lead time period if the

order is placed at inventory level I, given that the profit rate is φ. Specifically, the

expected revenue rate is λp if the inventory level is positive, which happens with

probability Ψ(I − 1); and the expected revenue rate is λp̃ if the inventory level is

non-positive, which happens with probability Ψ̄(I − 1).

5.2 The Heuristic

Recall the main idea of the algorithm developed in Section 4 for determining the

optimal (s, S) policy. For any given profit rate φ, the reorder point and order

quantity, which maximize the effective profit, can be determined optimally. A binary

search algorithm is then applied to search for the optimal profit rate. In the partial

backlogging model, we also run a binary search to determine the final value of

average profit. However, as the effective profit function with partial backlogging is

more complicated, some properties in Section 4 fail to hold. As a result, for any

given profit rate φ, the reorder point and order quantity are difficult to determine

optimally. Therefore, we provide a heuristic to determine an approximate reorder

point and an approximate order quantity.

Our heuristic considers the effective profit in a certain period rather than the

infinite time horizon; see Figure 5.1 for the period [t, t0]. Period [t, t1] is an initial

cycle, while period [t1, t0] is a full cycle, which begins and ends at the same inventory

level s. For any given profit rate φ, the reorder point s̃(φ) and order quantity Q̃(φ)
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are determined sequentially: The reorder point is determined first by applying the

economic interpretation of the optimal reorder point we obtained for the complete

backlogging model in Section 4; that is, s̃(φ) balances the expected effective revenue

rate and the expected inventory cost rate at the end of the lead time period. Then,

given the reorder point s̃(φ), the order quantity is determined such that the effective

profit during the time period [t1 +L, t0] is maximized. Next, we present the details

of the heuristic, followed by some properties.

�����
� �� �
��

�� �

�

��	��
��
���	���

�

� � �� �

� �


�

�� �
��� ���� ������

��

Figure 5.1: The planning horizon of the heuristic.

The heuristic works as follows. The main structure of the heuristic is to run a

binary search to determine the final value of average profit, just like algorithms A0,γ

and AL,0. For any given profit rate φ such that 0 ≤ φ ≤ λp, the reorder point and

order-up-to level are sequentially obtained as follows:

(i) Reorder point: Let

s̃(φ) =
{
x
∣∣∣ C(x) ≥ R(x) and C(x+ 1) < R(x+ 1)

}
(5.10)

be the reorder point if it exists. Otherwise, let s̃(φ) = Ψ−1
( γb
h+γb

)
.

(ii) Order-up-to level: Let S̃(φ) = s̃(φ) + Q̃(φ) be the order-up-to level, where

Q̃(φ) = argmax
Q

{G̃(s̃(φ), Q)} (5.11)
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and

G̃(s,Q) =
s−1∑
d=0

[
s+Q−d∑
k=s+1

P(k)

]
ψ(d) +

Q−s−−s−1∑
i=0

[−s−+Q−i∑
k=s+1

P(k)

]
ψB(i|s).

(5.12)

Regarding the reorder point, we have R(s) = R(s+1) = λp̃−φ if s ≤ −1. Thus,

if s̃(φ) is negative, it can be expressed in the following closed form:

s̃(φ) =

⌊
γλL+

φ− λp̃

b

⌋
. (5.13)

Furthermore, the property of the reorder point is summarized in the following the-

orem.

Theorem 7 For any profit rate φ, if the reorder point is given by (5.10), then it is

unique and satisfies

ΔL(s̃(φ)) ≥ P(s̃(φ)) and ΔL(s̃(φ) + 1) < P(s̃(φ) + 1). (5.14)

Proof: To show that the reorder point in (5.10) is unique, we explore the properties

of functions C(x) and R(x). First, consider the expected inventory cost rate given

by (5.1). When x ≤ 0, we have δ̃(x) = λL and δ(x) = 0, and therefore C(x) =

(γλL − x)b. When x ≥ 1, it is easy to check that δ̃(x − 1) − δ̃(x) = Ψ̄(x − 1) and

δ(x)− δ(x− 1) = Ψ(x− 1), and therefore ΔC(x) = −γb+ (h+ γb)Ψ(x− 1), which

implies that

Δ2C(x+ 1) = (h+ γb)ψ(x) > 0.

Thus, C(x) is convex in [1,+∞). Next, consider the expected effective revenue rate

defined in (5.9). When x ≤ 0, R(x) = λp̃− φ. When x ≥ 1, we have

ΔR(x) = λ(1− γ)(p+ �)ψ(x− 1) > 0.

Note also that the pmf ψ(x) is first increasing and then decreasing in x. Hence, R(x)

is first convex increasing and then concave increasing in [1,+∞). Functions C(·) and
R(·) are depicted in Figure 5.2. The two curves have at most two intersections. Only

the smaller one satisfies the inequalities in (5.10). Therefore, the reorder point given

by (5.10) is unique.
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Figure 5.2: The inventory cost rate and revenue rate.

The inequalities in (5.14) can be verified as follows. For notational convenience,

we denote s̃(φ) as s̃. We consider two different cases.

Case 1: s̃ ≤ −1. In this case, C(s̃) = (γλL− s̃)b, ΔL(s̃) = bL, and R(s̃) = λp̃−φ.

Thus, the inequality “C(s̃) ≥ R(s̃)” is equivalent to (γλL − s̃)b ≥ λp̃ − φ, which

implies that bL ≥ 1
γ

(
p̃ − φ−bs̃

λ

)
, or equivalently, ΔL(s̃) ≥ P(s̃). Similarly, the

inequality “C(s̃+ 1) < R(s̃+ 1)” implies that ΔL(s̃+ 1) < P(s̃+ 1).

Case 2: s̃ ≥ 0. In this case, from (5.1) and (5.9), the inequality C(s̃) ≥ R(s̃) is

equivalent to

hδ(s̃) + γbδ̃(s̃) ≥ λpΨ(s̃− 1) + λp̃Ψ̄(s̃− 1)− φ,

which can be rewritten as

− s̃− δ(s̃)

λ
h+

δ̃(s̃)

λ
γb+ (1− γ)(p+ �)Ψ̄(s̃− 1) ≥ p− φ+ hs̃

λ
.

From (3.6) and (5.2), the above inequality is equivalent to ΔL(s̃) ≥ P(s̃). Similarly,

the inequality C(s̃+ 1) < R(s̃+ 1) implies that ΔL(s̃+ 1) < P(s̃+ 1).

Recall the interpretations of ΔL(·) and P(·) in the marginal benefit analysis in

Section 4.2. Having the reorder point satisfy the inequalities in (5.14) implies that

the reorder point in our heuristic shall be consistent with the one obtained from

the marginal benefit analysis of the effective profit in period [t, t1 + L]. Thus, the

reorder point s̃(φ) shall maximize the effective profit over the time period [t, t1+L].
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Next, we consider the property of the order quantity Q̃(φ). Consider Figure 5.1,

and let Ĩ be the inventory level immediately after the order arrival at time t1 + L.

The inventory level drops from Ĩ to the reorder point s in [t1 + L, t0]. Thus, the

effective profit in [t1+L, t0] is
∑Ĩ

k=s+1 P(k). Note also that Ĩ = s+Q−D, where D
is the realized demand in the lead time period. When the demand during lead time

is less than s, we have Ĩ = s+Q− d with probability ψ(d) if d ≤ s− 1. When the

demand during lead time is at least s, we have Ĩ = s+Q−(s++i) = −s−+Q−i with

probability ψB(i|s) if i ≥ 0. However, we only consider the backordered demand i

such that 0 ≤ i ≤ Q−s−−s−1, since otherwise the inventory level drops to/below s

during the lead time period and the time period [t1+L, t0] vanishes. Hence, G̃(s,Q)

in (5.12) is the expected total effective profit in [t1 + L, t0] given that the reorder

point is s and the order quantity is Q. Therefore, given the reorder point s̃(φ),

the order quantity in (5.11) maximizes the expected effective profit in [t1 + L, t0].

Furthermore, this order quantity can be uniquely determined (see Theorem 4 for

tie-breaking rule). A property of function G̃(s,Q) is given in the following theorem.

Theorem 8 For any profit rate φ, under the condition that Q−|s̃(φ)| ≥ MB(s̃(φ)),

the function G̃(s̃(φ), ·) has an unique local maximizer (see Theorem 4 for tie-breaking

rule).

Proof: We consider two different cases. Case 1: s̃(φ) < 0. In this case, from (5.13),

s̃(φ) ≥ ⌊φ−λp̃
b

⌋
for any profit rate φ. Thus, to show that G̃(s̃(φ), ·) has a unique local

maximizer, it suffices to show that either ΔG̃(s,Q) or G̃(s,Q) (or both) is concave

in Q for any s such that s ≥ ⌊φ−λp̃
b

⌋
. We will show that ΔG̃(s,Q) is concave in Q.

To do so, it is sufficient to show that Δ2G̃(s,Q) is decreasing in Q. Note that when

s ≤ 0, equation (5.12) can be simplified to

G̃(s,Q) =

Q−1∑
i=0

[
Q+s−i∑
k=s+1

P(k)

]
ψB(i|s).

This implies that

ΔG̃(s,Q) = G̃(s,Q)− G̃(s,Q− 1) =

Q−1∑
i=0

P(Q+ s− i)ψB(i|s).
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This in turn implies that

Δ2G̃(s,Q+ 1) = ΔG̃(s,Q+ 1)−ΔG̃(s,Q)

=

Q−1∑
i=0

ΔP(Q+ 1 + s− i)ψB(i|s) + P(s+ 1)ψB(Q|s)

= −h

λ

Q+s∑
i=0

ψB(i|s) +
[P(0+)− P(0)

]
ψB(Q+ s|s)

+
b

γλ

Q−1∑
i=Q+s+1

ψB(i|s) + P(s+ 1)ψB(Q|s), (5.15)

where P(0+) = p − φ
λ . The first term in expression (5.15) is decreasing in Q. It is

easy to check that

P(0+)− P(0) =
1− γ

γ

(φ
λ
+

�

γ

)
≥ 0.

According to Lemma 3, ψB(i|s) is decreasing in i when i ≥ MB(s). Thus, under

the condition “Q + s ≥ MB(s),” the quantities
∑Q−1

i=Q+s+1 ψB(i|s), ψB(Q|s), and
ψB(Q + s|s) are decreasing in Q. Hence, the second and third terms in expression

(5.15) are non-increasing in Q. Note that
⌊φ−λp̃

b

⌋
is the optimal reorder point for the

zero-lead-time model (see Theorem 3). Thus, P(s+ 1) > 0 for any
⌊φ−λp̃

b

⌋ ≤ s < 0.

Hence, the fourth term in expression (5.15) is also decreasing in Q. Therefore,

Δ2G̃(s,Q+ 1) is decreasing in Q.

Case 2: s̃(φ) ≥ 0. In this case, it suffices to show that either ΔG̃(s,Q) or G̃(s,Q)

(or both) is concave in Q for any s such that s ≥ 0. When s ≥ 0, equation (5.12)

becomes

G̃(s,Q) =

s−1∑
d=0

[
s+Q−d∑
k=s+1

P(k)

]
ψ(d) +

Q−s−1∑
i=0

[
Q−i∑

k=s+1

P(k)

]
ψB(i|s).

Hence,

ΔG̃(s,Q) =

s−1∑
d=0

P(s+Q− d)ψ(d) +

Q−s−2∑
i=0

P(Q− i)ψB(i|s)

+ P(s+ 1)ψB(Q− s− 1|s).

53



This implies that

Δ2G̃(s,Q+ 1) =

s−1∑
d=0

ΔP(s+Q+ 1− d)ψ(d) +

Q−s−1∑
i=0

ΔP(Q+ 1− i)ψB(i|s)

+ P(s+ 1)ψB(Q− s|s)

=− h

λ

[
s−1∑
d=0

ψ(d) +

Q−s−1∑
i=0

ψB(i|s)
]
+ P(s+ 1)ψB(Q− s|s). (5.16)

If P(s+1) ≤ 0, then Δ2G̃(s,Q+1) < 0 and G̃(s,Q) is concave in Q. If P(s+1) > 0,

we will show that ΔG̃(s,Q) is concave in Q. Note that the first term in expression

(5.16) is decreasing in Q. According to Lemma 3, ψB(i|s) is decreasing in i when

i ≥ MB(s). Thus, under the condition “Q−s ≥ MB(s),” ψB(Q−s|s) is decreasing
in Q. Hence, the second term in expression (5.16) is also decreasing in Q. Therefore,

Δ2G̃(s,Q+ 1) is decreasing in Q, which implies that ΔG̃(s,Q) is concave in Q.

From Theorem 8, the order quantity Q̃(φ) is either the unique local maximizer

of G̃(s̃(φ), Q) or the boundary value MB(s̃(φ)) + |s̃(φ)|. Similar to the complete

backlogging case in Section 4, we have conducted an extensive numerical study,

and the results indicate that the local maximizer of G̃(s̃(φ), Q) is also the global

maximizer in most cases. Also, our numerical results indicate that the optimal

order quantity always satisfy the condition “Q − |s̃(φ)| ≥ MB(s̃(φ)),” which is a

mild condition on the order quantity similar to that stated in Theorem 6 for the

complete backlogging model.

5.3 Numerical Results

In this section, we present the results of our numerical study on the partial back-

logging model. We first compare our heuristic solutions with the optimal stationary

(s, S) policy to show the effectiveness of our heuristic. We then compare the so-

lutions of our heuristic with those of two simple heuristics to provide additional

insights.
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5.3.1 Effectiveness of the Heuristic

We demonstrate the effectiveness of our heuristic via a numerical study. In this

study, we compare the numerical results of our heuristic with those of the optimal

stationary (s, S) policy. To execute our heuristic, we use the reorder point and order

quantity given by (5.10) and (5.11), respectively, and conduct a binary search to

determine the final decisions on the profit rate, reorder point, and order quantity.

Following the notation introduced in Section 3.2, we denote our heuristic as AL,γ ,

because it is applied to the model with lead time L and backlogging rate γ. The op-

timal stationary (s, S) policy is obtained via global search over the two-dimensional

space, and we denote this algorithm as AOptimal.

In the numerical study, we set p = 30, h = 1, and λ = 5. We consider different

values for each of b, �, and K. Specifically, we set b ∈ {2, 5}, � ∈ {4, 10}, and

K ∈ {100, 400, 1600}. Thus, we have 12 combinations of these parameters. We

refer to the set of numerical tests for combination j as “Test j” for j = 1, 2, . . . , 12.

For Test j, we let the lead time L vary from 0 to 5 with step size 0.5 and let the

backlogging probability γ vary from 0 to 1 with step size 0.1. Thus, Test j comprises

11×11 = 121 test instances. The computational study uses a total of 12×121 = 1452

test instances. For each test instance, we compare the results obtained by AL,γ and

AOptimal. The results are summarized in Table 5.1.

Each entry of the 5th column of Table 5.1 shows the number of test instances

(among the 121 instances) in whichAL,γ generates a different solution fromAOptimal.

The maximum absolute difference in reorder point and order-up-to level generated

by these two algorithms are shown in the 7th and 8th columns. The results indicate

that our heuristic generates the best possible stationary (s, S) solution most of the

time. For each test instance, we also compute the percentage difference in expected

profit between the solution obtained by AL,γ and the solution obtained by AOptimal;

that is,

Expected profit obtained by AOptimal − Expected profit obtained by AL,γ

Expected profit obtained by AOptimal
× 100%.

The average and maximum of the percentage differences are reported in the 6th and

9th columns, respectively, of the table. These percentage differences in expected
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Table 5.1: Results of numerical tests.

Test
set b � K

Number of
instances

with AL,γ �=
AOptimal

Average
difference
in expected

profit

Maximum difference in

reorder
point

order
-up-to
level

expected
profit

Test 1 2 4 100 0 0.00% 0 0 0.00%

Test 2 2 4 400 9 0.01% 1 1 0.04%

Test 3 2 4 1600 16 0.70% 8 6 1.50%

Test 4 2 10 100 4 0.05% 1 3 0.15%

Test 5 2 10 400 6 0.02% 1 1 0.04%

Test 6 2 10 1600 20 1.07% 9 5 4.07%

Test 7 5 4 100 4 0.01% 1 1 0.01%

Test 8 5 4 400 3 0.01% 1 1 0.03%

Test 9 5 4 1600 36 1.57% 9 6 6.69%

Test 10 5 10 100 2 0.08% 1 3 0.15%

Test 11 5 10 400 0 0.00% 0 0 0.00%

Test 12 5 10 1600 32 1.17% 7 3 4.84%

profit are small, which indicate that our heuristic is highly effective. From Table 2,

we observe that when K is large (i.e., K = 1600), the performance of our heuristic

drops slightly. If K is further increased (say, K ≥ 2000), the optimal profits of the

test instances become either very low or even negative, and the parameter setting

becomes unrealistic.

5.3.2 Comparison with Other Heuristics

We also compare the performance of our heuristic with that of two other heuris-

tics to see why ours has a good performance. The first heuristic we consider is

AIntuitive, which is similar to heuristic AIntuitive introduced in Section 4.3. This in-

tuitive heuristic applies the optimal policy of the zero-lead-time model but adjusts

the reorder point and order-up-to level by the expected lead-time demand. The

second heuristic, denoted as A(r,Q), determines the reorder point and order quan-

tity independently. In this heuristic, the order quantity is determined by the EOQ

formula with demand rate λ; that is, we set Q =
√
2Kλ/h. The reorder point r is
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obtained by setting Ψ(r) equal to the service level

α =
γbL+ (1− γ)(p+ �)

hL+ γbL+ (1− γ)(p+ �)
.

To interpret this service level, we consider the newsvendor problem defined on the

lead time L, where the unit overage cost is hL and the unit underage cost is γbL+(1−
γ)(p+ �). Then, the service level α is the critical fractile solution of this newsvendor

problem. Thus, with service level α, the reorder point r = Ψ−1(α), which is also

the order quantity of the newsvendor problem, shall maximize the expected profit

in the lead time period. Algorithm A(r,Q) can be regarded as an extension of the

(r,Q) policy which is commonly used for the complete backlogging and lost-sales

inventory systems (see Nahmias 2009, sec. 5.4–5.5).

Figure 5.3 depicts the numerical results of the three heuristics, where the cost

parameters are set according to Test 1 in Table 5.1. Figures 5.3(a), (c), & (e) depict

the impact of L on the heuristics’ solutions when γ is fixed at 0, while Figures 5.3(b),

(d), & (f) depict the impact of γ on the heuristics’ solutions when L is fixed at 5.

The numerical results obtained by AOptimal are not shown in the figure, as they are

identical to that of AL,γ (see results of Test 1 in Table 5.1).

We first consider the lost-sales case (i.e., when γ = 0). In this case, the “safety

stock,” i.e., the reorder point less the expected lead-time demand, is commonly used

to buffer the demands that exceed the expected quantity due to demand uncertainty.

The reorder point of AIntuitive is s
∗
0 + λL = λL, where s∗0 = 0 is the optimal reorder

point for the zero-lead-time model (see Theorem 3, where p̃ < 0 when γ = 0) and

λL is the expected lead-time demand. Thus, the safety stock in AIntuitive is zero.

Hence, the difference between the reorder points of AIntuitive and AL,0 (A(r,Q)) is

the safety stock in AL,0 (A(r,Q)). Figure 5.3(a) shows that A(r,Q) and AIntuitive are

outperformed by AL,γ . Algorithm AIntuitive performs worse than AL,0 because the

safety stock in AIntuitive is low (i.e., zero), which keeps the inventory cost low but

suffers from more lost sales in the lead time period. In addition, the profit lost in

AIntuitive becomes more significant as the lead time becomes longer. This is because

as the lead time increases, the variance of the lead-time demand (i.e., λL) increases,

and the probability that the lead-time demand exceeds its mean (i.e., λL) increases,
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Figure 5.3: Numerical results of the partial backlogging case.

which causes more lost sales. Algorithm A(r,Q) performs worse than AL,0 because

the safety stock in A(r,Q) is too high (see Figure 5.3(c)), which reduces the penalty
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caused by lost sales in the lead time period but incurs a higher inventory cost after

the replenishment arrives.

We next consider the situation where the lead time is fixed but the backlogging

probability varies. The numerical results are shown in Figures 5.3(b), (d), & (f).

The results indicate that AIntuitive is effective if the backlogging probability is high.

However, the performance of A(r,Q) drops as the backlogging probability increases.

The reorder point ofA(r,Q) is determined by considering the demand in the lead time

period as a newsvendor problem. It maximizes the profit in the lead time period

without considering the profit after the order arrival. As shown in Figure 5.3(d),

the reorder point of A(r,Q) is kept at a relatively high level, i.e., greater than the

expected lead-time demand λL = 25. As the backlogging probability increases, less

unmet demand will be lost, and it might become beneficial to use a lower reorder

point to maintain some backorders in an order cycle. Thus, in Figure 5.3(d), as the

backlogging probability increases, the reorder point in AIntuitive eventually drops

below λL. This occurs when the reorder point given by (3.8) becomes negative and

decreasing with γ rather than staying at zero. However, the reorder point of A(r,Q)

is always kept at a higher level, and the difference between of the reorder points of

A5,γ and A(r,Q) becomes significant when the backlogging probability is large (say,

when γ > 0.8). Hence, the performance of A(r,Q) drops significantly when γ is large.

According to the test instances, heuristic AL,γ usually determines a more accu-

rate reorder point than the other two heuristics. This is because in AL,γ , the profit

rate φ is used both in determining the reorder point and in determining the order

quantity. The profit rate φ establishes a connection between the effective profit in

the lead time period and the effective profit after the order arrival. Thus, a reorder

point which better balances the profits in these two parts of an order cycle can be

obtained.
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PART II

Optimal Control in a

Make-to-Order Environment
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Chapter 6

Model Description

With merits of perfectly matching supply with demand, make-to-order (MTO) pro-

duction is broadly adopted by many companies today, where a production run is

initiated only when customer orders are received. A drawback of an MTO system,

however, is that customers have to spend time on waiting for delivery. The waiting

time becomes more significant if a set-up cost is incurred when a production run is

initiated. With the existence of set-up costs, the MTO system may not immediately

start its production when an order arrives. Instead, to achieve economy of scale,

a production run is started only when the number of accumulated customer orders

reaches a certain threshold. Such a policy has been studied by many researchers;

see, for example, Heyman and Sobel (1984, p. 336).

Clearly, the lead time of delivery is a key factor affecting customer purchase be-

havior when customers are delay-sensitive. Furthermore, depending on the length of

the waiting line, a customer may decide to either wait for the order or leave without

purchase. Such a decision also affects other customers’ expected waiting time in the

system. For example, when the system is idle and production has not been started,

an arriving customer who decides to wait can trigger the production quicker, which

benefits the later-coming customers. Therefore, customers’ equilibrium strategies on

waiting or leaving need to be taken into consideration. In other words, the effective

demand arrival process is a process resulting from customers’ decentralized decision.

A feature of this essay is to study the make-to-order optimal control problem with
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the existence of such delay-sensitive customers and production set-up costs. We

model such a system as an M/M/1 queue with N -policy; that is, demands arrive

according to a Poisson process with rate Λ, the processing times of customer orders

follow an independent and identically distributed exponential distribution with rate

μ, and a production run starts when the number of waiting customer orders accumu-

lates to N and ends when the system is empty, where N ≥ 1. The production system

adopts a first-come-first-served principle. Following the terminologies in queueing

theory, we refer to the production processor as a server, which processes customer

orders and can be either busy or idle. We refer to the waiting list of customer orders

as the queue, and we refer to the exponential processing time as service time. We

let ρ = Λ/μ be the system utility.

We use a utility function to model customers’ decentralized decision on either

waiting or leaving. An incoming customer is informed with some information on the

system status. Specifically, we consider two information scenarios: unobservable

queue length and observable queue length. In the former case, the queue length

is unobservable but the status of the server is observable; that is, customers know

whether production is in progress but do not know the number of waiting customer

orders. The set of possible observable system states is S = {B, I}, where B and I

represent the status where the server is “busy” and “idle,” respectively. In the latter

case, customers can observe the waiting list of customer orders. The set of possible

observable system states is S = {0, 1, 2, . . .}, where s ∈ S represents the state with

s waiting customer orders. Based on the information provided by the system, the

customer can then estimate his/her own expected waiting time and consequently

decides to stay or to leave.

On observing information state s ∈ S, the customer estimates the expected

waiting time Ws (which includes the service time). We assume a linear utility

function for each customer. Let θ be the customers’ delay-sensitivity parameter.

We assume identical customers; that is, all the customers have the same value of θ.

The utility of an incoming customer who observes system state s is denoted as Us,
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which satisfies

Us = R− θWs, (6.1)

where R is the reward from receiving the service and θWs is the expected waiting

cost. The customer decides to stay if Us ≥ 0, and leave otherwise. Note that the

customer’s waiting time is also the amount of time that his/her order is backlogged.

Thus, θWs can also be interpreted as the backlogging cost. Define

ν =
μR

θ
,

which represents the largest number of service intervals that an arriving customer

is willing to wait. If ν = 1, then all the customers who observe waiting customers

will not join the system. In this case, to maintain an active production system, the

value of N must be set to 1. Thus, in the following analysis, we assume that ν > 1.

We consider four types of costs in this MTO production system. Whenever the

server changes its status, a fixed set-up cost or shut-down cost is incurred. The

fixed shut-down cost can be incorporated into the set-up cost. Thus, without loss of

generality, we let K be the set-up cost, and normalize the shut-down cost to zero.

For the customer orders that are waiting in the system, a waiting cost of h per unit

time per order is incurred. When the server is busy, a system operating cost of c

per unit time is incurred. In addition, for each strategic customer order that leaves

the system, a lost-sales penalty � is incurred. We assume that � > c
μ , where

c
μ is

the expected production cost of serving a customer order. This assumption ensures

that it is profitable to let the server work.
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Chapter 7

System with Unobservable

Queue Length

In this chapter, we consider the information scenario where incoming customers

cannot observe the queue length but can observe the server status; that is S =

{B, I}. Consider, for example, a computer repair shop where the repairman spends

part of his work hours on repairing computers dropped off by walk-in customers and

spends the rest of his time on other work. Walk-in customers visit the repair shop,

drop off their malfunctioned computers, and leave the shop. The shop will phone

the customers when the repair work is completed. It is not difficult for the walk-in

customers to find out if the repairman is busy (i.e., doing repair work) or idle (i.e.,

doing other work), but the number of orders waiting in line is unobservable by the

customers (as the customers do not wait inside the shop). Such an example fits

into our information scenario. In the following sections, we will first conduct the

equilibrium analysis with a given threshold value N , and then derive the expected

average cost function and obtain the optimal value of N .

7.1 The equilibrium arrival rates

Since customers are identical, a customer’s strategy can be represented by the prob-

abilities of choosing different options. Let (αB, αI) be the strategy adopted by the
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potential customers, where αs ∈ [0, 1] is the probability that a customer will enter

the queue after observing the state s, for s = B, I. Let λs = αsΛ for s = B, I. Then,

λs is the effective demand rate (or arrival rate) in state s. Alternatively, instead of

working on the probabilities of choosing the two options, we can directly work on

the effective arrival rates λB and λI . If λI = 0, the system can never be activated.

Thus, in the following, we restrict our attention to the strategies with which the

system is active for some time periods; that is, λI > 0.
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Figure 7.1: MTO system with unobservable queue length

Figure 7.1 depicts the way the strategic customers leave or stay in the production

system. Upon observing the system state s, the staying customers enter the queue

according to a Poisson process with rate λs, for s = B, I. Thus, our production

system is a vacation queue with N -policy and a state-dependent arrival process. The

following lemma provides the expected waiting time, conditional on the information

state, for such a vacation queue.

Lemma 5 Given the state-dependent arrival rates (λB, λI), the expected waiting

times of seeing states B and I are

WB =
1

μ− λB
+

N + 1

2μ
(7.1)
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and

WI =
N − 1

2λI
+

N + 1

2μ
. (7.2)

Proof: We first derive the steady-state probabilities. Let ρs = λs/μ for s = B, I.

Let P0 be probability that the system is empty, and let Pk,s be the probability that

the queue length is k and the server’s status is s (k = 1, 2, . . .; s = B, I). Clearly,

PN+k,I = 0, where k = 0, 1, . . .. Denote P0,I = P0. The balance equations are

λIP0 = μP1,B;

λIP0 + λBPk,B = μPk+1,B, k = 1, 2, . . . , N − 1;

λIPk−1,I = λIPk,I , k = 1, 2, . . . , N − 1;

λBPN+k,B = μPN+k+1,B, k = 0, 1, . . . .

Solving this set of equations, we obtain

Pk,I = P0, k = 1, 2, . . . , N − 1; (7.3)

Pk,B =
1− ρkB
1− ρB

ρIP0, k = 1, 2, . . . , N ; (7.4)

PN+k,B = ρkB
1− ρNB
1− ρB

ρIP0, k = 0, 1, . . . . (7.5)

From the probability normalization condition, we have

P0 +

N−1∑
k=1

Pk,I +

N−1∑
k=1

Pk,B +

+∞∑
k=0

PN+k,B = 1.

By (7.3)–(7.5),

P0 +

N−1∑
k=1

P0 +

N−1∑
k=1

1− ρkB
1− ρB

ρIP0 +

+∞∑
k=0

ρkB
1− ρNB
1− ρB

ρIP0 = 1,

which implies that

P0

[
N +

N − 1

1− ρB
ρI − ρB(1− ρN−1

B )

(1− ρB)2
ρI +

1− ρNB
(1− ρB)2

ρI

]
= 1.

Upon simplification, we have

P0 =
1− ρB

N(1− ρB + ρI)
.
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Substituting this into (7.3)–(7.5), we have

Pk,I =
1− ρB

N(1− ρB + ρI)
, k = 1, 2, . . . , N − 1;

Pk,B =
ρI(1− ρkB)

N(1− ρB + ρI)
, k = 1, 2, . . . , N − 1;

PN+k,B =
ρIρ

k
B(1− ρNB )

N(1− ρB + ρI)
, k = 0, 1, . . . .

Let Ps be the probability that an arriving customer observes state s, for s = B, I.

We have

PI = P0 +

N−1∑
k=1

Pk,I = NP0 =
1− ρB

1− ρB + ρI
;

PB = 1− PI =
ρI

1− ρB + ρI
.

Next, we derive the conditional expected waiting times. Let P (k|s) be the prob-
ability that the queue length is k conditional on observing server’s status s, for

s = B, I and k = 0, 1, . . .. When the arriving customer observes a busy server, the

conditional probabilities are

P (k|B) =
Pk,B

PB
=

1− ρkB
N

, k = 1, 2, . . . , N − 1;

P (N + k|B) =
PN+k,B

PB
=

ρkB(1− ρNB )

N
, k = 0, 1, . . . .

Note that if the queue length is k and the server is busy, the expected waiting time

of the arriving customer, denoted as W (k|B), is the expected service time of the

k + 1 customers in the system. Hence, W (k|B) = k+1
μ . Thus, the expected waiting
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time in seeing a busy server is

WB =

+∞∑
k=1

W (k|B)P (k|B)

=

N−1∑
k=1

k + 1

μ
· 1− ρkB

N
+

+∞∑
k=0

N + k + 1

μ
· ρ

k
B(1− ρNB )

N

=
1

μ

[
1 +

1

N

N−1∑
k=1

k(1− ρkB) +
1− ρNB

N

+∞∑
k=0

(N + k)ρkB

]

=
1

μ

{
1+

1

N

[
N(N−1)

2
− ρB(1−ρN−1

B )

(1−ρB)2
+

(N−1)ρNB
1−ρB

]
+

1−ρNB
N

[
N

1−ρB
+

ρB
(1−ρB)2

]}

=
1

μ

(N + 1

2
+

1

1− ρB

)
=

1

μ− λB
+

N + 1

2μ
.

When the arriving customer observes an idle server, the conditional probabilities

and expected waiting times are

P (k|I) = Pk,I

PI
=

1

N
, k = 0, 1, . . . , N − 1

and

W (k|I) = N − (k + 1)

λI
+

k + 1

μ
, k = 0, 1, . . . , N − 1,

where N−(k+1)
λI

is the expected time before the server becomes active and k+1
μ is the

expected waiting time once the server starts working. Furthermore,

WI =

N−1∑
k=0

W (k|I)P (k|I) =
N−1∑
k=0

[
N − (k + 1)

λI
+

k + 1

μ

]
1

N
=

N − 1

2λI
+

N + 1

2μ
.

From (7.1), we can see that the expected waiting time upon seeing a busy server

is the expected waiting time in a standard M/M/1 queue (i.e., 1
μ−λB

) plus an extra

amount (i.e., N+1
2μ ). In equation (7.2), the term N−1

2λI
measures the expected waiting

time for the server to be activated, and the term N+1
2μ measures the expected waiting

time once the server starts working. From (7.1) and (7.2), we can see that the

expected waiting time WB (WI) is independent of the arrival rate λI (λB). Thus, we

can determine the equilibrium arrival rate of seeing a busy and idle server separately.
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(b) seeing an idle server

Figure 7.2: Waiting time versus arrival rate

We first consider the equilibrium arrival rate of seeing a busy server, denot-

ed as λe
B. From (7.1), the expected waiting time WB is increasing with λB (see

Figure 7.2(a)). This demonstrates the “avoid-the-crowd” customer behavior, and

consequently at most one equilibrium arrival rate exists (see Hassin and Haviv 2003,

pp. 6–7). If
R

θ
≤ 1

μ
+

N + 1

2μ
,

where the right-hand side is the smallest possible expected waiting time attained at

λB = 0, then the customer’s utility can never be positive no matter what the arrival

rate λB is. Thus, if N ≥ 2ν − 3, there exists no positive equilibrium. Otherwise,

there must exist an arrival rate which satisfies

R

θ
=

1

μ− λB
+

N + 1

2μ
.

This equation has a unique solution of

λB = μ− 2μθ

2μR− (N + 1)θ
=

2ν − (N + 3)

2ν − (N + 1)
μ.

Denote

Λ̃ =
2ν − (N + 3)

2ν − (N + 1)
μ.

Note that the effective demand rate λB will not exceed the potential arrival rate

Λ. Thus, in this case, the equilibrium arrival rate is min{Λ̃,Λ}. These results are

summarized in the following theorem.
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Theorem 9 (i) If N ≥ 2ν−3, there exists no positive equilibrium arrival rate, i.e.,

λe
B = 0. (ii) If N < 2ν − 3, there exists a unique positive equilibrium arrival rate

λe
B = min{Λ̃,Λ}.

Next, we consider the equilibrium arrival rate of seeing an idle server, denoted as

λe
I . From (7.2), the expected waiting time WI is decreasing in λI (see Figure 7.2(b)).

This demonstrates the “follow-the-crowd” customer behavior, and consequently mul-

tiple equilibria could exist (see Hassin and Haviv 2003, pp. 6–7). Clearly, “all leaving

upon seeing an idle server” is always a pure equilibrium strategy. This is because if

all other customers choose to leave when observing an idle server, the system will

never be active and the best choice for the tagged customer is “leaving upon seeing

an idle server” too. In the following, we consider positive equilibrium arrival rates.

If
R

θ
<

N − 1

2Λ
+

N + 1

2μ
,

where the right-hand side is the smallest possible expected waiting time attained

at λI = Λ, then a customer’s utility can never be positive no matter what the

arrival rate λI is. Thus, if N > 2ρν+1−ρ
1+ρ , there exists no positive equilibrium, i.e.,

λe
I = 0. Otherwise, “all stay” is an equilibrium strategy, i.e., λe

I = Λ. In addition,

if N < 2ρν+1−ρ
1+ρ , then there exists an equilibrium arrival rate λI ∈ (0,Λ), which

satisfies

R

θ
=

N − 1

2λI
+

N + 1

2μ
.

This equation has a unique solution of

λI =
(N − 1)μθ

2μR− (N + 1)θ
=

N − 1

2ν − (N + 1)
μ,

which is also an equilibrium arrival rate. These results are summarized in the

following theorem.

Theorem 10 (i) If N > 2ρν+1−ρ
1+ρ , there exists no positive equilibrium arrival rate,

i.e., λe
I = 0. (ii) If N = 2ρν+1−ρ

1+ρ , there exists a unique positive equilibrium arrival

rate: λe
I = Λ. (iii) If N < 2ρν+1−ρ

1+ρ , there exist two positive equilibrium arrival rates:

λe
I = N−1

2ν−(N+1)μ < Λ and λe
I = Λ.
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Note that in property (iii) of Theorem 10, the larger equilibrium λe
I = Λ is stable,

whereas the smaller one λe
I = N−1

2ν−(N+1)μ is not. The expected waiting time WI is

decreasing in λI (see Figure 7.2(b)). Thus, when an idle server is observed, the

expected waiting time will be reduced if more customers choose to join the system,

which in turn will attract even more customers to join the system until the larger

equilibrium Λ is reached.

In Theorems 9 and 10, we obtain the equilibrium arrival rates of observing a busy

server and an idle server, respectively. To maintain an active production system,

we only consider the equilibrium strategies with λe
I > 0, i.e., λe

I = Λ. In addition,

to execute the optimal control, we will restrict our attention to stable equilibrium

strategies. There are three possible equilibrium strategies, namely (λe
B, λ

e
I) = (Λ,Λ),

(Λ̃,Λ), and (0,Λ), depending on the system parameters, where the equilibrium (Λ̃,Λ)

holds only when 0 < Λ̃ < Λ.

7.2 The expected average cost and optimal decision

In this section, we first derive an expression for the average cost of the production

system. We then analyze its properties and determine the optimal value of the

threshold N .

Suppose the customers’ arrival rates are (λB, λI). We refer to the time point

where the server’s status changes from busy to idle as a regeneration point, and

the time period between two consecutive regeneration points as a production cycle.

We consider four types of costs in the production system: set-up cost, customer

waiting cost, operation cost, and lost-sales penalty. Then, by the renewal theory

(Ross 1996), the expected average cost of the system is given by

AC=
K+E[operation cost in a cycle]+E[waiting cost in a cycle]+E[lost-sales penalty in a cycle]

E[cycle time]
.

(7.6)

Let T be the expected time of a production cycle, and let TI and TB be the

expected time of the server being idle and busy in the production cycle, respectively.

Then, T = TI + TB. The expected operation cost in one production cycle is cTB.
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Note that the lost-sales demand units consist of two Poisson processes with rates

Λ−λB and Λ−λI in the time periods when the server is busy and idle, respectively

(see Figure 7.1). Thus, the expected lost-sales penalty in one production cycle is

�[(Λ − λB)TB + (Λ − λI)TI ]. We let WC be the expected customer waiting cost in

one production cycle. Hence, from (7.6), the expected average cost of the system

can be expressed as

AC =
K + cTB +WC + �[(Λ− λB)TB + (Λ− λI)TI ]

T
, (7.7)

which can be further specified, as stated in the following lemma.

Lemma 6 Given the state-dependent arrival rates (λB, λI), the expected average

cost of the system is

AC =
KλI(μ− λB)

N(μ− λB + λI)
+

cλI

μ− λB + λI

+ h

[
μλI

(μ− λB + λI)(μ− λB)
+

N − 1

2

]
+ �
(
Λ− μλI

μ− λB + λI

)
. (7.8)

Proof: Note that TI is the sum of N inter-arrival times of a Poisson process with

rate λI . We call the time period from the moment when there are k customers in

the system till the moment that the number of customers drops to k−1 for the first

time a “1-busy period.” Hence, TB is the sum of N stochastically identical 1-busy

periods of an M/M/1 queue with arrival rate λB and service rate μ. Thus,

TI =
N

λI
and TB =

N

μ− λB
, (7.9)

which imply that

T =
N

λI
+

N

μ− λB
=

N(μ− λB + λI)

λI(μ− λB)
. (7.10)

Next, we consider the expected customer waiting cost in one production cycle,

WC. Let WCI and WCB be the expected waiting cost incurred in the periods when

the server is idle and busy, respectively. Then, WC = WCI +WCB. It is easy to see

that during the server’s idle period, the total waiting cost incurred is

WCI =
h

λI
+

2h

λI
+ · · ·+ (N − 1)h

λI
=

N(N − 1)h

2λI
.
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To determine WCB, suppose that there are k customers in the system, where 1 ≤
k ≤ N , and that the server has just started processing a customer order. Let τk be

the expected total waiting cost incurred in a 1-busy period (i.e., the time period till

the number of customers in the system drops to k − 1 for the first time). Because

the N 1-busy periods are stochastically identical, we have

τk =
h

μ− λB
+ τk−1

for k = 2, 3, . . . , N , where 1
μ−λB

is the duration of a 1-busy period. The above

recursive equation implies that

τk =
(k − 1)h

μ− λB
+ τ1

for k = 1, 2, . . . , N . Note that τ1 is the total waiting cost incurred in a 1-busy period

of an M/M/1 queue with 1 customer in the system at the beginning. In this 1-busy

period, the expected queue length is μ/(μ− λB), and the expected duration of the

1-busy period is 1/(μ− λB). Thus,

τ1 =
μh

(μ− λB)2
.

Hence,

WCB = τN + τN−1 + · · ·+ τ1 =
N∑
k=1

[
(k − 1)h

μ− λB
+ τ1

]
=

[
N(N − 1)

2(μ− λB)
+

Nμ

(μ− λB)2

]
h.

Therefore,

WC = WCI +WCB =

[
N(N − 1)

2λI
+

N(N − 1)

2(μ− λB)
+

Nμ

(μ− λB)2

]
h. (7.11)

Substituting (7.9)–(7.11) into (7.7) and simplifying the expression, we obtain equa-

tion (7.8).

The following theorem states that for any equilibrium arrival rates (λe
B, λ

e
I), the

expected average cost is always convex in N . Note that N is an integer. For sim-

plicity, when we analyze the convexity and local minimum of the expected average

cost function, we ignore the integrality of N and treat the domain of the function

as continuous.
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Theorem 11 (i) If (λe
B, λ

e
I) = (0,Λ), then AC is convex in N , and the local min-

imum is attained at η1 =
√

2KΛ
(1+ρ)h . (ii) If (λe

B, λ
e
I) = (Λ̃,Λ), which incurs only

if 0 < Λ̃ < Λ, then AC is convex in N , and the local minimum is attained at

η2 = −KΛ+
√
δ

−c+(h/ρ)+
μ , where δ = K2Λ2 + K[−c + (h/ρ) + �μ][2μ + Λ(2ν − 1)]. (iii) If

(λe
B, λ

e
I) = (Λ,Λ), which incurs only if ρ < 1, then AC is convex in N , and the local

minimum is attained at η3 =

√
2KΛ(1−ρ)

h .

Proof: (i) (λe
B, λ

e
I) = (0,Λ). In this case, the expected average cost (7.8) can be

simplified to

AC =
KΛμ

N(μ+ Λ)
+

cΛ

μ+ Λ
+ h
( Λ

μ+ Λ
+

N − 1

2

)
+ �
(
Λ− μΛ

μ+ Λ

)
.

Thus,

dAC

dN
= − KΛμ

(μ+ Λ)N2
+

h

2
and

d2AC

dN2
=

2KΛμ

(μ+ Λ)N3
> 0.

Hence, AC is convex in N . It is easy to check that, by solving the equation

“dAC/dN = 0,” the minimum of AC is attained at η1 =
√

2KΛμ
(μ+Λ)h =

√
2KΛ

(1+ρ)h .

(ii) (λe
B, λ

e
I) = (Λ̃,Λ), where 0 < Λ̃ < Λ. In this case, we consider the four terms

in (7.8) separately. Let ACi be the ith term on the right hand side of (7.8) for

i = 1, 2, 3, 4. Let Ω = 2ν− (N +1). Then, Λ̃ = μ(Ω−2)/Ω. Consider the first term.

We have

AC1 =
KλI(μ− λB)

N(μ− λB + λI)
=

KΛ(μ− Λ̃)

N(μ− Λ̃ + Λ)
=

2KμΛ

N(2μ+ ΛΩ)
,

which implies that

dAC1

dN
=

−2KμΛ(2μ+ ΛΩ− ΛN)

N2(2μ+ ΛΩ)2
=

−2KμΛ

N2(2μ+ ΛΩ)2

{
2μ+ Λ

[
2ν − (2N + 1)

]}

and

d2AC1

dN2

=−2KμΛ · −2ΛN2(2μ+ΛΩ)2−(2μ+ΛΩ−ΛN)[2N(2μ+ΛΩ)2+N22(2μ+ ΛΩ)(−Λ)]

N4(2μ+ΛΩ)4

= 4KμΛ

[
Λ

N2(2μ+ ΛΩ)2
+

(2μ+ ΛΩ− ΛN)2

N3(2μ+ ΛΩ)3

]
> 0.
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Consider the second term. We have

AC2 =
cλI

μ− λB + λI
=

cΛ

μ− Λ̃ + Λ
=

cΛΩ

2μ+ ΛΩ
,

which implies that

dAC2

dN
=

cΛ[−(2μ+ ΛΩ)− Ω(−Λ)]

(2μ+ ΛΩ)2
=

−2cμΛ

(2μ+ ΛΩ)2

and
d2AC2

dN2
=

−4cμΛ2

(2μ+ ΛΩ)3
. (7.12)

Consider the third term. We have

AC3 =h

[
μλI

(μ−λB+λI)(μ−λB)
+

N−1

2

]

=h

[
μΛ

(μ−Λ̃+Λ)(μ−Λ̃)
+

N−1

2

]
= h

[
ΛΩ2

2(2μ+ΛΩ)
+

N−1

2

]
,

which implies that

dAC3

dN
= h

[
(2μ+ ΛΩ)(−2ΛΩ)− ΛΩ2(−Λ)

2(2μ+ ΛΩ)2
+

1

2

]
=

2μ2h

(2μ+ ΛΩ)2

and
d2AC3

dN2
=

4μ2Λh

(2μ+ ΛΩ)3
. (7.13)

Consider the fourth term. We have

AC4 = �
(
Λ− μλI

μ− λB + λI

)
= �
(
Λ− μΛ

μ− Λ̃ + Λ

)
= �
(
Λ− μΛΩ

2μ+ ΛΩ

)
,

which implies that

dAC4

dN
=

−�μΛ [−(2μ+ ΛΩ)− Ω(−Λ)]

(2μ+ ΛΩ)2
=

2�μ2Λ

(2μ+ ΛΩ)2

and
d2AC4

dN2
=

4�μ2Λ2

(2μ+ ΛΩ)3
. (7.14)

From (7.12)–(7.14), we have

d2AC

dN2
=

4∑
i=1

d2ACi

dN2
=

d2AC1

dN2
+

4μ2Λ2
(− c

μ + h
Λ + �

)
(2μ+ ΛΩ)3

> 0,
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where the last inequality holds because d2AC1/dN
2 > 0 and � > c

μ . Hence, AC is

convex inN . It is easy to check that, by determining the positive root of the equation

“
∑4

i=1 dACi/dN = 0,” the minimum of AC is attained at η2 = −KΛ+
√
δ

−c+(h/ρ)+
μ , where

δ = K2Λ2 +K[−c+ (h/ρ) + �μ][2μ+ Λ(2ν − 1)].

(iii) (λe
B, λ

e
I) = (Λ,Λ). From property (ii) of Theorem 9, λe

B = Λ incurs if

N < 2ν − 3 and Λ̃ ≥ Λ. This implies that ρ < 1. In this case, the expected average

cost (7.8) can be simplified to

AC =
KΛ(μ− Λ)

Nμ
+

cΛ

μ
+ h
( Λ

μ− Λ
+

N − 1

2

)
,

which implies that

dAC

dN
= −KΛ(μ− Λ)

N2μ
+

h

2
and

d2AC

dN2
=

2KΛ(μ− Λ)

N3μ
> 0,

where the inequality holds because ρ < 1 (i.e., Λ < μ). Hence, AC is convex in N .

It is easy to check that, by solving the equation “dAC/dN = 0,” the minimum of

AC is attained at η3 =

√
2KΛ(1−ρ)

h .

Note that (λe
B, λ

e
I) actually changes with N . To consider the cost function with

different equilibrium arrival rates in different ranges of N , we consider four different

cases depending on the values of ρ and ν. For each case, we derive the average

cost function and discuss the convexity of the function. We explore the optimal

decision of N numerically. We consider the following setting for our numerical

studies: Λ = 10, c = 10, h = 5, � = 50, and K = 1000. The values of ρ and ν,

however, are changeable to represent different cases. We also restrict our attention

to N ∈ [1, 2ρν+1−ρ
1+ρ

]
, since otherwise λe

I = 0 and the system is never active.

Case 1: ρ ≥ 1 and ν ≤ 2 + ρ. In this case, it is easy to check that

2ν − 3 ≤ 2ρν + 1− ρ

1 + ρ
.

Thus, if N ∈ [1, 2ν − 3), the equilibrium arrival rates are (Λ̃,Λ); and if N ∈[
2ν − 3, 2ρν+1−ρ

1+ρ

]
, the equilibrium arrival rates are (0,Λ); see Figure 7.3(a) for il-

lustration. Once the optimal N is set within the interval
[
2ν − 3, 2ρν+1−ρ

1+ρ

]
, the

customer’s strategic behavior appears to be paradoxical: if the server is not work-

ing, all customers will stay in the system and wait; once the server begins to work,
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every incoming customer will leave without placing order. Intuitively, such customer

behavior will result in frequent set-ups of the production system and hurt the sys-

tem performance. However, could it be possible that such behavior is desirable? We

shall explore this possibility.
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Figure 7.3: Case 1 with ρ ≥ 1 and ν ≤ 2 + ρ.

Actually, the second interval
[
2ν − 3, 2ρν+1−ρ

1+ρ

]
is quite narrow by noticing that

2ρν + 1− ρ

1 + ρ
− (2ν − 3) = 2 +

2

1 + ρ
− 2ν

1 + ρ
< 3.

Hence, the interval
[
2ν − 3, 2ρν+1−ρ

1+ρ

]
contains at most two integer values. However,

according to Theorem 11, the expected average cost is convex in N in each of the

two intervals [1, 2ν − 3) and
[
2ν − 3, 2ρν+1−ρ

1+ρ

]
. Consequently, there could exist two

local optima for N . Therefore, it is rare but still possible that the optimal N falls

in the second interval.

We present three numerical examples to illustrate the optimal values of N by

setting ρ = 15 and ν = 3.5, 4.5, 5.5. The impacts of the threshold value N on
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the expected average cost and on the expected cycle time are depicted in Figures

7.3(b) and 7.3(c), respectively. Take the case with ν = 4.5 as an example. We have

2ν − 3 = 6 and 2ρν+1−ρ
1+ρ = 7.56. Thus, the average cost is convex in the intervals

[1, 6) and [6, 7.56] (see Figure 7.3(b)), where the second interval [6, 7.56] contains two

integers (hence in the figure we can only observe that the average cost is decreasing).

For the case with ν = 3.5, the minimum average cost is attained at N = 5,

which indeed falls inside the second interval and results in the interesting equilib-

rium arrival rates (0,Λ) (see Figure 7.3(b)). This numerical result shows that it is

indeed possible to induce customers to adopt such paradoxical behavior. We use

the numbers in this example to illustrate the reason. When the system utilization

is high and the customers are unwilling to wait, setting a smaller N might be less

effective in enlarging the production cycle than setting a larger N . In our example

with ρ = 15 and ν = 3.5, we have μ = Λ
ρ = 10

15 = 2
3 . Consider the cases with N = 3

and N = 5. When N = 3, because N < 2ν − 3, by Theorem 9,

λe
B = min

{
Λ̃,Λ
}
= min

{
2ν − (3 + 3)

2ν − (3 + 1)
μ,Λ

}
= min

{
2

9
, 10

}
=

2

9
,

and the expected cycle time is N
Λ + N

μ−λe
B

= 3
10 + 3

(2/3)−(2/9) = 141
20 . When N = 5,

because N ≥ 2ν − 3, by Theorem 9, λe
B = 0, and the expected cycle time is

N
Λ + N

μ−λe
B

= 5
10 + 5

(2/3)−0 = 8. Hence, the expected cycle time is shorter when

N = 3 than when N = 5 (see Figure 7.3(c)). Therefore, although customers’

strategic behavior can result in frequent set-ups, the larger N slows down the set-up

frequencies and makes it smaller.

Case 2: ρ ≥ 1 and ν > 2 + ρ. In this case, it is easy to check that

2ν − 3 >
2ρν + 1− ρ

1 + ρ
.

Thus, for N ∈ [1, 2ρν+1−ρ
1+ρ

]
, the only possible equilibrium arrival rates are (Λ̃,Λ)

(see Figure 7.4(a)).

According to Theorem 11, with the equilibrium arrival rates (Λ̃,Λ), the expected

average cost is convex in N . We consider three numerical examples with ρ = 15

and ν = 18, 12, 22. The impacts of the threshold value on the expected average cost

and on the expected cycle time are depicted in Figures 7.4(b) and 7.4(c). Take the
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Figure 7.4: Case 2 with ρ ≥ 1 and ν > 2 + ρ.

case with ν = 20 as an example. When N is small (say, when N ≤ 5), the average

cost sharply decreases. This is because the cycle time is short and sensitive in N

(see Figure 7.4(c)). The production system has frequent set-ups, which result in a

significant average set-up cost. When N increases to a certain level, the average

cost becomes insensitive in N (say, when N ∈ [10, 25]), mainly due to the strategic

behavior of the customers. As N increases, fewer potential customers will stay in

the system once the server is activated. Thus, the expected operation cost and

expected customer waiting cost decrease, but the lost-sales penalty cost increases

(see the proof of Theorem 11). Customers’ strategic behavior will balance different

costs to maintain a stable average cost. When N increases to the level near the

upper bound (i.e., 2ρν+1−ρ
1+ρ ), the average cost mildly increases. This is because N

is too large such that only a small portion of the potential customers will stay in

the system, which reduces the cycle time (see Figure 7.4(c)). Another observation

is that the interval of N with an insensitive average cost becomes narrower as ν
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decreases (see Figure 7.4(b)). This implies that if the customers are less willing to

wait, then the decision maker of the production system should be more cautious

about the decision on N . In general, the average cost is convex in N , and the global

optimal value N∗ is given as

N∗ = min
{
η2,

2ρν + 1− ρ

1 + ρ

}
.

Case 3: we consider the situation where ρ < 1. Case 3(i): ν ≤ 2 + ρ. In this

case, it is easy to check that

2ν − 3 ≤ 2ρν + 1− ρ

1 + ρ
.

Note that

d

dρ

2ρν + 1− ρ

1 + ρ
=

2(v − 1)

(1 + ρ)2
> 0,

which implies that 2ρν+1−ρ
1+ρ is increasing in ρ. Thus,

2ρν + 1− ρ

1 + ρ
<

2ν + 1− 1

1 + 1
= ν ≤ 2 + ρ < 3;

that is, there are only two possible values of N such that the system can be activated:

N = 1 andN = 2. Hence, a simple comparison between the values of AC withN = 1

and N = 2 yields the optimal decision.

Case 3(ii): 2 + ρ < ν ≤ 2
1−ρ . In this case, it is easy to check that

2ν − ρ− 3

ρ− 1
≤ 2ρν + 1− ρ

1 + ρ
< 2ν − 3.

Thus, the equilibrium arrival rates are (Λ,Λ) for N ∈ [1, 2ν − ρ−3
ρ−1

]
and (Λ̃,Λ) for

N ∈ (2ν − ρ−3
ρ−1 ,

2ρν+1−ρ
1+ρ

]
; see Figure 7.5(a) for illustration. From Theorem 11, the

expected average cost under the equilibrium strategy is convex in the two intervals.

We now present six numerical examples to illustrate the optimal decisions and

minimal cost. Since ρ < 1, we also plot the result of the traditional model with a

constant arrival rate Λ. For the three examples depicted in Figures 7.5(b), we set

ρ = 0.92 and ν = 8, 10, 12. The value of ν is small such that 2ν− ρ−3
ρ−1 < 1, and only

one interval exists which allows the cost function to be convex. The average cost
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Figure 7.5: Case 3(ii) with ρ < 1 and 2 + ρ < ν ≤ 2
1−ρ .

with strategic customer behavior is larger than that of the traditional model, and

the optimal value N∗ is smaller than that in the traditional model.

However, this is not always the case. For the other three examples depicted in

Figures 7.5(c), we set ρ = 0.98 and ν = 25, 53, 70. In those examples, the optimal N

is no less than that in the traditional model, and the optimal average cost is also no

larger than that in the traditional model. The strategic customer behavior actually

benefits the production system.

Case 3(iii): ν > 2 + ρ and ν > 2
1−ρ . In this case, it is easy to check that

2ρν + 1− ρ

1 + ρ
< 2ν − ρ− 3

ρ− 1
< 2ν − 3.

Thus, the equilibrium arrival rates are (Λ,Λ) for N ∈ [1, 2ρν+1−ρ
1+ρ

]
; see Figure 7.6

for illustration.

Note that the decentralized equilibrium arrival rate is equal to the total arrival

rate. Hence, the impact of the threshold value on the average cost is the same
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Figure 7.6: Case 3(iii) with ρ < 1, ν > 2 + ρ, and ν > 2
1−ρ .

as that in the traditional model as long as N ≤ 2ρν+1−ρ
1+ρ . From Theorem 11, the

expected average cost is convex and the optimal value can be specified as

N∗ = min
{
η3,

2ρν + 1− ρ

1 + ρ

}
,

where η3 =

√
2KΛ(1−ρ)

h is the optimal value of N for the traditional M/M/1 queue

with N -policy and a constant arrival rate Λ (see Heyman and Sobel 1984, p. 336).

In this case, the optimal average cost with strategic customers is no larger than that

in the traditional model.
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Chapter 8

System with Observable Queue

Length

Trade show is a common marketing tool nowadays. For some commodities which

cannot be stored in the trade show directly, sellers usually just accept customer

orders and guarantee that their orders will be delivered once a certain number of

orders have been accumulated. In this case, the existing customer orders are often

shown to an incoming customer, or equivalently, the queue length is observable. As

commodities are usually standard with unified price, the seller’s profit-maximization

problem is identical to a cost-minimization problem with lost-sales penalty being

counted. In this chapter, we consider this information scenario where customers can

observe the queue length. We will first show that no matter the status of the server

is observable or not, the equilibrium strategies are the same. Consequently, this

information scenario represents both almost observable case (queue is observable

but no server status) and fully observable case (both queue and server status are

observable). We then derive the expected average cost function to investigate the

optimal decision on N .
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8.1 The customer equilibrium strategy

We first consider the case where the server status is unobservable; that is, the

observable system states is S = {0, 1, . . .}. Since the queue length is observable, we

consider a threshold strategy for customers, under which there exists a threshold n̄,

and customers will stay if the queue length is less than n̄, and will leave otherwise.

Since the server’s status is unobservable, to ensure that the server can be acti-

vated, any customers who observe states 0, 1, . . . , N − 1 should stay in the system.

Hence, two conditions must be satisfied to guarantee the system to be activated. The

first condition is that the threshold value of the threshold strategy must be not less

than N , i.e., n̄ ≥ N . The second one is that the expected utilities of the customers

who observe status 0, 1, . . . , N − 1 should be nonnegative. The second condition

need to be further specified from the expected waiting times. In the following, we

analyze these two conditions in detail.

We let Wk be expected waiting times of seeing the queue length k, for 0 ≤ k ≤
n̄− 1. The following lemma provides some properties of Wk.

Lemma 7 For the M/M/1 queue with N -policy and partially observable informa-

tion on the queue length, if the threshold strategy with threshold value n̄ is applied,

where n̄ ≥ N , then (i)

Wk =

⎧⎨
⎩

k+1
μ + (1−ρ)[N−(k+1)]

Λ(1−ρk+1)
, if k = 0, 1, . . . , N − 1;

k+1
μ , if k = N,N + 1, . . . , n̄− 1;

(8.1)

and (ii) Wk is convex in k for k ∈ [0, N − 1].

Proof: (i) Suppose the threshold strategy n̄, where n̄ ≥ N , is adopted and an arriving

customer observes state k. Then, 0 ≤ k ≤ n̄−1. If N ≤ k ≤ n̄−1, the server must be

busy and the expected waiting time is Wk = k+1
μ ; and if 0 ≤ k ≤ N−1, the expected

waiting time depends on the steady-state probabilities of the system. When only the

queue length is observable and the threshold strategy is adopted, the steady-state

probabilities are the same as those in the fully observable case which have been

discussed in Guo and Hassin (2011) (see Case 1 in Section 5.2 and corresponding
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content in the e-companion therein). Since we use different notations, we simply

present the results for the sake of easy understanding. The balance equations are

ΛP0 = μP1,B;

ΛP0 + ΛPk,B = μPk+1,B, k = 1, 2, . . . , N − 1;

ΛPk−1,I = ΛPk,I , k = 1, 2, . . . , N − 1;

ΛPN+k,B = μPN+k+1,B, k = 0, 1, . . . , n̄−N − 1;

and the probability normalization condition is

P0 +

N−1∑
k=1

Pk,I +

N−1∑
k=1

Pk,B +

n̄−N∑
k=0

PN+k,B = 1. (8.2)

We first restrict our attention to the general case with ρ �= 1. Solving the set of

balance equations and normalizing the probabilities by (8.2), we obtain

Pk,B =
ρ− ρk+1

1− ρ
P0, k = 1, 2, . . . , N ;

Pk,I = P0, k = 1, 2, . . . , N − 1;

PN+k,B = ρjPN,B, k = 1, 2, . . . , n̄−N ;

where

P0 =
(1− ρ)2

N −Nρ− ρn̄−N+2 + ρn̄+2
.

Upon observing state k, where k ≤ N − 1, the server might be busy with proba-

bility
Pk,B

Pk,B+Pk,I
, where the expected waiting time of the tagged customer is k+1

μ ; and

the server might also be idle with probability
Pk,I

Pk,B+Pk,I
, when the expected waiting

time of the tagged customer is N−(k+1)
Λ + k+1

μ . Thus, the expected waiting time of

an arriving customer who observes state k is

Wk =
Pk,B

Pk,B + Pk,I
· k + 1

μ
+

Pk,I

Pk,B + Pk,I

[N − (k + 1)

Λ
+

k + 1

μ

]

=

ρ−ρk+1

1−ρ P0

P0 +
ρ−ρk+1

1−ρ P0

· k + 1

μ
+

P0

P0 +
ρ−ρk+1

1−ρ P0

[N − (k + 1)

Λ
+

k + 1

μ

]

=
k + 1

μ
+

1− ρ

1− ρk+1
· N − (k + 1)

Λ
. (8.3)
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If ρ = 1, then Λ = μ. Solving the set of balance equations and normalizing the

steady-state probabilities by (8.2), we have

Pk,I =
2

N(2n̄−N + 3)
, k = 1, 2, . . . , N − 1;

Pk,B =
2k

N(2n̄−N + 3)
, k = 1, 2, . . . , N − 1;

PN+k,B =
2

2n̄−N + 3
, k = 0, 1, . . . , n̄−N. (8.4)

Similarly, the tagged customer who observes state k, where 0 ≤ k ≤ N − 1, satisfies

Wk =
Pk,B

Pk,B + Pk,I
· k + 1

μ
+

Pk,I

Pk,B + Pk,I

[N − (k + 1)

Λ
+

k + 1

μ

]

=
k

k + 1
· k + 1

μ
+

1

k + 1

[N − (k + 1)

Λ
+

k + 1

μ

]

=
k + 1

μ
+

1

k + 1
· N − (k + 1)

Λ

=
k

Λ
+

N

(k + 1)Λ
. (8.5)

Compare (8.3) and (8.5), we can see that

lim
ρ→1

{
k + 1

μ
+

1− ρ

1− ρk+1
· N − (k + 1)

Λ

}

= lim
ρ→1

{
(k + 1)ρ

Λ

}
+ lim

ρ→1

{ −1

−(k + 1)ρk
· N − (k + 1)

Λ

}

=
k

Λ
+

N

(k + 1)Λ
,

where l’Hôpital’s rule is applied in the first equation. This completes the proof of

property (i).

(ii) If ρ = 1, it is easy to check from (8.5) that d2Wk/dk
2 = 2N/[(k+1)3Λ] > 0,

which implies that Wk is convex in k for k ∈ [0, N − 1]. Next, we consider the case

where ρ �= 1. For any real number x, define W (x) = x
μ+

1−ρ
1−ρx · N−x

Λ . Then, it suffices

to show that W (x) is convex on [1, N ]. Taking the first and second derivatives of

W (x), we have

dW (x)

dx
=

1

μ
+

1− ρ

Λ

[−(1− ρx) + (N − x)ρx ln ρ

(1− ρx)2

]
and

d2W (x)

dx2
=

−2(1− ρ)ρx ln ρ

Λ(1− ρx)2
+

(1− ρ)ρx(N − x)(ρx + 1) ln2 ρ

Λ(1− ρx)3
. (8.6)
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If x ∈ [1, N ], then N −x ≥ 0, and it is easy to check that the two terms on the right

hand side of (8.6) are positive, no matter ρ > 1 or ρ < 1. Thus, d2W (x)/dx2 > 0.

Hence, W (x) is convex on [1, N ].

From property (ii) of Lemma 7, among the customers who observe queue length

0, 1, . . . , N−1, either the one observing 0 or the one observing N−1 has the longest

expected waiting time. It is easy to check that

W0 =
1

μ
+

N − 1

Λ
and WN−1 =

N

μ
.

Thus, if Λ ≥ μ, then WN−1 ≥ W0, and the arriving customer who observes N − 1

customers in the system has the longest expected waiting time. If Λ ≤ μ, then

WN−1 ≤ W0, and the arriving customer who observes an empty system has the

longest expected waiting time. Interestingly, the longest waiting times are the same

as those in the case where both server’s status and queue length are observable

(see Guo and Hassin 2011). This is because when an empty system observed, the

customer knows that the server must be idle; and when the queue length N − 1 is

observed, the customer knows that the server must be busy once he/she joins the

system. Hence, the expected waiting times are identical in the queue-observable sys-

tems with or without information on the server status. Consequently, the conditions

of the existence of the threshold strategy and the equilibrium threshold strategy are

the same for both the almost observable and fully observable systems, as summa-

rized in the following theorem (which are the same as Propositions 5 and 6 in Guo

and Hassin 2011).

Theorem 12 Consider the M/M/1 queue with N -policy and observable informa-

tion on the queue length. (i) There exists an threshold equilibrium strategy with

n̄e ≥ N if and only if (a) ρ ≥ 1 and N ≤ ν or (b) ρ ≤ 1 and N ≤ ρ(ν − 1) + 1.

(ii) If condition (a) or (b) in (i) holds, the unique equilibrium threshold is n̄e = �ν�.

Proof: We first show that condition (a) or (b) in (i) is necessary. Suppose there is

an equilibrium threshold strategy n̄e, where n̄e ≥ N . Since the server’s status is not
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observable and N -policy is adopted, we must have

R

θ
≥ Ws, (8.7)

for s = 0, 1, . . . , N − 1, such that the system can be activated. As n̄e ≥ N , by Lem-

ma 7, the expected waiting time Wk is convex in k if k ∈ [0, N − 1] (see Figure 8.1).

Thus, the inequality set (8.7) is equivalent to

��
�

�� ��

�
�

�

���� � � �

Figure 8.1: The expected waiting time.

R

θ
≥ W0 and

R

θ
≥ WN−1. (8.8)

Note also that from (8.1) we have

W0 =
1

μ
+

N − 1

Λ
and WN−1 =

N

μ
. (8.9)

Therefore, if ρ ≥ 1, then WN−1 ≥ W0, and (8.8) implies that N ≤ ν. In this

case, we have condition (a). If ρ ≤ 1, then WN−1 ≤ W0, and (8.8) implies that

N ≤ ρ(ν − 1) + 1. In this case, we have condition (b). Hence, condition (a) or (b)

in property (i) is necessary.

Next, we show condition (a) or (b) in property (i) is sufficient and specify the

equilibrium threshold. Suppose condition (a) in (i) holds. From (8.9), it is easy to

check that

R

θ
≥ WN−1 ≥ W0.
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This, together with property (ii) of Lemma 7 implies that no matter what threshold

strategy n̄, where n̄ ≥ N , is adopted, any arriving customers who observe state s,

where 0 ≤ s ≤ N − 1, will stay in the system. That is, the system can be activated

if any threshold strategy n̄, where n̄ ≥ N , is adopted. Note also that from (8.1),

the expected waiting time Wk is linearly increasing in k if k ∈ [N, n̄ − 1]; see also

Figure 8.1. Thus, if we try the numbers N,N +1, . . . as the threshold n̄ one by one,

there must exist a threshold n̄e such that

R

θ
≥ n̄e

μ
and

R

θ
<

n̄e + 1

μ
,

or equivalently, n̄e = �ν�. Therefore, condition (a) in (i) is sufficient, and n̄e = �ν�
is is an equilibrium threshold. Similar analysis can be conducted when condition

(b) in (i) holds. This completes the proof of Theorem 12.

Remark 5 From Theorem 12, the equilibrium strategy and the corresponding con-

ditions of the system with almost observable information are the same as those in

the system with fully observable information. Thus, as long as the customers are

informed with the N -policy the system adopted and the queue length, providing or

not providing the information on the server status will generate the same effect.

This observation can be applied to reduce the administrative costs on information

spreading.

In property (ii) of Theorem 12, the equilibrium n̄e = �ν� is independent of

N . However, the value of N affects the steady-state probabilities of the system,

the expected length of a production cycle, and the expected waiting times of the

customers staying in the system. Thus, although the equilibrium strategy is fixed,

the expected average cost depends on the value of N . In the next section, we will

study the expected average cost function and the impact of N .

8.2 The expected average cost and optimal decision

Suppose the threshold strategy n̄ is adopted. The expected average cost (7.6) is

also valid. We adopt the same notations in Section 7.2. Also let T be the expected
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time length of one production cycle, let TB and TI be the expected time lengths

of the server being busy and idle in one production cycle, respectively, and let

WC be the expected total customer waiting cost in one production cycle. More

complicated first-step analysis can be applied to calculate the cycle time TB and

the total waiting cost WC. Note that when the threshold strategy n̄ is adopted,

the potential customers will leave the system if and only if there are n̄ customers

in the system. Let Pn̄ be the probability that there are n̄ customers in the system.

Hence, the expected lost demand units in one production cycle is Pn̄ΛT . Therefore,

we have the expected average cost with observable queue be summarized in the

following lemma.

Lemma 8 Suppose the threshold strategy n̄, where n̄ ≥ N , is adopted. Then, the

expected average cost is given as follows. If ρ �= 1, we have

AC =
K + cTB +WC + �Pn̄ΛT

T
, (8.10)

where

TB =
1

μ(1− ρ)

[
N − ρn̄−N+1(1− ρN )

1− ρ

]
,

T =
1

μ(1− ρ)

[
N

ρ
− ρn̄−N+1(1− ρN )

1− ρ

]
,

WC =
N(N − 1)h

2Λ
+

h

μ(1− ρ)

[
ρN

1− ρ
+

N(N + 1)

2
−
(
n̄+

1

1− ρ

)
ρn̄−N+1(1− ρN )

1− ρ

]
,

and

Pn̄ =
ρn̄−N+1(1− ρN )(1− ρ)

N −Nρ− ρn̄−N+2 + ρn̄+2
.

If ρ = 1, we have

AC =
2KΛ

(2n̄−N + 3)N
+

c(2n̄−N + 1) + h[n̄(n̄+ 1)− 1
3(N

2 − 3N + 2)] + 2�Λ

2n̄−N + 3
.

(8.11)

Proof: We first restrict our attention to the general case where ρ �= 1, the special

case ρ = 1 will be analyzed at the end. The validity of (8.10) follows directly from

(7.6). Thus, it suffices to obtain the expressions for TB, T , WC, and Pn̄.
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Consider the cycle times TB and T . It is easy to see that the time period when

the server is idle is the sum of N Poisson inter-arrival times with rate Λ; that is,

TI = N
Λ . To determine TB, suppose there are k customers in the system, where

1 ≤ k ≤ n̄, and the server has just started processing a customer order. Let τk be

the first time that the system becomes empty. Then, TB = τN .

By first-step analysis, we can obtain the recursive equations

τk =
1

μ+ Λ
+

Λ

μ+ Λ
τk+1 +

μ

μ+ Λ
τk−1, k = 1, 2, . . . , n̄− 1, (8.12)

and the boundary condition

τn̄ =
1

μ+ Λ
+

Λ

μ+ Λ
τn̄ +

μ

μ+ Λ
τn̄−1. (8.13)

Define τ0 = 0, and let Δτk = τk − τk−1 for k = 1, 2, . . . , n̄. Equations (8.12) and

(8.13) imply that

Λ
(
Δτk+1 − 1

μ− Λ

)
= μ
(
Δτk − 1

μ− Λ

)
, k = 1, 2, . . . , n̄− 1,

and

Δτn̄ =
1

μ
,

respectively. Let ak = Δτk − 1
μ−Λ for k = 1, 2, . . . , n̄. We have

an̄ =
ρ

Λ− μ
and ak = ρak+1,

for 1 ≤ k ≤ n̄− 1, which imply that

ak = ρn̄−kan̄ =
ρn̄−k+1

Λ− μ
,

for 1 ≤ k ≤ n̄ − 1. This, together with the definitions of τk, Δτk, and ak, implies

that

TB = τN =
N∑
k=1

Δτk =
N∑
k=1

(
ak +

1

μ− Λ

)

=
1

Λ− μ

N∑
k=1

ρn̄−k+1 +
N

μ− Λ

=
1

μ(1− ρ)

[
N − ρn̄−N+1(1− ρN )

1− ρ

]
.
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Therefore,

T = TB + TI =
1

μ(1− ρ)

[
N

ρ
− ρn̄−N+1(1− ρN )

1− ρ

]
.

Next, consider the total customer waiting cost in one production cycle, WC. Let
WCI and WCB be the expected waiting cost incurred in the periods when the server

is idle and busy, respectively. Then, WC = WCI +WCB. It is easy to see that

WCI =
h

Λ
+

2h

Λ
+ · · ·+ (N − 1)h

Λ
=

N(N − 1)h

2Λ
. (8.14)

To determine WCB, suppose there are k customers in the system, where 1 ≤ k ≤ n̄,

and the server has just started processing a customer order. Let ζk be the total

customer waiting cost in the time period until the server finishes processing all of

the customers in the system. Then, WCB = ζN .

By first-step analysis, we have the recursion equations

ζk =
kh

μ+ Λ
+

Λ

μ+ Λ
ζk+1 +

μ

μ+ Λ
ζk−1, k = 1, 2, . . . , n̄− 1,

and the boundary equation

ζn̄ =
n̄h

μ+ Λ
+

Λ

μ+ Λ
ζn̄ +

μ

μ+ Λ
ζn̄−1.

Define ζ0 = 0, and let Δζk = ζk−ζk−1 for k = 1, 2, . . . , n̄. Then, the above equations

imply that

Δζk = ρΔζk+1 +
kh

μ
, k = 1, 2, . . . , n̄− 1,

and

Δζn̄ =
n̄h

μ
,

respectively. Thus, by mathematical induction, it is easy to check that

Δζk = h
n̄−k∑
i=0

(k + i)ρi

μ
, 1 ≤ k ≤ n̄− 1.
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This, together with the definitions of Δζk, implies that

ζN =

N∑
k=1

Δζk = h

N∑
k=1

[
n̄−k∑
i=0

ρi
k + i

μ

]
= h

N∑
k=1

[
k

μ

n̄−k∑
i=0

ρi +
1

μ

n̄−k∑
i=0

iρi

]
(8.15)

= h

N∑
k=1

{
k

μ

1− ρn̄−k+1

1− ρ
+

1

μ

[
ρ(1− ρn̄−k)

(1− ρ)2
− (n̄− k)ρn̄−k+1

1− ρ

]}

=
h

μ(1− ρ)

N∑
k=1

[
k(1− ρn̄−k+1) +

ρ(1− ρn̄−k)

1− ρ
− (n̄− k)ρn̄−k+1

]

=
h

μ(1− ρ)

N∑
k=1

[
ρ

1− ρ
+ k −

(
n̄+

1

1− ρ

)
ρn̄−k+1

]

=
h

μ(1− ρ)

[
ρN

1− ρ
+

N(N + 1)

2
−
(
n̄+

1

1− ρ

)ρn̄−N+1(1− ρN )

1− ρ

]
. (8.16)

Therefore, from (8.14) and (8.16), we have

WC =
N(N−1)h

2Λ
+

h

μ(1−ρ)

[
ρN

1−ρ
+

N(N+1)

2
−
(
n̄+

1

1−ρ

)ρn̄−N+1(1−ρN )

1−ρ

]
,

where the first term is the total customer waiting cost in the time period when the

server is idle, and the second term is the one for the time period with busy server.

Regarding the lost-sales probability Pn̄, from the steady-state probabilities in

the proof in Lemma 7, we have

Pn̄ = Pn̄,B = ρn̄−NPN,B =
ρn̄−N (ρ− ρN+1)

1− ρ
P0 =

ρn̄−N+1(1− ρN )(1− ρ)

N −Nρ− ρn̄−N+2 + ρn̄+2
.

This completes the proof of the lemma with ρ �= 1.

We next obtain the average cost for the special case ρ = 1, i.e., Λ = μ. Regarding

the cycle times, we also have TI = N
Λ and the validity of (8.12) and (8.13), which

imply that

Δτk+1 =
1

Λ
+Δτk, k = 1, 2, . . . , n̄− 1,

and

Δτn̄ =
1

Λ
.

Thus,

Δτk =
n̄+ 1− k

Λ
, k = 1, 2, . . . , n̄,
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from which we can obtain that

TB = τN =

N∑
k=1

Δτk =

N∑
k=1

n̄+ 1− k

Λ
=

(2n̄−N + 1)N

2Λ
, (8.17)

and

T = TI + TB =
N

Λ
+

(2n̄−N + 1)N

2Λ
=

(2n̄−N + 3)N

2Λ
. (8.18)

Regarding the total waiting cost in one cycle, equations (8.14) and (8.15) hold, and

the latter implies that

WCB =h
N∑
k=1

[
k

Λ

n̄−k∑
i=0

1 +
1

Λ

n̄−k∑
i=0

i

]
=

h

Λ

N∑
k=1

[
k(n̄− k + 1) +

(n̄− k)(n̄− k + 1)

2

]

=
h

2Λ

N∑
k=1

(n̄− k + 1)(n̄+ k) =
h

2Λ

N∑
k=1

(n̄2 − k2 + n̄+ k)

=
h

2Λ

[
n̄(n̄+ 1)N − N(N + 1)(2N + 1)

6
+

N(N + 1)

2

]

=
hN

2Λ

[
n̄(n̄+ 1)− N2 − 1

3

]
.

This, together with (8.14), implies that

WC =
hN

2Λ

[
n̄(n̄+ 1)− N2 − 3N + 2

3

]
. (8.19)

Regarding the lost-sales probability Pn̄, from (8.4), we have

Pn̄ =
2

2n̄−N + 3
. (8.20)

Substituting (8.17)–(8.20) into (8.10) and simplifying the expression, we obtain e-

quation (8.11).

Unfortunately, the average cost function (8.10) is not necessarily convex (in our

numerical study, there are cases where AC is not convex in N).

The impact of N on the expected average cost is studied numerically. We restrict

our numerical studies to ρ < 1, as it allows us to compare the model with the tradi-

tional one without strategic customers. Figure 8.2 shows the numerical results with

ρ = 0.98. There are two main observations from this numerical study. First, when

N is small, the cost function is steeper than the one without strategic customers,
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Figure 8.2: AC versus N for the system with observable queue length.

implying that the system performance with strategic customers is very sensitive to

a small N . However, when N is large, the cost function with strategic customers

become even more flat than the one without strategic customers, implying that the

system performance with strategic customers is insensitive to a large N . Second, as

ν becomes very large, the system performance with strategic customers converges to

that of the traditional model. The system performance has similar patterns as what

depicted in Figure 8.2 when ρ varies but less than 1, except that when the system

utilization ρ is smaller, the system performance converges to that of the traditional

model faster as ν increases.
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Chapter 9

The Impact of Information

In this chapter, we investigate the difference on the minimal costs between the cases

with unobservable and observable queue lengths. In Chapter 8 we show that if the

queue length is observable, it has no effect on the system performance regardless

whether the information on the server status is made available to the incoming

customers. Thus, the information scenario where the queue length is observable is

also the information scenario where both the queue length and the server status are

observable. Hence, compared with the information scenario where the queue is not

observable (i.e., the case discussed in Chapter 7), the information scenario where the

queue length is observable can be regarded as having more information on the queue

length. Therefore, the increase/decrease of the average costs in the two information

scenarios is the contribution, either positive or negative, of providing information

on the queue length.

Let N∗
u (N∗

o ) and AC∗
u (AC∗

o ) be the optimal values of N and the corresponding

optimal average cost when the queue is unobservable (observable). We define

ΔAC∗ =
AC∗

u −AC∗
o

AC∗
o

× 100%,

which is the percentage difference between the optimal average costs under the two

information scenarios. It reflects the percentage increase in the optimal average

cost when less information is provided to the customers, and it can be regarded

as the value of the information (i.e., queue length) on the system performance. If
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ΔAC∗ > 0, then more information is beneficial to the production system. However,

if ΔAC∗ < 0, then information hurts the system performance.

Next, we numerically study the impact of information on the expected average

cost by using ΔAC∗. Our numerical examples have the same settings as those in

Sections 7 and 8; that is, Λ = 10, c = 10, h = 5, � = 50, and K = 1000. We consider

different values of ρ and ν. The optimal N is obtained through one-dimensional

numerical search.

We first consider the impact of information on the optimal average cost by

varying the value of ρ. We let ν = 40 and 80. The numerical results are summarized

in Table 9.1. A plot of the percentage difference in the expected average cost against

ρ is shown in Figure 9.1.

Table 9.1: The impact of information for different values of ρ.

ν = 40 ν = 80

ρ N∗
u N∗

o AC∗
u AC∗

o ΔAC∗ N∗
u N∗

o AC∗
u AC∗

o ΔAC∗

0.1 8 4 1144.1 2259.1 -49% 15 8 636.6 1144.1 -44%

0.2 14 8 607.2 1020.8 -41% 27 16 364.5 540.8 -33%

0.3 19 12 418.6 616.0 -32% 37 24 284.3 354.3 -20%

0.4 23 16 323.2 419.8 -23% 46 32 250.3 272.3 -8%

0.5 27 20 260.2 307.5 -15% 45 40 231.1 232.5 -1%

0.6 30 24 219.3 237.7 -8% 40 40 211.0 211.0 0%

0.7 33 28 189.6 193.3 -2% 35 35 189.4 189.4 0%

0.8 28 29 166.9 166.4 0% 28 28 166.9 166.9 0%

0.9 20 22 151.5 146.6 3% 20 20 151.5 151.3 0%

1 25 13 232.0 160.0 45% 40 10 412.3 240.5 71%

1.2 26 9 308.4 193.8 59% 43 6 493.3 393.3 25%

1.4 27 7 363.6 211.8 72% 45 6 551.4 411.8 34%

1.6 28 6 405.2 220.4 84% 47 13 595.1 420.4 42%

1.8 29 6 437.8 226.0 94% 48 11 629.2 426.0 48%

2 29 5 464.0 230.0 102% 50 53 656.5 430.0 53%

4 33 24 583.3 245.8 137% 59 5 780.2 445.8 75%

6 35 3 623.5 250.7 149% 64 18 821.6 450.7 82%

8 36 18 643.8 253.0 154% 68 2 842.4 453.0 86%

10 37 9 656.0 254.4 158% 70 10 854.9 454.4 88%
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Figure 9.1: The impact of information, ΔAC∗, versus ρ.

Clearly, the value of information strongly depends on the utilization of the sys-

tem, i.e., the value of ρ. When the customer traffic is light to moderate, e.g.,

ρ < 0.5, the value of information is negative, which means that providing more

information to customers actually increases the average cost of the system. When

the customer traffic is heavy to overloaded, e.g., ρ > 0.9, the value of information

is positive, which means that providing more information to customers reduces the

system average cost. Another important observation is that the optimal N under

less information is typically larger than the one under full information, except for

two cases which we underline in Table 9.1.

Table 9.2 summarizes the numerical results with varied values of ν. Recall that ν

measures the maximal number of service cycles a customer is willing to wait. Hence,

a larger ν represents more patient customers. We let ν vary from 2 to 200 with 19

different values, and we let ρ = 0.3 and 1.5. A plot of the percentage difference in

the expected average cost against ν is also shown in Figure 9.2.

The main observation is that the absolute value of the percentage difference is

large when when ν is small which represents impatient customers. However, as

ν is large, the percentage difference converges to zero, which means that for very

patient customers, the value of information is 0. Consequently, when customers are
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Table 9.2: The impact of information for different values of ν.

ρ = 0.3 ρ = 1.5

ν N∗
u N∗

o AC∗
u AC∗

o ΔAC∗ N∗
u N∗

o AC∗
u AC∗

o ΔAC∗

2 1 1 7811.2 7202.0 8% 2 1 2311.5 2143.2 8%

4 2 1 3507.6 7022.4 -50% 4 3 1058.1 427.6 147%

6 3 2 2343.5 3509.3 -33% 6 5 618.0 177.9 247%

8 4 3 1762.6 2343.7 -25% 7 7 459.1 108.8 322%

10 5 3 1415.1 2343.5 -40% 9 9 387.5 88.9 336%

12 6 4 1184.3 1762.6 -33% 10 10 351.7 86.5 307%

14 7 4 1020.1 1762.6 -42% 12 10 333.0 91.1 266%

16 7 5 1020.1 1415.1 -28% 13 9 323.9 98.6 228%

18 8 6 897.6 1184.3 -24% 15 9 320.4 107.6 198%

20 9 6 802.9 1184.3 -32% 16 9 320.5 117.1 174%

40 19 12 418.6 616.0 -32% 28 7 385.8 216.7 78%

60 28 18 322.6 436.5 -26% 37 6 477.9 316.7 51%

80 37 24 284.3 354.3 -20% 46 5 574.7 416.7 38%

100 46 30 269.8 311.0 -13% 53 5 673.0 516.7 30%

120 53 36 267.2 287.1 -7% 60 10 772.0 616.7 25%

140 53 42 267.2 274.3 -3% 67 2 871.3 716.7 22%

160 53 48 267.2 268.5 0% 73 9 970.8 816.7 19%

180 53 53 267.2 267.2 0% 79 20 1070.5 916.7 17%

200 53 53 267.2 267.2 0% 84 23 1170.2 1016.7 15%

impatient, managers should be cautious on deciding whether to hide or reveal the

delay information.
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Figure 9.2: The impact of information, ΔAC∗, versus ν.
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CONCLUSIONS

In this dissertation, we have studied two optimization models with Poisson demand:

the inventory control model in a buy-and-sell environment and the production con-

trol model in a make-to-order environment.

In the first essay, we introduce a new approach for analyzing the traditional

(s, S) policy for a continuous review inventory problem. We transform the original

average-profit-maximization objective into a new effective profit objective. The

problem is solved by applying a binary search to the transformed problem. Using this

method, we obtain several interesting results. For the classical model with complete

backlogging, we show that the optimal policy to maximize the new objective function

is a stationary (s, S) policy. The optimal reorder point is obtained by balancing the

effective revenue rate with the expected inventory cost rate at the end of the lead

time period, while the optimal order-up-to level is independent of the reorder point.

By applying such an economic interpretation of the optimal reorder point to the

general partial backlogging model, we obtain a simple but effective heuristic. The

effectiveness of our heuristic is tested via a numerical study. We further compare the

performance of our heuristic with two other intuitive heuristics, and we demonstrate

that the safety stock plays an important role on the performance of those heuristics.

This insight can potentially be applied to other inventory models with more general

settings, such as compound Poisson demand process or stochastic lead times, to help

design effective heuristics.

From the analysis conducted in the first essay, we observe that the structural

characteristics of the new effective profit objective function simplifies the analysis

of the inventory problem and enables us to interpret the economic reasoning of the
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optimal reorder point. It is quite possible that this transformed objective function

and similar analysis can be applied to other stochastic inventory problems. One

possible future research direction is to apply this method to inventory systems with

supply uncertainty; that is, when the order quantity received is dependent on but

no greater than the quantity ordered. Both stochastic lead time demand and supply

uncertainty can cause uncertainty on the inventory level immediately after the order

arrival. However, the latter imposes a bigger challenge because the inventory level

immediately after the order arrival is stochastically dependent on the order quantity,

whereas the former is not. The new effective profit objective function might be

applied to such models such that insightful results can be obtained.

Another possible application of the new objective function is to provide an alter-

native approach to deal with joint pricing-inventory problems. The effective profit

objective has a dynamic structure, namely the current profit plus the profit-to-go.

For state-dependent pricing problems, the price of the current stage only affects the

demand and the effective profit in the current stage, while the effective profit-to-

go depends only on future decisions. The structure of the effective profit function

can be incorporated into the pricing problem with state-dependent pricing decisions.

Some literature has considered this kind of inventory-pricing problems using the tra-

ditional objective (see Chen and Simchi-Levi 2012). However, we expect that some

new structural results and insightful economic interpretations might be explored by

using our new approach. For state-independent pricing problems (i.e., the pricing

decision is made at the beginning of the planning horizon and applied to the entire

planning horizon), closed-form optimal policies (i.e., replenishment policies similar

to that presented in Theorem 3) might be developed and applied to the global op-

timal pricing decisions. To the best of our knowledge, it is an unsolved problem in

the literature, although a lot of work has addressed the counterpart problems under

the newsvendor framework.

We also conjecture that the new objective function might provide certain oppor-

tunities to develop a unified method to deal with periodic-review and continuous-

review models. This is because the effective profit function is decomposable into
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effective profits of different time intervals, and this decomposition can be applied to

both periodic-review and continuous-review models. The order decisions in periodic

review models can only be made at the review points. Thus, in the periodic-review

model, we can apply our method under the constraint that the order can only be

placed at some pre-determined time points. In the special case where the inter-order

time is required to be identical, the order policy becomes the “fixed inter-review pe-

riod” replenishment policy. Furthermore, the “fixed inter-review period” might also

be taken as a decision variable, and the performance of the best possible “fixed inter-

review period” model and the performance of the continuous-review model can be

compared analytically.

In the second essay, we investigate the optimal control of an MTO production

system with strategic customers. Customers decide to stay in the system or leave

without purchase according to their expected waiting time, which is affected by

the information made available to them. We consider two scenarios depending on

whether the queue length is observable or not. The production system is modeled

as an M/M/1 queue with N -policy, which means that the production is triggered

to start when N customer orders are received, and once the production starts it will

keep on working until all of the waiting customer orders are processed.

We first derive the equilibrium strategies for customers’ decision on staying ver-

sus leaving. Based on that, we derive the average cost function for the whole system

which consists of fixed set-up cost, operation cost, waiting cost, and lost-sales penal-

ty. When the queue length is unobservable but the server’s status is observable, the

average cost function is either convex or piecewise convex in the decision variable

N . When the queue length is observable, such a function is not convex in general.

Numerical study is conducted to investigate the impact of customer strategic

behavior on the system performance. In general, under strategic customer behavior,

the average cost is very sensitive in N when N is small, but it becomes insensitive in

N when N gets larger. Furthermore, the interval of N with insensitive average cost

is wider for the customers with higher patience level. Thus, the system manager

should be more cautious in choosing N if the customers are less willing to wait.
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There are also some interesting observations in the case where the queue length is

not observable. For the production system with high system utilization (i.e., ρ � 1)

and very impatient customers, it is possible that optimal system control parameter

N will induce the customers to adopt the paradoxical strategy (0, 1), i.e., staying

if the server is idle but leaving if it is busy. For the production system with heavy

traffic (i.e., ρ ≈ 1 but ρ < 1), it is possible that strategic customer behavior benefits

the system performance with an optimal threshold being greater than that in the

traditional model without strategic customers.

We also compare the system performance with observable versus unobservable

queue length. Our numerical study shows that, for light to moderate customer traf-

fic, hiding queue length information is more beneficial, whereas for heavy customer

traffic, revealing queue length information is more beneficial. We show that the

impact of information is large when customers are impatient, and not so when cus-

tomers are very patient. Consequently, managers should be cautious in providing

information to impatient customers.

In our analysis, we have modeled the MTO production system by an M/M/1

queue, since this model is one of the most commonly used queueing models. How-

ever, one limitation of our model is that in a real-life production system, the service

time may not be exponentially distributed. Hence, generalizing our model to an

M/G/1 setting will enhance its practicality. However, if our problem is modeled

by an M/G/1 queue, the embedded Markov chain and the probability transition

matrix need to be analyzed in order to obtain the steady-state probabilities. Such

an extension is an interesting future research direction.

Another possible extension of the current topic is to consider two production

systems and incorporate the competition between them. Under competition en-

vironment, customers strategically choose the one which gives them higher utility.

The impact of the strategic behavior on the system performance might be greatly d-

ifferent from what have discussed in this essay. This is also an interesting problem to

investigate. Future research may also consider a variant of our model which adopts a

make-to-stock production mode. That is, the production starts when some customer
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orders are received, and stops only when a certain inventory level is reached.
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