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Abstract 

With the renew interest in energy-saving generation dispatch and the growing 

environmental concern for the power industry, developing a modernized dispatch 

infrastructure, associated with its optimized generation scheduling and dispatch 

strategies, have become a global priority to contribute towards the formation and 

development of the future smart grid. Under the smart and green grid paradigm, 

automatic generation control (AGC) and electric power dispatch will play an 

important role in improving the long-term control performance and sustainability 

of energy management system (EMS) for the efficient operation of large-scale 

interconnected power systems. Therefore, based on the foundation laid by the 

pioneering research studies already presented, this thesis strives to make further 

investigations for the design of the AGC strategies and power dispatch algorithm 

with multi-objective operation in mind. 

The AGC performance in interconnected power system operation is used to 

measure against the control performance standards (CPS) released by North 

American Electric Reliability Council (NERC) in 1997. Since the introduction of 

this new NERC CPS, there are fundamental changes in the conventional AGC 

control philosophies. So far, researches on AGC strategies under CPS were 

mostly based on the classical proportional-integral (PI) control structure. Even 

with the wide adoption of the CPS nowadays, the existing AGC systems have 

commonly not yet been optimized to fully explore the potential of CPS standards. 

Dynamic response studies showed that the AGC system under CPS in fact can 

better be formulated as an uncertain stochastic system from the statistical and 

probabilistic point of view. Consequently, this thesis harnesses reinforcement 

learning (RL) and Markov decision process (MDP) techniques to develop a 

robust and adaptable AGC optimized for the NERC’s CPS standards and optimal 
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relaxed operation. 

Over the years, in order to determine the optimal steady-state operation of 

dispatchable generators, economic dispatch (ED) is a standard function in the 

EMS so that the total generation cost is minimized while satisfying a set of 

operational and physical constraints. However, nowadays more operating 

objectives, such as energy conservation and emission reduction, should also be 

considered to establish a multiobjective power dispatch (MOPD) optimization. 

Consequently, this thesis would also propose a new algorithm based on the 

Pareto optimality to solve this highly constrained large-scale MOPD problem 

with multiple contradictory and noncommensurable objectives. 

First and foremost, in this thesis, a new concept referred as optimal relaxed 

AGC control is proposed to allow the AGC plants to maneuver in less costly 

manner in finding the optimal economic dispatch policy on the premise of 

complying with the CPS1 and CPS2 metrics. A Q-learning based AGC controller, 

in which the CPS control and relaxed control objectives are formulated as multi-

criteria reward function via linear weighted aggregate method, is presented for 

interactive self-learning control rules to maximize the long-term discounted 

reward. In addition, for the thermal-dominated power systems, to overcome the 

long time-delay problem caused by the steam turbine of AGC thermal units in 

the secondary frequency control loop, a multi-step Q(λ) learning based AGC is 

proposed to regulate the degree of CPS compliance and relaxation for the 

desirable relaxed control. The effectiveness and validity of the proposed RL 

based AGC strategies have been successfully verified on a two-area load 

frequency control (LFC) model and the practical-sized China Southern Power 

Grid (CSG) with four control areas. 

The goal of average reward RL is to maximize the long-term average rewards 

of a generic system. This coincides with the design objective of the CPS which 

was established to improve the long-term performance of an AGC used for real-

time control of interconnected power systems. Therefore, a novel R(λ) imitation 
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learning (R(λ)IL) method based on average reward optimality criterion is 

proposed to develop an optimal AGC under the CPS. This R(λ)IL based AGC is 

capable of operating online in real-time with high CPS compliances and fast 

convergence rate in the imitation pre-learning process. Its capability to learn the 

control behaviors of the existing AGC by observing the system variations enable 

it to overcome the main difficulty in practically applying the conventional RL 

controllers, in which an accurate power system model is required for the offline 

pre-learning process, and significantly enhance the learning efficiency and 

control performance for power generation control in various power system 

operation scenarios. 

On the other hand, an equilibrium-inspired multiple group search optimizer 

(MGSO) is developed to solve the highly constrained MOPD problem. In this 

algorithm, a stochastic learning automata based synergistic learning is employed 

to achieve the information interaction and credit assignment among groups for 

cooperative search, and an average linkage-based hierarchical clustering is used 

to provide the power dispatcher with a manageable and representative Pareto-

optimal front (PF). Furthermore, the Nash equilibrium point is first introduced to 

identify the best compromise solution from the PF. An alternative constraint 

handling, which separates constraints and objectives with different search 

strategies, is presented to orient towards a well-distributed PF. In addition, two 

special implementations, space reduction strategy and chaotic sequence 

dispersion, have been incorporated in convergence process to facilitate the local 

exploitation and global exploration of PF solutions respectively. Simulation tests 

on the benchmark power systems, including the IEEE 30-bus system with 6 units 

and the IEEE 118-bus system with 54 units, have demonstrated the enhancement 

and superiority of the proposed MGSO algorithm, and confirmed its potential to 

cope with this type of large-scale multiobjective optimization problems with 

high-dimensional and more objective functions. 
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Chapter I 

Introduction 

1.1 Background of Research 

As modern power systems have evolved over the centuries and have become 

large-scale and geographically expansive electrical networks with more and more 

neighbouring grids and energy resources being interconnected, the development 

of the operation and management for interconnected power systems requires the 

successive updating of load frequency control (LFC) for maintaining the power 

system frequency and optimizing the power flows of transmission grid [1]. The 

primary objective of the LFC is to maintain the frequency of each control area 

and to keep tie-line power close to the scheduled power exchanges by real-time 

regulating the generation outputs of dispatchable generators to accommodate the 

fluctuating load demands as well as system losses. Under normal operating 

condition, the power system LFC scheme in energy management system (EMS) 

can be implemented on the following three control levels according to the control 

time horizons [2]: 

(1) Primary frequency control: the first LFC level is executed with the turbine 

governors in synchronized generating units, and it can respond rapidly and 

automatically to frequency deviations within a timescale of seconds for the 

fast and stochastic small load disturbances; 

(2) Secondary frequency control: the secondary control is implemented through 

automatic generation control (AGC), a closed-loop feedback control system 

in the centralized power system dispatch of each interconnected control area. 

The output of AGC system, AGC regulating command, is to modulate the 
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power outputs of AGC plants to re-establish the overall system frequency 

and tie-line interchanges to their nominal values. Besides, the AGC decision 

cycle can be set in the range from 4 to 16 seconds [3]; 

(3) Tertiary frequency control: economic dispatch (ED), which is performed to 

allocate the system predictable load amongst all the dispatchable generators 

throughout the control area so as to minimize the total fuel costs, is always 

employed to determine the base loading setpoints for the AGC and primary 

frequency control, and its function is activated every 5 minutes to 1 hour [4]. 

From the perspective of power dispatch center, AGC and ED play a crucial 

role in enhancing the long-term control performance and sustainability for the 

efficient and successful operation of large-scale interconnected power grids [5]. 

The interconnected power systems consist of a number of control areas, which 

are mainly responsible for two tasks: (i) supplying power to their native load; (ii) 

maintaining interchange power with their neighbors to its scheduled value. First 

of all, there are three fundamental AGC operation modes [6]: (i) flat frequency 

control (FFC), (ii) constant net interchange control (CNIC), and (iii) tie-line bias 

control (TBC). Since the TBC operating mode supports the inter-area assistance 

of the overall system reserves for interconnection frequency, and hence is usually 

adopted for the most of existing interconnected power grids [7]. 

Over the years, the AGC performance of interconnected control areas under 

the TBC mode had been assessed and monitored by control performance criteria 

(CPC), A1 and A2 criteria, since the late 1960s [3]. Both the criteria are designed 

based on the area control error (ACE) which is a variable signal calculated by the 

linear weighted combination of the deviations of frequency and tie-line power 

exchanges. In the old CPC, A1 criterion requires a control area’s ACE to cross 

zero at least once every ten minutes, and A2 criterion requires that the average of 

ACE over each six ten-minute clock interval is limited within a specific threshold. 

Since A1 and A2 were based on engineering judgment and had little analytical 

basis, previous onsite operating experiences indicated that the old criteria had 
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often led to unnecessary and frequent reversal adjustments in the AGC regulating 

commands, and this is harmful to the AGC plants due to the maneuvering wear-

and-tear and operational inefficiency. Also, forcing ACE to return to zero may 

increase the system frequency error if the ACE and frequency have contradictory 

control directions. Therefore, the CPC criteria cannot satisfy the needs of the 

current power industry environment and have received lots of criticisms [8]. 

Consequently, the North American Electric Reliability Council (NERC) has 

replaced A1 and A2 with new control performance standards (CPS) [9], CPS1 

and CPS2, which have the solid technical foundations but less straight forward to 

interpret directly, in February 1997. The Standards have since then been adopted 

by most of power utilities over the world including East China Power Grid and 

China Southern Power Grid (CSG) in 2001 and 2005, respectively [10, 11]. 

Meanwhile, with the alarming deterioration in air quality conditions, 

environmental protection has attracted an ever-increasing public awareness and 

concern. The Clean Air Act was significantly amended and passed in 1990 to 

control evaporative emissions from fossil-fueled power plants [12]. Therefore, 

the emission dispatch option has been incorporated in the operational and control 

strategies of power systems in order to reduce the environmental pollution 

emissions, such as sulpher oxides SOx and nitrogen oxides NOx, from the thermal 

power plants, and the traditional ED problem is then transformed to the 

environmental/economic dispatch (EED) which is a more attractive and 

sustainable alternative for active power generation dispatch and optimization, as 

it considers both the economic and atmospheric emission simultaneously [13, 14]. 

In recent years, the EED problem has received much attention from both the 

academia and industry, and several techniques to reduce emission pollutants in 

power dispatch problem have been reported and investigated in literatures [12-

17]. In general, these techniques can be classified into the following categories: 

(1) Investment incentives should be prioritized for technological innovations to 

the development of clean and green energy and fuels. Firstly, the alternative 
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low-emission generation mix, such as wind farm, solar photovoltaics (PV), 

hydro and nuclear power, can be grid-connected to reduce the use of 

traditional fossil fuels [18]. Furthermore, cleaning equipment can be 

installed in various thermal power plants to capture the emission pollutants; 

(2) Compared to the techniques in above, developing the environmental 

dispatch strategies is more important and preferable to the power dispatch 

center due to its less capital investment and higher immediacy. The original 

EED only requires minor modification to the basic ED with an explicit 

environmental constraint to limit the emission gases within a permissible 

threshold [19-22]. However, there is a major difficulty in this approach to 

further study the trade-off relationship between the two dispatch objectives, 

emission and economy [16, 23]; 

(3) Furthermore, different techniques have been proposed to combine both the 

economic and emission objectives using linear weighted aggregate method 

[24-28], and then the biobjective EED problem can be transformed into a 

single-objective optimization problem. Nevertheless, this approach requires 

many trials to obtain a desired noninferior set of solutions by varying the 

weights in the objective function, and it is also not effective to cope with the 

problems including nonconvex Pareto-optimal fronts (PFs) [29, 30]; 

(4) In order to involve the process for simultaneously optimizing the fuel cost 

and emission objective functions, the Pareto optimality based multiobjective 

optimization theory [31], in which the EED objectives are considered as the 

conflicting and incommensurable objectives, is usually used for the pursuit 

of a group of Pareto-optimal solutions to express the trade-offs of multiple 

objectives. Consequently, based on the Pareto dominance principle, various 

multiobjective optimization algorithms have been proposed to handle this 

EED problem [13, 32-34], and a series of nondominated solutions can be 

generated by these computational algorithms with different search strategies 

in a single simulation run. Thus, a set of manageable and representative PF 
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solutions can be intuitively perceived and provided to the power system 

dispatchers to extract a suitable solution as the final dispatch decision. 

1.2 Incentives of Thesis 

The ongoing and deepening energy shortage over the world has significantly 

hard hit the global economy and society to the greatest extent [35]. With the 

surge in the oil prices and the shrinking stock of other traditional fuel resources, 

significant efforts have been made to promote and develop alternative renewable 

energy technologies for the sustainable electricity supply. The energy shortage 

concern propels the power dispatch centers to reschedule their strategies, and 

brings in the heatedly intensive research into the energy-saving generation 

dispatch. Nevertheless, the major challenge to incorporate energy conservation in 

grid dispatch is the highly constrained and high-dimensional optimization space 

with the increased problem complexity due to the multiple objectives over a great 

variety of dispatchable generators, and these problems are quite difficult to solve 

using conventional methods. Therefore, it is the aim of this thesis to develop a 

new generation of LFC control and optimization schemes designed for the CPS 

standards, optimum economic-emission and energy-saving operation over large-

scale interconnected power systems. 

The NERC’s new CPS standards pay more attention to the medium and long-

run returns of AGC control performance [36]. Furthermore, previous works have 

concluded that the time averages of the ACE, and so are the CPS1 and CPS2, for 

interconnected control areas are essentially random and unpredictable with the 

averaging interval beyond a specified measurement period [37]. Coupled with 

the renewed interest in the energy-saving dispatch and the statistical concepts for 

CPS1/CPS2 metrics as well as the rapid development of smart grid, there are 

fundamental changes in the conventional AGC control philosophies. The existing 

AGC systems mostly adopt the conventional proportional-integral (PI) control 
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structure with fixed parameters and do not adapt well to large changes in 

operating mode, parameters and structure of power grids [38, 39]. In particular, 

after the separation of the generation sectors from electricity grids in the 

deregulation of the Chinese power systems in 2002 [40], genuine AGC strategies 

in the provincial power grids would only give priority to promoting CPS 

compliances for the operation benefits of dispatch centers. As a result, it may 

lead to an “over-compliant” problem which high CPS compliance is blindly 

pursued without considering the maneuvering costs of plants. It has been 

observed from the dispatch centers of CSG that there are many tiny frequent 

reversal actions in AGC commands for some plants, and this is ineffective for 

enhancing the CPS compliances and harmful to the thermal generators because 

of wear-and-tear [41]. Moreover, the increments in AGC regulating intensity for 

thermal units would always result in the evident rise in the fuel consumption as 

well as the decrease in generation benefits of interconnected operation. Therefore, 

in addition to CPS metrics, the regulating cost of AGC plants is also a 

considerable issue and should be incorporated in the AGC control objective for 

the beneficial coordination between the electricity grids and generation plant. 

The AGC system under CPS standards is a key technology and core content 

for the energy saving generation dispatch. So far, researches reported are mostly 

based on classical linear or nonlinear LFC models as recommended by the IEEE 

[42]. The performance of the resulted AGC schemes would largely affected by 

the accuracy of the system parameters as well as the load demand fluctuation 

characteristics. Further study on its dynamics and CPS statistical characteristics 

indicated that AGC process under CPS in fact is a stochastic multistage decision 

problem [43] and can be modeled as the Markov chain control problem which 

forms the base for the proposed research on AGC using reinforcement learning 

(RL) [44]. Moreover, the goal of RL models is to find an optimal control policy 

by maximizing the expected cumulative reward value in the long-run, and this 

coincides with the purpose of the CPS standards. Consequently, in the thesis, the 
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RL algorithms [45] based on Markov Decision Processes (MDPs) [46, 47] are 

introduced for the design of the optimal AGC controllers under CPS. 

Thermal power plants have played a dominant role in most AGC systems, the 

CSG power system being an example. One of the challenges in thermal-dominated 

AGC strategies is the long time-delay problem caused by the steam turbines of 

thermal generators in secondary frequency control loop [48]. Field tests showed 

that typical time-delay ranges from 0.5 to 2 minutes and would vary with the 

ramping direction. Coupled with the fast random fluctuations in load demand, the 

problem of AGC optimization becomes even more complicated and so far no 

satisfactory solution method has been reported publicly. Moreover, it is an 

unavoidable fact that differences always exist between the system simulation 

model and real power system, and most of modern control algorithms suffer a 

severe drawback that the results optimized in the simulation environment cannot 

be practically implemented for real power system application. Hence, enhancing 

the feasibility and applicability of the proposed AGC controllers for the onsite 

operation has become a pressing need. 

On the other hand, for solving the Pareto-based biobjective EED problem, it 

has to be admitted that currently numerous algorithms can be available to form 

the nondominated trade-off surface representing Pareto optima, [13, 49-63]. Most 

notably, various multiobjective evolutionary algorithms (MOEAs) [32, 64] and 

swarm intelligence techniques [65] have been introduced for the multiobjective 

power dispatch (MOPD) optimization to generate a set of comprehensive Pareto-

optimal solutions. However, those previous multiobjective algorithms have been 

designed and implemented for a small IEEE 30-bus 6-generator power system, 

and limited attention has been paid to the MOPD problems for large-scale power 

systems with more objectives. Following the No Free Lunch theorem, “for any 

algorithm, any elevated performance over one class of problems is exactly paid 

for in performance over another class” [66]. Actually, for the nowadays large-

scale and topologically complicated power grids, the multiobjective algorithms 
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should be designed specifically and applicable for the real-world power dispatch 

requirements. Consequently, coupled with the energy-saving dispatch objective, 

there is still significant room to explore novel Pareto optimality-based MOPD 

approaches. 

Moreover, the ultimate goal of the multiobjective optimization is to identify a 

unique solution expressing the best compromise among multiple competing and 

conflicting objectives [67]. The compromise solution should be extracted from 

the obtained PF as the decision maker (DM)’s preference with utilities’ interest. 

Previous decision-making methods have made use of the fuzzy reasoning for this 

bargaining solution [68, 69]. Although such a way of fuzzy-based decision-

making method is efficient and readily to be implemented, the definition of fuzzy 

membership functions is based on the designer’s experience without considering 

the PF’s trade-off characteristics. Consequently, a multiple criteria decision 

making (MCDM) scheme should be integrated in the multiobjective formulation 

to select a more reasonable solution for the actual operating task. 

1.3 Primary Contributions 

The main motivation of this research is to develop new methodologies for 

regional power interconnections and system dispatchers to handle the new issues 

resulted from the CPS standard and energy-saving generation dispatch. More 

specifically speaking, the original contributions of this thesis can be summarized 

into the following aspects: 

First and foremost, the NERC’s CPS, which has been widely adopted around 

the world including power grids in the Mainland China, can provide a theoretical 

basis for relaxing the regulation constraints of AGC plants and enhancing the 

frequency support effect from neighbouring control areas [9]. Consequently, in 

order to take full advantage of the CPS standards, this thesis addresses the main 

design objectives for a synthetic optimum AGC strategy as follows: (i) to comply 
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with CPS metrics for interconnected control areas in various complex operation 

scenarios of power systems, (ii) to achieve the relaxation of AGC system which 

can release the regulating pressure and conserve control cost of AGC plants at 

the most, (iii) to develop a feasible and reasonable control structure having a high 

level of applicability and practicability for real power systems. Based on the 

design objectives above, a new concept is firstly proposed in this thesis referred 

as “the optimal relaxed AGC control” to allow the AGC plants to maneuver less 

costly in finding the optimal economic policy on the premise of complying with 

the assessment standards CPS1 and CPS2. To be more specific, this optimal 

economic policy is to pursue less control actions, less wear-and-tear, and further 

savings on fuel costs for the generation sectors. 

Secondly, the methodology developed employs the well-known Q-learning 

algorithm [70] based on Discrete-time Markov Decision Process (DTMDP) [71] 

to design the optimal relaxed AGC strategy, with the CPS metrics regarded as the 

rewards from interconnected power systems. In addition, by means of the space 

discretization technique, the CPS state space and AGC regulating commands can 

be divided into a finite number of state-action pairs after in-depth investigation 

on the relaxed AGC control and unit regulating characteristics. Subsequently, in 

order to enhance stability and convergence capability of the proposed Q-learning 

based AGC controller (QAGC), a semi-supervisory group pre-learning method is 

presented using a PI/RL structure to deal with the pre-learning problem involving 

multiple QAGCs in multi-area interconnected power systems. With a decreasing 

rule for the gains of the supplementary PI controller, the optimal AGC strategy 

can be obtained gradually to maximize the long-term cumulative rewards in the 

procedure of interactive self-learning mechanism. The corresponding simulations 

demonstrated that, compared with the conventional PI controller, the QAGC can 

effectively improve the robustness and adaptability of AGC systems while the 

CPS metrics are ensured under the complex changing operation conditions. 
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Thirdly, for the thermal-dominated power systems, the AGC strategies arisen 

from the power dispatch centers will be implemented by the fuel supply in the 

turbine-boiler control system of thermal plants, and will therefore be performed 

slowly with large time constants. Consequently, further in-depth researches and 

analysis on the after-effect behaviors of the thermal-dominated LFC indicated 

that, the AGC decision-making problem is in fact a non-Markov chain control 

process, and its non-Markov property is difficult to solve using the standard Q-

learning [72]. Hence, this thesis firstly applies the multi-step Q(λ) learning with 

eligibility traces [73] to effectively tackle the long time-delayed feedback control 

problem of thermal AGC generators in non-Markov environment. Furthermore, 

in the Q(λ) learning based AGC controller (Q(λ)AGC), the moving averages of 

CPS1 and ACE are adopted as the state feedback input, and the AGC control 

pulses are integrated in the reward function using linear weighted aggregate 

method. This novel AGC strategy also can provide a convenient way for 

controlling the degree of CPS compliance and relaxation of system by online 

tuning relaxation factors to implement a desirable relaxed control. The statistical 

experiments on the CSG power system showed that the Q(λ)AGC can 

significantly enhance the robustness and dynamic performance of AGC systems, 

and reduce the number of pulses and pulse reversals so as to avoid the CPS over-

compliant problem. 

However, it should be mentioned that the above QAGC and Q(λ)AGC need 

to be scheduled to experience a series of trial-and-error training phase called the 

pre-learning process before their real application, and a high-accuracy simulation 

model is required to be established for the offline pre-learning process [74]. If a 

significant difference exists between the system simulation model and real power 

system, it may leads to the intolerable “trial-and-error noise” for these RL based 

AGCs after being put into the practical system. In fact, this problem is the main 

obstacle to the application of the conventional RL algorithms for the practical 

implementation in power systems. Therefore, this thesis continues the stochastic 
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optimal relaxed AGC along this direction but with full consideration to overcome 

the difficulties explained above. Thus, another fundamental contribution of this 

thesis is to develop a novel imitation pre-learning technique to facilitate the 

transition from the off-line pre-learning process of the RL controllers to the on-

line pre-learning. Besides, a R(λ) learning (R(λ)L) [75], studied on the basis of 

average reward optimality criterion (AROC) [76], is to seek for the maximization 

of long-term average rewards of generic systems. This truly provides the 

opportunity for this research work to design the optimized AGC scheme for the 

improvement of the CPS performance assessed over a long period of time. 

Thereby, the proposed R(λ) imitation learning based AGC controller 

(R(λ)ILAGC) can combine the merits of the average reward RL model and 

imitation pre-learning process. Case studies illustrated that the R(λ)ILAGC not 

only can act online in real time as an observer to learn from the control behaviors 

of the existing AGC controller such that the feasibility and applicability of the 

proposed AGCs are enhanced greatly, but also can improve the convergence 

efficiency and control performance of AGC system. 

Last but not least, the final main contribution of this thesis is to propose a 

novel multiple group search optimizer (MGSO) algorithm to solve the large-scale 

highly constrained MOPD optimization problem with several incommensurable 

and contradictory objectives. Although the traditional EED problem can supply 

an optimum steady-state operating point for EMS and supervisory control and 

data acquisition (SCADA) system [15, 62], the economic/environmental/energy-

saving power dispatch (EEED) for large-scale power systems does not appear to 

have been reported by any researchers. Therefore, this tri-objective EEED issue 

is specifically addressed in this thesis with the help of a newly emerged group 

search optimizer (GSO) [77] which is capable of solving large-scale multimodal 

complex optimization problems. In this thesis, the GSO is utilized and extended 

by combining it with RL mechanisms to form the MGSO algorithm which allows 

the multi-group cooperative search to establish a Pareto tradeoff for the 
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multiobjective optimality. In the developed algorithm, a better constraint 

handling strategy, which separates the constraints and objectives with different 

search strategies, and two enhancements, namely space reduction and chaotic 

sequence dispersion, have been incorporated to further enhance the convergence 

performance of the proposed algorithm. Moreover, this thesis also introduces the 

Nash equilibrium [78] for designing a more reasonable decision making method 

in order to identify the best compromise solution from the obtained optimal front. 

In comparison with other earlier multiobjective heuristic algorithms on various 

performance measures, the proposed algorithm possesses the greatly enhanced 

capacity in solving the large-scaled MOPD problems, and hence has a large 

potential to accommodate the highly complex problem characteristics. 

1.4 Thesis Layout 

The remainder of this thesis consists of six chapters and two appendices, and 

is organized as follows: 

Chapter II discusses some essential details regarding generation dispatch and 

control in modern power system dispatch centers, which serve as the foundations 

for the research work addressed in this thesis. The relationship between the two 

issues studied, AGC and MOPD, is explained, and the multi-criteria optimization 

and control objectives for large-scale power system dispatch are investigated and 

designed. Furthermore, a brief literature survey on the development progress of 

present AGC and MOPD schemes are reviewed, and the RL and multiobjective 

algorithms used throughout the thesis is also introduced in this chapter. 

Chapter III presents the application and design of a stochastic optimal control 

methodology using the Q-learning algorithm for AGC controller under NERC’s 

CPS standards. The two-area interconnected LFC model and CSG power system 

model used for simulation studies are investigated and established in this chapter. 

In addition, a novel semi-supervisory group pre-learning approach is proposed 
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for the QAGC to improve its stability and convergence capability in the pre-

learning process, and the corresponding simulation results are also presented. 

Chapter IV focuses on applying the multi-step Q(λ) learning to specifically 

design the stochastic optimal relaxed AGC strategy for thermal-dominated power 

systems. The long time-delay secondary frequency control loop for AGC thermal 

plants in non-Markov environment is thoroughly analyzed and discussed, and the 

eligibility traces as well as its backward estimation are introduced to effectively 

alleviate the non-Markovian effects in the thermal-dominated AGC process. In 

this chapter, a multi-criteria relaxed reward function is proposed, and studies on 

the learning parameters and relaxation factors for the Q(λ)AGC are carried out in 

simulations for comparison and discussion. 

Chapter V continues to exploit the potential of RL theory for updating the 

AGC to improve its practical onsite operation and long-run control performance. 

A novel imitation pre-learning method is proposed and devised to overcome the 

major obstacle for the application of RL algorithms to the onsite implementation 

in real power systems. Meanwhile, the AROC based R(λ)L method is harnessed 

to develop an optimal R(λ) imitation learning (R(λ)IL) methodology for the AGC 

under CPS. Also, the in-depth comparisons of the R(λ)ILAGC with the previous 

QAGC and Q(λ)AGC are investigated via statistical comparative experiments. 

Chapter VI proposes a new equilibrium-inspired multiobjective optimization 

algorithm, MGSO, to solve the highly constrained EEED problem including the 

fuel cost, emission and energy-saving objectives for large-scale power systems. 

The proposed approach integrates various search techniques, including the GSO, 

Nash equilibrium, synergistic learning, Boltzmann distribution based constraint 

handling, space reduction and chaotic sequence dispersion, into a unique MGSO 

algorithm. As demonstrated in this chapter, the performance of MGSO has been 

fully evaluated and benchmarked using different Pareto metrics on the IEEE 30-

bus 6-generator system and the IEEE 118-bus 54-generator system. 
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Finally, the concluding remarks of the thesis are summarized in Chapter VII, 

and some prospective extensions and possible directions for future research work 

are also presented. 

Furthermore, the overall organization of this thesis is illustrated in Fig. 1.1. 

 

Large-scale power system dispatch involves high-dimensional and 
highly nonlinear constrained multi-objective control and 

optimization problems (Chapter I & II) 

Theoretical Foundations of LFC, CPS-based AGC, MOPD, RL algorithms, MDPs, 
Pareto-based multiobjective optimization (Chapter II) 

Secondary Frequency Control 

QAGC: 
A stochastic optimal AGC strategy 

under CPS for generic power systems
(Chapter III) 

Tertiary Frequency Control 

Conclusions and summaries of all research works (Chapter VII) 

Q(λ)AGC: 
An optimal relaxed AGC strategy for 

thermal-dominated power systems 
(Chapter IV) 

R(λ)ILAGC: 
An AROC-based AGC strategy for 
the practical onsite operation and 

long-run control performance 
(Chapter V) 

MGSO: 
A novel equilibrium-inspired 
multiobjective group-search 

optimization with synergistic learning 
for MOPD problems of large-scale 

power systems 
(Chapter VI) 

EEED: 
A tri-objective Pareto-based power 

dispatch for simultaneously 
optimizing the economic, emission 

and energy-saving objectives 
(Chapter VI) 

 

Fig. 1.1 Illustration of overall organizational structure of this thesis 
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Chapter II 

Essentials for Multiobjective Generation Control 
and Optimization 

2.1 Overview of Power Generation Dispatch and Control 

In modern power system LFC schemes, the generation dispatch actions and 

control pulses for each interconnected control area are always determined and 

maintained by a central grid facility, called power dispatch center [1]. Usually, 

the control area is an electric power utility for an individual service area, taking 

provincial power grids in the CSG power system as an example. In general, the 

obligation of the power dispatch center is to monitor system load, generation of 

plants and tie-line power interchanges to ensure the balance of electricity demand 

and supply with secondary and tertiary generation control. 

Fig. 2.1 illustrates the functional diagram of the studied modern generation 

dispatch schemes in a specified control area including the primary control of the 

governors in generating plants, AGC for secondary control, and MOPD for the 

tertiary generation optimization. With SCADA/EMS & distribution management 

system (DMS), the day-ahead generation scheduling [2] is executed day-by-day 

on the basis of daily load forecasting for all types of generators throughout the 

system, including non-dispatchable units (nuclear power and PV generations), 

partially dispatchable units (some fossil-fuel-fired thermal plants and wind farms 

[79]), dispatchable units (pumped storage hydro power, hydroelectric plants, 

liquefied natural gas (LNG) plants, and some dispatchable thermal plants). On 

the other hand, the real-time information, pertaining to tie-line flow, network 

topologies, system frequency, load flow data, and so on, is telemetered to power 
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dispatchers for further processing and analysis by means of state estimation [1]. 

Meanwhile, the dispatch center, which is equipped with a digital integrated 

computer system, also delivers control signals to the dispatchable generators for 

MOPD (reference loading set-points) and AGC (raise/lower pulses with 

changing lengths) through the telemetering channels [80]. 

Other 
control areas

Other 
control areas

Control area
Tie lines Tie lines

Network 
topologies

and real-time 
monitoring data

Once every
5 minutes ~ 1 hour

Once every
4~16 seconds

SCADA/EMS/DMS systems 
and Real-time/Long-term 

monitoring databases

State estimation

Daily generation 
scheduling  for all plants 
throughout the system

Ultra-short 
term load and 

generation 
forecasting

．．．

Non-dispatchable units

...

Unit 1

Unit 2

Unit N

Dispatchable units

．．．

Partially dispatchable units

(Tertiary generation control)

(Secondary generation control)

(Primary generation control)

MOPD:
Determine the optimal active
generation base set-points for 

dispatchable plants

AGC:
Determine the optimal regulating 

commands for AGC plants to 
balance the load residuals

 

Fig. 2.1 Functional diagram of the studied generation dispatch framework 

For the dispatch center of each control area in an interconnected power grid, 

the two essential dispatch strategies, MOPD and AGC, are usually carried out in 

area-wise decentralized manner, and these two issues will be intensively studied 

and designed in this thesis. Nevertheless, it should be pointed out that there are 

both connections and differences between MOPD and AGC problems. For each 

decision cycle, the amount of load demands, which is predicted from ultra-short 
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term load forecasting [5], should be optimally allocated from the central to each 

individual generating unit for its base MW loading. This allocation optimization 

problem is solved by the MOPD program to determine the optimized regulation 

participation factor for each dispatchable unit. Also, the optimal AGC regulating 

command is calculated for AGC generators to update their generation outputs in 

order to accommodate fluctuating load disturbances. Furthermore, the total AGC 

regulating generation is also assigned to each AGC unit according to its MOPD 

participation factor. Therefore, MOPD provides the base load set-points for AGC, 

and the AGC command can be regarded as correction component in combination 

with MOPD base set-points and regulation participation factors to determine the 

desired generation outputs for individual AGC generators [4]. 

Theoretically speaking, since MOPD and AGC have different time horizons 

and optimization objectives, the two problems can be investigated independently, 

designed to pursue their own objectives and produce their own control outputs. 

The MOPD is performed to optimally distribute the system load amongst all 

dispatchable generating sources with all the objectives minimized simultaneously; 

whereas, the AGC function is to modulate the power outputs of AGC plants so as 

to balance the load residuals resulted from load forecasting errors or of plant 

outputs failed to follow their prescribed trajectories and ensure the CPS 

compliances. In this thesis, a triple objective EEED is designed for the tertiary 

LFC optimization to accommodate economic, emission and energy-saving 

objectives. Furthermore, in addition to CPS compliances, the generation 

regulating cost shall also be considered in the proposed AGC strategy. 

2.2 Current State of the Art 

Present schemes of generation control and dispatch have been developed over 

half a century, and AGC assessment criteria A1 and A2 have been replaced by 

CPS1 and CPS2 standards, while the ED have evolved into a Pareto-based 
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MOPD optimization problem. In the following, a literature review on the 

methodologies and strategies of AGC and MOPD are presented in details. 

2.2.1 Control Performance Standards 

NERC’s new CPS standards [81] consist of CPS1 and CPS2. Both metrics 

are established based on the area control error to assess the energy balance for an 

interconnected control area, and the ACE is expressed as follows: 

10 ( ) 10 ( )T a s a sACE P B F P P B F F= Δ − Δ = − − −                   (2.1) 

where ∆F is the frequency deviation which is the instantaneous difference of the 

actual and base system frequency in this control area, Fa − Fs; ∆PT is the tie-line 

power error computed from the instantaneous difference between the net actual 

and scheduled interchanges, Pa − Ps; B represents a control area’s frequency bias 

expressed with a unit of −MW/0.1Hz. 

CPS1 is a limit on the average of a function combining ACE and ∆F from 

schedules to control the frequency of interconnection, while CPS2 is to restrict 

the unacceptable and unpredictable tie-line power flow. The former performance 

standard, CPS1, is formulated based upon statistical theory. Firstly, an expression, 

called Compliance Factor (CF) [8], is identified which represents, quantitatively, 

a control area’s contribution to the reliability operation of the interconnected grid 

to which it belongs. The CF requires a control area i to satisfy the constraint in a 

certain assessment period (such as one minute), as follows: 

2AVE min AVE
1

( )
( 10 )i

E FCF
B n

ε− ⋅Δ
= ≤

− ⋅
∑                               (2.2) 

where EAVE-min and ∆FAVE are the clock-minute averages of ACE and frequency 

deviation, respectively; Bi represents the frequency bias of the ith control area, ε1 

denotes a bound for CPS1 control target of the interconnection, n represents the 

number of minutes in the assessment period. Consequently, the percentage CPS1 

compliance of this assessment period can then be calculated as follows: 
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2
11 (2 ) 100%CPS CF ε= − ×                                 (2.3) 

The second performance standard, CPS2, limits the magnitude of short-term 

ACE. It requires the 10-min averages of a control area's ACE less than a constant 

(L10) given as follows: 

AVE min 10/10E L− ≤∑                                           (2.4) 

10 101.65 ( 10 ) ( 10 )i sL B Bε= ⋅ ⋅ − ⋅ −                                  (2.5) 

where Bs is the summation of the frequency bias settings of all control areas, and 

ε10 is the targeted root-mean-squares (RMS) of clock-10-min average frequency 

deviation. Then, the percentage of CPS2 compliance can be obtained as follows: 

monthviolations2 1 100%
total periods unavailable periods

CPS
-

⎡ ⎤
= − ×⎢ ⎥
⎣ ⎦

         (2.6) 

where violationsmonth is a count of the number of periods that the clock-10-min 

averages of ACE are greater than L10 within one month. The AGC performance 

of each control area should be evaluated and reported with compliances CPS1 

and CPS2 at the end of each month or year. In order to comply with the NERC’s 

CPS, the control area must ensure its CPS1 compliance no less than 100% while 

CPS2 compliance should be greater than 90%. Detailed statistical and dynamic 

analysis as well as field tests of NERC’s CPS were reported in [9, 37, 81-87]. 

In Chinese electricity industry, a new metric, CPS compliance, is introduced 

based on the CPS1/CPS2 metrics to measure the overall AGC performance under 

CPS [10, 11]. According to Grid Code of the China Southern Power Grid [41], 

the logical flow chart for determining the CPS compliance is shown in Fig. 2.2, 

and the determination of the CPS compliance for a specified assessment period 

(typically 10 minutes) is interpreted as follows: 

 If CPS1 ≥ 200%, then there is no need to consider CPS2 metric and CPS 

compliance rating is Pass. This is to encourage the load frequency supporting 

efforts from the other interconnected control areas during emergency and to 

fully explore the benefits of interconnection. Therefore, AGC behaviors of 
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the control area in this case are considered advantageous to the improvement 

of overall interconnection frequency quality over this assessment period. 

 If 100% ≤ CPS1 < 200% and CPS2 compliance is satisfied, then the CPS 

compliance rating is Pass. 

If 100% ≤ CPS1 < 200% and CPS2 standard is in violation, then the CPS 

compliance rating is Fail. 

 If CPS1 ≤ 100%, then the CPS compliance rating is Fail. 

No

Yes

Yes

Yes

No

No

CPS1 ≥ 200% ?

CPS1 ≥ 100% ?

CPS2 is satisfied?

CPS compliance is Pass

CPS compliance is Fail

CPS compliance is Fail

CPS compliance is Pass
 

Fig. 2.2 Flow chart for the determination of CPS compliance 

Consequently, the percentage metric of CPS compliance on a daily, monthly 

or yearly basis can be calculated as follows: 

violation periods(%) 1 100%
total periods unavailable periods

CPS =
-

⎡ ⎤
− ×⎢ ⎥

⎣ ⎦
      (2.7) 

Compared to the old CPC, CPS are technically defensible with solid technical 

foundations but is difficult to interpret directly. In summary, the main advantages 

of the CPS are listed as below: 

(1) CPS standards were formulated based on a more reasonable statistical and 

probabilistic theory with consideration of stochastic behaviors of fluctuating 
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frequency. Besides, both CPS1 and CPS2 are long-term average evaluation 

criteria for AGC performance and frequency quality, and thus can reduce 

the non-predictable maneuverings of generation. 

(2) Another significant superiority of the CPS is the elimination of the control 

requirement for ACE zero-crossing, and the resultant efficient operation for 

AGC generators could achieve the fuel efficiency improvements, unit wear-

and-tear reductions and less maintenance. 

(3) The CPS can quantitatively assess AGC behaviors with various metrics on a 

long-term basis, and thus offer control areas with flexibility to design their 

own control strategies. 

(4) In CPS1 standard, a CF with positive sign means that, during this specific 

period, the control area acts as a LFC regulating burden to interconnections’ 

operation. On the contrary, a negative CF indicates that the area contributes 

to the LFC requirement of interconnections. Therefore, the adoption of CPS 

would promote the mutual energy supports amongst control areas. 

(5) Finally, in CPS2 standard, the limit for clock-10-min averages of ACE, L10, 

would be remarkably greater than the threshold value of A2 criterion. Then, 

a larger limit for average ACE allows looser control, lower control costs and 

less unit adjustments. 

2.2.2 State-of-the-Art AGC Schemes 

Over the years, extensive research works in the area of AGC strategies have 

been done. The state-of-the-art in recent AGC control strategies and philosophies, 

including the theoretical conclusions for the extended research and development, 

have been comprehensively reported in [3, 6, 88] and further investigated in [38, 

39]. Power system models as well as control techniques covered, including linear 

and nonlinear power system models [89-91], classical and optimal control [92-

94], centralized [90] and decentralized control [95-97], two-level [98] and multi-

level control [99], have appeared in the literatures. Considerable research on the 
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control strategies involved includes digital technology [100, 101], adaptive 

control schemes [102-104], self-tuning methodologies [105-107], robust control 

[97, 108, 109], discrete control [98, 110], variable structure systems [111-113], 

and sliding mode control [114]. There also have been lots of AGC studies using 

intelligent control methodologies such as artificial neural networks (ANN) [115-

117], fuzzy logic [97, 118-120], evolutionary algorithm (EA) [121], genetic 

algorithm (GA) [112, 122, 123], particle swarm optimization (PSO) [124-126], 

bacteria foraging optimization [127, 128], RL algorithms [43, 129, 130], and 

hybrid intelligent algorithms [131-134]. 

Moreover, the basic problem of AGC has also been extended to incorporate 

ED function [135, 136], optimal power flow (OPF) [137], the restructuring and 

deregulated environment of power systems [122, 138-142]. Meanwhile, with the 

rapid developments and advancements on distributed generations (DGs), the new 

power electronic technologies for wind turbine, photovoltaics, fuel cell as well as 

battery energy storage (BES) have enabled those DGs to be grid-connected with 

gradually higher penetration [143]. Thereby, there have been investigations and 

analyses attempted on LFC system dynamics including BES [144], redox flow 

batteries [145], photovoltaic systems [146], super conducting magnetic energy 

storage (SMES) [138, 147-150], and fuel cells [151]. Supervisory AGC schemes 

for wind farms and wind generation variations have also been illustrated and 

studied to improve the LFC performance [79, 152, 153]. 

However, the above AGC schemes and control strategies are designed and 

tailored for the previous performance assessment criteria A1 and A2 based on the 

classical concept of certain linear/nonlinear systems. So far, the AGC strategies 

designed to work under NERC’s CPS standards have been reviewed in [38, 39], 

and statistical analysis as well as dynamic physical characteristics for the CPS 

were addressed in [81, 83]. An analytical framework was presented in [82] for 

estimation and formulation of the CPS with the uncertainties and random 

characteristics of the LFC variables taken account. In addition, a decomposition 
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model was proposed for the 1-min averages of ACE to quantify its influence of 

the control area’s loadings on CPS1 and CPS2 metrics [85], and the 

corresponding field implementation of this practical decomposing method were 

investigated in [87]. Following which the AGC strategy was conducted based on 

practical tests and field data, with the refinements of ACE decomposition, so as 

to confirm the regulation burden attributable to varying of loadings [86]. 

So far, investigations on the AGC strategies under CPS were mostly based on 

the classical PI control structures [8, 10, 11, 154, 155]. Most notably, an AGC 

logic based on NERC’s CPS and disturbance control standards (DCS) was 

specifically developed [8] for the practical operation with enhanced efficiency 

and effectiveness. An integral-type LFC controller manipulated by a set of fuzzy 

logic rules to comply with CPS metrics has been proposed in [156]. In [157], a 

decentralized multi-area AGC under CPS is addressed, in which the 

eigenstructure assignment technique is utilized in each local controller, to 

incorporate varieties of transactions for the competitive restructured electricity 

markets. A methodology and its practical implementation for redesigning the 

optimal LFC strategy considering regulation energy costs, power system security 

and reliability, and power markets was illustrated in [158]. A novel AGC scheme 

based on neuro-fuzzy inference system and adaptive gain scheduling has been 

reported in [159] to achieve frequency relaxation. Modern control methodologies, 

such as distributed model predictive control [160, 161], two-degree-of-freedom 

and internal model control [162], have also been introduced into the area of LFC 

strategies. Furthermore, the hierarchical structure of Spanish AGC system has 

been described and analyzed in [155], and an adaptive gain control strategy was 

also designed in [154] for AGC with a master regulator to coordinate the control 

areas. In China, an improved PI control based hierarchical AGC system has been 

developed by Nanjing Automation Research Institute (NARI) and implemented 

in several large interconnected power grids [10, 11]. 
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2.2.3 State-of-the-Art MOPD optimization 

With the development of MOPD optimization problem, a number of Pareto 

optimality-based (deterministic or stochastic) methods can be available to solve 

the nonlinear and multiobjective combinatorial optimization problem. The state-

of-the-art multiobjective techniques based on deterministic mathematical models 

for the well-know biobjective EED has been summarized and reported in [13, 15, 

17]. Specifically, the classical EED approaches contain the linear and nonlinear 

goal programming techniques [163], linear programming (LP) [164], ε-constraint 

method [165, 166], and weighted mini-max technique [167], and these methods 

have been tested and validated on small power systems comprising six generators 

or three generators. However, these deterministic optimization methods cannot 

effectively handle the highly constrained MOPD with high discontinuity effects 

due to the complex system constraints and nonconvex prohibited operating zones 

(POZs) in the generation patch. 

In recent years, various multiobjective optimality-based heuristic stochastic 

search algorithms have been proposed and successfully applied to the EED issue 

on a small IEEE 30-bus 6-generator power system model to obtain the Pareto 

tradeoff between fuel cost and pollutant emissions [14, 49-63]. These algorithms 

can generate a series of noninferior solutions based on different stochastic search 

strategies in a single simulation run. A fuzzy satisfaction-maximizing decision 

method has been utilized for solving this EED problem [168], but the inclusion 

of more objective functions in the MOPD is difficult to be tackled by this method. 

In order to resolve this problem, an interactive fuzzy satisfying approach with 

fuzzy goals was updated for DMs and addressed in [169] to optimize economy, 

emission and transmission line security together. However, its fuzzy membership 

functions were defined with intuitive knowledge and experiences of the designer. 

In literature [53], an abductive reasoning network as well as technique for order 

preference by similarity to ideal solution has been adopted for the real-time EED 
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decision making to ascertain the best compromise solution continuously. At the 

same time, the goal-attainment and adaptive polynomial network were used to 

achieve this real-time dual-objective optimization [170]. However, the methods 

cannot provide the scientific framework for guiding and guaranteeing solutions 

toward the true PF. Furthermore, a modified non-inferior surface estimation was 

proposed in [55] for the tradeoff Pareto curve of generation cost versus emission 

in consideration of multiple pollutants SO2, CO2 and NOx, and for each type of 

pollutant, the emission reduction rate was also researched in this study. 

In the context of Pareto optimality theoretics for multiobjective problems, a 

series of famous MOEAs and group search techniques have been developed and 

reported in this research field. In particular, an improved EA-based framework 

was presented in [14] to model and estimate the economic impacts of emission 

dispatching and fuel switching, but some dominated solutions might be mistaken 

as nondominated ones during the selection procedure, which would lead to loss 

of some Pareto-optimal solutions. In literature [171], a multi-objective stochastic 

search technique (MOSST) based on real coded GA and simulated annealing was 

presented. Nevertheless, the computational process of this technique is always 

time-consuming and premature convergence may be caused owing to its search 

bias. For the sake of alleviating the defects above, a strength Pareto evolutionary 

algorithm (SPEA) has been proposed in [59] for the nonlinear constrained EED, 

in which the diversity-preserving policy and fuzzy clustering were integrated in 

the algorithm. Later, two similar methods, namely nondominated sorting genetic 

algorithm (NSGA) [54] and niched Pareto genetic algorithm (NPGA) [52], were 

reported. Then, these three MOEA approaches were intensively compared and 

discussed in [172] with different PF quality measures. 

Recently, several advanced MOEAs have further been presented on the basis 

of the algorithms above. A modularized framework for the EED generation mix 

dispatch with a solid oxide fuel cell system was developed in [49], in which a 

biobjective linear programming model and a Queuing multi-objective optimizer 
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were integrated in the stated framework. In literature [173], an improved GA was 

addressed to the optimal EED for a hydrothermal power system, and a multiplier 

updating was introduced in this algorithm as the constraint handling strategy. An 

improved NSGA, called the nondominated sorting genetic algorithm-II (NSGA-

II), was employed to deal with the dynamic EED and compared to the previous 

MOEA techniques in [174]. However, the NSGA-II cannot maintain and enhance 

the uniformity and diversity of the resulting PF solutions. In order to overcome 

the drawback, the controlled elitism and dynamic crowding distance mechanisms 

were introduced in the developed approach to formulate a modified NSGA-II in 

[175], and then this meta-heuristic was applied to different benchmark power 

systems in the literature. 

Most remarkably, a number of well-known single-objective stochastic group-

search algorithms have been extended lately to establish a set of multiobjective 

optimization algorithms. A multiobjective PSO (MOPSO) was implemented to 

the MOPD in [62] by redefining the local and global best particle individuals. 

Besides, the PSO algorithm was combined with fuzzy set theory to formulate a 

fuzzified multiobjective PSO in [57] and a fuzzy clustering based multiobjective 

PSO (FCPSO) in [61]. Subsequently, a modified MOPSO has been proposed and 

performed to investigate and analyze both the stochastic and deterministic EED 

models in [176]. Also, [63] focuses on employing the MOPSO with local search 

to address a reserve-sharing based multi-area EED scheme. With the burgeoning 

rise of chaotic theory, a novel multiobjective chaotic ant swarm optimization was 

proposed in [50] by integrating the chaotic behaviors into each individual ant of 

ant colony algorithm, while a multiobjective chaotic particle swarm optimization 

with chaotic local search was also developed in [51] to study the EED problem 

including reliability constraint, ramp rate limits and prohibited operating zones. 

As presented in [56], a multiobjective differential evolution as well as crowding 

entropy-based diversity operator was carried out on the EED to demonstrate its 

effectiveness and verifiability. A hybrid Pareto-based optimization metaheuristic 
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was then raised in [58] on the strength of the improved MOPSO and differential 

evolution to solve the EED problem. The bacteria foraging optimization has been 

extended to produce a multiobjective bacteria foraging technique in [60] and then 

introduced into the domain of EED to verify its efficacy. However, the extension 

of these Pareto optimization algorithms to include more objectives on large-scale 

power systems is still a very involved query. 

2.3 Reinforcement Learning & Markov Decision Processes 

2.3.1 Markov Decision Processes 

MDP theory is a branch of stochastic operations research to handle dynamic 

decision-making problems under stochastic circumstances with multiple period 

scales [46]. First and foremost, Markov process (or Markov chain) is defined as a 

specific memoryless type of stochastic process with Markov property, in which, 

for the process of future states, the conditional probability distribution of state 

transitions does not depend on the sequence of past preceding events, but instead, 

it only relies upon the current state. Generally speaking, there are three types of 

complicated stochastic processes in power systems: Markov, semi-Markov, and 

non-Markov environments [71]. Accordingly, the MDP is an extended research 

area in which an action strategy is applied to the Markov chain process as well as 

a reinforcement reward adopted as the motivation [47]. Typically, a MDP model 

is always used for the establishment of an action strategy to maximize a utility 

function related to expected rewards. 

MDPs have firstly been formulated and investigated in 1960 [47], and have 

now been developed into discrete-time MDPs, continuous time Markov decision 

processes (CTMDPs), and semi-Markov decision processes (SMDPs). Except for 

the three basic MDPs above, several generalized MDPs, such as adaptive MDPs, 

constrained MDPs and partially observable MDPs, were also described in [71]. 

In addition, a stochastic system with inertia property (taking large time-delay link 
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for example) can be approximately depicted as a non-Markov sequence model. 

While the CTMDP and SMDP models can always be transformed reasonably to 

the DTMDPs, a typical DTMDP can be expressed as follows: 

{ },  ( ),  ( ),  ( , ),  ,  , ,  ( )i ij i i j jS A s p a r s a V s s S a A s∈ ∈              (2.8) 

where S is the observed state space; A(si) denotes the nonempty action set for the 

ith state; pij(a) is the probability from state si to state sj under action a∈A(si); and 

r(si, a) represents the reward of action a in the ith state; V expresses the objective 

or criterion in the model, called value function. 

The MDP policy provides a mathematical decision-making framework for the 

decision maker or system operators with action selection rules in each situation, 

and it can be depicted as π = (π0, π1, π2, …, πk, πk+1,…), where πk represents the 

action selection strategy at the kth iterative step. For k ≥ 0, let sk and ak be the 

state and the action selected at iteration k, respectively, then it has been proved 

that a stochastic process {sk, ak, k ≥ 0} can well be modeled as a discrete time 

Markov chain under MDP policy π based on stochastic process theory [46]. This 

criterion lays a solid foundation for the extensive application of MDP methods in 

power systems. Consequently, MDPs are applicable for studying a wide range of 

optimization and control problems solved via various RL algorithms. 

2.3.2 Reinforcement Learning Methodology 

RL is an online self-learning technique in the domain of machine learning to 

solve MDP problems without explicit specification of the transition probabilities 

[45], and its basic philosophy is to regulate a closed-loop control rule mapping 

from operating states to control actions by means of training a series of online 

representative data so as to maximize the long-term rewards. Consequently, RL 

algorithms, which differ from statistical pattern recognition and ANN in that it 

does not rely on accurate historical training samples and a priori knowledge of 
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the controlled system, are computational approaches to learn experiences from 

interactions with environment by trial-and-error for the policy improvement. 

Fig. 2.3 illustrates the generalized framework of RL systems, which consists 

of two interactive modules, ‘world’ and ‘agent’. In the structure, RL assumes that 

the world can be described as a complex dynamic system by a finite set of states 

called state space S, and the agent can choose a sequence of actions from action 

space A to interact with the environment [177]. The agent is composed of three 

main submodules: state identification, reinforcement reward and action strategy. 

The first submodule is to identify the environment state as the input form of the 

agent and the reward submodule determines the agent’s control objective. The 

final submodule, action strategy, which is the core decision-making module for 

the RL structure, is to update and evaluate the knowledge policy of the agent and 

select an action for each state based on this strategy submodule in order to effect 

on the environment. 

 

Fig. 2.3 Agent-world interactive structure for reinforcement learning 

Almost all RL algorithms are developed to form the long-term optimal policy 

via repeatedly estimating a value function. There are main two optimality criteria 

for the value function model, discounted reward optimality criterion (DROC) and 

AROC. The RL value functions are always constituted from the viewpoint of 
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long-run cumulative rewards. Firstly, the value function of DROC is expressed 

as the sum of the discounted rewards, 

2
DROC 1 2
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+ + +
=

= + + + ⋅⋅⋅ = ∑                      (2.9) 

where parameter γ (0 ≤ γ ≤ 1) is the discount rate, and rk denotes the immediate 

reward from the world at the kth iteration. Typical DROC-based RL algorithms 

include Q-learning, temporal difference (TD), dynamic programming, and Q(λ) 

learning, etc. On the other hand, the value function of the AROC-based RL can 

be defined as the long-run average expected rewards, as follows, 
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where Exp( i ) represents the expectation function, and rk(sk, ak) is the immediate 

reward obtained at the kth iterative step after implementing action ak in state sk. 

The classical AROC-based RL algorithms include R-learning, H-learning, R(λ) 

learning, and LC-learning [76]. 

The RL algorithms can be classified into two categories: model-free method 

and model-based method. The former consists of Q-learning and Q(λ) learning, 

TD and TD(λ) algorithms, R-learning and R(λ) learning, Sarsa method, etc. And 

the latter include dynamic programming, Monte Carlo, adaptive heuristic critic 

(AHC), and so on [45]. Moreover, the emergence of multi-agent system (MAS) 

also gives impetus to the rapid development of distributed RL and hierarchical 

RL methodologies. Most hierarchical RL methods are underlain by the discrete-

time SMDP formulation. Recently emerged hierarchical RL contain hierarchical 

abstract machines (HAM), options algorithm, MAXQ and HEXQ methods [178], 

while commonly used multi-agent RL involves Nash Q-learning, correlated Q-

learning, and asymmetric Q-learning [179]. So far, the MDP and RL methods has 

been applied to various fields in power system including reactive control [180], 

power market [181], nonlinear turbogenerator system [182], stability control [74], 

and optimum maintenance policy [183], etc. 
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2.4 Multiobjective Optimization Algorithms 

Real-world optimization problems usually need to cope with two or more 

conflicting and incommensurable objectives, and the multiobjective optimization 

aims to find a family of Pareto-optimal solutions in which none of the solutions 

can outperform any other with regard to the fitness values of all objectives [67]. 

In mathematical terms, multiobjective optimization can be formulated as, 
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where fi is the ith objective function; X is the decision vector that represents a 

solution to be optimized; Mobj, Mineq and Meq denote the numbers of objectives, 

inequality constraints and equality constraints, respectively. 

Generally, for each solution vector in a multiobjective minimization problem, 

there is a dominance relationship between the solution being considered and the 

others. Any solution Xa covers or dominates Xb once conditions in (2.12) are 

satisfied [33]. 

obj

obj

  {1,2, ... , }:  ( ) ( )

 {1,2, ... , }:  ( ) ( )
i a i b

m a m b

i M f X f X

m M f X f X

∀ ∈ ≤⎧⎪
⎨∃ ∈ <⎪⎩

                   (2.12) 

Any solution which cannot be dominated by other solutions of a given set is 

called the nondominated solution. The solutions which are nondominated within 

the entire feasible search space are known as Pareto-optimal solutions, and the 

set obtained by mapping these solutions to the fitness vectors in the objective 

space is the PF [65]. The front can be expressed as follows: 

( ){ }obj1 2PF ( ),  ( ),  ... , ( )MF f X f X f X X X ∗= = ∈            (2.13) 

where X* is the set of all true Pareto-optimal solutions called the Pareto set. Since 

the complete Pareto-optimal solutions are always infinite, the determination of 

the Pareto set is extremely difficult and even infeasible due to memory constraint 
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and computational complexity caused by the presence of infinite suboptimal PFs. 

Consequently, the optimization goal of MGSO is to acquire a widely spread and 

well-distributed PF, in which the Pareto set can be diversified to cover maximum 

possible regions of the solution space, within a limited repository [34, 64]. The 

following are the three basic quality measure criteria for evaluating PFs resulted 

from various multiobjective optimization algorithms [184]. 

(1) The distance of the resulting nondominated PF set to the true PF should be 

minimized. 

(2) The PF solutions shall be as uniformly distributed as possible. 

(3) The extent of the obtained nondominated PF in objective space should be 

maximized. 

It should be pointed out that single-objective optimization algorithms require 

numerous simulation runs to obtain a desired set of Pareto solutions by varying 

the weights of objective functions while the Pareto set can be generated in one 

single run with the multiobjective algorithms. Therefore, it is unfair for 

comparisons of single-objective and multi-objective optimization solutions using 

above quality measure criteria. On the other hand, in the process of multiobjective 

optimization, the obtained nondominated set needs to be pruned within a 

desirable size while its trade-off characteristics shall be maintained [185]. There 

are already lots of cluster analysis techniques based on data mining in the 

literatures, such as block clustering, hierarchical clustering, and direct clustering, 

etc. Finally, the best compromise solution will be yielded by a MCDM approach 

to simulate the DM’s preferences, and diverse MCDM categories have been 

summarized in [186], as follows: 

(1) The adoption of weight factors in which each weight expresses the relative 

importance degree of the corresponding objective; 

(2) The employment of aspiration levels corresponding to the desired levels of 

objective functions which the DM wants to reach; 

(3) The adoption of trade-offs for Pareto front surface between the objectives; 
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(4) The use of reservation levels which correspond to the recognized levels of 

objective functions which the DM wishes to achieve; 

(5) The classification of these optimization objectives into different categories. 

In this thesis, the equilibrium theory is firstly introduced to propose a novel 

equilibrium inspired decision making approach with the competing objectives 

regarded as noncooperative decision making players [78], which is belong to the 

third category of MCDM as mentioned above. The equilibrium theory is a branch 

of game theory to study the mixed-strategic decision making problem of games 

with many players [187]. There are various types of equilibrium model reported 

in the literatures for different stochastic game problems, such as Nash equilibria 

[188], Correlated equilibria [189], slightly altruistic equilibria [190], Stackelberg 

equilibria [191], and so on. 

2.5 Summary 

In this chapter, the fundamentals of multiobjective optimization and control 

for the power generation dispatch have been introduced. While a functional LFC 

framework is given to illustrate the essence of power system dispatch schemes, a 

survey is conducted to address the control performance standards as well as its 

modified version from a mathematical viewpoint. Then, a brief literature review 

on the current state of the art for AGC and MOPD methodologies is discussed in 

this chapter. Furthermore, the theories of MDPs and RL have been reviewed, and 

the Pareto-based multiobjective optimization is also presented and analyzed. 
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Chapter III 

Stochastic Optimal CPS Control Methodology for 
Interconnected Power Systems Using Q-Learning 

3.1 Introduction 

Automatic generation control is an essential function for the daily operation 

of interconnected power grids to guarantee the frequency quality of each control 

area and to keep tie-line power close to the scheduled values by regulating the 

power outputs of AGC generators to accommodate fluctuating load demands [38]. 

In 1997, the NERC released new CPS standards to monitor and assess the TBC 

control performance in normal interconnected power system operation [9], and 

then the standards were widely adopted and carried out by most utilities over the 

world to replace the old CPC criteria. The purposes of CPS are to provide a solid 

statistical and physical foundation to loosen the requirement of ACE regulation 

and eliminate unnecessary AGC pulses which enforce ACE return to zero within 

ten minutes. Compared to the empirical A1 and A2, the pioneering studies on 

analysis and discussion of this new and more sophisticated CPS1 and CPS2, with 

the field-test experiences, have been reported in [37, 81-85]. 

The AGC strategy under CPS adopted in the SCADA/EMS systems delivers 

AGC regulating command every 4~16 seconds in a discrete manner. At present 

several large-scale interconnected power systems in China have implemented the 

NARI’s hierarchical AGC system based on improved PI control structure [10, 

11]. Although this control strategy is effective in maintaining frequency quality 

and providing energy support to interconnected control areas during emergencies, 

its PI control system with fixed PI gains, like most existing AGC systems, cannot 
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adapt well to large changes in operating mode, parameters, or structure of power 

grids. This has been observed in previous field experiments in Guangdong power 

grid. As a remedy, the model-free RL algorithms are introduced in this thesis in 

order to ameliorate the adaptivity and dynamic optimization performance of the 

existing AGC systems. 

In CPS standards, the CPS1 and CPS2 metrics are considered as stochastic 

variables, and [37] concluded that the time averages of ACE in an interconnected 

control area is essentially unpredictable (even in sign) due to the randomness of 

the load if the averaging interval is greater than a specified measurement period. 

Furthermore, [82, 192] also discussed the uncertainties in the measured variables 

for LFC from a probabilistic and statistical point of view. Therefore, the modern 

AGC system under NERC’s new CPS can better be formulated as an uncertain 

stochastic system, which can be modeled as a Gauss-Markov decision process 

based on the stochastic optimal control methodology [182]. Consequently, a 

DTMDP-based Q-learning algorithm is therefore introduced into the domain of 

CPS control to create a new QAGC controller. This model-free Q-learning 

method does not need to make any strong assumptions on the system dynamics 

and can be employed as an online learning control strategy, taking advantage of 

the CPS rewards to create a group of self-learning rules from the viewpoint of 

long-term optimal objective. As a result, the outputs of the proposed QAGC can 

be tuned rapidly and automatically. 

3.2 Q-Learning 

Q-learning [70] is the classical branch of model-free RL algorithms in the 

stochastic optimal MDP control theory, and it can be viewed as an asynchronous 

dynamic programming to solve the DTMDP domains with incomplete or partial 

information. Also, the Q-learning agent with the capability of self-learning can 

operate optimally by evaluating the consequences of events, without building the 
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maps of Markovian fields, in order to improve successively its action policy, and 

the goal is to find an optimal action strategy via maximizing a long-term DROC 

value function. Following the RL theory outlined in Section 2.3, the so-called 

state-action value function or Q-function can be defined as follows, 

( , ) ( , , ) ( | , ) max ( , )
a As' S

Q s a r s s' a P s' s a Q s' aγ
∈

∈

= + ∑                  (3.1) 

where s and s' represent the current and next state, respectively; r(s,s',a) denotes 

the immediate reward after implementing action a; P(s'|s,a) is the probability of 

transition from state s to s' under action a; Q(s,a) represents the expected sum of 

rewards when starting from an initial state s0, taking action a, and performing 

optimal action a' in next searches, until the optimal value of Q-function (Q*(s,a)) 

is achieved. 

An iterative policy should be designed for Q-learning to estimate the optimal 

Q-function, and the policy will impact the performance of the algorithm in that it 

determines which state-action pairs will be visited and updated. Suppose Qk(s,a) 

is the estimation of the optimal Q-function Q* at the kth iterative step, and sk and 

ak represent the state and action at the kth iterative step, respectively. Hence, the 

value function Qk+1(s,a) can make a useful update based on the action taken and 

reward received, and the following iterative policy is adopted for the one-step Q-

learning as below, 
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(3.2) 

where parameter α (0 < α < 1) is a constant called learning factor to indicate the 

step size of learning for Q-functions, and the term within the square brackets can 

be considered as the estimation for the current value function error. 

The algorithm is an online self-learning and dynamic optimization technique 

which learns to act in an optimal interactive way through experience gained by 

exploration and exploitation. The agent can handle one sample at a time and does 
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not require to explicitly storing all samples. For the action strategy, the greedy 

action policy ag is defined firstly as follows, 

arg max ( , )g ka A
a Q s a

∈
=                                    (3.3) 

where arg max represents the action a corresponding to maximal Q-function for a 

given state s at the kth iteration. 

The purpose of the action greedy policy is to execute the best control actions 

in the short term. However, this greedy policy always exploits current knowledge 

to maximize the immediate reward, and only implementation of the greedy action 

in each state mean that the agent cannot explore sufficiently rich combinations of 

state-action pairs. Therefore, in order to achieve better sampling and convergence 

to the optimal policy, an action exploration policy called pursuit method [44] can 

be adopted in which, for each state s, actions are chosen based on a probability 

distribution over the action space. Such a sequence of samples can be obtained 

either through a simulation model of the system or observing the practical system 

in operation. Initially, a uniform probability distribution is firstly used so that the 

QAGC acts randomly in the beginning of self-learning procedure, then the action 

selection probabilities can be updated as follows, 
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            (3.4) 

where parameter ξ (0 < ξ < 1) is a constant called the action exploration factor; 

Pk(s,a) represents the probability with which action a selected for state s at the 

kth iteration of learning; ag is the greedy action in state s with respect to Qk(s,a). 

Thus, for all states of interest, Q-function would be close to Q*(s,a) for all state-

action pairs after a sufficiently large number of iterations. A rigorous proof has 

been concluded in [193] that Q-learning can converge to its optimal strategy with 

probability 1 once all action-state pairs are represented discretely and repeatedly 

sampled. In addition, more general convergence characteristics of RL have been 
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proved later in [194]. Since both action space A and state space S are finite, the 

probability distribution of control actions can be stored as a finite matrix (exactly 

in a tabular form) and the value of Q-functions as a lookup table, respectively. 

3.3 Design of Q-Learning Based AGC 

3.3.1 Controller Framework 

The CPS metrics are not only assessment criteria for AGC performance of 

interconnected operation but also can be regarded as the reward measures for the 

LFC control quality. Moreover, there are always some uncertain parameters and 

stochastic load disturbances existing in the system, especially for natural 

frequency response coefficient β which is a time-varying and nonlinear variable 

[3]. Consequently, the AGC problem under CPS is a dynamic decision-making 

problem, which can be transformed as a non-time-homogeneous MDP 

optimization process. Q-learning is an optimized way to maximize the long-term 

cumulative reward on the basis of stochastic control theory, and hence is very 

applicable for the design of stochastic optimal CPS control strategy. 

 

Fig. 3.1 Q-learning based optimized AGC control framework 
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The proposed Q-learning based dynamic optimal AGC control framework is 

illustrated in Fig. 3.1. In this framework, the independent QAGC governs each 

control area in a decentralized manner, and there are two modules in each area: 

the “ACE/∆F/CPS real-time monitoring database” is responsible for the real-time 

supervision and data acquisition, such as the instantaneous and average values of 

ACE, ∆F and CPS1 [80]. Besides, the statistical data of CPS compliances can be 

recorded and deposited in the “long-term historical record database” [41], and 

these databases can provide the “state” and “reward” from interconnected power 

grids as the input signals for each QAGC. Thereby, the QAGCs can be 

implemented for the online optimization of AGC generation regulating 

commands ∆Pord-Q-i on the basis of the RL mechanisms [70]. 

3.3.2 State and Action Space Discretization 

One of the major attractions of the Q-learning is the significant flexibility in 

designing state-action pairs and reward function for a specified control strategy. 

In the proposed QAGC, the state-action spaces should be reasonably discretized, 

and the reward function should be defined properly. The action space A involves 

a finite set of the optimized AGC regulating command ∆Pord-i for the output of 

QAGC, which denotes the variation in generator setpoint within an AGC cycle. 

The discretization of action vector should be conducted in terms of the system 

spinning reserve and units’ regulating characteristics in the specified control area, 

and the specific action spaces will be presented in the following case studies. 

Furthermore, the instantaneous values of CPS1 and ACE indices are selected 

as the state variables to constitute state space S (the state space of Markov chain). 

Since the CPS state space is infinite, as depicted to a 2-dimensional vector space 

in Fig. 3.2, the space discretization technique shall be used for dividing it into a 

finite range of regions to comply with CPS assessment and the discrete relaxed 

control characteristics. Therefore, according to CPS assessment and management 

principles in [41], the first state variable CPS1 can be quantized as the following 
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twenty-three levels: (−∞, 0), [0, 100), [100, 105), [105, 110), [110, 115), …, [185, 

190), [190, 195), [195, 200), [200, +∞). It should be pointed out that the range of 

CPS1 from 100 to 200 is discretized into 20 levels by 5%. This is because power 

utilities usually utilize these levels as the performance assessment criterion for 

dispatching operators [41]. The second state variable ACE is to distinguish the 

cause for the change of CPS1 index. It depends on whether the ACE value is 

negative or positive, and the state can be set as −1 or 1 level-state, respectively. 

Thus, the total number of the input states for QAGC is 46, and the learning step 

Tstep is determined by AGC decision cycle time. Consequently, the CPS control 

state space is then transformed into a discrete-time stochastic state model. 
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-ΔFmin 
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CPS1=0% 

Dead-zone  

Fig. 3.2 The schematic diagram of CPS control state space 

3.3.3 Control Objective of QAGC 

To take full advantage of NERC’s new CPS, the design objectives of a highly 

robust and adaptable AGC controller are (1) to comply with the CPS1 and CPS2 
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metrics for interconnected power systems under complicated dynamic operating 

conditions; (2) to relax the regulating pressure as well as the control cost of AGC 

plants. The existing AGC strategies always dispatch the outputs of AGC plants 

blindly in pursuit of high CPS compliances, and this will often result in the so-

called “over-compliant” problem for CPS standards [40]. A major cause of this 

over-compliant problem is that the power dispatch centers adopt the overly strict 

AGC schemes. Hence, a new multiobjective control philosophy, namely optimal 

relaxed AGC control, is proposed in this thesis, in which the AGC plants would 

realize costly loose maneuvering to carry out the dynamic optimal AGC strategy 

on the premise of complying with the assessment metrics CPS1 and CPS2. The 

proposed AGC for the relaxation of LFC system can be implemented with high 

feasibility and practicability on the foundation of previous field CPS experiments 

on the CSG power systems [195]. 

Based on the above optimal relaxed control, the multiobjective function of 

QAGC should combine the CPS compliance and relaxed control objectives. For 

most of control problems, the multiple control objectives cannot be optimized 

simultaneously for Pareto optimality due to the real-time control requirement. 

Therefore, the control function can be expressed as the following quadratic form, 
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where QL and RL are the weight matrices of state variables and control inputs in 

linear quadratic regulator (LQR) [196], respectively; X(t) and u(t) are state matrix 

and input matrix of the control system at iterative time t; KCPS and KCPS* express 

the degree of CPS compliance and the preset target of CPS compliance during a 

specified assessment period respectively; qLi and rLi are the cost coefficients for 

the ith AGC generator in weight matrices Q and R; SG represents the set of AGC 
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generators; ΔPGi(k) is the regulating power variation in the ith AGC generator at 

the kth iterative time; PGi represents the active power output of the ith AGC unit; 

PGi,max and PGi,min are upper and lower generation output limits of the ith AGC 

unit, respectively; PTmn and PTmn,max are the active power flow and its security 

limit of the transmission line between bus m and bus n. 

3.3.4 Design of Reward Function 

The next step of the QAGC design is to define the immediate reward function 

r(s,s',a) for the kth AGC decision cycle. The controller observes operating state 

sk of the power systems, as described by CPS1 and ACE, and chooses a control 

action ak from the action space. Then a new state sk+1 can be obtained and an 

immediate reward (S×A→r) is provided to express the degree of satisfaction of 

AGC performances. This procedure will be repeated for a sufficient number of 

state-action events until no more changes in the Q-function can be achieved, and 

then the optimal control strategy can be gradually learned. In the reward function, 

the 10-min averages of CPS1 and ACE (refer to CPS2) cannot be taken as the input 

state variables, because the QAGC would be completely incapable of satisfying 

the real-time control requirement if the optimization is executed at intervals of 10 

minutes. Therefore, the feedback reward function should hereby be determined 

using the real-time values of CPS1 and ACE, which can be calculated with the 

instantaneous values of ACE and frequency deviation using Eq. (2.1)~(2.3). 

The control target of QAGC, as formulated in Eq. (3.5), should be embodied 

with its reward function. For the sake of establishing a desirable reward function, 

the reward function ri(s,s',a) for control area i can hence be computed using the 

following piecewise function: 
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where οi is a nonnegative constant which is set to 0 in the case study; CPS1i(k) 

and ACEi(k) are the instantaneous values of CPS1 and ACE at the kth iteration; 

1iCPS ∗  and iACE∗  express the preset target values for the state inputs CPS1 and 

ACE, respectively. As for the 1iCPS ∗ , experiences showed that a value of 200 

works well if high CPS compliance is required, and here, the daily or monthly 

mean of CPS1 compliance can be set to implement the relaxed control; The value 

of iACE∗ , in this application, is used to specify the threshold value of the dead-

zone of AGC system [11] in order to ensure CPS2 compliance, reduce 

inadvertent power interchanges, and prevent ACE from zero-crossing frequently; 

aord-i(k) is the index to a selected action from the action space A at the kth iteration 

instead of its actual power value, and ord-ia∗  is an index to the null control action 

in the space A. The purpose of the second square terms in reward function is to 

decrease the mechanical wear-and-tear of AGC generators and the economic cost 

resulting from large fluctuations in the power regulating commands. η1i, η2i and 

μ1i, μ2i are the optimum weight factors for the reward function in area i, which are 

equivalent to the parameters of matrix Q and R in the LQR theory [196]. 

3.3.5 Q-learning Parameter Settings 

In addition, the three parameters γ, α and ξ in Eq. (3.1)~(3.4) are important in 

implementing the algorithm and shall be set wisely, for example, following the 

generic guidelines [44, 70, 194]. For the AGC problem, parameter γ used in Eq. 

(3.1) is the control factor by which later rewards are discounted, and simulation 

studies show that any value in the range from 0.5 to 0.98 works well. Since later 

rewards are very important for QAGC and a value close to 1 shall be chosen, γ is 

set to 0.9 in this case study. The critical parameter α, as introduced in Eq. (3.2), 

expresses the step size for updating Q-function and the rate of self-learning. This 

parameter determines the extent to which a single training example modifies the 

policy in the learning process. Since the QAGC problem under CPS depends on 

previous control actions, simulation studies show the value in the wide range of 



47 

0.001~0.1 is adequate to this problem due to the randomness of load disturbances, 

and here it is set to 0.1. The third factor ζ, used in Eq. (3.4) for updating the 

probability distribution of action selection, essentially determines the extent of 

explorations of action strategy. Case studies indicate that a very small value will 

slow down the learning convergence while the controller will tend to act as the 

greedy policy with a large one, and the policy remains unaffected with ζ between 

0.3 and 0.6. In the following, an intermediate value of 0.5 is used. 

3.3.6 Execution Steps of QAGC 

Following the analytical framework as described above, the QAGC learns the 

optimal control strategy by a set of online training tuples of form {s, s', a, r}. The 

execution steps of Q-learning applied to AGC under CPS is illustrated in Fig. 3.3. 

 

Fig. 3.3 Execution steps of the proposed QAGC 

Initialize memory Q0(s,a), e0(s,a), and R(0), for all s∈S and a∈A; 

Initialize learning parameters and Tstep = AGC decision time; 

Set the initial state s0 and k = 0; 

Repeat 

1) Choose an action ak based on the current probability distribution Pk(s,a); 

2) Apply action ak to the AGC plants and run the LFC model for the next 

Tstep seconds; 

3) Observe the present state sk+1 from interconnected power systems; 

4) Calculate immediate reward r(s,s',a) using Eq. (3.6); 

5) Update Qk(s,a) to Qk+1(s,a) using Eq. (3.2); 

6) Obtain ag (greedy action) from Qk+1(s,a) using Eq. (3.3); 

7) Update Pk(s,a) to Pk+1(s,a) using Eq. (3.4); 

8) Let k = k+1, return to step 1); 

End 
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3.4 Procedure of Semisupervisory Group Prelearning 

Normally, the RL controllers should be scheduled to experience a series of 

pre-learning procedure for the onsite application in the initial stage of online self-

learning, which is a stochastic action exploration process in the CPS state space. 

The main drawback of this online pre-learning benefiting from the fact is that the 

controller may jeopardize security and stability of the real system, because at the 

beginning of the interaction, no experience is available to the RL controllers. One 

effective solution to this problem is to implement the controller in a simulation 

environment first [74]. 

( )ir k
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Fig. 3.4 Framework of semi-supervisory group pre-learning method 

This chapter hereby presents a novel preconditioning technique, called semi-

supervisory group pre-learning method, to solve the group pre-learning problem 

involving multiple QAGCs in multi-area interconnected power systems. This 

method can be implemented as auxiliary correction and stabilization for multi-

controllers pre-learning by means of the PI/RL structure, as described in Fig. 3.4 

and 3.5. Moreover, the proposed method can also provide a better convergence 

property for the QAGC, and its iterative termination criterion for the pre-learning 

process is determined as a matrix 2-norms ||Qk+1(s,a)−Qk(s,a)||2 ≤ ς, ς is a given 

precision factor. Fig. 3.5 illustrates the execution procedures of the proposed pre-
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learning method, and this process will end once the iterative termination criterion 

is satisfied. The controller would make online learning control in a smooth way 

instead of random output fluctuations after the pre-learning process, and then the 

proposed QAGC can be put into onsite operation for its practical implementation 

thereafter [74]. 

 

Fig. 3.5 Semi-supervisory group pre-learning procedures 

1) Firstly, a high-accuracy digital simulation model is established for real 

power systems, and all AGC controllers adopt the PI control structure [1] 

in each control area; 

2) The QAGC is designed as an additional corrective control module for the 

AGC system in area i, as shown in Fig. 3.4, and then it interacts with the 

simulation environment as in Fig. 3.3 until the stable convergence of the 

PI/RL control structure; 

3) Reduce the gains of the PI controller based on the linear decreasing rules 

while the QAGC would adapt to the changing operation conditions, such 

that eventually an AGC framework without PI controller can be obtained 

once the PI gains and outputs finally decrease to zero; 

4) Repeat the step 2 and 3 until all AGC controllers only consist of QAGCs 

in all interconnected areas, i.e. all PI controller gains become zero, and 

then the PI controller in each area can be removed; 

5) Observe system states and control strategy of the AGC system, terminate 

the pre-learning process until no more changes in the Q-functions; 

6) Store all the current action probability distributions and Q-functions after 

the pre-learning process. The QAGCs can then be implemented into the 

real power system and extract the learned AGC strategies for their online 

optimization with the practical system. 
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3.5 Simulation Studies 

3.5.1 Investigated System 

The performance of AGC strategies are mostly evaluated based on classical 

linear LFC models as recommended in [1, 42], and the uncertainties in the power 

system models are usually simulated with the load demand fluctuations as well as 

parameter perturbations. In this chapter, a representative LFC model of two-area 

interconnected power system is adopted as the benchmark system to analyze and 

investigate the AGC methodologies, as shown in Fig. 3.6. This LFC model, in 

which active and reactive power are decoupled to quantitatively investigate the 

power system load-frequency characteristics, mainly contains four fundamental 

system models: load and generator model, governor model, prime-mover model 

and tie-line model. In the following case studies, the model parameters are taken 

from [42] and listed in Appendix A with the base capacity of 5000MW. Besides, 

the simulation of LFC model is executed using the software platform of Matlab 

/Simulink and the QAGC is programmed as the S-Function module. 
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Fig. 3.6 Two-area power system LFC model 
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3.5.2 Performance Results 

For clear illustration of the implementation steps involved and the proposed 

pre-learning method, the following settings were designed. As the AGC decision 

cycle time is set to 3 seconds and the two-dimensional variables (CPS1, ACE) are 

set as state input signals to QAGCs, the action vector A is discretized into fifteen 

levels as {−500, −300, −100, −50, −20, −10, −5, 0, 5, 10, 20, 50, 100, 300, 500} 

MW. Then, the QAGCs are trained by carrying out the simulation for the semi-

supervisory group pre-learning technique as in Fig. 3.5. During the pre-learning 

process, the controllers can explore the state-action spaces with a group of 10-

min periodic square-wave load disturbances, and the typical pre-learning process 

corresponding to the disturbances in area A is shown in Fig. 3.7. 
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(a) Periodic square-wave load disturbances ∆PLA 
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(b) QAGC output ∆Pord-A in pre-learning process 
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(c) The plot of clock-10-min CPS1 index in pre-learning process 
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(d) The plot of clock-10-min |EAVE-min| in pre-learning process 

Fig. 3.7 Pre-learning process of the proposed QAGC in area A 

It can be found in Fig. 3.7 that the controller’s actions at various states have 

converged to their deterministic control policy while the clock-10-min CPS1 and 

|EAVE-min| (10-min absolute averages of ACE) tend to stabilize to constant values. 

In this pre-learning process, the contribution of PI controllers gradually decreases 

as their gains reduce, and the QAGCs can adapt well to the ever-changing 

external environment via the RL mechanism. Consequently, the Q-learning can 

obtain the optimal action strategy for the AGC system (apart from PI controller) 

once the PI gains reduce to 0. Then, the proposed controllers can be implemented 

in practical operation once the pre-learning process in each control area is 

completed, and the performance of QAGCs can further be improved via the 

interactions with the real power systems. 
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For further illustration of the important role of the reward functions for the Q-

learning control performance, three typical groups of weight factors in Eq. (3.6) 

are adopted to the QAGCs for comparison and discussion as below, 
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(a) The plot of QAGCs output ∆Pord-Q-A in area A 
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(b) The plot of QAGCs output ∆Pord-Q-B in area B 
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Fig. 3.8 Simulation test of the optimal QAGCs 

• QAGC-I: η1=1, η2=50, μ1=1, μ2=1; 

• QAGC-II: η1=1, η2=50, μ1=10, μ2=10; 

• QAGC-III: η1=1, η2=50, μ1=50, μ2=50. 

Here, the fairness and conformance in the reward function can be ensured by 

maintaining a constant weight ratio η1/η2, which is related to the parameter Bi and 

ε1, a value of 50 is used here from our observation, and μ1 can also be equal to μ2 

thereby. Since the step responses are the most typical representations to evaluate 

the dynamic performance of control systems, a square-wave load disturbance is 

introduced to simulate generator shutdown and load shedding in the LFC system 

model. In this simulation study, the reward functions of QAGCs in two control 

areas are identical, and the performance results of the simulation tests are shown 

in Fig. 3.8. It can be found that different reward functions have the significantly 

influences on the optimal behaviors of the QAGC, and the control effects of the 

QAGC-II can outperform PI controller by choosing the appropriate weights. 

On the basis of the LQR principle [196] and the simulation test results, the 

conclusion can be drawn that the meanings of η1, η2 and μ1, μ2 are very similar to 

weight matrices QL and RL in the LQR approach. The power control outputs will 

slow down with the decrease in weight ratio η/μ, so that the regulating cost and 

maneuvering pressure of AGC plants would be released to achieve the loosened 
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control based on NERC’s standards; conversely, QAGCs would also tend toward 

the tightened control and thus attach more relative importance to the CPS metrics. 

Consequently, with regard to the optimum QAGC design, weight ratio η/μ should 

be thoughtfully set for the coordination and balance between the CPS assessment 

objective and AGC relaxed objective in terms of the above mentioned laws. The 

selection guideline for weight ratio η/μ will be further analyzed and discussed in 

the following Chapter IV. 

3.6 Summary 

Conserving energy in grid dispatch is a key technology and core content for 

AGC control strategies based on CPS criterion. Interpreting the previous results, 

the proposed stochastic optimal CPS control methodology based on Q-learning 

possesses the following several advantages: 

(1) The design of the proposed QAGC does not depend on any knowledge of 

the electric network configuration and system dynamics, and the RL driven 

controller can learn the closed-loop control laws known to be well adapt to 

the stochastic behaviors and effects of nonlinearities; 

(2) The reward function of QAGC plays a very important role to AGC control 

performances, which originates from the combination of the CPS evaluation 

objective and AGC relaxed objective through the linear weighted aggregate 

approach in this chapter; 

(3) As the stochastic optimal control based Q-learning can learn continuously 

by interaction with its environment, the algorithm opens avenues to the self-

adaptive control. Therefore, the QAGC can cope with the complex changing 

operation scenarios in power systems, and the robustness and adaptability of 

the AGC system can be enhanced and the degree of CPS compliance is 

evidently improved. 
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Chapter IV 

Stochastic Optimal Relaxed AGC Methodology in 
Non-Markov Environment Based on Multi-step 
Q(λ) Learning 

4.1 Introduction 

The AGC performance in interconnected power system operation has usually 

been measured against a number of evaluation metrics including the compliance 

with some reliability standards based on ACE and system frequency [84]. The 

CPS [37] established by NERC in 1997 have been widely adopted by most of 

utilities around the world including East China Power Grid and the CSG in 2001 

and 2005, respectively. Coupled with the renewed interest in the energy saving in 

power dispatch [158] and the statistical concepts for CPS1 and CPS2 as well as 

the rapid development of smart grid technologies [35], a new generation of CPS 

oriented optimal AGC system has become a pressing need. 

The state-of-the-art in AGC strategies designed to work under CPS has been 

comprehensively reported in [38, 39]. Even with the wide adoption of the CPS 

nowadays, the existing AGC systems have not yet been optimized to fully 

explore the potential of this more sophisticated criterion. CPS pays more 

attention to the medium and long-run returns of AGC performances and regards 

CPS1/CPS2 indices as random variables. As mentioned in [37] that the time 

averages of the ACE for some averaging intervals may be sufficiently random to 

make CPS2 a sufficient control on 10-min averages of interconnection frequency, 

while the CPS1 directly controls the 1-min averages of interconnection frequency. 

Coupled with the studies on the uncertainties in the measured variables for LFC 
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systems [82, 192, 197], further dynamic response studies show that AGC system 

under CPS in fact can better be formulated as an uncertain stochastic system 

from the statistical and probabilistic point of view. On the other hand, the CPS 

provides a theoretical foundation for the relaxation of frequency. If the frequency 

characteristics could be relaxed without threatening CPS compliances and system 

reliability, the LFC strategy is allowed to achieve for the desired relaxed control 

in order to economize on energy in power system dispatch. 

Based on the studies in Chapter III, the design of a stochastic optimal relaxed 

AGC scheme using multi-step Q(λ) learning algorithm [73], which has recently 

emerged and is suitable for the non-Markov environment [72], is investigated 

and presented in this chapter. The proposed optimal relaxed AGC means that 

AGC plants would suffer less from costly maneuvering to find the optimum 

policy with the objectives of complying with the CPS1 and CPS2 standards. The 

multi-step Q(λ) backtracking learning is utilized to overcome the long time-delay 

problem caused by the steam turbine of AGC thermal units in the secondary 

frequency control loop. Meanwhile, an eligibility trace [42] in the area of RL 

theory is introduced to assign explicitly the credit or blame for the multi-step 

historic backward decision in the actor-critic learning process. The proposed 

Q(λ)AGC has been successfully applied to the two-area LFC system model. 

4.2 Multi-Step Q(λ) Learning 

Multi-step Q(λ) learning is a model-free RL algorithm that extends the one-

step Q-learning [70] by combining it with TD(λ) returns for general λ [198] in an 

incremental way for the delayed RL control problems. The resulting hybrid RL 

algorithm thus combines some best characteristics of Q-learning and actor-critic 

learning paradigms. The Q(λ) learning can serve as the basis of various multiple 

time scale learning mechanisms, which are essential for the application of RL to 

practical systems, for developing the discrete-time Markov chain control process 
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[71]. By estimating the corrections to predictions of state-action events occurring 

in the past, this algorithm propagates information incrementally to the important 

elements of Q-function. There are two different Q(λ) algorithms proposed via the 

combination of eligibility traces with Q-learning, called Watkins’s Q(λ) [44] and 

Peng’s Q(λ) [73], respectively. Here, the latter Q(λ) learning with a greedy policy, 

instead of the former with an exploratory action policy, is investigated. 

The multi-step Q(λ) learning, unlike one-step Q-learning algorithm in Section 

3.2, can take advantage of the multi-step feedback information to update the Q-

functions. The parameter λ in eligibility traces is used to assign the credits 

throughout sequences of the actions, lead to faster convergence and also alleviate 

the non-Markovian effects caused by the long time-delay and coarse state-action 

space quantization [73]. Eligibility trace [44] is a temporary record for the 

occurrence of taking of actions and state trajectory, and it marks the memory 

parameters associated with the decision-making events as eligible for interacting 

online learning. This trace for state s and action a at the kth iteration is indicated 

as ek(s,a). In each iterative step, eligibility traces for all the state-action pairs 

would decay exponentially by a factor of (γλ)k while the one for the visited pair 

would also be incremented by 1, as follows, 

1

( , ) 1  ( , ) ( , )
( , )

( , ) otherwise
k k k

k
k

e s a s a s a
e s a

e s a
γλ
γλ+

+ =⎧
= ⎨
⎩

                      (4.1) 

where parameter λ (0< λ <1) is referred as the trace-decay factor. Since both the 

state space S and action space A are finite, the values of eligibility trace and Q-

function can be stored as matrices and implemented in two-dimensional lookup 

tabular forms indexed by the state-action pairs. 

The Q(λ) learning makes use of TD(λ) returns as the value function estimator 

through a trace mechanism, and additional traces would help to bridge the gap 

between frequency and recency information for the heuristic events. The purpose 

of the Q(λ) learner is to pursue the optimum policies by maximizing cumulative 

discounted rewards over the entire optimization period, and the estimation for the 
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current value function errors at the kth iteration can be computed in Eq. (4.2) and 

Eq. (4.3), as follows, 

1 1, ,( ) ( , ) ( , )k k k k k k g k k kr s s a Q s a Q s aρ γ+ += + −                     (4.2) 

1 1, ,( ) ( , ) ( , )k k k k k k g k k gr s s a Q s a Q s aδ γ+ += + −                     (4.3) 

where ρk can be viewed as the one step Q-function error while δk as the TD(0) 

value function error for the Q-function at the kth iteration; r(sk,sk+1,ak) denotes 

the reward function of transition from state sk to sk+1 under action ak; In the next 

searches, Qk+1 can make a useful iterative update based on the action taken and 

reward received as the following iterative rules, 

1 1( , ) ( , ) ( , )k k k kQ s a Q s a e s aαδ+ += +                             (4.4) 

1 1( , ) ( , )k k k k k k kQ s a Q s a αρ+ += +                               (4.5) 

It has been demonstrated [73] that the overall performance of Q(λ) learning 

exhibits less sensitivity to the choice of the training parameters and more robust 

behavior than the standard Q-learning. Both Markov and non-Markov tasks have 

been carried out to validate the efficacy of this algorithm. Rigorous proof in [194] 

shows that the estimated Q-function converges to the optimal Q*(s,a) values with 

the probability 1 once the action values are represented discretely and all actions 

are sufficiently sampled in state space. 

The backward estimation mechanism of eligibility traces plays an important 

role for the backtracking process of the multi-step Q(λ) learning. The backward 

estimation with its additional memory, eligibility trace, can proportionally update 

the global Q-function errors to all recently visited states. For each iterative step, 

value function errors can be calculated and assigned backward to each previous 

state according to the states’ eligibility traces, and the updating policies depend 

on the current Q-function error combined with eligibility traces of the past events. 

All in all, the backward estimation is an incremental mechanism to assign the 

credits backward to the previously visited “the stream of states”, as illustrated in 

Fig. 4.1 [44]. 
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Fig. 4.1 The stream of states for backward estimation 

4.3 Thermal-Dominated AGC Process under CPS 

Thermal power plants have played a dominant role in most AGC systems in 

China. The Guangdong power grid in the CSG system is a good example. AGC 

strategy arisen from the power dispatch center will be implemented via the fuel 

supply in the turbine-boiler control system of thermal plants, and will therefore 

be executed slowly with large time constants [48]. The typical time-delay in the 

secondary frequency regulation ranges from 0.5 to 2 minutes and would vary 

with the ramping direction. Since a certain amount of the memory effect for the 

transition trajectory would be resulted in the CPS state space, the past states and 

decisions will have after-effect influence on the transition probability distribution 

of future behaviors in the thermal-dominated AGC process. Consequently, this 

LFC process for interconnected power systems is, actually, a non-Markov chain 

(non-Markov environment) [72]. Previously, the AGC decision-making problem 

was viewed as a Markov chain control process and was solved using the standard 

Q-learning [40], as stated in Chapter III. However, this approach would not be 

sufficient to cope with the modern AGC with CPS because of its non-Markov 

property. Furthermore, the long time-delay secondary frequency control link in 

thermal units should also be accounted in the AGC scheme. 

This chapter focuses on applying the Q(λ) learning with eligibility traces to 

cope with the thermal-dominated AGC strategy in the non-Markov environment. 
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The multi-step backtracking learning takes full account of the previously visited 

state-action pairs and the temporal sequence in the stochastic process. It could be 

effective for alleviating the non-Markovian effects of time-delay control loop and 

coarse state-space quantization. Eligibility trace, which is a special mechanism of 

temporal reward assignment for value function errors, can also offer a backward 

estimation approach to explicitly allocate the credits or blames backward to prior 

states according to the eligibility trace at that iterative moment. In the backward 

estimation of Q(λ) learning, as shown in Fig. 4.2, the global value function errors 

will trigger proportional updates to all the recently visited “stream of state-action 

pairs” as signaled by their nonzero traces. 

1
0 0 1 2( , ) max ( , )k k

k k ka
Q s a r r r Q s aγ γ γ−= + + ⋅⋅⋅+ +

1 1,s a ,k ks a
0 0,s a

1 1( , ) max ( , )k k k k ka
Q s a r Q s aγ− − = +

 

Fig. 4.2 Backward estimation for Q(λ) backtracking learning 

NARI’s control strategy, as adopted in its EMS system, is to deliver an AGC 

regulating command every 4 seconds in a discrete manner. After the separation 

of the generation sectors from electricity grids in the deregulation of the Chinese 

power systems in 2002 [199], genuine AGC strategies in provincial power grids 

would give priority to promoting CPS metrics and, as a result, may lead to an 

“over-compliant” problem that high CPS compliance is blindly pursued without 

considering the maneuvering costs of AGC plants. Measurements from dispatch 

centers of CSG power system show that there are frequent tiny reversal actions in 

AGC commands for some generators and it is harmful to the units because of the 

mechanical wear-and-tear [41]. Moreover, the increments in the AGC regulating 
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intensity for thermal plants would result in the evident rise in fuel consumption 

as well as the decrease in generation benefits of the interconnected operation. In 

addition, detailed analysis and comparison for extra energy losses and potential 

economic aspects of thermal plants involved in AGC implementation have been 

reported in [200]. Hence, a multi-step Q(λ) learning based stochastic optimal 

relaxed AGC strategy is proposed here for thermal-dominated power systems. 

4.4 Design of Optimal Relaxed AGC Strategy 

Following the analytical framework described above, the thermal-dominated 

AGC problem under CPS can be transformed to a dynamic non-Markov decision 

process. Coupled with the fast random fluctuation in the load demand and some 

uncertain parameters existing in the system, the problem of optimal AGC relaxed 

control becomes even more complicated and heretofore no satisfactory solution 

method has been reported publicly. The Q(λ) learning not only can provide AGC 

controller with capability of self-learning for the discounted infinite time-horizon 

optimization in non-Markov domains by means of undergoing the backtracking 

consequences of actions, but also would be flexible in accommodating various 

control actions and control objectives for solving this challenging multi-criteria 

optimization problem [43]. 

4.4.1 State and Action Space Discretization 

In the following state and action space analysis, a two-class classification is 

assumed. While the state space S comprises all the acceptable operating points 

not violating any system constraints, action space A combines the set of discrete 

values of control adjustments. The degree of state and action space discretization 

plays an important role to the AGC performance of Q(λ)AGCs. By means of 

space discretization, the state-action space can be divided into a finite number of 

regions, called the state-action pairs. Though a large number of state-action pairs 
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could give a high-resolution solution, the convergence rate of Q(λ) learning 

would be lowered owing to the curse of dimensionality of Q-functions, and as a 

result, excessive AGC commands would occur and go against the relaxed control 

objective. On the other hand, poor AGC performance would result if the number 

of state-action pairs was too small. 

Both CPS1 and CPS2 are long-term statistical evaluation criteria, which can 

be assessed in the form of the clock-minute averages. For the convenience and 

timeliness of control and input filtering, 1-min moving averages of CPS1/ACE 

[8], which can be obtained from “ACE/∆F/CPS real-time monitoring database” 

[40], are used as the binary state signals for the Q(λ)AGC. CPS compliance data 

are recorded and deposited in “long-term historical database”. Hence, the CPS 

control space, as shown in Fig. 3.2, can be transformed as a discrete-time 

stochastic state space constituted by 1-min moving averages of CPS1 and ACE 

mathematically. According to CPS assessment principle [41] and relaxed control 

characteristics, the state space discretization can be designed following the 

QAGC in Section 3.3.2. 

One of the main advantages of Q(λ) learning is the flexibility in specifying an 

AGC control action vector. The output variable of the Q(λ)AGC is the optimized 

AGC regulating command ∆Pord-i which is the variation in the generator setpoint 

within an AGC cycle. The discretization of action space A should be carried out 

based on the system spinning reserve capacity and unit regulating characteristics 

for each control area, and the specific action vector will be presented in the case 

studies in Section 4.5. 

4.4.2 Reward Function 

The control objective of the Q(λ)AGC can be defined by the discount factor γ 

and immediate reinforcement/reward function r(k). Since the reward function in 

Q(λ)AGC will be used to assess the AGC performance, it shall consider both the 

CPS performance and relaxed control objectives in order to avoid the “over-
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compliant” problem existing in CPS control strategies and minimize the control 

pressure imposed on the AGC generators. The proposed control for relaxation of 

AGC system can be implemented with high feasibility based on the previous 

researches on CPS for the CSG [195]. Consequently, the desirable relaxed AGC 

control shall give higher priority to lessening the number of maneuvering and 

reversal actions for AGC units according to the CPS and the stochastic sequential 

decision emerged in the relaxed control. Here, a new relaxed reward function ri(k) 

for control area i is defined by modifying the multi-criteria piecewise function Eq. 

(3.6), as below, 
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      (4.6) 

where iσ  is an arbitrary non-negative number which is set to 0 in the case study; 

ACEmov-i(k) and CPS1mov-i(k) are the 1-min moving averages of ACE and CPS1 

at the kth iterative time in area i, respectively. As for the 1iCPS ∗ , experiences 

show that a value of 200 works well if high CPS compliance is required since 

CPS1 would be the dominated factor in the CPS compliance when it is high; vice 

versa, if the 1iCPS ∗  is too small, say 100, CPS compliance would be dominated 

by CPS2 and become too low. As a compromise for the relaxed control, the 

historical daily or monthly mean of CPS1 metric in area i is adopted here as the 

1iCPS ∗  for area i. The clock-minute averages of ACE can be used to represent the 

control area’s CPS2 condition. The value of the iACE∗ , in our application to the 

CSG power system, is used to specify the threshold value of the AGC dead-zone 

(5MW) so as to prevent real-time ACE from crossing zero frequently and reduce 

the inadvertent power exchanges. Consequently, the received reward will be kept 

constant for the values of ACEmov-i(k) within the dead-zone. aord-i(k) is the index 

to a selected action from action vector A at the kth iteration, while ord-ia∗  denotes 
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the index of the null control action in the action vector. The use of the quadratic 

term of action variation in Eq. (4.6) is to lower wear-and-tear of AGC generators 

and economic cost resulting from large fluctuation in AGC control commands. 

NR represents a pulse identifier of control signals, and it is equal to 1 or 0 to 

indicate whether the control signal at the kth iteration is a reversal pulse or not, 

respectively. In addition, the weights η1i, η2i, μ1i, μ2i and ν1i, ν2i are equivalent to 

the parameters of weight matrices in LQR methodology [196]. 

Since CPS compliance will be satisfied in our application to the CSG system 

when “CPS1 ≥ 200%”, the reward is assigned to the maximum value if “CPS1 ≥ 

200%”. When “100% ≤ CPS1 < 200%”, CPS compliance is determined by CPS2 

metric, and thus the reward should be assigned based on the averages of ACE. 

When “CPS1 < 100%”, CPS compliance fails and CPS1 index is the predominant 

factor for the CPS assessment. Therefore, the reward for the control area with a 

lower CPS1 value should be assigned with a smaller value. Furthermore, in order 

to ensure the conformance and fairness in the piecewise reward function Eq. (4.6), 

the weight ratios η1i/η2i, μ1i/μ2i and ν1i/ν2i shall be kept constant while their exact 

values depend on the frequency bias Bi and CPS1 control target ε1 in control area 

i due to different dimensions between state variables CPS1 and ACE. Moreover, 

weights μ1i, μ2i are critical elements for the relaxed control performance of the 

Q(λ)AGCs, which is named as the relaxation factor here, and the relaxation 

vector is μ = [μ1, μ2, …μi, …, μm] for an interconnected power systems within m 

control areas. 

4.4.3 Q(λ) Learning Parameters 

The learning step Tstep is determined by AGC decision cycle time. In addition 

to the above algorithm settings, three parameters α, γ and λ in Eq. (4.1)~(4.5) are 

crucial in implementing the Q(λ) learning and shall be set with following generic 

guidelines in [44, 73, 193]. 
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The learning factor α is the step size of learning which essentially determines 

the amount of update in the Q-function [194]. A larger α (close to 1) allows fast 

convergence of the algorithm, while a smaller α (close to 0) tends to enhance the 

stability of the Q(λ)AGC. For the RL enforced AGC strategy which depends on 

previous control steps, α shall be very small owing to the time-lag control loop 

and the randomness of load disturbance. Simulation studies show that a value in 

the range of 0.001~0.1 is acceptable. Here, the factor is set to 0.01. 

The discount rate γ is the control factor by which later rewards are discounted 

in control objective. Since later rewards in the AGC process under CPS are very 

important, a value close to 1 shall be taken. Experiences show that a value in the 

range from 0.6 to 0.98 works well. Here, an intermediate value of 0.9 is used. 

The trace-decay factor λ in eligibility traces is used for allocating the rewards 

throughout sequences of actions, leading to faster self-learning and also help to 

overcome the non-Markov effects in the thermal-dominated AGC problem. For 

larger values of λ, traces of the preceding events would decay more slowly, and 

more of farther backward operation information can be utilized to optimize the 

Q-functions. Conversely, the prior state-action pairs are given less credit for the 

Q-function error if λ is set to a small value. In general, λ can be considered as a 

time scale factor in the backtracking process, and it is a trade-off between bias 

and variance [73]. For the AGC problem in non-Markov environment, the value 

shall be chosen close to 1 and the policy remains unaffected with λ between 0.85 

and 0.995 in the simulations. With respect to the proposed Q(λ)AGC, a value of 

0.9 is selected for factor λ. 

4.4.4 Implementation Procedures of Q(λ)AGC 

The implementation steps of the proposed optimal relaxed AGC algorithm 

are summarized in Fig. 4.3. 
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Fig. 4.3 Q(λ) learning algorithm for AGC relaxed control 

4.5 Simulation Results and Analysis 

The performance of the developed optimal relaxed AGC strategy has been 

evaluated through the following case studies. The two test systems adopted for 

studying the Q(λ)AGC are a small two-area thermal-dominated LFC power system 

with long secondary time delay and the practical CSG power systems with four 

control areas. 

Initialize memory Q0(s,a), e0(s,a), and R(0), for all s∈S and a∈A; 

Initialize learning parameters and Tstep = AGC decision time; 

Set the initial state s0 and k = 0; 

Repeat 

1) Choose the greedy action ag that maximizes Qk(sk,a) over all a; 

2) Execute the action ag to AGC plants and run the LFC system for the 

next Tstep seconds; 

3) Observe the new state sk+1 via the moving averages of CPS1/ACE; 

4) Obtain the short term reward r(k) from Eq. (4.6); 

5) Calculate the one step Q-function error ρk using Eq. (4.2); 

6) Estimate the TD(0) value function error δk using Eq. (4.3); 

7) For each state-action pair (s,a), do: 

i) Let ek+1(s,a) ← γλek(s,a); 

ii) Update Q-function Qk(s,a) to Qk+1(s,a) using Eq. (4.4); 

8) Update the value function Qk(sk,ak) to Qk+1(sk,ak) using Eq. (4.5); 

9) Update the eligibility trace, let e(sk,ak) ← e(sk,ak)+1; 

10) Let k = k +1, return to step 1); 

End 
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4.5.1 Study on Two-Area LFC Power System Model 

Fig. 4.4 shows the block schematic diagram of a typical thermal-dominated 

LFC power system with the model parameters taken from [42]. While the 

dynamic simulation of the LFC system is established using Matlab/Simulink, the 

Q(λ)AGC is implemented as S-Function module. For clear illustration of the 

execution steps involved, the following settings are adopted in this case study. As 

the AGC decision cycle is set to 3 seconds and the time-delay Ts of thermal unit 

is set to 20 seconds, action vector A is discretized into fifteen values equal to 

{−500, −300, −100, −50, −20, −10, −5, 0, 5, 10, 20, 50, 100, 300, 500} MW. 

 

Fig. 4.4 Two-area thermal-dominated LFC model 

Normally, no experiences will be available in the initial stage of interactive 

learning for the RL driven controller to control the AGC system adequately. As a 

remedy, Q(λ)AGCs should be scheduled to experience a series of trial-and-error 

procedures called “pre-learning process”, which is a stochastic action exploration 

process in the CPS state space to consummate the optimal tabular form Q*(s,a), 

before its practical onsite application. There are two preconditioning techniques 

for RL methods discussed and compared in [74]: on-line mode and off-line mode. 

The on-line mode, in which the interaction occurs with the real power system, is 
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particularly interesting when it is difficult to model the system or when some 

scenarios are difficult to reproduce in the simulation model. However, the main 

drawback of this on-line learning mode is that the RL controller may jeopardize 

security and stability of the real system. One effective solution is to employ the 

off-line learning mode by using the Q(λ)AGC in a simulation environment first. 

In this mode, the controller can extract the offline learned control policy from a 

high-accuracy simulation system and then implement it on the real system. 
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(a) Q(λ)AGC output ΔPord-A in pre-learning process 
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(b) The plot of 10-min CPS1 metric in pre-learning process 
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(c) The plot of clock-10-min |EAVE-min| in pre-learning process 

Fig. 4.5 Pre-learning process of the Q(λ)AGC in area A 
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The typical pre-learning process corresponding to a group of 10-min periodic 

sine-wave load disturbances in area A is given in Fig. 4.5. It can be found that 

the action outputs at various states in Q-functions converge to their deterministic 

optimum control strategy after about 3000 iterations while the CPS1 (in 10-min 

assessment period) and |EAVE-min| (clock-10-min absolute averages of ACE) tend 

to become stable as shown in Fig. 4.5(b) and 4.5(c). This pre-learning process 

should be repeated continuously for a large number of operating states with 

different typical load disturbances until there are no more changes in the Q-

functions, and the optimal AGC strategy can be gradually learned. Moreover, the 

iterative termination criterion for pre-learning process is determined as the matrix 

2-norms ||Qk+1(s,a)-Qk(s,a)||2 ≤ ς where ς is a given small precision factor. Then, 

all parameters and memory such as Q-function matrices and eligibility traces 

should be stored after the pre-learning process in each area is completed, and 

Q(λ)AGCs can be put into normal operation for the practical implementation of 

AGC system thereafter. Furthermore, the proposed Q(λ)AGCs will continue to 

learn from the on-line system and improve its control strategy and behaviors by 

interacting with the real power systems. Also, unlike the QAGC, the pre-learning 

phase of Q(λ)AGC does not need the semisupervisory controller as in Section 3.4. 

Table 4.1 Trace-decay factor effects on Q(λ)AGC 

λ 0.7 0.8 0.85 0.9 0.95 0.99 
Tc (s) 21629 13146 9285 8261 7927 7813 

Table 4.2 Discount rate effects on Q(λ)AGC 

γ 0.5 0.6 0.7 0.8 0.9 0.95 
Tc (s) 15758 10630 9347 8565 8261 8242 

Since the trace-decay factor λ and discount rate γ determine the record and 

backtracking mechanism of eligibility traces, they would have crucial impacts on 

the pre-learning process of the non-Markov delayed control problems. Table 4.1 

and 4.2 illustrate the effects of those two parameters on the convergence property 
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of the learning algorithm. Tc represents the average convergence time under the 

periodic sine-wave load fluctuations as in Fig. 4.5. Simulation studies indicate 

that large values of λ and γ should be set to cope with the delayed consequences 

of actions and rewards. 
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(a) The plot of AGC power regulating commands ΔPord-A 
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(b) The plot of AGC generating unit output ΔPGA 
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Fig. 4.6 Simulation experiment for AGC controllers 

The dynamic performance of Q(λ)AGCs for a step load disturbance in area A 

is shown in Fig. 4.6. The simulation results are compared with the well-designed 

PI controller in [11] and one-step QAGC in Chapter III. This step response can 

provide information on the stability and dynamic performance for a closed-loop 

control system [201]. Here, the reward functions of AGC controllers in two areas 

are identical, and the weight factors in Eq. (4.6) for the Q(λ)AGC and the QAGC 

are set as follows after numerous simulation studies: η1=1, η2=50, μ1=μ2=10, 

ν1=ν2=0. Fig. 4.6(a) and 4.6(b) illustrate the plots of AGC regulating commands 

and the dynamic response of an AGC unit. In general, the smoother the 

regulating commands delivered to the AGC generators, the higher the energy 

utilization of those generators will be. Thus, the Q(λ)AGC can provide the better 

relaxation properties for AGC thermal plants. Consequently, less control actions, 

less wear-and-tear, and further savings on fuel costs would be expected. On the 

other hand, the experiment suggests that Q(λ) learning can distribute backward 

information rapidly by allowing Q-function corrections to be made incrementally 

for the prediction of past observations, and hence the Q(λ)AGC works notably 

satisfactorily on the dynamic behaviors such as settling time, overshoot, etc. 

Thermal generating units, such as LNG and coal-fired units, have a wide 

variety of regulating characteristics for the secondary frequency response. For 
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further illustration of AGC behaviors of the Q(λ)AGCs in different non-Markov 

environment, taking control area A in Fig. 4.4 as the studied system, Table 4.3 

shows the performance results of Q(λ)AGC for thermal units with a set of typical 

AGC time-delay parameters and generation rate constraint (GRC) [202]. Here, a 

group of band-limited white noise fluctuations is used as the load disturbances 

for the performance comparison after the pre-learning process. |∆F| and CPS1 are 

average indices over a 24-hour period, while |EAVE-min| (refer to CPS2) in Table 

4.3 represents the average of absolute values of EAVE-min over the period. As the 

convergence time of Q(λ)AGC in pre-learning process goes up remarkably with 

the increase of AGC time-delay Ts and GRC, it demonstrates that the controller 

requires more training iterations to pursue optimal policy under the condition of 

long time-lag control loop. In conclusion, as the delay time and generation rate 

get worse, the AGC metrics would only deteriorate moderately, and this shows 

the ability and efficacy of Q(λ)AGCs for overcoming the non-Markov effects. 

Table 4.3 AGC performance test for different time-delay and GRC 

Thermal 
Unit Ts (s) GRC 

(p.u./min) Tc (s) |∆F| (Hz) |EAVE-min| 
(MW) 

CPS1 
(%) 

Unit 1 8 10% 7650 0.0113 22.47 197.69 
Unit 2 20 10% 8261 0.0138 27.76 196.35 
Unit 3 20 8% 9084 0.0199 34.18 194.30 
Unit 4 30 8% 10553 0.0217 35.21 192.81 
Unit 5 30 5% 12882 0.0231 36.95 191.63 
Unit 6 45 5% 16035 0.0252 39.13 189.15 
Unit 7 45 3% 21196 0.0285 43.65 187.07 
Unit 8 60 3% 28269 0.0328 48.39 183.36 

4.5.2 Study on China Southern Power Grid 

For the in-depth analysis of the proposed optimal relaxed AGC strategy in a 

realistic simulation environment, a detailed CSG power system model previously 

developed using Matlab/Simulink for Guangdong power dispatch center projects 
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[41] was used as the benchmark power system in this thesis. The CSG power 

system has four control areas interconnected by parallel HVDC-HVAC 

transmission systems, as illustrated in Fig. 4.7. In this AGC simulator, the plant 

models [197, 202] for fossil-fuel-fired, LNG and hydro generators are included 

in each control area, and each plant output is determined by the governor and set-

point of AGC pulse from the ED function according to its participation factor. In 

addition, the high voltage direct current (HVDC) system is modeled as a first-

order constant-power control model [203], and the AGC decision cycle time in 

CSG is set to 4 seconds. 

In the CSG power system model, the AGC plants in each area are classified 

into different unit groups while each unit group is established using an equivalent 

generator model. The system LFC characteristics of the study area are available 

in [41], as depicted in Fig. 4.7 and further tabulated in Appendix A. Besides, the 

parameters used in CPS standards are the practical onsite values for CSG power 

system in 2009. The frequency bias factors Bi are set to −225 in Guangdong area, 

−35 in Guangxi, −37.5 in Yunnan and −40 in Guizhou. The threshold limit for 

the CPS2 assessment (L10) is fixed to 288 in Guangdong, 75 in Guangxi, 78 in 

Yunnan, and 81 in Guizhou. The ε10 and ε1 are 0.042 and 0.052, respectively. 

 

Fig. 4.7 The interconnected network of China Southern Power Grid 
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In this case study, since the magnitudes of CPS1 and ACE are different in 

different provincial control areas due to the different frequency bias factors, four 

different types of Q(λ)AGCs are specifically designed for the four control areas 

based on their load characteristics and installed generation capacities. Table 4.4 

gives typical weight factors for the reward function Eq. (4.6) of the Q(λ)AGC in 

each control area. Furthermore, by analyzing the load disturbance and spinning 

reserve capacity in each power grid, the action discrete vector for the total AGC 

regulating command can be fixed as A = {−1000, −600, −300, −100, −50, −20, 

−10, −5, 0, 5, 10, 20, 50, 100, 300, 600, 1000} MW. Also, the simulation results 

presented here correspond to the performance of AGC controllers after the pre-

learning process. 

Table 4.4 Weight factors for the Q(λ)AGCs 

Control area η1 η2 μ1 μ2 ν1 ν2 

Guangdong 1 38 30 30 20 20 
Guangxi 1 3.5 7.6 7.6 0 0 
Yunnan 1 5 8 8 0 0 
Guizhou 1 6 8.5 8.5 0 0 

Since the load disturbance in the AGC simulator is the forcing function, it is 

important to provide representative load data for this case study. The adaptability 

and robustness of the proposed AGC controller under a series of various complex 

load fluctuations and system parameter perturbations can be verified with white 

noise moderated samples to simulate synthesized disturbances and uncertainties 

in power systems. The white noise model is a random fluctuation with flat power 

spectral density. In this simulation study, a typical white-noise stochastic load 

[199] and white-noise parameter perturbation are chosen as a group of fixed 

disturbances for the comparison of the strategies, as follows: 

• Applying the white-noise load model in each provincial power grid, in which 

the sample time is 10 minutes and the magnitude is less than 1500MW (this 
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value is equivalent to the value caused by the HVDC monopole block in 

Guangdong power grid); 

• Adding the band-limited white noise perturbation, in which the sample time 

is 20 minutes and the magnitude is less than 10 percent of the nominal value, 

on natural frequency response coefficient β in each provincial power grid. 

Here, Guangdong power grid is taken as the study area. Fig. 4.8 shows the 

time characteristics of frequency deviation, ACE, tie-line power error, and AGC 

generation in Guangdong area corresponding to the above system disturbances. 

 

Fig. 4.8 Time characteristics of ∆F, ACE, ∆PT and generators output 

The AGC relaxed control performance can be accessed from the number of 

control pulses in the power regulating commands delivered to AGC units from 

the dispatch center. Here, Pulse No. is defined as the average number of pulses 

that are sent to each regulating unit per hour. Similarly, Pulse Rev. No. is defined 

as the average number of direction changes in pulses being sent to each AGC unit 

per hour. The relaxation factor in the reward function has been found to have a 

large influence on the performance of Q(λ)AGC in a given control area. Fig. 4.9 

illustrates the effects of relaxation factor μ on the AGC behaviors in the 
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Guangdong power grid under the load disturbances and parameter perturbations 

as described above. It can be revealed from Fig. 4.9 that as the relaxation factor μ 

(μ1 is set to μ2 in the case studies) increases, the relaxed control performances 

improve while the CPS1 and CPS2 compliance decrease. Furthermore, it is noted 

that Pulse No. begins to rise when μ increases beyond 40. In addition, there will 

be many small amplitude pulses in the total regulating command curve when μ is 

set to 60 or above. As a compromise between relaxed control and CPS metrics, 

the relaxation factor for this study area shall be set within the range of 10 to 40. 

 

(a) Correlation between relaxed property and relaxation factor 

 

(b) Correlation between CPS1, CPS2 and relaxation factor 

Fig. 4.9 Relaxation factor effects on AGC performance 
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Based on the LQR theory and simulation test results, the proposed optimal 

relaxed control methodology provide a customized platform for online regulation 

of the control tightness so as to achieve a desired level of CPS compliance and 

relaxed performance. The AGC output would slow down along with the increase 

of relaxation factor μ, so that the regulating pressure and maneuvering cost of 

AGC plants would be released to achieve the “loosened control”. Conversely, the 

Q(λ)AGC would tend toward the “tightened control” for the overstrict and high 

CPS compliance requirement. Consequently, the relaxation vector μ should be 

thoughtfully selected for the coordination and balance between the CPS control 

objective and AGC relaxed objective in terms of the above-mentioned laws and 

the requirements of actual operating condition. The proposed Q(λ)AGC can also 

employ a performance feedback mechanism which helps to adjust the relaxation 

vector or control tightness based upon historical AGC performance data. 

Moreover, the long-term AGC performance can be evaluated with the data 

statistical comparative experiments. In the experiments, the AGC simulator of 

CSG system was started in a quiescent state where frequency and tie-line flow 

were at their scheduled values. Simulations were then implemented with the 

preset disturbance conditions over a 30-day period. Table 4.5 and 4.6 show the 

AGC performance metrics for the study area Guangdong power system with the 

assessment period 10 minutes, in which |∆F| and |ACE| are the averages of the 

absolute values of frequency deviation and ACE over the entire period, and 

CPS1, CPS2 and CPS are the monthly compliance percentages. Furthermore, the 

following four types of AGC controllers were considered and implemented for 

the comparison and discussion. 

• NARI’s improved-PI control strategy 

• QAGC: η1=1, η2=38, μ1=μ2=30, ν1=ν2=0 

• Q(λ)AGC-I: η1=1, η2=38, μ1=μ2=30, ν1=ν2=0 

• Q(λ)AGC-II: η1=1, η2=38, μ1=μ2=30, ν1=ν2=20 
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Table 4.5 and 4.6 provide the overall comparisons among AGC strategies in 

Guangdong power grid with the increase of the white noise perturbations in the 

coefficient β from 0% (nominal parameters) to 10% of its nominal value. Then, 

highlights from the results are summarized as follows: 

(i) The Q(λ)AGC performs very well and compares well with the performance 

of a properly tuned improved-PI controller even in the case with nominal 

parameters. When the parameters were perturbed, the performances of 

Q(λ)AGC could still be maintained and become significant superior to the 

improved-PI controller on CPS compliances and relaxed metrics. Since the 

proposed AGC would continue to learn the optimized closed-loop control 

laws online, it is able to adapt well to the changing operating conditions [45] 

and hence has a superior adaptability and dynamic optimization capability 

than NARI’s PI controller. 

(ii) The main advantage of the Q(λ) learning is that its multi-step information 

updating mechanism as well as backward estimation approach can enhance 

the efficiency of online learning. As the optimal Q-function estimator takes 

into account the influence of the previous multi-step decision-making policy, 

it can make the dispatching commands more reasonable and credible with 

the help of its prediction capability. As shown in Table 4.5 and 4.6, Q(λ) 

backtracking learning can provide better control effects than the standard Q-

learning control when the system is subjected to a series of complicated 

system disturbances. 

(iii) The addition of the pulse identifier NR to the reward function in Q(λ)AGC-II 

would reduce the Pulse Rev. No. to the AGC plants and hence improve the 

relaxed property. Since any improvement on the relaxed performance would 

inevitably lead to deterioration in the CPS metrics, the weight factors ν1 and 

ν2 should not be set so large that CPS1 and CPS2 performances fall below 

minimum levels necessary for compliances. Besides, the two-dimensional 

state variables (1-min moving averages of CPS1 and ACE) are used as input 
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signals for Q(λ)AGCs to ensure the timeliness and feasibility for the AGC 

system under CPS. Thus, information on the operation sequences within the 

preceding 1 minute will be embedded in the reward function for strategic 

decisions and contribute to the relaxation of frequency control as well as 

alleviate the maneuvering cost for AGC generators. This reduction in the 

maneuvering of plants output would give opportunities for AGC generating 

units to operate more efficiently with the significant decrease in unnecessary 

mechanical wear-and-tear and saving in fuel costs. 

Table 4.5 Statistical experiment results of Guangdong power grid I 

Metrics 
Nominal parameters 

NARI’s PI QAGC Q(λ)AGC-I Q(λ)AGC-II 

|∆F| (HZ) 0.0282 0.0271 0.0273 0.0289 
|ACE| (MW) 151.89 146.18 148.63 157.95 

CPS1 (%) 183.33 187.35 185.67 182.24 
CPS2 (%) 97.85% 98.55% 98.50% 97.65% 
CPS (%) 94.51% 95.51% 95.29% 94.28% 
Pulse No. 294 267 251 239 

Pulse Rev. No. 78 67.8 63.3 60.9 

Table 4.6 Statistical experiment results of Guangdong power grid II 

Metrics 
White noise parameter perturbations 

NARI’s PI QAGC Q(λ)AGC-I Q(λ)AGC-II 

|∆F| (HZ) 0.0561 0.0412 0.0365 0.0382 
|ACE| (MW) 233.17 213.03 185.75 196.18 

CPS1 (%) 142.05 163.59 176.03 170.69 
CPS2 (%) 90.83% 94.11% 95.89% 94.81% 
CPS (%) 85.79% 90.48% 93.76% 92.16% 
Pulse No. 338 303 271 262 

Pulse Rev. No. 91.5 80.4 73.5 68.3 
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4.6 Summary 

The thermal-dominated AGC control process can be formulated as a dynamic 

decision-making optimization problem. In this chapter, a novel optimal relaxed 

AGC control in non-Markov environment based on Q(λ) learning is developed 

and successfully implemented and tested on a small two-area power system and 

the China Southern Grid power systems. The following are the main advantages 

of the proposed approach: 

(1) The application of multi-step TD(λ) return mechanism as the value function 

estimator in Q(λ)AGC can effectively resolve the delayed feedback problem 

with non-Markov effects caused by long time-delay control loop in thermal 

plants. Since CPS pay more attention to the long-run statistical returns of 

AGC performance, it is noteworthy that the Q(λ) learning is an incremental 

iterative algorithm to maximize the cumulative discounted reward from the 

viewpoint of long-term optimal objective as well. 

(2) The Q(λ)AGC can cope with the partial information, nonlinear effects and 

stochastic behaviors in power systems [45], especially when the real system 

is facing with scenarios which have not been previously encountered in the 

simulations. As supported by the statistical comparative experiments, the 

robustness and adaptability of the studied AGC system are enhanced and the 

degree of CPS compliance is improved evidently under various complex 

changing operation conditions. 

(3) The CPS compliance and AGC relaxed control objectives are embodied in 

the multi-criteria reward function via the linear weighted aggregate method. 

Simulation studies showed that the proposed Q(λ)AGC can realize significant 

reduction in the generator movements for thermal plants. For example, with 

respect to the NARI’s PI controller in Table 4.6, Q(λ)AGC-II lowered the 

Pulse No. and Pulse Rev. No. by 29% and 34%, respectively. Moreover, it 

also provides a mechanism for the dispatch center to optimize the combined 
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objectives of CPS compliance and reducing the control cost by regulating 

the relaxation factors online. This means the AGC system can operate at a 

desired relaxed control level with least amount of control actions while the 

plants would operate at the high-efficiency mode under the optimal relaxed 

AGC strategy, and contribute to the energy-saving generation in power 

dispatch thereafter. 
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Chapter V 

A Novel R(λ) Imitation Learning Methodology for 
Online AGC Optimization 

5.1 Introduction 

The AGC performances of interconnected power systems have always been 

evaluated by NERC’s CPS standards released in 1997 [37]. While the state-of-

the-art of AGC strategies under CPS has been comprehensively addressed and 

investigated in [8, 38, 39], the existing CPS based AGC controllers mostly adopt 

fixed-parameter PI control strategies and do not adapt well to the changes in 

operation modes, parameters and structures of power systems [154, 156, 159]. In 

order to improve the dynamic performance and adaptability of AGC controllers, 

RL algorithms have been introduced to the design of optimal AGCs for control 

of interconnected power grids in [40, 43, 130, 195]. Most notably, in Chapter IV, 

a DROC model based multi-step Q(λ)AGC was proposed for the optimal relaxed 

AGC to effectively overcome the long-time delay problem caused by the steam 

turbine of thermal units in the secondary frequency control loop. 

The main obstacle for the practical onsite application of the above-mentioned 

conventional RL controllers is that it needs to be scheduled to experience a series 

of pre-learning processes before its onsite operation, and an accurate simulation 

model of the power system is required for this offline pre-learning process [74]. 

It is unavoidable that differences do exist between the power system model and 

real power system or even some uncertain scenarios cannot be modeled in the 

simulation. Therefore, the intolerable “trial-and-error noise” [71] may exist in 

power systems when RL controllers operate in real systems. To overcome this 
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problem, a new imitation pre-learning technique is presented in this chapter. The 

imitation learning philosophy [204] has been applied in robot control, in which 

the RL controllers learn from the movements and behaviors of human being by 

imitation [205, 206]. This technique can be executed with high applicability and 

feasibility because it does not rely on the accurate knowledge of system model, 

and thus can be utilized as a solution to the online pre-learning problem. 

Furthermore, RL algorithms based on the AROC model [76] are designed to 

maximize the long-run cumulative average rewards of the generic systems, and 

would therefore match well with the control objective of CPS which considers 

the long-term average return performances of AGCs. In this chapter, a novel R(λ) 

imitation learning method is proposed to combine the R(λ)L algorithm [75] with 

an imitation pre-learning process, so as to develop an optimal AGC under CPS. 

This R(λ)ILAGC has been successfully tested on the two-area thermal-dominated 

LFC system and the practical-sized CSG system outlined in Chapter IV. 

5.2 Multi-Step R(λ) Learning 

The computational goal of the AROC is to find an optimum policy to achieve 

the maximal expected average reward from interaction with environment by trial-

and-error [207]. For each state s and policy π, π* is called gain-optimal policy if 

VAROC(π*) ≥ VAROC(π) is satisfied [76]. However, the gain-optimal policy may not 

be the optimal policy in that, compared to the DROC model, the average function 

VAROC in Eq. (2.10) ignores the relative importance of the short-term reward and 

long-term reward. It has been demonstrated that, among these numerous gain-

optimal policies, bias-optimal policy can achieve optimal control objectives with 

the least iterative steps. The bias-optimal policy can be measured using the bias 

value function denoted by the average-adjusted sum of rewards, as follows, 

[ ]
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where VB(π) is called the bias value function or relative value function. For each 

state s and MDP policy π, if VB(π*) ≥ VB(π), then π* is defined as the bias-optimal 

policy, and thus the goal of solving the AROC model is to find a bias-optimal 

policy π*. 

The R(λ)L is a relative new AROC-based RL algorithm which extends one-

step R-learning [44] by combining it with multi-step TD(λ) returns for general λ 

[198] in an incremental way for the delayed MDP problems [72]. The algorithm 

can operate by successively improving its evaluations of an action value function, 

named R-function, to approach the bias-optimal control strategy [75]. Here, the 

R-function represents the average-adjusted reward of implementing an action a 

in state s once, and then following policy π subsequently. The R-function can be 

defined as below: 

AROC( , ) ( , , ) ( ) ( | , ) max ( , )
a As' S

R s a r s s' a V P s' s a R s' aπ ππ
∈

∈

= − +∑          (5.2) 

Furthermore, in the algorithm, eligibility trace is used, as a temporary record 

of the occurrence of taken actions and state trajectory, to assign explicitly the 

rewards for multi-step backward sequences of decisions. In each iterative time, 

eligibility trace ek(s,a) for all of state-action pairs would decay exponentially by a 

factor of λk while the one for the visited pair would also be incremented by 1, as 

follows: 

1( , ) ( , )k ke s a e s aλ+ =                                         (5.3) 

1 +1( , ) ( , ) 1k k k k k ke s a e s a+ = +                                   (5.4) 

The designs of value function iteration policies for the optimal R-function are 

important and have a critical influence on the learning stability and numerical 

convergence of the algorithm. Here, the iteration policies with rigorous proof on 

the learning stability guarantees in [177] are employed. Therefore, the R(λ)L 

makes use of the TD(λ) returns as the value function estimator [198] for the 

estimation of value function errors ρR(k) and δR(k), as follows: 

1 ( 1) AROC( ) ( ) ( , ) ( , ) ( )R k k g k k k kk r k R s a R s a V kρ + += + − −               (5.5) 
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1 ( 1) ( ) AROC( ) ( ) ( , ) ( , ) ( )R k k g k k k g kk r k R s a R s a V kδ + += + − −              (5.6) 

where r(k) is a reward function of transition from state sk to sk+1 under action ak; 

Rk(s,a) represents the estimation for the R-function for action a set in state s at 

the kth iteration; VAROC(k) expresses the estimation of the average function at the 

kth iteration of learning. In the algorithm, the action selected from the maximal 

R-function in a given state is referred as greedy action [45]. Here, ag(k) and ag(k+1) 

represent the greedy actions in state sk and state sk+1, respectively. Then, the R-

function can be updated using the following iterative rules: 

1 1( , ) ( , ) ( , ) ( )k k k RR s a R s a e s a kα δ+ += +                             (5.7) 

1 1( , ) ( , ) ( )k k k k k k RR s a R s a kαρ+ += +                               (5.8) 

where parameter α (0 < α < 1) is the learning factor of the R-function. In addition 

to the iteration of R-function, the updating iterative policy for average function 

VAROC(k) can be designed as follows: 

AROC AROC ( )( 1) ( ) ( )      if R k g kV k V k k a aτδ+ = + =                (5.9) 

where parameter τ (0 < τ < α2) is the learning factor of the average function. 

The R(λ)L algorithm is sensitive to the action selection strategy, and thus in 

order to achieve the reasonable action sampling as well as enhance the control 

performance of R(λ)ILAGC, an action exploration policy called pursuit method 

[44], in which, for each state s, the actions are selected based on the probability 

distribution over the action space, is adopted, as expressed in Eq. (3.4) in Section 

3.2. Since both state space S and action space A are finite, the values of eligibility 

trace, R-function and probability distribution of action selection can be stored as 

finite matrices with tabular forms. As the R-function and average function iterate 

and update continuously, the selection possibilities of the actions with larger R-

functions will tend to become higher. Therefore, the R(λ)ILAGC will gradually 

converge to the bias-optimal control strategy represented by optimal R-function 

once the state-action space are represented discretely and sampled sufficiently 

[75]. 
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5.3 Design of Optimal R(λ)ILAGC 

5.3.1 R(λ) Learning for AGC Strategy 

The R(λ)L not only can provide AGC with capability of self-learning for the 

average time-horizon optimization, but also would be flexible in accommodating 

various state-action pairs and control objectives for the multi-criteria CPS-based 

AGC optimization. Here, in the following state-action space analysis, two AGC 

performance indices, 1-min moving averages of CPS1 and ACE, are utilized as 

the binary input states of R(λ)ILAGC to pursue the optimum average returns of 

CPS1 and CPS2 compliances, respectively [195]. On the other hand, action space 

A consists of a set of discrete control pulses ∆Pord-RL which is the variation in the 

AGC generation within an AGC decision cycle. Here, the state-action space is 

specified and discretized following the space discretization in Section 4.4.1. 

Furthermore, the control objective of R(λ)ILAGC is determined by reward 

function r(k), and a relaxed reward function is adopted with following the multi-

criteria piecewise function in Eq. (4.6). Finally, the learning-step of R(λ)L, Tstep, 

is determined by the AGC decision cycle. 

In addition to the above definitions, four factors λ, α, τ and ξ in Eq. (5.3)~(5.9) 

and Eq. (3.4) are important in executing the algorithm and shall be set following 

generic guidelines [44, 75, 76]. Firstly, trace-decay factor λ is used to accelerate 

the convergence and alleviate the non-Markov effects of time-delay control [73]. 

For larger values of λ (close to 1), traces of preceding events would decay more 

slowly, and more of farther backward information can be utilized to optimize the 

R-function. For the thermal-dominated AGC problem under CPS which depends 

on previous control steps, the λ should be set close to 1 and the control strategy 

remains unaffected with λ between 0.75 and 0.9 in the simulation study. Here, it 

is set to 0.8. Secondly, the action exploration factor ξ in Eq. (3.4) is used for 

updating the action probability distribution. In order to avoid the local optima in 

the learning process, a small ξ (close to 0) shall be taken. Experiences show that 
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a value in the range from 0.05 to 0.3 would work well to balance the trade-off 

between exploration and exploitation. Here, the ξ is set to 0.1. 

 

Fig. 5.1 Pseudo code of the R(λ)L algorithm for AGC strategy 

Moreover, the two learning factors, α and τ, shall be well-tuned through large 

amount of simulation testing heuristics as improper settings may lead to potential 

instability of the whole closed-loop control system. The first factor α essentially 

controls the extent of update in the R-function. A larger α (close to 1) allows fast 

convergence rate, while a smaller value of α (close to 0) can effectively enhance 

Initialize memory R0(s,a), e0(s,a) and P0(s,a), for all s∈S and a∈A; 

Initialize learning parameters and Tstep = AGC decision cycle; 

Set the initial state s0 and k = 0; 

Repeat 

1) Choose an action ak from the action space A based on the current action 

probability distribution Pk(s,a); 

2) Apply action ak to the AGC system for the next Tstep seconds; 

3) Observe new state sk+1 using the moving averages of CPS1/ACE; 

4) Obtain an immediate reward r(k) from the relaxed reward function; 

5) Calculate the value function errors via Eq. (5.5) and (5.6) respectively; 

6) Update eligibility trace ek(s,a) and R-function Rk(s,a) for all state-action 

pairs using Eq. (5.3) and (5.7), respectively; 

7) Update the eligibility trace ek+1(sk,ak) and R-function Rk+1(sk,ak) for the 

current state-action pair using Eq. (5.4) and (5.8), respectively; 

8) If ak is the greedy action, then update average function VAROC(k) using 

Eq. (5.9); 

9) Update action probability distribution Pk(s,a) to Pk+1(s,a) via Eq. (3.4); 

10) Let k = k +1, return to step 1); 

End 
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learning stability of the R(λ)L. In order to guarantee the stability of R(λ)ILAGC 

in onsite operation, α shall be very small. Simulation studies showed that a value 

in the range of 0.01~0.3 is acceptable. In the simulations, α is set to 0.01. The 

factor τ, introduced in Eq. (5.9), controls the extent of update for average reward 

function VAROC. Since large variations of VAROC would lead to the deterioration in 

control performance of the proposed R(λ)ILAGC or even instability of the whole 

control system [76], a very small τ (close to 0) should be selected. In this AGC 

application, it is set to 0.001. 

To sum up, the pseudo code of the R(λ)L-based AGC controller is depicted in 

Fig. 5.1. 

5.3.2 Imitation Pre-learning Process 

The RL pre-learning process is a preconditioning technique which involves a 

series of iterative exploration procedures in the CPS state space to consummate 

the optimal R-function. Two modes of the pre-learning process, namely online 

mode and offline mode, were discussed and compared in [74]. In online learning 

mode, interaction occurs directly with the real system and simulation model is 

not required. The main drawback is that security and stability of the real power 

system may be jeopardized. Offline mode carries out in a simulation environment 

in which AGC extracts the offline-learned policy from an accurate power system 

model. However, if there are large differences between the system model and the 

real power system, the conventional RL controllers will not be able to obtain the 

optimum control strategy for its onsite implementation in the real power system, 

or even would result in mal-operation of the power system. Therefore, an online 

imitation pre-learning method is proposed to overcome those problems. 

In the imitation pre-learning process, R(λ)ILAGC can be directly put into the 

real power system, and act as an observer for online imitation and identification 

of the existing AGC in a real-time pattern. As illustrated in Fig. 5.2, the proposed 

AGC strategy observes AGC generation commands ∆Pord-PI from the existing PI 
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controller to learn and imitate its control behaviors through R(λ) learning policy 

evaluation [75]. During the proposed pre-learning process, the AGC system is 

still governed by the PI controller while the R(λ)ILAGC would not influence the 

stability and security of the power system. 
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SCADA/EMS/DMS systems 
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Fig. 5.2 Imitation pre-learning process of R(λ)ILAGC 

For the purpose of imitation learning, a mapping principle from continuous 

variable ∆Pord-PI to discrete action space A shall be defined. Firstly, the variation 

of AGC generation commands, dPord-PI, can be calculated using Eq. (5.11). Then, 

the dPord-PI is discretized into a set of intervals, and the interval vertices can be 

determined by the averages of two corresponding adjacent actions in action space 

A. Suppose space A consists of a set of monotone increasing actions as {a1, a2, ..., 

ai-1, ai, ..., am-1, am}, and the correspondence relationship between dPord-PI and 

action ai can be defined as follows: 

1 2
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1 1
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ord-PI ord-PI ord-PI( ) ( ) ( 1)dP k P k P k= Δ −Δ −                          (5.11) 

After the design of mapping principle, the state-action space of R(λ)ILAGC for 

the pre-learning process can thus be defined. Furthermore, the reward function, 

rpre(k), for the imitation pre-learning process is designed as follows: 

pre 2

                  
( )

( )     
k i

k i k i

a a
r k

a a a a
σ =⎧

= ⎨
− − ≠⎩

                                (5.12) 

where σ is a given non-negative number which is set to 0 in this case study. This 

reward function is to determine the imitation objective of R(λ)ILAGC from the 

PI controller. Moreover, the iterative termination criterion for the imitation pre-

learning process is determined by the following matrix 2-norm Ds: 

1 2
( , ) ( , )s k kD R s a R s a ς−= − ≤                              (5.13) 

where ς (close to 0) is a given small termination tolerance which influences the 

convergence time and imitation precision for the imitation pre-learning process. 

The setting of tolerance factor ς can be well-tuned by testing heuristics [208]. In 

general, a small tolerance factor ς tends to increase the computational burden of 

the pre-learning but may enhance the imitation precision from the PI controller. 

It has been found from a series of trial heuristics that satisfactory imitation pre-

learning could be obtained for different scenarios with ς in the range of 0.35~0.7. 

Here, a value of 0.5 is selected. The pre-learning process will end once the 

termination criterion Eq. (5.13) is satisfied. All the parameters and memory, such 

as matrices R(s,a), P(s,a) and e(s,a), should be stored, and then the toggle switch 

can be actuated to the contactor 2 to deactivate the PI controller and put the 

R(λ)ILAGC online for live operation. 

The developed online imitation pre-learning method provides a feasible way 

for practical application and implementation of RL controllers under a real power 

system environment and this would be the major original contribution in this 

chapter. The measurement of the real-time power system data as well as the 

delivery of AGC regulating commands can be carried out by the SCADA system 
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[80]. To sum up, the detailed pseudo code of the imitation pre-learning process is 

shown in Fig. 5.3. 

 

Fig. 5.3 Pseudo code of the proposed imitation pre-learning process 

Initialize memory R0(s,a), e0(s,a) and P0(s,a), for all s∈S and a∈A; 

Initialize learning parameters and Tstep = AGC decision cycle; 

Set the initial state s0 and k = 0; 

Repeat 

1) Choose an action ak from action space A based on the current action 

probability distribution Pk(s,a); 

2) Observe AGC generation command ∆Pord-PI(k) from the PI controller; 

3) Calculate AGC command variation dPord-PI(k) using Eq. (5.11); 

4) Determine the corresponding action ai using Eq. (5.10) 

5) Obtain an immediate reward rpre(k) using Eq. (5.12); 

6) Apply ∆Pord-PI(k) to the AGC system for the next Tstep seconds; 

7) Observe the next state sk+1 via the moving averages of CPS1/ACE; 

8) Update R-function, eligibility trace, average function as well as action 

probability distribution with following Step 5) ~ Step 9) in Fig. 5.1; 

9) Calculate iterative termination criterion Ds using Eq. (5.13); 

10) If Ds > ς, then let k = k+1, and return to Step 1); 

Else, the imitation pre-learning process is completed, go to Step 11); 

11) Actuate the toggle switch to contactor 2 in order to inactivate the PI 

controller, and put the R(λ)ILAGC into practical onsite operation; 

End 
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5.4 Simulation Studies 

5.4.1 Evaluation on Two-Area LFC Power System Model 

The performance of R(λ)ILAGC has been evaluated through a two-area LFC 

power system model as shown in Fig. 4.4. In this case study, control area A is 

taken as the study area, and the mapping principle from the dPord-PI to the action 

space is illustrated in Fig. 5.4 through Eq. (5.10). The imitation pre-learning 

process should be executed continuously for a large number of operating states 

with different typical load disturbances until there are no more changes in R-

functions. Therefore, a sequence of white noise load disturbances, which is a 

random pattern of square-wave fluctuations with flat power spectral density, is 

used as forcing function for the pre-learning process, as shown in Fig. 5.5. It can 

be found that the actions for various states in the R-function converge to their 

deterministic optimum policies, while termination criterion Eq. (5.13) is satisfied 

within 6537 seconds (the time boundary between the pre-learning and the onsite 

operation). On the other hand, since the PI controller is still functioned properly 

during the pre-learning process, the proposed R(λ)IL can provide the satisfactory 

performance, with 10-min CPS1 indices and clock-10-min absolute averages of 

ACE |EAVE-min| (referred as CPS2), throughout the entire period. 

 

Fig. 5.4 Relationship between control actions of PI controller and R(λ)ILAGC 

It should be pointed out that the original PI controller installed in the real 

system is used to facilitate the transition from the offline pre-learning to online 

learning, provide the initial AGC strategy, and also improve the convergence rate 

of the R(λ)ILAGC in the pre-learning process. The selection of PI controller is 

therefore important to the R(λ)IL method. Here, an improved PI-based AGC 

developed by the NARI [11] is adopted. Furthermore, after the completion of the 
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imitation pre-learning process in each control area, the R(λ)ILAGC, which has 

already benefited from the pre-learning experiences, will continue to make 

steady online optimization and still be able to improve its control behaviors by 

interaction with the real power system. Hence, as shown in Fig. 5.5, R(λ)ILAGC 

in the onsite operation has exhibited the slightly better control performance than 

the PI controller. 
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Fig. 5.5 Imitation pre-learning process of R(λ)ILAGC 

Though artificial load fluctuations shown in Fig. 5.5 will not be available in 

the practical application, the great variety of load disturbances found in the daily 

operation of a real power system can be served as the forcing function for the 

pre-learning process. The R(λ)ILAGC would first be put into operation as an 

observer for a sufficient long period of time, say a month or even several months, 

to experience enough system scenarios for enhancing its control strategy. When 

all state-action pairs in the R-function are sampled sufficiently and termination 
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criterion Eq. (5.13) is satisfied, the R(λ)ILAGC can then be activated to replace 

the PI controller for normal interconnected power system operation. 
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Fig. 5.6 Step response plots of AGCs (solid line: R(λ)ILAGC; dot line: Q(λ)AGC; 

dash line: PI controller) 

Moreover, Fig. 5.6 shows the short-term dynamic response of the proposed 

AGC for a step load disturbance, and the performance results are benchmarked 

against NARI’s PI controller and the Q(λ)AGC in Chapter IV. In the experiment, 

Q(λ)AGC employs the conventional offline pre-learning using a two-area LFC 

model with the wildly inaccurate parameters, and the simulations presented here 

correspond to the performances of the AGCs after their pre-learning processes. In 

general, the step response plots indicate that R(λ)ILAGC performs satisfactorily 

and compares well with the performances of the two previously developed AGCs, 

and also exhibits different steady-state error from the other AGCs. With respect 

to Q(λ)AGC, Fig. 5.6 reveals that the R(λ)IL method can effectively avoid the 

deteriorated pre-learning strategy caused by the inaccurate power system model. 

In addition, the R(λ)L algorithm can explicitly design its control objective using 
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reward function. Consequently, it is also interesting to note that, by interacting 

with the real power system during the onsite operation, R(λ)ILAGC continuously 

optimizes its control strategy through the relaxed reward function, and thus can 

outperform the PI controller. 

Furthermore, the transient dynamic response of the proposed R(λ)ILAGC is 

mainly influenced by its reward function, and could be tuned by regulating the 

weights of the relaxed reward function. Taking the step response as an example, 

the influence of the relaxed reward function on the dynamic response of the RL 

driven AGC controllers, as well as the detailed tuning laws of the weights, have 

been thoroughly discussed and investigated in Chapter III and IV [40, 195]. 

5.4.2 Evaluation on China Southern Power Grid 

For in-depth evaluation of the developed R(λ)ILAGC in a realistic simulation 

environment, the CSG power system model, which was previously developed by 

utilities for Guangdong power dispatch center projects, is used as the benchmark 

system, as shown in Fig. 4.7. Furthermore, the long-term AGC performances are 

assessed with data statistical comparative experiments under the representative 

disturbances and uncertainties in power systems. A typical stochastic load model 

as well as white noise parameter perturbations [195], which have the same 

system disturbance settings as in Section 4.5.2, is set as a series of fixed 

scenarios for the comparisons of AGC strategies in Chapter III and IV. 

In this experiment, the AGC simulator of the CSG power systems was started 

in a quiescent state in which frequency and tie-line flow were at the scheduled 

values, and the simulations were then implemented with the preset disturbance 

conditions over a 30-day period. The AGC performance metrics, including CPS 

compliances and relaxed indices, for the study area Guangdong power grid with 

assessment period 10 minutes are recorded, and the overall comparisons among 

four CPS-based AGCs, with the increase of white noise parameter perturbations 
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from 0% (nominal parameters) to 10% of its nominal value, are tabulated in 

Table 5.1 and 5.2. 

Table 5.1 Statistical experiment results of Guangdong power grid I 

Metrics 
Nominal parameters 

NARI’s PI QAGC Q(λ)AGC R(λ)ILAGC 

|∆F| (HZ) 0.0282 0.0271 0.0273 0.0265 
|ACE| (MW) 151.89 146.18 148.63 140.28 

CPS1 (%) 183.33 187.35 185.67 190.32 
CPS2 (%) 97.85% 98.55% 98.50% 98.75% 
CPS (%) 94.51% 95.51% 95.29% 96.02% 
Pulse No. 294 267 251 245 

Pulse Rev. No. 78 67.8 63.3 61.9 

Table 5.2 Statistical experiment results of Guangdong power grid II 

Metrics 
White noise parameter perturbations 

NARI’s PI QAGC Q(λ)AGC R(λ)ILAGC 

|∆F| (HZ) 0.0561 0.0412 0.0365 0.0353 
|ACE| (MW) 233.17 213.03 185.75 175.64 

CPS1 (%) 142.05 163.59 176.03 184.21 
CPS2 (%) 90.83% 94.11% 95.89% 96.53% 
CPS (%) 85.79% 90.48% 93.76% 94.17% 
Pulse No. 338 303 271 269 

Pulse Rev. No. 91.5 80.4 73.5 72.2 

From Table 5.1 and 5.2, it can be found that, since RL algorithms would 

continue to learn the closed-loop control laws online, the three RL-based AGCs 

can adapt well to the changing operation scenarios and show the superior 

adaptability and dynamic optimization than NARI’s PI controller, especially 

when the parameters were perturbed. On the other hand, in comparison with the 

QAGC in Chapter III and PI controller, R(λ)L allows the multi-step backward 

estimation for prediction of observations in the past, and thus can enhance the 

efficiency of online learning and overcome the non-Markov delayed AGC 
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problem in the thermal-dominated CSG power systems [195]. Moreover, the 

DROC-based QAGC and Q(λ)AGC pay more attention to their immediate 

rewards for the iterative policy evaluation [44] while AROC would pursue for 

the maximization of the cumulative average returns, without discounting the 

forward rewards in the control objective, over the entire assessment period. 

Therefore, it could be seen from Table 5.1 and 5.2 that, compared with QAGC 

and Q(λ)AGC in Chapter III and IV, the proposed R(λ)ILAGC provides the best 

performance enhancements, and hence can effectively improve CPS percentage 

compliances and AGC relaxed performance when the power system is subjected 

to a series of complex system disturbances. 

5.5 Summary 

This chapter develops a novel R(λ)IL control methodology for the optimal 

AGC under NERC’s CPS, which possesses the following advantages: 

(1) The proposed online imitation pre-learning technique does not rely on any 

accurate system model for the offline pre-learning process and therefore can 

provide a feasible and promising means for the practical implementation of 

RL algorithms in real power systems. 

(2) For the first time, the AROC model is introduced to the design of AGC for 

interconnected power grids. The undiscounted optimality framework-based 

R(λ)L algorithm is more applicable to the CPS optimization problem than 

the DROC-based algorithms. 

(3) R(λ)IL can form the basis of performance-adaptive control for the nonlinear 

and stochastic behaviors in power systems, and can effectively cope with 

the time-delayed feedback control problem which is an inherent issue lying 

in various power system control problems. 

Simulation studies have demonstrated that R(λ)ILAGC is capable of online 

observing system variations, identifying and learning the existing AGC controller 
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in the real-time operation with fast convergence rate and high CPS compliances 

in the imitation pre-learning process. Moreover, as confirmed by the statistical 

comparative experiments, the proposed R(λ)ILAGC outperforms previous AGC 

controllers, and the adaptability and control performance of the AGC system can 

be enhanced greatly under complex changing power system scenarios. 
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Chapter VI 

Equilibrium-Inspired Multiple Group Search 
Optimizer with Synergistic Learning for Multi-
objective Electric Power Dispatch 

6.1 Introduction 

Electric power dispatch is an essential function required in the modern EMS 

system to determine the optimal steady-state operation of dispatchable generating 

plants with multiple contradictory objectives, such as generation cost, emission 

and energy saving, subjected to a set of operational and physical constraints [5]. 

Over the years, extensive research has been done in the area of multiobjective 

power dispatch problems. Most notably, different techniques have been proposed 

to transform the dual-objective EED problem into a single-objective optimization 

using the linear weighted aggregate approach [24-28]. Nevertheless, many trials 

are required for those methods to obtain a desired set of noninferior solutions by 

varying the weights of optimization objective function, and they are not effective 

to handle the non-differential and nonconvex problems. Therefore, in recent 

years, various Pareto-based multiobjective stochastic optimization algorithms 

have been proposed to solve this MOPD problem. 

So far, the state-of-the-art in Pareto-based optimization algorithms, including 

niched Pareto genetic algorithm [52], multiobjective stochastic search technique 

[171], nondominated sorting genetic algorithm [172], NSGA-II [175], strength 

Pareto evolutionary algorithm [59], multiobjective bacteria foraging algorithm 

[60], multiobjective differential evolution [56], multiobjective chaotic ant swarm 

optimization [50], and fuzzy clustering-based particle swarm optimization [61], 
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etc., have been successfully applied to the biobjective EED problem on a small 

IEEE 30-bus 6-generator system to obtain a Pareto tradeoff between fuel cost and 

atmospheric emission. Those Pareto algorithms operate on a set of nondominated 

solutions with different search mechanisms in a single simulation run. However, 

some important system constraints such as system voltage and reserve constraints 

have not been considered in the literatures yet, and this work is hence aimed to 

develop a novel multiobjective algorithm designed for the highly constrained and 

high-dimensional MOPD optimization problems with more objective functions. 

Recently, a new optimization algorithm inspired by group living and foraging 

behaviors of animals, called group search optimizer, has been proposed based on 

the producer-scrounger model [77]. It has also been demonstrated that the overall 

performance of the GSO methodology exhibits superiority and high efficiency on 

the non-differential, high-dimensional and multimodal optimization problems. 

Here, a meta-heuristic MGSO algorithm is further developed ingeniously to 

form a significantly improved multiobjective algorithm for large-scale MOPD 

applications. A novel stochastic learning automata based reinforcement scheme 

[209] is formulated to explicitly assign the rewards among searching individuals 

for synergistic learning [210] which allows parallel groups to have information 

interaction and resource sharing in the cooperative search process. Furthermore, 

a dynamic search-space reduction strategy [211] is used in scanning mechanism 

to obtain accurate and extreme vertex solutions in the PF surface, and chaotic 

sequence dispersion [212] is introduced to improve the population diversity and 

avoid entrapment into local optima. Meanwhile, the algorithm handles problem 

objectives and constraints separately based on the Boltzmann distribution [44] so 

as to direct infeasible members towards the sparsely populated regions of PF 

surface. In addition, the average linkage-based hierarchical clustering method is 

implemented to extract a representative elitist PF from the nondominated set for 

the decision maker. Lastly, a Nash equilibrium-inspired decision-making method 

[78] is then proposed to extract the best compromise solution from the elitist PF. 
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The effectiveness and validity of the proposed algorithm have been thoroughly 

verified on the IEEE 30-bus and IEEE 118-bus test power systems. 

6.2 Problem Formulation 

6.2.1 MOPD Objectives 

1) Economic Objective: The economic objective of MOPD is to minimize the 

total generation cost. The fuel cost of thermal generators with high nonlinearity 

and non-convexity caused by valve-point effects can be modeled as ripple curve 

[211], and the total fuel cost F(PG) in ($/h) can then be expressed with quadratic 

functions and sine components as follows: 

( )2
,min

1
( ) | sin[ ( )] |

GN

G i Gi i Gi i i i Gi Gi
i

F P a P b P c d e P P
=

= + + + −∑             (6.1) 

where NG is the number of dispatchable generators; ai, bi, ci, di, and ei are the cost 

coefficients of the ith generator; PGi,min is the minimum active power output of 

unit i; PG is the vector of the active power generations and defined as: 

1 2 3[ ,  ,  ,  ... , ]
GG G G G GNP P P P P=                                  (6.2) 

2) Emission Objective: The objective of emission dispatch is to minimize the 

atmospheric pollutants due to fossil-fueled thermal units, such as sulfur dioxides 

and nitrogen oxides, and so on [171]. The total environmental emission E(PG) in 

(ton/h) can be represented as: 
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= + + +∑               (6.3) 

where αi, βi, γi, ζi, and λi are the emission coefficients of the ith dispatchable 

generator characteristics. 

3) Energy-Saving Objective: The aim of energy-saving generation dispatch is 

to minimize power transmission losses, and minimization of active power loss in 

transmission lines PLoss can therefore be used as an objective of the MOPD. The 

solution of system loss PLoss involves the calculation and analysis of load flow 
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[5], which includes the equality constraints on active and reactive power on each 

bus, as follows: 
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where i = 1, 2, …, NB; NB is the number of system buses; PDi and QDi are active 

and reactive load demand at the ith bus, respectively; QGi is the reactive power 

generated at the ith bus; Gij and Bij are the transfer conductance and susceptance 

between bus i and j, respectively; Vi and Vj are the voltage magnitudes at bus i 

and j, and δi and δj denotes the voltage angles at bus i and j, respectively. The 

nonlinear equality constraints Eq. (6.4) can be readily solved using the Newton-

Raphson method [1] for the solution of load flow problem, and then the active 

transmission power loss can be obtained as: 

2 2
Loss
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=

= + − −∑                     (6.5) 

where NL is the number of transmission lines, and gk is the conductance of the kth 

line connecting bus i and j. 

6.2.2 MOPD Constraints 

1) Power Balance Constraint: Since the total power generation outputs of 

generators must equal to the sum of total load demand PD plus power loss PLoss, 

after the load flow calculation the active power output of the slack generator is 

reassigned to satisfy the equality constraint Eq. (6.6) as below: 

Loss
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0
GN
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i

P P P
=

− − =∑                                    (6.6) 

2) Active Power Generation Constraints: The active power output of each 

unit should be restricted within its lower and upper limits, and the corresponding 

inequality constraint is: 

,min ,max   1,2, ... , Gi Gi Gi GP P P i N≤ ≤ =                       (6.7) 
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where PGi,max is the maximum active generation for unit i. For unit i with NPi 

prohibited operating zones, its feasible operating zones can then be described as 

a disjoint nonconvex set, as follows: 
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                  (6.8) 

where i = 1, 2, …, NG; PGi(j),lb and PGi(j),ub represent lower and upper boundary of 

the jth POZ of generator i, respectively. 

3) System Spinning Reserve Constraint: For reliable and secure operation, the 

spinning reserve demand [213] should be considered for contingency conditions 

as follows: 
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=

≥∑                                             (6.9) 

where SPR represents the spinning reserve requirement in MW. Since the POZs 

of the generators would severely limit their flexibility to regulate the system load, 

these generators cannot contribute to the system spinning reserve [213] and the 

spinning reserve with POZs considered can be calculated as below: 

,max

0                  
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Gi Gi

i
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∀ ∈Ω⎧
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                                 (6.10) 

where Ω represents the set of the generators with POZs. 

4) Reactive Power Generation Constraints: Similarly, reactive power output 

generated by generator i should also be within its lower limit QGi,min and upper 

limit QGi,max, as follows: 

,min ,max   1,2, ... , Gi Gi Gi GQ Q Q i N≤ ≤ =                      (6.11) 

5) Nodal Voltage Constraints: While the voltage magnitude of generator bus 

i, VGi, should be maintained at its rating voltage VGi,rating, the nodal voltage 

magnitude of load bus j should be constrained between its minimum limit Vj,min 

and maximum limit Vj,max, as follows: 
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,rating           1,2, ... , Gi Gi GV V i N= =                          (6.12) 

,min ,max   1,2, ... , j j j BV V V j N≤ ≤ =                          (6.13) 

6) Transmission Security Constraints: The apparent power flow through the 

kth transmission line should not excess its loading limit LFk,max as follows so as 

to avoid any overloading: 

,max   1,2, ... , k k LLF LF k N≤ =                            (6.14) 

where LFk is the apparent power flow of the kth branch line connecting bus i and 

j, and its magnitude can be calculated as the larger line flow at bus i and j, as 

follows: 

max ,  max ,  k ij ji i i ij j j jiLF LF LF V I V Iδ δ∗ ∗⎡ ⎤⎡ ⎤= = ∠ ⋅ ∠ ⋅⎣ ⎦ ⎣ ⎦         (6.15) 

where ijI ∗  is the complex conjugate of current flow from bus i to j, and the line 

flow to bus i can be computed as follows: 

[( ) 2]ij i i i i j j ij i i bLF V V V y V j yδ δ δ δ ∗= ∠ ⋅ ∠ − ∠ ⋅ + ∠ ⋅             (6.16) 

where yij is the line admittance in nodal admittance matrix; and yb is the shunt 

susceptance of the transmission line. 

6.3 Proposed Multiple Group Search Optimizer 

6.3.1 Algorithm Framework 

The proposed MGSO algorithm integrates various stochastic global searching 

and probability selection techniques for different types of population members. 

Firstly, the population of MGSO consists of multiple searching groups, and each 

group is designed based on producer-scrounger model [214] for each objective of 

MOPD problem. For each searching group, there are four categories of members 

for four different searching strategies as following: 1) Producer: this member is 

designated to the member conferring the best single-objective fitness in the group 

in each iterative step, and it is the group leader which has a critical impact on the 

overall searching direction of the group. 2) Scroungers: except for the producer, 
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80% of the remaining feasible members are selected randomly as the scroungers 

which constitute the main searching force in the algorithm. Therefore, the update 

policy of this swarm should take all the objectives into account through the social 

cooperative mechanisms among these groups. 3) Rangers: the remaining feasible 

members in the group are the rangers, and they should move in an unpredictable 

dispersion to discover new resources globally. 4) Infeasible members: the update 

policy of this swarm should be a constraint satisfaction process for handling the 

complex constraints. 

Every individual in the population has a current position X∈RNG and a head 

angle φ∈RNG-1. The search direction vector of the head angle [77], D(φ) = (d1, d2, 

d3, …, dNG)∈RNG, can be calculated by converting polar to Cartesian coordinates, 

as follows: 
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6.3.2 Initialization 

The population can be initialized by generating the members of each group 

randomly within the boundary search patch as: 

0
1

obj

   ( )

1,2, ... , ;   1,2, ... , 
ij

p

X LB r UB LB

i M j M

= + −

= =

D
                        (6.18) 

where Mp represents the population size of each searching group; r1∈RNG is a 

uniform random sequence in the range (0, 1); LB and UB are the lower and upper 

bound for variable vector X, respectively; operator “D ” calculates the entrywise 

product of two matrices. After the initialization of members in each group, the 

multiobjective fitness sequence for each member can then be calculated from Eq. 

(6.1)~(6.5). For each initial group, if there is no feasible solution that satisfies all 
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the problem constraints, the members in this seeking group will be reinitialized 

until there is at least one feasible member that can be used as the producer in 

each group. In addition, the initialized head angle for each group member is set 

to (π/4, π/4, …, π/4) as recommended in [77]. 

6.3.3 Variable-size External Repository 

The external repository is a bounded elite archive used for preserving the 

nondominated solutions found along the search process. After the initialization of 

each searching group, the initial repository is determined by the nondominated 

members obtained in the initial population. For each iterative step of the MGSO 

algorithm, each nondominated individual obtained in the new generation of the 

population is checked for dominance with the solutions in the current repository. 

The dominance comparison strategies for updating the archive are as follows: 

• If the new solution obtained is infeasible or dominated by other members in 

the population, the solution will not be saved into the repository; 

• In case a nondominated member in the population cannot be dominated by 

any solution in the current repository, then the solution will be saved into the 

repository; 

• Any dominated solution in the current repository by this new nondominated 

member will be removed from the repository. 

Though a large-size memory of the repository tends to represent the better 

characteristics of the PF, it would lead to explosion in the computational burden 

due to the dominance comparisons [215]. Therefore, the number of PF solutions 

saved in the repository, i.e. the size of the PF, should be limited. In this thesis, a 

variable-size elite repository, which can be resized on demand, is adopted. After 

each iterative step of the algorithm, the repository will be resized to cover the 

entire nondominated set, including the survival solutions in the repository and 

new nondominated members. The resized repository could further be shrunk if 

the clustering enhancement described in Section 6.3.8 was adopted. 



108 

6.3.4 Space Reduction-based Scanning Strategy for Producer 

The producer employs the scanning strategy inspired from white crappies [77] 

to pursue new Pareto-optimal solutions. The scanning field can be characterized 

by maximum pursuit angle θmax∈R1 and maximum pursuit distance Lmax∈R1, 

and the apex is the producer’s current position Xp. In the ith group at the kth 

iteration, the producer will scan the NG-dimensional hypercube field by randomly 

sampling three points: one point at the zero degree, two points in the left and 

right sides symmetrically as: 

2 max ( )k k
iz ip i ipX X r L D ϕ= +                                   (6.19) 

2 max 3 max( 2)k k
ir ip i ipX X r L D rϕ θ= + +                         (6.20) 

2 max 3 max( 2)k k
il ip i ipX X r L D rϕ θ= + −                          (6.21) 

where r2∈R1 is a random number based on normal distribution with mean 0 and 

standard deviation 1; r3∈RNG-1 is a random sequence with uniform distribution in 

the range (0, 1). 

After the scanning at each iterative step, three objective fitness vectors are 

sampled by the producer in each group, and the corresponding nondominated 

solution will be stored to the repository via dominance comparisons. Meanwhile, 

if the producer can find a better group single-objective fitness than its existing 

fitness value, then it will move to this point; otherwise, it will stay at its current 

position and update its head angle as: 

1
3 max max max,    2k k

ip ip rϕ ϕ ψ ψ θ+ = + =                         (6.22) 

where ψmax is the maximum turning angle. Furthermore, in case the producer 

cannot find a better position within Amax iterations, it will turn its head angle back 

to zero degree, as follows: 

max
max  ( 1)k A k

ip ip GA round Nϕ ϕ+ = = +，                     (6.23) 

In order to generate an accurate optimal solution for each objective as well as 

facilitate the convergence process, a space reduction strategy [211] is added to 
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adaptively adjust the maximum pursuit distance for better local exploitation in 

the scanning space. Initially, the maximum pursuit distance for the ith group can 

be determined as follows: 

0 2
max ,max ,min2

1
( )

GN

i Gj Gj
j

L UB LB P P
=

= − = −∑                    (6.24) 

This strategy will be activated when the performance of the producer in the ith 

group is not improved after a prespecified iteration period iterLmax. In this case, 

its scanning space will be dynamically shrunk based on the maximum pursuit 

distance at the kth iteration, as follows: 

1
max max (1 )k k

i i LL L+ = −Δ                                   (6.25) 

where ∆L is the predetermined step-size constant. 

Moreover, after each iterative cycle, the member found the best fitness value 

for the corresponding objective is chosen as the producer in this group. At the 

same time, if a better group single-objective fitness could be found from the 

member of external groups, the producer will move to the position of the member 

for the most promising resource. 

6.3.5 Synergistic Learning for Scroungers 

In this thesis, a synergistic learning strategy inspired from stochastic learning 

automata [209] is proposed for extending the single objective GSO to cope with 

the multiobjective problems. During the kth searching bout of the algorithm, the 

scroungers in the ith group use a special area copying behavior [214], which 

move across and learn from the promising resources found by their leader and 

external group members, to pursue Pareto-optimal solutions, as follows: 
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where rp, rm∈RNG are uniform random vectors in the range (0, 1); the second and 

third terms in Eq. (6.26) are referred as the leader component and synergistic 
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component, respectively; k
pC  and k

mC  are the coefficients of leader component 

and synergistic components at the kth iteration; k
lmX  represents the position of the 

member selected from the mth group at the kth iteration; k
siM  is the number of 

scroungers in the ith group at the kth iteration. 

Since the selection of the members from external groups for the interactive 

cooperation is important to the performance of synergistic learning, a new linear 

reinforcement scheme based probability distribution selection is proposed such 

that all nondominated solutions found in the search process are regarded as the 

social achievement of the searching groups, and reinforcement rewards [45] can 

be assigned to each member in terms of the good solutions found by this member. 

Initially, a uniform probability distribution for members in each group is adopted. 

If k
niT  represents the set of members seeking out the nondominated solutions in 

the ith group at the kth iteration, the selection probability of the jth member in the 

ith group at the kth iteration, k
ijprob , can be updated as follows: 

1
(1 )     

(1 )                 otherwise

k
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k k k
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k t T
ij
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⎧ + − ∈
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⎪ −⎩

∑
              (6.27) 

where k
niN  is the number of elements in set k

niT ; η (0<η<1/ k
niN ) is a small constant 

called reinforcement factor. It can be found that the member which can find most 

nondominated solutions, e.g. the scanning strategy-based producers, has the high 

selection probability for the synergistic component in Eq. (6.26). 

Simulation studies indicated that the search performance of MGSO can be 

significantly enhanced by fine-tuning the coefficients in Eq. (6.26). In the initial 

stage of the search process, since most of group members have not sought out the 

promising areas, scroungers should give priority to following the producer in its 

own group. On the other hand, along with the convergence of searching groups, 

scroungers can learn from other groups for the PF set, and the leader component 

should decrease while synergistic components increase during the search process. 
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After comparative studies, the coefficients at the kth iteration can be set using 

hyperbolic tangent functions as below: 

,max ,min max
,min

( )
tanh ( ) 1

2 2
p pk

p rp p

C C IterC c k C
− ⎡ ⎤⎛ ⎞= − − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

         (6.28) 
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          (6.29) 

where Itermax is the maximum iteration number for termination criterion of the 

proposed MGSO; Cp,max, Cp,min and Cm,max, Cm,min are the constants used for the 

upper and lower bounds of coefficients Cp and Cm, respectively; crp and crm are 

constants which are designed to control the variation ramp rates of the hyperbolic 

tangent functions. 

6.3.6 Chaotic Sequence Dispersion for Rangers 

Here, a special random walk dispersion is employed by rangers to improve 

the population diversity and the global exploration for dispersive PF resources 

over the entire search space as below: 

1 0
sign max
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                     (6.30) 

where k
riM  is the number of rangers in the ith group at the kth iteration; rsign is a 

randomly generated sign equal to 1 or −1. Previous work in [212] showed that 

the global searching performance can be enhanced with the use of the chaotic 

sequences instead of random sequences. Therefore, here, k
ilr ∈R1, k

irϕ ∈R
NG-1 are 

time series generated by chaotic logistic functions rather than random number 

generators, and thus the logistic map based chaotic sequence iterator in Eq. (6.30) 

can be expressed as follows: 
1 (1 )k k k

il il ilr r rμ+ = −                                     (6.31) 
1 (1 )k k k

i i ir r rϕ ϕ ϕμ+ = −D D                                  (6.32) 

where μ is a control factor determining the time series to be constants, oscillate 

within limits, or behave chaotically in an unpredictable pattern. Here, sequences 
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Eq. (6.31) and (6.32) are deterministic and will display chaotic behaviors when 

μ=4.0, and the initial values of the chaotic sequences should not contain any 

members of the following {0, 0.25, 0.50, 0.75, 1.0} [212]. 

Furthermore, GSO is not sensitive to most of its parameters except for the 

percentage of rangers, and the recommended percentage in [77] is 20%. In order 

to motivate the individuals to explore the global search space when getting stuck 

into the local PF, an adaptive strategy for the ranger percentage in ith group, %iR, 

is adopted. This strategy will be activated once no nondominated solutions can 

be sought to improve the PF in a given iteration period iterRmax. Thereafter, the 

percentage of rangers at the kth iteration can be increased as follows: 

1% %k k
iR iR R
+ = + Δ                                         (6.33) 

where ∆R is the prespecified step-size percentage constant. 

6.3.7 Constraint Handling Strategy 

Firstly, in order to restrict group members to search within their generation 

constraints Eq. (6.7)~(6.8), the following strategy is placed to cope with the 

bounded search patch: when a member moves outside the search patch, it will be 

turned back to the search patch by setting the violated dimensional variables in 

the member to its previous values. 

For the sake of effective constraint handling for highly complex constrained 

search space, infeasible members will be separated from the population so as to 

guide them towards the feasible space for pursuing new Pareto-optimal solutions. 

Here, this is achieved through the following policy: 
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where k
iniM  represents the number of infeasible members in the ith group at the 

kth iteration; rpf∈RNG is a uniform random vector in the range (0, 1); pf
kX  denotes 

a nondominated solution selected from the current PF in the repository for the jth 
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infeasible member in the ith group at the kth iteration. Furthermore, in order to 

direct the infeasible swarm towards sparsely populated regions for a uniformly-

distributed PF, a Boltzmann distribution based on the crowding distance [216] is 

used to form the probability distribution for selecting pf
kX , as following: 
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where rep
kM  is the number of feasible nondominated solutions to be selected for 

Eq. (6.34) in the current repository; w is a positive parameter called temperature; 
k
dnL  denotes the normalized Euclidean distance, in the solution space, between 

the corresponding nondominated solution of the nth fitness element in the elite 

repository and a given infeasible member at the kth iteration; k
cnd  represents the 

normalized crowding distance, in the objective space, of the nth element in the 

repository at the kth iteration. The crowding distance, which expresses a measure 

of front density with the neighborhood, requires sorting the current PF fitness 

values, in terms of each objective function in an ascending order. For the ith 

objective, the boundary solutions, with the smallest fitness fi
min and largest fitness 

fi
max, are assigned to 1 in this thesis. On the other hand, the normalized crowding 

distance of all other intermediate solutions can be computed as follows: 
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where, following the sorting order by the ith objective, fi(+1) and fi(-1) represent the 

fitness of two adjacent solutions of the nth element in the current repository. 

Therefore, the infeasible members can be hauled towards the nearby preferable 

feasible PF regions, and thereby the border of feasible search space can also be 

readily located to seek the potential Pareto-optimal solutions. 
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6.3.8 Pruning Pareto Set 

After each searching bout, new nondominated solutions will be found and 

saved in the variable-size repository. When the number of repository elements 

exceeds the prespecified size of PF, Mpf, an average linkage-based hierarchical 

clustering method [185] is adopted to prune the nondominated set to a desirable 

size with its trade-off characteristics preserved. This method is used to iteratively 

classify and join the repository solutions into the required number of clusters. 

Firstly, each repository element constitutes a distinct cluster, and the average 

linkage distance dal of two clusters cl1 and cl2 can be calculated as follows: 

1 1 2 2

1 2 1 2
, 1 2

1( , ) ( , )al E
i cl i cl

d cl cl d i i
n n ∈ ∈

= ∑                       (6.37) 

where n1 and n2 represent the numbers of individuals in the clusters cl1 and cl2, 

respectively; function dE(i1,i2) represents the Euclidean distance in the objective 

space between individuals i1 and i2. Then, the adjacent clusters with the minimal 

distance dal in all possible pairs of clusters will be combined into a larger cluster. 

This iterative procedure will be continued until the required number of clusters is 

satisfied, and then the nearest individual to the centroid of each cluster can be 

extracted as the representative to form the elitist PF [59]. 

6.3.9 Nash Equilibrium-based Decision Making 

The best compromise solution should be identified from the resulting PF set 

to simulate the DM’s preference. Previous MOPD algorithms generate the best 

compromise solution using the fuzzy logic theory [68, 69, 217] in which a simple 

fuzzy membership function is defined based on experiences without considering 

the PF’s trade-off characteristics. Hence, in the MGSO, the competing objectives 

are considered as noncooperative decision-making players [188], and the PF’s 

objective fitness can be modeled as the players’ set of actions for Nash equilibria 

of the game theory [187]. Consequently, an alternative multi-criteria decision 
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making is proposed on the basis of Nash equilibrium to extract an individual with 

the best joint actions as the best compromise solution. 

Based on the concept of Pareto optimality, this equilibrium selection problem 

with several noncooperative objectives can thus be modeled and transformed to 

find a Nash equilibrium point [187] of multiobjective players, which involves an 

optimization problem with probability and rationality constraints to yield a joint 

probability distribution over the PF’s action space, as follows: 
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where Hi = [hi1, hi2, …, hij, …, hiMpf] is equilibrium solution of the ith objective, 

which represents a probability distribution over the PF’s fitness, and hij is the ith 

objective’s equilibrium value of the jth element in the PF; fij is the ith objective’s 

normalized fitness of the jth element in the PF; νi expresses the upper limit of the 

expectation of fitness values for the ith objective player; Mpf is the prespecified 

size to represent the limited PF set; ωi is the weight for the relative importance of 

the ith objective function, and its value could be determined by utilities based on 

their operation preferences. Here, the weights are set to 1 for the unbiased 

preference of DM in the case study. The optimization problem formulated in Eq. 

(6.38) is a standard constrained nonlinear programming (NLP) solved in this 

algorithm by sequential quadratic programming (SQP) [218], a highly effective 

and matured method for the NLP. As a result, a list of equilibrium values will be 

provided for the DM, and the best compromise PF solution can then be derived 

from the best joint equilibrium which represents the highest payoff outcome 

obtained from this joint action, as follows: 
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6.3.10 Procedures for MGSO 

To sum up, the flowchart of the equilibrium-inspired MGSO with synergistic 

learning is depicted in Fig. 6.1. 

 

Fig. 6.1 Flowchart of the proposed algorithm for MOPD problems 
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6.4 EED Studies on IEEE 30-Bus Power System 

6.4.1 Experimental Settings 

For the purpose of the comparison with previously published algorithms and 

results, the proposed MGSO is tested on the standard IEEE 30-bus 6-generator 

power system to investigate the dual-objective EED problem. While the detailed 

power system data are given in [164, 165, 172] and tabulated in Appendix B, the 

fuel cost and emission coefficients in Eq. (6.1) and (6.3) are available in [61] and 

listed in Table B.1 and B.2. As the overall performance of the algorithm is not 

sensitive to most of its parameters, the parameter setting guidelines in [77] were 

adopted such that maximum pursuit angle θmax is set to π/(Amax)2 and termination 

criterion Itermax is fixed to 300. The iteration periods iterLmax and iterRmax were set 

to 35 and 16, respectively. As the producer in Eq. (6.19)~(6.21) requires three 

function evaluations, the population size of each group Mp is set to 28 such that 

the total number of function evaluations in a generation is 60. Besides, for all the 

optimization runs, the preset size of the PF, Mpf, is fixed to 50. Meanwhile, the 

settings for other parameters in this chapter are heuristically well-tuned as shown 

in Table 6.1 through a large amount of simulations and comparative studies [208]. 

Table 6.1 Parameter settings of MGSO for EED of IEEE 30-bus system 

∆L ∆R Cp,max Cp,min Cm,max Cm,min crp crm η w 
0.03 0.01 1.20 0.30 1.05 0 0.015 0.015 0.03 0.15 

The following are the three study cases [59] being investigated for the MOPD 

algorithms. The benchmarking was carried out with ten independent optimization 

runs of MGSO on each case, and the PFs of the best optimization runs from all 

algorithms were used to compare the algorithm performances [172]. 

Case Study 1): Lossless system with constraint Eq. (6.7) considered only; 

Case Study 2): Transmission losses Eq. (6.5) are also considered in Eq. (6.6); 

Case Study 3): Constraints Eq. (6.6), (6.7) and (6.14) are considered. 
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6.4.2 Case Study 1 

The problem constraints include only active generation capacity constraint as 

well as the power balance constraint without PLoss. Table 6.2 and 6.3 detailed the 

best solutions for fuel cost and emission obtained by the extreme vertices in the 

resulting PF of MGSO and other algorithms published in [59, 61, 171, 172]. In 

addition, the PF obtained from MGSO was plotted in Fig. 6.2 and compared with 

those from the well-know NSGA-II algorithm [67]. The results demonstrate that 

MGSO performs well with the two better outer solutions and compares well with 

other EED algorithms. As indicated from the distribution of solutions, which are 

found by different groups of the algorithm and marked differently, the synergistic 

learning of multi-groups for diverse regions of the PF indeed can maintain the 

diversity over the tradeoff surface. 

Table 6.2 Comparison of best fuel cost for Case 1 

Case 1 LP 
[164] 

MOSST 
[171] 

NSGA
[172]

NPGA
[172]

SPEA
[59] 

FCPSO 
[61] 

NSGA-II 
[67] MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.1500 
0.3000 
0.5500 
1.0500 
0.4600 
0.3500 

0.1125 
0.3020 
0.5311 
1.0208 
0.5311 
0.3625 

0.1038
0.3228
0.5123
1.0387
0.5324
0.3241

0.1116
0.3153
0.5419
1.0415
0.4726
0.3512

0.1062
0.2897
0.5289
1.0025
0.5402
0.3664

0.1070 
0.2897 
0.5250 
1.0150 
0.5300 
0.3673 

0.1073 
0.3138 
0.5289 
0.9931 
0.5360 
0.3550 

0.1096 
0.2997 
0.5243 
1.0162 
0.5248 
0.3594 

F(PG) 
E(PG) 

606.314 
0.22330 

605.889 
0.2222 

600.34
0.2241

600.31
0.2238

600.15
0.2215

600.1315
0.2223 

600.1763 
0.22056 

600.1114
0.22216

Table 6.3 Comparison of best emission for Case 1 

Case 1 LP 
[164] 

MOSST 
[171] 

NSGA
[172]

NPGA
[172]

SPEA
[59] 

FCPSO 
[61] 

NSGA-II 
[67] MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.4000 
0.4500 
0.5500 
0.4000 
0.5500 
0.5000 

0.4095 
0.4626 
0.5426 
0.3884 
0.5427 
0.5152 

0.4072
0.4536
0.4888
0.4302
0.5836
0.4707

0.4146
0.4419
0.5411
0.4067
0.5318
0.4979

0.4116
0.4532
0.5329
0.3832
0.5383
0.5148

0.4097 
0.4550 
0.5363 
0.3842 
0.5348 
0.5140 

0.3982 
0.4503 
0.5527 
0.3817 
0.5416 
0.5096 

0.4069 
0.4576 
0.5377 
0.3840 
0.5373 
0.5105 

F(PG) 
E(PG) 

639.600 
0.19424 

644.112 
0.19418 

633.83
0.1946

636.04
0.1943

638.51
0.1942

638.3577
0.1942 

637.5980 
0.19422 

638.1992
0.19420
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Fig. 6.2 Comparison of the PFs obtained for Case 1 

6.4.3 Case Study 2 
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Fig. 6.3 Comparison of the PFs obtained for Case 2 

Table 6.4 Comparison of best fuel cost for Case 2 

Case 2 NSGA 
[172] 

NPGA 
[172] 

SPEA 
[59] 

FCPSO 
[61] 

NSGA-II 
[67] MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.1447 
0.3066 
0.5493 
0.9894 
0.5244 
0.3542 

0.1425 
0.2693 
0.5908 
0.9944 
0.5315 
0.3392 

0.1086 
0.3056 
0.5818 
0.9846 
0.5288 
0.3584 

0.1130 
0.3145 
0.5826 
0.9860 
0.5264 
0.3450 

0.1147 
0.3093 
0.5895 
0.9820 
0.5164 
0.3555 

0.1155 
0.3059 
0.5974 
0.9804 
0.5136 
0.3543 

F(PG) 
E(PG) 

607.98 
0.2191 

608.06 
0.2207 

607.807 
0.22015 

607.7862 
0.22010 

607.7684 
0.21978 

607.7633
0.21980 



120 

Table 6.5 Comparison of best emission for Case 2 

Case 2 NSGA 
[172] 

NPGA 
[172] 

SPEA 
[59] 

FCPSO 
[61] 

NSGA-II 
[67] MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.3929 
0.3937 
0.5818 
0.4316 
0.5445 
0.5192 

0.4064 
0.4876 
0.5251 
0.4085 
0.5386 
0.4992 

0.4043 
0.4525 
0.5525 
0.4079 
0.5468 
0.5005 

0.4063 
0.4586 
0.5510 
0.4084 
0.5432 
0.4974 

0.4113 
0.4547 
0.5471 
0.3913 
0.5490 
0.5113 

0.4103 
0.4628 
0.5435 
0.3904 
0.5438 
0.5141 

F(PG) 
E(PG) 

638.98 
0.1947 

644.23 
0.1943 

642.603 
0.19422 

642.8964 
0.19420 

644.6877 
0.19419 

645.1108 
0.19418 

Table 6.4 and 6.5 listed the best results obtained for Case 2 with transmission 

losses included. As shown in the plot of MGSO and NSGA-II results in Fig. 6.3, 

the frontier of MGSO are well-distributed and dispersedly covered the entire PF 

of NSGA-II. This verifies that the Pareto solutions can effectively be solved by 

MGSO. 

6.4.4 Case Study 3 

The maximum line flow limits used in Case 3 are 115% of their rating values 

as given in Table B.4 [172]. From the simulation results presented in Fig. 6.4, 

Table 6.6 and 6.7, the performance of NSGA-II deteriorates with the increase of 

problem complexity while MGSO performs well with the outstanding diversity 

characteristics and full extent of the PF. 
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Fig. 6.4 Comparison of the PFs obtained for Case 3 
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Table 6.6 Comparison of best fuel cost for Case 3 

Case 3 NSGA 
[172] 

NPGA 
[172] 

SPEA 
[59] 

FCPSO 
[61] 

NSGA-II 
[67] MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.1358 
0.3151 
0.8418 
1.0431 
0.0631 
0.4664 

0.1127 
0.3747 
0.8057 
0.9031 
0.1347 
0.5331 

0.15975 
0.35339 
0.79600 
0.97176 
0.08684 
0.49709 

0.1596 
0.3535 
0.7974 
0.9719 
0.08624 
0.49609 

0.1646 
0.3757 
0.7108 
0.5861 
0.6229 
0.3995 

0.1775 
0.3588 
0.7448 
0.5913 
0.5996 
0.3870 

F(PG) 
E(PG) 

620.87 
0.2368 

620.46 
0.2243 

620.165 
0.22826 

620.18 
0.2283 

619.8271 
0.20289 

619.6269
0.20346 

Table 6.7 Comparison of best emission for Case 3 

Case 3 NSGA 
[172] 

NPGA 
[172] 

SPEA 
[59] 

FCPSO 
[61] 

NSGA-II 
[67] MGSO 

PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.4403 
0.4940 
0.7509 
0.5060 
0.1375 
0.5364 

0.4753 
0.5162 
0.6513 
0.4363 
0.1896 
0.5988 

0.47975 
0.52868 
0.67109 
0.53174 
0.12571 
0.53010 

0.47969 
0.5287 
0.67116 
0.5318 
0.1257 
0.5299 

0.4188 
0.4457 
0.5424 
0.4069 
0.5465 
0.5045 

0.4102 
0.4630 
0.5436 
0.3896 
0.5438 
0.5147 

F(PG) 
E(PG) 

649.24 
0.2048 

657.59 
0.2017 

651.633 
0.20470 

651.62 
0.2047 

643.4741 
0.19423 

645.1976 
0.19418 

6.4.5 Solution Quality Analysis 

From the optimization runs, it can be found that, with the help of the space 

reduction-based scanning, the MGSO is able to find Pareto solutions with better 

fitness on each objective compared to other algorithms. This confirms the Pareto 

optimality of the proposed algorithm and its potential to find solutions covering 

the entire true PF. 

In order to estimate the spread of the PFs, a performance metric in [184] is 

used to measure the normalized distance in the objective space between the PF’s 

two extreme solutions. The averages of this metric over ten independent runs for 

different algorithms are listed in Table 6.8 and further confirm that the proposed 

MGSO outperforms the other five multiobjective algorithms for all cases. 
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Moreover, as shown in Fig. 6.4, the solutions of MGSO are more widely and 

evenly distributed than the ones of NSGA-II. This validates that the proposed 

constraint handling strategy for infeasible members does improve the uniformity 

of the PF’s distribution. Also, compared to NSGA, NPGA, SPEA and NSGA-II 

on function evaluation analysis [219], FCPSO and MGSO require much fewer 

function evaluations to form the optimal front. Coupled with its high exploratory 

capability, the proposed MGSO can give the best performance but with less 

number of fitness function evaluations. 

Table 6.8 Normalized distance measure of different algorithms 

 NSGA 
[172] 

NPGA 
[172] 

SPEA 
[59] 

FCPSO 
[61] 

NSGA-II 
[67] MGSO 

Case 1 0.93757 0.95001 0.93809 0.95012 0.94210 0.96539 

Case 2 0.92211 0.93747 0.94509 0.94531 0.94829 0.95845 

Case 3 0.85539 0.81312 0.85363 0.85358 0.87961 0.90133 

6.4.6 Compromise Solutions 

Table 6.9 Compromise solutions of MGSO for different decision making 

 
Case 1 Case 2 Case 3 

Fuzzy Equilibrium Fuzzy Equilibrium Fuzzy Equilibrium
PG1 
PG2 
PG3 
PG4 
PG5 
PG6 

0.25895 
0.37878 
0.52849 
0.71059 
0.51670 
0.44049 

0.31427 
0.41163 
0.52786 
0.60474 
0.52964 
0.44586 

0.26880 
0.39617 
0.54228 
0.70125 
0.52423 
0.43185 

0.31633 
0.40981 
0.56694 
0.56448 
0.53808 
0.46775 

0.31496 
0.41595 
0.55377 
0.56393 
0.56120 
0.45378 

0.31496 
0.41595 
0.55377 
0.56393 
0.56120 
0.45378 

F(PG) 
E(PG) 

609.3465 
0.20119 

616.6989 
0.19732 

617.0303
0.20058 

625.8472 
0.19646 

625.7582 
0.19651 

625.7582 
0.19651 

Lastly, the best compromise solutions of MGSO solved by the proposed Nash 

equilibrium point were marked with ∗  in Fig. 6.2~6.4, and Table 6.9 presents the 

compromising solutions obtained for the three cases with the fuzzy logic decision 

making [61, 69] and the proposed method. It is interesting to note that the results 
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in Case 1 and 2 are different while the compromising solution for Case 3 is the 

same. This confirms that the proposed equilibria-based decision making is able to 

generate a reasonable bargaining solution for power system dispatcher. 

6.5 Computational EEED Studies on IEEE 118-Bus System 

6.5.1 Experimental Settings 

For in-depth investigation of the proposed algorithm on larger power systems, 

a modified IEEE 54-generator 118-bus power system is used for a tri-objective 

EEED optimization including fuel cost, emission and energy saving objectives in 

Eq. (6.1)~(6.5). The power system topologies and generator data as well as the 

constraint data are available from [220] and listed in Appendix C. The total 

system demand is 4,242MW. Table C.1~C.3 list the voltage ratings, fuel cost and 

emission coefficients for the 54 generators. In addition, for unit 1~24, a POZ is 

set in the middle of its generation capacity patch for each generator, and the POZ 

interval is 10% of the generator’s original feasible operating zone. In this study, 

all system constraints in Section 6.2.2 were considered. Besides, except for the 

modified settings listed in Table 6.10, settings in Section 6.4.1 were also adopted 

for the IEEE 118-bus system. 

Table 6.10 Parameter settings of MGSO for EEED of IEEE 118-bus system 

Itermax Mpf Mp SPR (p.u.) crp crm η w 
2000 150 98 38.0 0.025 0.025 0.01 0.10 

For further comparison and discussion, the two advanced MOEA algorithms, 

namely NSGA-II and improved SPEA (SPEA2) [221], were also implemented 

and considered here. Numerous trials have been carried out to determine the 

optimum settings for these two evolutionary algorithms, and their population size 

and maximum number of generations are set to 300 and 2000, respectively, such 

that the number of fitness function evaluations of the algorithms is the same with 
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MGSO for fair comparisons. Moreover, the probabilities of crossover and 

mutation are selected as 0.9 and 0.01, respectively [32-34]. 

6.5.2 Comparative Results, Analysis and Discussion 

The PFs resulted from the above three MOPD algorithms should be assessed 

systematically with the performance metrics derived from the three basic quality 

measure criteria stated in Section 2.4 and the true Pareto front of EEED problem. 

However, since the true PF is difficult to determine and guarantee for problems 

with high-dimensional and highly complex search space, a pseudo PF, named as 

reference PF [31], is used instead as true PF here to compare the PFs generated 

by multiobjective algorithms. The reference PF can be formed by 50 independent 

runs of all the MOPD algorithms, NSGA-II, SPEA2 and MGSO, i.e. 150 sets of 

nondominated solutions. All these 150 sets of PF solutions were then combined 

and ranked by dominance comparisons so as to generate the reference PF, which 

consists of 1688 nondominated solutions as illustrated in Fig. 6.5. Furthermore, 

the PF of the overall best run in the 50 optimization runs of each algorithm, as 

shown in Fig. 6.6~6.8, is selected for further analysis. 
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Fig. 6.5 Reference PF surface (dot mark: NSGA-II; star mark: SPEA2; circle 

mark: MGSO) 
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For the reference PF shown in Fig. 6.5, approximately 68.48%, 31.52% and 

0% of the Pareto solutions are contributed by MGSO, SPEA2 and NSGA-II, 

respectively. It can be observed that all the solutions found with NSGA-II are 

covered by those with SPEA2 and MGSO, and MGSO has contributed the 

majority of the reference PF solutions. This also reveals that the solutions of 

MGSO are closer to the true Pareto set. From Fig. 6.6~6.8, it is clear that, in 

comparison with NSGA-II and SPEA2, MGSO can obtain wider spread of 

solutions and better scattered PF. In particular, the results from MGSO in Fig. 

6.8 indicate that the multi-groups can effectively seek out the Pareto solutions in 

the separated feasible islands, and this also validates its superior efficiency of 

solution searching for complex nonlinear constrained problems with high-

dimensional search space. In addition, for the best run of MGSO in Fig. 6.8, the 

simulation results in the convergence process, including the convergence of each 

objective function, ranger percentages and maximum pursuit distances are shown 

in Fig. 6.9 and 6.10. The experimental results also confirmed that different types 

of functional members do facilitate the developed algorithm to effectively 

propagate the search towards the well-spread and diverse PF. 
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Fig. 6.6 Best PF solutions obtained with NSGA-II 
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Fig. 6.7 Best PF solutions obtained with SPEA2 
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Fig. 6.8 Best PF solutions obtained with MGSO (square mark: group 1; circle 

mark: group 2; triangle mark: group 3; star mark: compromise solution) 

In this chapter, three typical performance metrics were used to compare and 

analyze the solution quality of PFs obtained from various MOPD algorithms. The 

first is the convergence metric [216] adopted to measure the degree of closeness 

between the obtained PF and the reference PF because of its simplicity of use and 

clarity of definition. For each PF solution obtained, the Euclidean distance from 

it to the nearest solution of the reference PF in the objective space is calculated 
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firstly, and the convergence metric can then be obtained using the average value 

of these distances. 

Secondly, the distribution uniformity of the PF solutions can be assessed by 

the spacing metric [67] which is calculated as the relative crowding distance Sd 

between consecutive solutions in the resulting PF set as follows: 

nbs
2

,avg
1nbs

1 ( )
M

d cn c
n

S d d
M =

= −∑                             (6.40) 

where dc,avg is the average of all crowding distances dcn, n = 1, 2, …, Mnbs, and 

Mnbs is the number of the non-boundary solutions in the PF. The desired value for 

this metric is 0, which means the elements of PF solutions can be equidistantly 

spaced. Thirdly, as explained in Section 6.4.5, the extent of PF can be assessed 

with the normalized distance of extreme solutions for the three MOPD objectives. 
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Fig. 6.9 Producer’s convergence of each group objective 
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Fig. 6.10 Maximum pursuit distance and ranger percentage of each group in the 

convergence process (solid line: group 1; dash line: group 2; dot line: group 3) 

Table 6.11 tabulates the best solutions for fuel cost, emission, and power loss 

obtained from the best run of each algorithm shown in Fig. 6.6~6.8. It can be 

found that, in terms of the best results for each objective, MGSO can find more 

optimal extreme solutions to maintain a widespread Pareto set over the entire true 

PF region. Meanwhile, the performance measures of the overall best run of each 

algorithm are given in Table 6.12, and the resulting statistics on the convergence, 

spacing and normalized distance metrics over the 50 optimization runs are listed 

in Table 6.13~6.15, respectively. The statistical results reveal that, with the same 

number of fitness function evaluations, MGSO can markedly outperform the two 

earlier MOEAs, and provides satisfactory performance on various Pareto metrics, 

especially on the convergence and normalized distance measures. 

Table 6.11 Comparison of best solutions for cost, emission and system loss 

 NSGA-II SPEA2 MGSO 

 Best 
Cost 

Best 
Emission 

Best 
Loss 

Best 
Cost 

Best 
Emission

Best 
Loss 

Best 
Cost 

Best 
Emission 

Best 
Loss 

PG1 
PG2 
PG3 
PG4 
PG5 

0.80948
0.75667
0.42762
0.64978
1.03647

0.84045 
0.73915 
0.42711 
0.67181 
0.65580 

0.86252
0.73955
0.35031
0.36543
0.88960

0.78758
0.75233
0.72894
0.66449
0.03740

0.78833
0.76964
0.75702
0.78321
0.39996

0.80867
0.79850
0.73766
0.76971
0.02667

0.74845 
0.74474 
0.75765 
0.75913 
1.01994 

0.78085 
0.76074 
0.79534 
0.75657 
0.45531 

0.72239
0.75670
0.67587
0.45000
0.09824
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PG6 

PG7 

PG8 
PG9 

PG10 

PG11 
PG12 

PG13 

PG14 
PG15 

PG16 

PG17 
PG18 

PG19 

PG20 
PG21 

PG22 

PG23 
PG24 

PG25 

PG26 
PG27 

PG28 

PG29 
PG30 

PG31 

PG32 
PG33 

PG34 

PG35 
PG36 

PG37 

PG38 
PG39 

PG40 

PG41 
PG42 

PG43 

PG44 
PG45 

PG46 

PG47 
PG48 

PG49 

PG50 
PG51 

PG52 

PG53 
PG54 

1.10115
0.65123
0.44534
0.82597
0.85827
1.31544
0.92568
0.44401
0.89826
0.92114
0.80327
0.87401
0.90285
0.90573
0.81906
0.93964
0.65542
0.80711
0.85418
1.12072
1.00649
0.75150
1.44691
0.80233
0.60725
0.19555
0.21819
0.24555
0.55747
0.67570
0.83601
1.32874
0.77572
0.48294
0.94810
0.81360
0.74546
0.50631
0.74319
1.71778
1.00609
0.01773
0.78292
0.93352
0.88193
0.57815
0.85821
0.88800
0.85991

1.17702 
0.76760 
0.65061 
0.83584 
0.69759 
0.96681 
0.66631 
0.65877 
0.78658 
0.92612 
0.68594 
0.85052 
0.97906 
0.90901 
0.91135 
0.64443 
0.66198 
0.84795 
0.87302 
1.75493 
1.06999 
0.84611 
0.68314 
1.22254 
1.09120 
0.83678 
0.61924 
0.77721 
0.62962 
0.80385 
0.84688 
0.64748 
0.79446 
0.39866 
1.20705 
0.79442 
0.74209 
0.38811 
0.66865 
1.54197 
0.50175 
0.52401 
0.52908 
0.81579 
0.67332 
0.46397 
0.62301 
0.67538 
0.81254 

1.35370
0.76059
0.64810
0.83123
0.27954
0.04979
0.76115
0.37474
0.81484
0.90215
0.42311
0.86254
0.97076
0.86629
0.96474
2.06825
1.08344
0.87241
0.90812
2.31877
1.40456
0.68705
1.16578
0.70439
0.89879
0.36140
0.27975
0.29332
0.59346
0.80825
0.85278
2.86540
0.74840
0.28885
1.15391
0.84690
0.50493
0.36299
0.62350
1.55313
0.40332
0.40323
0.43381
0.54891
0.41231
0.35011
0.41259
0.43999
0.85766

0.50369
0.99784
0.57781
0.98992
0.98739
0.75034
0.88504
0.98925
0.86904
0.90312
0.91610
0.88890
0.97473
0.93515
0.79751
1.10515
1.46625
0.74993
0.74251
1.51642
1.47125
0.86575
1.88697
0.01624
0.00188
0.04808
0.03761
0.00104
0.57901
0.91894
0.99486
2.02229
0.74881
0.02025
0.89806
0.76395
0.74902
0.36906
0.71749
1.77699
0.02469
0.78567
0.80445
0.89996
0.88543
0.31974
0.90070
0.89139
0.87863

0.48576
0.77049
0.75525
0.77196
0.73889
1.36378
0.63861
0.81072
0.60565
0.84719
0.96068
0.93308
0.99248
0.98564
0.66162
0.56650
0.50454
0.88983
0.91620
1.47481
0.95238
0.87414
0.69066
1.47159
1.00489
0.92147
0.88289
0.85174
0.71898
0.89547
0.95615
0.67973
0.82996
0.42194
1.02777
0.73281
0.70756
0.47169
0.71277
1.42717
0.33478
0.82804
0.77749
0.67243
0.69164
0.38400
0.52294
0.61589
0.64970

0.50839
0.97726
0.85099
0.98387
0.68794
0.23050
0.29217
0.91967
0.91941
0.80713
0.92911
0.93073
0.94031
0.95785
0.76254
1.19427
0.87519
0.79896
0.96607
1.72985
1.37838
0.86889
1.68078
1.49834
0.81014
0.44051
0.16391
0.18549
0.53912
0.92290
0.98148
1.93127
0.88484
0.27322
0.94228
0.73113
0.75193
0.35759
0.73499
1.27394
0.09787
0.74074
0.15622
0.59006
0.86544
0.23814
0.49069
0.85388
0.84110

0.50507 
0.95866 
0.99940 
0.97719 
0.98230 
0.74518 
0.01619 
0.99461 
0.88797 
0.89564 
0.89478 
0.89744 
0.90272 
0.91231 
0.82181 
1.12156 
1.47762 
0.80552 
0.81959 
1.85326 
1.01485 
0.84836 
1.50011 
0.73357 
0.00845 
0.02577 
0.04905 
0.08277 
0.59563 
0.92163 
0.99736 
1.63543 
0.78557 
0.02974 
0.86704 
0.75109 
0.76934 
0.37907 
0.77736 
0.90188 
0.00283 
0.91334 
0.89071 
0.88319 
0.88026 
0.28811 
0.89972 
0.92036 
0.92583 

0.58498 
0.77333 
0.77101 
0.77586 
0.76992 
1.76001 
0.72401 
0.83285 
0.65236 
0.87747 
0.87238 
0.88128 
0.87583 
0.89898 
0.50198 
0.54504 
0.46665 
0.84775 
0.84326 
1.42155 
0.85412 
0.82999 
0.63309 
1.44356 
0.99471 
0.90859 
0.88797 
0.89347 
0.73946 
0.90497 
0.91526 
0.63388 
0.80768 
0.43542 
0.98974 
0.70823 
0.71840 
0.51631 
0.70893 
1.41896 
0.41330 
0.90805 
0.81450 
0.72618 
0.73960 
0.39721 
0.59980 
0.60533 
0.62374 

1.81110
0.97846
0.67117
0.76452
0.22894
0.09093
0.13482
0.95033
0.67120
0.78182
0.86258
0.81568
0.99375
0.99433
0.76231
1.96112
1.41607
0.77138
0.94078
2.53576
0.89165
0.92799
0.52916
0.60491
0.81291
0.91771
0.11755
0.08327
0.59470
0.92707
0.99786
3.36588
0.89856
0.13029
1.19254
0.99991
0.44458
0.35542
0.40362
1.47011
0.24505
0.34214
0.62452
0.55597
0.42933
0.03406
0.64806
0.19887
0.96185

F(PG) 
E(PG) 
PLoss 

67032.4
3.03191
0.53977

78447.6 
2.74248 
0.39406 

72454.3
3.67364
0.16111

64296.4
3.34088
0.37501

81370.4
2.62034
0.46053

69388.8
3.09897
0.20868

64029.3 
3.21255 
0.35717 

81443.0 
2.61602 
0.57575 

75189.0
4.01564
0.12580
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It should be pointed out that the MGSO can always find the nondominated 

solutions in the separated feasible space so as to guarantee the diversity of the PF, 

and therefore the spacing metrics of MGSO are greater than those of NSGA-II 

and SPEA2. Besides, it can also be found that the PFs from NSGA-II are more 

uniformly-spaced, but perform worst on the other two metrics. Also, the variance 

and standard deviation values of these metrics indicate the stable performance of 

MGSO for the resulting Pareto set. 

Table 6.12 Performance measures of the best run of each algorithm 

Algorithms Convergence Spacing metric Normalized distance 

NSGA-II 3.217613 0.012542 0.657604 
SPEA2 2.005540 0.018667 0.978645 
MGSO 0.937165 0.023775 0.998119 

For the investigation of contribution of the scanning-space reduction strategy 

for producer and the adaptive ranger percentage with chaotic sequence, statistical 

results were collected over 50 runs for the MGSO with fixed Limax (referred as 

MGSO-I) and the MGSO with the fixed %iR and the random number sequence 

[77] (referred as MGSO-II), and tabulated in Table 6.13~6.15. It is worth noting 

that the normalized distances of the PFs can be statistically improved with the 

help of the space reduction strategy. Furthermore, referring to MGSO-II, it also 

verified that the proposed chaotic sequence dispersion can statistically enhance 

the overall performance of MGSO, especially on the convergence metric. 

Table 6.13 Resulting statistics of convergence metrics in 50 runs 

Algorithms Best Worst Average Variance Std. Dev. 

NSGA-II 2.277862 3.636170 2.877324 0.108673 0.329656 
SPEA2 1.334764 3.211466 1.956421 0.273424 0.522899 
MGSO 0.810330 2.153011 1.237079 0.095313 0.308729 

MGSO-I 0.857980 2.145775 1.296715 0.101716 0.318930 
MGSO-II 0.913451 2.315498 1.423473 0.166899 0.408533 
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Table 6.14 Resulting statistics of spacing metrics in 50 runs 

Algorithms Best Worst Average Variance Std. Dev. 

NSGA-II 0.008896 0.053966 0.013163 4.3963E-5 0.006631 
SPEA2 0.016049 0.081216 0.033993 5.8215E-4 0.024128 
MGSO 0.017113 0.070548 0.030553 2.8154E-4 0.016778 

MGSO-I 0.018596 0.069413 0.031077 2.2648E-4 0.015048 
MGSO-II 0.018071 0.087473 0.030929 3.0917E-4 0.017583 

Table 6.15 Resulting statistics of normalized distance measures in 50 runs 

Algorithms Best Worst Average Variance Std. Dev. 

NSGA-II 0.657604 0.136544 0.390349 0.015487 0.124446 
SPEA2 0.978645 0.488013 0.754910 0.035914 0.189510 
MGSO 0.998119 0.653782 0.826710 0.010782 0.103836 

MGSO-I 0.965013 0.611423 0.793783 0.014355 0.119814 
MGSO-II 0.981434 0.678453 0.811077 0.015388 0.124051 

The ultimate goal of any Pareto-based multiobjective algorithms is to identify 

a unique solution expressing the best compromise among multiple objectives. In 

the proposed MGSO, the solution having the maximum joint equilibrium value 

will be chosen as the PF’s best compromise solution as marked in Fig. 6.8. The 

fitness of the best compromise solution obtained with Nash equilibrium-based 

decision making method is (70850.4, 3.04343, 0.17382), as compared to solution 

(68189.8, 3.07348, 0.20682) obtained by the fuzzy method [61]. It can be seen 

that the two compromise solutions are quite different in this case study because 

the proposed method takes into account the objectives’ trade-off of PF solutions 

and its solution model is on the basis of the compromising between the gain of 

one objective and the degradation in other objectives [186] with solid technical 

foundation based on the non-cooperative game theory [187]. In conclusion, the 

proposed MCDM is applicable to handle the complex trade-off of PF solutions 

with many objective functions. 
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From the investigations and analysis above, it can be found that, though the 

performance improvement of MGSO algorithm is moderate compared with other 

algorithms on the small IEEE 30-bus system, the proposed MGSO has exhibited 

its superior capability to provide largely improved solution for the larger 118-bus 

system with limited number of fitness function evaluations and can significantly 

enhance the searching capability, ensures the quality of Pareto solutions, and also 

efficiently manages the highly complex power system constraints in solving the 

high-dimensional MOPD problems with more objectives. 

A comparative study of the average run time per generation over the 50 

optimization runs for each of the three MOPD algorithms is given in Table 6.16. 

All the algorithms were implemented in Matlab 7.6 and executed on a personal 

computer with 3.2 GHz Intel Core 2 Quad CPU and 4GB RAM. It is quite 

evident that the computation time of MGSO is less than that of the other two 

techniques. 

Table 6.16 Run time per generation of different algorithms 

 NSGA-II SPEA2 MGSO 

Run time (s) 7.895 8.322 7.655 

As the main searching force members, scroungers perform the proposed 

synergistic learning strategy and their behaviors are mainly determined by 

reinforcement factor η which is crucial to the credit assignment and information 

interaction in the cooperative searching process. In order to investigate the tuning 

rules for design parameters on the search performance of MGSO, the sensitivity 

of η was studied over a range from 0.001 to 0.01 in step of 0.001. Table 6.17 

tabulates the statistical results of the Pareto performance measures for MGSO 

with various reinforcement factors over 50 optimization runs. It can be seen that 

a large value of η can effectively enhance the interactive cooperation between 

searching groups and hence can improve the average performances of MGSO 

algorithm. Therefore, the overall best PF results can be achieved when η was set 
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to 0.01. Similarly, the other algorithm parameters can also be heuristically fine-

tuned, as listed in Table 6.1 and 6.10, using this cut-and-try approach [208]. 

However, it shall also be noted that, according to the No Free Lunch theorem, 

“for any search algorithm, any elevated performance over one class of problems 

would be exactly paid for in performance over another class” [66]. Therefore, to 

solve a given optimization problem requires finding a suitable algorithm which is 

better than other algorithms for this problem, and in this thesis, this implies that 

the proposed MGSO is more superior in this class of power system dispatch 

problems. 

Table 6.17 Reinforcement factor effects on performance of MGSO 

η 
Convergence Spacing metric Normalized distance 

Average Std. Dev. Average Std. Dev. Average Std. Dev. 

0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.01 

4.281376 
3.336863 
3.393176 
3.490579 
3.019370 
2.675614 
2.312698 
1.568162 
1.493507 
1.237079 

0.239019
0.528563 
0.391236 
0.263235 
0.429266 
0.325410 
0.309755 
0.340045 
0.319943 
0.308729 

0.049208 
0.058155 
0.039840 
0.030686 
0.025169
0.029576 
0.029543 
0.037298 
0.031997 
0.030553 

0.021571 
0.031308 
0.026977 
0.019706 
0.017366 
0.018761 
0.020696 
0.019274 
0.018536 
0.016778 

0.614183 
0.563386 
0.627215 
0.742178 
0.512825 
0.726275 
0.791573 
0.755257 
0.808960 
0.826710 

0.293906 
0.145856 
0.191327 
0.293504 
0.168161 
0.090572 
0.121694 
0.175619 
0.119370 
0.103836 

6.6 Summary 

In this chapter, a novel Pareto optimization algorithm, MGSO, is developed 

to solve the highly nonlinear constrained and large-scale MOPD problems. The 

following are main advantages of the proposed approach: 

(1) In the algorithm, four categories of group members, in association with their 

searching strategies, are designed for effective exploration and formation of 

the PF and improving the extension, convergence, uniformity and diversity 

of the resulting Pareto solutions. 
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(2) A synergistic learning mechanism based on the stochastic learning automata 

is firstly proposed for credit assignment and information interaction among 

multiple groups to achieve the cooperative search for Pareto set. 

(3) A new decision-making criterion on the basis of Nash equilibrium point is 

presented to identify a more reasonable compromising solution from the 

obtained PF with multiple contradictory objectives. 

The proposed MGSO has been successfully applied to the bi-objective EED 

problem on the small IEEE 30-bus system and a tri-objective EEED problem on 

the large IEEE 118-bus test system. In-depth numerical simulation studies have 

confirmed the superior efficiency of the MGSO for PF solution searching and the 

effectiveness of the proposed new searching strategies. Compared to previously 

published algorithms on various performance measures, the proposed MGSO is 

very competitive in the small dual-objective EED problems and clearly superior 

in the large-scale high-dimensional MOPD problems with complex constraints 

and objectives. 
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Chapter VII 

Conclusions and Future Work 

7.1 Conclusion 

The contemporary energy crisis impels most of countries all over the world to 

implement their energy saving and emission reduction policies for environmental 

protection and green economy. New issues have since been raised in electricity 

industry to accommodate the energy-saving objective and need to be addressed 

through updated multiobjective generation dispatch strategies. In the meanwhile, 

medium-size local power networks are increasingly being interconnected for the 

safety of operations and reliability of demand-supply balance. Heuristically, such 

large-scale interconnections have given rise to difficulties in the management and 

optimization of the high-dimensional power system dispatch. This multiobjective 

generation dispatch for modern power systems is a relatively new topic and has 

received remarkable attention from international academic researchers. Therefore, 

multiobjective AGC and MOPD strategies are the central themes of this thesis, 

with the innovative design and considerable improvements on the foundation of 

pioneering research studies already reported. Specifically speaking, the primary 

contributions of this research can be summarized as the following aspects: 

i) A novel optimal relaxed AGC control philosophy has been proposed for 

solving the AGC problem under NERC’s CPS standards 

NERC’s new CPS provides a theoretical basis for relaxation of LFC system 

as well as benefit coordination between dispatch center and AGC plants. Hence, 

this thesis explicitly defines the optimal relaxed AGC objectives as follows: (i) to 
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comply with CPS assessment standards in various complex operation scenarios 

of power systems; (ii) to allow the AGC plants to maneuver with least wear-and-

tear and control actions for further cost saving in the generation sectors; (iii) to 

develop a reasonable control structure having a high level of practicability and 

applicability for real power systems. 

ii) Three RL algorithms were investigated and adopted in the design of optimal 

AGC strategies under CPS 

In this thesis, various RL methods were thoroughly examined and three 

stochastic optimal AGC strategies under CPS, including QAGC, Q(λ)AGC and 

R(λ)ILAGC, were designed as a result. On a long-run basis with the relaxed 

control objectives transformed to MDP reward functions, the optimized control 

strategy can be gradually obtained for the maximization of the long-term 

cumulative rewards in the procedure of interactive self-learning processes. 

Simulation studies revealed that, compared to the NARI’s PI controller, the RL-

based AGCs can effectively enhance the adaptability and dynamic performance 

of AGC systems, and reduce the number of pulses and pulse reversals while CPS 

metrics are assured under the complicated and dynamic operational conditions. 

iii) Backward estimation technique with eligibility traces is utilized to overcome 

the problem of long time-delay control in thermal-dominated AGC process 

For the thermal-dominated AGC control strategies, one of main challenges is 

the long time-delayed feedback problem caused by the steam turbine of thermal 

AGC plants. This research firstly applies the backward estimation with eligibility 

traces in Q(λ) learning and R(λ) learning algorithms to effectively cope with the 

time-delay control problem of thermal generators in non-Markov environment. 

Furthermore, the moving averages of CPS1 and ACE are used as the state inputs 

for further alleviating the over-compliant problem, and the AGC strategies also 

can provide a feasible mean to achieve the desirable degree of CPS compliances 

and relaxation of AGC system by online tuning the relaxation factors. 
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iv) A novel imitation pre-learning method is proposed for the RL-based AGCs 

to facilitate the transition from the conventional offline pre-learning process 

to online learning 

The conventional RL-based AGCs cannot handle their offline pre-learning 

processes for onsite implementation if there are large differences existed between 

the system simulation model and real power system. Thus, another important 

contribution of this thesis is the proposed imitation online pre-learning technique 

in combination with the AROC-based R(λ) learning, in which the R(λ)ILAGC 

not only can act online in a real-time mode as a third-party observer to imitate 

and learn from the control behaviors of the PI controller such that the 

applicability and feasibility of proposed AGC methodology is enhanced 

significantly, but also the convergence efficiency and control performance of 

AGC system can be improved. 

v) A new equilibrium-inspired multiobjective group search optimizer based on 

synergistic learning is proposed to solve the high-dimensional tri-objective 

EEED optimization problem 

The final major contribution of this thesis is to develop a novel 

multiobjective meta-heuristic algorithm, MGSO, to solve the large-scale highly 

constrained EEED optimization problem. In the proposed algorithm, multiple 

searching groups are formed with RL mechanisms to achieve the synergistic 

learning and cooperative search for Pareto solutions. A better constraint handling 

strategy, which separates constraints and objectives with different search 

strategies, and two enhancements, namely space reduction and chaotic sequence 

dispersion, have been incorporated to improve the algorithm performance. 

Moreover, the Nash equilibrium point is introduced to extract the best 

compromise solution from the obtained PF, and an equilibrium-inspired 

clustering method is also developed to form a representative PF for power 

operators. Compared to other multiobjective algorithms on various performance 
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measures, the MGSO is a good alternative in solving large-scaled MOPD 

problems with highly complex problem characteristics. 

7.2 Future Work 

This thesis has laid a substantial foundation for the use of the multiobjective 

control and optimization to design two LFC dispatch problems, AGC and EEED 

schemes. With the further development of the multi-agent hierarchical RL theory 

and stochastic search optimization, following research directions may be worthy 

of further studying in the future: 

(1) Various multi-agent RL algorithms based on Nash equilibria [78], correlated 

equilibria [189], and Stackelberg equilibria [191] can be employed to design 

the optimal coordinated AGC strategies for multi-area interconnected power 

grids in order to enhance the overall control performance of interconnection 

operations. Most specifically, Nash equilibrium with individual rationality 

can be introduced for the coordinated LFC optimization in normal operating 

conditions, while the correlated equilibrium with collective rationality can 

be used to study the coordinated LFC strategy in emergency conditions. 

 

Fig. 7.1 Dynamic optimization process for hierarchical AGC framework 



139 

(2) The existing AGC generation allocation among various types of AGC plants 

is based on their participation factors which are always determined with the 

ED or MOPD function. However, this method cannot provide the optimum 

performance over a wide range of dynamic operational scenarios of power 

grids. Therefore, further on-going research would focus on the optimization 

problem of dynamic AGC generation allocation so as to formulate a two-

layer hierarchical AGC framework using multi-agent RL algorithms with 

imitation pre-learning process, as depicted in Fig. 7.1. In addition, the 

effects of relaxation vector μ on the maneuvering cost and efficiency loss of 

AGC plants shall also be investigated and analyzed quantitatively. 

(3) The tri-objective EEED optimization can be extended to accommodate more 

objective functions, e.g. voltage stability, and take into account more system 

constraints, such as dynamic dispatch, security and contingency constraints. 

An enhanced MGSO can also be investigated and applied to solve the multi-

objective optimal VAR dispatch problem in which voltage stability index, 

voltage profiles and power loss are to be improved simultaneously. Study on 

the more powerful Pareto-based multiobjective algorithms can be continued 

to optimize and coordinate the active/reactive power outputs of dispatchable 

generators simultaneously for distributed multi-area interconnected power 

systems with highly constrained and high-dimensional problem complexity. 

Furthermore, the execution time of the proposed EEED algorithm should be 

improved with the help of modern advanced computer systems and parallel 

computation theory to satisfy the practical real-time requirements of tertiary 

frequency control. 

 



140 

Appendices 

A. Data of Two-Area LFC System and Guangdong Power Grid 

Note: If not specified, all data in per unit are calculated on the basis of power 

rating of 5000 MW. 

Table A.1 System parameters for two-area LFC system model 

Tg (s) Tt (s) Tp (s) R (Hz/pu) Kp (Hz/pu) T12 
0.08 0.3 20 2.4 120 0.545 

 

Table A.2 Model parameters of AGC units in Guangdong power grid 

Types Groups Ts (s) ∆PGi,max 
(MW) 

∆PGi,min 
(MW) 

Ramp GRC 
(MW·min-1) 

Coal-fired 

Thermal 1 45 2800 −2800 140 
Thermal 2 43 1912 −1912 71.7 
Thermal 3 40 2680 −2680 134 
Thermal 4 38 1788 −1788 70.5 

LNG 
Thermal 5 12 1028 −1028 128.5 
Thermal 6 8 688 −688 68.82 

Oil-fired 
Thermal 7 25 720 −720 54 
Thermal 8 20 480 −480 28.8 

Hydro power 
Hydro 1 5 600 0 600 
Hydro 2 5 400 0 400 
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B. Data of IEEE 30-Bus 6-Generator Power System 

Note: If not specified, all data in per unit are calculated on the basis of power 

rating of 100MVA. 

 

Fig. B.1 Single-line diagram of IEEE 30-bus test system 

 

Table B.1 Generator cost coefficients of IEEE 30-bus system 

Generator ai bi ci di ei 
G1 100 200 10 0 0 
G2 120 150 10 0 0 
G3 40 180 20 0 0 
G4 60 100 10 0 0 
G5 40 180 20 0 0 
G6 100 150 10 0 0 
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Table B.2 Generator emission coefficients of IEEE 30-bus system 

Generator αi βi γi ζi λi 

G1 6.490 −5.554 4.091 2.00E-04 2.857 
G2 5.638 −6.047 2.543 5.00E-04 3.333 
G3 4.586 −5.094 4.258 1.00E-06 8.000 
G4 3.380 −3.55 5.326 2.00E-03 2.000 
G5 4.586 −5.094 4.258 1.00E-06 8.000 
G6 5.151 −5.555 6.131 1.00E-05 6.667 

 

Table B.3 Generation data of IEEE 30-bus system 

Generator Bus # VGi,rating 
(pu) 

PGi,max 
(pu) 

PGi,min 
(pu) 

QGi,max 
(pu) 

QGi,min 
(pu) 

G1 (Slack) 1 1.060 0.5 0.05 1.5 −0.2 
G2 2 1.045 0.6 0.05 0.6 −0.2 
G3 5 1.010 1 0.05 0.625 −0.15 
G4 8 1.010 1.2 0.05 0.5 −0.15 
G5 11 1.082 1 0.05 0.4 −0.1 
G6 13 1.071 0.6 0.05 0.45 −0.15 

 

Table B.4 Transmission line data of IEEE 30-bus system 

Line # From bus To bus Resistance
(pu) 

Reactance
(pu) 

Susceptance
(pu) 

Transformer 
ratio 

Rating
(MVA)

1 1 2 0.0192 0.0575 0.0264 1 1.3 
2 1 3 0.0452 0.1852 0.0204 1 1.3 
3 2 4 0.057 0.1737 0.0184 1 0.65 
4 3 4 0.0132 0.0379 0.0042 1 1.3 
5 2 5 0.0472 0.1983 0.0209 1 1.3 
6 2 6 0.0581 0.1763 0.0187 1 0.65 
7 4 6 0.0119 0.0414 0.0045 1 0.9 
8 5 7 0.046 0.116 0.0102 1 0.7 
9 6 7 0.0267 0.082 0.0085 1 1.3 
10 6 8 0.012 0.042 0.0045 1 0.32 
11 9 6 0 0.208 0 1 0.65 
12 6 10 0 0.556 0 1 0.32 
13 9 11 0 0.208 0 1 0.65 
14 9 10 0 0.11 0 1 0.65 
15 12 4 0 0.256 0 1 0.65 
16 12 13 0 0.14 0 1 0.65 
17 12 14 0.1231 0.2559 0 1 0.32 
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18 12 15 0.0662 0.1304 0 1 0.32 
19 12 16 0.0945 0.1987 0 1 0.32 
20 14 15 0.221 0.1997 0 1 0.16 
21 16 17 0.0824 0.1923 0 1 0.16 
22 15 18 0.107 0.2185 0 1 0.16 
23 18 19 0.0639 0.1292 0 1 0.16 
24 19 20 0.034 0.068 0 1 0.32 
25 10 20 0.0936 0.209 0 1 0.32 
26 10 17 0.0324 0.0845 0 1 0.32 
27 10 21 0.0348 0.0749 0 1 0.32 
28 10 22 0.0727 0.1499 0 1 0.32 
29 21 22 0.0116 0.0236 0 1 0.32 
30 15 23 0.1 0.202 0 1 0.16 
31 22 24 0.115 0.179 0 1 0.16 
32 23 24 0.132 0.27 0 1 0.16 
33 24 25 0.1885 0.3292 0 1 0.16 
34 25 26 0.2544 0.38 0 1 0.16 
35 25 27 0.1093 0.2087 0 1 0.16 
36 28 27 0 0.396 0 1 0.65 
37 27 29 0.2198 0.4153 0 1 0.16 
38 27 30 0.3202 0.6027 0 1 0.16 
39 29 30 0.2399 0.4533 0 1 0.16 
40 8 28 0.0636 0.2 0.0214 1 0.32 
41 6 28 0.0169 0.0599 0.0065 1 0.32 

 

Table B.5 Bus and demand data of IEEE 30-bus system 

Bus # PDi (pu) QDi (pu) Vi,max (pu) Vi,min (pu) 
1 0 0 1.05 0.95 
2 0.217 0.127 1.1 0.95 
3 0.024 0.012 1.05 0.95 
4 0.076 0.016 1.05 0.95 
5 0.942 0.19 1.1 0.95 
6 0 0 1.05 0.95 
7 0.228 0.109 1.05 0.95 
8 0.3 0.3 1.1 0.95 
9 0 0 1.05 0.95 
10 0.058 0.02 1.05 0.95 
11 0 0 1.1 0.95 
12 0.112 0.075 1.05 0.95 
13 0 0 1.1 0.95 
14 0.062 0.016 1.05 0.95 
15 0.082 0.025 1.05 0.95 
16 0.035 0.018 1.05 0.95 
17 0.09 0.058 1.05 0.95 
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18 0.032 0.009 1.05 0.95 
19 0.095 0.034 1.05 0.95 
20 0.022 0.007 1.05 0.95 
21 0.175 0.112 1.05 0.95 
22 0 0 1.05 0.95 
23 0.032 0.016 1.05 0.95 
24 0.087 0.067 1.05 0.95 
25 0 0 1.05 0.95 
26 0.035 0.023 1.05 0.95 
27 0 0 1.05 0.95 
28 0 0 1.05 0.95 
29 0.024 0.009 1.05 0.95 
30 0.106 0.019 1.05 0.95 
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C. Data of IEEE 118-Bus 54-Generator Power System 

Note: If not specified, all data in per unit are calculated on the basis of power 

rating of 100MVA. 
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Fig. C.1 Single-line diagram of IEEE 118-bus test system 
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Table C.1 Generator cost coefficients of IEEE 118-bus system 

Generator ai bi ci di ei 
G1 28.4 860 126 100 8.4 
G2 28.4 860 126 100 8.4 
G3 28.4 860 126 100 8.4 
G4 28.4 860 126 100 8.4 
G5 15.62 792 561 300 3.15 
G6 48.2 797 78 150 6.3 
G7 32.4 774 240 150 6.3 
G8 32.4 774 240 150 6.3 
G9 32.4 774 240 150 6.3 
G10 32.4 774 240 150 6.3 
G11 19.4 785 310 200 4.2 
G12 2.8 810 550 300 3.5 
G13 32.4 774 240 150 6.3 
G14 31.3 797 647.83 300 3.5 
G15 31.6 795 649.69 300 3.5 
G16 31.6 795 649.69 300 3.5 
G17 31.6 795 649.69 300 3.5 
G18 31.6 795 649.69 300 3.5 
G19 31.6 795 649.69 300 3.5 
G20 114 535 148.89 120 7.7 
G21 114.2 805 222.33 100 8.4 
G22 35.7 803 287.71 200 4.2 
G23 5.6 810 309 200 4.2 
G24 5.6 810 307 200 4.2 
G25 202.8 707 309.54 100 8.4 
G26 94.2 818 369.03 150 6.3 
G27 49.2 699 391.98 200 4.2 
G28 57.3 660 455.76 200 4.2 
G29 60.5 1290 722.82 200 4.2 
G30 51.5 1290 635.2 200 4.2 
G31 5212.4 333 1055.1 120 7.7 
G32 5212.4 333 1055.1 120 7.7 
G33 5212.4 333 1055.1 120 7.7 
G34 16 643 222.92 150 6.3 
G35 16 643 222.92 150 6.3 
G36 16 643 222.92 150 6.3 
G37 114 535 148.89 120 7.7 
G38 1 895 107.87 200 4.2 
G39 56.9 1280 654.69 200 4.2 
G40 42.1 1250 913.4 300 3.5 
G41 1 862 116.58 200 4.2 
G42 1 862 116.58 200 4.2 
G43 69 673 94.705 100 8.4 
G44 69 673 94.705 100 8.4 
G45 75.2 884 1760.4 300 3.5 
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G46 15.62 792 561 300 3.15 
G47 70.8 915 1728.3 300 3.5 
G48 70.8 915 1728.3 300 3.5 
G49 29.8 663 785.96 300 3.5 
G50 29.8 663 785.96 300 3.5 
G51 161 588 307.45 80 9.8 
G52 27.7 710 801.32 300 3.5 
G53 28.4 666 794.53 300 3.5 
G54 28.4 666 794.53 300 3.5 

 

Table C.2 Generator emission coefficients of IEEE 118-bus system 

Generator αi βi γi ζi λi 
G1 6.49 −5.554 4.091 2.00E-04 2.857 
G2 6.49 −5.554 4.091 2.00E-04 2.857 
G3 6.49 −5.554 4.091 2.00E-04 2.857 
G4 6.49 −5.554 4.091 2.00E-04 2.857 
G5 8.315 −1.895 3.45 5.00E-05 1.102 
G6 7.016 −2.461 5.812 5.00E-06 3.611 
G7 5.638 −6.047 2.543 5.00E-04 3.333 
G8 5.638 −6.047 2.543 5.00E-04 3.333 
G9 5.638 −6.047 2.543 5.00E-04 3.333 
G10 5.638 −6.047 2.543 5.00E-04 3.333 
G11 3.178 −4.522 3.678 5.00E-05 1.817 
G12 5.212 −1.951 3.755 5.00E-06 1.551 
G13 5.151 −5.555 6.131 1.00E-05 6.667 
G14 7.164 −4.356 8.151 8.00E-06 3.611 
G15 3.38 −3.55 5.326 2.00E-03 2 
G16 3.38 −3.55 5.326 2.00E-03 2 
G17 3.38 −3.55 5.326 2.00E-03 2 
G18 3.38 −3.55 5.326 2.00E-03 2 
G19 3.38 −3.55 5.326 2.00E-03 2 
G20 8.081 −2.955 3.687 8.00E-06 5.001 
G21 7.631 −2.706 3.968 8.00E-06 1.601 
G22 7.971 −2.196 3.382 8.00E-05 2.691 
G23 5.151 −5.555 6.131 1.00E-05 6.667 
G24 5.151 −5.555 6.131 1.00E-05 6.667 
G25 2.985 −4.537 3.118 3.00E-05 3.155 
G26 5.793 −5.216 3.665 3.00E-06 3.989 
G27 5.151 −5.555 6.131 1.00E-05 6.667 
G28 5.212 −1.951 3.755 5.00E-06 1.551 
G29 3.178 −4.522 3.678 1.00E-06 1.817 
G30 3.965 −3.321 8.615 6.00E-05 1.168 
G31 4.586 −5.094 4.258 1.00E-06 8 
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G32 4.586 −5.094 4.258 1.00E-06 8 
G33 4.586 −5.094 4.258 1.00E-06 8 
G34 4.586 −5.094 4.258 1.00E-06 8 
G35 4.586 −5.094 4.258 1.00E-06 8 
G36 4.586 −5.094 4.258 1.00E-06 8 
G37 6.816 −4.18 8.183 2.00E-04 1.8 
G38 5.151 −5.555 6.131 1.00E-05 6.667 
G39 8.081 −2.955 3.687 8.00E-06 5.001 
G40 4.156 −3.966 8.183 3.00E-05 1.111 
G41 6.518 −5.865 6.578 6.00E-05 5.15 
G42 6.518 −5.865 6.578 6.00E-05 5.15 
G43 6.518 −5.865 6.578 6.00E-05 5.15 
G44 6.518 −5.865 6.578 6.00E-05 5.15 
G45 3.178 −4.522 3.678 5.00E-05 1.817 
G46 7.971 −2.196 3.382 8.00E-05 2.691 
G47 4.586 −5.094 4.258 1.00E-06 8 
G48 5.151 −5.555 6.131 1.00E-05 6.667 
G49 6.49 −5.554 4.091 2.00E-04 2.857 
G50 5.638 −6.047 2.543 5.00E-04 3.333 
G51 7.971 −2.196 3.382 8.00E-05 2.691 
G52 7.164 −4.356 8.151 8.00E-06 3.611 
G53 7.164 −4.356 8.151 1.00E-06 3.611 
G54 7.164 −4.356 8.151 1.00E-05 3.611 

 

Table C.3 Generation data of IEEE 118-bus system 

Generator Bus # VGi,rating 
(pu) 

PGi,max 
(pu) 

PGi,min 
(pu) 

QGi,max 
(pu) 

QGi,min 
(pu) 

G1 1 1.021 1 0 0.15 −0.05 
G2 4 1.048 1 0 3 −3 
G3 6 1.042 1 0 0.5 −0.13 
G4 8 1.032 1 0 3 −3 
G5 10 1.043 5.5 0 2 −1.47 
G6 12 1.04 1.85 0 1.2 −0.35 
G7 15 1.035 1 0 0.3 −0.1 
G8 18 1.037 1 0 0.5 −0.16 
G9 19 1.033 1 0 0.24 −0.08 
G10 24 1.037 1 0 3 −3 
G11 25 1.047 3.2 0 1.4 −0.47 
G12 26 1.012 4.14 0 10 −10 
G13 27 1.031 1 0 3 −3 
G14 31 1.028 1.07 0 3 −3 
G15 32 1.031 1 0 0.42 −0.14 
G16 34 1.045 1 0 0.24 −0.08 



149 

G17 36 1.043 1 0 0.24 −0.08 
G18 40 1.032 1 0 3 −3 
G19 42 1.03 1 0 3 −3 
G20 46 1.025 1.19 0 1 −1 
G21 49 1.037 3.04 0 2.1 −0.85 
G22 54 1.018 1.48 0 3 −3 
G23 55 1.016 1 0 0.23 −0.08 
G24 56 1.017 1 0 0.15 −0.08 
G25 59 1.033 2.55 0 1.8 −0.6 
G26 61 1.033 2.6 0 3 −1 
G27 62 1.03 1 0 0.2 −0.2 
G28 65 1.005 4.91 0 2 −0.67 
G29 66 1.05 4.92 0 2 −0.67 

G30 (Slack) 69 1.045 8.052 0 3 −3 
G31 70 1.025 1 0 0.32 −0.1 
G32 72 1.03 1 0 1 −1 
G33 73 1.029 1 0 1 −1 
G34 74 1.006 1 0 0.09 −0.06 
G35 76 0.99 1 0 0.23 −0.08 
G36 77 1.031 1 0 0.7 −0.2 
G37 80 1.05 5.77 0 2.8 −1.65 
G38 85 1.032 1 0 0.23 −0.08 
G39 87 1.048 1.04 0 10 −1 
G40 89 1.041 7.07 0 3 −2.1 
G41 90 1.032 1 0 3 −3 
G42 91 1.035 1 0 1 −1 
G43 92 1.034 1 0 0.09 −0.03 
G44 99 1.044 1 0 1 −1 
G45 100 1.048 3.52 0 1.55 −0.5 
G46 103 1.041 1.4 0 0.4 −0.15 
G47 104 1.03 1 0 0.23 −0.08 
G48 105 1.03 1 0 0.23 −0.08 
G49 107 1.024 1 0 2 −2 
G50 110 1.03 1 0 0.23 −0.08 
G51 111 1.039 1.36 0 10 −1 
G52 112 1.024 1 0 10 −1 
G53 113 1.045 1 0 2 −1 
G54 116 1 1 0 10 −10 
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Table C.4 Transmission line data of IEEE 118-bus system 

Line # From bus To bus Resistance
(pu) 

Reactance
(pu) 

Susceptance
(pu) 

Transformer 
ratio 

Rating
(MVA)

1 1 2 0.0303 0.0999 0.0127 1 2.2 
2 1 3 0.0129 0.0424 0.00541 1 2.2 
3 4 5 0.00176 0.00798 0.00105 1 4.4 
4 3 5 0.0241 0.108 0.0142 1 2.2 
5 5 6 0.0119 0.054 0.00713 1 2.2 
6 6 7 0.00459 0.0208 0.00275 1 2.2 
7 8 9 0.00244 0.0305 0.581 1 11 
8 8 5 0 0.0267 0 0.985 8.8 
9 9 10 0.00258 0.0322 0.615 1 11 
10 4 11 0.0209 0.0688 0.00874 1 2.2 
11 5 11 0.0203 0.0682 0.00869 1 2.2 
12 11 12 0.00595 0.0196 0.00251 1 2.2 
13 2 12 0.0187 0.0616 0.00786 1 2.2 
14 3 12 0.0484 0.16 0.0203 1 2.2 
15 7 12 0.00862 0.034 0.00437 1 2.2 
16 11 13 0.02225 0.0731 0.00938 1 2.2 
17 12 14 0.0215 0.0707 0.00908 1 2.2 
18 13 15 0.0744 0.2444 0.03134 1 2.2 
19 14 15 0.0595 0.195 0.0251 1 2.2 
20 12 16 0.0212 0.0834 0.0107 1 2.2 
21 15 17 0.0132 0.0437 0.0222 1 4.4 
22 16 17 0.0454 0.1801 0.0233 1 2.2 
23 17 18 0.0123 0.0505 0.00649 1 2.2 
24 18 19 0.01119 0.0493 0.00571 1 2.2 
25 19 20 0.0252 0.117 0.0149 1 2.2 
26 15 19 0.012 0.0394 0.00505 1 2.2 
27 20 21 0.0183 0.0849 0.0108 1 2.2 
28 21 22 0.0209 0.097 0.0123 1 2.2 
29 22 23 0.0342 0.159 0.0202 1 2.2 
30 23 24 0.0135 0.0492 0.0249 1 2.2 
31 23 25 0.0156 0.08 0.0432 1 4.4 
32 26 25 0 0.0382 0 0.96 2.2 
33 25 27 0.0318 0.163 0.0882 1 4.4 
34 27 28 0.01913 0.0855 0.0108 1 2.2 
35 28 29 0.0237 0.0943 0.0119 1 2.2 
36 30 17 0 0.0388 0 0.96 6.6 
37 8 30 0.00431 0.0504 0.257 1 2.2 
38 26 30 0.00799 0.086 0.454 1 6.6 
39 17 31 0.0474 0.1563 0.01995 1 2.2 
40 29 31 0.0108 0.0331 0.00415 1 2.2 
41 23 32 0.0317 0.1153 0.05865 1 2.2 
42 31 32 0.0298 0.0985 0.01255 1 2.2 
43 27 32 0.0229 0.0755 0.00963 1 2.2 
44 15 33 0.038 0.1244 0.01597 1 2.2 
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45 19 34 0.0752 0.247 0.0316 1 2.2 
46 35 36 0.00224 0.0102 0.00134 1 2.2 
47 35 37 0.011 0.0497 0.00659 1 2.2 
48 33 37 0.0415 0.142 0.0183 1 2.2 
49 34 36 0.00871 0.0268 0.00284 1 2.2 
50 34 37 0.00256 0.0094 0.00492 1 4.4 
51 38 37 0 0.0375 0 0.935 6.6 
52 37 39 0.0321 0.106 0.0135 1 2.2 
53 37 40 0.0593 0.168 0.021 1 2.2 
54 30 38 0.00464 0.054 0.211 1 2.2 
55 39 40 0.0184 0.0605 0.00776 1 2.2 
56 40 41 0.0145 0.0487 0.00611 1 2.2 
57 40 42 0.0555 0.183 0.0233 1 2.2 
58 41 42 0.041 0.135 0.0172 1 2.2 
59 43 44 0.0608 0.2454 0.03034 1 2.2 
60 34 43 0.0413 0.1681 0.02113 1 2.2 
61 44 45 0.0224 0.0901 0.0112 1 2.2 
62 45 46 0.04 0.1356 0.0166 1 2.2 
63 46 47 0.038 0.127 0.0158 1 2.2 
64 46 48 0.0601 0.189 0.0236 1 2.2 
65 47 49 0.0191 0.0625 0.00802 1 2.2 
66 42 49 0.0715 0.323 0.043 1 2.2 
67 42 49 0.0715 0.323 0.043 1 2.2 
68 45 49 0.0684 0.186 0.0222 1 2.2 
69 48 49 0.0179 0.0505 0.00629 1 2.2 
70 49 50 0.0267 0.0752 0.00937 1 2.2 
71 49 51 0.0486 0.137 0.0171 1 2.2 
72 51 52 0.0203 0.0588 0.00698 1 2.2 
73 52 53 0.0405 0.1635 0.02029 1 2.2 
74 53 54 0.0263 0.122 0.0155 1 2.2 
75 49 54 0.073 0.289 0.0369 1 2.2 
76 49 54 0.0869 0.291 0.0365 1 2.2 
77 54 55 0.0169 0.0707 0.0101 1 2.2 
78 54 56 0.00275 0.00955 0.00366 1 2.2 
79 55 56 0.00488 0.0151 0.00187 1 2.2 
80 56 57 0.0343 0.0966 0.0121 1 2.2 
81 50 57 0.0474 0.134 0.0166 1 2.2 
82 56 58 0.0343 0.0966 0.0121 1 2.2 
83 51 58 0.0255 0.0719 0.00894 1 2.2 
84 54 59 0.0503 0.2293 0.0299 1 2.2 
85 56 59 0.0825 0.251 0.02845 1 2.2 
86 56 59 0.0803 0.239 0.0268 1 2.2 
87 55 59 0.04739 0.2158 0.02823 1 2.2 
88 59 60 0.0317 0.145 0.0188 1 2.2 
89 59 61 0.0328 0.15 0.0194 1 2.2 
90 60 61 0.00264 0.0135 0.00728 1 4.4 
91 60 62 0.0123 0.0561 0.00734 1 2.2 
92 61 62 0.00824 0.0376 0.0049 1 2.2 
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93 63 59 0 0.0386 0 0.96 4.4 
94 63 64 0.00172 0.02 0.108 1 4.4 
95 64 61 0 0.0268 0 0.985 2.2 
96 38 65 0.00901 0.0986 0.523 1 4.4 
97 64 65 0.00269 0.0302 0.19 1 4.4 
98 49 66 0.018 0.0919 0.0124 1 4.4 
99 49 66 0.018 0.0919 0.0124 1 4.4 
100 62 66 0.0482 0.218 0.0289 1 2.2 
101 62 67 0.0258 0.117 0.0155 1 2.2 
102 65 66 0 0.037 0 0.935 2.2 
103 66 67 0.0224 0.1015 0.01341 1 2.2 
104 65 68 0.00138 0.016 0.319 1 2.2 
105 47 69 0.0844 0.2778 0.03546 1 2.2 
106 49 69 0.0985 0.324 0.0414 1 2.2 
107 68 69 0 0.037 0 0.935 4.4 
108 69 70 0.03 0.127 0.061 1 4.4 
109 24 70 0.00221 0.4115 0.05099 1 2.2 
110 70 71 0.00882 0.0355 0.00439 1 2.2 
111 24 72 0.0488 0.196 0.0244 1 2.2 
112 71 72 0.0446 0.18 0.02222 1 2.2 
113 71 73 0.00866 0.0454 0.00589 1 2.2 
114 70 74 0.0401 0.1323 0.01684 1 2.2 
115 70 75 0.0428 0.141 0.018 1 2.2 
116 69 75 0.0405 0.122 0.062 1 4.4 
117 74 75 0.0123 0.0406 0.00517 1 2.2 
118 76 77 0.0444 0.148 0.0184 1 2.2 
119 69 77 0.0309 0.101 0.0519 1 2.2 
120 75 77 0.0601 0.1999 0.02489 1 2.2 
121 77 78 0.00376 0.0124 0.00632 1 2.2 
122 78 79 0.00546 0.0244 0.00324 1 2.2 
123 77 80 0.017 0.0485 0.0236 1 4.4 
124 77 80 0.0294 0.105 0.0114 1 2.2 
125 79 80 0.0156 0.0704 0.00935 1 2.2 
126 68 81 0.00175 0.0202 0.404 1 2.2 
127 81 80 0 0.037 0 0.935 2.2 
128 77 82 0.0298 0.0853 0.04087 1 2.2 
129 82 83 0.0112 0.03665 0.01898 1 2.2 
130 83 84 0.0625 0.132 0.0129 1 2.2 
131 83 85 0.043 0.148 0.0174 1 2.2 
132 84 85 0.0302 0.0641 0.00617 1 2.2 
133 85 86 0.035 0.123 0.0138 1 2.2 
134 86 87 0.02828 0.2074 0.02225 1 2.2 
135 85 88 0.02 0.102 0.0138 1 2.2 
136 85 89 0.0239 0.173 0.0235 1 2.2 
137 88 89 0.0139 0.0712 0.00967 1 4.4 
138 89 90 0.0518 0.188 0.0264 1 6.6 
139 89 90 0.0238 0.0997 0.053 1 6.6 
140 90 91 0.0254 0.0836 0.0107 1 6.6 
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141 89 92 0.0099 0.0505 0.0274 1 2.2 
142 89 92 0.0393 0.1581 0.0207 1 2.2 
143 91 92 0.0387 0.1272 0.01634 1 2.2 
144 92 93 0.0258 0.0848 0.0109 1 2.2 
145 92 94 0.0481 0.158 0.0203 1 2.2 
146 93 94 0.0223 0.0732 0.00938 1 2.2 
147 94 95 0.0132 0.0434 0.00555 1 2.2 
148 80 96 0.0356 0.182 0.0247 1 2.2 
149 82 96 0.0162 0.053 0.0272 1 2.2 
150 94 96 0.0269 0.0869 0.0115 1 2.2 
151 80 97 0.0183 0.0934 0.0127 1 2.2 
152 80 98 0.0238 0.108 0.0143 1 2.2 
153 80 99 0.0454 0.206 0.0273 1 2.2 
154 92 100 0.0648 0.295 0.0236 1 2.2 
155 94 100 0.0178 0.058 0.0302 1 2.2 
156 95 96 0.0171 0.0547 0.00737 1 2.2 
157 96 97 0.0173 0.0885 0.012 1 2.2 
158 98 100 0.0397 0.179 0.0238 1 2.2 
159 99 100 0.018 0.0813 0.0108 1 2.2 
160 100 101 0.0277 0.1262 0.0164 1 2.2 
161 92 102 0.0123 0.0559 0.00732 1 2.2 
162 101 102 0.0246 0.112 0.0147 1 2.2 
163 100 103 0.016 0.0525 0.0268 1 4.4 
164 100 104 0.0451 0.204 0.02705 1 2.2 
165 103 104 0.0466 0.1584 0.02035 1 2.2 
166 103 105 0.0535 0.1625 0.0204 1 2.2 
167 100 106 0.0605 0.229 0.031 1 2.2 
168 104 105 0.00994 0.0378 0.00493 1 2.2 
169 105 106 0.014 0.0547 0.00717 1 2.2 
170 105 107 0.053 0.183 0.0236 1 2.2 
171 105 108 0.0261 0.0703 0.00922 1 2.2 
172 106 107 0.053 0.183 0.0236 1 2.2 
173 108 109 0.0105 0.0288 0.0038 1 2.2 
174 103 110 0.03906 0.1813 0.02305 1 2.2 
175 109 110 0.0278 0.0762 0.0101 1 2.2 
176 110 111 0.022 0.0755 0.01 1 2.2 
177 110 112 0.0247 0.064 0.031 1 2.2 
178 17 113 0.00913 0.0301 0.00384 1 2.2 
179 32 113 0.0615 0.203 0.0259 1 2.2 
180 32 114 0.0135 0.0612 0.00814 1 2.2 
181 27 115 0.0164 0.0741 0.00986 1 2.2 
182 114 115 0.0023 0.0104 0.00138 1 2.2 
183 68 116 0.00034 0.00405 0.082 1 4.4 
184 12 117 0.0329 0.14 0.0179 1 2.2 
185 75 118 0.0145 0.0481 0.00599 1 2.2 
186 76 118 0.0164 0.0544 0.00678 1 2.2 
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Table C.5 Bus and demand data of IEEE 118-bus system 

Bus # PDi (pu) QDi (pu) Vi,max (pu) Vi,min (pu) 
1 0.51 0.27 1.06 0.94 
2 0.2 0.09 1.06 0.94 
3 0.39 0.1 1.06 0.94 
4 0.39 0.12 1.06 0.94 
5 0 0 1.06 0.94 
6 0.52 0.22 1.06 0.94 
7 0.19 0.02 1.06 0.94 
8 0.28 0 1.06 0.94 
9 0 0 1.06 0.94 
10 0 0 1.06 0.94 
11 0.7 0.23 1.06 0.94 
12 0.47 0.1 1.06 0.94 
13 0.34 0.16 1.06 0.94 
14 0.14 0.01 1.06 0.94 
15 0.9 0.3 1.06 0.94 
16 0.25 0.1 1.06 0.94 
17 0.11 0.03 1.06 0.94 
18 0.6 0.34 1.06 0.94 
19 0.45 0.25 1.06 0.94 
20 0.18 0.03 1.06 0.94 
21 0.14 0.08 1.06 0.94 
22 0.1 0.05 1.06 0.94 
23 0.07 0.03 1.06 0.94 
24 0.13 0 1.06 0.94 
25 0 0 1.06 0.94 
26 0 0 1.06 0.94 
27 0.71 0.13 1.06 0.94 
28 0.17 0.07 1.06 0.94 
29 0.24 0.04 1.06 0.94 
30 0 0 1.06 0.94 
31 0.43 0.27 1.06 0.94 
32 0.59 0.23 1.06 0.94 
33 0.23 0.09 1.06 0.94 
34 0.59 0.26 1.06 0.94 
35 0.33 0.09 1.06 0.94 
36 0.31 0.17 1.06 0.94 
37 0 0 1.06 0.94 
38 0 0 1.06 0.94 
39 0.27 0.11 1.06 0.94 
40 0.66 0.23 1.06 0.94 
41 0.37 0.1 1.06 0.94 
42 0.96 0.23 1.06 0.94 
43 0.18 0.07 1.06 0.94 
44 0.16 0.08 1.06 0.94 
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45 0.53 0.22 1.06 0.94 
46 0.28 0.1 1.06 0.94 
47 0.34 0 1.06 0.94 
48 0.2 0.11 1.06 0.94 
49 0.87 0.3 1.06 0.94 
50 0.17 0.04 1.06 0.94 
51 0.17 0.08 1.06 0.94 
52 0.18 0.05 1.06 0.94 
53 0.23 0.11 1.06 0.94 
54 1.13 0.32 1.06 0.94 
55 0.63 0.22 1.06 0.94 
56 0.84 0.18 1.06 0.94 
57 0.12 0.03 1.06 0.94 
58 0.12 0.03 1.06 0.94 
59 2.77 1.13 1.06 0.94 
60 0.78 0.03 1.06 0.94 
61 0 0 1.06 0.94 
62 0.77 0.14 1.06 0.94 
63 0 0 1.06 0.94 
64 0 0 1.06 0.94 
65 0 0 1.06 0.94 
66 0.39 0.18 1.06 0.94 
67 0.28 0.07 1.06 0.94 
68 0 0 1.06 0.94 
69 0 0 1.06 0.94 
70 0.66 0.2 1.06 0.94 
71 0 0 1.06 0.94 
72 0.12 0 1.06 0.94 
73 0.06 0 1.06 0.94 
74 0.68 0.27 1.06 0.94 
75 0.47 0.11 1.06 0.94 
76 0.68 0.36 1.06 0.94 
77 0.61 0.28 1.06 0.94 
78 0.71 0.26 1.06 0.94 
79 0.39 0.32 1.06 0.94 
80 1.3 0.26 1.06 0.94 
81 0 0 1.06 0.94 
82 0.54 0.27 1.06 0.94 
83 0.2 0.1 1.06 0.94 
84 0.11 0.07 1.06 0.94 
85 0.24 0.15 1.06 0.94 
86 0.21 0.1 1.06 0.94 
87 0 0 1.06 0.94 
88 0.48 0.1 1.06 0.94 
89 0 0 1.06 0.94 
90 1.63 0.42 1.06 0.94 
91 0.1 0 1.06 0.94 
92 0.65 0.1 1.06 0.94 
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93 0.12 0.07 1.06 0.94 
94 0.3 0.16 1.06 0.94 
95 0.42 0.31 1.06 0.94 
96 0.38 0.15 1.06 0.94 
97 0.15 0.09 1.06 0.94 
98 0.34 0.08 1.06 0.94 
99 0.42 0 1.06 0.94 
100 0.37 0.18 1.06 0.94 
101 0.22 0.15 1.06 0.94 
102 0.05 0.03 1.06 0.94 
103 0.23 0.16 1.06 0.94 
104 0.38 0.25 1.06 0.94 
105 0.31 0.26 1.06 0.94 
106 0.43 0.16 1.06 0.94 
107 0.5 0.12 1.06 0.94 
108 0.02 0.01 1.06 0.94 
109 0.08 0.03 1.06 0.94 
110 0.39 0.3 1.06 0.94 
111 0 0 1.06 0.94 
112 0.68 0.13 1.06 0.94 
113 0.06 0 1.06 0.94 
114 0.08 0.03 1.06 0.94 
115 0.22 0.07 1.06 0.94 
116 1.84 0 1.06 0.94 
117 0.2 0.08 1.06 0.94 
118 0.33 0.15 1.06 0.94 
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