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Abstract

The main subject of this thesis is the study of a few basic problems in spectral hy-

pergraph theory based on Laplacian-type tensors. These problems are hypergraph

analogues of some important problems in spectral graph theory.

As some foundations, we study some new problems of tensor determinant and non-

negative tensor partition. Then two classes of Laplacian-type tensors for uniform hy-

pergraphs are proposed. One is called Laplacian, and the other one Laplace-Beltrami

tensor. We study the H-spectra of uniform hypergraphs through their Laplacian, and

the Z-spectra of even uniform hypergraphs through their Laplace-Beltrami tensors. All

the H+-eigenvalues of the Laplacian can be computed out through the developed par-

tition method. Spectral component, an intrinsic notion of a uniform hypergraph, is

introduced to characterize the hypergraph spectrum. Many fundamental properties of

the spectrum are connected to the underlying hypergraph structures. Basic spectral

hypergraph theory based on Laplacian-type tensors are built. With the theory, we

study algebraic connectivity, edge connectivity, vertex connectivity, edge expansion, and

spectral invariance of the hypergraph.
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Chapter 1

Introduction

1.1 Overview

Graph theory finds many applications in various fields and itself also becomes an impor-

tant branch of mathematics since Euler’s problem on the seven bridges of Königsberg.

Among various branches of graph theory, the spectral graph theory plays a fundamen-

tal role since 1950s [7, 11, 12, 19], which is used to better characterize and solve many

classical problems in graph theory. Hypergraphs are natural extensions of graphs. As

graphs, hypergraphs have many applications in numerous fields [2, 21, 41, 42, 48, 50, 61,

66, 70, 71, 75–77]. However, the theory for hypergraph is not yet as completed as that

for graphs. Especially, the analogues of spectral hypergraph theory are still in their

infancy, which is mainly due to the lack of spectral theory of tensors in the literature.

In 2005, Lim [49] and Qi [62] introduced, independently, the notion of eigenvalues of

tensors. Since then, the spectral theory of tensors has been developed rapidly, see [8,13,

35,47,63,64] and references therein. Among them, the spectral theory for nonnegative

tensors is the most attractive and applicable one. The Perron-Frobenius type theorems

and power methods for nonnegative tensors have been studied in deep, see [13, 15–18,

29,36,38,49–51,57,60,67,78–84,86] and references therein.
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It was first pointed out by Lim [49,50] that the spectral theory of tensors, especially

of nonnegative tensors, has intrinsic connection to problems in hypergraph theory. Later

on, works based on the adjacency tensor of a uniform hypergraph were carried out by

Rota Bulò and Pelillo [70, 71]. The initial work on the Laplacian-type tensor for a

uniform hypergraph is [41]. Since that, several approaches have appeared [42,48,66,75,

77].

In this thesis, the Laplacian of a uniform hypergraph and the Laplace-Beltrami

tensor of an even uniform hypergraph are proposed. We study the spectra of uni-

form hypergraphs through these tensors to establish basic spectral theory of uniform

hypergraphs based on the Laplacican-type tensors. The study relies on some new de-

velopments on tensor determinant and nonnegative tensor partition. As applications,

we apply the proposed theory to edge connectivity, vertex connectivity, algebraic con-

nectivity, edge expansion and spectral invariance of a uniform hypergraph.

1.2 Eigenvalues of Tensors

Since eigenvalues of tensors were introduced by Lim [49] and Qi [62] independently, they

have been attracted much attention in the literature and found various applications in

science and engineering, see [1, 8, 13–15, 37, 39–41, 43, 47, 50, 56, 57, 60, 63–65, 68, 69, 71,

79, 85] and references therein. In the literature, there are several generalizations of

eigenvalues, singular values and decompositions from matrices to tensors, see [6, 8, 14,

20, 43, 49, 59, 62, 63] and references therein. In any case, not all the properties of the

eigenvalues of matrices are preserved for tensors. In the thesis, we mainly concentrate

on the eigenvalues introduced by Qi [62] (see Definition 2.2.1).

Let C (R) be the field of complex (real) numbers and Cn (Rn) the n-dimensional

complex (real) space. The nonnegative orthant of Rn is denoted by Rn
+, the interior of

Rn
+ is denoted by Rn

++. For a real (complex) tensor T of order k and dimension n with

integers k ≥ 3 and n ≥ 2, we mean a hypermatrix (ti1...ik) such that ti1...ik ∈ R(C) for
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all ij ∈ [n] := {1, . . . , n} and j ∈ [k]. A tensor is called nonnegative, if all of its entries

are real and nonnegative. A tensor T is called symmetric, if tτ(i1)...τ(ik) = ti1...ik for all

permutations τ on (i1, . . . , ik) and all i1, . . . , ik ∈ [n]. Given a vector x ∈ Cn, define

an n-dimensional vector T xk−1 with its i-th element being
∑

i2,...,ik∈[n]

tii2...ikxi2 · · ·xik for

all i ∈ [n]. The notion T xk represents the complex number xT (T xk−1). These are

examples of tensor contraction [44]. The order and the dimension of a tensor will be

clear from the content. Let I be the identity tensor of appropriate size, e.g., ii1...ik = 1

if and only if i1 = · · · = ik ∈ [n], and zero otherwise when the order is k and the

dimension is n. The following definition is introduced by Qi [62,66].

Definition 1.2.1 Let T be a k-th order n-dimensional tensor. For some λ ∈ C, if the

polynomial system (λI − T ) xk−1 = 0 has a solution x ∈ Cn \ {0}, then λ is called an

eigenvalue of the tensor T and x an eigenvector of T associated with λ. If T is real

and an eigenvalue λ has an eigenvector x ∈ Rn, then λ is called an H-eigenvalue and

x an H-eigenvector. If x ∈ Rn
+ (Rn

++), then λ is called an H+-(H++-)eigenvalue.

It is easy to see that an H-eigenvalue is real. In the sequel, unless stated otherwise,

an eigenvector x would always refer to its normalization x
k
√∑

i∈[n] |xi|k
. This conven-

tion does not introduce any ambiguities, since the eigenvector defining equations are

homogeneous. Hence, when x ∈ Rn
+, we always refer to x satisfying

n∑
i=1

xki = 1.

1.3 Hypergraphs

Hypergraphs are natural extensions of graphs and emerge as a power tool to solve

many problems in mathematics and applied science [2, 21, 49, 50, 70, 71]. In this thesis,

a hypergraph means an undirected simple k-uniform hypergraph G with vertex set V ,

which is labeled as [n] = {1, . . . , n}, and edge set E. By k-uniformity, we mean that

for every edge e ∈ E, the cardinality |e| of e is equal to k. Always, k ≥ 3 and n ≥ k.

Basic terminologies on graphs and hypergraphs are referred to [2, 7, 11,12,19,28,53].
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For a subset S ⊂ [n], we denoted by ES the set of edges {e ∈ E | I ∩ e 6= ∅}. For

a vertex i ∈ V , we simplify E{i} as Ei. It is the set of edges containing the vertex

i, i.e., Ei := {e ∈ E | i ∈ e}. The cardinality |Ei| of the set Ei is defined as the

degree of the vertex i, which is denoted by di. Then, we have that k|E| =
∑

i∈[n] di.

If di = 0, then we say that the vertex i is isolated. Two different vertices i and j are

connected to each other (or the pair i and j is connected), if there is a sequence of

edges (e1, . . . , em) such that i ∈ e1, j ∈ em and er ∩ er+1 6= ∅ for all r ∈ [m − 1]. A

hypergraph is called connected, if every pair of different vertices of G is connected. A

set S ⊆ V is a connected component of G, if every two vertices of S are connected and

there is no vertices in V \S that are connected to any vertex in S. For the convenience,

an isolated vertex is regarded as a connected component as well. Then, it is easy to

see that for every hypergraph G, there is a partition of V as pairwise disjoint subsets

V = V1 ∪ . . . ∪ Vs such that every Vi is a connected component of G. Let S ⊆ V , the

hypergraph with vertex set S and edge set {e ∈ E | e ⊆ S} is called the sub-hypergraph

of G induced by S. We will denoted it by GS. In the sequel, unless stated otherwise,

all the notations introduced above are reserved for the specific meanings.

For a subset S ⊆ [n], Sc denotes the complement of S in [n]. Let G = (V,E) be a

k-uniform hypergraph. Let S ⊂ V be a nonempty proper subset. Then, the edge set

is partitioned into three pairwise disjoint parts: E(S) := {e ∈ E | e ⊆ S}, E(Sc) and

E(S, Sc) := {e ∈ E | e ∩ S 6= ∅, e ∩ Sc 6= ∅}. E(S, Sc) is called the edge cut of G with

respect to S.

1.4 Outline

This thesis has four other chapters. Here we put an outline of the remaining chapters.

It consists of two parts: the theory on tensor determinant and nonnegative tensor

partition, and the theory on the spectra of hypergraphs. The aim of this thesis is

on the latter theory. While, the former is important and of independent interest as
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well. Since it is out of the scope of this thesis, only relevant theory is presented. For

comprehensive reference, please see [35,36,39,43,67].

Chapter 2: Section 2.1 gives the definition of tensor determinant and an introduc-

tion. In Section 2.2, we present some basic properties of the determinant. Then, in

Section 2.3, we show that the solvability of a polynomial system is characterized by the

determinant of the leading coefficient tensor of that polynomial system. Block tensors

are discussed in Section 2.3 as well. We give an expression of the determinant of a ten-

sor, which has an “upper block triangular” structure, in terms of the determinants of its

two diagonal sub-tensors. In Section 2.4.1, we give a trace formula for the determinant.

In Section 2.4.2, we analyze various related properties of the characteristic polynomial

and the determinant. Especially, a trace formula for the characteristic polynomial is

presented, which is helpful for finding the eigenvalues of a hypergraph. We also gener-

alize the eigenvalue representation for the determinant of a matrix to the determinant

of a tensor. We show that the r-th order trace of a tensor is equal to the sum of the

r-th powers of the eigenvalues of this tensor, and the coefficients of its characteristic

polynomial are recursively generated by the higher order traces.

Chapter 3: Section 3.1 gives a literature review. In Section 3.2, we introduce a

simple and equivalent definition of weakly irreducible nonnegative tensors. Some prop-

erties related to spectral hypergraph theory are reviewed. In Section 3.3, we propose

a power method for finding the largest eigenvalue of a weakly irreducible nonnegative

tensor, and establish its global R-linear convergence. In Section 3.4, we show that for

a nonnegative tensor T , always there exists a partition of the index set [n] such that

every tensor induced by the partition is weakly irreducible, and the largest eigenvalue

of T can be obtained from those largest eigenvalues of the induced tensors. This allows

us to deal with disconnected hypergraphs smoothly.

The study on the spectra of hypergraphs begins with Chapter 4. Instead of outlining

the sections (see Section 4.1 for the outline), we briefly explain the main results.

Chapter 4: The results are summarized in three parts.
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I. The first major work is to show some fundamental hypergraph analogues of spec-

tral graph theory. Let c(n, k) := n(k−1)n−1. Let L be the Laplacian of the hypergraph

G, see Definition 4.2.3. Let σ(L) be the spectrum of L (the set of eigenvalues, which is

also called the spectrum of G). Then, we have the followings.

(i) (Corollary 4.3.6) The smallest H-eigenvalue of L is zero.

(Proposition 4.3.8)
∑

λ∈σ(L)

m(λ)λ ≤ c(n, k) with equality holding if and only if G

has no isolated vertices. Here m(λ) is the algebraic multiplicity of λ.

(ii) (Theorem 4.3.5) For all λ ∈ σ(L), 0 ≤ Re(λ) with equality holding if and only if

λ = 0; and Re(λ) ≤ 2 with equality holding if and only if λ = 2.

(Corollary 4.6.4) When k is odd, we have that Re(λ) < 2 for all λ ∈ σ(L).

(Theorem 4.6.6/Corollary 4.6.8) When k is even, necessary and sufficient condi-

tions are given for 2 being an eigenvalue/H-eigenvalue of L.

(Corollary 4.6.9) When k is even and G is k-partite, 2 is an eigenvalue of L.

(iii) (Theorem 4.3.5 together with Theorem 2.3.3 and Lemma 4.3.3) Viewed as sets,

the spectrum of G is the union of the spectra of its connected components.

Viewed as multisets, an eigenvalue of a connected component with algebraic multi-

plicity w contributes to G as an eigenvalue with algebraic multiplicity w(k−1)n−s.

Here s is the number of vertices of the connected component.

(iv) (Corollaries 4.3.6 and 4.4.8) Let all the H+-eigenvalues of L be ordered in increas-

ing order as µ0 ≤ µ1 ≤ · · · ≤ µn(G)−1. Here n(G) is the number of H+-eigenvalues

of L (with H+-geometric multiplicity), see Definition 4.4.6.

µ0 = 0, and µn(G)−1 ≤ 1 with equality holding if and only if |E| > 0.

µi−2 = 0 and µi−1 > 0 if and only if log2i is a positive integer and G has exactly

log2i connected components. Thus, µ1 > 0 if and only if G is connected.

On top of these properties, we also show that the spectral radius of the adjacency ten-

sor of a hypergraph with |E| > 0 is equal to one (Lemma 4.3.2). The linear subspace
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generated by the nonnegative H-eigenvectors of the smallest H-eigenvalue of the Lapla-

cian has dimension exactly the number of the connected components of the hypergraph

(Lemma 4.3.7). Equalities that the eigenvalues of the Laplacian should satisfy are given

in Proposition 4.3.8. The only two H+-eigenvalues of the Laplacian of a complete hy-

pergraph are zero and one (Corollary 4.4.11). We give the H+-geometric multiplicities

of the H+-eigenvalues zero and one of the Laplacian respectively in Lemma 4.4.7 and

Proposition 4.4.9. We show that when k is odd and G is connected, the H-eigenvector of

L corresponding to the H-eigenvalue zero is unique (Corollary 4.6.7). The spectrum of

the adjacency tensor is invariant under multiplication by any s-th root of unity, here s

is the primitive index of the adjacency tensor (Corollary 4.6.5). In particular, the spec-

trum of the adjacency tensor of a k-partite hypergraph is invariant under multiplication

by any k-th root of unity (Corollary 4.6.9).

II. The second major work is that we study the smallest H+-eigenvalues of the sub-

tensors of the Laplacian. We give variational characterizations for these H+-eigenvalues

(Lemma 4.5.1), and show that an H+-eigenvalue of the Laplacian is the smallest H+-

eigenvalue of a certain sub-tensor of the Laplacian (Theorem 4.4.4 and (4.4.7)). Bounds

for these H+-eigenvalues based on the degrees of the vertices and the second smallest H+-

eigenvalue of the Laplacian are given respectively in Propositions 4.5.4 and 4.5.7. We

discuss the relations between these H+-eigenvalues and the edge connectivity (Proposi-

tion 4.5.8) and the edge expansion (Proposition 4.5.11) of the hypergraph.

III. The third major work is that we introduce the concept of spectral components

of a hypergraph and investigate their intrinsic roles in the structure of the hypergraph

spectrum. We simply interpret the idea of the spectral component first.

Let G = (V,E) be a k-uniform hypergraph and S ⊂ V be nonempty and proper.

Unlike the graph counterpart, the number of intersections e∩Sc may vary for different

e ∈ E(S, Sc). We say that E(S, Sc) cuts Sc with depth at least r ≥ 1 if |e ∩ Sc| ≥ r for

every e ∈ E(S, Sc). A subset of V whose edge cut cuts its complement with depth at

least two is closely related to an H+-eigenvalue of the Laplacian. These sets are spectral
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components (Definition 4.2.1). With edge cuts of depth at least r, we define r-th depth

edge expansion which generalizes the edge expansion for graphs (Definition 4.5.9). A

flower heart of a hypergraph is also introduced (Definition 4.2.2), which is related to

the largest H+-eigenvalue of the Laplacian.

We show that the spectral components characterize completely the H+-eigenvalues

of the Laplacian that are less than one and vice verse, and the flower hearts are in

one to one correspondence with the nonnegative eigenvectors of the H+-eigenvalue one

(Theorem 4.4.4). In general, the set of the H+-eigenvalues of the Laplacian is strictly

contained in the set of the smallest H+-eigenvalues of its sub-tensors (Theorem 4.4.4 and

Proposition 4.4.5). We introduce H+-geometric multiplicity of an H+-eigenvalue. The

second smallest H+-eigenvalue of the Laplacian is discussed, and a lower bound for it is

given in Proposition 4.5.7. Bounds are given for the r-th depth edge expansion based on

the second smallest H+-eigenvalue of L for a connected hypergraph (Proposition 4.5.10

and Corollary 4.5.12). For a connected hypergraph, necessary and sufficient conditions

for the second smallest H+-eigenvalue of L being the largest H+-eigenvalue (i.e., one)

are given in Proposition 4.4.10.

Chapter 5: Different from the former chapters, we study the Z-spectrum, another

concept of eigenvalues by Lim and Qi [49,62], of an even uniform hypergraph in Chapter

5. As it is a minority in this thesis, the definition of Z-eigenvalues is postponed to

Definition 5.3.3. The reason for why only even uniform hypergraphs are considered is

given in Section 5.1. We also introduce the notion of the Laplace-Beltrami tensor for

an even uniform hypergraph in this section.

In Section 5.2, we show that the Laplace-Beltrami tensor is symmetric, positive

semidefinite and has a zero Z-eigenvalue with the normalized vector of all ones as a

Z-eigenvector (Proposition 5.3.2). We introduce the algebraic connectivity of an even

uniform hypergraph as the second smallest Z-eigenvalue of the Laplace-Beltrami tensor

(Definition 5.3.9), and show that the algebraic connectivity is larger than zero if and

only if the hypergraph is connected (Corollaries 5.3.8 and 5.3.10). We also show that
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the number of connected components of an even uniform hypergraph is actually the

dimension of the set of Z-eigenvectors of the Laplace-Beltrami tensor corresponding

to the zero Z-eigenvalue (Theorem 5.3.7). We characterize the algebraic connectiv-

ity of an even uniform hypergraph by a generalized Courant-Fischer theorem for the

Laplace-Beltrami tensor (Theorem 5.3.11). Hence, computing the algebraic connectiv-

ity is transformed into computing the smallest Z-eigenvalue of another tensor resulted

by multilinear transformation. Two other technical lemmas concerning algebraic con-

nectivity are established at the end of Section 5.3 (Lemmas 5.3.13 and 5.3.14), while

some applications of them that involve the connections of algebraic connectivity with

edge connectivity (Theorem 5.4.3) and vertex connectivity (Theorem 5.4.4) of an even

uniform hypergraph are discussed in Section 5.4.

1.5 Notation

The following notation will be frequently used in the sequel. The other unstated nota-

tion will be clear from the content.

Usually, scalars are written as lowercase letters (λ, a, . . .); vectors are written as bold

lowercase letters (x = (xi), . . .), matrices are written as italic capitals (A = (aij), . . .),

and tensors are written as calligraphic letters (T = (ti1...ik), . . .). The usual symbol ⊗ is

used to denote the outer product of tensors. For a matrix A, AT denotes its transpose

and Tr(A) denotes its trace. We denote by e the vector of all ones, and ei the i-th

identity vector, i.e., the i-th column vector of the identity matrix I.

Given a ring K (we always mean a commutative ring with 1 (see [46]), e.g., C), we

denote by K[E] the polynomial ring consisting of polynomials in the set E of indeter-

minate variables with coefficients in K. Especially, we denote by K[T ] the polynomial

ring consisting of polynomials in indeterminate variables {ti1...ik} with coefficients in K,

and similarly for K[λ], K[A], K[λ, T ], etc.
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Chapter 2

Tensor Determinant

2.1 Introduction

In this chapter, we introduce the notion of tensor determinant and study some basic

properties of it. These properties are closely related to the eigenvalues of tensors and

have immediate applications in spectral hypergraph theory, see Chapter 4.

Tensor determinant is a generalization of symmetric hyperdeterminant which is

for symmetric tensors. The concept of symmetric hyperdeterminant was introduced

by Qi [62] to investigate the eigenvalues of a symmetric tensor. It is based on the

resultant of a homogeneous polynomial system, see Definition 2.1.1 or [22, Theorem

3.2.3] and [54,55,73].

Definition 2.1.1 For fixed positive degrees d1, . . . , dn, let fi :=
∑
|α|=di ci,αx

α be a

homogenous polynomial of degree di in C[x] for i ∈ [n]. Here xα :=
∏

i∈[n] x
αi
i . Then

the unique polynomial RESd1,...,dn ∈ Z[{ui,α}], which has the following properties, is

called the resultant of degrees (d1, . . . , dn).

(i) The system of polynomial equations f1 = · · · = fn = 0 has a nontrivial solution

11



in Cn if and only if Resd1,...,dn(f1, . . . , fn) = 0.

(ii) Resd1,...,dn(xd11 , . . . , x
dn
n ) = 1.

(iii) RESd1,...,dn is an irreducible polynomial in C[{ui,α}].

We note that the differences between the capital notion RESd1,...,dn and the notion

Resd1,...,dn(f1, . . . , fn) for a specific system (f1, . . . , fn) are: the former is understood as

a polynomial in the variables {ui,α | |α| = di, i ∈ [n]} and the latter is understood as

the evaluation of RESd1,...,dn at the point {ui,α = ci,α} with {ci,α} being given by fi.

Thus, Resd1,...,dn(f1, . . . , fn) is a number in C. When d1 = · · · = dn = d, we simplify

RESd,...,d (respectively Resd,...,d) as RES (respectively Res). The value of d will be clear

from the content.

Let T = (ti1...im) be an m-th order n-dimensional tensor, x = (xi) ∈ Cn. The

symmetric hyperdeterminant for symmetric tensors of orderm is defined as the resultant

RES of degrees (m−1, . . . ,m−1) such that the value of the symmetric hyperdeterminant

for a specific symmetric tensor T , which is denoted by Res(T xm−1), is the resultant of

the polynomial system T xm−1 = 0. The symmetric hyperdeterminant of a symmetric

tensor is equal to the product of all of the eigenvalues of that tensor [62].

Li et al. [47] proved that the constant term of the E-characteristic polynomial1 of

tensor T (not necessarily symmetric) is a power of the resultant Res(T xm−1) of the

polynomial system T xm−1 = 0. They further found that Res(T xm−1) is an invariant

of T under the orthogonal linear transformation group. In the sequel, we general-

ize the notion of symmetric hyperdeterminant to nonsymmetric tensors and study it

systematically. The following is the definition.

Definition 2.1.2 Let RES be the resultant of degrees (m−1, . . . ,m−1) which is a poly-

nomial in variables {ui,α | |α| = m − 1, i ∈ [n]}. Let tensor T = (tii2...im) ∈ T(Cn,m)

(the space of m-th order n-dimensional tensors). The determinant DET of m-th order

1The characteristic polynomial for another type of eigenvalues, E-eigenvalues, proposed by Qi [62].
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n-dimensional tensors is defined as the polynomial with variables {vii2...im | i, i2, . . . , im ∈

[n]} through replacing ui,α in the polynomial RES by
∑

(i2,...,im)∈X(α) vii2...im. Here X(α) :=

{(i2, . . . , im) ∈ [n]m−1 | xi2 · · ·xim = xα}. The value of the determinant Det(T ) of the

specific tensor T is defined as the evaluation of DET at the point {vii2...im = tii2...im}.

For the convenience of the subsequent analysis, we define DET(T ) as the polynomial

with variables {tii2...im | i, i2, . . . , im ∈ [n]} through replacing vii2...im in DET by tii2...im .

There can be some specific relations on the variables {tii2...im}, such as some being zero.

In this case, T is considered as a tensor of indeterminate variables, while it is considered

as a tensor of numbers in C when we talk about Det(T ).

Given a tensor T ∈ T(Cn,m), we can associate to it a multilinear function f :

Cn × · · · × Cn → C as f(x(1), . . . ,x(m)) :=
∑

1≤i1,...,im≤n ti1...imx
(1)
i1
· · · x(m)

im
. The hy-

perdeterminant is defined as the unique irreducible polynomial (up to a scalar factor)

HDET such that its evaluation Hdet(T ) at T is zero if and only if there are nonzero

x(j) for all j ∈ {1, . . . ,m} such that ∂f

∂x
(j)
i

= 0 for all i ∈ [n] and j ∈ {1, . . . ,m}.

Then, the tensor determinant is different from the hyperdeterminant investigated in

[5, 9, 10, 22,24,25,31,32,52,74].

It is easy to see from Definition 2.1.2 that the tensor determinant generalizes the

matrix determinant [33,34,72] and the symmetric hyperdeterminant [62]. Consequently,

the notion Det(·) is meaningful with both a matrix and a tensor as arguments. It should

be pointed out that the same thing under the notion resultant2 has been extensively

studied in the monograph by Dolotin and Morozov [26]. In this chapter, we give some

new developments of the tensor determinant, and especially investigate some properties

related to the eigenvalue theory of tensors proposed by Lim [49] and Qi [62].

The rest of this chapter is organized as follows.

In the next section, we present some basic properties of the determinant. Then, in

2As resultant is created for a general polynomial system (Definition 2.1.1), we prefer to Definition

2.1.2 which is unambiguous as well.
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Section 2.3, we show that the solvability of a polynomial system is characterized by the

determinant of the leading coefficient tensor of that polynomial system. Block tensors

are discussed in Section 2.3 as well. We give an expression of the determinant of a

tensor, which has an “upper block triangular” structure, in terms of the determinants

of its two diagonal sub-tensors.

Based on a result of Morozov and Shakirov [55], in Subsection 2.4.1, we give a

trace formula for the determinant. This formula involves some differential operators.

The determinant contributes to the characteristic polynomial theory of tensors. In

Subsection 2.4.2, we analyze various related properties of the characteristic polynomial

and the determinant. Especially, a trace formula for the characteristic polynomial is

presented, which is useful for computing eigenvalues of a hypergraph. We also generalize

the eigenvalue representation for the determinant of a matrix to the determinant of a

tensor. We show that the k-th order trace of a tensor is equal to the sum of the k-

th powers of the eigenvalues of this tensor, and the coefficients of its characteristic

polynomial are recursively generated by the higher order traces.

2.2 Basic Properties of the Determinant

Let I be the identity tensor of appropriate order and dimension, e.g., ii1...im = 1 if

and only if i1 = · · · = im ∈ [n], and zero otherwise. The following definitions were

introduced by Qi [62].

Definition 2.2.1 Let T ∈ T(Cn,m). For some λ ∈ C, if the polynomial system

(λI − T ) xm−1 = 0 has a solution x ∈ Cn \ {0}, then λ is called an eigenvalue of

the tensor T and x an eigenvector of T associated with λ.

We denote by σ(T ) the set of all eigenvalues of the tensor T .
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Definition 2.2.2 Let T be an m-th order n-dimensional tensor of indeterminate vari-

ables and λ be an indeterminate variable. The determinant DET(λI − T ) of λI − T

which is a polynomial in (C[T ]) [λ], denoted by χT (λ), is called the characteristic poly-

nomial of the tensor T .

For a specific T ∈ T(Cn,m), χT (λ) ∈ C[λ]. When there is no confusion, we simplify

χT (λ) as χ(λ). Denote by V(f) the algebraic set associated to the principal ideal 〈f〉

generated by f [22, 23, 46]. By Definitions 2.1.1, 2.1.2, 2.2.1 and 2.2.2, we have the

following result.

Theorem 2.2.3 Let T be an m-th order n-dimensional tensor of indeterminate vari-

ables. Then χ(λ) ∈ C[λ, T ] is homogenous of degree n(m − 1)n−1, and for a specific

tensor T ∈ T(Cn,m),

V(χ(λ)) = σ(T ). (2.2.1)

When T is symmetric, Qi proved (2.2.1), see [62, Theorem 1(a)]. If λ is a root of

χ(λ) of multiplicity s, then we call s the algebraic multiplicity of eigenvalue λ.

For f ∈ K[x], we denote by deg(f) the degree of f . If every monomial in f has

degree deg(f), then f is called homogenous of degree deg(f).

Proposition 2.2.4 Let T be an m-th order n-dimensional tensor of indeterminate

variables tii2...im. Then,

(i) For every i ∈ [n], define Ki as the polynomial ring

C[{tji2...im | j, i2, . . . , im ∈ [n], j 6= i}].

DET(T ) ∈ Ki[{tii2...im | i2, . . . , im ∈ [n]}] is homogenous of degree (m− 1)n−1.

(ii) DET(T ) ∈ C[T ] is irreducible and homogeneous of degree n(m− 1)n−1.
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(iii) Det(I) = 1.

Proof. Denote by RES the resultant of degrees (m−1, . . . ,m−1) which is a polynomial

in the variables {ui,α | |α| = m − 1, i ∈ [n]} by Definition 2.1.1. Then, by [32,

Proposition 13.1.1] (see also [55, Page 713]), RES is homogeneous of degree (m− 1)n−1

in the variables {ui,α | |α| = m−1} for every i ∈ [n]. Consequently, by the replacement

in Definition 2.1.2, the determinant DET(T ) is homogeneous of degree (m − 1)n−1 in

the variables {tii2...im | i2, . . . , im ∈ [n]} for every i ∈ [n]. This is exactly statement (i).

By (i), we immediately get that DET(T ) ∈ C[T ] is homogeneous of degree n(m −

1)n−1. We claim that DET(T ) ∈ C[T ] is irreducible. Suppose on the contrary that

DET(T ) ∈ C[T ] can be reduced as the product of two homogenous polynomials as

DET(T ) = f(T )g(T ) (2.2.2)

with deg(f) ≥ 1 and deg(g) ≥ 1. If we replace the indeterminate variable tii2...im with

(i2, . . . , im) ∈ X(α) in the tensor T by the variable
ui,α
|X(α)| and denote the resulting tensor

by U , then we get that

RES = DET(U) = f(U)g(U).

Here the first equality follows from Definition 2.1.2 and the second from (2.2.2). Obvi-

ously, f(U), g(U) ∈ C[{ui,α}] are nonzero and of degrees deg(f) and deg(g) respectively.

Then, RES is reduced as a product of polynomials of positive degrees. This contradicts

Definition 2.1.1 (iii). Hence, RES(T ) ∈ C[T ] is irreducible.

(iii) follows from Definitions 2.1.1 (ii) and 2.1.2. �

By Proposition 2.2.4, we have the following corollary.

Corollary 2.2.5 Let T ∈ T(Cn,m). If for some i, tii2...im = 0 for all i2, . . ., im ∈ [n],

then Det(T ) = 0. In particular, the determinant of the zero tensor is zero.
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Proof. Let V be an m-th order n-dimensional tensor of indeterminate variables vii2...im

and Ki := C[{vji2...im | j, i2, . . . , im ∈ [n], j 6= i}]. Then by Proposition 2.2.4 (i),

DET(V) is a homogenous polynomial in the variable set {vii2...im | i2, . . . , im ∈ [n]} with

coefficients in the ring Ki. Moreover, Det(T ) is just the evaluation of DET(V) at the

point V = T . As tii2...im = 0 for all i2, . . . , im ∈ [n] by the assumption, Det(T ) = 0 as

desired. �

By Proposition 2.2.4 (ii), we have another corollary as follows.

Corollary 2.2.6 Let T ∈ T(Cn,m) and γ ∈ C. Then

Det(γT ) = γn(m−1)n−1

Det(T ).

2.3 Block Tensors

Let matrix A ∈ T(Cn, 2), we know that [45,72]

(i) Det(A) = 0 if and only if Ax = 0 has a solution in Cn \ {0}, and

(ii) Det(A) 6= 0 if and only if Ax = b has a unique solution in Cn for every b ∈ Cn.

We generalize such a result to the tensor determinant and the nonlinear polynomial

system in this section.

Theorem 2.3.1 Let T ∈ T(Cn,m). Then,

(i) Det(T ) = 0 if and only if T xm−1 = 0 has a solution in Cn \ {0}.

(ii) If Det(T ) 6= 0, then for any b ∈ Cn, A ∈ T(Cn, 2), and Bj ∈ T(Cn, j) for

j ∈ {3, . . . ,m−1}, T xm−1 = (Bm−1) xm−2 + · · ·+ (B3) x2 +Ax+b has a solution

in Cn.
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Proof. (i) It follows from Definitions 2.1.1 and 2.1.2 immediately.

(ii) Suppose that Det(T ) 6= 0. For any b ∈ Cn, A ∈ T(Cn, 2), and Bj ∈ T(Cn, j) for

j ∈ {3, . . . ,m− 1}, we define tensor U ∈ T(Cn+1,m) as follows:

ui1i2...im :=



ti1i2...im ∀ij ∈ [n], j ∈ [m],

−bi1 ∀i1 ∈ [n] and i2 = · · · = im = n+ 1,

−ai1i2 ∀i1, i2 ∈ [n] and i3 = · · · = im = n+ 1,

−bki1...ik ∀i1, . . . , ik ∈ [n] and ik+1 = · · · = im = n+ 1,

∀k ∈ {3, . . . ,m− 1},

0 otherwise.

(2.3.3)

Actually, the tensor U is the tensor corresponding to the homogenous polynomial in

n + 1 variables by homogenizing T xm−1 = (Bm−1) xm−2 + · · · + (B3) x2 + Ax + b. By

Corollary 2.2.5, we have that Det(U) = 0 since ui1i2...im = 0 whenever i1 = n+1. Hence,

by (i), there exists y := (xT , α)T ∈ Cn+1 \ {0} such that Uym−1 = 0. Consequently, by

(2.3.3) and the first n equations in Uym−1 = 0, we know that

T xm−1 − α
(
Bm−1

)
xm−2 − · · · − αm−3

(
B3
)

x2 − αm−2Ax− αm−1b = 0. (2.3.4)

Furthermore, we claim that α 6= 0. Otherwise, from (2.3.4), T xm−1 = 0 which means

Det(T ) = 0 by (i). It is a contradiction. Hence, from (2.3.4) we know that x
α

is a

solution to

T xm−1 =
(
Bm−1

)
xm−2 + · · ·+

(
B3
)

x2 + Ax + b.

The proof is complete. �

So, like the matrix determinants of linear equations, the tensor determinants are

criterions for the solvability of non-linear polynomial equations. It is interesting to

investigate whether T xm−1 = (Bm−1) xm−2 + · · · + (B3) x2 + Ax + b has only finitely

many solutions whenever Det(T ) 6= 0.

In the content of matrices, if a square matrix A can be partitioned as

A =

 B D

0 C
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with square sub-matrices B and C, and sub-matrix D, then Det(A) = Det(B)Det(C)

[45,72]. We now generalize this property to tensors. The following definition is straight-

forward.

Definition 2.3.2 Let T be a k-th order n-dimensional real tensor and s ∈ [n]. The

k-th order s-dimensional tensor U with entries ui1...ik = tji1 ...jik for all i1, . . . , ik ∈ [s]

is called the sub-tensor of T associated to the subset S := {j1, . . . , js}. We usually

denoted U as T (S).

For a subset S ⊆ [n], we denoted by |S| its cardinality. For x ∈ Cn, xS is defined

as an n vector with its i-th element being xi if i ∈ S and zero otherwise, x(S) is

defined as an |S|-dimensional sub-vector of x with its entries being xi for i ∈ S, and

sup(x) := {i ∈ [n] | xi 6= 0} is its support.

Though Definition 2.3.2 is for a specific tensor, the generalization to tensors of

indeterminate variables is straightforward. Given a set E ⊆ Cn, we denote by I(E) ⊆

C[x] the ideal of polynomials in C[x] which vanish identically on E. Given a set of

polynomials F := {f1, . . . , fs : fi ∈ C[x]}, we denote by V(F ) ⊆ Cn the algebraic set

associated to F , i.e., the set of the common roots of polynomials in F [22, 46].

Theorem 2.3.3 Let T be an m-th order n-dimensional tensor of indeterminate vari-

ables such that there exists an integer k ∈ {1, . . . , n− 1} satisfying tii2...im ≡ 0 for every

i ∈ {k + 1, . . . , n} and all indices i2, . . . , im such that {i2, . . . , im} ∩ [k] 6= ∅. Denote by

U and V the sub-tensors of T associated to [k] and {k + 1, . . . , n}, respectively. Then,

it holds that

DET(T ) = [DET(U)](m−1)n−k [DET(V)](m−1)k . (2.3.5)

A word on the notation is necessary before the proof. Though with the same nota-

tion, implicitly, DET(T ) is understood as the determinant for m-th order n-dimensional
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tensors, DET(U) form-th order k-dimensional tensors and DET(V) form-th order n−k-

dimensional tensors. The actual meanings are clear from the content. The notation

Det is similar.

Proof. We first show that for any specific tensor T satisfying the hypothesis,

Det(T ) = 0 ⇐⇒ Det(U)Det(V) = 0. (2.3.6)

Suppose that Det(T ) = 0. Then there exists x ∈ Cn \ {0} such that T xm−1 = 0 by

Theorem 2.3.1 (i). Denote by u ∈ Ck the vector consisting of x1, . . . , xk, and v ∈ Cn−k

the vector consisting of xk+1, . . . , xn. If v 6= 0, then from T xm−1 = 0 we get that

Vvm−1 = 0. Consequently, Det(V) = 0 by Theorem 2.3.1 (i). Otherwise, u 6= 0 and

v = 0. This, together with T xm−1 = 0, implies that Uum−1 = 0. Thus, Det(U) = 0 by

Theorem 2.3.1 (i). Hence, we have

Det(T ) = 0 =⇒ Det(U)Det(V) = 0.

Conversely, suppose that Det(U)Det(V) = 0. If Det(U) = 0, then there exists

u ∈ Ck \{0} such that Uum−1 = 0. Denote x := (uT ,0)T ∈ Cn \{0}, then T xm−1 = 0,

which implies Det(T ) = 0 by Theorem 2.3.1 (i). If Det(U) 6= 0, then Det(V) = 0, which

implies that there exists v ∈ Cn−k \ {0} such that Vvm−1 = 0. Now, by the vector v

and the tensor T , we construct the vector b ∈ Ck as

bi :=
n∑

j2,...,jm=k+1

tij2...jmvj2−k · · · vjm−k, ∀i ∈ [k] ; (2.3.7)

the matrix A ∈ T(Ck, 2) as

aij :=
∑

(q2,...,qm)∈D(j)

tiq2...qm
∏
qw>k

vqw−k, ∀i, j ∈ [k] (2.3.8)

with D(j) := {(q2, . . . , qm) | j = qp for some p ∈ {2, . . . ,m}, and ql ∈ {k+1, . . . , n}, l 6=

p}; and, the tensors Bs ∈ T(Ck, s) for s ∈ {3, . . . ,m− 1} as

bsij2...js :=
∑

(q2,...,qm)∈Ds(j2,...,js)
tiq2...qm

∏
qw>k

vqw−k, ∀i, j2, . . . , js ∈ [k] (2.3.9)
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with

Ds(j2, . . . , js) := {(q2, . . . , qm) | {qt2 , . . . , qts} = {j2, . . . , js} for some pairwise

different t2, . . . , ts in {2, . . . ,m}, and ql ∈ {k + 1, . . . , n}, l /∈ {t2, . . . , ts}}.

Since Det(U) 6= 0, by Theorem 2.3.1 (ii),

Uum−1 +
(
Bm−1

)
um−2 + · · ·+

(
B3
)
u2 + Au + b = 0

has a solution u ∈ Ck. Let x := (uT ,vT )T ∈ Cn \ {0} as v ∈ Cn−k \ {0}. By (2.3.7),

(2.3.8) and (2.3.9), we have that

(
T xm−1

)
i
=
(
Uum−1 +

(
Bm−1

)
um−2 + · · ·+

(
B3
)
u2 +Au+ b

)
i
= 0, ∀i ∈ [k].

Furthermore,

(
T xm−1

)
i

=
(
Vvm−1

)
i

= 0, ∀i ∈ {k + 1, . . . , n}.

Consequently, T xm−1 = 0 which implies Det(T ) = 0 by Theorem 2.3.1 (i).

Hence, we proved (2.3.6). In the following, we show that (2.3.5) holds. Note that

the dimension of T(Cn,m) is nm. The set of tensors satisfying the hypothesis of this

theorem forms a vector subspace S of T(Cn,m) with dimension knm−1 + (n − k)m−1.

Consequently, the number of variables of the polynomial DET(T ) is knm−1+(n−k)m−1.

In the following, the ambient space for the algebraic sets is understood as S. As sets of

variables, the sets of entries of U and V are subsets of the set of entries of T . Hence,

we can view DET(U),DET(V) ∈ C[T ]. By (2.3.6), we have

V(DET(U)DET(V)) = V(DET(T )),

which implies that

I(V(DET(T ))) = I(V(DET(U)DET(V))).

By Proposition 2.2.4 (ii), both DET(U) ∈ C[U ] and DET(V) ∈ C[V ] are irreducible.

Consequently,

I(V(DET(T ))) = I(V(DET(U)DET(V))) = 〈DET(U)DET(V)〉.
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Let
√
〈DET(T )〉 be the radical ideal of the ideal 〈DET(T )〉 [46]. Then, Hilbert’s

Nullstellensatz (see [23, Theorem 4.2]) implies that√
〈DET(T )〉 = I(V(DET(T ))) = 〈DET(U)DET(V)〉.

Since both
√
〈DET(T )〉 and 〈DET(U)DET(V)〉 are principal ideals and C[T ] is a unique

factorization domain, we have that

DET(T ) = (DET(U))r1 (DET(V))r2 (2.3.10)

for some r1, r2 ∈ N+.

By Proposition 2.2.4 (i), DET(T ) is homogenous of degree (m−1)n−1 in the variables

{t1i2...im | i2, . . . , im ∈ [n]}. By the hypothesis, DET(V) is independent of the variables

{t1i2...im | i2, . . . , im ∈ [n]}. By Proposition 2.2.4 (i) again, DET(U) is homogenous of

degree (m − 1)k−1 in the variables {t1i2...im | i2, . . . , im ∈ [k]}. Thus, r1 = (m − 1)n−k

by (2.3.10). Comparing the degrees of the both sides of (2.3.10) with Proposition 2.2.4

(ii), we get r2 = (m− 1)k and hence (2.3.5). �

2.4 The Characteristic Polynomial

By Definition 2.2.2, for any T ∈ T(Cn,m), its characteristic polynomial is χ(λ) =

Det(λI−T ). In this section, we discuss some properties of the characteristic polynomial

of a tensor related to the determinant. To this end, we give a trace formula for the

determinant in Subsection 2.4.1 first. This result, due to Morozov and Shakirov [55], is

a corner stone for the subsequent analysis of the characteristic polynomials.

2.4.1 A Trace Formula of the Determinant

Let T ∈ T(Cn,m). Define the following differential operators:

ĝi :=
n∑

i2=1

· · ·
n∑

im=1

tii2...im
∂

∂aii2
· · · ∂

∂aiim
, ∀i ∈ [n], (2.4.11)
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where A is an auxiliary n × n matrix consists of indeterminate variables aij’s. It is

clear that for every i, ĝi is a differential operator which belongs to the operator algebra

C[∂A], here ∂A is the n × n matrix with elements ∂
∂aij

’s. The Schur polynomials are

defined as:

p0(t0) = 1, and pk(t1, . . . , tk) :=
k∑
i=1

∑
dj>0,

∑i
j=1 dj=k

∏i
j=1 tdj
i!

, ∀k ≥ 1, (2.4.12)

where {t0, t1, . . .} are variables. Motivated by Cooper and Dutle [21] and Morozov and

Shakirov [55], we define the d-th order trace of the tensor T as

Trd(T ) := (m− 1)n−1

 ∑
n∑
i=1

ki=d

n∏
i=1

(ĝi)
ki

((m− 1)ki)!

Tr(A(m−1)d). (2.4.13)

We show in Proposition 2.4.4 that Tr1(T ) = (m − 1)n−1
∑n

i=1 ti...i. Hence, it is a

generalization of the trace of a matrix. Trd(T )’s are called higher order traces for

d > 1.

We now have the following proposition.

Proposition 2.4.1 Let T ∈ T(Cn,m) and the notation be defined as above. Then,

DET(T ) = 1 +
∑∞

k=1 pk

(
−Tr1(I−T )

1 , . . . ,−Trk(I−T )
k

)
. (2.4.14)

Proof. This result follows from Proposition II in Morozov and Shakirov [55], the

identity log(DET(I −A)) = Tr(log(I −A)) for the matrix A, and the definitions of the

Schur polynomials and the higher order traces. As the proof is a restatement of the

those from Sections 4–8 in Morozov and Shakirov [55] in the language of tensors, we

omit it. �

The following proposition is useful in the sequel, which also helps to give an expres-

sion of DET(T ) with only finitely many terms.

Proposition 2.4.2 Let T ∈ T(Cn,m) and the notation be defined as above. Then, the

following hold:
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(i) for every d ∈ N+, Trd(T ) ∈ C[T ] is homogenous of degree d;

(ii) for every k ∈ N+, pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)
∈ C[T ] is homogenous of degree k;

and,

(iii) for any integer k > n(m− 1)n−1, pk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)
∈ C[T ] is zero.

Proof. (i) By the formulae of ĝi’s as in (2.4.11), it is easy to see that

∑
∑n
i=1 ki=d

n∏
i=1

(ĝi)
ki

((m− 1)ki)!
∈ C[T , ∂A]

is homogeneous, and more explicitly, homogenous of degree d in the variable T and

homogeneous of degree (m− 1)d in the variable ∂A. It is also known that

Tr(Ak) =
n∑

i1=1

· · ·
n∑

ik=1

ai1i2ai2i3 · · · aik−1ikaiki1 ∈ C[A] (2.4.15)

is homogeneous of degree k. These, together with (2.4.13), imply that Trd(T ) ∈ C[T ]

is homogenous of degree d as desired.

(ii) It follows from (i) and the definitions of the Schur polynomials as in (2.4.12)

directly.

(iii) From Proposition 2.2.4 (ii), it is clear that DET(B) is an irreducible polynomial

which is homogenous of degree n(m−1)n−1 in the variables {bi1...im}. In the following, let

B := I−T . Since the entries of B consist of 1 and the entries of the tensor T , the highest

degree of DET(I −T ) viewed as a polynomial in C[T ] is not greater than n(m− 1)n−1.

This, together with (2.4.14) and (ii) which asserts that pk(−Tr1(T )
1

, . . . ,−Trk(T )
k

) ∈ C[T ]

is homogenous of degree k, implies the result (iii).

The proof is complete. �

By Proposition 2.4.2 and (2.4.14), we immediately get

DET(T ) = 1 +
∑n(m−1)n−1

k=1 pk

(
−Tr1(I−T )

1 , . . . ,−Trk(I−T )
k

)
. (2.4.16)
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This is a trace formula for the tensor determinant. It provides a way to approach

the computation of the tensor determinant. However, it involves the higher order

traces of tensors, and hence the differential operators ĝi’s. It is very hard to compute

them [26, 55]. For more details on explicit formulae for the second order trace and the

determinant of a two dimensional tensor, please refer to [35].

2.4.2 Basic Properties of the Characteristic Polynomial

Some basic properties of the characteristic polynomial are derived in this subsection.

Theorem 2.4.3 Let T ∈ T(Cn,m) and the notation be defined as above. Then

χ(λ) = Det(λI − T )

= λn(m−1)n−1

+

n(m−1)n−1∑
k=1

λn(m−1)n−1−kpk

(
−Tr1(T )

1
, . . . ,−Trk(T )

k

)
= Πλi∈σ(T )(λ− λi)mi ,

where mi is the algebraic multiplicity of the eigenvalue λi.

Proof. The first equality follows from Definition 2.2.2, and the last one from Theorem

2.2.3.

By Proposition 2.4.2 and (2.4.16), we can get that

χ(1) = Det(I − T ) = 1 +
∑n(m−1)n−1

k=1 pk

(
−Tr1(T )

1 , . . . ,−Trk(T )
k

)
. (2.4.17)

Consequently, when λ 6= 0,

χ(λ) = Det(λI − T )

= λn(m−1)n−1

Det(I − Tλ )

= λn(m−1)n−1

[
1 +

∑n(m−1)n−1

k=1 pk

(
−Tr1(T

λ
)

1 , . . . ,−Trk(T
λ

)

k

)]
= λn(m−1)n−1

[
1 +

∑n(m−1)n−1

k=1
1
λk pk

(
−Tr1(T )

1 , . . . ,−Trk(T )
k

)]
= λn(m−1)n−1

+
∑n(m−1)n−1

k=1 λn(m−1)n−1−kpk

(
−Tr1(T )

1 , . . . ,−Trk(T )
k

)
.
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Here the second equality comes from Corollary 2.2.6, the third from (2.4.17), and the

fourth from Proposition 2.4.2. Hence, the result follows from the fact that the field C

is of characteristic zero. The proof is complete. �

Theorem 2.4.3 gives a trace formula for the characteristic polynomial of the tensor

T as well as an eigenvalue representation for it.

Here are some properties concerning the coefficients of χ(λ).

Proposition 2.4.4 Let T ∈ T(Cn,m) and the notation be defined as above. Then,

(i) p1(−Tr1(T )) = −Tr1(T ) = −(m− 1)n−1
∑n

i=1 tii...i,

(ii) p2(−Tr1(T )
1

,−Tr2(T )
2

) = 1
2

([Tr1(T )]2 − Tr2(T )), and

(iii) pn(m−1)n−1

(
−Tr1(T )

1
, . . . ,−Trn(m−1)n−1 (T )

n(m−1)n−1

)
= (−1)n(m−1)n−1

Det(T ).

Proof. (i) By (2.4.12), we know that p1(−Tr1(T )) = −Tr1(T ). Furthermore, by

(2.4.13), it is easy to see that

Tr1(T ) = (m− 1)n−1

n∑
i=1

ĝi
(m− 1)!

Tr(Am−1)

= (m−1)n−1

(m−1)!

∑n
i=1

[∑n
i2=1 · · ·

∑n
im=1 tii2...im

∂
∂aii2

· · · ∂
∂aiim

]
Tr(Am−1)

= (m−1)n−1

(m−1)!

∑n
i=1

[∑n
i2=1 · · ·

∑n
im=1 tii2...im

∂
∂aii2

· · · ∂
∂aiim

]
·
(∑n

i1=1 · · ·
∑n

im−1=1 ai1i2ai2i3 · · · aim−2im−1aim−1i1

)
= (m−1)n−1

(m−1)!

∑n
i=1

[
tii...i

∂
∂aii
· · · ∂

∂aii
(aii)

m−1
]

= (m− 1)n−1

n∑
i=1

tii...i.

Here, the fourth equality follows from the fact that: (a) the differential operator in the

right hand side of the third equality contains only items ∂
∂ai?

’s for ? ∈ [n] and the total

degree is m − 1, and (b) only terms in Tr(Am−1) that contain the same ∂
∂ai?

’s of total

degree m − 1 can contribute to the result and this case occurs only when every ? = i

by (2.4.15). Consequently, the result (i) follows.
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(ii) follows from the definition (2.4.12) by direct calculation.

(iii) By Theorem 2.4.3, it is clear that

χ(0) = Det(−T ) = pn(m−1)n−1

(
−Tr1(T )

1
, . . . ,−

Trn(m−1)n−1(T )

n(m− 1)n−1

)
.

Moreover, DET(−T ) ∈ C[T ] is homogenous of degree n(m−1)n−1 by Proposition 2.2.4

(ii), which implies that Det(−T ) = (−1)n(m−1)n−1
Det(T ). Consequently, the result

follows. �

Corollary 2.4.5 Let T ∈ T(Cn,m) and the notation be defined as above. Then,

(i)
∑

λi∈σ(T ) miλi = (m− 1)n−1
∑n

i=1 tii...i = Tr1(T ),

(ii)
∑

λi∈σ(T ) miλ
2
i = Tr2(T ), and

(iii) Πλi∈σ(T )λ
mi
i = Det(T ).

Here mi is the algebraic multiplicity of the eigenvalue λi.

Proof. The results (i) and (iii) follow from the eigenvalue representation of χ(λ)

in Theorem 2.4.3 and the coefficients of χ(λ) in Proposition 2.4.4 immediately. For

(ii), by Proposition 2.4.4 (ii) and Newton’s identities for the roots and the coeffi-

cients of a polynomial, we get that
∑

i<j,λi,λj∈σ(T )mimjλiλj = p2(−Tr1(T )
1

,−Tr2(T )
2

) =

1
2

([Tr1(T )]2 − Tr2(T )). Consequently, (ii) follows from (i) and the perfect square for-

mula. �

Remark 2.4.6 In [62], Qi proved the results in Corollary 2.4.5 (i) and (iii) for T ∈

S(Rn,m) (the space of real symmetric tensors of orderm and dimension n). By Theorem

2.3.1 and Corollary 2.4.5, we see that the solvability of a homogeneous polynomial

equation is characterized by the zero eigenvalue of the underlying tensor.
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In the following, we generalize Corollary 2.4.5 (i) and (ii) to Trk(T ) for all k ∈

[n(m− 1)n−1]. To this end, we need the following lemmas.

Lemma 2.4.7 Let pk(t1, . . . , tk) be the Schur polynomials defined as (2.4.12). Then,

for all k ∈ N+,

∂

∂ti
pk = pk−i, ∀i ∈ [k]. (2.4.18)

Proof. The case for i = k is easy to see, since p0 = 1 and the only monomial in pk

having the variable tk is tk by (2.4.12).

In the following, we show the cases i ∈ [k − 1]. For each fixed i, we have that

pk−i(t1, . . . , tk−i) =
∑k−i

s=1

∑
dj>0,

∑s
j=1 dj=k−i

∏s
j=1 tdj
s!

by (2.4.12). To prove (2.4.18), it is

sufficient to show that there is a one to one correspondence between the monomials in

pk−i and these in pk(t1, . . . , tk) =
∑k

w=1

∑
dj>0,

∑w
j=1 dj=k

Πwj=1tdj
w!

having variable ti, and

their coefficients satisfying the derivative relation.

First, the one to one correspondence between the monomials in pk−i and these in pk

having variable ti is obvious: for any monomial c
∏s

j=1 tdj with nonzero coefficient c in

pk−i, there is the monomial dti
∏s

j=1 tdj with nonzero coefficient d in pk, and vice verse.

Second, suppose that c
s!

∏s
j=1 tdj with nonzero coefficient c is a monomial in the

polynomial pk−i for some s ∈ [k − i] and d1, . . . , ds. Then, by (2.4.12), we see that

the number of cases of the ordered s-tuples (q1, . . . , qs) such that
∑s

j=1 qj = k − i and

qj > 0, j ∈ [s] resulting in
∏s

j=1 tdj is c. For any such ordered (q′1, . . . , q
′
s), we get

s + 1 ordered s + 1-tuples (i, q′1, . . . , q
′
s), (q

′
1, i, . . . , q

′
s) . . . , (q

′
1, . . . , q

′
s, i) such that every

s+ 1-tuple results in ti
∏s

j=1 tdj . Note that some of the s+ 1-tuples may be the same.

Let r be the degree of the variable ti in the monomial ti
∏s

j=1 tdj . Consequently, the

number of cases of the ordered s+ 1-tuples (q1, . . . , qs, qs+1) such that
∑s+1

j=1 qj = k and

qj > 0, j ∈ [s+ 1] resulting in ti
∏s

j=1 tdj is (s+1)c
r

. These, together with (2.4.12), imply
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that the monomial c
s!

∏s
j=1 tdj in pk−i corresponds to the following monomial in pk:

(s+ 1)c

r

1

(s+ 1)!
ti

s∏
j=1

tdj .

The derivative of this monomial with respective to ti is exactly c
s!

∏s
j=1 tdj . The proof

is complete. �

Lemma 2.4.8 Let x = (x1, . . . , xn) and h1, . . . , hn ∈ C[x] be polynomials. If there is

some f ∈ C[x] satisfying the following system of differential equations

∂

∂xi
f = hi, ∀i ∈ [n]

and f(0) = 0, then f is unique.

Proof. First, f(0) = 0 implies that the constant term of f is zero. Then, as C

is algebraically closed and of characteristic zero, it is sufficient to prove that every

monomial of positive degree in f is uniquely determined by the differential equations.

This is easy to see: (i) every monomial of f containing the variable xi is uniquely

determined by the i-th differential equation in the hypothesis, and (ii) every monomial

of positive degree of f has at least one variable in the set {xi | i ∈ [n]}. The proof is

complete. �

Lemma 2.4.9 Let pk(t1, . . . , tk) be the Schur polynomials defined as (2.4.12). Then,

for all k ∈ N+,

kpk = ktk +
k−1∑
i=0

itipk−i. (2.4.19)

Proof. On the one side, by Lemmas 2.4.7 and 2.4.8, we know that for all k ∈ N+, pk

defined as (2.4.12) is the unique polynomial satisfying

∂

∂ti
pk = pk−i, ∀i ∈ [k]. (2.4.20)
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On the other side, we show that polynomials qk(t1, . . . , tk) defined through the recursive

formulae

q0 = 1, kqk = ktk +
k−1∑
i=0

itiqk−i, ∀k = 1, 2, . . . (2.4.21)

satisfy (2.4.20) through replacing pk’s by qk’s as well. Consequently, qk = pk for all

k ∈ N and (2.4.19) follows.

The proof is by induction, the first step for k = 1 is obvious, since ∂
∂t1
q1 = 1 = q0.

Second, suppose that all of {q1, . . . , qk} satisfy (2.4.20) for some k ≥ 1, we prove that

qk+1 satisfies (2.4.20) as well. It is easy to see that ∂
∂tk+1

qk+1 = 1 = q0 by (2.4.21) and

the fact that qs is independent of tk+1 for s ≤ k. For s ∈ [k], by (2.4.21)

(k + 1)
∂

∂ts
qk+1 =

∂

∂ts

(
k∑
i=0

itiqk+1−i

)

=
∑

0≤i≤k, i6=s

iti
∂

∂ts
qk+1−i + sts

∂

∂ts
qk+1−s + sqk+1−s

=
k∑
i=0

iti
∂

∂ts
qk+1−i + sqk+1−s

=
k+1−s∑
i=1

iti
∂

∂ts
qk+1−i + sqk+1−s

=
k+1−s∑
i=1

itiqk+1−i−s + sqk+1−s

=
k−s∑
i=1

itiqk+1−s−i + (k + 1− s)tk+1−s + sqk+1−s

= (k + 1− s)qk+1−s + sqk+1−s

= (k + 1)qk+1−s,

where the fourth equality follows from the fact that qw is independent of ts for w ≤ s−1,

the fifth from the inductive hypothesis, the sixth from the fact that q0 = 1, and the

seventh from (2.4.21). Therefore, qk+1 satisfies (2.4.20). Then, qk satisfies (2.4.20) for

all k ∈ N+ by induction. The proof is complete. �

Now, we are in the position to give the main theorem in this section.
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Theorem 2.4.10 Let T ∈ T(Cn,m). Denote by pi the codegree i coefficient of the

characteristic polynomial of the tensor T . Then, for all k ∈ [n(m− 1)n−1],

Trk(T ) = −kpk −
k−1∑
i=1

piTrk−i(T ).

Moreover, for all k ∈ [n(m− 1)n−1],

Trk(T ) =
∑

λi∈σ(T )

miλ
k
i ,

where mi is the algebraic multiplicity of the eigenvalue λi.

Proof. The first half of this theorem follows from Theorem 2.4.3 and Lemma 2.4.9

by inserting ti with −Tri(T )
i

. The second half follows from the first half and Newton’s

identities on the roots and the coefficients of a polynomial: for an univariate polynomial

equation

tk + a1t
k−1 + · · ·+ ak = 0,

let si be the sum of the i-th powers of its roots with multiplicity. Then,

si = −iai −
i−1∑
j=1

si−jaj.

The proof is complete. �

Remark 2.4.11 Theorem 2.4.10 reveals two facts: (i) the coefficients of the character-

istic polynomial of a tensor are recursively generated by the higher order traces of the

tensor, and (ii) the higher order traces of a tensor are elementary symmetric functions

of powers of the eigenvalues of the tensor. It is a generalization of Newton’s identities on

the characteristic polynomial for a matrix to a tensor. It also indicates the fundamental

roles of the higher order traces in the eigenvalue theory of tensors.
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Chapter 3

Nonnegative Tensors

3.1 Introduction

In this chapter, we study the partition of nonnegative tensors and numerical algorithms

for finding the spectral radii of nonnegative tensors.

The topic on eigenvalues of nonnegative tensors has attracted much attention [13,15–

18,29,40,49–51,57,60,78–84,86]. Researchers studied the Perron-Frobenius theorem for

nonnegative tensors and algorithms for finding their largest eigenvalues, i.e., the spectral

radii. Most results are based on the notion of irreducibility. In general, there are several

classes of nonnegative tensors [13,15,29,36,49,60,84]. In this thesis, we mainly concern

on the notion of weak irreducibility, which is related to hypergraphs [42, 61, 66]. This

class of nonnegative tensors was first proposed in [29].

The rest of this chapter contains three sections. In the next section, we introduce

a simple and equivalent definition of the weakly irreducible nonnegative tensors. Some

properties related to spectral hypergraph theory are reviewed. Then, in Section 3.3,

we propose a power method for finding the largest eigenvalue of a weakly irreducible

nonnegative tensor, and establish its global R-linear convergence. In Section 3.4, we
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show that for a nonnegative tensor T , always there exists a partition of the index set

[n] such that every sub-tensor induced by the partition is weakly irreducible, and the

largest eigenvalue of T can be obtained from those largest eigenvalues of the induced

sub-tensors.

3.2 Weakly Irreducible Nonnegative Tensors

The definition of weak irreducibility for nonnegative tensors by Friedland et al. [29] relies

on the strong connectivity of a graph associated to a polynomial map [30]. Alternatively,

we use the following simple and equivalent definition [36].

Definition 3.2.1 Let T be a nonnegative tensor of order m and dimension n.

• We call a nonnegative matrix R(T ) the representation associated to the nonneg-

ative tensor T , if the (i, j)-th element of R(T ) is
∑
{i2,...,im}3j tii2...im.

• We call the tensor T weakly reducible if its representation R(T ) is a reducible

matrix, and weakly primitive if R(T ) is a primitive matrix. If T is not weakly

reducible, then it is called weakly irreducible.

For convenience, a one dimensional tensor (i.e., a scalar) is regarded as weakly

irreducible. We summarize the necessary Perron-Frobenius theorem for nonnegative

tensors in the next lemma. For comprehensive references on this theory, see [13,15,29,

36,67,78,79] and references therein.

Lemma 3.2.2 Let T be a nonnegative tensor. Then, we have the followings.

(i) ρ(T ) is an H+-eigenvalue of T .

(ii) If T is weakly irreducible, then ρ(T ) is the unique H++-eigenvalue of T .
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Proof. By Definition 1.2.1, the conclusion (i) follows from [79, Theorem 2.3]. The

conclusion (ii) follows from [29, Theorem 4.1]. �

The next lemma is useful.

Lemma 3.2.3 Let B and C be two nonnegative tensors, and B ≥ C in the sense of

componentwise. If B is weakly irreducible and B 6= C, then ρ(B) > ρ(C). Thus, if

x ∈ Rn
+ is an eigenvector of B corresponding to ρ(B), then x ∈ Rn

++ is positive.

Proof. By [78, Theorem 3.6], ρ(B) ≥ ρ(C) and the equality holding implies that

|C| = B. Since C is nonnegative and B 6= C, we must have the strict inequality. The

second conclusion follows immediately from the first one and the weak irreducibility of

B. For another proof, see [78, Lemma 3.5]. �

Note that the second conclusion of Lemma 3.2.3 is equivalent to that ρ(S) < ρ(B)

for any sub-tensor S of B other than the trivial case S = B. By Theorem 3.4.4, without

the weakly irreducible hypothesis, it is easy to construct an example such that the strict

inequality in Lemma 3.2.3 fails.

3.3 A Globally R-linearly Convergent Power Method

We present here a modification of the power method proposed in [29].

Algorithm 3.3.1 (A Higher Order Power Method (HOPM))

Step 0 Initialization: choose x(0) ∈ Rn
++. Let k := 0.
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Step 1 Compute

x̄(k+1) := T (x(k))m−1, x(k+1) :=
(x̄(k+1))

[ 1
m−1 ]

eT
[
(x̄(k+1))

[ 1
m−1 ]

] ,
α
(
x(k+1)

)
:= max1≤i≤n

(T (x(k))m−1)
i

(x(k))
m−1

i

and β
(
x(k+1)

)
:= min1≤i≤n

(T (x(k))m−1)
i

(x(k))
m−1

i

.

Step 2 If α
(
x(k+1)

)
= β

(
x(k+1)

)
, stop. Otherwise, let k := k + 1, go to Step 1.

Algorithm 3.3.1 is well-defined if the underlying tensor T is weakly irreducible, as in

this case, T xm−1 > 0 for any x > 0. The following theorem establishes the convergence

of Algorithm 3.3.1 if the underlying tensor T is weakly primitive, where we need to use

the concept of Hilbert’s projective metric [58]. We first recall such a concept. For any

x,y ∈ Rn
+ \ {0}, if there are α, β > 0 such that αx ≤ y ≤ βx, then x and y are called

comparable. If x and y are comparable, and define

m(y/x) := sup{α > 0 | αx ≤ y} and M(y/x) := inf{β > 0 | y ≤ βx},

then, the Hilbert’s projective metric d can be defined by

d(x,y) :=

 log(M(y/x)
m(y/x)

), if x and y are comparable,

+∞, otherwise

for x,y ∈ Rn
+ \ {0}. Note that if x,y ∈ ∆n := {z ∈ Rn

++ | eTz = 1}, then d(x,y) = 0 if

and only if x = y. Actually, it is easy to check that d is a metric on ∆n.

For a nonnegative tensor T , we define a function FT : Rn
+ → Rn

+ as

(FT )i(x) :=

(
n∑

i2,...,im=1

tii2...imxi2 · · · xim

) 1
m−1

(3.3.1)

for all i ∈ [n] and x ∈ Rn
+, then the eigenvalues of T is strongly related to the eigenvalue

problem for the nonlinear map FT discussed in [58].

Theorem 3.3.2 Suppose that T is a weakly irreducible nonnegative tensor of order m

and dimension n. Then, the following results hold.
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(i) T has a positive eigenpair (λ,x), and x is unique up to a multiplicative constant.

(ii) Let (λ∗,x
∗) be the unique positive eigenpair of T with

∑n
i=1 x

∗
i = 1. Then,

min
x∈Rn++

max
1≤i≤n

(T xm−1)i
xm−1
i

= λ∗ = max
x∈Rn++

min
1≤i≤n

(T xm−1)i
xm−1
i

.

(iii) If (ν,v) is another eigenpair of T , then |ν| ≤ λ∗.

(iv) Suppose that T is weakly primitive and the sequence {x(k)} is generated by Al-

gorithm 3.3.1. Then, {x(k)} converges to the unique vector x∗ ∈ Rn
++ satisfying

T (x∗)m−1 = λ∗(x
∗)[m−1] and

∑n
i=1 x

∗
i = 1, and there exist constant θ ∈ (0, 1) and

positive integer M such that

d(x(k),x∗) ≤ θ
k
M
d(x(0),x∗)

θ
(3.3.2)

holds for all k ≥ 1.

Proof. Except the result in (3.3.2), all the other results in this theorem can be easily

obtained from [29, Theorem 4.1, Corollaries 4.2, 4.3 and 5.1]. So, we only give the proof

of (3.3.2) here. We have the following observations first:

• Rn
+ is a normal cone in Banach space Rn [58], since y ≥ x ≥ 0 implies ‖y‖ ≥ ‖x‖;

• Rn
+ has nonempty interior Rn

++ which is an open cone, and FT : Rn
++ → Rn

++ is

continuous and order-preserving by the nonnegativity of tensor T ;

• FT is homogeneous of degree 1 in Rn
++;

• the set ∆n is connected and T has an eigenvector x∗ in ∆n by Theorem 3.3.2 (i);

• by (3.3.1), FT is continuously differentiable in an open neighborhood of x∗, since

x∗ > 0;

• by Definition 3.2.1, R(T ) is primitive, hence there exists an integer N such that

[R(T )]N > 0. So, [R(T )]N x is comparable with x∗ for any nonzero x ∈ Rn
+;
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• R(T ) : Rn → Rn is a compact linear map, hence its essential spectrum radius

is zero [58, Page 38], while its spectral radius is positive since it is a primitive

matrix [3].

Hence, by [58, Corollary 2.5 and Theorem 2.7], we have that there exist a constant

θ ∈ (0, 1) and a positive integer M such that

d(x(Mj),x∗) ≤ θjd(x(0),x∗), (3.3.3)

where d denotes the Hilbert’s projective metric on Rn
+ \ {0}.

By [58, Proposition 1.5], we also have that

d(FT (x), FT (y)) ≤ d(x,y) (3.3.4)

for any x,y ∈ Rn
+. Since λ∗ > 0, by the property of Hilbert’s projective metric d [58,

Page 13] we have that

d(x(k+1),x∗) = d

(
FT (x(k))

eTFT (x(k))
,x∗
)

= d

(
FT (x(k))

eTFT (x(k))
,

1

(λ∗)
1

m−1

FT (x∗)

)
= d(FT (x(k)), FT (x∗)) ≤ d(x(k),x∗)

holds for any k. So, for any k ≥ M , we can find the largest j such that k ≥ Mj and

M(j + 1) ≥ k. Hence,

d(x(k),x∗) ≤ d(x(Mj),x∗) ≤ θjd(x(0),x∗) ≤ θ
k
M
−1d(x(0),x∗)

which implies (3.3.2) for all k ≥M . When 1 ≤ k < M , we have θ
k
M > θ, since θ ∈ (0, 1).

Therefore, (3.3.2) is true for all k ≥ 1. �

We denote by x[p] a vector with its i-th element being xpi . By Lemma 3.2.2 and

3.3.2, the following result holds obviously.

Theorem 3.3.3 Suppose that T is a weakly irreducible nonnegative tensor of order m

and dimension n, and the sequence {x(k)} is generated by Algorithm 3.3.1 with T being
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replaced by T + I. Then, {x(k)} converges to the unique vector x∗ ∈ Rn
++ satisfying

T (x∗)m−1 = λ∗(x
∗)[m−1] and

∑n
i=1 x

∗
i = 1, and there exist a constant θ ∈ (0, 1) and a

positive integer M such that (3.3.2) holds for all k ≥ 1.

This method improves the literature very well, please see [36] for the comparisons.

Theorem 3.3.3 is one of the corner stones for us to develop a method for finding the

spectral radius of a nonnegative tensor which is not necessarily weakly irreducible.

3.4 Partition of Nonnegative Tensors

If a nonnegative tensor T of order m and dimension n is weakly irreducible, then

from Theorem 3.3.3, we can find the spectral radius and the corresponding positive

eigenvector of T by using Algorithm 3.3.1. If T is not weakly irreducible, there is no

guarantee for the convergence as that in Theorem 3.3.3.

It is well known for nonnegative matrices that: for a general nonnegative matrix,

we can place it into an upper block triangular form with irreducible blocks through

simultaneous row/column permutations, and the spectral radius is equal to the largest

of the spectral radii of the block sub-matrices. In this section, we show that if a

nonnegative tensor T is not weakly irreducible, then there exists a partition of the

index set [n] such that every sub-tensor induced by the set in the partition is weakly

irreducible, and the largest eigenvalue of T can be obtained from these induced sub-

tensors. Thus, we can find the spectral radius of a general nonnegative tensor by using

Algorithm 3.3.1 for these induced weakly irreducible sub-tensors. The following result

is useful.

Theorem 3.4.1 [79, Theorem 2.3] For a nonnegative tensor T ∈ T(Cn,m), ρ(T ) is

an eigenvalue with a nonnegative eigenvector x ∈ Rn
+ corresponding to it.
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To develop an algorithm for general nonnegative tensors, we prove the following

theorem which is an extension of the corresponding result for nonnegative matrices [3].

Theorem 3.4.2 Suppose that T ∈ T(Cn,m) is nonnegative. If T is weakly reducible,

then there is a partition {S1, . . . , Sk} of [n] such that every tensor in {T (Sj) | j ∈ [k]}

is weakly irreducible.

Proof. Since T is weakly reducible, by Definition 3.2.1 we can obtain that the matrix

R(T ) is reducible. Thus, we can find a partition {J1, . . . , Jl} of [n] such that

(?) every matrix (a second order tensor) in {[R(T )]Ji | i ∈ [l]} is irreducible and

[R(T )]st = 0 for any s ∈ Jp and t ∈ Jq such that p > q.

Actually, by the definition of reducibility of a matrix, we can find a partition {J1, J2}

of [n] such that [R(T )]st = 0 for any s ∈ J2 and t ∈ J1. If both [R(T )]J1 and [R(T )]J2

are irreducible, then we are done. Otherwise, we can repeat the above analysis to any

reducible block(s) obtained above. In this way, since [n] is a finite set, we can arrive at

the desired result (?).

Now, if every tensor in {T (Ji) | i ∈ [l]} is weakly irreducible, then we are done.

Otherwise, we repeat the above procedure to generate a partition of T to these induced

sub-tensors which are not weakly irreducible. Since [n] is finite, this process will stop

in finite steps. Hence, the theorem follows. �

By Theorem 3.4.2, we have the following corollary.

Corollary 3.4.3 Suppose that T is a nonnegative tensor of order m and dimension n.

If T is weakly irreducible, then T +I is weakly primitive; otherwise, there is a partition

{S1, . . . , Sk} of [n] such that every tensor in {(T +I)(Sj) | j ∈ [k]} is weakly primitive.
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Theorem 3.4.4 Suppose that T is a weakly reducible nonnegative tensor of order m

and dimension n, and {S1, . . . , Sk} is the partition of [n] determined by Theorem 3.4.2.

Then, ρ(T ) = ρ(T (Sp)) for some p ∈ [k].

Proof. By the proof of Theorem 3.4.2, for the nonnegative matrix R(T ), we can find

a partition {J1, . . . , Jl} of [n] such that

• every matrix in {[R(T )]Ji | i ∈ [l]} is irreducible and [R(T )]st = 0 for any s ∈ Jp
and t ∈ Jq such that p > q.

First, we have that ρ(TJi) ≤ ρ(T ) for all i ∈ [l] by Lemma 3.2.3.

Then, denote by (ρ(T ),x) a nonnegative eigenpair of T which is guaranteed by

Theorem 3.4.1. Since [R(T )]ij = 0 for all i ∈ Jl and j ∈ ∪l−1
s=1Js. We must have

tii2...im = 0 ∀i ∈ Jl, ∀{i2, . . . , im} 6⊆ Jl. (3.4.5)

Hence, for all i ∈ Jl, we have

ρ(T )xm−1
i = (T xm−1)i =

n∑
i2,...,im=1

tii2...imxi2 · · ·xim

=
n∑

{i2,...,im}⊆Jl

tii2...imxi2 · · ·xim =
{
T (Jl) (x(Jl))

m−1}
i
,

where the third equality follows from (3.4.5). If x(Jl) 6= 0, then (ρ(T ),x(Jl)) is a

nonnegative eigenpair of tensor T (Jl), and if x(Jl) = 0, then we have

T (∪l−1
j=1Jj)

(
x(∪l−1

j=1Jj)
)m−1

= ρ(T )
[
x(∪l−1

j=1Jj)
][m−1]

.

In the later case, repeat the above analysis with T being replaced by T (∪l−1
j=1Jj). Since

x 6= 0 and l is finite, we must find some t ∈ {1, . . . , l} such that x(Jt) 6= 0 and

(ρ(T ),x(Jt)) is a nonnegative eigenpair of the tensor T (Jt).

Now, if T (Jt) is weakly irreducible, we are done since Jt = Sp for some p ∈ [k] by

the proof of Theorem 3.4.2. Otherwise, repeat the above analysis with T and x being
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replaced by T (Jt) and x(Jt), respectively. Such a process is finite, since n is finite.

Thus, we always obtain a weakly irreducible nonnegative tensor T (Sp) with Sp ⊆ [n]

for some p such that (ρ(T ),x(Sp)) is a nonnegative eigenpair of tensor T (Sp).

The proof is complete. �

Note that if T is furthermore symmetric, then we can get a diagonal block represen-

tation of T with diagonal blocks T (Si) (after some permutation, if necessary). Now, by

Corollary 3.4.3 and Theorems 3.3.3, 3.4.2 and 3.4.4, we can get the following theorem.

Theorem 3.4.5 Suppose that T is a nonnegative tensor of order m and dimension n.

(a) If T is weakly irreducible, then T + I is weakly primitive, and hence, Algorithm

3.3.1 with T being replaced by T + I converges to the unique positive eigenpair

(ρ(T +I),x) of T +I. Moreover, (ρ(T +I)−1,x) is the unique positive eigenpair

of T .

(b) If T is not weakly irreducible, then, we can get a set of weakly irreducible tensors

{T (Sj) | j ∈ [k]} with k > 1 by Theorem 3.4.2. For each j ∈ [k], we use

item (a) to find the unique positive eigenpair (ρ(T (Sj)),x
j) of T (Sj) which is

guaranteed by Corollary 3.4.3 when |Sj| ≥ 2 or the eigenpair (T (Sj), 1) when

|Sj| = 1. Then, ρ(T ) = maxj∈[k] ρ(TSj) by Theorem 3.4.4. If T is furthermore

symmetric, then, x with x(Sj∗) = xj
∗

is a nonnegative eigenvector of T where

j∗ ∈ argmaxj=1,...,kρ(T (Sj))

Remark 3.4.6 We can find the partition in the above theorems through the correspond-

ing partition of the nonnegative representation matrix of T and its induced tensors

according to Theorem 3.4.4.

For symmetric nonnegative tensors, the resulting diagonal block representations for

symmetric nonnegative tensors are useful. Recently, Qi proved that for a symmetric
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nonnegative tensor T , it holds that [67, Theorem 2]

ρ(T ) = max{T xm | x ∈ Rn
+,
∑
i∈[n]

xmi = 1}. (3.4.6)

We summarize the above results in the next theorem with some new observations.

Theorem 3.4.7 Let T be a symmetric nonnegative tensor of order m and dimension

n. Then, there exists a pairwise disjoint partition {S1, . . . , Sr} of the set [n] such that

every tensor T (Sj) is weakly irreducible. Moreover, we have the followings.

(i) For any x ∈ Cn,

T xm =
∑
j∈[r]

T (Sj)x(Sj)
m, and ρ(T ) = max

j∈[r]
ρ(T (Sj)).

(ii) λ is an eigenvalue of T with eigenvector x if and only if λ is an eigenvalue of

T (Si) with eigenvector x(Si)
m
√∑

j∈Si
|xj |m

whenever x(Si) 6= 0.

(iii) ρ(T ) = max{T xm | x ∈ Rn
+,

∑
i∈[n]

xmi = 1}. Furthermore, x ∈ Rn
+ is an eigen-

vector of T corresponding to ρ(T ) if and only if it is an optimal solution of the

maximization problem (3.4.6).

Proof. (i) By Theorem 3.4.2, there exists a pairwise disjoint partition {S1, . . . , Sr} of

the set [n] such that every tensor T (Sj) is weakly irreducible. Moreover, by the proof for

Theorem 3.4.2 and the fact that T is symmetric, {T (Sj), j ∈ [r]} encode all the possible

nonzero entries of the tensor T . After a reordering of the index set, if necessary, we

get a diagonal block representation of the tensor T . Thus, T xm =
∑

j∈[r] T (Sj)x(Sj)
m

follows for every x ∈ Cn. The spectral radii characterization is Theorem 3.4.4.

(ii) follows from the partition immediately.

(iii) Suppose that x ∈ Rn
+ is an eigenvector of T corresponding to ρ(T ), then

ρ(T ) = xT (T xm−1). Hence, x is an optimal solution of (3.4.6).
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On the other side, suppose that x is an optimal solution of (3.4.6). Then, by (i), we

have

ρ(T ) = T xm = T (S1)x(S1)m + · · ·+ T (Sr)x(Sr)
m.

Whenever x(Si) 6= 0, we must have ρ(T )(
∑
j∈Si

(x(Si))
m
j ) = T (Si)x(Si)

m, since we have

that ρ(T )(
∑
j∈Si

(y(Si))
m
j ) ≥ T (Si)y(Si)

m for any y ∈ Rn
+ by (3.4.6). Hence, ρ(T (Si)) =

ρ(T ). By Lemma 3.2.3, (3.4.6) and the weak irreducibility of T (Si), we must have that

x(Si) is a positive vector whenever x(Si) 6= 0. Otherwise, ρ([T (Si)](sup(x(Si)))) =

ρ(T (Si)) with sup(x(Si)) being the support of x(Si). Thus,

max{T (Si)z
m | z ∈ R|Si|+ ,

∑
i∈Si

zmi = 1}

has an optimal solution x(Si) in R|Si|++. By optimization theory [4], we must have that

(T (Si)− ρ(T )I)x(Si)
m−1 = 0. Then, by (ii), x is an eigenvector of T . �
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Chapter 4

The Laplacian of a Uniform

Hypergraph

4.1 Introduction

In this chapter, we establish some basic facts on the spectrum of the normalized Lapla-

cian tensor of a uniform hypergraph. It is an analogue of the spectrum of the normalized

Laplacian matrix of a graph [19]. This work is derived by the recently rapid develop-

ments on both the spectral hypergraph theory [21, 41, 48–50, 61, 66, 70, 71, 75–77] and

the spectral theory of tensors [13,15,29,35,36,38,43,48–50,57,62–64,67,78,79].

In the literature [41,48,75,77], all of these Laplacian tensors are in the spirit of the

scheme of sums of powers. We will discuss that in Chapter 5. In formalism, they are

not as simple as their matrix counterparts which can be written as D−A or D+A with

A the adjacency matrix and D the diagonal matrix of degrees of a graph. Also, this

approach only works for even-order hypergraphs. Qi [66] proposed a simple definition

D − A for the Laplacian tensor and D + A for the signless Laplacian tensor. Here

A = (ai1...ik) is the adjacency tensor of a k-uniform hypergraph and D = (di1...ik) the
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diagonal tensor with its diagonal elements being the degrees of the vertices. This is a

natural generalization of the definition for D−A and D+A in spectral graph theory [7].

The elements of the adjacency tensor, the Laplacian tensor and the signless Laplacian

tensors are rational numbers.

On the other hand, there is another approach in spectral graph theory for the

Laplacian of a graph [19]. Suppose that G is a graph without isolated vertices. Let

the degree of vertex i be di. The Laplacian, or the normalized Laplacian matrix, of G

is defined as L = I − Ā, where I is the identity matrix, Ā = (āij) is the normalized

adjacency matrix, āij = 1√
didj

, if vertices i and j are connected, and āij = 0 otherwise.

This approach involves irrational numbers in general. However, it is seen that λ is an

eigenvalue of the Laplacian L if and only if 1 − λ is an eigenvalue of the normalized

adjacency matrix Ā. A comprehensive theory was developed based upon this by Chung

[19].

In this chapter, we will investigate the normalized Laplacian tensor approach. A

formal definition of the normalized Laplacian tensor and the normalized adjacency

tensor will be given in Definition 4.2.3.

In the sequel, the normalized Laplacian tensor is simply called the Laplacian as

in [19], and the normalized adjacency tensor simply as the adjacency tensor. In this

chapter, hypergraphs refer to k-uniform hypergraphs on n vertices. Recall that, for

a positive integer n, we use the convention [n] := {1, . . . , n}. Let G = (V,E) be a

k-uniform hypergraph with vertex set V = [n] and edge set E, and di be the degree of

the vertex i. If k = 2, then G is a graph.

For a graph, let λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of L in increasing order.

The following results are fundamental in spectral graph theory [19, Section 1.3].

(i) λ0 = 0 and
∑

i∈[n−1]

λi ≤ n with equality holding if and only if G has no isolated

vertices.
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(ii) 0 ≤ λi ≤ 2 for all i ∈ [n− 1], and λn−1 = 2 if and only if a connected component

of G is bipartite and nontrivial.

(iii) The spectrum of a graph is the union of the spectra of its connected components.

(iv) λi = 0 and λi+1 > 0 if and only if G has exactly i+ 1 connected components.

Our first major work is to show that the above results can be generalized to the

Laplacian L of a uniform hypergraph. Please check Section 1.4 for the one to one

correspondence. Our second major work is that we study the smallest H+-eigenvalues

of the sub-tensors of the Laplacian. Our third major work is that we introduce the

concept of spectral components of a hypergraph and investigate their intrinsic roles in

the structure of the spectrum of the hypergraph.

The rest of this chapter begins with some basic definitions on uniform hypergraphs.

The spectral components and the flower hearts of a hypergraph are introduced.

In Section 4.3.1, some basic facts about the spectrum of the adjacency tensor are dis-

cussed. Then, some properties on the spectrum of the Laplacian are investigated in Sec-

tion 4.3.2. We characterize all the H+-eigenvalues of the Laplacian through the spectral

components and the flower hearts of the hypergraph in Section 4.4.1. In Section 4.4.2,

the H+-geometric multiplicity is introduced, and the second smallest H+-eigenvalue is

explored.

The smallest H+-eigenvalues of the sub-tensors of the Laplacian are discussed in

Section 4.5. The variational characterizations of these eigenvalues are given in Section

4.5.1. Then their connections to the edge connectivity and the edge expansion are

discussed in Section 4.5.2 and Section 4.5.3 respectively.

The eigenvectors of the eigenvalues on the spectral circle of the adjacency tensor are

characterized in Section 4.6.1. It gives necessary and sufficient conditions under which

the largest H-eigenvalue of the Laplacian being two. In Section 4.6.2, we reformulate

the above conditions in the language of linear algebra for modules and give necessary
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and sufficient conditions under which the eigenvector of an eigenvalue on the spectral

circle of the adjacency tensor is unique. Some conclusions are made in the last section.

4.2 Uniform Hypergraphs

In this section, we introduce the notion of Laplacian for uniform hypergraphs.

When G is a usual graph (i.e., k = 2), for every edge in an edge cut E(S, Sc)

whenever it is nonempty, it contains exactly one vertex from S and the other one

from Sc. When G is a k-uniform hypergraph with k ≥ 3, the situation is much more

complicated. We will say that an edge in E(S, Sc) cuts S with depth at least r (1 ≤ r <

k) if there are at least r vertices in this edge belonging to S. If every edge in the edge

cut E(S, Sc) cuts S with depth at least r, then we say that E(S, Sc) cuts S with depth

at least r.

Definition 4.2.1 Let G = (V,E) be a k-uniform hypergraph. A nonempty subset B ⊆

V is called a spectral component of the hypergraph G if either the edge cut E(B,Bc)

is empty or E(B,Bc) cuts Bc with depth at least two.

It is easy to see that any nonempty subset B ⊂ V satisfying |B| ≤ k − 2 is a spectral

component. Suppose that G has connected components {V1, . . . , Vr}, it is easy to see

that B ⊂ V is a spectral component of G if and only if B ∩ Vi, whenever nonempty,

is a spectral component of GVi . We will establish the correspondence between the H+-

eigenvalues that are less than one with the spectral components of the hypergraph, see

Theorem 4.4.4.

Definition 4.2.2 Let G = (V,E) be a k-uniform hypergraph. A nonempty proper

subset B ⊆ V is called a flower heart if Bc is a spectral component and E(Bc) = ∅.
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If B is a flower heart of G, then G likes a flower with edges in E(B,Bc) as leafs. It is

easy to see that any proper subset B ⊂ V satisfying |B| ≥ n− k + 2 is a flower heart.

There is a similar characterization between the flower hearts of G and these of its

connected components. Theorem 4.4.4 will show that the flower hearts of a hypergraph

correspond to its largest H+-eigenvalue.

We give the definition of the normalized Laplacian tensor of a uniform hypergraph.

Definition 4.2.3 Let G be a k-uniform hypergraph with vertex set [n] = {1, . . . , n}

and edge set E. The normalized adjacency tensor A, which is a k-th order n-

dimensional symmetric nonnegative tensor, is defined as

ai1i2...ik :=


1

(k−1)!

∏
j∈[k]

1
k
√
dij

if {i1, i2 . . . , ik} ∈ E,

0 otherwise.

The normalized Laplacian tensor L, which is a k-th order n-dimensional symmetric

tensor, is defined as

L := J −A,

where J is a k-th order n-dimensional diagonal tensor with the i-th diagonal element

ji...i = 1 whenever di > 0, and zero otherwise.

When G has no isolated points, we have that L = I − A. The spectrum of L is called

the spectrum of the hypergraph G, and they are referred interchangeably.

The current definition is motivated by the formalism of the normalized Laplacian

matrix of a graph investigated extensively by Chung [19]. We have a similar explanation

for the normalized Laplacian tensor to the Laplacian tensor (i.e., L = P k · (D − B) 1)

as that for the normalized Laplacian matrix to the Laplacian matrix [19]. Here P

is a diagonal matrix with its i-th diagonal element being 1
k√
di

when di > 0 and zero

otherwise.
1The matrix-tensor product is in the sense of [62, Page 1321]: L = (li1...ik) := P k · (D−A) is a k-th

order n-dimensional tensor with its entries being li1...ik :=
∑

js∈[n], s∈[k] pi1j1 · · · pikjk(dj1...jk −aj1...jk).
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We have already pointed out one of the advantages of this definition, namely, L =

I − A whenever G has no isolated vertices. Such a special structure only happens for

regular hypergraphs under the definition in [66]. (A hypergraph is called regular if di

is a constant for all i ∈ [n].) By Definition 1.2.1, the eigenvalues of L are exactly a

shift of the eigenvalues of −A. Thus, we can establish many results on the spectra of

uniform hypergraphs through the spectral theory of nonnegative tensors without the

hypothesis of regularity. We note that, by Definition 1.2.1, L and D − B do not share

the same spectrum unless G is regular.

In the sequel, the normalized Laplacian tensor and the normalized adjacency tensor

are simply called the Laplacian and the adjacency tensor respectively.

By Definition 3.2.1, the following lemma can be proved similarly to [61, Lemma 3.1].

Lemma 4.2.4 Let G be a k-uniform hypergraph with vertex set V and edge set E. G

is connected if and only if A is weakly irreducible.

For a hypergraph G = (V,E), it can be partitioned into connected components

V = V1 ∪ · · · ∪ Vr for r ≥ 1. Reorder the indices, if necessary, L can be represented by

a block diagonal structure according to V1, . . . , Vr. By Definition 1.2.1, the spectrum

of L does not change when reordering the indices. Thus, in the sequel, we assume that

L is in the block diagonal structure with its i-th block tensor being the sub-tensor of

L associated to Vi for i ∈ [r]. By Definition 4.2.3, it is easy to see that L(Vi) is the

Laplacian of the sub-hypergraph GVi for all i ∈ [r]. Similar convention for the adjacency

tensor A is assumed.

4.3 The Spectrum of a Uniform Hypergraph

Basic properties of the eigenvalues of a uniform hypergraph are established in this

section.
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4.3.1 The Adjacency Tensor

In this subsection, some basic facts of the eigenvalues of the adjacency tensor are dis-

cussed. For a nonempty subset S ⊆ [n] and x ∈ Cn, we denoted by xS the monomial∏
i∈S xi.

By Definition 1.2.1, H+-eigenvalues of A should be nonnegative, since A is non-

negative. For a connected hypergraph G, the following lemma says that the smallest

H+-eigenvalue of A is zero. Moreover, it establishes the relations between the nonneg-

ative eigenvectors of the zero eigenvalue of A and the flower hearts of G.

Lemma 4.3.1 Let G be a k-uniform connected hypergraph. Then zero is the small-

est H+-eigenvalue of A. Moreover, a nonzero vector x ∈ Rn
+ is an eigenvector of A

corresponding to the eigenvalue zero if and only if [sup(x)]c is a flower heart of G.

Proof. Let x be the vector with its i-th element being one and the other entries being

zero. Then, by Definition 4.2.3, it is easy to see

Axk−1 = 0.

Thus, zero is an H+-eigenvalue of A by Definition 1.2.1. The minimality follows from

the nonnegativity of H+-eigenvalues.

For the necessity of the second half of this lemma, suppose that x ∈ Rn
+ is an eigen-

vector of A corresponding to the eigenvalue zero. Since Axk = 0 and G is connected

with n ≥ k, we must have that sup(x) is a proper subset of [n]. Thus, [sup(x)]c is

nonempty. Let d̃ ∈ Rn be the n-vector with its i-th element being k
√
di for all i ∈ [n].

Then, by Definition 4.2.3, for all i ∈ [sup(x)]c,

0 = (Axk−1)i =
∑

e∈E([sup(x)]c), i∈e

xe\{i}

d̃e
+

∑
e∈E(sup(x),[sup(x)]c), i∈e

xe\{i}

d̃e

=
∑

e∈E(sup(x),[sup(x)]c), i∈e

xe\{i}

d̃e
.
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Thus, we have that xe\{i} = 0 for all e ∈ {e | e ∈ E(sup(x), [sup(x)]c), i ∈ e} whenever

it is nonempty. Thus, the edge cut E(sup(x), [sup(x)]c) must satisfy that either it is

empty or it cuts [sup(x)]c with depth at least two. Then, by Definition 4.2.1, sup(x) is

a spectral component.

For the other i ∈ sup(x), we have

0 = (Axk−1)i =
∑

e∈E(sup(x)), i∈e

xe\{i}

d̃e
+

∑
e∈E(sup(x),[sup(x)]c), i∈e

xe\{i}

d̃e

=
∑

e∈E(sup(x)), i∈e

xe\{i}

d̃e
.

Hence, E(sup(x)) must be empty. This, together with the previous result and Definition

4.2.2, implies that [sup(x)]c is a flower heart.

For the sufficiency, suppose that there is a nonnegative nonzero vector x such that

[sup(x)]c is a flower heart of G. Reversing the above analysis, it is easy to see that

Axk−1 = 0. Hence, x ∈ Rn
+ is an eigenvector of A corresponding to the eigenvalue zero.

The proof is complete. �

By Lemma 3.2.2, ρ(A) is the largest H+-eigenvalue of A. The next lemma says that

ρ(A) = 1 if and only if |E| > 0, and ρ(A) = 0 if and only if |E| = 0.

Lemma 4.3.2 Let G be a k-uniform hypergraph. Then A is a symmetric nonnegative

tensor, and ρ(A) is the largest H+-eigenvalue of A. Moreover, if E = ∅, then A = 0

and hence ρ(A) = 0; and if G has at least one edge, then ρ(A) = 1.

Proof. The first half of the conclusion follows from Lemma 3.2.2 and Definition 4.2.3.

The trivial case E = ∅ is obvious. In the following, we assume that E 6= ∅ and prove

that ρ(A) = 1. Let x be a nonzero nonnegative vector. Then, we have that

Axk =
∑
e∈E

k
∏
i∈e

xi
k
√
di
≤
∑
e∈E

k

(
1

k

∑
i∈e

(
xi
k
√
di

)k

)
=
∑
e∈E

∑
i∈e

xki
di

=
∑

i∈[n], di>0

∑
e∈Ei

xki
di

=
∑

i∈[n], di>0

xki .
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By Theorem 3.4.7 (iii), we then have that ρ(A) ≤ 1.

Let d̃ ∈ Rn be the n-vector with its i-th element being k
√
di for all i ∈ [n]. Then, by

Definition 4.2.3, we have that

Ad̃k =
∑
e∈E

kd̃e
∏
i∈e

1
k
√
di

=
∑
e∈E

kd̃e
1

d̃e
=
∑
e∈E

k = k|E| =
∑
i∈[n]

di > 0.

Thus, A( d̃
k
√∑

i∈[n] di
)k = 1. This, together with ρ(A) ≤ 1 and Theorem 3.4.7 (iii), implies

that ρ(A) = 1. �

The next lemma is a direct consequence of Theorem 2.3.3, Lemmas 4.3.1 and 4.3.2,

and Definition 4.2.3.

Lemma 4.3.3 Let G be a k-uniform hypergraph. Suppose that G has s ≥ 0 isolated

vertices {i1, . . . , is} and r ≥ 0 connected components V1, . . . , Vr satisfying |Vi| > 1 for

i ∈ [r]. Then we have the followings.

(i) As sets,

σ(A) = σ(A1) ∪ σ(A2) ∪ · · · ∪ σ(Ar), (4.3.1)

where Ai is the sub-tensor of A associated to Vi for i ∈ [r], and the right hand

side of (4.3.1) is understood as {0} whenever r = 0.

(ii) Ai defined above is the adjacency tensor of the sub-hypergraph Gi of G induced by

Vi for all i ∈ [r]. Thus, ρ(Ai) = 1.

(iii) Let mi(λ) be the algebraic multiplicity of λ as an eigenvalue of Ai. As multisets,

we have that zero is an eigenvalue of A with algebraic multiplicity

s(k − 1)n−1 +
∑
i∈[r]

mi(0)(k − 1)n−|Vi|,

and λ ∈ σ(Ai) \ {0} is an eigenvalue of A with algebraic multiplicity∑
i∈[r]

mi(λ)(k − 1)n−|Vi|.
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The next corollary follows from Lemmas 3.2.2, 4.2.4 and 4.3.3, and Theorem 3.4.7

(ii).

Corollary 4.3.4 Let G be a k-uniform hypergraph. Then, 1 is the unique H++-eigenvalue

of A if and only if G has no isolated vertices.

4.3.2 The Laplacian

In this subsection, we discuss some facts on the eigenvalues of the Laplacian of a uniform

hypergraph. We start with the following theorem.

Theorem 4.3.5 Let G be a k-uniform hypergraph. Then, we have the followings.

(i) If G has at least one edge, then λ ∈ σ(L) if and only if 1− λ ∈ σ(A). Otherwise,

σ(L) = σ(A) = {0}.

(ii) If λ ∈ σ(L), then Re(λ) ≥ 0 with equality holding if and only if λ = 0, and

2 ≥ Re(λ) with equality holding if and only if λ = 2.

Proof. Suppose that G has s ≥ 0 isolated vertices {i1, . . . , is} and r ≥ 0 connected

components V1, . . . , Vr satisfying |Vi| > 1 for i ∈ [r]. Let Ai be the adjacency tensor

and Li the Laplacian of the sub-hypergraph GVi of G induced by Vi for all i ∈ [r].

For the conclusion (i), if s = n, then L = A = 0. Thus, σ(L) = σ(A) = {0}. If

s = 0, then L = I − A by Definition 4.2.3. We get the conclusion (i) by Definition

1.2.1. In the following, suppose that G has at least one edge and s ≥ 1. We then have

that r ≥ 1. By Theorems 2.3.3 and 3.4.7 and Definition 4.2.3, L has a block diagonal

structure with diagonal sub-tensors {0,L1, . . . ,Lr}, and moreover

σ(L) = {0} ∪ σ(L1) ∪ · · · ∪ σ(Lr).
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Since every GVi is connected, by the established results, we have that λ ∈ σ(Li) if and

only if 1−λ ∈ σ(Ai) for all i ∈ [r]. By Lemmas 4.3.2 and 4.3.3, we have that ρ(Ai) = 1

for all i ∈ [r]. Hence, {0} ⊂ σ(Li) for all i ∈ [r]. Combining these results, (i) follows.

For the conclusion (ii), if G has no edges, then the results are trivial. In the sequel,

suppose that s < n. If λ ∈ σ(L), then 1 − λ ∈ σ(Ai) for some Ai by (i) and Lemma

4.3.3. Then, by the definition for the spectral radius, it follows that |1−λ| ≤ ρ(Ai) = 1.

Thus, we must have that 0 ≤ Re(λ) ≤ 2. By the same reason, we have the necessary

and sufficient characterizations, since we must have Im(λ) = 0 whenever the equalities

are fulfilled. �

In Section 4.6, we will show that Re(λ) < 2 if k is odd, i.e., it is impossible that

λ = 2 is an eigenvalue of L when k is odd. Necessary and sufficient conditions are given

for λ = 2 being an eigenvalue of L when k is even.

The next corollary says that the H+-eigenvalues of L have a much more modest

behavior than the eigenvalues.

Corollary 4.3.6 Let G be a k-uniform hypergraph. Then, we have the followings.

(i) Zero is the unique H++-eigenvalue of L. The smallest H-eigenvalue of L is zero.

(ii) All the H+-eigenvalues of L are in the interval [0, 1]. The largest H+-eigenvalue

of L is one if and only if |E| > 0, and it is zero if and only if |E| = 0.

(iii) All the H-eigenvalues of L are nonnegative. If k is even, then L is positive semidef-

inite (i.e., Lxk ≥ 0 for all x ∈ Rn), and Lxk can be written as a sum of squares

(i.e., Lxk =
∑

i∈[r] pi(x)2 for some integer r and polynomials pi).

Proof. For (i), zero is an H++-eigenvalue follows from Definition 1.2.1, Lemma 3.2.2

and 4.3.2 and Theorem 4.3.5 (i) immediately. The uniqueness follows from Lemma

3.2.2, Corollary 4.3.4 and Theorem 4.3.5 (i), since 1 is the unique H++-eigenvalue of
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the connected components that have more than one vertices, and the spectra of the

isolated vertices are the same set {0}. Finally, the minimality follows from Theorem

4.3.5 (ii), since all the H-eigenvalues are real.

For the conclusion (ii), first we have that all the H+-eigenvalues of L are in the

interval [0, 2] by Theorem 4.3.5 (ii). Suppose that λ > 1 is an H+-eigenvalue of L.

Then, by Definition 1.2.1, Theorems 3.4.7 and 4.3.5 and Lemma 4.3.3, 1− λ < 0 is an

H+-eigenvalue of some connected component of G. This is a contradiction to Lemma

4.3.1. Thus, λ ∈ [0, 1]. The remaining conclusions follow from Theorem 4.3.5 (i), and

Lemmas 4.3.1 and 4.3.3 immediately.

By Theorem 4.3.5 (ii), all the H-eigenvalues of L are nonnegative. When k is even,

it is further equivalent to that L is positive semidefinite by [62, Theorem 5]. Thus, the

first two statements of the conclusion (iii) follow. This, together with [27, Corollary

2.8], implies the last statement of the conclusion. �

We remark that, unlike the graph counterpart [19], there would be little hope to

write Lxk as a sum of powers of linear forms.

The next lemma is on the H-eigenvectors of the smallest H-eigenvalue of L.

Lemma 4.3.7 Let G be a k-uniform hypergraph. Suppose that G has connected com-

ponents V1, . . . , Vr. We have the followings.

(i) Let L ⊆ Rn be the subspace generated by the H-eigenvectors of L corresponding

to the H-eigenvalue zero. Let Li be the Laplacian of GVi. Let L̃i be the subspace

generated by the H-eigenvectors of Li corresponding to the H-eigenvalue zero, and

Li be the canonical embedding of L̃i into Rn with respect to Vi. Then L has a

direct sum decomposition:

L = L1 ⊕ · · · ⊕ Lr. (4.3.2)

(ii) Let M ⊆ Rn be the subspace generated by the nonnegative H-eigenvectors of L
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corresponding to the H-eigenvalue zero. Let M̃i and Mi be defined similarly. Then

M = M1 ⊕ · · · ⊕Mr, dim(Mi) = 1 for all i ∈ [r], and hence dim(M) = r.

Proof. Let Ai be the adjacency tensor of the sub-hypergraph GVi of G induced by Vi

for all i ∈ [r]. When Vi is a singleton, then Ai is the scalar zero. When |Vi| > 1, by

Lemma 4.2.4, Ai is a weakly irreducible nonzero tensor.

(i). Suppose x ∈ Rn is an H-eigenvector of L corresponding to the eigenvalue zero.

By Definition 1.2.1 and Theorems 3.4.7 (ii) and 4.3.5 (i), whenever x(Vi) 6= 0, x(Vi) an

H-eigenvector of Li corresponding to the eigenvalue zero. Thus, x(Vi) ∈ L̃i for all i ∈ [r].

The reverse of the statement is true as well: if 0 6= z ∈ R|Vi| is an H-eigenvector of Li
corresponding to the eigenvalue zero, then its embedding into Rn is an H-eigenvector

of L.

Suppose that y ∈ L is nonzero and for some positive integer s, y =
∑

i∈[s] xi with

xi being H-eigenvectors of L corresponding to the eigenvalue zero. Then, xi(Vj) ∈ L̃j
for all j ∈ [r] and i ∈ [s] by the preceding discussion. Thus,

y =
∑
i∈[s]

xi(V1)⊕ · · · ⊕
∑
i∈[s]

xi(Vr) ∈ L1 ⊕ · · · ⊕ Lr.

Here we use the same notation xi(Vj) for both xi(Vj) ∈ R|Vj | and its embedding in Rn.

On the contrary, suppose that yi ∈ Li is nonzero for i ∈ [r]. Then, we have

that yi =
∑

j∈[si]
xi,j for some positive integer si and H-eigenvectors xi,j(Vi) of Li.

Moreover, xi,j(Vl) = 0 whenever l 6= i by the definition of Li. Thus, xi,j ∈ L by the

preceding discussion. Hence, y = y1 ⊕ · · · ⊕ yr =
∑

j∈[1j ]
x1,j ⊕ · · · ⊕

∑
j∈[rj ]

xr,j =∑
i∈[r]

∑
j∈[si]

xi,j ∈ L. Combining these results, the direct sum decomposition (4.3.2)

follows.

(ii). Note that M̃i is the subspace generated by the nonnegative eigenvectors of

Li corresponding to the eigenvalue zero. If |Vi| = 1, then M̃i = R. When |Vi| > 1,

by Lemmas 3.2.2, 3.2.3 and 4.2.4, the nonnegative eigenvectors of Ai corresponding

to ρ(Ai) = 1 is unique and positive. Thus, by Theorem 4.3.5 (i), the nonnegative
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eigenvector of Li corresponding to the eigenvalue zero is unique and positive. Hence,

dim(M̃i) = dim(Mi) = 1. A similar proof as that for (i) shows that M = M1⊕· · ·⊕Mr

and hence dim(M) =
∑
i∈[r]

dim(Mi) = r. �

Lemma 4.3.7 says that the dimension of the linear subspace generated by the non-

negative eigenvectors of the eigenvalue zero of the Laplacian is exactly the number of

the connected components of the hypergraph. By Corollary 4.6.7, we will see that if k

is odd, then dim(Li) = 1 for all i ∈ [r] and hence dim(L) = r.

The next proposition gives equations that the eigenvalues of the Laplacian should

satisfy.

Proposition 4.3.8 Let G be a k-uniform hypergraph. We have the followings.

(i) Let m(λ) be the algebraic multiplicity of λ ∈ σ(L) and c(n, k) = n(k − 1)n−1.

Then ∑
λ∈σ(L)

m(λ)λ ≤ c(n, k)

with equality holding if and only if G has no isolated vertices.

(ii) Suppose that G has no isolated vertices. Let {λ0, λ1, . . . , λh} be the H-eigenvalues

of L in increasing order with algebraic multiplicity; and {αi±
√
−1βi, i ∈ [w]} be

the remaining eigenvalues2 of L with algebraic multiplicity. Then,∑
j∈[h]

λj + 2
∑
j∈[w]

αj = c(n, k), (4.3.3)

and ∑
j∈[h]

λ2
j + 2

∑
j∈[w]

α2
j − 2

∑
j∈[w]

β2
j = c(n, k). (4.3.4)

2By the discussion on [62, Page 1315], they must appear in conjugate complex pairs. They are

called N-eigenvalues in that paper.
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If furthermore k ≥ 4, then we also have∑
j∈[h]

λ3
j + 2

∑
j∈[w]

α3
j − 6

∑
j∈[w]

αjβ
2
j = c(n, k). (4.3.5)

Proof. (i) follows from Definition 4.2.3 and Corollary 2.4.5 (i), which says that the

summation of the eigenvalues is equal to (k−1)n−1 times the summation of the diagonal

elements of L.

(ii). First note that λ0 = 0 by Corollary 4.3.6 (i). Second, by Theorem 2.2.3, the

degree of χT (λ) is c(n, k). Hence,
∑

λ∈σ(L) m(λ) = c(n, k). Third, by Definition 4.2.3

and the proof of [21, Corollary 3.14], we see that the h-th order traces of the tensor A

is zero for all h ∈ [k − 1]. Theorem 2.4.10 says that the summation of the h-th powers

of all the eigenvalues of A is equal to the h-th trace of A for all h ≤ c(n, k). Thus, by

Theorems 4.3.5 (i) and 2.4.10, we have that∑
λ∈σ(L)

m(λ)(1− λ)h = 0, ∀h ∈ [k − 1].

Then, (4.3.3), (4.3.4) and (4.3.5) are just the expansions of the corresponding equalities

for h = 1, 2 and 3 respectively. �

We can derive more equalities for the other h ∈ [k − 1] similarly.

4.4 H+-Eigenvalues of the Laplacian

In this section, we discuss the H+-eigenvalues of the Laplacian. We denote by σ+(L) the

set of all the H+-eigenvalues of L. By Corollary 4.3.6, it is nonempty. We characterize

all the H+-eigenvalues and the corresponding nonnegative eigenvectors through the

spectral components and the flower hearts of G in Section 4.4.1. Then, in the other

subsection, we introduce the H+-geometric multiplicity of an H+-eigenvalue and discuss

the second smallest H+-eigenvalue of L.
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4.4.1 Characterizations

The next lemma characterizes all the H+-eigenvalues of L.

Lemma 4.4.1 Let G be a k-uniform hypergraph. Suppose that G has connected com-

ponents V1, . . . , Vr for some positive integer r. Let Li be the Laplacian of the sub-

hypergraph Gi of G induced by Vi. Then, we have the followings.

(i) λ = 0 is an H+-eigenvalue of L with nonnegative eigenvector x if and only if x(Vi)

is the unique positive eigenvector of Li whenever x(Vi) 6= 0.

(ii) 1 > λ > 0 is an H+-eigenvalue of L with nonnegative eigenvector x if and only if

x(Vi) = 0 whenever |Vi| = 1, and 1−λ is an H+-eigenvalue of Ai with eigenvector

x(Vi) whenever |Vi| > 1 and x(Vi) 6= 0.

(iii) λ = 1 is an H+-eigenvalue of L with nonnegative eigenvector x if and only if

x(Vi) = 0 whenever |Vi| = 1, and [sup(x(Vi))]
c is a flower heart of Gi whenever

|Vi| > 1 and x(Vi) 6= 0.

Proof. (i) By Definition 1.2.1 and Theorem 3.4.7, it is easy to see that λ = 0 is an

H+-Eigenvalue of L with nonnegative eigenvector x if and only if x(Vi) is a nonnegative

eigenvector of Li whenever x(Vi) 6= 0. In this situation, when |Vi| = 1, x(Vi) > 0

is a scalar; and when |Vi| > 1, x(Vi) is a nonnegative eigenvector of the adjacency

tensor of the connected sub-hypergraph Gi corresponding to its spectral radius 1. By

Lemmas 3.2.3 and 4.2.4, and Theorem 4.3.5, it follows that x(Vi) is the unique positive

eigenvector of Li. The converse is also true.

(ii) follows from Definitions 1.2.1 and 4.2.3, and Theorem 4.3.5 immediately.

(iii) follows from Definitions 1.2.1 and 4.2.3, Lemma 4.3.1 and Theorem 4.3.5. �

By Lemma 4.4.1 (i) and (iii), the H+-eigenvalues zero and one of L and their corre-

sponding nonnegative eigenvectors are clear. In the following, without loss of generality
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by Lemma 4.4.1 (ii), we consider a connected hypergraph G.

The next lemma, together with Theorem 3.4.7, says that the spectral radius λ of the

sub-tensor ofA associated to a spectral component of G contributes to an H+-eigenvalue

1− λ of L.

Lemma 4.4.2 Let G be a k-uniform connected hypergraph. Let S ⊆ [n] be a nonempty

subset. Suppose that S is a spectral component of G. Let

λ = max{Ayk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}. (4.4.6)

Then, 1 ≥ λ ≥ 0 and 1− λ is an H+-eigenvalue of L. Moreover, the optimal solutions

of (4.4.6) and the nonnegative eigenvectors of L with support being contained in S

corresponding to the H+-eigenvalue 1− λ are in one to one correspondence.

Proof. If S = V , then λ = ρ(A) = 1 by Theorem 3.4.7 and Lemma 4.3.2. By Corollary

4.3.6 (i), 1 − λ = 0 is an H+-eigenvalue of L. The eigenvector correspondence follows

from Theorem 3.4.7 (iii).

In the sequel, suppose that S 6= V is proper. Let B be the k-th order |S|-dimensional

sub-tensor of A corresponding to the set S. Then, we have that

λ = max{Ayk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}

= max{Bzk | z ∈ R|S|+ ,
∑
i∈[|S|]

zki = 1}.

By Theorem 3.4.7, λ = ρ(B). Suppose that y is an optimal solution to (4.4.6) with the

optimal value λ. Then, the sub-vector z of y corresponding to S is an eigenvector of B

corresponding to λ by Theorem 3.4.7 (iii). Hence, we have

Bzk−1 = λz[k−1],

where z[k−1] is a vector with its i-th entry being zk−1
i . For i ∈ Sc, we have that

(Ayk−1)i =
∑

{i,i2,...,ik}∈Ei

1
k
√
di

k∏
j=2

yij
k
√
dij

=
∑

{i,i2,...,ik}∈Ei∩E(S,Sc)

1
k
√
di

k∏
j=2

yij
k
√
dij

= 0,
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since S is spectral component which implies that {i2, . . . , ik} ∩ Sc 6= ∅ for every

{i, i2, . . . , ik} ∈ E(S, Sc). For i ∈ S, we have

(Ayk−1)i =
∑

{i,i2,...,ik}∈Ei

1
k
√
di

k∏
j=2

yij
k
√
dij

=
∑

{i,i2,...,ik}∈Ei∩E(S)

1
k
√
di

k∏
j=2

yij
k
√
dij

= (Bzk−1)i = λyk−1
i .

Thus, λ is an H+-eigenvalue ofA with eigenvector y. Then, 1−λ being an H+-eigenvalue

of L with the eigenvector y with support being contained in S follows immediately .

The conclusion that a nonnegative eigenvector with support being contained in S

of L corresponding to the eigenvalue 1 − λ is an optimal solution of (4.4.6) follows

immediately. �

The next lemma says that the converse of Lemma 4.4.2 is also true.

Lemma 4.4.3 Let G be a k-uniform connected hypergraph. If x ∈ Rn
+ is an eigenvector

of L corresponding to an H+-eigenvalue λ, then sup(x) is a spectral component of G

and 1− λ is the spectral radius of the sub-tensor of A corresponding to sup(x).

Proof. Let S := sup(x) and Sc be its complement. If S = V , then by Lemma 4.4.1 (i),

λ = 0 and 1 = 1− λ is the spectral radius of A. Obviously, V is a spectral component

of G by Definition 4.2.1.

If S is a proper subset of V , then {e ∈ E | e ∩ Sc 6= ∅} is nonempty, since G

is connected. By Corollary 4.3.6, we have that 1 ≥ λ ≥ 0. By the hypothesis that

(Lxk−1)i = 0 for all i ∈ Sc, we have

∑
{i,i2,...,ik}∈Ei

1
k
√
di

k∏
j=2

xij
k
√
dij

=
∑

{i,i2,...,ik}∈Ei∩E(S,Sc)

1
k
√
di

k∏
j=2

xij
k
√
dij

= 0.

Thus, we must have that |e ∩ Sc| ≥ 2 for every e ∈ E(S, Sc). Hence, S is a spectral

component of G. Let B be the sub-tensor of A corresponding to S, and y be the
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sub-vector of x corresponding to S. Then, for all i ∈ S, we have

(1− λ)yk−1
i = (1− λ)xk−1

i = (Axk−1)i =
∑

{i,i2,...,ik}∈Ei

1
k
√
di

k∏
j=2

xij
k
√
dij

=
∑

{i,i2,...,ik}∈Ei∩E(S)

1
k
√
di

k∏
j=2

xij
k
√
dij

= (Byk−1)i.

Hence, y is a positive eigenvector of B. Then, 1 − λ is an H++-eigenvalue of B. By

Lemma 3.2.2 (ii), and Theorem 3.4.7 (i) and (ii) (see also [67, Theorem 4]), a symmetric

nonnegative tensor has at most one H++-eigenvalue. If it has one, then it should be the

spectral radius of this tensor. Hence, we have that 1− λ = ρ(B). �

By Lemmas 4.4.1, 4.4.2 and 4.4.3, we have the following theorem which characterizes

all the nonnegative eigenvectors of L.

Theorem 4.4.4 Let G be a k-uniform hypergraph. Suppose that G has r ≥ 1 connected

components V1, . . . , Vr. Let Li and Ai be respectively the Laplacian and the adjacency

tensor of the sub-hypergraph Gi of G induced by Vi. Then x ∈ Rn
+ is an eigenvector of

L corresponding to an H+-eigenvalue λ if and only if

(i) when λ = 0, then x(Vi) is the unique positive eigenvector of Li whenever x(Vi) 6=

0;

(ii) when 1 > λ > 0, then x(Vi) = 0 whenever |Vi| = 1, and sup(x(Vi)) is a spectral

component of Gi and 1 − λ is the spectral radius of the sub-tensor of Ai corre-

sponding to sup(x(Vi)) whenever x(Vi) 6= 0 and |Vi| > 1;

(iii) when λ = 1, then x(Vi) = 0 whenever |Vi| = 1, and [sup(x(Vi))]
c is a flower heart

of Gi whenever x(Vi) 6= 0 and |Vi| > 1.

By Theorem 4.4.4, all the H+-eigenvalues can be computed out, since they corre-

spond to the spectral radii of certain nonnegative tensors. The algorithm proposed in

Chapter 3 (Algorithm 3.3.1) can be applied. It is globally R-linearly convergent.
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By Theorem 4.4.4, when G has no isolated vertices, if µ is the spectral radius of the

sub-tensor of A corresponding to a spectral component S, then

1−max{Ayk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc} = 1− µ ∈ σ+(L).

Equivalently, we have

1− µ = 1 + min{−Ayk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}

= min{Lyk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}. (4.4.7)

Define

σs(L) := {λ | λ = min{Lyk |
n∑
i=1

yki = 1, y ∈ Rn
+,

yi = 0, ∀i ∈ Ac}, A ∈ 2V \ {∅}}. (4.4.8)

Then, Theorem 4.4.4, together with Theorem 4.3.5, says that σ+(L) ⊆ σs(L). Here a

natural question arises. Are the two sets equal to each other? The next proposition

gives a negative answer, it says that the hypothesis in Lemma 4.4.2 is necessary, i.e.,

if S is not a spectral component, then the optimal value of (4.4.7) may not be an

H+-eigenvalue of L. More properties on the set σs(L) are discussed in Section 4.5.

A hypergraph G = (V,E) is complete if E contains all the possible edges.

Proposition 4.4.5 Let G be a k-uniform complete hypergraph with n > k. Then,

σ+(L) 6= σs(L). (4.4.9)

Proof. Since G is complete, it is easy to see that the sub-tensors of A corresponding

to the sets with the same cardinality are the same. Thus, there are at most n values

in σs(L). By Lemmas 3.2.2 and 3.2.3 and the fact that G is complete, the values

corresponding to sets with different cardinalities larger than k − 1 are strictly smaller

than one and different. The values corresponding to sets with cardinalities not larger
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than k − 1 are one, since the sub-tensors are all the identity tensors with appropriate

dimensions. Hence, there are exactly n− k + 2 values in σs(L).

Since G is complete, every set A satisfying |A| ≥ k − 1 cannot be a spectral com-

ponent. Hence, the value corresponding to {i}c for every i cannot be in σ+(L) by

Theorem 4.4.4. Since otherwise, this value can be expressed by some spectral compo-

nent. It should be one by the preceding discussion. This would contradict the fact that

ρ(A({i}c)) > 0 (which implies 1− ρ(A({i}c)) < 1) by Lemma 3.2.3 and Theorem 3.4.7,

since A({i}c) is nonzero.

Hence, the result (4.4.9) follows. The proof is complete. �

Actually, by Proposition 4.4.10 and Corollary 4.4.11 in Section 4.4.2, σ+(L) = {0, 1}

for a complete hypergraph. While, by the proof of Lemma 4.3.2, it can be calculated

that σs(L) = {1− d(s)
d(n)

, s ∈ {k − 1, . . . , n}} with d(s) :=
(
s−1
k−1

)
.

4.4.2 H+-Geometric Multiplicity

In this subsection, we discuss the second smallest H+-eigenvalue of the Laplacian. To

this end, we need to order the H+-eigenvalues first. Since the eigenvectors of an eigen-

value of a tensor do not form a linear subspace of Cn like its matrix counterpart in

general, it is subtle to define geometric multiplicity of an eigenvalue of a tensor. How-

ever, by Theorem 4.4.4 and the fact that the number of the spectral components of

a hypergraph is always finite, we can define the H+-geometric multiplicity of an H+-

eigenvalue of L in the following way.

Definition 4.4.6 Let G be a k-uniform hypergraph. Let µ be an H+-eigenvalue of L.

The H+-geometric multiplicity of the H+-eigenvalue µ is defined to be the number

of nonnegative eigenvectors (up to multiscalar multiplication) corresponding to µ.
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For a hypergraph G, we denote by n(G) the number of the H+-eigenvalues of L (with

H+-geometric multiplicity). By Corollary 4.3.6 (i), L always has the H+-eigenvalue zero

and hence n(G) ≥ 1. When |E| > 0, by Lemma 4.3.1 and Theorem 4.3.5, 1 is also an

H+-eigenvalue of L. Then, in this case n(G) ≥ 2. By Definition 4.4.6 and Corollary

4.3.6 (ii), we can order all the H+-eigenvalues (with H+-geometric multiplicity) of L in

increasing order as:

0 = µ0 ≤ µ1 ≤ . . . ≤ µn(G)−1 ≤ 1. (4.4.10)

The next lemma establishes the relation between the number of the connected com-

ponents of a hypergraph G and the H+-geometric multiplicity of the eigenvalue zero.

Lemma 4.4.7 Let G be a k-uniform hypergraph. Suppose that G has r connected

components. Then, the H+-geometric multiplicity c(G, 0) of the H+-eigenvalue zero of

L is c(G, 0) = 2r − 1.

Proof. Suppose that {V1, . . . , Vr} are the connected components of G. For all i ∈ [r],

let Li be the Laplacian of the sub-hypergraph Gi of G induced by Vi. For any choice of s

(1 ≤ s ≤ r) connected components {Vi1 , . . . , Vis} of G, let x(Vij) be the unique positive

eigenvector of Lij by Theorem 4.4.4 (i). Let x(Vi) = 0 for the other Vi. By Theorem

4.4.4 (i), the vector x formed by the components x(Vi) is a nonnegative eigenvector of L

corresponding to the eigenvalue zero. By Theorem 4.4.4 (i) again, the correspondence

between the choices of the connected components of G and the nonnegative eigenvectors

of L corresponding to the eigenvalue zero in the above sense is one to one. Thus, by

Definition 4.4.6, the H+-geometric multiplicity c(G, 0) of the H+-eigenvalue zero of L

is
∑

s∈[r]

(
r
s

)
= 2r − 1. �

The next corollary is a direct consequence of Lemma 4.4.7.

Corollary 4.4.8 Let G be a k-uniform hypergraph. Then, µi−2 = 0 and µi−1 > 0 if

and only if log2i is a positive integer and G has exactly log2i connected components. In

particular, µ1 > 0 if and only if G is connected.
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The next proposition gives the H+-geometric multiplicity of the H+-eigenvalue one

of L.

Proposition 4.4.9 Let G be a k-uniform hypergraph and |E| > 0. Suppose that G has

r ≥ 0 connected components {V1, . . . , Vr} with |Vi| > 1. Let Gi be the sub-hypergraph

of G induced by Vi. Suppose that Gi has ti ≥ 0 flower hearts for all i ∈ [r]. Then the

H+-geometric multiplicity c(G, 1) of the H+-eigenvalue one of L is

c(G, 1) =
∑
i∈[r]

si(t1, . . . , tr),

where si(t1, . . . , tr) is the elementary symmetric polynomial on the variables {t1, . . . , tr}

of degree i, and the vacuous summation is understood as zero.

Proof. Note that si(t1, . . . , tr) =
∑

1≤j1<...<ji≤r tj1 · · · tji . By Theorem 4.4.4 (iii), the

result follows from a similar proof to that for Lemma 4.4.7. �

Proposition 4.4.9 says that c(G, 1) is independent of the number of isolated ver-

tices of the hypergraph G. For the other H+-eigenvalues, by Theorem 4.4.4, their

H+-geometric multiplicities are determined by the number of the connected compo-

nents, and the spectral components of every connected component. Similarly, these

H+-geometric multiplicities are independent of the number of isolated vertices of the

hypergraph.

The next proposition gives necessary and sufficient conditions for µ1 = µn(G)−1 = 1.

By Corollary 4.4.8, the underlying hypergraph should be connected.

Proposition 4.4.10 Let G be a k-uniform connected hypergraph. Then, µ1 = 1 if and

only if the complements of all the proper spectral components are the flower hearts. In

this situation, we have σ+(L) = {0, 1}.

Proof. The first half follows from Theorem 4.4.4 immediately. The result σ+(L) =

{0, 1} in this situation follows from the fact that µn(G)−1 = 1 when |E| > 0. �
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The next corollary completes Proposition 4.4.5.

Corollary 4.4.11 Let G be a k-uniform complete hypergraph. Then, σ+(L) = {0, 1}.

Proof. Suppose that A 6= V is a nonempty subset of {1, . . . , n}. Since G is complete,

A is a spectral component if and only if |A| ≤ k − 2. On the other side, we also have

that E(A) = ∅ whenever |A| ≤ k − 2. Hence, Ac is a flower heart by Definition 4.2.2.

Then, the result follows from Proposition 4.4.10. �

We will give lower bounds for µ1 in Section 4.5.1.

4.5 The Smallest H+-Eigenvalues of the Sub-Tensors

of the Laplacian

Suppose that G is a k-uniform hypergraph without isolated vertices. By Theorem

4.4.4, if λ is an H+-eigenvalue of the Laplacian L, there exists a spectral component

of G such that λ has the characterization (4.4.7). However, Proposition 4.4.5 says

that σ+(L) 6= σs(L) in general. In this section, we show that every λ ∈ σs(L) is the

smallest H+-eigenvalue of some sub-tensor of L. This is the mean of the subscript “s”

of σs(L). Then, we discuss the relations between these H+-eigenvalues and µ1, the edge

connectivity and the edge expansion.

4.5.1 Characterization

We establish the equivalence between the smallest H+-eigenvalues of the sub-tensors of

L and σs(L). Let S ⊆ [n] be nonempty and κ(S) the smallest H+-eigenvalue of L(S).

The next lemma says that {κ(S) | S ∈ 2V \ {∅}} = σs(L).
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Lemma 4.5.1 Let G be a k-uniform hypergraph without isolated vertices and S ⊆ [n]

be nonempty. We have that κ(S) = 1− ρ(A(S)) ∈ [0, 1], and

κ(S) = min{Lyk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}. (4.5.11)

Proof. Note that L(S) = I −A(S). Hence, λ is an H+-eigenvalue of L(S) if and only

if 1− λ is an H+-eigenvalue of A(S). Thus, by Lemmas 3.2.2, 3.2.3 and 4.3.2, we have

that κ(S) = 1 − ρ(A(S)) ∈ [0, 1]. This, together with Theorem 3.4.7, further implies

that

κ(S) = 1−max{A(S)yk | y ∈ R|S|+ ,
∑
i∈[|S|]

yki = 1}

= 1−max{Ayk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}

= min{1−Ayk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}

= min{Lyk | y ∈ Rn
+,
∑
i∈[n]

yki = 1, yi = 0,∀i ∈ Sc}.

Thus, (4.5.11) follows. The proof is complete. �

The next corollary is a direct consequence of Lemma 4.5.1.

Corollary 4.5.2 Let G be a k-uniform hypergraph without isolated vertices and S, T ⊆

[n] be nonempty such that S ⊂ T . Then, κ(T ) ≤ κ(S).

Corollary 4.5.3 Let G be a k-uniform hypergraph without isolated vertices. Then,

µ1 = min{κ(S) | S is a proper spectral component}.

Proof. We first prove that there is a proper spectral component S of G such that

µ1 = κ(S). Then, the minimality follows immediately from Theorem 4.4.4 and (4.4.10).

By Theorem 4.4.4 and Lemma 4.5.1, there is a spectral component of G such that

κ(S) = µ1. If G is connected, then µ1 > 0 by Corollary 4.4.8. While, κ(V ) = 0 by
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Lemmas 4.3.2 and 4.5.1. Thus, S 6= V . If G has at least two connected components V1

and V2, then V1 is a proper spectral component and κ(V1) = 0 by Lemmas 4.5.1 and

4.3.2. Since µ1 = 0 by Corollary 4.4.8, V1 can be chosen as S. �

Recall that di is the degree of the vertex i. In the following, we define dmin :=

mini∈[n] di and dmax := maxi∈[n] di. For a nonempty subset S ⊂ V , define vol(S) :=∑
i∈S di as the volume of S. The volume vol([n]) of the hypergraph is simply denoted

as dvol.

Proposition 4.5.4 Let G be a k-uniform hypergraph without isolated vertices. For any

nonempty subset S ⊆ V , we have

κ(S) ≤ (k − 1)vol(Sc)

vol(S)
(4.5.12)

with the convention that vol(∅) = 0. In particular, for any i ∈ [n], we have that

κ({i}c) ≤ (k − 1)dmax

dvol − dmax

. (4.5.13)

Proof. When S = V , then κ(S) = κ(V ) = 0 by (4.5.11) and Lemma 4.3.2. Thus, the

result follows. In the following, we assume that S 6= V . Let d̃ ∈ Rn be the n-vector

with its i-th element being k
√
di for all i ∈ [n]. Let y be the vector with its j-th element

being
d̃j

k
√

vol(S)
for j ∈ S and yj = 0 for j ∈ Sc. Then, by Lemma 4.5.1, we have that

κ(S) ≤ Lyk = 1− k
∑

e∈E\ESc

ye

d̃e
= 1− k

∑
e∈E\ESc

1

vol(S)
= 1− k|E| − k|ESc|

vol(S)

=
vol(S) + k|ESc | − dvol

vol(S)
=
k|ESc| − vol(Sc)

vol(S)
≤ (k − 1)vol(Sc)

vol(S)
.

Here, the fourth equality follows from the fact that k|E| = dvol, and the last inequality

from the fact that: for every e ∈ ESc , e contributes to vol(Sc) at least one. Thus, the

number of edges in ESc is at most vol(Sc). Thus, k|ESc | ≤ kvol(Sc).

(4.5.13) follows from the fact that di ≤ dmax for any i ∈ [n]. �

Note that (4.5.12) is nontrivial only if vol(S) > (k − 1)vol(Sc); and the bound is

tight.
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A hypergraph is d-regular, if di = d ≥ 0 for all i ∈ [n]. The following corollary is a

direct consequence of Proposition 4.5.4.

Corollary 4.5.5 Let G be a k-uniform hypergraph and d-regular for some d > 0. For

any i ∈ [n], we have that

κ({i}c) ≤ k − 1

n− 1
.

By the proof of Proposition 4.5.4, if di = dmin, then κ({i}c) ≤ k−1
n−1

, since dvol−dmin ≥

(n− 1)dmin. Hence, the next corollary follows.

Corollary 4.5.6 Let G be a k-uniform hypergraph without isolated vertices. Then

min
i∈[n]

κ({i}c) ≤ k − 1

n− 1
.

The next proposition gives lower bounds on µ1 in terms of κ({i}c).

Proposition 4.5.7 Let G be a k-uniform hypergraph without isolated vertices. Then,

for any proper spectral component S of G such that µ1 = κ(S),

µ1 ≥ max
i∈Sc

κ({i}c) ≥ min
i∈[n]

κ({i}c). (4.5.14)

Proof. The result follows from Theorem 4.4.4, Lemma 4.5.1 and Corollaries 4.5.2 and

4.5.3. �

In Section 4.5.2, mini∈[n] κ({i}c) is related to the edge connectivity of the hypergraph.

This value is similar to the algebraic connectivity defined in [66, Section 8].

4.5.2 Edge Connectivity

In this short subsection, we discuss the relation between the smallest H+-eigenvalues

of the sub-tensors of L and the edge connectivity. Recall that the minimum of the
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cardinalities of the edge cuts corresponding to nonempty proper subsets is called the

edge connectivity of G. We denote it by e(G). Note that G is disconnected if and

only if e(G) = 0. It is also easy to see that e(G) ≤ dmin.

Proposition 4.5.8 Let G be a k-uniform hypergraph without isolated vertices. We

have that

min
i∈[n]

κ({i}c) ≤ k

dvol
e(G). (4.5.15)

Proof. Let d̃ ∈ Rn be the n-vector with its i-th element being k
√
di for all i ∈ [n]. Let

S be a nonempty proper subset of [n]. Let y be the vector with its j-th element being

d̃j
k
√∑

i∈S di
for j ∈ S and yj = 0 for j ∈ Sc. Then, by Lemma 4.5.1,

κ(S) ≤ Lyk = 1− k
∑

e∈E(S)

ye

d̃e
= 1− k

∑
e∈E(S)

1

vol(S)
= 1− k|E(S)|

vol(S)
.

Similarly, we have that κ(Sc) ≤ 1− k|E(Sc)|
vol(Sc)

. Thus,

vol(S)κ(S) + vol(Sc)κ(Sc) ≤ vol(S) + vol(Sc)− k(|E(S)|+ |E(Sc)|)

= dvol − k(|E| − |E(S, Sc)|)

= k|E(S, Sc)|.

Since both S and Sc are nonempty, we have that S ⊆ {r}c and Sc ⊆ {s}c for some r

and s respectively. By Corollary 4.5.2, we have that

dvol min
i∈[n]

κ({i}c) ≤ dvol min{κ({r}c), κ({s}c)} ≤
∑
i∈S

diκ(S) +
∑
i∈Sc

diκ(Sc) ≤ k|E(S, Sc)|.

Thus, (4.5.15) follows. �

4.5.3 Edge Expansion

In this subsection, we define and discuss the edge expansion of a hypergraph.

The next definition is a generalization of the edge expansion of a graph.
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Definition 4.5.9 Let G be a k-uniform hypergraph without isolated vertices and r ∈

[k − 1]. The r-th depth edge expansion, denoted by hr(G), of G is defined as

hr(G) = min
S⊂V, vol(S)≤d dvol

2
e

|E(S, Sc)|
vol(S)

, (4.5.16)

where the minimum takes additionally over all nonempty subsets S such that either

E(S, Sc) is empty or it cuts Sc with depth at least r.

When r = 1 and G reduces to a usual graph, this definition is the same as that

in [19, Section 2.2]. Moreover, in this situation, it is easy to see that

h1(G) = min
S⊂V

|E(S, Sc)|
min{vol(S), vol(Sc)}

,

since in this case, E(S, Sc), whenever nonempty, cuts both S and Sc with depth exactly

one. For a hypergraph, the situation is more complicated. Thus, we need the generalized

definition (4.5.16).

Definition 4.5.9 is well defined for all r ∈ [k − 1], since E({i}, {i}c), whenever

nonempty, always cuts {i}c with depth k − 1 ≥ r for all i ∈ [n]. The next proposition

gives bound on h2(G) in terms of µ1.

Proposition 4.5.10 Let G be a k-uniform hypergraph without isolated vertices and

r ∈ [k − 1]. We have that κ(S) ≤ (k−2)|E(S,Sc)|
vol(S)

for any spectral component S. Thus,

µ1 ≤ (k − 2)h2(G).

Proof. Let d̃ ∈ Rn be the n-vector with its i-th element being k
√
di for all i ∈ [n].

Let S be a spectral component, then either E(S, Sc) is empty or it cuts Sc with depth

at least two. The empty case is trivial, in the following, we assume that E(S, Sc) is

nonempty. Let y be the vector with its j-th entry being
d̃j

k
√

vol(S)
for j ∈ S and yj = 0

for j ∈ Sc. By Lemma 4.5.1, we have

κ(S) = min{Lzk | z ∈ Rn
+,
∑
i∈[n]

zki = 1, zi = 0,∀i ∈ Sc} ≤ Lyk

= 1− k
∑

e∈E(S)

ye

d̃e
= 1− k

∑
e∈E(S)

1

vol(S)
= 1− k|E(S)|

vol(S)
≤ (k − 2)|E(S, Sc)|

vol(S)
.
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The last inequality follows from the fact that k|E(S)| ≥ vol(S) − (k − 2)|E(S, Sc)|,

since E(S, Sc) cuts Sc with depth at least two. Then, the first conclusion follows. This,

together with Definition 4.5.9 and Corollary 4.5.3, implies that

µ1 ≤ (k − 2)h2(G),

since dvol > ddvol2
e which implies that the minimum (4.5.16) involves only proper subsets.

�

By Proposition 4.5.7 and a similar proof of Proposition 4.5.10 and the fact that

min
i∈[n]

κ({i}c) ≤ κ(S) for any nonempty proper subset S, we have the following proposi-

tion.

Proposition 4.5.11 Let G be a k-uniform hypergraph without isolated vertices. We

have that for all r ∈ [k − 1], κ(S) ≤ (k−r)|E(S,Sc)|
vol(S)

for any nonempty subset S such that

either E(S, Sc) is empty or it cuts Sc with depth at least r. In particular,

min
i∈[n]

κ({i}c) ≤ (k − r)hr(G). (4.5.17)

Note that any nonempty subset S such that either E(S, Sc) is empty or it cuts Sc

with depth at least r with r ≥ 2 is a spectral component by Definition 4.2.1. This,

together with Corollary 4.5.3 and Proposition 4.5.11, implies the following corollary

immediately.

Corollary 4.5.12 Let G be a k-uniform hypergraph without isolated vertices. For all

r such that 2 ≤ r ≤ k − 1, we have that µ1 ≤ (k − r)hr(G).

4.6 The Largest H-Eigenvalue of the Laplacian

By Theorem 4.3.5, if λ is an H-eigenvalue of L, then λ ≤ 2. Does L has an eigenvalue

2? If it does, is it an H-eigenvalue of L? In this section, we discuss these questions. By
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Lemma 4.3.3, it is sufficient to consider connected hypergraphs. Note that when λ = 2,

we have that −1 is an eigenvalue of the adjacency tensor A.

4.6.1 Eigenvectors of the Largest H-Eigenvalue

As ρ(A) = 1, the set of complex numbers with module one is called the spectral circle

of the adjacency tensor A. By [78, Theorem 3.9], if there are r ≥ 1 eigenvalues of A

with module one, then they are uniformly distributed on the spectral circle, i.e., they

appear in the form exp(2sπ
√
−1

r
) for s ∈ [r]. In this subsection, we establish necessary

and sufficient conditions for a nonzero vector being an eigenvector of an eigenvalue on

the spectral circle.

The next technical lemma is useful.

Lemma 4.6.1 Let G be a k-uniform connected hypergraph. If x ∈ Cn is an eigenvector

of A with eigenvalue exp(
√
−1θ), then there exist θi ∈ R such that

xi = exp(
√
−1θi)

k
√
di

k
√
dvol

, ∀i ∈ [n], (4.6.18)

and for all i ∈ [n], there exists γi ∈ C such that

exp(
√
−1θi2) · · · exp(

√
−1θik) = γi, ∀e = {i, i2, . . . , ik} ∈ Ei. (4.6.19)

Proof. Let d̃ ∈ Rn be the n-vector with its i-th element being k
√
di for all i ∈ [n]. Then

we have the following

∑
i∈[n]

|xi||(Axk−1)i| =
∑
i∈[n]

|xi|

∣∣∣∣∣∣
∑
e∈Ei

1
k
√
di

∏
j∈e\{i}

xj
k
√
dj

∣∣∣∣∣∣ ≤
∑
e∈E

k
∏
i∈e

|xi|
k
√
di

≤
∑
e∈E

k

(
1

k

∑
i∈e

(
|xi|
k
√
di

)k

)
=
∑
e∈E

∑
i∈e

|xi|k

di
=
∑
i∈[n]

∑
e∈Ei

|xi|k

di
=
∑
i∈[n]

|xi|k.

This, together with the hypothesis
∑

i∈[n] |xi||(Axk−1)i| =
∑

i∈[n] |xi|k, implies that all

of the inequalities should be equalities.
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By the fact that the second (the arithmetic-geometric mean) inequality is an equal-

ity, we have that |xi| = α| k
√
di| for some α > 0 for all i ∈ [n], since G is connected.

When normalizing the vectors x and d̃, we get (4.6.18).

By the fact that the first inequality is an equality, we have (4.6.19). �

Let Z be the ring of integers. For a positive integer k, let 〈k〉 be the ideal in Z

generated by k. Let K := {0̄, 1̄, . . . , k − 1} be the quotient ring Z/〈k〉. The image of

α ∈ Z under the natural homomorphism Z→ K is denoted by ᾱ. For basic definitions,

see [22, 23,46].

The next theorem gives necessary and sufficient conditions for exp(
√
−1θ) being an

eigenvalue of A.

Theorem 4.6.2 Let G be a k-uniform connected hypergraph. Then, exp(
√
−1θ) is an

eigenvalue of A if and only if θ = 2απ
k

for some integer α, and there exist integers αi

for i ∈ [n] such that ∑
j∈e

ᾱj = ᾱ, ∀e ∈ E. (4.6.20)

Proof. Suppose that exp(
√
−1θ) is an eigenvalue of A with an eigenvector x. By

Lemma 4.6.1, for all i ∈ [n], there exist θi ∈ R such that xi = exp(
√
−1θi)

k√di
k√dvol

, and

exp(
√
−1θi2) · · · exp(

√
−1θik) = γi, ∀e = {i, i2, . . . , ik} ∈ Ei

for some γi ∈ C. Let d̃ ∈ Rn be the n-vector with its i-th element being k
√
di for all

i ∈ [n]. Since

exp(
√
−1θ)xk−1

i = (Axk−1)i = γi
(Ad̃k−1)i

( k
√
dvol)k−1

= γi

(
k
√
di

k
√
dvol

)k−1

,

we have that for all i ∈ [n],

exp(
√
−1θi2) · · · exp(

√
−1θik) = exp(

√
−1θ)[exp(

√
−1θi)]

k−1, ∀e = {i, i2, . . . , ik} ∈ Ei.
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Thus, likewise, we must have∑
j∈e

θj = θ + kθi + 2αi,eπ, ∀i ∈ e, ∀e ∈ E, (4.6.21)

for some integer αi,e. Since the eigenvalue equations are homogeneous, we can scale x

such that θ1 = 0 without loss of generality. Consequently,

θ + kθi + 2αi,eπ =
∑
j∈e

θj = θ + 2α1,eπ, ∀i ∈ e, ∀e ∈ E1.

Hence, θi = αi
2π
k

for some integer αi for all i ∈ V (1) (the set of vertices that share an

edge with the vertex 1). Since G is connected, by a similar proof, we can show that

θi = αi
2π
k

for some integer αi for all i ∈ [n]. Then, we have

θ + 2α1,eπ =
∑
j∈e

θj = (
∑
j∈e

αj)
2π

k
, ∀e ∈ E1.

Hence, θ = α 2π
k

for some integer α. With these, we have that (4.6.21) becomes

(
∑
j∈e

αj)
2π

k
= α

2π

k
+ 2(αi + αi,e)π, ∀i ∈ e, ∀e ∈ E.

Equivalently, ∑
j∈e

ᾱj = ᾱ, ∀e ∈ E.

Reversing the above proof, we see that the converse statement is true as well. �

As we remarked at the beginning of this subsection, θ = 2απ
k

with some integer α is

not by accident. The eigenvalues of A with module ρ(A) = 1 distribute uniformly on

the spectral circle {λ | |λ| = 1} [78]. The number of the eigenvalues on this circle is

called the primitive index of the tensor A.

If exp(2απ
k

√
−1) is an eigenvalue of A, then there exist integers αi for i ∈ [n] such

that for all e ∈ E,
∑

j∈e ᾱj = ᾱ. It is then easy to see that for all s ∈ [k],
∑

j∈e sαj = sα

for all e ∈ E. Thus, exp(2sαπ
k

√
−1) is an eigenvalue of A for all s ∈ [k] by Theorem

4.6.2. So, the primitive index must be a factor of k. We include it in the next corollary.

Recall that (r, s) denotes the greatest common divisor of the integers r and s.
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Corollary 4.6.3 Let G be a k-uniform connected hypergraph. If α ∈ [k] is the smallest

positive integer such that exp(2απ
k

√
−1) is an eigenvalue of A, then the primitive index

of A is k
(k,α)

. Thus, the primitive index of A is a factor of k; when k is a prime

number, either 1 is the unique eigenvalue of A on the spectral circle or exp(j 2π
k

√
−1)

is an eigenvalue of A for all j ∈ [k].

The next corollary, together with Theorem 4.3.5, says that when k is odd, L does

not have an eigenvalue being 2.

Corollary 4.6.4 Let G be a k-uniform connected hypergraph and k be odd. Then for

any λ ∈ σ(L), we have Re(λ) < 2.

Proof. Note that by Theorem 4.3.5 (ii), Re(λ) ≤ 2 with equality holding if and only

if λ = 2. In this case −1 is an eigenvalue of A. While, Theorem 4.6.2 says that −1

cannot be an eigenvalue of A, since k is odd. Thus, the result follows. �

The next corollary says that the spectrum of the adjacency tensor is invariant under

the multiplication by exp(2jπ
s

√
−1) for all j ∈ [s] with s ≥ 1 being the primitive index

of A.

Corollary 4.6.5 Let G be a k-uniform connected hypergraph and the primitive index

of A be s ≥ 1. Let (α1, . . . , αn) be a set of integers satisfying the equations (4.6.20) for

α = k
s
. If λ is an eigenvalue of A with an eigenvector x, then exp(2π

s

√
−1)λ is also an

eigenvalue of A with an eigenvector z with zi := exp(2αiπ
k

√
−1)xi for all i ∈ [n].

Proof. Suppose that λ is an eigenvalue of A with an eigenvector x ∈ Cn. Then, we

have that Axk−1 = λx[k−1]. By the hypothesis, we have that∑
j∈e

ᾱj = (
k

s
), ∀e ∈ E. (4.6.22)

78



Let z ∈ Cn be an n-vector with zi := exp(2αiπ
k

√
−1)xi for all i ∈ [n]. Then, for all

i ∈ [n],

(Azk−1)i =
∑
e∈Ei

1
k
√
di

∏
j∈e\{i}

zj
k
√
dj

=
∑
e∈Ei

exp(2π
s

√
−1)

exp(2αiπ
k

√
−1)

1
k
√
di

∏
j∈e\{i}

xj
k
√
dj

=
exp(2π

s

√
−1)

exp(2αiπ
k

√
−1)

λxk−1
i =

exp(2π
s

√
−1)

exp(
[

2αiπ
k

+ (k − 1)2αiπ
k

]√
−1)

λzk−1
i

= exp(
2π

s

√
−1)λzk−1

i ,

where the second equality follows from (4.6.22). Thus, exp(2π
s

√
−1)λ is an eigenvalue

of A with the eigenvector z. The proof is complete. �

The invariant of the eigenvalues under the multiplication by exp(2jπ
s

√
−1) in Corol-

lary 4.6.5 follows from [78, Theorem 3.17] as well. While, our proof is more constructive,

and it reveals the relations between the eigenvectors of the eigenvalues on the same or-

bit.

By the proof of Theorem 4.6.2, we actually get the next theorem, which characterizes

all the eigenvectors of A corresponding to the eigenvalues on the spectral circle.

Theorem 4.6.6 Let G be a k-uniform connected hypergraph and α ∈ [k]. Then, a

nonzero vector x is an eigenvector of A corresponding to the eigenvalue exp(2απ
k

√
−1)

if and only if there exist θ and integers αi such that xi = exp(
√
−1θ) exp(2αiπ

k

√
−1)

k√di
k√dvol

for i ∈ [n], and ∑
j∈e

ᾱj = ᾱ, ∀e ∈ E.

The next corollary says that when k is odd, the H-eigenvector of A corresponding

to the spectral radius is unique up to scalar multiplication.

Corollary 4.6.7 Let G be a k-uniform connected hypergraph and k be odd. If x ∈ Rn

is an eigenvector of A corresponding to the eigenvalue one, then x or −x is the unique

positive eigenvector.
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Proof. By Theorem 4.6.6, the real vector x that is an eigenvector of A corresponding

to the eigenvalue one should satisfy

exp(
√
−1θ) exp(

2αiπ

k

√
−1) = ±1, ∀i ∈ [n].

These constraints say that θ + 2αiπ
k

= βiπ for some integers βi for all i ∈ [n]. Hence,

2(αi−αj)π
k

= (βi−βj)π for all i, j ∈ [n]. Since k is odd, we must have that βi−βj ∈ 〈2〉 ⊂

Z. Thus, exp(
√
−1θ) exp(2αiπ

k

√
−1) = 1 for all i ∈ [n] or exp(

√
−1θ) exp(2αiπ

k

√
−1) =

−1 for all i ∈ [n], since exp(βiπ) = exp(βjπ) for all i, j ∈ [n]. The result follows. �

The next corollary gives necessary and sufficient conditions for 2 being an H-

eigenvalue of L.

Corollary 4.6.8 Let G be a k-uniform connected hypergraph and k be even. Then, 2

is an H-eigenvalue of L if and only if there exists a pairwise disjoint partition of the

vertex set V = V1 ∪ V2 with V1 6= ∅ such that for every edge e ∈ E, |e ∩ V1| is an odd

number.

Proof. The sufficiency is obvious: let θ = 0 and αi := k
2

whenever i ∈ V1 and αi = 0

whenever i ∈ V2. Since then
∑

j∈e ᾱj = k̄
2

for all e ∈ E, by Theorem 4.6.6, we see that

−1 is an H-eigenvalue of A. Hence, 2 is an H-eigenvalue of L.

For the necessity, suppose that −1 is an H-eigenvalue of A with an H-eigenvector

x. By Theorem 4.6.6, we have that there exist θ and integers αi satifying

exp(
√
−1θ) exp(

2αiπ

k

√
−1) = ±1, ∀i ∈ [n], and

∑
j∈e

ᾱj =
k̄

2
, ∀e ∈ E.

The former constraints say that θ+ 2αiπ
k

= βiπ = βikπ
k

=
2( k

2
βi)π

k
for some integers βi for

all i ∈ [n]. Thus, θ = 2βπ
k

for some integer β. Since kβ = 0̄, we can absorb θ into αi

for all i ∈ [n]. Without loss of generality, we denote the absorbed integers still by αi.

Then, we have

exp(
2αiπ

k

√
−1) = ±1, ∀i ∈ [n]⇐⇒ ᾱi = 0̄, or ᾱi =

k̄

2
, ∀i ∈ [n],
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and still ∑
j∈e

ᾱj =
k̄

2
, ∀e ∈ E.

Since 2αi = 0̄ for all i ∈ [n], the latter constraints imply that there exists a pairwise

disjoint partition of the vertex set V = V1 ∪ V2 with V1 6= ∅ such that for every edge

e ∈ E, |e ∩ V1| is an odd number. Actually, V1 can be chosen as {i ∈ [n] | ᾱi = k̄
2
}. �

A hypergraph is called k-partite, if there is a pairwise disjoint partition of V =

V1 ∪ · · · ∪ Vk such that every edge e ∈ E intersects Vi nontrivially (i.e., e ∩ Vi 6= ∅) for

all i ∈ [k].

Corollary 4.6.9 Let G be a k-uniform connected hypergraph. If G is k-partite, then

the primitive index of A is k.

Proof. Since G is k-partite, let V1, . . . , Vk be one of its k-partition. For any j ∈ [k], let

θ = 0, ᾱi = j̄ for i ∈ V1, and ᾱi = 0̄ for all i /∈ V1. Thus, we fulfill
∑

i∈e ᾱi = j̄ for all

e ∈ E. Hence, for all j ∈ [k], exp(j 2π
k

√
−1) is an eigenvalue of A by Theorem 4.6.6. �

Corollaries 4.6.9 and 4.6.5 imply that the spectrum of the adjacency tensor of a

k-partite hypergraph is invariant under multiplication by any k-th root of unity. Thus,

we recover [21, Theorem 4.2] for the spectrum of the normalized adjacency tensor of a

k-partite hypergraph.

4.6.2 Algebraic Reformulation

In this short subsection, we reformulate Theorems 4.6.2 and 4.6.6 into the language of

linear algebra over modules.

For a positive integer k, let the ring K be defined as above. Let A := Kn be the

free K-module of rank n. For every hypergraph G = (V,E), we can associated it a
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submodule G ⊆ A with G being generated by G̃ := {z(e) ∈ A | z(e)i = 1̄, i ∈ e, z(e)i =

0̄, i /∈ e, ∀e ∈ E}. Let Ĝ be the |E| × n representation matrix of K|E| → G with its

rows being given by zT with z ∈ G̃. Denote by 1 ∈ A the vector consisting of all ones.

Then we have the following result.

Theorem 4.6.10 Let G be a k-uniform connected hypergraph. Let θ = 2απ
k

with some

nonnegative integer α. Then, exp(
√
−1θ) is an eigenvalue of A if and only if there is

a vector y ∈ A such that zTy = ᾱ for all z ∈ G̃. Moreover, when exp(
√
−1θ) is an

eigenvalue of A, it has a unique eigenvector (up to scalar multiplication) if and only if

the kernel of Ĝ is 〈1〉.

The merit of Theorem 4.6.10 is that it states the nonlinear eigenvalue problem of

tensors as a linear algebra problem. In the classic linear algebra over fields, for a matrix

A ∈ Rm×n, we have dim(ker(A))+dim(im(AT )) = n [33]. Here ker(A) and im(A) mean

respectively the kernel and the image of the linear map A : Rn → Rm. While, in above

case for Ĝ, the situation is more complicated, since the set of the first syzygies of G

could be nontrivial (i.e., other than {0}) [22, 23].

4.7 Conclusions

In this chapter, the Laplacian of a uniform hypergraph is introduced and investigated.

Various basic facts about the spectrum of the Laplacian are explored. These basic

facts are related to the structures of the hypergraph. Among them, the sets of the H+-

eigenvalues and the nonnegative eigenvectors of the Laplacian are characterized through

the spectral components and the flower hearts of the hypergraph. It is shown that all

the H+-eigenvalues of the Laplacian can be computed out efficiently. Thus, they are

applicable. We also characterized the eigenvectors of the eigenvalues on the spectral

circle of the adjacency tensor. It is formulated in the language of linear algebra over

modules. That would be our next topic to investigate.
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Chapter 5

The Laplace-Beltrami Tensor of an

Even Uniform Hypergraph

5.1 Introduction

In this chapter, we introduce Laplace-Beltrami tensors for even uniform hypergraphs.

The reason why we restrict the study on even uniform hypergraphs is that positive

semidefiniteness is an intrinsic property for the Laplace-Beltrami tensors, while there

is no nontrivial odd order tensor which is positive semidefiniteness. For simplicity, the

results are presented only for 4-uniform hypergraphs. We note that all the results can

be extended to the content of r-uniform hypergraphs with even r ≥ 6 routinely.

This chapter is summarized as follows. In Section 5.1, we introduce the notion of

the Laplace-Beltrami tensor of an even uniform hypergraph. In Section 5.2, we show

that this tensor is symmetric, positive semidefinite and has a zero Z-eigenvalue with

the normalized vector of all ones as a Z-eigenvector. We introduce the algebraic con-

nectivity of an even uniform hypergraph as the second smallest Z-eigenvalue of the

Laplace-Beltrami tensor like that for graphs [19, 28], and show that the algebraic con-
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nectivity is larger than zero if and only if the hypergraph is connected. We also show

that the number of connected components of an even uniform hypergraph is actually

the dimension of the set of Z-eigenvectors of the Laplace-Beltrami tensor corresponding

to the zero Z-eigenvalue. We characterize the algebraic connectivity of an even uniform

hypergraph by a generalized Courant-Fischer theorem [33] for the Laplace-Beltrami

tensor. Hence, computing the algebraic connectivity of an even uniform hypergraph

is transformed into computing the smallest Z-eigenvalue of another tensor resulted by

multilinear transformation [50]. Two other technical lemmas concerned algebraic con-

nectivity are established at the end of Section 5.3, while some applications of them that

involve the connections of algebraic connectivity with edge connectivity and vertex con-

nectivity of an even uniform hypergraph are discussed in Section 5.4. Some conclusions

are given in the last section.

5.2 The Laplace-Beltrami Tensor

In this section, we introduce the notion of Laplacian-Beltrami tensors for even uniform

hypergraphs. The hypergraph is denoted as G = (V,E).

Let L be the Laplacian matrix of a graph G = (V,E), then for any x ∈ Rn [53]

xTLx =
∑
{i,j}∈E

(xi − xj)2. (5.2.1)

So, L is positive semidefinite with e being its eigenvector corresponding to zero eigen-

value. A natural generalization of (5.2.1) to fourth order is as follows: for a 4-uniform

hypergraph G = (V,E), its Laplace-Beltrami tensor T corresponds to the following

quartic form:

T x4 :=
∑
ep∈E

C(ep)x4, ∀x ∈ R4 (5.2.2)

with

C(ep)x4 =
1

84

[
(xi + xj + xk − 3xl)

4 + (xi + xj + xl − 3xk)
4

+(xi + xk + xl − 3xj)
4 + (xj + xk + xl − 3xi)

4
]
, (5.2.3)
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here C(ep) is a tensor associated to edge ep. It is easy to see that tiiii = di for all i ∈ V

as those for 2-uniform graphs [53]. This is one of reasons why 1
84

appears in (5.2.3).

Now, we collect the above idea into the following formal definitions.

Definition 5.2.1 Given any nonempty subset S ⊆ V , we associate it an n dimensional

tensor C(S), called the core tensor with respect to S, as:

[C(S)]ijkl :=



1 i = j = k = l ∈ S;

−1
3
{i, j, k, l} ⊆ S, three of them equal, but not all;

5
21
{i, j, k, l} ⊆ S, two different pairs of them equal;

1
21
{i, j, k, l} ⊆ S, one pair equal, three of them different;

−1
7
{i, j, k, l} ⊆ S, pairwise different;

0 otherwise.

(5.2.4)

We call C(V ) the core tensor of hypergraph G = (V,E), denoted by C.

Definition 5.2.2 Given a hypergraph G = (V,E), we associate it an n dimensional

nonnegative integer tensor K, called the degree tensor of G, as kijst being the cardinality

of the set D := {ep ∈ E | {i, j, s, t} ⊆ ep}. It is easy to see that kiiii = di for all i ∈ [n].

Definition 5.2.3 Given a hypergraph G = (V,E), let K be the degree tensor of G, and

C be its core tensor. The Laplace-Beltrami tensor T of G is defined as tensor K ∗ C.

Here ∗ represents the Hadamard product of tensors, i.e., the componentwise product.

It is easy to see that the Laplace-Beltrami tensor T indeed satisfies (5.2.2).

Definition 5.2.4 The symmetric rank r of a symmetric tensor T is the minimum

nonnegative integer k such that T has the following representation:

T =
k∑
j=1

αju
j ⊗ uj ⊗ uj ⊗ uj,

here αj ∈ C and uj ∈ Cn for all j ∈ [k].
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5.3 Algebraic Connectivity

In this section, we introduce algebraic connectivity of a hypergraph and discuss its

properties.

Lemma 5.3.1 For any ep = {i, j, k, l} with 1 ≤ i, j, k, l ≤ n, let C(ep) be the core

tensor with respect to ep and x ∈ Rn. We have

C(ep) =
1

84

4∑
s=1

usep ⊗ usep ⊗ usep ⊗ usep (5.3.5)

with u1
ep := ei + ej + ek − 3el, u2

ep := ei + ej + el − 3ek, u3
ep := ei + ek + el − 3ej and

u4
ep := ej + ek + el − 3ei. So, C(ep) is positive semidefinite.

Proof. It is easy to see that (5.3.5) follows from (5.2.3) and Definition 5.2.1 directly.

The positive semidefiniteness of C(ep) follows directly from (5.2.3). �

Proposition 5.3.2 For any hypergraph G = (V,E), its associated Laplace-Beltrami

tensor T is symmetric, positive semidefinite with symmetric rank at most 4|E|.

Proof. By Definitions 5.2.1 and 5.2.2, the core tensor C and the degree tensor K of a

hypergraph are both symmetric, then their Hadamard product T is symmetric as well.

Actually, by Definitions 5.2.1 and 5.2.2,

T = K ∗ C =
∑
ep∈E

C(ep). (5.3.6)

For any x ∈ Rn

T x4 =
∑
ep∈E

C(ep)x4 =
1

84

∑
ep∈E

4∑
s=1

(usep • x)4 ≥ 0

with usep ’s are defined in (5.3.5) and • the usual inner product in Rn. Hence, T is

positive semidefinite. The rank estimation follows from (5.3.6) and (5.3.5) directly. �

The concept of Z-eigenvalues is important in the sequel, which is defined as follows.
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Definition 5.3.3 For a fourth order tensor T , a pair (λ,x) is a Z-eigenpair of T if

the follows hold:  T x3 = λx,

λ ∈ R, x ∈ Rn, xTx = 1.
(5.3.7)

λ is called a Z-eigenvalue and x is the associated Z-eigenvector [62, 63].

From Definition 5.3.3 and the fact that the gradient of T x4 with respect to x is

4T x3 when T is symmetric, the following theorem is easy to get. See also the proofs

for [62, Theorems 3 and 5].

Theorem 5.3.4 The Z-eigenvectors of a symmetric tensor T and the critical points of

the following minimization problem have a one to one correspondence:

min T x4

s.t. ‖x‖2 = 1, x ∈ Rn.
(5.3.8)

Here ‖ · ‖2 represents 2-norm in Rn. Furthermore, if x is a Z-eigenvector of T , then

the corresponding Z-eigenvalue is T x4.

Since the minimization problem (5.3.8) is minimizing a continuous function on a

compact set, it must have at least one critical point. Hence, there is at least one

Z-eigenpair for a symmetric tensor.

Theorem 5.3.5 For any hypergraph G = (V,E), let T be its Laplace-Beltrami tensor.

Then, e
‖e‖2 is a Z-eigenvector of T with the corresponding Z-eigenvalue zero.

Proof. For any {i, j, k, l} = ep ∈ E, we have C(ep)e4 = C(ep)(ei + ej + ek + el)
4 = 0 by

Lemma 5.3.1. So,

T e4 =
∑
ep∈E

C(ep)e4 =
∑

{i,j,k,l}=ep∈E

C(ep)(ei + ej + ek + el)
4 = 0.

This, together with Proposition 5.3.2, implies that e
‖e‖2 is a global minimizer of problem

(5.3.8). By Theorem 5.3.4, e
‖e‖2 is a Z-eigenvector of T with Z-eigenvalue zero. �
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Lemma 5.3.6 Let {i, j, k, l} = ep. C(ep)x4 = 0 if and only if xi = xj = xk = xl.

Proof. By Lemma 5.3.1, we have that C(ep)x4 = 0 if and only if

xi + xj + xk = 3xl, xi + xj + xl = 3xk, xi + xk + xl = 3xj, and xk + xj + xl = 3xi.

It is easy to see that the latter is equivalent to xi = xj = xk = xl. �

Theorem 5.3.7 Given a hypergraph G = (V,E), let T be its Laplace-Beltrami tensor.

Let

S0 :=

{
x ∈ Rn \ {0}

∣∣∣∣ x

‖x‖2

is a Z-eigenvector of T with Z-eigenvalue 0

}
∪ {0}.

Then, S0 is a linear subspace of Rn, and hypergraph G has exactly Dim(S0) connected

components.

Proof. Suppose that {S1, . . . , Sq} are the connected components of hypergraph G.

For every y := eSt , we have that T y4 = 0 by Lemma 5.3.1 and (5.3.6). Hence, by

Theorem 5.3.4 and Proposition 5.3.2,
eSt
‖eSt‖2

is a Z-eigenvector of T with Z-eigenvalue

zero. So, eSt ∈ S0 for every t ∈ {1, . . . , q}. Obviously, the set of vectors {eS1 , . . . , eSq}

is linearly independent. By Theorem 5.3.4 and Lemma 5.3.6, every nonzero linear

combination of {eS1 , . . . , eSq} is in S0 \ {0}.

Now, for any x ∈ S0 \ {0}, by Theorem 5.3.4, we have

0 = T x4 =
∑
ep∈E

C(ep)x4.

By Lemma 5.3.1, every C(ep) is positive semidefinite. Hence, C(ep)x4 = 0 for every

ep ∈ E. Thus, by Lemma 5.3.6, xi’s are a constant for all i ∈ St for every t ∈ {1, . . . , q}.

This, together with the fact that x 6= 0, implies that x = α1eS1 + · · ·+ αqeSq for some

α ∈ Rq satisfying
∑q

i=1 α
2
i > 0.
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So, S0 is a linear space of dimension q, i.e., Dim(S0) = q, which is the exact number

of connected components of hypergraph G. �

As in linear algebra [33], Dim(S0) is called the geometrical multiplicity of the zero

Z-eigenvalue of T . By Theorems 5.3.5 and 5.3.7, we get the following result.

Corollary 5.3.8 Hypergraph G = (V,E) is connected if and only if its geometrical

multiplicity of the zero Z-eigenvalue of its Laplace-Beltrami tensor is one.

By Proposition 5.3.2, the Laplace-Beltrami tensor T of a hypergraph G is positive

semidefinite. By [62, Theorem 5], T is positive semidefinite if and only if all its Z-

eigenvalues are nonnegative. Thus, using these and Theorem 5.3.5, we can order all the

Z-eigenvalues of T with multiplicity as:

0 = λ0 ≤ λ1 ≤ · · · ≤ λb.

It is easy to see that

λb = max T x4

s.t. ‖x‖2 = 1
(5.3.9)

by Theorem 5.3.4 since (5.3.8) and (5.3.9) have the same critical points. By [8, 56], we

know that

1 ≤ b ≤ 3n − 1

2
.

So it is not vacuous to talk about λ1. As in the literature [19, 28], we introduce the

following concept.

Definition 5.3.9 We call λ1 the algebraic connectivity of hypergraph G = (V,E),

denoted as α(G).

Corollary 5.3.10 For a hypergraph G = (V,E), α(G) > 0 if and only if Dim(S0) = 1.

Here we give a variational characterization of α(G).
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Theorem 5.3.11 For any hypergraph G = (V,E), we have that

α(G) = λ1 = min T x4

s.t. ‖x‖2 = 1, eTx = 0.
(5.3.10)

Proof. The result is true when G is disconnected. Since then α(G) = 0 by Corollary

5.3.10. Let X ⊂ V be one of the connected components of G, and y :=
∑

i∈X ei. We

have an orthogonal decomposition of y as y = βe+x such that eTx = 0. Actually, β =

|X|
n

and x =
(∑

i∈X
n−|X|
n

ei −
∑

i/∈X
|X|
n

ei

)
. Note that T x4 = T y4 = 0 by Lemmas 5.3.1

and 5.3.6. This, together with the positive semidefiniteness of T by Proposition 5.3.2,

implies that the optimal value of minimization problem (5.3.10) is actually α(G) = 0.

In the following, we assume that G is connected.

We first show that a global minimizer x of the minimization problem (5.3.10) is

indeed a Z-eigenvector of T . By the first order necessary optimality condition [4], a

minimizer x of (5.3.10) satisfies ‖x‖2 = 1 and

Tx3 = κx + νe

with some κ ∈ R and ν ∈ R. Taking inner products of the both sides with e, we get

nν = κx • e + νe • e = e • T x3 = e •

∑
ep∈E

C(ep)x3


= e •

 1

84

∑
ep∈E

4∑
s=1

(usep • x)3usep

 =
1

84

∑
ep∈E

4∑
s=1

(usep • x)3(usep • e)

= 0.

Here the first equality follows from the fact that x • e = 0, the fourth from Lemma

5.3.1, and the last from the fact that usep •e = 0 by the definition of usep in Lemma 5.3.1.

Hence, ν = 0, and then T x3 = κx. So, x is a Z-eigenvector of T with Z-eigenvalue

κ = p∗. Here we denote by p∗ the optimal value of the minimization problem (5.3.10).

Furthermore, by the hypothesis of that G is connected, Theorem 5.3.5 and Corollary

5.3.8, we get that p∗ > 0.
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Then, we prove that if y ∈ Rn with yTy = 1 is a Z-eigenvector of T with Z-

eigenvalue λ > 0, then λ ≥ p∗. Hence, by the definition of algebraic connectivity of

hypergraph G, α(G) = λ1 = p∗.

To this end, suppose that y ∈ Rn with yTy = 1 is a Z-eigenvector of T with Z-

eigenvalue λ > 0. We have an orthogonal decomposition of y as y = βe + x for some

β ∈ R and x ∈ Rn with xTe = 0 and x 6= 0 by Corollary 5.3.8 and the assumption

λ > 0. Moreover, we have

T y3 =
∑
ep∈E

C(ep)y3 =
∑
ep∈E

4∑
s=1

(
usep ⊗ usep ⊗ usep ⊗ usep

)
y3

=
∑
ep∈E

4∑
s=1

(
usep • y

)3

usep

=
∑
ep∈E

4∑
s=1

(
usep • x

)3

usep ,

and T y3 = λ(βe+x). Taking inner products of the both sides with e, we get 0 = λβn+0

since usep • e = 0 by the definition of usep in Lemma 5.3.1. So, β = 0 as λ > 0. Hence,

y = x and xTe = 0. That is to say y is feasible for the minimization problem (5.3.10).

By the fact that λ = T y4, we conclude that λ ≥ p∗. �

Remark 5.3.12 Here are several remarks.

• Similar results for Theorem 5.3.11 are true for Laplacian matrices, namely the

Courant-Fischer theorem [33]. Nevertheless, Theorem 5.3.11 is not true for gen-

eral tensors, even for general positive semidefinite tensors. One reason why The-

orem 5.3.11 is true is that the Z-eigenvalue problem (5.3.7) has the property of

orthogonally transformational invariance [62,63].

• For usual graphs, similar results of Theorem 5.3.11 [19] imply

α(G) = inf
x⊥e,x 6=0

Mx2

‖x‖2
2

= inf
x⊥e,x 6=0

∑
{i,j}=ep∈E(xi − xj)2∑n

i=1 x
2
i

(5.3.11)
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with M = D(G)−A(G) as the Laplacian matrix [53] and Mx2 := xTMx, which

corresponds to the eigenvalue problem of the Laplace-Beltrami operator in Rie-

mannian manifolds of the following form:

λM := inf

∫
M
|∇h|2∫

M
|h|2

, (5.3.12)

where h ranges over functions satisfying
∫
M
h = 0. Here the measure on edges

ep ∈ E and vertices i ∈ V is 1. In an equivalent form,

λM := inf

∫
M

|∇h|2

where h ranges over functions satisfying
∫
M
h = 0 and

∫
M
|h|2 = 1. One of the

generalizations to fourth order is:

λT := inf

∫
T
|∇h|4

where h ranges over functions satisfying
∫
T h = 0 and

∫
T |h|

2 = 1. When it is dis-

creted, the resulting problem is actually (5.3.10). This is one of our motivations to

define the core tensors in Definition 5.2.1 and the terminology “Laplace-Beltrami

tensor”.

Lemma 5.3.13 Let T be the Laplace-Beltrami tensor of hypergraph G = (V,E) and

α(G) be the algebraic connectivity of G. We have

α(G) ≤ 2n2

n2 − 2
min

1≤i≤n
di. (5.3.13)

Proof. Denote by the feasible solution set of (5.3.10) as F := {x ∈ Rn | ‖x‖2 =

1, eTx = 0}. For any y ∈ Sn−1 := {y ∈ Rn | ‖y‖2 = 1}, we can get a decomposition of

y as y = c1e + c2x for some c1, c2 ∈ R and x ∈ F . So,[
2T − α(G)(I ⊗ I − 2

n2
e⊗ e⊗ e⊗ e)

]
y4

= 2T (c2x)4 − α(G)
[
(nc2

1 + c2
2‖x‖2

2)2 − 2c4
1n

2
]

≥ 2T (c2x)4 − α(G)
[
2(n2c4

1 + c4
2‖x‖4

2)− 2c4
1n

2
]

= 2T (c2x)4 − 2c4
2α(G)

≥ 0
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for any y ∈ Sn−1. Here the first inequality follows from the facts that α(G) ≥ 0 and

(a+b)2 ≤ 2(a2 +b2) for a, b ∈ R, and the second from the fact that x ∈ F and Theorem

5.3.11. Hence, tensor W := 2T −α(G)(I ⊗ I − 2
n2 e⊗ e⊗ e⊗ e) is positive semidefinite.

Especially, the diagonal elements of the tensor W are nonnegative. So,

min
1≤i≤n

wiiii = 2 min
1≤i≤n

tiiii − α(G)(1− 2

n2
) ≥ 0

which, together with the definition of degrees, implies (5.3.13) directly. �

Lemma 5.3.14 1 Let G = (V,E) be a hypergraph, and G′ be a hypergraph by removing

a vertex from G and all the adjacent edges. Then,

α(G′) ≥ α(G)− 11(|V | − 1)2

18
. (5.3.14)

Proof. Let G1 be the hypergraph by adding a vertex to G′ and all the possible adjacent

edges. Then G is a subhypergraph of G1. Denote by F (p) := {x ∈ Rp | ‖x‖2 = 1, eTx =

0} for p ≥ 4. Let W be the Laplace-Beltrami tensor of the hypergraph G1, and A be

the Laplace-Beltrami tensor of the hypergraph G. Let Ē be the set of edges of the

hypergraph G1. Then, E ⊆ Ē by the construction of G1. Now, by Theorem 5.3.11,

α(G) = min{Ax4 | x ∈ F (|V (G)|)}, and α(G1) = min{Wx4 | x ∈ F (|V (G)|)}. While,

Ax4 =
∑
ep∈E

C(ep)x4, andWx4 =
∑
ep∈Ē

C(ep)x4 =
∑
ep∈E

C(ep)x4 +
∑

ep∈Ē\E

C(ep)x4.

So, Ax4 ≤ Wx4 for any x ∈ F (|V (G)|) since every C(ep) is positive semidefinite by

Lemma 5.3.1. Hence,

α(G1) ≥ α(G). (5.3.15)

Let T be the Laplace-Beltrami tensor of the hypergraph G′. Then, by Theorem

5.3.11, α(G′) = T x4 for some x ∈ F (|V (G)| − 1). Let l ∈ V (G) be the removed vertex

and y ∈ R|V (G)| with yV (G)−{l} = x and yl = 0, we have

Wy4 = T x4 +
∑
ep∈M

C(ep)y4,

1Special thanks are devoted to Professor Chang An and Mr. Xie Jinshan for pointing out an error

to us in the journal version.
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where M = {ep | ep = {i, j, k, l}, i, j, k ∈ V (G′)}. For any {i, j, k, l} = ep ∈ M , we

have that

C(ep)y4 =
1

84

[
(xi + xj + xk)

4

+(xi + xj − 3xk)
4 + (xi + xk − 3xj)

4 + (xj + xk − 3xi)
4
]

=
1

84

[
84(x4

i + x4
j + x4

k)− 112(x3
ixj + x3

ixk + x3
jxi + x3

jxk + x3
kxi + x3

kxj)

+ 120(x2
ix

2
j + x2

jx
2
k + x2

kx
2
i ) + 48(x2

ixjxk + x2
jxixk + x2

kxixj)
]
.

Denote by q := |V (G′)| = |V (G)| − 1 ≥ 3 as assumed in Introduction, we have that

|M | =
(
q
3

)
, and

∑
ep∈M

C(ep)y4 = 3

(
q

3

)
1

q

q∑
i=1

x4
i −

(
q − 2

1

)
112

84

q∑
i=1

x3
i (
∑
j 6=i

xj)

+
1

2

(
q − 2

1

)
120

84

q∑
i=1

x2
i (
∑
j 6=i

x2
j) +

1

2

48

84

∑
i 6=j

xixj
∑

k 6=i, k 6=j

x2
k

= 3

(
q

3

)
1

q

q∑
i=1

x4
i +

(
q − 2

1

)
112

84

q∑
i=1

x3
ixi

+

(
q − 2

1

)
60

84

q∑
i=1

x2
i (1− x2

i ) +
24

84

∑
i 6=j

xixj(1− x2
i − x2

j)

= 3

(
q

3

)
1

q

q∑
i=1

x4
i + (q − 2)

112

84

q∑
i=1

x3
ixi

−(q − 2)
60

84

q∑
i=1

x4
i + (q − 2)

60

84
+

24

84

∑
i 6=j

(xixj − x3
ixj − xix3

j)

= 3

(
q

3

)
1

q

q∑
i=1

x4
i + (q − 2)

112

84

q∑
i=1

x3
ixi

−(q − 2)
60

84

q∑
i=1

x4
i + (q − 2)

60

84
− 24

84

q∑
i=1

x2
i + 2

24

84

q∑
i=1

x4
i

=

(
3(q − 1)(q − 2)

6
+

112(q − 2)− 60(q − 2) + 48

84

) q∑
i=1

x4
i

+
60(q − 2)− 24

84

≤ 3(q − 1)(q − 2)

6
+

112(q − 2)− 60(q − 2) + 48 + 60(q − 2)− 24

84

=
3(q − 1)(q − 2)

6
+

112(q − 2) + 24

84
=
q2

2
− q

6
+

29

21
≤ 11q2

18
,
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where the second and the fourth equalities follow from the fact that ‖x‖2 = 1 and

xTe = 0, the first inequality from the fact that ‖x‖4 ≤ ‖x‖2 and ‖x‖2 = 1, and the last

inequality from the fact that q ≥ 3.

So, by the fact that ‖y‖2 = ‖x‖2,
∑

i∈V (G) yi = eTx = 0 and Theorem 5.3.11,

α(G1) ≤ Wy4 ≤ α(G′) +
11q2

18
. (5.3.16)

Hence, (5.3.16), together with (5.3.15), implies (5.3.14). �

The following corollary is a direct consequence of Lemma 5.3.14.

Corollary 5.3.15 Let G = (V,E) be a hypergraph, and G′ be a hypergraph by removing

k ≤ n := |V (G)| vertices from G and all the adjacent edges. Then,

α(G′) ≥ α(G)− 11k

18
(n− 1)2.

5.4 Applications

In this section, we discuss some issues of hypergraphs that relate to its algebraic con-

nectivity. Let G = (V,E) be a hypergraph. The edge cut means: given any nonempty

proper subset X ⊂ V , the edge cut of X is the set of edges

EX := {ep ∈ E | ∃i ∈ X, ∃j /∈ X, s.t. {i, j} ⊂ ep}.

The edge connectivity of G, denoted by e(G), is defined as the minimum cardinality

of EX over all nonempty proper subsets X of V such that the resulting hypergraph is

disconnected.

Lemma 5.4.1 Let G = (V,E) be a hypergraph, T be its Laplace-Beltrami tensor, α(G)

be its algebraic connectivity and λb be the largest Z-eigenvalue of T . Then, for all X ⊂ V

|X|2(n− |X|)2

n2
α(G) ≤ |EX | ≤

21|X|2(n− |X|)2

16n2
λb. (5.4.17)
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Proof. Let X be a nonempty proper subset of V and EX its associated edge cut. Let

x :=
∑

i∈X ei, we have an orthogonal decomposition of x as x = βe + g such that

eTg = 0. Actually, β = |X|
n

and g =
(∑

i∈X
n−|X|
n

ei −
∑

i/∈X
|X|
n

ei

)
. So,

T g4 = T x4 =
∑

{i,j,k,l}=ep∈EX

1

84

[
(xi + xj + xk − 3xl)

4 + (xi + xj + xl − 3xk)
4

+(xi + xk + xl − 3xj)
4 + (xj + xk + xl − 3xi)

4
]
.

For every {i, j, k, l} = ep ∈ EX , there are three situations:

• Three of {xi, xj, xk, xl} are zero and one of them is 1.

• Two of {xi, xj, xk, xl} are zero and two of them are 1.

• One of {xi, xj, xk, xl} is zero and three of them are 1.

So, we have 16
21
≤ C(ep)x4 ≤ 1 by a direct computation for the three cases. Thus,

16|EX |
21
≤ T g4 ≤ |EX |. Hence, by (5.3.9), Theorem 5.3.11 and the fact that ‖g‖2

2 =

|X|(n−|X|)
n

, we get that

16|EX |
21

≤ |X|
2(n− |X|)2

n2
λb, and

|X|2(n− |X|)2

n2
α(G) ≤ |EX |. (5.4.18)

Then, (5.4.18) implies (5.4.17) directly. �

Here we give an intuitive example for the lower bound in Lemma 5.4.1.

Example 5.4.2 Consider hypergraph G = (V,E) with vertices set V = {1, 2, 3, 4, 5}

and edges set E = {{1, 2, 3, 4}, {1, 2, 4, 5}, {1, 3, 4, 5}, {1, 2, 3, 5}, {2, 3, 4, 5}}. Since

|EX | is easy to compute when |X| = 1 for any hypergraphs. We consider the more

nontrivial cases. The lower bound for |EX | when |X| = 2 provided by Lemma 5.4.1 is

36
25
α(G). It is easy to see that |EX | = 5 when |X| = 2. It is difficulty to solve mini-

mization problem (5.3.10), so we randomly generate 100000 points in the feasible set of

(5.3.10) to get an approximation α(G) = 2.98. Then, the lower bound computed is 4.29.

Since |EX | is an integer, we see that the computed lower bound is tight.
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The following result is a direct corollary from Lemma 5.4.1.

Theorem 5.4.3 Let G = (V,E) be a hypergraph, T be its Laplace-Beltrami tensor,

α(G) be the algebraic connectivity of G, λb be the largest Z-eigenvalue of T , and e(G)

be the edge connectivity of G. Then,

(n− 1)2

n2
α(G) ≤ e(G) ≤

 21n2

256
λb if n is even,

21(n2−1)2

256n2 λb if n is odd.

The vertex connectivity ofG, denoted by v(G), is defined as the minimum cardinality

of X ⊂ V such that the resulting hypergraph by removing vertices in X and their

associated edges is disconnected.

Theorem 5.4.4 Let G = (V,E) be a hypergraph, α(G) be the algebraic connectivity of

G and v(G) be the vertex connectivity of G. We have

α(G) ≤ v(G)
11(n− 1)2

18
.

Proof. Let X be a subset of vertices such that X is the vertex cut to disconnect the

hypergraph G. Then |X| = v(G), and the resulting hypergraph is disconnected. Hence,

its algebraic connectivity is zero by Corollaries 5.3.8 and 5.3.10. Thus, the result follows

from Corollary 5.3.15 directly. �

5.5 Conclusions

We introduced in this chapter the Laplace-Beltrami tensor for an even uniform

hypergraph, and the algebraic connectivity through the concept of Z-eigenvalues of

tensors. We established several properties of the algebraic connectivity for an even

uniform hypergraph and its connections with the edge connectivity and the vertex

connectivity.

97



98



Chapter 6

Conclusions

In this thesis, the notions of the Laplacian of a uniform hypergraph and the Laplace-

Beltrami tensor of an even uniform hypergraph, and the notion of the tensor deter-

minant are introduced. The theory of the tensor determinant has applications in the

spectral hypergraph theory. Besides this, the theory on nonnegative tensor partition

contributes to the spectral hypergraph theory as well. Especially, based on these re-

sults, we studied the spectra of uniform hypergraphs through these Laplacican-type

tensors and established the basic spectral theory of uniform hypergraphs. All the H+-

eigenvalues of the Laplacian of a uniform hypergraph are characterized by the newly

introduced concepts of spectral components and flowers hearts. They are closely related

to the hypergraph structures. The eigenvectors of the eigenvalues on the spectral circle

of the normalized adjacency tensor are completely characterized. It sheds lights on fur-

ther research about the symmetry of the spectra of uniform hypergraphs as well as the

structures of hypergraphs. The algebraic connectivity of an even uniform hypergraph

is characterized variationally, which gives the philosophy to compute it out.

We also applied the theory to edge connectivity, vertex connectivity, edge expansion

and spectral invariance of a uniform hypergraph, which indicates the feasibility of the

established spectral hypergraph theory.
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[11] Cvetković, D.M., Doob, M., Gutman, I., Torgasev, A., 1988. Recent Results in the

Theory of Graph Spectra, North Holland, Amsterdam.
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