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ABSTRACT 

 

Diabetes mellitus is an intractable condition in which blood glucose levels cannot be 

regulated normally by the body alone; it has many complications, including heart disease 

and stroke, kidney failure, blindness or vision problems, diabetic neuropathy and 

diabetic foot. Treatment methods include dietary regulation to control blood glucose 

levels, oral medication, and insulin injection, and all of these treatments should rely on 

blood glucose measurement. Diabetes mellitus was the tenth most common cause of 

deaths in Hong Kong in 2010. Currently, the most common means of checking is by 

using a finger prick glucose meter, but many people dislike using sharp objects and 

seeing blood because there is a risk of infection. Over the long term, this practice may 

also result in damage to finger tissue. Given these realities, the advantages of a non-

invasive technology are easily understood. 

 

The race for the next generation of painless and reliable glucose monitoring for 

diabetes is on. As technology advances, so diagnostic techniques and equipment 

improve. Near infrared (NIR) spectroscopy has become a promising technology, 

among others, for blood glucose monitoring. While advances have been made, the 

reliability and the calibration of non-invasive instruments could still be enhanced, and 

the search has continued to the present without a clinically or commercially viable 

product emerging. The aim of this study is to evaluate a self-monitoring medical device 
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adopting NIR spectroscopy, which is able to detect glucose concentrations non-

invasively. Moreover, the precision in blood glucose measurement will also be validated.  

 

The objective of this study was to set up a non-invasive blood glucose measurement 

device that is stable and easy to use to detect the spectral response from human tissue. It 

was then used to examine different locations of the human body for non-invasive 

measurement, and the temperature difference of human tissues was inspected. In 

addition, various pre-processing methods were compared and a series of NIR 

wavelengths was identified. After that, robust mathematical models for classification 

and regression approaches were constructed that are able to classify and predict glucose 

concentrations in blood vessels non-invasively. 

 

Partial least squares (PLS) is widely used in multivariate calibration methods. Partial 

least squares discriminant analysis (PLS-DA) is a variant of PLS when the dependent 

variable is binary. They are particularly useful in spectral analysis because the 

concurrent inclusion of large spectral data for the analyte can greatly improve the 

precision and applicability of multivariate analysis. Very often, only one single 

quantitative model is constructed to predict the relationship between the response and 

the independent variables. This approach can easily misidentify, under or over estimate 

the important features contained in the independent variables. The results obtained by a 

single prediction model are thus unstable or correlated to spurious spectral variance, 

particularly when the training set for PLS is relatively small. New algorithms developed 

by applying the Monte Carlo (MC) method to PLS and PLS-DA, namely MC-PLS and 

MC-PLS-DA respectively, are proposed to classify spectral data obtained from NIR 
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blood glucose measurement. Noise in the data is removed by randomly selecting 

different subsets from the whole training dataset to generate a large number of models. 

The new algorithms are then used in determining the mean value over the models with 

high correlation and small prediction errors for MC-PLS, or the mean sensitivity and 

specificity of these models are then calculated to determine the model with the best 

classification rate for MC-PLS-DA. The results show that both the MC-PLS and MC-

PLS-DA methods give more accurate prediction results when compared with other 

multivariate methods used for NIR spectroscopic data of blood glucose. Additionally, 

the stability of the MC-PLS and MC-PLS-DA models are enhanced compared with the 

conventional PLS and PLS-DA models. 

 

The MC-PLS and the MC-PLS-DA methods are proposed in this study to tackle the 

problems in which accuracy is limited by the use of one single prediction model. These 

methods integrate the Monte Carlo method into the conventional PLS and PLS-DA to 

improve performance. The proposed algorithms exhibit better performance and accuracy 

rates when compared to other multivariate methods, as evident from the prediction 

results on the NIR spectral data. The prediction of the relationship between the response 

and the independent variables is more accurate, thus enhancing the reliability of the 

regression model. These advantages make MC-PLS and MC-PLS-DA a promising 

approach for non-invasive estimation of blood glucose.  
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CHAPTER 1      1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Diabetes mellitus (DM) is a major cause of mortality and morbidity in every country. In 

2012, more than 347 million people had DM worldwide (World Health Organization, 

2013). Due to the world’s increasingly ageing populations, increasingly unhealthy diets, 

sedentary lifestyles and obesity, it is estimated that the prevalence of DM will double by 

2030 (World Health Organization, 2013; Wild, Roglic, Sicree, King, & Green, 2004). It 

was the tenth most common cause of death in Hong Kong in 2010 (Department of 

Health, The Government of the Hong Kong Special Administrative Region, 2012). DM 

is an intractable condition in which blood glucose levels cannot be regulated normally 

by the body alone. It has many complications, including heart disease and stroke, kidney 

failure, blindness or vision problems, diabetic neuropathy and diabetic foot. Treatment 

methods include dietary regulation to control blood glucose levels, oral medication and 

insulin injection, but all of these have adverse effects on the sufferer’s quality of life. 

 

Type 1 diabetes, Type 2 diabetes, and gestational diabetes are three main types of 

diabetes although some other forms of DM do exist, including congenital diabetes, 
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cystic fibrosis related diabetes, several forms of monogenic diabetes, and steroid 

diabetes induced by high doses of glucocorticoids (World Health Organization, 2012). 

Type 1 diabetes is an autoimmune disease with pancreatic islet beta cell destruction. It is 

an autoimmune disorder in which the body cannot produce sufficient insulin. Type 2 

diabetes is the most prevalent form resulting from insulin resistance due to insulin 

secretary defect. Both Type 1 and Type 2 diabetes are chronic conditions that usually 

cannot be cured easily. Gestational diabetes is the term used when a woman develops 

diabetes during pregnancy. Generally, the situation resolves itself after delivery but it 

may proceed into the development of Type 2 diabetes later in life.  

 

The control of blood glucose levels relies on blood glucose measurement. Diabetic 

patients, no matter Type 1 or Type 2, are encouraged to check their blood glucose levels 

several times per day (International Diabetes Federation, 2011). Currently, the most 

common means of checking is by using a finger prick glucose meter (American Diabetes 

Assoication, 2012). In this way, diabetic patients can obtain a clear picture of their blood 

glucose levels for therapy optimization and for insulin dosage adjustment for those who 

need daily injections. 

 

Finger-pricking, however, has several disadvantages. Many people dislike using sharp 

objects and seeing blood; there is a risk of infection. Over the long term, this practice 

may also result in damage to the finger tissue. Given these realities, the advantages of a 

non-invasive technology are easily understood. Further, the finger prick glucose meter is 

a discrete glucose measurement device. It is not practical for continuous monitoring of 

blood glucose. Continuous glucose monitoring (CGM) is used to monitor blood glucose 
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levels throughout the day and night (Klonoff, 2005). The CGM system typically consists 

of a disposable sensor that is inserted into the skin, a wire that connects the sensor to a 

receiver, and a receiver that records and displays the blood glucose levels (National 

Diabetes Information Clearinghouse, 2008). The biggest advantage of CGM devices is 

the real time monitoring that is particularly useful for intensive insulin management or 

hypoglycaemia control. However, traditional finger-pricking is still needed for device 

calibration and the output results have a lag time that cannot reflect actual blood glucose 

levels for CGM devices. Therefore, some incidences of hyperglycemia, or hypoglycemia 

between the measurements, may not be recorded. Thus, the resultant monitoring cannot 

fully represent the blood glucose pattern. In this regard, the idea of non-invasive glucose 

measurement was initiated to eliminate the painful pricking experience, risk of infection, 

and damage to finger tissue. 

 

Many researchers have attempted to develop a variety of non-invasive methods that 

monitor blood glucose. Near infrared (NIR) spectroscopy has become a promising 

technique for blood glucose monitoring among those potential non-invasive approaches, 

because NIR spectroscopy is a comparably stable process that has low interference 

caused by other biological components and a higher signal-to-noise (SNR) ratio under 

room conditions. Figure 1.1 shows the NIR spectra of distilled water, 20% and 50% 

glucose solution in absorbance measurement ranging from 730 – 2,500nm. However, the 

search for a promising solution began more than 30 years ago and has continued to the 

present without a clinically or commercially viable product emerging. Many problems 

remain unsolved; for example, changes in metabolism and body temperature may 

consequently affect the blood glucose level. Error sources due to the measurement site 
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from different parts of body locations may also introduce uncertainty for non-invasive 

measurement.  

 

Figure 1.1 NIR spectra of distilled water, 20% and 50% glucose solution in 

absorbance measurement ranging from 730 – 2,500nm 

 

NIR spectroscopy is based on molecular overtone and combination vibrations. NIR light 

refers to radiation in the wavelength range from 730nm to 2,500nm. Glucose 

concentrations are measured through NIR optical sensing. It applies the Beer-Lambert 

Law, simply known as Beer’s Law, that relates the amount of light absorbed by a sample 

to the concentration of absorbing species in the sample (Smith, 2002). The linear 

equation of Beer’s Law shown in Equation (1.1) demonstrates that the amount of light 
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absorbed by a sample depends on the absorption of light through the analyte, the 

thickness of the sample, and the concentration of the analyte.  

𝐴 = log �
I0
I
� =  𝜀𝑙𝑐 (1.1) 

 
where A is the absorbance, I0 is the intensity of the incident light, I is the intensity, ε is 

the absorptivity, l is the pathlength, and c is the concentration. 

 

NIR spectroscopy is used to determine the concentration of a substance by measuring 

how it interacts with light. When light is absorbed during passage through a material, the 

amount of depletion of the light is measured (which is mostly known as absorbance). 

This relationship in Equation (1.1) allows absorbance measurements to be used to 

predict concentrations. For non-invasive blood glucose measurement by optical sensing 

technology, the absorbance takes place for the spectral measurement. The key 

component of NIR spectral analysis is dependent on multivariate training methods that 

require sufficient useful training spectra and sufficient spectral data points to allow 

analytical information to be extracted from spectra accurately. However, the analytical 

data matrix generally includes unexpected experimental errors or measurement noise 

and normally contains hundreds of samples in the NIR spectra. Hence, an appropriate 

model of spectral response in humans is yet to be determined. 
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1.2 Objectives 

 

The objective of this study is to construct a non-invasive blood glucose measurement 

device that is stable and easy to use to detect the spectral response from human tissue. It 

then examines different human body locations for non-invasive measurement and 

temperature differences of human tissues. Various pre-processing methods are also 

compared and the wavelengths relevant to the determination of blood glucose 

concentration are identified. Finally, robust mathematical models for classification and 

regression approaches are constructed that are able to classify and predict glucose 

concentrations in blood vessels non-invasively. 

 

1.3 Conceptual framework 

 

This study adopts the four-stage conceptual framework of bio-signal processing shown 

in Figure 1.2, (van Bemmel, Musen, & Helder, 1997) which shows that processing bio-

signals should normally consist of: 

1. Signal acquisition or measurement 

2. Signal transformation or signal pre-processing 

3. Parameter selection or variable/feature selection 

4. Signal classification or signal interpretation  
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Figure 1.2 The four-stage conceptual framework of bio-signal processing 

 

In the first stage, signal acquisition, a non-invasive blood glucose measurement device 

based on NIR spectroscopy is set up. NIR light is transmitted through an optical cable to 

the human skin surface and the reflected light is collected for computing blood glucose 

concentration in human blood. At this stage, it is most important to maintain a single 

measurement point in the human body and to obtain the signals with low disturbance so 

that the effect of measurement sites in different body parts and the temperature at the 

measurement sites can be investigated.  
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In the second stage, also called pre-processing, the signals are transformed in a way that 

such problems can be simplified through a suitable choice of pre-processing method, and 

misleading results can be avoided. This is because the signals contain much other 

information, i.e. redundancy, which are not needed to derive parameters in the later 

stages. By doing so, disturbances are decreased and the amount of unwanted data 

reduced so that signal quality can be improved for further analysis. Since the pre-

processing of NIR spectral data is important for the subsequent multivariate analysis, 

various normalization schemes and pre-processing techniques are evaluated and reported.  

 

The third stage delivers relevant parameters, also called features, which can be used for 

decision making. The features are extracted by some complex searching algorithms to 

distinguish those signal features that contain discriminatory power, and normally they 

can reduce the size of data so as to compute the diagnostically most significant 

parameters. Once the signal parameters have been obtained, they are used for further 

decision making in the interpretation stage. To deal with the difficulty caused by the 

high dimensionality of the spectral data in multivariate analysis, optimization searching 

algorithms are applied for features selection to identify the relevant NIR wavelengths. 

 

The interpretation or classification stage of bio-signal processing is the stage of 

identifying which set of categories a new measurement belongs to, on the basis of a set 

of training data containing relevant signal parameters whose category membership is 

known. They can have a logical basis, follow multivariate analysis or be a combination 

of different methods. This study introduces improved algorithms to deal with the signal 
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classification stage that can provide more accurate classification or interpretation of 

results as well as enhance the stability of signal interpretation. 

 

1.4 Contribution 

 

The major contributions the thesis makes include: a large clinical trial on human subjects 

that uses an assembled non-invasive blood glucose measurement device for data 

collection; an investigation of the variations in measurement settings (measurement sites 

and temperature differences) that may affect the calculation of blood glucose 

concentration; the selection of pre-processing method(s) and the algorithm for feature 

selection; and developing computational algorithms to improve the performance and 

accuracy rate of the calculation. In the last case, the proposed algorithms outperform 

conventional multivariate methods, whereby predicting the relationship between the 

response and the independent variables is more accurate, thus enhancing the reliability 

of the regression model. The findings obtained in the thesis provide a useful reference 

for future development in non-invasive NIR blood glucose measurement. 

 

1.5 Organization of the thesis 

 

The remainder of this thesis is organized as follows. Chapter 2 presents a review of the 

literature concerning non-invasive technologies and the devices that appear in the market. 

Chapter 3 reviews the existing multivariate analysis approaches for classification and 
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regression. Chapter 4 describes the study design and data acquisition. Chapter 5 

illustrates the ground work for implementing the non-invasive measurement device, 

which includes data pre-processing, the selection of a measurement site from different 

body locations, and the temperature effect for human tissues. Chapter 6 describes the 

improvement work on the classification approach and regression approach based on the 

Monte Carlo method as applied to the algorithm. Finally, the discussion and conclusion 

sections presented in Chapter 7 summarize the overall findings in this study.  
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CHAPTER 2 

NON-INVASIVE GLUCOSE MONITORING 

 

The non-invasive concept was launched more than 30 years ago (Rabinovitch, March, & 

Adams, 1982). Nevertheless, most non-invasive technologies are still in their early 

stages of development. Many non-invasive technologies have been described in the 

literature, and there is an increasing volume of recent research results. Keeping up with 

the current situation requires constant updating (Khalil, 2004). The results of an Internet 

search provide much information on this topic, such as overviews of non-invasive 

technology (Waynant & Chenault, 1998), the future development of meters and monitors 

for diabetes (The Diabetes Mall, 2010), and information about research centers that are 

developing this technique (Optical Science & Technology Center, 2010). However, the 

scope of devices is so broad that no single website can keep up. Much information is 

outdated (Mendosa, 1995). Therefore, the focus of this chapter is not just to review the 

related literature but to present the current state of the art of non-invasive glucose 

monitoring for diabetes. It will describe the technologies being used, technologies under 

development, devices being used, and the companies producing these devices. 
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2.1 The technologies 

 

This study considers non-invasive glucose measurement as any technique that does not 

involve pricking (breaking) the skin. The different techniques/technologies are listed in 

alphabetical order. The principle of each technology, together with its advantages and 

limitations, are discussed. 

 

2.1.1 Bioimpedance spectroscopy 

 

Principle 

Bioimpedance is a measure of the resistance to electric current flowing through the 

tissues of a living organism (Sverre & Orjan Grottem, 2008). Measuring the bioelectrical 

impedance has proved useful as a non-invasive method for measuring body composition 

(Tao & Adler, 2009). The impedance spectrum or dielectric spectrum is measured in the 

frequency range of 0.1 to 100MHz. Variations in plasma glucose concentration induce a 

decrease in sodium ion concentration in red blood cells and an increase in potassium ion 

concentration (Hillier, Abbott, & Barrett, 1999). These variations cause changes in the 

membrane potential of red blood cells, which can be estimated by determining the 

permittivity and conductivity of the cell membrane through the dielectric spectrum 

(Caduff, Hirt, Feldman, Ali, & Heinemann, 2003; Ermolina, Polevaya, & Feldman, 2000; 

Polevaya, Ermolina, Schlesinger, & Ginzburg, 1999). In 2003, Pendragon Medical Ltd. 

(a company in Zurich, Switzerland) developed a wrist band-based glucose monitor 

called “Pendra” based on this technology. This product was soon withdrawn from the 
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market, however, because of poor reliability. Currently, Caduff’s research group is still 

working on this technology (Caduff, et al., 2009). 

 

Advantages 

Bioimpedance spectroscopy does not require the use of statistically-derived, population- 

specific prediction models. It has the potential advantage of being able to differentiate 

between extracellular water and intracellular water, thereby providing an estimate of 

body cell mass, and thus characterizing the blood bioimpedance properties. The 

instrument is easy to use and low in cost compared to other devices. 

 

Limitations 

The limitation of this technology is that it requires an equilibration process, where the 

user must rest for 60 minutes before starting the measurements (Caduff, Hirt, Feldman, 

Ali, & Heinemann, 2003). In addition, it will ionize the body’s molecules when using 

bioimpedance technology. Moreover, some problems remain to be clarified, such as the 

effects of temperature and body water content (e.g., skin moisture, sweat, overall 

hydration) on readings (Caduff, et al., 2009). 

 

2.1.2 Electromagnetic sensing  

 

Principle 

Like bioimpedance spectroscopy, this technology assesses dielectric parameters of blood. 

The difference between them is that an electric current is used in bioimpedance 
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spectroscopy, while the electromagnetic coupling between two inductors is used in 

electromagnetic sensing (Gourzi, et al., 2005; Tura, Sbrignadello, Cianciavicchia, Pacini, 

& Ravazzani, 2010). The sensor uses electric currents to detect variations of the 

dielectric parameters of the blood, which may be caused by glucose concentration 

changes (Moran, Jeffrey, Thomas, & Stevens, 2000). The frequency range used in this 

technique is 2.4 – 2.9MHz. However, depending on the temperature of the investigated 

medium, an optimal frequency exists at which the sensitivity to glucose changes reaches 

the maximum. Determining this frequency is important for the efficacy of the device. 

Gourzi’s research group suggested the optimal frequency is 2.664MHz at 24°C (Gourzi, 

et al., 2005). However, another study of this technology using pig blood suggests that 

the optimal operating frequency is 7.77GHz at 25°C (Melikyan, et al., 2011). 

 

Advantages 

Using a specific frequency range can isolate the effect due to blood glucose and 

minimize the interference caused by other substances like cholesterol that may skew the 

readings. In addition, the method is relatively safe because it will not ionize the body’s 

molecules as in the case of bioimpedance spectroscopy. 

 

Limitations 

Temperature has a strong effect on this form of measurement because it influences the 

optimal investigation frequency. Furthermore, Moran’s research group reported that the 

blood dielectric parameters depend on several components other than glucose (Moran, 

Jeffrey, Thomas, & Stevens, 2000). Therefore, more study on the potential confounders 

is needed before this technology can be considered reliable. 

 
 



NON-INVASIVE GLUCOSE MONITORING      15 

 

2.1.3 Fluorescence technology 

 

Principle 

This technique uses fluorescence reagents to track the presence of glucose molecules in 

blood. Many approaches exist, such as measuring changes in fluorescence resonance 

energy transfer between a fluorescent donor and an acceptor or measuring glucose-

induced changes in intrinsic fluorescence of enzymes (Pickup, Hussain, Evans, Rolinski, 

& Brich, 2005). One study reported that glucose levels in tears reflect concentrations 

similar to those in blood, and thus fluorescence of tears can be used for non-invasive 

glucose monitoring. Khalil reported that this approach can track blood glucose with an 

approximate 30-minute lag time and does not suffer from interference caused by 

variations in the light intensity of the ambient environment (Khalil, 2004a). The 

photonic sensing is achieved with polymerized crystalline colloidal arrays that respond 

to different glucose concentrations through the diffraction of visible light. 

 

Advantages 

This technology is very sensitive and can be used to detect single molecules.  It causes 

little or no damage to the body. In addition, glucose concentration is measured in terms 

of fluorescence intensity and decay times, both of which are independent of light 

scattering and fluorophore concentration, which can reduce loss through diffusion or 

degradation. 
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Limitations 

Photonic sensing can suffer from strong scattering phenomena, especially in 

fluorescence technology. Moreover, limitations such as short lifetimes and 

biocompatibility of the sensor devices have to be dealt with, possibly through the use of 

colorimetric assays (Moschou, Sharma, Deo, & Daunert, 2004). 

 

2.1.4 Mid-infrared spectroscopy 

 

Principle 

Mid-infrared (MIR) spectroscopy employs the same principles as infrared spectroscopy. 

It is the absorption measurement of MIR frequencies through a sample positioned in the 

path of an MIR beam, which is based on light in the 2,500 – 25,000nm wavelength 

region of the spectrum. The absorption differences when MIR light meets human tissues 

can be represented by certain modelling techniques in spectral quantitative analysis. A 

partial least squares algorithm is now commonly used for multivariate calibration.   

 

Advantages 

MIR light exhibits decreased scattering and increased absorption when compared with 

NIR spectroscopy because of the larger wavelengths (Lilienfeld-Toal, Weidenmuller, 

Xhelaj, & Mantele, 2005). Light can only penetrate into skin for a depth of a few 

micrometers. As a result, only reflected light can be considered, because there is no light 

transmitted through a body segment. Moreover, another possible advantage of MIR 
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spectroscopy is that the response peaks of glucose and other compounds are stronger 

than those in NIR. 

 

Limitations 

Poor penetration is the main limitation of MIR because it may not be able to reach blood 

vessels under the skin. Other limitations, as with NIR, include problems caused by 

confounding factors such as water content in blood (Brancaleon, Bamberg, Sakamaki, & 

Kollias, 2001). 

 

2.1.5 Near infrared spectroscopy 

 

Principle 

Near infrared (NIR) spectroscopy is located in the wavelength region of 730 to 2,500nm. 

The principle is similar to that of MIR spectroscopy. NIR spectra are made up of broad 

bands corresponding to overlapping peaks: the overtones (i.e. first, second, third and 

combination overtones) formed by molecular vibrations. It allows blood glucose 

measurement in tissues by variations of transmittance and reflectance of light. Heise, 

one of the pioneers in noninvasive blood glucose monitoring, has conducted 

considerable research on NIR techniques (Heise, Bittner, & Marbach, 1998; Heise & 

Marbach, 1998; Siesler, Ozaki, Kawata, & Heise, 2002). It was also reported that 

glucose generates one of the weakest NIR absorption signals per concentration unit of 

the body’s major components (Raghavachari, 2001). The research group of Maruo 

demonstrated the efficacy of this approach in vivo, using NIR diffuse reflectance 
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spectroscopy through fiber optics on diabetes patients’ forearms (Kasemsumran, Du, 

Maruo, & Ozaki, 2006; Maruo, Tsurugi, Chin, Ota, Arimoto, & Yamada, 2003). The 

results showed a positive sign on the correlation between predicted values and the 

reference glucose levels. In addition, Arnold’s research group reported that although 

measurement errors of NIR spectroscopy are too large for clinical purposes, these 

experimental results demonstrate the potential of non-invasive blood glucose 

measurements (Arnold & Small, 2005; Liu & Arnold, 2009; Tarumi, Amerov, Arnold, & 

Small, 2009). 

 

Advantages 

The high sensitivity of the photo conductive detectors is the main advantage of NIR 

spectroscopy. Water is reasonably transparent to the signal bandwidth used by NIR, 

which makes it possible to use it for blood glucose monitoring. In addition, the measured 

signal is stronger than that in MIR spectroscopy. This method is also less expensive than 

MIR; the cost is relatively lower, and the materials required can be obtained from a wide 

range of commercially available products. These advantages make NIR popular in this 

research area. 

 

Limitations 

Despite much promising work, researchers still cannot overcome important 

shortcomings, namely and particularly: the scanning location of the human body and the 

force that must be applied to the measurement site; physiological differences not related 

to blood glucose; the relatively small fraction of glucose in blood (Arnold & Small, 
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2005); weak correlation; as well as hardware sensitivity and stability (David & Julie, 

2010; Liu, Deng, Chen, & Xu, 2005). 

 

2.1.6 Optical coherence tomography 

 

Principle 

Optical coherence tomography is an optical signal acquisition method based on the use 

of a low coherence light, such as a super luminescent light and an interferometer, which 

determines the depth of the scattering feature by measuring the delay correlation 

between a sample arm and a reference arm with a moving mirror to achieve the depth 

measurement (Larin, Eledrisi, Motamedi, & Esenaliev, 2002). Light backscattered from 

tissues is combined with light returned from the reference arm of the interferometer, and 

the resulting signal is detected by the photodetector. The delay correlation between the 

backscattered light in the sample arm and the reflected light in the reference arm is then 

measured. An increase of glucose concentration in the interstitial fluid causes an 

increase in refractive index, which in turn creates a decrease in the mismatch between 

sample and reference indices to provide a higher correlation. 

 

Advantages 

This technology has high signal to noise ratio, high resolution and depth of penetration, 

because the interferometric signal can be formed only within the coherence length of the 

source. 
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Limitations 

Optical coherence tomography is sensitive to the individual’s body movement. In 

addition, while slight changes in skin temperature have negligible effects, changes of 

several degrees have a significant influence on the signal (Yeh, Hanna, & Khalil, 2003). 

Additionally, there is no clear evidence that this method has advantages compared to 

other scattering-based techniques. 

 

2.1.7 Optical polarimetry 

 

Principle 

Some researchers are trying to apply optical polarimetry in non-invasive glucose 

monitoring. Because the high scattering coefficients produce complete depolarization 

when the beam strikes the skin, attention has been focused on the eye, which offers a 

clear optical medium with a reasonable path length in relation to blood glucose (Malik & 

Cote, 2010). The polarization is expected to rotate several degrees depending on the 

concentration of glucose when a light transverses vitreous humor. 

 

Advantages 

As light absorption and scattering in the eye are low, and there are virtually no large 

protein molecules in the aqueous humor, the main component in the aqueous humor is 

glucose; therefore, stronger correlation may exist to determine the blood glucose 

concentration. In addition, this technique makes use of visible light, and the optical 

components can be easily miniaturized. 
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Limitations 

This technique is sensitive to the scattering properties of the investigated tissue, as 

scattering depolarizes the light. As a result, skin cannot be investigated by polarization 

technology, because it shows high scattering effects, particularly in the stratum corneum. 

Moreover, eye movement and motion artifacts are general sources of errors for this 

technique. Furthermore, the specificity of this technique is poor, as several optically 

active compounds are present in human fluids containing glucose such as albumin and 

cholesterol. 

 

2.1.8 Raman spectroscopy 

 

Principle 

Raman spectroscopy is based on the use of a laser light to induce oscillation and rotation 

in human fluids containing glucose. Because the emission of scattered light is influenced 

by molecular movement, it is possible to estimate glucose concentration in human fluids 

(Berger, Koo, Itzkan, Horowitz, & Feld, 1999). This effect depends on the concentration 

of the glucose molecules.  This technique can measure very weak signals even in human 

fluids. The wavelength range of Raman spectrum is considered to be 200 to 2,000cm-1 

(Hanlon, et al., 2000). Raman spectrum of glucose can be differentiated from those of 

other compounds in this band. 
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Advantages 

Raman spectroscopy usually provides sharper and less overlapped spectra compared to 

NIR spectroscopy. The intensity of spectral features is proportional to the concentration 

of the particular species, and the spectra are less sensitive to temperature changes. 

Moreover, it is comparatively less sensitive to water, and the interference from 

luminescence and fluorescence phenomena is only modest. 

 

Limitations 

The main limitations are related to instability of the laser wavelength and intensity, and 

long spectral acquisition times. In addition, as the power of the light source must be kept 

low to prevent injury, the signal-to-noise ratio is significantly reduced. Moreover, like 

NIR spectroscopy, interference from other compounds remains a problem. 

 

2.1.9 Reverse iontophoresis 

 

Principle 

Reverse iontophoresis is based on the flow of a low electrical current through the skin, 

between an anode and cathode positioned on the skin surface. An electric potential is 

applied between the anode and cathode, thus causing the migration of sodium and 

chloride ions from beneath the skin towards the cathode and anode, respectively. In 

particular, it is sodium ion migration that mainly generates the current (Sieg, Guy, & 

Delgado-Charro, 2004). This measurement is possible because neutral molecules, such 

as glucose, are extracted through the epidermis surface during this convective flow. This 
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flow causes interstitial glucose to be transported, collecting at the cathode where a 

traditional glucose sensor is placed to measure glucose concentration directly. The 

“GlucoWatch” device (Cygnus Inc., Redwood City, CA) is based on this technology and 

has been approved by the US Food and Drug Administration (FDA). The device collects 

glucose molecules through the cathode disk and measures the amount by a sensor that 

contains enzyme glucose oxidase. Blood glucose concentration is predicted by 

comparing the pre-measured blood glucose value with the signal generated by glucose 

molecules collected at the cathode. However, this product was withdrawn from the 

market due to poor accuracy, skin irritation, and long procedural problems. 

 

Advantages 

The advantage of this technology is that the electrodes are easily applied to the skin, by 

which a physiologically relevant fluid sample is collected which has a correlation 

between glucose concentration in physiological fluid and glucose concentration in blood. 

 

Limitations 

While reverse iontophoresis technology has great potential, the only device ever 

marketed using it had such serious practical drawbacks that it was withdrawn from the 

market. First, the electrodes irritated the skin. Second, the electrodes needed to be in 

place for at least 60 minutes, which exceeded the patience of many users. Third, 

readings were inaccurate, especially when the subject was sweating. Fourth, it was not 

able to detect the rapid changes in blood glucose, due to its long “wake up” time. 
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2.1.10 Ultrasound technology 

 

Principle 

Ultrasound technology is based on low frequency ultrasound that penetrates the skin for 

blood glucose monitoring. While this approach has theoretical potential, it seems that no 

further work has been done since Lee’s group reported their laboratory results on rat 

skins (Lee, Nayak, Dodds, Pishko, & Smith, 2005). A variation, named photoacoustic 

spectroscopy (PAS), is being used, which is based on the use of a laser light for the 

excitation of a fluid and for measuring the resulting acoustic response (MacKenzie, et al., 

1999). The fluid is excited by a short laser pulse with a wavelength that is absorbed by a 

particular molecular species in the fluid. Light absorption causes microscopic localized 

heating in the medium, which generates an ultrasound pressure wave that is detected by 

a microphone. The principle of the photoacoustic method is that an energy source 

irradiates the skin surface, causing thermal expansion in the illuminated area. An 

acoustic wave is released because of the energy of the thermal expansion. Detecting 

glucose with this technique is based on measuring the changes of the peak-to-peak value 

of the signal, which will vary according to the glucose content of the blood. 

 

Advantages 

This technology can provide higher sensitivity than traditional spectroscopy in the 

determination of glucose because of the relatively better photoacoustic response of blood, 

as compared with water.  This makes it easier to distinguish hydrocarbons and glucose 
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(MacKenzie, et al., 1999). Also, the laser light wavelengths that can be used vary in a 

wide range from ultraviolet to NIR. 

 

Limitations 

The technology is sensitive to interference from some biological compounds, 

temperature fluctuations, and pressure changes. Moreover, when the laser light 

transverses a dense medium, the photoacoustic signal may be affected by scattering 

phenomena, which may possibly cause an adverse effect similar to NIR spectroscopy. 

Another disadvantage is that the instrumentation is expensive and sensitive to 

environmental parameters. 

 

2.2 Current development for non-invasive glucose 

monitoring 

 

Various non-invasive technologies were discussed in the previous section. Clearly, many 

research groups are exploring a wide variety of approaches, trying to develop a blood 

glucose measurement device that can provide stable and reliable results, conveniently 

and economically. Table 2.1 shows the most recent work and internet references. 

Discontinued products such as GlucoWatch, Diasensor (Biocontrol Technology Inc., 

Pittsburgh, PA) and Pendra, are not listed. In addition, Appendix A shows the devices 

listed in Table 2.1 for reference.  
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Device / 
Company 

Technology Status URL 

BioSensors Inc. 

SEMP 
Technology 

(Bioimpedance 
Spectroscopy) 

Appeared in 2010 
and is under 
development 

http://www.biosensors-
tech.com/ 

ClearPath DS-
120, Freedom 

Meditech 

Fluorescent 
Technology 

Appeared in 2007 
and is said to be 

delivered to FDA 
for approval in 

2011 

http://freedom-
meditech.com/ 

Cnoga Medical NIR Spectroscopy 

Appeared in 2010 
and is said to be 

delivered to FDA 
for approval in 

2011 

http://www.cnoga.com/
Medical/Products/Gluco

meter.aspx 

C8 
MediSensors 

Raman 
Spectroscopy 

Appeared in 2011 
and the current 

status is 
investigational 

device 

http://www.c8medisensor
s.com/us/home.html 

Easy Check, 
Positive ID 

Chemical sensing 
in exhaled breath 

Appeared in 2010 
and is under 
development 

http://www.positiveidcor
p.com/products_easychec

k.html 

EyeSense Fluorescent 
Technology 

Appeared in 2008 
and is still in R&D 

phase; plan is to 
launch the device 

in 2013 

http://www.eyesense.co
m/en/konzept.htm 

Glucoband, 
Calisto 

Medical Inc. 

Bio-
electromagnetic 

Resonance 

Appeared in 2005 
and claimed under 
pilot production in 

2011 

http://www.calistomedica
l.com/ 

GlucoTrack, 
Integrity 

Applications 
Ltd. 

Ultrasonic, 
Conductivity and 

Heat capacity 
Technology 

Under clinical trials 
phase (last 

checked: 2011) 

http://www.integrity-
app.com/ 

Glove 
Instruments 

NIR Spectroscopy 
(Optical Bridge 

Technology) 

Appeared in 2008 
and is said to be 
commercialized 

soon, (last checked: 
2012) 

http://groveinstruments.c
om/ 
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OrSense Ltd. 

Occlusion 
Technology 
(Proprietary 
Technology) 

Appeared in 2006, 
the company has 
stated that this 
product is for 

market awareness 
purposes only 

http://www.orsense.com/
Glucose 

SCOUT 
DS,VeraLight 

Inc. 

Fluorescent 
Spectroscopy 

Appeared in 2011 
and has received 
approval from 

Health Canada for 
commercial 
distribution 

http://www.veralight.co
m/products.html 

 
Table 2.1 Information regarding non-invasive glucose monitoring devices 

 

It is worth noting that very little evidence has proven the analytical feasibility of glucose 

monitoring by the non-invasive devices listed in Table 2.1. The supporting 

documentation provided by the research groups is severely limited. Most of the 

technologies are proprietary, and limited information is disclosed. Although some of the 

technologies are mentioned in refereed papers, very little specific relevant information is 

provided. In particular, the judgments of measurement accuracy are completely omitted. 

 

At the same time, Table 2.1 shows that many research groups are working on this 

problem, trying to develop new measurement technologies and methods to measure 

blood glucose non-invasively. One of the main reasons is that existing technologies, 

such as absorption spectroscopy, are relatively poor in signal-to-noise ratio in relation to 

blood glucose concentration and spectral response. Due to the huge anticipated market 

for a successful non-invasive glucose monitoring device, the race for research teams to 

develop more precise and accurate spectroscopic equipment is heated.  
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2.3 Summary 

 

This chapter described the latest technologies and devices for non-invasive glucose 

monitoring. It seems that NIR spectroscopy has become a promising technology, among 

others, for non-invasive blood glucose monitoring. Unfortunately, none of these 

technologies has produced a commercially available, clinically reliable device; therefore, 

much work remains to be done. In addition, as multivariate analysis is commonly used 

to extract relevant information from different types of spectral data to predict analyte 

concentrations, it plays a critical role in absorption spectroscopy; therefore, the most 

commonly used multivariate techniques for classification and regression approaches will 

be reviewed in the next chapter.  
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CHAPTER 3 

REVIEW OF MULTIVARIATE ANALYSIS 

 

The spectroscopic method has become a widely used non-destructive measurement 

technique for agrochemical, pharmaceutical, and medical applications (Burns & 

Ciurczak, 2008; Ciurczak & Drennen, 2002; Ozaki, McClure, & Christy, 2007), and 

multivariate analysis is commonly used to extract relevant information from different 

types of spectral data to predict analyte concentrations (Rencher, 2002; Smith, 2002). 

They are particularly useful in spectral analysis because the concurrent inclusion of large 

spectral data for the analyte can greatly improve the precision and applicability of 

multivariate analysis. In this chapter, the most commonly used multivariate techniques 

for classification approach for unknown samples (qualitative analysis) as well as 

regression approach for unknown samples (quantitative analysis) are reviewed. In 

addition, the performance measurands for multivariate analysis are mentioned, because 

they will be used in the following chapters for evaluation. 

 

3.1 Classification for qualitative analysis 

 

In the classification approach, the sample properties that relate to spectral variations 

belong to several different groups or classes. Classes may represent the identity or 
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quality, e.g. normal or high, good or bad, yes or no. In this regard, a variety of methods 

have been developed for classifying samples based on measured responses, and these 

methods can be subdivided in non-supervised and supervised methods. Non-supervised 

methods do not require any pre-established class memberships but instead produce the 

grouping or clustering themselves. Supervised methods, also known as discriminant 

analysis, use known class memberships so that qualitative data are added to the 

quantitative spectral data. As the following study focuses on the use of supervised 

methods, supervised methods such as linear discriminant analysis, artificial neural 

network, and support vector machine will therefore be discussed.  

 

3.1.1 Linear discriminant analysis (LDA) 

 

Linear discriminant analysis (LDA) is used to classify analyte concentration based on 

the spectral data (Huberty & Olejnik, 2006). A discriminant function f(x) that is a linear 

combination of the components x can be written as  

f(𝐱) =  𝐰T𝐱 + 𝑤0 =  𝑎T𝑦 (3.1) 
 
where w is the weight vector, w0 is the threshold weight, and 𝑎 = [𝑤0,𝐰]T , 𝑦 =

[1, 𝐱]T is the augmented weight and feature vector, respectively. The superscript T 

denotes the matrix transpose. The goal here is to find the weight vector w. The 

expression can be simplified by using matrix notation as follows,  

𝐘𝐚 = 𝐛 (3.2) 
 
where Y is the n-by-d matrix whose i-th row is the vector 𝒚𝑖Tand b is the output column 

vector. Now, the purpose is transformed to the problem of finding the weight vector a. 
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One approach is to minimize the square length of the error vector. Hence, the minimum 

sum of squared error criterion function is used 

Js(𝐚) =  ‖𝐘𝐚 − 𝐛‖2 =  �(𝐚T𝐲𝑖 − 𝑏𝑖)2
𝑛

𝑖=1

 (3.3) 

 
which can be then solved by a gradient search procedure. A simple closed form solution 

can also be found by forming the gradient 

∇Js =  � 2(𝐚T𝐲𝑖 − 𝑏𝑖)𝐲𝑖 = 2𝐘T(𝐘𝐚 − 𝐛)
𝑛

𝑖=1

 (3.4) 

 
and setting it to zero. This yields the necessary condition 

𝐘T𝐘𝐚 =  𝐘T𝐛, and  (3.5) 
  
𝐚 =  (𝐘T𝐘)−𝟏𝐘T𝐛 (3.6) 
 
which are desirable because 𝐘T𝐘  is often nonsingular, meaning that a minimum square 

error solution always exists. 

 

3.1.2 Artificial neural network (ANN) 

 

An artificial neural network (ANN) is a statistical modelling inspired in the natural 

neurons and is commonly used in modelling complex relationships among independent 

variables and dependent variables. ANN is a self adaptive and data driven modelling 

technique although it resembles regression analysis, but has much more flexibility 

because it is not restricted by any statistical assumptions or pre-specified algorithms. It 

basically consists of inputs, which are multiplied by weights and then computed by a 

mathematical function that determines the activation of the neuron. Figure 3.1 shows the 
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basic architecture of an artificial neuron. The higher a weight of an artificial neuron is, 

the stronger the input which is multiplied by it will be. Depending on the weights, the 

computation of the neuron will be different. By adjusting the weights of an artificial 

neuron we can obtain the output we want for specific inputs. The presence of artificial 

neurons in the network greatly increases its capacity to deal with various complicated 

relationships. However, when an ANN of hundreds or thousands of neurons exists, it 

would be quite complicated to find all the necessary weights. 

Σ

x1

xn
...

w1

wn

Output

 

Figure 3.1 The basic architecture of an artificial neuron 

 

A fundamental architecture of an ANN is shown in Figure 3.2 according to the idea of 

artificial neurons. This consists of an input layer, a hidden layer and an output layer. The 

distinguishing characteristic of an ANN is the hidden layer that contains different 

numbers of hidden neurons so that the weights of the ANN can be adjusted in order to 

obtain the desired output from the network. This process of adjusting the weights is 

called learning or training.  
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Input

neurons

Output

 

Figure 3.2 A fundamental architecture of an ANN 

 

There are many different types of learning algorithms for ANNs, and the most popular 

training algorithm is backpropagation since many other learning algorithms are based on 

it. The backpropagation algorithm (Rumelhart & Mcclelland, 1986) is used in layered 

feed forward ANN, which means the artificial neurons are organized in layers, send their 

signals forward, and the errors are propagated backwards. The backpropagation 

algorithm uses supervised learning. This utilizes the steepest gradient descent in a 

multilayer perceptron to minimize the sum squared error. The steepest gradient descent 

is a mathematical algorithm that locates the local minimum of a function by taking steps 

proportional to the negative of the gradient of the function at the current point. The 

weights are updated according to the sum squared error feedback from the output 

neurons until the mean squared error is minimized in backpropagation training.  
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There may be one or more intermediate hidden layers. However, it is worth noting that 

for practical reasons, ANNs implementing the backpropagation algorithm do not have 

too many layers (normally one hidden layer) because the computation time for training 

the networks increases exponentially. 

 

3.1.3 Support vector machine (SVM) 

 

Support vector machine (SVM) is a supervised learning system that uses a hypothesis 

space of linear functions in a high dimensional feature space, trained with a learning 

algorithm from optimization theory that has originally been used for classification 

analysis (Cristianini & Shawe-Tayor, 2002; Kecman, 2001). Nowadays, SVM can be 

applied to a number of applications such as system identification, pattern recognition, 

bioinformatics, finance, and marketing. In a supervised learning machine, it is given a 

training set (inputs) with associated variables (outputs). A number of sets of hypotheses 

can be chosen if a set of training data points are present. To tackle the problem, linear 

function is the best understood and simplest to apply. Since SVM is a linear learning 

machine, this means that a linear function is used to solve a system. The problem of 

linear regression consists in finding a linear function as listed below that best 

interpolates a given set of training data points 

𝑓(𝐱) = 𝑦 = 𝐰T𝐱 + 𝑏 (3.7) 
 
where w is the weight vector to the hyperplane, b is the offset, and the superscript T 

denotes the matrix transpose. 
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In a classification process, the output is either 1 or -1 which indicates the class to which 

the input belongs. The optimization problem is to find the pair of hyperplanes that give 

the maximum margin that depends on the norm of w such that minimize (1
2
𝐰T𝐰) subject 

to 𝑦𝑖(𝐰T𝐱𝒊 − 𝑏) ≥ 1 where 𝑖 = 1,⋯ ,𝑛.  

 

Consider how to transform this optimization problem into its corresponding dual 

problem by introducing the Lagrange multipliers. The Lagrangian function for the 

constrained problem can be expressed as 

𝐿(𝐰, 𝑏,α) =  
1
2
𝐰T𝐰 −  �α𝑖[𝑦𝑖(𝐰T𝐱𝑖 − 𝑏) − 1]

𝑛

𝑖=1

 (3.8) 

 
where α𝑖 ≥ 0 

The Lagrangian function in Equation (3.8) must be minimized with respect to w and b 

with the necessary condition that the derivatives of L with respect to all the α𝑖 vanish. 

This problem can now be solved by standard quadratic programming techniques. It is 

found by differentiating with respect to w and b, imposing stationarity. 

∂𝐿(𝐰,𝑏,α)
∂𝐰

=  w −�α𝑖𝑦𝑖𝐱𝑖

𝑛

𝑖=1

= 0 (3.9) 

 
∂𝐿(𝐰,𝑏,α)

∂𝑏
=  �α𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (3.10) 

 
Substituting (3.9) and (3.10) into (3.8) to obtain 

 
 



REVIEW OF MULTIVARIATE ANALYSIS      36 

𝐿(𝐰, 𝑏,α) =  
1
2
𝐰T𝐰 −  �α𝑖[𝑦𝑖(𝐰T𝐱𝑖 − 𝑏) − 1]

𝑛

𝑖=1

=  
1
2
� α𝑖α𝑗𝑦𝑖𝑦𝑗𝐱𝑖T𝐱𝑗

𝑛

𝑖,𝑗=1

− � α𝑖α𝑗𝑦𝑖𝑦𝑗𝐱𝑖T𝐱𝑗

𝑛

𝑖,𝑗=1

+ �α𝑖
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(3.11) 

 
The corresponding 𝐱𝑖 are exactly the support vectors (critical elements of the training set) 

that lie on the margin and satisfy the condition. Because of the specific formulation of 

the cost function and the use of the Lagrangian theory, it can be proven that the solution 

found is always global because the problem formulation is convex (Burges, 1998). In 

addition, the solution is unique due to the convex property.  

 

If the surface separating the two classes is not linear, this approach has to be extended 

(Boser, Guyon, & Vapnik, 1992). This can be done by replacing 𝐱𝑖 by a mapping into 

feature space with a kernel function 𝑘(𝐱𝑖) that linearizes the relation between the inputs 

and outputs variables. In the feature space, Equation (3.11) can be expressed as  

𝐿(𝐰, 𝑏,α) =  �α𝑖

𝑛

𝑖=1

−
1
2
� α𝑖α𝑗𝑦𝑖𝑦𝑗𝑘�𝐱𝑖, 𝐱𝑗�
𝑛

𝑖,𝑗=1

 (3.12) 

 
Many kernel functions can be used and the most widely used is the Gaussian radial basis 

function, which is shown as  

𝑘�𝐱𝑖, 𝐱𝑗� =  e
−�𝐱𝑖−𝐱𝑗�

2

2σ2 , for σ ≥ 0 (3.13) 

 
With a suitable kernel, SVM can separate in the feature space the data that were non-

separable in the original input space. This property means that non-linear algorithms can 
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be obtained by using proven methods to handle linearly separable data sets, and they 

usually exhibit good generalization performance. 

 

3.2 Regression for quantitative analysis 

 

The regression approach is focused on the relationship between a dependent or criterion 

variable and one or more independent or predictor variables. It is indirect and relies on 

the ability to develop a model that relates the set of measured variables to the property of 

the system. It is widely used for prediction and forecasting (Escandar, Damiani, 

Goicoechea, & Olivieri, 2006; Eriksson, Gottfries, Johansson, & Wold, 2004; Wold, 

Cheney, Kettaneh, & McCready, 2006). Most importantly, the regression approach is 

used to explore the forms of these relationships so as to understand which among the 

independent variables are related to the dependent variable. Multiple linear regression 

(MLR) (Ostrom, 1990; Weisberg, 2005) and principal component regression (PCR) 

(Martens & Naes, 1989; Naes, Isaksson, Fearn, & Davies, 2002) are widely used 

methods to construct the quantitative model in spectral analysis. Furthermore, the key 

component of quantitative analysis is dependent on multivariate training methods that 

require sufficient and useful training data to allow analytical information to be extracted 

accurately. Undoubtedly, partial least squares regression (PLS) (Hoskuldsson, 1988; 

Paul & Bruce, 1986) is the most commonly used multivariate training procedure to build 

the quantitative model, especially in absorption spectroscopy, because PLS attempts to 

maximize covariance between the response and independent variables. Therefore, the 
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PLS algorithm is introduced here, and which will focus on utilization for the prediction 

process in later chapters. 

 

3.2.1 Multiple linear regression (MLR) 

 

Multiple linear regression (MLR) is based on the least squares approach in which the 

sum of squares differences of observed and predicted values is minimized to construct 

the model (Wise & Kowalski, 1995). It assumes that a regression vector b can be used to 

determine a property of the system y from the measured variables A. Therefore, the 

model is 

𝐲 =  𝐀𝐛 (3.14) 
 
where y is the measured response vector, A is the matrix of component responses and b 

is the vector containing the weights of the analytes 

 

The regression vector b should be determined by using the matrix A and the known 

values of the property of system y. Therefore, b can be estimated as 

𝐛 =  𝐀+𝐲 (3.15) 
 
where A+ is the pseudoinverse of A 

 

Now, A+ is defined as 

𝐀+ =  (𝐀T𝐀)−1𝐀T (3.16) 
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The regression vector b can be determined based on (3.16) and the known values y. 

However, MLR is not always effective because of collinearity of some or all of the 

response variables in A (Naes, Isaksson, Fearn, & Davies, 2002); for example, some 

columns of variables A are linear combinations of other columns, or variables A contain 

fewer samples than measured variables. In either case, the (𝐀T𝐀)−1 would not exist. 

Moreover, the use of highly collinear variables in MLR increases the chance of 

overfitting for the resulting model, which is not practical when used to predict the 

properties of new samples. Therefore, the selection of response variables to be included 

in variables A should be carefully considered so that collinearity can be avoided.  

 

3.2.2 Principal components regression (PCR) 

 

Principal components regression (PCR) is based on the basic concept of principal 

component analysis (PCA). PCA is a method of data reduction or data compression that 

constructs a set of regression factors, also known as principal component (PC), such that 

the PCs are linear uncorrelated combinations of the original ones, with weight vectors 

that are orthogonal to each other. The first PC has the maximum variance which captures 

as much of the variability as possible in the entire original ones (Naes, Isaksson, Fearn, 

& Davies, 2002). The concept of PCR is that the properties of interest are regressed onto 

the PC scores of the measured variables instead of regressing the properties onto the 

original response variables. Similar to MLR, the least squares approach appearing in 

Equation (3.14) can be used to solve the regression vector, b, by defining the 

pseudoinverse of the response data matrix A as  
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𝐀+ =  𝐏(𝐓T𝐓)−1𝐓T (3.17) 
 
where T is the principal component scores and P is the loadings or the corresponding 

matrix. 

 

Comparing the pseudoinverse for PCR in (3.17) to the pseudoinverse for MLR in (3.16), 

this operation is much more stable because of the orthogonality of the principal 

component scores, T, and loadings, P with respect to PCA. Also, PCR can avoid the 

underdetermined problem because the maximum possible numbers of PCs is less than or 

equal to the number of response variables and the number of calibration samples. PCR is 

less susceptible to overfitting than MLR because it directly addresses the collinearity 

problem that happens to MLR. However, if too many PCs are preserved in the PCR 

model, the overfitting problem still exists. Thus, determining the optimal number of PCs 

to retain in the model is an important part of PCR.  

 

3.2.3 Partial least squares regression (PLS) 

 

Partial least squares (PLS) regression is a well-established tool in chemometric analysis. 

This technique is commonly used in spectral quantitative analysis. Scientific research 

often involves using variables that are easily (or cheaply) measured to explain or predict 

the behavior of response variables that are often much more difficult (or expensive) to 

acquire. When the factors are many in number and are highly collinear such as in 

spectroscopy, PLS is a robust method used to construct predictive models. The 

advantage of the PLS is that the spectral and concentration information are included in 
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the calculation of the factors and the scores. It has the ability to maximize the spectral 

signals by its generated latent variables while minimizing less important variables and 

eliminating them from analysis Therefore, the resulting spectral vectors are directly 

related to the concentrations (Hoskuldsson, 1988). 

 

In this study, the output data y is a one-dimensional vector. Therefore, the linear 

regression model is usually included in the relation 

𝐲 = 𝐗𝐛 + ε (3.18) 
 
where X is a n x p matrix containing p dependent variables of n samples, b is a p x 1 

vector of regression coefficients obtained from PLS analysis, and ε is the model offset.  

 

The solution of this linear regression model is firstly to compute the singular value 

decomposition (SVD) of X 

𝐗 = 𝐔 Σ 𝐕T (3.19) 
 
where 𝐔 =  �u1, u2,⋯ , uN−p� and is a (N-p) x 1 vector, and 𝐕 =  �v1, v2,⋯ , vp� and is a 

p x 1 vector, with U and V are orthonormal matrices. The columns of U and V are called 

the left singular vector and right singular vector respectively. Σ is a diagonal matrix and 

its dimension is equal to the rank of X. Its diagonal elements {λi} are known as singular 

values of X and are arranged in descending order of magnitudes 

λ1 ≥ λ2 ≥ λ3 ≥ ⋯λmin (N−p,p) ≥ 0 (3.20) 
 

Thus SVD of X can be written as 

𝐗 =  �λiui

p

i=1

viT (3.21) 
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Multiplying XT on both sides of (3.18) and neglecting the offset, it becomes 

𝐗T𝐲 = 𝐗T𝐗𝐛 =  𝐕Σ𝐔T𝐔Σ𝐕T𝐛 =  𝐕Σ2𝐕T𝐛 (3.22) 
 
Set 𝐜 = 𝐗T𝐲 and 𝐀 =  𝐕Σ2𝐕T, this problem is equivalent to computing the least squares 

solution of the normal equation  

𝐀𝐛 = 𝐜 (3.23) 
 
Finally, the vector of regression coefficients, b, can be found by using the pseudoinverse 

of A 

𝐛 = 𝐀−1𝐜 =  �
viuiT

λi
𝐜

rk(𝐀)

i=1

 (3.24) 

 
where rk(A) denotes the rank of a matrix A. 

 

3.3 Performance evaluation   

 

After a model of the above mentioned algorithms is computed, it is essential to 

determine its ability to predict unknown values. The performance of multivariate 

analysis for the prediction models is assessed by the root mean square error and the 

correlation coefficient, and they are illustrated in this section.  
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3.3.1 Room mean square error (RMSE) 

 

In all of the measures considered, researchers attempt to estimate the average deviation 

of the model from the data. The root mean square error (RMSE) helps describe the fit of 

the model to the training data. It is defined as follows: 

RMSE =  �
∑ (y�𝑖 − y𝑖)2𝑛
𝑖=1

𝑛
 (3.25) 

 
where y�𝑖 are the values of the predicted result and n is the number of training samples. 

 

RMSE is a measure of how well the model fits the data to the training data, and 

Equation (3.25) can also be applied to describe the root mean square error of prediction 

(RMSEp) which is a measure of a model’s ability to predict samples that are not used to 

build the model. In addition, the root mean square error of cross-validation (RMSEcv) is 

used similar to prediction testing as it only tests predictors on data that are not used for 

training, but used for cross-validations that are done by successively omitting samples 

from the training set themselves. In the study, the “leave one out” cross-validation is 

used when performing the cross-validation test for the analysis. 

 

3.3.2 Correlation coefficient (R) 

 

Another commonly used objective measurement is the correlation coefficient (R) which 

is used for comparing the correlation between the predicted value and the actual value. It 

is a measure of how well the predicted values from a forecast model fit with the data. 
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The value is normally between magnitudes of 0 to ±1; zero means no relationship 

between the predicted values and the actual value, and one means perfect fit. As the 

strength of the relationship between the predicted values and actual values increases so 

does the correlation coefficient. Therefore, the higher the correlation coefficient the 

better the predicted model. The correlation coefficient is given by the formula: 

R =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − 𝑦�)𝑛
𝑖=1

�∑ (𝑥𝑖 − �̅�)2 ∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1

𝑛
𝑖=1

 (3.26) 

 
where �̅� and 𝑦� are the samples means of variables x and y 

 

Like the RMSE, Equation (3.26) can be applied to describe the correlation coefficient of 

prediction (Rp) and the correlation coefficient of cross-validation (Rcv), which is a 

measure of a model’s ability to predict samples that are not used to build the model 

according to the same statement declared in previous section.  

 

3.4 Summary 

 

The most commonly used multivariate algorithms for the classification approach and 

regression approach were described in this chapter. In addition, the root mean square 

error and correlation coefficient, which were introduced to tell us how good the 

measurements are, are used in the following performance comparison. This study will 

present an improved algorithm by applying the Monte Carlo method to PLS algorithms 

that demonstrate better performance and stability than the algorithms discussed in this 

chapter.  
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CHAPTER 4 

DATA ACQUISITION 

 

This study was based on clinical validation of blood glucose levels between laboratory 

results and absorption spectroscopy analysis. In the in-vitro validation process, the 

human blood glucose level was employed as the gold standard, with the spectrometry 

method used for the testing. This chapter presents the description of data collection, 

which describes the blood glucose distribution among the subjects, and evaluates the 

reproducibility of blood glucose measurements using the data from two ISO 

(International Organization for Standardization) accredited laboratories. 

 

4.1 Setting 

 

The study was conducted in the Integrative Health Clinic (IHC) of the School of Nursing 

(SN) of The Hong Kong Polytechnic University (PolyU) from 8 December 2008 to 17 

January 2009. This was approved by the Human Subjects Ethics Committee of The 

Hong Kong Polytechnic University (approval number: HSEARS20080108001). 
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4.2 Subjects 

 

Subjects were recruited from the community by convenience. Several strategies were 

employed for recruitment, including the use of self-help groups, professional 

organizations, and the mass media. The poster for internal recruitment and newspaper 

advertisement is attached in Appendix B-1. All subjects who were interested in the study 

and able to provide a voluntary informed consent were recruited to the study. All known 

infectious disease subjects were excluded. 

 

4.3 Sample size 

 

The sample size (N) required was estimated at 385, based on the sample size formula 

shown in Equation (4.1), so as to achieve a precision of 95% in a wide range of blood 

glucose levels for the study.  

N =  
𝑧2p(1− p)

𝑒2
 (4.1) 

 
where z is the upper quantile order of the standard normal distribution, p is the estimated 

proportion of an attribute that is present in the population, and e is the desired level of 

precision. In this study, z is equal to 1.96 for 95% confidence interval, p is equal to 0.5 

for maximum variability, and e is equal to 0.05 for ±5% precision. 
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4.4 Instruments 

 

The major equipment in the experiment was the NIR spectrometer, the probe, and the 

tungsten halogen light source. A digital thermometer was used to measure skin 

temperature for every subject. The following equipment was used in the clinical trial. 

 

4.4.1 Spectrometer 

 

The NIR spectrometer from Control Development, Inc. (CDI, Foundation Drive, South 

Bend, IN) was used in the trial. The specification of the spectrometer is listed in Table 

4.1 for easy reference. This model was selected due to its low cost and its wide range of 

coverage. 

Brand CDI 
Model NIR-256-L-2.2T2 
Spectral Range 1,082 – 2,237 nm 
Spectral Resolution 6 nm 
Detectors Dual stage TE-cooled 256 element array 
Scanning Time 20 milliseconds 
Wavelength Accuracy ± 0.5 nm 
Photometric Repeatability <0.001 AU 
Max Integration time 20 ms 
Noise Level <50 counts p-p 
Measurement  Absorbance 

 
Table 4.1 Specification of the CDI spectrometer 
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4.4.2 Reflection probe 

 

The reflection probe from Avantes BV (The Netherlands, Europe) was used as the 

connection between the spectrometer and the light source in the trial. A standard 

SMA905 connector light is coupled into a fiber bundle consisting of 6 fibers and carried 

to the probe end. The surface will reflect light back into the seventh fiber and data can 

be transferred to a spectrometer for analysis. The specification of the probe is listed in 

Table 4.2 for reference.  

Brand Avantes 
Model FCR-7IR400-2-ME 
Fibers 7 fibers 400 µm core, 6 light-fiber, 1 read fiber 
Wavelength Range 350 – 2,000 nm (VIS/NIR) 
Probe End Stainless steel cylinder, 100mm long x 2.5mm diameter 

Tubing The optical fibers are protected by a Kevlar reinforced 
PTFE tubing with PVC sleeving 

Temperature -20°C to 65°C 
Bending Minimum bend radius: long term: 60mm 

 
Table 4.2 Specification of the Avantes reflection probe 

 

4.4.3 Light source 

 

An illumination light source is needed for absorption spectroscopic setup. A tungsten 

halogen lamp is the most typical NIR light generator because it generates continuous 

NIR spectral light with wavelengths ranging from 360 – 2,500nm. The Avantes BV 

tungsten halogen light source was used in the study. The specification of the light source 

is listed in Table 4.3 for reference. 
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Brand Avantes 
Model AvaLight-HAL 
Light Source 10W Tungsten Halogen Lamp, fan-cooled 
Wavelength Range 360 – 2,500 nm 
Stability ±0.1% 
Time to Stabilize 15 minutes 
Optical power 200µm fiber 0.5 mWatt 
Optical power 600µm fiber 4.5 mWatt 
Bulb Color Temperature 2850K 

 
Table 4.3 Specification of the Avantes light source 

 

By integrating the above equipment, the full set of assembled equipment is shown in 

Figure 4.1. The figure shows there is a finger clip at the end of the probe when 

measuring using fingers so as to provide a constant force and to fix the scanning position. 

 

 

Figure 4.1 The assembled NIR spectrometer in the study 
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4.4.4 Thermometer 

 

The Fluke 52 II dual input digital thermometer shown in Figure 4.2 was used for skin 

temperature measurement. A K-type probe was used for direct contact with the skin 

surface for measurement. The specification of the thermometer is listed in Table 4.4 for 

reference. 

Brand Fluke 
Model Fluke 52 Series II 
Temperature Accuracy Above -100°C: ±[0.05% + 0.3°C] 
Temperature K-type probe: -200°C to 1372°C 
Temperature Scale ITS-90 

Display Resolution 0.1°C, 0.1K < 1,000 
1°C, 1K ≥ 1,000 

 
Table 4.4 Specification of the Fluke thermometer 

 

Figure 4.2 Fluke 52 Series II 
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4.5 Procedure 

 

Consent to conduct the study was sought prior to data collection (Appendix B-2).  The 

purpose and procedure of the study were explained to all subjects and an information 

sheet (Appendix B-3) was given to ensure that there would not be any risk of harm to 

them. All subjects were asked to fast overnight before participating in the study. 

 

Upon arrival at the IHC, subjects were asked to complete a demographic data sheet, 

health history, and medication history. The skin temperature of the right and left fingers 

(palmar surface of distal phalanx), right and left forearms (mid-way between the radial 

side of the first wrist crease and the medial side of the elbow), and right and left ear 

lobes were then measured. Spectra were obtained using the spectrometers at the sites 

mentioned. The assembled NIR spectrometer was used to scan the right and left finger 

tips (10 spectra were obtained in total), right and left wrist, right and left forearms (mid-

way between the radial side of the first wrist crease and the medial side of the elbow), 

and right and left ear lobes (6 spectra were obtained in total). Simultaneous veni-

punctures for blood glucose (12 ml, blood glucose testing in fluoride bottles) were 

performed. Since the aim was to collect high blood glucose levels as much as possible in 

this study, all subjects with diabetes mellitus (DM) history were required to have blood 

taken one more time, at least 30 minutes after they had had their breakfast. The non-DM 

subjects were asked to give their consent before being invited to have breakfast (with 

calories ranging from 233 to 298 Kcal), and then had their blood taken for glucose 

measurement. Unlike the DM subjects, this was optional for non-DM subjects.  
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In addition, a paired test was carried out to ensure the reproducibility of the lab testing 

method. Subjects were invited to participate in this procedure using separate consent 

because one more blood specimen was needed for this paired test.  With their consent, 

two specimens were taken for the blood glucose measurement, i.e. double the amount of 

blood being drawn. The two specimens were sent to the two ISO-accredited laboratories 

for testing. 

 

A meal coupon of HKD$20 was given to each of the subjects as a token of appreciation 

for their participation upon completion of the whole procedure. 

 

4.6 Demographic profile 

 

Five hundred and twelve subjects (225 male and 287 female) voluntarily participated in 

the study. The mean age was 52.33 (SD12.8). Among them, 219 (42.8%) suffered from 

DM. Of these, 44 (20.2%) did not have any co-existing disease. The ten drugs most 

commonly consumed by the subjects are listed in Table 4.5. 
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Drug Frequency (by subject) 
Metformin 131 
Gliclazide 69 
Nifedipine 39 

Simvastatin 26 
Glibenclamide 24 

Aspirin 24 
Metoprolol 19 

Atenolol 18 
Perindorpil 17 
Lisinopril 17 

 
Table 4.5 The ten drugs most commonly consumed by subjects 

 

Ideally, there would be 1,024 (512x2) NIR spectra samples because blood taking was 

conducted twice (i.e. before and after breakfast) for all subjects. However, some of the 

normal subjects were not willing to have a post-breakfast blood sample taken, and some 

of the DM subjects also declined to have the post-breakfast blood sample taken for 

reasons of their own discretion; for example, feelings of inconvenience, change of 

personal schedule. As a result, a total of 850 specimens were collected. Table 4.6 shows 

the distribution of the blood specimens. 

 Fasting blood glucose Post-meal blood glucose 
DM 219 217 
Non-DM 293 121 

 
Table 4.6 Distribution of the blood specimens (N=850) 

 
The mean (SD) for HbA1c, fasting blood glucose and post-meal glucose from PHC 

Medical Diagnostic Centre Ltd (PHC) and PathLab Medical Laboratories Ltd (PathLab) 

are shown in Table 4.7. 
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 DM (n=219) 
(mean, SD) 

Non-DM (n=293) 
(mean, SD) 

PHC  
(219 specimens) 

HbA1c  7.30 (1.26) 5.82 (2.88) 
Fasting blood glucose 7.55 (2.11) 4.93(0.68) 
Post-meal blood glucose 11.73 (3.15) 7.56 (1.77) 

PathLab  
(60 specimens) 

Fasting blood glucose 6.97 (1.91) 4.56 (0.60) 
Post-meal blood glucose 11.08 (2.92) 6.85 (1.74) 

 
Table 4.7 The mean (SD) for HbA1c, fasting blood glucose and post-meal glucose 

by laboratory (N=512) 
 

 
Samples with blood glucose levels (BGL) ranging from 3.4 to 24.9mmol/L were 

collected in this clinical trial. Figure 4.3 shows the histogram of the BGL and Table 4.8 

shows the distribution of the BGL. 

 

Figure 4.3 Histogram of BGL ranging from 3.4 – 24.9mmol/L (N=850) 
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Glucose range Number of counts 
2.5 – 3.4 3 
3.5 – 4.4 65 
4.5 – 5.4 218 
4.5 – 6.4 114 
6.5 – 7.4 96 
7.5 – 8.4 62 
8.5 – 9.4 67 
9.5 – 10.4 64 
10.5 – 11.4 38 
11.5 – 12.4 31 
12.5 – 13.4 32 
13.5 – 14.4 19 
14.5 – 15.4 11 
15.5 – 16.4 14 
16.5 – 17.4 7 
17.5 – 18.4 4 
18.5 – 19.4 4 
19.5 – 20.4 0 
20.5 – 21.4 0 
21.5 – 22.4 0 
22.5 – 23.4 0 
23.5 – 24.4 0 
24.5 – 25.4 1 

Total: 850 
 

Table 4.8 Distribution of BGL ranging from 3.4 – 24.9mmol/L (N=850) 

 
As mentioned previously, a total of 16 locations of the body were scanned for each 

subject. However, due to complications arising from feelings of inconvenience, change 

of personal schedule, missing fingers, among other things, some positions may not have 

full records for all subjects and Table 4.9 shows the distribution of all spectra that were 

collected in this study. The locations of the body are abbreviated and shown in the table 

for easy reference. They will be used in later chapters. 
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Location of body Abbreviation Number of 
samples collected 

Left thumb FL1 846 
Left index finger FL2 846 
Left middle finger FL3 844 
Left ring finger FL4 844 
Left little finger FL5 844 
Right thumb FR1 846 
Right index finger FR2 844 
Right middle finger FR3 845 
Right ring finger FR4 846 
Right little finger FR5 846 
Left wrist  LW 845 
Right wrist RW 846 
Left forearm (mid-way between 
the radial side of the first crease 
and the medial side of the elbow) 

LA 846 

Right forearm (mid-way between 
the radial side of the first crease 
and the medial side of the elbow) 

RA 846 

Left ear lobe LE 846 
Right ear lobe RE 845 

 
Table 4.9 The distribution of all spectra in the clinical trial 

 

4.7 Reproducibility of blood glucose measurement 

between the two laboratories 

 

The reproducibility test of blood glucose measurement was carried out in accordance 

with ISO 15197 (International Organization for Standardization, 2003). Two ISO-

accredited laboratories (ISO 15189) were engaged to conduct the glucose measurement. 

The two accredited laboratories concerned were PHC Medical Diagnostic Centre Ltd 

(PHC) and PathLab Medical Laboratories Ltd (PathLab). 
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One hundred and fifty-seven subjects participated in the paired test. The blood 

specimens were sent to two laboratories, PHC and PathLab. The mean blood glucose 

measured by PHC was 5.76 (SD 1.73), compared to 5.50 (SD 1.73) for PathLab.  

Figures 4.4 and 4.5 show the box plot of the fasting blood sugar from PHC and PathLab 

respectively. 

 

Figure 4.4 Box plot for fasting blood sugar from PHC 
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Figure 4.5 Box plot for fasting blood sugar from PathLab 

 

The values of the fasting blood glucose level from PHC were plotted against PathLab in 

Figure 4.6.  The results show that the data were centralized along a line with a slope of 

nearly 1. 
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Figure 4.6 Scatterplot of fasting blood glucose results from the two laboratories 

 
The difference in the fasting blood glucose levels from both laboratories was plotted in 

Figure 4.7 against their mean value (0.26). It was found that 95% of the data were 

clustered around the horizontal line of the mean value. The standard deviation of the 

difference was 0.16, meaning that 95% of the data of the fasting glucose level as 

measured by PHC was 0.58 higher or 0.06 lower than that measured by PathLab. The 

reference ranges of serum glucose level were 3.9 to 6 and 3.6 to 7.8. Thus, there is 

hardly any clinical significance between the results from the two laboratories. 
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Figure 4.7 Scatterplot including the mean difference in the fasting blood glucose 

level from both laboratories 
 

4.8 Summary 

 

The data collection was successfully completed. This clinical trial managed to recruit 

subjects with a wide range of glucose levels (3.4 – 24.9mmol/L). The widely spread 

glucose readings facilitated accurate computation in the study. 
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The reproducibility of the blood glucose measurement by the two ISO-accredited 

laboratories was established. Thus, one of the criteria of the requirement for glucose 

meter production as stated in ISO 15197 had been met: ‘In vitro diagnostic test system – 

requirements for blood-glucose monitoring for self-testing in managing diabetes 

mellitus’. Also, this confirms the accuracy of our gold standard so that further analysis 

can be done to improve the measurement. 
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CHAPTER 5 

DATA PREPROCESSING  

 

There are many studies trying to apply NIR spectroscopy for non-invasive blood glucose 

monitoring. Most of the studies were either performed in experimental settings or under 

a strictly controlled environment: for example, the measurement of subjects’ spectra 

under a fixed room temperature and moisture; a pre-defined constant force was applied 

to the location of tissue with particular location of body. These settings are barriers 

against the use of non-invasive technology in real applications as home-based medical 

devices because room temperature and moisture frequently vary in home environments.  

 

Undoubtedly, the body locations used to measure the spectra and the temperature of the 

human tissue are critical parameters for NIR spectroscopic analysis of blood glucose 

monitoring. The body location strongly affects the measurement of absorption because it 

influences the overall output reading, which may possibly dictate the signal-to-noise 

(SNR) of the measurement. Moreover, changes in temperature alter the extent of 

hydrogen bonding, which may cause shifts in the band positions. These bands shift to 

higher frequencies at higher temperatures. Ideally, non-invasive clinical measurement by 

NIR spectroscopy is independent of sample temperature, which means the prediction 
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model should be insensitive to baseline variations that can be several orders of 

magnitude larger than the size of the analyte absorption bands.  

 

This chapter evaluates measurements on 16 measurement sites for non-invasive blood 

glucose monitoring. The right and left fingers, right and left wrist, right and left forearms 

(mid-way between the radial side of the first wrist crease and the medial side of the 

elbow), and right and left ear lobes (16 measurement sites in total) were examined. 

These sites are evaluated on the basis of their chemical and physical properties that are 

relevant to the non-invasive measurement of glucose. The root mean square error of 

cross validation (RMSEcv) and the correlation coefficient of cross validation (Rcv) are 

used to evaluate the measurement sites. In addition, the various temperature combination 

models for the prediction models are evaluated and the results of the RMSEcv and Rcv 

are used to identify the temperature range that is suitable for measurement.  

 

Pre-processing of spectral data is an important procedure before chemometric analysis 

according to the four-stage framework of bio-signal processing because scaling 

differences arise from path-length effects, scattering effects, source variations, or other 

instrumental sensitivity effects in NIR spectroscopy that will influence the recorded 

sample. The objective of pre-processing is to remove unwanted spectral variation in 

order to improve the output results. Various pre-processing techniques such as 

normalization process and pre-filtering process are explored and evaluated.  
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5.1 Wavelength consideration 

 

The molecular formulation of glucose is C6H12O6 and it can exist in several different 

forms in humans. Different isomers of glucose can inter-convert among themselves 

(Koolman & Roehm, 2005). NIR spectroscopy is based on molecular overtone and 

combination vibrations. The CH, OH and CH2 groups can be stimulated by NIR 

spectroscopy causing vibrations in carbon bonds and subsequently release energy to 

form overtones (Arnold, Harvey, McNeil, & Hall, 2002). Table 5.1 shows the four bands 

of overtone regions that can indicate the existence of the above mentioned groups. 

Band Wavelength region 
Combination band region 1,950 – 2,500 nm 

First overtone region 1,475 – 2,050 nm 
Second overtone region 1,050 – 1,650 nm 
Third overtone region 700 – 1,150 nm 

 
Table 5.1 Four overtone regions in NIR spectroscopy 

 

In this study, the CDI spectrometer ranging from 1,082 – 2,237nm, which covers first 

and second overtone regions and nearly half of the combination band region, was used to 

measure the NIR spectra for all subjects. Figure 5.1a shows the full spectra of left 

middle finger (FL3) for all subjects (N=844) and Figure 5.1b shows the full spectra of 

FL3 for a subject, since all the spectra recorded are similar so the spectra of FL3 only is 

shown here.  
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(a) All subjects (N=844) 
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(b) Single subject 

Figure 5.1 Full spectra of FL3 (1,082 – 2,237nm) 

 

Obviously, noises exist in the measurements (the beginning and ending of the scanned 

spectra) as shown in Figure 5.1. Therefore, these data are not suitable for analytical use, 

particularly since the noise level is even higher than the gain of the measurand in the 

combination-bands region (i.e. 1,950 – 2,237nm). Although the combination bands 

region may contain some important data, these data should be ignored because of this 

limitation caused by the spectrometer. The samples, however, contain the first and 

second overtone NIR spectra that serve the goal of this study. Hence, this study 

considers the wavelength range between 1,121 – 1,880nm for analysis. Figure 5.2a 
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shows the selected wavelength region for FL3 for all subjects, and Figure 5.2b shows the 

selected wavelength region of FL3 for a single subject.  

 

(a) All subjects (N=844) 
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(b) Single subject 

Figure 5.2 Full spectra of selected wavelength region (1,121 – 1,880nm) 

 

5.2 Normalization 

 

In many analytical methods, variables measured for a given sample are subject to overall 

scaling or gain effects. The measured variables are increased or decreased from their 

true value by a multiplicative factor, and each sample can experience a different level of 

multiplicative scaling. In spectroscopic measurement, scaling differences arise from path 

length effects, scattering effects, source variations, or other instrumental sensitivity 

effects (Martens & Naes, Multivariate calibration, 1989). Under these circumstances, it 
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is often the relative value of variables that should be used during multivariate analysis 

rather than the absolute measured value.  

 

A normalization process attempts to correct for these kinds of effects by identifying 

some aspect of each sample that should essentially be constant from one sample to the 

next, and correcting the scaling of all variables based on this characteristic. This process 

helps to provide all samples with an equal weighting in the model. Some samples may 

have severe scaling effects if they do not attempt the normalization process. Even worse, 

some samples will not be considered as important information that can contribute to 

properties of interest by many multivariate techniques. Therefore, the normalization 

process can be very useful for obtaining accurate and robust PLS models for the study 

(Wolthuis, Tjiang, Puppels, & Schut, 2006). This section briefly discusses four 

generally-used spectral normalization methods, and the one that provides the minimum 

RMSEcv and the highest Rcv will be used in the current study.  

 

5.2.1 1-norm 

 

The normalization process of each sample is a common approach to the multiplicative 

scaling problem. The norm of a matrix is a measure of its size. Several different types of 

norms exist. 1-norm is used to divide each variable by the sum of the absolute value of 

all variables for the given samples (Suli & Mayers, 2003). It returns a vector with unit 

area; that is, the area under the curve is equal to 1. It is defined as follows: 
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‖X𝑖‖ =  ��𝑥𝑖,𝑗�
𝑛

𝑗=1

 (5.1) 

 
where ‖X𝑖‖ is the normalization weight for sample i, xi is the vector of observed values 

for the given sample, j is the variable number, and n is the total number of variables. 

 

5.2.2 Euclidean norm (2-norm) 

 

The most commonly used norm in 2-dimensional Euclidean space is the Euclidean norm 

or 2-norm (Suli & Mayers, 2003). It normalizes to the sum of the square value of all 

variables for the given samples and returns a vector of unit length; that is, length is equal 

to 1. 2-norm is a form of weighted normalization where larger values are weighted more 

heavily in the scaling. It is defined as follows: 

‖X𝑖‖ =  �𝑥𝑖,𝑗2
𝑛

𝑗=1

 (5.2) 

 
where ‖X𝑖‖ is the normalization weight for sample i, xi is the vector of observed values 

for the given sample, j is the variable number, and n is the total number of variables. 

 

5.2.3 Standard Normal Variate (SNV) 

 

The Standard Normal Variate (SNV) normalization process is a weighted normalization 

(Barnes, Dhanoa, & Lister, 1989). It is different from the 1-norm or 2-norm mentioned 

above because not all samples contribute to the normalization equally. SNV calculates 
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the standard deviation of all variables for the given sample and the entire sample is then 

normalized by this value, hence giving the sample a unit standard deviation; that is, the 

standard deviation is equal to 1. The SNV scaling is defined as follows: 

‖X𝑖‖ =  
𝑥𝑖,𝑗 − �̅�𝑖
σ𝑥𝑖

 (5.3) 

𝑥𝚤� =  
∑ 𝑥𝑖,𝑗𝑛
𝑗=1

𝑛
 (5.4) 

σ𝑥𝑖 =  �
∑ �𝑥𝑖,𝑗 − �̅�𝑖�

2𝑛
𝑗=1

𝑛 − 1
 (5.5) 

 
where 𝑥𝚤�  is the mean of samples i, σ𝑥𝑖 is the standard deviation for samples i, and n is 

the total number of variables in the samples. 

 

However, care should be taken when using the SNV as the normalization process. This 

approach is an empirical normalization process that relies on their mean and standard 

deviation in the entire samples. This process can work well if most of the signal in a 

sample is the same in all samples. However, it may introduce a non-linearity in the 

relation between the sample and the analyte concentration if the measurement signal 

varies significantly from sample to sample (Fearn, Riccioli, Garrido-Varo, & Guerreo-

Ginel, 2009).  
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5.2.4 Multiplicative Scatter Correction (MSC) 

 

Multiplicative scatter correction (MSC) is another method for normalization (Geladi, 

MacDougall, & Martens, 1985). It is based on the idea of correcting the scatter level of 

all spectra of a group of samples to the level of an average spectrum (Naes, Isaksson, 

Fearn, & Davies, 2002). This is possible because the wavelength dependency of the light 

scatter is different from that of the light absorption of the analyte concentration. Each 

spectrum is fitted to the average spectrum as closely as possible by least squares 

equation: 

𝑥𝑖 =  𝑎𝑖 + 𝑏𝑖�̅�𝑗 + 𝑒𝑖  (5.6) 
 
where xi is the vector of observed values for the given sample, 𝑥𝚥�  is the mean of samples 

j, and 𝑒𝑖 is the residual spectrum 

 

The corrected spectrum for the normalization process is calculated using the intercept, 𝑎𝑖, 

and the slope, 𝑏𝑖, as follows:  

‖X𝑖‖ =  
𝑥𝑖 − 𝑎𝑖
𝑏i

 (5.7) 

 

The resulting set of corrected spectra have a non-zero mean and a variance related to the 

set mean spectrum variance. The research group of Fearn have reported that MSC and 

SNV are linearly related, which therefore implies MSC has the non-linearity issue as 

well (Fearn, Riccioli, Garrido-Varo, & Guerreo-Ginel, 2009). Moreover, MSC is a set 

dependent transformation. If the raw data set is modified, the mean spectrum is likely to 

change and the MSC corrected spectra will therefore need to be recalculated.  
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5.2.5 Performance comparison 

 

The PLS regression model mentioned in section 3.2.3 to evaluate the RMSE and the 

correlation coefficient, R, discussed in section 3.3, was used to study the performance of 

various normalization processes. The PLS regression model was constructed with the 

latent variables set equal to 10 in this simulation. The RMSEcv and Rcv of the 16 

locations of body mentioned in Table 4.9 are plotted in Figure 5.3 to study the overall 

performance of various normalization processes.   
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(b) Rcv 

Figure 5.3 Performance of various normalization processes in the 16 locations of 

body  

 

The results in Figure 5.3 show that the 1-norm and 2-norm approaches provide 

comparable outcome while SNV and MSC provide similar outcome. Furthermore, the 1-

norm and 2-norm approaches had smaller RMSE and higher R than SNV and MSC. 

Therefore, based on these findings, the body location FL3 was chosen specifically for 

data acquisition, where the spectral datasets were obtained for analysis. The “leave one 

out” cross-validation was performed to test the robustness of the normalization process. 

The RMSE of the training sets and RMSEcv of cross-validation are shown to determine 

which process provides the minimum RMSE and RMSEcv. In addition, the R for the 
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training set and Rcv for cross-validation show how well the prediction model can 

perform. Table 5.2 shows the results for the four normalization processes.  

Normalization process RMSE RMSEcv R Rcv 
1-norm 2.8208 2.9868 0.5266 0.4435 
2-norm 2.8206 2.9865 0.5267 0.4436 
SNV 2.8455 3.0291 0.5381 0.4190 
MSC 2.8460 3.0297 0.5144 0.4187 

 
Table 5.2 The results for the four normalization processes 

 

The results shows that 2-norm performs best, and that 1-norm and 2-norm provide very 

similar RMSE and R both for training set and cross-validation, while SNV and MSC 

deliver relatively higher RMSE than 1-norm and 2-norm and the correlation coefficients 

are relatively smaller than they are. Analysis of variance (ANOVA) was applied to the 

data obtained at FL3 in order to evaluate the performance of the normalization methods. 

The result shows that the p-value is equal to 1.000 which denotes that there is not 

significant between these normalization methods. Table 5.3 shows the ANOVA results 

for the four normalization processes.  

  SS df p-value 
Between groups 0.000 3 1.000 
Within groups 10066.529 3372 

 
    Total 10066.529 3375   

 
Table 5.3 The ANOVA results for the four normalization processes 

 

Nevertheless, since 2-norm is a form of weighted normalization where larger values are 

weighted more heavily in the scaling and it is also the most commonly used 
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normalization process in 2-dimensional Euclidean space, 2-norm was used in the 

following analysis to take advantage of the uneven weighting mechanism. 

 

5.3 Location of the body 

 

Sixteen measurement sites were evaluated for non-invasive blood glucose monitoring as 

shown in Table 4.9. They included ten fingers, left and right wrists, left and right 

forearms, and the left and right ear lobes. Fingers are the most convenient location for 

glucose measurement, and this experiment applied the idea to measure blood oxygen 

saturation using a finger clip to provide constant force and relatively fixed positions on 

the fingers when performing measurements. Figure 5.4 showed the setup of the finger 

clip to the equipment. With the finger clip, the measurement is comparatively easy to 

handle and can reduce human errors.  
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Figure 5.4 Finger clip used in measuring NIR spectra 

 

The forearm, the wrist, and the ear lobes are also easy locations for glucose 

measurement though the force applied to these locations may vary and the position may 

not be exactly the same for all subjects. It is agreed that locating the same position for all 

subjects are difficult and therefore, we clearly defined the position of these six 

measurement sites before we start collecting the data in the trials. In addition, we 

designated a technician who assisted in this experiment tried to locate the same position 

on forearms and ear lobes to avoid inconsistency.  
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5.3.1 Performance comparison  

 

The same setting in section 5.2.5 of PLS prediction models together with 2-norm pre-

processing were used to evaluate the results. Again, the RMSE and R of the training set 

and the RMSEcv and Rcv of cross-validation are shown to determine which process 

provides the minimum RMSE and RMSEcv and R for training set and Rcv for cross-

validation are shown to determine how well the prediction model can perform. Table 5.4 

shows the results for 16 measurement sites for comparison.  

Location of body Abbreviation RMSE RMSEcv R Rcv 
Left thumb FL1 3.0261 3.1265 0.4158 0.3493 
Left index finger FL2 2.8433 3.0200 0.5199 0.4302 
Left middle finger FL3 2.8206 2.9868 0.5267 0.4436 
Left ring finger FL4 2.7784 2.9581 0.5467 0.4612 
Left little finger FL5 2.7869 2.9334 0.5427 0.4724 
Right thumb FR1 3.0576 3.1477 0.3948 0.3310 
Right index finger FR2 2.8161 3.0063 0.5341 0.4409 
Right middle finger FR3 2.7940 2.9689 0.5439 0.4604 
Right ring finger FR4 2.8037 2.9693 0.5389 0.4589 
Right little finger FR5 2.8475 3.0011 0.5178 0.4391 
Left wrist  LW 3.0497 3.3453 0.4007 0.1872 
Right wrist RW 3.0528 3.3156 0.3977 0.2060 
Left forearm (mid-way 
between the radial side 
of the first crease and 
the medial side of the 
elbow) 

LA 3.0164 3.2977 0.4221 0.2297 

Right forearm (mid-
way between the radial 
side of the first crease 
and the medial side of 
the elbow) 

RA 3.0062 3.2860 0.4286 0.2399 

Left ear lobe LE 2.9920 3.3089 0.4375 0.2315 
Right ear lobe RE 2.9736 3.3032 0.4497 0.2391 

 
Table 5.4 Results for sixteen measurement sites 
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The results illustrated that ten fingers generally provide smaller RMSE and higher R 

than wrists, forearms and ear lobes. Moreover, independent samples test for equality of 

means was used to test whether the means of two groups, namely, the ten fingers group 

and the other body locations group (i.e., wrists, forearms and ear lobes), are statistically 

different from each other. Table 5.5 shows the results of the independent samples test for 

equality of means between two groups. The result showed that there was statistically 

significant difference in RMSE, RMSEcv, R and Rcv between the two groups, with all the 

p-values less than 0.05. Therefore, we conclude that ten fingers generally provide 

smaller RMSE and higher R than wrists, forearms and ear lobes. 

  mean different standard error different p-value 
RMSE -0.1577 0.0425 0.002 
RMSEcv -0.2976 0.0300 0.000 
R 0.0854 0.0238 0.003 
Rcv 0.2065 0.0211 0.000 

 
Table 5.5 Results of independent samples test between two groups 

 

Besides, the finger clip adopted for measurement could provide a constant force and 

comparatively firmly fixed position when performing measurements. Among the ten 

fingers, the thumbs, FL1 and FR1, yielded poorer results than the other fingers did. For 

the rest of eight fingers, although the values were not varying so much in pairs, the 

results showed that FL5 provided the highest Rcv but a similar result was not found in 

FR5. This might be due to the different size of last finger for each subject, since the 

same person has different sizes of left and right little finger itself. Therefore, selecting 

the location on the finger for testing must be done with caution. It appeared that FL4 

provided the second best result among the others, and FR4 can perform similar results as 
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FL4. Therefore, the results suggested using FL4, the left ring finger, for the 

measurement site of the body for the following experiment. 

 

5.4 Temperature test 

 

The following experiment was designed to evaluate the temperature effect of the 

measurement site. The previous section suggested using the left ring finger (FL4) as the 

measurement site of the body to evaluate the non-invasive blood glucose monitoring. 

Hence, in this experiment, FL4 was used as the body location to determine whether the 

temperature effect will cause the results to vary. Table 5.6 shows the distribution of the 

temperature range of the FL4 and Figure 5.5 plots the histogram for the distribution. 
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Temperature range °C Number of counts 
16 - 16.9 1 
17 - 17.9 2 
18 - 18.9 2 
19 - 19.9 11 
20 - 20.9 24 
21 - 21.9 49 
22 - 22.9 54 
23 - 23.9 78 
24 - 24.9 74 
25 - 25.9 54 
26 - 26.9 46 
27 - 27.9 46 
28 - 28.9 35 
29 - 29.9 47 
30 - 30.9 63 
31 - 31.9 79 
32 - 32.9 86 
33 - 33.9 50 
34 - 34.9 32 
35 - 35.9 10 
36 - 36.9 1 

Total: 844 
 

Table 5.6 Distribution of the temperature range from 16.8 – 36°C 
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Figure 5.5 Histogram of the temperature range of the FL4 

 

5.4.1 Performance comparison 

 

Recorded temperatures were grouped into ranges to perform the PLS regression method; 

the range of 19 – 27.9°C, the range of 28 – 34.9°C, the range of 21 – 30.9°C, the range 

of 19 – 32.9°C, and the full range 16.8 – 36°C were selected for this test. The five 

temperature ranges were selected based on the availability number of counts 

(measurements) that we are able to record in the respective ranges. The results of RMSE, 

RMSEcv, R and Rcv are shown in Table 5.7. 
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Temperature range RMSE RMSEcv R Rcv 
19 - 27.9 °C 2.5754 2.8900 0.5434 0.3769 
28 - 34.9 °C 2.8038 3.1910 0.6008 0.4439 
21 - 30.9 °C 2.6163 2.8701 0.5671 0.4457 
19 - 32.9 °C 2.7640 2.9518 0.5496 0.4605 
16.8 - 36 °C 2.7784 2.9581 0.5467 0.4612 

 
Table 5.7 Results of various temperature range of the FL4 

 

As the results show, the temperature effect relative to the various temperature range was 

not noteworthy and it appeared that the Rcv is the highest amongst others groups even if 

it contains the full dataset for the modelling. Therefore, it is suggested maintaining the 

full temperature range for the following study. 

 

5.5 Pre-filter analysis 

 

The normalization of spectra is done (in section 5.2) to deal with scaling differences 

arising from path length effects, scattering effects, source variations, or other 

instrumental sensitivity effects. Before training the quantitative model, it is possible to 

manipulate the spectra using various pre-filter methods to try to improve the 

performance of the quantitative model. Many of the interferences, often described as 

noise (low frequency or high frequency), are caused by known background signals and 

artefacts. These interferences are common in many measurements but can be corrected 

by taking advantage of the relationship between variables in a dataset. In many 

situations, the adjacent columns in the data matrix are related to each other and contain 

similar information. Pre-filtering the signals to remove this noise or the effects of signal 
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variance can be useful for obtaining a more accurate quantitative model (Martens, Hoy, 

Wise, R., & Brockhoff, 2003; Skibsted, Boelens, Westerhuis, Witte, & Smilde, 2004). 

The idea is to reduce spectral problems such as noise and baseline drift, or to eliminate 

unwanted spectral features.  

 

A variety of pre-filter methods exist to remove the interferences (Rinnan, Berg, & 

Engelsen, 2009). The signal being removed from each sample is assumed to be only 

interference and is generally not useful for quantitative analysis. This section evaluates 

various kinds of pre-filter methods for the NIR spectra to enhance performance of the 

PLS prediction model.  

 

5.5.1 Savitzky-Golay derivation 

 

Derivatives are a common method used to remove unimportant baseline signals from 

samples by taking the derivative of the measured responses with respect to the 

wavelength in spectroscopy. The simplest form of derivative is a point difference first 

derivative in which each variable in a sample is subtracted from its neighbor variable 

(Eigenvector Research Inc., 2011; Orfanidis, 1996). This subtraction removes the signal 

that is the same between the two variables and retains the informative signal that is 

different. When performed on an entire sample, a first derivative effectively removes 

any offset from the sample and a second derivative can be calculated by repeating the 

same subtraction process to further accentuate the informative signals. The Savitzky-

Golay (SG) derivation is commonly used for numerical derivation because it includes a 
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smoothing step when it takes the derivative, in which it can improve the utility of data 

(Savitzky & Golay, 1964). The algorithm basically fits individual polynomials to 

windows around each point in the spectra. After that, these polynomials are used to 

smooth the data. This method requires selection of the window size (filter width) and the 

order of the polynomial. In general, the larger the window and the lower the polynomial 

order, the more smoothing that occurs for the data. Since this operation is applied to all 

variables in the spectra sequentially, the number of the filter width and the degree of the 

fitted polynomial are both decisions that need to be made. 

 

5.5.2 Detrending 

 

In traditional time series analysis, a time series is decomposed into trend or periodic 

components. Trend is a gradual change of the time series over the whole period of time 

and it is sometimes loosely defined as a long-term change in the mean. Detrending is the 

statistical or mathematical operation of removing trend from the series. Detrending can 

be used to remove a constant, curved offset if present or linear trends from regular data 

signal (Barnes, Dhanoa, & Lister, 1989). This method fits a polynomial of a given order 

to the entire sample and simply subtracts this polynomial. The method is very simple to 

use because it fits the polynomial to all points, baseline and signal, while it tends to 

work only when the largest source of signal in each sample is background interference 

(Eigenvector Research Inc., 2011). It tends to remove variations that are useful to 

modelling and may even create nonlinear responses from other linear relationships; also 

an individual polynomial fitted to each spectrum may increase the amount of interfering 
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variance in a data set. Therefore, the use of a detrending method is recommended only 

when the overall signal is dominated by backgrounds that generally have the same shape 

and are not greatly influenced by other processes. 

 

5.5.3 Generalized Least Squares (GLS) Weighting 

 

In the case of a calibration transfer problem, especially in this study, similar samples 

would be measured on the same instrument for different people at different points in 

time (Leung, Xiong, Lau, & So, 1999). The goal of a generalized least squares (GLS) 

weighting pre-filter is to down-weight the differences between similar samples and thus 

make them appear more similar (Martens, Hoy, Wise, R., & Brockhoff, 2003). A GLS 

weighting pre-filter can be used to remove variance from the spectral responses that are 

mostly orthogonal to the concentration information. It uses samples with similar 

concentration values to identify the sources of variance to down weight. The GLS 

weighting pre-filter method involves the calculation of a covariance matrix from the 

differences between similar samples. Given two sample matrices, X1 and X2, the 

difference equation for them can be calculated as 

𝐗𝑑 =  𝐗2 − 𝐗1 (5.8) 
 
The covariance matrix, C, of Xd, then needs to be calculated, which is 

𝐂 =  𝐗𝑑T𝐗𝑑 (5.9) 
 
By using the SVD of the matrix shown in (3.19) into (5.9), it becomes 

𝐂 = 𝐕Σ2𝐕T (5.10) 
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Since the collinearity problem may exist when 𝐗𝑑T𝐗𝑑 is singular, the ridge estimator is 

used for the sake of stability to calculate the singular values and it becomes  

Σridge = �Σ2 + α𝐈 (5.11) 
 
where I is a diagonal matrix of ones and α is the weighting parameter that defines how 

strong effect of GLS weighting should be. 

 

Finally, the inverse of the weighted eigenvalues in (5.11) is used to calculate the filtering 

matrix as  

𝐗GLS = 𝐕Σridge−1 𝐕T (5.12) 
 
In general, α is normally set equal to 0.001, while the larger the α value, the decrease in 

the effect of the GLS weighting. The choice of α value depends on the scale of the 

original values. If the interferences are similar to the variance necessary to the analytical 

measurement, then α value will need to be larger in order to keep from removing 

analytically-useful variance. However, a larger α value will decrease the extent to which 

interferences are down weighted. Therefore, an α value between 1 and 0.0001 is the 

range often used in practice.  

 

An alternative multivariate pre-filter called External Parameter Orthogonalization (EPO) 

uses the same process as GLS weighting pre-filter except that only a certain number of 

eigenvectors calculated in (5.10) are kept, and the ridge estimator in (5.11) is a diagonal 

vector of ones. The principle of EPO pre-filter method is that the spectral responses 

should be orthogonal to the concentration output in which the directions are completely 

removed, whereas GLS weighting pre-filter is trying to shrink the directions. More 
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details of the EPO pre-filter method is described in Roger’s research team (Roger, 

Chauchard, & Bellon-Maurel, 2003).    

 

5.5.4 Orthogonal Signal Correction (OSC)  

 

Orthogonal Signal Correction (OSC) was introduced to remove systematic variation 

from the spectral responses that is unrelated or orthogonal to concentration information 

(Wold, Antti, Lindgren, & Ohman, 1998). Such variance is identified as some number of 

components of the spectral responses that have been made orthogonal to the 

concentration. Therefore, one can be certain that important information regarding the 

analyte is retained. The OSC model can be expressed by 

𝐗 =  𝐭osc𝐩oscT + 𝐄 (5.13) 
 
where 𝐭osc = 𝐗𝐰osc  and ‖𝐰osc‖ = 1  and the tosc, posc and wosc represent the OSC 

component. 

The OSC model is similar to the standard PLS regression model because it has two sets 

of loading vectors. The main difference is that the score vectors are orthogonal to the 

output vector.  

 

The working principle of the OSC pre-filter method proposed by Sjoblom’s team starts 

by identifying the first principal component (PC) of the spectral responses and then the 

loading is rotated to make the scores become orthogonal to the concentration (Sjoblom, 

Sevensson, Josefson, Kullberg, & Wold, 1998). This loading represents a feature that is 

not influenced by changes in the property of interest described in the concentration. 
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Once the rotation is completed, a model is created that can predict these orthogonal 

scores from the spectral responses. The number of components in the model is adjusted 

to achieve a given level of captured variance for the orthogonal scores. Finally, the 

weights, loadings, and predicted scores are used to remove the given orthogonal 

component.  

 

There are three settings for the OSC pre-filter method, which include number of 

components, number of iterations, and tolerance level. The number of components is 

used to set how many times the entire process will be performed. The number of 

iterations is used to set how many cycles will be used to rotate the initial PC loading to 

be as orthogonal to the output concentration as possible. The tolerance level is used to 

set the percent variance by the model. 

 

5.5.5 Performance comparison 

 

Various pre-filter methods mentioned previously were compared; each method had its 

own parameter settings and the results are listed in Table 5.8. The first SG derivative and 

second SG derivative methods were implemented. The linear, second order, third order, 

and the fourth order of detrending methods are listed. The GLS weighting pre-filter 

method with various α values were evaluated, and the EPO pre-filter method with 

different PCs was investigated. Moreover, the OSC pre-filter with various PCs and the 

tolerance values is listed as well. The results with and without normalization are shown 

together for comparison. This experiment considered performing the pre-filter with and 
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without normalization for their own parameter settings and that result was shown in 

section 5.2.5. Comparing the results with and without normalization showed that the 

normalization process can improve the RMSE and R for all pre-filter methods, 

particularly for the GLS weighting pre-filter method. Therefore the results further 

revealed the benefit of implementing the normalization process and the pre-filter process 

thereafter so as to provide better performance for analysis. 

 
Methods RMSEc RMSEcv Rc Rcv 
With 2-norm applied      
1st SG 
Derivative 

(order 2, window 15pt) 2.7735 3.0523 0.5282 0.4141 
(order 6, window 7pt) 2.7322 3.0263 0.5675 0.4343 

2nd SG 
Derivative 
  

(order 2, window 15pt) 2.7449 3.0597 0.5620 0.4171 
(order 3, window 9pt) 2.8432 3.1043 0.5166 0.3887 
(order 5, window 9pt) 2.8724 3.1160 0.5008 0.3720 

Detrending (linear) 2.8304 3.0607 0.5223 0.4093 
 (2nd order) 2.8019 3.0654 0.5358 0.4083 
 (3rd order) 2.7988 3.0652 0.5373 0.4091 
 (4th order) 2.7949 3.0811 0.5392 0.4015 
GLS weighting (α=0.001) 2.4477 3.0359 0.6752 0.4668 
 (α=0.002) 2.4828 2.9892 0.6634 0.4784 
 (α=0.005) 2.5803 2.9539 0.6287 0.4807 
 (α=0.01) 2.6637 2.9487 0.5963 0.4749 
 (α=0.02) 2.7476 2.9620 0.5606 0.4617 
EPO pre-filter (PC=1) 2.7785 2.9598 0.5466 0.4605 
  (PC=5) 2.7083 2.9723 0.5784 0.4606 
 (PC=10) 2.6363 2.9855 0.6073 0.4630 
OSC pre-filter (PC=1, tol=99.9%) 2.5770 3.1551 0.6300 0.4007 
  (PC=8, tol=99.9%) 3.3172 3.3747 0.1798 0.0202 
 (PC=10, tol=95%) 3.1029 3.3405 0.3543 0.1715 

(a) With 2-norm applied 
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Methods RMSEc RMSEcv Rc Rcv 
Without 2-norm applied     
1st SG 
Derivative 

(order 2, window 15pt) 2.7771 3.0266 0.5473 0.4280 
(order 6, window 7pt) 2.7300 3.0259 0.5684 0.4341 

2nd SG 
Derivative 
  

(order 2, window 15pt) 2.7442 3.0627 0.5622 0.4158 
(order 3, window 9pt) 2.8411 3.1068 0.5169 0.3834 
(order 5, window 9pt) 2.8735 3.1212 0.5006 0.3728 

Detrending (linear) 2.8246 3.0614 0.5249 0.4088 
 (2nd order) 2.7956 3.0650 0.5387 0.4084 
 (3rd order) 2.7923 3.0639 0.5402 0.4098 
 (4th order) 2.7887 3.0811 0.5419 0.4012 
GLS weighting (α=0.001) 7.7865 7.8822 0.1635 0.0890 
 (α=0.002) 6.7393 7.0674 0.1374 0.0952 
 (α=0.005) 3.9973 4.2710 0.0403 0.0185 
 (α=0.01) 2.6580 3.1751 0.6035 0.4160 
 (α=0.02) 2.4598 3.0300 0.6711 0.4659 
EPO pre-filter (PC=1) 20.7718 18.3372 0.3112 0.1262 
  (PC=5) 15.7205 15.3530 0.2759 0.1265 
 (PC=10) 23.2130 19.0799 0.2813 0.0672 
OSC pre-filter (PC=1, tol=99.9%) 2.7625 3.0239 0.5539 0.4304 
  (PC=8, tol=99.9%) 3.1174 3.3713 0.4151 0.1575 
 (PC=10, tol=95%) 3.0105 3.3298 0.4205 0.2116 

(b) Without 2-norm applied 

Table 5.8 Results for various pre-filter methods with and without 2-norm applied 

 

According to the simulation results, GLS weighting pre-filter performed the best 

amongst all methods. It yielded the smallest RMSEc and the highest Rc when α=0.001, 

while it provided the smallest RMSEcv and highest Rcv when α=0.005. Considering the 

difference between the two α values, the author suggests using the GLS weighting pre-

filter with α=0.001 as it provides the best RMSEc and Rc and can also perform RMSEcv 

and Rcv reasonably well, in which the difference between the results of α=0.001 and 

α=0.005 were 0.082 in RMSEcv and 0.0139 in Rcv. 
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5.6 Features selection 

 

The high dimensionality of spectral data increases the difficulty of using quantitative 

regression models. Reducing this high dimensionality helps reduce variable numbers, 

potentially improves the accuracy by removing irrelevant spectral information, and 

reduces computation time and cost. In this section, two heuristic optimization algorithms, 

sequential floating selection (SFS) and genetic algorithm (GA), are applied to variable 

selection for the spectral data. The study provides a robust and efficient optimization 

approach to reduce high data dimensionality of the spectral data, also improves the 

performance of the regression model, and potentially reduces the overall cost for future 

applications. 

 

5.6.1 Sequential floating selection (SFS) 

 

Sequential floating selection (SFS) is a well-known suboptimal search algorithm that is 

very efficient and effective even for problems of high dimensionality involving non-

monotonic feature selection (Pudil, Novovicova, & Kittler, 1994). The feature selection 

approach is to select a subset of n features from a given set of N measurements, where 

n<N, without significantly degrading the performance of the whole system. Sequential 

floating forward selection (SFFS) and sequential floating backward selection (SFBS) are 

two similar but reverse process approaches to search the optimal settings by sequentially 

adding (forward) or removing (backward) variables. SFFS starts from an empty space 

and at each step the variable that provides the best improvement of the objective 
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function is added to the feature space. This process is repeated until all variables are 

selected. SFBS works in reverse, beginning with the whole feature space and at each 

step the sensor that provides the least reduction of the objective function is removed 

from the selection. This process is repeated until all variables are removed from the 

array. These approaches are effective for reducing variables while they explore only a 

fraction of the whole search space since the order of removing or adding variables 

influences the search results. However, SFFS/SFBS can result in nested feature subsets 

from previous steps that do not allow corrections of decisions in later steps, leading to a 

performance that is often far from optimal. In view of this, an improved version of SFF 

has been developed by combining the (SFFS) and (SFBS) to avoid the nesting effect 

(Pudil, Ferri, Novovicova, & Kittler, 1994). 

 

The idea of this approach simply considers the conditional inclusion and exclusion of 

features controlled by the value of the criterion itself. SFFS is first applied for the 

forward steps so long as the resulting subsets are better than the ones in the previous 

stage. If the performance cannot be improved at a certain point, SFBS will be applied in 

the backward steps. Further forward steps will then be applied in attempt to improve the 

performance. The process repeats iteratively in this way until reaching the number of 

features required. This approach provides a reverse tracking mechanism that achieves 

optimal solutions by dynamically adjusting the trade-off between forward and backward 

steps to keep away from the nesting effect. The combined SFS algorithm is described in 

Figure 5.6. 
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SFS algorithm 
 
Input:  
   X = {𝑥1,⋯ , 𝑥N} 
Output: 
   Y = {𝑦1,⋯ ,𝑦𝑛} where 𝑦i ∈ X, 𝑛 = 0, 1,⋯ , N 
Initialization: 
   Y= 0; i = 0 
Termination: 
   i = n 
 
Forward Step: 
   𝑦F = max𝑦∈X−Yi J(Yi + 𝑦F) 
   Yi+1 = Yi + 𝑦F 
   i = i + 1 
 
Backward Step: 
   𝑦B = max𝑦∈Yi J(Yi − 𝑦B) 
   if  J(Yi − 𝑦B) > 𝐽(Yi−1) 
       Yi−1 = Yi − 𝑦B 
       i = i − 1 
       go to Backward Step 
   else 
       go to Forward Step 
 

 
Figure 5.6 The SFS algorithm 

 

5.6.2 Genetic algorithm (GA) 

 

In the engineering field, genetic algorithm (GA) is a search heuristic that mimics the 

process of natural evolution (Goldberg, 1989; Falkenauer, 1998). This heuristic is 

routinely used to generate useful solutions to optimization and search problems. GA is a 

randomized search algorithm that belongs to the class of evolutionary algorithms. It is 

inspired by the process of natural selection and performs a global random search on a 

population of solutions. It allows a population composed of many chromosomes to 
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evolve to reach a point where the fitness is maximized or the cost function is minimized. 

Once the genetic representation and the fitness function are defined, a GA proceeds to 

initialize a population of solutions and then to improve it through repetitive application 

of the selection, crossover, inversion, and mutation operators (Sivanandam & Deepa, 

2008). Selection operator gives the chromosome with the lowest cost as measured by a 

fitness function in order to converge towards the best solutions. Crossover is a genetic 

operator used to generate a second generation population of solutions from those 

selected chromosomes. Inversion operator has the opportunity to place steps in 

consecutive order or any other order in favour of survival or efficiency. Mutation 

operator is to maintain genetic diversity from a certain percentage of the genes that 

compose population members.  

 

The operation of the GA is that, given a predictor datum, X, and output value, Y, one 

can choose a random subset of variables from X through the use of fitness function; for 

example, multivariate regression methods in this study, then to determine the cost 

function; for example, RMSE or R, obtained when using the subset of variables in a 

fitness function. GA uses this approach iteratively to locate the variable subset that 

performs the lowest cost function, RMSE in this case. The first step of the GA is to 

generate a large number of random selections of the variables and calculate the RMSE 

for each of the given subsets by using PLS regression method. Each subset of variables 

is called an individual and the variables that are used by that individual are indicated by 

‘0/1’ status, in which 0 is equivalent to the variable that is not selected and 1 is 

equivalent to the variable that is selected. The pool of all tested individuals is the 

population. The RMSE values, described as the fitness of the individual, indicate how 
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predictive each individual’s selection of variables is for the output value Y. The 

individuals with fitness greater than the median fitness (equivalent to providing a higher 

RMSE) are discarded in the selection operator.  

 

The remaining individuals, which used variables that provide a lower RMSE, are 

considered as a better fit to the data. At this stage, the population has been reduced and 

the GA crosses over the retained individuals (parents) to form a new offspring (children) 

to replace the discarded individuals. If no crossover is performed, offspring is an exact 

copy of parents. After adding the new offspring to the population, all the individuals’ 

genes are given a chance for random mutation. This allows for a finite chance of adding 

or removing the use of variables that might be over-represented or under-represented in 

the population. Finally, after all the individuals have been paired and bred, the 

population returns to the original size and the process can continue again at the fitness 

evaluation step (Ghasemi & Saaidpour, 2007). The outline of the basic genetic algorithm 

can be summarized as follows (Majumder, Roy, & Mazumdar, 2010): 

 

1. [Start] Generate random population of chromosomes (variable subsets) 

2. [Fitness] Evaluate the fitness function of each chromosome in the population 

3. [New population] Create a new population by repeating the following steps until 

the new population is complete 

i. [Selection] Select two parent chromosomes from a population according 

to their fitness 

ii. [Crossover] With a crossover probability cross over the parents to form a 

new offspring 
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iii. [Mutation] With a mutation probability mutate new offspring at each 

position in chromosome 

iv. [Accepting] Place new offspring in a new population 

4. [Replace] Use new generated population for a further run of algorithm 

5. [Test] If the end condition is satisfied, the GA process is stopped and it returns 

the best solution in the current population 

6. [Loop] Repeat steps 2-5 until ending criteria are met 

 

The ending criteria of the GA can be either by a number of iterations or by a percentage 

of the individuals in the population that are using identical variable subsets. With the GA, 

individuals containing less noisy information will tend to be selected and therefore the 

variables used by those individuals will become more and more representative in the 

overall gene population. Conversely, individuals containing noisy information will 

become less and less represented. Eventually, many of the individuals will contain the 

same genes if the rate of mutation is sufficient. 

 

However, a practical consideration in GA variable selection is over fitting. It is possible 

that the variables selected may be particularly good for generating a model for the given 

data yet may not be useful for future data, especially when analyzing data with small 

samples size. Therefore, it is generally recommended to follow the guidelines as listed 

below: 

1. Keep the ending criteria sensitive. The more iterations that occur, the more 

feedback the GA will have from the cost function, and therefore the more likely 

the over fitting. 
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2. Use random cost function and multiple iterations if practical. 

3. Repeat the GA multiple times and observe the general trends if possible. 

4. Keep the maximum number of latent variables low. 

 

5.6.3 Performance comparison 

 

The same setting in section 5.2.5 and the pre-filter result as found in section 5.5.5 were 

applied to perform these features selection methods. Considering the cross validation 

results of SFS and GA feature selections in Table 5.9, the study found that the GA 

method that selected 120 features (wavelength) provided the smallest RMSEcv and the 

highest Rcv amongst other results. In addition, the runtime of SFS and GA were also 

noted. The time elapsed to acquire the final dataset by SFS was much longer than that by 

GA, where GA normally took around 30 minutes up to 2 hours while SFS took more 

than 4 days to complete. The simulation was conducted with a PC containing an Intel 

Xeon 5150 @2.66GHz with 2G RAM, running Matlab version 2008a on the Windows 

XP SP3 operating system.  

 

The analysis results must be interpreted with caution, especially for the GA method; it 

usually considered the entire set of selected features (120 wavelengths) to be used as a 

whole in the experiment because a feature may only be helpful to prediction when used 

in conjunction with other features included in an individual feature subset.  
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Methods Variable used RMSEc RMSEcv Rc Rcv 
None 760 2.4477 3.0359 0.6752 0.4668 
SFS 96 2.6198 2.9068 0.6137 0.4979 
SFS 709 2.4488 3.0189 0.6748 0.4722 
GA 273 2.5802 2.8553 0.6266 0.5189 
GA 178 2.4977 2.8900 0.6564 0.5126 
GA 120 2.6453 2.7748 0.6014 0.5483 

 
Table 5.9 Results of various methods for features (wavelength) selection 

 

The selected wavelengths are shown in Figure 5.7 and the wavelength ranges that the 

GA method selected were 1,128 – 1,133nm, 1,158 – 1,163nm, 1,230 – 1,235nm, 1,344 – 

1,367nm, 1,398 – 1,403nm, 1,422 – 1,427nm, 1,446 – 1,457nm, 1,476 – 1,481nm, 

1,602 – 1,607nm, 1,698 – 1,703nm, 1,722 – 1,727nm, 1,740 – 1,745nm, 1,806 – 

1,817nm, and 1,836 – 1,847nm. This set of result was used in the following experiments. 

 

Figure 5.7 Selected features (wavelengths) based on GA (120 features selected) 
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5.7 Summary 

 

This chapter determined the use of a normalization process together with GLS weighting 

pre-filter process to spectral data for multivariate analysis. It showed that the left ring 

finger, FL4, with the assistive finger clip was the best position for measurement. In 

addition, results showed that the effect of temperature was not significant, yet 

temperature provides a better Rcv for the range between 16.8 - 36°C. Finally, 120 

features (wavelength) were selected according to the GA search. Further to these 

important findings in this chapter, an improved algorithm was presented for multivariate 

analysis to further enhance the performance.   
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CHAPTER 6 

MONTE CARLO METHOD MULTIVARIATE 

ANALYSIS  

 

As mentioned, NIR spectroscopy was developed to characterize the constituent 

components of a given material. This spectroscopic method has become a widely-used 

non-destructive measurement technique for agrochemical, pharmaceutical and medical 

applications (Burns & Ciurczak, 2008; Ciurczak & Drennen, 2002; Ozaki, McClure, & 

Christy, 2007). However, since the NIR spectrum is composed of overlapping peaks of 

the overtones (e.g. first, second or third overtones, and their combinations) due to 

various fundamental molecular vibrations (Siesler, Ozaki, Kawata, & Heise, 2002), it is 

difficult to identify the exact features of specific chemical components from the 

absorption spectrum. Hence, multivariate calibration methods, which are often used in 

quantitative spectral analysis, play a critical role in NIR spectral analysis where adequate 

calibration spectra are required for the analysis. 
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6.1 Classification analysis 

 

Common multivariate calibration methods for classification include linear discriminant 

analysis (LDA) (Huberty & Olejnik, 2006; Kemsley, 1998; Klecka, 1980; McLachlan, 

1992), principal component analysis (PCA) (Ferre, 1995; Jolliffe, 2002; Kettaneh, 

Berglund, & Wold, 2005; Wold, Esbensen, & Geladi, 1987), partial least squares 

discriminant analysis (PLS-DA) (Barker & Rayens, 2003; Chiang, Russell, & Braatz, 

2000; Kemsley, 1996; Perez, Ferre, & Boque, 2009; Perez-Enciso & Tenenhaus, 2003; 

Sirven, Salle, Mauchien, Lacour, Maurice, & Manhes, 2007; Zhang, Ortiz, Xie, 

Davisson, & Ben-Amotz, 2005) and support vector machine analysis (SVM) (Cristianini 

& Shawe-Tayor, 2002; Ju, Shan, Yan, & Cheng, 2009; Lin & Yeh, 2009; Scholkopf, et 

al., 1997; Suykens & Vandewalle, 1999; Vapnik, 1998). All of these methods are widely 

used to build prediction models for classification in NIR spectral analysis. Among these 

multivariate calibration methods, PLS-DA is becoming more and more popular because 

of its ability to project the predicted and observable variables into a new space in order 

to maximize the covariance between the response and independent variables (Geladi & 

Kowalski, 1986). However, the performance of PLS-DA model can be severely 

deteriorated due to the presence of outliers (Chen, Shao, Hu, & Su, 2004; Lleti, 

Melendez, Ortiz, Sarabia, & Sanchez, 2005; Mittermayr, Tan, & Brwon, 2001). This is 

particularly unfavourable for NIR spectral analysis where outliers resulting from 

measurement errors or noise in sensors are quite common, especially for a large data 

matrix. Hence, a number of techniques have been developed to reduce the effect of 

outliers on PLS-DA (Kasemsumran, Du, Maruo, & Ozaki, 2006; Pierna, Jin, 
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Daszykowski, Wahl, & Massart, 2003). All of these methods attempt to reduce the noise 

and increase the effectiveness of data extraction for model construction. 

 

Another issue of the PLS-DA method is that only one single quantitative model is 

constructed most of the time to predict the relationship between the NIR spectra and the 

concentrations of the samples. Obviously, this approach can easily misidentify or fail to 

identify important characteristic features contained in the NIR spectra, under or over 

estimating the number of NIR spectral features required for the analysis. The results 

obtained by a single prediction model are thus unstable or correlated to spurious spectral 

variance, particularly when the training set for PLS-DA is relatively small. 

 

This section proposes a new algorithm to enhance both the stability and performance of 

the conventional PLS-DA prediction model. The method employs the Monte Carlo 

method (Chen, Cai, & Shao, 2008; Doucet, Freitas, & Gordon, 2001; Dunn & Shultis, 

2012; Robert & Casella, 2004) to obtain a prediction model that is derived by averaging 

the results obtained from a number of PLS-DA models. The Monte Carlo method is a 

well-known computational algorithm that is often used for simulating the behaviour of a 

system when it is not feasible to use deterministic algorithms. The Monte Carlo method 

is used in this work to randomly select different subsets of training data from the whole 

training dataset to create a large number of PLS-DA models. As each of these models is 

created only with a subset of training data, the number of outliers within each subset is 

likely to be smaller than that in the whole training dataset, and the adverse effect on the 

individual PLS-DA models is therefore reduced. A prediction model is then obtained 

based on part of the models that exhibit superior classification performance. Compared 
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to conventional PLS-DA where only one single model is involved, the proposed 

approach can identify more characteristic features that are relevant to establish the 

relationship between the predicted and observable variables. It is able to decrease the 

risk of over fitting the prediction model and stabilize the performance, particularly for 

NIR spectra analysis involving a large data matrix. 

 

6.1.1 PLS-DA with the Monte Carlo Method 

 

PLS regression is a popular modelling method to establish the relationship between one 

or more dependent variables Y and a group of descriptors X, where X and Y are in 

matrix notation. It is a latent variable (LV) approach where the covariance structures 

between X and Y are modelled by making inferences from a mathematical model with 

directly measurable variables (Tabachnick & Fidell, 2001). The number of LVs of PLS-

DA is an essential parameter to determine the dimensionality of data in the modelling. 

For the linear regression model, the prediction Y is computed by the equation 

𝐘 = 𝐗𝐁 + 𝐄 (6.1) 
 

where X is a n x p matrix containing p dependent variables of n samples, B is a p x 1 

vector of regression coefficients obtained from PLS analysis, and E is the model offset. 

PLS-DA is a variant of PLS when the dependent variable is binary. 

 

The idea of the proposed MC-PLS-DA is to create a large number of PLS-DA prediction 

models using different training subsets that are selected randomly from the whole 
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training data set by the Monte Carlo method. The stability of the corresponding 

coefficients is calculated by using the regression coefficients of these models. The MC-

PLS-DA prediction model is then obtained by averaging the PLS-DA models so that the 

outliers can be removed. Figure 6.1 shows the MC-PLS-DA algorithm. In the proposed 

method, the raw data are randomly divided into two parts – the training set Xt and the 

prediction set Xp. The prediction set Xp is only used to evaluate the robustness of the 

prediction model and not for training. Different subsets are randomly selected from the 

training set Xt to construct a large number of PLS-DA models. The size of each subset is 

70% of that of the whole training set Xt. These PLS-DA models are validated by the 

prediction set Xp. The top 5% of the models are selected to create the final MC-PLS-DA 

model by averaging the prediction of these models. 
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prediction set Xp by random

Training set 
Xt

Prediction Set
Xp

90% samples 10% samples

Select 70% of the samples from Xt by random

Use the model predict the Xp;
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Top 5% of the N models

End
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Figure 6.1 The MC-PLS-DA algorithm 

 

In this study, the top performing model is defined as the one with the highest 

classification rate. The averaged PLS-DA prediction model is obtained by 

𝐁� =  
1
n

 �𝐁 i

n

i=1

 (6.2) 

 

 
 



MONTE CARLO METHOD MULTIVARIATE ANALYSIS  107 

where n is the number of top 5% of the PLS-DA models, and 𝐁 i is the prediction model 

of the MC-PLS-DA model. 

 

In the proposed method, it is necessary to determine the optimal number of PLS-DA 

models required to construct a stable and precise MC-PLS-DA model. The optimal 

number depends on the percentage of top performing PLD-SA models. On one hand, 

when the number of PLS-DA models used is too small, the resulting MC-PLS-DA 

model may overemphasize or underestimate the importance of certain features of the 

data, especially for a large data set like the NIR spectral data. The stability and precision 

are also adversely affected. On the other hand, using a large number of PLS-DA models 

is also undesirable because it is computationally intensive, and irrelevant features may 

be included to deteriorate the prediction result. While the percentage could be adjusted 

experimentally, it is pre-defined as being the top 5% of the PLS-DA modes in order to 

simplify and facilitate the determination of the optimal model number. The number was 

arrived at by drawing an analogy with the idea of confidence interval in probability and 

statistics, where a p-value of 5% (i.e. 5% of the total samples) is conventionally used to 

determine statistical significance. 

 

6.1.2 Performance of MC-PLS-DA 

 

In this study, the blood glucose level (BGL) was divided into two classes, with BGL 

falling between 4mmol/L and 7mmol/L considered as normal BGL, and BGL greater 
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than 7mmol/L defined as high BGL; that is, suffering from DM. The prediction y is thus 

classified by 

𝐲 = �
0, 4𝑚𝑚𝑜𝑙/𝐿 ≤ 𝐵𝐺𝐿 ≤ 7𝑚𝑚𝑜𝑙/𝐿

 
1, 𝐵𝐺𝐿 > 7𝑚𝑚𝑜𝑙/𝐿

 (6.3) 

 
The performance of the MC-PLS-DA model can be evaluated by the sensitivity, 

specificity, and overall accuracy of the model. Sensitivity is a measure of the ability of 

the classifier to identify normal BGL. Specificity is a measure of the ability to identify 

high BGL. Accuracy is a measure of the ability to identify the correct BGL. They are 

defined by the following equations: 

Sensitivity =  
TP

TP + FN
 (6.4) 

 

Specificity =  
TN

TN + FP
 (6.5) 

 

Accuracy =  
TP + TN

TP + TN + FP + FN
 (6.6) 

 
where TP, TN, FP and FN denote the number of true positives, true negatives, false 

positives and false negatives respectively. Here, TP and TN refer to the correct 

classification of normal and high BGL respectively, whereas FP and FN refer to 

incorrect classification of normal and high BGL respectively. 

 

Since there were four samples in the left ring finger (FL4) where the blood glucose level 

of collected samples was below 4mmol/L, hence there were 840 samples of FL4 that 

were randomly divided into the training data set and the prediction data set. The former 

contained 756 samples (90% of the total number of samples) while the latter contained 

84 samples. 530 samples were then randomly taken from the training data set to create a 
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PLS-DA model, where the correlation between the predicted and reference values was 

maximized. All the samples in the prediction data set were used to fit the training model 

and evaluate the classification rate. By the same token, another 530 samples were drawn 

the same subset of training data to create a new PLS-DA model. The procedure was the 

carried out repeatedly until 1,000 PLS-DA models were built. The top 5% (50) of the 

models, in terms of classification rate, were selected to create the MC-PLS-DA model 

with the same training and prediction data sets. The entire algorithm shown in Figure 6.1 

was then executed repeatedly for a total of 20 runs. At each run, the 840 samples were 

randomly divided to produce different training and prediction data sets, so that a total of 

20 MC-PLS-DA models were obtained. The sensitivity, specificity, and the accuracy of 

these 20 MC-PLS-DA models were averaged to evaluate the performance of the 

algorithm. 

 

Optimal number of LVs for PLS-DA model 

 

The number of the LVs of PLS-DA model was determined first because it is an 

important parameter in the modelling. The performance of the MC-PLS-DA and 

conventional PLS-DA model are compared in Figure 6.2, in terms of the variation of 

sensitivity in (6.4), specificity in (6.5), and accuracy in (6.6) with the number of LVs. 

The performance of the MC-PLS-DA model was found to be better than the 

conventional PLS-DA model for all cases. The sensitivity, specificity, and accuracy of 

the MC-PLS-DA model appeared to remain at the same level when the number of LVs 

was increased, and remained stable and constant after six LVs. The results indicated that 
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the application of the Monte Carlo method can stabilize and improve the performance of 

conventional PLS-DA. 
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(c) 

Figure 6.2 Variation of sensitivity (a), specificity (b) and accuracy (c) with the 

number of LVs. 

 

Optimal PLS-DA model number 

 

The second experiment was to determine the number of PLS-DA models required to 

build a MC-PLS-DA model. The procedure defined by the MC-PLS-DA algorithm 

shown in Figure 6.1 was run repeatedly here where, at each run, a different number of 

top PLS-DA models was created to obtain a MC-PLS-DA model. Based on the results 

shown in Figure 6.2, the number of LVs was set at 6 in this experiment since the 

performance of MC-PLS-DA did not make significant improvement beyond this value. 
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The number of PLS-DA models generated at each individual run ranged from 20 to 

50,000, and the top 5% of the models at each run (i.e. ranging from 1 to 2,500) were 

selected and averaged to create the corresponding MC-PLS-DA model. 

 

The effects of the number of PLS-DA models on the sensitivity, specificity and the 

accuracy of the resulting MC-PLS-DA models were investigated. The results shown in 

Figure 6.3 demonstrate that the variation range of sensitivity and specificity were within 

approximately 0.015, and that of the overall accuracy was about 0.01.The performance 

was relatively low, however, when the number of PLS-DA models used was below 200; 

that is, using only one to ten top performing models. The overall accuracy appeared to 

saturate when over 5,000 PLS-DA models were used to create the MC-PLS-DA model. 

It did not change remarkably even when the number was further increased to 50,000. 

Therefore, using 5,000 PLS-DA models to build the MC-PLS-DA model appears 

reasonable to save computation time. 
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Figure 6.3. The sensitivity, specificity and accuracy obtained with various numbers 

of PLS-DA models 
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6.1.3 Performance comparison 

 

Based on the findings obtained from the previous experiments, a MC-PLS-DA model 

was created to predict the BGL for NIR spectral data collected. The number of LVs and 

PLS-DA models was six and 5,000 respectively. The predictor matrix was obtained by 

averaging the training results. The performance of the MC-PLS-DA model was 

compared to that of conventional PLS-DA, LDA, NN and SVM. The same training and 

prediction sets were used for the comparison. 

 

Table 6.1 shows the sensitivity, specificity, and the overall accuracy of the five methods. 

The results indicate that MC-PLS-DA outperforms the other methods in all three aspects. 

The overall classification rate of the MC-PLS-DA model reached 75.2%, which was the 

highest accuracy among all methods.  

Method Sensitivity Specificity Accuracy 
LDA 64.6 % 65.3 % 64.8 % 
NN 72.0 % 66.5 % 69.3 % 
SVM (RBF) 72.9 % 68.6 % 70.7 % 
PLS-DA 72.5 % 68.0 % 70.2 % 
MC-PLS-DA 78.0 % 72.5 % 75.2 % 

 
Table 6.1 Sensitivity, specificity and the accuracy of the five methods 

 

The findings in these experiments suggest that the proposed MC-PLS-DA is a feasible 

method for classifying NIR spectral data and can be used to monitor the BGL of DM 

patients through non-invasive measurement. With the enhancement achieved by the 

Monte Carlo method, the MC-PLS-DA method is more stable and accurate than the 

conventional PLS-DA method. 
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6.1.4 Discussion 

 

The MC-PLS-DA method is proposed to tackle the problems of the PLS-DA approach in 

which accuracy is limited by the use of one single prediction model. The method 

integrates the Monte Carlo method into the conventional PLS-DA to improve 

performance. The results show that the MC-PLS-DA provides higher sensitivity than the 

other methods — more than 20% — when compared with LDA and around 8% more 

than NN, SVM and conventional PLS-DA. In addition, MC-PLS-DA performs better in 

specificity than the other methods as none of them could achieve higher than 70% while 

MC-PLS-DA could reach 72.5%. The accuracy rate of MC-PLS-DA is 11% higher than 

LDA and around 6% higher than NN, SVM and conventional PLS-DA. These 

advantages make MC-PLS-DA a promising approach for NIR spectra analysis. 

 

6.2 Regression analysis 

 

Multivariate calibration methods for regression analysis are commonly used to extract 

relevant information from different types of spectral data to predict analyte 

concentrations (Eriksson, Gottfries, Johansson, & Wold, 2004; Escandar, Damiani, 

Goicoechea, & Olivieri, 2006; Smith, 2002; Wold, Cheney, Kettaneh, & McCready, 

2006). They are particularly useful in spectral analysis because the concurrent inclusion 

of large spectral data for the analyte can greatly improve the precision and applicability 
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of quantitative analysis. Multiple linear regression (MLR) (Ostrom, 1990; Weisberg, 

2005), principal component regression (PCR) (Martens & Naes, 1989; Naes, Isaksson, 

Fearn, & Davies, 2002; Naes & Martens, 1998) and partial least squares regression (PLS) 

(Hoskuldsson, 1988; Paul & Bruce, 1986) are most common methods used to construct 

the quantitative model in spectral analysis. 

 

As mentioned in Chapter 2, many researchers are developing a variety of non-invasive 

methods that monitor blood glucose (Fine & Shvartsman, 2003; Heise, Bittner, & 

Marbach, 1998; Maruo, Tsurugi, Chin, Ota, Arimoto, & Yamada, 2003; Robinson, 

Eaton, Haaland, Koepp, Thomas, & Robinson, 1992). NIR spectroscopy has become a 

promising technique for blood glucose monitoring among those potential non-invasive 

approaches. However, an appropriate model of spectral response in humans is yet to be 

determined. The key component of NIR spectral quantitative analysis is dependent on 

multivariate calibration methods that require sufficiently useful calibration spectra and 

sufficient spectral data points to allow analytical information to be accurately extracted 

from spectra. The quality of a multivariate calibration model mainly depends on the 

quality of both response and independent variables. As mentioned, PLS is the most 

common multivariate calibration procedure to build the quantitative model in NIR 

spectroscopy because PLS attempts to maximize covariance between the response and 

independent variables. However, the performance of the PLS model will be severely 

degraded in the presence of outliers (Chen, Shao, Hu, & Su, 2004; Mittermayr, Tan, & 

Brwon, 2001). In practice, an analytical data matrix generally includes unexpected 

experimental errors or measurement noise and normally contains hundreds of samples in 

the NIR spectra. Hence, outliers possibly exist in such a large data matrix.  
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The fact that outliers can deteriorate the quantitative model derived from a normal PLS 

analysis has motivated the development of algorithms that are less affected by outliers 

(Pell, 2000; Pierna, Wahl, de Noord, & Massart, 2002). These algorithms should be 

effective for extracting data for use in process modelling. Although various PLS 

methods (Griep, Wakeling, Vankeerberghen, & Massart, 1995; Kasemsumran, Du, 

Maruo, & Ozaki, 2006) have been developed for the problem of outliers, most of these 

methods use a single quantitative model to predict the relationship between NIR spectra 

and blood glucose concentration. A single prediction model from PLS analysis may 

underestimate or overemphasize some features, and even worse ignore some important 

characteristics contained in the largely complex NIR spectra. The prediction results 

obtained by a single prediction model may be unstable or correlated with spurious 

spectral variance particularly when the training set is comparatively small. In this regard, 

a new approach to enhance both stability and performance of PLS prediction models is 

required. 

 

Like the method presented in section 6.1.1, a PLS model with improved stability and 

performance derived from Monte Carlo simulation (Doucet, Freitas, & Gordon, 2001; 

Robert & Casella, 2004) has been presented. The Monte Carlo method is used to rate 

and analyze NIR spectra by simulating a large number of PLS models from calibration 

subsets that are randomly selected from the whole calibration set. The reason is that 

since the number of outliers will be significantly less than that of normal samples; the 

PLS models can minimize the adverse effect caused by the outliers. It is then 

determining the mean value over the models with small prediction errors. The advantage 
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of the Monte Carlo method over other techniques becomes more prominent where the 

sources of uncertainty increase. It is therefore suitable for predicting blood glucose 

concentration since glucose measurement in humans is subject to a number of 

confounders. The results show that the Monte Carlo method can improve both stability 

and performance of PLS prediction models of the NIR spectrometry. 

 

6.2.1 Algorithm of MC-PLS 

 

As mentioned in section 3.2.3, in the linear least squares model, the prediction y is 

computed by the equation 

𝐲 = 𝐗𝐛 +  𝛆 (6.7) 
 
where X is a n x p matrix containing p dependent variables of n samples, b is a p x 1 

vector of regression coefficients obtained from PLS analysis, and ε is the model offset. 

 

The mechanism in this algorithm is similar to section 6.1.1 although some of the setting 

is modified. The raw spectra are randomly divided into two parts - training set Xt and 

prediction set Xp. The prediction set is used to evaluate the robustness of the prediction 

model because it will not be involved in training the model. A large number of subsets 

i.e. 60% of the samples in the training set, will be randomly selected for training, and 

therefore a large number of PLS models are constructed by using these subsets from the 

whole training set. After that, these PLS models will be validated by the prediction set, 

and those providing the smallest RMSE of prediction as shown in (3.25); that is,  5% of 
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the overall models, will be selected and the averaged prediction of these models taken as 

the final model. After that, the averaged PLS prediction model is calculated as 

�̅� =  
1
N

 �𝐛 i

N

i=1

 (6.8) 

 
where N is the number of 5% of the overall models, and 𝐛 i is the prediction model of 

the smallest 5% RMSE of prediction of the overall models. 

 

Figure 6.4 shows the MC-PLS algorithm with the number of samples mentioned. The 

main advantage of this approach is to obtain sufficient PLS models without outliers for 

the purpose of outlier detection. Finally, the performance of this averaged PLS model is 

assessed by means of the root mean square error of prediction (RMSEp). All the results 

are averaged over 20 runs. 
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Figure 6.4 The MC-PLS algorithm 
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6.2.2 Performance of MC-PLS 

 

Optimal number of LVs for PLS model 

 

Firstly, the number of latent variables for the PLS model was determined because it was 

an important parameter in the modeling. Figure 6.5 shows the variation of RMSEp with 

the number of LVs of MC-PLS and conventional PLS. In this simulation, 1,000 PLS 

models were built and the optimal 5% of the overall models (50 models) were selected 

for the MC-PLS. The same training sets and prediction sets were used in both models for 

the sake of fairness. The figure shows that the MC-PLS provides smaller RMSEp 

compared with conventional PLS and has a descending trend with the increase of the 

number of LV while stabilizing after LV is larger than six. The correlation coefficient in 

Figure 6.6 shows that the performance of MC-PLS is higher than the conventional PLS 

and it stabilizes after LV is larger than five. The results confirm that using the Monte 

Carlo approach for PLS can perform better than the conventional PLS. The number of 

LV was set equal to six for the following simulations according to those results. 
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Figure 6.5 Variation of RMSEp with the number of LVs 
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Figure 6.6 Variation of correlation coefficient with the number of LVs 
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Figure 6.8 show the RMSEp and Rp obtained with various numbers of PLS models from 

20 to 80,000. For each simulation, 5% of overall models that provided the smallest 

RMSEp were selected and averaged to develop the MC-PLS model. The number of 

models selected and the standard error of the RMSEp for the simulation trails are shown 

in Table 6.2. Simulation results show that the RMSEp was large for the case of one 

model selected out of 20 PLS models then, with the number of PLS models increased, 

the RMSEp becomes smaller. The RMSEp was steadily saturated at 1,000 PLS models 

even for the large number of PLS models (that is 80,000) were calculated for use in the 

number of models selection. It can be seen on one hand that the fewer the PLS models, 

the more significant the effect of outliers and thus a more deteriorated performance. On 

the other hand, when too many PLS models were used, the performance was not 

significantly improved. Therefore, 1,000 PLS models were used for MC-PLS. 
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Figure 6.7 Variation of RMSEp with the number of PLS models 
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Figure 6.8 Variation of correlation coefficient with the number of PLS models 
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10000 500 2.6183 (0.2595) 
20000 1000 2.6185 (0.2596) 
40000 2000 2.6183 (0.2594) 
80000 4000 2.6181 (0.2595) 

 
Table 6.2 RMSEp with the mean value obtained by various PLS models 
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6.2.3 Performance comparison 

 

Finally, a MC-PLS model was constructed based on the previous findings. The training 

procedure was repeated 1,000 times, the number of LVs was set to six, and the predictor 

matrix was obtained with the mean of the training results. Based on the findings, a 

model was developed to predict the glucose value using PLS analysis. The performance 

of the MC-PLS model was compared to that of conventional PLS, MLR and PCR. The 

same training and prediction sets were used for the comparison. Table 6.3 shows the 

RMSEp and Rp for the four methods. The results indicate that MC-PLS provides the 

smallest RMSEp and the highest Rp among all methods.  

Method RMSEp Rp 
MLR 2.8107 0.5186 
PCR 2.9693 0.3851 
PLS 2.5453 0.6143 
MC-PLS 2.4392 0.6535 

 
Table 6.3 Performance comparison of the four methods 

 

To further determine the accuracy of estimating blood glucose level using this model, a 

Clarke Error Grid Analysis (EGA) was employed (Clarke, Cox, Gonder-Frederick, 

Carter, & Pohl, 1987). The EGA breaks down a scatterplot of a reference glucose 

measurement and a predicted glucose measurement into five zones as shown in Table 

6.4. The more the values appear in A and B, the more accurate the device in terms of 

clinical utility.  
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Zone Distribution Clinical utility 

A Within +/-20% of the 
reference glucose value Accurate (acceptable) glucose results 

B Outside +/-20%, within 
95% CI Accurate (acceptable) glucose results 

C Beyond 95% CI Unnecessary corrections that could lead to a poor 
outcome 

D Beyond 95% CI A dangerous failure to detect and treat 
E Beyond 95% CI Erroneous treatment  

 
Table 6.4 Description of zones in terms of clinical utility for EGA 

 

Table 6.5 shows the comparison among MLR, PCR, conventional PLS and MC-PLS and 

the scatterplot of MC-PLS is shown in Figure 6.9. The estimated glucose values are 

plotted against the referenced glucose values. The results show that 100% of the data 

points fell within Zone A and Zone B for MC-PLS while other methods do have some 

predicted values falling into Zone D, which is a dangerous failure to detect and treat in 

clinical utility. Based on the results mentioned, it is proven that the Monte Carlo 

approach can not only stabilize the conventional PLS model, but also improve the 

performance of the prediction model.  

 

 MLR PCR PLS MC-PLS 
RMSEp 2.7633 2.9747 2.5635 2.4763 

Rp 0.5372 0.3743 0.6020 0.6348 
EGA     

A 33 29 38 38 
B 48 50 45 47 
C 0 0 0 0 
D 4 6 2 0 
E 0 0 0 0 

 
Table 6.5 Comparison of results obtained by the four methods 

 
 



MONTE CARLO METHOD MULTIVARIATE ANALYSIS  130 

 

Figure 6.9 EGA prediction results of MC-PLS 

 

6.2.4 Discussion 

 

This study has presented an improved algorithm based on the Monte Carlo method to 

average the PLS model results, and the model provides stable, accurate and non-invasive 

blood glucose measurement. The results show that the MC-PLS provides smaller 

RMSEp than MLR and PCR, which have more than a 13% improvement, and further 
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conventional PLS. The results of these experiments and field trials support the feasibility 

of measuring blood glucose level using NIR spectroscopy with the proposed algorithm. 

 

6.3 Summary 

 

This study proposed the MC-PLS-DA method for the classification approach and the 

MC-PLS method for the regression approach to tackle the problems in which the 

performance is limited by the use of one single prediction model of PLS. These methods 

integrate the Monte Carlo method into the conventional PLS-DA and conventional PLS 

to improve their overall performance. The MC-PLS-DA algorithm exhibits better 

sensitivity, specificity and overall classification rates when compared with LDA, NN, 

SVM and conventional PLS-DA, as evident from the BGL classification results on the 

NIR spectral data. In addition, the MC-PLS algorithm reveals smaller RMSE and higher 

R when compared with MLR, PCR and conventional PLS, which provides more stable 

and accurate results for blood glucose measurement.    
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

 

7.1 Discussion  

 

This study successfully adopted the four-stage framework of bio-signal processing to 

handle the NIR spectroscopy that is used to measure blood glucose level. A vigorous 

systematic approach from signal acquisition to signal interpretation has been established. 

These include, in the first stage, the assembly of the specific equipment for NIR 

spectroscopy, which includes a finger clip at the end of the probe to provide a constant 

force and firmly fix the scanning position during measurement. The study also identified 

the left ring finger as probably the best measurement site to acquire NIR spectral data. In 

addition, the temperature effect relative to body location was shown to be not significant 

across different temperature ranges. Moreover, the study proposed using a 2-norm 

normalization process, together with the GLS weighting pre-filtering process, during the 

signal transformation stage so as to minimize the disturbance noise caused by the 

previous stage. After that, the study suggested using the genetic algorithm for feature 

(wavelength) selection in the parameter selection stage. Finally, in the signal 

interpretation stage, improved methods based on the Monte Carlo approach for the PLS 
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multivariate analysis were introduced, which were called MC-PLS-DA for classification 

analysis and MC-PLS for regression analysis to predict the result. Figure 7.1 shows the 

proposed methods together with the four-stage framework for easy reference.    
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Figure 7.1 The four-stage framework of the proposed methods 

 

The proposed multivariate analysis by making use of classification analysis for non-

invasive blood glucose measurement is the new initiative for the purpose of DM 
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screening. The blood glucose level was divided into two classes that were listed in 

Equation (6.3), the normal BGL and the high BGL. The prediction output in this method 

is not represented in terms of exact value of the BGL, simply to classify it into normal or 

high BGL. The MC-PLS-DA integrates the Monte Carlo method into the conventional 

PLS-DA to enhance performance. It exhibits better sensitivity, specificity, and overall 

accuracy rate when compared to others. The classification output results for the 

relationship between the response and the independent variables is more accurate, hence 

enhancing the reliability of the classification model, especially for such a large training 

set in this study. These advantages make MC-PLS-DA a possible way for non-invasive 

blood glucose measurement using NIR spectroscopy.  

 

Apart from the classification analysis method developed for the signal classification 

stage, the study also proposed another multivariate analysis based on regression analysis 

for prediction. Like the MC-PLS-DA, it also incorporates the Monte Carlo method with 

the conventional PLS algorithm, called MC-PLS, to provide more accurate prediction 

results. The results in section 6.2.3 showed that the MC-PLS can improve the 

performance of the conventional PLS algorithm and out-performance the other 

algorithms.  In addition, the prediction results all fell within Zone A and Zone B of the 

EGA, which are accurate for clinical utility. However, it should also be noted that the 

correlation coefficient was not high enough to provide a good relationship between the 

response NIR spectra and the blood glucose levels. The reasons include the large sample 

size of this clinical study that contain many unexpected disturbances and noise from the 

dataset; for example, the measurement error and the physiological effect of the human 
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being are the greatest factors for generating such disturbances. Since the ultimate goal 

was targeted to develop a universal model, the study avoided the use of the user 

dependent or individual prediction models, which can easily achieve a high correlation 

coefficient and minimum RMSE.    

 

Moreover, with the reproducibility test that was carried out in the clinical trial, it 

recognizes the use of blood tests from a laboratory as the gold standard for non-invasive 

blood glucose measurement. The large sample size of this clinical study revealed the 

output models, one for classification analysis and one for regression analysis, are 

attempting to adopt a universal model instead of single user model. Undoubtedly, it is 

easy to claim success in the development of non-invasive blood glucose measurement 

with a user dependent prediction model. While this study was trying to reduce the 

spurious correlation between blood glucose concentrations and spectral features within 

the data set from a single subject or few subjects.  

 

The capability to determine blood glucose non-invasively in humans is a complex and 

difficult analytical problem. Many researchers and industry groups have attempted to 

measure blood glucose by various non-invasive methods (as mentioned in Chapter 2). 

Those early manuscripts published in this area were either measuring glucose solutions 

or measuring glucose with animal tests. It is particularly important to seek for 

publication with the test based on human. In this regard, Table 7.1 lists the manuscripts 

that fell between 2001 to 2011, and that the experimental setup used NIR spectroscopy 

with multivariate analysis in testing human subjects.  
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Method  Details Results Reference 
Absorption of skin 
(wavelength range 
from 1,300 – 
1,900nm) 

Six subjects, OGTT, 
one calibration 
model per subject, 
forearm 
measurement  

Overall correlation 
coefficient was 0.934, 
standard error of 
prediction was 
1.32mmol/L, EGA: 
Zone A: 71.3%, Zone B: 
21.3% and Zone D: 
7.4% 
 

(Maruo, 
Tsurugi, 
Tamura, & 
Ozaki, 2003) 

Absorption of skin 
(wavelength range 
from 1,200 – 
1,900nm) 

One subject, OGTT, 
skin measurement  

Correlation coefficient 
was 0.928, standard 
error of prediction was 
1.79mmol/L, EGA: 
Zone A: 87.5%, Zone B: 
8.3% and Zone D: 4.2% 
 

(Maruo, 
Tsurugi, Chin, 
Ota, Arimoto, 
& Yamada, 
2003) 

Absorption of skin 
(wavelength range 
from 1,212 – 
1,889nm) 

One subject, OGTT, 
finger measurement 

Correlation coefficient 
was 0.89, RMSEV was 
1.12mmol/L, EGA: 
Zone A: 86%, Zone B: 
7% and Zone D: 7% 
 

(Kasemsumran, 
Du, Maruo, & 
Ozaki, 2006) 

Absorption of skin 
(wavelength range 
from 900 – 
1,700nm) 
 

23 subjects, OGTT, 
fingertip 
measurement 

EGA: Zone A: 93.7%, 
Zone B: 6.3% and Zone 
C-E: 0% 

(Yamakoshi, et 
al., 2007) 

Absorption of skin 
(wavelength range 
from 1,550 – 
1,800nm) 

One subject, 4 days 
finger measurement 

Correlation coefficient 
was 0.8785, RMSEp 
was 0.8682mmol/L, 
EGA: 100% fall within 
Zone A & B 

(Chuah, 
Paramesran, 
Thambiratnam, 
& Poh, 2010) 

 
Table 7.1 List of NIR spectroscopy experiments in human tests 

 

It is relatively simple to measure data and study the correlation with glucose solution 

tests or blood glucose levels under controlled conditions in research laboratories with 

only a few subjects/samples. The challenge here is to measure these variables in normal 

 
 

 



DISCUSSION AND CONCLUSION  137 

and practical environments with large datasets of different subjects. This requires 

understanding the physical and physiological factors that may affect blood glucose 

measurement. It is important to notice that non-invasive monitoring will never be 

achieved without vigorous scientific and clinical evidence. At this stage, it is still far 

away from achieving the goal of non-invasive blood glucose monitoring, with many 

technical issues yet to be resolved. 

 

7.2 Future work  

 

The performance evaluation according to the four-stage framework in this study 

indicates promising directions of non-invasive blood glucose measurement using NIR 

spectroscopy. While advances have been made, there is still a great demand to further 

improve the accuracy and the reliability of non-invasive instruments so as to reach a 

level comparable to the gold standard. Some future work in the context of this thesis are 

suggested as follows. 

 

1. The performance of the hardware for NIR technology must be sufficiently high 

to ensure the data acquired on blood glucose is reliable and the uninformative 

noise is minimal. Because the signal-to-noise ratio (SNR) of the instrumentation 

delineates the limit of detection for blood glucose in absorption spectroscopy, it 

is understood that an instrument with high SNR is highly recommended for 

spectral signal collection from humans. Mark’s team suggested an instrument 

 
 

 



DISCUSSION AND CONCLUSION  138 

with the SNR on the order of 50,000 is required in view of the relatively weak 

absorption property associated with blood glucose (David & Julie, 2010). 

 

2. Thickness of the human tissue is a critical factor because it determines the 

absorbance according to Beer’s Law in (1.1). Theoretically, the tissue layer must 

be thick enough to allow analyate molecules within the optical path to generate a 

signal. However, if the tissue layer is too thick or too thin, excessive scattering or 

inadequate scattering can result in loss of signal. According to the experimental 

results in this study, it was found that different measurement sites resulted in 

quite a different variation of prediction results, while the finger tip measurement 

sites (excluding the thumb) provided comparably similar prediction results. This 

may be due to the fact that the thicknesses of the tissues in different position of 

finger tip are similar. In view of this, it is suggested using the finger tip (the left 

ring finger, FL4) for the measurement site but it is worth paying attention that the 

thickness of the human tissue can influence the prediction results in the localized 

region of the measurement. 

 

3. Beer’s Law was applied in this study to determine the absolute concentration of 

glucose molecules present in blood. The law states that the quantity of light 

absorbed by a substance is directly proportional to the concentration of the 

substance and the path length of the light through the solution. However, this law 

does not take into consideration either reflection or scattering of incident light 

that accounts for the loss of transmitted light intensity because human tissue is 
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quite a high scattering medium. Since physiological differences would affect the 

reliability of different technologies, they are mainly due to individual metabolism, 

blood components, and other bodily fluid circulations for body regulation. 

Absorption spectroscopy mainly detects the glucose molecule, and glucose can 

be found everywhere in the human body. Maikala proposed modifying Beer’s 

Law in relation to the optical properties of human tissue, which may help to 

explain more for this application (Maikala, 2010).  

 

4. Since the colour of skin may be one factor that affects NIR spectroscopy 

measurement, this study mainly focused on the East Asia group of people — 

people of Asian descent (tan skin tone) to avoid different combinations of skin 

colour, thereby affecting the model’s validation. It is undoubtedly worth carrying 

out other clinical trials to collect other skin tones so as to develop a universal 

model for people all over the world.  

 

5. In addition, the force exerted on the measurement area may affect the 

deformation of the contact point of the tissue. This study involved applying a 

finger clip that provides constant force to measurement at the finger tip. However, 

it may likely produce a poor prediction result after a long period of time because 

different deformations of the tissues may cause diverse absorption or reflection 

properties and thus affect the resulting signal. Moreover, in view of the fact that 

the non-invasive technology is based on NIR optical sensing technique, a time 

lag may occur between measurements of blood glucose content from different 
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parts of body. This may introduce error in calibration, and hence this issue is 

worth investigating. 

 

6. The Monte Carlo method applied to PLS-DA for classification approach was 

proposed to handle the two level classification: normal BGL and high BGL. It is 

noticeable that BGL can be further categorized into three or even four levels, 

such as the low BGL and very high BGL. Undoubtedly, PLS-DA may not be 

suitable for this multivariate analysis because of its two level classification in 

nature, yet this issue goes far beyond demonstrating the feasibility of 

classification approach for non-invasive blood glucose monitoring but pertains to 

its eventual practical implementation. 

 

7. Although an improved method was investigated for quantitative analysis that can 

enhance the correlation of the spectroscopic properties of the glucose molecule 

with glucose concentration in blood, more effort should be taken to rigorously 

extend the technique to non-invasive blood glucose monitoring. In regression 

analysis, the correlation between the spectral data and the predicted 

concentration is not encouraging; the reason may be due to non-linearity of the 

spectral data for multivariate analysis. It is not easy to tackle the non-linear data 

for multivariate training method such as PLS and it is worth making an effort on 

other nonlinear multivariate methods, attempting to carry out the training method 

for a better prediction model.  
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8. Though this study developed a model with improved stability, the results need to 

be interpreted with caution. In this experiment, because of the limitation of the 

NIR spectrometer, many uninformative noises were generated in the wavelength 

range higher than 1,900nm; the constraint inherent in the study is the 

impossibility of using a higher range spectrometer (wavelength range 2,000 – 

2,500nm). Thus, there is a possibility that the higher spectra portion was lost for 

analysis.  

 

7.3 Conclusion 

 

In this century, particularly in wealthy developed countries, diabetes is a complex group 

of syndromes that have a disturbance in the body’s use of glucose. It can be controlled 

by an appropriate regimen that includes patient education, weight management, diet 

control, sensible exercise, oral medication, and insulin therapy. However, these diabetes 

management and medications rely heavily on blood glucose measurement. With ever-

improving advances in diagnostic technology, the race for the next generation of 

bloodless, painless, accurate and consistent blood glucose measurement instruments has 

begun. Nevertheless, many hurdles remain before these products reach commercial 

markets. 

 

This study identified a promising measurement site for non-invasive measurement, 

proved the temperature difference at the measurement site was insignificant to the 

prediction results, verified the advantage of the data pre-processing treatment of spectral 
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data, and proposed an improved method for multivariate analysis. Considerable progress 

has been made in the development of non-invasive blood glucose measurement devices. 

In principle, the approach can be used for screening purposes for DM prevention. 

However, for diabetes that needs frequent testing, using invasive blood glucose 

measurement via finger pricking remains a practical way to provide suitable information 

for diabetes management at this current stage.  
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INFORMATION SHEET (for Adult) 
 

The precision of a single wavelength approach in measuring blood glucose level 
using the newly developed non-invasive near-infrared glucose meter 

 
You are invited to participate on a study conducted by Professor Joanne Wai-yee 
CHUNG who is currently a Professor of Nursing in the School of Nursing in The Hong 
Kong Polytechnic University and the Principal Investigator of the study.   
 
The aim of this study is to examine the precision in blood glucose measurement using a 
single wavelength approach. 
 
The night before study, you are required to fast for twelve hours after your dinner 
(during the fasting period, you are only allowed to drink plain water).  You will attend 
our clinic the next morning for the study.  We will draw 12 ml fasting blood from you 
for the laboratory measurement.  The tests will include Complete Blood Picture, Renal 
Function Test, Liver Function Test, Lipid Profile, Fasting Blood Glucose and 
Haemoglobin A1c.  We will scan your 10 fingers, forearm, wrist, buccal cavity and ear 
lobe using our non-invasive glucose meter.  You will also be asked to provide 
demographic data on gender, age and medical history.  The whole procedure will take 
you about 30 minutes. You will receive your laboratory results together with explanation 
as a token. 
 
Apart from the minimal needle puncture pain during the blood sampling procedure, it 
should not be any undue discomfort during the whole procedure.  You have every right 
to withdrawn anytime from the study without penalty of any kind. All information 
related to you will remain confidential.   
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If you have any complaints about the conduct of this research study, please do not 
hesitate to contact Mr. Eric Chan, Secretary of the Human Subjects Ethics Sub-
Committee of The Hong Kong Polytechnic University in person or in writing (c/o 
Human Resources Office in Room M1303 of the University).   
 
If you would like more information about this study, please contact Joanne Wai-yee 
Chung on tel. no. 34003806.   
 
Thank you for your interest in participating in our study.   
 
Prof. Joanne Wai-yee CHUNG 
Principal Investigator 
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