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Abstract

The thesis is concerned with the coherent feedback control of linear quantum stochas-

tic systems. Two topics are considered:

1. Squeezing enhancement of degenerate parametric amplifiers (DPAs) via coher-

ent feedback control.

2. Coherent linear quadratic Gaussian (LQG) and H8 control of linear quantum

stochastic systems.

For topic 1, the definition of squeezing ratio is first introduced by means of quadra-

tures’ variances. An in-depth investigation of squeezing performance of lossy DPAs

is presented in the static case. A sufficient and necessary condition is proposed to

guarantee the effectiveness for the scheme of feedback loop. To overcome the conser-

vatism and achieve better squeezing performance, a coherent feedback control scheme

is proposed. The problem is converted into a non-convex constrained programming,

genetic algorithm (GA) and sequential quadratic programming (SQP) are applied in

numerical examples to obtain the local optima. Detailed implementation procedure

is also shown by using common optical instruments.

For topic 2, a class of open linear quantum systems is formulated in terms of

quantum stochastic differential equations (QSDEs) on a quantum probability space.

Physical realizability is also reviewed which guarantees the system to be a meaningful

quantum system. Then the standard quantum LQG and H8 control problems are

proposed based on the closed-loop plant-controller feedback control system. Under

vii



this framework, the mixed problem under consideration can be treated as a more

general schematic which encompasses both quantum LQG control and quantum H8

control. To solve the matrix polynomial equality constraints of physical realizability,

the problem is then reformulated into a rank constrained linear matrix inequali-

ty (LMI) problem which is solved by Matlab and the toolbox therein. Simulation

examples illustrate the advantages of the proposed method.
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Chapter 1

Introduction

1.1 Background

Control theory studies how to influence the behavior of dynamical systems, which

plays a significant role in the advance of human civilization as it provides a solid

theoretical foundation for mechanical manufacturing, computer networks, industrial

automation, intelligent vehicle systems, mobile robotics, aerospace engineering and

national defense, etc.. Although the application of control theory in various types

of systems can date back to antiquity, a more formal analysis of the field was pi-

oneered by dynamics analysis of centrifugal governor systems by Maxwell (1867),

which greatly promoted the development of control theory. In the past decades, the

rapid development of microtechnology and precision technologies makes it possible

to utilize control theory to manipulate systems at quantum scale, and thus the new

subject quantum control theory came into being. As a new-rising branch of control

theory, this challenging subject has been attracting extensive attention of scholars

among the whole academia.

While the first quantum revolution revealed to us the physical essence of the

world at micro-scale, the second quantum revolution impels scientists to make ful-

l use of these basic rules to develop more advanced technologies, see Dowling and

Milburn (2003). Nowadays, miniaturization and high-performance demand moti-
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vate us to observe and control a complex system governed by the laws of quantum

physics. However, what makes a control system quantum? So far as our current

knowledge, all systems can be regarded as quantum but the non-classical phenom-

ena could only be observed by using specific laboratory devices. For the purpose

of describing the unique features of quantum systems, Hudson and Parthasarathy

(1984) formulated stochastic systems in terms of quantum stochastic differential e-

quations (QSDEs). Various objectives such as quantum entanglement preservation,

coherence stabilization, state preparation and feedback error correction etc. could

be achieved by means of traditional measurement-based control schemes, see Xiang

and Xiong (2007), Bouten et al. (2007), Bouten et al. (2009), Doherty and Jacobs

(1999), Gardiner and Zoller (2004), Wiseman and Milburn (2010), Yamamoto et al.

(2007), Zhang et al. (2007), Lidar and Schneider (2005), van Handel et al. (2005),

Wiseman et al. (2002).

In this traditional picture of quantum feedback control schemes, though the plant

to be controlled is governed by quantum law, the controller processes measurement

outcomes which are classical and thus could be described classically. In principle,

this measurement-based feedback method for controlling a quantum system by a

feedback controller is to make a measurement on the system and then to produce

a control input whose value depends on measurement outcomes to drive the system

to a desired state. Though laboratory results have shown that measurement-based

feedback control can be applied effectively, limitation and drawbacks evidently exist.

First of all, measuring a quantum system will inevitably destroy its coherence. As

a result of measurement, the system jumps to one state or another probabilistically

which significantly complicates the control process. The well-known quantum non-

demolition (QND) procedure measures an external field, instead of directly on the

system itself. However, the state of the joint system-field is changed. Thus, if the

field is traced out, the state of the system will be changed, for more details, one can
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refer to Braginsky et al. (1980), Imoto et al. (1985), Holland et al. (1990), Kuzmich

et al. (2000).

To overcome the drawbacks brought by measurement-based feedback control, an

alternative control mechanism, coherent feedback control, has been theoretically pro-

posed by Wiseman and Milburn (1994a), Lloyd (2000), James et al. (2008), Nurdin

et al. (2009a), Zhang and James (2011), Zhang et al. (2012); and also experimently

demonstrated by Nelson et al. (2000), Mabuchi (2008), Iida et al. (2012). Coherent

feedback control is based on establishing a fully quantum feedback loop (in which

the sensor, controller, and actuator are all quantum systems) which abandons the

classic measurement, and the quantum coherent controller obtains quantum informa-

tion by interacting with the quantum plant directly or indirectly, and then processes

information coherently. Experiments demonstrate that coherent feedback controller

can perform tasks that the controller in a measurement-based feedback loop can-

not. Compared with measurement-based feedback control, coherent feedback con-

trol enjoys exceptional advantages: First of all, fully quantum devices will certainly

preserve quantum coherence within the whole feedback loop, see Wiseman and Mil-

burn (1994a), Lloyd (2000). Secondly, coherent feedback control makes each step

in the feedback loop completely reversible, thus is deterministic, see Lloyd (2000).

Moreover, in several coherent feedback schemes, it has a higher processing speed, see

Igarashi and Kikuchi (2008).

Recently, substantial development has been done in coherent feedback control

of quantum optical systems. For instance, quantum feedback network has been s-

tudied by Wiseman and Milburn (1994b), Yanagisawa and Kimura (2003a), Gough

and James (2009a), Gough and James (2009b), Nurdin et al. (2009b), James and

Gough (2010), Gough et al. (2010). James et al. (2008) discussed H8 control of

linear stochastic quantum systems, in which they also proposed an algebraic criteri-

on for physical realizability, by which one can design a coherent feedback controller
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to manipulate the system to achieve desired performance. Mabuchi (2008) designed

an optical experiment to illustrate the scheme proposed by James et al. (2008). A

quantum coherent LQG control problem was addressed by Nurdin et al. (2009a),

but unlike the H8 control problem discussed by James et al. (2008), the specific

character of LQG control makes the design of the coherent feedback controller a

formidable challenge, the authors proposed a complex numerical algorithm to obtain

the desired coherent feedback controller. Yanagisawa and Kimura (2003b) has for-

mulated the purely nonclassical feedback system, in which information is transferred

in quantum logic. As an important application, they also found that by the transfer

function approach, a quantum feedback system can generate squeezed states. Gough

and Wildfeuer (2009) proposed a detailed squeezing enhancement scheme based on a

coherent feedback theory. Zhang and James (2011) applied direct and indirect cou-

plings for coherent feedback control of linear quantum stochastic feedback systems,

in which they established the quantum version of dissipation theory, positive real

lemma, and bounded real lemma. Ideal squeezers and phase shifters were utilized by

Zhang et al. (2012) to design a coherent feedback control scheme for linear quantum

optical systems. The proposed optimization algorithm can be numerically verified to

achieve a better LQG performance compared with former works. Harno and Petersen

(2010a) proposed a differential evolution method to obtain an optimal quantum co-

herent controller. They have also studied the entanglement control problem as a case

study.

1.2 Literature review

1.2.1 Quantum squeezing of light

In quantum mechanics, Heisenberg’s Uncertainty Principle declares that the product

of two conjugate quadratures’ standard deviation is no less than a constant. Thus
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squeezing of a light field is essentially to suppress one quadrature’s uncertainty at

the expense of increasing that of the other. Such uncertainty is called quantum noise

which is a direct consequence of the existence of photons. Squeezed states of light

were first studied by scholars interested in the property such as generalized minimum-

uncertainty states, see Stoler (1970), Yuen (1976), Hollenhorst (1979), Caves (1981)

for details. And the first experimental realization of squeezed light was reported by

Slusher et al. (1985) using four-wave mixing in sodium atoms. Loudon and Knight

(1987) presented a detailed review on the research progress of squeezed light. Being

nonclassical states of light, squeezed states hold promising applications in the fields of

quantum information, quantum communication and high precision metrology, among

others, see Loudon and Knight (1987).

Squeezed states can be used to improve signal-to-noise ratio (SNR), thus weak

signals can be transmitted with the same SNR and the same light power. With this

important property, squeezed light is widely used in optical communication, opti-

cal measurements and quantum teleportation. For details, one may refer to Caves

(1981), Yamamoto and Haus (1986), Furusawa et al. (1998), Bowen et al. (2003) and

Noh et al. (2009). Moreover, Kraus and Cirac (2004) proposed that squeezed light

allows the generation of entanglement states of light, Ou et al. (1992) found that it al-

so provides experimental facility for demonstrating Einstein-Podolsky-Rosen (EPR)

paradox. It is worth mentioning that in the study of laser interferometric gravi-

tational wave detection, squeezed light is regarded as a key technology for future

generations of such detectors as it can be used to increase the detector sensitivity

without increasing the laser power, see Vahlbruch et al. (2005), Vahlbruch et al.

(2006). According to Schnabel (2008), squeezed vacuum states can correlate shot

noise and photon radiation pressure noise, thereby reducing the overall noise level

significantly. Additionally, several spectroscopic applications of squeezed light have

been proposed. Gardiner (1986) calculated the effect on atomic decay rates by re-
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placing the normal vacuum environment with a squeezed-vacuum-state light beam,

and Carmichael et al. (1987) determined the resonance fluorescence spectrum of a

driven atom under similar conditions. Finally, it has been shown that an order of

magnitude improvement in sensitivity could in principle be achieved in frequency

modulation laser spectroscopy by the use of currently available detectors in conjunc-

tion with squeezing of the frequency modulation sidebands, see Yurke and Whittaker

(1987).

Due to these and other far-reaching potential applications of squeezed light, con-

siderable efforts have been devoted to the study of generation and enhancement of

squeezing in quantum optics. Yuen and Shapiro (1979) first proposed the theo-

retical result that degenerate backward four-wave mixing could generate squeezed

light, which could be detected by homodyne beating. Milestone was established

by Slusher et al. (1985), where they successfully produced squeezed light by means

of four-wave mixing due to Na atoms in an optical cavity, the balanced homodyne

detector demonstrated that the total noise level in the suppressed quadrature drop-

s below the vacuum noise level. On the other hand, second-harmonic generation

is also a candidate to generate squeezed light. From aspect of photon statistics,

Kozierowski and Tana (1977) showed that the output light both at the fundamental

and at the second-harmonic frequency has sub-Poissonian photon statistics. Hillery

(1987) demonstrated that if the second harmonic is originally in a coherent state,

the square of the amplitude of the fundamental is squeezed. Moreover, calculations

therein provides a way to generate a squeezed second harmonic in a traveling wave

configuration. As an experimental realization, Sizmann et al. (1990) have observed

the intensity fluctuation of the second harmonic mode generated in a cavity pumped

by a Nd: YAG laser. As a mathematical method, Li and Kumar (1994) have studied

squeezing of both the fundamental and harmonic fields undergoing traveling waves,

second-harmonic generation in χp2q nonlinear media by linearizing the nonlinear op-
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erator equations around the mean-field values. By studying the squeezing spectra of

several intracavity nonlinear optical systems, Collett and Walls (1985) have found

that the perfect squeezing is in principle possible. Especially, they have theoretically

proposed that in order to approach zero fluctuation in one quadrature, one has to

operate near a critical point where the fluctuations in the other quadrature approach

infinity.

In principle, squeezing in a beam can also be generated by using another beam

which has non-classical correlation with the beam of interest, with either feedback or

feedforward. Pioneered by Jakeman and Walker (1985) and Machida and Yamamo-

to (1986), scientists began to use feedback mechanism to generate sub-possionian

states. Wiseman and Milburn (1994b) have proposed a QND quadrature measure-

ment scheme which could successfully generate perfect squeezed light via homodyne

feedback. However, this theory only holds when the cavity dynamics can produce

nonclassical light. By Wiseman et al. (1995), it is argued that difficulties of QND

measurement have made it unpopular in feedback-based squeezing enhancement. The

second-harmonic generation can produce nonclassical correlations between the two

output beams, when one of which is directly detected and the resulting photo-current

is used in the feedback loop, theoretical analysis shows that significant enhancemen-

t can be achieved. Another squeezing enhancement mechanism is investigated by

Barchielli et al. (2009), where the authors have discussed a trapped two-level atom

which is pumped by a coherent monochromatic laser. Based on the theory of homo-

dyne detection feedback proposed by Wiseman and Milburn (1994b), they studied

how feedback affects the spectrum of the fluorescence light and thus enhances its

squeezing performance.

It is well recognized that all the above schemes involve classical measurement

which inevitably disturbs the coherence of light in the process of measurement. It is

therefore natural to seek for alternative ways to generate squeezing. Yanagisawa and
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Kimura (2003b) have formulated a purely nonclassical feedback system, in which the

information is processed in quantum logic. The transfer function setup of quantum

version has provided a new standpoint of quantum mechanics. As an important ap-

plication, they have shown that such feedback system could achieve field squeezing.

The problem of squeezing enhancement of degenerate parametric amplifiers (DPAs)

via coherent feedback control has been studied recently by Gough and Wildfeuer

(2009), where they considered a dynamic DPA but only specialized to static lossless

cases. By putting a DPA in a loop mediated by a beam splitter, they showed that

arbitrary squeezing can be achieved provided that the DPA is lossless. Accordingly,

Iida et al. (2012) presented an experimental demonstration of optical field squeez-

ing, which agrees well with the theory taking into account time delays and losses

in the coherent feedback loop. These studies reveal the effectiveness of squeezing

enhancement via coherent feedback control. Nevertheless, coherent feedback-based

squeezing enhancement is still at its preliminary stage; systematic, first-principles

advanced feedback control methodologies have yet to be developed.

1.2.2 Coherent H8 and LQG control of linear stochastic quan-
tum systems

In control theory, the objective of a feedback control system design is to achieve

desired performance criterion in spite of external disturbances. Two foremost design

tools developed are H2 and H8 control, which are based on optimization theory aim-

ing at minimizing specific norms of a transfer function from exogenous disturbance

to a pertinent controlled output of the given plant. The performance objective of

H8 control is usually specified as an L2 disturbance attenuation problem with the

standard interpretation such as guaranteeing robust stability or tracking. By us-

ing optimization techniques, a designer synthesizes controllers to achieve closed-loop

robust performance or stabilization. On the other hand, assuming that the distur-
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bance and measurement noise are Gaussian stochastic processes with known power

spectral densities, the designer translates the design specifications into a quadratic

performance criterion represented by some state variables and control signal input-

s. The object of design then is to minimize the performance criterion by using an

appropriate feedback controller while at the same time guaranteeing the closed-loop

stability. That is known as linear quadratic Gaussian (LQG) control theory for linear

systems, which is a stochastic interpretation of H2 optimal control theory. Addition-

ally, it is also meaningful and thus desirable to investigate mixed H8/H2 (LQG)

control problems, in which not only robustness specifications (in terms of an H8

constraint) but also performance specifications (measured in H2 norm-like criteria or

upper bounds thereof) can be taken into account. However, intrinsic conflicts often

exist between achievable performance and system robustness, acceptable treatment

is to make some suitable trade-offs between them.

As quantum control theory develops as an emerging discipline, scientists found

that many research methodologies of classical control theory can be parallelly trans-

planted into quantum control theory. In principle, linear quantum stochastic systems

can be represented by stochastic differential equations (SDEs) like classical stochas-

tic systems do. Nevertheless, unique quantum characters have made that SDE with

arbitrary parameter values may not correspond to a physically meaningful quantum

system. Study shows that the quantum noncommutative relation will require the

SDE’s parameters to satisfy additional constraints, which are the so-called physical

realizability constraints, see James et al. (2008). Such SDEs are defined as quantum

stochastic differential equations (QSDEs), for details, refer to Gardiner and Collett

(1985), Gardiner et al. (1992), James et al. (2008), Nurdin et al. (2009b), Nurdin

et al. (2009a). James et al. (2008) have proposed a general framework of quantum

H8 control for a class of linear QSDEs. Based on the analysis of dissipation proper-

ties, a quantum version of bounded real lemma is developed, with which they have
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also derived necessary and sufficient conditions for quantum H8 control problems

in terms of a pair of Riccati equations. With such schematic established therein, a

quantum optical experiment is successfully implemented by Mabuchi (2008). A co-

herent quantum LQG control problem is studied by Nurdin et al. (2009a), the authors

have proposed an optimization algorithm, where the matrix polynomial equality con-

straints of physical realizability conditions are transformed into a rank constrained

LMI problem. A numerical procedure is proposed to yield a coherent quantum con-

troller to meet with the pre-specified LQG performance. Coherent control by direct

couplings is studied by Zhang and James (2011), where they have set up a gener-

al open quantum feedback network by direct and indirect coupling theory. As an

extended framework which encompasses both direct and indirect coupling schemes,

coherent H8 and LQG synthesis problems are solved by a multi-step optimization

algorithm. A dynamic game approach is proposed by Maalouf and Petersen (2010),

where the result of an equivalent auxiliary classical stochastic problem can be used

to solve the finite horizon H8 control problem for a class of linear quantum systems.

A class of large-scale linear complex quantum stochastic systems with unstructured

uncertainty is considered by Harno and Petersen (2010b). Instead of considering the

uncertainty interconnection, the authors treat the off-diagonal blocks of the transfer

function matrix of a non-decentralized linear coherent quantum controller as additive

uncertainties. It can be verified that the resulting decentralized coherent quantum

controller is not only robust against unstructured uncertainties and additive uncer-

tainties, but also meet the specified disturbance attenuation. In addition, a class

of linear passive quantum systems is discussed by Maalouf and Petersen (2011a),

in which the system can be modeled purely in terms of annihilation operators. A

complex quantum version of the bounded real lemma, the strict bounded real lemma

and the lossless bounded real lemma are presented. Based on the results obtained,

the H8 control problem for a class of linear passive quantum systems has been in-
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vestigated by Maalouf and Petersen (2011b). And the coherent quantum controller

can be obtained by solving a pair of complex algebraic Riccati equations. Finally,

a couple of papers have presented detailed review on the H8 and LQG control of

linear stochastic quantum systems, see Dong and Petersen (2010), Zhang and James

(2012).

1.3 Summary of contributions of the thesis

The original contributions of this thesis are as follows:

• An in-depth analysis of squeezing performance of lossy DPAs are presented.

Dynamical systems of lossy DPA are formulated in terms of QSDEs, numerical

analysis of the squeezing ratios for the systems are given in terms of systems’

transfer functions. To achieve better squeezing performance, an efficient coher-

ent feedback control technique is proposed. The problem is then reformulated

into a constrained nonlinear programming problem, which can be solved based

on genetic algorithms (GA) and sequential quadratic programming (SQP). It

is shown that the squeezing performance is significantly improved compared

with former works. Finally, a detailed implementation scheme is presented by

means of quantum optical devices. This study demonstrates that a systemat-

ic coherent feedback control design is promising in squeezing enhancement in

quantum optics.

• Elaborate formulation of mixed LQG/H8 coherent feecdback control problem-

s of linear quantum stochastic systems has been investigated, which can be

viewed as a more general version of quantum LQG control problem or H8

control problem. An LMI based optimization approach is proposed to design

a fully quantum controller to meet with both LQG and H8 performance. A
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cavity and a DPA are chosen as systems to be controlled in the numerical ex-

amples to illustrate the validity of the scheme, results show that some suitable

trade-offs should be made between LQG performance and H8 performance as

the intrinsic conflicts exist. Realization scheme of the coherent feedback con-

trollers is also given by means of quantum optical devices based on the quantum

network synthesis theory.

1.4 Organization of the thesis

The thesis is structured as follows.

• Chap. 2 reviews the preliminary knowledge of quantum control which includes

some basic concepts of linear quantum systems, such as states and observables.

Then the evolution of closed quantum systems is presented in terms of QSDEs.

With the brief introduction of quantum fields, a general model of linear quan-

tum stochastic systems is presented. By (S, L,H) parameterization, several

kinds of quantum networks are reviewed.

• Chap. 3 focuses on squeezing performance analysis and squeezing enhancement

of DPAs. First, the definition of squeezing ratio is proposed by using variance

of quadratures. Then squeezing performance analysis of lossy DPAs is given

for the cases of open loop and feedback loop. Then, a new coherent feedback

control approach is presented to enhance squeezing performance. Finally, de-

tailed implementation procedures of the resulting coherent feedback controllers

are given in terms of quantum optical devices.

• Chap. 4 is devoted on mixed LQG/H8 control of linear quantum stochastic sys-

tems. A general model of open linear quantum systems is presented, and phys-

ical realizability of linear QSDEs is reviewed. The standard mixed LQG/H8

12



control problem is established in terms of the composite plant-controller system.

To resolve the polynomial equality constraints due to physical realizability, the

problem is then reformulated into a rank constrained optimization problem

which can be solved by using Matlab and toolboxes therein. Finally, numerical

examples are shown to demonstrate the effectiveness of the algorithm.

• Chap. 5 concludes the whole thesis and plans for the future work.
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Chapter 2

Linear quantum stochastic systems

The purpose of this chapter is to discuss the formulation of linear quantum stochastic

systems. We begin with the basic concepts of quantum states, observables and the

Schrodinger’s equation for closed systems. Of particular importance is the setup of

linear quantum stochastic models of open linear quantum systems coupled to bosonic

fields. Finally, we review the theory of quantum networks by pS, L,Hq parameteriza-

tion (refer to James et al. (2008), Nurdin et al. (2009b), Gough and James (2009b),

Gough et al. (2010), Zhang and James (2012) for more details). The whole frame-

work of linear quantum stochastic systems is based on quantum probability, which

is the noncommutative counterpart of Kolmogorov’s axiomatic characterization of

classical probability theory, we refer readers to Accardi et al. (1982), Hudson and

Parthasarathy (1984), Parthasarathy (1992), Meyer (1995), Bouten et al. (2007) for

more details.

2.1 Basic concepts of linear quantum systems

2.1.1 States and observables

A state of a physical system usually contains the status of the system that enables

the calculation of statistical quantities associated with observables. To each quan-

tum mechanical system, there corresponds a Hilbert space H, and each state of the
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quantum system is represented by an element of H, written by |ψy P Rn. Following

Dirac notation, |ψy is called a ket, and its dual is denoted by xψ| which is called

a bra. Algebraically, |ψy and xψ| correspond to a column vector and a row vector,

respectively. Thus, the inner product of |ψ1y and |ψ2y is defined by xψ1|ψ2y.

Generally, if we consider the situation in which the system is prepared with

probabilities Pi in various states |ψiy, pi “ 1, 2, 3, ...q, we can define the density

operator ρ, to be

ρ “
ÿ

i

Pi|ψiyxψi| (2.1)

with such characteristics: (i) self-adjoint on H that is positive ρ ě 0; (ii) normalized

as Trrρs “ 1. It is obvious that all the measurable information is contained in the

density operator.

Physical quantities such as position, momentum, spin, etc. are represented by

self-adjoint operators on H which are called observables (see Yanagisawa and Kimura

(2003a), Bouten et al. (2007)). Given a system in state |ψy, the expected value of

an observable X is

xXy “ xψ|X|ψy “ Tr rρXs . (2.2)

According to the spectral theorem, if X is a normal operator (XX: “ X:X) on a

finite dimensional Hilber space H, X can be written as

X “
ÿ

xPspecpXq

xPx, (2.3)

where specpXq denotes the set of eigenvalues of X, and Px is the projection operator

on the associated eigenspace satisfying

Px “
ÿ

xj“x

|xjyxxj|, (2.4)

I “
ÿ

xPspecpXq

Px, (2.5)
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where {|xjy} pj “ 1, ...nq are orthonormal eigenvectors corresponding to eigenvalue

x.

A linear quantum system can be viewed as a collection of n quantum harmonic

oscillators which can be represented by annihilation operators a “ ra1, ..., ans
T which

are defined as:

aj “
1
?

2
pqj ` ipjq , (2.6)

and its adjoint a# “ ra˚1 , ..., a
˚
ns
T is called creation operator with

a˚j “
1
?

2
pqj ´ ipjq , (2.7)

where q and p are basic operators that correspond to the position and momentum

observables of a system, respectively, defined by

pqψqpqq “ qψpqq,

ppψqpqq “ ´i
B

Bq
ψpqq

(2.8)

for ψ P H, and the Planck’s constant ~ is reduced to be 1 for simplicity.

It can be found that a and a# are not self-adjoint operators, and satisfy the

commutation relation
“

a, a:
‰

“ I (2.9)

where rX, Y s denotes the commutator defined by rX, Y s :“ XY ´ Y X.

2.1.2 Evolution of closed linear quantum systems

According to quantum mechanics the state vector |ψptqy evolves in time according

to the schrödinger equation,

d

dt
|ψptqy “ ´iH|ψptqy, (2.10)

17



where H is the Hamiltonian of the system that corresponds to the observable of

energy. According to Zhang and James (2011), H is given by

H “
1

2
ă:
„

Ω´ Ω`
Ω#
` Ω#

´



ă, (2.11)

where Ω´ and Ω` P Cnˆn satisfying Ω´ “ Ω:´ and Ω` “ ΩT
`.

The solution of the Schrödinger equation may be represented in terms of the

unitary time-evolution operator Uptq which transforms the state |ψp0qy at an initial

time t0 “ 0 to the state |ψptqy at time t,

|ψptqy “ Uptq|ψp0qy. (2.12)

Thus combining (2.10) and (2.12), we may get a Schrödinger equation for the

time-evolution operator Uptq,

d

dt
Uptq “ ´iHUptq, (2.13)

with the initial condition Up0q “ I.

In the Heisenberg picture, the annihilation operators evolve according to ajptq “

U˚ptqajUptq, which yields the quantum differential equation of a,

9ajptq “ ´i rajptq, Hs , ajp0q “ aj. (2.14)

By substituting (2.11) into (2.14), we obtain the following lienar differential e-

quation in the compact form

9̆aptq “ Aăptq (2.15)

where A “ ´∆piΩ´, iΩ`q.

2.2 Open linear quantum systems

Generally, a quantum system is never completely isolated from its environment.

Such quantum systems are said to be open quantum systems. In this section, we
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turn to the notion of linear quantum stochastic models which are used to provide

tractable models for how open linear quantum systems evolve by interacting with

environments.

2.2.1 Quantum fields

In quantum field theory, a boson quantum field can be defined on a Fock space F

consisting of a collection of m channels (light fields) each with annihilation operators

bjptq and creation operators b˚j ptq satisfying the singular commutation relations

rbjptq, b
˚
kpt

1
qs “ δjkδpt´ t

1
q,

rbjptq, bkpt
1
qs “ rb˚j ptq, b

˚
kpt

1
qs “ 0 pj, k “ 1, ...,mq

(2.16)

for all t and t1, where δptq is the Dirac delta function.

In this thesis, we consider the boson fields in vacuum state, which is a nat-

ural quantum extension of white noise, and can be described using the quantum

Itō calculus (see Hudson and Parthasarathy (1984), Gardiner and Collett (1985),

Parthasarathy (1992), Bouten et al. (2007) for details). Define three fundamental

integrated field operators as follows

Bjptq “

ż t

0

bjpsqds, B˚j ptq “

ż t

0

b˚j psqds, Λjkptq “

ż t

0

b˚j psqbkpsqds. (2.17)

These field operators may be regarded as quantum stochastic processes (Gardiner

and Zoller, 2004, Chapter 5) with non-zero Itō products

dBjptqdB
˚
k ptq “ δjkdt,

dΛjkdB
˚
l ptq “ δkldB

˚
j ptq

dBjptqdΛklptq “ δjkdBlptq,

dλjkptqdΛlmptq “ δkldΛjmptq, pj, k, l “ 1, ...,mq.

(2.18)
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2.2.2 Linear quantum stochastic models with pS, L,Hq pa-
rameterization

As studied above an open linear quantum system G can be viewed as a collection of

n quantum harmonic oscillators aptq interacting with an m-channel quantum fields

such a system can be specified by a triple of physical parameters pS, L,Hq on Hilbert

space H (see Gough and James (2009b)). In this triple S is a scattering matrix of

dimension m which is unitary; and L is a vector of coupling operators defined by

L “ C´a` C`a
# (2.19)

where C´ and C` P Cmˆn; H is the Hamiltonian describing the self-energy of the

system, satisfying (2.11).

In terms of the parameters S, L and H, the dynamics of the open linear quan-

tum system G can be described by the unitary evolution operator Uptq solving the

stochastic Schrödinger equation

dUptq “

"

dB:ptqL´ L:SdBptq ´

ˆ

1

2
L:L` iH

˙

dt` TrrpS ´ ImqdΛT
s

*

(2.20)

with initial value Up0q “ I, and Λ is a m by m matrix with entries Λjk, c.f. (2.17).

An important feature of this type of open linear quantum model is the input-

output behavior. Boutptq is used to denote the field after the interaction, which

satisfies Boutptq “ U˚ptqBptqUptq. As the annihilation operators evolve following

ajptq “ U˚ptqajUptq, the system can be represented by such QSDEs in Stratonovich

form

9̆aptq “ Aăptq `Bb̆ptq, ăp0q “ ă,

b̆outptq “ Căptq `Db̆ptq.

(2.21)

As shown by Gough and Wildfeuer (2009), Gough et al. (2010), the matrix coeffi-

cients pA,B,C,Dq of (2.21) and the physical parameters pS, L,Hq have the following
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corresponding relations

A “ ´
1

2
C5C ´ iJn∆pΩ´,Ω`q, B “ ´C5∆pS, 0q,

C “ ∆pC´, C`q, D “ ∆pS, 0q.

(2.22)

In the transfer function form (see Zhou et al. (1996)), G is written as Ξpsq “ D `

CpsI ´ Aq´1B.

So far, we have represented linear quantum stochastic systems in terms of anni-

hilation and creation operators, such form as (2.21) is usually called annihilation-

creation form. In addition, there is an alternative representation which can be ob-

tained by a simple linear transformation of annihilation-creation form, and is referred

to as quadrature form.

Define a unitary transformation matrix

Λn “
1
?

2

„

In In
´iIn iIn



. (2.23)

Then define quadrature form operators

x “ Λnă, b̃out “ Λmb̆out, b̃ “ Λmb̆. (2.24)

The quadrature form of (2.21) may be written as

dxptq “ Ãxptqdt` B̃dB̃ptq,

dB̃outptq “ C̃xptqdt` D̃dB̃ptq,
(2.25)

where

Ã “ ΛnAΛ:n, B̃ “ ΛnBΛ:m, C̃ “ ΛmCΛ:n, D̃ “ ΛmDΛ:m, (2.26)

and the quadrature form of the system transfer matrix can be obtained immediately,

which is

Ξ̃psq “ C̃psIn ´ Ãq
´1B̃ ` D̃ “ ΛmΞpsqΛ:m. (2.27)

21



2.3 Quantum networks by interconnection

As discussed in the above section, the quantum harmonic oscillators can be described

by the parameters pS, L,Hq. Moreover, these parameters also provide a powerful

tool for analyzing the interconnection of linear quantum stochastic systems. In this

section, we review several kinds of quantum networks which are established by using

parameters pS, L,Hq. In the following, we begin with the definition of concatenation

product and series product.

G1 

G2 

 

b1 

b2,out 

 

b1,out 

 

b2 

 

Figure 2.1: Concatenation product G1 ‘ G2.

Definition 2.1 (Concatenation product proposed by Gough and James (2009b)).

Given two systems G1 “ pS1, L1, H1q and G2 “ pS2, L2, H2q, see Fig. 2.1, we define

their concatenation to be the system G1 ‘ G2 by

G1 ‘ G2 “

ˆ„

S1 0
0 S2



,

„

L1

L2



, H1 `H2

˙

. (2.28) 

G1 G2 

 

b bout 

 

Figure 2.2: Series product G2 ŸG1.
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Definition 2.2 (Series product proposed by Gough and James (2009b)). Given two

systems G1 “ pS1, L1, H1q and G2 “ pS2, L2, H2q with the same number of field

channels, see Fig. 2.2, the series product G2 ŸG1 is defined by

G2 ŸG1 “

ˆ

S2S1, L2 ` S2L1, H1 `H2 `
1

2i

´

L:2S2L1 ´ L
:

1S
:

2L2

¯

˙

. (2.29)

f 

G 

u1 

 
 

y1 

 

u2 

 
 

y2 

 

Figure 2.3: Linear fractional transformation F pGq.

Problem 2.1 (Linear fractional transformation studied by Gough and James (2009b),

Gough et al. (2010) and Zhang and James (2012)). Assume G is a four-port system

with input fields u “ pu1, u2q
T and output fields y “ py1, y2q

T as shown in Fig. 2.3, the

parameters is given by

ˆ„

S11 S12

S21 S22



,

„

L1

L2



, H

˙

. If the the system is put in a feedback

setup with u2 “ y2, then the feedback system F pGq can be obtained by applying the

linear fractional transformation

F pGq “
´

S11 ` S12pI ´ S22q
´1S21, L1 ` S12pI ´ S22q

´1L2,

H ` ImtL:1S12pI ´ S22q
´1L2u ` ImtL:2S22pI ´ S22q

´1L2u

¯

(2.30)

from u1 to y1, where Imt‚u denotes the imaginary part of ‚. Here we assume

that I ´ S22 is nonsingular.
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Phase shift 

b1 

b2 

b2,out 

 
b1,out 

 

a 

 

M1 M2 

Figure 2.4: Cavity in a feedback loop.

In the following, we present an example as application of the products defined

above, in which all the components involved are fully quantum.

Example 2.1 (Cavity in a feedback loop proposed by Wiseman and Milburn (1994a)

and Gough and James (2009b)). We reconsider the all-optical feedback example s-

tudied by Wiseman and Milburn (1994a) and Gough and James (2009b). The cavity

consists of a pair of partially transmitting mirrors M1 and M2. Input light field b1

first irradiates on M1 and interacts with the internal cavity mode a and thus yields

an output beam b1,out. Then b1,out goes through a phase shifter S “ eiθ when re-

flected by M2. Detailed schematic is shown in Fig. 2.4. Assume both M1 and M2

have the same transmittivity, and the coupling operator for the two field channels are

L1 “ L2 “
?
γa, where γ is the damping rate.

Before feedback, the cavity and the phase shifter are specified by

Gc “

ˆ„

I 0
0 I



,

„

L1

L2



, 0

˙

, and Gp “ pS, 0, 0q, respectively. Therefore we can

calculate the closed-loop feedback system as

Gcl “ pI, L2, 0, q Ÿ pS, 0, 0q Ÿ pI, L1, 0q

“

ˆ

S, SL1 ` L2,
1

2i
pL˚2SL1 ´ L

˚
1S

˚L2q

˙

“
`

eiθ,
`

I ` eiθ
˘?

γa, γ sin θa˚a
˘

.

(2.31)
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As the cavity and the phase shifter of the system are all static components, we may

derive the QSDE of the closed-loop system in terms of annihilation operators based

on the corresponding relations given in (2.22)

9aptq “ ´pI ` eiθqγaptq ´ pI ` eiθq
?
γb1ptq

b2,outptq “ pI ` e
iθ
q
?
γaptq ` eiθb1ptq.

(2.32)
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Chapter 3

Squeezing enhancement of

degenerate parametric amplifiers

The main purpose of this chapter is to present an in-depth investigation of squeez-

ing performance of lossy DPAs and present a coherent feedback control approach

to achieving better squeezing performance in the lossy case. Here we focus on the

case that the DPA is lossy as the noise will affect the squeezing performance and

perfect squeezing (see Collett and Walls (1985)) does not exist. Therefore the cen-

tral problem is to design a coherent feedback control scheme to improve squeezing

performance. It turns out that such problem can be formulated into a problem of

constrained nonlinear programming, which is solved by combining genetic algorithms

and sequential quadratic programming. We show that in the lossy case, in contrast

to the scheme proposed by Gough and Wildfeuer (2009), the method proposed in

this paper can enhance squeezing significantly, cf. Table 3.1. This study demon-

strates that a systematic coherent feedback control design is promising in squeezing

enhancement in quantum optics.

3.1 Squeezing ratio

We assume the quantum system G is an m´channel input-output squeezing compo-

nent which is initialized in vacuum state. Interaction of G with the boson input field
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b̃inpωq may produce the output field b̃outpωq. For each i “ 1, . . . ,m, denote

b̃in,ipωq “

„

Qin,ipωq
Pin,ipωq



, b̃out,ipωq “

„

Qout,ipωq
Pout,ipωq



, (3.1)

where the capital letters Q and P denote amplitude and phase quadratures, re-

spectively. Assume the input fields are standard quantum white noise Shapiro and

Wagner (1984), that is,

xQin,ipωqy “ xPin,ipωqy ” 0, @ω P R,

and

VarpQin,ipωqq “ VarpPin,ipωqq ”
1

2
, @ω P R. (3.2)

Under the assumption of initial vacuum state for the system involved, the output

field has zero mean, that is,

xQout,ipωqy “ xPout,ipωqy ” 0, @ω P R.

Consequently, variances of its two quadratures are

VarpQout,ipωqq “ xQout,ipωq
2
y, (3.3a)

VarpPout,ipωqq “ xPout,ipωq
2
y. (3.3b)

Though the input fields are standard quantum white noise, interaction with the

linear quantum optical system G may produce output field which does not satisfy

(3.2), that is, one quadrature might be amplified whereas the other squeezed.

Definition 3.1 (squeezing ratio (Bian et al. (2012))). The squeezing ratio of quantum

input-output system is given by the ratio of the variance of output quadrature and

the corresponding input quadrature. To be more specific, the squeezing ratio of the

amplitude quadrature is given by µqpωq “
xQout,1pωq2y

xQin,1pωq2y
, and the squeezing ratio of the

phase quadrature is given by µppωq “
xPout,1pωq2y

xPin,1pωq2y
.
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Remark 3.1. It should be noted that all xQout,1pωq
2y, xQin,1pωq

2y, xPout,1pωq
2y, and

xPin,1pωq
2y are impulsive functions multiplied by scalars. Nevertheless, the ratios

µqpωq and µppωq are not impulsive functions, that is, the impulsive functions are

canceled. This can be seen from the proof of Theorem 3.2.

3.2 Analysis of squeezing performance

In this section, we present a detailed analysis of the squeezing performance of a lossy

DPA.

3.2.1 Lossy DPA

A lossy DPA is a linear quantum optical system interacting with two independent

boson fields (m “ 2) (Leonhardt (2003), Gardiner and Zoller (2004)). The schematic

is shown in Fig. 3.1.

Figure 3.1: Lossy DPA.

The DPA interacts with the input field bin,1 and produces an output field bout,1.

Moreover, the DPA is assumed to be lossy, which is modeled as interaction with a

vacuum input field bin,2. In the pS, L,Hq language, the lossy DPA has parameters

S “ I, Ω´ “ 0, Ω` “
iε

2
, C´ “ r

?
κ
?
γsT , C` “ 0,

where 0 ă ε ă κ ` γ is assumed for Hurwitz stability (Gough et al. (2010), Zhou

et al. (1996)). According to the corresponding relation (2.22), we may present the
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system in the QSDE form

dăptq “

„

´
κ`γ

2
ε
2

ε
2

´
κ`γ

2



ăptqdt´
?
κdB̆in,1ptq ´

?
γdB̆in,2ptq,

dB̆out,1ptq “
?
κăptqdt` dB̆in,1ptq,

dB̆out,2ptq “
?
γăptqdt` dB̆in,2ptq.

(3.4)

By using transformation matrix Λ “ 1?
2

„

1 1
´i i



, the system can be transferred in

the quadrature form

dxptq “

„

ε´κ´γ
2

0
0 ´ε´κ´γ

2



xptqdt´
?
κdB̃in,1ptq ´

?
γdB̃in,2ptq,

dB̃out,1ptq “
?
κxptqdt` dB̃in,1ptq,

dB̃out,2ptq “
?
γxptqdt` dB̃in,2ptq.

(3.5)

Therefore we have the following input-output relations in the frequency domain

Qout,1psq “

ˆ

1´
2κ

κ´ ε` γ ` 2s

˙

Qin,1psq `
2
?
γκ

ε´ κ´ γ ´ 2s
Qin,2psq,

Pout,1psq “

ˆ

1´
2κ

ε` κ` γ ` 2s

˙

Pin,1psq ´
2
?
γκ

ε` γ ` κ` 2s
Pin,2psq.

(3.6)

Assume that input fields bin,1 and bin,2 are independent standard quantum white

noise. Then it can be found that

VarpQout,1pωqq “

˜

ˇ

ˇ

ˇ

ˇ

1´
2κ

κ´ ε` γ ` 2iω

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

2
?
γκ

ε´ κ´ γ ´ 2s

ˇ

ˇ

ˇ

ˇ

2
¸

xQin,1pωq
2
y.

According to Definition 3.1, the squeezing ratio of the amplitude quadrature is

µqpωq “
xQout,1pωq

2y

xQin,1pωq2y
“

ˇ

ˇ

ˇ

ˇ

1´
2κ

κ´ ε` γ ` 2iω

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

2
?
γκ

ε´ κ´ γ ´ 2iω

ˇ

ˇ

ˇ

ˇ

2

(3.7)

Similarly, the squeezing ratio of the phase quadrature is

µppωq “
xPout,1pωq

2y

xPin,1pωq2y
“

ˇ

ˇ

ˇ

ˇ

1´
2κ

ε` κ` γ ` 2iω

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

2
?
γκ

ε` γ ` κ` 2iω

ˇ

ˇ

ˇ

ˇ

2

. (3.8)
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The following example illustrates the squeezing performance of the lossy DPA.

Example 3.1. Assume the physical parameters to be γ “ 0.2, κ “ 0.6, ε “ 0.2, and

plot the graph of µp and µq versus frequency ω in Fig. 3.2. It can be easily seen that

µp tends to 0.5200 and µq goes to 2.333 as ω Ñ 0`. That is, the phase quadrature is

squeezed.
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Figure 3.2: Squeezing ratios of quadratures of the lossy DPA.

3.2.2 Lossy DPA in feedback loop

To enhance squeezing performance of DPAs, Gough and Wildfeuer (2009) proposed

to put a DPA into a feedback loop closed by a beam splitter. The setup is shown in

Fig. 3.3.

Figure 3.3: Lossy DPA in feedback loop.
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The beam splitter in Fig. 3.3 is a static device which can be modeled as

„

bout,1
v



“ SBM

„

bin,1
u



, (3.9)

where

SBM “

„

α
?

1´ α2
?

1´ α2 ´α



(3.10)

with 0 ď α ď 1.

By means of linear fractional transformation (LFT) (James and Gough (2010),

Zhou et al. (1996)), the closed-loop system in Fig. 3.3 can be written as

dăptq “

„

´κ`ακ´γ´γα
2`2α

ε
2

ε
2

´κ`ακ´γ´γα
2`2α



ăptqdt

´

a

κp1´ α2q

1` α
dB̆in,1ptq ´

?
γdB̆in,2ptq,

dB̆out,1ptq “

a

κp1´ α2q

1` α
ăptqdt` dB̆in,1ptq,

dB̆out,2ptq “
?
γăptqdt` dB̆in,2ptq.

(3.11)

Clearly, when α “ 0, system (3.11) reduces to system (3.4).

Remark 3.2. To guarantee the Hurwitz stability of the system (3.11), it is required

that 0 ă ε ă γ ` 1´α
1`α

κ.

Using a procedure similar to that in Sec. 3.2.1, we find the squeezing ratio

µqpωq “
xQout,1pωq

2y

xQin,1pωq2y

“

ˇ

ˇ

ˇ

ˇ

γ ´ ε´ κ` 2iω ´ αε` αγ ` ακ` 2iαω

γ ´ ε` κ` 2iω ´ αε´ ακ` αγ ` 2iαω

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

2
a

γκp1´ α2q

ε´ κ´ γ ´ 2iω ` αε` ακ´ αγ ´ 2iαω

ˇ

ˇ

ˇ

ˇ

ˇ

2

,

(3.12)
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and

µppωq “
xPout,1pωq

2y

xPin,1pωq2y

“

ˇ

ˇ

ˇ

ˇ

ε` γ ´ κ` 2iω ` αε` ακ` αγ ` 2iαω

ε` κ` γ ` 2iω ` αε` αγ ´ ακ` 2iαω

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

2
a

γκp1´ α2q

ε` κ` γ ` 2iω ` αε´ ακ` αγ ` 2iαω

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

(3.13)

When the DPA is lossless (namely, γ “ 0), it can be seen that the second terms

of µp and µq are both 0. Moreover, when α “ κ´ε
κ`ε

, µp goes to 0 and µq tends to

8 when ω Ñ 0. This is the case of the so-called infinite squeezing (Gough and

Wildfeuer, 2009, Sec. V). In this paper, we are interested in squeezing performance

in the presence of loss, as is always the case in practice. In this case, the second

terms of µp and µq are in general not 0 any more.

Theorem 3.1. The feedback loop scheme proposed by Gough and Wildfeuer (2009)

can improve squeezing performance over open lossy DPA shown in Fig. 3.1 in the

static case if and only if 0 ă ε ă κ´ γ.

Proof. Above all, according to Remark 3.2, it is required α ă κ´ε`γ
κ`ε´γ

:“ α‹ to preserve

Hurwitz stability of the closed-loop system.

Moreover, in the static case where ω “ 0, (3.13) can be calculated as

µp “

ˆ

ε` γ ´ κ` αε` ακ` αγ

ε` κ` γ ` αε` αγ ´ ακ

˙2

`

˜

2
a

γκp1´ α2q

ε` κ` γ ` αε´ ακ` αγ

¸2

“ 1´
4εκ

p
ε`γ
?
β
` κ

?
βq2

.

where we let β “ 1´α
1`α

P r0, 1s. To minimize (3.14), we need to consider two cases:

case 1 κ ą ε ` γ. It is easy to see that µp ď
γ
ε`γ

, where the equality holds if and

only if ε`γ
?
β
“ κ

?
β. That is, α “ κ´ε´γ

κ`ε`γ
ă α‹.
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case 2 κ ď ε`γ. In this case, the minimal value of µp is obtained when β “ 1, α “ 0,

and µp “ 1´ 4εκ
pε`γ`κq2

. Therefore in this case the feedback scheme proposed by

Gough and Wildfeuer (2009) has no advantage over the lossy DPA in the open

loop.

To summarize, the feedback loop scheme can achieve better squeezing perfor-

mance compared with open lossy DPA in the static case if and only if 0 ă ε ă κ´ γ.

To be more specific, the minimal value of squeezing ratio µp “
γ
ε`γ

is obtained when

α “ κ´ε´γ
κ`ε`γ

. This completes the proof.

Example 3.2. Using the same parameter values as in Example 3.1, we find that the

minimal value of µp is 0.500 obtained when α “ 0.2 as ω Ñ 0`. Compared with the

case of the lossy DPA (µp “ 0.5200), the squeezing performance has been enhanced

only slightly by this method. It can be seen that µq is amplified from 2.333 to 3, and

the product of µp and µq is also amplified from 1.2132 to 1.5. The corresponding

graph of µp and µq versus frequency ω is shown in Fig. 3.4.
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Figure 3.4: Squeezing ratios of quadratures by feedback scheme.
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3.3 Coherent feedback controller design

In this section we present a new coherent feedback controller design method to en-

hance the DPA’s squeezing performance. The controller is assumed to be another

quantum oscillator which is series connected with a DPA, and closed by a beam

splitter, see Fig. 3.5. Here the controller K is driven by a vacuum input field win

which is used to describe the loss in the controller.

Figure 3.5: Schematic of plant-controller system G.

3.3.1 Formulation of the quantum coherent controller

Assume that the controller K in Fig. 3.5 to be designed is also a quantum system

which can be viewed as a collection of k quantum harmonic oscillators coupling with

l-channel quantum field, thus it can be parameterized by

SK “ I,

LK “ CK´aK ` CK`a
˚
K ,

HK “
1

2
ă˚K

„

ΩK´ ΩK`

Ω#
K` Ω#

K´



ăK ,

(3.14)

where CK´ and CK` P Clˆk, ΩK´ and ΩK` P Ckˆk satisfying ΩK´ “ Ω:K´ and

ΩK` “ ΩT
K`.
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3.3.2 The plant-controller closed-loop system

We consider the simple case where k “ 1 and l “ 2. Assume the controller to be

designed is specified by the following parameters

SK “ I,

LK “

„?
x1?
x2



aK `

„?
x3?
x4



a˚K ,

HK “
1

2
ă˚K

„

x5 x6

x˚6 x5



ăK ,

(3.15)

where x1, x2, x3, x4 P R`, x5 P R and x6 P C are scalar variables to be determined 1.

We also assume that this coherent feedback controller is initialized in vacuum state.

Based on the plant’s equations obtained in Sec. 3.2.1, we may get the composite

closed-loop system’s dynamics and output equations

9̆apptq “ Apăpptq `
α
?
κ

1` α
M1ăkptq ´

c

κp1´ αq

1` α
b̆in,1ptq ´

?
γb̆in,2ptq,

9̆akptq “ ´

?
κ

1` α
M2ăpptq ` Akăkptq ´

c

1´ α

1` α
M2b̆in,1ptq ´Nw̆inptq,

b̆out,1ptq “

c

κp1´ αq

1` α
ăpptq `

c

1´ α

1` α
M1ăkptq ` b̆in,1ptq,

(3.16)

where

Ap “ Ap0 ` Apb “

„

´
κ`γ

2
ε
2

ε
2

´
κ`γ

2



`

„

ακ
1`α

0

0 ακ
1`α



,

Ak “ Ak0 ` Akb

“

«

´
px1`x2´x3´x4q

2
´ ix5 ´ix6

ix˚6 ´
px1`x2´x3´x4q

2
` ix5

ff

`

„

α
1`α
px1 ´ x3q 0

0 α
1`α
px1 ´ x3q



,

M1 “

„?
x1

?
x3?

x3
?
x1



, M2 “

„ ?
x1 ´

?
x3

´
?
x3

?
x1



, N “

„ ?
x2 ´

?
x4

´
?
x4

?
x2



.

1 In general, couplings matrices CK´ and CK` are complex matrices. But here they are confined
to real matrices for simplicity.
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3.3.3 Control objectives and methodologies

Based on the relationship given by (2.26), the quadrature form of (3.16) can be

easily obtained. Denoting the quadrature form system transfer matrix by Ξ̃psq “

rξ̃pxi, sqj,ks, i “ 1, 2, ..., 6; j “ 1, 2; k “ 1, 2, ..., 6, which can be derived via (2.27).

In order to get the squeezing ratio, we need the following theorem.

Theorem 3.2. If the quantum input-output system is described in transfer function

form with quadrature variables

„

Qoutpωq
Poutpωq



“

„

a11pωq a12pωq
a21pωq a22pωq

 „

Qinpωq
Pinpωq



, (3.17)

where aij pi, j “ 1, 2q are real functions of ω defined in the frequency domain. Then

squeezing ratios of the quantum system can be written as

µqpωq “ |a11pωq|
2
` |a12pωq|

2
` ipa˚11pωqa12pωq ´ a

˚
12pωqa11pωqq,

µppωq “ |a21pωq|
2
` |a22pωq|

2
` ipa˚21pωqa22pωq ´ a

˚
22pωqa21pωqq.

(3.18)

Proof. Using the linear relations stated above, we have the variance expression of

the output amplitude quadrature

xQoutpωq
2
y “ |a11pωq|

2
xQinpωq

2
y ` |a12pωq|

2
xPinpωq

2
y

` a11pωqa
˚
12pωqxQinpωqPinpωqy

` a12pωqa
˚
11pωqxPinpωqQinpωqy.

(3.19)

As b̃in “ Λmb̆in, we have

Qinpωq “
1
?

2
binpωq `

1
?

2
b˚inpωq,

Pinpωq “ ´
i
?

2
binpωq `

i
?

2
b˚inpωq.

(3.20)
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Then, the covariance is

xQinpωqPinpωqy

“
1
?

2
xbinpωq ` b

˚
inpωqy ˆ

i
?

2
xb˚inpωq ´ binpωqy

“
i

2

`

binpωqb
˚
inpωq ´ binpωq

2
` b˚inpωq

2
´ b˚inpωqbinpωq

˘

“
i

2
xbinpωqb

˚
inpωqy

“
i

2
δp0q.

(3.21)

Similarly, we also have xQinpωqPinpωqy “ ´ i
2
δp0q. By substitution into (3.19), we

obtain

xQoutpωq
2
y “

ˆ

1

2
|a11pωq|

2
`

1

2
|a12pωq|

2
`
i

2
a11pωqa

˚
12pωq ´

i

2
a12pωqa

˚
11pωq

˙

δp0q.

Together with equation (3.2), we my obtain the first equation in (3.18). By the

same method, we can get derive the second equation in (3.18). This completes the

proof.

To this point, according to Theorem 3.2 given above, some algebra yields

µqpωq “
xQout,1pωq

2y

xQin,1pωq2y

“

6
ÿ

k“1

|ξ̃1,kpωq|
2
`

3
ÿ

k“1

i
´

ξ̃˚1,2k´1pωqξ̃1,2kpωq ´ ξ̃
˚
1,2kpωqξ̃1,2k´1pωq

¯

,

(3.22)

and

µppωq “
xPout,1pωq

2y

xPin,1pωq2y

“

6
ÿ

k“1

|ξ̃2,kpωq|
2
`

3
ÿ

k“1

i
´

ξ̃˚2,2k´1pωqξ̃2,2kpωq ´ ξ̃
˚
2,2kpωqξ̃2,2k´1pωq

¯

.

(3.23)
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Clearly, the squeezing ratios µqpωq and µppωq can both be determined by decision

variables xi pi “ 1, . . . , 6q for a fixed frequency ω. In order to get better squeezing

performance, we optimize µppωq over these decision variables. Moreover, to guarantee

certain degree of robustness of the controller stability and closed-loop stability of

system (3.16) (Zhou et al. (1996)), two constraints are added to this optimization

procedure. Specifically, we consider the following nonlinear programming problem

min µppωq

s.t. λpAKq ` pλpAKqq
#
` 2φK ď 0 (3.24)

λpAclq ` pλpAclqq
#
` 2φcl ď 0

where Acl is the system matrix of system (3.16), λp‚q denotes the vector composed

of eigenvalues of matrix ‚, and the positive vectors φcl and φK are used to bound the

real part of eigenvalues of Acl and AK for robust stability.

(3.24) is a non-convex constrained optimization problem. As is known that non-

convex optimization exhibits very perplexing characteristics and the dependence on

initial values is the common failing factor of most existing global optimization al-

gorithms. Among all algorithms, genetic algorithm (GA) (Goldberg (1989)) has its

intrinsic hidden parallelism and better global optimization searching ability. There-

fore, for the purpose of finding a good solution to the above optimization problem,

we use GA to get the initial point at first, and then refine our results with sequential

quadratic programming (SQP) (Nocedal and Wright (2006)). As one of the most

effective methods for nonlinearly constrained optimization, SQP is based on solving

a series of subproblems designed to minimize a quadratic model of the objective

subject to a linearization of the constraints. The iteration generates a sequence of

approximation results, it is hoped that the sequence may converge to a nearly op-

timal solution, say x˚. Both GA and SQP can be implemented by the MATLAB

optimization toolbox easily.
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3.3.4 Simulation results and comparisons

Here we choose the same DPA’s parameters as those in the previous examples. More-

over, set xi P r0.2, 0.8s pi “ 1, 2, . . . , 4q to bound the couplings of the controller and

let its Hamiltonian coefficients x5 P R, x6 P C be free. Fix φK “ φcl with their

elements of them are 0.25 in (3.24), denoted by φ in the sequel. Fig. 3.6 is obtained

by solving the nonlinear programming problem (3.24).

The result shows that when ω Ñ 0`, the optimal value of the squeezing ratio

µp goes to 0.2582, which is much more enhanced compared with the former ones.

In addition, the optimal value of the decision variables are: x1 “ 0.8000, x2 “

0.5181, x3 “ 0.5450, x4 “ 0.2000, x5 “ ´0.4318, x6 “ 0.3696 ` 0.0705i. Then we

get the parameters of the coherent controller:

SK “

„

1 0
0 1



,

LK “

„

LK1

LK2



“

„

0.8944
0.7198



aK `

„

0.7382
0.4472



a˚K ,

HK “
1

2
ă˚K

„

´0.4318 0.3696` 0.0705i
0.3696´ 0.0705i ´0.4318



ăK .

(3.25)

Table 3.1: Squeezing performance comparison

µp κ “ 0.6; γ “ 0.2; ε “ 0.2 κ “ 0.5; γ “ 0.4; ε “ 0.2

Case I: lossy DPA (open loop) 0.5200 0.6694
Case II: lossy DPA (feedback loop) 0.5000 0.6694
Case III: the proposed scheme 0.2582 pφ “ 0.25q 0.3292 pφ “ 0.25q

Table 3.1 illustrates the squeezing performance comparison among the three

methods discussed above, where Case I, II and III stand for the scenarios of lossy

DPA in Fig. 3.1, DPA in feedback loop in Fig. 3.3, and the scheme proposed in

Fig. 3.5, respectively. All results obtained are under the condition that the DPA is
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Figure 3.6: Squeezing ratios of quadratures by coherent feedback control scheme.
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lossy. From the comparison shown in Table 3.1, it is easily found that the squeez-

ing performance can be significantly enhanced with the proposed coherent feedback

control method.

Finally, some words about the overall noise of the output fields. It is assumed

the input field is in the vacuum state, hence the product of variances of its two

quadratures is 1{4. On the other hand, the above studies show that the lossy DPA,

the feedback scheme proposed by Gough and Wildfeuer (2009), and the proposed

scheme all yield products of variances of two output field quadratures that are greater

than 1{4. That is, the overall noise is amplified. The reason is clear, the environment-

induced noises from vacuum fluctuations for the lossy DPA, the beam splitter, and the

coherent feedback controller affect the measurement of the output electromagnetic

field. In what follows we study what will happen if we are allowed to design the

lossy DPA, the beam splitter and the coherent feedback controller simultaneously.

Assuming κ, γ P r0.2, 0.8s, ε, α P r0, 1s, and adding an extra constraint µq ď 100 to

the nonlinear programming problem (3.24), we find that when κ “ 0.8, γ “ 0.2,

ε “ 0.7549, α “ 0.09639, x1 “ 0.8, x2 “ 0.2, x3 “ 0.2, x4 “ 0.2, x5 “ 0.01818,

x6 “ 0.01817 ` 0.3203i, the optimal squeezing ratio µp is 0.01005. Moreover, the

effective value of µq is 99.9909. Their product is 1.0053, that is, the overall noise in

the output electromagnetic field is merely very slightly amplified.

3.4 Implementation of quantum coherent feedback

controllers

For the purpose of applications in quantum optical engineering, in this section we

show how the controller proposed in Sec. 3.3 can be implemented with optical instru-

ments. Nurdin et al. (2009b) first provided a systematic synthesis theory of linear

quantum stochastic systems, in which they proposed the synthesis of linear quan-
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tum stochastic systems by assembling interconnection of one degree of freedom open

quantum harmonic oscillators and, they also investigated how one degree of freedom

open oscillators could be synthesized by quantum optical components. Therefore,

any open quantum harmonic oscillator of arbitrary degrees of freedom can be syn-

thesized and implemented.

In the last section, the quantum coherent feedback controller designed can be

viewed as a one degree of freedom open quantum harmonic oscillator. Based on the

synthesis theory proposed by Nurdin et al. (2009b), we can synthesize the controller

with a couple of connections of beam splitters, two-mode squeezers and fully reflecting

mirrors and partially transmitting mirrors (Leonhardt (2003), Bachor and Ralph

(2004), Gardiner and Zoller (2004)). To implement the controller and get the detailed

parameter values of the components, one needs to implement both HK and LK . An

implement procedure is given in the sequel.

First, to implement HK , we will use a DPA with frequency detuning. Recall the

Hamiltonian expression (Nurdin et al., 2009b, Sec. 6.1.2) for a DPA:

H “ ∆a˚a´
i

2

`

εpa˚q2 ´ ε˚a2
˘

“
1

2
ă:
„

∆ ´iε
iε# ∆



ă` c, (3.26)

where ∆ is the frequency detuning defined as ∆ “ ωcav ´ ωr with ωcav being cavity

frequency and ωr being reference frequency. ε is a complex number representing the

effective pump intensity. c is just a constant that has no effect on the dynamics of

the controller, and thus can be ignored.

Comparing (3.26) with HK in (3.25), it is easily found that the complex effective

pump intensity parameter ε is ´0.0705`0.3696i, while the cavity detuning parameter

∆ is ´0.4318.

Secondly, a coupling operator L can be realized by two-mode squeezers, beam
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splitters and auxiliary cavity modes. Write L as

L “
1
?
ζ
p´ε˚2a` ε1a

˚
q, (3.27)

where ζ is the coupling coefficient of the partially transmitting mirror, ε1 is the

effective pump intensity of the two-mode squeezer and ε2 “ 2Θe´iΦ, where Θ is the

mixing angle of the beam splitter and Φ is the relative phase between the input fields

by the beam splitter, for details, one can refer to Nurdin et al. (2009b), Leonhardt

(2003), Bachor and Ralph (2004), and Gardiner and Zoller (2004).

According to the form the coupling operator LK in (3.25), we see that the coherent

feedback controller interacts with two independent field channels. In what follows the

couplings to these two channels will be realized separately. For LK1 “ 0.8944aK `

0.7382a˚K , by (3.27), we set the coupling coefficient of the mirror M1 to be ζ “ 100,

the two-mode squeezer’s effective pump intensity ε1 to be 7.382, and the mixing angle

of the beam splitter Θ to be ´4.472 with Φ “ 0. Similarly, for LK2 “ 0.7198aK `

0.4472a˚K , suppose the coupling coefficient ζ of mirror M2 is also 100, then other

parameters can be computed as: ε1 “ 4.472, Θ “ ´3.599, and Φ “ 0.

Finally, the detailed physical implementation scheme is shown in Fig. 3.7, where

P1 and P2 are 180˝ phase shifters, M1 and M2 are partially transmitting mirrors,

S1 and S2 are beam splitters respectively, D0 is the DPA, D1 and D2 are two-mode

squeezers, and the black rectangles denote fully reflecting mirrors.
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Figure 3.7: Realization of coherent controller K in (3.25).
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Chapter 4

Coherent LQG/H8 feedback

control of linear quantum

stochastic systems

The purpose of this chapter is to investigate an efficient coherent feedback controller

design scheme for the general mixed LQG/H8 quantum coherent feedback control

problem of linear quantum stochastic systems. To start with, we present the general

QSDEs for the open linear quantum systems, and review the physical realizability

which is proposed by James et al. (2008). Then we integrate the quantum LQG con-

trol problem (Nurdin et al. (2009a)) and H8 control problem (James et al. (2008))

to formulate the standard mixed problem. To tackle the difficulty of the physical

realizability constraints, the problem is reformulated as a rank constraint LMI prob-

lem, and numerical solution is attained by using Matlab and the toolboxes ”Sedumi”,

”Yalmip” (Lofberg (2004)) and ”Lmirank” (Orsi et al. (2006)) therein. The cavity

and the DPA are used as plants in the examples to show the validity of the scheme.

Simultaneously, numerical results demonstrate the perplexing characteristics of the

non-convex optimization. Finally, detailed implementation procedures are also pre-

sented by means of quantum optical devices based on the quantum network synthesis

theory.
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4.1 Formulation of linear quantum stochastic sys-

tems

4.1.1 A general model of open linear quantum systems

The class of linear quantum systems under consideration can be described by using

non-commutative or quantum probability theory (Bouten et al. (2007)). A general

model of quantum stochastic system of N quantum harmonic oscillators can be

described by N pairs of canonical position and momentum operators q, p, satisfying

the canonical commutation relation (CCR) rqj, pks “ iδjk, and rqj, qks “ rpj, pks “

0 pj, k “ 1, 2, ¨ ¨ ¨ , Nq. Define xptq “ rq1ptq, p1ptq, ¨ ¨ ¨ , qNptq, pNptqs
T , if the system

interacts with an Nw-channel quantum fields, and yields Ny-channel quantum fields,

it obeys the following quantum stochastic differential equations (QSDEs) (James

et al. (2008))

dx ptq “ Ax ptq dt`Bdw ptq , x p0q “ x0,

dy ptq “ Cx ptq dt`Ddw ptq ,
(4.1)

where A,B,C and D are real matrices in Rnˆn,Rnˆnw ,Rnyˆn and Rnyˆnw , respec-

tively, here n, nw, ny are positive even integers with n “ 2N , nw “ 2Nw, ny “ 2Ny.

x ptq “ rx1ptq ¨ ¨ ¨xnptqs
T is a vector of self-adjoint possibly non-commutative system

variables. w ptq “ rw1ptq ¨ ¨ ¨wnwptqs
T is a vector of input signals, including noise,

finite-energy signal and control input signal.

The initial system variables x p0q “ x0 are Gaussian with state ρ, and satisfy the

commutation relations

rxj p0q , xk p0qs “ iΘjk, j, k “ 1, . . . , n, (4.2)

where Θ is a real antisymmetric matrix with component Θjk and i “
?
´1. Here the

symbol r , s is defined as rA,Bs “ AB ´BA.
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Here we follow James et al. (2008)’s results, the matrix Θ can be chosen as one

of the following two forms:

1. Canonical if Θ “ diag pJ, ...., Jq;

2. Degenerate canonial if Θ “ diag p0n1ˆn1 , J..., Jq, where 0 ă n1 ď n.

Where J denotes the real symmetric 2 ˆ 2 matrix J “

„

0 1
´1 0



and the ”diag”

notation indicates a block diagonal matrix assembled from given entries.

Usually, the vector quantity w ptq describes the input signals and is assumed to

admit the decomposition

dw ptq “ βw ptq dt` dw̃ ptq , (4.3)

where w̃ ptq is the noise part and βw ptq is a self-adjoint, adapted process, it is used to

represent the signal passed to system (4.1) from other systems. For simplicity, here

we assume the components of βwptq commutes with those of dw̃ptq and also those of

xptq for all t ě 0. The noise w̃ ptq is a vector of self-adjoint quantum noise with Ito

table

dw̃ ptq dw̃T ptq “ Fw̃dt, (4.4)

where Fw̃ is a nonnegative Hermitian matrix. This determines the following commu-

tation relations for the noise components

“

dw̃ ptq , dw̃T ptq
‰

“ dw̃ ptq dw̃T ptq ´
`

dw̃ ptq dw̃T ptq
˘T

“ 2Tw̃dt,
(4.5)

where we use the notation Tw̃ “
1
2

`

Fw̃ ´ F
T
w̃

˘

. This noise processes can be repre-

sented as operators on an appropriate Fock space, for more details, one can refer to

Parthasarathy (1992).
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System (4.1) can also be written in the annihilation-creation form as described

in section 2.2. Define a “ ra1, . . . , aN s
T with entries aj “ p1{

?
2qpqj ` ipjq being

the annihilation operator of the jth quantum harmonic oscillator, and its complex

conjugation a˚j “ p1{
?

2qpqj ´ ipjq being the creation operator, j “ 1, 2, ...N ; they

satisfy the canonical commutation relation raj, a
˚
ks “ δjk. Then the annihilation-

creation form of (4.1) may be written as

dăptq “ Ăăptqdt` B̆dw̆ptq, ăp0q “ ă0,

dy̆ptq “ C̆ăptqdt` D̆dw̆ptq,
(4.6)

where

Ă “ ΨnAΨ:
n, B̆ “ ΨnBΨ:

nw ,

C̆ “ ΨnwCΨ:
n, D̆ “ ΨnwDΨ:

nw ,
(4.7)

and

Ψn “
1
?

2

»

—

—

—

—

—

—

—

—

—

—

—

–

1 i 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0
0 0 1 i ¨ ¨ ¨ ¨ ¨ ¨ 0 0
...

...
...

...
. . . . . .

...
...

0 0 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 1 i
1 ´i 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0
0 0 1 ´i ¨ ¨ ¨ ¨ ¨ ¨ 0 0
...

...
...

...
. . . . . .

...
...

0 0 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 1 ´i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

nˆn

.

4.1.2 Physical realizability of linear QSDEs

Quantum mechanics dictates that closed physical quantum systems evolve in a uni-

tary manner which implies the preservation of the canonical commutation relations

x ptqxT ptq ´
`

x ptqxT ptq
˘T
“ iΘ for all t ě 0. (4.8)

Then the system descibed by (4.1) with arbitary system matrices may not to be

a meaningful system. James et al. (2008) developed a precise notion of physical
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realizability based on the concept of an open quantum harmonic oscillator, which is

the basic ”dynamical unit” of physical realizable linear quantum systems. Such an

oscillator can be completely described by a triple of physical parameters pS, L,Hq as

discussed in Sec. 2.2.2. From James et al. (2008), we can attain the following result.

Theorem 4.1. System (4.1) is a physically realizable quantum system if and only if

iAΘ` iΘAT `BTw̃B
T
“ 0, (4.9a)

B

„

I2nyˆ2ny

0p2nw´2nyqˆ2ny



“ ΘCTdiagny pJq, (4.9b)

D “
“

I2nyˆ2ny 02nyˆp2nw´2nyq

‰

. (4.9c)

Remark 4.1. Relations (4.9) are called physical realizability conditions (James

et al. (2008), Nurdin et al. (2009a)). These conditions guarantee that the dynamic

system corresponds to a physical system. To be more specific, the above theorem is just

for the case that Θ is canonical. When Θ is degenerate canonical, we may perform an

augmentation in which Θ is embedded into a larger skew symmetric matrix Θ̃, which

is canonical up to permutation. Interested reader can refer James et al. (2008) and

reference therein.

4.2 LQG/H8 control of linear quantum stochastic

systems

In this section, we formulate the QSDE of the closed-loop plant-controller system,

and then formulate standard LQG and H8 problem. We use two distinct channels

to describe LQG and H8 problems separately, then the mixed LQG/H8 problem

can be viewed as the synthesis of both LQG and H8 problems.

51



4.2.1 Composite plant-controller system

The quantum plant P can be described by a system of QSDEs, for simplicity, the

equations are given in quadrature form

dxptq “ Axptqdt`B0dvptq `B1dwptq `B2duptq,

dyptq “ C2xptqdt`D20dvptq `D21dwptq,

dz8ptq “ C1xptqdt`D12duptq,

zlptq “ Czxptq `Dzβuptq,

(4.10)

where A, B0, B1, B2, C2, D20, D21, C1, D12, Cz and Dz are real matrices in

Rnˆn, Rnˆnv , Rnˆnw , Rnˆnu , Rnyˆn, Rnyˆnv , Rnyˆnw , Rn8ˆn, Rn8ˆnu , Rn2ˆn, Rn2ˆnu ,

respectively. Furthermore, n, nv, nw, nu, n8, nl and ny are positive integers,

x ptq “ rx1ptq, ..., xnptqs
T is a vector of self-adjoint possibly non-commutative sys-

tem variables. vptq “ rv1ptq, ..., vnvptqs
T is referred to as quantum noise. w ptq “

rw1ptq, ..., wnwptqs
T is the exogenous input and uptq “ ru1 ptq , ..., unuptqs

T is the con-

trolled input. z8 ptq “ rz81ptq, ..., z8n8
ptqsT and zl ptq “ rzl1ptq, ..., zlnl ptqs

T are the

controlled outputs which are referred to as H8 and LQG channels, respectively. The

exogenous input and the control input have following decomposition

dw ptq “ βw ptq dt` dw̃ ptq ,

du ptq “ βu ptq dt` dũ ptq ,
(4.11)

where w̃ ptq and ũ ptq are noise part of w ptq and u ptq, βw ptq and βu ptq are self-adjoint,

adapted processes, respectively. The vectors v ptq , w̃ ptq and ũ ptq are independent

quantum noise (meaning that they live in distinct Fock space) with Ito matrices

Fv, Fw̃ and Fũ that are all nonnegative Hermitian. We also assume that x p0qxT p0q´

`

x p0qxT p0q
˘T
“ Θ.

On the other hand, the coherent feedback controller K which is to be designed is
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assumed to be a non-commutative stochastic system of the form

dξ ptq “ AKξ ptq dt`BK1dbvK1 ptq `BK2dbvK2 ptq `BK3dy ptq ,

du ptq “ CKξ ptq dt` dbvK1,
(4.12)

where ξ ptq “ rξ1ptq, ..., ξnK ptqs
T is a vector of self-adjoint operators of the same

dimension as x ptq (that means the controller is of the same dimension as the plant),

the coefficient matrix BK2 is a square matrix of the same dimension as AK , and

BK1 has the same number of columns as there are rows of CK . The noise bvKi ptq,

i “ 1, 2, are vectors of non-commutative Wiener process (in vaccum state) with

non-zero Ito products and which are independent of w ptq. Also, we assume that

ξ p0q ξT p0q ´
`

ξ p0q ξT p0q
˘T
“ iΘK . Here ΘK is the skew symmetric commutation

matrix for the controller variables ξ that could be a canonical or degenerate canonical

form.

 

P 

K 

u 
 

y 

z∞ 

 

zl 

bvK1 
bvK2 
 
 

w 
v 

Figure 4.1: Schematic of closed-loop plant-controller system.

Assume further that x p0q ξT p0q ´
`

ξ p0qxT p0q
˘T
“ 0. The closed-loop system is

obtained by the identification βu ptq ” CKξ ptq and ũ ptq ” bvK1ptq. The correspond-

ing scheme is shown in Fig. 4.1. Interconnecting (4.10) and (4.12), the closed-loop
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system in the quadrature representation is given by

dη ptq “Mη ptq dt`Ndw̃cl ptq `Hβw ptq dt,

dz8 ptq “ Γη ptq dt` Πdw̃cl ptq ,

zl ptq “ Ψη ptq ,

(4.13)

where ηptq “ rxT ptq ξT ptqsT , w̃clptq “ rv
T ptq w̃T ptq bTvK1ptq b

T
vK2ptqs

T , and

M “

„

A B2CK
BK3C2 AK



, N “

„

B0 B1 B2 0
BK3D20 BK3D21 BK1 BK2



,

H “

„

B1

BK3D21



, Γ “
“

C1 D12CK
‰

,

Π “
“

0 0 D12 0
‰

, Ψ “
“

Cz DzCK
‰

,

T “
“

C2 0
‰

, K “
“

D20 D21 0 0
‰

.

4.2.2 LQG performance

LQG problem is one of the most fundamental optimal control problems. It concerns

uncertain linear systems disturbed by additive white Gaussian noise, having incom-

plete state information and undergoing control subject to quadratic costs. LQG

index can describe the transient performance response perfectly. In Nurdin et al.

(2009a), the authors presented a detailed formulation of quantum LQG problem,

here we briefly describe it as follows.

We interpret w̃cl Ñ zl as the performance channel for measuring LQG perfor-

mance, then associate a quadratic LQG performance index with the obtained closed-

loop system (4.13), along the line of Nurdin et al. (2009a), the infinite-horizon LQG

cost is

L8 “ lim
tfÑ8

1

tf

ż tf

0

1

2

@

zTl ptqzlptq
D

dt

“ lim
tfÑ8

1

tf

ż tf

0

TrtΨSLptqΨ
T
udt

“ TrtΨSLΨT
u,

(4.14)
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where SL is the unique symmetric positive definite solution of the Lyapunov equation

MSL ` SLM
T
`NNT

“ 0. (4.15)

Problem 4.1. The LQG control problem is to find a proper, real-rational controller

K which satisfies the following properties.

1. There exists a symmetric matrix SL ą 0 satisfying (4.15).

2. Relaxed LQG performance. The cost function L8 “ TrtΨSLΨT u ă γl is satis-

fied for a prespecified constant γl ą 0.

3. K is a quantum coherent feedback controller. That is, AK , BK1, BK2, BK3, CK

satisfy the conditions of Theorem 4.1 with the identification: A ” AK , B ”

rBK1 BK2 BK3s, C ” CK , D ” rInuˆnu 0s, To be more specific,

AKΘK `ΘKA
T
K `BK1diagn1{2pJqB

T
K1 `BK2diagn2{2pJqB

T
K2

`BK3diagn3{2pJqB
T
K3 “ 0, (4.16a)

BK1 “ ΘKC
T
KdiagNupJq. (4.16b)

Remark 4.2. Note that in Problem 4.1-2, it is specified that the considered LQG

problem is relaxed by considering the cost function L8 ă γl rather than achieving its

minimal value, since the physical realizability relations (4.16) are polynomial equality

constraints on the controller matrices Ak, BK1, BK2, BK3 and CK, which exhibit-

s very perplexing characteristics and is difficult to solve numerically using general

existing optimization algorithms. It has been more fruitful to consider the relaxed

problem of finding a controller satisfies a pre-specified cost bound γl ą 0, and then

formulate it into a rank constrained LMI feasibility problem.
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Theorem 4.2. (Nurdin et al. (2009a)) There exists a proper, real-rational controller

K which solves Problem 4.1 for given ΘK and γl ą 0 if and only if there exist AK,

BK1, BK2, BK3, CK, symmetric matrix PL “ S´1
L and Q such that the equality

constraints (4.16) and inequality constraints (4.17) hold.

„

MTPL ` PLM PLN
NTPL ´I



ă 0,

„

PL ΨT

Ψ Q



ą 0,

TrpQq ă γl.

(4.17)

4.2.3 H8 performance

H8 control problem was originally introduced by Zames (1981) and has subsequent-

ly played a major role in the area of robust control theory. It mainly concerns the

robustness of the system parameter uncertainty or perturbation of environment. In

literature, classic H8 control problems are usually formulated by using Strict Bound-

ed Real Lemma, see Zhou and Khargonekar (1988), Petersen et al. (1991), Gahinet

and Apkarian (1994). James et al. (2008) have proposed a standard H8 coherent

feedback control problem of linear quantum stochastic systems by using Bounded

Real Lemma of quantum version, a solution to the quantum H8 coherent feedback

control problem can be obtained in terms of a pair of algebraic Riccati equations. In

this work, we apply LMIs to formulate the quantum H8 control problem.

The H8 norm is defined as

}T }
8
“ sup

ω
σmax rT pjωqs “ sup

ω

a

λmax pT ˚pjωqT pjωqq, (4.18)

where σmax is the maximum singular value of a matrix, and λmax is the maximum

eigenvalue of a Hermitian matrix.

Lemma 4.1 (Strict Bounded Real Lemma (James et al. (2008))). For the linear
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quantum stochastic system G described by (4.1), the following statements are equiv-

alent.

(i) The quantum system G defined by (4.1) is strictly bounded real with disturbance

attenuation γ8.

(ii) }D ` CpsI ´ Aq´1B}8 ă γ8 and A is Hurwitz stable.

(iii) γ2
8I ´ DTD ą 0 and there exists a symmetric positive definite solution PH to

the LMI
»

–

ATPH ` PHA PHB CT

BTPH ´γ8I DT

C D ´γ8I

fi

fl ă 0. (4.19)

Refer to closed-loop system (4.13), we interpret βw Ñ z8 as the robustness

channel for measuring H8 performance. Then we raise the following quantum H8

control problem.

Problem 4.2. The quantum H8 control problem is to find a proper, real-rational

controller K which satisfies the following properties.

1. Internal stability. K stabilizes P exponentially in the closed loop.

2. H8 performance. Given γ8 ą 0, the H8 norm of the closed-loop system

}GβwÑz8
}8 ă γ8 is satisfied.

3. K is a quantum coherent feedback controller as stated in Problem 4.1-3.

Theorem 4.3. (Zhang and James (2011)) There exists a proper, real-rational con-

troller K which solves Problem 4.2 for given ΘK and γ8 ą 0 if and only if there

exist AK, BK1, BK2, BK3, CK, and symmetric matrix PH such that the equality

constraints (4.16) and inequality constraints (4.20) hold.
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»

–

MTPH ` PHM PHH ΓT

HTPH ´γ8I 0
Γ 0 ´γ8I

fi

fl ă 0,

PH ą 0.

(4.20)

4.2.4 Mixed LQG/H8 performance

In the above analysis, we have investigated the standard coherent quantum LQG and

H8 control problem, and then transformed them into matrix inequalities problem.

To sum up, we synthesize our results to briefly describe the mixed LQG/H8 problem.

Problem 4.3. The mixed LQG/H8 control problem is to find a proper, real-rational

controller K which solves Problem 4.1 and Problem 4.2 simultaneously.

Theorem 4.4. There exists a proper, real-rational controller K which solves Prob-

lem 4.3 for given ΘK, γl ą 0 and γ8 ą 0 if and only if there exist AK, BK1, BK2,

BK3, CK, symmetric matrix 1 P “ PH “ PL “ S´1
L and Q such that the equality

constraints (4.16), and inequality constraints (4.17), (4.20) hold.

4.3 Algorithm based on rank constrained LMI

From the above analysis of the LQG and H8 feedback control problem, we seek to

find an coherent feedback controller K which solves Problem 4.3. Nevertheless, it is

easy to find that (4.17) and (4.20) are both non-linear matrix inequalities. Moreover,

the physical realizability constraint (4.16) is a non-convex constraint. Therefore it

is difficult to obtain the optimal solution by existing optimization algorithms. To

this point, we shall discuss how to translate the above non-convex and non-linear

1 In general, PH and PL are independent symmetric matrices, but here we let them be identical
for computational simplicity.
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constraints to linear ones. First, we redefine the plant (4.10) as follows

dx ptq “ Ax ptq dt`Bwdw̃cl ptq `B1βw ptq dt`B2βu ptq dt,

dz8 ptq “ C1x ptq dt`D8dw̃cl ptq `D12βu ptq dt,

zl “ Czx ptq `Dzβu ptq ,

dy1 ptq “ Cx ptq dt`Dwdw̃cl ptq `Dβw ptq dt,

(4.21)

where Bw “
“

B0 B1 B2 0
‰

, D8 “
“

0 0 D12 0
‰

, C “
“

0 0 CT
2

‰T
, D “

“

0 0 DT
21

‰T
and Dw “

»

–

0 0 I 0
0 0 0 I
D20 D21 0 0

fi

fl.

Here y1 is the output equation for the modified plant that now includes the

quantum noise bvK1 and bvK2 that enter the controller, but not in the original plant.

In this way all noise can now be thought of as coming from the modified plant. Then,

redefine our controller equations as:

dξ ptq “ AKξ ptq dt`BwKdy
1
ptq ,

βu ptq “ CKξ ptq ,
(4.22)

with BwK “
“

BK1 BK2 BK3

‰

. And the closed-loop system has the same form as

(4.13). For simplicity, in the following, we assume the controller the same order as

the plant.

We now follow Scherer et al. (1997) by partitioning P and P´1 as

P “

„

Y Ξ
ΞT ˚



, P´1
“

„

X Σ
ΣT ˚



,

where X and Y are nˆ n symmetric matrices. And define

Π1 :“

„

X I
ΣT 0



, Π2 :“

„

I Y
0 ΞT



,

then we obtain

PΠ1 “ Π2.
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And necessarily, we have

ΣΞT
“ I ´XY. (4.23)

Now define the change of controller variables as follows:

Â :“ ΞAKΣT
` ΞBwKCX ` Y B2CKΣT

` Y AX,

B̂ :“ ΞBwK ,

Ĉ :“ CKΣT .

(4.24)

Then we can derive

ΠT
1 PMΠ1 “ ΠT

2 MΠ1 “

„

AX `B2Ĉ A

Â Y A` B̂C



,

ΠT
1 PN “ ΠT

2 N “

„

Bw
Y Bw ` B̂Dw



,

ΓΠ1 “
“

C1X `D12Ĉ C1

‰

,

ΠT
1 PΠ1 “ ΠT

1 Π2 “

„

X I
I Y



,

ΠT
1 PH “ ΠT

2 H “

„

B1

Y B1 ` B̂D



.

Therefore the LQG performance inequality constrains (4.17) can be transformed as
»

—

—

—

—

–

AX `XAT `B2Ĉ `
´

B2Ĉ
¯T

ÂT `A Bw

Â`AT ATY ` Y A` B̂C `
´

B̂C
¯T

Y Bw ` B̂Dw

BTw

´

Y Bw ` B̂Dw

¯T

´I

fi

ffi

ffi

ffi

ffi

fl

ă 0,

»

—

—

–

X I
´

CzX `DzĈ
¯T

I Y CTz
´

CzX `DzĈ
¯

Cz Q

fi

ffi

ffi

fl

ą 0,

TrpQq ă γl.

(4.25)
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Similarly, the H8 inequality constraint (4.20) turns into

»

—

—

—

—

—

—

–

AX `XAT `B2Ĉ `
´

B2Ĉ
¯T

ÂT `A ˚ ˚

Â`AT ATY ` Y A` B̂C `
´

B̂C
¯T

˚ ˚

BT1

´

Y B1 ` B̂D
¯T

´γ8I ˚

C1X `D12Ĉ C1 0 ´γ8I

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ă 0. (4.26)

It is obvious that the above matrix inequalities are linear which are easy to solve by

Matlab.

Through (4.24), we can obtain

CK “ ĈΣ´T ,

BwK “ Ξ´1B̂,

AK “ Ξ´1
´

Â´ ΞBwKCX ´ Y B2CKΣT
´ Y AX

¯

Σ´T .

(4.27)

By instituting (4.27) into (4.16) and introduce new variables Ξ̃ “ ΞJNζ , ÃK “ ΞAK ,

B̃Ki “ ΞBKi, i “ 1, 2, 3. Then the physical realizability constraints (4.16) turn into
´

´ÂΣ´T `
´

B̃K3C2 ` Y A
¯

XΣ´T ` Y B2CK

¯

Ξ̃T

` Ξ̃
´

ÂΣ´T ´
´

B̃K3C2 ` Y A
¯

XΣ´T ´ Y B2CK

¯T

`

3
ÿ

i“1

B̃KiJNvKiB̃
T
Ki “ 0, (4.28a)

B̃K1 ´ Ξ̃CTKJNvK1
“ 0. (4.28b)

If LMIs (4.25) (4.26) and the constraints (4.23), (4.28) yield a feasible solution

Â, B̂, Ĉ, X, Y , Ξ, Σ and Q, then the controller coefficient matrices AK , BwK , CK

could be derived from (4.27). We summarize our results in the following theorem:

Theorem 4.5. There exists a proper, real-rational controller K which solves Prob-

lem 4.3 for given Θk, γl ą 0 and γ8 ą 0 if and only if there exist matrices Â,
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B̃K1, B̃K2, B̃K3, Ĉ, X, Y , Ξ̃, Σ, Ξ, CK satisfying the LMIs (4.25) (4.26) and the

constraints (4.23), (4.28), Ξ̃ “ ΞJNζ , Ĉ “ CKΣT .

It is clear that (4.28a) is polynomial matrix equality constraints. Following Nur-

din et al. (2009a), we now proceed to linearize it by introducing appropriate matrix

lifting variables and the associated equality constraints, which may reformulate the

problem into a rank constrained LMI problem.

At first, we introduce 13 basic matrix variables: M1 “ Â, M2 “ B̃K1, M3 “ B̃K2,

M4 “ B̃K3, M5 “ Ĉ, M6 “ X, M7 “ Y , M8 “ Ξ̃, M9 “ Σ, M10 “ Ξ, M11 “ CK ,

M12 “ Ǎ “ ÂΣ´T , M13 “ X̌ “ XΣ´T . And define 18 matrix lifting variables as

follows: Wi “ B̃KiJNvKi , (i “ 1, 2, 3). W4 “ Y B2, W5 “ B̃K3C2 ` Y A, W6 “ Ξ̃CT
K ,

W7 “ Ξ̃X̌T , W8 “ ǍΞ̃T , W9 “ Y X, W10 “ W4W
T
6 , W11 “ W5W

T
7 , W12 “ W1B̃

T
K1,

W13 “ W2B̃
T
K2, W14 “ W3B̃

T
K3, W15 “ ΞΣT “ I ´ Y X, W16 “ ǍΣT “ Â, W17 “

X̌ΣT “ X, W18 “ CKΣT “ Ĉ.

Then we denote

V “ rI, ZT
x1,1

, ¨ ¨ ¨ , ZT
x13,1

, ZT
v1,1

, ZT
v2,1

, ¨ ¨ ¨ , ZT
v18,1

s
T

“ rI,MT
1 , ¨ ¨ ¨ ,M

T
13,W

T
1 , ¨ ¨ ¨ ,W

T
18s

T ,
(4.29)

and introduce a 32n by 32n symmetric matrix Z “ V V T with the components

Zi,j “ rZklsk“in`1,pi`1qn,l“jn`1,pj`1qn. Obviously, terms of the form Za,b with a, b P

tx1, ...., x13u Y tv1, v2, ......, v18u “ t1, ...., 13u Y t14, 15, ......, 31u could be identified

with Za,1 pZb,1q
T .

Necessarily, we require the components of matrix Z satisfy the following con-

straints
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Z ě 0,

Z0,0 ´ Inˆn “ 0, Zv7,1 ´ Zx8,x13 “ 0,

Z1,x6 ´ Zx6,1 “ 0, Zv8,1 ´ Zx12,x8 “ 0

Z1,x7 ´ Zx7,1 “ 0, Zv9,1 ´ Zx7,x6 “ 0,

Zv1,1 ´ Zx2,1JNvK1
“ 0, Zv10,1 ´ Zv4,v6 “ 0,

Zv2,1 ´ Zx3,1JNvK2
“ 0, Zv11,1 ´ Zv5,v7 “ 0,

Zv3,1 ´ Zx4,1JNvK3
“ 0, Zv12,1 ´ Zv1,x2 “ 0,

Zv4,1 ´ Zx7,1B2 “ 0, Zv13,1 ´ Zv2,x3 “ 0,

Zv5,1 ´ Zx4,1C2 ´ Zx7,1A “ 0, Zv14,1 ´ Zv3,x4 “ 0,

Zv6,1 ´ Zx8,x11 “ 0, Zv15,1 ´ Zx10,x9 “ 0,

Zv16,1 ´ Zx12,x9 “ 0, Zv17,1 ´ Zx13,x9 “ 0,

Zv18,1 ´ Zx11,x9 “ 0, Zv15,1 ´ I ` Zv9,1 “ 0,

Zx1,1 ´ Zv16,1 “ 0, Zx6,1 ´ Zv17,1 “ 0,

Zx8,1 ´ Zx10,1JNξ “ 0, Zx5,1 ´ Zv18,1 “ 0.

(4.30)

Then (4.28a) and (4.28b) become the following linear equality constraints

´Zv8,1 ` Z
T
v8,1 ` Zv11,1 ´ Z

T
v11,1 ` Zv10,1 ´ Z

T
v10,1 ` Zv12,1 ` Zv13,1 ` Zv14,1 “ 0, (4.31a)

Zx2,1 ´ Zv6,1JNvK1
“ 0. (4.31b)

Moreover, we also require that Z satisfies a rank n constraint:

rankpZq ď n. (4.32)

On the other hand, terms of LMI constraints (4.25) and (4.26) can also be ex-

pressed in terms of Z by replacing Â, B̂, Ĉ, X, Y with Zx1,1, rZx2,1, Zx3,1, Zx4,1s,

Zx5,1, Z61,1, Zx7,1, respectively.
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To this point, we have converted the polynomial matrix programming problem

into a rank constrained problem. And based on the method proposed by Nurdin

et al. (2009a), we can get a local optimal solution by using LMIRank (Orsi et al.

(2006)), SeDuMi, and Yalmip (Lofberg (2004)).

4.4 Simulation examples and comparisons

In this section, we will provide two examples to illustrate the method proposed in

the last section of designing the quantum controller which satisfies the LQG and H8

performance simultaneously.

Example 1: This example is taken from Section 6 of James et al. (2008) and the

plant is an optical cavity resonantly coupled to three optical chanels as shown in

Figure 1 of James et al. (2008). This will be solved by using Yalmip via the solver

LMIRank through Matlab and the initial value will be solved through SeDuMi.

The dynamics of this optical cavity system can be described by the following

equations

dx ptq “ ´
γ

2

„

1 0
0 1



x ptq dt´
?
κ1

„

1 0
0 1



dvptq ´
?
κ2

„

1 0
0 1



dw ptq ´
?
κ3

„

1 0
0 1



duptq,

dyptq “
?
κ2

„

1 0
0 1



xptqdt`

„

1 0
0 1



dwptq,

dz8ptq “
?
κ3

„

1 0
0 1



xptqdt`

„

1 0
0 1



duptq,

zlptq “

„

1 0
0 1



xptq `

„

1 0
0 1



βuptq

(4.33)

with parameters γ “ κ1 ` κ2 ` κ3, κ1 “ 2.6, κ2 “ κ3 “ 0.2.

At first, we set the performance parameter γl “ 3, γ8 “ 2.8. Numerically solving

the mixed problem yields the following coherent feedback controller after 11 iterations
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of LMIRank.

dξ ptq “

„

´0.4880 ´0.0002
´0.0000 ´0.4888



ξ ptq dt`

„

0.6158 0.0000
0.0000 0.6175



dbvK1 ptq

`

„

0.0061 0.0007
0.0005 ´0.0059



dbvK2 ptq `

„

´0.7709 ´0.0001
´0.0005 ´0.7738



dy ptq ,

du ptq “

„

´0.6175 0.0000
0.0000 ´0.6158



ξ ptq dt` dbvK1.

(4.34)

Additionally, the actual closed-loop LQG performance achieved by the controller

is 2.7607 and the H8 performance is 0.5151.

If we set γl “ 2.5, γ8 “ 0.1, after 53 iterations, the LQG cost is 2.0288 while H8

performance is 0.0403. However, if we restrict γl “ 2 and remove H8 constraints,

the problem degenerates to pure LQG control problem. And we need to run 1000

iterations to get the results. It is found that the LQG performance can not be

less than 2.0 numerically, and the residual of physical realizability can only achieve

0.1356e´ 005.

Example 2: In this example, we choose the degenerate parametric amplifier (D-

PA) as our plant. For more details about DPA, one may refer to Leonhardt (2003).

Following the treatment of Gough and Wildfeuer (2009), we now consider the DPA

with three input fields coupled to a single cavity mode a, the coupling strength are

?
κ1,

?
κ2,

?
κ3 and Hamiltonian is HDPA “

iε
4
pa˚2 ´ a2q.
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Based on the correspondence given in (2.22), we derive the QSDE of the DPA:

dx ptq “ ´
1

2

„

γ ´ ε 0
0 γ ` ε



x ptq dt´
?
κ3

„

1 0
0 1



dvptq ´
?
κ1

„

1 0
0 1



dw ptq

´
?
κ2

„

1 0
0 1



duptq,

dyptq “
?
κ3

„

1 0
0 1



xptqdt`

„

1 0
0 1



dvptq,

dz8ptq “
?
κ2

„

1 0
0 1



xptqdt`

„

1 0
0 1



duptq,

zlptq “

„

1 0
0 1



xptq `

„

1 0
0 1



βuptq

(4.35)

with parameters γ “ κ1 ` κ2 ` κ3, κ1 “ κ2 “ 0.2, κ3 “ 0.5, ε “ 0.01.

Firstly, set γl “ 3, γ8 “ 0.5, we have to run 81 iterations of LMIRank to yield

the following coherent feedback controller.

dξ ptq “

„

´0.0800 0.0532
´0.0863 ´0.1289



ξ ptq dt`

„

´0.1628 ´0.0912
0.0995 ´0.1250



dbvK1 ptq

`

„

´0.0002 ´0.0008
´0.0003 0.0013



dbvK2 ptq `

„

´0.3017 ´0.1772
0.2362 ´0.4560



dy ptq ,

du ptq “

„

0.1250 ´0.0912
0.0995 0.1628



ξ ptq dt` dbvK1.

(4.36)

However, once we choose γl “ 5 and γ8 “ 1, we have to run 350 iterations to

achieve the result. Moreover, if we let γl “ 3 and remove H8 constraints, this pure

LQG problem also need 406 iterations of LMIRank. To this point, we can see the

perplexing characteristics of the non-convex optimization. Table 4.1 sums up the

numerical optimization results obtained by running LMIRank for both examples.
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Table 4.1: Optimization results comparison under different constraints

plant
constraints results
γ8 γl }GβwÑz8

}8 L8 physical realizability iterations

Cavity
(γ “ κ1 ` κ2 ` κ3,

κ1 “ 2.6,
κ2 “ κ3 “ 0.2.)

2.8 3 0.5151 2.7607 0.1361e-010 11
0.1 2.5 0.0403 2.0288 0.8993e-013 53

N/A 3 0.4249 2.7629 0.1005e-009 11
N/A 2 0.1365 2.0000 0.1356e-005 1000
0.1 N/A 0.0143 2.0302 0.6795e-013 14

DPA
(γ “ κ1 ` κ2 ` κ3,
κ1 “ κ2 “ 0.2,

κ3 “ 0.5, ε “ 0.01.)

1 5 0.5235 2.0178 0.2885e-011 350
0.5 3 0.3839 2.0611 0.3255e-010 81

N/A 3 0.4039 2.0324 0.6160e-010 406
0.5 N/A 0.5906 2.0037 0.3001e-012 88

4.5 Implementation of quantum coherent feedback

controllers

In this section we show how the controller proposed in Sec. 4.4 can be realized with

optical instruments. In Mabuchi (2008), the author demonstrated an experimental

realization of a fully quantum controller. Subsequently, Nurdin et al. (2009b) provid-

ed a systematic synthesis theory of linear quantum stochastic systems, where they

proposed a specific scheme that arbitrarily complex linear quantum stochastic sys-

tem can be constructed by a series of one degree of freedom open quantum harmonic

oscillators. Moreover, they also investigated how one degree of freedom open oscil-

lators could be synthesized by quantum optical components. Therefore, any open

quantum harmonic oscillator of arbitrary degrees of freedom can be synthesized or

implemented. In the following, we will implement the coherent feedback controller

(4.36) for illustration.

Note that the quantum coherent feedback controller (4.36) designed in the last

section is in the quadrature form. For convenience, we transform it into the annihilation-
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creation form. Based on the method proposed in Sec. 4.1, we rewrite (4.36) as:

dăξ ptq “

„

´0.1044´ 0.0697i 0.0244´ 0.0165i
0.0244` 0.0165i ´0.1044` 0.0697i



ăξ ptq dt

`

„

´0.1439` 0.0953i ´0.0189` 0.0042i
´0.0189´ 0.0042i ´0.1439´ 0.0953i



db̆vK1 ptq

` 10´3 ˚

„

0.5500` 0.2500i ´0.7500´ 0.5500i
´0.7500` 0.5500i 0.5500´ 0.2500i



db̆vK2 ptq

`

„

´0.3788` 0.2067i 0.0771` 0.0295i
0.0771´ 0.0295i ´0.3788´ 0.2067i



dy̆ ptq ,

dŭ ptq “

„

0.1439` 0.0953i ´0.0189` 0.0042i
´0.0189´ 0.0042i 0.1439´ 0.0953i



ăξ ptq dt` db̆vK1.

(4.37)

In terms of the corresponding relationship (2.22), the controller has the following

parameters in the (S, L,H) language.

SK “

„

1 0
0 1



,

LK “

»

–

LK1

LK2

LK3

fi

fl “

»

–

0.1439` 0.0953i
´0.00055` 0.00025i

0.3788` 0.2067i

fi

fl aξ `

»

–

´0.0189` 0.0042i
´0.00075´ 0.00055i

0.0771` 0.0295i

fi

fl a˚ξ ,

HK “
1

2
ă˚ξ

„

0.0697 0.0165` 0.0244i
0.0165´ 0.0244i 0.0697



ăξ.

(4.38)

Based on the synthesis theory proposed by Nurdin et al. (2009b), we can synthe-

size (4.38) with a couple of connections of beam splitters, two-mode squeezers and

fully reflecting mirrors and partially transmitting mirrors (Leonhardt (2003), Bachor

and Ralph (2004), Gardiner and Zoller (2004)). To implement the controller and get

the detailed parameter values of the components, one needs to implement both HK

and LK . A detailed procedure is given in the sequel.

Firstly, to implement HK , we will use a DPA with frequency detuning. Recall
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the Hamiltonian expression (Nurdin et al., 2009b, Sec. 6.1.2) for a DPA:

H “ ∆a˚a´
i

2

`

εpa˚q2 ´ ε˚a2
˘

“
1

2
ă:
„

∆ ´iε
iε# ∆



ă` c,

(4.39)

where ∆ is the frequency detuning defined as ∆ “ ωcav ´ ωr with ωcav being cavity

frequency and ωr being reference frequency. ε is a complex number representing the

effective pump intensity. c is just a constant that has no effect on the dynamics of

the controller, and thus can be ignored.

Comparing (4.39) with HK in (4.38), it is easily found that the complex effective

pump intensity parameter ε is ´0.0244´0.0165i, while the cavity detuning parameter

∆ is 0.0697.

Secondly, a coupling operator L can be realized by two-mode squeezers, beam

splitters and auxiliary cavity modes. Write L as

L “
1
?
ζ
p´ε˚2a` ε1a

˚
q, (4.40)

where ζ is the coupling coefficient of the partially transmitting mirror, ε1 is the

effective pump intensity of the two-mode squeezer and ε2 “ 2Θe´iΦ, where Θ is the

mixing angle of the beam splitter and Φ is the relative phase between the input fields

by the beam splitter, for details, one can refer to Nurdin et al. (2009b), Leonhardt

(2003), Bachor and Ralph (2004), and Gardiner and Zoller (2004).

According to the form of the coupling operator LK in (4.38), we see that the

coherent feedback controller interacts with three independent field channels. In what

follows the couplings to these three channels will be realized separately.

For LK1 “ p0.1439 ` 0.0953iqaξ ` p´0.0189 ` 0.0042iqa˚ξ , by (4.40), we set the

coupling coefficient of the mirror M1 to be ζ “ 100, the two-mode squeezer’s effective
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pump intensity ε1 to be ´0.189 ` 0.042i, and the mixing angle of the beam splitter

Θ to be ´0.8630 with Φ “ 0.1862π.

Similarly, for LK2 “ p´0.00055 ` 0.00025iqaξ ` p´0.00075 ´ 0.00055iqa˚ξ , sup-

pose the coupling coefficient ζ of mirror M2 is 10000, then other parameters can be

computed as: ε1 “ ´0.075´ 0.055i, Θ “ 0.0302, and Φ “ 1.8644π.

At last, for LK3 “ p0.3788 ` 0.2067iqaξ ` p0.0771 ` 0.0295iqa˚ξ , we set ζ “ 100,

then we obtain: ε1 “ 0.771` 0.295i, Θ “ ´2.1576, and Φ “ 0.1590π.

Finally, the detailed physical implementation scheme is shown in Fig. 4.2, where

P1, P2 and P3 are 180˝ phase shifters, M1, M2 and M3 are partially transmitting

mirrors, S1, S2 and S3 are beam splitters respectively, D0 is the DPA, D1, D2 and

D3 are two-mode squeezers, and the black rectangles denote fully reflecting mirrors.
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Figure 4.2: Realization of coherent controller K in (4.38).
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Chapter 5

Conclusions and future work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

5.1 Conclusions

The focus of the thesis has been placed on various optimization methods for linear

quantum stochastic systems to meet with specific state or performance objectives.

Specifically, two research problems have been investigated in detail.

1. Squeezing ratio of quantum input-output system is proposed based on the

analysis of variance of quadratures in vacuum state. Accordingly, squeezing

performance of lossy DPA is investigated for the cases of open loop and feed-

back loop. Necessary and sufficient conditions have been derived to guarantee

that the feedback loop scheme can enhance squeezing performance over open

loop case. As an improved methodology, a coherent feedback control scheme

has been proposed for squeezing enhancement of DPAs, in which the problem

is a non-convex optimization problem which is solved by combined GA and

SQP. Simulation results illustrate the advantages of the proposed method in

contrast with previous approaches. Based on the recently developed quantum

network synthesis theory, a detailed scheme has been proposed illustrating how
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to implement the resulting coherent feedback controllers by means of quantum

optical devices.

2. A class of linear quantum stochastic systems is formulated in terms of QS-

DEs in quadrature form. Then the standard quantum LQG and H8 control

problems are proposed based on the closed-loop plant-controller feedback con-

trol system. The unique property of quantum LQG control problem makes it

difficult to compute coherent feedback controllers analytically and H8 perfor-

mance constraints also restrict the feasible region and indeed complicate the

problem. In order to solve the intricate polynomial matrix equality constraints

brought by the physical realizability condition, the problem is converted into

a rank constraint LMI problem, a numerical algorithm is presented to attain a

feasible solution. Several numerical examples are given to illustrate the effec-

tiveness of the method. A detailed realization scheme of the resulting coherent

feedback controller is also shown by means of quantum optical devices.

5.2 Future Work

Related topics for the future research work are listed below.

1. Although the combined GA and SQP are computationally efficient techniques

in solving non-convex programming problems studied in Chap. 3, the computa-

tional cost is often an exponential function of the number of decision variables,

and the optimized result can only approach one local optima. Thus it is not

a theoretically efficient methodology. In the future, seeking for more efficient

schemes to enhance DPA’s squeezing performance is worthwhile and challeng-

ing.

2. For Quantum mixed LQG/H8 control problem raised in Chap. 4, due to the
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unique characters of LQG coherent feedback control, the problem can not be

easily solved analytically like the quantum H8 feedback control problem. The

only effective method up to now is to introduce plenty of matrix lifting variables

and transform the problem into rank constrained LMI problem. Solving such

problem requires an immense amount of time, however feasible solution could

not achieved regularly. Therefore, in the future work, trying to figure out a

more effective way to quantum LQG control problem is indeed meaningful.
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