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Abstract 

 

The critical behavior of the clock model in two-dimensional square lattice is 

studied numerically using Monte Carlo method with Wolff algorithm. The 

Kosterlitz-Thouless (KT) transition is observed in the six-state clock model, 

where an intermediate phase exists between the low-temperature ordered 

phase and the high-temperature disordered phase. The bond randomness is 

introduced to the system by assuming a Gaussian distribution for the 

coupling coefficients with the mean 1   and different values of variance, 

from 2 0.1   to 2 3.0  . An abrupt jump in the helicity modulus at the 

transition, which is the key characteristic of the KT transition, is verified 

with a stability argument. The critical temperature cT  for both pure and 

disordered systems is determined from the critical exponent ( ) 1 4cT  . 

The results showed that a small amount of disorder (small  ) reduces the 

critical temperature of the system, without altering the nature of transition. 

However, a larger amount of disorder changes the transition from the 

KT-type into that of non-KT-type. 
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Chapter 1 Introduction 

 

1.1  Critical phenomena 

Magnetism has long been studied because it is related to many 

different areas in physics. Maxwell combined electricity and magnetism into 

electromagnetism in his famous set of equations [1, 2], which describes the 

electromagnetic properties of a system macroscopically. From special 

relativity [3], the origin of magnetism is unveiled as the effect of relative 

motion between electric charges. From quantum mechanics [4], it is found 

that the spin of an electron results in a magnetic moment with one of a set of 

discrete values. Magnetic materials are the materials in which some 

properties change in response to a magnetic field. One important quantity is 

the magnetization. In any system, the magnetization can be calculated by 

the sum of all these magnetic moments. However, because of the 

tremendously large number of atoms in an ordinary matter, it is impractical 

to handle every magnetic moment, as well as to derive the magnetic 

properties from them. The problem with such statistical nature can be 

studied by statistical mechanics with much reduced effort. 

 

In statistical mechanics, ferromagnetic systems can be described by 

various spin models such as the Ising model [5, 6] and the Potts model [7]. 

In a ferromagnetic system, non-zero magnetization is developed below a 

critical temperature cT . As the temperature increase above cT , the 

magnetization becomes zero and the system becomes paramagnetic. If the 
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system is cooled down again, just below cT , the ferromagnetic phase recurs 

again. The transition from paramagnetic phase to ferromagnetic phases is 

important for both technological applications and academic interests. The 

study of phase transition is in the area of critical phenomena. 

 

 In our daily life, we often encounter various forms of phase transition, 

such as the transformations of solid, liquid, and gas. The phase transition 

from water to ice is perceived to be entirely different to that from 

paramagnetic to ferromagnetic material. Surprisingly, the critical properties 

of both systems can be described by the same model. At the transition, the 

details of the physical system are not important and the properties of the 

system are only governed by the critical exponents. Different models with 

the same critical exponents are said to belong to the same universality class. 

It happens that, a single model elaborated to study certain phenomenon is 

found to be useful in studying another physical situation with the same 

universality class. This is the universality in the critical phenomena. Another 

interesting feature in the critical phenomena is the emergence of 

spontaneous order, such as the spontaneous magnetization in ferromagnetic 

system. This kind of collective behavior is also manifested in many other 

systems, such as the traffic systems, the stock markets, and the organization 

of life. Therefore, the study of critical phenomena is indeed 

cross-disciplinary and promises important applications in many areas. 

 

1.2  Spin models 

To illustrate the above ideas on critical phenomena, several spin 
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models will be introduced. In statistical mechanics, spin models are 

developed to describe ferromagnetism. The central idea of spin models is to 

simplify the problem, so that it is mathematically manageable while 

retaining the essential physics of the system. The Ising model is the simplest 

and the most studied spin model among others. Though simple, it provides 

an example for many important ideas on critical phenomena. 

 

In the Ising model, an ensemble of spins is defined on an array of 

lattice points. Without loss of generality, a two-dimensional lattice space is 

used. A spin located at the lattice site i  is denoted by the spin state iS . For 

simplicity, we assumed the spins interact with their nearest neighbors only. 

The Hamiltonian of the Ising model is given by 

 
ij i j i i

ij i

H J S S h S
 

    , (1.1) 

where ij   denotes the summation is over the nearest neighbors only. In 

the Ising model, the spin orientation is restricted to one of the two opposite 

directions and iS  takes two scalar values, being 1  for spin up and 1  

for spin down, with referencing to the external field. The strength of 

interaction between spins iS  and 
jS  is determined by the coupling 

coefficient 
ijJ  which is usually assumed to be a constant J . The signs are 

conventional. A positive J  value indicates a ferromagnetic system, where 

the energy is lowered by aligning the spins in the same direction. On the 

contrary, a negative J  value makes the neighboring spins oppositely 

aligned and results in an antiferromagnetic system. Furthermore, the 

external field acting on spin iS  is ih . 

 



15 

 The Ising model is not restricted to describe ferromagnetism only. In 

the Ising model, the two orientations of spin can be viewed as two variants 

of the other type of physical property, such as a binary system of a mixture 

of two different kinds of atoms. This demonstrates the generality and wide 

applicability of the Ising model. 

 

As a model developed to describe ferromagnetism, the Ising model is 

expected to demonstrate the transition from the paramagnetic phase to the 

ferromagnetic phase. Analytic solution exists for the one-dimensional and 

the two-dimensional Ising model, but it remains unknown for the 

three-dimensional case. Surprisingly, there is no phase transition for the 

one-dimensional Ising model. In the one-dimensional Ising model, the 

ordering of spins cannot be developed due to the thermal fluctuations acting 

on the system. Hence the ferromagnetic phase does not exist, except at the 

zero temperature. Nevertheless, phase transition does exist for the 

two-dimensional Ising model. 

 

 For the Ising model in the absence of external field, the properties of 

the system remain unchanged if all the spin values are switched. Then the 

system is known to have the 2Z  symmetry. At the transition, spontaneous 

order is developed, which brings the system from a symmetrical state into 

one of the two definite, asymmetrical states. The 2Z  symmetry is broken 

and infinitesimal small fluctuations will decide the fate of the system by 

determining which branch of bifurcation is taken. This phenomenon is 

described as spontaneous symmetry breaking. 
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At the neighborhood of the critical point, the properties of the system 

have power-law relationship associating with the specific heat C , the 

magnetization M , and the susceptibility  : 

 C t  , (1.2) 

 M t , (1.3) 

 t   , (1.4) 

where ( )c ct T T T   is the reduced temperature. Furthermore, the external 

field H  is related by 

 H M  , (1.5) 

where  ,  ,  , and   are the critical exponents. At the transition, the 

details of the physical system are not important and the properties of the 

system are only governed by the critical exponents. The exact values of the 

critical exponents for the Ising model obtained from mean-field theory are 

 0  , (1.6) 

 
1

2
  , (1.7) 

 1  , (1.8) 

 3  . (1.9) 

It is worth mentioning that in a van der Waals system governed by the 

equation 

 
2

( )
a

p v b kT
v

 
   

 
, (1.10) 

a liquid-gas phase transition occurs at the critical temperature cT . Near the 

critical point, the properties of the system have the following power-law 

relationships associating with the isochoric specific heat vC , the density 

difference between the liquid and the gas phase l g  , the isothermal 

compressibility T , and the pressure near the critical point cP P : 
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vC t  , (1.11) 

 ( )l g cT T     , (1.12) 

 ( )T cT T    , (1.13) 

 ( )c cP P     , (1.14) 

where the exact values of the critical exponents are 

 0  , (1.15) 

 
1

2
  , (1.16) 

 1  , (1.17) 

 3  . (1.18) 

These are similar to those in the Ising model with a change of variables 

l g   to M , T  to  , and cP P  to H . In the van der Waals system, 

the physical situation is entirely different from that in the Ising model. The 

former describes the liquid-gas phase transition and the latter describes the 

paramagnetic-ferromagnetic phase transition. Surprisingly, the critical 

exponents for both systems are essentially the same and they belong to the 

same universality class. This shows the fascinating universality of the 

critical phenomena. 

 

 The Ising model can be generalized to other more sophisticated models 

to tackle different physical situations. The Potts model is one of the 

generalizations of the Ising model. In the q -state Potts model, the spins can 

take q  different states rather than only two in the Ising model. The 

Hamiltonian of the Potts model is given by 
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 ( , )ij i j i i

ij i

H J S S h S
 

    , (1.19) 

where ( , )i jS S  is the Kronecker delta which equals to 1 if 
i jS S  and 0 

otherwise. The spins can be viewed as unit vectors pointing in the q  

symmetrical directions of a hypertetrahedron in 1q   dimensions and the 

state of a spin is denoted by a value from 0 to 1q  . In Potts model, only 

the spins with the same state are interacting, as manifested by the Kronecker 

delta. The Potts model is significantly important for both physical and 

mathematical study. For example, the antiferromagnetic Potts model is 

related to the famous coloring problem in mathematics. Apart from the Potts 

model, another generalization of the Ising model is the XY model. In the XY 

model, the spins are confined in a plane and they can orientate in any 

arbitrary direction from   to  . Hence, the state of a spin varies 

continuously. The Hamiltonian of the XY model is given by 

 cos( ) cosij i j i i

ij i

H J h  
 

     . (1.20) 

Another generalization of the Ising model is the clock model, which is a 

discrete version of the XY model. In the q -state clock model, the spins are 

confined in a plane with q  different orientations, each of which is 

specified by a phase angle 

 
2

n n
q




 
  

 
, (1.21) 

where 0,1,2, 1n q   denotes the state of a spin. The Hamiltonian of the 

clock model is given by 

 cos( ) cosij i j i i

ij i

H J h  
 

     . (1.22) 

There are also other spin models such as the Heisenberg model and the 

more general ( )O n  model, but they are beyond our scope. 
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1.3  Phase transition 

From the classification suggested by Ehrenfest, the phase transition can 

be classified by the lowest order of derivatives of the free energy of the 

system that shows discontinuity with respect to some thermodynamic 

variables. To be more precise, the magnetization is the first order derivative 

of the free energy with respect to the external field. The specific heat and 

the susceptibility are the second order derivatives with respect to the 

temperature and the external field, respectively. Hence, in a first-order phase 

transition, the magnetization is discontinuous, while in a second-order phase 

transition the magnetization is continuous, but the specific heat and the 

susceptibility are discontinuous. Furthermore, in the first-order phase 

transition, a fixed amount of energy, called the latent heat, is absorbed or 

released. However, in the second-order phase transition, no latent heat is 

involved. A familiar example of the first-order phase transition is the phase 

transition from water to ice, in which the latent heat can be measured easily. 

 

Apart from the above classification, Landau developed a 

phenomenology theory for the phase transition based on the symmetry in 

the Hamiltonian of the system [8]. The free energy of the system ( , )F m T  

is expressed as a power series of order parameter m  given by 

 2 4( , ) ( ) ( ) ( )F m T hm a T b T m c T m      . (1.23) 

The symmetry in the Hamiltonian is reflected by the free energy that 

 ( , ) ( , )F m T F m T  . (1.24) 

This gives an insight on the symmetry breaking phenomenon at the phase 

transition and it is very useful in calculating the critical exponents of the 
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system. Although it is a type of mean-field theory, which does not account 

for the fluctuations in the system, it gives inspiration which leads to the 

more general theory, the Ginzburg-Landau theory [9]. 

 

Most phase transitions, including those exhibited by the Ising model 

and the Potts model belong to either the first-order type or the second-order 

type. The transition from paramagnetic phase to ferromagnetic phase is 

determined by the competition between the spin-spin interactions and the 

thermal fluctuations acting on the system. In these systems, spontaneous 

symmetry breaking occurred and long-range order is developed at the 

transition. The phase transition is determined by the free energy of the 

system, which is given by 

 F E TS  . (1.25) 

The interactions of spins tend to introduce order to the system, which 

decrease the energy and the entropy. On the other hand, the thermal 

fluctuations tend to destroy the order of the system, which increase the 

energy and the entropy. The critical temperature is determined by 

minimizing the free energy of the system. In the high-temperature 

disordered phase, the interactions of spins tend to break the symmetry and 

transforms to the order phase, while the thermal fluctuations acting on the 

system tend to restore the symmetry. 

 

In the Ising model, the system undergoes a second-order phase 

transition. In the Potts model, the phase transition is of the second-order for 

4q  , and of the first-order for 4q  . However, the phase transition in the 

two-dimensional XY model is neither first-order nor second-order. The 
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system undergoes a specific phase transition called the Kosterlitz-Thouless 

(KT) transition, which is of the infinite-order. 

 

1.4  Kosterlitz-Thouless transition 

Apart from the ordinary first-order and the second-order phase 

transitions manifested in most spin models, a specific phase transition called 

the Kosterlitz-Thouless (KT) transition is observed in superfluid systems 

and it can be described by the two-dimensional XY model [10-12]. Unlike 

the first-order and second-order phase transitions, the KT transition in the 

two-dimensional system with continuous symmetry does not involve 

symmetry breaking. Furthermore, the long-range order of the system in the 

low-temperature phase cannot be developed because of the existence of spin 

waves. The driving force behind the KT transition involves the topological 

excitation of vortices, which plays the role of charges in the system. The 

excitation of vortices requires energy and gives additional entropy to the 

system. Furthermore, the topological charges have long-range interactions 

in the system and we called that as quasi-long-range order. The mechanism 

of the KT transition is entirely different from the simple spin-spin 

interaction in other spin models and it gives a good example of the 

interesting emergent phenomena in the system. 

 

The q -state clock model is a discrete version of the XY model. For 

2q  , the clock model reduces to the Ising model, while for 3q  , it is 

equivalent to the three-state Potts model, and for 4q  , it is also called the 

Ashkin-Teller model [13], which is the four-component version of the Ising 
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model. At the limiting case q  , where the spin state varies 

continuously, it is restored to the XY model. It is known that, the phase 

transition in the Ising model is of the second-order type, while that in the XY 

model is of the KT-type. The clock model, being a bridge between different 

models, is expected to have various critical behavior under different values 

of q . Extensive studies [14-21] on the clock model had shown that, for 

4q  , the phase transition is Ising-like, and for 6q  , it is XY-like. There 

is still no conclusive result for the case where 5q   [15, 21-23]. Since the 

critical behavior for the q -state clock model does not change appreciably 

on varying q  values when q  is large. This means that, without using the 

XY model, which involves the continuous spin states, the six-state clock 

model ( 6q  ) can be used to study the KT transition. 

 

1.5  Disordered systems 

The presence of defects interrupts the periodic structure of crystalline 

materials and the systems become disordered when the quantity of 

interruptions is large. It can be visualized by a random distribution of 

coupling coefficients between neighboring spins. The effects of disorder on 

phase transition have attracted many interests [24-26]. In some systems, a 

small amount of disorder can have dramatic effects and even changes the 

nature of phase transition [25]. A number of numerical works [27-29] had 

studied the effects of non-magnetic impurities on the KT transition. Since 

non-magnetic impurities can be viewed as lattice vacancies, the results 

found that the KT transition disappears as the vacancy density reaches the 

lattice percolation limit. In real systems, the source of defects may not be 
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only from the non-magnetic impurities but can also from the magnetic ones. 

In statistical point of view, it is natural to consider a Gaussian distribution 

for the coupling coefficients. Theoretical works [30] conjectured that strong 

disorder will induce a first-order phase transition in the XY model. It is our 

motivation to study the effects of disorder on the phase transition in the 

six-state clock model. 
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Chapter 2 Theory 

 

2.1  Model 

We consider an ensemble of spins on a two-dimensional square lattice 

with size N L L  . For simplicity, we assumed the spins interact with 

their nearest neighbors only. In the q -state clock model, the spins are 

confined in a plane with q  different orientations each of which is specified 

by a phase angle 

 
2

n n
q




 
  

 
, (2.1) 

where 0,1,2, 1n q   denotes the state of a spin. The Hamiltonian of the 

clock model takes the form ( )ij

ij

H K 
 

  , where ij   denotes the 

summation is over the nearest neighbors only and 
ij i i     is the phase 

angle difference between two spins at lattice sites i  and j . The function 

( )K   is periodic with a period 2 . One simple form for ( )K   is 

( ) cosK J  , where J  is the coupling coefficient between two 

neighboring spins. The Hamiltonian is then given by 

 cos( )ij i j

ij

H J  
 

   . (2.2) 

The spin at spin state n  can also be denoted by the spin vector 

 (sin ,cos )n n n S . (2.3) 

Subsequently, the Hamiltonian can be expressed as 

 
ij i j

ij

H J
 

   S S . (2.4) 

Usually, the coupling coefficients ijJ  are assumed to be a constant J . A 
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positive J  value indicates a ferromagnetic system, where the energy is 

lowered by aligning the spins in the same direction. On the contrary, a 

negative J  value makes the neighboring spins oppositely aligned and 

results in an antiferromagnetic system. To investigate the effect of disorder, 

the coupling coefficients 
ijJ  are assumed to follow the Gaussian 

distribution 

 
2

22

1 ( )
( ) exp

22

J
P J





 
  

 
, (2.5) 

where 1   is the mean and 2  is the variance of the distribution. The 

bond randomness is reflected by the parameter  . In particular, 2 0   

represents a pure system with no disorder and with constant coupling 

coefficient 1J  . 

 

2.2  Magnetization, specific heat, and susceptibility 

Several properties of the system are calculated in order to study the 

phase transitions in the clock model. The energy per spin E  of the system 

is given by 

 
1

ij i j

ij

E J
N  

   S S , (2.6) 

where  denotes the ensemble average of the quantities. The 

magnetization per spin m  is given by 

 
1 1

sin , cosi i

i iN N
 

 
  
 

 m , (2.7) 

and its magnitude is represented by m . Furthermore, the specific heat per 
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spin c  can be obtained from the fluctuations of energy and is given by 

  2 2

2

1
c E E

T
      . (2.8) 

Similarly, the susceptibility per spin   is given by 

  2 2N
m m

T
       . (2.9) 

Throughout the thesis, the temperature T  is given as a dimensionless 

quantity, which is scaled by J k , where J  is the coupling coefficient and 

k  is the Boltzmann constant. 

 

2.3  Helicity modulus and fourth-order helicity modulus 

Besides judging the existence of the KT transition from the above 

properties of the system, the more convincing evidence is by observing the 

critical behavior of the helicity modulus. Consider the Hamiltonian of the 

clock model including an externally imposed spin twist ( , )x y  Δ  

across the system 

 
1

cos( )ij i j ij

ij

H J
L

 
 

     r Δ , (2.10) 

where 
ijr  is a unit vector pointing from lattice site i  to j . The 

components of the spin twist x  and 
y  are defined by the summation of 

the phase angle difference 
ij  along the x  and y  directions, respectively. 

The helicity modulus per spin   is a measure of the resistance to an 

infinitesimal spin twist across the system along one direction. It is related to 

the free energy per spin F  of the system by 
2 2

0
F


    , which leads 

to the expression 
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 21

2

N
E s

T
        , (2.11) 

where 

 
1

sin( )( )ij i j ij

ij

s J
N

 
 

   r x . (2.12) 

According to the renormalization group calculations [11], the helicity 

modulus in the XY model which undergoes the KT transition jumps from the 

value (2 ) cT  to zero at the transition in the thermodynamic limit. This 

abrupt jump in the helicity modulus at the transition is the key feature of the 

KT transition. Unfortunately, it is very difficult to determine the 

discontinuity of the helicity modulus from numerical calculations because 

of the limited precision. 

 

A new numerical method [31] based on a stability argument can be 

used to identify the KT transition. The expansion of free energy of the 

system gives 
2 4

4( )
2! 4!

F
 

       , where 
4 4

4 0
F


     is 

the fourth-order helicity modulus and it can be expressed as 

2
2 2 2 2 2 2

4 3 2

1 3 3 4 3 3

2 4 4

N N
E E E s s E s

N T T T T T
                     .(2.13) 

A spin twist to the system gives an additional contribution to the free energy 

so that ( ) (0)F F  . Since the helicity modulus   must be non-negative 

and in the XY model, this quantity is positive and finite below the critical 

temperature and is zero above it. Consequently, the fourth-order helicity 

modulus 4  must also be non-negative at any temperature where   

vanishes. Supposed 4  is negative at the transition, then   cannot 

approach zero continuously but must make a discontinuous jump to zero at 

the transition instead. Hence we can distinguish the KT transition from the 
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ordinary first-order or the second-order phase transition by the fourth-order 

helicity modulus. 

 

2.4  Critical exponent and critical temperature 

From the theory developed by Kosterlitz [11], it is known that at 

cT T , the correlation length   and the susceptibility   in the XY 

model diverge according to the asymptotic laws 

 
1

2exp( )bt


 , (2.14) 

where ( )c ct T T T   and 1.5b  , and 

 2    , (2.15) 

where the critical exponent 1 4   has the same value as that of the 

two-dimensional Ising model and is the only exponent in the absence of 

external field for the XY model. From the studies of the superfluid systems, 

the helicity modulus is given by 2( ) sm   , where m  is the mass of 

the superfluid and s  is density of the superfluid. The critical exponent is 

given by 2 2( 2 )sm T   . Then we can obtain a relation 

 
2

T






. (2.16) 

Hence the critical exponent   can be calculated from the helicity modulus 

 . This, in turn, enables us to determine the critical temperature cT  from 

the point where the critical exponent ( ) 1 4cT  . Furthermore, since the 

helicity modulus   jumps from the value (2 ) cT  to zero at the 

transition, we can also determine the critical temperature cT  from the 

intersection of the curve and the straight line 
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2

T


  . (2.17) 
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Chapter 3 Monte Carlo Methods 

 

3.1  Random number generator 

Previous works [32] had shown that the Wolff algorithm can yield 

incorrect answers with some “high quality” random number generators. 

Although the Wolff algorithm can dramatically reduce the critical slowing 

down, it is very sensitive to the subtle correlations in the random number 

generators. Therefore, to choose a reliable random number generator for the 

Wolff algorithm is important. 

 

Comparing the performance of different random number generators for 

the Wolff algorithm, the 32-bit linear congruential generator with 

parameters 

 31

1(16087 )mod(2 1)n nX X   , (3.1) 

is used throughout this work. It generates uniform random numbers 

0 1r   and it should be seeded with a non-zero long integer. The value of 

the seed is also outputted for the checking of the results. 

 

3.2  Gaussian distribution 

Transformation method can be used to produce non-uniformly 

distributed random numbers from uniformly distributed ones. To produce 

random numbers x  distributed according to some function ( )f x , 

provided min maxx x x  . The fraction ( )F x  of these random numbers 
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which lie below some value x  is given by 

 
min

( ) ( ') '
x

x
F x f x dx  . (3.2) 

The same fraction of the uniformly distributed random numbers lies in the 

interval 0 ( )r F x  . To map numbers from random number generator 

which falls into this region onto the numbers between minx  and x  in the 

new distribution, the number x  in the non-uniform distribution should be 

generated when the number 

 ( )r F x , (3.3) 

is produced by the uniform generator. 

 

The Gaussian distribution function with mean and variances equal to 

zero and one, respectively is given by 

 
21

( ) exp
22

x
f x



 
  

 
. (3.4) 

The cumulative distribution function is the error function, 

 
1

( ) 1
2 2

x
F x erf

  
   

  
. (3.5) 

Unfortunately, there is no known closed-form expression for the error 

function, which makes it impossible to invert this equation. 

 

The Box-Muller method is used to tackle the problem. It is a 

two-dimensional variation of the transformation method. Consider the 

probability, 

 
2 21

( , ) exp
2 2

x y
f x y dxdy dxdy



 
  

 
, (3.6) 
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in polar coordinates, 

 
21

( , ) exp
2 2

r
f r drd rdrd  



 
  

 
. (3.7) 

The   variable is a uniformly distributed number where 

 0 2   . (3.8) 

The distribution function for r  is 

 
2

( ) exp
2

r
f r r

 
  

 
. (3.9) 

By the transformation method, a number R  produced by the uniform 

random number generator is 

 
2

1 exp
2

r
R

 
   

 
. (3.10) 

Rearranging for r , 

 2ln(1 )r R    (3.11) 

With this value for r  and the random value for  , the two numbers 

 sinx r  , (3.12) 

 cosy r  , (3.13) 

are independent Gaussianly distributed random numbers. 

 

For the Gaussian distribution function 
2( , )N    with arbitrary mean 

and variance, 

 2( , ) (0,1)N N     . (3.14) 

Then, random numbers following Gaussian distribution with specified mean 

and variance can be generated. 
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3.3  Metropolis algorithm 

The Metropolis algorithm [33] is the most widely used Monte Carlo 

algorithm in statistical mechanics, which is a single-spin updating algorithm. 

In the Metropolis algorithm, a Monte Carlo step (MCS) is described as 

follows: 

 

(1) A lattice site i  is chosen randomly. 

(2) Consider the spin at lattice site i  being updated to a new state, the 

change of Hamiltonian H  is calculated. 

(3) If 0H  , the spin is updated, else update it according to the 

probability 

 exp
H

P
T

 
  

 
. (3.15) 

 

The Metropolis algorithm suffers from a problem called critical slowing 

down. The correlation time diverges at the transition, which means an 

infinite sampling time is needed to obtain an accuracy result. 

 

3.4  Wolff algorithm 

The Wolff algorithm [34], which is the improvement of the 

Swendsen-Wang algorithm [35], is applicable to many spin models 

including the clock model. Instead of updating a single spin, a cluster of 

spins is updated in the Wolff algorithm to overcome the problem of critical 

slowing down. We adopted the original idea of Wolff which applies to the 

XY model. The specialized algorithm for the q -state clock model is 

described as follows: 
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(1) A mirror line is chosen randomly with a normal vector r . 

(2) A lattice site i  is chosen randomly for a cluster formation. 

(3) Spins at the neighboring sites j  are added to the cluster according to 

the probability 

 
2

1 exp ( )( )
ij

i j

J
P

T

 
     

 
r S r S . (3.16) 

(4) The cluster is updated by reflecting all the spins in the line perpendicular 

to the normal vector r . 

 

To implement these procedures, consider the normal vector 

 (sin ,cos )k k k r , (3.17) 

where the angles k  specifies the state of the normal vector and for even 

q  

 k k
q




 
  

 
, (3.18) 

while for odd q  

 
1

2
k k

q




  
    
  

, (3.19) 

where 0,1,2, ,2 1k q  . Then the phase angle of the reflected spin is 

given by 

 2     R , (3.20) 

where R  is the reflection operator. Then all the combinations for different 

spin vectors nS  and normal vectors kr  can be pre-calculated to reduce the 

computational cost. 

 



35 

3.5  Data structure 

A buffer is a data structure used to store the values of variables 

temporarily, and retrieve them later. In carrying out the addition of spins to 

the cluster in the Wolff algorithm, a buffer has to be used to store the spins 

added to the cluster for the further growth of it. Two types of buffers can be 

used. They are the first in/first out buffer and the last in/first out buffer. Both 

buffers are equally efficient, but different cluster growth pattern will be 

obtained with different buffer being used. 

 

The sequences of spins being added to the cluster using the first in/first 

out buffer and the last in/first out buffer are given in Figures 3.1 and 3.2, 

respectively. With the first in/first out buffer, the cluster grows in a spiral 

fashion, remaining, on average, roughly isotropic throughout its growth. 

With the last in/first out buffer, the cluster first grows along a line in one 

direction, and then backs up along its tracks and begins to grow sideways. 

The Wolff algorithm with the first in/first out buffer is more realistic, 

especially when the maximum size of a cluster is constrained. Hence, the 

first in/first out buffer is used throughout this work. 
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60 53 42 37 50 59 63 64 

52 41 30 24 36 49 58 62 

39 28 18 13 22 35 48 57 

26 16 8 5 11 21 34 47 

14 6 2 1 3 9 46 56 

25 15 7 4 10 20 33 45 

38 27 17 12 19 32 44 55 

51 40 29 23 31 43 54 61 

 

Figure 3.1 The sequence of spins added to the cluster using the first 

in/first out buffer. 
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57 58 59 60 61 62 63 64 

56 55 54 53 52 51 50 49 

38 39 40 41 42 43 44 45 

37 36 35 34 33 48 47 46 

4 3 2 1 32 31 30 29 

5 6 7 8 9 10 11 12 

20 19 18 17 16 15 14 13 

21 22 23 24 25 26 27 28 

 

Figure 3.2 The sequence of spins added to the cluster using the last 

in/first out buffer. 

 

 

 

 

 

 

 

 



38 

3.6  Boundary conditions 

Since the calculations are carried out on finite size lattice, periodic 

boundary conditions are applied. The spins at the edge of the lattice are 

made to interact with the spins at the opposite edge of the lattice. This 

ensures that all the spins have the same number of neighbors and local 

geometry. The lattice is completely translational invariant and it can be 

visualized by considering the two-dimensional lattice being folded into a 

three-dimensional torus with spins being on the surface of this topological 

structure. 

 

3.7  Initialization 

There are two common choices for the initialization of spins. They are 

the ground state and the random state. In the first case, all the spins are in 

the same state. In the random state, the states of the spins are randomly 

chosen. For the q -state clock model in the absence of external field, there 

are q  different ground states. Since the choice is arbitrary, one of the 

ground states is chosen as the initial state. However, if the system is in an 

external field, the ground state will be the state where all the spins are in the 

direction along the external field. It should be noted that, since Monte Carlo 

algorithms satisfy the condition of ergodicity, no matter what initial state is 

chosen, the system will eventually relax to the equilibrium state. 

 

3.8  Equilibration 

The system should be in equilibrium before calculating any property of 
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it. Otherwise, incorrect results will be obtained. The relaxation time defined 

in terms of Monte Carlo step is the time required for the system to reach 

equilibrium. Since the properties of the system are in steady state at 

equilibrium, the simplest way to judge the relaxation time is by observing 

the properties change over Monte Carlo step. The relaxation time required 

for the system at the equilibrium state of temperature 1T  to the equilibrium 

state of temperature 2T  is short if 1 2T T  and it will be long if 2 1T T . 

Since the ground state ( 0T  ) is chosen as the initial state of the system, we 

can safely over-estimate the relaxation time by determining it from the 

system with the highest temperature that we are going to study ( 1.5T  ). 

The energy and the magnetization against Monte Carlo step for the six-state 

clock model with lattice size 128 128N    at temperature 1.5T   are 

given in Figures 3.3 and 3.4, respectively. From the results, it is observed 

that after approximately 20000 Monte Carlo steps, both the energy and the 

magnetization become steady and thus it is the relaxation time for the 

system. Furthermore, longer relaxation time is needed for the disordered 

system with larger 2 . Hence, we can safely over-estimate the relaxation 

time by determining it from the system with the largest 2  that we are 

going to study ( 2 3.0  ). The relaxation time for the six-state clock model 

with various lattice sizes at temperature 1.5T   is given in Table I. 

Furthermore, the relaxation time for the random-bond six-state clock model 

with 2 3.0   and various lattice sizes at temperature 1.5T   is given in 

Table II. It should be noted that, the effect of different values of q  and 

different values of 2  on the relaxation time is small. 
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Figure 3.3 The energy against Monte Carlo step for the clock model 

with lattice size 128 128N    at temperature 1.5T  . 
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Figure 3.4 The magnetization against Monte Carlo step for the clock 

model with lattice size 128 128N    at temperature 1.5T  . 
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N  MCS 

8 8  2000 

16 16  3000 

32 32  5000 

64 64  10000 

128 128  20000 

 

Table I The relaxation time for the six-state clock model with various 

lattice sizes at temperature 1.5T  . 
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N  MCS 

8 8  3000 

16 16  5000 

32 32  10000 

64 64  20000 

128 128  40000 

 

Table II The relaxation time for the random-bond six-state clock model 

with 2 3.0   and various lattice sizes at temperature 1.5T  . 
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Chapter 4 Results and discussion 

 

4.1  Metropolis algorithm and Wolff algorithm 

The results for the four-state ( 4q  ) and the six-state ( 6q  ) clock 

model obtained by the Metropolis algorithm and the Wolff algorithm are 

shown to demonstrate the difference between these two algorithms. 

 

The magnetization against temperature for the four-state clock model 

with lattice size 128 128N    obtained by the Metropolis algorithm and 

the Wolff algorithm is given in Figure 4.1. The systems undergo phase 

transition at approximately the same temperature. The results obtained by 

the Metropolis algorithm give a broader transition than those obtained by 

the Wolff algorithm. Hence, it is more difficult to determine the critical 

temperature of the system. 

 

The specific heat and the susceptibility against temperature for the 

four-state clock model with lattice size 128 128N    obtained by the 

Metropolis algorithm and Wolff algorithm are given in Figures 4.2 and 4.3, 

respectively. The results obtained by the Metropolis algorithm are much 

noisier than those obtained by the Wolff algorithm. Furthermore, the results 

obtained by the Metropolis algorithm give a broader peak in both the 

specific heat and the susceptibility than those obtained by the Wolff 

algorithm. 
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The magnetization against temperature for the six-state clock model 

with lattice size 128 128N    obtained by the Metropolis algorithm and 

the Wolff algorithm is given in Figure 4.4. The results obtained by both the 

Metropolis algorithm and the Wolff algorithm undergo two transitions 

instead of a single one. Again, the results obtained by the Metropolis 

algorithm give a broader transition than those obtained by the Wolff 

algorithm. Hence, the intermediate phase for the results obtained by the 

Metropolis algorithm is not as obvious as that obtained by the Wolff 

algorithm. 

 

The specific heat and the susceptibility for the six-state clock model 

with lattice size 128 128N    obtained by the Metropolis algorithm and 

the Wolff algorithm are given in Figures 4.5 and 4.6, respectively. The 

results obtained by both the Metropolis algorithm and the Wolff algorithm 

show a double-peak feature in the specific heat and the susceptibility. 

However, the results obtained by the Metropolis algorithm are much noisier 

than those obtained by the Wolff algorithm. 

 

The discrepancy of the results obtained by these algorithms is 

attributed to the problem of critical slowing down in the Metropolis 

algorithm, while it does not exist in the Wolff algorithm. However, despite 

the quantitative difference in the critical temperature, there is no qualitative 

difference between the results obtained by both algorithms. It is noted that, 

the computational costs of the Metropolis algorithm and the Wolff algorithm 

are approximately the same. However, the Wolff algorithm gives much 

better results. Hence, the Wolff algorithm is used throughout this work. 
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Figure 4.1 The magnetization against temperature for the four-state 

clock model with lattice size 128 128N    obtained by the Metropolis 

algorithm and the Wolff algorithm. 
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Figure 4.2 The specific heat against temperature for the four-state clock 

model with lattice size 128 128N    obtained by the Metropolis 

algorithm and the Wolff algorithm. 
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Figure 4.3 The susceptibility against temperature for the four-state 

clock model with lattice size 128 128N    obtained by the Metropolis 

algorithm and the Wolff algorithm. 
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Figure 4.4 The magnetization against temperature for the six-state 

clock model with lattice size 128 128N    obtained by the Metropolis 

algorithm and the Wolff algorithm. 
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Figure 4.5 The specific heat against temperature for the six-state clock 

model with lattice size 128 128N    obtained by the Metropolis 

algorithm and the Wolff algorithm. 
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Figure 4.6 The susceptibility against temperature for the six-state clock 

model with lattice size 128 128N    obtained by the Metropolis 

algorithm and the Wolff algorithm. 
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4.2  Second-order phase transition and KT transition 

The four-state clock model ( 4q  ) is known to be equivalent to the 

Ising model ( 2q  ). The nature of phase transitions for both cases is 

essentially the same, being of the second-order type. On the other hand, the 

phase transition in the six-state clock model ( 6q  ) is known to be of the 

KT-type. Several properties of the clock model with 4q   and 6q   are 

calculated under the same conditions to demonstrate the differences 

between the second-order phase transition and the KT transition in these 

models. 

 

The magnetization against temperature for the four-state and the 

six-state clock model with various lattice sizes are given in Figures 4.7 and 

4.8, respectively. In four-state clock model, the magnetization is non-zero 

below the critical temperature and above which it vanishes. The 

low-temperature ordered phase and the high-temperature disordered phase 

are separated at the critical temperature, manifesting the second-order phase 

transition. However, in the six-state clock model, the magnetization 

undergoes two transitions instead of a single one. There exists an 

intermediate phase called the KT phase (or the massless phase) between the 

low-temperature ordered phase and the high-temperature disordered phase. 

 

The specific heat against temperature for the four-state and the six-state 

clock model with various lattice sizes are given in Figures 4.9 and 4.10, 

respectively. Also, the susceptibility against temperature for the four-state 

and the six-state clock model with various lattice sizes are given in Figures 
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4.11 and 4.12, respectively. In four-state clock model, a single peak emerges 

in both specific heat and susceptibility. They diverge at the critical 

temperature as expected in the second-order phase transition. On the other 

hand, double peaks are observed in the six-state clock model. Again, this is 

a manifestation of the KT transition. It is found that, in both cases, as the 

size of the lattice increases, the peaks of both specific heat and susceptibility 

become sharper. In the four-state clock model, the critical temperature 

decreases as the lattice size increases. In the six-state clock model, the upper 

critical temperature also decreases as the lattice size increases, but there is 

no appreciable effect on the lower critical temperature. 

 

The helicity modulus against temperature for the four-state and the 

six-state clock model with various lattice sizes are given in Figures 4.13 and 

4.14, respectively. In four-state clock model, the helicity modulus remains 

positive and finite across the transition despite the finite-size effect. 

However, in the six-state clock model, it vanishes above the critical 

temperature. In order to demonstrate an abrupt jump in the helicity modulus 

in six-state clock model, the fourth-order helicity moduli against 

temperature with various lattice sizes is given in Figure 4.15. It is 

demonstrated that the fourth-order helicity modulus is negative at the phase 

transition and thus the discontinuous nature of the helicity modulus is 

confirmed. Hence the phase transition for the six-state clock model is of the 

KT-type. 

 

The critical exponent   against temperature for the six-state clock 

model with various lattice sizes is given in Figure 4.16. The critical 
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temperature that determined from the critical exponent   and from the 

helicity modulus are the same. The results are given in Table III. For the 

largest lattice size 128 128N   , the critical temperature is 0.916cT  , 

which is consistent with the literatures [14-18, 20]. 
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Figure 4.7 The magnetization against temperature for the four-state 

clock model with various lattice sizes. 
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Figure 4.8 The magnetization against temperature for the six-state 

clock model with various lattice sizes. 
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Figure 4.9 The specific heat against temperature for the four-state clock 

model with various lattice sizes. 
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Figure 4.10 The specific heat against temperature for the six-state clock 

model with various lattice sizes. 
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Figure 4.11 The susceptibility against temperature for the four-state 

clock model with various lattice sizes. 
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Figure 4.12 The susceptibility against temperature for the six-state 

clock model with various lattice sizes. 
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Figure 4.13 The helicity modulus against temperature for the four-state 

clock model with various lattice sizes. 
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Figure 4.14 The helicity modulus against temperature for the six-state 

clock model with various lattice sizes. 
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Figure 4.15 The fourth-order helicity modulus against temperature for 

the six-state clock model with various lattice sizes. 
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Figure 4.16 The critical exponent   against temperature for the 

six-state clock model with various lattice sizes. 
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N  cT  

8 8  0.996 

16 16  0.942 

32 32  0.930 

64 64  0.922 

128 128  0.916 

 

Table III The critical temperature for the six-state clock model with 

various lattice sizes. 
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4.3  Six-state clock model and eight-state clock model 

Since the critical behavior for the q -state clock model does not 

change appreciably on varying q  values when q  is large. At the limiting 

case q  , where the spin state varies continuously, it restores to the XY 

model. The results for the eight-state clock model ( 8q  ) are shown to 

demonstrate the phase transition of the q -state clock model for 6q   is 

still of the KT-type as expected. 

 

The magnetization against temperature for the eight-state clock model 

with various lattice sizes is given in Figure 4.17. In the eight-state clock 

model, the magnetization also undergoes two transitions instead of a single 

one. There also exists an intermediate phase between the low-temperature 

ordered phase and the high-temperature disordered phase. The lower critical 

temperature of the eight-state clock model is lower than that of the six-state 

clock model while the upper critical temperature remains approximately the 

same as that in the six-state clock model. Hence, the intermediate phase in 

the eight-state clock model is wider than that in the six-state clock model. 

 

The specific heat and the susceptibility for the eight-state clock model 

with various lattice sizes are given in Figures 4.18 and 4.19, respectively. In 

the eight-state clock model, double peaks are also observed in both the 

specific heat and the susceptibility. The height of the peaks in the eight-state 

clock model is approximately the same as that in the six-state clock model. 

Again, the results showed that the lower critical temperature in the 

eight-state clock model is lower than that in the six-state clock model. Also, 
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the intermediate phase in the eight-state clock model is wider than that in 

the six-state clock model. 

 

The helicity modulus against temperature for the eight-state clock 

models with various lattice sizes is given in Figure 4.20. The helicity 

modulus vanishes above the critical temperature. Furthermore, the 

fourth-order helicity modulus against temperature for the eight-state clock 

models with various lattice sizes is given in Figure 4.21. The fourth-order 

helicity modulus is negative at the phase transition and thus the 

discontinuous nature of the helicity modulus is confirmed. Hence the phase 

transition for the eight-state clock model is also of the KT-type as expected. 

 

The results showed that both the six-state and the eight-state clock 

model undergo KT transition and their critical behaviors are essentially the 

same. The only difference is that the lower critical temperature in the 

eight-state clock model is lower than that in the six-state clock model. 

Hence the intermediate phase in the eight-state clock model is wider than 

that in the six-state clock model. The results enable us to estimate the 

critical behavior of the q -state clock model with 6q  and even the XY 

model. These systems should also undergo the KT transition. The upper 

critical temperature will remain approximately the same with those in the 

six-state and the eight-state clock model. However, the lower critical 

temperature will continuously decrease as q  increases, until reaching the 

value of the XY model. Hence, the intermediate phase will become wider as 

q  increases. 
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Figure 4.17 The magnetization against temperature for the eight-state 

clock model with various lattice sizes. 
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Figure 4.18 The specific heat against temperature for the eight-state 

clock model with various lattice sizes. 
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Figure 4.19 The susceptibility against temperature for the eight-state 

clock model with various lattice sizes. 
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Figure 4.20 The helicity modulus against temperature for the eight-state 

clock model with various lattice sizes. 
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Figure 4.21 The fourth-order helicity modulus against temperature for 

the eight-state clock model with various lattice sizes. 
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4.4  Random-bond six-state clock model and random-bond 

eight-state clock model 

From the above results, the KT transition in the pure six-state clock 

model has been demonstrated. Subsequently, the effects of disorder on the 

phase transition in the six-state clock model are then investigated. The bond 

randomness is reflected by the parameter   as defined in Equation (2.5). 

The results with lattice size 128 128N    and with different values of   

are shown as follows. 

 

The magnetization against temperature for the random-bond six-state 

clock model with various 2  is given in Figure 4.22. As   increases, the 

critical temperature of the system decreases. In the pure system, there exists 

an intermediate phase between the low-temperature ordered phase and the 

high-temperature disordered phase. However, as   increases, this 

intermediate phase reduces and for 2 3.0  , it becomes unobservable. In 

this case, the critical behavior of the magnetization looks very similar to that 

of the four-state clock model. 

 

The specific heat and the susceptibility against temperature for the 

random-bond six-state clock model with various 2  are given in Figures 

4.23 and 4.24, respectively. The results for the specific heat are very noisy 

especially for large  . However, we can still able to identify the 

double-peak feature as in the pure system for small  . The results for the 

susceptibility are much clearer and again the double-peak feature emerges. 

As   increases, all the peaks of both specific heat and susceptibility shift 



74 

to the left, indicating the decreases in the critical temperature. The distance 

between the two peaks in the susceptibility decreases as   increases and 

for 2 3.0  , they merge together as one. Furthermore, the height of the 

peak increases as   increases and for 2 3.0  , it becomes comparable to 

that of the four-state clock model. 

 

The above results for the random-bond six-state clock model showed 

the shrinkage of the intermediate phase as the amount of disorder ( ) 

increases. Under a large amount of disorder, the phase transition seems to be 

of the second-order type as in the four-state clock model. The intermediate 

phase disappeared and only the low-temperature ordered phase and the 

high-temperature disordered phase are observed. In order to demonstrate the 

disappearance of the KT transition under a large amount of disorder, the 

helicity modulus and the fourth-order helicity modulus of the system are 

calculated. The helicity modulus against temperature for the random-bond 

six-state clock model with various 2  is given in Figure 4.45. As   

increases, the transition becomes boarder. The helicity modulus still 

vanishes above the critical temperature for large  . However, it tends to be 

continuous rather than makes a discontinuous jump at the transition. The 

fourth-order helicity modulus against temperature for the random-bond 

six-state clock model with various 2  is given in Figure 4.26. For 

2 0.1   and 2 0.5  , the fourth-order helicity modulus at the transition 

are clearly negative, implying the system undergoes the KT transition. 

However, despite the noisy nature, the depth of the trough reduces as   

increases. For 2 3.0  , the trough is no longer observable and thus the 

helicity modulus does not jump discontinuously. Hence we can conclude 
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that the transition is no longer of the KT-type and this is consistent with our 

observations discussed before. 

 

The critical exponent   against temperature for the random-bond 

six-state clock model with various   is given in Figure 4.27. Again, the 

critical temperature that determined from the critical exponent   and from 

the helicity modulus are the same. The results are given in Table IV. Also, 

the critical temperature against 2  for the random-bond six-state clock 

model is given in Figure 4.28. Since the transition is no longer of the 

KT-type for large  , the critical temperature determined from these 

methods may beyond the definitions described above. Hence the results for 

2 2.0   and 2 3.0   are only for comparison purpose. 

 

The driving force behind the KT transition involves the binding and 

unbinding of the vortex-antivortex pairs. Since these processes are not 

affected by a small perturbation on the local spin phase angle, under a small 

amount of disorder, the phase transition is still of the KT-type. However, the 

binding and unbinding of the vortex-antivortex pairs is prohibited under a 

large amount of disorder and thus the transition is only determined by the 

competition between the spin-spin interactions and the thermal fluctuations 

acting on the system. Hence the transition is no longer of the KT-type and 

becomes the ordinary first-order or the second-order phase transition. If the 

amount of disorder is too large, there will be no phase transition in the 

system, because the ordering of spins cannot be developed. 
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Figure 4.22 The magnetization against temperature for the 

random-bond six-state clock model with lattice size 128 128N    and 

various 2 . 
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Figure 4.23 The specific heat against temperature for the random-bond 

six-state clock model with lattice size 128 128N    and various 2 . 
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Figure 4.24 The susceptibility against temperature for the 

random-bond six-state clock model with lattice size 128 128N    and 

various 2 . 
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Figure 4.25 The helicity modulus against temperature for the 

random-bond six-state clock model with lattice size 128 128N    and 

various 2 . 
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Figure 4.26 The fourth-order helicity modulus against temperature for 

the random-bond six-state clock model with lattice size 128 128N    

and various 2 . 
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Figure 4.27 The critical exponent   against temperature for the 

random-bond six-state clock model with lattice size 128 128N    and 

various 2 . 
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2  cT  

0 0.916 

0.1 0.873 

0.5 0.741 

1.0 0.666 

2.0 0.611 

3.0 0.526 

 

Table IV The critical temperature for the random-bond six-state clock 

model with lattice size 128 128N    and various 2 . 
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Figure 4.28 The critical temperature against 2  for the random-bond 

six-state clock model with lattice size 128 128N   . 
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Chapter 5 Conclusion 

 

The critical behavior of the clock model in two-dimensional square 

lattice is studied numerically using Monte Carlo method with Wolff 

algorithm. It is shown that, the phase transition in the four-state clock model 

is the same as that in the Ising model, being of the second-order type. On 

the other hand, the phase transition in the six-state clock model is the same 

as that in the XY model, being of the KT-type. It is demonstrated that there 

exists an intermediate phase between the low-temperature ordered phase 

and the high-temperature disordered phase in the six-state clock model. The 

results for the four-state clock model and the six-state clock model are 

compared to show the difference between the second-order phase transition 

and the KT transition. Since the key characteristic of the KT transition, 

which is the abrupt jump in the helicity modulus at the transition, is difficult 

to determine directly by numerical calculations due to limited precision. A 

new numerical method based on a stability argument is used to verify the 

discontinuity of the helicity modulus of the system, such that the KT 

transition is identified. Furthermore, the critical temperature for the six-state 

clock model is determined from the critical exponent ( ) 1 4cT  . For the 

largest lattice size 128 128N   , the critical temperature is 0.916cT  , 

which is consistent with the literatures. 

 

Since the critical behavior for the q -state clock model does not 

change appreciably on varying q  values when q  is large. At the limiting 

case q  , where the spin state varies continuously, it restores to the XY 
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model. The critical behavior for the eight-state clock model ( 8q  ) is 

studied to demonstrate the phase transition of the q -state clock model for 

6q   is still of the KT-type. The results showed that the phase transition in 

the eight-state clock model is of the KT-type as expected. 

 

To investigate the effects of disorder, the bond randomness is 

introduced to the system by assuming a Gaussian distribution for the 

coupling coefficients with the mean 1   and different values of variance, 

from 2 0.1   to 2 3.0  . The critical behavior of the random-bond 

six-state clock model is studied and the critical temperature of the system is 

determined. The results showed that, a small amount of disorder (small  ) 

reduces the critical temperature of the system, without altering the nature of 

transition. However, a larger amount of disorder changes the transition from 

the KT-type into that of non-KT-type. 

 

Since the driving force behind the KT transition involves the binding 

and unbinding of the vortex-antivortex pairs. These processes are not 

affected by a small perturbation on the local spin phase angle, under a small 

amount of disorder, the phase transition is still of the KT-type. However, the 

binding and unbinding of the vortex-antivortex pairs is prohibited under a 

large amount of disorder and thus the transition is only determined by the 

competition between the spin-spin interactions and the thermal fluctuations 

acting on the system. Hence the transition is no longer of the KT-type and 

becomes the ordinary first-order or second-order phase transition. If the 

amount of disorder is too large, there will be no phase transition in the 

system, because the ordering of spins cannot be developed. 
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The effects of disorder on phase transition have attracted many 

interests. A number of numerical works had studied the effects of 

non-magnetic impurities on the KT transition. Since non-magnetic 

impurities can be viewed as lattice vacancies, the results found that the KT 

transition disappears as the vacancy density reaches the lattice percolation 

limit. In the real systems, the source of defects may not be only from the 

non-magnetic impurities but also from the magnetic ones. Our results 

showed that when the amount of magnetic impurities is large, the KT 

transition becomes the ordinary first-order or the second-order phase 

transition, instead of being disappeared. 

 

There are theoretical works conjectured that strong disorder will induce 

a first-order phase transition in the XY model. In the present work, we 

cannot conclude whether the phase transition of the random-bond six-state 

clock model changes to the first-order type or the second-order type. Further 

investigation is necessary. 
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