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Abstract 

Text categorization finds many practical applications. The dominant 

approach involves the use of various machine learning techniques where 

classification rules are automatically created using information from 

labeled texts. The proposed method to combat the curse of dimensionality 

is subspace methodology. However, this has only been applied broadly in 

unsupervised text categorization. The performance of subspace 

methodology on supervised text categorization has not yet been found. The 

approach of iterative subspace method of pattern classification is 

investigated. For the topic pairs of “carcass_livestock” and 

“soybean_oilseed” from the Reuters-21578 collection, the results with 

confidence level greater than 95% under 8-fold/10-fold/12-fold cross 

validation shows the potential of this approach. It is expected that the 

performance can be further improved by using other optimization 

techniques. 

 
It is still promising that there is 8.24% precision improvement of 

“livestock” evaluated comparing to 1-level classifier, standard Support 

Vector Machine (SVM), under 8-fold cross validation. There is also 

11.85% improvement of “nat-gas” evaluated comparing to Soft Margin 

SVM classifier under 8-fold cross validation. 
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1 Introduction 

1.1 Text categorization and its applications 

Text categorization is the task in which texts are classified into one of 

predefined categories based on their contents. This task has various 

applications such as automatic email classification, news classification and 

webpage categorization. Those applications are becoming increasingly 

important in today’s information-oriented society. Much knowledge in this 

domain has been accumulated in the past 30 years 

 
There are mainly two types of approaches to text categorization. One is the 

rule-based approach where the classification rules are manually created 

usually by experts in the domain of the texts. Although the rule-based 

approach can achieve high accuracy, it is costly in terms of labor and time. 

Moreover, a rule-based system created for one domain can hardly be used 

in other domains. The second approach involves machine learning 

techniques where classification rules are automatically created using 

information from labeled texts. It enables a system for a new domain to be 

easily constructed. Text categorization is also called text classification, 

document categorization or document classification. 

 
Generally, building an automated text categorization system consists of two 

key subtasks. The first task is text representation which converts the 

content of documents into a compact format so that they can be further 

processed by the text classifiers. Another task is to build the model of a text 

classifier to classify unlabelled documents. 
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The textual information is stored in many kinds of machine readable form, 

such as PDF, DOC, PostScript, HTML, XML and so on. Before the 

computer applies the text classifier to label the unknown document, the 

content of a document must be transformed into a compact and 

interpretable format so that it can be further recognized and classified by a 

computer or a classifier. This indexing procedure is called text 

representation. 

 
The algorithms which have been applied to text categorization task have 

been studied extensively in recent decades and most of them are usually 

borrowed from the traditional pattern recognition, such as Support Vector 

Machines, k-Nearest Neighbor, Decision Tree, Naive Bayes, Neural 

Network, Linear Regression, etc. As a relatively new algorithm, Support 

Vector Machines [24, 54] has a better performance than other methods due 

to its ability to efficiently handle relatively high dimensional and large-

scale data sets without decreasing classification accuracy. In essence, k-

Nearest Neighbor makes prediction based on the k training texts which are 

closest to the test text. It is very simple and effective but not efficient in the 

case of high dimensional and large-scale data sets. The Decision Tree 

algorithm is sometimes quite effective but the consequent overfitting 

problem is intractable and needs to be handled manually case by case. The 

Naive Bayes method assumes that the terms in one document are 

independent even this is not the case in the real world. The Neural Network 

method, usually used in artificial intelligence field has shown lower 

classification accuracy than other machine learning methods. 
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1.2 Motivation 

In recent decades, with the explosive growth of textual information 

available in the World Wide Web, the ensuing needs of organizing and 

accessing these documents in flexible ways also increased. Text 

categorization is such one solution to this problem, which classifies natural 

language documents into a predefined set of semantic categories. 

 
An unresolved problem for research on text categorization is how robust 

the methods are used to tackle problems with a skewed category 

distribution. Since categories typically have an extremely non-uniform 

distribution in practice [89], it would be meaningful to compare the 

performance of different classifiers with respect to category frequencies. 

Most commonly, methods are compared using a single score, such as the 

accuracy, error occurrence rate, or averaged F1 measure [89] over all 

category assignments to documents. A single-valued performance measure 

can be either dominated by the classifier's performance on common 

categories or rare categories, depending on how the average performance is 

computed. Two conventional methods are used to evaluate the performance 

average across categories. Micro averaging assigns equal weight to every 

document, while macro averaging assigns equal weight to each category [1]. 

Inevitably, skewed category distribution often leads to good micro-average 

performance but not so desirable macro-average performance. 

 
Text representation size for each training category also has a crucial 

influence on how well the text classifiers can generalize. The purpose the 
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thesis is to improve the accuracy of text categorization by using interactive 

subspace clustering. Unlike subtopic clustering which utilizes unsupervised 

learning, subspace clustering adopts supervised learning [94]. Each 

instance of clustering groups the error data samples into a subcategory and 

the classification procedure is repeated based on the newly-formed 

subcategories. The process is repeated interactively. 

 
For the problem of high dimensionality and further improvement of the 

category boundary, the approach of iterative subspace classification will be 

investigated. The mathematical assumptions behind the subspace formalism 

demands that the pattern classes are distributed as low-dimensional 

subspaces in a higher-dimensional feature space. It is encouraging that 

subspace approach is suitable for text categorization. However the subspace 

classification methods have not been popular in text categorization tasks. 

One possibility may be that the field of data mining has captured the 

attention of the researchers of unsupervised text categorization. 

 
From the view of classification, we want to re-define a difficult 

classification boundary possibly due to the use of the initial choice of 

feature subset. We want to have a better fit by decomposing the data sets 

into subsets using other more effective features. 
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1.3 Thesis outline 

The thesis is organized into six chapters. Chapter 2, Literature Review, 

describes related work. Before going into the main topic of Iterative 

Subspace Method, experiments of Subtopic Clustering are described in 

Chapter 3 and experiments of Boosting Method are described in Chapter 4. 

The foundations of text categorization are explained. In particular, through 

the experiments, we will see how serious the data sparseness problem and 

topic skewness problem are. Chapter 5, Iterative Subspace Method, 

presents the scheme of algorithmic components we use, which involve a 

novel combination of existing techniques for feature selection and 

categorization. Chapter 6 gives the conclusions drawn from the project. 
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2 Literature Review 

Automatic text categorization systems have been the subject of a great deal 

of research and a number of different approaches have been used. Text 

categorization is the task of automatically classifying a text document to 

one predefined categories (topics). Figure 1 shows the phases of text 

categorization. 

 

 

Figure 1: Phases of text categorization. 
 

Text classification has been extensively studied. Most algorithms are based 

on the bag-of-words model for text [68]. Several methods from simple 

probabilistic Naive Bayes to the complex Support Vector Machines have 

been used for text categorization. An inherent problem of text data is its 

high dimensionality. This ‘curse of dimensionality’ is a well-known 

phenomenon in pattern recognition problems. As a consequence of the huge 

dimensionality of the feature space, data sets are often relatively sparse in 

this space. 

 
Very little of this work has involved the use of a subspace in the text 

categorization process. However, this approach has been extensively used 

in data mining (unsupervised text categorization) [3, 62, 91, 92]. 

 

Document 
indexing 

Classifier 
learning 

Classifier 
evaluation 
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2.1 Phases of Text Categorization 

2.1.1 Document Indexing 

2.1.1.1 Term Selection 

Term selection or Term Space Reduction (TSR) attempts to select, from the 

original set T, the set T’ of terms. Yang and Pedersen [90] have shown that 

TSR may even result in a moderate increase in effectiveness, depending on 

the classifier, on the aggressivity of the reduction, and on the TSR 

technique used. 

 
Moulinier et al. [59] have used a so-called wrapper approach, that is, one in 

which T’ is identified by means of the same learning method that will be 

used for building the classifier [39]. Starting from an initial term set, a new 

term set is generated by either adding or removing a term. When a new 

term set is generated, a classifier based on it is built and then tested on a 

validation set. The term set that results in the best effectiveness is chosen. 

This approach has the advantage of being tuned to the learning algorithm 

being used; moreover, if local dimensionality reduction is performed, 

different numbers of terms for different categories may be chosen, 

depending on whether a category is or is not easily separable from the 

others. However, the sheer size of the space of different term sets makes its 

cost-prohibitive for standard text categorization applications. 

 
A simple and effective global TSR function is the document frequency of a 

term, that is, only the terms that occur in the highest number of documents 

are retained. In a series of experiments Yang and Pedersen [90] have shown 
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that it is possible to reduce the dimensionality by a factor of 10 with no loss 

in effectiveness (a reduction by a factor of 100 bringing about just a small 

loss). 

 
Other more sophisticated information-theoretic functions have been used in 

the literature, such as DIA (Darmstadt Indexing Approach) association 

factor [20], chi-square [8, 22, 73, 74, 89, 90], NGL coefficient [60, 66], 

information gain [8, 48], mutual information [53, 66], odds ratio [66], 

relevancy score [85], and GSS coefficient [22]. 

 

2.1.1.2 Term Extraction 

Any term extraction method consists in a method for extracting the new 

terms from the old one, and a method for converting the original document 

representations into new representations based on the newly synthesized 

dimensions. Two term extraction methods have been experimented with 

text categorization, namely term clustering and latent semantic indexing. 

 
Term clustering tries to group words with a high degree of pairwise 

semantic relatedness, so that the groups may be used instead of the terms as 

dimensions of the vector space. Term clustering is different from term 

selection, since the former tends to address terms synonymous with other 

terms, while the latter targets non-informative terms.1 

 
Lewis [50] was the first to investigate the use of term clustering in text 

categorization. The method he employed, called reciprocal nearest neighbor 

                                                 
1 Some term selection methods, such as wrapper methods, also address the problem of 
redundancy. 
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clustering, consists in creating clusters of two terms that are one the most 

similar to the other according to some measure of similarity. His results 

were inferior to those obtained by single-word indexing, possibly due to a 

disappointing performance by the clustering method. 

 
Li and Jain [53] viewed semantic relatedness between words in terms of 

their co-occurrence and co-absence within training documents. By using 

this technique in the context of a hierarchical clustering algorithm, they 

witnessed only a marginal effectiveness improvement. However, the small 

size of their experiment hardly allows any definitive conclusion to be 

reached. 

 
The work of Lewis [50], Li and Jain [53] are examples of unsupervised 

clustering, since clustering is not affected by category labels attached to the 

documents. Baker and McCallum [4] provided instead an example of 

supervised clustering, as the distributional clustering method they 

employed clusters together those terms that tend to indicate the presence of 

the same category, or group of categories. Their experiments, carried out in 

the context of a Naive Bayes classifier showed only a 2% effectiveness loss 

with an aggressivity of 1,000, and even showed some effectiveness 

improvement with less aggressive levels of reduction. Later experiments by 

Slonim and Tishby [75] confirmed the potential of supervised clustering 

methods for term extraction. 

 
Latent Semantic Indexing (LSI) [12] is a method to reduce the dimension n 

of the feature space. LSI provides a reduced feature space with m (<n) 

orthogonal axes. This technique compresses document vectors into vectors 
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of a lower-dimensional space whose dimensions are obtained as 

combinations of the original dimensions by looking at their patterns of co-

occurrence. In text categorization, this technique is applied by deriving the 

mapping function from the training set and then applying it to training and 

test documents alike. 

 
For text categorization works that have used LSI or similar term extraction 

techniques, see Schutze et al. [73], Wiener et al. [85], Hull [29], Li and Jain 

[53], Schutze [72], Weigend et al. [84], and Yang [87]. 

 

2.1.2 Classifier Learning 

Joachims first applied Support Vector Machines to text categorization [32]. 

Although the model of the text used in their framework was a simple 

Vector Space Model, they achieved an outstanding improvement over other 

methods. They argue that Support Vector Machines are appropriate for text 

categorization because Support Vector Machines can handle high 

dimensional feature spaces and few relevant features, which are main 

properties of text categorization. Learning methodology is based on 

Vapnik’s statistical learning theory [81]. 

 
The Naive Bayes is constructed by using the training data to estimate the 

probability of a class given the document feature values of a new instance. 

Naive Bayes classifiers account for most of the probabilistic approaches to 

text categorization in the literature [32, 50, 53]. Despite the fact that the 

assumption of conditional independence is generally not true for word 
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appearance in documents, the Naive Bayes classifier is surprisingly 

effective. 

 

2.1.3 Classifier Evaluation 

Standard benchmark collections that can be used as initial corpora for text 

categorization are publicly available for experimental purposes. The most 

widely used is the Reuters-21578 collection, consisting of a set of newswire 

stories classified under categories related to economics. The Reuters 

collection accounts for most of the experimental work in text categorization 

so far. Unfortunately, this does not always translate into reliable 

comparative results, in the sense that many of these experiments have been 

carried out in different conditions. 

 
Other test collections that have been frequently used are: 

1. OHSUMED collection [27] 

2. 20 Newsgroups collection [47] 

 
The published experimental results allow us to attempt some considerations 

on the comparative performance of the text categorization methods 

discussed. However, we have to bear in mind that comparisons are reliable 

only when experiments are performed by the same author under carefully 

controlled conditions. They are instead more problematic when they 

involve different experiments performed by different authors. 
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Two different methods may thus be applied for comparing classifiers [89]: 

1. Direct comparison 

Classifiers may be compared when they have been tested on the 

same collection, usually by the same researchers and with the same 

background conditions. This is the more reliable method. 

2. Indirect comparison 

Classifiers may be compared when they have been tested on 

collections respectively, typically by different researchers and hence 

with possibly different background conditions; one or more baseline 

classifiers have been tested on both collections by the direct 

comparison method. This method is less reliable. 

 
In the literature, inconsistent versions of Reuters-21578 collection ranged 

from 8,815 training documents to 14,704 training documents and 10 

categories to 135 categories are used for performance evaluation (see Table 

1). The common condition of Reuters-21578 is 9,603 training documents 

and 90 categories. Most of the results are focused on improving micro-

average performance. Few focused on improving macro-average 

performance. Between Naive Bayes classifier (NB) and Support Vector 

Machines classifier, the performance of Support Vector Machines is shown 

to be better than Naive Bayes. 
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Table 1: Difference conditions of Reuters-21578 collection are used for performance 
evaluation. 
 

 Reuters-21578 collection   
Results 

reported by 
# of 

documents 
# of training 
documents 

# of test 
documents 

# of 
categories 

Micro 
averaging 

Macro 
averaging 

Lam et al. 
1997 

21,450 14,704 6,746 135   

Lam and Ho 
1998 

12,902 9,603 3,299 90   

Dumais et al. 
1998 

12,902 9,603 3,299 10   

Dumais et al. 
1998 

12,902 9,603 3,299 90   

Joachims 1998 12,902 9,603 3,299 90 
 

(NB: 0.720) 
(SVM: 0.864) 

 

Yang 1999 21,450 14,704 6,746 135   
Yang 1999 14,347 10,667 3,680 93   
Yang 1999 13,272 9,610 3,662 92   
Cohen and 
Singer 1999 

21,450 14,704 6,746 135   

Cohen and 
Singer 1999 

14,347 10,667 3,680 93   

Li and 
Yamanishi 
1999 

12,902 9,603 3,299 90 
 

(NB: 0.773) 
(SVM: 0.841) 

 

Yang and Liu 
1999 

12,902 9,603 3,299 90 
 

(NB: 0.795) 
(SVM: 0.859) 

 

Takamura and 
Matsumoto 
2002 

11,838 8,815 3,023 116 
 

(NB: 0.863) 
(SVM: 0.890) 

 

Rogati and 
Yang 2002 

 (unclear)  (unclear)  (unclear)  (unclear)   

 

2.2 Curse of Dimensionality 

In a small data set, data points/objects are represented by a low number of 

dimensions and they situate in a low dimensional space. The distance of 

data points are tightly packed and these data points/objects are non-

equidistant from each other. However, when the number of data set 

increases, the number of dimensions of the data set also increases. It has 

been shown that in a high dimensional space, the distance between every 

pair of data points/objects becomes almost the same for a wide variety of 

data distributions and distance functions. In this case, a large data set 

creates a high dimensional space, in which data points/objects represented 

in a high dimensional space spread out and become almost equidistant from 
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each other and distance becomes increasingly meaningless. This is known 

as the curse of dimensionality [3, 5, 52, 62]. 

 
To counter high-dimensionality, various feature/term selection methods 

have been proposed [5, 52]. Feature/term selection merely selects a ‘good’ 

subset of the original features/terms; whereas feature/term extraction allows 

extraction of arbitrary new features/terms based on original ones (see Table 

2). 
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For text categorization at all the reduction levels of aggressiveness from 

using the full vocabulary as the feature space to removing 98% of the 

unique terms, Yang [90] reported that information gain and chi-square 

were most effective than document frequency, mutual information and term 

strength in aggressive term removal without losing categorization accuracy 

in the experiments. Document frequency thresholding was found 

comparable to the performance of information gain and chi-square with up 

to 98% term removal, while term strength was comparable with up to 50-

60% term removal. Mutual information has an inferior performance 

compared to the other methods due to its bias towards rare terms and a 

strong sensitivity to probability estimation errors. Slonim [75] reported that 

word clusters (term extraction) had up to 18% improvement in 

classification accuracy. 
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Table 2: Different approaches to tackling the problem of high-dimensionality. 
 

Terminology 
Term 

selection 
Term 

extraction Clustering Subspace 
Latent Semantic Indexing 
[Schutze 95] 

 (feature 
selection) 

 
  

Latent Semantic 
Indexing [Schutze 95] 

 
 (Latent 
Semantic 
Indexing) 

  

Cluster-based [Iwayama, 
95] 

 

  (non-probabilistic 
clustering, 

probabilistic 
clustering) 

 

Feature selection [Yang, 
97] 

 (e.g. 
information 

gain) 

 
  

Feature selection [Li 98] 
 (individual 
best features) 

   

Feature extraction [Li 98]  
 (Principal 
Component 
Analysis) 

  

Term grouping in 
subspace[Li 98] 

   
 (term grouping 

in subspace) 

Subspace [Li 98]    
 (classification 

algorithms) 

Latent Semantic Indexing 
[Weigend 99] 

 
 (Latent 
Semantic 
Indexing) 

  

Word clustering 
[Deerwester, 90; Baker, 
98; Dhillon 02, Han 03] 

 
 

 (term clustering)  

Feature Clustering 
[Dhillon ICML-2002] 

 
 

 (term clustering)  

Two-dimensional 
clustering [Takamura, 02] 

 
  (document 

clustering, term 
clustering) 

 

 
In automatic text categorization by unsupervised learning, subspace 

clustering [3, 62] is considered an extension of feature/term selection that 

attempts to find clusters in different subspaces of the same data set. 

 

2.3 Subspace Methodology 

Nowadays the subspace methodology has been used extensively in data 

mining (unsupervised text categorization) [3, 62, 91, 92]. However, this 

approach has not broadly been applied in the field of supervised text 

categorization. 

 
Subset selection is to find the best subset among a set of features. The best 

subset contains the least number of dimensions which attains the highest 

accuracy. The remaining, unimportant dimensions are discarded. 
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The history of the subspace methods in data analysis was started by 

Hotelling [28] in the 1930s. The value of the subspace methods in data 

compression and optimal reproduction was observed in the 1950s by 

Kramer and Mathews [44]. Ten years later, Watanabe et al. [82] published 

the first application in pattern classification. Learning subspace methods 

emerged from the mid-1970s, after the pioneering work of Kohonen et al. 

[43]. From the beginning, these methods aimed at classification instead of 

optimal compression or reproduction. The guiding idea in the learning 

methods is to modify the bases of the subspaces in order to diminish the 

reuters corpusreuters corpusnumber of misclassifications. The nature of the 

modifications varies in different learning algorithms. 

 

2.3.1 Classical Subspace Methods 

Classical subspace classification algorithms are reviewed in this section. 

The style of the notations and illustrations is adopted from Oja [61]. 

Although there are many variants of the subspace classifier, the most 

fundamental one is the Class-Featuring Information Compression (CLAFIC) 

method [61]. The employment of the Principal Component Analysis (PCA), 

or the Karhunen-Loève (KLT), in classification tasks leads to the CLAFIC 

algorithm introduced by Watanabe et al. [82]. CLAFIC simply forms the 

base matrices for the classifier subspaces from the eigenvectors of the 

class-conditional correlation matrices. For each class j, the correlation 

matrix ]|[ jE T
j ∈= xxxR  is estimated with  =

−= jn

i

T
ijijjj n

1

1ˆ xxR . The first jl  
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eigenvectors of jR̂ , jlj j
uu ,...,1 , in the order of decreasing eigenvalue ijλ , 

are then used as columns of the basis matrix jU , 

),...,1,,)ˆ(|( )1( jjiijijijjijj liλ =≥=−= +λλ 0uIRuU  , (1) 

 
where 0  is the zero vector. The sample mean μ̂  of the pooled training set is 

normally subtracted from the pattern vectors before they are classified or 

used in initializing the CLAFIC classifier. Because the class-conditional 

correlations jR  of the input vectors x  differ from the corresponding class-

wise covariances j , the first eigendirection in each class merely reflects 

the direction of the class mean from the pooled mean translated to the 

origin. The calculation of the eigenvalues and eigenvectors of a symmetric 

positive definite matrix, such as jR̂ , is described, for instance, by Golub 

and van Loan [23]. The selection of the subspace dimensions cll ,...,1  is left 

open in the basic formulation of CLAFIC. 

 
The subspaces that represent two different pattern classes may have a large 

common sub-subspace. This is problematic because the discrimination 

between these classes weakens if the subspace dimensions jl  are small. On 

the other hand, if the subspace dimensions are increased, the classification 

decisions become dominated by the less robust principal directions. This 

problem may be avoided if the subspaces are made mutually orthogonal. 

This leads to a variant of the CLAFIC known as the Method of Orthogonal 

Subspaces (MOSS) by Kulikowski and Watanabe [45] and Watanabe and 

Pakvasa [83]. 
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Pairwise orthogonalization of two subspaces is possible whenever their 

dimensions satisfy the obvious condition dll ji ≥+ . In that case, two 

subspaces are said to be mutually orthogonal if any vector of one of the 

subspaces has zero projection on the other, and vice versa. This is equal to 

the condition that the basis vectors are orthogonal not only within, but also 

between, the subspaces. Thus, the projection matrices iP  and jP  of two 

orthogonal subspaces fulfill the condition 

0PPPP == ijji  , (2) 

 

where 0  is the zero matrix. The orthogonalization process of MOSS is 

accomplished by removing the intersections of the subspaces as described, 

for instance, by Therrien [78]. In short, the projection operators jP  are 

replaced with mutually orthogonal operators jP′ , which are formed by using 

the generating matrix jG , 


≠=

−+=
c

jii
iijji aa

 ,1

)( PIPG  . (3) 

 

The otherwise arbitrary positive multipliers ja  must satisfy the condition 

1
1

= =

c

j ja . The eigenvalues and eigenvectors are now calculated from jG , 

and the orthogonal projection operators jP′  are formed from the jl ′  

eigenvectors ijv  which have eigenvalues equal to one, 


′

=

=′
jl

i

T
ijijj

1

vvP  . (4) 
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Naturally, jj llj ≤′∀ : . In some cases, the procedure, however, leads to an 

unacceptable situation where, for some j, 0=′jl , and the corresponding 

subspace vanishes [40]. 

 
Fukunaga and Koontz [21] reasoned that it was necessary to select such 

basis vectors that the projections on rival subspaces were minimized. Their 

original formulation of the problem and the criticism against it, presented 

by Foley and Sammon [14], considered only the two-class case. Instead, the 

Generalized Fukunaga-Koontz Method (GFK) of Kittler [42] handles an 

arbitrary number of classes. In the two-class case, the correlation matrices 

of both classes are first estimated. The KLT is then applied to their sum 

21 RRQ +=  and the eigenvalues iλ  and eigenvectors iu  are used in 

defining a transformation matrix S , which is used to transform the original 

vector x  to x′ , 














=

d

d

λλ
uu

S ...
1

1  . (5) 

 
For the correlation matrix jR′  of the transformed vector xSx T=′ , it holds 

that SRSR j
T

j =′ , and further IRR =′+′ 21 . Thus, 1R′  and 2R′  have the same 

eigenvectors, and the corresponding eigenvalues are positive and sum up to 

unity. This leads to the following interpretation of the nature of the 

eigenvectors: When eigenvectors are ordered according to the descending 

eigenvalues, the first few eigenvectors of 1R′  are optimal for describing the 

distribution of the transformed vectors x′  which belong to the first class. 

On the other hand, the eigenvectors with the smallest eigenvalues describe 
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the second class. The method was primarily developed for feature 

extraction and clustering, but it also lends itself directly to classification. 

 

2.3.2 Current Performance 

Four different methods including subspace method for document 

classification were reported by Li and Jain [53]. The subspace model [61] 

decomposes a given feature space into m subregions of lower 

dimensionality (subspace), where each region is a representative feature 

space for its corresponding pattern class mici ,...,1 , = . A test document is 

classified based on a comparison of its compressed representation in each 

feature space with that of different classes. Experimental results showed 

that the subspace classifier and the Naive Bayes classifier outperformed the 

other two classifiers: the nearest neighbour classifier and decision trees 

based on data sets of seven-class Yahoo news groups. They used the 

Principal Component Analysis method (LSI) to project the original feature 

space onto a lower dimensional subspace.  

 
Kharechko et al. [41] reported that they needed to look for some subspace 

of the bag-of-words vector representation of the text documents for Text 

Categorization via Ellipsoid Separation. A variant of latent semantic feature 

extraction was used for the subspace purpose. They demonstrated that the 

algorithm could perform document classification up to the level of the 

state-of-the-art Support Vector Machines algorithm. 
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3 Subtopic Clustering 

3.1 Introduction 

An unresolved problem for research in Text Categorization (TC) is how 

robust the methods are used to tackle problems with a skewed category 

distribution. Since categories typically have an extremely non-uniform 

distribution in practice [89], it would be meaningful to compare the 

performance of different classifiers with respect to category frequencies. 

Most commonly, methods are compared using a single score, such as the 

accuracy, error occurrence rate, or averaged F1 measure [89] over all 

category assignments to documents. A single-valued performance measure 

can be either dominated by the classifier's performance on common 

categories or rare categories, depending on how the average performance is 

computed. Two conventional methods are used to evaluate the performance 

average across categories. Micro averaging assigns equal weight to every 

document, while macro averaging assigns equal weight to each category [1]. 

Inevitably, skewed category distribution often leads to good micro-average 

performance but not so desirable macro-average performance. 

 
To improve the macro-average performance, our approach is to break the 

large topic classes into subtopic classes [9, 10], similar to the idea of 

passage-based retrieval [7], because large topics may have been generated 

by more than one term distribution [77]. The subtopic classes should have a 

significant amount of terms that occur in documents of the subtopic but not 

in the other subtopic. We propose to use clustering [25] to find these 
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subtopics of a large topic class as shown in Figure 2. One important issue is 

to determine which topic classes are larger. This will be addressed by 

examining the performance with different thresholds to define large topic 

classes. By comparing the micro-average performance and macro-average 

performance before and after clustering, it is possible to identify if subtopic 

clustering has generated any positive result on the macro-average 

performance. 

 
Figure 2: Visual representation of a large topic class consists of a mixture of a 
number of subtopic clusters. 
 
In Section 3.2, we shall briefly describe the methodology for experimental 

setup and performance measure. This will be followed by results and 

discussion in Section 3.3. Lastly, conclusion and future work will be drawn 

in Section 3.4. 

 

3.2 Methodology 

3.2.1 Experimental Setup 

3.2.1.1 Data Set 

The Reuters-21578 document set has previously been regarded as a 

standard real-world benchmarking corpus for the Information Retrieval (IR) 

community. The ModApte split (training data set: 9,603 documents, test 
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data set: 3,299 documents, unused: 8,676 documents) of Reuters-21578 

document set is used for our experiments. 

 
Except two large topics, including “acq” (1,488 training documents) and 

“earn” (2,709 training documents), the rest of the training topics have fewer 

than 500 documents (ranging from 1 to 460). Test documents can be 

assigned to more than one topic; therefore, 3,299 single-label test 

documents are expanded to 3,409 test documents which are used for 

evaluation. 

 
The distribution of the number of training documents in a topic class is 

typically highly skewed. The number of terms in a topic increases 

logarithmically with an increase in the number of training documents. They 

are shown in Figure 3. 
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Figure 3: The number of training/test documents plotted against ranked topic sorted 
by their sizes (top). The number of terms in a topic plotted against the number of 
training documents in its topic (bottom). 
 

3.2.1.2 Preprocessing 

Preprocessing involves removing SGML tags, punctuation marks, stop 

words and performing word stemming to reduce the feature vector size. 

Bag-of-words [57] document representation (vector space model) scheme is 

used for feature representation. Term importance is assumed to be inversely 

proportional to the number of documents a particular term appears in. The 

term frequency (tf) and inverse document frequency (idf) are used to assign 
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weights to terms. The inverse document frequency for term t is defined as 

[67]: 

))(/log()( tnNtidf =  . (6) 

 
The common non-content words are removed to reduce possible 

interference in classification results. It is assumed that the importance of a 

term increases with its use-frequency. Combining these two assumptions 

lead to tfidf: 

)()()( tidfttfttfidf ×=  . (7) 

 
Cosine normalization is used. Every document vector is divided by its 

Euclidean length, ((w1)
2 + (w2)

2 +…+ (wn)
2)1/2, where wi is the tfidf weight 

of the i-th term in the document. The final weight for a term hence becomes: 

vectordocumenttheoflengthEuclidean

weighttfidf
 . (8) 

 

3.2.1.3 Classifier 

Instead of implementing a classifier, we use Rainbow/Libbow software 

package [55, 56] to perform text classification. The classifier utilizes 

machine learning methods such as Naive Bayes, Support Vector Machines 

and k-Nearest Neighbor for text classification [32, 88, 89]. As the major 

focus of this paper is not about the performance of classifier algorithms, 

only Support Vector Machines classifier for single-label classification was 

selected for the following experiments. Scores of performance 

measurements generated by the classifier will be shown in the following 

section. 
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3.2.2 Performance Measurements 

3.2.2.1 Recall, Precision and F1 

Classification performance is measured by both recall and precision. For 

evaluating the performance, three quantities are of interest for each topic. 

They are: a = the number of documents correctly assigned to this topic. 

                b = the number of documents incorrectly assigned to this topic. 

                c = the number of documents incorrectly rejected from this topic. 

From these quantities, we define the following performance measures: 

)(recall caa/ +=  . (9) 

)(precision baa/ +=  . (10) 

 
In addition, we use F1 measure [79], combining recall and precision with 

equal weighting, to compare the overall results of the algorithms: 

precision)(recallprecision)recall2(F1 +××= /  . (11) 

 
Macro-average performance scores are determined by first computing the 

performance measures per topic and then averaging these to compute the 

global means. Micro-average performance scores are determined by first 

computing the totals of a, b and c for all topics and then these totals are 

used to compute the performance measures. There is an important 

distinction between the two types of averaging. Micro averaging gives 

equal weight to every document, while macro averaging gives equal weight 

to each topic. 
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For a sample test data set containing 3,409 test documents, the 

measurements of recall, precision and F1 plotted against the training 

document number of 90 topics and against ranked topic (sorted by their 

scores from the smallest value to the largest) are shown in Figure 4. It is 

observed that 61 out of 90 topics are having both recall and precision zero. 

The percentage of topics not classified correctly is 67.78%. 
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Figure 4: The distribution of recall/precision/F1 measurement plotted against the 
number of training documents in a topic (top). The distribution of recall/precision/F1 
measurement plotted against ranked topic sorted by their scores (bottom). 
 
Recall, precision and F1 measurement of the 90 topics in the experimental 

data set are unevenly distributed. The uneven distribution is due to the fact 

that the distribution of the number of documents in the data set is highly 
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skewed in nature. The results of macro-average and micro-average are 

shown in Table 3. From the result, the macro-average recall is 14.84%, 

macro-average precision is 22.35% and macro-average F1 is 17.84%. The 

reason for this low score is due to the fact that more than half of the topics 

(67.78%) in the data set are zero in both recall and precision. 

 
Table 3: The macro-average and micro-average performance calculated by a sample 
test data set containing 3,409 test documents. 
 

Macro-average Micro-average 
Recall Precision F1 Recall/Precision/F1 

14.84% 22.35% 17.84% 69.26% 

 
All numerical values for a, b, and c in Equations 9-11 are listed underneath for both 
macro- and micro-averages. 
 

Topic a b c Recall (%) Precision (%) F1 (%) 
acq 622 59 21 96.73 91.34 93.96 
alum 5 0 15 25.00 100.00 40.00 
barley 0 0 12 0.00 0.00 0.00 
bop 10 8 18 35.71 55.56 43.48 
carcass 0 0 18 0.00 0.00 0.00 
castor-oil 0 0 1 0.00 0.00 0.00 
cocoa 8 4 7 53.33 66.67 59.26 
coconut 0 0 2 0.00 0.00 0.00 
coconut-oil 0 0 3 0.00 0.00 0.00 
coffee 20 5 7 74.07 80.00 76.92 
copper 5 4 12 29.41 55.56 38.46 
copra-cake 0 0 1 0.00 0.00 0.00 
corn 0 1 48 0.00 0.00 0.00 
cotton 1 0 19 5.00 100.00 9.52 
cotton-oil 0 0 2 0.00 0.00 0.00 
cpi 4 2 22 15.38 66.67 25.00 
crude 133 122 28 82.61 52.16 63.94 
dfl 0 0 1 0.00 0.00 0.00 
dlr 0 0 31 0.00 0.00 0.00 
dmk 0 0 3 0.00 0.00 0.00 
earn 1021 20 23 97.80 98.08 97.94 
fuel 0 0 10 0.00 0.00 0.00 
gas 2 2 12 14.29 50.00 22.22 
gnp 21 37 13 61.76 36.21 45.65 
gold 15 15 13 53.57 50.00 51.72 
grain 113 352 21 84.33 24.30 37.73 
groundnut 0 0 4 0.00 0.00 0.00 
groundnut-oil 0 0 1 0.00 0.00 0.00 
heat 1 0 4 20.00 100.00 33.33 
hog 0 0 6 0.00 0.00 0.00 
housing 0 0 3 0.00 0.00 0.00 
income 0 0 5 0.00 0.00 0.00 
instal-debt 0 0 1 0.00 0.00 0.00 
interest 54 38 46 54.00 58.70 56.25 
ipi 4 0 6 40.00 100.00 57.14 
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iron-steel 0 0 12 0.00 0.00 0.00 
jet 0 0 1 0.00 0.00 0.00 
jobs 8 0 10 44.44 100.00 61.54 
l-cattle 0 0 2 0.00 0.00 0.00 
lead 0 0 14 0.00 0.00 0.00 
lei 0 0 2 0.00 0.00 0.00 
lin-oil 0 0 1 0.00 0.00 0.00 
livestock 6 7 18 25.00 46.15 32.43 
lumber 0 0 6 0.00 0.00 0.00 
meal-feed 0 0 18 0.00 0.00 0.00 
money-fx 115 147 26 81.56 43.89 57.07 
money-supply 11 1 12 47.83 91.67 62.86 
naphtha 0 0 4 0.00 0.00 0.00 
nat-gas 0 0 29 0.00 0.00 0.00 
nickel 0 0 1 0.00 0.00 0.00 
nkr 0 0 1 0.00 0.00 0.00 
nzdlr 0 0 2 0.00 0.00 0.00 
oat 0 0 6 0.00 0.00 0.00 
oilseed 2 21 42 4.55 8.70 5.97 
orange 1 0 7 12.50 100.00 22.22 
palladium 0 0 1 0.00 0.00 0.00 
palm-oil 0 0 10 0.00 0.00 0.00 
palmkernel 0 0 1 0.00 0.00 0.00 
pet-chem 0 0 12 0.00 0.00 0.00 
platinum 0 0 6 0.00 0.00 0.00 
potato 0 0 3 0.00 0.00 0.00 
propane 0 0 3 0.00 0.00 0.00 
rand 0 0 1 0.00 0.00 0.00 
rape-oil 0 0 3 0.00 0.00 0.00 
rapeseed 0 0 9 0.00 0.00 0.00 
reserves 0 0 14 0.00 0.00 0.00 
retail 0 0 2 0.00 0.00 0.00 
rice 0 0 24 0.00 0.00 0.00 
rubber 3 0 9 25.00 100.00 40.00 
rye 0 0 1 0.00 0.00 0.00 
ship 54 38 31 63.53 58.70 61.02 
silver 0 0 7 0.00 0.00 0.00 
sorghum 0 0 10 0.00 0.00 0.00 
soy-meal 0 0 12 0.00 0.00 0.00 
soy-oil 0 0 11 0.00 0.00 0.00 
soybean 0 0 29 0.00 0.00 0.00 
strategic-metal 0 0 11 0.00 0.00 0.00 
sugar 17 4 18 48.57 80.95 60.71 
sun-meal 0 0 1 0.00 0.00 0.00 
sun-oil 0 0 2 0.00 0.00 0.00 
sunseed 0 0 5 0.00 0.00 0.00 
tea 0 0 4 0.00 0.00 0.00 
tin 1 0 11 8.33 100.00 15.38 
trade 91 135 21 81.25 40.27 53.85 
veg-oil 13 26 24 35.14 33.33 34.21 
wheat 0 0 66 0.00 0.00 0.00 
wpi 0 0 9 0.00 0.00 0.00 
yen 0 0 12 0.00 0.00 0.00 
zinc 0 0 12 0.00 0.00 0.00 
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3.2.2.2 Skewness 

Skewness is measured against the number of test data sets. Each test data 

set (consists of test documents) has the skewness, and its own scores (such 

as recall and precision) are calculated by the classifier. 

 
The skewness is calculated by Kullback-Leibler (KL) distance [46]. 

Suppose two variables of the same type characterized by their probability 

distribution f and f'. The skew distance (KL distance) can be derived using 

as: 


=

×=
t

i i

i
i x'f

xf
xf

1
)(

)(
log)(distanceskew  , (12) 

 
where t is the number of topics, f is the probability distribution of test 

documents of the topics and f' is the equal probability distribution of test 

documents of the topics. For a data set containing of 90 topics, the skew 

distance is calculated as: 


=

×=
90

1 90

1

)(
log)(distanceskew

i

i
i

xf
xf  . (13) 

set data test in the  topicsall from documents test ofnumber 

set data test in the )(  topicfrom documents test ofnumber 
)(

i
xf i =

 . 
(14) 

 
For skewness measurement, we use 925 test data sets where 100 test 

documents in each test data set are selected randomly from 3,409 test 

documents. Each test data set has it own skew distance. Figure 5 shows the 

histogram of skew distance of the 925 test data sets. 
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Figure 5: The histogram of skew distance of 925 test data sets. 100 test documents in 
each test data set are selected randomly from 3,409 test documents. 
 
For the 925 test data sets (925 skew distances), the scores of recall, 

precision and F1 are plotted against the skew distance. The scatter plots are 

shown in Figure 6. On these plots, linear regression lines are drawn to 

predict the values at different skew distances. Zero skew distance is used as 

the reference point. The results at zero skew distance are shown in Table 4. 

y = -0.4826x + 0.4817

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Skew distance

M
ac

ro
-a

ve
ra

g
e 

re
ca

ll

 
(a) 



 33

 

y = -0.1879x + 0.3349

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Skew distance

M
ac

ro
-a

ve
ra

g
e 

p
re

ci
si

o
n

 
(b) 

 
 

y = -0.3386x + 0.4089

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Skew distance

M
ac

ro
-a

ve
ra

g
e 

F
1

 
(c) 

 



 34

y = 0.0383x + 0.6701

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Skew distance

M
ic

ro
-a

ve
ra

g
e 

re
ca

ll
/p

re
ci

si
o

n
/F

1

 
(d) 

 
Figure 6: Macro-average recall plotted against skew distance (a). Macro-average 
precision plotted against skew distance (b). Macro-average F1 plotted against skew 
distance (c). Micro-average recall/precision/F1 plotted against skew distance (d). 
 
Table 4: The macro-average and micro-average performance at zero skew distance. 
 

Macro-average Micro-average 
Recall Precision F1 Recall/Precision/F1 

48.17% 33.49% 40.89% 67.01% 

 

3.2.3 Clustering 

By viewing topics as clusters in a high dimensional space, we propose the 

use of clustering to determine subtopic clusters for large topic classes by 

assuming that large topic clusters are in general a mixture of a number of 

subtopic clusters. 

 
The cluster analyses (hierarchical and non-hierarchical clustering) in this 

paper are conducted by SPSS [76]. For each topic to be clustered into 

subtopics, all document vectors are initially grouped together to form a 

document-by-word matrix with size m by n (m is the number of documents 

and n is the size of document vector). 
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Topics with topic size which generates optimal macro-average performance 

(in Section 3.3.1) are selected for our experiments. For demonstration 

purpose, topics with topic size exceeding 100 are selected for clustering. 

Within the 90-topic data set, 77 topics have the number of training 

documents less than or equal to 100. Hence, only 13 topics meet our 

experimental criteria are selected for subtopic clustering. By means of 

complete linkage hierarchical clustering, 13 topics are clustered into 1,148 

subtopics. The total number of topics and subtopics are 1,225 (77+1,148). 

By means of k-means non-hierarchical clustering, 13 topics have been 

clustered into 701 subtopics. The total number of topics and subtopics are 

778 (77+701). The classifier is trained on these topics for performance 

evaluation. The clustered scores are compared with the previous result 

without subtopic clustering, by mapping clustered subtopics onto previous 

non-clustered topics after classification. 

 

3.2.3.1 Hierarchical Clustering 

The scores of recall, precision and F1 are plotted against the skew distance. 

The scatter plots are shown in Figure 7. On these plots, linear regression 

lines are drawn to predict the values at different skew distances (zero skew 

distances are used as the reference point). The dotted lines are linear 

regressions showing the projected trends of micro-average and macro-

average performance at different skew distances before subtopic clustering. 

Hence, the differences between the dotted and the solid lines in the graphs 

below demonstrate the difference in macro-average and micro-average 
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performance before and after hierarchical clustering. Table 5 demonstrates 

the performance at zero skew distance. 
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Figure 7: Macro-average recall plotted against skew distance for hierarchical 
clustering (a). Macro-average precision plotted against skew distance for hierarchical 
clustering (b). Macro-average F1 plotted against skew distance for hierarchical 
clustering (c). Micro-average recall/precision/F1 plotted against skew distance for 
hierarchical clustering (d). 
 
Table 5: The macro-average and micro-average performance at zero skew distance 
from the 925 test data sets (using subtopics by complete-linkage clustering to build 
the classifier). 
 

Macro-average Micro-average 
Recall Precision F1 Recall/Precision/F1 

57.16% 39.46% 47.57% 61.13% 
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3.2.3.2 Non-hierarchical Clustering 

Non-hierarchical Clustering is conducted following the same procedure as 

Hierarchical Clustering. The scatter plots are shown in Figure 8 and Table 6 

demonstrates the performance at zero skew distance. 
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Figure 8: Macro-average recall plotted against skew distance for non-hierarchical 
clustering (a). Macro-average precision plotted against skew distance for non-
hierarchical clustering (b). Macro-average F1 plotted against skew distance for non-
hierarchical clustering (c). Micro-average recall/precision/F1 plotted against skew 
distance for non-hierarchical clustering (d). 
 
Table 6: The macro-average and micro-average performance at zero skew distance 
from the 925 test data sets (using subtopics by k-means clustering to build the 
classifier). 
 

Macro-average Micro-average 
Recall Precision F1 Recall/Precision/F1 

55.26% 37.05% 45.56% 60.89% 
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3.3 Experimental Results and Discussion 

The comparison results of macro averaging and micro averaging at 

different cluster sizes by complete-linkage clustering are discussed in 

Section 3.3.1. They are calculated from the 925 test data sets at skew 

distance equals to 0. For macro-average performance, the optimal result is 

obtained when the maximum subtopic class size is set to 100. 

 
We have also evaluated whether the complete-linkage clustering is better 

than k-means clustering. In Section 3.3.2, the macro-average and the micro-

average result with clustering and without clustering are summarized and 

compared. The results are also calculated from the 925 test data sets at 

skew distance equals to 0. 

 
In Section 3.3.3, the percentages of topics never be classified correctly are 

summarized with subtopic clustered by complete-linkage clustering and k-

means clustering. The scores are calculated from the sample test data set 

containing 3,409 test documents. 

 

3.3.1 Comparison of Macro Averaging and Micro 

Averaging at Different Cluster Sizes by Complete-

Linkage Clustering 

To investigate the effect of topic/subtopic size, training documents with 

cluster-sizes limited to 5, 10, 25, 50, 100, 200 and 500 are classified by 

complete-linkage clustering. Figure 9 shows the scatter plots and Table 7 

shows the performance of the classifier with subtopic clustering for 

different maximum subtopic class sizes. 
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Figure 9: Macro-average recall and micro-average recall plotted against limited 
topic/subtopic size by using complete-linkage method (a). Macro-average precision 
and micro-average precision plotted against limited topic/subtopic size by using 
complete-linkage method (b). Macro-average F1 and micro-average F1 plotted 
against limited topic/subtopic size by using complete-linkage method (c). 
 
In general, the optimal macro-average performance (F1 measurement is 

47.57%) is attained when the topic size is 100. However, at a certain point 

when the topic size is below 100, the macro-average performance and the 

micro-average performance nearly coincides (i.e. theirs scores are almost 

the same). Under such circumstance, over-clustering is likely to occur and 

adversely affect the macro-average and micro-average performance. 

 
The best micro-average performance is achieved by using the classifier 

without subtopic clustering, mainly due to the benefit of large topics. 

 
 
 
 
 
 
 
 
 
 
 

Optimal performance
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Table 7: The results from the 925 test data sets (at skew distance = 0) using complete-
linkage clustering with topic/subtopic size limited to 5, 10, 25, 50, 100, 200 and 500 
are summarized. 
 

Subtopic size limited to 
Macro-average Micro-average 

Recall Precision F1 Recall/Precision/F1 
5 40.64% 36.72% 38.35% 48.43% 

10 43.31% 39.48% 41.04% 43.70% 
25 50.36% 43.90% 46.71% 46.59% 
50 54.16% 41.42% 46.91% 45.88% 

100 57.16% 39.46% 47.57% 61.13% 
200 51.00% 32.98% 41.64% 62.82% 
500 46.02% 31.09% 38.73% 64.44% 

No clustering  48.17% 33.49% 40.89% 67.01% 

 

3.3.2 Comparison of Macro Averaging and Micro 

Averaging by Complete-Linkage Clustering and K-

Means Clustering 

The macro-average and micro-average result calculated from the 925 test 

data sets at zero skew distance using complete-linkage and k-means 

clustering with topic/subtopic size limited to 100 are summarized in Table 

8. It shows that complete-linkage clustering performs better regardless of 

all performance measures. While we have to accept that hierarchical 

clustering, such as complete-linkage, provides better performance than non-

hierarchical clustering, as it is able to locate the cluster boundaries more 

accurately and create a higher performance in text categorization. 

 
Table 8: The results from the 925 test data sets (at skew distance = 0) using complete-
linkage clustering and k-means clustering with topic/subtopic size limited to 100 are 
summarized. 
 

Clustering method 
Macro-average Micro-average 

Recall Precision F1 Recall/Precision/F1 
No clustering 48.17% 33.49% 40.89% 67.01% 

Complete-linkage 57.16% 39.46% 47.57% 61.13% 
K-means 55.26% 37.05% 45.56% 60.89% 
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3.3.3 Comparison of Percentage of Topics with Zero 

Recall and Precision 

The scores are calculated from a sample test data set containing 3,409 test 

documents. The measurements of recall, precision and F1 plotted against 

ranked topic (sorted by their scores from the smallest value to the largest) 

using complete-linkage clustering and k-means clustering are shown in 

Figure 10. The results are summarized in Table 9 and show that the 

classifier with subtopic clustering by complete-linkage method has 18.03% 

improvement while the result by k-means method has 16.39% improvement. 

Again it shows that complete-linkage clustering performs better than k-

means clustering. 
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Figure 10: The distribution of recall/precision/F1 measurement plotted against 
ranked topic sorted by their scores using complete-linkage clustering with 
topic/subtopic size limited to 100 (top). The distribution of recall/precision/F1 
measurement plotted against ranked topic sorted by their scores using k-means 
clustering with topic/subtopic size limited to 100 (bottom). 
 
Table 9: The percentages of topics that have never been classified correctly are 
summarized (without subtopic, with subtopic clustered by complete-linkage 
clustering and with subtopic clustered by k-means clustering). 
 

Clustering method Topics that have never been classified correctly Improvement 
No clustering 67.78% (61 out of 90) - 

Complete-linkage 55.56% (50 out of 90) 18.03% 
K-means 56.67% (51 out of 90) 16.39% 

 

3.3.4 Comparison with Feature Reduction 

Since document classification involves high-dimensional feature space, the 

effects of different feature reduction techniques were examined in order to 
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improve recognition performance [53]. It is a well-known fact that the size 

of different text categories can vary significantly in text corpora. The 

Reuters-21578 collection is a common benchmark for comparing methods 

of text categorization [1, 13, 32, 49, 71, 88, 89]. The documents in the 

Reuters collection were collected from Reuters newswire in 1987. Over one 

third of the text classes are having less than 10 documents in the Reuters-

21578 [1, 89]. The skewness problem cannot be eliminated by replacing 

with a larger data set corpora like the Reuters Corpus Volume 1 (RCV1) 

[51], i.e. the uneven distribution of document sizes of topics within a data 

set will always occur, and may subsequently introducing problems for text 

categorization. 

 
Further experiments on feature reduction are done on the same data set to 

evaluate the performance. For feature reduction, only the top 500 feature 

weights of a topic (calculated by tfidf) are selected. The feature reduction 

vector ( x′ ) is reduced from the original vector ( x ). 

},...,,{}{ 50021
500

1 xxxx ii ′′′=′=′ =x  

where 500
11 }max{ ==′ iixx  and 1−′≥′ ii xx  }500,...,2{=∀i  

 
Different experiments of feature reduction topic are selection for the 

comparison. First, topics with training topic size greater than 500 (>500) 

are used for feature reduction; then using other training topic sizes such as 

200, 100, 50, 25, 10 and 5 (as shown in Table 10) 
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Table 10: The numbers of topic used for feature reduction are chosen based on 
training topic size. 
 

Topic with training topic size Numbers of topic used for feature reduction 
> 500 2 
> 200 7 
> 100 13 
> 50 23 
> 25 39 
> 10 57 
> 5 67 

 
 
Each classifier result is built by 90 topics with different numbers of topic 

used for feature reduction. The corresponding macro-averaging and micro-

averaging scores are summarized in Table 11, the scatter plots are shown in 

Figure 11. 

 
Table 11: The macro-averaging and micro-averaging scores of the 7 feature 
reduction classifiers. 
 

Topic with training 
topic size 

Macro-average Micro-average Recall / 
Precision / F1 Recall Precision F1 

> 500 18.10% 26.75% 21.59% 65.68% 
> 200 21.84% 26.80% 24.07% 65.18% 
> 100 23.31% 27.26% 25.13% 65.30% 
> 50 23.80% 25.86% 24.79% 66.38% 
> 25 23.46% 24.68% 24.05% 66.21% 
> 10 22.73% 24.54% 23.60% 65.97% 
> 5 22.74% 24.68% 23.67% 66.03% 
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Figure 11: The scatter plot of the macro-averaging and micro-averaging scores for 
the 7 feature reduction classifiers. 
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Using the topic size greater than 500 for feature reduction as reference, the 

result of the topic size greater than 100 for feature reduction has 16.4% 

(
59.21

59.2113.25 −
%) improvement in macro-average performance (by F1 

measurement). For difference numbers of topic used for feature reduction, 

the results also have improvement in macro-average F1 performance when 

comparing to the result of the topic size greater than 500 for feature 

reduction. In the circumstances, feature reduction to help to improve the 

classification results has the significant meaning. 

 

3.4 Conclusions 

We have shown that subtopic clustering of large topic classes can improve 

the macro-average performance consistently across different skewness of 

the test data set distribution. The optimal result shows that there is 16.34% 

(
89.40

89.4057.47 − %) improvement in macro-average performance (by F1 

measurement) when the maximum subtopic size equals to 100 by using 

complete-linkage clustering (hierarchical clustering). The macro-average 

F1 is 47.57% under the maximum subtopic size equals to 100 by using 

complete-linkage clustering as shown in Table 5, Table 7 and Table 8. The 

macro-average F1 is 40.89% without clustering as shown in Table 4, Table 

7 and Table 8.) 

 
This experiment shows that 100 is a useful threshold value that indicates 

the need to divide large topic classes into subtopic classes (i.e. subtopic 

clustering) in order to increase macro-average performance. However, there 

is a slight decrease in the micro-average performance and more research is 
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needed to enhance the use of subtopic clustering for text categorization. We 

will further explore how the optimal size of the subtopic clusters can be 

determined analytically or automatically. 

 
The comparison of hierarchical and non-hierarchical clustering shows that 

hierarchical clustering performs better for recall, precision and F1 

performances when the maximum subtopic size is at 100. The optimal 

results of k-means clustering (non-hierarchical clustering) show that there 

is 11.42% (
89.40

89.4056.45 − %) improvement in macro-average F1. The macro-

average F1 is 45.56% when the maximum subtopic size equals to 100 as 

given in Table 6 and Table 8. The macro-average F1 without clustering is 

40.98% as shown in Table 4, Table 7 and Table 8. (The summarized results 

are shown in Table 12) 

 
Table 12: Macro-average improvement of the results from the 925 test data sets (at 
skew distance = 0) using complete-linkage clustering and k-means clustering with 
topic/subtopic size limited to 100 are summarized. 
 

Clustering method 
Macro-average Micro-average 

Recall Precision F1 (Improvement) Recall/Precision/F1 
No clustering 48.17% 33.49% 40.89% (-) 67.01% 

Complete-linkage 57.16% 39.46% 47.57% (16.34%) 61.13% 
K-means 55.26% 37.05% 45.56% (11.42%) 60.89% 

 
 
For the experiment of percentage of topics with zero recall and precision 

(Section 3.3.3), there is 18.03% (
78.67

56.5578.67 −
%) improvement by 

hierarchical clustering. It can further demonstrate the benefit of using 

subtopic clustering. For non-hierarchical clustering, there is also 16.39% 

(
78.67

67.5678.67 −
%) improvement. 
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For the experiments of different numbers of topic used for feature reduction, 

the results improve in macro-average F1 performance when comparing to 

the results of topic size greater than 500 for feature reduction. The result of 

the topic size greater than 100 for feature reduction has 16.4% 

(
59.21

59.2113.25 −
%) improvement in macro-average F1 performance. In 

these circumstances, the contribution of feature reduction to improving the 

classification results is significant and note-worthy. 

 
The experiments show promising results with the subtopic clustering 

approaches. The formation of subtopic clusters is predefined (unsupervised 

learning) and measured by similarity scores. In the next chapter, our 

proposed iterative subspace approach with Support Vector Machines is 

introduced for further investigation. 

 
 



 51

4 Boosting Method 

4.1 Introduction 

Support Vector Machines (SVMs) and boosting are two techniques for 

learning both having received a considerable attention in the recent years 

and many successful applications have been described in the literature [18, 

26, 64, 65, 70]. SVMs and boosting have something in common to justify 

their success, namely the margin. The objective of SVMs is to maximize 

the separation between the classes. By using a kernel trick to map the 

training samples from an input space to a high dimensional feature space, 

SVM finds an optimal separating hyperplane in the feature space and uses a 

regularization parameter to balance its model complexity and training error. 

While SVMs explicitly maximizes the minimum margin, boosting tends to 

do the same thing indirectly through minimizing a cost function related to 

margin. Boosting is a general technique for improving performance of any 

given classifier [69]. It can effectively combine a number of weak 

classifiers into a strong classifier which can achieve an arbitrarily low error 

rate given sufficient training data, although each weak classifier might do a 

little better than random guessing. 

 
The ensemble method, which finds a highly accurate classifier by 

combining many moderately accurate component classifiers, has recently 

been very successful in machine learning. One of the most commonly used 

techniques for constructing ensemble classifiers is adaptive boosting 

(AdaBoost). AdaBoost finds a combination of a number of weak classifiers 
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in a stepwise additive manner. The weak classifier in each iteration step is 

trained on the resampled data according to the distribution based on a series 

of weights obtained from the training error by the learner computed up-to-

date. The success of AdaBoost can be explained as enlarging the margin 

[70], which could enhance AdaBoost’s generalization capability. 

 

4.1.1 AdaBoost 

AdaBoost is a machine learning algorithm, formulated by Yoav Freund and 

Robert Schapire [18]. It is a meta-algorithm, and can be used in conjunction 

with many other learning algorithms to improve their performance. 

AdaBoost is adaptive in the sense that subsequent classifiers built are 

tweaked in favor of those instances misclassified by previous classifiers. 

AdaBoost is sensitive to noisy data and outliers. In some problems, 

however, it can be less susceptible to the overfitting problem than most 

learning algorithms 

 

4.1.2 LogitBoost (LogLossBoost) 

LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor 

Hastie, and Robert Tibshirani. The original paper [19] casts the AdaBoost 

algorithm into a statistical framework. Specifically, if one considers 

AdaBoost as a generalized additive model and then applies the cost 

functional of logistic regression, one can derive the LogitBoost algorithm. 

LogitBoost minimizes the logistic loss. LogitBoost places less emphasis on 

examples that are very badly classified. 
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4.1.3 RobustBoost (BrownBoost) 

RobustBoost is a boosting algorithm that may be robust to noisy datasets. 

RobustBoost is an adaptive version of the boost by majority algorithm. As 

is true for all boosting algorithms, RobustBoost is used in conjunction with 

other machine learning methods. BobustBoost was introduced by Yoav 

Freund [15, 16]. 

 

4.1.4 Alternating Decision Tree 

An alternating decision tree (ADTree) [17] is a machine learning method 

for classification. It generalizes decision trees and has connections to 

boosting. 

 
Original boosting algorithms typically used either decision stumps or 

decision trees as weak hypotheses. As an example, boosting decision 

stumps creates a set of T weighted decision stumps (where T is the number 

of boosting iterations), which then vote on the final classification according 

to their weights. Individual decision stumps are weighted according to their 

ability to classify the data. 

 
Boosting a simple learner results in an unstructured set of T hypotheses, 

making it difficult to infer correlations between attributes. ADTrees 

introduce structure to the set of hypotheses by requiring that they build off 

a hypothesis that was produced in an earlier iteration. The resulting set of 

hypotheses can be visualized in a tree based on the relationship between a 

hypothesis and its “parent”. 
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Another important feature of boosted algorithms is that the data is given a 

different distribution at each iteration. Instances that are misclassified are 

given a larger weight while accurately classified instances are given 

reduced weight. 

 
An ADTree consists of decision nodes and prediction nodes. Decision 

nodes specify a predicate condition. Prediction nodes contain a single 

number. ADTrees always have prediction nodes as both root and leaves. An 

instance is classified by an ADTree by following all paths for which all 

decision nodes are true and summing any prediction nodes that are 

traversed. 

 
Primarily, the weak classifiers are put into a hierarchical order - the 

ADTree. The tree consists of two different kinds of node which alternately 

change on a path through the tree. Secondly, each decision node contains a 

weak classifier and has two prediction nodes containing the predictive 

values as its children. The weak classifiers in upper levels of the tree work 

as preconditions on those classifiers below them. And third, the root node 

contains the predictive value of the true-classifier. Thus, the predictive 

value is derived from the ratio of the number of samples between both 

classes and, therefore, it can be interpreted as a prior classifier. In each 

iteration step, the best classifier candidate is determined in conjunction with 

a precondition. 
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4.2 Methodology 

4.2.1 Experimental Setup 

4.2.1.1 Data Set 

The Reuters-21578 document set has previously been regarded as a 

standard real-world benchmarking corpus for the Information Retrieval (IR) 

community. The ModApte split (training data set: 9,603 documents, test 

data set: 3,299 documents, unused: 8,676 documents) of Reuters-21578 

document set is used for our experiments. 

 
Except two large topics, including “acq” (1,488 training documents) and 

“earn” (2,709 training documents), the rest of the training topics have the 

number of documents below 500 (ranging from 1 to 460). Test documents 

can be assigned to more than one topic; therefore, 3,299 single-label test 

documents are expanded to 3,409 test documents which are used for the 

evaluation exercise. 

 
The distribution of the number of training documents in a topic class is 

typically highly skewed. The number of terms in a topic increases 

logarithmically with an increase in the number of training documents. They 

are shown in Figure 12. 
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Figure 12: The number of training/test documents plotted against ranked topic 
sorted by their sizes (top). The number of terms in a topic plotted against the number 
of training documents in its topic (bottom). 
 

4.2.1.2 Preprocessing 

Preprocessing involves removing SGML tags, punctuation marks, stop 

words and performing word stemming to reduce the feature vector size. 

Bag-of-words [57] document representation (vector space model) scheme is 

used for feature representation. Term importance is assumed to be inversely 

proportional to the number of documents a particular term appears in. The 

term frequency (tf) and inverse document frequency (idf) are used to assign 
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weights to terms. The inverse document frequency for term t is defined as 

[67]: 

))(/log()( tnNtidf =  . (15) 

 
The common non-content words are removed to reduce possible 

interference in classification results. It is assumed that the importance of a 

term increases with its use-frequency. Combining these two assumptions 

lead to tfidf: 

)()()( tidfttfttfidf ×=  . (16) 

 
Cosine normalization is used. Every document vector is divided by its 

Euclidean length, ((w1)
2 + (w2)

2 +…+ (wn)
2)1/2, where wi is the tfidf weight 

of the i-th term in the document. The final weight for a term hence becomes: 

vectordocumenttheoflengthEuclidean

weighttfidf
 . 

(17) 

 

4.2.1.3 Classifier 

Instead of implementing a classifier, we use JBoost [31, 93] to perform text 

classification. JBoost is an implementation of boosting in java. The 

package includes the source, the executable java, visualization scipts 

(mostly written in python) and a collection of examples that demonstrate 

the capabilities of Jboost Some of the algorithms currently implemented 

include AdaBoost, LogitBoost, RobustBoost and alternating decision trees. 
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4.2.2 Performance Measurements 

Referring to Section 3.2.2.1, classification performance is measured by 

both recall and precision. For evaluating the performance, three quantities 

are of interest for each topic. 

They are: a = the number of documents correctly assigned to this topic. 

                b = the number of documents incorrectly assigned to this topic. 

                c = the number of documents incorrectly rejected from this topic. 

From these quantities, the performance measures (Equation 9, Equation 10 

and Equation 11) are defined in Section 3.2.2.1. They are recall, precision 

and F1 measures: 

)(recall caa/ +=  .  

)(precision baa/ +=  .  

precision)(recallprecision)recall2(F1 +××= /  .  

 
In this experiment, we use the subset of Reuters-21578 collection. For 

providing enough training data learnt by boosting method, only those topics 

(categories) with training document sizes which are equal to or greater than 

50 are used. 25 topics can meet this requirement and 300 topic pairs for 

JBoost which is an implementation of boosting in java (AdaBoost, 

LogitBoost, RobustBoost and alternating ADTree) are generated for the 

experiment. 

 
The experiment is done under 8-fold, 10-fold, and 12-fold cross validations; 

the training documents are sampled by systematic sampling (selected 

sequentially by system file ordering). The number of training documents 
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and the number of test documents for each sample test under 8-fold, 10-fold 

and 12-fold cross validations are summarized in Table 13. In fact, 300 topic 

pairs (25 topics) are generated for performance evaluation. Therefore 24 

times more of training and test documents are redundantly generated for 

performance evaluation. Table 14 shows the actual numbers of training and 

test documents are used. 

 
Table 13: The number of training documents and the number of test documents of 
each sample test (25 topics) are summarized. 
 

 8-fold cross validation 10-fold cross validation 12-fold cross validation 

Sample 
test 

Number of 
training 

documents 
(25 topics) 

Number of 
test 

documents 
(25 topics) 

Number of 
training 

documents 
(25 topics) 

Number of 
test 

documents 
(25 topics) 

Number of 
training 

documents 
(25 topics) 

Number of 
test 

documents 
(25 topics) 

1 6,849 965 7,044 770 7,171 643 
2 6,846 968 7,040 774 7,170 644 
3 6,840 974 7,037 777 7,167 647 
4 6,837 977 7,034 780 7,165 649 
5 6,834 980 7,032 782 7,164 650 
6 6,834 980 7,032 782 7,164 650 
7 6,831 983 7,030 784 7,163 651 
8 6,827 987 7,028 786 7,163 651 
9 - - 7,025 789 7,162 652 

10 - - 7,024 790 7,160 654 
11 - - - - 7,155 659 
12 - - - - 7,150 664 

Total 54,698 7,814 70,326 7,814 85,954 7,814 
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Table 14: The number of training documents and the number of test documents of 
each sample test (300 topic pairs) for JBoost are summarized. 
 

 8-fold cross validation 10-fold cross validation 12-fold cross validation 

Sample 
test 

Number of 
training 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
test 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
training 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
test 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
training 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
test 

documents 
used in 

300 topic 
pairs (25 
topics) 

1 164,376 23,160 169,056 18,480 172,104 15,432 
2 164,304 23,232 168,960 18,576 172,080 15,456 
3 164,160 23,376 168,888 18,648 172,008 15,528 
4 164,088 23,448 168,816 18,720 171,960 15,576 
5 164,016 23,520 168,768 18,768 171,936 15,600 
6 164,016 23,520 168,768 18,768 171,936 15,600 
7 163,944 23,592 168,720 18,816 171,912 15,624 
8 163,848 23,688 168,672 18,864 171,912 15,624 
9 - - 168,600 18,936 171,888 15,648 

10 - - 168,576 18,960 171,840 15,696 
11 - - - - 171,720 15,816 
12 - - - - 171,600 15,936 

Total 1,312,752 187,536 1,687,824 187,536 2,062,896 187,536 
 
 

4.3 Experimental Results and Discussion 

The results from the final classifier (ADTree) and the number of rounds of 

boosting (AdaBoost) set to 100 are summarized in Table 15. The plot is 

shown in Figure 13. There is no significant difference (less than 1%) 

among different cross validations. Therefore further experiments will be 

done under 8-fold cross validation. 

 
Table 15: The macro-average and micro-average performance of AdaBoost method 
evaluated under 8-fold, 10-fold and 12-fold cross validations are summarized. 
 

 Macro-average Micro-average 
Cross validation Recall Precision F1 Recall/Precision/F1 

8-fold 98.30% 98.49% 98.39% 99.35% 
10-fold 98.36% 98.56% 98.46% 99.38% 
12-fold 98.35% 98.58% 98.47% 99.37% 
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Figure 13: The macro-average and micro-average performance of AdaBoost method 
evaluated under 8-fold, 10-fold and 12-fold cross validations are plotted. 
 
 
The results under 8-fold cross validation from the final classifier (ADTree) 

and the number of rounds of boosting (AdaBoost/LogitBoost/RobustBoot) 

set to 100 are summarized in Table 16. The plot is shown in Figure 14. The 

performance scores (less than 1%) between AdaBoost and LogitBoost are 

similar. Therefore further AdaBoost experiments will be done under 8-fold 

cross validation. 

 
Table 16: The macro-average and micro-average performance of different methods 
(AdaBoost/LogitBoost/RobustBoost) evaluated under 8-fold fold cross validation are 
summarized. 
 

 Macro-average Micro-average 
Boosting methodr Recall Precision F1 Recall/Precision/F1 

AdaBoost 98.30% 98.49% 98.39% 99.35% 
LogitBoost 98.22% 98.45% 98.33% 99.32% 

RobustBoost 90.47% 95.62% 92.97% 96.38% 
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Figure 14: The macro-average and micro-average performance of different methods 
(AdaBoost/LogitBoost/RobustBoost) evaluated under 8-fold fold cross validation are 
plotted. 
 
 
The results under 8-fold cross validation from the final classifier (ADTree) 

and different numbers of rounds of boosting (AdaBoost) from 10 to 100 are 

summarized in Table 17. The plot is shown in Table 15. The best 

performance scores are achieved when the number of rounds of boosting is 

set to 50 where the macro-average recall is 98.44%, macro-average 

precision is 98.64%, macro-average F1 is 98.54% and micro-average 

recall/precision/F1 is 99.41%. 
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Table 17: The macro-average and micro-average performance of AdaBoost method 
evaluated under different numbers of rounds of boosting (8-fold fold cross validation) 
are summarized. 
 

 Macro-average Micro-average 
The number of rounds of boosting Recall Precision F1 Recall/Precision/F1 

10 98.09% 98.36% 98.22% 99.24% 
20 98.17% 98.40% 98.28% 99.29% 
30 98.24% 98.44% 98.34% 99.32% 
40 98.26% 98.46% 98.36% 99.33% 
50 98.44% 98.64% 98.54% 99.41% 
60 98.28% 98.48% 98.38% 99.32% 
70 98.28% 98.48% 98.38% 99.34% 
80 98.29% 98.48% 98.38% 99.34% 
90 98.29% 98.49% 98.39% 99.35% 
100 98.30% 98.49% 98.39% 99.35% 

 
 

 
(a) 

 

 
(b) 
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(c) 

 
Figure 15: The macro-average and micro-average performance of AdaBoost method 
evaluated under different numbers of rounds of boosting (8-fold fold cross validation) 
are plotted. (a) Recall (b) Precision (c) F1 
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5 Iterative Subspace Method 

5.1 Introduction 

We propose a new approach to improve the accuracy of text categorization 

using iterative subspace method. In a number of probabilistic approaches, 

texts in the same category are implicitly assumed to be generated from an 

identical distribution over words. However this assumption is not accurate, 

in the previous chapter, training texts are clustered so that the assumption is 

more likely to be realistic and the result shows that subtopic clustering can 

alleviate this problem and text categorization can be improved. In fact there 

is a limitation in the subtopic clustering approach. The formation of 

subtopic clusters are predefined (unsupervised learning) and measured by 

similarity scores. The idea of iterative subspace approach is that subspace 

generation is generated by classification performance (supervised learning). 

The classification task can be done by any classifier such as Naive Bayes 

classifier, Support Vector Machines and Artificial Neural Network. 

 
In the case of backpropagation based artificial neural networks or 

perceptrons, the type of decision boundary that the network can learn is 

determined by the number of hidden layers the network has. If it has no 

hidden layers, then it can only learn linear problems. If it has one hidden 

layer, then it can learn problems with convex decision boundaries (and 

some concave decision boundaries). The network can learn more complex 

problems if it has two or more hidden layers. 
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In particular, support vector machines find a hyperplane that separates the 

feature space into two classes with the maximum margin. If the problem is 

not originally linearly separable, the kernel trick is used to turn it into a 

linearly separable one, by increasing the number of dimensions. Thus a 

general hypersurface in a small dimension space is turned into a hyperplane 

in a space with much larger dimensions. 

 
Neural networks try to learn the decision boundary which minimizes the 

empirical error, while support vector machines try to learn the decision 

boundary which gives the best generalization. We conduct the experiment 

with Support Vector Machines for the classification tasks to validate this 

iterative subspace method. Support Vector Machines are used because they 

are effective (text) classifiers, have flexible decision boundaries by using 

different kernels, have geometrical properties that are relevant to our 

approach, and readily available for independent verification. 

 

5.1.1 Support Vector Machines 

Support Vector Machines (SVMs) [2] are binary classifiers which were 

originally proposed by Vapnik [81] and have achieved high accuracy in 

various tasks, such as object recognition [63] and digit recognition [80]. 

SVMs are a set of related supervised learning methods used for 

classification and regression. In simple words, given a set of training 

examples, each marked as belonging to one of two categories, an SVM 

training algorithm builds a model that predicts whether a new example falls 

into one category or the other. Intuitively, an SVM model is a 

representation of the examples as points in space, mapped so that the 
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examples of the separate categories are divided by a clear gap that is as 

wide as possible. New examples are then mapped into that same space and 

predicted to belong to a category based on which side of the gap they fall 

on. 

 
Suppose some given data points each belong to one of two classes, and the 

goal is to decide which class a new data point will be in. In the case of 

Support Vector Machines, a data point is viewed as a n-dimensional vector, 

and we want to know whether we can separate such points with a (n-1)-

dimensional hyperplane. This is called a linear classifier. There are many 

hyperplanes that might classify the data. However, we are additionally 

interested in finding out if we can achieve maximum separation (margin) 

between the two classes. By this we mean that we pick the hyperplane so 

that the distance from the hyperplane to the nearest data point is maximized. 

That is to say that the nearest distance between a point in one separated 

hyperplane and a point in the other separated hyperplane is maximized. 

Now, if such a hyperplane exists, it is clearly of interest and is known as the 

maximum-margin hyperplane as in general the larger the margin the lower 

the generalization error of the classifier and such a linear classifier is 

known as a maximum margin classifier. Since Support Vector Machines 

are linear classifiers, their separating ability is limited. To compensate for 

this limitation, the kernel method is usually combined with Support Vector 

Machines. 
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5.1.1.1 Separable Classes 

For the case of two-class linearly separable as shown in Figure 16 which 

illustrates the classification task with two possible hyperplane solutions 

(solid-line and dotted-line). Let Nixi ,...,2,1, = be the feature vectors of the 

training set, X . These belong to either of two classes, 21,ωω , which are 

assumed to be linearly separable. A hyperplane is defined as 

0)( 0 =+= wg T xwx  (18) 

 
that classifies correctly all the training vectors. 

 

 
Figure 16: An example of a linearly separable two-class problem with two possible 
linear classifiers. 
 
For the generalization performance of the classifier, the term margin that a 

hyperplane leaves from both classes is quantified. Every hyperplane is 

characterized by its direction (determined by w ) and its exact position in 

space (determined by 0w ). Since we want to give no preference to either of 

the classes, then it is reasonable for each direction to select that hyperplane 

which has the same distance from the respective nearest points in 1ω  and 

2x

1x
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2ω . The hyperplanes shown in Figure 17 with solid lines are the selected 

ones from the infinite set in the respective direction. The margin for 

“direction 1” is 2 1z , and the margin for “direction 2” is 2 2z . 

 

 
Figure 17: An example of linearly separable two-class problem with two possible 
linear classifiers and their corresponding support vectors. 
 
Further Condiersing the decision hypersurface in the l-dimensional feature 

space is a hyperplane as was shown in Equation (18) that is 

0)( 0 =+= wg T xwx  

where T
lwww ],...,,[ 21=w is known as the weight vector and 0w as the 

threshold. If 21, xx are two points on the decision hyperplane, then the 

following is valid 

0)(0 210201 =−+=+= xxwxwxw TTT ww  (19) 
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Since the difference vector 21 xx − obviously lies on the decision hyperplane 

(for any 21, xx ), it is apparent from Equation (19) that the vector w is 

orthogonal to the decision hyperplane. 

 
Figure 18 shows the corresponding geometry (for 0,0,0 021 <>> www ). On 

one side of the line it is )(0)( +>xg  and on the other side it is )(0)( −<xg . 

2
2

2
1

0

ww

w
d

+
=  (20) 

 
and 

2
2

2
1

)(

ww

g
z

+
=

x
 (21) 

 
In other works, )(xg is a measure of the Euclidean distance of the point x  

from the decision hyperplane. On one side of the plane )(xg  takes positive 

values and on the other negative. In the special case that 00 =w , the 

hyperplane passes through the origin. 

 
Similarly, the distance of a point from a hyperlane in Figure 18 is given by 

w
x)(g

z =  

We can now scale 0,ww so that the value of )(xg , at the nearest points in 

21, ww , is equal to 1 for 1w  and equal to -1 for 2w . This is equivalent with 

1. Having a margin of 
www
211 =+  

2. Requiring that 

,10 ≥+ wT xw  1w∈∀x

,10 −≤+ wT xw 2w∈∀x
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Figure 18: Geometry for the decision line. 
 
 

5.1.1.2 Non-separable Classes 

When the classes are not separable, the above setup is no longer valid. 

Figure 19 illustrates the case in which the two classes are not separable. 

Any attempt to draw a hyperplane will never end up with a class separation 

region with no data points inside it, as was the case in the linearly separable 

task. 

 
Applying the kernel trick is a way to create non-linear classifiers to 

maximum-margin hyperplanes [6]. The resulting algorithm is formally 

similar, except that every dot product is replaced by a non-linear kernel 

function. This allows the algorithm to fit the maximum-margin hyperplane 

in a transformed feature space. The transformation may be non-linear and 

the transformed space high dimensional; thus though the classifier is a 

hyperplane in the high-dimensional feature space, it may be non-linear in 

the original input space. 
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If the kernel used is a Gaussian radial basis function, the corresponding 

feature space is a Hilbert space of infinite dimension. Maximum margin 

classifiers are well regularized, so the infinite dimension does not spoil the 

results. 

 

 
Figure 19: An example of nonseparable two-class case, points fall inside the class 
separation region. 
 
 

5.1.2 Basic Scheme 

The idea of this model is to generate subspaces from different training data 

set through error-driven learning. Feature selection is done on the training 

data set and done recursively to build classifiers. Through the iteration, 

suitable features can be selected from different subspaces. The process will 

stop when all topics are learned to build classifiers. Sub-classifiers will be 

generated for assisting in document classification. Better category boundary 

is expected to be obtained through the learning of these cascade classifiers. 

The proposed method of the iterative subspace generation to text 

1x

2x
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categorization for document training is shown in Figure 20 and for 

document test is shown in Figure 21. 

 
It is new that the proposed iterative subspace model allows suitable features 

to be selected from different subspaces through the iterative process to 

obtain the better category boundary. The main difference of our proposed 

iterative subspace classifier from others is trying to find a set of suitable 

features (subspaces) for each category through the multi-level classification 

(classifier). In Figure 20 and Figure 21, the classifier can be any classifier 

in general. In our case, Support Vector Machines are used as classifiers in 

the experiments. Instead of implementing a classifier, we use SVM-Light 

[38] to perform text classification. 
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Figure 20: Flowchart of the iterative subspace generation for text categorization 
(document training). 
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Figure 21: Flowchart of the iterative subspace generation for text categorization 
(document test). 
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5.2 Methodology 

5.2.1 Experimental Setup 

5.2.1.1 Data Set 

The Reuters-21578 document set has previously been regarded as a 

standard real-world benchmarking corpus for the Information Retrieval (IR) 

community. The ModApte split (training data set: 9,603 documents, test 

data set: 3,299 documents, unused: 8,676 documents) of Reuters-21578 

document set is used for our experiments. 

 
Except two large topics, including “acq” (1,488 training documents) and 

“earn” (2,709 training documents), the rest of the training topics have the 

number of documents below 500 (ranging from 1 to 460). Test documents 

can be assigned to more than one topic; therefore, 3,299 single-label test 

documents are expanded to 3,409 test documents which are used for the 

evaluation exercise. 

 
The distribution of the number of training documents in a topic class is 

typically highly skewed. The number of terms in a topic increases 

logarithmically with an increase in the number of training documents. They 

are shown in Figure 22. 
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Figure 22: The number of training/test documents plotted against ranked topic 
sorted by their sizes (top). The number of terms in a topic plotted against the number 
of training documents in its topic (bottom). 
 

5.2.1.2 Preprocessing 

Preprocessing involves removing SGML tags, punctuation marks, stop 

words and performing word stemming to reduce the feature vector size. 

Bag-of-words [57] document representation (vector space model) scheme is 

used for feature representation. Term importance is assumed to be inversely 

proportional to the number of documents a particular term appears in. The 

term frequency (tf) and inverse document frequency (idf) are used to assign 
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weights to terms. The inverse document frequency for term t is defined as 

[67]: 

))(/log()( tnNtidf =  . (22) 

 
The common non-content words are removed to reduce possible 

interference in classification results. It is assumed that the importance of a 

term increases with its use-frequency. Combining these two assumptions 

lead to tfidf: 

)()()( tidfttfttfidf ×=  . (23) 

 
Cosine normalization is used. Every document vector is divided by its 

Euclidean length, ((w1)
2 + (w2)

2 +…+ (wn)
2)1/2, where wi is the tfidf weight 

of the i-th term in the document. The final weight for a term hence becomes: 

vectordocumenttheoflengthEuclidean

weighttfidf
 . 

(24) 

 

5.2.1.3 Classifier 

Instead of implementing a classifier, we use SVM-Light [38] to perform 

text classification. SVM-Light is an implementation of Vapnik's Support 

Vector Machine [81] for the problem of pattern recognition, for the 

problem of regression, and for the problem of learning a ranking function. 

The optimization algorithms used in SVM-Light are described in [33, 36]. 

The algorithm has scalable memory requirements and can handle problems 

with many thousands of support vectors efficiently. 

 



 79

The software also provides methods for assessing the generalization 

performance efficiently. It includes two efficient estimation methods for 

both error rate and precision/recall. XiAlpha-estimates [35, 36] can be 

computed at essentially no computational expense, but they are 

conservatively biased. Almost unbiased estimates provides leave-one-out 

testing. SVM-Light exploits that the results of most leave-one-outs (often 

more than 99%) are predetermined and need not be computed [36]. 

 
New in this version is an algorithm for learning ranking functions [37]. The 

goal is to learn a function from preference examples, so that it orders a new 

set of objects as accurately as possible. Such ranking problems naturally 

occur in applications like search engines and recommender systems. 

 
Futhermore, this version includes an algorithm for training large-scale 

transductive SVMs. The algorithm proceeds by solving a sequence of 

optimization problems lower-bounding the solution using a form of local 

search. A detailed description of the algorithm can be found in [34]. A 

similar transductive learner, which can be thought of as a transductive 

version of k-Nearest Neighbor is the Spectral Graph Transducer.  

 
SVM-Light can also train SVMs with cost models (see [58]). The code has 

been used on a large range of problems, including text classification [32, 

34],. Many tasks have the property of sparse instance vectors. This 

implementation makes use of this property which leads to a very compact 

and efficient representation. 
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5.2.2 Performance Measurements 

5.2.2.1 Recall, Precision and F1 

Referring to Section 3.2.2.1, classification performance is measured by 

both recall and precision. For evaluating the performance, three quantities 

are of interest for each topic. 

They are: a = the number of documents correctly assigned to this topic. 

                b = the number of documents incorrectly assigned to this topic. 

                c = the number of documents incorrectly rejected from this topic. 

From these quantities, the performance measures (Equation 9, Equation 10 

and Equation 11) are defined in Section 3.2.2.1. They are recall, precision 

and F1 measures: 

)(recall caa/ +=  .  

)(precision baa/ +=  .  

precision)(recallprecision)recall2(F1 +××= /  .  

 
In this experiment, we use the subset of Reuters-21578 collection. For 

providing enough training data learnt by the proposed Iterative Subspace 

Method, only those topics (categories) with training document sizes which 

are equal to or greater than 50 are used. 25 topics can meet this requirement 

and 300 topic pairs for SVM classifiers (binary classifiers) are generated 

for the experiment. 

 
The experiment is done under 8-fold, 10-fold, and 12-fold cross validations; 

the training documents are sampled by systematic sampling (selected 

sequentially by system file ordering). The number of training documents 
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and the number of test documents for each sample test under 8-fold, 10-fold 

and 12-fold cross validations are summarized in Table 18. In fact, 300 topic 

pairs (25 topics) are generated for performance evaluation. Therefore 24 

times more of training and test documents are redundantly generated for 

performance evaluation. Table 19 shows the actual numbers of training and 

test documents are used. 

 
Table 18: The number of training documents and the number of test documents of 
each sample test (25 topics) are summarized. 
 

 8-fold cross validation 10-fold cross validation 12-fold cross validation 

Sample 
test 

Number of 
training 

documents 
(25 topics) 

Number of 
test 

documents 
(25 topics) 

Number of 
training 

documents 
(25 topics) 

Number of 
test 

documents 
(25 topics) 

Number of 
training 

documents 
(25 topics) 

Number of 
test 

documents 
(25 topics) 

1 6,849 965 7,044 770 7,171 643 
2 6,846 968 7,040 774 7,170 644 
3 6,840 974 7,037 777 7,167 647 
4 6,837 977 7,034 780 7,165 649 
5 6,834 980 7,032 782 7,164 650 
6 6,834 980 7,032 782 7,164 650 
7 6,831 983 7,030 784 7,163 651 
8 6,827 987 7,028 786 7,163 651 
9 - - 7,025 789 7,162 652 

10 - - 7,024 790 7,160 654 
11 - - - - 7,155 659 
12 - - - - 7,150 664 

Total 54,698 7,814 70,326 7,814 85,954 7,814 
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Table 19: The number of training documents and the number of test documents of 
each sample test (300 topic pairs) for SVM classifiers are summarized. 
 

 8-fold cross validation 10-fold cross validation 12-fold cross validation 

Sample 
test 

Number of 
training 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
test 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
training 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
test 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
training 

documents 
used in 

300 topic 
pairs (25 
topics) 

Number of 
test 

documents 
used in 

300 topic 
pairs (25 
topics) 

1 164,376 23,160 169,056 18,480 172,104 15,432 
2 164,304 23,232 168,960 18,576 172,080 15,456 
3 164,160 23,376 168,888 18,648 172,008 15,528 
4 164,088 23,448 168,816 18,720 171,960 15,576 
5 164,016 23,520 168,768 18,768 171,936 15,600 
6 164,016 23,520 168,768 18,768 171,936 15,600 
7 163,944 23,592 168,720 18,816 171,912 15,624 
8 163,848 23,688 168,672 18,864 171,912 15,624 
9 - - 168,600 18,936 171,888 15,648 

10 - - 168,576 18,960 171,840 15,696 
11 - - - - 171,720 15,816 
12 - - - - 171,600 15,936 

Total 1,312,752 187,536 1,687,824 187,536 2,062,896 187,536 
 
 
The experiment is done under 8-fold, 10-fold, and 12-fold cross validations; 

the training documents are sampled by systematic sampling (selected 

sequentially by system file ordering). The number of training documents 

and the number of test documents for each sample test under 8-fold, 10-fold 

and 12-fold cross validations are summarized in Table 18. If fact, 300 topic 

pairs (25 topics) are generated for performance evaluation. Therefore 24 

times more of training and test documents are redundantly generated for 

performance evaluation. Table 19 shows the actual numbers of training and 

test documents are used. 

 
Table 20, Table 21 and Table 22 show the number of training documents of 

each topic (25 topics) and their performance measures (such as a, b, c for 

calculating recall, precision and F1) evaluated by standard SVM method 

under 8-fold, 10-fold and 12-fold cross validations. 
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Table 20: The number of training documents of each topic (25 topics) and their 
performance measures under 8-fold cross validation are summarized. 
 

 8-fold cross validation 

Topic 
Number of 

training documents 
a b c 

Recall 
(%) 

Precision 
(%) 

F1 
(%) 

acq 249,984 35,670 42 1,078 97.07 99.88 98.45 
bop 10,416 973 515 80 92.40 65.39 76.58 

carcass 8,400 514 686 80 86.53 42.83 57.30 
cocoa 8,400 687 513 23 96.76 57.25 71.94 
coffee 18,480 2,220 420 271 89.12 84.09 86.53 
corn 26,712 3,265 551 600 84.48 85.56 85.01 
cpi 10,080 985 455 50 95.17 68.40 79.60 

crude 58,632 8,154 222 822 90.84 97.35 93.98 
dlr 16,128 1,909 395 147 92.85 82.86 87.57 

earn 455,112 64,993 23 416 99.36 99.96 99.66 
gnp 15,456 1,753 455 222 88.76 79.39 83.82 
gold 15,792 1,893 363 107 94.65 83.91 88.96 
grain 66,192 9,244 212 1,213 88.40 97.76 92.84 

interest 48,552 6,590 346 546 92.35 95.01 93.66 
livestock 12,264 1,105 647 130 89.47 63.07 73.99 
money-fx 77,280 10,821 219 905 92.28 98.02 95.06 
money-
supply 

14,616 1,800 288 54 97.09 86.21 91.32 

nat-gas 12,096 1,208 520 111 91.58 69.91 79.29 
oilseed 19,656 2,153 655 442 82.97 76.67 79.70 

ship 32,088 4,208 376 558 88.29 91.80 90.01 
soybean 12,264 1,092 660 225 82.92 62.33 71.16 

sugar 19,824 2,360 472 380 86.13 83.33 84.71 
trade 56,616 7,858 230 909 89.63 97.16 93.24 

veg-oil 14,448 1,476 588 218 87.13 71.51 78.55 
wheat 33,264 4,282 470 736 85.33 90.11 87.66 
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Table 21: The number of training documents of each topic (25 topics) and their 
performance measures under 10-fold cross validation are summarized. 
 

 10-fold cross validation 

Topic 
Number of 

training documents 
a b c 

Recall 
(%) 

Precision 
(%) 

F1 
(%) 

acq 321,408 35,670 42 1,063 97.11 99.88 98.47 
bop 13,392 944 544 83 91.92 63.44 75.07 

carcass 10,800 540 660 81 86.96 45.00 59.31 
cocoa 10,800 687 513 22 96.90 57.25 71.97 
coffee 23,760 2,204 436 269 89.12 83.48 86.21 
corn 34,344 3,277 539 600 84.52 85.88 85.19 
cpi 12,960 983 457 51 95.07 68.26 79.47 

crude 75,384 8,145 231 806 91.00 97.24 94.02 
dlr 20,736 1,937 367 144 93.08 84.07 88.35 

earn 585,144 64,994 22 411 99.37 99.97 99.67 
gnp 19,872 1,767 441 214 89.20 80.03 84.36 
gold 20,304 1,889 367 105 94.73 83.73 88.89 
grain 85,104 9,242 214 1,200 88.51 97.74 92.89 

interest 62,424 6,590 346 541 92.41 95.01 93.69 
livestock 15,768 1,115 637 137 89.06 63.64 74.23 
money-fx 99,360 10,821 219 893 92.38 98.02 95.11 
money-
supply 

18,792 1,807 281 64 96.58 86.54 91.29 

nat-gas 15,552 1,226 502 109 91.84 70.95 80.05 
oilseed 25,272 2,161 647 447 82.86 76.96 79.80 

ship 41,256 4,216 368 544 88.57 91.97 90.24 
soybean 15,768 1,080 672 221 83.01 61.64 70.75 

sugar 25,488 2,362 470 377 86.24 83.40 84.80 
trade 72,792 7,859 229 894 89.79 97.17 93.33 

veg-oil 18,576 1,503 561 226 86.93 72.82 79.25 
wheat 42,768 4,286 466 729 85.46 90.19 87.76 
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Table 22: The number of training documents of each topic (25 topics) and their 
performance measures under 12-fold cross validation are summarized. 
 

 12-fold cross validation 

Topic 
Number of training 

documents 
a b c 

Recall 
(%) 

Precision 
(%) 

F1 
(%) 

acq 392,832 35668 44 1046 97.15 99.88 98.50 
bop 16,368 962 526 85 91.88 64.65 75.90 

carcass 13,200 543 657 82 86.88 45.25 59.51 
cocoa 13,200 696 504 25 96.53 58.00 72.46 
coffee 29,040 2197 443 265 89.24 83.22 86.12 
corn 41,976 3287 529 595 84.67 86.14 85.40 
cpi 15,840 977 463 59 94.31 67.85 78.92 

crude 92,136 8152 224 790 91.17 97.33 94.14 
dlr 25,344 1920 384 140 93.20 83.33 87.99 

earn 715,176 64996 20 403 99.38 99.97 99.68 
gnp 24,288 1781 427 214 89.27 80.66 84.75 
gold 24,816 1902 354 100 95.00 84.31 89.34 
grain 104,016 9248 208 1199 88.52 97.80 92.93 

interest 76,296 6585 351 538 92.45 94.94 93.68 
livestock 19,272 1121 631 135 89.25 63.98 74.53 
money-fx 121,440 10831 209 887 92.43 98.11 95.18 
money-
supply 

22,968 1768 320 69 96.24 84.67 90.09 

nat-gas 19,008 1221 507 111 91.67 70.66 79.80 
oilseed 30,888 2171 637 452 82.77 77.31 79.95 

ship 50,424 4227 357 539 88.69 92.21 90.42 
soybean 19,272 1087 665 212 83.68 62.04 71.26 

sugar 31,152 2373 459 390 85.88 83.79 84.83 
trade 88,968 7866 222 889 89.85 97.26 93.40 

veg-oil 22,704 1510 554 231 86.73 73.16 79.37 
wheat 52,272 4280 472 711 85.75 90.07 87.86 

 
 
For a sample test data set containing 7,814 test documents (25 topics) 

which has 187,536 (24 times of 7,814) test documents used in 300 topic 

pairs (25 topics) for SVM classifiers, the measurements of recall, precision 

and F1 plotted against the training documents number of 25 topics and 

against ranked topic (sorted by their F1 scores from the smallest value to 

the largest) under 8-fold, 10-fold and 12-fold cross validations are shown in 

Figure 23, Figure 24 and Figure 25. 
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Figure 23: The distribution of recall/precision/F1 measurement under 8-fold cross 
validation. 
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Figure 24: The distribution of recall/precision/F1 measurement under 10-fold cross 
validation. 
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Figure 25: The distribution of recall/precision/F1 measurement under 12-fold cross 
validation. 
 
 
Recall, precision and F1 measurement of the 300 topic pairs for SVM 

classifiers in the experimental data set are unevenly distributed. The uneven 

distribution is due to the fact that the distribution of the number of 

documents in the data set is highly skewed in nature. 

 
To address multi-label classification, macro average and micro average are 

used to assess the overall performance across multiple labels. Macro-

average performance scores are determined by first computing the 
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performance measures per topic and then averaging these to compute the 

global means. Micro-average performance scores are determined by first 

computing the totals of a, b and c for all topics and then these totals are 

used to compute the performance measures. There is an important 

distinction between the two types of averaging. Micro averaging gives 

equal weight to every document, while macro averaging gives equal weight 

to each topic. 

 
The results of macro-average and micro-average performance under 8-fold, 

10-fold and 12-fold cross validations are shown in Table 23, Table 24 and 

Table 25.  

 
Table 23: The macro-average and micro-average performance calculated under 8-
fold cross validation are summarized. 
 

Macro-average Micro-average 
Recall Precision F1 Recall/Precision/F1 

90.46% 81.19% 84.82% 94.5% 

 
 
From the result with 8-fold cross validation, the macro-average recall is 

90.46%, macro-average precision is 81.19%, macro-average F1 is 84.82% 

and micro-average recall/precision/F1 is 94.5%. 

 
Table 24: The macro-average and micro-average performance calculated under 10-
fold cross validation are summarized. 
 

Macro-average Micro-average 
Recall Precision F1 Recall/Precision/F1 

90.50% 81.37% 84.97% 94.54% 

 
 
From the result with 10-fold cross validation, the macro-average recall is 

90.50% (0.04% higher than 8-fold cross validation), macro-average 

precision is 81.37% (0.22% higher than 8-fold cross validation), macro-
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average F1 is 84.97% (0.18% higher than 8-fold cross validation) and 

micro-average recall/precision/F1 is 94.54% (0.04% higher than 8-fold 

cross validation). 

 
Table 25: The macro-average and micro-average performance calculated under 12-
fold cross validation are summarized. 
 

Macro-average Micro-average 
Recall Precision F1 Recall/Precision/F1 

90.50% 81.46% 85.04% 94.58% 

 
 
From the result with 12-fold cross validation, the macro-average recall is 

90.50% (0.04% higher than 8-fold cross validation), macro-average 

precision is 81.46% (0.33% higher than 8-fold cross validation), macro-

average F1 is 85.04% (0.26% higher than 8-fold cross validation) and 

micro-average recall/precision/F1 is 94.58% (0.08% higher than 8-fold 

cross validation). 

 
The performance measures under 8-fold, 10-fold, and 12-fold are similar. 

Therefore some experiments such as Support Vector Machine soft margin 

classifier are done only 8-fold cross validation. It will be described in 

Section 5.3.3. 

 

5.2.2.2 Confidence Level / Wilcoxon Matched-Pairs Signed-

Ranks Test 

The Wilcoxon Matched-Pairs Ranks test is a non-parametric alternative to a 

matched pairs t-test for the case of two related samples or repeated 

measurements on a single sample. The test is named for Frank Wilcoxon 
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(1892–1965) who, in a single paper, proposed both it and the rank-sum test 

for two independent samples [86]. 

Unlike less robust non-parametric tests such as the sign test: 

- The Wilcoxon test is used to determine the magnitude of difference 

between matched groups. 

- The Wilcoxon test is used to determine more than only the direction 

of difference. 

Wilcoxon matched-pairs signed-ranks test is used to show the confidence 

level of the sample tests. 

 

5.2.2.3 SVM-Light with different kernels 

We use SVM-Light [38] to perform text classification. SVM-Light is an 

implementation of Vapnik's Support Vector Machine [81] for the problem 

of pattern recognition, for the problem of regression, and for the problem of 

learning a ranking function. The optimization algorithms used in SVM-

Light are described in [33, 36]. The algorithm has scalable memory 

requirements and can handle problems with many thousands of support 

vectors efficiently. Three kernels (polynomial kernel, Gaussian radial basis 

function kernel, and sigmoid kernel) provided by the classifiers are 

considered as well to build the classifier while in training phase. 

 

5.2.3 Algorithm 

Figure 26 shows the algorithm for the iterative space method. The iterative 

space method can generate suitable features from suitable training 

documents. The unsuitable documents will form a residual set for the next 



 92

level classification until all the training documents are used or stopping 

criteria (termination) is reached. The classification is done by support 

vector machines (SVM-Light). 

 
The separation margin between two classes is generated by the SVM 

classifier. There are typically 4 types of separation margin. The details of 

these types are described in Section 5.2.4. 

 
If the separation margin between two classes is well separated, the iteration 

can stop. It means the features are from the training documents are well 

learnt by the classifier. If not, the remaining documents will form the 

residual set for classification at the next level. 
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Figure 26: Implementation of the iterative space method. 
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5.2.4 Separation Margin 

For the analysis involved in the scheme, there are 4 typically types of 

separation margin between two classes (Class A, Class B) which is 

generated by an SVM classifier. They are: 

TYPE 1: Has overlap region and no clean region 

TYPE 2: Has overlap region and one-clean region 
(either Class A region clean or Class B region clean) 

TYPE 3: Has overlap region and two-clean region 
(both Class A region clean and Class B region clean) 

TYPE 4: Has no overlap and two-clean region 
(both Class A region clean and Class B region clean) 

 
The 4 types of separation margin in terms of overlap and clean regions are 

summarized in Table 26. Overlap region has documents with Class A and 

Class B, clean region has documents with either Class A or Class B. 

 
Table 26: The 4 types of separation margin in terms of overlap and clean regions.  
 

 Overlap region One-clean region Two-clean region 

Type 1 yes - - 
Type 2 yes yes - 
Type 3 yes - yes 
Type 4 - - yes 

 
 
The type of separation margin of two classes is calculated by using CP Min., 

CP Max, CN Min and CN Max 

where 

CP Min. = Positive Class (Class A) Minimum Value 

CP Max. = Positive Class (Class A) Maximum Value 

CN Min. = Negative Class (Class B) Minimum Value 

CN Max. = Negative Class (Class B) Maximum Value 
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The histograms of these separation margins as well as their related 

properties and computations are illustrated in Figure 27, Figure 28, Figure 

29 and Figure 30. 

 

 
 
if (CP Min. <= CN Min.) and (CN Max. >= CP Max.) then Type 1
 => Clean CP Region: width = 0 
 => Clean CN Region: width = 0 
 => Overlap Region: width = CN Max. - CP Min. 
end 
 
Figure 27: Type 1 has overlap region and no clean region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Overlap Region 
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}C)(|)(min{X Max. NP >= positivedistpositivedist

if (CP Min. <= CN Min.) and (CP Max. > CN Max.) then Type 2
 => Clean CP Region: width = CP Max. - XP 
 => Clean CN Region: width = 0 
 => Overlap Region: width = XP - CP Min.) 
end 
 

 
 

}C)(|)(min{X Min. PN <= negativedistnegativedist

if (CN Max. >= CP Max.) and (CN Min. < CP Min.) then Type 2
 => Clean CP Region: width = 0 
 => Clean CN Region: width = X N - CN Min. 
 => Overlap Region: width = CN Max. - XN 
end 
 
Figure 28: Type 2 has overlap region and one-clean region. 
 
 
 
 
 
 
 
 
 
 
 

Overlap Region 

Overlap Region 

Clean CP Region 

Clean CN Region 

XP 

XN 
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}C)(|)(min{X Max. NP >= positivedistpositivedist

}C)(|)(min{X Min. PN <= negativedistnegativedist

if (CP Min. < CN Max.) and (CP Min. > CN Min.) and (CN Max. < CP Max.) then Type3 
 => Clean CP Region: width = CP Max. - XP 
 => Clean CN Region: width = XN - CN Min. 
 => Overlap Region: width = XP - XN 
end 
 
Figure 29: Type 3 has overlap region and two-clean region. 
 
 

 
 
if (CP Min. >= CN Max.) and (CP Min. > CN Min.) and (CN Max. < CP Max.) then 
Type4 
 => Clean CP Region: width = CP Max. - CP Min. 
 => Clean CN Region: width = CN Max. - CN Min. 
 => Separation Region: width = CP Min. - CN Max. 
end 
 
Figure 30: Type 4 has no overlap and two-clean region. 
 
 

Clean CN Region 
Clean CP Region 

Overlap Region 

Clean CN Region 

Separation Region 

Clean CP Region 

XP XN 
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5.3 Experimental Results and Discussion 

The aim is to generate subspaces from different training data set through 

error-driven learning. Feature selection is done on the training data set and 

done recursively to build classifiers. Through the iteration, suitable features 

can be selected from different subspaces. The process will stop when all 

topics are learned to build classifiers. Sub-classifiers will be generated for 

assisting in document classification. Better category boundary is expected 

to be obtained through the learning of these cascade classifiers. For the 

iterative subspace generation, the basic scheme of this method is in Section 

5.1.2 and the methodology is in 5.2. 

 
It is new that the proposed iterative subspace model allows suitable features 

to be selected from different subspaces through the iterative process to 

obtain the better category boundary. The main difference of our proposed 

iterative subspace classifier from others is trying to find a set of suitable 

features (subspaces) for each category through the multi-level classification 

(classifier). In our case, Support Vector Machines (SVM-Light [38]) are 

used as classifiers in the experiments. The separation margin (SM) can be 

adjusted to generate subspaces from different training data set through 

error-driven learning.  

 

5.3.1 Separation Margin (SM) set to 1.6, 1.8 and 2.0 

In this experiment, we use the subset of Reuters-21578 collection. For 

providing enough training data learnt by the proposed Iterative Subspace 

Method, only those topics (categories) with training document sizes which 
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are equal to or greater than 50 are used. 25 topics can meet this requirement 

and 300 topic pairs for SVM classifiers (binary classifiers) are generated 

for the experiment. 

 
The experiment is done under 8-fold, 10-fold, and 12-fold cross validations; 

the training documents are sampled by systematic sampling (selected 

sequentially by system file ordering). The learning process will cease when 

any one of stopping criteria is reached. The stopping criteria are: (1) not 

enough data in the residual set, the size in the experiments is roughly set to 

be equal to one tenth of the training data; (2) the classifier for the next level 

can correctly classify the data with a separation margin greater than the 

predefined value from the data in the residual set. The predefined values 

used in the experiment are 1.6, 1.8 and 2.0. 

 
Table 27 shows the numbers of improved topic (class) pairs with SM = 1.6, 

1.8 and 2.0. The confidence level (CL) is calculated by the Wilcoxon 

Matched-Pairs Signed-Ranks Test [30] to see whether the results from 

standard method and iterative subspace method are significantly difference 

under 8 samples (8-fold cross validation), 10 samples (10-fold cross 

validation) and 12 samples (12-fold cross validation). 

 
 
 
 
 
 
 
 
 
 
 
 



 100

Table 27: The numbers of improved topic (class) pairs with SM = 1.6, 1.8 and 2.0 are 
summarized. 
 
 8-fold, SM = 10-fold, SM = 12-fold, SM = 
CL (x%) 1.6 1.8 2.0 1.6 1.8 2.0 1.6 1.8 2.0 
x≥90 2 1 6 2 2 6 1 1 6 
90>x≥80 - 1 3 - - 1 - - 3 
80>x≥70 - - 1 - - 1 - - 2 
70>x≥60 - - - - - 1 - - - 
60>x≥50 - 2 2 - - 1 - 1 - 
50>x≥40 - - - - - - - - - 
40>x≥30 - - - - 1 1 - - 1 
30>x≥20 - - - - - - - - - 
20>x≥10 - 2 2 - - 1 1 1 2 
10>x≥0 - 1 3 - - 2 - - 3 
 
For confidence levels greater than or equal to 80 (≥80), the numbers of 

improved topic (class) pairs with separation margins set to 2.0 (SM = 2.0) 

are more than both SM = 1.8 and SM = 1.6 under different fold cross 

validations. It is ideal that separation margins set to 2.0 at all levels of a 

classifier, hence documents which fall into the margin can have higher 

chance to be retrained at the next level. Our proposed approach can get the 

benefit of separation margin set to 2.0 and the following experiments will 

be reported on separation margin set to 2.0. 

 

5.3.2 Number of classifier with SM set to 2.0 

Table 28, Table 29 and Table 30 show the number of training documents of 

each topic (25 topics) and their performance measures (such as a, b, c for 

calculating recall, precision and F1) evaluated by iterative subspace method 

under 8-fold, 10-fold and 12-fold cross validations. 
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Table 28: The number of training documents of each topic (25 topics) and their 
performance measures under 8-fold cross validation are summarized. 
 

 8-fold cross validation 

Topic 
Number of 

training 
documents 

a b c 
Recall 

(%) 
Precision 

(%) 
F1 
(%) 

acq 249,984 34,108 1,604 1,705 95.24 95.51 95.37 
bop 10,416 952 536 179 84.17 63.98 72.70 

carcass 8,400 508 692 155 76.62 42.33 54.54 
cocoa 8,400 621 579 35 94.66 51.75 66.92 
coffee 18,480 2,187 453 754 74.36 82.84 78.37 
corn 26,712 2,879 937 805 78.15 75.45 76.77 
cpi 10,080 910 530 107 89.48 63.19 74.07 

crude 58,632 7,900 476 1,881 80.77 94.32 87.02 
dlr 16,128 1,839 465 291 86.34 79.82 82.95 

earn 455,112 64,993 23 431 99.34 99.96 99.65 
gnp 15,456 1,762 446 415 80.94 79.80 80.36 
gold 15,792 1,874 382 102 94.84 83.07 88.56 
grain 66,192 8,313 1,143 1,530 84.46 87.91 86.15 

interest 48,552 6,493 443 757 89.56 93.61 91.54 
livestock 12,264 1,196 556 378 75.98 68.26 71.92 
money-fx 77,280 10,381 659 1,590 86.72 94.03 90.23 
money-
supply 

14,616 1,725 363 111 93.95 82.61 87.92 

nat-gas 12,096 1,190 538 102 92.11 68.87 78.81 
oilseed 19,656 2,052 756 868 70.27 73.08 71.65 

ship 32,088 3,648 936 1,049 77.67 79.58 78.61 
soybean 12,264 1,095 657 260 80.81 62.50 70.49 

sugar 19,824 2,072 760 713 74.40 73.16 73.78 
trade 56,616 6,756 1,332 1,159 85.36 83.53 84.43 

veg-oil 14,448 1,370 694 568 70.69 66.38 68.47 
wheat 33,264 3,829 923 938 80.32 80.58 80.45 
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Table 29: The number of training documents of each topic (25 topics) and their 
performance measures under 10-fold cross validation are summarized. 
 

 10-fold cross validation 

Topic 
Number of 

training 
documents 

a b c 
Recall 

(%) 
Precision 

(%) 
F1 
(%) 

acq 321,408 33,870 1,842 1,609 95.46 94.84 95.15 
bop 13,392 926 562 135 87.28 62.23 72.66 

carcass 10,800 564 636 191 74.70 47.00 57.70 
cocoa 10,800 641 559 84 88.41 53.42 66.60 
coffee 23,760 2,091 549 664 75.90 79.20 77.52 
corn 34,344 2,886 930 834 77.58 75.63 76.59 
cpi 12,960 934 506 106 89.81 64.86 75.32 

crude 75,384 7,710 666 1,739 81.60 92.05 86.51 
dlr 20,736 1,842 462 325 85.00 79.95 82.40 

earn 585,144 64,993 23 435 99.34 99.96 99.65 
gnp 19,872 1,823 385 521 77.77 82.56 80.10 
gold 20,304 1,855 401 101 94.84 82.23 88.08 
grain 85,104 8,314 1,142 1,634 83.57 87.92 85.69 

interest 62,424 6,414 522 691 90.27 92.47 91.36 
livestock 15,768 1,208 544 425 73.97 68.95 71.37 
money-fx 99,360 10,493 547 1,736 85.80 95.05 90.19 
money-
supply 

18,792 1,698 390 72 95.93 81.32 88.02 

nat-gas 15,552 1,199 529 101 92.23 69.39 79.19 
oilseed 25,272 2,085 723 845 71.16 74.25 72.67 

ship 41,256 3,743 841 1,068 77.80 81.65 79.68 
soybean 15,768 1,054 698 204 83.78 60.16 70.03 

sugar 25,488 2,143 689 730 74.59 75.67 75.13 
trade 72,792 6,690 1,398 1,334 83.37 82.72 83.04 

veg-oil 18,576 1,396 668 583 70.54 67.64 69.06 
wheat 42,768 3,848 904 949 80.22 80.98 80.59 
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Table 30: The number of training documents of each topic (25 topics) and their 
performance measures under 12-fold cross validation are summarized. 
 

 12-fold cross validation 

Topic 
Number of 

training 
documents 

a b c 
Recall 

(%) 
Precision 

(%) 
F1 
(%) 

acq 392,832 34,325 1,387 1,707 95.26 96.12 95.69 
bop 16,368 942 546 139 87.14 63.31 73.34 

carcass 13,200 555 645 208 72.74 46.25 56.55 
cocoa 13,200 629 571 54 92.09 52.42 66.81 
coffee 29,040 2,217 423 925 70.56 83.98 76.69 
corn 41,976 2,934 882 828 77.99 76.89 77.43 
cpi 15,840 906 534 84 91.52 62.92 74.57 

crude 92,136 7,635 741 1,858 80.43 91.15 85.46 
dlr 25,344 1,849 455 288 86.52 80.25 83.27 

earn 715,176 64,994 22 413 99.37 99.97 99.67 
gnp 24,288 1,802 406 472 79.24 81.61 80.41 
gold 24,816 1,880 376 97 95.09 83.33 88.83 
grain 104,016 8,248 1,208 1,476 84.82 87.23 86.01 

interest 76,296 6,392 544 685 90.32 92.16 91.23 
livestock 19,272 1,207 545 402 75.02 68.89 71.82 
money-fx 121,440 10,321 719 1,666 86.10 93.49 89.64 
money-
supply 

22,968 1,685 403 120 93.35 80.70 86.57 

nat-gas 19,008 1,211 517 105 92.02 70.08 79.57 
oilseed 30,888 1,993 815 792 71.56 70.98 71.27 

ship 50,424 3,669 915 937 79.66 80.04 79.85 
soybean 19,272 1,049 703 223 82.47 59.87 69.38 

sugar 31,152 2,183 649 894 70.95 77.08 73.89 
trade 88,968 6,627 1,461 1,191 84.77 81.94 83.33 

veg-oil 22,704 1,401 663 587 70.47 67.88 69.15 
wheat 52,272 3,789 963 942 80.09 79.73 79.91 

 
 
Referring to Table 27 (Section 5.3.1), there are 25 topic pairs involved. 

These topic pairs are further investigated. For the topic pairs, the min levels 

and max levels of SVM classifiers used to train them under 8 samples (8-

fold cross validation), 10 samples (10-fold cross validation) and 12 samples 

(12-fold cross validation) are summarized in Table 31. 
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Table 31: The min level and max level of classifiers used to train topic pairs under 8 
samples (8-fold cross validation), 10 samples (10-fold cross validation) and 12 samples 
(12-fold cross validation). 
 
  8-fold, level = 10-fold, level = 12-fold, level = 
 Topic pair (min) (max) (min) (max) (min) (max) 
1 bop_coffee 1 3 1 2 1 4 
2 bop_trade 20 29 17 29 13 30 
3 bop_veg-oil - - - - 1 5 
4 carcass_livestock 19 22 21 23 21 22 
5 carcass_ship - - - - 1 4 
6 cocoa_soybean 1 2 1 3 - - 
7 cocoa_wheat - - 1 18 - - 
8 cpi_dlr 1 3 1 3 1 5 
9 cpi_nat-gas - - 1 2 - - 
10 dlr_gnp - - - - - - 
11 dlr_money-fx 12 37 18 39 7 39 
12 gnp_crude 1 13 1 3 1 12 
13 gnp_grain 1 15 1 36 1 28 
14 livestock_ship 1 3 1 4 1 4 
15 livestock_trade 1 17 1 22 1 29 
16 money-

supply_trade 
1 4 1 3 - - 

17 nat-gas_crude 30 33 29 34 29 34 
18 nat-gas_sugar - - - - 1 7 
19 oilseed_grain 45 47 45 49 46 49 
20 soybean_corn 30 32 31 34 30 33 
21 soybean_grain 28 33 30 34 31 35 
22 soybean_oilseed 28 32 28 33 28 32 
23 soybean_trade 1 4 1 4 1 4 
24 soybean_wheat 30 33 31 33 33 35 
25 sugar_acq - - - - 1 2 
 
 
From the results in Table 31, some topic pairs need more levels of SVM 

classifiers than others to build the multi-level classifiers. For examples: 

1. bop_trade 
2. carcass_livestock 
3. dlr_money-fx 
4. gnp_grain 
5. nat-gas_crude 
6. oilseed_grain 
7. soybean_corn 
8. soybean_grain 
9. soybean_oilseed 
10. soybean_wheat 
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Confidence levels of 10 topic pairs with more levels of SVM classifiers 

than others to build the multi-level classifiers under 8 samples (8-fold cross 

validation), 10 samples (10-fold cross validation) and 12 samples (12-fold 

cross validation) are summarized in Table 32. It is found that almost the 

topic pairs that are well trained by our proposal scheme (iterative subspace 

method) can have the improvements with high confidence level. To further 

investigate the classification result, these topic pairs (excluding gnp_grain) 

are used for the comparison between 1-level classifier and multi-level 

classifier (iterative subspace method) in Section 5.3.6. 

 
Table 32: Confidence levels of 10 topic pairs with more levels of SVM classifiers than 
others to build the multi-level classifiers under 8 samples (8-fold cross validation), 10 
samples (10-fold cross validation) and 12 samples (12-fold cross validation). 
 

 Confidence Level 
Topic pair 8-fold 10-fold 12-fold 
bop_trade 75 93.75 75 

carcass_livestock 98.438 99.8047 99.8047 
dlr_money-fx 99.2188 98.438 87.11 

gnp_grain 87.5 0 31.25 
nat-gas_crude 93.75 75 93.75 
oilseed_grain 93.75 98.438 89.45 
soybean_corn 96.875 98.047 98.438 
soybean_grain 87.5 87.5 93.75 

soybean_oilseed 99.2188 99.6094 99.8047 
soybean_wheat 89.06 61.72 92.578 
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5.3.3 Support Vector Machine (SVM) Soft Margin Classifier 

Experiments 

Support vector machine soft margin classifiers introduced by Cortes and 

Vapnik [11] are important learning algorithms for classification problems. 

For the experiments, SVM-Light classifiers with different soft margins 

(trade-off between training error and margin) are used to perform the 

evaluation. 12 experiments with different c (float number) parameters (with 

SVM-Light classifier) are selected and they are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 1, 10 and 100. The performance scores are generated under 8-

fold cross validation and shown in Appendix. 

 
From these 12 experiments, the best result is obtained when c parameter is 

set to 10. The result is shown in Table 33. 

 
Table 33: The macro-average and micro-average performance of Soft Margin SVM 
(with c=10) evaluated under 8-fold cross validation are summarized. 
 

 Macro-average Micro-average 
Classifier Recall Precision F1 Recall/Precision/F1 

Standard SVM 90.46% 81.19% 84.82% 94.5% 
Soft Margin SVM 87.21% 91.69% 89.22% 95.88% 

 
 
There is also 11.85% improvement of “nat-gas” evaluated by multi-level 

classifier (proposed iterative subspace method) comparing to Soft Margin 

SVM classifier under 8-fold cross validation. 

 
Table 34: 2 topics out of 25 topics have better recall than the performances of Soft 
Margin SVM classifier under 8-fold cross validation. 
 

 Soft Margin SVM Multi-level classifier  
Topic Recall Precision Recall Precision Improvement 
gold 90.43% - 94.84% - 4.88% 

nat-gas 82.35% - 92.11% - 11.85% 
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5.3.4 Support Vector Machine (SVM) Soft Margin Classifier 

with Iterative Subspace Method 

In this experiment, we use the subset of Reuters-21578 collection. For 

providing enough training data learnt by the proposed Iterative Subspace 

Method, only those topics (categories) with training document sizes which 

are equal to or greater than 50 are used. 25 topics can meet this requirement 

and 300 topic pairs for SVM classifiers (binary classifiers) are generated 

for the experiment. It is the same as in Section 5.3.1 

 
The experiment is done under 8-fold cross validations; the training 

documents are sampled by systematic sampling (selected sequentially by 

system file ordering). The learning process will cease when any one of 

stopping criteria is reached. The stopping criteria are: (1) not enough data 

in the residual set, the size in the experiments is roughly set to be equal to 

one tenth of the training data; (2) the classifier for the next level can 

correctly classify the data with a separation margin greater than the 

predefined value from the data in the residual set. The predefined value 

used in the experiment is 2.0. 

 
From the finding in Section 5.3.3, the best result is obtained when c 

parameter is set to 10. The predefined c value of. SVM-Light classifier with 

soft margin used in the experiment is set to 10 to perform the evaluation. 

SVM classifiers with fixed linear and polynomial kernel functions are used 

for the comparison. The performance scores are generated under 8-fold 

cross validation and shown in Table 35. 
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Table 35: The macro-average and micro-average performance of Iterative Subspace 
Method (multi-level classifier with soft margin c=10) evaluated under 8-fold cross 
validation are summarized. 
 

  Macro-average Micro-average 
SVM kernel function Recall Precision F1 Recall/Precision/F1 

1- level adaptive 90.70% 83.17% 86.77% 94.87% 
Multi-level adaptive 90.69% 83.17% 86.76% 94.86% 

1- level linear 91.69% 87.21% 89.40% 95.88% 
Multi-level linear 91.76% 86.88% 89.25% 95.78% 

1-level polynomial 91.69% 87.21% 89.39% 95.88% 
Multi-level polynomial 91.76% 86.89% 89.26% 95.78% 

 
 

5.3.5 Comparison of Macro Averaging and Micro 

Averaging between 1-level classifier and multi-level 

classifier (Iterative Subspace Method) 

 
The results of macro-average and micro-average performance evaluated by 

1-level classifier and multi-level classifier (iterative subspace method) 

under 8-fold, 10-fold and 12-fold cross validations are shown in Table 36, 

Table 37 and Table 38. 

 
Table 36: The macro-average and micro-average performance of Iterative Subspace 
Method (multi-level classifier) evaluated under 8-fold cross validation are 
summarized. 
 

 Macro-average Micro-average 
Classifier Recall Precision F1 Recall/Precision/F1 

1-level (standard SVM) 90.46% 81.19% 84.82% 94.5% 
Multi-level 83.89% 77.05% 79.67% 91% 

 
 
From the result of our proposed iterative subspace method (multi-level 

classifier) with 8-fold cross validation, macro-average F1 (79.67%) and 

micro-average F1 (91%) are not improved comparing to standard SVM 

method (1-level classifier) where macro-average F1 is 84.82% and micro-

average F1 is 94.5%. 

 



 109

Table 37: The macro-average and micro-average performance of Iterative Subspace 
Method (multi-level classifier) evaluated under 10-fold cross validation are 
summarized. 
 

 Macro-average Micro-average 
Classifier Recall Precision F1 Recall/Precision/F1 

1-level (standard SVM) 90.50% 81.37% 84.97% 94.54% 
Multi-level 83.64% 77.28% 79.77% 90.87% 

 
 
From the result of our proposed iterative subspace method (multi-level 

classifier) with 10-fold cross validation, macro-average F1 (79.77%) and 

micro-average F1 (90.87%) are not improved comparing to standard SVM 

method (1-level classifier) where macro-average F1 is 84.97% and micro-

average F1 is 94.54%. 

 
Table 38: The macro-average and micro-average performance of Iterative Subspace 
Method (multi-level classifier) evaluated under 12-fold cross validation are 
summarized. 
 

 Macro-average Micro-average 
Classifier Recall Precision F1 Recall/Precision/F1 

1-level (standard SVM) 90.50% 81.46% 85.04% 94.58% 
Multi-level 83.58% 77.13% 79.61% 90.89% 

 
 
From the result of our proposed iterative subspace method (multi-level 

classifier) with 12-fold cross validation, macro-average F1 (79.61%) and 

micro-average F1 (90.89%) are not improved comparing to standard SVM 

method (1-level classifier) where macro-average F1 is 85.04% and micro-

average F1 is 94.58%. 

 
From the results, macro-averaging and micro-averaging performances of 

proposed iterative subspace method are not better than the performances of 

standard SVM method. However, some topics out of 25 topics have better 

precision or recall (from Table 28, Table 29 and Table 30) than the 

performances of standard SVM (from Table 20, Table 21 and Table 22). 



 110

Table 39, Table 40 and Table 41 show the recall or precision improvements 

under 8-fold, 10-fold and 12-fold cross validation. 

 
Table 39: 4 topics out of 25 topics have better precision or recall than the 
performances of standard SVM under 8-fold cross validation. 
 

 1-level classifier (standard SVM) Multi-level classifier  
Topic Recall Precision Recall Precision Improvement 
gold 94.65% - 94.84% - 0.2% 

livestock - 63.07% - 68.27% 8.24% 
nat-gas 91.58% - 92.11% - 0.58% 
soybean - 62.33% - 62.5% 0.27% 

 
 
Table 40: 4 topics out of 25 topics have better precision or recall than the 
performances of standard SVM under 10-fold cross validation. 
 

 1-level classifier (standard SVM) Multi-level classifier  
Topic Recall Precision Recall Precision Improvement 

carcass - 45% - 47% 4.44% 
gnp - 80.03% - 82.56% 3.16% 
gold 94.73% - 94.84% - 0.12% 

soybean 83.01% - 83.78% - 0.93% 

 
 
Table 41: Topics out of 25 topics have better precision or recall than the 
performances of standard SVM under 12-fold cross validation. 
 

 1-level classifier (standard SVM) Multi-level classifier  
Topic Recall Precision Recall Precision Improvement 
coffee - 83.22% - 83.98% 0.91% 
gold 95.01% - 95.09% - 0.08% 

nat-gas 91.67% - 92.02% - 0.38% 

 
 
It is still promising that there is 8.24% precision improvement of 

“livestock” evaluated by multi-level classifier (proposed iterative subspace 

method) comparing to 1-level classifier (standard SVM) under 8-fold cross 

validation. 

 
In Section 5.3.4, SVM soft margin classifier shows the proposed iterative 

subspace method can perform effectively. The performance measures 

between 1-level (standard SVM) and multi-level (iterative subspace method) 

are significant reduced. The minimum difference of F1 measure is 0.01% 
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and the maximum difference of F1 measure is 0.15% (from Table 35). 

From Table 36, Table 37 and Table 38, the minimum difference of F1 

measure is 3.5% and the maximum difference of F1 measure is 5.43%. The 

performance and efficiency can be affected by different widths of 

separation margin (soft margin). It is expected that the performance can be 

further improved by using other optimization techniques. 

 

5.3.6 Comparison between 1-level classifier and multi-

level classifier (Iterative Subspace Method) 

 
For 8 samples (8-fold cross validation), the classification results of 9 topic 

pairs with high confidence levels and well trained classifiers (more levels 

of SVM classifiers) than others are shown in Figure 31 to Figure 38. 
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Figure 31: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 1). 
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Sample 2 (8-fold)
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Figure 32: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 2). 

Sample 3 (8-fold)
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Figure 33: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 3). 
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Sample 4 (8-fold)
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Figure 34: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 4). 
 
 
 
 
 
 
 
 
 
 
 
 

Sample 5 (8-fold)
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Figure 35: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 5). 
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Sample 6 (8-fold)
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Figure 36: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 6). 
 
 
 
 
 
 
 
 
 
 
 
 

Sample 7 (8-fold)
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Figure 37: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 7). 
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Sample 8 (8-fold)
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Figure 38: Classification results of 1-level classifier and multi-level classifier with 8-
fold cross validation (sample 8). 
 
 
 
 
 
 
 
 
 
 
 
 
For 10 samples (10-fold cross validation), the classification results of 9 

topic pairs with high confidence levels and well trained classifiers (more 

levels of SVM classifiers) than others are shown in Figure 39 to Figure 48. 
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Sample 1 (10-fold)
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Figure 39: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 1). 
 
 
 

Sample 2 (10-fold)
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Figure 40: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 2). 
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Sample 3 (10-fold)
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Figure 41: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 3). 
 
 
 

Sample 4 (10-fold)
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Figure 42: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 4). 
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Sample 5 (10-fold)
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Figure 43: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 5). 
 
 
 

Sample 6 (10-fold)
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Figure 44: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 119

Sample 7 (10-fold)
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Figure 45: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 7). 
 
 
 

Sample 8 (10-fold)
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Figure 46: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 8). 
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Sample 9 (10-fold)
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Figure 47: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 9). 
 
 
 

Sample 10 (10-fold)
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Figure 48: Classification results of 1-level classifier and multi-level classifier with 10-
fold cross validation (sample 10). 
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For 12 samples (12-fold cross validation), the classification results of 9 

topic pairs with high confidence levels and well trained classifiers (more 

levels of SVM classifiers) than others are shown in Figure 49 to Figure 60. 
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Figure 49: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 1). 
 
 
 

Sample 2 (12-fold)
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Figure 50: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 2). 
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Sample 3 (12-fold)
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Figure 51: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 3). 
 
 
 

Sample 4 (12-fold)
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Figure 52: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 4). 
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Sample 5 (12-fold)
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Figure 53: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 5). 
 
 
 

Sample 6 (12-fold)
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Figure 54: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 6). 
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Sample 7 (12-fold)
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Figure 55: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 7). 
 
 
 

Sample 8 (12-fold)
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Figure 56: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 8). 
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Sample 9 (12-fold)
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Figure 57: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 9). 
 
 
 

Sample 10 (12-fold)
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Figure 58: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 10). 
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Sample 11 (12-fold)
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Figure 59: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 11). 
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Figure 60: Classification results of 1-level classifier and multi-level classifier with 12-
fold cross validation (sample 12). 
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5.3.7 Predication Distribution of the Last Level of the 

Iterative Subspace Method 

 
In Section 5.3.2, it is found that almost the topic pairs that are well trained 

by our proposal scheme (iterative subspace method) can have the 

improvements with high confidence level. However most of the topic pairs 

cannot be well trained, especially at the last level. The experiment is done 

to observe the prediction distribution of the last level of the iterative 

subspace method (multi-level classifier). Six topic pairs are selected. They 

are: 

1. sugar_trade 
2. veg-oil_trade 
3. carcass_veg-oil 
4. dlr_trade 
5. cocoa_coffee 
6. cocoa_sugar 

 
The plots are shown in Figure 61, Figure 62, Figure 63, Figure 64, Figure 

65 and Figure 66 respectively. 
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Figure 61: The prediction distribution plot of the last level of sugar_trade classifier. 
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Figure 62: The prediction distribution plot of the last level of veg-oil_trade classifier. 
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Figure 63: The prediction distribution plot of the last level of carcass_veg-oil 
classifier. 
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Figure 64: The prediction distribution plot of the last level of dlr_trade classifier. 
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Figure 65: The prediction distribution plot of the last level of cocoa_coffee classifier. 
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Figure 66: The prediction distribution plot of the last level of cocoa_sugar classifier. 
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6 Conclusion 

One of the most prominent methods to combat the curse of dimensionality 

is subspace methodology. However, this has only been applied broadly in 

unsupervised text categorization. The performance of subspace 

methodology on supervised text categorization has not yet been found. In 

addition to the problem of high dimensionality, another common problem 

of text categorization is the uneven distribution of category size which 

often occurs in a large data set. This often leads to good micro-average 

performance but not so desirable in macro-average performance. The 

experiment of subtopic clustering (break large topics into sub-topics by 

clustering) shows significant improvement. 

 
Due to the problem of high dimensionality and further improvement of the 

category boundary (subtopic clustering), the approach of iterative subspace 

classification is further investigated. The mathematical assumptions behind 

the subspace formalism demands that the pattern classes are distributed as 

low-dimensional subspaces in a higher-dimensional feature space. It is 

encouraging that subspace approach is suitable for text categorization. 

However the subspace classification methods have not been popular in text 

categorization tasks. One possibility may be that the field of data mining 

has captured the attention of the researchers of unsupervised text 

categorization. 

 
From the view of classification, we want to re-define a difficult 

classification boundary possibly due to the use of the initial choice of 
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feature subset. We want to have a better fit by decomposing the data sets 

into subsets using other more effective features. Subtopic clustering and 

proposed Iterative Subspace Method are expected to have the capability to 

address the issue. 

 
The approach of iterative subspace method of pattern classification has 

been investigated. For the topic pairs of “carcass_livestock” and 

“soybean_oilseed” from the Reuters-21578 collection, the result with 

confidence level greater than 95% under 8-fold/10-fold/12-fold cross 

validation shows that this approach has good potential. Other topic pairs, 

such as the topic pair of “bop_trade”, “dlr_money-fx”, “nat-gas_crude”, 

“oilseed_grain”, “soybean_corn”, “soybean_grain” and “soybean_wheat” 

can also achieve the improvement with high confidence level greater under 

some samples. 

 
The macro-average and micro-average measures of proposed Iterative 

Subspace Method are not better than others. However it is still promising 

that there is 8.24% precision improvement of “livestock” evaluated 

comparing to 1-level classifier, standard Support Vector Machine (SVM), 

under 8-fold cross validation. There is also 11.85% improvement of “nat-

gas” evaluated comparing to Soft Margin SVM classifier under 8-fold cross 

validation. 

 

The performance and efficiency can be affected by different widths of 

separation margin. It is expected that the performance can be further 

improved by using other optimization techniques. The prediction 
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distribution experiment of the last level of the iterative subspace method 

shows that the correct and incorrect prediction values are closely 

distributed. It is the main reason why they cannot be further improved. 
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8 Appendix 

Experimental result evaluated by SVM Soft Margin Classifier with c=0.1 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35703 3199 9 99.97 91.78 95.70 
bop 186 160 1302 12.50 53.76 20.28 

carcass 49 16 1151 4.08 75.38 7.75 
cocoa 34 1 1166 2.83 97.14 5.51 
coffee 1320 894 1320 50.00 59.62 54.39 
corn 2386 1240 1430 62.53 65.80 64.12 
cpi 120 100 1320 8.33 54.55 14.46 

crude 7546 2056 830 90.09 78.59 83.95 
dlr 1056 789 1248 45.83 57.24 50.90 

earn 64973 2372 43 99.93 96.48 98.18 
gnp 828 613 1380 37.50 57.46 45.38 
gold 942 698 1314 41.76 57.44 48.36 
grain 9020 2354 436 95.39 79.30 86.61 

interest 5808 1775 1128 83.74 76.59 80.01 
livestock 387 287 1365 22.09 57.42 31.90 
money-fx 10790 2445 250 97.74 81.53 88.90 

money-supply 711 508 1377 34.05 58.33 43.00 
nat-gas 306 229 1422 17.71 57.20 27.04 
oilseed 1532 1006 1276 54.56 60.36 57.31 

ship 3063 1399 1521 66.82 68.65 67.72 
soybean 435 331 1317 24.83 56.79 34.55 

sugar 1651 1111 1181 58.30 59.78 59.03 
trade 7114 1963 974 87.96 78.37 82.89 

veg-oil 619 441 1445 29.99 58.40 39.63 
wheat 3383 1587 1369 71.19 68.07 69.59 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 51.99 68.24 59.02 
Micro-average 85.30 85.30 85.30 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.2 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35693 2328 19 99.95 93.88 96.82 
bop 236 141 1252 15.86 62.60 25.31 

carcass 49 16 1151 4.08 75.38 7.75 
cocoa 76 1 1124 6.33 98.70 11.90 
coffee 1460 753 1180 55.30 65.97 60.17 
corn 2752 1156 1064 72.12 70.42 71.26 
cpi 170 84 1270 11.81 66.93 20.07 

crude 8058 1754 318 96.20 82.12 88.61 
dlr 1206 589 1098 52.34 67.19 58.84 

earn 64992 1489 24 99.96 97.76 98.85 
gnp 950 547 1258 43.03 63.46 51.28 
gold 1149 482 1107 50.93 70.45 59.12 
grain 9266 1878 190 97.99 83.15 89.96 

interest 6331 1330 605 91.28 82.64 86.74 
livestock 508 220 1244 29.00 69.78 40.97 
money-fx 10852 1862 188 98.30 85.35 91.37 

money-supply 1271 316 817 60.87 80.09 69.17 
nat-gas 375 229 1353 21.70 62.09 32.16 
oilseed 1687 860 1121 60.08 66.23 63.01 

ship 3656 1265 928 79.76 74.29 76.93 
soybean 507 301 1245 28.94 62.75 39.61 

sugar 1702 870 1130 60.10 66.17 62.99 
trade 7821 1735 267 96.70 81.84 88.65 

veg-oil 770 439 1294 37.31 63.69 47.05 
wheat 3971 1383 781 83.56 74.17 78.59 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 58.1396 74.68 65.38 
Micro-average 88.254 88.25 88.25 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.3 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35691 1777 21 99.94 95.26 97.54 
bop 464 92 1024 31.18 83.45 45.40 

carcass 94 19 1106 7.83 83.19 14.32 
cocoa 288 4 912 24.00 98.63 38.61 
coffee 1824 556 816 69.09 76.64 72.67 
corn 3052 949 764 79.98 76.28 78.09 
cpi 528 61 912 36.67 89.64 52.05 

crude 8131 1427 245 97.08 85.07 90.68 
dlr 1607 331 697 69.75 82.92 75.77 

earn 64997 957 19 99.97 98.55 99.25 
gnp 1275 410 933 57.74 75.67 65.50 
gold 1474 333 782 65.34 81.57 72.56 
grain 9306 1653 150 98.41 84.92 91.17 

interest 6476 1004 460 93.37 86.58 89.84 
livestock 629 152 1123 35.90 80.54 49.66 
money-fx 10876 1500 164 98.51 87.88 92.89 

money-supply 1606 182 482 76.92 89.82 82.87 
nat-gas 574 179 1154 33.22 76.23 46.27 
oilseed 1913 665 895 68.13 74.20 71.04 

ship 4009 982 575 87.46 80.32 83.74 
soybean 644 205 1108 36.76 75.85 49.52 

sugar 1907 651 925 67.34 74.55 70.76 
trade 7892 1438 196 97.58 84.59 90.62 

veg-oil 982 351 1082 47.58 73.67 57.82 
wheat 4237 1182 515 89.16 78.19 83.32 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 66.76 82.97 73.98 
Micro-average 90.90 90.90 90.90 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.4 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35686 1374 26 99.93 96.29 98.08 
bop 674 74 814 45.30 90.11 60.29 

carcass 207 23 993 17.25 90.00 28.95 
cocoa 506 6 694 42.17 98.83 59.11 
coffee 2018 427 622 76.44 82.54 79.37 
corn 3189 800 627 83.57 79.94 81.72 
cpi 784 39 656 54.44 95.26 69.29 

crude 8141 1148 235 97.19 87.64 92.17 
dlr 1780 221 524 77.26 88.96 82.69 

earn 64998 637 18 99.97 99.03 99.50 
gnp 1555 319 653 70.43 82.98 76.19 
gold 1674 243 582 74.20 87.32 80.23 
grain 9317 1477 139 98.53 86.32 92.02 

interest 6529 775 407 94.13 89.39 91.70 
livestock 822 137 930 46.92 85.71 60.64 
money-fx 10899 1254 141 98.72 89.68 93.99 

money-supply 1723 111 365 82.52 93.95 87.86 
nat-gas 769 147 959 44.50 83.95 58.17 
oilseed 2054 540 754 73.15 79.18 76.05 

ship 4134 763 450 90.18 84.42 87.21 
soybean 828 168 924 47.26 83.13 60.26 

sugar 2127 500 705 75.11 80.97 77.93 
trade 7905 1211 183 97.74 86.72 91.90 

veg-oil 1189 289 875 57.61 80.45 67.14 
wheat 4326 1019 426 91.04 80.94 85.69 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 73.42 87.35 79.78 
Micro-average 92.69 92.69 92.69 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.5 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35679 1151 33 99.91 96.87 98.37 
bop 848 70 640 56.99 92.37 70.49 

carcass 317 26 883 26.42 92.42 41.09 
cocoa 598 10 602 49.83 98.36 66.15 
coffee 2115 348 525 80.11 85.87 82.89 
corn 3263 695 553 85.51 82.44 83.95 
cpi 920 37 520 63.89 96.13 76.76 

crude 8156 955 220 97.37 89.52 93.28 
dlr 1859 180 445 80.69 91.17 85.61 

earn 64995 464 21 99.97 99.29 99.63 
gnp 1704 257 504 77.17 86.89 81.75 
gold 1804 169 452 79.96 91.43 85.32 
grain 9324 1328 132 98.60 87.53 92.74 

interest 6556 614 380 94.52 91.44 92.95 
livestock 970 139 782 55.37 87.47 67.81 
money-fx 10902 1075 138 98.75 91.02 94.73 

money-supply 1775 75 313 85.01 95.95 90.15 
nat-gas 975 121 753 56.42 88.96 69.05 
oilseed 2159 483 649 76.89 81.72 79.23 

ship 4200 634 384 91.62 86.88 89.19 
soybean 975 155 777 55.65 86.28 67.66 

sugar 2242 433 590 79.17 83.81 81.42 
trade 7914 1039 174 97.85 88.40 92.88 

veg-oil 1365 238 699 66.13 85.15 74.45 
wheat 4353 872 399 91.60 83.31 87.26 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 77.82 89.63 83.31 
Micro-average 93.83 93.83 93.83 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.6 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35677 970 35 99.90 97.35 98.61 
bop 929 74 559 62.43 92.62 74.59 

carcass 430 41 770 35.83 91.30 51.47 
cocoa 653 13 547 54.42 98.05 69.99 
coffee 2189 299 451 82.92 87.98 85.37 
corn 3316 631 500 86.90 84.01 85.43 
cpi 982 36 458 68.19 96.46 79.90 

crude 8170 828 206 97.54 90.80 94.05 
dlr 1906 158 398 82.73 92.35 87.27 

earn 64996 350 20 99.97 99.46 99.72 
gnp 1778 231 430 80.53 88.50 84.33 
gold 1894 126 362 83.95 93.76 88.59 
grain 9326 1240 130 98.63 88.26 93.16 

interest 6578 519 358 94.84 92.69 93.75 
livestock 1086 137 666 61.99 88.80 73.01 
money-fx 10889 966 151 98.63 91.85 95.12 

money-supply 1806 67 282 86.49 96.42 91.19 
nat-gas 1116 110 612 64.58 91.03 75.56 
oilseed 2221 439 587 79.10 83.50 81.24 

ship 4240 542 344 92.50 88.67 90.54 
soybean 1058 154 694 60.39 87.29 71.39 

sugar 2328 378 504 82.20 86.03 84.07 
trade 7903 928 185 97.71 89.49 93.42 

veg-oil 1484 223 580 71.90 86.94 78.71 
wheat 4352 769 400 91.58 84.98 88.16 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 80.63 90.74 85.39 
Micro-average 94.55 94.55 94.55 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.7 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 

acq 35671 855 41 99.89 97.66 98.76 
bop 994 77 494 66.80 92.81 77.69 
carcass 509 46 691 42.42 91.71 58.01 
cocoa 692 17 508 57.67 97.60 72.50 
coffee 2240 273 400 84.85 89.14 86.94 
corn 3336 592 480 87.42 84.93 86.16 
cpi 1027 43 413 71.32 95.98 81.83 
crude 8174 739 202 97.59 91.71 94.56 
dlr 1935 150 369 83.98 92.81 88.18 
earn 64999 284 17 99.97 99.57 99.77 
gnp 1820 211 388 82.43 89.61 85.87 
gold 1951 106 305 86.48 94.85 90.47 
grain 9319 1178 137 98.55 88.78 93.41 
interest 6588 464 348 94.98 93.42 94.20 
livestock 1172 135 580 66.90 89.67 76.63 
money-fx 10874 881 166 98.50 92.51 95.41 
money-supply 1826 63 262 87.45 96.66 91.83 
nat-gas 1217 101 511 70.43 92.34 79.91 
oilseed 2264 410 544 80.63 84.67 82.60 
ship 4258 478 326 92.89 89.91 91.37 
soybean 1128 152 624 64.38 88.13 74.41 
sugar 2379 362 453 84.00 86.79 85.38 
trade 7895 856 193 97.61 90.22 93.77 
veg-oil 1545 206 519 74.85 88.24 81.00 
wheat 4346 698 406 91.46 86.16 88.73 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 82.54 91.43 86.76 
Micro-average 95.00 95.00 95.00 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.8 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35667 779 45 99.87 97.86 98.86 
bop 1042 77 446 70.03 93.12 79.94 

carcass 576 67 624 48.00 89.58 62.51 
cocoa 729 20 471 60.75 97.33 74.81 
coffee 2272 251 368 86.06 90.05 88.01 
corn 3343 558 473 87.60 85.70 86.64 
cpi 1062 46 378 73.75 95.85 83.36 

crude 8179 679 197 97.65 92.33 94.92 
dlr 1951 138 353 84.68 93.39 88.82 

earn 65000 244 16 99.98 99.63 99.80 
gnp 1854 201 354 83.97 90.22 86.98 
gold 1983 98 273 87.90 95.29 91.45 
grain 9314 1130 142 98.50 89.18 93.61 

interest 6606 425 330 95.24 93.96 94.59 
livestock 1224 141 528 69.86 89.67 78.54 
money-fx 10867 814 173 98.43 93.03 95.66 

money-supply 1836 66 252 87.93 96.53 92.03 
nat-gas 1268 90 460 73.38 93.37 82.18 
oilseed 2285 403 523 81.37 85.01 83.15 

ship 4266 441 318 93.06 90.63 91.83 
soybean 1182 153 570 67.47 88.54 76.58 

sugar 2413 347 419 85.20 87.43 86.30 
trade 7887 790 201 97.51 90.90 94.09 

veg-oil 1586 205 478 76.84 88.55 82.28 
wheat 4330 651 422 91.12 86.93 88.98 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 83.85 91.76 87.63 
Micro-average 95.30 95.30 95.30 
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Experimental result evaluated by SVM Soft Margin Classifier with c=0.9 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35662 724 50 99.86 98.01 98.93 
bop 1073 80 415 72.11 93.06 81.26 

carcass 630 75 570 52.50 89.36 66.14 
cocoa 760 25 440 63.33 96.82 76.57 
coffee 2292 242 348 86.82 90.45 88.60 
corn 3347 527 469 87.71 86.40 87.05 
cpi 1091 50 349 75.76 95.62 84.54 

crude 8177 640 199 97.62 92.74 95.12 
dlr 1959 134 345 85.03 93.60 89.11 

earn 64999 212 17 99.97 99.67 99.82 
gnp 1874 196 334 84.87 90.53 87.61 
gold 2005 96 251 88.87 95.43 92.04 
grain 9301 1086 155 98.36 89.54 93.75 

interest 6611 414 325 95.31 94.11 94.71 
livestock 1280 141 472 73.06 90.08 80.68 
money-fx 10856 775 184 98.33 93.34 95.77 

money-supply 1844 64 244 88.31 96.65 92.29 
nat-gas 1308 84 420 75.69 93.97 83.85 
oilseed 2298 396 510 81.84 85.30 83.53 

ship 4268 418 316 93.11 91.08 92.08 
soybean 1205 165 547 68.78 87.96 77.19 

sugar 2438 325 394 86.09 88.24 87.15 
trade 7883 765 205 97.47 91.15 94.20 

veg-oil 1615 203 449 78.25 88.83 83.20 
wheat 4320 603 432 90.91 87.75 89.30 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 84.80 91.99 88.25 
Micro-average 95.50 95.50 95.50 
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Experimental result evaluated by SVM Soft Margin Classifier with c=1 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35657 683 55 99.85 98.12 98.98 
bop 1097 85 391 73.72 92.81 82.17 

carcass 671 82 529 55.92 89.11 68.71 
cocoa 782 29 418 65.17 96.42 77.77 
coffee 2306 229 334 87.35 90.97 89.12 
corn 3350 515 466 87.79 86.68 87.23 
cpi 1118 52 322 77.64 95.56 85.67 

crude 8172 605 204 97.56 93.11 95.28 
dlr 1976 131 328 85.76 93.78 89.59 

earn 64999 189 17 99.97 99.71 99.84 
gnp 1892 194 316 85.69 90.70 88.12 
gold 2024 92 232 89.72 95.65 92.59 
grain 9290 1064 166 98.24 89.72 93.79 

interest 6620 401 316 95.44 94.29 94.86 
livestock 1307 146 445 74.60 89.95 81.56 
money-fx 10842 730 198 98.21 93.69 95.90 

money-supply 1852 65 236 88.70 96.61 92.48 
nat-gas 1341 82 387 77.60 94.24 85.12 
oilseed 2291 387 517 81.59 85.55 83.52 

ship 4269 399 315 93.13 91.45 92.28 
soybean 1224 183 528 69.86 86.99 77.49 

sugar 2455 308 377 86.69 88.85 87.76 
trade 7877 733 211 97.39 91.49 94.35 

veg-oil 1637 203 427 79.31 88.97 83.86 
wheat 4319 581 433 90.89 88.14 89.49 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 85.51 92.10 88.68 
Micro-average 95.64 95.64 95.64 
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Experimental result evaluated by SVM Soft Margin Classifier with c=10 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35650 602 62 99.83 98.34 99.08 
bop 1166 92 322 78.36 92.69 84.92 

carcass 765 126 435 63.75 85.86 73.17 
cocoa 868 42 332 72.33 95.38 82.27 
coffee 2340 229 300 88.64 91.09 89.84 
corn 3271 629 545 85.72 83.87 84.78 
cpi 1165 77 275 80.90 93.80 86.88 

crude 8169 516 207 97.53 94.06 95.76 
dlr 2064 135 240 89.58 93.86 91.67 

earn 65001 138 15 99.98 99.79 99.88 
gnp 1920 171 288 86.96 91.82 89.32 
gold 2040 91 216 90.43 95.73 93.00 
grain 8905 880 551 94.17 91.01 92.56 

interest 6744 326 192 97.23 95.39 96.30 
livestock 1355 164 397 77.34 89.20 82.85 
money-fx 10869 483 171 98.45 95.75 97.08 

money-supply 1869 69 219 89.51 96.44 92.85 
nat-gas 1423 100 305 82.35 93.43 87.54 
oilseed 2276 462 532 81.05 83.13 82.08 

ship 4268 384 316 93.11 91.75 92.42 
soybean 1309 267 443 74.71 83.06 78.67 

sugar 2465 316 367 87.04 88.64 87.83 
trade 7882 575 206 97.45 93.20 95.28 

veg-oil 1713 252 351 82.99 87.18 85.03 
wheat 4317 596 435 90.85 87.87 89.33 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 87.21 91.69 89.40 
Micro-average 95.88 95.88 95.88 
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Experimental result evaluated by SVM Soft Margin Classifier with c=100 

under 8-fold cross validation. 

 
Topic a b c Recall (%) Precision (%) F1 (%) 
acq 35642 626 70 99.80 98.27 99.03 
bop 1165 89 323 78.29 92.90 84.97 

carcass 747 166 453 62.25 81.82 70.71 
cocoa 862 52 338 71.83 94.31 81.55 
coffee 2327 254 313 88.14 90.16 89.14 
corn 3224 658 592 84.49 83.05 83.76 
cpi 1165 86 275 80.90 93.13 86.58 

crude 8157 533 219 97.39 93.87 95.59 
dlr 2058 155 246 89.32 93.00 91.12 

earn 65000 136 16 99.98 99.79 99.88 
gnp 1924 174 284 87.14 91.71 89.36 
gold 2042 90 214 90.51 95.78 93.07 
grain 8731 912 725 92.33 90.54 91.43 

interest 6736 342 200 97.12 95.17 96.13 
livestock 1347 206 405 76.88 86.74 81.51 
money-fx 10816 501 224 97.97 95.57 96.76 

money-supply 1871 81 217 89.61 95.85 92.62 
nat-gas 1436 98 292 83.10 93.61 88.04 
oilseed 2250 525 558 80.13 81.08 80.60 

ship 4234 419 350 92.36 91.00 91.67 
soybean 1308 297 444 74.66 81.50 77.93 

sugar 2386 382 446 84.25 86.20 85.21 
trade 7857 578 231 97.14 93.15 95.10 

veg-oil 1655 320 409 80.18 83.80 81.95 
wheat 4282 634 470 90.11 87.10 88.58 

 
 

Recall (%) Precision (%) F1 (%)
Macro-average 86.64 90.76 88.65
Micro-average 95.57 95.57 95.57

 
 
 
 




