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Abstract 

I 

Abstract 

 

The electricity industry around the world has been experiencing significant reforms at 

an unprecedented pace in its history. Due to the fundamental reforms of the electric 

power industry, novel electricity market planning and management methods are 

therefore needed in this open deregulated environment. Furthermore, growing concerns 

about environmental issues have led to the establishment of many energy and 

environmental policies, of which the most relevant ones are those derived from the 

Kyoto Protocol for the reduction of greenhouse gas emissions as well as those 

promoting renewable energies. Separate and evolving public policy debates are 

currently shaping electricity market, carbon market, and renewable market without 

paying adequate attentions to how each market affects the others, though the markets 

have overlapping goals with respect to the global economic and environmental benefits.  

 

The objectives of this thesis are to address these notoriously problems, and develop 

several essential electricity market management and analysis models in two main 

aspects. The first aspect aims at gaining insightful knowledge of price schemes in 

deregulated electricity markets. As the nowadays electricity market is closely associated 

with other commodity markets such as fuel market and carbon market, electricity price 

is volatile and accurate price forecasting model are in great need for market operators. 

Besides, problems relating to the management and operation of reactive power are 

actually arising under the trend towards decentralised production of renewable 

resources. In order to procure reactive support competitively from the markets, it is 

necessary to quantify the price of the reactive power source output. Based on the 

outcomes of the first aspect, the second aspect studies the impacts of emission trading 

on the operation of electricity markets from either generation companies or market 

operators’ point of view. These studies include the consideration of multimarket 

environment and renewable energy support schemes.  

 



Abstract 

II 

Revolving around these two aspects, the following topics regarding electricity market 

management and analysis are discussed and investigated in the thesis. 

1. Day-ahead electricity price forecasting based on panel cointegration and particle 

filter 

2. A novel value based reactive power procurement scheme in electricity markets 

3. Impacts of emission trading schemes on GENCO’s decision under multimarket 

environment 

4. Impacts of emission trading and renewable energy support schemes on electricity 

market operation 

5. Multimarket analysis of GENCOs’ operations considering emission trading and 

renewable energy support schemes 

 

In summary, the research reported in this thesis provides a composite framework for 

environmental and economical analysis in electricity market planning and management. 

It covers price schemes in deregulated electricity markets for both electricity active 

power and reactive power, and also impacts of emission trading on the operation of 

electricity markets. Further studies are expected to explore reactive power management 

considering emission trading scheme and wind power uncertainties. This research is 

finished with nine journals papers and ten conference papers produced. 
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CHAPTER 1. INTRODUCTION 

1.1. Research Background  

The electric power industry had been dominated over the years by large utilities, 

which were engaged in all the activities of generation, transmission and distribution of 

power. These vertically integrated entities were usually granted monopoly status in 

defined franchise areas with the obligation to serve all consumers within those 

territories. Besides ensuring a fair rate return to utilities, the cost-of-service regulation 

can protect consumers from potential monopolistic abuses. Within the traditional 

vertical integration structure, centralized power plants with large size units were the 

most efficient and economical ways to produce and deliver energy to the customers.  

However, the electricity industry around the world has been experiencing significant 

reforms at an unprecedented pace over the past three decades [1]. Due to an increasing 

efficiency in electricity production and utilization, the traditional, vertically 

monopolistic structures have been reformed into open and competitive markets. The 

most significant benefit of this reform is to allow competition among generators to 

produce electricity. This creates a market environment in the electricity industry, which 

is considered as a necessity to increase the efficiency of electric energy production and 

distribution, and to lower prices. Although the deregulation in electricity industry has 

many benefits, several new challenges are also observed in the market. Due to the 

fundamental reforms of the electric power industry, traditional planning and 

management methods cannot revolve these new challenges. Novel electricity market 

planning and management methods are therefore needed in this open deregulated 

environment. 
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The primary goals of establishing an electricity market (EM) are to provide energy 

securely, reliably and efficiently. While electricity market planning and management 

usually meet these goals, other valued outcomes including conserving finite resources, 

maintaining stable and reasonable electricity cost, and protecting the environment are at 

the stakes. Growing concerns about environmental issues have led to the establishment 

of several energy and environmental policies, of which the most relevant are those 

derived from the Kyoto Protocol [2] for the reduction of greenhouse gas emissions as 

well as those promoting renewable energies. Within the protocol, emissions trading 

scheme (ETS) is regarded as one of the most important mechanisms to increase the 

effort of economic efficiency in reducing greenhouse gas emissions. Reduction credit 

programs, averaging programs and cap-and-trade programs are three basic types of 

emissions trading programs [3]. In this thesis cap-and-trade programs, inspiriting the 

implementation of the carbon market, will be investigated. Besides ETS, several other 

favourable policies have been enacted to incite the use of renewable energy in the 

power industry. Separate and evolving public policy debates are currently shaping 

electricity market, fuel market, carbon market, and renewable market without paying 

adequate attentions to how each market affects the others, though the markets have 

overlapping goals with respect to the global environmental and economical benefits. All 

these further developments in the interactive markets have made existing challenges 

even more complex. 
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The outline of the thesis is depicted in Fig.1-1, which reveal the linkage of different 

chapters and the research route. In this thesis novel models, with consideration of 

environmental and economical influences under multi-market environments, are 

proposed to address the above notorious challenges in electricity market planning and 

management. In the following sections, the three closely related markets besides 

electricity market are briefly introduced first in section 1.2. The research objectives are 

then presented to identify the tasks of different chapters in section 1.3. It is followed by 

the description of the organization of this thesis and the linkage among chapters in 

section 1.4. 

1.2. Global Markets Introduction 

1.2.1. Fuel market (FM) 

Following the deregulation in electricity market, several naturally interrelated fuel 

markets like coal, oil and natural gas markets [4, 5] have been being developed to more 

competitive environments. The most significant change is that the prices of these fuel 

markets are determined by market participants rather than by regulators. This change 

allows market participants to respond more quickly to affect the fuel prices variation. 

Specifically, generation companies (GENCOs) in electricity markets are also the main 

participants in the major fuel source markets. In this manner, GENCOs may respond to 

price changes in the major fuel source markets (i.e., coal, oil and nature gas markets).  

Obviously, the fundamentals of electricity markets and fuel markets are closely 

related and correlated interactively. Mohammadi [6] demonstrated that there are (1) 

Stable long-run relationship between real prices for electricity and coal; (2) Bi-directional 

long-run causality between coal and electricity prices; and (3) Insignificant long-run 

relationship between electricity and crude oil and/or natural gas prices. Specifically, for 
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electricity markets, electricity spot markets may respond to price changes in its major 

fuel source markets. Further, fuel source prices may in turn respond to the changes in 

electricity prices [7, 8]. Along with the potential climate impacts, electricity power 

industry experiences a significantly shift towards less CO2-intensive generation 

technologies. Switching a substantial fraction of electricity generating capacity from 

fossil fuels to renewable technologies such as wind-powered turbines, geothermal, or 

biomass, would help to reduce carbon emissions from this sector and satisfy the 

growing demand for electricity in both developed and developing countries. This trend 

of diversification is particularly important for electricity market because fossil fuels 

such as oil and gas are often subject to violent price fluctuations and supply problems. 

Furthermore, the changes in fuel diversity lead to significant impacts on the fuel market 

demands. Under the described circumstances, electricity market planning and 

management need to consider a highly complex scenario, which evolves following 

market changes based on the offer and demand of energy and fuels. Further research 

with a more coordinated approach and a better understanding of the links among the 

diverse factors involved are in urgent needs. 

1.2.2. Carbon market (CM) 

Internationally, the primary market-based approach is the framework established 

under the Kyoto Protocol [9]. It sets out an international emissions trading system and 

two project-based mechanisms, Joint Implementation (JI) and the Clean Development 

Mechanism (CDM), which together are designed to provide the countries that are 

parties to the protocol with additional means for meeting emissions targets [2]. These 

mechanisms are widely applied at the international level. Specifically, emission trading 

scheme is nowadays regarded as a central pillar of global climate policy. It serves as the 

inspiration and the basis for the global carbon market. It puts a market value on 
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Greenhouse Gases (GHGs) emission reductions and creating new markets and 

investment opportunities.  

Carbon markets are forming internationally and nationally and they provide a means 

for reducing anthropogenic-caused CO2 emissions and other GHGs. The largest market 

in place for carbon trading is the European Union Emissions Trading Scheme (EUETS). 

The EUETS is designed to meet the Kyoto Protocol goals, which have legally binding 

commitments to reduce GHG emissions for the 148 countries (including all European 

Union members, Canada and Russia) that have ratified the Protocol [10]. The EUETS 

officially began in January 2005 and is the largest, multi-country trading scheme for 

GHGs in the world. In March 2005 alone, more than 6.5 million tons of CO2 were 

traded in the EUETS [11]. Recently, several other compliance and voluntary carbon 

markets have been developed, such as the Chicago Climate Exchange (CCEX) [12], 

Regional Greenhouse Gas Initiative (RGGI) [13] in the United States, or the Australian 

scheme [14] in New South Wales. Furthermore, China, one of the developing countries,  

plans to run regional carbon trading trials in seven most important cities and provinces, 

namely, Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei and Shenzhen [15].  

The booming of carbon market raises increasing concerns internationally. The value 

of the global carbon market climbs to a new high point in 2011, driven predominantly 

by a robust increase in transaction volumes. The total value of the market in year 2011 

has grown by 11% to US$176 billion, and transaction volumes has reached a new high 

of 10.3 billion tons of carbon dioxide equivalent (CO2 e). However, the potential gains 

have not been fully exploited, because there are numerous obstacles and barriers which 

prevent the public sector, business and consumers from tapping into that potential. The 

World Bank estimates that carbon trading globally could be worth US$3.5 trillion by 

2020 and it will overtake oil market to become the largest market in the world [16]. The 
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electricity supply industry worldwide has been identified as a major source of 

greenhouse gas emissions. The combustion of fossil fuels to generate power in 

electricity supply side contributes mostly the worldwide carbon emission as a single 

sector [17]. Therefore, further research focused on the integration of CM with other 

markets e.g EM is an urgent need to exploit the potential of its advantages. 

1.2.3. Renewable market (RM) 

Over the past decade, markets for renewable energy have been rapidly expanded. It is 

noticeable that renewable market is not rational to be studied individually since there 

are several overlaps with either other markets or policies and guidelines issued by 

government from different regions/countries. The growth being observed in recent years 

is due to favorable policies that have incentivized renewable, especially wind energy 

generation. 

However, the renewable market under a mandatory one and a voluntary one is 

classified as an easy access to get a better understanding. Mandatory renewable target is 

specified and exerted through market mechanism to force a fixed quantum of renewable 

energy into the supply mix. The implementation of the mandatory renewable market 

will help increasing the renewable penetration in the electricity industry. For example, 

Renewable Portfolio Standard (RPS) [16], representing the mandatory market for 

renewable energy in the U.S., requires electricity generation entities to produce or 

purchase a certain percentage of their electricity from renewable energy sources by a 

specified date. Similarly, in order to promote the development of renewable energy, 

renewable energy support schemes (RESS) have also been implemented in many 

countries and regions [18, 19]. The objective of the implementation of RESS is to 

promote rapid development of the renewable energy sources. RESS is traditionally 

based on three main mechanisms: fixed-price systems, fix-quantity systems and bidding 
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systems. These have been supplemented by other complementary instruments such as 

investment subsidies, fiscal and financial incentives and green pricing [20]. 

Along with the existence of several mandatory renewable markets, there are also 

several growing voluntary markets. On the one hand, a voluntary RM provides 

measures for consumers (e.g., companies, cities or individuals) who are willing to pay 

voluntarily more to reduce their carbon footprint, which is the carbon emission 

associated with one’s energy consumptions. On the other hand, the main objectives of 

these voluntary RMs are to help support green power and to create positive benefits 

associated with renewable energy as compared to fossil fuels. Besides supporting green 

power, offsetting the emissions associated with their energy use, reducing the 

environmental footprint of their operations, or gaining public recognition, these markets 

are always used to create credits associated with some specified values in many 

countries or regions.  

Such as in the U.S., one renewable energy credits (REC) are tradable, non-tangible 

energy commodities that represent a proof that one megawatt-hour (MWh) of electricity 

was generated from an eligible renewable energy resource. Today, more than 50% of 

U.S. electricity consumers have the option to purchase renewable energy through their 

utility or electricity provider, generally at a premium above standard electricity rates. In 

states with restructured electricity markets, customers can choose to switch electricity 

providers if their current provider does not offer a green energy option. In addition, all 

customers have the option to purchase RECs separately from electricity through a local or 

national REC marketer. Generally, these options provide consumers with the ability to 

purchase renewable energy without the upfront capital costs typically associated with on-

site renewable energy systems [21].  

http://en.wikipedia.org/wiki/Megawatt-hour
http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Renewable_energy
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To motivate the shift from fossil fuels toward renewables, the appropriate energy 

policy frameworks enable the power industry to achieve its economic and 

environmental goals. Mandatory scheme such as RPS and RESS, which constitute the 

renewable markets, is one of the focuses of this thesis.  

1.3. Research Objectives 

As discussed in the previous sections, separating and evolving public policy debates 

are currently shaping electricity market, fuel market, carbon market and renewable 

market without paying adequate attentions to how each market affects the others, 

though the markets have overlapping goals with respect to the global environmental and 

economical benefits. Therefore, taking interactions of different markets into account, 

this thesis aims at developing novel frameworks for electricity market planning and 

management. 

In competitive electricity markets, energy trading is the main issue and therefore its 

pricing mechanism is the most significant component. The pricing mechanisms of both 

real power and reactive power are significant to the efficiency and security of electricity 

markets. The efficiency of the electricity market means that the ability of the market 

operation to achieve economic efficiency. The highest economic efficiency occurs when 

the social welfare is optimized and that the clearing prices equal consumers ‘aggregate 

marginal benefit and suppliers’ aggregate marginal cost. The security of the electricity 

market has received widespread attentions in light of the deregulation of electricity 

markets. The basic question is whether liberalised markets will secure that adequate 

capacity is available and whether tight efficiency regulation of electricity networks will 

result in deteriorating quality of network reliability. Market prices of real power are 

affected significantly by the fundamentals of other interrelated markets [22]. In addition, 
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pricing mechanisms of reactive power are increasing vital due to the growth of 

renewable power. This is because the increase of renewable energy penetration leads to 

security and reliability problems in the power system [23]. Therefore, novel framework 

for reactive power management needs to evolve. Technical issues should be considered 

as well as economic issues in market clearing. To gain insightful knowledge of price 

schemes in deregulated electricity markets, the objective of the first main part of the 

thesis is to develop novel pricing models for both real power and reactive power. These 

researches are very useful for enhancing the electricity market planning and 

management in the deregulated environment. 

As the nowadays electricity market is closely associated with other commodity 

markets such as fuel market and carbon market, electricity price is volatile and accurate 

price forecasting model are in great need for market operators. Because the market 

prices usually represent abnormal conditions, two different models should be 

established to handle price uncertainty. Panel cointegration (PC) model provides a kind 

of powerful forecasting tool, which utilizes information of both the inter-temporal 

dynamics and the individuality of interconnected regions. A statistical model based on 

PC is employed for uncertainty estimation [24]. Furthermore, Particle filter (PF) has 

achieved significant success in tracking applications involving non-Gaussian signals 

and nonlinear systems. To make good use of the advantages of the both techniques, this 

thesis creatively integrates these two technologies and develops an estimation 

framework. Finally, a two-stage hybrid method is proposed based on panel 

cointegration and particle filter (PCPF) [25]. 

In addition to the financial system of the electricity market, the physical power 

system is another essential component of an electricity market. Reactive power plays an 

essential role in electricity market planning and operation [26]. The lack of reactive 



                                                                    Chapter 1 

11 

power in the system may cause undesirable voltage drop at some buses. It may result in 

voltage instability if the power system operator cannot manage the deficiency. It has 

been proven that problems relating to reactive power management are the main reasons 

of some major blackouts in the world. Problems related to the management and 

operations of reactive power are actually arising under the trend towards decentralized 

production of renewable resources. In order to procure reactive support competitively 

from the markets, it is necessary to quantify the price of the reactive power source 

output. Therefore, in this thesis an advanced model is presented for procuring reactive 

power from reactive resources based on a reactive power pricing structure [27]. The 

model takes into account reactive power capacity and production cost as well as the 

value of reactive power. 

Based on the outcomes of the first main part of the thesis, the objectives of the latter 

part of the thesis are to develop novel electricity market planning and management 

models to investigate how electricity market, fuel market, carbon market and renewable 

market affect the others. According to my work on the market interaction analysis 

reported in [22], either carbon market or renewable market attracts policy debates 

whereas less attention is paid to their interactions. However, raising concerns on the 

environmental issue have led to significant influences on the power industries’ decision 

making. The amount of renewables, especially wind power, has reached important 

penetration rates in power systems nowadays. Furthermore, the utilization of vehicle-to-

grid (V2G) [28] brings more alternative options for electricity market planning and 

management. Currently it is difficult for market participants to make either short term or 

long term optimal decisions under two or even three interactive markets. Therefore, 

designing effective methods to handle uncertainties from different markets become 

timely and valuable tasks. To satisfy the harsh need of electricity market planning and 
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management, the impacts of emission trading on the operation of electricity markets, 

which includes the consideration of carbon market and fuel market, are studied in [29]. 

The influences of the two interactive schemes, ETS and RESS, on the electricity market 

planning and operation, is then presented in [20]. It is then followed by the multimarket 

analysis considering wind power uncertainty, with carbon market, fuel market and 

renewable market all taken into account. 

Emission Trading Schemes has been implemented in the electricity supply industry. 

Impacts of ETS on a GENCO’s decision making under multimarket environment are 

firstly investigated. A two-stage model is proposed to assist a GENCO to decide 

simultaneously the electricity production and trading portfolios during each trading period 

in the interactive markets.  

In order to mitigate greenhouse gas emissions, emission trading and renewable 

energy support schemes have been or are going to be implemented in some developed 

countries or regions. Inevitably, the implementation of these two schemes would bring 

some new problems to electricity market operation. Based on the previous findings, an 

agent-based market simulation model is needed to be developed in this thesis to account 

for these two schemes. 

Due to the impacts of greenhouse gases on the global warming, many countries are 

placing enormous pressure on the entire energy industry to reduce carbon emissions. On 

one hand, several environmental friendly policies like emission trading schemes and 

renewable energy support schemes have been implemented in the electricity supply 

industry. On the other hand, exploiting renewable energy is another effective way to 

mitigate energy source deficiency, control GHGs emissions and achieve smart grid 

vision. Wind power, being one of the most appealing renewable energy resources, has 

gained widespread concerns during the last decade. Based on the previous studies in the 
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thesis, a GENCO’s decision making is investigated in the thesis considering wind power 

uncertainty under multimarket environment. However, due to the intermittent and 

stochastic characteristics of wind resource, a GENCO has to effectively accommodate 

the wind forecasting errors so as to maximize its profits. A GENCO’s behaviour might 

be different according to the mechanism adopted in the RM. Considering the carbon 

emission as a changing constraint, an innovative decision making model has to be 

developed to deal with the multimarket trading problem for a GENCO during each trading 

period. 

Although wind power has many advantages, it suffers seriously from a large amount 

of uncertainties. It may result in vulnerability of the power system if a system operator 

ignores the uncertain features of wind power. The variations in wind power generation 

may lead to system voltage instability and therefore system operators need to consider 

wind speed volatility in power system planning. Based on the studies of the reactive 

power procurement pricing scheme in chapter 3, the method to quantify the pricing of 

reactive power source output when considering wind power uncertainty is planned to be 

investigated in the future studies. In this case it is able to procure reactive support 

competitively under the multimarket environment. Furthermore, the utilization of the 

V2G charger system for both real power and reactive power support to the grid will be 

prospected in the future work.  

To summarize, the major objectives of this research are listed as follows: 

 Develop a comprehensive framework that can accurately forecast electricity 

prices  

 Develop a novel value based reactive power procurement scheme in electricity 

markets 
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 Investigate the impacts of emission trading schemes on a GENCO’s decision 

under multimarket environment 

 Analysis the impacts of emission trading and renewable energy support schemes 

on electricity market operation 

 Develop a novel decision making model for GENCOs considering wind power 

uncertainty under emission trading and renewable energy support schemes. 

1.4. Organization of This Thesis 

Following the research route with linkages of different chapters shown in Fig. 1-1, 

the rest of this thesis is organized as follows:  

 Chapter 2 presents a comprehensive literature review on two main parts. The 

first part reviews the available methods for pricing mechanisms of both real 

power and reactive power. The current methods that are relevant to this research 

are classified and their advantages and disadvantages are compared. The second 

part reviews the investigation on how electricity market, fuel market, carbon 

market and renewable market affect the others through ETS. The analysis of the 

impacts of ETS on different markets revolving around the electricity supply 

industry will be conducted. In view of much works had not been done, studies of 

future ETS are in an urgent research need. This chapter covers electricity market, 

carbon market, fuel market and renewable market. 

 In chapter 3, a statistical model based on panel cointegration (PC) is employed 

for uncertainties estimation. Furthermore, particle filter (PF) has achieved 

significant success in tracking applications involving non-Gaussian signals and 

nonlinear systems. To make use of the advantages of both techniques, this thesis 

creatively integrated the two technologies and developed an estimation 
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framework. Finally, a two-stage hybrid method based on panel cointegration and 

particle filter (PCPF) is developed. This chapter covers electricity market and 

focuses on pricing scheme of real power. 

 In chapter 4, a novel value based reactive power procurement scheme in 

electricity markets is developed to quantify the price of the reactive power 

source output. Problems related to management and operations of reactive power 

are actually arising under the trend towards decentralized production of 

renewable resources. The model takes into account reactive power capacity and 

production cost as well as the value of reactive power. This chapter covers 

electricity market and focuses on reactive power pricing scheme. 

 In chapter 5, a novel dynamic decision making model is proposed to deal with 

the multimarket trading problem for a GENCO during each trading period. 

Based on the novel forecasting model developed in Chapter 3, the model enables 

a GENCO to make a good trade-off between profit-making and emission 

reduction under the three interactive markets environment. Besides the 

forecasting method, Differential Evolution (DE) is employed to solve the multi-

period stochastic optimization problem and give the optimum results for each 

time interval. This chapter covers electricity market, carbon market and fuel 

market and contributes to a comprehensive electricity market planning model for 

GENCOs. 

 In chapter 6, a novel agent-based market simulation model accounting for both 

emission trading and renewable energy support schemes is developed. Based on 

the novel forecasting model developed in chapter 3, this chapter employs the 

Replicator dynamics algorithm to simulate the bidding strategies of agents 

(generation companies) for profit maximization. The operation process of an 
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electricity market is simulated over a studied time horizon and some indices are 

employed to evaluate the market operation performance. Impacts of emission 

trading and renewable energy support schemes on electricity market operation 

are investigated through the electricity market planning. This chapter covers 

electricity market, carbon market and renewable market and contributes to a 

comprehensive electricity market planning model for market operators.  

 In chapter 7, a novel dynamic decision making model is proposed to investigate 

the decision making of a GENCO considering wind power uncertainty and 

emission trading under multimarket environment. Wind power, being one of the 

most appealing renewable energy resources, has gained widespread concerns 

during the last two decades. The probability of stochastic wind power based on 

non-linear wind power curve and Weibull distribution are incorporated in the 

model to examine the two most important mechanisms of RESS (feed-in-tariffs 

and fixed premium systems). Based on the novel forecasting model developed in 

chapter 3 and decision making model developed in chapter 5, the model enables 

a GENCO to make a good trade-off between profit-making and emission 

reduction under the three interactive markets environment. Comparisons among 

different scenarios demonstrate the economic and environmental influences of 

different policies on a GENCO. This chapter covers electricity market, carbon 

market, fuel market and renewable market and contributes to a comprehensive 

short term electricity market planning model for GENCOs. 

 Chapter 8 concludes this thesis with a summary of the results of this research, 

followed by the discussions of future work. Following the research route, I will 

plan to investigate how to quantify the price of reactive power source outputs 

when considering wind power uncertainty based on the findings in chapter 4. In 
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this manner, it is able to procure reactive support competitively under the multi-

market environment. This is of importance for the power system planning and 

operation with the increasing penetration of renewable power. Besides, I will 

also try to examine the utilization of V2G charger system for both real power 

and reactive power support to the grid. This chapter covers electricity market, 

carbon market, fuel market and renewable market and contributes to diversified 

directions of future research. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Introduction 

A comprehensive survey of the state-of-the-art research, which investigates the 

electricity pricing mechanisms and analyses the interactive markets, is given in this 

chapter. The relevant literature review comprises broadly three parts outlined below. In 

the first part, the existing research on the pricing mechanisms of both real power and 

reactive power are discussed. Current methods that are relevant to the pricing 

mechanisms will be classified and compared. Afterwards, the second part will explore 

some fundamental issues of emission trading scheme (ETS). ETS plays a significant 

role to link the four interactive markets concerned in this thesis. Finally, in the third part, 

a comprehensive interaction analysis is conducted to explore how electricity market, 

fuel market, carbon market and renewable market affects the others through the 

implementation of ETS. 

2.2. Pricing Mechanism in Electricity Market 

2.2.1. Importance of the pricing mechanism 

In an electricity market, the pricing mechanism is the most significant component in 

its economical operation framework. This economic operation consists of two aspects: 

active power regulation and reactive power dispatch. Their performances can affect 

competition, efficiency, consumer surplus and total revenue of the participants in energy 

markets. 

The price mechanism of the active power is reviewed first. The most important issue 

of the active power price mechanism is price forecasting. It has become more and more 

significant for all market participants in electricity markets. It provides critical 

information to build effective planning for the market participants, especially generation 
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and retail companies. In a long term horizon, electricity price forecasting can help 

market participants to make their decisions. Performance of market planning such as 

transmission expansion, distribution planning, generation augmentation, and regional 

energy trades is influenced significantly by the long term electricity price forecast 

results [30]. In medium-term planning and operation, either producers or consumers can 

make decision with the help of the medium-term price forecasts to find out how much 

energy is to be sold/brought through physical bilateral contracts and how much energy 

is to be sold/brought to/from the pool. In the short term planning, an accurate price 

forecasting enables power suppliers to build their bidding strategies to achieve the 

maximum benefit in the spot market. For consumers, they can derive their plans to 

maximize their utilities using the electricity purchased from the pool, or use self-

production capability to protect themselves against high prices. If the electricity market 

price can be predicted accurately, generators and retailers can reduce their risks and 

further maximize their profits. From every aspects of the electricity market planning and 

operation, an efficient and robust price forecasting method is in an essential need. An 

innovative electricity price forecasting method having the advantages of both panel 

cointegration and particle filter is developed in chapter 3. Indices such as MAPE, MAE 

and RMSE are adopted to measure the robustness of the forecasting method. 

The price mechanism of the reactive power is then reviewed. It is well known that 

reactive power plays a crucial role to support active power. Sufficient reactive power 

support ensures the transfer of active power while maintain system voltages within 

proper limits. In the vertically integrated electricity industry, retail customers have to 

pay for the costs of reactive power support, which are included in the bundled electricity 

prices. In competitive energy markets, it is required to maintain the necessary balance 

between generation and load in real time to maintain voltages within the required ranges 
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and to transmit active power. To achieve this requirement, reactive power is one of the 

most important ancillary services in power system. Investigating the cost of providing 

reactive power service and establishing an appropriate pricing structure are important 

both financially and operationally for reactive power procurement [31]. 

In this section, the available electricity forecasting methods are firstly reviewed and 

compared in section 2.2.2, followed by the discussion of reactive power procurement 

and pricing in section 2.2.3. 

2.2.2. Electricity price forecasting 

The importance of the electricity price forecasting has been clarified in section 2.2.1. 

In an electricity market, major parts of the total energy trading are handled in the day-

ahead market. Power suppliers always incline to adjust their bidding strategies to 

achieve their maximum benefits according to the day-ahead pricing information, though 

the subsequent short term market mechanisms (such as intraday markets, ancillary 

services and real-time markets) to provide the balance between energy supply and 

demand. Similarly, consumers can make their own decisions to optimize their electricity 

purchased plan in the electricity market, or use self-production capability to protect 

themselves against high prices [32, 33]. Furthermore, following the research route 

depicted in Figure.1-1, chapters 5, 6 and 7 dedicate to propose planning and operation 

models for Generation Companies (GENCOs) under different market environments. 

The efficiency of these models is highly dependent on the accuracy of electricity price 

forecasting in the day-ahead electricity market. Consequently, this section conducts a 

comprehensive survey on the available methods of day-ahead electricity price 

forecasting. 

Electricity price has complex characteristics, which correlates with the complicated 

bidding strategies linked with the gaming by market participants. It features with non-
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stationary behaviour, hard nonlinear behavior, high frequency, multiple seasonality, 

calendar effect, high volatility and high percentage of unusual prices. All these result in 

the development of an accurate day-ahead electricity price forecasting tool is a 

challenging task. The revolution of smart grid is driving the development of novel price 

forecasting techniques for electricity market operations and power system analysis. 

Along with the applications of advanced metering infrastructures (AMI), users’ 

information can be collected and sent to analysis centers and, at the same time, price 

signals can be sent back to consumers. This interactive two-way communication pattern 

may influence the manner of electricity consumption significantly, making the system 

profiles become more fluctuant and unpredictable. Furthermore, the nowadays 

interconnected smart grid coordinates the movement of electricity through different 

regions. The uniform electricity market price is affected significantly by regional loads 

because electricity price is calculated based on the consideration of the entire grid [24]. 

On the other hand, the variability of the uniform price can influence the energy-usage 

patterns and introduce new trends.  

The available forecast methods can be broadly classified into three categories: system 

simulation models, power market equilibrium analysis and time series models [24, 34], 

as shown in Fig. 2-1.  

System simulation models usually concentrate on detailed insight of price formation 

[35]. Factors such as actual dispatch according to system operating requirements and 

transmission constraints are considered. Market equilibrium analysis, on the other hand, 

involves economics and game theory [36]. In addition to the forecasted prices, these two 

categories always come up with general equilibrium or market strategic behaviors. Time 

series models are widely adopted to forecast electricity price. Electricity price is 

forecasted through statistical methods with little attentions paying to the reasons of the 
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price changing. This type of methods can be divided into three subtypes, namely 

regression based models, stochastic time series models and intelligent learning models. 

 

Fig. 2-1 Classification of price-forecasting models 

Regression based techniques analyze the assumed relationship between electricity 

price and a number of independent variables that are known or estimated [37]. These 

methods overcome serial correlation problems. However, they do not always work well 

in practice since they assume the variables are stationary or stationary after the 

application of statistical techniques such as differencing. 

Stochastic time series techniques are proposed to deal with nonstationary time series. 

Both autoregressive moving average (ARMA) and autoregressive integrated moving 

average (ARIMA) models work by iteratively identifying a parametric model from 

hypothesized models and estimating the corresponding parameters based on 

observations. When the series have high volatility and price spikes, GARCH model is a 

good alternative because it considers conditional variances as time dependent. However, 

the identification and estimation of these models can be badly distorted by large and 

sudden price movements within a short period (known as outlier effects). Studies in [38, 39] 
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indicated that outliers can have dominating and deleterious effects on stochastic time series 

models such as ARMA and GARCH. 

Intelligent learning techniques derived from Neural Networks (NN) and data mining 

have also been studied. Artificial neural networks (ANN) are defined as information 

processing systems which have common specific characteristics associated to biological 

networks. ANN is capable to model nonlinear input/output mapping functions. Its 

families have strong fault tolerance ability though they usually require long training 

time. A standard ANN is a group of interconnected neural processing units imitating the 

brain activation. Recent studies on ANN focus on the determination of the best 

forecasting model by comparing various neural architectures, applying several 

decomposition techniques or selecting proper transfer functions [40]. L. Wu et al. [41] 

proposed a hybrid time-series and adaptive wavelet neural network (AWNN) model, 

composed of linear and nonlinear relationships of prices and explanatory variables, for 

day-ahead price forecasting. AWNN was used to present the nonlinear, nonstationary 

impact of load series on electricity prices. Amjady et al. [42] developed a fuzzy neural 

network (FNN) which combined fuzzy logic and standard ANN to provide more 

accurate results than ARIMA, wavelet-ARIMA, multilayer perceptron and radial basis 

function neural networks. Kernel-based machine learning method such as support vector 

machine (SVM) [39] has shown good accuracy and efficiency in some real-world 

problems. Furthermore, relevance vector machine (RVM) [39] has been proved 

outperforms SVM in both the forecast accuracy and computational efficiency. However, 

the performance of these machine learning models relies on heuristics, e.g., the choices 

of kernel and penalty functions.  

Summarizing the above discussions, day-ahead electricity price forecasting is of 

importance to electricity market planning and operation. Besides, forecasting day-ahead 
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electricity prices is a complex task, because a price series is a highly volatile series with 

non-constant mean and variance due to its non-storable nature and stiff condition of 

maintaining real-time balance of demand and supply of electricity [43]. Available 

methods have their own demerits so that they cannot effectively deal with price 

forecasting in the electricity market. Furthermore, following the research route depicted 

in Fig.1-1, chapters 5, 6 and 7 plan to propose planning and operation models for 

Generation Companies (GENCOs) and operators under multi-market environments. 

Having a robust and accurate prediction model for day-ahead electricity price is 

particularly essential under these circumstances. Therefore, a panel cointegration model 

is applied to predict day-ahead electricity prices in chapter 3. This is the first time that 

this economic model is applied to electricity price forecasting. Afterwards, a hybrid 

model, which combines the advantages of panel cointegration and particle filter, is 

proposed.  

2.2.3. Reactive power pricing 

This subsection is concerned with reactive power pricing in the electricity market 

environment. In order to procure reactive support competitively from the markets, it is 

necessary to quantify the price of the reactive power source output. It is significant to 

analyze the cost of providing reactive power service so that an appropriate pricing 

structure for procuring reactive support can be established. This is of importance to 

operate the electricity market economically and securely. Furthermore, following the 

research route depicted in Fig.1-1, a novel decision making model, considering wind 

power uncertainty, is developed in chapter 7 for GENCOs under multimarket 

environment. The implementation of either the carbon market or the renewable market 

will help increasing the renewable penetration in the electricity industry. The 

penetration of the wind energy in electrical system is therefore rapidly increasing. 
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Although wind power has many merits, its intermittent and volatile nature has 

significant influences on the distribution system voltages, frequency and generation 

adequacy. All these bring more tasks in the electricity market planning and operation 

and therefore reactive power procurement becomes particularly important. 

Consequently, this subsection conducts a comprehensive survey on the available 

methods of reactive power procurement and pricing.  

In vertically integrated power systems, the utility concerned company controls all 

available reactive power sources so that reactive power management is part of the 

system operator’s activities and the expenses incurred for providing such supports are 

included within the electricity tariff charged to end users. Consequently, less attention 

needs to be paid to power procurement and pricing. 

In the deregulated electricity market environment, reactive power management 

appears more difficult since different entities are involved in the reactive power support 

and hence equity is an important factor to be considered for equitable procurement of 

reactive power support as well as cost allocations among different entities. Intuitively, 

ensuring sufficient reactive power resources for maintaining required level of voltages 

is becoming an increasingly difficult issue. It is because electricity resources are 

dispersed due to the disintegration of the electricity structure. Specifically, in the 

traditional vertically integrated power industry, when and which electricity resources 

such as generating reactive power and transmission reactive power shall be dispatched 

are determined by the control center. This is because the utility company owns all 

concerned resources so that it can dispatch resources economically. In the new 

environment, reactive power may be provided by generating entity, transmission entity, 

and operator, separately. Moreover, these three entities may have different and even 

conflicting goals. Either of them is not willing to sacrifice their revenues from the sale 
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of active power to produce reactive power unless receiving appropriately compensations. 

In particular, owners of generators providing reactive power resources will be driven, in 

competitive generation markets, to maximize their own benefits from their resources. 

Thus, an incentive mechanism appears necessary for the owners of reactive power 

sources to provide reactive power support services, and such a mechanism implies an 

adequate payment that guarantees the economic feasibility of this business [26]. There 

are some disputes on if or not all kinds of reactive power resources should be 

compensated, and no generally applicable answer is available for this question since this 

should be dependent on the specific market models employed. In USA, only reactive 

power generator sources are entitled to such compensation by Federal Energy 

Regulatory Committee (FERC), in the form of ancillary service payment, as described 

in [44]. The revolution of smart grid is driving the development of reactive power 

procurement and pricing for electricity market operations and power system analysis. 

Along with the applications of advanced metering infrastructures (AMI), users’ 

information can be collected and sent to analysis centers. Meanwhile, price signal can 

be sent back to consumers. In this case, consumers are allowed to procure their 

electricity needs from bilateral contracts, spot market, or from self-production facilities. 

This interactive two-way communication pattern may influence the manner of 

electricity consumption significantly and lead to more unstable and unpredictable 

system status. 

Researches on the methods for procuring and pricing reactive power have become 

active in the past decade. P. Frías et al. [45] propose a competitive reactive power 

provision mechanism. It is developed based on an annual VAR capacity auction. Two 

market products to be negotiated are identified firstly. They are (a) capacity for reactive 

power generation, and (b) capacity for reactive power absorption. The market 
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participants, therefore, can bid either for the quantity and the price of the reactive power 

productions. Then the reactive capacity is assigned to the market participants according 

to specific requirements for the service procurement set by the system operator. This 

assignment is made using an optimization algorithm that minimizes the cost of the 

required VAR sources together with other system security cost. The reactive power 

provision mechanism guarantees the secure operation under normal and certain pre-

selected contingencies. In [46], a unified framework for reactive power management in 

deregulated electricity markets using a two-settlement model approach is proposed. The 

proposed model works at two hierarchical levels and in different time horizons; the first 

level is the procurement market model which works in a seasonal time horizon, while 

the second level is the dispatch model which works in a 30 min to 1 hour time period. 

Reference [47] uses a nodal reactive power pricing method to design a price structure to 

provide compensation to reactive power sources. Using this method, the compensation 

includes only the production cost. Therefore, it represents only a small portion of the 

true costs of providing the reactive power service. Moreover, the volatility of the nodal 

prices for reactive power is also a problem of applying nodal pricing methods to 

reactive power. In order to avoid the above two problems, the capacity cost should also 

be taken into account. N. Dandachi et al. [48] introduced a procurement method in 

which about 80 percent of reactive power cost is recovered from the reactive power 

capacity payment and the rest from the actual reactive power production. The above 

references consider reactive power from the costing point of view. However, reactive 

power needs to be provided locally and the value of the reactive power is not the same 

everywhere in the system. Thus, reactive power procurement should be determined not 

only based on the cost. In essence, reactive power value measures the relative 
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importance of the reactive power sources. Equivalent reactive compensation (ERC) 

method [49] is a useful and practical method to evaluate the reactive power value. 

Much of the literature on reactive power pricing builds on the marginal cost theory, 

which has been applied in real power spot prices. In-depth theoretical discussion on 

applying the marginal cost concept for real time reactive power pricing was provided in 

[50]. Detailed cost models of reactive power support can be found in [51] and a similar 

approach based on the opportunity cost of dispatching reactive power was adopted in 

[52]. However, the application of marginal reactive pricing is not very practical owing 

to the volatility and erratic behaviors of this pricing mechanism. From the economic 

point of view, the “marginal cost price” concept represents the practice of setting the price 

of a product equal to the extra cost of producing an extra unit of output. This concept 

contributes a lot to active power pricing. However, it has some disadvantages when 

applying to reactive power pricing because marginal cost pricing is subject to the problem 

of reconciling marginal cost prices with the cost recovery requirement. Another approach 

is to formulate the reactive power pricing as a reactive support cost allocation problem. 

Electric circuit theories [53], reactive power tracing [54], graph theory [55], harmony 

search algorithm [56], modified Y-bus method [57], Aumann-Shapley method [58], and 

ant colony search algorithm [59] are in this category. These methodologies attempt to 

charge system participants by determining the reactive power that each generator 

contributes to each individual load. However, real and reactive flow coupling in a 

transmission network makes the calculation of contributing factors using these methods 

subjective to a certain extent. Hence, pricing the reactive power in a deregulated power 

system is a complicated issue. There is a general consensus that there should be a 

separate reactive power market to manage the provision of reactive power. Owing to the 

importance of reactive power services for system reliability and the complexity of such 
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services, a significant degree of obligation and centralized control are needed in this 

market.  

Summarizing the above discussions, reactive power procurement and pricing is of 

importance to the electricity market planning and operation. Different from the situation 

in vertically integrated power systems, there are lots of difficulty of procuring and 

pricing the reactive power efficiently in the competitive market environment. Several 

available literatures on reactive power pricing were built on the marginal cost theory. 

Therefore they cannot effectively deal with real spot prices in the electricity market. 

Following the research route depicted in Fig.1-1, pricing schemes for both active power 

and reactive power are investigated in chapter 3 and chapter 4, respectively. In chapter 4, 

a novel value based reactive power procurement scheme in electricity markets is 

developed to account for reactive power capacity and production cost as well as the 

value of  reactive  power. Future work described in chapter 8 will plan to examine how 

to quantify the price of the reactive power source output when considering wind power 

uncertainty so that it is able to procure reactive support competitively under the multi-

market environment. 

2.3. Emission Trading Scheme 

Having discussed pricing mechanisms for both active power and reactive power 

which can assist electricity market planning and operation, this section will pay 

attentions on some fundamental issues of ETS. The mechanism which plays the 

significant role to link the four interactive markets is emission trading scheme (ETS). It 

is one of the main focuses of this thesis. Fig. 2-2 indicates the interactions of the four 

markets through the implementation of ETS. Before the comprehensive markets 

interaction analysis described in section 2.4, the background of ETS and the 
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international situation of carbon markets are firstly introduced in sections 2.3.1 and 

2.3.2, respectively. Research problems of implementing ETS are then presented in 

section 2.3.3, followed by the comparisons of ETS with other climate policies in section 

2.2.4.   

 
Fig. 2-2  Markets interactions through ETS 

 

2.3.1. Background of emission trading scheme 

ETS is an administration approach used to control pollution by providing economic 

incentives for achieving reductions in the emissions of pollutants. It may also internalize 

the environmental cost to pollution generators effectively. According to the Coase’s 

theory [60], environmental cost is mainly caused by pollution reductions. For pollution 

industry such as power plant, the cost can also include the investment on renewable 

technologies. Besides, this cost also includes the damage cost that power plants pay for 
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the emission of pollution. The nature of internalization of environmental cost is to 

reflect the external cost of power resources in electricity price [61]. To mitigate 

pollution effectively, ETS sets a limit which grants rights to emit greenhouse gases to 

the atmosphere, to reduce pollution over time to the level that prevents any net 

accumulation in the atmosphere. Milestones in evolving the ETS are shown in Fig. 2-3.  
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Fig. 2-3  Milestones in the evolution of the ETS 

The evolving of the ETS over the course of its history can be divided into four phases: 

A. Gestation: J. H. Dales proposed a theoretical basis of the ETS in 1968, followed by 

the further development contributed by W.D. Montgomery in 1972. Then United 

States Environmental Protection Agency improved it with "flexible regulation" later. 

B. Proof of Principle: The success of Clean Air Act (CAA) in 1977 has proved the 

feasibility of the ETS. This is the first development towards trading of emission 

certificates based on the "offset-mechanism". 

C. Prototype: United State Acid Rain Program is regarded as the first "cap and trade" 

system. It was officially announced as a paradigm shift in environmental policy to 
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bring together environmental and industrial interests in the United States. Its great 

success made the industry more confident in the application of cap-and-trade 

program. 

D. Mature: Inherited from the US clean air policy, ETS was developed to a global climate 

policy in the European Union in 2005. The establishment of EUETS has been 

considered as an emerging global carbon market which explored a new era for "carbon 

industry [9, 62-68]. More recently, the 17th Conference of the Parties in Durban 

(COP17) delivered a breakthrough on the international community's response to 

climate change, which reached a consensus to draw a universal legal agreement on 

climate change before 2015 [69]. 

ETS allows its participants to reach a given environmental objective at the lowest 

cost via the market forces equilibrium. To illustrate the economic theory of ETS, a 

simplified two-GENCO case is presented in Fig. 2-4. 

Under ETS, a GENCO can make its own planning in fulfilling the emission reduction 

target. It can reduce all the required amount of emissions by itself and sell the allowance 

in the market. On the other hand, it can buy the allowance in the market to cover its own 

produced emission. Furthermore, it can make a reasonable tradeoff between emission 

reduction and allowance trading. It is assumed that GENCO1 can abate its CO2 at a 

much cheaper cost than GENCO2, thus MAC1 < MAC2 where MAC (Marginal 

Abatement Cost) curve of GENCO2 is steeper (higher slope) than that of GENCO1. 

Therefore, at the current market price of CO2 allowances P, GENCO1 would abate 

emissions until the MAC1 curve intersects with P. The additional reduction helps 

reducing burden of GENCO2’s total required abatement since it would buy emissions 

allowance from GENCO1 at price P. GENCO1 makes a profit by abating more 

emissions than that required. It meets the regulations by abating all of the emissions that 
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is required (RReq1). Additionally, GENCO1 sells its surplus allowance to GENCO2 at 

price P for every unit. The area (RReq1-1-2-R*) in the graph represents its total revenue, 

while the area (RReq1-3-2-R*) represents its total abatement cost. Therefore the “Gains 

from Trade” (Δ123) is the net benefit when GENCO1 sells the emission credits. On the 

other hand, the total RReq2 of GENCO2 is reached from the internal abatement and the 

allowances it buys in the market from GENCO1. “Gains from Trade” (Δdef) represents 

GENCO2’s profits from purchasing allowances in the market. GENCO2 spends less in 

purchasing this amount of emission abatement reduced by GENCO1, comparing with 

the case if it abates all of its required emissions by itself without trading.  
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Fig. 2-4  Economic theory of emission trading scheme 

On the basis of the economic theory of ET described above, the analysis is now 

extended to a mathematical model with a market with I companies. It is assumed that 

the beneficial function of the i-th company is: 

 [ ( ) ] ( )i i i i i i i i ip q Pt A E q t C q        (2-1) 
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where 
ip is its price of the product; 

iq is its product price; 
it is the amount of allowance 

trading; ( )i iE q is the emission function; ( )i iC q is the cost function; 
iA is its abatement 

cost of emission; P is the market price of CO2 allowances. Based on this assumption, the 

i-th company would compare its abatement cost 
iA  with the CO2 allowances market price 

P. The company would sell a certain amount of allowance 
it  when the market price is 

higher than its abatement cost, and visa versa. According to reference [60], each company 

would wish to determine the production according its marginal products so as to 

maximize their benefit. To maximize the benefit π, the behavior of the i-th company is 

described as: 

 

' ' ' '

'

[ ( ) ] ( ) ( ) 0

[ ( ) ] 0

i i i i i i i i i

i i i i

p A E q t E q C q

P A E q t

   

  
  (2-2) 

If each individual Genco makes decisions based on sufficient information, the entire 

system will spontaneously achieve the socially optimum allocation of resources [70]. 

Theoretically, if all the emission trades could be excreted in a centralized manner, 

pollution reduction could be achieved in the most efficient way [63, 71, 72]. A well-

defined international ETS enables countries to achieve ultimate global mitigation of 

emission. However, the above illustration neglects lots of realistic conditions, e.g. 

market power. Market power is the ability of a firm to profitably raise the market price of 

a goods or service over marginal cost. In perfectly competitive markets, market 

participants have no market power. A firm with market power can raise prices without 

losing its customers to competitors. Markets participants that have market power are 

therefore sometimes called "price makers," while those without are sometimes called 

"price takers." More detailed analysis should be conducted case by case although the 

feasibility of ETS has been theoretically proved. 

http://en.wikipedia.org/wiki/Theory_of_the_firm
http://en.wikipedia.org/wiki/Market_price
http://en.wikipedia.org/wiki/Perfect_competition
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2.3.2. The international situation of carbon markets 

Climate change is a global problem that needs to be solved based on overall situation. 

A global solution can reduce the risks of dangerous climate change to acceptable levels, 

but it requires a comprehensive global agreement. However, this is a time consuming 

process and not easy to be achieved. It is climate change that weaves the 

multidisciplinary net connecting engineers, economists, environmentalists and policy 

enactors together to confront the climate change. In recent years, many public and 

government attentions have been paid on the subject of creating a well-defined ETS. 

This is because ETS is one of the most effective methods implemented in the above 

mentioned interactive areas. Several domestic and regional low-carbon initiatives, 

including market mechanisms, have been emerging in both developed and developing 

economies since 2005. Figure 2-5 summarizes the main regional, national and sub-

national policy and market-based initiatives that currently exist to support global 

climate change efforts. 

 

Fig. 2-5  International carbon markets 

The booming of carbon market raises increasing concerns internationally. The value 

of the global carbon market climbed to a new high point in 2011, driven predominantly 
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by a robust increase in transaction volumes. Just the total value of EU Emissions 

Trading Scheme (EUETS) in 2012 grew by 11% compared with the last year to US$176 

billion (€126 billion). Furthermore, its transaction volumes reached a new high of 10.3 

billion tons of carbon dioxide equivalent (CO2e). However, the potential gains have not 

been fully exploited, because there are numerous obstacles and barriers which prevent the 

public sector, business and consumers from tapping into that potential. The World Bank 

estimates that carbon trading globally could be worth US$3.5 trillion by 2020, meaning 

that it would overtake oil to become the largest market in the world [16]. The electricity 

supply industry worldwide has been identified as a major source of greenhouse gas 

emissions. The power generation assets form part of the “combustion” installations 

which form the largest single sector in the world [17]. Therefore, further research 

focusing on the integration of CM with other markets is an urgent need to exploit the 

potential of its advantages. 

EUETS is the backbone of the EU’s climate policy and the engine of the global 

carbon market. It is also the world’s largest carbon market. Australia will bring a 

nationwide cap-and-trade scheme by 2015 and is expected to cover roughly 60% of the 

country’s annual GHG emissions [73]. Following Australia, New Zealand is 

considering linking with the Australian carbon market from 2015. In 2009, the Regional 

Greenhouse Gas Initiative (RGGI) was launched. It became the first mandatory ETS in 

the United States. It covers emissions from power plants in the Northeast and Mid-

Atlantic States through to 2018 [74]. Besides RGGI, California’s cap-and-trade program 

will be initiated in 2013. It is targeted for covering over 85% of California’s annual 

emissions. Québec adopted its own cap-and-trade plan and is now working toward 

linking it with California’s (within the context of the Western Climate Initiative) [73]. 

In early 2010, the Republic of Korea enacted the framework act on low carbon and 
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green growth. At the same time, Japan launched the Tokyo cap-and-trade scheme as a 

local emission trading scheme. Currently the world pays particular attentions on China’s 

carbon market development. According to China’s advanced plan, it is expected to 

initiate several pilot cap-and-trade schemes to provide the foundation for a nationwide 

scheme in the coming years. 

2.3.3. Research problems related to the implementation of ETS 

It is climate change that weaves the multidisciplinary net connecting engineers, 

economists, environmentalists and policy enactors together to confront the climate 

change. In recent years, since ETS is one of the most effective methods implemented in 

the interactive areas, the striking developing of ETS has been concerned by increasing 

numbers from researchers, governments and public. Benefits from ETS have attracted 

much attentions of academics and professionals especially after the Kyoto Protocol has 

been enacted. Several problems related to the implementation of ETS are raised by a 

large number of researchers. The most concerned problems can be grouped into 

categories as follows: 

A. Design of allocating allowances methods 

According to Coase theorem [60], when trade in an externality is possible and there 

are no transaction costs, bargaining will lead to an efficient outcome regardless of the 

initial allocation of property rights. However, allowances allocation is one of most 

significant decisive factors affecting the overall performance of ETS in practice and 

also one of the most controversial challenges in the design of an ETS. Therefore, a large 

amount of literatures relating to allocation have emerged and various approaches have 

been developed to address the allocation problem. There are three categories of 

allocating allowances which can be distinguished from the economic point of view. The 
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first one is exogenous criteria, which allows the entities receiving the permits with no 

additional cost. The other two are output-based allocation and auction [65, 75, 76]. 

The most common exogenous criteria are grandfathering (The allowances are 

allocated freely on the basis of a share of historical emissions) and benchmarking 

(emission allowances are granted on the basis of a proportion of historical production). 

All these methods can be applied in practice with little obstruction. This is because, 

instead of paying additionally, the entities have opportunities to gain more from the 

allocated allowances. However, this type of method has potential problems. For one 

thing, the new entrants need to buy allowances from existing entities. For another thing, 

entities may be reluctant to retire some of their old resources e.g. old plants with low 

efficiency because they can receive the allowances. These two problems may lead to 

some negative impacts on the electricity market planning and operation. 

Output-based allocation does not require the entities to pay for the allowances. 

Entities would be allocated an amount of allowances proportional to their current 

production. Hence they have to reduce their own emission or buy allowances from the 

others. Either means would directly lead to a decrease in the GENCO’s profits. One of 

the most commonly used methods in the power industry based on output-based 

allocation is Generation Performance Standard. The allowances are allocated freely to 

all generators according to their generation amounts in the year concerned. It is 

noticeable that some academics have confused output-based from benchmarking. The 

major difference between output-based allocation and benchmarking method is that the 

former allocates the allowances based on the emission per unit of electricity rather than 

the actual emissions. Therefore, all allowances are usually divided among sectors first 

so that each industry can allocate allowances based on their own indicators. In power 

sector, the indicators used can be in terms of “kg CO2/ MWh” or “tonne CO2/MWh”. 
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When allowances are auctioned, they are allocated beginning from the highest 

bidders. Despite which kind of auction method is adopted, it is deemed as one of the 

best methods if its procedure is based on the non-discriminatory principle. The 

advantages of this method include providing fair competition for new entrants, 

revealing price signal of the allowances, and so on.  

There are vast of studies advocating each path of allowance allocation. Without doubt, 

no methods can reach a consensus because different industries have their own features. 

L. H. Goulder and R. G. Cong et al. [77, 78] analysed the issues stemmed from 

EUETS’s grandfathering allocation of allowance [65, 79]. They suggested that an 

auction path or a mix allocation method including auction can achieve global 

optimization from the economic point of view. Free allocation like grandfathering can 

be applied without significant obstacle while it would lower the entities’ incentives of 

abating CO2. It is because the entities gain less free allowances in the short run if they 

increase the share of innovative technologies which produce less emission. Besides, 

grandfathering may create a bias against new firms entering product market, since 

existing firms get their permits free while new firms need to buy them. In the long-run, 

free allocation will tamper with competiveness. Output-based allocation does not 

discriminate new participants but it seems much like a subsidy to the product similar to 

credits. Besides, it may lead to an increase of public cost, which cannot be recovered 

from allocating and make the procedures much more complex [80]. Any case for free 

allocation to the domestic electricity sector must depend on income distribution, rather 

than economic considerations. A free allocation depending on income distribution is 

developed for preventing low-income households from experiencing disproportionate 

adverse impacts. An allocation based on economic consideration might lead to an increase 

of the allowance prices. This is essential to the success of a cap-and-trade program because 
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the increase of the allowance prices would be the most important mechanism through 

which stakeholders would be encouraged to make economically motivated changes in 

investments and consumptions that would reduce CO2 emissions. However, the increase of 

the allowance prices would be passed through cap-related costs to customers. This could 

have an adverse influence on the low-income households.  

It is concluded that in the case of nationwide CO2 regulation, the free allocation of 

emissions allowances could dramatically lead to overcompensation to the power 

industry as a whole. However, the impacts of free allocation method would be different 

when the method is applied to different parts of the industry. The benefit of auctioning 

is that the revenue from auctioning could be used to cut pre-existing taxes or to produce 

public goods, even increase welfare and employment. Besides, the auctioning will 

generate a market clearing price, which will provide a signal for price reference. It 

would seem intriguing to policy makers afraid of introducing auctioning because of 

competitiveness considerations or lobbying. Last but not least, from the insufficiency of 

EUETS’s initially free allocation and the great success history of U.S. Acid Rain Act’s 

auctioning, auctioning seems to be weighted much more than free allocation.  

B. Cost-benefit analysis  

Cost–benefit analysis is a systematic analysis of the expected balance of benefits and 

costs. Benefits and costs are expressed in monetary terms and are adjusted for the time 

value of money, so that all flows of benefits and all flows of project costs over time are 

expressed on a common basis in terms of their net present value [81]. P. M. Bernstein and 

M. Jaccard, et al. [71, 81] are the early economists who studied economical 

fundamentals stringently. Their researches indicate that ETS provides both cost benefit 

effectiveness and policy impartiality. Following their footprints, lots of individual or 
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groups such as [82, 83] conducted different kinds of empirical analysis in U.S. to 

compare effectively the differences between ETS and traditional scheme of control. 

Accompanying with the novel evolving of renewable technologies, studies of investing 

Distributed Generations (DG) and other renewable energy sources (RES) via cost-

benefit analysis were sweeping over. For instances, references [84, 85] explored how 

cost-benefit analysis and carbon accounting techniques are required by the Kyoto 

Protocol, the EUETS and other carbon trading mechanisms. Although there are versatile 

studies with different considerations of problems associated with ETS, a major concern 

on using cost-benefit analysis in environmental policies such as ETS is that the external 

cost is an uncertainty [86, 87]. Once there are chances that the uncertainties bring 

effects on the weighting of parameters, the validity of the model will be in doubt. 

C. Research on market performance 

Due to the technology development and environment protection, carbon markets and 

renewable markets have boomed simultaneously. Performance of the market operation 

has attracted lots of attention from academics in different research areas such as 

electricity society, market management and law enactor. R. W. Hahn studied the biases 

and inefficiencies associated with the use of either regulatory or incentive-based 

mechanisms [88, 89]. A. B. Jaffe et al. investigated the combined market failures of 

environmental pollution and innovation and diffusion of new technologies [90]. 

Investigating from another aspect of market performance, L. Mundaca and L. 

Chernyavs et al. focused their studies on the regulation and impact of the carbon market 

forces [91, 92]. It is believed that the imperfect competition in CM imposes adverse 

effects on both the household and commercial sectors. This is because the marginal 

abatement cost of CO2 or other pollutants is expected to be fully or partially passed to 

the end-users. Most of them provide some alternative proposals on the market scheme, 



                                                                    Chapter 2 

43 

e.g. price control, permit issuance, avoiding trade distortion, etc. Besides, some 

researchers such as B. D. Solomon and N. R. Netusil et al. took the transactions cost 

into account in the operation of ETS [93, 94]. Plenty of similar studies on ETS proposed 

some revised alternative polices to improve the market performance. Besides the 

mandatory market, the voluntary market is a supplement to raise international concerns. 

Renewable Energy Credit (REC) is one of the famous voluntary markets. It is necessary 

to have these markets because they can benefit in developing alternative and sustainable 

energy source, increasing individual participations and completing the endogenous 

deficiencies of the mandatory one. O. Rousse et al. suggested that a benevolent 

regulator or non-governmental organization must correct certain CO2 emissions market 

failures [95, 96]. L. A. Bird et al. considered that the two markets may have adverse 

impacts on each other [97]. Details of the impacts on mutual interactive markets will be 

given in the latter sections. As a conclusion, the systematic analysis from different 

considerations completes the fundamental basis of designing a suitable market structure 

with distinct backgrounds. Their contributions may shed lights on the successors who 

are interested in ETS. However, most of the policy suggestions or their conceptions of 

the market are lack of efficient verification process through modeling or mathematical 

analysis. 

D. Investigation of the connection between carbon markets 

The Kyoto Protocol specifies different goals for Annex I (or developed) and non-

Annex I (or developing) countries. Most of the Annex I countries are now considering 

the international linkage with each other’s carbon markets through different ways so 

that it may work out a global emission trading market ultimately [98]. Furthermore, the 

protocol sets out not only ETS but also joint implementation and clean development 

mechanisms. These enables the interconnection between Annex I and non-Annex I 
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countries. In the international level, more than 50% of the global Certification Emission 

Reductions (CER) are provided by China, a non-Annex I country. And 80% of CER 

from China had been sold to EU-based entities. Linking between emissions markets 

without further restrictions always has some overlapping goals but the coverage may be 

different, e.g. different countries, different regions or different sectors. It is always 

suggested by academics that they need to have compatible market rules. From the 

prevalent literatures, the international connections can be classified into three distinct 

choices as follows [99-104]: 

Linking international offsets: Such kinds of linking always exist between developed 

countries and developing countries via the offset program such as Clean Development 

Mechanism (CDM) which has already been introduced in chapter 1. 

Direct or indirect market linking: Direct market linking exists between two carbon 

markets or in a carbon market recognizing international offsets as equivalent allowances. 

Market participants are therefore allowed to trade allowances with another carbon 

market or purchase international offsets from non-Annex I countries. The counterpart is 

traded through some other climate instruments such as CDM or voluntary market with 

other ETS markets.  

Government or private linking: Government linking takes place when an international 

ETS plans to incorporate some countries which do not have carbon market itself. In this 

manner, some countries implementing different domestic climate policies can be linked 

up internationally. Besides trading through national gateways, private linking exists if 

two carbon markets are directly linked. The participants in different markets can trade 

directly. This is theoretically optimal but needs a sufficient legitimate status. 

E. Impact of ETS on different industries 
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These studies considered issues from the viewpoint of different industries, e.g. firm, 

power generators and emission treatment plants. A.S.Malik [105, 106] investigated the 

noncompliance and cheating from firms which own market force. Further studies prove 

that deceiving behavior will emerge if the marginal abatement cost is higher than the 

cost of cheating or employing market force. Marginal abatement cost is the cost relating 

to the last and consequently the most expensive entity of CO2 emission to be reduced, by 

which the price of CO2 allowances for a period of time shall therefore be defined. Cost of 

cheating is the marginal penalty for cheating. Because limited budgets and prohibitive 

monitoring cost make complete enforcement impossible, noncompliance cases arise. Firms 

might cheat if the cost of cheating is less than marginal cost of compliance, which is the 

cost of obtaining an allowance for an additional unit of emissions. Therefore it is 

possibility, however, that firms may cheat and emit more than their stock of permits allows. 

The number of similar analysis on industry behaviors affected by embedding ETS is 

vast. Existing literatures usually shed lights on the existence of the impact in addition to 

showing how far the impact would take place. Since the last decade, an inevitable tide 

of investigating uncertainties of ETS and its influences on the industry of other markets 

brought a mass of literatures. For instance, references [107-109] take uncertainty of CO2 

allowance price into account in the studies of some mature areas, e.g., bidding strategies, 

hedging arrangement and abatement option of EM. Introducing ETS into power system 

or energy market is a novel challenge since a lot of works have to be completed before 

it is comprehensively compatible with the market operation. Although still under the 

research and experimental stage, some efforts have been put into implementing ETS on 

different industries. More details of how ETS impacts on other markets will be given 

and compared in section 2.4 in this chapter. 
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2.3.4. Comparisons with other climate policies 

Growing concerns about environmental issues have led to the establishment of 

several energy and environmental policies, of which the most relevant ones are those 

derived from the Kyoto Protocol [2] for the reduction of greenhouse gas emissions as 

well as those promoting renewable energies. Emissions trading scheme (ETS) was 

included in the protocol as a mechanism that could increase economic efficiency of the 

efforts to reduce greenhouse gas emissions.  

There are three basic types of ETS: reduction credit programs, averaging programs 

and cap-and-trade programs [3]. A cap-and-trade program, inspiriting the 

implementation of the carbon market, is the focus of this thesis. Besides ETS, carbon 

tax [110] has raised several concerns as an alternative of ETS. To incite the use of 

renewable energy sources, renewable energy support schemes have been enacted in the 

power industry. This section will compare carbon trading with other climate polices. Fig. 

2-6 presents the categories of the most important climate polices. 

 

Fig. 2-6  Categories of climate policies 
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Cap and trade program, being the most widely adopted method of emission trading 

scheme, is the focus of this thesis. The performance of the Acid Rain Program [111] has 

proved that cap and trade is a successful method to control emission in large electric 

power systems.  Under cap and trade program, each allowance represents an 

authorization to emit a specific quantity of a pollutant. All emission sources (i.e., 

GENCOs) are allocated a fixed number of allowances. They can decide the use of 

allowances freely but the total number of allowances is capped. In this manner, it 

enables the capped regions/ countries to reduce emission at the desired level. By the end 

of the compliance period, emission sources have to allocate sufficient allowances to 

cover their actual emissions during the period. The principle of the other two methods 

of emission trading schemes are similar to the cap and trade program, which is to 

provide sources with flexibilities to develop cost effective emission reduction strategies. 

Further details are given as follows: 

A. Reduction credit program 

In a reduction credit program, which is also referred to as a project-based program, 

emission sources are given credit for projects that reduce emission below a rated 

baseline during a certain period. K. G. Begg and S. Kartha et al. indicated that, to 

reduce emission to a same level, the cap and trade program could end up with a lower 

cost than a reduction credit program [112, 113]. Furthermore, reduction credit program 

has some disadvantages such as high uncertainty, high risk and additional cost related to 

the assessment of individual projects. Practically, mandatory market of ETS is always 

recommended in a cap and trade program form to ascertain the fulfillment of 

environmental goals. Whilst, reduction credit program has been proved a successful 

method in some voluntary markets [114]. Reduction credit program may include a 
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larger variety of sectors and source types than that of the other types of trading 

programs.  

B. Averaging program 

Different from the cap and trade program, averaging program issues a performance 

standard with either constant or declining emission rate. It can be tons of emissions per 

megawatt hour for the electricity industry. Emission sources can sell the credits 

associated with average emission rates below the performance standard to other 

emission sources. This form of programs is considered to be the easiest one to be 

applied in different sectors simultaneously. This is because it can issue a specific 

performance standard in a sector having similar emission characteristics. It will be 

effective to promote efficiency if circumstances require a flexible cap on emissions. 

 

Table 2-1  Comparison of the three approaches of emission trading scheme 

 
Potential to reduce 

emission 

Potential to 

minimize the cost 

Costs related to 

administration & 

transaction 

Cap and Trade High Yes Low 

Reduction credit Low Yes High 

Averaging program Medium Yes Medium 

 

Table 2-1 compares the three approaches of emission trading scheme. It is noticed that 

the comparison is a kind of qualitative analysis rather than quantitative analysis which 

focuses on gathering of mainly verbal data rather than measurements. Gathered 

information is then analyzed in an interpretative manner. It can be concluded that cap and 

trade approach is considered to be the most widely adopted method with the highest 

potential to limit total emissions and have the lowest transaction costs. Any emission 

trading program should be designed for a specific region/ country with consideration of 

its pre-existing polices and situations. 
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C. Carbon tax 

Although carbon tax has less support from lawmakers as it invokes the word “tax”, it 

is considered to be an efficient climate policy by some academics and advocates. A 

marked difference between carbon tax and cap and trade is that the former set the price 

of CO2. Cap and trade allows the market supply and demand of emissions allowances 

determine what their price will be. In the acid rain program, there was a time that the 

price of allowances rose from US$80 to US$200 per ton. It was due to a tightening of 

supply and the revision in the program rules [115, 116]. In the EUETS [117], the price 

of CO2 allowances has fluctuated more dramatically, from 20 Euros to less than 1 Euro 

per ton in phase I (year 2005-2008) [118, 119] . 

On the contrary, carbon tax is determined by the government so that it allows entities 

to affect the total emission level. Since the cost of emission is fixed, the economic costs 

of implementing a new climate policy can be controlled to a reasonable extent. A fixed 

carbon tax actually offers a simpler and easier mechanism for ensuring cost certainty. 

To avoid the cost effect, carbon tax is especially suitable for developing countries that 

are undergoing economical revolution. When novel techniques that can tackle the 

problems relating to climate change are available, establishing a standard to support the 

techniques is a better way to institute a cap and trade program. However, low-cost 

means to remove CO2 from combustion process and devices for reducing the effects of 

CO2 are not available at the moment. Thus, an alternative method is needed to incite the 

CO2 abatement. The virtue of cap and trade is to inspire both the demand side and the 

supply side to fulfil their emission reduction in the financial markets. CO2 emissions 

produced by generators are regarded as negative externalities. This is because generators’ 

productions impose negative external costs to the atmosphere which is a common property 

resource. 



                                                                    Chapter 2 

50 

Either carbon tax or cap and trade could internalize the negative externalities. Carbon 

tax is a charge on each unit of a firm's emissions.  An emission fee will cause the firm to 

reduce its emissions to a level at which the marginal cost of abatement equals the imposed 

emission fee. Therefore, the negative external costs are internalized to each firm through 

taxes. 

As explained in Fig. 2-4, if there are enough firms and permits, a competitive market for 

the allowances will be developed through cap and trade. In market equilibrium, the price of 

an allowance equals the marginal cost of abatement for all firms. Firms with relatively low 

marginal abatement costs will have larger emissions reduction, while those firms with 

relatively high marginal abatement costs will buy more allowances and have smaller 

emissions reduction. Each firm or country will strive to balance the cost of abatement 

against the price of buying or selling allowances. Therefore, the marginal abatement cost 

for all firms will be lowered through market competition. Compared with carbon tax, cap 

and trade can internalize the externality of emission reduction in a way that the carbon 

tax could not provide. In cap and trade programs, the companies have incentive since 

the performance in deciding CO2 abatement and behaviour in carbon market will finally 

turn out to be a decisive factor to their revenue. 

D. Renewable energy support scheme (RESS) 

The objective of the implementation of RESS is to promote the rapid development of 

the renewable energy sources. RESS has traditionally been based on three main 

mechanisms: fixed-price systems, fix-quantity systems and bidding systems, which are 

presented in Fig. 2-7. There are four general methods under fixed price systems: 

investment subsidies, fixed feed-in tariffs, fixed premium systems and surcharge-funded. 

Investment subsidies are given to investors based on the rated power. It has caused 
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problems that some large wind farms received the subsidies while actually produced 

little power.  

 

 
Fig. 2-7  Categories of RESS 

The difference between feed-in tariffs and fixed premium system is that the total 

electricity price received in the former is fixed while in the latter is volatile. Fixed feed-

in tariffs are relatively straightforward to encourage forward planning and stimulate the 

usage of renewable. A fixed price per kWh electricity is paid to the operator when the 

renewable energy is fed into the grid. Similar to feed-in tariffs, fixed premium system 

requires a fixed rate to be added to the electricity price. Therefore, the fixed premium 

system is less predictable for a GENCO because its revenue depends on the fluctuated 
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electricity prices. It will reflect the external costs of conventional power units. Different 

from the previous methods, surcharge-funded are paid by consumers for all electricity 

purchases. Renewable generators are paid for each kWh unit of electricity produced 

from the revenue of the surcharge. Among the four introduced methods, fixed feed-in 

tariffs are most widely applied to support renewable sources in power system. 

Fix-quantity systems have two variations: Renewable portfolio standard (RPS) and 

tradable green certificates. RPS requires electricity generation entities to produce or 

purchase a certain percentage of their electricity from renewable energy sources by a 

specified date. RPS regulates the quantity on the generation side while tradable green 

certificates apply on the consumer side. Tradable green certificates require retailers to 

purchase a certain amount of certificates. They are subject to a penalty when there is 

any shortfall of the pre-determined amount. These two methods have been applied in 

nearly half of the states in almost all regions of the USA [120]. However, renewable 

markets are driven by different states individually because different states have their 

own preferences for renewable. 

Bidding System removes political risk for the investors of renewable energy. Power 

suppliers are allowed to bid for supplying a limited wind energy capacity in a given 

period for a given price.  

Although renewable energy support scheme (RESS) is to promote the use of 

renewable energy sources, it is obviously that RESS and ETS have overlapping goals 

with respect to the global environmental and economical benefits. Under RESS, the 

development of renewable energy sources are usually supported or inspired by 

governments and generally can obtain priority and subsidy to generate electricity. This 

may reduce the demand of traditional thermal generation electricity technologies and 

further reduce CO2 emissions. Given this background, with the implementation of these 
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two schemes, the impacts of these two schemes on operating electricity markets are 

examined in chapter 6 and chapter 7.  

2.4. Analysis of Interactions Among Electricity Market, Carbon 

Market, Fuel Market and Renewable Market 

Emission trading scheme, which is one of the main focuses in this thesis, is a key 

mechanism playing a significant role to link the four interactive markets including 

electricity market, carbon market, fuel market and renewable market. This section will 

conduct a comprehensive analysis and shed some lights on the impact of ETS on each 

market.  

2.4.1. Impacts of emission trading on electricity market  

A.  Impacts on electricity price 

The supply and demand of emission allowances determine the price in carbon market 

and the price fluctuates over times. The fluctuation of the carbon price will shift the 

related cost to end users through the whole supply chain of electricity production. It is 

expected that this influence will be derived directly from the level and period of carbon 

emission constraints and also the carbon intensity of the relevant supply chain of the 

industry (i.e., transmission and distribution). The most explicit observed consequence is 

that electricity prices are affected. All GENCOs are expected to shift the incremental 

cost of emission allowances or even higher cost to their end users. However, the 

eventual impact of carbon price on the electricity price is non-stationary. This is 

because the eventual impact might be affected partly by the transmission and 

distribution cost. Whist, the impact can be discussed through two continued but 

different stages (wholesale stage and retail stage) as follows: 

 The impacts on wholesale prices 
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Lots of literatures studied different environmental policies and their impacts on 

electricity wholesale price. P. del Río González incorporated several environmental 

instruments to analysis the impact of ETS on the electricity market via electricity 

demand and price fluctuation [121]. In this study, impacts are analyzed via two regions 

(A and B) under four scenarios considering different market structures and policies: (1) 

National environmental-energy policy and national electricity market; (2) International 

environmental-energy policy and national electricity market; (3) National 

environmental-energy policy and International electricity market; (4) International 

environmental-energy policy and international electricity market.  

Table 2-2.  Effect to electricity price under four scenarios 

 Wholesale Electricity Price Electricity Demand Costs for the Consumers 

Region A B A B A B 

Scenario 1 ↑ = ↓ = ↑ = 

Scenario 2 ↑(A)>(B) ↑(A)>(B) ↑(A)>(B) ↑(A)>(B) ↑(A)>(B) ↑(A)>(B) 

Scenario 3 ↑ ↑ ↓ ↓ ↑ ↑ 

Scenario 4 ↑ ↑ ↓ ↓ ↑(A)>(B) ↑(A)>(B) 

It can be observed from Table 2-2 that electricity demand in scenarios 1, 2 and 4 are 

not promoted. The comparative static analysis of the impacts of ETS on the two regions is 

based on a graphical approach. However, the wholesale electricity prices are expected to 

be increased in almost all scenarios. This proved that the conjecturing of a GENCO is 

expected to shift the incremental cost of emission allowances or even higher cost to the 

end users as mentioned in the last paragraph. This work provides analysis from the 
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macroeconomic aspects but does not consider the dynamic effects of emission trading 

on GENCOs’ operation. 

In the light of the theoretical fundamentals, different kinds of simulation models have 

been developed to investigate the impacts of ETS on the wholesale electricity price. In 

Netherlands, the total cost of generating electricity is demonstrated to be increased by 

around €430 million [122]. Equivalently, the average electricity wholesale price is 

expected to be raised by 0.41€ cent/kWh. A fundamental electricity market model 

named VTT is proposed in [117] to study the electricity price variation due to the 

implementation of the EUTES. The VTT model is based on physical demand and 

production of electricity in a market area, i.e. the Nordic Countries, and the trade 

between neighboring regions such as Russia and Central Europe. The result indicated 

that the annual average wholesale price was increased by €0.74/MW for every €1/t CO2 

in the Nordic area. However, these studies considered that the price of emission 

allowances is fixed at €10/t CO2. 

Besides the quantitative analysis, several competitive models have been developed to 

provide qualitative analysis of the wholesale electricity price variation due to the 

introduction of ETS. For example, L. Chernyavs'ka and F. Gull [92] examined 

GENCOs’ behavior in the electricity market when implementing ETS. It is concluded 

that the incremental cost of GENCOs will be passed through to the customers via the 

increase in electricity wholesale prices. The investigations made in this study are based 

on an Italian market. The qualitative analysis shows that an increase in the wholesale 

price is incurred in the short term. The increase in the wholesale prices is mainly 

because it internalizes the marginal opportunity cost of carbon allowances. These 

studies can characterize the impact of carbon trading on the wholesale price clearing in 
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the short-run. It has been demonstrated that, with ETS, the electricity market structure is 

a direct determinant to the increase in the wholesale price. 

While market factors will cause influences on electricity price, some non-market 

factors will also affect the EM. R. Kannan and H. Winkler et al. adopted the MARKAL 

model, a least-cost optimizing tool, to analyze the impact of different energy policies 

[123, 124]. R. Kannan [123] set the emission reduction target at 60% reduction in CO2 

emissions at national level by 2050 as UK government did in 2000. Various parameters 

such as energy costs, plant costs, plant performances, building performance and so on, 

were inputted and the model chose an optimal technology mix to meet that demand at 

minimum cost. Based on the least cost optimization linear programming, the MARKAL 

model minimizes the total discounted energy system cost by choosing the investment 

and operation levels of all the interconnected system elements. The problem is 

optimally solved from year 2000 to year 2070 in 5-year increments. MARKAL is a 

generic model tailored by the input data to represent the evolution over a period of 

usually 40 to 50 years of a specific energy system at the national, regional, state or 

province, or community level. The majority of the literature on modeling studies has 

generally focused on modeling without taking policy influences into account. 

MARKAL model is recommended to be adopted while sometimes the policy impact is 

so significant that cannot be neglected. It can be concluded from vast of literatures 

mentioned in this chapter that the implementation of ETS leads to an increase of the 

electricity wholesale price in the short run. Several most important factors that 

determine the increase rate of the electricity prices are summarized as follows:  

Factors from CM:  

1. The interconnection of region/ nation carbon markets or other region/ nation 

climate policies e.g. carbon tax. 
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2. The initial allocation method in CM and the competition intensity. It is mainly 

affected by the regulator or politicians’ risk attitude towards the high price. 

3. Current price levels in CM. If the prices are at a relatively high level, it will lead to 

a negative influence on the new entrants.  

4. Current and the fluctuation level in CM. If the prices are fluctuated at a relatively 

high level, the market participants will be inclined to seek for profits in CM rather 

than only in EM. This will alleviate the increase rate of the electricity prices. 

Factors from EM:  

1. Other EMs can be connected. The connected EMs can be operated in different market 

structures or can have different environmental policies. The carbon intensity of the 

supply chain of the new connected electricity industry includes the generation, 

transmission and distribution is a key factor of electricity wholesale prices variation 

when employing ETS. 

2. The average rate that GENCOs shift their incremental cost related to ETS to the 

customers is one of the determinants of electricity wholesale prices variation. 

3. Market power of some GENCOs in the EM will affect the wholesale price in 

another way. A GENCO which has market power can adjust its supplies due to the 

incremental cost of reducing emissions. Because the network constraints limit the 

transmission freely, to avoid congestion of transmission, the wholesale price may 

have no option but to be increased.  

 The impacts on retail prices 

Similar to the wholesale price, the retail price cannot be exempted from increasing. 

However, several alleviate methods could be imposed to induce the electricity market 

passes less of the incremental cost of reducing emissions to the customers. ETS affects 

the electricity retail price in many ways, of which the most important factors are the 
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carbon market environment and the applied policy. Furthermore, other related sectors 

covered by ETS may affect the electricity retail prices. Different market structures in 

CM (i.e., different methods of initial allowances allocating, the covering sectors and 

commitment periods) and EM lead to the significant variation in incremental retail price 

[122]. Recently, B.Cheze and J. Chevallier  found that carbon price changes respond not 

only to retail prices forecast errors but also to industrial production in the other two 

sectors (i.e., paper and iron) covered by the EUETS [125]: combustion and iron. 

Reference [126] analyzed the interplay between daily carbon, electricity and gas price 

data with the EUETS for CO2 emissions. A. Sadegheih conducted a survey in [127], 

which has concluded from vast of literatures mentioned in [128-131] that the 

implementation of ETS leads to an increase in the electricity retail price. Several most 

important factors determine the increase rate of the electricity prices are summarized 

below: 

Factors from CM:  

1. Current price levels and the market structure in CM; 

2. The interconnection of other EMs with or without different structures or 

environmental policies; 

3. The level of carbon cap and the production in other sectors covered by the ETS.  

Factors from EM:  

1) Market structure and carbon intensity in EM; 

2) The price elasticity of demand in EM; 

3) The type of the long term electricity contract in EM; 

4) The market power of GENCOs; 

5) The incremental cost of available technologies which GENCOs can adopt to 

mitigate or avoid increasing the carbon emission. 
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B. The Impacts on Generation Investment 

The fluctuation of the prices in CM is an incentive for a GENCO to seek for profits in 

CM. For either short term or long term planning, GENCOs have motivations to make 

investments. The carbon intensity across the current supply mix will vary significantly, 

which will cause enormous variations in the relative short run marginal cost (SRMC) of 

the generators [10]. Although generators will therefore benefit from a rise in price, the 

ones who have relatively lower emission and renewables have predominant advantages 

in the electricity market planning and operation. Therefore, for short term (usually less 

than ten years), investment may be placed in technologies which can reduce the carbon 

intensity. For long term (usually more than fifteen years), without doubt, investment in 

exploiting renewable sources is a trend. However, for both short term and long term, the 

impact on generation’s investment will fluctuate considerably. Basically, ETS will 

affect dispatching arrangement in short term and lead to the investing plan in the long 

run. In this manner, the impact can be discussed through two continued but different 

stages (short term investment and long term investment) as follows: 

 The Impacts on Short Term Investment 

It can be concluded from a large number of literatures including [10, 132, 133] and 

the others mentioned in this chapter that the investments in short term are affected 

significantly by the uncertainties from the prices level in CM, policy guidance and 

market structure. Substantial returns in CM lead to variations in either demand or 

supply side of electricity industry [134]. From demand side, the price elasticity varies 

and sometimes consumers prefer to purchase less electricity. As mentioned in part A of 

this section, F. P. del Río González indicated in [121] that the interconnection of 

markets with different structures will lead to different demand responses in EM. From 

the supply side, GENCOs are expected to have their own decision makings. Economic 



                                                                    Chapter 2 

60 

dispatch merit order, usage of fuels and also the trading of carbon allowances are 

adjusted based on the fluctuation of the carbon prices. To confront these changes, 

GENCOS are expected to invest in several technologies. 

According to [135], several studies had investigated the short term investment due to 

the implementation of ETS. It is shown that when the price of carbon price is around 

€18.5/t CO2, the major electricity supply will be switched from the traditional coal plant 

to the combined cycle gas turbine (CCGT). The investment on CCGT will lower the 

emission of CO2 by a half. Besides CCGT, gas turbine is another alternative for 

GENCOs to invest. The switch from coal to gas generation is highly dependent on the 

gas prices in FM. If the carbon price is stable at a relatively high level and the gas prices 

in FM are relatively low, gas generations are without doubt superior in dispatching 

order. The concerns of GENCOs in EUETS are investigated in [10] and it is concluded 

that GENCO would include the cost of allowance and the abatement cost when they 

make decision on investment. A dynamic decision making model is developed for a 

GENCO under the ETS [136]. The proposed model illustrates how different levels of 

emission allowance affect a GENCO’s behavior and total profits. A GENCO needs to 

consider its own production and dispatch of each unit in the most economical way. 

However, this study has not considered the impacts from FM. The deregulation of EM 

and the implementation of CM require each GENCO to build up its own fuel portfolio 

according to the prices variation in FM. Therefore, to take the uncertainties of electricity 

market, carbon market and fuel market into account, a novel two-stage stochastic 

optimization decision making model to deal with the multimarket trading problems in 

each trading interval is developed in chapter 5. Usually, the industry does not want high 

investing risk when planning the carbon investments. Taking into account of the risks 

and uncertainties of the prospect of CM, the industry would prefer to embrace some low 
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carbon investments, such as short term investments to improve the energy efficiency in 

the existing power plants. 

The most probable investment plans in short term are summarized as follows: 

1. Reducing the production in high emission generators; 

2. Investment in allowances from CM; The fluctuation of carbon prices is an incentive 

for some firms to seek for profits in CM. Some firms might decide to purchase or 

invest in some programs in order to obtain certain amounts of carbon allowances, by 

which they have the chance to sell the allowances when the market price is high 

enough to make a profit. 

3. Investment in energy efficiency projects in the existing plants; 

4. Revision on the generation scheduling merit order. Base load from the    traditional 

coal generators will be shifted to existing gas generators or else with relative lower 

carbon emission.  

 The Impacts on Long Term Investment 

Different from short term investment that confronts lots of uncertainties, most 

GENCOs would include the effects of implementing ETS in their long term investment. 

Technologies with lower emission intensity which are economically available attract 

GENCOs’ investing interest. The future cap of emission level and the price in CM are 

the major factors to determine which kind of lower emission technologies are 

predominant in electricity supply. The market prospect and a GENCO’s attitude will 

finally determine which kind of lower emission technologies will be adopted. It is 

concluded in [133] that GENCOs will sometimes be incented to invest in lower carbon 

technologies to switch the ones with higher but rational carbon emissions. 

ETS has been proved to become an increasing important role in affecting a GENCO’s 

investment decision making. In Finland, a GENCO’s long term planning is determined 
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mainly by the price of the allowances. The allocated allowances and the maximum 

possible allowances that a GENCO could acquire can also contribute to the decision 

making [72]. The quantitative statistical study showed that the carbon price’s volatility 

and correlation of with prices in EM and CM contribute to the decision making of long 

term investment. In [137], X. Q. Ji proposed a method combining the real options 

approach and the least square method (LSM) to evaluate investment opportunities due 

to various uncertainties existing in generation investment planning. A conclusion has 

been drawn from the case study of the thermal power plants that the decision making of 

long term investment are affected significantly by the uncertainty relating to the 

allocation method of emission allowances.  

When making decision on long term planning, especially investing in a new 

generation plant, GENCOs are confronted with problems of lacking long term 

information. The duration span of a new generation plant is usually 20 -30 years. 

However, ETS market operation is always affected by the international negotiations. 

GENCOs therefore are subject to limited information and uncertainties of the market 

prospect when they made decision on investment. They have no choice but confronted 

with lots of uncertainties. On one hand, this might lead to a negative influence on the 

investment in the power industry as a whole. On the other hand, this might increase the 

competiveness and the diversity of the electricity market operation because more 

choices of technologies are available for the new entrants. To avoid increasingly 

uncertainties in the long term investment, a long term ETS policy is of impotence and 

can stimulate the investment in different novel technologies [133, 138, 139].  

The implementation of ETS has significant influences on GENCOs’ operation. On 

one hand, GENCOs are stimulated to develop cost effective emission reduction 

strategies. On the other hand, they are subjected not only to physical constraints in EM 
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but also environmental constraints in CM. One significant change is that some 

generators which lose their cost advantages in EM might have chances to earn the 

superiority in CM. It is possible that some generators decide to reduce their individual 

emission lower than the required level. They can then sell the surplus allowances to 

other generators or entities that confront higher abatement costs. In terms of replacing 

existing generators, technologies such as wind power, geothermal and carbon capture 

and storage become increasingly competitive when the prices in CM rise. For some 

generators with relatively high carbon emission factor, when the prices in CM are high, 

plant retirement become an economical decision although their SRMC might still be 

competitive in short run. Due to economical reasons, most countries implementing ETS 

have not established special policy for cases of new entrants and plant retirement. 

Whilst, different allowances allocation approaches are employed to encourage the 

retirement of generators with high emissions so that new entrances can get a space. To 

maximize the expected profits in the long run, the following choices are available for a 

GENCO: 

1. Investment in replacing alternative or cleaner fuels; 

2. Coal-fired units are progressively substituted by CCGT or other low                                                                

carbon emission units; 

3. Investment in emission control technologies and instruments; 

4. Investment in wind power, geothermal, carbon capture and storage; 

5. Retire. 

2.4.2. Impacts of emission trading on carbon market 

As mentioned in section 2.3, CM is a market which operates on the basis of ETS. As far 

as climate issues are concerned, EM, RM and the related secondary markets of CM 

have overlapping goals. Secondary markets of CM include forward transactions, option 
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transactions and over the counter market. Market participants are expected to optimize 

their planning and operation in these interconnected markets simultaneously. Therefore, 

ETS will react on the CO2 allowances price in CM via the participants’ responses to the 

co-existence markets. 

In a well-defined CM, the implementation of ETS will lead to a relatively high 

carbon price level. Thus the price in CM can affect RM positively. On the other hand, a 

mandatory RM will affect the dynamics of CM, with the potential of lowering the price 

level in CM. This interaction may ultimately lead to a structural change across the 

covered sectors. Power industry, possessing the overwhelming majority of CO2 

allowances, is a big party in participating CM and thereby GENCOs’ attitudes and 

performances will be the major determinants of allowance prices. 

Secondary markets of CM are similar to the existing ones related to current EM, FM 

and RM. It can benefit the stability of CM and enables participants in the market to 

make the tradeoff between their own risk and opportunity. E. Benz and J. Seifert et al. 

study the dynamics of allowance price and seek to find out the price determinants in 

[140, 141]. Since the first CM in scale or scope only came into effect from 2005, thus 

each of the numerical study was based on data from EUETS. Factors from other 

markets will affect the forecasting allowance price, such as energy prices in EM, fuel 

prices in FM. Besides, the sub-period decomposition of the pilot phase gives a better 

grasp of institutional and market events that drive changes in allowance price. Recent 

results from [125] showed that carbon price changes respond not only to energy prices 

forecast errors and extreme temperature events, but also to industrial production in two 

sectors covered by the EUETS: combustion and iron. [140] developed a price model 

that dealt with volatile price processes induced by short term factors such as the spread 
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between fuel prices, precipitation, summer and winter temperatures and the setup of a 

trading environment.  The literature also pointed out that the demand and the value of a 

stock is based on profit expectations of the underlying firm. The CO2 allowance price is 

determined directly by the expected market scarcity induced by the current demand and 

supply in the CM. From this literature, price determinants of CO2 emission allowances 

are: 1. policy and regulatory issues; 2. market fundamentals of CM; 3. Production of 

CO2; 4. Demand and supply of CO2 allowances.  

Studying the dynamics of allowance spot price is an interesting topic. Attentions 

should also be paid to the derivatives of carbon like futures and options in secondary 

CM. The nature of carbon price has no difference when comparing with other 

commodities but it is affected by factors from other interactive markets such as EM, 

RM and FM. 

2.4.3. Impacts of emission trading on fuel market 

Following the deregulation in electricity market, several naturally interrelated fuel 

markets such as coal, oil and natural gas markets [4, 5] are developing to more 

competitive environments. Nowadays electricity demand is growing significantly, the 

fossil fuels are being increasingly scarce. Moreover, the climate change impacts are 

gaining more and more attentions. All these phenomena motivate a shift towards less 

CO2-intensive power supply technologies. The implementation of emission trading 

scheme provides economical incentives for GENCOs to switch a substantial fraction of 

power capacity from fossil fuels to renewable technologies such as geothermal, biomass, 

or wind-powered turbines. These changes have significant effects on GENCOs’ 

management of their own fuel portfolios. The changes lead to a variation in the demand 

of closely related fuel markets such as coal, oil and natural gas market.  
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The substantial development of shale gas in recent years serves as a good example of 

the positive impact of ETS on the fuel market.  Shale gas is natural gas which is trapped 

within shale, a type of fine-grained sedimentary rock. With both economic benefit and 

environmental benefit, shale gas provides an important alternative for either countries or 

companies to meet their GHGs emission targets. In 2012, The US CO2 emissions 

dropped to a 20-year lowest with the help of the rapid shale gas development [73]. 

Shale gas contributed to over 20% of U.S. natural gas production in 2010 while the 

number is only 1% by 2010. With abundant shale gas deposits discovered and even 

more new potentials spots, shale gas seems to have chances to greatly expand around 

the world, especially in power industry. Because gas is relatively cleaner than coal and 

oil, GENCOs’ fuel portfolios are expected to switch to shale gas in respond to their CO2 

reduction targets. The proportion of natural gas in power industry’s energy mix could 

rise in the short term.  However, unless technological advances make carbon capture 

and sequestration techniques more effective, GENCOs are expected to be less depende 

on all fossil fuels, including shale gas. In the long term, the implementation of ETS will 

therefore leads to the expansion of renewable energy gradually. 

The shale gas has been sensational in US as its revolution made gas cheap again and 

developed extensively. Among all fossil fuels, shale gas is considered cleanest as it 

emits lower level of either CO2 or SO2 emission. Therefore, GENCOs who are under 

cap and trade problem or other polices may switch to this more efficient fuel. Besides, 

shale gas, as a new source having great potential, could help to keep the OPEC 

(Organization of Petroleum Exporting Countries) from being monopoly on fuel prices. 

Shale gas is either potentially lucrative or hazardous. Some states in USA has 

exploiting it while others has banned it because of its high risk in water contamination 

due to leakage. From the environmental aspects, the requirement of large quantities of 



                                                                    Chapter 2 

67 

water for fracturing might result in shortage of water in some areas. Besides, the 

fracturing liquid or fluid, which contains hazardous chemicals, might pollute the 

surrounding if it is not well controlled. Last but not least, the water that has been used, 

which contain dissolved chemicals, in the fracturing processes has to be treated before 

its reuse. 

A. Rentizelas et al. [142] investigated the probable effects of various scenarios for 

emission allowance price evolution on the future electricity generation mix in Greece. 

The RPS targets are included in the long term analysis to determine the optimal 

generating mix to minimize electricity generation cost, while satisfying system 

constraints and incorporating the uncertainty of emission allowance prices. Besides 

increasing the usages of renewable sources and reducing the adverse environmental 

impacts, ETS will reduce the power industry’s dependence on fossil fuels. From 

economic theory, it is of importance to diversify the supplying sources so as to achieve 

competiveness in a market. This can improve the market performance in either 

electricity market or fuel market because the prices on the two markets have strong 

dependencies and correlated interactively. J. W. Mjelde and D. A. Bessler [8] implied 

that price determination is more likely to be in the hands of the market participants than 

in the regulators' hands. Having market participants determining price may allow 

participants respond more quickly to changes in major fuel prices. Specifically, 

electricity spot markets may respond to price changes in its major fuel source markets 

(i.e., coal, oil and nature gas markets).  

The deregulation of EM and the implementation of CM require each GENCO builds 

up its own fuel portfolio according to the price variation in fuel market. In the long run, 

GENCOs therefore have to contract their fuels in an optimal way that allows them to 

operate in the multimarket environment without incurring any negative profits. In the 
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daily operation, with consideration of different fuel prices, GENCOs have to decide the 

usage of their fuel according to the production. As fuel cost is still the major factor 

affecting GENCOs’ decision making, GENCOs will decide to adopt a suitable 

mitigation method, with the prices in regional/ national fuel markets taken into account. 

R. Sims et al. concluded several methods for mitigation of CO2 emission in [143]: 

A. Increasing the efficiency of fossil fuels  

    On one hand, the current average energy efficiency in power station is at a relatively 

low level of around 30%. Based on the analysis through the MARKAL-Macro energy 

system model by setting the overall emission reduction target to 60% reduction in CO2 

emissions at national level by 2050 as UK government did in 2000, the power industry 

shows the potential to increase the emission reduction by 30% higher in the long term by 

technological development. On the other hand, the utilization effectiveness of fuel can be 

enhanced by using cogeneration plants. N. Strachan [144] indicated that the combined 

heat and power (CHP) offer both reduced costs and significant reductions of CO2 

emission. A successful example in Europe showed CHP’s ability to use the waste heat 

from electricity generation, raising total system efficiencies up to 90% (higher heating 

value (HHV)) in the best applications [145]. 

B. Switching to low-carbon fossil fuels 

    Some countries are undergoing reform in some specific fuel markets, coupled with 

the electricity market. In this case, the investment decision makers in the electricity 

supply industry would lead to a switch to low-carbon fossil fuel from coal. For example, 

motivated by the rapid development of the natural gas fuel market, the Combined Cycle 

Gas Turbine (CCGTs) allows GENCOs in Australia to use high efficiency, low capital 

cost technique to reduce carbon emissions [146].  

C. Decarbonising of fuels 
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Decarburization of fossil fuel can become an effective GHG abatement option. This 

process can be adopted either before combustion or after combustion. In both cases 

carbon dioxide can then be stored over geological time frames, for example, in depleted 

gas fields. 

D. Increasing the use of nuclear power 

Nuclear energy could replace base load fossil fuel electricity generation in many parts 

of the world if acceptable responses can be found to concerns over reactor safety, 

radioactive waste transport, waste disposal and proliferation. 

E. Increasing the use of renewable sources of energy 

Technological advances offer new opportunities and declining costs for renewable 

energy technologies which, in the longer term, could meet a greater share of the rapidly 

growing world energy demand. 

To gain a better understanding of how a GENCO would react to EM, CM and FM, 

the impacts of carbon policies with the interactive markets on the decision making of a 

GENCO is analyzed in chapter 5. To take the uncertainties of electricity market, carbon 

market and fuel market into account, a two-stage stochastic optimization model which 

provides the optimal results in both production process and trading process is developed. 

2.4.4. Impacts of emission trading on renewable market 

Over the past decade, mandatory renewable targets have expanded significantly 

worldwide. As introduced in Section 2.3.4, RPS, one of the largest drivers for new 

renewable energy generation in U.S., has been introduced in chapter 1. However, the 

implication on renewable energy generation sources might be slightly different with the 

co-existence of ETS.  

The implementation of ETS can benefit the operation in RM. This is because ETS 

can lead to credible transactions with price signal in either CM or RM. A reasonable 
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price level is of importance to drive structural changes in energy society. Similar to CM, 

price fluctuation in RM motivate investors, electricity producers and consumers to 

diversify the power sources. Both electricity production and consumption are 

progressively reached to the ultimate optimization. RM, coupled with ETS, is expected 

to compel the market participants to exploit renewable sources so as to achieve a fixed 

quantum of renewable penetration in the energy industry. To confront the uncertainties 

in either renewable technology or market, it is possible to replace the non-renewable 

technologies with the alternatives which contribute lower emission in both short term 

and long term. Besides economic consideration, displacing parts of the fossil fuels 

generators with renewable generators such as wind, solar, hydro, biomass and 

geothermal units can reduce carbon emission significantly in energy industry. However, 

the cost for establishing and operating renewable generations is a bit higher than its 

counterpart. Thus, S. E. Fleten et al. explored a method for evaluating investments, 

under allowance price uncertainty, to maximize the profits from the investing 

opportunity [147]. Results indicated that the intensity of price volatility affects RM’s 

performance significantly. High price volatility increases the value of the investment 

opportunity and therefore makes it more attractive to postpone investment until larger 

units are profitable. According to reference [147], the optimal investment strategies in 

decentralized renewable power generation depend on several factors including electricity 

load, climatic data and electricity prices. With the analysis using the data provided by the 

Nord Pool, the optimal strategy is investing in different capacities at different price ranges. 

Furthermore, the analysis shows that increased price volatility increases the investment 

price thresholds, and can increase the value of the investment opportunity for larger 

projects so much that the only optimal strategy is to wait until investment in the largest 

project is optimal. 



                                                                    Chapter 2 

71 

As introduced in Section 2.3.4, there are several methods of RESS which have been 

implemented in order to promote the development of renewable energy sources. A 

support system for electricity from renewable energy sources, RES-E, has been 

developed in Europe [148]. It is expected that RES-E would serve as an international 

label of renewable energy sources. The policy option for increasing the RES-E 

penetration in Greece has been evaluated in [149]. When the increasing rate of the RES-

E penetration is larger than that of energy demand, renewable units are expected to 

displace the fossil fuel units in scale. The direct result of the promotion of renewable 

sources is the reduction of carbon emission. This leads to the decrease in the demand of 

carbon allowance so that the price in CM is expected to drop. It is shown that, in the 

first phase of EUETS, an additional RES-E had led to the retail electricity price 

decrease to as low as €2.6 /MWh. Besides, a market-based cost-efficient framework 

based on tradable green certificates (TGCs) was developed for electricity production 

from renewable energy sources. TGCs are the most widespread RESS in Europe 

together with feed-in tariffs, which can be easily coupled with EUETS [150]. However, 

a specific RESS like TGCs would result in a higher renewable energy for consumers if 

it was directly promoted without ETS. It is concluded in [151] that the impact of ETS 

on RM is significant only when the carbon prices are very high. Furthermore, the 

increase in renewable energy sources deployment would be achieved at a higher cost 

because the incremental cost is expected to be passed to end-users. 

Using a simple model and traditional optimization solution method, Jensen and 

Skytte concluded in [152] that the implementation of a RESS can result in electricity 

prices declining. This is because the renewable part of electricity supplies is subsidized 

by the RESS. Although the electricity price is decreased, consumers suffered the 

incremental cost relating to the related policies. For example, they are asked to pay 
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addition cost for the use of renewable energy sources. They find that it is ambiguous 

whether the additional cost would be higher than the saving cost. Therefore the net 

consumer costs can either increase or decrease as a result of the introduction of an 

RESS [20]. Rathmann specifies that the introduction of RESS affect either the price of 

electricity or the renewable energy prices. With a national RESS in the years 2005-2007, 

the wholesale price of electricity are reduced by 6.4 €/MWh, whilst the renewable 

energy sources fee are increased by 3.8 €/MWh in Germany [153]. The simulation 

showed that the retail price of electricity would be, comparing with the without RESS 

case, 2.6 €/MWh higher.  

The implementation of ETS and RESS would bring many new problems to electricity 

market operation. The impacts of these two schemes on the profit of different types of 

generation companies are obviously different. Also the market shares, outputs and 

operation strategies of generation companies may be changed and moreover the 

operation of the whole electricity market would be affected. Thus, it is necessary to 

conduct more researches on this subject. Reference [20] investigated the impacts of ETS 

and RESS on the electricity market operation. Simulation results show that CO2 

emission reduction can be sustainable and the energy sources structure in the future can 

be optimized. Further details of this study will be discussed in chapter 6 and chapter 7. 

Among all renewable technologies, wind power is the most important one for the 

electricity industry. It has attracted much attention and become a hot topic in electrical 

power engineering recently. Academics [154] supported utilizing wind energy in small 

or medium size distributed arrangements. Kinds of renewable sources such as small 

wind turbines, photovoltaic, fuel cells, diesel engines, micro turbines, compose 

distributed energy resources (DER) and its derivative concept of Micro Grid (MG). MG 

is allowed to compete economically with traditional centralized electricity plant. It can 
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either be operated in an isolated mode, or interconnected to the distribution network. H. 

Jiayi conducted a literature survey in [155] to introduce how the MG operated in both 

environments. The literature points out that only a few works have considered problems 

existing in situations where MG and ETS coexist. Furthermore, no research has 

investigated the impact of both ETS and RESS on the RES’s operation. Besides CM and 

mandatory RM, voluntary RM has also been growing rapidly in recent years. It has 

created a platform for the entities or individuals to voluntarily reduce their carbon 

footprints. On one hand, consumers in the voluntary RM can purchase credit such as 

REC in the markets, which are generated from an eligible renewable resource. On the 

other hand, they can directly obtain credits from small MG project. Whether the RM is 

mandatory or voluntary, the development of ETS is likely to benefit RM, both in depth 

and breadth. Such as in U.S., the value of a REC, often speculative because it is 

determined by public policy rules, can include emissions reductions, regulatory 

compliance and evidence showing the generation or purchase of renewable energy. So 

far no literature has studied the joint effects of ETS and RESS on GENCOs operation in 

electricity market. To consider wind power uncertainty under multimarket environment, 

a novel dynamic decision making model is proposed for GENCO in chapter 7. This 

study includes the probability of stochastic wind power based on non-linear wind power 

curve and Weibull distribution. Different scenarios of climate polices will be compared 

to demonstrate their economic and environmental influences on a GENCO. 

2.5. Summary  

In this chapter, existing studies relevant to the research objectives of the thesis have 

been reviewed. From the literature review, the following conclusions can be drawn: 
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A. Since the pricing mechanism is the most significant component in electricity market, 

novel models related to pricing scheme should be developed for both active power 

and reactive power.  

B. Previous studies of day-ahead electricity price forecasting are classified and 

compared in section 2.2.2. Current available literatures on reactive power pricing 

are reviewed in section 2.2.3. More effective methodologies are needed to deal with 

price forecasting and reactive power pricing in electricity market planning and 

management. 

C. Fundamental issues of emission trading scheme, which play a significant role to 

link the four interactive markets including electricity market, carbon market, fuel 

market and renewable market, are discussed in section 2.3. Background of ETS and 

the international situation of carbon markets are presented, followed by the research 

problems of implementing ETS and the comparisons of ETS with other climate 

policies. 

D. A comprehensive interaction analysis among electricity market, carbon market, fuel 

market and renewable market is presented in section 2.4. The analysis is provided 

through investigating the impacts of emission trading scheme on each markets. 

Several unsolved problems are addressed in this section and shed some lights on 

chapters 5-8. 

In summary, previous studies on electricity market planning and management, 

especially for pricing scheme, leave many rooms for further research exploration. 

Therefore, pricing schemes for both active power and reactive power are investigated in 

chapter 3 and chapter 4, respectively. The implementation of ETS in power industry has 

brought lots of research problems in electricity planning and management considering 

environmental and economical effects. Recent research progresses in ETS have been 
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reviewed comprehensively and the interactions among electricity market, carbon market, 

fuel market and renewable market have been analysed in section 2.4. With 

consideration of environmental and economical influences under multi-market 

environments, several unsolved problems are addressed. Based on the literature review 

and interaction analysis, chapters 5-7 will investigate the following research topics 

which will enrich the study of environmental and economical analysis in electricity 

market planning and management significantly:  

 Investigate the impacts of emission trading schemes on a GENCO’s decision 

under multimarket environment 

 Analyses the impacts of emission trading and renewable energy support schemes 

on electricity market operation 

 Develop a novel decision making model for GENCO’s operations considering 

emission trading and renewable energy support schemes. 
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CHAPTER 3. A NOVEL FRAMEWORK FOR 

ELECTRICITY MARKET PRICE FORECASTING 

3.1. Introduction 

As discussed in section 2.2.2, a number of techniques have been proposed for 

electricity price forecasting. However, available methods have their own demerits so 

that they cannot effectively deal with price forecasting in the electricity market. As 

chapters 5, 6 and 7 dedicate to propose planning and operation models for GENCOs 

under multi-market environments, a robust and accurate prediction model for day-ahead 

electricity price is of importance under these circumstances. 

The difficulties of the electricity price forecasting in electricity markets with several 

interconnected regions is firstly presented in section 3.2 of this chapter. It is followed by 

the introduction of several evaluation criteria. Rare literature has studied both inter-

temporal dynamics and inter-regional interactions of uniform day-ahead price among 

different interconnected regions. Panel cointegration (PC) model is creatively employed 

to forecast the day-ahead electricity market prices in section 3.3. It shows good 

performance but cannot handle the nonlinear patterns of the electricity prices series. 

Particle filter (PF) has achieved significant success in tracking applications involving 

non-Gaussian signals and nonlinear systems. To make use of the advantages of both 

techniques, section 3.4 creatively integrates the two technologies and proposes a novel 

estimation framework based on panel cointegration and particle filter (PCPF). The 

Pennsylvania—New Jersey—Maryland (PJM) market is chosen for the case studies in 

section 3.5,using the historical data of the PJM which are published at its website and 

can be found in [156].  
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3.2. Problem Formulation 

A pool-based electricity market (EM) with N interconnected regions is studied in this 

section. In this kind of market (e.g. PJM), the operator coordinates the movement of 

electricity through the interconnected power grid. The uniform price in the day-ahead 

market is affected significantly by the regional loads because electricity price is 

calculated based on the consideration of the entire gird [24]. On the other hand, the 

variability of the uniform price can influence the energy-usage patterns and introduce 

new trends. Fig. 3-1 shows a snapshot of the seven regional loads of PJM from Jan 1 to 

Jan 7, 2008.  
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Fig.  3-1 Loads of the 7 regions from Jan 1, 2008 to Jan 7, 2008 

It can be seen that significant loading differences, which change from time to time, 

exist among regions. Besides, significant individual intra-day variations can be 
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observed. In other words, both the inter-temporal dynamics and the inter-regional 

interactions exist in the panel of data. The dynamics of electricity price and loads are 

always non-stationary due to the discrete changes in participants’ strategies from 

different regions so that individual time series analysis cannot simultaneously reflect 

electricity consumption conditions in different regions. In view of the disadvantages of 

time series data, the PC model presented in section 3.3 is used to identify both the 

impacts of inter-temporal dynamics and inter-regional load differences on the uniform 

day-ahead price. This is the first time a PC model has been applied in the electricity 

price forecasting. 

In addition, nonlinear patterns exist in the relationship among the uniform day-ahead 

price and the loads of different regions. In this case, using time series models such as 

regression based models and stochastic time series models cannot capture the complex 

nonlinear behavior. On the other hand, using intelligent method such as NN will yield 

mixed results and the efficiency will vary from case to case. Considering these two 

aspects, the PCPF model is proposed in section 3.4 to tackle these difficulties by using a 

two-stage forecasting framework. 

To assess and compare the performance of the models, weekly mean absolute 

percentage error (WMAPE), WMAPE for period j (WMAPEj), daily mean absolute 

percentage error (DMAPE), weekly mean absolute error (WMAE) and weekly root mean 

square error (WRMSE) indices are adopted in this thesis. 
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where ,

A

j tX
 is the actual value and ,

F

j tX
 is the forecasted value of the predicted variable. 

3.3. Proposed Panel Cointegration model 

Panel cointegration model have been proved as a feasible forecasting tool in statistics 

and econometrics [157, 158]. It builds upon panel data which is a set of sample values 

which combines cross-sectional and time-series data sets. Either time series or cross-

sectional data is a special case of panel data in one-dimension only. The panel 

cointegration model is applied to forecast electricity prices in [24] for the first time. 

Mathematically, the panel data has N cross-sections (i.e. number of regions in EM) 

and T number of days in sample. The panel data is constructed as： 
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where 0, , ,, ,j i j i je 
are coefficients for cross-section and 0, , , ,,j l i j l 

 are coefficients for time-

series. l is the time lagged value in order to capture the distinct profile of each inter-day 

period. m and n are the number of time lagged items ,j t lP  and , ,i j t lL  , respectively. The 

advantage of having panel data as compared to a single cross-section or series of cross-

sections with non-overlapping cross-section units is that it allows us to test and relax the 
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assumptions that are implicit in cross-sectional analysis [159]. To estimate the long-run 

equilibrium relationship and the short-run adjustment relationship among variables, 

three procedures need to be carried out: panel stationarity test, panel cointegration test 

and PC estimation. 

The establishment of a PC model among variables requires to test whether the panel 

data is (i) stationary (integrated of order zero) or non-stationary (integrated of order 

one); and (ii) cointegrated. A stationary process is a stochastic process whose joint 

probability distribution does not change when shifted in time or space. Consequently, 

parameters such as the mean and variance, if they exist, also do not change over time or 

space. In general, electricity prices and loads are non-stationary variables that cannot be 

directly estimated [42]. Hence, cointegration is an alternative to describe their 

relationships in econometric analysis which indicates long term equilibrium among 

variables. Therefore, the cointegration test and PC estimation will be carried out if the 

panel data is non-stationary; otherwise the coefficients of the panel model can be 

directly estimated according to (3-6).  

3.3.1. Panel stationarity test 

Unit root test is a conventional econometric method to test the stationarity of time 

series by examining the existence of unit roots. Recent literature [160] finds that panel-

based unit root tests are much more powerful than the basic tests such as Augmented 

Dickey–Fuller test [161] which are based on individual time series. The panel unit root 

test methods including Levin, Lin, and Chu (LLC) [162] and PP–Fisher Chi-square [163] 

are suitable candidates for examining the common unit root process and individual unit 

root process, respectively. 
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3.3.2. panel cointegration test 

PC technique involves not only long-run relationship among non-stationary variables, 

but also short term fluctuation of stationary variables, which can help to achieve high 

forecasting precision.  

In this chapter, Johansen Fisher Panel Cointegration (JFPC) test [164] is used to 

examine the existence of determined cointegration relationship among the variables. 

The JFPC test allows the existences of both stationary and non-stationary variables in 

the panel. This method permits more than one cointegration relationship and hence it is 

generally applicable in testing the panel data. Once cointegration relationships are 

ascertained within the constructed panel data, the coefficients of PC model can be 

estimated according to (3-7) described in the next sub-section. Otherwise, the variables 

in the panel will be processed by another operators [163, 165] in which 
, , ,,j t i j tP L in (3-6) 

will be replaced by , , ,,j t i j tP L 
 and then the reconstructed panel data will be re-tested. 

3.3.3. Panel cointegration estimation 

Based on the validated cointegration within a panel of N cross-sections, PC model 

can be established. PC can lead to a better understanding of the nature among different 

component series and also improve long term forecasting with an unconstrained model. 

A PC model is expressed as follows: 
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where jC
 is the common coefficient for each trading period j. J is the number of market 

clearing periods within a day. The dimension of each sub-matrix j
within the diagonal 

matrix   is r r . The dimension of the matrices  , 1j tECM    and ,j l is rj . The 

dimension of the diagonal matrix 
j  is j j . The sub-matrices relate 

,j tP to the error 

correction item
, 1j tECM 

. 
, 1i j t , is the coefficient for error correction. r denotes the 

number of regressors (variables in the regression) in the explanation item
, 1j tECM 

 

which reflects long term cointegration relationship for the panel, i.e. it describes a kind 

of long term adjustment for deviating the equilibrium relationship. Besides long term 

adjustment, the PC model also involves short term fluctuation items
, , ,,j t l i j t lP L   . The 

coefficient matrix ,j l captures the dynamics within time domain while , ,i j l  correlates 

the variability of the price with both the inter-temporal dynamics and the inter-regional 

interactions among regional loads. Adding the error correction features to the panel data, 

the disadvantage of traditional forecasting models which lose the long term information 

collected from variables can be overcome.  

Maximum likelihood estimator is employed to predict the coefficients. A variable 

elimination procedure is then processed to reduce the redundancy and complexity of the 

model. The coefficients with relatively higher statistical significance (based on the 

corresponding standard error and T-statistics) are used to formulate the PC model. As 

the cointegration relationship is assumed dynamic, the responses of price to various 

market fundamentals may change continuously. The performance of PC models will be 

compared with other models in section 3.5. 
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3.4. Proposed Panel Cointegration and Particle Filter Model 

The proposed novel panel cointegration and particle filter (PCPF) model has two 

features that differentiate it from other existing techniques. First, it makes prediction by 

using historical loading data of different regions in the pool and constructs the regional 

loading data together with the uniform day-ahead price as a panel [165].  

Using panel data, both the impacts of inter-temporal dynamics and inter-regional 

loading differences on the uniform day-ahead price can be taken into account. Secondly, 

PF is applied as a post-processor to effectively handle the nonlinearity and the volatility 

of electricity price. Other than loading data, there are many other factors which can affect 

the price forecasting performance. The two-stage model incorporates historical loading 

data, the most important factor, in panel cointegration. The other factors are treated as 

uncertainties which are simulated by particle filter. Both PC and PF models have 

achieved successes in their own linear or nonlinear domains. However, none of them is 

a universal model that is suitable under all circumstances. For example, on one hand, 

the approximation of PC models for complex nonlinear problems may not be adequate. 

On the other hand, using PF to model linear problems has yielded mixed results [166]. 

Since it is difficult to fully realize the characteristics of the data in a real problem, it is 

reasonable to consider day-ahead electricity series to be composed of both linear 

autocorrelation structure and nonlinear patterns. Combining different models, different 

aspects of the underlying patterns may be captured. PCPF which has both linear and 

nonlinear modeling capabilities can be a good strategy for practical use.  

As it is unlikely to include all market fundamentals into a price forecasting model, the 

proposed model takes the most important factors into account in the PC model which 

has been introduced in section 3.3 and then treats the others as uncertainties which will 
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be handled by PF. As the change in regional loads is the key factor that affect the 

uniform electricity price, this model uses historical regional loads and price as input 

variables to predict the price although other factors can be incorporated easily. This 

model is based on a two-stage architecture shown in Fig.3-2.  

Stationarity 

Test 

Fail

Pass

Pass

PC 

Esitmation
PCPF 

Forecasting

Input variables 

(price & loads)

Fail

Difference 

Operator

First Stage Second Stage

Cointegration 

test

Panel 

Construction

 

Fig. 3-2  Two-stage PCPF model for electricity forecasting 

The coefficients with relatively higher statistical significance (based on the 

corresponding standard error and T-statistics) in the PC model in the first stage are 

inputted to the second stage. The coefficients estimated in the PC model can be 

regarded as a time-varying process so that the PF can adaptively give forecasting similar 

to agents' learning according to subtle rule modifications described in the second stage. 

The performance comparison among the PC, PCPF and some selected intelligent learning 

models introduced in section 2.2.2 will be investigated in the case study. 

3.4.1. Architecture of the PCPF model 

Little attention has been paid to develop methods that can handle both linear and 

nonlinear problems simultaneously. Therefore, a novel PCPF model based on hybrid 

architecture is proposed in this chapter to predict day-ahead electricity price. The PCPF 

can be mathematically presented as the following state space representation: 
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In the measurement equation, matrix
,j tP represents the uniform day-ahead prices in 

period j on day t. There are K input variables
, , , , , ,{1, , , , }j t l i j t l j t l i j t lP L P L       in each 

element of the matrix ,j tX , K is the number of regressors after the application of a 

variable elimination procedure carried out in (3-7). These regressors (variables) will be 

used for forecasting in the second stage. Notice that both 
,j t and ,j t follow Gaussian 

distribution 
,

2. . . (0, )
j t

i i d N  and (0, )k jN  , respectively and independently. In the transfer 

equation, , ( )j tf  is a nonlinear function where ,j t will be obtained recursively via PF 

processing. The coefficients ,j t are not unknown constants but latent stochastic that 

follow random walks. PF achieves this by obtaining an optimal approximation of 

posterior distribution for ,j t .  

In the first stage, we let PC to model both the inter-temporal dynamics and the inter-

regional interactions of uniform day-ahead price among different regions through the 

cointegration analysis based on panel construction; then the residuals from the PC 

model will contain only the nonlinear pattern. To handle the nonlinear pattern and also 

uncertainties, the coefficients matrix ,j t  in the transfer equation is considered as a set of 

time-varying particles following random walks so that it enables the coefficients to react 

to the arrival of new observations. The disturbance terms ,j t follow the fitting 

distribution of estimation residues and the variance of the process noise can be 
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estimated from the variances of the particles, regarding to the previous PC coefficients 

at time (t-1) as follows: 

, ,

2 2

( 1)

1
( 1)

j k j k t
g

                                              (3-9) 

where g is called as the “forgetting factor” and takes values between zero and one. 

Different from Kalman filter [167], the stochastic variables in
,j t  are considered 

nonlinear and estimated by PF for each period j simultaneously on day t.  

3.4.2. Particle filter forecasting 

Particle filter (PF) is particularly successful in dealing with nonlinear and non-

Gaussian problems [167, 168]. Unlike the extended Kalman filter, which only use the 

mean and variance to describe the distribution of a state, PF utilizes sequential Monte 

Carlo method to approximate the optimal filtering, using particles to represent the 

probability density function (PDF) of a state. The number of particles is equal to the 

number of regressors described in the last sub-section. The main task in the second 

stage is to estimate ,j t based on the arrival of the new observations ,j tP so that the day-

ahead electricity price , 1j tP  can be obtained using (3-8) for each period j on day t.  

A feature of PF is to approximate the posterior distribution of ,j t  by a collection of 

K weighted particles: 

, , 1{ , }k k K

j t j t kw                                                   (3-10) 

where ,

k

j tw  is the weight of the particle ,

k

j t , and the posterior probability of the random 

event ,j t  is approximated as follows: 

, , 0: , 1 , , 1

1

( ) ( )
K

k k

j t j t j t j t j t

k

p P w    



                                (3-11) 
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We therefore have a discrete weighted approximation to the true 

posterior
, , 0:( )j t j tp P . It is the conditional probability that is assigned to ,j t after all 

available measurements up to day t (abbreviated as
,0:j tP ) have been observed. Dirac-

delta function ( )   means to perform the integral function. Since it is difficult to draw 

samples from
, , 0:( )j t j tp P , importance function ( )q   is usually adopted to generate K 

particles as follows: 

, , , 0: 1 ,0: , 1 , , 1

1

~ ( , ) ( )
K

k k k k

j t j t j t j t j t j t j t

k

q P w p      



                    (3-12) 

where the weights in (3-11) are updated accordingly as: 
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Fig. 3-3  Particle filter forecasting for period j 

The importance function ( )q  , known as a proposal conditional distribution, is 

important in the performance of the PF. In general, the closer the importance 

function ( )q   to the distribution of ( )p  , the better the approximation is.  
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In this study, 
, , 0: 1 ,0:( , )k

j t j t j tq P  
 has been chosen as the optimal importance function. 

This is because ( )q   can minimize the variance of the true weights and hence the 

degeneracy problem is diminished in one way only. The details of choosing the optimal 

importance function can be found in [169] and is outside the scope of this thesis. For 

each period j, the forecasting architecture of the PF is illustrated in Fig. 3-3.  

The PF algorithm is illustrated for each period j in the following pseudo-codes and its 

main task is to estimate the state ,j t recursively from the observations ,j tP . 

 

 

(1) Initialization:  

 Set 1t  , , 1/k

j tw K  

(2) Prediction:  

For k =1: K 

 Generate particles , , , 0: 1 ,0:~ ( , )k k

j t j t j t j tq P     according to (3-12) 

 Assign each particle an updated weight ,

k

j tw
 
according to (3-13) 

 Normalize the weights according to  , , ,1

K
K

k k k

j t j t j tk
k

w w w

 

 
 

 The PDF of ,

k

j t  is approximated so that the estimated electricity price , 1j tP   
can be 

computed using (3-8) 

 End For 

(3) Particle Size Evaluation :  

 Evaluate the effective size of particles by counting the percentage of particles with 

weights smaller than a certain value. If the percentage is below a predefined 

threshold, Resampling takes place; otherwise proceed to Iteration 
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(4) Resampling: 

 Sample    
1

~ 0,  1
K

k k
u U


and K particles , , ,0:~ ( )k

j t j t j tp P   

 Replace , 1{ }k K

j t k  with , 1{ }k K

j t k  if 
, , 0: , ,min{1, ( ) ( )}k k

k j t j t j t j tu p P p P    

 Assign particles an equal weight
 

 

(5) Iteration:  

 For t =1: T-1 

 Set 1t t  , Obtain the day-ahead electricity price Pj,t observation and update ,0:j tP   

 Go to Prediction 

 End For 

A major problem with particles filtering is that the discrete random measure 

degenerates quickly. Besides adopting the optimal importance function, Resampling is 

also used [166] since it can avoid the increasing of the variance of the particle weights. 

In this step, K particles are drawn from the current particle set with probabilities 

proportional to their weights. Particles with higher importance weights are replicated, 

while the others are discarded. 

3.5. Experiments on the two proposed models 

In this section, criteria defined in section 3.2 are employed to evaluate the 

performance of the proposed PC and PCPF models. The PJM day-ahead electricity 

market data are chosen to test the proposed framework. It is a market with 7 regions in 

which hourly prices are cleared. The inputs include time lagged values of price and 

loads which are available on the PJM’s website [156]. The data of PJM’s in the period 

Jan 1, 2007 –Dec 31, 2007 are used in the PC model for the coefficients estimation. To 

compare the two models coherently and fairly, the estimated coefficients of PC model 
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are inputted into the second stage of the PCPF model. The real market data in the year 

2008 is used to test the effectiveness of the proposed models.  

3.5.1. Experiment on the panel cointegration model 

Model (3-6) is used to describe the linear pattern of day-ahead electricity prices based 

on panel construction. To examine the stationarity of all the series of the panel variables 

and clarify the stochastic nature of the price dynamics, unit-root tests employing LLC 

and PP–Fisher Chi-square methods [170] method, as shown in Table 3-1, are used to 

test the presence of unit root in the panel data in different time periods. 

Table 3-1  Panel unit root test results 

Method Levin, Lin & Chu* PP–Fisher Chi-square** 

Null Hypothesis 
Common Panel Unit Root Individual Panel Unit Root 

Probability Probability 

Period (j) , ,i j tL
 

,j tP
 

, ,i j tL
 

,j tP
 

j=1 0.201 0.000 0.897 0.312 

j=2 0.219 0.000 0.906 0.280 

j=3 0.216 0.000 0.904 0.065 

j=4 0.209 0.0050 0.897 0.091 

j=5 0.195 0.000 0.888 0.033 

j=6 0.182 0.003 0.881 0.000 

j=7 0.154 0.011 0.861 0.000 

j=8 0.142 0.016 0.854 0.000 

j=9 0.154 0.011 0.866 0.001 

j=10 0.185 0.026 0.889 0.009 

j=11 0.191 0.028 0.892 0.006 

j=12 0.151 0.040 0.852 0.034 

j=13 0.148 0.033 0.849 0.082 

j=14 0.139 0.025 0.841 0.006 

j=15 0.156 0.008 0.864 0.014 

j=16 0.154 0.006 0.861 0.013 

j=17 0.144 0.007 0.851 0.043 

j=18 0.163 0.009 0.869 0.058 

j=19 0.169 0.007 0.874 0.093 

j=20 0.177 0.000 0.880 0.103 

j=21 0.188 0.000 0.888 0.190 

j=22 0.198 0.001 0.895 0.336 

j=23 0.212 0.000 0.902 0.396 

j=24 0.257 0.000 0.923 0.468 

Note: 
1.**, * denote significance at 5%, 10% level 

2.All tests assume asymptotic normality 
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    It can be seen that the results in different periods listed in Table 3-1 tend to be 

consistent. The LLC test assumes that there is a common unit root process in the panel. 

This assumption can be rejected if the probability is less than 0.1. Standing on 10% 

level of significance, null hypothesis of a common unit root process (i.e. the 

homogeneous panel series are non-stationary) can be rejected in the price series but not 

in the load series. Similarly, standing on 5% level of significance, null hypothesis of 

individual unit root process (i.e. the heterogeneous panel series are non-stationary) 

cannot be rejected in all the load series and most of the price series. Hence, it can be 

concluded that the panel model cannot be directly used for forecasting since not all the 

included series are stationary. 

Based on the empirical results that each panel contains at least one panel unit root, 

JFPC is conducted to examine the cointegration relationships among variables. JFPC is 

a robust trace based cointegration test with the null hypothesis for the number of 

cointegration vectors. Standing on 10% level of significance, Table 3-2 shows that all 

the probabilities for the null hypothesis of none cointegration are nearly zero. This 

suggests that cointegration relationship exists in the constructed panel in all the periods. 

Hence, the coefficients of the PC model (3-7) can now be estimated.  

Table 3-2  Panel cointegration test results 

Null Hypothesis: None Cointegration 

Note: the significance of the test is at 10% level 

Period (j) 1 2 3 4 5 6 

Probability 0.003 0.000 0.000 0.001 0.001 0.014 

Period (j) 7 8 9 10 11 12 

Probability 0.039 0.018 0.000 0.000 0.000 0.000 

Period (j) 13 14 15 16 17 18 

Probability 0.005 0.043 0.000 0.001 0.000 0.000 

Period (j) 19 20 21 22 23 24 

Probability 0.000 0.000 0.002 0.000 0.000 0.000 
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The derived coefficients  ,
,j l ,

, ,i j l in the PC model correspond to 
,j t
 
in the PCPF 

model (3-8). The coefficients are predicted by maximum likelihood estimator. Owing to 

space constraint, only the estimated coefficients with relatively higher statistical 

significance derived from the PC model (3-7) in period 1 are listed in Table 3-3. The 

standard error and T-statistics indicate the contributions of each variable to the PC 

model, which are also the evaluation criteria for selecting coefficients inputted to the 

second stage. Based on the estimated coefficients, a continuous simulation of point 

forecasting in all periods from Jan 1, 2008 to Dec 31, 2008 are conducted in this 

experiment. The details of the forecasting results will be given in section 3.5.3 

 

Table 3-3  Estimated coefficients of PC model 

Variable 1,
( )

t
k  Coefficient Standard Error T- Statistics 

k=183 0.039 0.020 2.010 

k=42 0.002 0.001 1.629 

k=177 0.009 0.006 1.588 

k=176 0.008 0.006 1.485 

k= 162 0.014 0.010 1.395 

k=182 0.024 0.018 1.373 

k=161 0.014 0.010 1.361 

k=170 0.010 0.008 1.316 

k=36 0.002 0.002 1.295 

k=158 0.015 0.011 1.281 

k=186 0.031 0.025 1.256 

k=157 0.015 0.012 1.214 

k=155 0.016 0.013 1.209 

k=185 0.030 0.025 1.194 

k=184 0.027 0.022 1.190 

 

3.5.2. Experiment on the panel cointegration and particle filter model 

As described in section 3.2.3, the coefficient matrices obtained in the first stage 

capture the dynamics of the price with both inter-temporal dynamics and inter-regional 

interactions among regional loads. However, due to the nonlinear composition of the 

electricity price and its variability, PF is adopted to capture the nonlinear patterns 
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according to model (3-8). The efficiency of the proposed PCPF model is mainly 

dependent on the appropriate adjustments of its parameters. There are two main 

adjustable parameters: number of particles K and the time-varying coefficient matrix 

j,t. To balance the efficiency and accuracy, the size of particles (K) which affects the 

computation time dominantly is better to be controlled between 100 and 200. In this 

experiment, K is equal to the number of coefficientsj,t after the variable elimination 

process. Different from the other techniques, the proposed PCPF model is an adaptive 

forecasting tool which can automatically adjust the time-varying coefficient matrix j,t. 

based on the observation data with minimum reliance on the heuristics.  

Similar to the experiment described in section 3.5.1, the continuous simulation is 

conducted on the same time periods. It consumes 4 hours and 48 minutes when the size 

of particles is fixed at 200, which indicates that the average time for one day-ahead 

forecasting is less than one minute. All the computation times are measured on a Dell 

2.66GHz personal computer with 2GB RAM. Therefore, the proposed PCPF is practical 

within a day-ahead decision-making framework. 

3.5.3. Analysis of the experiment results 

To illustrate the behaviors of the proposed modeling, results comprising of four 

weeks in January, May, September and December (months 1, 5, 9 and 12) 

corresponding to the four seasons in 2008 are presented in Figs 3-4 –Figs 3-8. In this 

manner representative results for the whole year can be provided. It should be noted that 

the accuracy for the weeks of spring and summer are around 93% while of autumn and 

winter are around 95%. Comparing with other relevant studies [168, 171, 172], these 

results are accurate for a study spanning one whole year.  
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To demonstrate the superiority of the proposed model, forecasting results of the four 

selected weeks using the proposed PCPF and other techniques including PC, NN[33], 

FNN[42] and RVM [172] are compared in Fig. 3-4- Fig.3-8. The spring week is from 

17 Jan to 24 Jan; the summer week is from 3 May to 10 May; the autumn week is from 

22 Sep to 29 Sep; the winter week is from 21 Dec to 28 Dec. Note that criteria for 

selecting the four representative weeks include unstable behaviors or drastic variations. 

Although these unsteady behaviors make forecasting difficult, the proposed PCPF 

model has good performance in daily forecasting with an average DMAPE below 5% in 

each studied week.  

 

Fig. 3-4  Spring week forecasting 

For the spring week, Fig.3-4 shows the comparison of the actual and forecasted 

prices. The prediction behavior of the proposed PCPF for the spring week is relatively 

better with a WMAPE of 7.3% while WMAPE of the PC technique is 15.6%. Hence, the 

postprocessor PF reduces the forecasting error by around 50%. Although the PC 
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technique has some over-predictions of the mild spikes (20% over the usual peak), it has 

a good performance in estimating the transition tendency. The prediction behavior of 

NN in this representative spring week is less accurate than its counterparts since the 

price in this selected week varies considerably. With the adjustments provided by fuzzy 

logic, FNN (with a WMAPE of 14.0%) improves the forecasting performance of NN by 

around 32%. RVM shows a moderate forecasting performance with a WMAPE of 

14.3%. 

 

Fig. 3-5  Summer week forecasting 

Refer to Fig.3-5, the reason of selecting this week is because it has the highest price 

in the whole year of 2008 (the peak was between hour 109 and hour 121). Owing to the 

seasonality, the number of crest is cut down by one half (i.e. two price peaks reduce to 

one within a day). The predictions of PC and NN are inaccurate with WMAPE of 18.0% 

and 20.3%, respectively. RVM, with a WMAPE of 17.2%, forecasts slightly better than 

PC and NN. Observe that the price pattern in this week is particularly unstable, 
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probably owing to the strategic behavior of the dominant players in the market. FNN, 

with a WMAPE of 20.3%, reduces the error of NN by 26% while PCPF, with a WMAPE 

of 7.3%, reduces the error of PC by more than 60%.  

 

Fig. 3-6  Autumn week forecasting 

As shown in Fig.3-6, the selected autumn week has relatively good forecasting 

behaviors. The peaks have no drastic changes as compared with that appeared in the 

previous seasons. Because of the less anomalous fluctuations and higher autocorrelation 

in the autumn series, all the three techniques show good forecasting performances. The 

values of WMAPE for PC, NN and RVM are 6.4%, 11.68% and 9.8%, respectively. PC 

performs better than that in the spring and summer weeks due to the better price pattern. 

Comparing with PC, NN and RVM, the forecasting by FNN and PCPF are more 

accurate most of the time. The WMAPE of FNN and PCPF are 6.3% and 9.0%, 

respectively. However, the PCPF would sometimes over-estimate the wild peaks. 
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Fig. 3-7  Winter week forecasting 

As for the winter week, the prediction is difficult resulting from the significant 

changes in prices between hours within a day. Because of the seasonality, there are only 

one low crest and one high crest instead of two similar crests within a day. This drastic 

change also leads to the difficulties in the forecasting. The values of WMAPE for the 

NN, FNN and RVM techniques are 13.3%, 10.2% and 10.9%, respectively. After a long 

evolution of particles, PCPF performs stably with WMAPE of 5.6% while WMAPE of 

PC is 8.3%. 

Fig.3-8 shows WMAPEj of PCPF, PC, NN, FNN and RVM methods for the four test 

weeks. PC is the panel cointegration methodology introduced in section 3.3. NN is the 

Radial basis function neural network. FNN is the fuzzy neural network. RVM is the 

relevance vector machine method. The circle axis denotes the plotting hours while the 

vertical axis refers to the error percentage. 
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Fig. 3-8  jWMAPE for the four selected week 

Among all the compared techniques, the performance of NN is sometimes far from 

satisfactory. WMAPEj are usually above 15% and deviate from the actual price at price 

peaks or minima. One of the major reasons for these problems is that the available data 

are insufficient at some peaks or minima which represent weak statistical samples for an 

algorithm based on historical-data learning. FNN improves NN’s performance 

significantly though it has some large deviations in some hours. Similar to FNN, RVM 

forecasts stably except hour 17 in spring and winter. WMAPEj of PC is within 30% and 

usually around 20%. Comparing with PC, PCPF (with WMAPEj within 10%) has better 

accuracy and its performance is stable for most datasets. At some hours, PCPF even 
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reduces the forecasted errors nearly to 1%. PCPF shows strong forecasting capability 

since its hybrid structure captures different aspects of the underlying patterns. This 

superiority is especially clear when comparing with the other techniques.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-9  Comparison of indices of the five techniques 

The superiority of the PCPF technique is more evident when referring to Table 3-4. 

Notice that the performance of the PCPF technique is generally better than that of the 

other techniques. The values of WMAE and average WMAPE are smaller in all the 

scenarios. Furthermore, FNN and PCPF improve the forecast capability of NN and PC 

through their hybrid structure, respectively. When comparing th  e improvements made 
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by PCPF and FNN, PCPF shows a stronger error correcting capability than FNN. These 

results confirm the intuition that the hybrid model allows particles to evolve adaptively 

and to sequentially update a priori knowledge about some predetermined state variables 

given by PC 

Table 3-4  Summary of forecasting results 

Season Criteria PCPF PC NN FNN RVM 

Spring 

WRMSE 12.225 17.115 25.982 16.130 16.978 

WMAE 6.523 13.105 18.145 12.308 12.675 

WMAPE 0.073 0.156 0.206 0.140 0.143 

Max Error (%) 61.866 71.361 152.220 52.371 59.197 

Min Error (%) 0.004 0.018 0.077 0.092 0.457 

Summer 

WRMSE 16.145 35.305 33.425 23.924 25.478 

WMAE 7.666 23.944 24.505 18.100 19.735 

WMAPE 0.073 0.180 0.203 0.149 0.172 

Max Error (%) 64.264 72.015 69.035 57.840 58.018 

Min Error (%) 0.003 0.010 0.112 0.199 0.125 

Autumn 

WRMSE 6.529 5.353 7.900 5.686 6.705 

WMAE 3.301 3.623 6.083 4.562 5.139 

WMAPE 0.063 0.064 0.117 0.090 0.097 

Max Error (%) 81.368 44.263 95.640 39.719 48.741 

Min Error (%) 0.008 0.032 0.064 0.114 0.035 

Winter 

WRMSE 4.793 5.143 7.858 6.919 6.853 

WMAE 2.604 3.982 6.039 4.830 5.109 

WMAPE 0.056 0.083 0.133 0.102 0.109 

Max Error (%) 89.712 54.214 78.304 49.614 57.522 

Min Error (%) 0.002 0.044 0.036 0.165 0.175 

3.6. Summary  

In chapter 3, a panel cointegration (PC) based approach is presented in section 3.3 for 

predicting the electricity market prices. PC, a newly applied statistical method, is 

introduced to expand the dimension of electricity price dataset from time series to panel 

data so that the dynamics of interconnected regions can be analyzed simultaneously and 

considered as a whole. It provides reasonable accuracies of electricity prices forecasting 

as shown in section 3.5. Nowadays day-ahead electricity market is closely associated 

with different commodity markets. Under this complex circumstance with inter-

temporal dynamics and inter-regional features, as well as the existence of uncertainties 
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from different markets due to GENCOs’ bidding strategies and investment planning, 

electricity prices can feature with complex patterns. To develop a better forecasting tool 

to overcome the identified research challenges, a hybrid model based on PC and PF 

techniques is proposed in section 3.4. PCPF model is derived and illustrations are made 

to show how particle filter can be used to enhance the forecasting accuracy in day-ahead 

energy market price. After combining the advantages of both PC and PF, the proposed 

framework shows promising results in the comparisons with PC and other techniques in 

section 3.5.3. 
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CHAPTER 4. A NOVEL FRAMEWORK FOR REACTIVE 

POWER PROCUREMENT SCHEME 

4.1. Introduction 

A comprehensive framework has been developed to forecast electricity prices in an 

electricity market in chapter 3. This chapter is concerned with reactive power, another 

important aspect in electricity market planning and operation. Investigating the cost of 

providing reactive power service and establishing appropriate pricing structure are 

important both financially and operationally for reactive power procurement.  

The importance and the difficulties of procuring and pricing reactive power in a 

competitive market environment have been illustrated in section 2.2.3. This chapter 

presents an algorithm for procuring reactive power from reactive resources based on a 

reactive power pricing structure. The role of reactive power is firstly analyzed in section 

4.2, followed by a pricing structure of reactive power established in section 4.3. The 

concept of reactive power value based on the Equivalent Reactive Compensation (ERC) 

method is then introduced in section 4.4. Based on these analyses, a new algorithm of 

reactive power procurement is proposed in section 4.5, followed by a test of the 

proposed methodology on a classic 5-bus system in section 4.6. Summary of this 

chapter is provided in section 4.7. 

4.2. Reactive Power Analysis 

Adequate reactive power support and voltage regulation services are necessary for 

enabling active power transactions. In the deregulated structure of the electricity 

industries, the competitive provision of reactive power raises the need to optimally 

allocate reactive power requirements among existing plants.  
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Generally, reactive power support is divided into two categories: static and dynamic. 

Capacitors and inductors (or reactors) supply and consume static reactive power, 

respectively. They are called static devices since they have no active control of the 

reactive power output in response to the system voltage. Synchronous generators, 

synchronous condensers, Flexible AC Transmission Systems (FACTS) including static 

var compensators (SVC), static compensators (STATCOM), and Dynamic Var (D-var) 

are considered as dynamic reactive power devices capable of changing their output 

according to pre-set limits in response to the changing system voltages [46].  

Beside those reactive support facilities, reactive power support from generators is 

regarded as an important ancillary service. The reactive power support of a generator 

has two roles or components. One helps to ship real power of generators, and the other 

improves the reliability of the system [173]. To improve system reliability, reactive 

power must be properly controlled to support the voltage. As reactive power can affect the 

voltage profile throughout a power system, it has a profound effect on the security of the 

system. Both voltage control and reactive-power management support reliability and 

facilitate commercial transactions across transmission networks. A generator supports the 

reliability of the system only after it produces adequate reactive power to cover its own 

need for shipping real power. The amount of reactive power needed by a generator to 

support the transmission of its own active power is defined as the minimum reactive 

power. It is a general consensus that the minimum reactive power should not be 

financially compensated.  

A practical optimal power flow method, which is used to separate the minimum 

reactive power of generators with acceptable accuracy, is reported in [174]. The basic 

idea of the method is to minimize the total reactive power generations subjected to the 
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equality constraints of the power flow equations and the inequality constraints of basic 

system operating constraints. The method can be expressed as follows: 

min
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where N  and 
gN  are the set of all buses and all generators respectively, 

iV  represents 

the voltage magnitude at bus i , bus j  connects to bus i , 
ijG  and 

ijB  are the real part and 

imaginary part of the element ij  of the nodal admittance matrix, ij i j     is the 

voltage phase-angle difference between bus i  and bus j , 
giP  and 

liP  are the generator 

active power output and load active power level, 
giQ  and 

liQ  are the generator reactive 

power output and load reactive power level, 
iV  and 

iV  are the lower and upper limits of 

iV  respectively, giQ  and giQ  are the lower and upper limits of giQ respectively. 

The real power outputs of all generators, except the slack generator, are fixed. The slack 

generator serves to make good any losses in transmission. As a result, the real power flow 

pattern is obtained and the reactive power of a generator that is used to support its real 

power transmission can be studied. The control or optimized variables are the reactive 

power outputs of the generators. Solving this model, the total minimal reactive power 

support for the generators can be assessed. The following are the explanations of the model. 

4.3. Reactive Power Pricing 

Reactive power pricing is a fundamental and very important part of reactive power 

management. Analyzing the costs of reactive power service provisions and establishing 
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an appropriate pricing structure are important both financially and operationally for the 

deregulated power industry. First, correct price signals are very important for 

facilitating transmission access and improving economic efficiency. With proper 

costing and pricing of reactive power, transmission users will have the ability to make 

decisions strategically on some economic activities such as energy transactions, 

investments, and asset utilization. Second, the operation efficiency and reliability of the 

power system concerned will be improved when well-balanced and appropriately 

distributed reactive power sources are available. Third, voltage profiles will be 

improved which, in turn, will reduce possibilities of incidents caused by high and low 

voltage problems, and even, voltage instability in some extreme cases. 

An appropriate reactive power pricing structure is important both financially and 

operationally for a power market. First, it will facilitate transmission access and 

improve economic efficiency. Second, it will improve the efficiency and reliability of 

system operation. Last, it can deal with the voltage problem. 

The cost of reactive power mainly includes reactive power capacity cost and 

production cost. Hence, reactive power pricing should cover both costs as follows: 

c uB B B                                                    (4-2) 

where B  is the reactive power price, 
cB  and 

uB  are the prices of the reactive power 

capacity cost and production cost, respectively. 

A practical method is used to determine the unit cost of the reactive power capacity. 

In the method, a portion of the generator cost is allocated to the reactive power service. 

The portion is determined by the ratio of the reactive power output to the total power. 

Hence, the price function of the reactive power capacity cost is as follows: 

24 365
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                            (4-3) 
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where y  is the life span ( in year) of generator, h  is the utilization rate, k  is the price 

factor of reactive power capacity cost. Here, a portion of the generator capacity cost is 

allocated to the reactive power service. Mathematically, pu is given by: 

pu = TIC tan (cos
-1

(p.f.))                                        (4-4) 

where TIC is the total installation cost of the generator, p.f. is the rated power factor of 

the generator. The aim of employing the power triangular relationship among kVA, kW 

and kVAr to derive equation (4-4) is to separate the costs associated with the real and 

reactive power, respectively. Notice that different pricing methodologies have different 

advantages and disadvantages. Different electricity markets may use different methods 

for reactive power pricing.  In some cases capacity cost is recovered through availability 

payments or fixed annual amount. However, the major advantage of using linear 

functions in this chapter is that it is a more equitable approach.  

Based on the classification of the roles of the reactive power production, using 

similar approach presented in [175], the pricing function of the reactive power 

production cost is shown in Fig. 4-1. Mathematically, it is represented as:  
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where m, m’, a, b and c are constants [175]. Qgm is the amount of reactive power needed 

by the generator to support the transmission of its own active power; Qga is the reactive 

power output of the generator above which active power generated needs to be reduced 

to adhere to winding heating limits of the generator.  
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It should be noticed that the reactive power output from 0 to 
mgQ  is for shipping the real 

power output of the generator. Therefore, reactive power output in this region is not 

qualified as an ancillary service and the generator is not entitled for any payment. 

 

Fig. 4-1  Price function of reactive power production cost 

4.4. Reactive Power Value 

Because reactive power needs to be provided locally, a reactive source could have a 

high cost but a low value. It relates to the system configuration and operation conditions, 

location of each source etc. Hence the relative importance of the reactive power sources 

needs to be measured. The reactive power value can offer a correct signal to providers 
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and ensure power system security. The equivalent reactive compensation (ERC) method 

[49] is a useful and practical method to evaluate the reactive power value. 

 

Fig. 4-2  Value factor of reactive power 

    The basic concept of the ERC method is keeping the same system status by replacing 

a reactive power resource with other compensating reactive power resources. If a 

reactive power source reduces its output, the system status will change. To maintain the 

same system status, reactive power compensations must be added to the system. The 

total amount of compensation is an indicator of the reactive power value. Based on the 

ERC method, value factor is proposed in this chapter to measure the reactive power 

value. The procedure to calculate the reactive power value factor is as follows: 

A. Select a typical system condition and establish a solved case. 



                                                                    Chapter 4 

110 

B. Fictitious condensers are used as the compensation tools. They are added to each 

load bus. The original and limit reactive power values of the fictitious condensers 

are set to zero and infinite, respectively. 

C. Hold the reactive power output of all reactive power sources at the base case levels. 

To find the base case levels, a power flow is run on a typical system condition. 

D. Select a reactive power source and set its active power output zero. The inequality 

active power is shared by the rest of the power sources based on an Optimal Power 

Flow (OPF) solution. The OPF also provides the reactive power outputs of the 

generators. Its reactive power output 
giQ  is varied from zero to its limit. For each 

reactive power output, sum up the total reactive power output )( gie QQ of all the 

fictitious condensers. The ERC curve can thus be constructed as shown in Fig.4-2. 

E. Using the equivalent reactive compensation, the reactive power value curve can be 

constructed as follows: 

( ) ( ) ( )v gi e gi e giQ Q Q Q Q Q                                        (4-6) 

Where ( )v giQ Q  is the reactive power value when the reactive power source output is giQ . 

F. The slope, tan, of value curve at the base case level is used as the reactive power 

value factor e . 

G. Repeat Steps d) to f) for all the reactive power sources of interest. 

    If system contingencies are considered, the impact of the contingencies on reactive 

power support valuation should be carried out. A possible approach to deal with the 

problem is as follows: Each line contingency case is taken as a new case. The 

compensations and value curves for the contingency cases are obtained as the procedure 

outlined above. A combined value curve for application in different operating scenarios 
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can then be constructed as a weighted summation of all the value curves for each 

studied generator. 

 

4.5. Reactive Power Procurement 

Reactive power service is a key type of system support in competitive market. The 

problems faced by system operators in its provision mainly arise due to the integration 

of costing of this service with technical aspects. Generators as key sources for providing 

dynamic reactive power are individual entities in competitive electricity market and 

appropriate procurement of generator reactive power would lead to more secure and 

efficient operation of power system. This would be achieved by considering the effects 

of reactive power on system operation. In this chapter, value based as well as the cost 

based procurement aspects would be incorporated.   

The value of reactive power is not only dependent on the cost, but also related to other 

factors such as location.Valuation of reactive power support services should be based on 

their contributions to system security and stability. There are many factors that can 

affect the valuation of reactive power support and it is difficult to quantify their relative 

importance without a proper methodology and associated algorithms. The results should 

lead to a market signal on the location and extent for reactive support service needs. The 

quantitative index described in section 4.4, representing the value of the reactive power 

output of each generator, is used as a weighting factor in the optimization problem 

described in equation (4-7). In addition to considering the cost of reactive power 

transportation and generation, the value of reactive power is also taken into account. 
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    Similar to real time pricing of active and reactive power, the determination of the 

reactive power value and the setting of the procurement of reactive power in this 

chapter are determined for the system operating conditions at a particular time. It is 

sensitive to the system constraints and operation conditions. Primal dual interior point 

method [176] is employed to solve the nonlinear programming problems. 

    Note that the procurement of reactive power is determined for the base case 

conditions and hence in this chapter e is chosen as that evaluated in the base case 

condition. However, as the operating point of the generator changes, there will be slight 

changes in the value of e. If high accuracy is required, an iterative approach to 

determine the value of e will be suitable. Based on reactive power output of the reactive 

power sources obtained in the solution of equation (4-7), the reactive power value 

factors e can be re-evaluated as described in section 4.6. The iterative process is 

continued until there are no variations of the reactive power value factors. 

4.6. Experiment on The Proposed Model 

A commonly adopted 5-bus test system [49] for reactive power studies as depicted 

in Fig.4-3 is used to illustrate the reactive power procurement method proposed in this 

chapter. There are three generators, namely 1G , 2G  and 3G , feeding a load center at bus 5. 

There is a distant slack generator 4G  that supplies little power to the load but serves as a 
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reference to the system. The active load is shared equally by generators 
1G  to

3G . All 

parameters are in per unit and their values are depicted in the figure.  

 
Fig. 4-3  The 5-bus test system 

 

Table 4-1  Generator minimum reactive power 

Generator  Minimum reactive power 

1G  0.1630 

2G  0.1928 

3G  0.2145 

 

Table 4-2  Generator output 

Generator Active Reactive 

1G  1 1.1135 

2G  1 0.6400 

3G  1 0.5216 

4G  0 0.1059 

 

Table 4-3  Bus voltage 

Voltage Magnitude Phase 

1V  1.01 0.1047 

2V  1.01 0.2106 

3V  1.01 0.3190 

5V  0.9052 0 

 



                                                                    Chapter 4 

114 

Based on equation (4-1), subjected to the equality constraints of the power flow 

equations and the inequality constraints of basic system operating constraints, the 

amounts of minimum reactive power from generators 
1G  to 

3G  are calculated and listed 

in Table 4-1. 

 

Fig. 4-4  Equivalent reactive compensation 

To obtain the reactive power value factor, first a power flow is run. The base case 

results (in p.u.) are listed in Tables 4-2 and 4-3. Due to the local nature of the reactive 

power, the results obtained in Table 4-2 are that the nearest generator to the load, G1, 

produces most of the reactive power while the remotest generator to the load, G4, 

produces the least reactive power. A fictitious condenser is added to bus 5 in this case. 

The ERC method is used to plot the equivalent reactive compensation and the reactive 

power value as shown in Fig.4-4 and Fig.4-5, respectively. To obtain Fig 4-5, a base case 

should be solved first. The reactive power generation curves as a function of the reactive 
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power value are then plotted one by one. The slopes of the reactive power value curves at 

the base case level are calculated as the reactive power value factors. The reactive 

power value factors are listed in Table 4-4. 

Table 4-4  Value factor of reactive power 

Generator Value factors 

1G  0.8200 

2G  0.7900 

3G  0.7530 

 

For the purpose of clear illustration of the performance of the proposed reactive 

power procurement methodology with reactive power value taken into account, it is 

assumed that the generators operate on the limiting part of the loading capability curve 

when generating Qgm, i.e. Qga coincides with Qgm. With the coefficients of the price 

functions of capacity cost and production cost listed in Table 4-5, Equation (4-7) is 

solved to obtain the amounts of reactive power procurement. The results (in p.u.) are 

listed in Table 4-6.  

Table 4-5  Bidding parameters 

Generator Capacity Production 

k  m  a  b  c  

1G  500 -160 120 100 15 

2G  600 -180 100 150 20 

3G  700 -170 110 120 10 

 

Table 4-6  Amounts of reactive power procurement 

Generator Procurement 

Without e  With e  

1G  1.0959 1.1116 

2G  0.6275 0.6079 

3G  0.5087 0.5142 
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Fig. 4-5  Reactive power value of generators 

From Table 4-6, it can be observed that the nearest generator to the load,
1G , 

produces most of the reactive power. Consider the reactive power value factor e taken 

into account. The reactive power value factor of generator
1G is the highest, so the 

procurement amount increases. However, generator 
2G  produces less reactive power 

and 3G  produces more reactive power even 2G  has a higher reactive value factor. The 

reason is that the price of generator 2G  reactive power is much higher than that of 

generator 3G . Hence it can be observed that the method proposed in this chapter takes 

into account reactive power capacity and production cost as well as reactive power 

value. 
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4.7. Summary 

Deeper deregulation in power supply industry has made reactive power 

management a critical task to power system operators from both technical and economic 

perspectives. Chapter 4 proposes a practical market-based reactive power management 

scheme to tackle the challenge. The roles and cost, as well as price structure, of reactive 

power are addressed in sections 4.2 and 4.3, respectively. The assessment of the relative 

importance of different reactive power sources is developed and the value factor is 

introduced for reactive power valuation in section 4.4. An equitable and novel method 

of reactive power procurement in an open access environment is presented in section 

4.5. The algorithm takes into account reactive power capacity and production cost as 

well as reactive power value. Experiment on the commonly used 5-bus test system for 

reactive power studies in section 4.6 show the feasibility and validity of the algorithm. 
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CHAPTER 5. IMPACTS OF EMISSION TRADING 

SCHEMES ON GENCO’S DECISION UNDER 

MULTIMARKET ENVIRONMENT  

5.1. Introduction 

As discussed in section 1.3, this thesis aims at developing novel frameworks for 

electricity market planning and management. Chapters 3 and 4 proposed novel pricing 

models for both real power and reactive power. These proposed methods are useful for 

investigating a GENCO’s decision making either in this chapter or the following 

chapters. Following the research route depicted in section 1.5, Chapter 5 is dedicated to 

propose a novel dynamic decision making model to deal with the multimarket trading 

problem for a GENCO during each trading period. As discussed in section 2.4.1, the 

implementation of ETS has significant influences on GENCOs’ operation for either 

short term or long term. Based on the novel forecasting method developed in chapter 3, 

the proposed model enables a GENCO to make a rational trade-off between profit-

making and emission reduction under the three interactive markets environment. 

Besides the forecasting method, Differential Evolution (DE) is employed to solve the 

multi-period stochastic optimization problem and give the optimum results for each 

time interval. This chapter covers electricity market, carbon market and fuel market and 

contributes for a comprehensive short term electricity market planning model.  

Electricity industry worldwide has been deregulated on the generation and retail sides; 

as such there are two major changes: (i) generation companies (GENCOs) are free to 

operate and compete in the market. (ii) GENCOs are subject to competition in the 

electricity market (EM). The model proposed in this chapter builds upon the EM 
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consisting of a power pool and bilateral trades [177]. The primary goals of EM are to 

provide energy securely, reliably and efficiently. While EM usually meets these goals, 

other valued outcomes, including conserving finite resources, maintaining stable and 

reasonable electricity cost, and protecting the environment, are at the stakes.  

To address these problems, policies such as Emissions Trading Scheme (ETS) have 

been adopted to mitigate the emission by market-based mechanisms. Under this scheme, 

specified amounts of emission allowances are allocated to various industrial 

installations, including generators. These allowances can be used either for producing 

corresponding amounts of CO2 or trading in Carbon Market (CM). If the total emission 

over the emission commitment period (which is the period within which a 

country/region must remain the national/regional emission level specified by its target) 

exceeds the allocated allowances, a GENCO has to either purchase allowances from a 

carbon market or pay a penalty. A GENCO’s stock of allowances is composed of two 

parts: initial allowance (allocated freely) and purchased allowance (trade or auction 

from a carbon market). Generally, initial allowances are assigned to a GENCO annually 

through grandfathering, output-based allocation or an auction based method. Output-

based allocation does not require the entities to pay for the allowances. Entities would be 

allocated an amount of allowances proportional to their current production. More detailed 

discussions can be found in section 2.3.3. Reference [178] indicated that EM would be 

affected by the scheme. On the one hand, electricity prices would be affected by the 

scheme as GENCOs seek to pass their additional cost to consumers. Operational 

decisions of GENCOs on electricity production and related fuel portfolio would also be 

affected significantly. The deregulation of EM and the implementation of CM require 

each GENCO builds up its own fuel portfolio according to the prices variation in Fuel 

Market (FM). In the long run, GENCOs therefore have to contract their fuels in an 
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optimal way that allows them to operate in the multimarket environment without 

incurring any negative profits. In the daily operation, GENCOs have to decide the usage 

of their fuel according to the production with consideration of different fuel prices. 

The problem addressed in this chapter is that separate and evolving public policy 

debates are currently shaping EM, CM and FM without paying attentions to how each 

market affects the others, yet GENCOs are subject to the influences from the three 

interactive markets. Without a better understanding of how a GENCO would react to 

these three markets, it is difficult to design policies which can achieve the 

environmental and economic societal goals. To address the value of different market 

mechanisms, this chapter proposes a dynamic decision making model for GENCOs to 

deal with the multimarket trading problems in each trading interval. In section 5.2, 

several important issues relating to the proposed model are explained, followed by the 

model formulation described in section 5.3. section 5.4 describes the solution of the 

proposed model. In section 5.5, comprehensive experiments are presented to compare 

the multimarket performances under different scenarios. Finally, section 5.6 

summarizes this chapter. 

5.2. Problem Formulation 

To take the uncertainties of EM, CM and FM into account, this chapter proposes a 

two-stage decision making model to give the optimal results in both production process 

and trading process. Furthermore, another major motivation of the chapter is to 

investigate how different market mechanisms affect decisions of a GENCO. The reason 

is that a GENCO’s decision on how to make use of the generators, the corresponding 

fuels as well as the allocated emission allowances would be different under different 

market environments.  
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Fig. 5-1  Hierarchical decision making model 

A multi-time period electricity network optimization model was presented in [179], 

which took gas flows, price and storage problem in FM into account, for GENCOs. 

Reference [180] presented a dynamic economic emission dispatch model of power 

systems, which included a handling scheme to deal with emission constraints. A typical 

environmental/economic power dispatch optimization problem was described in [181], 

which included fuel cost minimization and emission constraints. However, these studies 

did not take into account the effects of emission trading. The existing literatures treated 

emission allowance as a fixed cost so that the trading value had been ignored. So far 
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there is no literature addresses the optimal decision making of GENCOs with the effects 

of EM, FM and CM taken into account.  

In contrast to the works that consider only caps on emission, the model proposed in 

this chapter solves the decision making problem by maximizing the total profit of a 

GENCO in the entire planning period. This is a complex decision making problem in 

which all units have to be scheduled to satisfy not only power demand of bilateral trades 

and power pool but also spinning reserve of the system. Furthermore, the trading in the 

three interactive markets has to be coordinated with environmental constraints. In order 

to simplify the illustration and highlight the characteristics of the model, all the units are 

assumed to be online during the whole planning period. However, it should be noted 

that unit commitment can be integrated into the proposed model easily. As shown in 

Fig.5-1, the decision making model decomposes the scheduling problem into a 

hierarchical structure. 

5.2.1. Hierarchical decision making model 

The proposed decision making model enables a GENCO to maximize its profit 

through proper decision making in a hierarchical structure. Without loss of generalities, 

all units of a GENCO are assumed online during the planning period. However, the unit 

commitment that actually determines the on-off status of units can be integrated into the 

proposed model easily. At each planning level, a GENCO’s total expected output is 

forecasted based on the corresponding historical data using forecasting methodology PC 

proposed in chapter 3. Then the forecast output can be equally spread to each time span 

of its sublevel (termed as average dispatch). As a result, necessary information of the 

sublevel including fuel consumptions and emissions can be obtained. On one hand, the 

average dispatch at the higher levels helps a GENCO to make a rational decision under 

multimarket environment to benefit the long term interests in planning market 
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operations and new investments etc. On the other hand, the average dispatch provides 

useful information at the lower level. For instance, at the daily level, a daily allocated 

emission allowance is established through the average dispatch at the weekly level. In 

this manner, the decision model can include emission constraints that accounts for the 

maximum allocated allowances as well as possible trades in the carbon market. The 

differences between the planning (production process and trading process) and the 

operation in real time are used to update information in the next planning period at each 

level. Although the model can be applied for both long and short term planning, this 

chapter focuses on the short term decision making in market operations only. 

emin emax

Emission 

(tonne)

Emission cost 

($/tonne CO2)

0 ea ep

emission energyclean energy  penalty energy

 
Fig. 5-2  Piecewise emission cost of three parts of energy 

There are two sequential processes at the daily planning level which interact each 

other through the stock of carbon allowance. Based on the updated stock of carbon 

allowance, the proposed model solves the optimal electricity production by DE subject 

to environmental and economical constraints from EM, FM and CM in the production 

process. It is followed by the trading process. In the trading process a GENCO not only 

has to maximize its trading profits but it also needs to balance the allowances with the 

produced emissions by the end of the planning horizon in the most cost-effective way. 

As either stage can directly change the GENCO’s stock of carbon allowance, the 

piecewise emission cost shown in Fig.5-2 will therefore change dynamically. To take 
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into account of this complicated problem, the proposed model innovatively considers 

the emission as a dynamic constraint in optimizing the decision in each market.  

The clean energy is the generated energy using the daily allocated allowance a 

GENCO owns. Therefore, the “clean energy” contributes to the amount of emission but 

requires no additional cost for the GENCO. The emission energy is produced beyond the 

daily allocated allowance; therefore, a GENCO must purchase allowances from CM to 

cover it. The penalty energy represents the energy production without any allowances 

and hence every unit of emission will be penalized. As all the units are assumed to be 

available in the whole planning period  0 ,  d d D , emin and emax is the lowest 

emission and maximum emission according to their production, respectively. ea and ep  

are the two emission thresholds varying according to the transactions in CM and the 

GENCO’s production. The two thresholds can be considered as dynamic constraints in 

the decision making model. The emission cost on day d, 
2co

dC , is therefore represented by 

the following piecewise function: 
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(5-1) 

where , ,( )g d t ge q is the emission function due to the production of generator g. A GENCO 

usually has different types of generators and its daily emission is the sum of emissions 

of all its generators within T time intervals. Notice that the penalty is usually settled at 

the end of the emission commitment period (i.e. on the compliance day C). It is obvious 

that any trades in CM and any production of emission would directly change the stock 
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of carbon allowances and hence ea and ep would vary accordingly while the allowances 

a GENCO can acquire from CM are stochastic depending on the market setting. In this 

chapter, historical trading data in previous commitment periods are fitted into a 

lognormal distribution at the long term levels, i.e. annual and monthly. The maximum 

amount of allowances a GENCO can acquire from CM during the commitment period is 

firstly obtained using the Monte Carlo technique with a given level of risk before the 

planning period. Then the total estimated allowances, including allowances which have 

been allocated and purchased as well as allowances which a GENCO can possibly 

purchase from CM, are averagely dispatched to the monthly or weekly level as shown in 

Fig. 5-1.  

5.2.2. Energy production of a GENCO 

Under the deregulated market environment, a GENCO has to decide the amount of 

power generation by considering two components. One is long term bilateral contracts 

while the other is power pool. Usually the long term bilateral contracts are confirmed at 

the high levels planning. Power pool features with fluctuated price and stochastic 

demand, a GENCO has to make a trade-off between profit and risk of low actual energy 

price. Therefore, a GENCO’s output , ,

1

G

d t g

g

q


 at time interval t on day d is represented by 

bilateral contracts and power pool parts , ,and d t d td 
, 

respectively. 

Due to uncertainties involved e.g., in market clearance, the determination of optimal 

volumes of the two parts is a challenging task for GENCOs. In a power pool, the power 

pool prices are cleared through a complex balancing process. Although the prices are 

highly volatile, a GENCO can develop its optimal bidding price and output in a power 

pool according to the forecast price. Furthermore, a GENCO has to decide the trading in 

the three markets simultaneously. To obtain the optimal energy production for each time 
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interval, the production process of the proposed model firstly forecasts the maximum 

possible output ,d t
in the power pool based on given known information of historical 

market prices using PC described in Section 3. Subject to the constraints in the three 

markets, Differential Evolution (DE) is then applied to decide the optimal energy 

production , ,+ d t d td  , along with the , ,d t gq  dispatched to all units. It is noticed that the 

optimal volume of electricity output is determined with the bidding price 

simultaneously. To focus on the planning considering the three markets, the production 

process provides the best 
, , ,( , )d t d t gq  as the decision in EM so as to enable the trading 

process to deal with the trading strategies in FM and CM. 

5.2.3. Carbon allowance trading  

A GENCO must balance its emission allowances with the generated emissions at the 

end of the emission commitment period. On the last day of the emission commitment 

period (i.e. compliance day C), GENCO must pay a penalty price for excessive 

emissions without allowance as follows (on day 

C , S S

d Cc c , B B

d Cc c , d Cx x , , , , ,d t g C t gq q ): 

 , ,

1 1

max[ ( )+ ,0 ]
T G

pp S B

C C g C t g C C C

t g

Penalty p e q c x c
 

  （ ）（ ）                (5-2) 

where
Cx , and , ,

1 1

( )
T G

g C t g

t g

e q
 

  are the stock of carbon allowances and the accumulated 

emission at the beginning of day C respectively; B

Cc ,
S

Cc are units of carbon allowances 

buying and selling on day C. The penalty price pp

Cp is determined before the 

commitment period based on the national/regional emission cap as introduced in section 

2.3.1. To avoid penalty, a GENCO can either operate their units subject to the initial 

allowances or purchase additional allowances in CM before day C.  
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5.2.4. Prices of fuel, energy and carbon allowance  

According to the discussion in Section 2.4.1, a GENCO can hardly affect the market 

clearing prices in the short term. Therefore, the proposed model considers the market 

prices as exogenous variables in the low level planning. The predicted value of fuel 

price , ,

FM

d t gp , energy price ,

PEM

d tp  and the carbon allowance price CM

dp  are important to the 

performance of the proposed decision making model. E.Delarue [182] has demonstrated 

that the bias of prices forecasting would lead to different extends of GENCO’s profit 

loss. In this chapter, the predicted spot prices of fuel, energy and carbon allowance are 

known before planning using the PCPF model proposed in chapter 3.  

5.2.5. Differential Evolution (DE) 

    The proposed model is a mix-integer programming problem. It consists of both 

continuous variables such as generation outputs, and discrete variables such as contract 

amounts. Although the model is not highly nonlinear, it is a NP-hard problem. For such 

NP-hard problems, traditional algorithms (such as the branch-bound programming method, 

dynamical programming method, mixed integer programming method, Lagrangian method) 

may converge to a feasible solution in a reasonable execution time, but they cannot 

guarantee good accuracy of the final solution due to the assumptions involved in these 

methods. Therefore, by considering the strong searching ability of the heuristic algorithms, 

DE, with better quality and reasonable convergence speed, is adopted to find the solution. 

DE can be used to solve stochastic problems effectively [183]. It resembles the structure 

of an Evolution Algorithm (EA), but differs from traditional EA in its generation of new 

candidate solutions and by its use of a ‘greedy’ selection scheme. DE has the following 

steps: initialization, mutation, crossover, and selection. In the initialization step, each of 
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N individuals is a P dimensional vector within the whole population   of dimension 

N×P. The structure of the whole population is shown as: 

11 12 1

21 22 2

1 2

[ ]

P

P

N N NP

   
 
  
  
 
 
   

                                      (5-3) 

DE randomly generates the value of each dimension of the individual within the 

lower and upper limits of that dimension. The objective of the mutation process is to 

randomly choose three different individuals to produce a mutant individual
, ,j k lV , 

according to  , , , , , , , ,j k l j a l j b l j c lV X F X X   , where j is the dimension index, k is 

individual index and l is iteration index. a, b, c are random numbers within [1, N]; F is 

the mutation factor.  

In the crossover step, DE creates a different individual called the trial individual, 

based on the original individual 
, ,j k lX and the mutant individual

, ,j k lV . The crossover is 

expressed as:  

 , ,

, ,

, ,

0,1   
   

j k l j rand

j k l

j k l

V if rand Cr or j j
U

X otherwise

  
 


                   (5-4) 

where Cr  is the mutation factor. 

The last step is selection where DE produces individuals for the next iteration. The 

original individual and the trial individual are compared using their objective function 

values. The one with the larger value is selected for the next iteration. The three steps 

(mutation, crossover, and selection) repeat until an acceptable solution is obtained or the 

predefined maximum iteration number is reached. 
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5.3. Model Formulation 

The profit of a GENCO during the whole planning period  0 ,  d d D  is the revenue 

from EM, FM and CM minus the total production cost and expense. The profit can be 

expressed as follows: 

( ) ( )BEM PEM CM FM CM LFM FM PEM

D R R R R C C C C                        (5-5) 

5.3.1. Revenue from long term bilateral energy contracts  

In EM, the revenue of a GENCO comes from the bilateral contracts and the power 

pool. Assume a GENCO has I long term bilateral energy contracts. Each contract i 

consists of the capacity part (which reserve the GENCO’s capacity to provide power) 

and the energy part. Each part corresponds to a specified contract price , ,and CC EC

d t d tp p , 

respectively. The revenue from the bilateral contracts BEMR is represented as:

 

 
0

, , , , , , , ,

1 1 1

min ,
D T I I

BEM CC EC

d t d t i d t d t i d t i

d d t i i

R P Q P l Q
   

 
  

 
  

 

                (5-6) 

where , ,d t il is the predicted load of the customer and , ,d t iQ  is the capacity of bilateral 

contract i at time interval t on day d.  

5.3.2. Revenue from trading in power pool 

The revenue from selling electricity in the power pool PEMR  is another income of a 

GENCO. The proposed model solves the optimal power production , ,d t gq  using DE and 

therefore its revenue is  

 
0

, , , , , , ,

1 1 1

max min , ,0
D T G I

PEM PEM

d t d t g d t i d t i

d d t g i

R p q l Q
   

   
   

   
              (5-7) 

where 
, ,d t il is the predicted load of the customer and 

, ,d t iQ  is the capacity of bilateral 

contract i at time interval t on day d. 
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5.3.3. Revenue from trading in CM 

Besides balancing the emission, a GENCO would aim for profits from the trading of 

carbon allowances. The proposed model optimizes the trading amount of allowance in 

carbon market, with the consideration of variation in the emission level and the 

allowance price. It is computed as:  

 
0

D
CM CMS CM S

d d d

d d

R I p c


                                            (5-8) 

Excessive trades are limited through the index CMS

dI  which takes the allowance price 

variation into account:  
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
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                                (5-9) 

where 
1:( )CM

d Dp 
 is the mean value of the allowance price from day d+1 to day D, which 

is forecasted by the methodology proposed in reference [184];  is the penalty factor 

within [0, 1]; r1 is the risk factor of a GENCO within [0, 1], which is used to control 

excessive selling. 

5.3.4. Revenue from trading in FM 

To guarantee the supply of fuel for different types of generators, a GENCO usually 

would own a certain amount of fuel contracts. However, when a GENCO has surplus of 

fuel in some days it would resell part of the contracts in fuel markets to avoid extra 

storage cost. To include the impact of fuel market externalities and simplify the 

discussion of the model, all the trades in FM are assumed to be similar to the gas market. 

Therefore, no storage problems are considered in the study. 
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 
0

, , , , , ,

1

max ( ),0
D T G

FM FMS FM

d t g d t g g d t g

d d t g

R p Q f q
 

  
                      (5-10) 

where , ,

FM

d t gQ is the long term fuel contract heat energy amount of generator g at time 

interval t on day d, which is settled in the high level planning; the sale price, , ,

FMS

d t gp , is 

calculated based on the predicted benchmark price , ,

FM

d t gp  of the fuel 

market: , , , ,

FMS FM

d t g d t gp p
. 

Similar to [20], the fuel consumption function of generator g 

can be expressed as:
2

, , , , , ,( )g d t g g g d t g g d t gf q a b q c q   , where , ,g g ga b c are fuel 

consumption parameters of generator g. 

5.3.5. Cost of trading in CM 

In each trading process, a GENCO, if necessary, can purchase emission allowance 

when the allowance price in the carbon market CM

dp is relatively low. It this case, the 

cost of a GENCO in CM is:  

0

D
CM CMB CM

d

d

d

B

d dC I p c


                                           (5-11) 

The allowance buying index CMB

dI suggests purchasing allowances when the current 

price is lower than the mean value of the future prices at a certain level, which is 

expressed as follows: 
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                         (5-12) 

where the risk factor r2 is used to control excessive purchasing. 
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5.3.6. Cost of long term bilateral fuel contracts 

The price of the long term fuel contract for generator g, which is known before the 

planning period, is , ,

LFM

d t gP . Hence, in fuel markets, the total cost of the long term 

contracts, LFMC , can be expressed as follows: 

0

, , , ,

1 1

D T G
LFM LFM FM

d t g d t g

td gd

C P Q
 

                                      (5-13) 

5.3.7. Cost of trading in FM 

A GENCO needs to purchase fuel to meet the demand of the generators when the 

amount of fuel related to the long term contract is not sufficient. The cost of fuel 

purchasing FMC is expressed as follows: 

          
0

, , , , , ,

1

max ( ) ,0
D T G

FM FMB FM

d t g g d t g

d d

d t g

t g

C p f q Q
 

  
                       (5-14) 

where the purchasing price , ,

FMB

d t gp  is calculated based on the predicted benchmark price 

, ,

FM

d t gp in FM:
1

, , , ,

FMB FM

d t g d t gp p  .   is the penalty factor within [0, 1]. 

5.3.8. Cost of trading in power pool 

    Power pool features with volatile spot prices and stochastic demand. When the spot 

price is lower than a certain level, a GENCO is able to fulfill the extra demand by 

purchasing a part of electricity from the power pool instead of producing by itself. The 

corresponding purchasing cost can be expressed as the first component in (5-15). At 

some time intervals, the contract loads cannot be fulfilled because of the physical limits 

such as ramp up/down rate. A GENCO therefore needs to purchase power from the 

power pool. The corresponding cost can be expressed as the second component in 

(5-15). Combing these two components, the cost of trading in power pool PEMC  can be 

expressed as follows: 
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where ,

EM

d tI  is an index function, indicating whether a GENCO should buy part of power 

from the power pool or not. 
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where the emission cost, 2co

dC , is computed according to (5-1).  

5.4. Decision Making Model for a GENCO 

5.4.1. Formulation of production process 

The production process is the first stage of the decision making model, in which a 

GENCO determines the amount of energy production aiming at maximizing the overall 

profit from the markets. The optimal output of ,d t
 is solved by DE, along with the , ,d t gq

 

dispatched to all its units. For all the units on the current planning day d*, the 

production model is expressed as follows:   

   

 

 

 

*

, , ,

, , , 1

max

m

,

, ,
in

m

,
, , , 1

ax

, , ,

,

1

, ,

1

,

( , )

max

max ( )

. . min ,

max ,

,

d t d t g

d t g d t g

d t d t gd d t

D

U

g g

D

g g

G

g d t i d

g d t g

I

d t

i

t i

g

q

q q

P

s t G G

G Gq q q

RG l Q















  

 






  

 







              (5-17) 

To account for the physical constraints of each generator, power productions , ,d t gq are 

subjected to the maximum generation outputs
max

gG , minimum generation outputs
min

gG , 

and ramp ,U D

g gG G   constraints. Furthermore, spinning reserve ,d tR is required to be 
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fulfilled by a GENCO as a whole while all generators are considered available during 

the whole planning period. Hence the start-up and related costs of the units can be 

ignored. Based on the solution of the electricity production of all units, the trade-off 

decisions in EM can be optimized in the first stage of the decision making model. 

5.4.2. Formulation of trading process 

The second stage of the proposed model is the trading process, in which the trading 

strategies in FM and CM have to be determined according to the results obtained in the 

production process. Based on the decision of the energy production, the trading strategy 

in CM on the current planning day d* can be solved, along with the trading amount in 

FM. The trading process (second stage) of the model is expressed as follows:  
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where 
24

1 1, , 1 1

1 1

( )
G

B S

d d g d t g d d

t g

x x e q c c   

 

     is the stock of a GENCO at the 

beginning of day d. At the beginning of the planning period d=d0, an initial allocated 

allowance is assumed known from the higher level. The constraints 

0
d d

B SC C  disallow buying and selling allowance simultaneously. The penalty has to 

be paid on the compliance day C if a GENCO cannot match its allowance with the 

produced emission. The trading volume in CM is solved based on the forecasts of 

future market prices and emission levels. Generally, the trading profit during the whole 



                                                                    Chapter 5 

136 

planning period is maximized through the volume of allowance traded on day d*. This 

is because for periods  1, * 1d  , the decision variables and stochastic parameters of the 

model are considered fixed at their decided values. Thus, variations in the variables 

and stochastic parameters are considered only for periods [d*, D] in the optimization 

process. 

5.4.3. Decision making model 

As discussed in Section 5.2.2., a GENCO needs to deicide its stochastic output ,d t  

and arrange all generators’ production aiming at maximizing the profit using(5-17). 

Differential Evolution (DE) is suitable to solve this non-deterministic polynomial-time 

hard combination optimization problem. After the optimal result of production process 

is obtained by DE, the decision of allowance trading in CM can be made according to 

(5-18). The procedures of solving the decision making model are depicted in Fig.5-3. 

The model firstly read the input data, including the forecasted spot price of the EM, 

CM and FM markets, the contract demand, the predicted upper limit of output for the 

stochastic power pool and the forecasted loading. For each day d, there are two 

continued and interactive process: production process and trading process. After DE 

initializes the population, mutation and crossover are implemented to generate trial 

individuals. Each individual represents the value of outputs in each time interval. 

Economic dispatch (ED) is conducted for all generators in each individual time interval 

and the corresponding profit is obtained. If the model converges or the maximum 

iteration number is reached, the optimal decision of the production process is obtained 

for this time interval. The above mentioned production process computes 24 optimal 

production decisions and then they are inputted to the trading process. The trading 
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process computes the optimal trading amounts in EM according to (5-7) and (5-15), FM 

according to (5-10) and (5-14), and CM according to (5-18) for each planning day.  

Input forecasted Data and 

contract damand

Perform Mutation and 

Crossover

Obtain the corresponding 

               through ED
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End
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Fig. 5-3  Decision making model of GENCO 



                                                                    Chapter 5 

138 

5.5. Experiments on The Proposed Model 

Table 5-1  Generation limits, fuel parameters and emission factors 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 
min

gG (MW) 10 20 55 60 100 150 
max

gG (MW) 100 130 120 180 220 455 

ga (MMBtu) 129.97 318.18 126 240 177 480 

gb (MMBtu/MW) 32.6 0. 26 8.65 7.74 13.51 7.4 

gc (MMBtu/MW
2
) 0.0011 0.06 0.0028 0.0032 0.0004 0.0002 

Ramp up/down (MW) 50 30 40 75 70 60 
Emission factor (kg/MMBtu) 54.01 95.52 74.54 74.54 54.01 95.52 

Fuel Type Gas Coal Oil Oil Gas Coal 

Table 5-2  Forecasted upper limit of hourly output 

Hourly Output 

(MWh)
 

Day 1
 

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

8 700.6 623.7 571.3 603.0 590.0 588.2 605.7 
16 720.7 651.5 617.1 628.7 619.6 628.9 652.0 
24 552.4 485.4 471.7 453.7 436.7 478.3 484.4 

Note: Owing to limited space, only the data of hours 8, 16 and 24 are listed 

Table 5-3  Forecasted value of prices in EM 

Hourly Price 

($/MWh)
 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

8 28.6 33.0 37.1 40.1 39.5 42.0 44.0 
16 36.8 50.3 58.5 82.5 47.4 38.9 50.6 
24 30.3 36.3 36.7 37.5 36.9 36.2 45.1 

Note: Owing to limited space, only the data of hours 8, 16 and 24 are listed 

The efficient properties of the proposed decision making model are demonstrated 

through the following experiment. The proposed model is applied to a typical GENCO 

which owns six thermal generators, including two coal-fired units, two gas-fired units, 

and two oil-fired units. The details of the generators are provided in Table 5-1. To 

reveal the impact of different combinations of markets on the decision making of the 

GENCO, data such as loading, electricity prices, fuel prices are obtained from the 

Australian Energy Market Operator (AEMO) website [185]. According to [24], the 

allowance price and penalty price in CM are closely related to the regional/national 

policy and regulatory issues. The real data of allowance prices in Regional Greenhouse 

Gas Initiative (RGGI) are used in this study [186]. The real data and forecasted data 

using the methodology described in chapter 3 are provided in Tables 5-2- Tables 5-5. 
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Obviously, predictions with high accuracy can benefit the decision making. The time 

interval for the market clearing is one hour in EM and one day in both CM and FM. For 

simplicity, it is assumed that all units are available in the whole planning period and the 

spinning reserve is considered to be 10% of the loading at each time interval. With the 

help of DE, the proposed model solves a GENCO’S decisions for 7 days by less than 30 

minutes, which the computation time are measured on a Dell 2.66GHZ personal 

computer with 2GB RAM. Therefore, the proposed model is practical for a GENCO to 

make decision under multimarket environments.   

Another major objective of this experiment is to reveal how different market 

scenarios and their combinations can affect the energy production profile and the 

trading behavior of the GENCO. It is noticed that the trading behaviors include the 

trading amounts in the three interactive markets for all the transaction days. Changes 

including the GENCO’s electricity output, related emissions, and daily profits will be 

compared under different market settings. To achieve these goals, the proposed model 

solves the decision making problem of maximizing the expected profit subject to the 

constraints as formulated in (5-17) and (5-18) by 2 continuous processes. For clear 

illustration purpose, the planning period chosen is only one week. In order to show the 

influence of different market mechanisms, the whole planning period  0 ,  d d D is 

assumed to be one week before the emission compliance day C (i.e.
0 6,d C D C   ). By 

the end of the planning period (day D=C), the penalty of excessive emission of the 

GENCO is computed according to (5-2). Five experiments, described as Scenarios I to 

V, are carried out to demonstrate the GENCO’s optimal decisions under different 

market environments.  
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Table 5-4  Forecasted and actual prices in FM 

Price 

($/MMBtu) 

Coal Oil Gas 

actual forecast actual forecast actual forecast 

Day 1 2.37 2.34 7.21 7.75 4.76 4.64 

Day 2 2.39 2.37 7.26 7.20 4.85 4.74 

Day 3 2.37 2.39 7.14 7.25 4.74 4.83 

Day 4 2.39 2.37 7.21 7.14 4.74 4.72 

Day 5 2.35 2.39 7.26 7.21 4.72 4.72 

Day 6 2.39 2.35 7.16 7.25 4.65 4.70 

Day 7 2.35 2.39 6.93 7.16 4.53 4.64 

 

Table 5-5 Forecasted and actual prices in CM 

Price ($/tonne) Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Actual 4.08 4.02 3.90 3.97 3.97 3.90 3.90 

Forecast 4.03 3.90 3.98 3.98 3.90 3.90 3.93 

 

Scenario I (EM with no carbon constraint): The GENCO has only planned for the 

energy production and trades in EM. It has sufficient initial CO2 emission allowances so 

that the market clearing in CM does not affect the GENCO’s daily production. Under 

this scenario, the revenue functions R
CM

 and R
FM

, cost functions C
CM

 and C
LFM

 are not 

incorporated in (5-5). In this case, the fuel cost is calculated based on (5-14) while , ,

FM

d t gQ  

is 0. This is because the GENCO does not own long term contracts for its units. DE 

would solve the optimum production of electricity without taking (5-1) and (5-2) into 

account, because no carbon constraint is considered. After the decision of production is 

made, the model would compute the optimum trading amounts according to and in EM 

without accounting the other markets.  

Scenario II (EM and CM): The GENCO has planned for the energy production and 

trades in both EM and CM. It has limited initial CO2 emission allowances so that it has 

to make a tradeoff between profit-making in both EM and CM, and avoid penalty 

through the trading in CM. Under this scenario, the revenue function FMR and the cost 

function LFMC are not incorporated in (5-5). In this case, the fuel cost is calculated based 

on the forecasted fuel prices because the GENCO does not own long term contracts for 
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its units. DE solves the optimum production of electricity to maximize the profit, and 

then the decision of trading in both EM and CM can be obtained. 

Scenario III (EM with carbon constraint): The GENCO has only planned for the 

energy production and trades in EM. Initial CO2  allowances are limited so that it has to 

make a tradeoff between profit-making and emission penalty. Under this scenario, the 

revenue functions R
CM

 and R
FM

, cost functions C
CM

 and C
LFM

 are not incorporated 

in(5-5). Most of the settings are the same as that in scenario I except the carbon 

constraints. (5-1) is considered when the GENCO cannot acquire carbon allowances in 

CM so that it can only tune down its production. Trading in EM is considered and 

penalty of excessive emission, according to (5-2), is counted in this scenario.  

Scenario IV (EM and FM with carbon constraint): The GENCO has planned for both 

the energy production and trades in EM and FM. It has limited initial CO2 emission 

allowances so that it has to make a tradeoff between profit-making and emission penalty. 

Under this scenario, the revenue function CMR  and cost function CMC  are not incorporated 

in (5-5). Most of the settings are the same as that in scenario III, except the 

consideration of FM. The GENCO owns specified fuel contracts for its six thermal units 

so that it can make decisions on how to use the amount of fuel basing on the solution of 

the proposed model. Besides the decision of electricity production, the model also 

provides trading decisions in both EM and FM.  

Scenario V (EM, CM and FM): The GENCO has planned for the energy production 

and trades in EM, CM and FM. It has limited initial CO2 emission allowances so that it 

has to make a tradeoff among all markets, and avoid penalty through the trading in CM. 

In this case, all the market factors are taken into account and the GENCO has more 

options to make a tradeoff between making profit through power production and 

emission reduction.  
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Fig. 5-4  Daily energy outputs in scenarios I to V 

Fig.5-4 shows the daily energy outputs of the six units for the five scenarios. Unit 1 is 

a gas unit which is scheduled least in all the scenarios as it has a higher fuel 

consumption function. On the contrary, unit 6 is a coal unit which provides a high 

percentage of energy although it has the highest emission factor. Unit 2 usually generates 

more than 1500 MWh daily while unit 6 usually generates less than 5000MWh daily. The 

two main reasons that the unit 2 have higher priority (>48%) than unit 6 (<45%) are: 1) the 
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maximum output 
max

gG (MW) of unit 2 and unit 6 is 100MW and 455MW, respectively; 2) 

The difference in ramp up/ down constraints. In comparison with the others, oil units 3 

and 4 are affected more significantly by different scenario settings. It is due to the fact 

that they are the marginal units in the production process. The total production in 

scenario I is 94,064 MWh and about 80,000 MWh in both scenarios III and IV.  

It is obvious that the GENCO would produce as much as it can in scenario I to 

maximize its profit in the EM. The main reason of not taking the emission amount into 

account is that the GENCO has been allocated sufficient allowances. In scenario II the 

GENCO produces 81094.7MWh which is slightly more than that in scenarios III and IV. 

This is because the GENCO also seeks for profit in CM or FM in some time intervals. 

Furthermore, due to the incorporation of the three interactive markets, the GENCO can 

take advantage of the trades in FM and CM to increase its production using the 

proposed decision making model. It produces more (83008MWh) in scenario V than 

that in scenarios II, III and IV. 

Although the units are not scheduled freely due to the emission constraints, the 

proposed model can make a good tradeoff between profit-making and emission 

reduction under the three interactive markets environment. On the whole, different 

carbon reduction policies affect the GENCO’s daily production. From the view of EM 

operation, the reduction of the GENCO’s production would lead to increases in EM 

prices in the short term. On the other hand, the GENCO might consider investing in 

renewable units according to the price variations in CM and FM. 
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Fig. 5-5 Daily emissions in scenarios I toV 

 

Fig.5-5 shows the daily emission in different scenarios. It can be seen that, as 

emission constraint has not been taken into account, the emission produced in scenario I 

is the highest. Due to insufficient emission allowances, the emission levels in the other 

scenarios are relatively low throughout the planning period. The fourth scenario yields 

the lowest emission because the GENCO cannot acquire extra allowances so that it 

needs to reduce the output of its less efficient units to seek for profit from FM. 

Furthermore, the GENCO’s emission level in scenario V is the second highest as a good 

tradeoff decision, committing the emission constraint, has been made. Under the carbon 

market environment, the GENCO’s emission is directly related to some fundamentals 

such as carbon prices, amount of emission allowances, emission cap and penalty price. 

A strict constraint of course would lead to a lower level of carbon emission. The carbon 

market mechanism might bring about a moderate level of emission. 
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Fig. 5-6  Daily profits in scenarios I to V 

  Fig.5-6 shows the daily profits in the five scenarios. It can be seen that the profits in 

scenarios I, III and IV are similar, with the exception on the last (7
th

) trading day. This 

is the emission compliance day on which, except in scenario I, the GENCO needs to 

settle the emission penalty. It can be observed that the profits in scenarios III and IV 

decrease while the profits in scenarios I, II and V increase on day 7. This is because 

scenario I does not include emission constraint while scenarios II and V have carbon 

market trading. Furthermore, the GENCO earns slightly more in scenario IV than that in 

scenario III during the whole planning period because it can seek for profit in FM in 

addition to EM. Due to the same reason, the GENCO’s profit obtained in scenario V is 

higher than that in scenario II. Excluding the compliance day, the shape of the profit 

profiles in scenarios II and V are different from the others. The GENCO decides to 

purchase emission allowances in day 2 and sell them in days 3 and 4 to make profit 

from CM in addition to EM and FM. On the whole, the implementation of 

environmental policy would lead to a reduction of GENCO’s profit. However, the 

decrease can be alleviated through the trading in the other markets under the 
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multimarket environment. It can be observed from figures 5-5 and 5-6 that the 

GENCO’s tradeoff decision between profit-making and emission reduction are 

significantly different in various scenarios. Consistent with the extent of the European 

ETS, in this study, it is supposed that this market is very large and GENCOs are price 

takers. Therefore, the carbon allowance price is given exogenously. GENCOs have to 

purchase allowances whenever the initial allocation is insufficient to cover their actual 

emissions.  

Table 5-6  Summaries of the five scenarios 

 Scenario I Scenario II Scenario III Scenario IV Scenario V 

Energy 

Production(MWh) 
94,064 81,095 80,015 80,082 83,008 

Carbon emission 

(tonne) 
81,095 73,327 73,196 72,988 74,527 

Profit in EM($) 4,053,545 3,291,844 3,436,742 3,594,896 3,821,409 

Profit in FM($) NA NA NA 320,739 123,828 

Profit in CM($) NA -56,396 NA NA -91,016 

Total profit($) 1,075,757 756,777 469,179 520,238 907,309 

 

A summary of the performances of the five scenarios and the impacts of ETS on the 

GENCO is provided in Table 5-6. Besides the profits and emission in the planning 

period, it can be conjectured that ETS would adjust the GENCO’s portfolios of planning 

at the high levels in the hierarchical decision making model. The implementation of 

carbon policies would immediately lead to a drop of the GENCO’s profits. However, 

the GENCO could accommodate itself to make a good tradeoff between profit-making 

and emission reduction under the multimarket environment. For the real practice in the 

long run, the impacts of CM are expected to be larger so that the trades in EM and CM 

can influence each other. Although this study includes the FM externalities, embodied 

in fuel price variations, it does not take fuel portfolio building into account. It is an 

essential problem for a GENCO as it has to account for potential fuel contracts 
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characteristics, transportation contracts, storage/consumption commodity and other 

services, which can be included in our further studies. It can also be conjectured that the 

impact of FM on the profit of GENCO would be larger when the above mentioned 

factors are taken into account.  

5.6. Summary 

Chapter 5 covers electricity market, carbon market, and fuel market and contributes 

for a comprehensive short term electricity market planning model. In this chapter, a novel 

decision making model under multi-market environment is developed based on the 

studies in previous chapters. This model investigates the impacts of carbon policies with 

interactive markets on the decision making of a GENCO. It has two sequential 

processes. The first one is the production process which is solved by DE and the second 

one is the trading process involving three interactive markets. 

The proposed model in this chapter accounts for emissions trading mechanisms by 

incorporating emissions constraints as well as the trading of emission allowances. Thus, 

this model allows for analysis of how different market mechanisms affect a GENCO’s 

behavior and its overall profits. A comparative experiment is carried out to reveal a 

GENCO’s operation subject to different policy scenarios.  

A. From EM’s point of view, a GENCO would reduce its production so that prices in 

EM are expected to be increased in the short term. Furthermore, a GENCO would 

consider investing in some renewable units with merit priority in production 

planning.  

B. From CM’s viewpoint, a harsh cap of emission would lead to a significant bring 

down of carbon in a short period while GENCOs are expected to pass the cost to 

their customers. On the other hand, CM might bring about a moderate level of 
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emission and the market mechanisms are expected to reveal the true value of 

carbon allowances.  

C. From the standpoint of FM, transaction of fuel is a good supplement for GENCOs 

to operate in EM and CM.  

D. In summary, the proposed model lets GENCOs to make a good tradeoff between 

profit-making and emission reduction under three interactive markets environment. 

Furthermore, policies defining the three interactive markets may lead to a better 

environment for electricity industry to achieve the intended goals such as emission 

reduction, promoting renewable, and keeping electricity cost at a reasonable level.  
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CHAPTER 6. IMPACTS OF EMISSION TRADING AND 

RENEWABLE ENERGY SUPPORT SCHEMES ON 

ELECTRICITY MARKET OPERATION 

6.1. Introduction 

Chapter 5 proposed a novel dynamic decision making model to deal with the 

multimarket trading problem for a GENCO during each trading period. It covers 

electricity market, carbon market, and fuel market and contributes for a comprehensive 

short term electricity market planning model. Renewable market is the next focus 

according to the research route depicted in Figure 1-1. As described in Section 2.4.3, 

renewable energy support scheme (RESS) and emission trading scheme (ETS) have 

overlapping goals with respect to the global environmental and economical benefits. 

Inevitably, the implementation of these two schemes would bring some new problems 

to electricity market operation. Given this background, chapter 6 endeavors to covers 

electricity market, carbon market, and renewable market and examine the impacts of the 

two schemes on the electricity market operation. With the implementation of these two 

schemes, an agent-based market simulation method is proposed in this chapter for 

analyzing the gaming behaviors of generation companies in an open electricity market 

environment.  

ETS has been comprehensively introduced in Section 2.3.1. Cap and trade program, 

which is the most widely adopted method of carbon market (CM), is the focus of this 

thesis. When ETS is implemented, a GENCO should possess corresponding emission 

allowances when it emits CO2. If the emission allowances are not freely allocated, a 

generation company would need to pay for them. A coal-fired plant emits more than 
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twice the amount of CO2 than a gas-fired or combined cycle gas turbine (CCGT) plant 

for generating one unit of electrical energy. Thus, under ETS, the production cost of a 

coal-fired plant would increase much more than that of a gas-fired or CCGT plant. As a 

result, a coal-fired plant would lose its dominance due to the relatively higher 

production cost and its output has to be decreased. On the other hand, the difference in 

production costs between a gas-fired or CCGT plant and a coal-fired plant would be 

reduced and the outputs of the gas-fired or CCGT plant would be increased. In this way, 

the emission reduction target might be reached. 

RESS has been investigated in Section 2.3.4. Its objective is to promote the rapid 

development of the renewable energy sources. In many countries, different incentive 

policies have been established in renewable market (RM). The feed-in tariffs 

mechanism, one of most important methods under fixed price systems, is the focus of 

this chapter. Under RESS, the development of renewable energy sources are usually 

supported or inspired by governments and generally can get priority and subsidy to 

generate electricity. This may reduce the demand for traditional thermal generation 

electricity technologies and further reduce the CO2 emissions.  

Section 6.2 proposed the agent-based market simulation method, followed by the 

introduction of a methodology to simulate the operation process of a specified 

electricity market in Section 6.3. The proposed model can be used to analyze the 

gaming behaviors of generation companies in an electricity market environment with 

the participant in CM and RM. Section 6.4 then presents some indices employed to 

evaluate the market operation states. A comprehensive experiment demonstrates the 

feasibility of the developed model and methodology is provided in Section 6.5. Section 

6.6 summarizes this chapter with concluding remarks. 
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6.2. Agent-Based Simulation Model in the Electricity Bidding 

Market 

During the past two decades, agent-based computational economics (ACE) has been 

gradually developed. In ACE, the market participants are represented by agents with 

self-adaptive and self-learning abilities. Agents would keep adjusting their strategic 

behaviors in the process of market competition for profit maximizing according to 

varying market information. Simulation model is usually set up according to market 

rules. During the progress of the simulation steps, the system would gradually evolve 

into a steady state. The market characteristics can then be studied based on the steady 

market state. 

The concept of agent-based simulation seeks to overcome some of the weaknesses of 

conventional modeling approaches by building a simulation from a player’s perspective 

which helps to integrate aspects such as player strategies, learning effects, or imperfect 

markets and information. The approach of agent-based simulation relates to concepts of 

several disciplines such as economics, game theory and software engineering [187, 188].  

If the electricity auctions were held only once, characterizing the market clearing 

price as Nash equilibrium would be rather simple. Since the electricity auctions are held 

repeatedly, however, there is a myriad of Nash equilibrium in this game. In order to deal 

with the complexity of repeated games, agent-based simulation would be a suitable 

method. Electricity auctions in England and Wales [189-191] have been analyzed using 

agent-based simulation in order to investigate the markets from the aspects of market 

clearing price, collusion, and exercising of market power. 

Many algorithms have been applied in the agent-based simulation model. The 

Roth/Erev algorithm [192] is one kind of reinforcement learning algorithm and is the 
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earliest one used in the agent-based market simulation model. It includes three learning 

parameters namely initial propensity parameter, forgetting parameter and 

experimentation parameter. The calculation experience has shown that, in order to gain 

better learning efficiencies and convergences, it is necessary to set the three parameters 

properly [192]. However, this work is usually rather difficult. 

In this chapter, replicator dynamics algorithm [193], which belongs to evolution 

game theory and can reasonably describe the change trend of population behavior and 

predict the individual behavior, is employed to simulate the bidding strategies of 

generation companies. Replicator dynamics algorithm uses very few parameters and its 

steady state is also a Nash equilibrium point [193-195]. This algorithm is introduced in 

the following sub-section 6.2.1. 

6.2.1. Replicator dynamics algorithm 

Considering a non-cooperation game process with N agents, each agent j has a 

strategy set Aj. Assume Aj involves K discrete strategies and the probability for agent j to 

choose the k
th

 strategy is Prjk. According to the probability Prjk, agent j would choose the 

k
th

 strategy from its strategy set Aj based on roulette wheel selection. If all agents have 

chosen their strategies, a game situation would be formed. 

Each agent j can get a particular profit πj from a given game situation, and thus a 

mapping from the game situations to the profit of each agent can be obtained. Here the 

so called learning is that agent j would modify its probability to choose the 

corresponding strategy in the next round according to its profit in the current round. The 

difference between the current profit and the average profit can be adopted as the 

learning drive or stimulation. Here the average profit is the average value of the profit 

of the previous NT training rounds before the current round. The learning utility jU of 



                                                                    Chapter 6 

153 

agent j can be defined as: 

j j jU                                                         (6-1) 

1

( )
run

run T

N

j j T

l N N

l N 


 

                                             (6-2) 

where 
j  represents the profit of agent j in the current round; j  represents the average 

profit of agent j; ( )j l  is the profit of agent j in the l
th

 round; Nrun is the current round 

number. 

  Note that this algorithm does not directly use the profit to conduct the learning. Instead, 

the difference between the current profit and the average profit of the previous NT 

rounds is used as the learning drive. If the difference is less than zero, it means that the 

current strategy is not a good one and the probability to choose this strategy would be 

decreased. Notice that the average profit j  would keep changing as the iteration 

process is progressing. Hence, using j  as the criterion, the stimulation effect of the 

past events can be gradually weakened. 

  Assuming agent j has chosen strategy h in the l
th

 round and obtains the learning utility 

Ujh(l), the new probability to choose strategy k in the next round can be calculated as 

follows: 

)()( lUlS jhj                                                    (6-3) 
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where Sj(l) represents the total trend of agent j after standardization processing in the l
th

 

round;  represents the standardization coefficient; qjk(l) represents the trend of agent j 

to choose strategy k after standardization processing in the l
th

 round; Prjk (l) represents 

the probability to choose strategy k in the l
th

 round; Ejk(l) represents the adjusted amount 

of the trend of the agent j to choose strategy k; ' ( )jkq l is the adjusted trend of the agent j 

for strategy k after the l
th

 round; Prjk (l+1) represents the renewed probability for the 

agent j to choose strategy k in the (l+1)
th

 round . 

  This learning algorithm has avoided the coordination problem of too many learning 

parameters existing in the Roth/Erev algorithm [192]. In this algorithm, only one 

parameter  needs to be set. If the value of  is too big, the learning speed would be slow. 

On the other hand, if the value of  is too small, Ejk(l) would take a big proportion in 

(6-6), which may result in too big change of the probability and convergence problem. 

Calculation experience has shown that when  is set to 20~100, the algorithm would 

have good convergence [193]. 

6.2.2. The bidding strategies of GENCOs considering emission costs 

   Assuming, under ETS, GENCO(Agent) j needs to purchase CO2 emission allowances 

from a carbon market with price 2cop , its production cost and marginal cost can be 

represented as follows:   

2

,,2, 5.0)()( jtjjtjcojjtj PcPpbPC                                   (6-8)  

    
jtjjcojjtj PcpbPM ,2, )()(                                       (6-9)  

where ,( )j t jC P  is the production cost of GENCO j including CO2 emission cost; jb and 

jc are the production cost constant coefficients of GENCO j which can be obtained from 

historical data; ,t jP  is the output of GENCO j at hour t; j  is the CO2 emission factor of 
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GENCO j; Mj (Pt,j) is the marginal cost of GENCO j. In order to compare the GENCOs’ 

performances under different scenarios, the term 2co jp    is added before ,t jP  in Eq. (6-8). 

As a result, Eq. (6-9), the marginal cost function, has two independent terms  
2co jp    

and  
,t jP  and hence scenarios with or without carbon market can be simulated. 

   Suppose that there are n independent GENCOs (agents) participating in a pool-based 

single-buyer electricity market in which sealed auction with a uniform market clearing 

price (MCP) is employed. Using equations (6-12) - (6-14), the market clearing price can 

be obtained through the market clearing process described in section 6.3. The linear supply 

function can be found in equation (6-12). Here it is assumed that each GENCO is 

required to submit a linear supply function to the pool together with the generation 

output limits for each of the 24 hours in the day-ahead market [196] and GENCO j has a 

strategy set with K strategies and each strategy is formed by fixing the constant part of 

the marginal cost Mj (Pt,j) and multiplying the first order part of the marginal cost with a 

coefficient D (D∈[Dmin, Dmax]). The range of D would be divided into K equal parts, 

where Dmin and Dmax are the lower limit and upper limit of the range, respectively. Thus, 

if an agent j has chosen the i
th

 strategy, the corresponding coefficient is:    

min max min( )
1

i

i
D D D D

K
  


                                (6-10) 

   Thus, the bidding price of agent j can be represented as: 

2, ,( ) j co j jj t j t jiB P b p DcP                                     (6-11) 

6.3. Operation Indices of the Electricity Market 

It is assumed that RESS adopts the feed-in tariffs mechanism. In this case, all 

renewable energy would be purchased at a guaranteed premium price renewablep  in the 

renewable market. The market clearing process of non-renewable energy in the 
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electricity market at hour t can be described as: 

2 ,j co j j t j tib p DcP R    1,2,...,j n ； 1,2,...,t T                      (6-12) 
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    1,2,...,t T                           (6-13) 

, ,min , maxt j j j t j jtx P P x P     1,2,...,j n ； 1,2,...,t T                     (6-14) 

where tR  is the market clearing price at hour t; n is the number of the agents in the 

market; T  is the number of the hours over the studied time horizon; tL  is the forecasted 

load at hour t; ,renewable tP is the forecasted renewable energy at hour t; ,t lx  represents the 

operation state of GENCO j at hour t (1: operation; 0: down); maxjP  and minjP  are the 

upper and lower output limits of GENCO j. Notice that, in the electricity market in 

which sealed auction with a uniform market clearing price is employed, the left hand 

side of (6-12) is a linear supply function of GENCO j at time t and (6-12) is used to 

determine the output of GENCO j at time t. 

  The following operation indices of the electricity market can be defined:  

A. Average market clearing price R  over the studied time horizon T 
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B. Average electricity purchasing price electp  over the studied time horizon T   
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C. Total CO2 emission amount totalE  over the studied time horizon T 
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D. Market share j  of agent j over the studied time horizon T 
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E. Capacity factor jCF  of agent j over the studied time horizon T 
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6.4. Market Simulation Process 

Using the learning algorithm described in Section 6.2.1, the whole operation process 

of the electricity market over the studied time horizon can be simulated. The concrete 

steps are listed as follows: 

A. Set time counter t=1. 

B. Obtain the predicted system load tL  and the output of renewable energy resources, 

,renewable tP . 

C. Set l=0. 

D. Set l=l+1，generate randomly the bidding data of the agents. 

E. Using (6-12)-(6-14), solve the market bidding model. The market clearing price, the 

outputs and the corresponding profits of the agents can be obtained.  

F. Repeat steps D. and F. for NT times where NT is the number of training rounds for 

market simulation. 

G. The training for market simulation ends and the agents start learning. Set k=0 and 

the same initial probability for each agent to choose any bidding strategy. 
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H. Set k=k +1，l=NT+ k，generate randomly the bidding data of the l
th 

round in a 

roulette manner. 

I. Using (6-12)-(6-14), solve the market bidding model. The outputs and the 

corresponding profits of the agents in the l
th 

round can be obtained. 

J. According to the profit of the l
th 

round and the average profit of the former NT 

training rounds, use (6-1)- (6-7) to calculate the probability of the (l+1)
th 

round to 

choose each strategy. 

K. Examine if the simulation process is convergent. The criterion is that if the 

probabilities of the bidding strategies of all agents have exceeded a specified 

threshold, the simulation process is considered to be convergent in a steady state. If 

the simulation process is convergent, go to step L.；Otherwise return to step H. 

L. Calculate the market clearing price, the outputs and the corresponding profits of the 

agents in the steady state. 

M. If t T , go to step N.； Otherwise, set t=t+1 and return to step B. 

N. Using (6-15)-(6-19), calculate the operation indices of the electricity market. 

6.5. Experiment on The Agent-based Simulation Model 

Suppose that there are four GENCOs participating in the operation of an electricity 

market. In order to simplify the situation, each GENCO is assumed to possess one 

generation unit. The generation units of the first three GENCOs are all coal-fired, while 

the generation unit of the fourth GENCO is a CCGT. The production cost function 

coefficients, output limits as well as the CO2 emission factors of these four GENCOs are 

listed in Table 6-1. The techno-economic data of Table 6-1 are obtained from [196-198] 
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with some modifications. It should be emphasized here that the proposed 

methodological framework in this chapter is applicable to general cases. 

 

Table 6-1 Techno-economic parameters for the generation units of the four GENCOs 

No. 
jb  

($/MWh) 

jc  
($/MW

2
 h) 

minjP (MW) 
maxjP  

(MW) 
j  

1 13.64 0.121 30 160 0.918 

2 12.28 0.081 40 200 0.958 

3 11.52 0.086 40 200 1.125 

4 20.80 0.150 0 160 0.426 

 

Assuming that the studied time horizon is 52 weeks and the predicted system load tL  

are listed in Table 6-2. Besides, for reducing the calculation time, the average load of 

each week is used to represent the characteristics of the weekly load. The major 

objective of this chapter is to study the interaction among EM, CM, and RM. The 

combination of ETS and RESS can affect the operation of the electricity market 

significantly.  

 

Table 6-2  The predicted weekly system average loads (MW) 

Week 
Load 

1 
530 

2 
510 

3 
515 

4 
500 

5 
495 

6 
480 

7 
500 

8 
510 

9 
510 

10 
520 

11 
520 

12 
520 

13 
530 

Week 
Load 

14 
520 

15 
520 

16 
550 

17 
550 

18 
550 

19 
560 

20 
560 

21 
570 

22 
570 

23 
575 

24 
575 

25 
580 

26 
580 

Week 
Load 

27 
580 

28 
600 

29 
600 

30 
600 

31 
610 

32 
610 

33 
610 

34 
640 

35 
640 

36 
630 

37 
630 

38 
615 

39 
615 

Week 
Load 

40 
600 

41 
590 

42 
590 

43 
580 

44 
570 

45 
570 

46 
565 

47 
560 

48 
555 

49 
550 

50 
550 

51 
545 

52 
540 

 



                                                                    Chapter 6 

160 

Table 6-3  The predicted weekly average outputs from renewable energy (MW) 

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 

Output of 
Renewable 

energy 
60 50 65 60 55 50 45 40 40 50 50 50 60 

Week 14 15 16 17 18 19 20 21 22 23 24 25 26 
Output of 
Renewable 

energy 
65 70 70 75 60 60 65 65 75 75 80 80 80 

Week 27 28 29 30 31 32 33 34 35 36 37 38 39 
Output of 
Renewable 

energy 
90 90 100 100 80 80 70 65 65 75 75 80 80 

Week 
Output of 
Renewable 

energy 

40 
80 

41 
75 

42 
75 

43 
80 

44 
80 

45 
80 

46 
90 

47 
90 

48 
80 

49 
75 

50 
70 

51 
65 

52 
65 

 

The four experiments, described as Scenarios I to IV, are carried out: 

Scenario I:  Both ETS and RESS are not implemented in the market and there is also 

no renewable energy in the market (Only EM). 

Scenario II: Only RESS is implemented in the market and the system operator needs to 

purchase all renewable energy (here assuming the renewable energy is 

wind energy). The fixed purchase price is 70 $/ MWh and the predicted 

outputs of the renewable energy sources are listed in Table 6-3 (Only RM 

and EM). 

Scenario III: Only ETS is implemented in the market and each Genco must purchase an 

equivalent number of allowances from emission allowances trading market 

for emitting a specific amount of CO2. The price of CO2 allowances is 

fixed at 20$/ton (Only CM and EM). 

Scenario IV: Both ETS and RESS are implemented in the market and the designs of the 

two schemes are the same as that in scenario II and scenario III (RM, CM, 

and EM). 
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Set  =50, NT=500, K=5, Dmin=1, Dmax=2 and the threshold to examine if the 

simulation process is convergent to be 0.95. The criteria used to set the parameters , NT 

and the threshold relating to the replicator dynamics algorithm can be found in reference 

[193]. The criteria used to set the parameters K, Dmin and Dmax relating to the bidding 

strategies can be found in reference [196]. Using the procedures outlined in Section 6.4, 

the market operation indices in scenarios I-IV can be calculated and the results are listed 

in Table 6-4. The calculated capacity factors are shown in Fig.6-1. 

Table 6-4  Operation indices of the electricity market under different scenarios 

Scenario R （$/MWh） 
electp  

（$/MWh） 

totalE  
(million ton) 

Market share of 

Genco 4 , 4  

1 

2 

3 

4 

30.70 

27.54 

48.54 

46.46 

30.70 

32.85 

48.54 

49.40 

46.05 

41.22 

41.84 

36.42 

11.79% 

9.18% 

22.88% 

23.32% 

    

Capacity Factor

Scenario

Genco2

Genco1

Genco3

Genco4

 
Fig. 6-1  Capacity factors of generation companies in different scenarios 

It can be observed from Table 6-4 and Fig. 6-1 that in scenario II, due to the 

reduction for the need of the thermal electricity generation, the market clearing price R  
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has decreased 3.16$/ MWh compared with that in scenario I. However, because the 

system operator needs to purchase renewable energy in a rather high price (70 $/MWh), 

its average purchasing electricity cost has increased 2.15 $/MWh compared with that in 

scenario I. According to RESS subsidize from the government should be made. Here, 

the subsidy cost would be 5.31$/MWh. Moreover, compared with scenario I, Gencos 

can reduce CO2 emissions 4.83 million ton but on the other hand, the market share of 

Genco 4 has decreased to the least among the four scenarios. As shown in Fig.6-1, the 

capacity factor of Genco 4 in scenario 2 is only 0.281.   

In scenario III, the implementation of ETS has resulted in a rather big rise of the 

market clearing price R  (from 30.7$/MWh to 48.54$/MWh), the rise magnitude has 

accounted for 89.2% of the CO2 emissions price. In addition, the total CO2 emission 

amount has decreased to 41.84 million ton and, comparing with scenario I, 9.14% 

emissions amount is reduced. Besides, the market share of the CCGT unit (Genco 4) has 

been significantly improved, from 11.79% to 22.88% and the rise is 95%. The capacity 

factor of Genco 4 is also the highest among the four scenarios as shown in Fig.6-1.     

   In scenario IV, when both RESS and ETS are implemented, the market clearing price 

R  has decreased 2.08 $/MWh and the electricity purchasing cost has increased 0.86 

$/MWh compared with scenario III. Compared with scenario II, the subsidy has 

decreased to 2.94 $/MWh. In addition, the total CO2 emissions amount has decreased to 

36.42 million ton and the decrease is 21% compared with scenario I. The total reduced 

emissions amount has exceeded the summation of that in scenarios II and III. Besides, 

the indices of market share and capacity factor have shown that Genco IV possesses a 

rather large market share and a rather high capacity factor. 
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   Based on the above findings, the impacts of ETS and RESS on electricity market 

operation can be summarized as: 

A. When only ETS is implemented, both the market clearing price and the electricity 

purchasing price would rise. In addition, Gencos with low CO2 emission can obtain 

larger market shares, which is advantageous to achieve the CO2 emission reduction 

target. However, under this condition, renewable energy sources cannot be incited to 

develop rapidly and in the long run, would make the CO2 emission reduction 

unsustainable.  

B. When only RESS is implemented, the government needs to bear a rather high 

subsidy to the system. In addition, though CO2 emission amount can be reduced to 

some extent in the short run, this mechanism may result Gencos with low emission 

factors possess very small market share. In the long run, these Gencos with low 

emission factors would have to retreat from the market. Contrarily, Gencos with 

high emission factors can get larger market shares. This may weaken the effect of 

CO2 emission reduction from the renewable energy sources and is disadvantageous 

to the optimization of energy source structure.  

C. When both ETS and RESS are implemented, the subsidies provided by the 

government would decrease considerably compared with the condition when only 

RESS is implemented. In addition, CO2 emission amounts would also be decreased 

considerably and Gencos with low emission factors would possess a rather large 

market share. Thus, on one hand, RESS can promote rapid development of 

renewable energy sources and reduce the demand of the traditional thermal 

electricity generation technologies. This is advantageous to the reduction of the CO2 

emissions. On the other hand, Gencos with low emission factors possess large 

marker shares, which may incite generation investors to invest the generation 
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technologies with low CO2 emission such as CCGT and the energy sources structure 

can be further optimized.  

6.6. Summary 

The major objective of this chapter is to study the interaction among EM, CM, and 

RM. The combination of ETS and RESS can affect the operation of the electricity 

market significantly. In order to investigate the impacts of emission trading and 

renewable energy support schemes on electricity market operation, replicator dynamics 

algorithm is employed in this chapter to study the bidding strategies of generation 

companies. Section 6.2 proposes an agent-based methodology to simulate the operation 

process of the electricity market. Some indices are employed to examine the market 

operation performance in Section 6.3 and used to analyze the impact of ETS and RESS 

on the electricity market. The modeling and analysis of different scenarios in Section 

6.4 have shown that only when both ETS and RESS are implemented, CO2 emission 

reduction can be sustainable and the energy sources structure in the future can be 

optimized. 
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CHAPTER 7. MULTIMARKET ANALYSIS OF GENCO’S 

OPERATIONS CONSIDERING EMISSION TRADING 

AND RENEWABLE ENERGY SUPPORT SCHEMES 

7.1. Introduction 

As discussed in Section 1.3, this thesis aims at developing novel frameworks for 

electricity market planning and management under multimarket environment. The 

market prospect and a GENCO’s attitude toward climate change will finally determine 

its long term planning. In the short term, developing an efficient planning model for 

GENCOs to handle uncertainties in the interactive markets is a challenge and significant 

task. Chapter 5 proposes a novel dynamic decision making model which covers 

GENCO’s planning in EM, FM, and CM. Chapter 6 attempts to study the interaction 

among EM, CM and RM from the aspect of electricity market operation. Based on the 

finding from previous chapters, chapter 7 is dedicated to propose the planning model 

from the GENCO’s aspect, which under a multimarket environment consists of EM, 

CM, FM, and RM. Similar to chapter 5, it will be based on a two stage framework 

which can embody the trading behavior of a GENCO under multimarket environment. 

Similar to chapter 6, the impact of ETS and RESS on electricity market is investigated 

in this chapter. However, several features distinguish this chapter with the previous ones.  

Chapter 7 identifies the role of wind power under both ETS and RESS. It has great 

contributions to the electricity market planning and operation. The increasing 

environmental challenges force enterprises to modify their system operation routines to 

reduce carbon emissions. As discussed in Section 2.4.4, exploiting renewable energy is 

an effective way to mitigate energy source deficiency, control GHGs emissions, and 
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achieve smart grid vision [199, 200]. Wind power being one of the most appealing 

renewable energy resources has gained widespread concerns during the last decades. 

Along with the introduction of various emission reduction schemes, increasing number 

of wind turbines have been installed around the world [201]. However, due to the 

intermittent and stochastic characteristics of wind resource, wind power brings great 

challenges to power system economic dispatch problems. One of the major challenges is 

how to effectively accommodate the wind forecasting errors. Because variations of 

wind speed directly influence the power output of wind farms, which then causes 

difficulties in estimating suitable system reserve margin to ensure secure and reliable 

system operations. As a sequence, high penetration of wind power also cause high 

potential risks and more difficulties in power system operation. Considering the 

uncertainty of wind power, this chapter employs a probability based method to address 

the wind forecast uncertainties involved. 

Chapter 7 investigates not only the impact of ETS, but also the RESS on the 

GENCO’s operation in the interactive markets. As introduced in section 2.3.4, fixed 

feed-in tariffs (FITs) and the fixed premium are the most applied methods as in the 

categories of RESS. This chapter improves the two-stage decision making model 

proposed in chapter 5 to include the GENCO’s participants not only in EM, CM, and 

FM, but also in RM. To enhance the solution performance of the model, fuzzy 

differential evolution (FDE) is applied to solve the optimal outputs of a GENCO in EM 

effectively. The rest this chapter is organized as follows: In section 7.2, GECNO’s 

participations in these four interactive markets is presented, followed by the overall 

framework of the proposed decision making model described in section 7.3. Section 7.4 

gives the detailed formulation of the proposed decision making model, followed by the 

FDE introduced in section 7.5. A comprehensive experiment on the proposed model is 
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given in section 7.6 shows a great potential of application of the proposed model to the 

power system planning and management. 

7.2. GENCO’s Participation in Multiple Markets  

Research efforts have been put into develop the optimal decision making model for 

GENCOs taking uncertainties of electricity market (EM), carbon market (CM), fuel 

market (FM) and renewable market (RM) into account individually. A multi-time 

period electricity network optimization model for GENCOs was presented in [179], 

which took gas flow, price and storage problems in FM into account. Incorporating a 

handling scheme to deal with emission constraints, Guo et al. in [180] developed a 

dynamic economic emission dispatch model of power systems. A typical 

environmentally constrained power system economic dispatch model, which includes 

fuel cost minimization and emission constraints, was described in [180]. These studies 

did not take into account the effects of ETS which play an important role of increasing 

the /usages of renewable sources.  Liu et al. investigated the impacts of both emission 

trading in CM and renewable energy support schemes in RM on EM’s operation [20]. 

However, emission allowance was treated as a fixed cost so that the trading value was 

ignored in constructing the decision making models. As to the author’s knowledge, no 

literature addresses the optimal decision making of GENCOs with the effects of EM, 

FM, CM and RM all taken into account. Following sections 7.2.1 – 7.2.4 demonstrate a 

GENCO’s participation behaviors in the four interactive markets. 

7.2.1. Electricity market 

The proposed model builds upon an EM, where a GENCO can trade the electricity 

through either a power pool or bilateral contracts [177]. Accordingly, a GENCO has to 

decide the trading volumes through the two options respectively. Usually the long term 
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bilateral contracts account for a large share of the total production in order to reduce the 

uncertainties. The rest is traded though the power pool of which the clearance can be 

stochastic with fluctuating prices. A GENCO’s output from G thermal units and J wind 

units , , , ,

1 1

G J

d t g d t j

g j

q q
 

  at time interval t on day d is represented by two 

parts
, , and d t d t  : traded through bilateral contracts and the power pool respectively. 

Due to uncertainties involved in e.g. market clearance, optimal determination of the 

volumes of the two parts is a challenging task for GENCOs.  

In a power pool, the power pool prices are cleared through a complex balancing 

process. Although the prices are highly volatile, a GENCO can develop its optimal 

bidding price and volume in power pool according to the forecast price. The first stage 

of the proposed model makes decisions in EM, RM, and FM. The optimal volume of 

electricity output is determined with the bidding price simultaneously. To focus on the 

planning in multimarket trading, this chapter forecasts the maximum possible output 

,d t  for the power pool using the method described in [34] based on the historical data. 

Subject to the constraints in the three markets, FDE is novelly applied to solve the 

optimal level of the stochastic output
, ,[0, ]d t d t   for each hour. In each of FDE 

iteration, ED is employed to allocate generation of units at minimal possible cost while 

satisfying all constraints. Here, the classical Lagrange multiplier method can be used to 

solve the ED problem [202]. 

7.2.2. Fuel market 

According to [24], ETS will increase the usages of wind power so that the power 

industry’s dependence on fossil fuels can be reduced. Simultaneous participations into 

EM, CM, and RM require a GENCO to build up its own fuel portfolio according to 
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FM price variations. To guarantee the supply of fuel for different types of generators, a 

GENCO usually own a certain amount of fuel contracts. For mid and long term 

planning, GENCOs therefore have to optimize their fuel contracts to hedge against the 

risks and uncertainties involved in the multimarket environment. For short term 

planning i.e. daily operation, GENCOs have to decide their fuel usage according to the 

stochastic clearances in EM with consideration of fluctuating fuel prices, which is one 

of the focuses of the chapter. 

To include the impact of fuel market externalities and simplify the discussion of the 

model, all the trades in FM are assumed to be similar to the gas market. Therefore, no 

storage problems are considered in the study. When a GENCO has surplus of fuel in 

some days it would resell part of the contracts in FMs to avoid extra storage cost. 

When the contract fuels are not sufficient, a GENCO needs to purchase from FMs to 

meet the demand. Similar to [177], the fuel consumption function of generator g can be 

expressed as: 2

, , , , , ,( )g d t g g g d t g g d t gf q a b q c q   , where , ,g g ga b c are fuel consumption 

parameters of thermal generator g.  

When making decisions in EM, the demand of fuels in FM is obtained. The first 

stage of the proposed model therefore solves the trading volumes in FM. For generator 

g at time interval t on day d, the predicted values of fuel price , ,

FM

d t gp , energy price ,

PEM

d tp  

and the carbon allowance price CM

dp  are known before decision making by using e.g. 

the forecasting tool described in chapter 3. The price prediction in different markets is 

an important issue but beyond the scope of this chapter.  

7.2.3. Carbon market 

Under ETS, A GENCO must balance its emission allowances with the generated 

emissions at the end of the emission commitment period. A unit of allowance is the 
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permission to emit one tonne of CO2 within the emission commitment period {0, }C . On 

the last day of the emission commitment period (i.e. compliance day C), GENCO must 

pay a penalty price for excessive emissions without allowance as follows: 

, ,

1 1

max[ ( )+ ,0]
T G

pp S B

C C g C t g C C C

t g

Penalty p e q c x c
 

  （ ）（ ）
                  

(7-1) 

where Cx and 
, ,

1 1

( )
T G

g C t g

t g

e q
 

  is the stock of carbon allowances and the accumulated 

emission at the beginning of day C respectively; B

Cc ,
S

Cc are units of carbon allowances 

buying and selling on day C. The penalty price pp

Cp is determined before the 

commitment period based on the national/regional emission cap. It is consistent 

throughout the whole commitment period. To avoid paying penalty, a GENCO has two 

options: to operate their units subject to the initial allowances, or to purchase additional 

carbon allowances in CM during the commitment period.  

In contrast to the existing works that consider emissions as a fixed cost in the 

objective function, the proposed model novelly differentiate GENCO’s generated energy 

into four parts: clean energy, allowed energy, emission energy, and penalty energy. 

Because clean energy, e.g. wind energy, contributes no carbon emission, the piecewise 

emission cost of other three parts of energy is shown in Fig.7-1. 

emax

Emission 

(tonne)

Emission cost 

($/tonne CO2)

0
（Clean Energy） ea ep

emission energyallowed energy  penalty energy

 
Fig. 7-1  Piecewise emission cost of clean, allowed, emission and penalty energy 
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In Fig.7-1, the allowed energy is the energy generated by thermal units using the 

stock of carbon allowances. The emission energy is produced without pre-assigned 

allowances so that the GENCO must purchase additional allowances in CM to cover it. 

The penalty energy represents the energy generated without pre-assigned or purchased 

allowances, and therefore must be penalized. emax is the maximum emission when all the 

thermal units are producing their maximum power. ea and ep  are the two emission 

thresholds varying according to  the transactions in CM, which can directly change the 

GENCO’s stock of allowances. The two thresholds can be considered as dynamic 

constraints in the decision making model. The emission cost on day d, 2co

dC , is therefore 

represented by the following piecewise function: 

2

24

, ,

1 1

24

, , , ,

1 1 1 1

24

, ,
, ,

1 1
1 1

( )
0

( )   ( )    

( )( )

G

g d t g a

t g

T G G
co CM

d g d t g a d a g d t g p

t g t g

G
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CM PP
p g d t g

p d g d t g p C
t g

t g

e q e

C e q e p e e q e

e e qe p e q e p

 

   

 
 


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

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 
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  
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 


         

(7-2) 

where , ,( )g d t ge q is the emission function related to the production of thermal generator g 

at time interval t on day d. CM

dp is the allowance price in CM.  

7.2.4. Renewable market 

As discussed in section 2.3.4, the most commonly applied RESS methods, namely 

fixed feed-in tariffs and fixed premium systems, are similar on the whole. Either of 

them can straightforwardly to encourage advanced planning and stimulate the usage of 

renewable. Chapter 6 investigated the interaction of RESS and ETS through their 

respective effects on key electricity market variables (i.e. prices) from the aspect of EM 

operation. Replicator dynamics algorithm has been employed to simulate the bidding 
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strategies of GENCOs. Although the replicator dynamics algorithm can describe the 

change trend of individual behaviours so that the agent based model can simulate the 

EM operation, it is unable to reveal the GENCO’s modification in its own decision 

making. Therefore, this chapter takes into account the effects of implementing these two 

kinds of RESS into account to analysis the GENCO’s behaviour in different markets. 

Under a multimarket environment, GENCOs need to consider the market conditions 

of EM, FM, CM and RM simultaneously. Particularly, the implementation of ETS 

increases the incremental cost of thermal units. On the contrary, there is little or no 

incremental cost associated with the wind units. Furthermore, the implementation of the 

RESS supports GENCOs to produce more from renewable energy such as wind power 

described considered in this chapter. However, due to the intermittent and stochastic 

characteristics of wind resource, a GENCOs have has to effectively accommodate the 

wind forecasting errors so as to maximize its profits. The GENCOs’ behaviour will be 

different according to the mechanism adopted in the RM.  

A. Feed-in tariffs 

Assuming that the RESS adopts the feed-in tariffs mechanism, that is, all renewable 

energy would be purchased at a guaranteed price. A fixed price per MWh electricity e.g. 

70USD/MWh is paid to the GENCO when the renewable energy is fed into the grid. 

With a fixed price certainty, a GENCO therefore tends to use all available wind energy 

according to the forecasting value.  

To forecast wind generations, the wind speed can be forecasted using a method such 

as that described in [203]. Expected available wind generation are then calculated based 

on the typical wind power curve shown in Fig.7-2, where wr (MW) is the wind output 

rated power, vin (m/s), vr (m/s) and vout (m/s) are the wind cut-in speed, rated speed and 

cut-out speed, respectively. There is no power output at wind speed v below vin or above 
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vout; at wind speeds between vin and vr, the output is equal to the product of the mass 

flow rate of the wind, mW, and v
2
/2. Assuming constant blade area or ducted flow, the 

continuity equation states that mW=ρAv, where ρ is the density of the air in kg/m
3
, A is 

the blade area in m
2
. The total wind power, in MW, becomes PW=(mWv

2
)/2=(ρAv

3
)/2. As 

a result, wind power output w can be described as; 

3

0,

1
,

2

,

in out

in r

r r out

W V v or V v

W AV v V v

W w v V v



  



  


  

                                   (7-3) 
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Fig. 7-2  Typical wind turbine power curve 

B. Fixed premium system 

It is a different case when a fixed premium system is adopted in the RM. For a fixed 

premium system, the rate added to the electricity price is fixed. The difference between 

feed-in tariffs and fixed premium system is that the price of purchasing renewable 

energy is fixed in the former and volatile in the latter. For the renewable plant (e.g. wind 

farm) owner, the total price received per MWh (e.g. 16USD/MWh) in the premium 

scheme (electricity price plus the premium) is less predictable than that under a feed-in 

tariff, since this depends on a volatile electricity price. 
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As the revenue in RM is not yet guaranteed, there might be some hours that the 

revenue is too low to recover the cost relating to the forecast error of wind energy 

outputs. To enable a GENCO with wind farm to make a trade-off decision on the 

volatile revenue in the fixed premium system and the cost relating to the forecast errors, 

a probability based method is developed to characterize the natural of wind speed. 

Because of the uncertainty of the availability of wind energy at any given time, factors 

for overestimation and underestimation of available wind energy must be included in 

the model. An approach using a linear wind power output curve was proposed in J. 

Hetzer and D. C. Yu’s work in reference [204]. To predict the wind energy more 

precisely, the approach has been improved in this chapter, using a nonlinear wind power 

output curve as shown in Fig.7-2. 

To describe wind speed frequency curve, the Weibull distribution is the most widely 

accepted density function [205-207]. An extensive review of various probability density 

functions of wind speed was provided in reference [207], which indicated that the two-

parameter Weibull distribution is the widely accepted model. Using a two-parameter 

Weibull distribution, cumulative distribution function (CDF),  VF v , and probability 

density function (PDF),  Vf v , of the wind speed random variable V are as follows: 

  1 exp

k

V

v
F v

c

  
    

                                                  (7-4)

  

 
1

exp

k k

V

k v v
f v

c c c

     
     

     

                                         (7-5) 

where k>0 is the shape parameter, c>0 is the scale parameter. According to (7-3), three 

portions of the wind power output random variable W can be analyzed and the 

corresponding probabilities  Pr   can be calculated, respectively. 
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1) For in outV v or V v  , 

     

   

Pr 0 Pr Pr

1 1 exp exp

in out

k k

in out
V in V out

W v v v v

v v
F v F v

c c

    

      
                

         
                  (7-6)

 

 2) For in rv V v  ,   

       
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According to the chain rule for derivatives, the PDF,  Wf w , can be obtained by 

differentiating  WF w with respect to w, where  

1

32w
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           (7-8) 

3) For r outv V v  , 

       Pr Pr exp exp
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outr
r r out V out V r

vv
W w v v v F v F v
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         

(7-9) 

Due to the uncertainty of wind power forecasts, the predictions normally have some 

errors. To address the uncertainties in wind power generation prediction so as a 

GENCO can optimize its decisions in RM subject to the fluctuated electricity prices in 

EM, two penalty costs are formulated in (7-10) and (7-11) respectively. The 

underestimation situation occurs if the actual generated wind power is more than the 

predicted amount. The surplus wind power is usually sold to adjacent utilities, or by fast 

re-dispatch and automatic gain control (AGC), the output of non-wind generators is 

correspondingly reduced [204]. Only if this cannot be achieved, then dummy load 
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resistors need to be connected to “waste” the surplus energy. Obviously, these 

practicalities can be modeled by a simple underestimation penalty cost function. 

However, if the wind farms entirely belong to the GENCO, the underestimation penalty 

cost may be ignored. On the other hand, an overestimation penalty cost is paid for 

purchasing reserve power from other sources. Both penalty costs are included in this 

chapter in the most general sense to make it applicable to all situation, regardless of 

how the share of the generation facilities.  

It is assumed that either the underestimation or overestimation penalty cost is linearly 

related to the difference between the available wind power 
, ,d t jW and the scheduled wind 

power
, ,d t jq . Considering the Weibull PDF of wind variation as descried in (7-5), a 

random variable available representing the available wind power from the wind turbine 

j at time interval t on day d, 
, ,d t jW , is assumed with a value in the range of 

, , ,0 d t j r jW w   and varying with the given PDF. According to the definition of 

expected value of an arbitrary function [204], the expected underestimation penalty cost 

for the wind turbine j is assumed as follows,  

   

   
, ,

, , , ,

, , , , , , , , , ,

, , , ,

max 0

r j r j

d t j d t j

u j d t j d t j u j d t j d t j

w w

u j a j W d t j W
q q

E C W q C W q

C w f w dw q f w dw

   
 

  
   

，

       (7-10) 

where 
, , , , ,, ,d t j d t j r jw q w is the actual power, predicted power, and the rated power of the 

wind turbine j, respectively. 
,u jC  is the underestimation penalty cost for the wind 

turbine j. 

Similarly, the expected overestimation cost for reserve requirement is an integral over 

the PDF of the wind power random variable 
, ,d t jW  with a value in the range of 
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, , , ,0 d t j d t jW q  . The difference between (7-10) and (7-11) is that the latter is a cost due 

to the available wind power being less than the scheduled wind power. 

   

   
, , , ,

, , , , , , , , , ,

, , , , ,
0 0

max 0

d t j d t j

o j d t j d t j o j d t j d t j

q q

o j d t j W d t j W

E C q W C q W

C q f w dw w f w dw

   
 

  
   

，

   

(7-11) 

where 
,o jC is the underestimation penalty cost for the wind turbine j. Equations (7-10) 

and (7-11) can be solved through the wind power probability stetted up by equations 

(7-6) - (7-9). Through this improved technology, the proposed model can characterize 

wind uncertainty and make its decision in RM. In general, losses are ignored in the 

model; however, they could be added in the system load and losses term, if necessary. 

7.3. Hierarchical Decision Making Framework 

The proposed decision making model enables a GENCO to maximize its profit 

through proper decision making in a hierarchical structure. Without loss of generalities, 

all generation units of the GENCO are assumed online during the planning period. The 

unit commitment that actually determines on-off status of units can be integrated into 

the proposed model in our future work. 

As shown in Fig.7-3, the decision making model decomposes the planning into a 

four-layer hierarchical structure. At each planning level, a GENCO’s expected output is 

forecasted based on the corresponding historical data [208] and then the output of a 

higher level is evenly distributed to each time span of its sublevel (termed as average 

dispatch). As a result, information of the sublevel including fuel consumptions and 

emissions can be obtained. The average dispatch at the higher levels helps a GENCO to 

make a rational decision under multimarket environment to benefit the long term 

interests.  Through this hierarchical framework, the planning and decision making at the 
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high levels facilitate a GENCO’s market operations and profit making, whereas this 

chapter focuses on the short term decision making. 

Year

Jan Feb Dec…

Week 1, Feb Week2 , Feb Week 4, Feb…

Annual Level

Monthly Level

Information (forecasted load, emissions allowances, fuel contracts, forecasted wind)

Feedback( actual demand, recalculate allowances, fuel consumption, actual wind)

Day 1 Day 2 Day 7…
Weekly Level

Daily Level
Stage 1

(EM, RM

&FM)

Stage 2

（CM）
Real Time 

Operation

Fig. 7-3  Hierarchical decision making model 

At the daily level, there are two stages in the planning which interact through the 

change of accumulated emission and stock of carbon allowances introduced. A 

GENCO’s decision makings are dynamically affected by these changes due to (7-2). 

The stock of carbon allowances are composed of two parts: initial allowance and 

purchased allowance (trade or auction from a carbon market). Generally, initial 

allowances are assigned to a GENCO annually through either a grandfathering, output-

based allocation or an auction based method [22]. Any trades in CM directly change the 

stock of carbon allowances so that ea varies accordingly, while the allowances a 

GENCO can acquire from CM are stochastic and closely related to the market 
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conditions. To obtain ep, historical trading data in previous commitment periods are 

fitted into a lognormal distribution at the long term levels, i.e. annual and monthly. The 

maximum possible allowances a GENCO can acquire during the current emission 

commitment period are firstly obtained using the Monte Carlo simulation with a given 

risk factor before the planning period. The application of Monte Carlo simulation enables 

a GENCO to know the maximum possible allowances which it can acquire before decision 

making. Notice that Monte Carlo simulation does not need to be included in the daily 

decision making process. Then the total estimated allowances, including the stock of 

allowances and the allowances which a GENCO can possibly purchase are dispatched 

to the monthly or weekly level shown in Fig.7-3. Based on the updated stock of carbon 

allowance, the proposed model solves the optimal electricity production by FDE so that 

the decisions for EM, RM and FM can be obtained simultaneously in stage 1. Following 

is stage 2, in which GENCO not only has to maximize the trading profits in CM, but 

also need to balance the allowances with the produced emissions by the end of the 

planning horizon in the most cost efficient way. The decision in stage 2 directly changes 

the GENCO’s stock in the next planning day, and also the emission thresholds in (7-2). 

This is a complicated problem while the proposed model creatively considers the 

emission as a dynamic constraint and optimizes the decision in each market. The 

differences between the planning (stage 1 and stage 2) and the operations in real time 

are used to update information in the next planning period at each level.   

7.4. Model Formulation 

7.4.1. Revenues from multiple markets 

Assume a GENCO has I long term bilateral energy contracts with its customers. Each 

contract i consists of the capacity part (which reserve the GENCO’s capacity to provide 
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power) and the energy part. Each part corresponds to a specified contract 

price , ,and CC EC

d t d tp p , respectively. The revenue from the bilateral contracts BEMR is 

represented as: 

 
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, , , , , , , ,

1 1 1
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         (7-12) 

where , ,d t il is the predicted load of the customer and , ,d t iQ  is the capacity of bilateral 

contract i at time interval t on day d.  

The revenue from selling electricity in power pool PEMR  is another income of a 

GENCO. The proposed model solves optimal , ,d t gq
 
 for each thermal units and

 , , jd tq  for 

each wind turbine using FDE and therefore its revenue is 

 
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1 1 1 1
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In FM, a GENCO has certain amounts of heat energy , ,

FM

d t gQ
 
from the long term fuel 

contract for each generator g at time interval t on day d. The revenue from trading in 

FM FMR is: 
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where , ,

FMS

d t gp  is the fuel price calculated based on the predicted benchmark price , ,

FM

d t gp  of 

the fuel market: , , , ,

FMS FM

d t g d t gp p
.
 

In CM, a GENCO would aim at maximizing the profits while balancing its 

allowances with the generated emission. The second stage of the proposed model 

optimizes the selling and purchasing allowances ( S

dc and B

dc ) in CM on day d. 

Considering the market price and the accumulated and forecasted emissions within the 
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planning horizon, the revenue in CM is computed as:  

 
0

D
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d d

R I p c


                  (7-15) 

Excessive trades are limited through the CM selling index CMS

dI  which takes the 

allowance price variations into account:  
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where 
1:( )CM

d Dp 
 is the mean value of the allowance price from day d+1 to day D, which 

is forecasted by [13];   is the penalty factor within [0, 1]; r1 is the risk factor of a 

GENCO within [0, 1], which is used to limit excessive selling. 

  In RM, a GENCO is expected to decide the wind power output according to the 

employed RESS mechanisms as discussed in section 7.2.4. The revenue of a GENCO in 

feed-in-tariffs or fix premium system is: 

0
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where ,

FIT

d tp  is the fixed premium in RM. If the feed-in-tariffs is adopted, the price of 

each electricity produced by wind power is fixed in ,

FP

d tp . 

7.4.2. Costs from multiple markets 

In EM, Power pool features with volatile spot prices and stochastic demand. When 

the spot price is lower than a certain level, a GENCO is able to fulfill the extra demand 

by purchasing a part of electricity from the power pool instead of producing. However, 
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a GENCO needs to produce certain amount of electricity due to the physical constrains 

and the output limitations of generators. At some time intervals, the contract loads 

cannot be fulfilled because of the physical limits such as ramp up/down rate. In this case, 

a GENCO needs to purchase power from the spot market. The cost of trading in power 

pool PEMC  can be expressed as follows: 
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where min

1

G

g

g

G


  is the total minimum output of the GENCO for all thermal units. ,

EM

d tI  is 

an index function, indicating whether a GENCO should buy part of power from the 

power pool or not. 
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where the emission cost, 2co

dC , is computed according to (7-2). 

In FM, the price of the long term fuel contract for generator g, , ,

LFM

d t gP , is known before 

the planning period . The cost of the long term contracts, LFMC , can be expressed as 

follows: 

0

, , , ,

1 1

D T G
LFM LFM FM

d t g d t g

td gd

C p Q
 

                                      (7-20) 

A GENCO needs to purchase fuel to meet the demand of the specified generators 

when the heat energy of the long term contract is not sufficient. The cost of fuel 

purchasing FMC is expressed as follows: 
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where ,

EM

d tI  is an index function, indicating whether a GENCO should buy part of power 

from the power pool or not. 

In CM, a GENCO, if necessary, can purchase B

dc  emission allowance when the 

allowance price CM

dp is relatively low. The cost of a GENCO in CM is:  

0

D
CM CMB CM

d

d

d

B

d dC I p c


                                           (7-22) 

The CM buying index CMB

dI suggests purchasing allowances when the current price is 

lower than the mean value of the future prices at a certain level, which is expressed as 

follows: 
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                        (7-23) 

where the risk factor r2 is used to control excessive purchasing.  

  As discussed in section 7.2.4, the overestimation penalty cost and overestimation 

penalty cost are applied to assist obtaining an optimum allocation of power output 

among the available generators. A GENCO tends to use all available wind energy 

according to the forecasting value when fix-feed-in tariffs in adopted. With a fixed price 

certainty, the cost RMC  can be ignored. When the fixed premium system is applied, the 

cost RMC is calculated as follows: 

   , , , , , , , , , ,

1 1

max 0 max 0
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7.4.3. The two stages of the decision making model 

In the proposed decision making model, there are two consecutive stages which 

interact through the accumulated emission level and stock of carbon allowances which 

has been introduced in Section 7.3. The model aims at making decision to maximize the 

total profit D  of a GENCO during the whole planning period  0 ,  d d D . It can be 

expressed as follows: 

( ) ( )BEM PEM CM FM RM CM LFM FM PEM RM

D R R R R R C C C C C             (7-25) 

In the first stage, the stochastic output 
,d t  is solved by FDE, together with scheduled 

wind generator output 
, ,d t jq  and

 
the 

, ,d t gq  dispatched to all thermal units. For all units 

on the current planning day d*, the stage 1 of the model is presented as follow: 
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(7-26) 

To account for the physical constraints of each generator, power productions
, ,d t gq are 

subjected to the maximum generation outputs max

gG , minimum generation outputs min

gG , 

ramp up and ramp down rates ,U D

g gG G   constraints. The scheduled wind power is 

subjected to the rated power (maximum energy output of each wind generator). 

Spinning reserve 
,d tR

 
is required to be fulfilled by a GENCO as a whole while all 

thermal generation units are assumed online during the planning period. Therefore units 

start-up and related costs can be ignored. Based on all units’ electricity production, the 
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trading strategies in EM and FM can be obtained in stage 1. 

In the second stage, *

2 ( , )B S

d dd
S c c is used to determine the trading strategy in CM on the 

current planning day d*. The second stage of the model is expressed as follows:  
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where
24

1 1, , 1 1

1 1

( )
G

B S

d d g d t g d d

t g

x x e q c c   

 

     is the stock of a GENCO at the 

beginning of day d. At the beginning of the planning period d=d0, an initial allocated 

allowance is assumed known from the higher level. The constraints 

0
d d

B SC C  disallow buying and selling allowance simultaneously. The penalty has to 

be paid on the compliance day C if a GENCO cannot match its allowance with the 

generated emission. The trading volume in CM is solved based on the forecasts of 

future market prices and emission levels. Generally, the trading profit during the whole 

planning period is maximized through the volume of allowance traded on day d*. This 

is because for periods 1 * 1d  , the decision variables and stochastic parameters of 

the model are considered fixed to their already realized values. Thus, the optimization 

considers variations in the variables and stochastic parameters only for periods d*… D. 

7.4.4. Solution logic of the decision making model 

As discussed in section 7.2.1, a GENCO needs to deicide its stochastic output
,d t  

and arrange all generators’ production aiming at maximizing the profit using (7-26) in 
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stage 1. FDE is suitable to solve this non-deterministic polynomial-time hard 

combination optimization problem. The trading strategies in EM and FM are then 

determined after all units’ electricity production are solved. In stage 2, the decision of 

allowance trading in CM can be made according to (7-27). The procedures of solving 

the decision making model are depicted in Fig.7-4. 

The model firstly read the input data, including the forecasted spot prices of EM, CM 

and FM, the contract demand, the maximum possible output for the power pool, and the 

forecasted wind speed. After FDE initializes the population, fuzzy control, mutation, 

crossover, and selection have been implemented to generate trial individuals. In stage 1 

of Fig.7-4, the control parameters F and Cr are adaptively adjusted by fuzzy logic (the 

block on the right hand side) during the DE iteration process. Each individual represents 

the value of outputs in each time interval. Economic dispatch (ED) is conducted for all 

generators in each individual time interval and the corresponding profit is obtained. If 

the model converges or the maximum iteration number is reached, the optimal decision 

of the production process is obtained for this time interval. The above mentioned 

process computes 24 optimal electricity production decisions in stage 1. The optimal 

trading volumes in EM and FM are computed according to (7-13) and (7-18), according 

to (7-14) and (7-21), respectively. When the RM adopts Feed-in-tariff system, the wind 

output is schedule as its forecasted value based on method introduced in [203]. The 

decision of wind energy output can be made with the Weibull distribution stetted up by 

equations (7-6) - (7-9). Based on the decisions made in the first stage, the second stage 

solves the trading strategy in CM according to (7-27) for each planning day.  
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Fig. 7-4  Decision making model of GENCO 

7.5. Fuzzy Differential Evolution 

Differential Evolution (DE) can be used to solve stochastic problems effectively. Its 

efficiency is affected significantly by its control parameters F and Cr [183]. FDE [209] 

improves the performance of DE by using the fuzzy logic to adjust these parameters 
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adaptively. Because of its efficiency compared with the DE, FDE is therefore applied to 

solve the proposed model. 

FDE has the following steps: initialization, fuzzy control, mutation, crossover, and 

selection. 

1) Initialization: each of N individuals is a P dimensional vector within the whole 

population   of dimension NP. The structure of the whole population is shown as: 

11 12 1

21 22 2

1 2

[ ]

P

P

N N NP

   
 
  
  
 
 
   

                                     (7-28) 

FDE randomly generates values from dimension J of the individual 
, ,j k lX within the 

lower and upper limits of the dimension, where j is the dimension index, k is individual 

index and l is generation index. 

2) Fuzzy Control: 

  In a DE process, F is the mutation searching factor whose value is initially chosen as 

[0.5,1]F , and Cr is the crossover factor whose value is initially chosen as 

[0.8,1]Cr . The purpose of using fuzzy logic as shown in Fig.7-5 is to make the DE’s 

control parameters adaptively adjusted in the evolution process. 

 
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k j
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
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  are 

inputted to control the fuzzy logic adptively, where
, ,( )j k lf X is the objective function 

value. 
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Fig. 7-5  Control diagram of fuzzy setting 

Values of the fuzzy variables v11, v12, v21 and v22 in (7-29) are used in the fuzzy 

controller to map the inputs of PC and FC onto outputs F and Cr. Their values are 

assigned as membership grades in three fuzzy sets as small (S), medium (M), and big 

(B): 0.05, 0.5 and 0.9 for v11; 0.01, 0.5 and 0.9 for v12; 0.1, 0.8 and 1.5 for v21; 0.1, 0.8 

and 1.5 for v22, 0.3, 0.6 and 0.9 for F, 0.4, 0.7 and 1.0 for Cr. Among a set of 

membership functions, Gaussian curve membership function is chosen during the fuzzy 

setting process. 
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                                 (7-29) 

Table  7-1 Fuzzy rules of the proposed model 

RULES 1 2 3 4 5 6 7 8 9 

V11 ,V21 S S S M M M B B B 

V12 ,V22 S M B S M B S M B 

F, CR S M B M M B B B B 
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Based on the above parameters and fuzzy sets, IF/THEN fuzzy rules are established 

to formulate the conditional statements of the fuzzy logic. The fuzzy rules are shown in 

Table 7-1. Each fuzzy rule r in table 1 represents a fuzzy relation
[( , ),( , )]FC PC F CrR . The 

fuzzy control is used to map from the given inputs to an output. Mathematically, it can 

be expressed as (7-30). 
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 
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where 1 and 2 are the membership functions of the input parameters, 3 is the 

membership function of the output parameter. R is the membership function of the 

fuzzy relation. Combining all the rules, the fuzzy set described by the rule set can be 

obtained as: 

( ) ( ) ( , )
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R
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r r r
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Using minimum for the intersection and maximum for the union, we have: 
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         (7-32)

 

For a crisp input value of FC and PC, the fuzzy output value is:  

                      , , : ( , ) [ , , ( , )]output

R FC PC rF Cr FC PC F Cr        (7-33) 

 Finally, the fuzzy output value must be aggregated into a crisp output value. In 

this chapter, the center of area method (COA) [16] is used to do the defuzzification:  
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3) Mutation: It is executed to randomly choose three different individuals to produce a 

mutant individual
, ,j k lV  according to: 

 , , , , , , , ,j k l j a l j b l j c lV X F X X  
                               (7-35)

 

where a, b and c are random numbers within [1, NP]; F is the mutation searching factor 

which is adaptively obtained in the fuzzy setting process.   

4) Crossover: DE creates a different individual called the trial individual, based on the 

original individual 
, ,j k lX and the mutant individual

, ,j k lV . The crossover is expressed as: 

 , ,

, ,

, ,

0,1   
   

j k l j rand

j k l

j k l

V if rand Cr or j j
U

X otherwise

  
 


                    (7-36) 

where Cr  is the crossover searching factor which is adaptively obtained in the fuzzy 

setting process. 

5) Selection: DE produces individuals for the next generation. The original individual 

and the trial individual are compared using their objective function values
, ,( )j k lf X . 

The one with the larger value is selected for the next generation.  

The four steps (mutation, fuzzy settings, crossover, and selection) repeat until an 

acceptable solution is obtained or the predefined maximum iteration number is reached. 

7.6. Experiments on The Proposed Model 

To demonstrate the effectiveness and performance of the proposed algorithm, a case 

study is carried out on a typical GENCO which owns one wind farm and six thermal 

generators, including two coal-fired, two gas-fired, and two oil-fired units. The details 

of the generators are provided in Table 7-2. The entire planning period  0 ,d d D  is 

assumed to be the week before the compliance day C (d0 = C - 6, D = C). Each planning 

day d is divided into 24 intervals (T = 24).  
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Table  7-2  Generation limits, fuel parameters and emission factors 

 Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 

min

gG
(MW) 

10 20 55 60 100 150 0 

max

gG
(MW) 

100 130 120 180 220 455 90 

ga
(MMBtu) 129.97 318.18 126 240 177 480 0 

gb
(MMBtu/MW) 32.6 0. 26 8.65 7.74 13.51 7.4 0 

gc
(MMBtu/MW

2
) 0.0011 0.06 0.0028 0.0032 0.0004 0.0002 0 

Ramp up/down 

(MW) 

50 30 40 75 70 60 60 

Emission factor 

(kg/MMBtu) 

54.01 95.52 74.54 74.54 54.01 95.52 0 

Fuel Type Gas Coal Oil Oil Gas Coal Wind 

 

 

Table  7-3  Forecasted upper bound of hourly output 

Hourly 

Output (MWh) 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

8 700.6 623.7 571.3 603.0 590.0 588.2 605.7 

16 720.7 651.5 617.1 628.7 619.6 628.9 652.0 

24 552.4 485.4 471.7 453.7 436.7 478.3 484.4 

Note: Owing to limited space, only the data of hours 8, 16 and 24 are listed 
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Table  7-4  Forecasted value of prices in EM 

Hourly Price 

($/MWh) 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

8 28.6 33.0 37.1 40.1 39.5 42.0 44.0 

16 36.8 50.3 58.5 82.5 47.4 38.9 50.6 

24 30.3 36.3 36.7 37.5 36.9 36.2 45.1 

Note: Owing to limited space, only the data of hours 8, 16 and 24 are listed 

Table  7-5  Forecasted and actual prices in FM 

Price 

($/MMBtu) 

Coal Oil Gas 

actual forecast actual forecast actual forecast 

Day 1 2.37 2.34 7.21 7.75 4.76 4.64 

Day 2 2.39 2.37 7.26 7.20 4.85 4.74 

Day 3 2.37 2.39 7.14 7.25 4.74 4.83 

Day 4 2.39 2.37 7.21 7.14 4.74 4.72 

Day 5 2.35 2.39 7.26 7.21 4.72 4.72 

Day 6 2.39 2.35 7.16 7.25 4.65 4.70 

Day 7 2.35 2.39 6.93 7.16 4.53 4.64 

 

Table  7-6  Forecasted and actual prices in CM 

 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

Price ($/tonne) 4.03 3.90 3.98 3.98 3.90 3.90 3.93 

 

In the real practice under a multimarket environment, a GENCO need to make 

decision based on limited information. For the short term planning which is the focus of 

this chapter, a GENCO can hardly affect the market clearing prices in the short term. 

The proposed model therefore considers the market prices as exogenous variables and 
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make decision based on those forecast values. The forecasted data of the case study are 

given in Tables 7-3- 7-5, which are obtained using the methodology described in [24]. 

The markets date is assumed the same as that described in chapter 5. It is assumed that 

the feed-in-tariffs is fixed at 70USD/MWh, or else a GENCO can receive 16USD/MWh 

in addition to the revenue from EM when the fixed premium system is implemented. 

The historical wind speed dataset are obtained from a wind observation station in 

Tasmania, Australia. The data was provided by the Australian bureau of meteorology 

[185].  
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Fig. 7-6  Wind speed distribution and Weibull fitting 

Fig.7-6 presents the Weibull distribution fitting of the wind speed data. The wind 

farm is assumed consisting totally of 30 Vestas V90 3.0 MW wind turbines [210] 

located in a coherent geographic area. The turbine is a pitch regulated upwind type with 
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active yawing and a three-blade rotor. It has a rotor diameter of 90 m with a generator 

rated at 3.0 MW. The hourly average wind speed can be forecasted with the fitted 

Weibull distribution using the methodology described in [203]. The hourly wind energy 

outputs are then obtained according to (7-3). The characteristics of wind turbine and 

penalty cost coefficients are summarized in Table 7-7. 

Table  7-7  Wind power parameters 

 

 

 

Under a multimarket environment, there is little or no incremental cost associated 

with the wind power production. As the Feed-in-tariffs system can guarantee fixed 

revenue, a GENCO will plan to utilize all available wind output according to the 

forecast values. In the fix premium system, a GENCO decide the optimum wind energy 

output according to (7-10) and (7-11). The case might be different for the thermal units 

as they need to meet constraints not only from EM but also from FM and CM. The first 

stage of the decision making model for the GENCO is solved by FDE. FDE is different 

from the classical DE as the values of the searching parameters F and Cr are not fixed.  

The convergence of FDE in the first planning hour in accordance with fuzzy 

control action can be observed from the characteristics shown in Figs. 7-7. The red, 

green, and blue lines represent the changes of the objective function, F, Cr values, 

respectively. The figure shows that the FDE algorithm needs a small number of 

generations (less than 100 times) to search the optimum value of the objective function. 

More details related to the advantages of FDE, which is out of the scope of this study, 

can be found in [209].With the FDE, the proposed model is solved to achieve the 

optimal volume of electricity output according to the interval forecasting of the energy 

c k Ө vin vout vr wr Cu,j Co,j 

5.49 1.89 0 4 25 16 3 5 30 
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output. 

 

Fig. 7-7  Convergence of FDE in the first planning hour 

In Fig.7-8 and Fig.7-9, the blue dotted line is the predicted upper bound of the energy 

output while the red solid line is the optimum hourly output that the GENCO decides to 

produce, which is composed of the planned output for the bilateral contract demand and 

the output for the power pool. The green solid line in Fig.7-8 represents the predicted 

wind power output, which is the scheduled wind power output of the GENCO under 

feed-in-tariffs. The counterpart under the fix premium system is represented by the grey 

line shown in Fig.7-9. The decision of stage 1 of the proposed model is made based on 

the forecasted market clearing price and constrains from the three interactive markets. 

Usually, the volume of the output for the power pool is determined with the bidding 

price simultaneously. However, a GENCO’s bidding strategy is different from case to 

case and subjects to the clearing rules in the power market. Without loss of generalities, 



                                                                    Chapter 7 

197 

the case study would only analysis the output and the related trading profits. It can be 

observed from Fig.7-8 and Fig.7-9 that the GENCO decides to produce all forecasted 

energy by the wind farm under feed-in-tariffs while schedule the optimum volume of 

wind power under the fix premium system. Although the wind power has no 

incremental cost and contributes no emission, its uncertain nature leads to the least 

scheduling under the fix premium system at some time period. Because the revenue is 

not as fixed as in feed-in-tariffs system, the two penalties costs in (7-10) and (7-11) 

might result in negative revenue for a GENCO when electricity prices are relatively low 

at some hours. On the other hand, using more wind power enable a GENCO has 

superiority in CM as it can save more carbon allowances. At some hours with a 

relatively high electricity prices, the GENCO decides to schedule more wind power than 

the forecast values. 
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Fig. 7-8 Decision of hourly production under feed-in-tariffs 
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Fig. 7-9 Decision of hourly production under fix premium 

Fig.7-10 and Fig.7-11 show the hourly production decisions of the seven units under 

the two RESS mechanisms. Unit 1 is a gas unit which is scheduled least among all the 

units as it has the highest fuel consumption function. On the contrary, unit 6 is a coal 

unit which provides the highest percentage of energy although it has the highest 

emission factor. It can be found that units 2 and 4 are dispatched as the last units during 

the GENCO’s planning. In the study week, the wind farm (unit 7) contributes 

4,831MWh energy production out of the total 83,008 MWh under the feed-in-tariffs 

system while the total volume is 1,867 MWh under the fix premium system.  In terms of 

the GENCO’s operation, it is reluctant to produce more than the thermal units’ 

minimum outputs in some hours because of the relatively low prices in EM. The other 

reason for scheduling less wind power is because the forecast of wind power, which is 

related to the forecast of wind speed, is relatively low. Although the units are not 

scheduled freely due to the emission constraints, the proposed model can make a 

rational tradeoff between profit-making and emission reduction with the interactions 
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among the three markets taken into account. From the viewpoint of EM operation, 

prices in the short term may increase if the majority of GENCOs decide to reduce their 

energy outputs. On the other hand, GENCOs might consider investing more in wind 

turbine units according to the price variations in CM and FM, and the subsidy in RM. 

 
Fig. 7-10 Decision of daily production of the seven units under feed-in-tariffs 

 
Fig. 7-11 Decision of daily production of the seven units under fix premium 

Fig.7-12 and Fig.7-13 show the amount of daily emissions of the seven units using 

the two RESS method, respectively. The variations of daily emissions in the two 

scenarios are similar. Unit 7 is the wind farm, and therefore has no carbon emission at 

all. Units 1 and 6, corresponding to their energy productions, emit the least and the 
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largest amounts of emission, respectively. Under the feed-in-tariffs system during the 

studied period, unit 2 produces 9,707MWh and unit 3 produces 9,853MWh. However, 

the total emission amount of unit 2 (34,119 tonne) is more than that of unit 3 (26,625 

tonne). This is because the emission factor of unit 2 is higher than that of units 3 and 4. 

The emission distribution in the thermal units is similar but the emission increases due 

to the reduction of wind power using in the fix premium system.  

 

Fig. 7-12 Daily emissions of the 7 units under feed-in-tariffs 

The largest difference of the produced emission in the two scenarios is the unit 6, 

with a 12% increase. Medium size units show their flexibility in the complex 

environment. Furthermore, with the CM, GENCO’s emission is directly related to some 

fundamentals such as carbon prices, emission allowances, emission cap, penalty price 

and the mechanisms adopted in RM. A strict emission constraint and increasing 

percentage of renewable sources of course would lead to a lower carbon emission level. 

With a guarantee returns in the feed-in-tariffs system, a GENCO would reduce its 

thermal units output so as increase more wind energy output than that in the fix 
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premium system. This would obviously lead to a larger total emission reduction in feed-

in-tariffs system than that in the fix premium system. 

 

Fig. 7-13 Daily emissions of the 7 units under fix premium 

Fig.7-14 and Fig.7-15 show the GENCO’s daily revenues and total profits in the 

three interactive markets under feed-in-tariffs and fix premium, respectively. It can be 

observed that the revenue and profit profiles in the two scenarios are similar, expect 

the ones in EM and RM. Among all markets, the revenue from EM contributes most of 

the GENCO’s profit in all the planning days. The revenue from EM under feed-in-

tariffs is less than that under fix premium because the fixed feed-in-tariffs in RM 

would be paid for all power from the wind farm. On the contrary, the revenue from 

RM feed-in-tariffs is larger than that under fix premium. It is because a GENCO is 

paid not only the fixed premium in RM but also the electricity price in EM. On the 

whole, the GENCO’s total revenue from EM and RM under fix premium is less than 

that under feed-in-tariffs. 
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Fig. 7-14 Daily revenues and total profits of the GENCO under feed-in-tariffs 

 

Fig. 7-15 Daily revenues and total profits of the GENCO units under fix premium 

Using the proposed model, the decisions not only ensure the profits in EM and RM, 

but also seek for profits in other markets. As the study period is only one week, the 

trading behaviors in FM and CM are similar in the two scenarios. Due to the emission 

constraint, a GENCO would use all the available wind power. Besides, it has to reduce 

its energy production so as to limit the carbon pollution in the short run. These changes 

of the operation decision lead to some surplus of fuel from the long term fuel contracts 

which have been decided at the high level. At the low level, the GENCO would sell the 

surplus to seek for revenue from FM. Although the GENCO decides to sell some of the 
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fuel in the FM most of the time, it buys a small amount of oil from FM according to 

(7-21). This is mainly because of the differences between the scheduling orders of unit 

productions. For instance, oil units 3 and 4 are chosen as the last units in some hours. 

Different from EM and FM, the trading in CM is subjected to more constraints. As the 

last day is the emission compliance day, the GENCO should at least balance the 

allowances with the produced emissions. It can be seen that the GENCO decides to 

purchase a certain amount of allowances in day 2 and sell them in days 3, 4, and 7 to 

make revenue from CM. On the whole, the implementation of environmental friendly 

policy like the CM would lead to a reduction of GENCO’s profit. However, the decrease 

can be alleviated through the trading in the other markets under the multimarket 

environment.  

Besides the profits and emissions in the planning period, it can be conjectured that 

ETS and RESS would together motivate the GENCO’s assets planning (i.e., investing 

on renewables) at the high levels in the hierarchical decision making model. Subject to 

the demand fluctuation affected by ETS, prices in FM will be varied in the long run. 

Therefore GENCOs have to manage their fuel portfolio more efficiently. Furthermore, 

the implementation of carbon policies would immediately lead to a drop of profit for 

some GENCOs in the short term. Furthermore, the implementations of RESS in RM 

promote the GENCOs’ usage of renewable energy e.g. wind power. It would benefit 

the GENCO’s emission commitments in the CM. For the real practice in the long run, 

the impacts of CM are expected to become larger so that the trades in EM and CM can 

influence each other. Subject to the demand fluctuation affected by ETS, prices in FM 

will be varied in the long run. Therefore GENCOs have to manage their fuel portfolio 

more efficiently.  
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7.7. Summaries 

For the purpose of analyzing the impacts of ETS on the decision making of a 

GENCO having wind power generation, a novel decision making model under an 

interactive multi-market environment was proposed. The model deals with the decision 

making problem by a two sequential stages. The first stage makes decisions in EM, RM 

and FM, and the second stage deals with trading in CM. The model accounts for 

emissions trading mechanisms by incorporating emissions constraints as well as the 

trading of emission allowances. A comprehensive case study is carried out to analyze 

the operation decisions of a GENCO subject to constraints of different markets. From 

the viewpoint of EM planning, a GENCO would preferably produce energy using more 

of its wind power according to the availability, and reduce part of its energy production 

from high emission units. Considering together with the impact of the two RESS 

mechanisms, a GENCO would consider investing in more renewable units with high 

priority in its production planning. The comparisons show that the feed-in-tariffs system 

leads to more emission reduction than in the fix premium system. With a certain revue 

in RM in the feed-in-tariffs, a GENCO dare to use more wind power according to the 

forecast values. Whilst the GENCO has to decide the optimum wind output in the fix 

premium system subject to the volatile electricity prices. From CM’s viewpoint, a 

GENCO tends to make a reasonable tradeoff between reducing its emission and 

purchasing allowances by using the proposed model. The fluctuation of the prices is an 

incentive for a GENCO to seek for profits in CM. The GENCO which owns wind farms 

has advantages to earn more in CM so that it tends to stimulate the power industry to 

increase the penetration of wind power. From the standpoint of FM, the fuels cost 

affects the incremental cost of the thermal units significantly. The proposed model can 
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help GENCOs to fully utilize the contracted fuels and decide the trading in the spot 

market. A GENCO will change its fuel portfolio dynamically with consideration of the 

price fluctuations in EM, FM and CM. 

Although this study includes the FM externalities, embodied in fuel price variations, 

it does not take fuel portfolio formulation into account. It is an essential problem for a 

GENCO as it has to consider cost variations of fuel, transportation, storage and other 

services, which can be included in our further study. 
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CHAPTER 8. CONCLUSION 

8.1. Contributions of This Research 

The focus of this thesis is to develop advanced intelligent based methods to enable 

environmental and economical analysis in electricity market planning and management. 

This thesis addresses several important technical and economic issues associated with 

two major challenging parts in the deregulated electricity market; which are, 1) gaining 

insightful knowledge of price schemes in deregulated electricity markets and 2) 

studying the impacts of emission trading on the electricity markets planning and 

operation. The main contributions of this thesis are summarized below:  

In Chapter 2, a comprehensive review on the two main parts is provided, as well as 

existing techniques relevant to these two difficult problems. The available pricing 

mechanisms for both real power and reactive power are categorized in the first part. The 

second part contributes to identify the role of ETS in the electricity supply industry 

worldwide and investigate its impact on the four interactive markets’ operations. This is 

a comprehensive review to analyze on the interaction among electricity market, fuel 

market, carbon market and renewable market through the role of ETS. The analysis of 

the impacts of ETS on different markets revolving around the electricity supply industry 

has been conducted. This chapter covers analysis on electricity market, carbon market, 

fuel market, and renewable market. 

Based on the observations from literature review, the objectives of this thesis is 

determined to meet the above two major challenge parts in the deregulated electricity 

market. The objectives of research are well achieved, with a number of major 

contributions listed below:  

In Chapter 3, a two-stage hybrid method based on panel cointegration and particle 
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filter (PCPF) that can accurately forecast electricity prices is developed. Panel 

cointegration (PC) model provides a kind of powerful forecasting tool, which utilizes 

information of both the inter-temporal dynamics and the individuality of interconnected 

regions. Particle filter (PF) has achieved significant success in tracking applications 

involving non-Gaussian signals and nonlinear systems. Making use of the advantages of 

both techniques, this hybrid method has two main focuses: 1) To expand the dimension 

of electricity price dataset from time series to panel data so that the dynamics of 

interconnected regions can be analyzed simultaneously and considered as a whole. 2) 

Regarding the model coefficient as a time-varying process, PF is used to forecast 

electricity price adaptively. This chapter covers analysis on electricity market and focus 

on the real power pricing mechanism. 

In Chapter 4, a novel value based reactive power procurement scheme in electricity 

markets is developed to quantify the price of the reactive power source output. 

Analyzing the cost of providing reactive power service and establishing appropriate 

pricing structure are important both financially and operationally for reactive power 

procurement. This study presents an advanced model for procuring reactive power from 

reactive resources based on a reactive power pricing structure. The model takes into 

account reactive power capacity and production cost as well as the value of reactive 

power. This chapter covers analysis on electricity market and focus on the pricing 

mechanism of the reactive power. 

Based on the outcomes of the first part, the second part studies the impacts of 

emission trading on the operation of electricity markets, including the consideration of 

multimarket environment, renewable energy support schemes and wind power 

uncertainty: 

In Chapter 5, a novel dynamic decision making model is proposed to deal with the 
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multimarket trading problem for a GENCO in each trading period. Differential 

evolution (DE) is employed to solve the multi-period stochastic optimization problem 

and give the optimum results for each time interval. With the proposed model, a 

GENCO can make a good trade-off between profit-making and emission reduction 

under the three interactive markets environment. This chapter investigates the impacts 

of carbon policies on a GENCO’s decision making under multimarket environment. 

This chapter covers analysis on electricity market, carbon market, and fuel market. 

In Chapter 6, a novel agent-based market simulation model accounts for both 

emission trading and renewable energy support schemes. This study employs replicator 

dynamics algorithm, which is employed to simulate the bidding strategies of agents 

(generation companies) for profit maximization. The operation process of an electricity 

market is simulated over a studied time horizon and some indices are employed to 

evaluate the market operation performance. Impacts of emission trading and renewable 

energy support schemes on electricity market operation are investigated through the 

electricity market planning. This chapter covers analysis on electricity market, carbon 

market, and renewable market. 

In Chapter 7, a novel dynamic decision making model is proposed to investigate 

GENCO’s decision making considering wind power uncertainty and emission trading 

under multimarket environment. Besides ETS, the effects of RESS (fixed feed-in tariffs 

and the fixed premium) on GENCO’s operation in the interactive markets are analyzed. 

Particularly, wind power, being one of the most appealing renewable energy resources, 

has gained widespread concerns during the last decade. A novel probability method 

based on non-linear wind power curve and Weibull distribution is developed to identify 

the role of wind power. Comparisons among different scenarios demonstrate the 

economic and environmental influences of different policies on a GENCO. This chapter 
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covers analysis on electricity market, carbon market, fuel market and renewable market. 

8.2. Directions for Future Research 

Following the research route depicted in Fig.1-1, the objectives of this research have 

been successfully achieved. Based on a number of achievements made in this research, 

several directions for further research are suggested below: 

A. Based on the real price forecasting technique described in chapter 3, chapters 5, 6 

and 7 have proposed several effective models which would benefit electricity market 

operation under multimarket environments. One of the future attentions will therefore 

be paid on investigating how to quantify the price of reactive power source output with 

consideration of wind power uncertainty so that it is able to procure reactive support 

competitively under the multi-market environment. Following the future research route, 

I will plan to investigate how to quantify the price of the reactive power source output 

when considering wind power uncertainty based on the findings in chapter 4. In this 

manner, it is able to procure reactive support competitively under the multi-market 

environment in the future work. This is of importance for  power system planning and 

operation with the increasing penetration of renewable like wind power. 

  

B. Although this thesis includes FM externalities, embodied in fuel price variations in 

chapter 5 and chapter 7, the fuel portfolio formulation is not taken into account in order 

to reduce the complexity of the model. However, this is an essential problem for a 

GENCO as it has to consider cost variations of fuel, transportation, storage and other 

services in FM. As fuel cost is still the major factor affecting GENCOs’ decision 

making, a GENCO will change its fuel portfolio dynamically with consideration of the 

price fluctuations in EM, FM, RM and CM. This is of importance for the electricity 
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market planning and operation with the increasing penetration of renewable such as 

wind power. 

 

C. With the development of smart grid, more and more attentions have been paid to 

the plug-in hybrid electric vehicle (PHEV) and vehicle-to-grid (V2G) technologies. On 

one hand, large number of PHEVs charge simultaneously would impact demand peaks, 

reduce reserve margins, and increase prices. On the other hand, the battery in PHEVs 

can be used as energy storage to mitigate the fluctuations of renewable energy. There 

are more than 90% of personal vehicles are not in used for transportation even in traffic 

peak period, making them potentially available to the grid. Under a multimarket 

environment, the utilization of the V2G charger system for both the real power and the 

reactive power support to the grid will be prospected in the future work. From the 

aspect of real power, V2G can provide competitive price when supplying peak power, 

spinning reserves and regulation. From the aspect of reactive power management, 

PHEV can provide spinning reserves and regulation due to its fast response ability. 

They are ideally suited to meet the grid stability and reliability challenges as providers 

of grid support, or ancillary services. For instance, PHEV are able to provide both 

regulation up and regulation down in frequency regulation. Furthermore, PHEV fleet 

can also be treated as controllable load or even generator to charge on valley period and 

discharge on peak period. 

 

D. Based on the research described in chapter 6 and chapter 7, the impacts of 

emission trading and RESS on electricity market operation have been investigated in 

details. In these two chapters particularly attentions have been paid to the two most 

important RESSs, namely the fixed feed-in tariffs and the fixed premium. However, 
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nowadays there is an increasing trend to adopt the other category of RESSs, namely fix-

quantity systems, in the development in RM. Fix-quantity systems has two variations: 

renewable portfolio standard (RPS) and tradable green certificates. RPS requires 

electricity generation entities to produce or purchase a certain percentage of their 

electricity from renewable energy sources by a specified date. RPS regulates the 

quantity on the generation side while tradable green certificates apply on the consumer 

side. Tradable green certificates require retailers to purchase a certain amount of 

certificates. They are subject to a penalty for any shortfall of the pre-determined amount. 

Since the fix-quantity systems and ETS usually coexist and both have the overlapping 

goal of reducing CO2 emissions, they interact in complex ways, mainly through their 

respective effects on key electricity market variables (i.e. prices). These interactions, 

which may lead to conflicts and/or synergies, are needed to be analyzed because one 

policy may have positive or negative effects on the other. 

8.3. Summary 

    This chapter concludes the thesis and highlights the contributions and main 

achievements of the researches during the study. It also identifies several directions for 

future work involving the approaches developed in the thesis. Overall, the research 

work done here provides a comprehensive framework for environmental and 

economical analysis in electricity market which enhances the operation and market 

trading of power system, as well as the planning functionality of its operators. 
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