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Abstract

Text categorization finds many practical applications. The dominant
approach involves the use of various machine learning techniques where
classification rules are automatically created using information from
labeled texts. The proposed method to combat the curse of dimensionality
is subspace methodology. However, this has only been applied broadly in
unsupervised text categorization. The performance of subspace
methodology on supervised text categorization has not yet been found. The
approach of iterative subspace method of pattern classification 1is
investigated. For the topic pairs of “carcass livestock” and
“soybean_oilseed” from the Reuters-21578 collection, the results with
confidence level greater than 95% under 8-fold/10-fold/12-fold cross
validation shows the potential of this approach. It is expected that the
performance can be further improved by using other optimization

techniques.

It is still promising that there is 8.24% precision improvement of
“livestock” evaluated comparing to 1-level classifier, standard Support
Vector Machine (SVM), under 8-fold cross validation. There is also
11.85% improvement of “nat-gas” evaluated comparing to Soft Margin

SVM classifier under 8-fold cross validation.
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1 Introduction

1.1 Text categorization and its applications

Text categorization is the task in which texts are classified into one of
predefined categories based on their contents. This task has various
applications such as automatic email classification, news classification and
webpage categorization. Those applications are becoming increasingly
important in today’s information-oriented society. Much knowledge in this

domain has been accumulated in the past 30 years

There are mainly two types of approaches to text categorization. One is the
rule-based approach where the classification rules are manually created
usually by experts in the domain of the texts. Although the rule-based
approach can achieve high accuracy, it is costly in terms of labor and time.
Moreover, a rule-based system created for one domain can hardly be used
in other domains. The second approach involves machine learning
techniques where classification rules are automatically created using
information from labeled texts. It enables a system for a new domain to be
easily constructed. Text categorization is also called text classification,

document categorization or document classification.

Generally, building an automated text categorization system consists of two
key subtasks. The first task is text representation which converts the
content of documents into a compact format so that they can be further
processed by the text classifiers. Another task is to build the model of a text

classifier to classify unlabelled documents.



The textual information is stored in many kinds of machine readable form,
such as PDF, DOC, PostScript, HTML, XML and so on. Before the
computer applies the text classifier to label the unknown document, the
content of a document must be transformed into a compact and
interpretable format so that it can be further recognized and classified by a
computer or a classifier. This indexing procedure is called text

representation.

The algorithms which have been applied to text categorization task have
been studied extensively in recent decades and most of them are usually
borrowed from the traditional pattern recognition, such as Support Vector
Machines, k-Nearest Neighbor, Decision Tree, Naive Bayes, Neural
Network, Linear Regression, etc. As a relatively new algorithm, Support
Vector Machines [24, 54] has a better performance than other methods due
to its ability to efficiently handle relatively high dimensional and large-
scale data sets without decreasing classification accuracy. In essence, k-
Nearest Neighbor makes prediction based on the k training texts which are
closest to the test text. It is very simple and effective but not efficient in the
case of high dimensional and large-scale data sets. The Decision Tree
algorithm is sometimes quite effective but the consequent overfitting
problem is intractable and needs to be handled manually case by case. The
Naive Bayes method assumes that the terms in one document are
independent even this is not the case in the real world. The Neural Network
method, usually used in artificial intelligence field has shown lower

classification accuracy than other machine learning methods.



1.2 Motivation

In recent decades, with the explosive growth of textual information
available in the World Wide Web, the ensuing needs of organizing and
accessing these documents in flexible ways also increased. Text
categorization is such one solution to this problem, which classifies natural

language documents into a predefined set of semantic categories.

An unresolved problem for research on text categorization is how robust
the methods are used to tackle problems with a skewed category
distribution. Since categories typically have an extremely non-uniform
distribution in practice [89], it would be meaningful to compare the
performance of different classifiers with respect to category frequencies.
Most commonly, methods are compared using a single score, such as the
accuracy, error occurrence rate, or averaged F1 measure [89] over all
category assignments to documents. A single-valued performance measure
can be either dominated by the classifier's performance on common
categories or rare categories, depending on how the average performance is
computed. Two conventional methods are used to evaluate the performance
average across categories. Micro averaging assigns equal weight to every
document, while macro averaging assigns equal weight to each category [1].
Inevitably, skewed category distribution often leads to good micro-average

performance but not so desirable macro-average performance.

Text representation size for each training category also has a crucial

influence on how well the text classifiers can generalize. The purpose the



thesis is to improve the accuracy of text categorization by using interactive
subspace clustering. Unlike subtopic clustering which utilizes unsupervised
learning, subspace clustering adopts supervised learning [94]. Each
instance of clustering groups the error data samples into a subcategory and
the classification procedure is repeated based on the newly-formed

subcategories. The process is repeated interactively.

For the problem of high dimensionality and further improvement of the
category boundary, the approach of iterative subspace classification will be
investigated. The mathematical assumptions behind the subspace formalism
demands that the pattern classes are distributed as low-dimensional
subspaces in a higher-dimensional feature space. It is encouraging that
subspace approach is suitable for text categorization. However the subspace
classification methods have not been popular in text categorization tasks.
One possibility may be that the field of data mining has captured the

attention of the researchers of unsupervised text categorization.

From the view of classification, we want to re-define a difficult
classification boundary possibly due to the use of the initial choice of
feature subset. We want to have a better fit by decomposing the data sets

into subsets using other more effective features.



1.3 Thesis outline

The thesis is organized into six chapters. Chapter 2, Literature Review,
describes related work. Before going into the main topic of Iterative
Subspace Method, experiments of Subtopic Clustering are described in
Chapter 3 and experiments of Boosting Method are described in Chapter 4.
The foundations of text categorization are explained. In particular, through
the experiments, we will see how serious the data sparseness problem and
topic skewness problem are. Chapter 5, Iterative Subspace Method,
presents the scheme of algorithmic components we use, which involve a
novel combination of existing techniques for feature selection and

categorization. Chapter 6 gives the conclusions drawn from the project.



2 Literature Review

Automatic text categorization systems have been the subject of a great deal
of research and a number of different approaches have been used. Text
categorization is the task of automatically classifying a text document to
one predefined categories (topics). Figure 1 shows the phases of text

categorization.

Document Classifier Classifier
indexing learning evaluation

Figure 1: Phases of text categorization.

Text classification has been extensively studied. Most algorithms are based
on the bag-of-words model for text [68]. Several methods from simple
probabilistic Naive Bayes to the complex Support Vector Machines have
been used for text categorization. An inherent problem of text data is its
high dimensionality. This ‘curse of dimensionality’ is a well-known
phenomenon in pattern recognition problems. As a consequence of the huge
dimensionality of the feature space, data sets are often relatively sparse in

this space.

Very little of this work has involved the use of a subspace in the text
categorization process. However, this approach has been extensively used

in data mining (unsupervised text categorization) 3, 62, 91, 92].



2.1 Phases of Text Categorization

2.1.1 Document Indexing

2.1.1.1 Term Selection

Term selection or Term Space Reduction (TSR) attempts to select, from the
original set 7, the set 7~ of terms. Yang and Pedersen [90] have shown that
TSR may even result in a moderate increase in effectiveness, depending on
the classifier, on the aggressivity of the reduction, and on the TSR

technique used.

Moulinier et al. [59] have used a so-called wrapper approach, that is, one in
which 7" is identified by means of the same learning method that will be
used for building the classifier [39]. Starting from an initial term set, a new
term set is generated by either adding or removing a term. When a new
term set is generated, a classifier based on it is built and then tested on a
validation set. The term set that results in the best effectiveness is chosen.
This approach has the advantage of being tuned to the learning algorithm
being used; moreover, if local dimensionality reduction is performed,
different numbers of terms for different categories may be chosen,
depending on whether a category is or is not easily separable from the
others. However, the sheer size of the space of different term sets makes its

cost-prohibitive for standard text categorization applications.

A simple and effective global TSR function is the document frequency of a
term, that is, only the terms that occur in the highest number of documents

are retained. In a series of experiments Yang and Pedersen [90] have shown



that it is possible to reduce the dimensionality by a factor of 10 with no loss
in effectiveness (a reduction by a factor of 100 bringing about just a small

loss).

Other more sophisticated information-theoretic functions have been used in
the literature, such as DIA (Darmstadt Indexing Approach) association
factor [20], chi-square [8, 22, 73, 74, 89, 90], NGL coefficient [60, 66],
information gain [8, 48], mutual information [53, 66], odds ratio [66],

relevancy score [85], and GSS coefficient [22].

2.1.1.2 Term Extraction

Any term extraction method consists in a method for extracting the new
terms from the old one, and a method for converting the original document
representations into new representations based on the newly synthesized
dimensions. Two term extraction methods have been experimented with

text categorization, namely term clustering and latent semantic indexing.

Term clustering tries to group words with a high degree of pairwise
semantic relatedness, so that the groups may be used instead of the terms as
dimensions of the vector space. Term clustering is different from term
selection, since the former tends to address terms synonymous with other

terms, while the latter targets non-informative terms.'

Lewis [50] was the first to investigate the use of term clustering in text

categorization. The method he employed, called reciprocal nearest neighbor

" Some term selection methods, such as wrapper methods, also address the problem of
redundancy.



clustering, consists in creating clusters of two terms that are one the most
similar to the other according to some measure of similarity. His results
were inferior to those obtained by single-word indexing, possibly due to a

disappointing performance by the clustering method.

Li and Jain [53] viewed semantic relatedness between words in terms of
their co-occurrence and co-absence within training documents. By using
this technique in the context of a hierarchical clustering algorithm, they
witnessed only a marginal effectiveness improvement. However, the small
size of their experiment hardly allows any definitive conclusion to be

reached.

The work of Lewis [50], Li and Jain [53] are examples of unsupervised
clustering, since clustering is not affected by category labels attached to the
documents. Baker and McCallum [4] provided instead an example of
supervised clustering, as the distributional clustering method they
employed clusters together those terms that tend to indicate the presence of
the same category, or group of categories. Their experiments, carried out in
the context of a Naive Bayes classifier showed only a 2% effectiveness loss
with an aggressivity of 1,000, and even showed some effectiveness
improvement with less aggressive levels of reduction. Later experiments by
Slonim and Tishby [75] confirmed the potential of supervised clustering

methods for term extraction.

Latent Semantic Indexing (LSI) [12] is a method to reduce the dimension n
of the feature space. LSI provides a reduced feature space with m (<n)

orthogonal axes. This technique compresses document vectors into vectors



of a lower-dimensional space whose dimensions are obtained as
combinations of the original dimensions by looking at their patterns of co-
occurrence. In text categorization, this technique is applied by deriving the
mapping function from the training set and then applying it to training and

test documents alike.

For text categorization works that have used LSI or similar term extraction
techniques, see Schutze et al. [73], Wiener et al. [85], Hull [29], Li and Jain

[53], Schutze [72], Weigend et al. [84], and Yang [87].

2.1.2 Classifier Learning

Joachims first applied Support Vector Machines to text categorization [32].
Although the model of the text used in their framework was a simple
Vector Space Model, they achieved an outstanding improvement over other
methods. They argue that Support Vector Machines are appropriate for text
categorization because Support Vector Machines can handle high
dimensional feature spaces and few relevant features, which are main
properties of text categorization. Learning methodology is based on

Vapnik’s statistical learning theory [81].

The Naive Bayes is constructed by using the training data to estimate the
probability of a class given the document feature values of a new instance.
Naive Bayes classifiers account for most of the probabilistic approaches to
text categorization in the literature [32, 50, 53]. Despite the fact that the

assumption of conditional independence is generally not true for word
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appearance in documents, the Naive Bayes classifier is surprisingly

effective.

2.1.3 Classifier Evaluation

Standard benchmark collections that can be used as initial corpora for text
categorization are publicly available for experimental purposes. The most
widely used is the Reuters-21578 collection, consisting of a set of newswire
stories classified under categories related to economics. The Reuters
collection accounts for most of the experimental work in text categorization
so far. Unfortunately, this does not always translate into reliable
comparative results, in the sense that many of these experiments have been

carried out in different conditions.

Other test collections that have been frequently used are:
1. OHSUMED collection [27]

2. 20 Newsgroups collection [47]

The published experimental results allow us to attempt some considerations
on the comparative performance of the text categorization methods
discussed. However, we have to bear in mind that comparisons are reliable
only when experiments are performed by the same author under carefully
controlled conditions. They are instead more problematic when they

involve different experiments performed by different authors.
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Two different methods may thus be applied for comparing classifiers [89]:

1. Direct comparison
Classifiers may be compared when they have been tested on the
same collection, usually by the same researchers and with the same
background conditions. This is the more reliable method.

2. Indirect comparison
Classifiers may be compared when they have been tested on
collections respectively, typically by different researchers and hence
with possibly different background conditions; one or more baseline
classifiers have been tested on both collections by the direct

comparison method. This method is less reliable.

In the literature, inconsistent versions of Reuters-21578 collection ranged
from 8,815 training documents to 14,704 training documents and 10
categories to 135 categories are used for performance evaluation (see Table
1). The common condition of Reuters-21578 is 9,603 training documents
and 90 categories. Most of the results are focused on improving micro-
average performance. Few focused on improving macro-average
performance. Between Naive Bayes classifier (NB) and Support Vector
Machines classifier, the performance of Support Vector Machines is shown

to be better than Naive Bayes.
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Table 1: Difference conditions of Reuters-21578 collection are used for performance
evaluation.

Reuters-21578 collection

Results # of # of training # of test # of Micro Macro
reported by documents documents documents categories averaging averaging
Lam et al.
v
1997 21,450 14,704 6,746 135
Lam and Ho
1998 12,902 9,603 3,299 90 v
Dumais et al.
v
1998 12,902 9,603 3,299 10
Dumais et al.
v
1998 12,902 9,603 3,299 90
v
Joachims 1998 12,902 9,603 3,299 90 (NB: 0.720)
(SVM: 0.864)
Yang 1999 21,450 14,704 6,746 135 v
Yang 1999 14,347 10,667 3,680 93 v
Yang 1999 13,272 9,610 3,662 92 v
Cohen and
v
Singer 1999 21,450 14,704 6,746 135
Cohen and
v
Singer 1999 14,347 10,667 3,680 93
Liand v
Yamanishi 12,902 9,603 3,299 90 (NB: 0.773)
1999 (SVM: 0.841)
. v
T;‘;lgg and Liu 12,902 9.603 3,299 90 (NB: 0.795)
(SVM: 0.859)
Takamura and v
Matsumoto 11,838 8,815 3,023 116 (NB: 0.863)
2002 (SVM: 0.890)
Rogati and v v v v v v
Yang 2002 (unclear) (unclear) (unclear) (unclear)

2.2 Curse of Dimensionality

In a small data set, data points/objects are represented by a low number of
dimensions and they situate in a low dimensional space. The distance of
data points are tightly packed and these data points/objects are non-
equidistant from each other. However, when the number of data set
increases, the number of dimensions of the data set also increases. It has
been shown that in a high dimensional space, the distance between every
pair of data points/objects becomes almost the same for a wide variety of
data distributions and distance functions. In this case, a large data set
creates a high dimensional space, in which data points/objects represented

in a high dimensional space spread out and become almost equidistant from
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each other and distance becomes increasingly meaningless. This is known

as the curse of dimensionality [3, 5, 52, 62].

To counter high-dimensionality, various feature/term selection methods
have been proposed [5, 52]. Feature/term selection merely selects a ‘good’
subset of the original features/terms; whereas feature/term extraction allows
extraction of arbitrary new features/terms based on original ones (see Table

2).
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For text categorization at all the reduction levels of aggressiveness from
using the full vocabulary as the feature space to removing 98% of the
unique terms, Yang [90] reported that information gain and chi-square
were most effective than document frequency, mutual information and term
strength in aggressive term removal without losing categorization accuracy
in the experiments. Document frequency thresholding was found
comparable to the performance of information gain and chi-square with up
to 98% term removal, while ferm strength was comparable with up to 50-
60% term removal. Mutual information has an inferior performance
compared to the other methods due to its bias towards rare terms and a
strong sensitivity to probability estimation errors. Slonim [75] reported that
word clusters (term extraction) had up to 18% improvement in

classification accuracy.
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Table 2: Different approaches to tackling the problem of high-dimensionality.

Term Term
Terminology selection extraction Clustering Subspace
Latent Semantic Indexing v (feature
[Schutze 95] selection)
v
Latent Semantic Se%;?f)i?ct
Indexing [Schutze 95] Indexing)
v (non-probabilistic
Cluster-based [Iwayama, clustering,
95] probabilistic
clustering)
. v (e.g.
Feature selection [Yang, information
o7] gain)
WA
Feature selection [Li 98] begnfila\;ﬁ::)l
v’ (Principal
Feature extraction [Li 98] Component
Analysis)
Term grouping in v (term grouping
subspace[Li 98] in subspace)
. v (classification
Subspace [Li 98] algorithms)
v
Latent Semantic Indexing Se(ril‘:rt:t?ct
[Weigend 99] Indexing)
Word clustering
[Deerwester, 90; Baker, v’ (term clustering)
98; Dhillon 02, Han 03]
Feature Clustering .
v
[Dhillon [CML-2002] (term clustering)
v
Two-dimensional clus(tggilumtz r;:n
clustering [Takamura, 02] cluste r%;lg)

In automatic text categorization by unsupervised learning, subspace
clustering [3, 62] is considered an extension of feature/term selection that

attempts to find clusters in different subspaces of the same data set.

2.3 Subspace Methodology

Nowadays the subspace methodology has been used extensively in data
mining (unsupervised text categorization) [3, 62, 91, 92]. However, this
approach has not broadly been applied in the field of supervised text

categorization.

Subset selection is to find the best subset among a set of features. The best
subset contains the least number of dimensions which attains the highest

accuracy. The remaining, unimportant dimensions are discarded.
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The history of the subspace methods in data analysis was started by
Hotelling [28] in the 1930s. The value of the subspace methods in data
compression and optimal reproduction was observed in the 1950s by
Kramer and Mathews [44]. Ten years later, Watanabe et al. [82] published
the first application in pattern classification. Learning subspace methods
emerged from the mid-1970s, after the pioneering work of Kohonen et al.
[43]. From the beginning, these methods aimed at classification instead of
optimal compression or reproduction. The guiding idea in the learning
methods is to modify the bases of the subspaces in order to diminish the
reuters corpusreuters corpusnumber of misclassifications. The nature of the

modifications varies in different learning algorithms.

2.3.1 Classical Subspace Methods

Classical subspace classification algorithms are reviewed in this section.
The style of the notations and illustrations is adopted from Oja [61].
Although there are many variants of the subspace classifier, the most
fundamental one is the Class-Featuring Information Compression (CLAFIC)
method [61]. The employment of the Principal Component Analysis (PCA),
or the Karhunen-Loé¢ve (KLT), in classification tasks leads to the CLAFIC
algorithm introduced by Watanabe et al. [82]. CLAFIC simply forms the
base matrices for the classifier subspaces from the eigenvectors of the

class-conditional correlation matrices. For each class j, the correlation

. _ T o . . . | n; T
matrix R; = E[xx’ |xe j] is estimated with R; =»; Z,-;lxifxif . The first /,
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eigenvectors of R, uy;,..,u, ;, in the order of decreasing eigenvalue 4
« ;.

i >

are then used as columns of the basis matrix U,

U=y [(R; = ADuy =0,2; 2 Ay i =Lenl)) 1)

where 0 is the zero vector. The sample mean j of the pooled training set is
normally subtracted from the pattern vectors before they are classified or
used in initializing the CLAFIC classifier. Because the class-conditional

correlations R; of the input vectors x differ from the corresponding class-
wise covariances X ;, the first eigendirection in each class merely reflects

the direction of the class mean from the pooled mean translated to the
origin. The calculation of the eigenvalues and eigenvectors of a symmetric

positive definite matrix, such as R ;» 1s described, for instance, by Golub

and van Loan [23]. The selection of the subspace dimensions /,,...,, is left

open in the basic formulation of CLAFIC.

The subspaces that represent two different pattern classes may have a large
common sub-subspace. This is problematic because the discrimination

between these classes weakens if the subspace dimensions /; are small. On

the other hand, if the subspace dimensions are increased, the classification
decisions become dominated by the less robust principal directions. This
problem may be avoided if the subspaces are made mutually orthogonal.
This leads to a variant of the CLAFIC known as the Method of Orthogonal
Subspaces (MOSS) by Kulikowski and Watanabe [45] and Watanabe and

Pakvasa [83].
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Pairwise orthogonalization of two subspaces is possible whenever their

dimensions satisfy the obvious condition /;+/;>d . In that case, two

subspaces are said to be mutually orthogonal if any vector of one of the
subspaces has zero projection on the other, and vice versa. This is equal to
the condition that the basis vectors are orthogonal not only within, but also

between, the subspaces. Thus, the projection matrices P, and P; of two
orthogonal subspaces fulfill the condition

PP, =P,P, =0, 2)

where 0 is the zero matrix. The orthogonalization process of MOSS is
accomplished by removing the intersections of the subspaces as described,

for instance, by Therrien [78]. In short, the projection operators P, are
replaced with mutually orthogonal operators P}, which are formed by using

the generating matrix G,

G,.:aij+ Zai(I—Pi) . 3)
The otherwise arbitrary positive multipliers «; must satisfy the condition

zc, a; =1 The eigenvalues and eigenvectors are now calculated from G,
=

and the orthogonal projection operators P; are formed from the /]
eigenvectors v, which have eigenvalues equal to one,

l;

’ T
Pj :ZV”V” . 4)

i=1

<
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Naturally, Vj:/; </;. In some cases, the procedure, however, leads to an
unacceptable situation where, for some j, /=0, and the corresponding

subspace vanishes [40].

Fukunaga and Koontz [21] reasoned that it was necessary to select such
basis vectors that the projections on rival subspaces were minimized. Their
original formulation of the problem and the criticism against it, presented
by Foley and Sammon [14], considered only the two-class case. Instead, the
Generalized Fukunaga-Koontz Method (GFK) of Kittler [42] handles an
arbitrary number of classes. In the two-class case, the correlation matrices
of both classes are first estimated. The KLT is then applied to their sum

Q=R,+R, and the eigenvalues 4 and eigenvectors u, are used in

defining a transformation matrix S, which is used to transform the original

vector x to x’,

u u
[M Vi ]
For the correlation matrix R’; of the transformed vector x’=S"x, it holds

that R, =S"R S, and further R{ +R} =1. Thus, R and R have the same

eigenvectors, and the corresponding eigenvalues are positive and sum up to
unity. This leads to the following interpretation of the nature of the
eigenvectors: When eigenvectors are ordered according to the descending

eigenvalues, the first few eigenvectors of R] are optimal for describing the

distribution of the transformed vectors x” which belong to the first class.

On the other hand, the eigenvectors with the smallest eigenvalues describe
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the second class. The method was primarily developed for feature

extraction and clustering, but it also lends itself directly to classification.

2.3.2 Current Performance

Four different methods including subspace method for document
classification were reported by Li and Jain [53]. The subspace model [61]
decomposes a given feature space into m subregions of lower
dimensionality (subspace), where each region is a representative feature

space for its corresponding pattern class c;,i=1,..,m. A test document is

classified based on a comparison of its compressed representation in each
feature space with that of different classes. Experimental results showed
that the subspace classifier and the Naive Bayes classifier outperformed the
other two classifiers: the nearest neighbour classifier and decision trees
based on data sets of seven-class Yahoo news groups. They used the
Principal Component Analysis method (LSI) to project the original feature

space onto a lower dimensional subspace.

Kharechko et al. [41] reported that they needed to look for some subspace
of the bag-of-words vector representation of the text documents for Text
Categorization via Ellipsoid Separation. A variant of latent semantic feature
extraction was used for the subspace purpose. They demonstrated that the
algorithm could perform document classification up to the level of the

state-of-the-art Support Vector Machines algorithm.
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3 Subtopic Clustering

3.1 Introduction

An unresolved problem for research in Text Categorization (TC) is how
robust the methods are used to tackle problems with a skewed category
distribution. Since categories typically have an extremely non-uniform
distribution in practice [89], it would be meaningful to compare the
performance of different classifiers with respect to category frequencies.
Most commonly, methods are compared using a single score, such as the
accuracy, error occurrence rate, or averaged F1 measure [89] over all
category assignments to documents. A single-valued performance measure
can be either dominated by the classifier's performance on common
categories or rare categories, depending on how the average performance is
computed. Two conventional methods are used to evaluate the performance
average across categories. Micro averaging assigns equal weight to every
document, while macro averaging assigns equal weight to each category [1].
Inevitably, skewed category distribution often leads to good micro-average

performance but not so desirable macro-average performance.

To improve the macro-average performance, our approach is to break the
large topic classes into subtopic classes [9, 10], similar to the idea of
passage-based retrieval [7], because large topics may have been generated
by more than one term distribution [77]. The subtopic classes should have a
significant amount of terms that occur in documents of the subtopic but not

in the other subtopic. We propose to use clustering [25] to find these
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subtopics of a large topic class as shown in Figure 2. One important issue is
to determine which topic classes are larger. This will be addressed by
examining the performance with different thresholds to define large topic
classes. By comparing the micro-average performance and macro-average
performance before and after clustering, it is possible to identify if subtopic

clustering has generated any positive result on the macro-average

performance.
- - P ; T e - )
L £y XX ~.~Large topic class
P I >><< S \\gwith many training data)
il — =
If STy “;‘\ » x,afx\‘( xx“\ subtopic classes
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wx XX, ~ X%
- - # Document
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Figure 2: Visual representation of a large topic class consists of a mixture of a
number of subtopic clusters.

In Section 3.2, we shall briefly describe the methodology for experimental
setup and performance measure. This will be followed by results and
discussion in Section 3.3. Lastly, conclusion and future work will be drawn

in Section 3.4.

3.2 Methodology

3.2.1 Experimental Setup

3.2.1.1 Data Set

The Reuters-21578 document set has previously been regarded as a
standard real-world benchmarking corpus for the Information Retrieval (IR)

community. The ModApte split (training data set: 9,603 documents, test
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data set: 3,299 documents, unused: 8,676 documents) of Reuters-21578

document set is used for our experiments.

Except two large topics, including “acq” (1,488 training documents) and
“earn” (2,709 training documents), the rest of the training topics have fewer
than 500 documents (ranging from 1 to 460). Test documents can be
assigned to more than one topic; therefore, 3,299 single-label test
documents are expanded to 3,409 test documents which are used for

evaluation.

The distribution of the number of training documents in a topic class is
typically highly skewed. The number of terms in a topic increases
logarithmically with an increase in the number of training documents. They

are shown in Figure 3.
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Figure 3: The number of training/test documents plotted against ranked topic sorted
by their sizes (top). The number of terms in a topic plotted against the number of
training documents in its topic (bottom).

3.2.1.2 Preprocessing

Preprocessing involves removing SGML tags, punctuation marks, stop
words and performing word stemming to reduce the feature vector size.
Bag-of-words [57] document representation (vector space model) scheme is
used for feature representation. Term importance is assumed to be inversely
proportional to the number of documents a particular term appears in. The

term frequency (zf) and inverse document frequency (idf) are used to assign

25



weights to terms. The inverse document frequency for term t is defined as

[67]:

idf (1) = log(N / n(?)) . (6)

The common non-content words are removed to reduce possible
interference in classification results. It is assumed that the importance of a

term increases with its use-frequency. Combining these two assumptions

lead to #fidf:

tfidf (1) = of (1) xidf (t) . (7

Cosine normalization is used. Every document vector is divided by its

12

Euclidean length, (w)? + (w2)? +...+ (W), where w; is the tfidf weight

of the i-th term in the document. The final weight for a term hence becomes:

tfidf weight
Euclidean length of the document vector -

®)

3.2.1.3 Classifier

Instead of implementing a classifier, we use Rainbow/Libbow software
package [55, 56] to perform text classification. The classifier utilizes
machine learning methods such as Naive Bayes, Support Vector Machines
and k-Nearest Neighbor for text classification [32, 88, 89]. As the major
focus of this paper is not about the performance of classifier algorithms,
only Support Vector Machines classifier for single-label classification was
selected for the following experiments. Scores of performance
measurements generated by the classifier will be shown in the following

section.
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3.2.2 Performance Measurements

3.2.2.1 Recall, Precision and F1

Classification performance is measured by both recall and precision. For
evaluating the performance, three quantities are of interest for each topic.
They are: a = the number of documents correctly assigned to this topic.

b = the number of documents incorrectly assigned to this topic.

¢ = the number of documents incorrectly rejected from this topic.

From these quantities, we define the following performance measures:
recall=a/(a+c) . 9

precision = a/(a + b) (10)

In addition, we use F1 measure [79], combining recall and precision with

equal weighting, to compare the overall results of the algorithms:

F1=(2xrecallx precision)/(recall + precision) . (11)

Macro-average performance scores are determined by first computing the
performance measures per topic and then averaging these to compute the
global means. Micro-average performance scores are determined by first
computing the totals of @, b and ¢ for all topics and then these totals are
used to compute the performance measures. There is an important
distinction between the two types of averaging. Micro averaging gives
equal weight to every document, while macro averaging gives equal weight

to each topic.
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For a sample test data set containing 3,409 test documents, the
measurements of recall, precision and F1 plotted against the training
document number of 90 topics and against ranked topic (sorted by their
scores from the smallest value to the largest) are shown in Figure 4. It is
observed that 61 out of 90 topics are having both recall and precision zero.

The percentage of topics not classified correctly is 67.78%.

e om0 e
- Lo 0 a0 B lllllélu L
& | [ | [ | | ,\\ [ | | |
: 0.8 ”777’7\*1’7’\*1’”’**‘?’77‘?’1’\7‘?’%77’7 ‘T’”V"T"Y’**‘T’***T*‘T
S e s U e
m | [ | Iag! [ e | | |
6 0.6 7777}77\7##\7#\#77#77AA \—QA@ A+&F++——+———+—4— L
g IR -k ‘E& l&hlll l L o Precision
n- | [ ] | .\A\ ’ | \D\ [ | | |
E 0.4 7777p7\7#p\7#\p77#7mp7#+77+7|;|$#p++77+777+74 A F1
s e s T L
Co2l Loiiiiiig A% L B0 L 1
llllllllﬁl’&?l%l ARRE L
0 | [ | [ | [ e | | |
1 10 100 1000 10000
Number of training documents in a topic
61
‘ Precision
. S -
| B
- | et
[T
07 S S P
S 1 &% Recall
—— | m
3 0.6 - | 4
g | ﬁAA“
o | »
=044 T B
g 1 o
3 : e
Z 02- | " by
! B?M
O* T
0 20 40 60 80 100

Ranked topic (sorted by their scores)

Figure 4: The distribution of recall/precision/F1 measurement plotted against the
number of training documents in a topic (top). The distribution of recall/precision/F1
measurement plotted against ranked topic sorted by their scores (bottom).

Recall, precision and F1 measurement of the 90 topics in the experimental
data set are unevenly distributed. The uneven distribution is due to the fact

that the distribution of the number of documents in the data set is highly
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skewed in nature. The results of macro-average and micro-average are
shown in Table 3. From the result, the macro-average recall is 14.84%,
macro-average precision is 22.35% and macro-average F1 is 17.84%. The
reason for this low score is due to the fact that more than half of the topics

(67.78%) in the data set are zero in both recall and precision.

Table 3: The macro-average and micro-average performance calculated by a sample
test data set containing 3,409 test documents.

Macro-average Micro-average
Recall  Precision F1 Recall/Precision/F1
14.84% 22.35% 17.84% 69.26%

All numerical values for a, b, and ¢ in Equations 9-11 are listed underneath for both
macro- and micro-averages.

Topic a b ¢ Recall (%) Precision (%) FI (%)
acq 622 59 21 96.73 91.34  93.96
alum 5 0 15 25.00 100.00  40.00
barley 0 0 12 0.00 0.00 0.00
bop 10 8 18 35.71 55.56 4348
carcass 0 0 18 0.00 0.00 0.00
castor-oil 0 0 1 0.00 0.00 0.00
cocoa 8 4 7 53.33 66.67  59.26
coconut 0 0o 2 0.00 0.00 0.00
coconut-oil 0 0 3 0.00 0.00 0.00
coffee 20 5 7 74.07 80.00  76.92
copper 5 4 12 29.41 55.56  38.46
copra-cake 0 0 1 0.00 0.00 0.00
corn 0 1 48 0.00 0.00 0.00
cotton 1 0 19 5.00 100.00 9.52
cotton-oil 0 0o 2 0.00 0.00 0.00
cpi 4 2 22 15.38 66.67  25.00
crude 133 122 28 82.61 52.16  63.94
dfl 0 0 1 0.00 0.00 0.00
dir 0 0 31 0.00 0.00 0.00
dmk 0 0o 3 0.00 0.00 0.00
earn 1021 20 23 97.80 98.08  97.94
fuel 0 0 10 0.00 0.00 0.00
gas 2 2 12 14.29 50.00 22.22
gnp 21 37 13 61.76 36.21  45.65
gold 15 15 13 53.57 50.00 51.72
grain 113 352 21 84.33 2430  37.73
groundnut 0 0 4 0.00 0.00 0.00
groundnut-oil 0 0 1 0.00 0.00 0.00
heat 1 0 4 20.00 100.00  33.33
hog 0 0 o6 0.00 0.00 0.00
housing 0 0 3 0.00 0.00 0.00
income 0 0 5 0.00 0.00 0.00
instal-debt 0 0 1 0.00 0.00 0.00
interest 54 38 46 54.00 58.70  56.25
ipi 4 0 6 40.00 100.00 57.14
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3.2.2.2 Skewness

Skewness is measured against the number of test data sets. Each test data
set (consists of test documents) has the skewness, and its own scores (such

as recall and precision) are calculated by the classifier.

The skewness is calculated by Kullback-Leibler (KL) distance [46].
Suppose two variables of the same type characterized by their probability
distribution f and f’. The skew distance (KL distance) can be derived using

as:

X fi(x)
skew distance = Z fi(x)xlog

i=1 fi’(x) ’ (12)

where ¢ is the number of topics, f is the probability distribution of test
documents of the topics and f’ is the equal probability distribution of test
documents of the topics. For a data set containing of 90 topics, the skew

distance is calculated as:

S fi(x)
skew distance = Zfi (x)xlog il . (13)

=l 90

number of test documents from topic (7) in the test data set

fi(x)= (14)

number of test documents from all topics in the test data set

For skewness measurement, we use 925 test data sets where 100 test
documents in each test data set are selected randomly from 3,409 test
documents. Each test data set has it own skew distance. Figure 5 shows the

histogram of skew distance of the 925 test data sets.
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Figure 5: The histogram of skew distance of 925 test data sets. 100 test documents in
each test data set are selected randomly from 3,409 test documents.

For the 925 test data sets (925 skew distances), the scores of recall,
precision and F1 are plotted against the skew distance. The scatter plots are
shown in Figure 6. On these plots, linear regression lines are drawn to
predict the values at different skew distances. Zero skew distance is used as

the reference point. The results at zero skew distance are shown in Table 4.
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Figure 6: Macro-average recall plotted against skew distance (a). Macro-average
precision plotted against skew distance (b). Macro-average F1 plotted against skew

distance (c). Micro-average recall/precision/F1 plotted against skew distance (d).

Table 4: The macro-average and micro-average performance at zero skew distance.

Macro-average Micro-average
Recall  Precision F1 Recall/Precision/F1
48.17% 33.49%  40.89% 67.01%

3.2.3 Clustering

By viewing topics as clusters in a high dimensional space, we propose the
use of clustering to determine subtopic clusters for large topic classes by
assuming that large topic clusters are in general a mixture of a number of

subtopic clusters.

The cluster analyses (hierarchical and non-hierarchical clustering) in this
paper are conducted by SPSS [76]. For each topic to be clustered into
subtopics, all document vectors are initially grouped together to form a
document-by-word matrix with size m by n (m is the number of documents

and 7 is the size of document vector).
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Topics with topic size which generates optimal macro-average performance
(in Section 3.3.1) are selected for our experiments. For demonstration
purpose, topics with topic size exceeding 100 are selected for clustering.
Within the 90-topic data set, 77 topics have the number of training
documents less than or equal to 100. Hence, only 13 topics meet our
experimental criteria are selected for subtopic clustering. By means of
complete linkage hierarchical clustering, 13 topics are clustered into 1,148
subtopics. The total number of topics and subtopics are 1,225 (77+1,148).
By means of k-means non-hierarchical clustering, 13 topics have been
clustered into 701 subtopics. The total number of topics and subtopics are
778 (77+701). The classifier is trained on these topics for performance
evaluation. The clustered scores are compared with the previous result
without subtopic clustering, by mapping clustered subtopics onto previous

non-clustered topics after classification.

3.2.3.1 Hierarchical Clustering

The scores of recall, precision and F1 are plotted against the skew distance.
The scatter plots are shown in Figure 7. On these plots, linear regression
lines are drawn to predict the values at different skew distances (zero skew
distances are used as the reference point). The dotted lines are linear
regressions showing the projected trends of micro-average and macro-
average performance at different skew distances before subtopic clustering.
Hence, the differences between the dotted and the solid lines in the graphs

below demonstrate the difference in macro-average and micro-average
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performance before and after hierarchical clustering. Table 5 demonstrates

the performance at zero skew distance.
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Figure 7: Macro-average recall plotted against skew distance for hierarchical
clustering (a). Macro-average precision plotted against skew distance for hierarchical
clustering (b). Macro-average F1 plotted against skew distance for hierarchical
clustering (c). Micro-average recall/precision/F1 plotted against skew distance for
hierarchical clustering (d).

Table 5: The macro-average and micro-average performance at zero skew distance

from the 925 test data sets (using subtopics by complete-linkage clustering to build
the classifier).

Macro-average Micro-average
Recall  Precision F1 Recall/Precision/F1
57.16% 39.46% 47.57% 61.13%
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3.2.3.2 Non-hierarchical Clustering

Non-hierarchical Clustering is conducted following the same procedure as
Hierarchical Clustering. The scatter plots are shown in Figure 8 and Table 6

demonstrates the performance at zero skew distance.
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Figure 8: Macro-average recall plotted against skew distance for non-hierarchical
clustering (a). Macro-average precision plotted against skew distance for non-
hierarchical clustering (b). Macro-average F1 plotted against skew distance for non-
hierarchical clustering (c). Micro-average recall/precision/F1 plotted against skew
distance for non-hierarchical clustering (d).

Table 6: The macro-average and micro-average performance at zero skew distance

from the 925 test data sets (using subtopics by k-means clustering to build the
classifier).

Macro-average Micro-average
Recall  Precision F1 Recall/Precision/F1
55.26%  37.05%  45.56% 60.89%
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3.3 Experimental Results and Discussion

The comparison results of macro averaging and micro averaging at
different cluster sizes by complete-linkage clustering are discussed in
Section 3.3.1. They are calculated from the 925 test data sets at skew
distance equals to 0. For macro-average performance, the optimal result is

obtained when the maximum subtopic class size is set to 100.

We have also evaluated whether the complete-linkage clustering is better
than k-means clustering. In Section 3.3.2, the macro-average and the micro-
average result with clustering and without clustering are summarized and
compared. The results are also calculated from the 925 test data sets at

skew distance equals to 0.

In Section 3.3.3, the percentages of topics never be classified correctly are
summarized with subtopic clustered by complete-linkage clustering and k-
means clustering. The scores are calculated from the sample test data set

containing 3,409 test documents.

3.3.1 Comparison of Macro Averaging and Micro
Averaging at Different Cluster Sizes by Complete-
Linkage Clustering

To investigate the effect of topic/subtopic size, training documents with

cluster-sizes limited to 5, 10, 25, 50, 100, 200 and 500 are classified by

complete-linkage clustering. Figure 9 shows the scatter plots and Table 7

shows the performance of the classifier with subtopic clustering for

different maximum subtopic class sizes.
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Figure 9: Macro-average recall and micro-average recall plotted against limited
topic/subtopic size by using complete-linkage method (a). Macro-average precision
and micro-average precision plotted against limited topic/subtopic size by using
complete-linkage method (b). Macro-average F1 and micro-average F1 plotted
against limited topic/subtopic size by using complete-linkage method (c).

In general, the optimal macro-average performance (F1 measurement is
47.57%) is attained when the topic size is 100. However, at a certain point
when the topic size is below 100, the macro-average performance and the
micro-average performance nearly coincides (i.e. theirs scores are almost
the same). Under such circumstance, over-clustering is likely to occur and

adversely affect the macro-average and micro-average performance.

The best micro-average performance is achieved by using the classifier

without subtopic clustering, mainly due to the benefit of large topics.
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Table 7: The results from the 925 test data sets (at skew distance = 0) using complete-
linkage clustering with topic/subtopic size limited to 5, 10, 25, 50, 100, 200 and 500

are summarized.

Subtopic size limited to

Macro-average

Micro-average

Recall  Precision F1 Recall/Precision/F1

5 40.64% 36.72% 38.35% 48.43%

10 4331% 39.48% 41.04% 43.70%

25 50.36% 43.90% 46.71% 46.59%

50 54.16% 41.42% 46.91% 45.88%

100 57.16% 39.46% 47.57% 61.13%

200 51.00% 32.98% 41.64% 62.82%

500 46.02% 31.09% 38.73% 64.44%

No clustering 48.17%  33.49%  40.89% 67.01%

3.3.2 Comparison of Macro Averaging and Micro

Averaging by Complete-Linkage Clustering and K-

Means Clustering

The macro-average and micro-average result calculated from the 925 test

data sets at zero skew distance using complete-linkage and k-means

clustering with topic/subtopic size limited to 100 are summarized in Table

8. It shows that complete-linkage clustering performs better regardless of

all performance measures. While we have to accept that hierarchical

clustering, such as complete-linkage, provides better performance than non-

hierarchical clustering, as it is able to locate the cluster boundaries more

accurately and create a higher performance in text categorization.

Table 8: The results from the 925 test data sets (at skew distance = 0) using complete-
linkage clustering and k-means clustering with topic/subtopic size limited to 100 are

summarized.
. Macro-average Micro-average
Clustering method Recall  Precision F1 Recall/Precision/F1
No clustering 48.17%  33.49%  40.89% 67.01%
Complete-linkage 57.16%  39.46%  47.57% 61.13%
K-means 55.26%  37.05% 45.56% 60.89%
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3.3.3 Comparison of Percentage of Topics with Zero

Recall and Precision

The scores are calculated from a sample test data set containing 3,409 test
documents. The measurements of recall, precision and F1 plotted against
ranked topic (sorted by their scores from the smallest value to the largest)
using complete-linkage clustering and k-means clustering are shown in
Figure 10. The results are summarized in Table 9 and show that the
classifier with subtopic clustering by complete-linkage method has 18.03%
improvement while the result by k-means method has 16.39% improvement.
Again it shows that complete-linkage clustering performs better than k-

means clustering.
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Figure 10: The distribution of recall/precision/F1 measurement plotted against
ranked topic sorted by their scores using complete-linkage clustering with
topic/subtopic size limited to 100 (top). The distribution of recall/precision/F1
measurement plotted against ranked topic sorted by their scores using k-means
clustering with topic/subtopic size limited to 100 (bottom).

Table 9: The percentages of topics that have never been classified correctly are
summarized (without subtopic, with subtopic clustered by complete-linkage
clustering and with subtopic clustered by k-means clustering).

Clustering method  Topics that have never been classified correctly Improvement

No clustering 67.78% (61 out of 90) -
Complete-linkage 55.56% (50 out of 90) 18.03%
K-means 56.67% (51 out of 90) 16.39%

3.3.4 Comparison with Feature Reduction

Since document classification involves high-dimensional feature space, the

effects of different feature reduction techniques were examined in order to
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improve recognition performance [53]. It is a well-known fact that the size
of different text categories can vary significantly in text corpora. The
Reuters-21578 collection is a common benchmark for comparing methods
of text categorization [1, 13, 32, 49, 71, 88, 89]. The documents in the
Reuters collection were collected from Reuters newswire in 1987. Over one
third of the text classes are having less than 10 documents in the Reuters-
21578 [1, 89]. The skewness problem cannot be eliminated by replacing
with a larger data set corpora like the Reuters Corpus Volume 1 (RCV1)
[51], i.e. the uneven distribution of document sizes of topics within a data
set will always occur, and may subsequently introducing problems for text

categorization.

Further experiments on feature reduction are done on the same data set to
evaluate the performance. For feature reduction, only the top 500 feature
weights of a topic (calculated by tfidf) are selected. The feature reduction

vector (x") is reduced from the original vector ( x).
’ 75 500 ’ ’ ’
XD =X =X X e X
where x/ =max{x,}% and x> x/, Vi={2,...,500}
Different experiments of feature reduction topic are selection for the
comparison. First, topics with training topic size greater than 500 (>500)

are used for feature reduction; then using other training topic sizes such as

200, 100, 50, 25, 10 and 5 (as shown in Table 10)
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Table 10: The numbers of topic used for feature reduction are chosen based on
training topic size.

Topic with training topic size Numbers of topic used for feature reduction

> 500 2
> 200 7
> 100 13
>50 23
>25 39
>10 57

>5 67

Each classifier result is built by 90 topics with different numbers of topic
used for feature reduction. The corresponding macro-averaging and micro-
averaging scores are summarized in Table 11, the scatter plots are shown in

Figure 11.

Table 11: The macro-averaging and micro-averaging scores of the 7 feature
reduction classifiers.

Topic with training Macro-average Micro-average Recall /
topic size Recall Precision F1 Precision / F1

> 500 18.10%  26.75%  21.59% 65.68%
>200 21.84% 26.80% 24.07% 65.18%
>100 23.31% 27.26%  25.13% 65.30%

> 50 23.80% 25.86%  24.79% 66.38%

>25 23.46% 24.68% 24.05% 66.21%

> 10 22.73%  24.54%  23.60% 65.97%

>5 22.74%  24.68%  23.67% 66.03%

70.00% b o
60.00% M M M + Micro-average Recall /

' Precision / F1

0,

50.00% = Macro-average Recall
40.00%
30.00% Macro-average Precision
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Feature reduction topic size

Figure 11: The scatter plot of the macro-averaging and micro-averaging scores for
the 7 feature reduction classifiers.
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Using the topic size greater than 500 for feature reduction as reference, the
result of the topic size greater than 100 for feature reduction has 16.4%

(%5291'59 %) improvement in macro-average performance (by F1

measurement). For difference numbers of topic used for feature reduction,
the results also have improvement in macro-average F1 performance when
comparing to the result of the topic size greater than 500 for feature
reduction. In the circumstances, feature reduction to help to improve the

classification results has the significant meaning.

3.4 Conclusions

We have shown that subtopic clustering of large topic classes can improve
the macro-average performance consistently across different skewness of

the test data set distribution. The optimal result shows that there is 16.34%

(% %) improvement in macro-average performance (by Fl1

measurement) when the maximum subtopic size equals to 100 by using
complete-linkage clustering (hierarchical clustering). The macro-average
F1 is 47.57% under the maximum subtopic size equals to 100 by using
complete-linkage clustering as shown in Table 5, Table 7 and Table 8. The
macro-average F1 is 40.89% without clustering as shown in Table 4, Table

7 and Table 8.)

This experiment shows that 100 is a useful threshold value that indicates
the need to divide large topic classes into subtopic classes (i.e. subtopic
clustering) in order to increase macro-average performance. However, there

is a slight decrease in the micro-average performance and more research is
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needed to enhance the use of subtopic clustering for text categorization. We
will further explore how the optimal size of the subtopic clusters can be

determined analytically or automatically.

The comparison of hierarchical and non-hierarchical clustering shows that
hierarchical clustering performs better for recall, precision and FI
performances when the maximum subtopic size is at 100. The optimal

results of k-means clustering (non-hierarchical clustering) show that there

45.56—-40.89

is 11.42% ( 2089 %) improvement in macro-average F1. The macro-

average F1 is 45.56% when the maximum subtopic size equals to 100 as
given in Table 6 and Table 8. The macro-average F1 without clustering is
40.98% as shown in Table 4, Table 7 and Table 8. (The summarized results

are shown in Table 12)

Table 12: Macro-average improvement of the results from the 925 test data sets (at
skew distance = 0) using complete-linkage clustering and k-means clustering with
topic/subtopic size limited to 100 are summarized.

Clustering method Macro-average Micro-average
Recall Precision FI1 (Improvement) Recall/Precision/F1
No clustering 48.17%  33.49% 40.89% (-) 67.01%
Complete-linkage 57.16%  39.46%  47.57% (16.34%) 61.13%
K-means 55.26% 37.05%  45.56% (11.42%) 60.89%

For the experiment of percentage of topics with zero recall and precision

(Section 3.3.3), there is 18.03% (M %) improvement by

67.78
hierarchical clustering. It can further demonstrate the benefit of using
subtopic clustering. For non-hierarchical clustering, there is also 16.39%

( 67.78-56.67 %) improvement.
67.78
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For the experiments of different numbers of topic used for feature reduction,
the results improve in macro-average F1 performance when comparing to
the results of topic size greater than 500 for feature reduction. The result of
the topic size greater than 100 for feature reduction has 16.4%

(w %) improvement in macro-average F1 performance. In

21.59
these circumstances, the contribution of feature reduction to improving the

classification results is significant and note-worthy.

The experiments show promising results with the subtopic clustering
approaches. The formation of subtopic clusters is predefined (unsupervised
learning) and measured by similarity scores. In the next chapter, our
proposed iterative subspace approach with Support Vector Machines is

introduced for further investigation.
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4 Boosting Method

4.1 Introduction

Support Vector Machines (SVMs) and boosting are two techniques for
learning both having received a considerable attention in the recent years
and many successful applications have been described in the literature [18,
26, 64, 65, 70]. SVMs and boosting have something in common to justify
their success, namely the margin. The objective of SVMs is to maximize
the separation between the classes. By using a kernel trick to map the
training samples from an input space to a high dimensional feature space,
SVM finds an optimal separating hyperplane in the feature space and uses a
regularization parameter to balance its model complexity and training error.
While SVMs explicitly maximizes the minimum margin, boosting tends to
do the same thing indirectly through minimizing a cost function related to
margin. Boosting is a general technique for improving performance of any
given classifier [69]. It can effectively combine a number of weak
classifiers into a strong classifier which can achieve an arbitrarily low error
rate given sufficient training data, although each weak classifier might do a

little better than random guessing.

The ensemble method, which finds a highly accurate classifier by
combining many moderately accurate component classifiers, has recently
been very successful in machine learning. One of the most commonly used
techniques for constructing ensemble classifiers is adaptive boosting

(AdaBoost). AdaBoost finds a combination of a number of weak classifiers
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in a stepwise additive manner. The weak classifier in each iteration step is
trained on the resampled data according to the distribution based on a series
of weights obtained from the training error by the learner computed up-to-
date. The success of AdaBoost can be explained as enlarging the margin

[70], which could enhance AdaBoost’s generalization capability.

4.1.1 AdaBoost

AdaBoost is a machine learning algorithm, formulated by Yoav Freund and
Robert Schapire [18]. It is a meta-algorithm, and can be used in conjunction
with many other learning algorithms to improve their performance.
AdaBoost is adaptive in the sense that subsequent classifiers built are
tweaked in favor of those instances misclassified by previous classifiers.
AdaBoost is sensitive to noisy data and outliers. In some problems,
however, it can be less susceptible to the overfitting problem than most

learning algorithms

4.1.2 LogitBoost (LogLossBoost)

LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor
Hastie, and Robert Tibshirani. The original paper [19] casts the AdaBoost
algorithm into a statistical framework. Specifically, if one considers
AdaBoost as a generalized additive model and then applies the cost
functional of logistic regression, one can derive the LogitBoost algorithm.
LogitBoost minimizes the logistic loss. LogitBoost places less emphasis on

examples that are very badly classified.
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4.1.3 RobustBoost (BrownBoost)

RobustBoost is a boosting algorithm that may be robust to noisy datasets.
RobustBoost is an adaptive version of the boost by majority algorithm. As
is true for all boosting algorithms, RobustBoost is used in conjunction with
other machine learning methods. BobustBoost was introduced by Yoav

Freund [15, 16].

4.1.4 Alternating Decision Tree

An alternating decision tree (ADTree) [17] is a machine learning method
for classification. It generalizes decision trees and has connections to

boosting.

Original boosting algorithms typically used either decision stumps or
decision trees as weak hypotheses. As an example, boosting decision
stumps creates a set of 7 weighted decision stumps (where 7 is the number
of boosting iterations), which then vote on the final classification according
to their weights. Individual decision stumps are weighted according to their

ability to classify the data.

Boosting a simple learner results in an unstructured set of 7 hypotheses,
making it difficult to infer correlations between attributes. ADTrees
introduce structure to the set of hypotheses by requiring that they build off
a hypothesis that was produced in an earlier iteration. The resulting set of
hypotheses can be visualized in a tree based on the relationship between a

hypothesis and its “parent”.
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Another important feature of boosted algorithms is that the data is given a
different distribution at each iteration. Instances that are misclassified are
given a larger weight while accurately classified instances are given

reduced weight.

An ADTree consists of decision nodes and prediction nodes. Decision
nodes specify a predicate condition. Prediction nodes contain a single
number. ADTrees always have prediction nodes as both root and leaves. An
instance is classified by an ADTree by following all paths for which all
decision nodes are true and summing any prediction nodes that are

traversed.

Primarily, the weak classifiers are put into a hierarchical order - the
ADTree. The tree consists of two different kinds of node which alternately
change on a path through the tree. Secondly, each decision node contains a
weak classifier and has two prediction nodes containing the predictive
values as its children. The weak classifiers in upper levels of the tree work
as preconditions on those classifiers below them. And third, the root node
contains the predictive value of the true-classifier. Thus, the predictive
value is derived from the ratio of the number of samples between both
classes and, therefore, it can be interpreted as a prior classifier. In each
iteration step, the best classifier candidate is determined in conjunction with

a precondition.
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4.2 Methodology

4.2.1 Experimental Setup

4.2.1.1 Data Set

The Reuters-21578 document set has previously been regarded as a
standard real-world benchmarking corpus for the Information Retrieval (IR)
community. The ModApte split (training data set: 9,603 documents, test
data set: 3,299 documents, unused: 8,676 documents) of Reuters-21578

document set is used for our experiments.

Except two large topics, including “acq” (1,488 training documents) and
“earn” (2,709 training documents), the rest of the training topics have the
number of documents below 500 (ranging from 1 to 460). Test documents
can be assigned to more than one topic; therefore, 3,299 single-label test
documents are expanded to 3,409 test documents which are used for the

evaluation exercise.

The distribution of the number of training documents in a topic class is
typically highly skewed. The number of terms in a topic increases
logarithmically with an increase in the number of training documents. They

are shown in Figure 12.
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Figure 12: The number of training/test documents plotted against ranked topic
sorted by their sizes (top). The number of terms in a topic plotted against the number
of training documents in its topic (bottom).

4.2.1.2 Preprocessing

Preprocessing involves removing SGML tags, punctuation marks, stop
words and performing word stemming to reduce the feature vector size.
Bag-of-words [57] document representation (vector space model) scheme is
used for feature representation. Term importance is assumed to be inversely
proportional to the number of documents a particular term appears in. The

term frequency (#f) and inverse document frequency (idf) are used to assign
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weights to terms. The inverse document frequency for term t is defined as

[67]:

idf (t) = log(N / n(t)) . 15)

The common non-content words are removed to reduce possible
interference in classification results. It is assumed that the importance of a
term increases with its use-frequency. Combining these two assumptions

lead to #fidf:

ffidf (1) = of () xidf (t) . (16)

Cosine normalization is used. Every document vector is divided by its

12

Euclidean length, ((w)> + (wa)* +...+ (wo))"2, where w; is the tfidf weight

of the i-th term in the document. The final weight for a term hence becomes:

tfidf weight 17)
Euclidean length of the document vector -

4.2.1.3 Classifier

Instead of implementing a classifier, we use JBoost [31, 93] to perform text
classification. JBoost is an implementation of boosting in java. The
package includes the source, the executable java, visualization scipts
(mostly written in python) and a collection of examples that demonstrate
the capabilities of Jboost Some of the algorithms currently implemented

include AdaBoost, LogitBoost, RobustBoost and alternating decision trees.
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4.2.2 Performance Measurements

Referring to Section 3.2.2.1, classification performance is measured by
both recall and precision. For evaluating the performance, three quantities
are of interest for each topic.
They are: a = the number of documents correctly assigned to this topic.

b = the number of documents incorrectly assigned to this topic.

¢ = the number of documents incorrectly rejected from this topic.
From these quantities, the performance measures (Equation 9, Equation 10
and Equation 11) are defined in Section 3.2.2.1. They are recall, precision

and F1 measures:
recall=a/(a+c) .
precision = a/(a + b)

F1= (2 xrecall X precision)/(recall + precision)

In this experiment, we use the subset of Reuters-21578 collection. For
providing enough training data learnt by boosting method, only those topics
(categories) with training document sizes which are equal to or greater than
50 are used. 25 topics can meet this requirement and 300 topic pairs for
JBoost which is an implementation of boosting in java (AdaBoost,
LogitBoost, RobustBoost and alternating ADTree) are generated for the

experiment.

The experiment is done under 8-fold, 10-fold, and 12-fold cross validations;
the training documents are sampled by systematic sampling (selected

sequentially by system file ordering). The number of training documents
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and the number of test documents for each sample test under 8-fold, 10-fold

and 12-fold cross validations are summarized in Table 13. In fact, 300 topic

pairs (25 topics) are generated for performance evaluation. Therefore 24

times more of training and test documents are redundantly generated for

performance evaluation. Table 14 shows the actual numbers of training and

test documents are used.

Table 13: The number of training documents and the number of test documents of
each sample test (25 topics) are summarized.

8-fold cross validation

10-fold cross validation

12-fold cross validation

Number of | Number of | Number of | Number of | Number of | Number of
Sample | training test training test training test
test documents | documents | documents | documents | documents | documents
(25 topics) | (25 topics) | (25 topics) | (25 topics) | (25 topics) | (25 topics)
1 6,849 965 7,044 770 7,171 643
2 6,846 968 7,040 774 7,170 644
3 6,840 974 7,037 777 7,167 647
4 6,837 977 7,034 780 7,165 649
5 6,834 980 7,032 782 7,164 650
6 6,834 980 7,032 782 7,164 650
7 6,831 983 7,030 784 7,163 651
8 6,827 987 7,028 786 7,163 651
9 - - 7,025 789 7,162 652
10 - - 7,024 790 7,160 654
11 - - - - 7,155 659
12 - - - - 7,150 664
Total 54,698 7,814 70,326 7,814 85,954 7,814
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Table 14: The number of training documents and the number of test documents of

each sample test (300 topic pairs) for JBoost are summarized.

8-fold cross validation

10-fold cross validation

12-fold cross validation

Number of | Number of | Number of | Number of | Number of | Number of
training test training test training test
documents | documents | documents | documents | documents | documents
Sample . - . . . .

test used in used in used in used in used in used in

300 topic 300 topic 300 topic 300 topic 300 topic 300 topic

pairs (25 pairs (25 pairs (25 pairs (25 pairs (25 pairs (25
topics) topics) topics) topics) topics) topics)
1 164,376 23,160 169,056 18,480 172,104 15,432
2 164,304 23,232 168,960 18,576 172,080 15,456
3 164,160 23,376 168,888 18,648 172,008 15,528
4 164,088 23,448 168,816 18,720 171,960 15,576
5 164,016 23,520 168,768 18,768 171,936 15,600
6 164,016 23,520 168,768 18,768 171,936 15,600
7 163,944 23,592 168,720 18,816 171,912 15,624
8 163,848 23,688 168,672 18,864 171,912 15,624
9 - - 168,600 18,936 171,888 15,648
10 - - 168,576 18,960 171,840 15,696
11 - - - - 171,720 15,816
12 - - - - 171,600 15,936
Total 1,312,752 187,536 1,687,824 187,536 2,062,896 187,536

4.3 Experimental Results and Discussion

The results from the final classifier (ADTree) and the number of rounds of

boosting (AdaBoost) set to 100 are summarized in Table 15. The plot is

shown in Figure 13. There is no significant difference (less than 1%)

among different cross validations. Therefore further experiments will be

done under &-fold cross validation.

Table 15: The macro-average and micro-average performance of AdaBoost method
evaluated under 8-fold, 10-fold and 12-fold cross validations are summarized.

Macro-average

Micro-average

Cross validation Recall Precision F1 Recall/Precision/F1
8-fold 98.30% 98.49%  98.39% 99.35%
10-fold 98.36% 98.56%  98.46% 99.38%
12-fold 98.35% 98.58%  98.47% 99.37%
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Figure 13: The macro-average and micro-average performance of AdaBoost method
evaluated under 8-fold, 10-fold and 12-fold cross validations are plotted.

The results under 8-fold cross validation from the final classifier (ADTree)
and the number of rounds of boosting (AdaBoost/LogitBoost/RobustBoot)
set to 100 are summarized in Table 16. The plot is shown in Figure 14. The
performance scores (less than 1%) between AdaBoost and LogitBoost are
similar. Therefore further AdaBoost experiments will be done under 8-fold

cross validation.

Table 16: The macro-average and micro-average performance of different methods
(AdaBoost/LogitBoost/RobustBoost) evaluated under 8-fold fold cross validation are
summarized.

Macro-average Micro-average
Boosting methodr  Recall  Precision F1 Recall/Precision/F1
AdaBoost 98.30%  98.49%  98.39% 99.35%
LogitBoost 98.22%  98.45%  98.33% 99.32%
RobustBoost 90.47%  95.62%  92.97% 96.38%
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Figure 14: The macro-average and micro-average performance of different methods
(AdaBoost/LogitBoost/RobustBoost) evaluated under 8-fold fold cross validation are
plotted.

The results under 8-fold cross validation from the final classifier (ADTree)
and different numbers of rounds of boosting (AdaBoost) from 10 to 100 are
summarized in Table 17. The plot is shown in Table 15. The best
performance scores are achieved when the number of rounds of boosting is
set to 50 where the macro-average recall is 98.44%, macro-average
precision is 98.64%, macro-average F1 is 98.54% and micro-average

recall/precision/F1 is 99.41%.
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Table 17: The macro-average and micro-average performance of AdaBoost method
evaluated under different numbers of rounds of boosting (8-fold fold cross validation)
are summarized.

Macro-average Micro-average
The number of rounds of boosting  Recall  Precision Fl1 Recall/Precision/F1
10 98.09%  98.36% 98.22% 99.24%
20 98.17%  98.40% 98.28% 99.29%
30 98.24%  98.44% 98.34% 99.32%
40 98.26%  98.46% 98.36% 99.33%
50 98.44%  98.64% 98.54% 99.41%
60 98.28%  98.48% 98.38% 99.32%
70 98.28%  98.48% 98.38% 99.34%
80 98.29%  98.48% 98.38% 99.34%
90 98.29%  98.49% 98.39% 99.35%
100 98.30%  98.49% 98.39% 99.35%
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Figure 15: The macro-average and micro-average performance of AdaBoost method
evaluated under different numbers of rounds of boosting (8-fold fold cross validation)
are plotted. (a) Recall (b) Precision (c) F1
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5 Iterative Subspace Method

5.1 Introduction

We propose a new approach to improve the accuracy of text categorization
using iterative subspace method. In a number of probabilistic approaches,
texts in the same category are implicitly assumed to be generated from an
identical distribution over words. However this assumption is not accurate,
in the previous chapter, training texts are clustered so that the assumption is
more likely to be realistic and the result shows that subtopic clustering can
alleviate this problem and text categorization can be improved. In fact there
is a limitation in the subtopic clustering approach. The formation of
subtopic clusters are predefined (unsupervised learning) and measured by
similarity scores. The idea of iterative subspace approach is that subspace
generation is generated by classification performance (supervised learning).
The classification task can be done by any classifier such as Naive Bayes

classifier, Support Vector Machines and Artificial Neural Network.

In the case of backpropagation based artificial neural networks or
perceptrons, the type of decision boundary that the network can learn is
determined by the number of hidden layers the network has. If it has no
hidden layers, then it can only learn linear problems. If it has one hidden
layer, then it can learn problems with convex decision boundaries (and
some concave decision boundaries). The network can learn more complex

problems if it has two or more hidden layers.
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In particular, support vector machines find a hyperplane that separates the
feature space into two classes with the maximum margin. If the problem is
not originally linearly separable, the kernel trick is used to turn it into a
linearly separable one, by increasing the number of dimensions. Thus a
general hypersurface in a small dimension space is turned into a hyperplane

in a space with much larger dimensions.

Neural networks try to learn the decision boundary which minimizes the
empirical error, while support vector machines try to learn the decision
boundary which gives the best generalization. We conduct the experiment
with Support Vector Machines for the classification tasks to validate this
iterative subspace method. Support Vector Machines are used because they
are effective (text) classifiers, have flexible decision boundaries by using
different kernels, have geometrical properties that are relevant to our

approach, and readily available for independent verification.

5.1.1 Support Vector Machines

Support Vector Machines (SVMs) [2] are binary classifiers which were
originally proposed by Vapnik [81] and have achieved high accuracy in
various tasks, such as object recognition [63] and digit recognition [80].
SVMs are a set of related supervised learning methods used for
classification and regression. In simple words, given a set of training
examples, each marked as belonging to one of two categories, an SVM
training algorithm builds a model that predicts whether a new example falls
into one category or the other. Intuitively, an SVM model is a

representation of the examples as points in space, mapped so that the
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examples of the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall

on.

Suppose some given data points each belong to one of two classes, and the
goal is to decide which class a new data point will be in. In the case of
Support Vector Machines, a data point is viewed as a n-dimensional vector,
and we want to know whether we can separate such points with a (n-1)-
dimensional hyperplane. This is called a linear classifier. There are many
hyperplanes that might classify the data. However, we are additionally
interested in finding out if we can achieve maximum separation (margin)
between the two classes. By this we mean that we pick the hyperplane so
that the distance from the hyperplane to the nearest data point is maximized.
That is to say that the nearest distance between a point in one separated
hyperplane and a point in the other separated hyperplane is maximized.
Now, if such a hyperplane exists, it is clearly of interest and is known as the
maximum-margin hyperplane as in general the larger the margin the lower
the generalization error of the classifier and such a linear classifier is
known as a maximum margin classifier. Since Support Vector Machines
are linear classifiers, their separating ability is limited. To compensate for
this limitation, the kernel method is usually combined with Support Vector

Machines.
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5.1.1.1 Separable Classes

For the case of two-class linearly separable as shown in Figure 16 which
illustrates the classification task with two possible hyperplane solutions

(solid-line and dotted-line). Let x;,i =1,2,..,N be the feature vectors of the
training set, X . These belong to either of two classes, @,,w,, which are

assumed to be linearly separable. A hyperplane is defined as

gx)=wix+w,=0 (18)

that classifies correctly all the training vectors.

>
>

X
Figure 16: An example of a linearly separable two-class problem with two possible
linear classifiers.
For the generalization performance of the classifier, the term margin that a
hyperplane leaves from both classes is quantified. Every hyperplane is

characterized by its direction (determined by w) and its exact position in

space (determined by w, ). Since we want to give no preference to either of

the classes, then it is reasonable for each direction to select that hyperplane

which has the same distance from the respective nearest points in @, and
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@, . The hyperplanes shown in Figure 17 with solid lines are the selected
ones from the infinite set in the respective direction. The margin for

“direction 1” is 2 z;, and the margin for “direction 2”is 2 z, .

@ Zy direction 2

X

Figure 17: An example of linearly separable two-class problem with two possible
linear classifiers and their corresponding support vectors.

Further Condiersing the decision hypersurface in the /-dimensional feature
space is a hyperplane as was shown in Equation (18) that is

gx)=wix+w, =0
where w =[w,,w,,...,w,;]" is known as the weight vector and w, as the
threshold. 1f x,,x, are two points on the decision hyperplane, then the

following is valid

0=wa1+w0=wa2+w03wT(x1—x2)=O (19)
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Since the difference vector x; —x, obviously lies on the decision hyperplane
(for any x,,x, ), it is apparent from Equation (19) that the vector wis

orthogonal to the decision hyperplane.

Figure 18 shows the corresponding geometry (for w, >0,w, >0,w, <0). On

one side of the line it is g(x) > 0(+) and on the other side it is g(x) < 0(-) .

|W0|

(20)
Jwi + w3

d=

and

__le) o

Wi+ w3
In other works, |g(x)|is a measure of the Euclidean distance of the point x
from the decision hyperplane. On one side of the plane g(x) takes positive
values and on the other negative. In the special case that w, =0, the

hyperplane passes through the origin.

Similarly, the distance of a point from a hyperlane in Figure 18 is given by

We can now scale w,w,so that the value of g(x), at the nearest points in

wy,w, , 18 equal to 1 for w, and equal to -1 for w,. This is equivalent with

1. Having a margin of 1,2
[l ool el

2. Requiring that

wa+w021, Vxew

wix+w,<-1, Vxew,
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Figure 18: Geometry for the decision line.

5.1.1.2 Non-separable Classes

When the classes are not separable, the above setup is no longer valid.
Figure 19 illustrates the case in which the two classes are not separable.
Any attempt to draw a hyperplane will never end up with a class separation
region with no data points inside it, as was the case in the linearly separable

task.

Applying the kernel trick is a way to create non-linear classifiers to
maximum-margin hyperplanes [6]. The resulting algorithm is formally
similar, except that every dot product is replaced by a non-linear kernel
function. This allows the algorithm to fit the maximum-margin hyperplane
in a transformed feature space. The transformation may be non-linear and
the transformed space high dimensional; thus though the classifier is a
hyperplane in the high-dimensional feature space, it may be non-linear in

the original input space.
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If the kernel used is a Gaussian radial basis function, the corresponding
feature space is a Hilbert space of infinite dimension. Maximum margin
classifiers are well regularized, so the infinite dimension does not spoil the

results.

>
>

X

Figure 19: An example of nonseparable two-class case, points fall inside the class
separation region.

5.1.2 Basic Scheme

The idea of this model is to generate subspaces from different training data
set through error-driven learning. Feature selection is done on the training
data set and done recursively to build classifiers. Through the iteration,
suitable features can be selected from different subspaces. The process will
stop when all topics are learned to build classifiers. Sub-classifiers will be
generated for assisting in document classification. Better category boundary
is expected to be obtained through the learning of these cascade classifiers.

The proposed method of the iterative subspace generation to text
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categorization for document training is shown in Figure 20 and for

document test is shown in Figure 21.

It is new that the proposed iterative subspace model allows suitable features
to be selected from different subspaces through the iterative process to
obtain the better category boundary. The main difference of our proposed
iterative subspace classifier from others is trying to find a set of suitable
features (subspaces) for each category through the multi-level classification
(classifier). In Figure 20 and Figure 21, the classifier can be any classifier
in general. In our case, Support Vector Machines are used as classifiers in
the experiments. Instead of implementing a classifier, we use SVM-Light

[38] to perform text classification.
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Figure 20: Flowchart of the iterative subspace generation for text categorization
(document training).
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Figure 21: Flowchart of the iterative subspace generation for text categorization
(document test).
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5.2 Methodology

5.2.1 Experimental Setup

5.2.1.1 Data Set

The Reuters-21578 document set has previously been regarded as a
standard real-world benchmarking corpus for the Information Retrieval (IR)
community. The ModApte split (training data set: 9,603 documents, test
data set: 3,299 documents, unused: 8,676 documents) of Reuters-21578

document set is used for our experiments.

Except two large topics, including “acq” (1,488 training documents) and
“earn” (2,709 training documents), the rest of the training topics have the
number of documents below 500 (ranging from 1 to 460). Test documents
can be assigned to more than one topic; therefore, 3,299 single-label test
documents are expanded to 3,409 test documents which are used for the

evaluation exercise.

The distribution of the number of training documents in a topic class is
typically highly skewed. The number of terms in a topic increases
logarithmically with an increase in the number of training documents. They

are shown in Figure 22.
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Figure 22: The number of training/test documents plotted against ranked topic
sorted by their sizes (top). The number of terms in a topic plotted against the number
of training documents in its topic (bottom).

5.2.1.2 Preprocessing

Preprocessing involves removing SGML tags, punctuation marks, stop
words and performing word stemming to reduce the feature vector size.
Bag-of-words [57] document representation (vector space model) scheme is
used for feature representation. Term importance is assumed to be inversely
proportional to the number of documents a particular term appears in. The

term frequency (#f) and inverse document frequency (idf) are used to assign
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weights to terms. The inverse document frequency for term t is defined as

[67]:

idf (t) = log(N / n(t)) . (22)

The common non-content words are removed to reduce possible
interference in classification results. It is assumed that the importance of a
term increases with its use-frequency. Combining these two assumptions

lead to #fidf:

ffidf (1) = of () xidf (t) . (23)

Cosine normalization is used. Every document vector is divided by its

12

Euclidean length, ((w)> + (wa)* +...+ (wo))"2, where w; is the tfidf weight

of the i-th term in the document. The final weight for a term hence becomes:

tfidf weight (24)
Euclidean length of the document vector -

5.2.1.3 Classifier

Instead of implementing a classifier, we use SVM-Light [38] to perform
text classification. SVM-Light is an implementation of Vapnik's Support
Vector Machine [81] for the problem of pattern recognition, for the
problem of regression, and for the problem of learning a ranking function.
The optimization algorithms used in SVM-Light are described in [33, 36].
The algorithm has scalable memory requirements and can handle problems

with many thousands of support vectors efficiently.
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The software also provides methods for assessing the generalization
performance efficiently. It includes two efficient estimation methods for
both error rate and precision/recall. XiAlpha-estimates [35, 36] can be
computed at essentially no computational expense, but they are
conservatively biased. Almost unbiased estimates provides leave-one-out
testing. SVM-Light exploits that the results of most leave-one-outs (often

more than 99%) are predetermined and need not be computed [36].

New in this version is an algorithm for learning ranking functions [37]. The
goal is to learn a function from preference examples, so that it orders a new
set of objects as accurately as possible. Such ranking problems naturally

occur in applications like search engines and recommender systems.

Futhermore, this version includes an algorithm for training large-scale
transductive SVMs. The algorithm proceeds by solving a sequence of
optimization problems lower-bounding the solution using a form of local
search. A detailed description of the algorithm can be found in [34]. A
similar transductive learner, which can be thought of as a transductive

version of k-Nearest Neighbor is the Spectral Graph Transducer.

SVM-Light can also train SVMs with cost models (see [58]). The code has
been used on a large range of problems, including text classification [32,
34],. Many tasks have the property of sparse instance vectors. This
implementation makes use of this property which leads to a very compact

and efficient representation.
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5.2.2 Performance Measurements

5.2.2.1 Recall, Precision and F1

Referring to Section 3.2.2.1, classification performance is measured by
both recall and precision. For evaluating the performance, three quantities
are of interest for each topic.
They are: a = the number of documents correctly assigned to this topic.

b = the number of documents incorrectly assigned to this topic.

¢ = the number of documents incorrectly rejected from this topic.
From these quantities, the performance measures (Equation 9, Equation 10
and Equation 11) are defined in Section 3.2.2.1. They are recall, precision

and F1 measures:
recall=a/(a+c) .
precision = a/(a + b)

F1= (2 xrecallx precision)/(recall + precision)

In this experiment, we use the subset of Reuters-21578 collection. For
providing enough training data learnt by the proposed Iterative Subspace
Method, only those topics (categories) with training document sizes which
are equal to or greater than 50 are used. 25 topics can meet this requirement
and 300 topic pairs for SVM classifiers (binary classifiers) are generated

for the experiment.

The experiment is done under 8-fold, 10-fold, and 12-fold cross validations;
the training documents are sampled by systematic sampling (selected

sequentially by system file ordering). The number of training documents
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and the number of test documents for each sample test under 8-fold, 10-fold

and 12-fold cross validations are summarized in Table 18. In fact, 300 topic

pairs (25 topics) are generated for performance evaluation. Therefore 24

times more of training and test documents are redundantly generated for

performance evaluation. Table 19 shows the actual numbers of training and

test documents are used.

Table 18: The number of training documents and the number of test documents of
each sample test (25 topics) are summarized.

8-fold cross validation

10-fold cross validation

12-fold cross validation

Number of | Number of | Number of | Number of | Number of | Number of
Sample | training test training test training test
test documents | documents | documents | documents | documents | documents
(25 topics) | (25 topics) | (25 topics) | (25 topics) | (25 topics) | (25 topics)
1 6,849 965 7,044 770 7,171 643
2 6,846 968 7,040 774 7,170 644
3 6,840 974 7,037 777 7,167 647
4 6,837 977 7,034 780 7,165 649
5 6,834 980 7,032 782 7,164 650
6 6,834 980 7,032 782 7,164 650
7 6,831 983 7,030 784 7,163 651
8 6,827 987 7,028 786 7,163 651
9 - - 7,025 789 7,162 652
10 - - 7,024 790 7,160 654
11 - - - - 7,155 659
12 - - - - 7,150 664
Total 54,698 7,814 70,326 7,814 85,954 7,814
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Table 19: The number of training documents and the number of test documents of
each sample test (300 topic pairs) for SVM classifiers are summarized.

8-fold cross validation 10-fold cross validation 12-fold cross validation
Number of | Number of | Number of | Number of | Number of | Number of
training test training test training test
documents | documents | documents | documents | documents | documents
Sample . - . . . .

test used in used in used in used in used in used in

300 topic 300 topic 300 topic 300 topic 300 topic 300 topic

pairs (25 pairs (25 pairs (25 pairs (25 pairs (25 pairs (25
topics) topics) topics) topics) topics) topics)
1 164,376 23,160 169,056 18,480 172,104 15,432
2 164,304 23,232 168,960 18,576 172,080 15,456
3 164,160 23,376 168,888 18,648 172,008 15,528
4 164,088 23,448 168,816 18,720 171,960 15,576
5 164,016 23,520 168,768 18,768 171,936 15,600
6 164,016 23,520 168,768 18,768 171,936 15,600
7 163,944 23,592 168,720 18,816 171,912 15,624
8 163,848 23,688 168,672 18,864 171,912 15,624
9 - - 168,600 18,936 171,888 15,648
10 - - 168,576 18,960 171,840 15,696
11 - - - - 171,720 15,816
12 - - - - 171,600 15,936
Total 1,312,752 187,536 1,687,824 187,536 2,062,896 187,536

The experiment is done under 8-fold, 10-fold, and 12-fold cross validations;
the training documents are sampled by systematic sampling (selected
sequentially by system file ordering). The number of training documents
and the number of test documents for each sample test under 8-fold, 10-fold
and 12-fold cross validations are summarized in Table 18. If fact, 300 topic
pairs (25 topics) are generated for performance evaluation. Therefore 24
times more of training and test documents are redundantly generated for
performance evaluation. Table 19 shows the actual numbers of training and

test documents are used.

Table 20, Table 21 and Table 22 show the number of training documents of
each topic (25 topics) and their performance measures (such as a, b, ¢ for
calculating recall, precision and F1) evaluated by standard SVM method

under 8-fold, 10-fold and 12-fold cross validations.
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Table 20: The number of training documents of each topic (25 topics) and their
performance measures under 8-fold cross validation are summarized.

8-fold cross validation

Topic . Number of p b B Recall Precision F1
training documents (%) (%) (%)
acq 249,984 35670 | 421,078 [ 97.07 99.88 | 98.45
bop 10,416 973 | 515 | 80| 92.40 6539 | 76.58
carcass 8,400 514 | 686 | 80| 86.53 42.83 [ 57.30
cocoa 8,400 687 [ 513 23| 96.76 5725 | 71.94
coffee 18,480 2,220 [ 420 | 271 | 89.12 84.09 | 86.53
corn 26,712 3,265 | 551 | 600 | 84.48 85.56 | 85.01
cpi 10,080 985 [ 455 | 50| 95.17 6840 | 79.60
crude 58,632 8,154 [ 222 | 822 | 90.84 9735 | 93.98
dir 16,128 1,909 | 395 | 147 | 92.85 82.86 | 87.57
earn 455,112 64,993 | 23| 416 | 99.36 99.96 | 99.66
gnp 15,456 1,753 | 455 | 222 | 88.76 7939 | 83.82
gold 15,792 1,893 | 363 | 107 | 94.65 8391 | 88.96
grain 66,192 9,244 | 212 | 1213 | 88.40 97.76 | 92.84
interest 48,552 6,590 | 346 | 546 | 92.35 9501 | 93.66
livestock 12,264 1,105 | 647 | 130 | 89.47 63.07 | 73.99
money-fx 77,280 10,821 | 219 | 905 | 92.28 98.02 | 95.06
fmoney= 14,616 1,800 | 288 | 54 | 97.09 8621 | 91.32
supply
nat-gas 12,096 1,208 | 520 | 111 ] 91.58 69.91 | 79.29
oilseed 19,656 2,153 | 655 | 442 | 8297 76.67 | 79.70
ship 32,088 4208 | 376 | 558 | 88.29 91.80 | 90.01
soybean 12,264 1,092 | 660 | 225 | 82.92 6233 | 71.16
sugar 19,824 2,360 | 472 | 380 | 86.13 8333 | 84.71
trade 56,616 7,858 | 230 | 909 | 89.63 97.16 | 93.24
veg-oil 14,448 1,476 | 588 | 218 | 87.13 7151 | 7855
wheat 33,264 4282 1470 | 736 | 85.33 90.11 | 87.66

83




Table 21: The number of training documents of each topic (25 topics) and their
performance measures under 10-fold cross validation are summarized.

10-fold cross validation

Topic ' Number of p b c Recall Precision F1
training documents (%) (%) (%)
acq 321,408 35,670 | 42 | 1,063 | 97.11 99.88 98.47
bop 13,392 944 | 544 | 83 91.92 63.44 75.07
carcass 10,800 540 | 660 | 81 86.96 45.00 59.31
cocoa 10,800 687 | 513 22 96.90 57.25 71.97
coffee 23,760 2,204 | 436 | 269 89.12 83.48 86.21
corn 34,344 3,277 | 539 | 600 84.52 85.88 85.19
cpi 12,960 983 | 457 | s5lI 95.07 68.26 79.47
crude 75,384 8,145 | 231 | 806 91.00 97.24 94.02
dir 20,736 1,937 | 367 | 144 93.08 84.07 88.35
earn 585,144 64,994 | 22 | 411 99.37 99.97 99.67
gnp 19,872 1,767 | 441 | 214 89.20 80.03 84.36
gold 20,304 1,889 | 367 | 105 94.73 83.73 88.89
grain 85,104 9,242 | 214 | 1,200 | 88.51 97.74 92.89
interest 62,424 6,590 | 346 | 541 92.41 95.01 93.69
livestock 15,768 1,115 | 637 | 137 89.06 63.64 74.23
money-fx 99,360 10,821 | 219 | 893 92.38 98.02 95.11
fmoney= 18,792 1,807 | 281 | 64 | 96.58 86.54 | 91.29

supply

nat-gas 15,552 1,226 | 502 | 109 91.84 70.95 80.05
oilseed 25,272 2,161 | 647 | 447 82.86 76.96 79.80
ship 41,256 4216 | 368 | 544 88.57 91.97 90.24
soybean 15,768 1,080 | 672 | 221 83.01 61.64 70.75
sugar 25,488 2,362 | 470 | 377 86.24 83.40 84.80
trade 72,792 7,859 | 229 | 894 89.79 97.17 93.33
veg-oil 18,576 1,503 | 561 | 226 86.93 72.82 79.25
wheat 42,768 4,286 | 466 | 729 85.46 90.19 87.76
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Table 22: The number of training documents of each topic (25 topics) and their
performance measures under 12-fold cross validation are summarized.

12-fold cross validation

Topic Number of training p b B Recall Precision F1
documents (%) (%) (%)
acq 392,832 35668 | 44 | 1046 | 97.15 99.88 98.50
bop 16,368 962 | 526 | 85 91.88 64.65 75.90
carcass 13,200 543 | 657 | 82 86.88 45.25 59.51
cocoa 13,200 696 | 504 | 25 96.53 58.00 72.46
coffee 29,040 2197 | 443 | 265 89.24 83.22 86.12
corn 41,976 3287 | 529 | 595 84.67 86.14 85.40
cpi 15,840 977 463 | 59 94.31 67.85 78.92
crude 92,136 8152 | 224 | 790 | 91.17 97.33 94.14
dlr 25,344 1920 | 384 | 140 | 93.20 83.33 87.99
earn 715,176 64996 | 20 | 403 99.38 99.97 99.68
gnp 24,288 1781 | 427 | 214 | 89.27 80.66 84.75
gold 24,816 1902 | 354 | 100 | 95.00 84.31 89.34
grain 104,016 9248 | 208 | 1199 | 88.52 97.80 92.93
interest 76,296 6585 | 351 | 538 | 9245 94.94 93.68
livestock 19,272 1121 | 631 | 135 89.25 63.98 74.53
money-fx 121,440 10831 | 209 | 887 | 92.43 98.11 95.18
fmoney= 22,968 1768 | 320 | 69 | 96.24 84.67 | 90.09

supply

nat-gas 19,008 1221 | 507 | 111 91.67 70.66 79.80
oilseed 30,888 2171 | 637 | 452 82.77 77.31 79.95
ship 50,424 4227 | 357 | 539 88.69 92.21 90.42
soybean 19,272 1087 | 665 | 212 83.68 62.04 71.26
sugar 31,152 2373 | 459 | 390 | 85.88 83.79 84.83
trade 88,968 7866 | 222 | 889 89.85 97.26 93.40
veg-oil 22,704 1510 | 554 | 231 86.73 73.16 79.37
wheat 52,272 4280 | 472 | 711 85.75 90.07 87.86

For a sample test data set containing 7,814 test documents (25 topics)

which has 187,536 (24 times of 7,814) test documents used in 300 topic

pairs (25 topics) for SVM classifiers, the measurements of recall, precision

and F1 plotted against the training documents number of 25 topics and

against ranked topic (sorted by their F1 scores from the smallest value to

the largest) under 8-fold, 10-fold and 12-fold cross validations are shown in

Figure 23, Figure 24 and Figure 25.
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Figure 23: The distribution of recall/precision/F1 measurement under 8-fold cross

validation.
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Figure 25: The distribution of recall/precision/F1 measurement under 12-fold cross
validation.

Recall, precision and F1 measurement of the 300 topic pairs for SVM
classifiers in the experimental data set are unevenly distributed. The uneven
distribution is due to the fact that the distribution of the number of

documents in the data set is highly skewed in nature.

To address multi-label classification, macro average and micro average are
used to assess the overall performance across multiple labels. Macro-

average performance scores are determined by first computing the
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performance measures per topic and then averaging these to compute the
global means. Micro-average performance scores are determined by first
computing the totals of @, b and ¢ for all topics and then these totals are
used to compute the performance measures. There is an important
distinction between the two types of averaging. Micro averaging gives
equal weight to every document, while macro averaging gives equal weight

to each topic.

The results of macro-average and micro-average performance under 8-fold,
10-fold and 12-fold cross validations are shown in Table 23, Table 24 and

Table 25.

Table 23: The macro-average and micro-average performance calculated under 8-
fold cross validation are summarized.

Macro-average Micro-average
Recall  Precision F1 Recall/Precision/F1
90.46%  81.19%  84.82% 94.5%

From the result with 8-fold cross validation, the macro-average recall is
90.46%, macro-average precision is 81.19%, macro-average F1 is 84.82%

and micro-average recall/precision/F1 is 94.5%.

Table 24: The macro-average and micro-average performance calculated under 10-
fold cross validation are summarized.

Macro-average Micro-average
Recall  Precision F1 Recall/Precision/F1
90.50%  81.37% 84.97% 94.54%

From the result with 10-fold cross validation, the macro-average recall is
90.50% (0.04% higher than 8-fold cross validation), macro-average

precision is 81.37% (0.22% higher than 8-fold cross validation), macro-
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average F1 is 84.97% (0.18% higher than 8-fold cross validation) and
micro-average recall/precision/F1 is 94.54% (0.04% higher than 8-fold

cross validation).

Table 25: The macro-average and micro-average performance calculated under 12-
fold cross validation are summarized.

Macro-average Micro-average
Recall  Precision F1 Recall/Precision/F1
90.50%  81.46%  85.04% 94.58%

From the result with 12-fold cross validation, the macro-average recall is
90.50% (0.04% higher than 8-fold cross validation), macro-average
precision is 81.46% (0.33% higher than 8-fold cross validation), macro-
average F1 is 85.04% (0.26% higher than 8-fold cross validation) and
micro-average recall/precision/F1 is 94.58% (0.08% higher than 8-fold

cross validation).

The performance measures under 8-fold, 10-fold, and 12-fold are similar.
Therefore some experiments such as Support Vector Machine soft margin
classifier are done only 8-fold cross validation. It will be described in

Section 5.3.3.

5.2.2.2 Confidence Level / Wilcoxon Matched-Pairs Signed-

Ranks Test

The Wilcoxon Matched-Pairs Ranks test is a non-parametric alternative to a
matched pairs t-test for the case of two related samples or repeated

measurements on a single sample. The test is named for Frank Wilcoxon
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(1892-1965) who, in a single paper, proposed both it and the rank-sum test
for two independent samples [86].
Unlike less robust non-parametric tests such as the sign test:
- The Wilcoxon test is used to determine the magnitude of difference
between matched groups.
- The Wilcoxon test is used to determine more than only the direction
of difference.
Wilcoxon matched-pairs signed-ranks test is used to show the confidence

level of the sample tests.

5.2.2.3 SVM-Light with different kernels

We use SVM-Light [38] to perform text classification. SVM-Light is an
implementation of Vapnik's Support Vector Machine [81] for the problem
of pattern recognition, for the problem of regression, and for the problem of
learning a ranking function. The optimization algorithms used in SVM-
Light are described in [33, 36]. The algorithm has scalable memory
requirements and can handle problems with many thousands of support
vectors efficiently. Three kernels (polynomial kernel, Gaussian radial basis
function kernel, and sigmoid kernel) provided by the classifiers are

considered as well to build the classifier while in training phase.

5.2.3 Algorithm

Figure 26 shows the algorithm for the iterative space method. The iterative
space method can generate suitable features from suitable training

documents. The unsuitable documents will form a residual set for the next
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level classification until all the training documents are used or stopping
criteria (termination) is reached. The classification is done by support

vector machines (SVM-Light).

The separation margin between two classes is generated by the SVM
classifier. There are typically 4 types of separation margin. The details of

these types are described in Section 5.2.4.

If the separation margin between two classes is well separated, the iteration
can stop. It means the features are from the training documents are well
learnt by the classifier. If not, the remaining documents will form the

residual set for classification at the next level.
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Figure 26: Implementation of the iterative space method.
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5.2.4 Separation Margin

For the analysis involved in the scheme, there are 4 typically types of
separation margin between two classes (Class A, Class B) which is
generated by an SVM classifier. They are:

TYPE 1: Has overlap region and no clean region

TYPE 2: Has overlap region and one-clean region
(either Class A region clean or Class B region clean)

TYPE 3: Has overlap region and two-clean region
(both Class A region clean and Class B region clean)

TYPE 4: Has no overlap and two-clean region

(both Class A region clean and Class B region clean)
The 4 types of separation margin in terms of overlap and clean regions are
summarized in Table 26. Overlap region has documents with Class A and

Class B, clean region has documents with either Class A or Class B.

Table 26: The 4 types of separation margin in terms of overlap and clean regions.

Overlap region One-clean region Two-clean region

Type 1 yes - -
Type 2 yes yes -
Type 3 yes - yes
Type 4 - - yes

The type of separation margin of two classes is calculated by using Cp win.,
Cp Max, Cn min and Cn max

where

Cp min, = Positive Class (Class A) Minimum Value

Cp max. = Positive Class (Class A) Maximum Value

Cn min. = Negative Class (Class B) Minimum Value

Cn Max. = Negative Class (Class B) Maximum Value
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The histograms of these separation margins as well as their related

properties and computations are illustrated in Figure 27, Figure 28, Figure

29 and Figure 30.
| O Positive Class @ Negative Class
4.5
4 1 Overlap Region M
3.5 A
3 1
E 2.5
g 21
1.5
1 4
0.5 A H
0 T T T T
-14-12 1 -0B-06-04-02 0 02040608 1 1214
Cr utin. £ Ch Min. Ch max / Crmax,

if (Cp min. <= Cn min.) and (Cn max. >= Cp max.) then Type 1
=> Clean Cp Region: width =0
=> Clean Cy Region: width =0
=> Qverlap Region: width = Cx max. = Cp Min.

end

Figure 27: Type 1 has overlap region and no clean region.
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Figure 28: Type 2 has overlap region and one-clean region.
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end

Figure 29: Type 3 has overlap region and two-clean region.
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end

Figure 30: Type 4 has no overlap and two-clean region.
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5.3 Experimental Results and Discussion

The aim is to generate subspaces from different training data set through
error-driven learning. Feature selection is done on the training data set and
done recursively to build classifiers. Through the iteration, suitable features
can be selected from different subspaces. The process will stop when all
topics are learned to build classifiers. Sub-classifiers will be generated for
assisting in document classification. Better category boundary is expected
to be obtained through the learning of these cascade classifiers. For the
iterative subspace generation, the basic scheme of this method is in Section

5.1.2 and the methodology is in 5.2.

It is new that the proposed iterative subspace model allows suitable features
to be selected from different subspaces through the iterative process to
obtain the better category boundary. The main difference of our proposed
iterative subspace classifier from others is trying to find a set of suitable
features (subspaces) for each category through the multi-level classification
(classifier). In our case, Support Vector Machines (SVM-Light [38]) are
used as classifiers in the experiments. The separation margin (SM) can be
adjusted to generate subspaces from different training data set through

error-driven learning.

5.3.1 Separation Margin (SM) set to 1.6, 1.8 and 2.0

In this experiment, we use the subset of Reuters-21578 collection. For
providing enough training data learnt by the proposed Iterative Subspace

Method, only those topics (categories) with training document sizes which
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are equal to or greater than 50 are used. 25 topics can meet this requirement
and 300 topic pairs for SVM classifiers (binary classifiers) are generated

for the experiment.

The experiment is done under 8-fold, 10-fold, and 12-fold cross validations;
the training documents are sampled by systematic sampling (selected
sequentially by system file ordering). The learning process will cease when
any one of stopping criteria is reached. The stopping criteria are: (1) not
enough data in the residual set, the size in the experiments is roughly set to
be equal to one tenth of the training data; (2) the classifier for the next level
can correctly classify the data with a separation margin greater than the
predefined value from the data in the residual set. The predefined values

used in the experiment are 1.6, 1.8 and 2.0.

Table 27 shows the numbers of improved topic (class) pairs with SM = 1.6,
1.8 and 2.0. The confidence level (CL) is calculated by the Wilcoxon
Matched-Pairs Signed-Ranks Test [30] to see whether the results from
standard method and iterative subspace method are significantly difference
under 8 samples (8-fold cross validation), 10 samples (10-fold cross

validation) and 12 samples (12-fold cross validation).
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Table 27: The numbers of improved topic (class) pairs with SM = 1.6, 1.8 and 2.0 are
summarized.

8-fold, SM = 10-fold, SM = 12-fold, SM =

CLGx%)| 1.6 18 20| 16 18 20| 16 18 20
x>90 2 1 6 2 2 6 1 1 6
90>x>80 | - 1 3 ; ; 1 ; - 3
80>x>70 | - - 1 - - 1 - - 2
70>x>60 | - - - - - 1 - - -
60>x>50 | - 2 2 - - 1 _ 1 -
50>x>40 | - - - - - - - - -
40>x>30| - - - - 1 1 - ; 1
30>x>20| - - - - - - - - -
20>x>10] - 2 2 - - 1 1 1 2
10>x>0 | - 1 3 - - 2 - - 3

For confidence levels greater than or equal to 80 (>80), the numbers of
improved topic (class) pairs with separation margins set to 2.0 (SM = 2.0)
are more than both SM = 1.8 and SM = 1.6 under different fold cross
validations. It is ideal that separation margins set to 2.0 at all levels of a
classifier, hence documents which fall into the margin can have higher
chance to be retrained at the next level. Our proposed approach can get the
benefit of separation margin set to 2.0 and the following experiments will

be reported on separation margin set to 2.0.

5.3.2 Number of classifier with SM set to 2.0

Table 28, Table 29 and Table 30 show the number of training documents of
each topic (25 topics) and their performance measures (such as a, b, ¢ for

calculating recall, precision and F1) evaluated by iterative subspace method

under 8-fold, 10-fold and 12-fold cross validations.
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Table 28: The number of training documents of each topic (25 topics) and their
performance measures under 8-fold cross validation are summarized.

8-fold cross validation

Topic N;;?Ef;g()f p b c Recall Precision F1
documents (%0) (%0) (%)
acq 249,984 34,108 | 1,604 | 1,705 | 95.24 9551 | 95.37
bop 10,416 952 | 536 | 179 | 84.17 63.98 | 72.70
carcass 8,400 508 | 692 | 155 | 76.62 4233 | 54.54
cocoa 8,400 621 | 579 | 35 | 94.66 5175 | 66.92
coffee 18,480 2,187 | 453 | 754 | 74.36 82.84 | 78.37
corn 26,712 2,879 | 937 | 805 | 78.15 7545 | 76.77
cpi 10,080 910 | 530 | 107 | 89.48 63.19 | 74.07
crude 58,632 7,900 | 476 | 1,881 | 80.77 9432 | 87.02
dir 16,128 1,839 | 465 | 291 | 86.34 79.82 | 82.95
earn 455,112 64,993 | 23 | 431 | 99.34 99.96 | 99.65
anp 15,456 1,762 | 446 | 415 | 80.94 79.80 | 80.36
gold 15,792 1,874 | 382 | 102 | 94.84 83.07 | 88.56
grain 66,192 8313 | 1,143 | 1,530 | 84.46 8791 | 86.15
interest 48,552 6,493 | 443 | 757 | 89.56 93.61 | 91.54
livestock 12,264 1,196 | 556 | 378 | 75.98 6826 | 71.92
money-fx 77,280 10,381 | 659 | 1,590 | 86.72 94.03 | 90.23
money= 14,616 1,725 | 363 | 111 | 93.95 8261 | 87.92

supply

nat-gas 12,096 1,190 | 538 | 102 | 92.11 6387 | 78.81
oilseed 19,656 2,052 | 756 | 868 | 70.27 73.08 | 71.65
ship 32,088 3,648 | 936 | 1,049 | 77.67 79.58 | 78.61
soybean 12,264 1,005 | 657 | 260 | 80.81 6250 | 70.49
sugar 19,324 2,072 | 760 | 713 | 74.40 73.16 | 73.78
trade 56,616 6,756 | 1,332 | 1,159 | 85.36 83.53 | 84.43
veg-oil 14,448 1,370 | 694 | 568 | 70.69 66.38 | 68.47
wheat 33,264 3,829 | 923 | 938 | 80.32 80.58 | 80.45
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Table 29: The number of training documents of each topic (25 topics) and their
performance measures under 10-fold cross validation are summarized.

10-fold cross validation

Topic N;;?Ef;g()f p b c Reocall Preiision 1;1
documents (%0) (%0) (%)
acq 321,408 33,870 | 1,842 [ 1,609 | 95.46 94.84 | 95.15
bop 13,392 926 | 562 | 135 | 87.28 6223 | 72.66
carcass 10,300 564 | 636 | 191 | 74.70 47.00 | 57.70
cocoa 10,300 641 | 559 | 84 | 88.41 5342 | 66.60
coffee 23,760 2,091 | 549 | 664 | 75.90 7920 | 77.52
corn 34,344 2,886 | 930 | 834 | 77.58 75.63 | 76.59
cpi 12,960 934 | 506 | 106 | 89.81 6486 | 75.32
crude 75,384 7,710 | 666 | 1,739 | 81.60 92.05 | 86.51
dir 20,736 1,842 | 462 | 325 | 85.00 79.95 | 82.40
earn 585,144 64,993 | 23 | 435 | 99.34 99.96 | 99.65
anp 19,872 1,823 | 385 | 521 | 71.77 82.56 | 80.10
gold 20,304 1,855 | 401 | 101 | 94.84 8223 | 88.08
grain 85,104 8314 | 1,142 | 1,634 | 83.57 87.92 | 85.69
interest 62,424 6414 | 522 | 691 | 90.27 9247 | 91.36
livestock 15,768 1,208 | 544 | 425 | 73.97 68.95 | 71.37
money-fx 99,360 10,493 | 547 | 1,736 | 85.80 95.05 | 90.19
money= 18,792 1,698 | 390 | 72 | 95.93 8132 | 88.02

supply

nat-gas 15,552 1,199 | 529 | 101 | 92.23 69.39 | 79.19
oilseed 25,272 2,085 | 723 | 845 | 7116 7425 | 72.67
ship 41,256 3,743 | 841 | 1,068 | 77.80 81.65 | 79.68
soybean 15,768 1,054 | 698 | 204 | 83.78 60.16 | 70.03
sugar 25,488 2,143 | 689 | 730 | 74.59 7567 | 75.13
trade 72,792 6,690 | 1,398 | 1,334 | 83.37 82.72 | 83.04
veg-oil 18,576 1,396 | 668 | 583 | 70.54 67.64 | 69.06
wheat 42,768 3,848 | 904 | 949 | 80.22 80.98 | 80.59

102




Table 30: The number of training documents of each topic (25 topics) and their
performance measures under 12-fold cross validation are summarized.

12-fold cross validation

Number of

Topic training p b c Recall Precision F1
documents (%) (%) (%)
acq 392,832 34,325 | 1,387 | 1,707 | 95.26 96.12 95.69
bop 16,368 942 546 139 87.14 63.31 73.34
carcass 13,200 555 645 208 72.74 46.25 56.55
cocoa 13,200 629 571 54 92.09 52.42 66.81
coffee 29,040 2,217 | 423 925 70.56 83.98 76.69
corn 41,976 2,934 | 882 828 77.99 76.89 77.43
cpi 15,840 906 534 84 91.52 62.92 74.57
crude 92,136 7,635 | 741 | 1,858 | 80.43 91.15 85.46
dir 25,344 1,849 | 455 288 86.52 80.25 83.27
earn 715,176 64,994 | 22 413 99.37 99.97 99.67
gnp 24,288 1,802 | 406 472 79.24 81.61 80.41
gold 24,816 1,880 | 376 97 95.09 83.33 88.83
grain 104,016 8,248 | 1,208 | 1,476 | 84.82 87.23 86.01
interest 76,296 6,392 | 544 685 90.32 92.16 91.23
livestock 19,272 1,207 | 545 402 75.02 68.89 71.82
money-fx 121,440 10,321 | 719 | 1,666 | 86.10 93.49 89.64
money= 22,968 1,685 | 403 | 120 | 93.35 80.70 | 86.57

supply

nat-gas 19,008 1,211 517 105 92.02 70.08 79.57
oilseed 30,888 1,993 | 815 792 71.56 70.98 71.27
ship 50,424 3,669 | 915 937 79.66 80.04 79.85
soybean 19,272 1,049 | 703 223 82.47 59.87 69.38
sugar 31,152 2,183 | 649 894 70.95 77.08 73.89
trade 88,968 6,627 | 1,461 | 1,191 | 84.77 81.94 83.33
veg-oil 22,704 1,401 663 587 70.47 67.88 69.15
wheat 52,272 3,789 | 963 942 80.09 79.73 79.91

Referring to Table 27 (Section 5.3.1), there are 25 topic pairs involved.

These topic pairs are further investigated. For the topic pairs, the min levels

and max levels of SVM classifiers used to train them under 8 samples (8-

fold cross validation), 10 samples (10-fold cross validation) and 12 samples

(12-fold cross validation) are summarized in Table 31.
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Table 31: The min level and max level of classifiers used to train topic pairs under 8
samples (8-fold cross validation), 10 samples (10-fold cross validation) and 12 samples
(12-fold cross validation).

8-fold, level = | 10-fold, level = | 12-fold, level =
Topic pair (min) (max) | (min) (max) | (min) (max)
1 | bop coffee 1 3 1 2 1 4
2 | bop trade 20 29 17 29 13 30
3 | bop veg-oil - - - - 1 5
4 | carcass livestock 19 22 21 23 21 22
5 | carcass_ship - - - - 1 4
6 | cocoa soybean 1 2 1 3 - -
7 | cocoa wheat - - 1 18 - -
8 |cpi dlr 1 3 1 3 1 5
9 | cpi nat-gas - - 1 2 - -
10 | dlr _gnp - - - - - -
11 | dlr_ money-fx 12 37 18 39 7 39
12 | gnp crude 1 13 1 3 1 12
13 | gnp grain 1 15 1 36 1 28
14 | livestock ship 1 3 1 4 1 4
15 | livestock trade 1 17 1 22 1 29
16 | money- 1 4 1 3 - -
supply trade
17 | nat-gas crude 30 33 29 34 29 34
18 | nat-gas sugar - - - - 1 7
19 | oilseed grain 45 47 45 49 46 49
20 | soybean corn 30 32 31 34 30 33
21 | soybean grain 28 33 30 34 31 35
22 | soybean oilseed 28 32 28 33 28 32
23 | soybean trade 1 4 1 4 1 4
24 | soybean wheat 30 33 31 33 33 35
25 | sugar acq - - - - 1 2

From the results in Table 31, some topic pairs need more levels of SVM
classifiers than others to build the multi-level classifiers. For examples:

1. bop trade
2. carcass_livestock
3. dIr_money-fx

4. gnp grain

5. nat-gas crude
6. oilseed grain

7. soybean corn

8. soybean grain
9. soybean oilseed
10. soybean_wheat
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Confidence levels of 10 topic pairs with more levels of SVM classifiers
than others to build the multi-level classifiers under 8 samples (8-fold cross
validation), 10 samples (10-fold cross validation) and 12 samples (12-fold
cross validation) are summarized in Table 32. It is found that almost the
topic pairs that are well trained by our proposal scheme (iterative subspace
method) can have the improvements with high confidence level. To further
investigate the classification result, these topic pairs (excluding gnp grain)
are used for the comparison between 1-level classifier and multi-level

classifier (iterative subspace method) in Section 5.3.6.

Table 32: Confidence levels of 10 topic pairs with more levels of SVM classifiers than
others to build the multi-level classifiers under 8 samples (8-fold cross validation), 10
samples (10-fold cross validation) and 12 samples (12-fold cross validation).

Confidence Level
Topic pair 8-fold  10-fold 12-fold
bop_trade 75 93.75 75
carcass_livestock  98.438  99.8047 99.8047
dlr_money-fx 99.2188  98.438 87.11
gnp_grain 87.5 0 31.25
nat-gas_crude 93.75 75 93.75
oilseed grain 93.75 98.438 89.45
soybean_corn 96.875  98.047  98.438
soybean_grain 87.5 87.5 93.75
soybean oilseed 99.2188 99.6094 99.8047
soybean wheat 89.06 61.72 92.578
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5.3.3 Support Vector Machine (SVM) Soft Margin Classifier

Experiments

Support vector machine soft margin classifiers introduced by Cortes and
Vapnik [11] are important learning algorithms for classification problems.
For the experiments, SVM-Light classifiers with different soft margins
(trade-off between training error and margin) are used to perform the
evaluation. 12 experiments with different c (float number) parameters (with
SVM-Light classifier) are selected and they are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7,0.8,0.9, 1, 10 and 100. The performance scores are generated under 8-

fold cross validation and shown in Appendix.

From these 12 experiments, the best result is obtained when ¢ parameter is

set to 10. The result is shown in Table 33.

Table 33: The macro-average and micro-average performance of Soft Margin SVM
(with ¢=10) evaluated under 8-fold cross validation are summarized.

Macro-average Micro-average
Classifier Recall  Precision F1 Recall/Precision/F1
Standard SVM  90.46%  81.19%  84.82% 94.5%
Soft Margin SVM  87.21%  91.69%  89.22% 95.88%

There is also 11.85% improvement of “nat-gas” evaluated by multi-level
classifier (proposed iterative subspace method) comparing to Soft Margin

SVM classifier under 8-fold cross validation.

Table 34: 2 topics out of 25 topics have better recall than the performances of Soft
Margin SVM classifier under 8-fold cross validation.

Soft Margin SVM  Multi-level classifier
Topic  Recall Precision Recall Precision Improvement
gold  90.43% - 94.84% - 4.88%
nat-gas  82.35% - 92.11% - 11.85%
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5.3.4 Support Vector Machine (SVM) Soft Margin Classifier

with Iterative Subspace Method

In this experiment, we use the subset of Reuters-21578 collection. For
providing enough training data learnt by the proposed Iterative Subspace
Method, only those topics (categories) with training document sizes which
are equal to or greater than 50 are used. 25 topics can meet this requirement
and 300 topic pairs for SVM classifiers (binary classifiers) are generated

for the experiment. It is the same as in Section 5.3.1

The experiment is done under 8-fold cross validations; the training
documents are sampled by systematic sampling (selected sequentially by
system file ordering). The learning process will cease when any one of
stopping criteria is reached. The stopping criteria are: (1) not enough data
in the residual set, the size in the experiments is roughly set to be equal to
one tenth of the training data; (2) the classifier for the next level can
correctly classify the data with a separation margin greater than the
predefined value from the data in the residual set. The predefined value

used in the experiment is 2.0.

From the finding in Section 5.3.3, the best result is obtained when ¢
parameter is set to 10. The predefined c value of. SVM-Light classifier with
soft margin used in the experiment is set to 10 to perform the evaluation.
SVM classifiers with fixed linear and polynomial kernel functions are used
for the comparison. The performance scores are generated under 8-fold

cross validation and shown in Table 35.
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Table 35: The macro-average and micro-average performance of Iterative Subspace
Method (multi-level classifier with soft margin ¢=10) evaluated under 8-fold cross
validation are summarized.

Macro-average Micro-average

SVM kernel function Recall Precision F1 Recall/Precision/F1

1- level adaptive 90.70% 83.17% 86.77% 94.87%
Multi-level adaptive 90.69% 83.17% 86.76% 94.86%

1- level linear 91.69% 87.21% 89.40% 95.88%
Multi-level linear 91.76% 86.88%  89.25% 95.78%

1-level polynomial 91.69% 87.21%  89.39% 95.88%
Multi-level polynomial 91.76% 86.89%  89.26% 95.78%

5.3.5 Comparison of Macro Averaging and Micro
Averaging between 1-level classifier and multi-level

classifier (lterative Subspace Method)

The results of macro-average and micro-average performance evaluated by
I-level classifier and multi-level classifier (iterative subspace method)
under 8-fold, 10-fold and 12-fold cross validations are shown in Table 36,

Table 37 and Table 38.

Table 36: The macro-average and micro-average performance of Iterative Subspace
Method (multi-level classifier) evaluated under 8-fold cross validation are
summarized.

Macro-average Micro-average
Classifier Recall Precision F1 Recall/Precision/F1
1-level (standard SVM) 90.46%  81.19%  84.82% 94.5%
Multi-level 83.89% 77.05%  79.67% 91%

From the result of our proposed iterative subspace method (multi-level
classifier) with 8-fold cross validation, macro-average F1 (79.67%) and
micro-average F1 (91%) are not improved comparing to standard SVM
method (1-level classifier) where macro-average F1 is 84.82% and micro-

average F1 is 94.5%.
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Table 37: The macro-average and micro-average performance of Iterative Subspace
Method (multi-level classifier) evaluated under 10-fold cross validation are
summarized.

Macro-average Micro-average
Classifier Recall  Precision F1 Recall/Precision/F1
1-level (standard SVM) 90.50% 81.37% 84.97% 94.54%
Multi-level 83.64% 77.28%  79.77% 90.87%

From the result of our proposed iterative subspace method (multi-level
classifier) with 10-fold cross validation, macro-average F1 (79.77%) and
micro-average F1 (90.87%) are not improved comparing to standard SVM
method (1-level classifier) where macro-average F1 is 84.97% and micro-

average F1 is 94.54%.

Table 38: The macro-average and micro-average performance of Iterative Subspace
Method (multi-level classifier) evaluated under 12-fold cross validation are
summarized.

Macro-average Micro-average
Classifier Recall  Precision F1 Recall/Precision/F1
1-level (standard SVM) 90.50% 81.46%  85.04% 94.58%
Multi-level 83.58% 77.13%  79.61% 90.89%

From the result of our proposed iterative subspace method (multi-level
classifier) with 12-fold cross validation, macro-average F1 (79.61%) and
micro-average F1 (90.89%) are not improved comparing to standard SVM
method (1-level classifier) where macro-average F1 is 85.04% and micro-

average F1 is 94.58%.

From the results, macro-averaging and micro-averaging performances of
proposed iterative subspace method are not better than the performances of
standard SVM method. However, some topics out of 25 topics have better
precision or recall (from Table 28, Table 29 and Table 30) than the

performances of standard SVM (from Table 20, Table 21 and Table 22).
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Table 39, Table 40 and Table 41 show the recall or precision improvements

under 8-fold, 10-fold and 12-fold cross validation.

Table 39: 4 topics out of 25 topics have better precision or recall than the
performances of standard SVM under 8-fold cross validation.

1-level classifier (standard SVM) Multi-level classifier

Topic Recall Precision Recall  Precision Improvement
gold 94.65% - 94.84% - 0.2%
livestock - 63.07% - 68.27% 8.24%
nat-gas 91.58% - 92.11% - 0.58%
soybean - 62.33% - 62.5% 0.27%

Table 40: 4 topics out of 25 topics have better precision or recall than the
performances of standard SVM under 10-fold cross validation.

1-level classifier (standard SVM) Multi-level classifier

Topic Recall Precision Recall  Precision Improvement
carcass - 45% - 47% 4.44%
gnp - 80.03% - 82.56% 3.16%
gold 94.73% - 94.84% - 0.12%
soybean 83.01% - 83.78% - 0.93%

Table 41: Topics out of 25 topics have better precision or recall than the
performances of standard SVM under 12-fold cross validation.

1-level classifier (standard SVM) Multi-level classifier

Topic Recall Precision Recall  Precision Improvement

coffee - 83.22% - 83.98% 0.91%
gold 95.01% - 95.09% - 0.08%

nat-gas 91.67% - 92.02% - 0.38%

It is still promising that there is 8.24% precision improvement of
“livestock” evaluated by multi-level classifier (proposed iterative subspace
method) comparing to 1-level classifier (standard SVM) under 8-fold cross

validation.

In Section 5.3.4, SVM soft margin classifier shows the proposed iterative
subspace method can perform effectively. The performance measures
between 1-level (standard SVM) and multi-level (iterative subspace method)

are significant reduced. The minimum difference of F1 measure is 0.01%
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and the maximum difference of F1 measure is 0.15% (from Table 35).
From Table 36, Table 37 and Table 38, the minimum difference of F1
measure is 3.5% and the maximum difference of F1 measure is 5.43%. The
performance and efficiency can be affected by different widths of
separation margin (soft margin). It is expected that the performance can be

further improved by using other optimization techniques.

5.3.6 Comparison between 1-level classifier and multi-

level classifier (Iterative Subspace Method)

For 8 samples (8-fold cross validation), the classification results of 9 topic
pairs with high confidence levels and well trained classifiers (more levels

of SVM classifiers) than others are shown in Figure 31 to Figure 38.
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Figure 31: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 1).
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Sample 2 (8-fold)
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Figure 32: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 2).
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Figure 33: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 3).
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Sample 4 (8-fold)
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Figure 34: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 4).
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Figure 35: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 5).
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Sample 6 (8-fold)
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Figure 36: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 6).
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Figure 37: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 7).
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Sample 8 (8-fold)
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Figure 38: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 8).

For 10 samples (10-fold cross validation), the classification results of 9
topic pairs with high confidence levels and well trained classifiers (more

levels of SVM classifiers) than others are shown in Figure 39 to Figure 48.
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Sample 1 (10-fold)
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Figure 39: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 1).
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Figure 40: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 2).
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Sample 3 (10-fold)
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Figure 41: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 3).

Sample 4 (10-fold)

o 1-level
m x-level

COO0O00000
OCaANWRUIO~N®©O

Figure 42: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 4).

117



Sample 5 (10-fold)
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Figure 43: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 5).
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Figure 44: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 6).
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Sample 7 (10-fold)
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Figure 45: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 7).
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Figure 46: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 8).

119



Sample 9 (10-fold)
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Figure 47: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 9).

Sample 10 (10-fold)
0.9
0.8 -
0.7 -
0.6 +
0.5 - o 1-level
8% 1] | x-level
0.2 -
0.1
0
@ NG N @ & Q & O >
\@b 8 & @ O q@\ § 0}‘2)\ \%@e \éﬁ\e’
RPN S A A
& A & 3 o ) g o/ 7
S & Q}Q é@ A &0 R e
\0’0 A\, ) 9 0\\0 %o\\
@ %

Figure 48: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 10).
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For 12 samples (12-fold cross validation), the classification results of 9
topic pairs with high confidence levels and well trained classifiers (more

levels of SVM classifiers) than others are shown in Figure 49 to Figure 60.
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Figure 49: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 1).
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Figure 50: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 2).
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Sample 3 (12-fold)
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Figure 51: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 3).
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Figure 52: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 4).
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Sample 5 (12-fold)
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Figure 53: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 5).
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Figure 54: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 6).
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Sample 7 (12-fold)
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Figure 55: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 7).
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Figure 56: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 8).
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Sample 9 (12-fold)
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Figure 57: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 9).
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Figure 58: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 10).
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Sample 11 (12-fold)
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Figure 59: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 11).
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Figure 60: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 12).

126



5.3.7 Predication Distribution of the Last Level of the

Iterative Subspace Method

In Section 5.3.2, it is found that almost the topic pairs that are well trained
by our proposal scheme (iterative subspace method) can have the
improvements with high confidence level. However most of the topic pairs
cannot be well trained, especially at the last level. The experiment is done
to observe the prediction distribution of the last level of the iterative

subspace method (multi-level classifier). Six topic pairs are selected. They

are:
1. sugar trade
2. veg-oil trade
3. carcass_veg-oil
4. dlr trade
5. cocoa_coffee
6. cocoa sugar

The plots are shown in Figure 61, Figure 62, Figure 63, Figure 64, Figure

65 and Figure 66 respectively.
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Figure 61: The prediction distribution plot of the last level of sugar_trade classifier.
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Figure 62: The prediction distribution plot of the last level of veg-oil_trade classifier.
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Figure 63: The prediction distribution plot of the last level of carcass_veg-oil
classifier.

128



m Frequency (correct)
@ Frequency (incorrect)

Figure 64: The prediction distribution plot of the last level of dlr_trade classifier.
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Figure 65: The prediction distribution plot of the last level of cocoa_coffee classifier.
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Figure 66: The prediction distribution plot of the last level of cocoa_sugar classifier.
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6 Conclusion

One of the most prominent methods to combat the curse of dimensionality
is subspace methodology. However, this has only been applied broadly in
unsupervised text categorization. The performance of subspace
methodology on supervised text categorization has not yet been found. In
addition to the problem of high dimensionality, another common problem
of text categorization is the uneven distribution of category size which
often occurs in a large data set. This often leads to good micro-average
performance but not so desirable in macro-average performance. The
experiment of subtopic clustering (break large topics into sub-topics by

clustering) shows significant improvement.

Due to the problem of high dimensionality and further improvement of the
category boundary (subtopic clustering), the approach of iterative subspace
classification is further investigated. The mathematical assumptions behind
the subspace formalism demands that the pattern classes are distributed as
low-dimensional subspaces in a higher-dimensional feature space. It is
encouraging that subspace approach is suitable for text categorization.
However the subspace classification methods have not been popular in text
categorization tasks. One possibility may be that the field of data mining
has captured the attention of the researchers of unsupervised text

categorization.

From the view of classification, we want to re-define a difficult

classification boundary possibly due to the use of the initial choice of
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feature subset. We want to have a better fit by decomposing the data sets
into subsets using other more effective features. Subtopic clustering and
proposed Iterative Subspace Method are expected to have the capability to

address the issue.

The approach of iterative subspace method of pattern classification has
been investigated. For the topic pairs of “carcass livestock” and
“soybean oilseed” from the Reuters-21578 collection, the result with
confidence level greater than 95% under 8-fold/10-fold/12-fold cross
validation shows that this approach has good potential. Other topic pairs,

2 (13

such as the topic pair of “bop trade”, “dIr money-fx”, “nat-gas crude”,
“oilseed grain”, “soybean corn”, “soybean grain” and ‘“soybean wheat”

can also achieve the improvement with high confidence level greater under

some samples.

The macro-average and micro-average measures of proposed Iterative
Subspace Method are not better than others. However it is still promising
that there is 8.24% precision improvement of “livestock” evaluated
comparing to 1-level classifier, standard Support Vector Machine (SVM),
under 8-fold cross validation. There is also 11.85% improvement of “nat-
gas” evaluated comparing to Soft Margin SVM classifier under 8-fold cross

validation.

The performance and efficiency can be affected by different widths of

separation margin. It is expected that the performance can be further

improved by using other optimization techniques. The prediction
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distribution experiment of the last level of the iterative subspace method
shows that the correct and incorrect prediction values are closely

distributed. It is the main reason why they cannot be further improved.
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8 Appendix

Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.1

under 8-fold cross validation.

Topic a b c Recall (%) | Precision (%) | F1 (%)
acq 35703 | 3199 9 99.97 91.78 95.70
bop 186 160 | 1302 12.50 53.76 20.28

carcass 49 16 | 1151 4.08 75.38 7.75

cocoa 34 1 1166 2.83 97.14 5.51

coffee 1320 | 894 | 1320 50.00 59.62 54.39
corn 2386 | 1240 | 1430 62.53 65.80 64.12
cpi 120 100 | 1320 8.33 54.55 14.46

crude 7546 | 2056 | 830 90.09 78.59 83.95

dir 1056 | 789 | 1248 45.83 57.24 50.90
earn 64973 | 2372 | 43 99.93 96.48 98.18
gnp 828 613 | 1380 37.50 57.46 45.38
gold 942 698 | 1314 41.76 57.44 48.36
grain 9020 | 2354 | 436 95.39 79.30 86.61
interest 5808 | 1775 | 1128 83.74 76.59 80.01
livestock 387 287 | 1365 22.09 57.42 31.90
money-fx 10790 | 2445 | 250 97.74 81.53 88.90
money-supply | 711 508 | 1377 34.05 58.33 43.00
nat-gas 306 229 | 1422 17.71 57.20 27.04
oilseed 1532 | 1006 | 1276 54.56 60.36 57.31
ship 3063 | 1399 | 1521 66.82 68.65 67.72
soybean 435 331 | 1317 24.83 56.79 34.55
sugar 1651 | 1111 | 1181 58.30 59.78 59.03
trade 7114 | 1963 | 974 87.96 78.37 82.89
veg-oil 619 441 | 1445 29.99 58.40 39.63
wheat 3383 | 1587 | 1369 71.19 68.07 69.59

Recall (%) | Precision (%) | F1 (%)
Macro-average 51.99 68.24 59.02
Micro-average 85.30 85.30 85.30
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Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.2

under 8-fold cross validation.

Topic a b c Recall (%) | Precision (%) | F1 (%)
acq 35693 | 2328 | 19 99.95 93.88 96.82
bop 236 141 | 1252 15.86 62.60 25.31

carcass 49 16 | 1151 4.08 75.38 7.75

cocoa 76 1 1124 6.33 98.70 11.90

coffee 1460 | 753 | 1180 55.30 65.97 60.17
corn 2752 | 1156 | 1064 72.12 70.42 71.26
cpi 170 84 | 1270 11.81 66.93 20.07

crude 8058 | 1754 | 318 96.20 82.12 88.61
dir 1206 | 589 | 1098 52.34 67.19 58.84
earn 64992 | 1489 | 24 99.96 97.76 98.85
gnp 950 547 | 1258 43.03 63.46 51.28
gold 1149 | 482 | 1107 50.93 70.45 59.12

grain 9266 | 1878 | 190 97.99 83.15 89.96

interest 6331 | 1330 | 605 91.28 82.64 86.74
livestock 508 220 | 1244 29.00 69.78 40.97
money-fx 10852 | 1862 | 188 98.30 85.35 91.37

money-supply | 1271 | 316 | 817 60.87 80.09 69.17
nat-gas 375 229 | 1353 21.70 62.09 32.16
oilseed 1687 | 860 | 1121 60.08 66.23 63.01
ship 3656 | 1265 | 928 79.76 74.29 76.93
soybean 507 301 | 1245 28.94 62.75 39.61

sugar 1702 | 870 | 1130 60.10 66.17 62.99

trade 7821 | 1735 | 267 96.70 81.84 88.65

veg-oil 770 439 | 1294 37.31 63.69 47.05

wheat 3971 | 1383 | 781 83.56 74.17 78.59

Recall (%) | Precision (%) | F1 (%)
Macro-average | 58.1396 74.68 65.38
Micro-average 88.254 88.25 88.25
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Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.3

under 8-fold cross validation.

Topic a b c Recall (%) | Precision (%) | F1 (%)
acq 35691 | 1777 | 21 99.94 95.26 97.54
bop 464 92 | 1024 31.18 83.45 45.40

carcass 94 19 | 1106 7.83 83.19 14.32

cocoa 288 4 912 24.00 98.63 38.61

coffee 1824 | 556 | 816 69.09 76.64 72.67
corn 3052 | 949 | 764 79.98 76.28 78.09
cpi 528 61 912 36.67 89.64 52.05

crude 8131 | 1427 | 245 97.08 85.07 90.68
dir 1607 | 331 | 697 69.75 82.92 75.77
earn 64997 | 957 19 99.97 98.55 99.25
gnp 1275 | 410 | 933 57.74 75.67 65.50
gold 1474 | 333 | 782 65.34 81.57 72.56

grain 9306 | 1653 | 150 98.41 84.92 91.17

interest 6476 | 1004 | 460 93.37 86.58 89.84
livestock 629 152 | 1123 35.90 80.54 49.66
money-fx 10876 | 1500 | 164 98.51 87.88 92.89

money-supply | 1606 | 182 | 482 76.92 89.82 82.87
nat-gas 574 179 | 1154 33.22 76.23 46.27
oilseed 1913 | 665 | 895 68.13 74.20 71.04
ship 4009 | 982 | 575 87.46 80.32 83.74
soybean 644 205 | 1108 36.76 75.85 49.52

sugar 1907 | 651 | 925 67.34 74.55 70.76

trade 7892 | 1438 | 196 97.58 84.59 90.62

veg-oil 982 351 | 1082 47.58 73.67 57.82

wheat 4237 | 1182 | 515 89.16 78.19 83.32

Recall (%) | Precision (%) | F1 (%)
Macro-average 66.76 82.97 73.98
Micro-average 90.90 90.90 90.90
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Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.4

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35686 | 1374 | 26 99.93 96.29 98.08
bop 674 74 | 814 45.30 90.11 60.29

carcass 207 23 | 993 17.25 90.00 28.95

cocoa 506 6 694 4217 98.83 59.11

coffee 2018 | 427 | 622 76.44 82.54 79.37
corn 3189 | 800 | 627 83.57 79.94 81.72
cpi 784 39 | 656 54.44 95.26 69.29

crude 8141 | 1148 | 235 97.19 87.64 92.17
dir 1780 | 221 | 524 77.26 88.96 82.69
earn 64998 | 637 | 18 99.97 99.03 99.50
gnp 1555 | 319 | 653 70.43 82.98 76.19
gold 1674 | 243 | 582 74.20 87.32 80.23

grain 9317 | 1477 | 139 98.53 86.32 92.02

interest 6529 | 775 | 407 94.13 89.39 91.70
livestock 822 137 | 930 46.92 85.71 60.64
money-fx 10899 | 1254 | 141 98.72 89.68 93.99

money-supply | 1723 | 111 | 365 82.52 93.95 87.86
nat-gas 769 147 | 959 44 .50 83.95 58.17
oilseed 2054 | 540 | 754 73.15 79.18 76.05
ship 4134 | 763 | 450 90.18 84.42 87.21
soybean 828 168 | 924 47.26 83.13 60.26

sugar 2127 | 500 | 705 75.11 80.97 77.93

trade 7905 | 1211 | 183 97.74 86.72 91.90

veg-oil 1189 | 289 | 875 57.61 80.45 67.14

wheat 4326 | 1019 | 426 91.04 80.94 85.69

Recall (%) | Precision (%) | F1 (%)
Macro-average 73.42 87.35 79.78
Micro-average 92.69 92.69 92.69
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Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.5

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35679 | 1151 | 33 99.91 96.87 98.37
bop 848 70 | 640 56.99 92.37 70.49

carcass 317 26 | 883 26.42 92.42 41.09

cocoa 598 10 | 602 49.83 98.36 66.15

coffee 2115 | 348 | 525 80.11 85.87 82.89
corn 3263 | 695 | 553 85.51 82.44 83.95
cpi 920 37 | 520 63.89 96.13 76.76

crude 8156 | 955 | 220 97.37 89.52 93.28

dir 1859 | 180 | 445 80.69 91.17 85.61
earn 64995 | 464 | 21 99.97 99.29 99.63
gnp 1704 | 257 | 504 77.17 86.89 81.75
gold 1804 | 169 | 452 79.96 91.43 85.32
grain 9324 | 1328 | 132 98.60 87.53 92.74

interest 6556 | 614 | 380 94.52 91.44 92.95
livestock 970 139 | 782 55.37 87.47 67.81
money-fx 10902 | 1075 | 138 98.75 91.02 94.73
money-supply | 1775 75 | 313 85.01 95.95 90.15
nat-gas 975 121 | 753 56.42 88.96 69.05
oilseed 2159 | 483 | 649 76.89 81.72 79.23
ship 4200 | 634 | 384 91.62 86.88 89.19
soybean 975 155 | 777 55.65 86.28 67.66
sugar 2242 | 433 | 590 79.17 83.81 81.42
trade 7914 | 1039 | 174 97.85 88.40 92.88
veg-oil 1365 | 238 | 699 66.13 85.15 74.45
wheat 4353 | 872 | 399 91.60 83.31 87.26

Recall (%) | Precision (%) | F1 (%)
Macro-average 77.82 89.63 83.31
Micro-average 93.83 93.83 93.83
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Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.6

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35677 | 970 | 35 99.90 97.35 98.61
bop 929 74 | 559 62.43 92.62 74.59

carcass 430 41 | 770 35.83 91.30 51.47

cocoa 653 13 | 547 54.42 98.05 69.99

coffee 2189 | 299 | 451 82.92 87.98 85.37
corn 3316 | 631 | 500 86.90 84.01 85.43
cpi 982 36 | 458 68.19 96.46 79.90

crude 8170 | 828 | 206 97.54 90.80 94.05

dir 1906 | 158 | 398 82.73 92.35 87.27
earn 64996 | 350 | 20 99.97 99.46 99.72
gnp 1778 | 231 | 430 80.53 88.50 84.33
gold 1894 | 126 | 362 83.95 93.76 88.59

grain 9326 | 1240 | 130 98.63 88.26 93.16

interest 6578 | 519 | 358 94.84 92.69 93.75
livestock 1086 | 137 | 666 61.99 88.80 73.01
money-fx 10889 | 966 | 151 98.63 91.85 95.12
money-supply | 1806 67 | 282 86.49 96.42 91.19
nat-gas 1116 | 110 | 612 64.58 91.03 75.56
oilseed 2221 | 439 | 587 79.10 83.50 81.24
ship 4240 | 542 | 344 92.50 88.67 90.54
soybean 1058 | 154 | 694 60.39 87.29 71.39
sugar 2328 | 378 | 504 82.20 86.03 84.07
trade 7903 | 928 | 185 97.71 89.49 93.42
veg-oil 1484 | 223 | 580 71.90 86.94 78.71
wheat 4352 | 769 | 400 91.58 84.98 88.16

Recall (%) | Precision (%) | F1 (%)
Macro-average 80.63 90.74 85.39
Micro-average 94.55 94.55 94.55
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Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.7

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35671 | 855 | 41 99.89 97.66 98.76
bop 994 77 | 494 66.80 92.81 77.69
carcass 509 46 | 691 42.42 91.71 58.01
cocoa 692 17 | 508 57.67 97.60 72.50
coffee 2240 | 273|400 84.85 89.14 86.94
corn 3336 | 592 | 480 87.42 84.93 86.16
cpi 1027 43 | 413 71.32 95.98 81.83
crude 8174 | 739 | 202 97.59 91.71 94.56
dir 1935 | 150 | 369 83.98 92.81 88.18
earn 64999 | 284 | 17 99.97 99.57 99.77
. gnp 1820 | 211 | 388 82.43 89.61 85.87
gold 1951 | 106 | 305 86.48 94.85 90.47
| grain 9319 | 1178 | 137 98.55 88.78 93.41
interest 6588 | 464 | 348 94.98 93.42 94.20
livestock 1172 | 135 | 580 66.90 89.67 76.63
money-fx 10874 | 881 | 166 98.50 92.51 95.41
money-supply | 1826 63 | 262 87.45 96.66 91.83
nat-gas 1217 | 101 | 511 70.43 92.34 79.91
oilseed 2264 | 410 | 544 80.63 84.67 82.60
ship 4258 | 478 | 326 92.89 89.91 91.37
soybean 1128 | 152 | 624 64.38 88.13 74.41
sugar 2379 | 362 | 453 84.00 86.79 85.38
trade 7895 | 856 | 193 97.61 90.22 93.77
veg-oil 1545 | 206 | 519 74.85 88.24 81.00
wheat 4346 | 698 | 406 91.46 86.16 88.73

Recall (%) | Precision (%) | F1 (%)
Macro-average 82.54 91.43 86.76
Micro-average 95.00 95.00 95.00

147



Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.8

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35667 | 779 | 45 99.87 97.86 98.86
bop 1042 77 | 446 70.03 93.12 79.94

carcass 576 67 | 624 48.00 89.58 62.51

cocoa 729 20 | 471 60.75 97.33 74.81

coffee 2272 | 251 | 368 86.06 90.05 88.01
corn 3343 | 558 | 473 87.60 85.70 86.64
cpi 1062 46 | 378 73.75 95.85 83.36

crude 8179 | 679 | 197 97.65 92.33 94.92

dir 1951 | 138 | 353 84.68 93.39 88.82
earn 65000 | 244 | 16 99.98 99.63 99.80
gnp 1854 | 201 | 354 83.97 90.22 86.98
gold 1983 98 | 273 87.90 95.29 91.45

grain 9314 | 1130 | 142 98.50 89.18 93.61

interest 6606 | 425 | 330 95.24 93.96 94.59
livestock 1224 | 141 | 528 69.86 89.67 78.54
money-fx 10867 | 814 | 173 98.43 93.03 95.66
money-supply | 1836 66 | 252 87.93 96.53 92.03
nat-gas 1268 90 | 460 73.38 93.37 82.18
oilseed 2285 | 403 | 523 81.37 85.01 83.15
ship 4266 | 441 | 318 93.06 90.63 91.83
soybean 1182 | 153 | 570 67.47 88.54 76.58
sugar 2413 | 347 | 419 85.20 87.43 86.30
trade 7887 | 790 | 201 97.51 90.90 94.09
veg-oil 1586 | 205 | 478 76.84 88.55 82.28
wheat 4330 | 651 | 422 91.12 86.93 88.98

Recall (%) | Precision (%) | F1 (%)
Macro-average 83.85 91.76 87.63
Micro-average 95.30 95.30 95.30
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Experimental result evaluated by SVM Soft Margin Classifier with ¢=0.9

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35662 | 724 | 50 99.86 98.01 98.93
bop 1073 80 | 415 72.11 93.06 81.26

carcass 630 75 | 570 52.50 89.36 66.14

cocoa 760 25 | 440 63.33 96.82 76.57

coffee 2292 | 242 | 348 86.82 90.45 88.60
corn 3347 | 527 | 469 87.71 86.40 87.05
cpi 1091 50 | 349 75.76 95.62 84.54

crude 8177 | 640 | 199 97.62 92.74 95.12
dir 1959 | 134 | 345 85.03 93.60 89.11
earn 64999 | 212 | 17 99.97 99.67 99.82
gnp 1874 | 196 | 334 84.87 90.53 87.61
gold 2005 96 | 251 88.87 95.43 92.04

grain 9301 | 1086 | 155 98.36 89.54 93.75

interest 6611 | 414 | 325 95.31 94.11 94.71
livestock 1280 | 141 | 472 73.06 90.08 80.68
money-fx 10856 | 775 | 184 98.33 93.34 95.77

money-supply | 1844 64 | 244 88.31 96.65 92.29
nat-gas 1308 84 | 420 75.69 93.97 83.85
oilseed 2298 | 396 | 510 81.84 85.30 83.53
ship 4268 | 418 | 316 93.11 91.08 92.08
soybean 1205 | 165 | 547 68.78 87.96 77.19

sugar 2438 | 325 | 394 86.09 88.24 87.15

trade 7883 | 765 | 205 97.47 91.15 94.20

veg-oil 1615 | 203 | 449 78.25 88.83 83.20

wheat 4320 | 603 | 432 90.91 87.75 89.30

Recall (%) | Precision (%) | F1 (%)
Macro-average 84.80 91.99 88.25
Micro-average 95.50 95.50 95.50
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Experimental result evaluated by SVM Soft Margin Classifier with c=1

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35657 | 683 | 55 99.85 98.12 98.98
bop 1097 85 | 391 73.72 92.81 82.17

carcass 671 82 | 529 55.92 89.11 68.71

cocoa 782 29 |418 65.17 96.42 77.77

coffee 2306 | 229 | 334 87.35 90.97 89.12
corn 3350 | 515 | 466 87.79 86.68 87.23
cpi 1118 52 | 322 77.64 95.56 85.67

crude 8172 | 605 | 204 97.56 93.11 95.28

dir 1976 | 131 | 328 85.76 93.78 89.59
earn 64999 | 189 | 17 99.97 99.71 99.84
gnp 1892 | 194 | 316 85.69 90.70 88.12
gold 2024 92 | 232 89.72 95.65 92.59
grain 9290 | 1064 | 166 98.24 89.72 93.79

interest 6620 | 401 | 316 95.44 94.29 94.86
livestock 1307 | 146 | 445 74.60 89.95 81.56
money-fx 10842 | 730 | 198 98.21 93.69 95.90
money-supply | 1852 65 | 236 88.70 96.61 92.48
nat-gas 1341 82 | 387 77.60 94.24 85.12
oilseed 2291 | 387 | 517 81.59 85.55 83.52
ship 4269 | 399 | 315 93.13 91.45 92.28
soybean 1224 | 183 | 528 69.86 86.99 77.49
sugar 2455 | 308 | 377 86.69 88.85 87.76
trade 7877 | 733 | 211 97.39 91.49 94.35
veg-oil 1637 | 203 | 427 79.31 88.97 83.86
wheat 4319 | 581 | 433 90.89 88.14 89.49

Recall (%) | Precision (%) | F1 (%)
Macro-average 85.51 92.10 88.68
Micro-average 95.64 95.64 95.64

150



Experimental result evaluated by SVM Soft Margin Classifier with c=10

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35650 | 602 | 62 99.83 98.34 99.08
bop 1166 | 92 | 322 78.36 92.69 84.92

carcass 765 | 126 | 435 63.75 85.86 73.17

cocoa 868 42 | 332 72.33 95.38 82.27

coffee 2340 | 229 | 300 88.64 91.09 89.84
corn 3271 | 629 | 545 85.72 83.87 84.78
cpi 1165 | 77 | 275 80.90 93.80 86.88

crude 8169 | 516 | 207 97.53 94.06 95.76
dir 2064 | 135 | 240 89.58 93.86 91.67
earn 65001 | 138 | 15 99.98 99.79 99.88
gnp 1920 | 171 | 288 86.96 91.82 89.32
gold 2040 | 91 | 216 90.43 95.73 93.00

grain 8905 | 880 | 551 94.17 91.01 92.56

interest 6744 | 326 | 192 97.23 95.39 96.30
livestock 1355 | 164 | 397 77.34 89.20 82.85
money-fx 10869 | 483 | 171 98.45 95.75 97.08

money-supply | 1869 | 69 | 219 89.51 96.44 92.85

nat-gas 1423 | 100 | 305 82.35 93.43 87.54

oilseed 2276 | 462 | 532 81.05 83.13 82.08

ship 4268 | 384 | 316 93.11 91.75 92.42

soybean 1309 | 267 | 443 74.71 83.06 78.67

sugar 2465 | 316 | 367 87.04 88.64 87.83

trade 7882 | 575 | 206 97.45 93.20 95.28

veg-oil 1713 | 252 | 351 82.99 87.18 85.03

wheat 4317 | 596 | 435 90.85 87.87 89.33

Recall (%) | Precision (%) | F1 (%)
Macro-average 87.21 91.69 89.40
Micro-average 95.88 95.88 95.88
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Experimental result evaluated by SVM Soft Margin Classifier with c=100

under 8-fold cross validation.

Topic a b ¢ | Recall (%) | Precision (%) | F1 (%)
acq 35642 | 626 | 70 99.80 98.27 99.03
bop 1165 | 89 | 323 78.29 92.90 84.97

carcass 747 | 166 | 453 62.25 81.82 70.71

cocoa 862 52 | 338 71.83 94.31 81.55

coffee 2327 | 254 | 313 88.14 90.16 89.14
corn 3224 | 658 | 592 84.49 83.05 83.76
cpi 1165 | 86 | 275 80.90 93.13 86.58

crude 8157 | 533 | 219 97.39 93.87 95.59

dir 2058 | 155 | 246 89.32 93.00 91.12
earn 65000 | 136 | 16 99.98 99.79 99.88
gnp 1924 | 174 | 284 87.14 91.71 89.36
gold 2042 | 90 | 214 90.51 95.78 93.07
grain 8731 | 912 | 725 92.33 90.54 91.43

interest 6736 | 342 | 200 97.12 95.17 96.13
livestock 1347 | 206 | 405 76.88 86.74 81.51
money-fx 10816 | 501 | 224 97.97 95.57 96.76
money-supply | 1871 | 81 | 217 89.61 95.85 92.62
nat-gas 1436 | 98 | 292 83.10 93.61 88.04
oilseed 2250 | 525 | 558 80.13 81.08 80.60
ship 4234 | 419 | 350 92.36 91.00 91.67
soybean 1308 | 297 | 444 74.66 81.50 77.93
sugar 2386 | 382 | 446 84.25 86.20 85.21
trade 7857 | 578 | 231 97.14 93.15 95.10
veg-oil 1655 | 320 | 409 80.18 83.80 81.95
wheat 4282 | 634 | 470 90.11 87.10 88.58

Recall (%) | Precision (%) | F1 (%)
Macro-average 86.64 90.76 | 88.65
Micro-average 95.57 95.57 | 95.57

152





