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Abstract

The dissertation has six contributions towards space-time signal processing for acoustic

sensor arrays which are summarized below.

(1) Closed-form direction finding using collocated but orthogonally oriented higher-order

acoustic sensors

This work introduces new closed-form formulas to estimate an incident source’s

azimuth-elevation angle-of-arrival (AOA), for various combinations of higher-order

directional acoustic sensors, that are orthogonally oriented in a collocated triad.

(2) Azimuth-elevation direction finding using a microphone and three orthogonal veloc-

ity sensors as a non-collocated subarray

An acoustic vector-sensor consists of three identical but orthogonally oriented a-

coustic particle-velocity sensors, plus a pressure sensor - all spatially collocated in a

point-like geometry. This collocation constriction is relaxed in this work, to realize

a spatially distributed acoustic vector-sensor, allowing its four component-sensors to

be separately located.

(3) Acoustic direction finding using a spatially spread tri-axial velocity sensor

This work shows how a triad of orthogonally oriented uni-axial velocity sensors

may be spatially separated, yet facilitates direction finding of incident emitters via

closed-form subspace-based parameter estimation algorithms, while extending the

triads spatial aperture in three-dimensional space to enhance the resolution of the

azimuth/elevation direction of arrival estimates.

(4) “Blind” calibration of an array of acoustic vector-sensors suffering gain errors /

mis-location / mis-orientation

A series of direction-finding algorithms have recently been advanced, deploying a

multi-array network (MAN) of acoustic-vector-sensors, each consisting of three col-

located but diversely oriented uni-axial particle-velocity sensors, plus an optional

pressure sensor. All these algorithms presume the particle-velocity sensors and the

pressure sensors of ideal gain/phase responses, correct orientations, and (in some al-

gorithms) precise locations. Such perfection is seldom (if ever) achieved in realworld

systems or in field deployment. Indeed, these non-idealities need to be calibrated,
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often blindly without any training signal from any prior known arrival-angle. To-

wards this end, this work will advance a new “blind” calibration algorithm (a.k.a.

“auto-calibration”, “self-calibration”, or “unaided calibration”) that is computation-

ally orders-of-magnitude more efficient than maximum-likelihood estimation. These

advantages are achieved here by exploiting the acoustic vector-sensor’s quintessential

characters, to interplay between two complementary approaches of direction-finding:

(1) customary interferometry between vector-sensors, and (2) “acoustic particle-

velocity-field normalization” DOA-estimation within each individual vector-sensor.

(5) A lower bound of direction-of-arrival estimation for an acoustic vector sensor subject

to sensor breakdown

In an acoustic vector-sensor, any particular velocity sensor must either function

or fail, over the entire time-window when measurements are collected. This work

derives an approximate lower bound for the error-variance of direction-finding using

a single acoustic vector sensor subject to random breakdown in its sensors.

(6) Three dimensional localization of a near-field emitter of unknown spectrum using an

acoustic vector sensor

The work develops a parameter estimation algorithm to estimate a near field wide-

band emitters azimuth elevation direction of arrival plus radial distance, based on

data collected by one acoustic vector sensor. This new algorithm needs no prior

knowledge of the incident sources spectrum.

The dissertation has two contributions towards signal processing for single-carrier block-

based transmission/reception which are summarized below.

(1) A precoder/two-stage equalizer for block-based single-carrier transmission with an

insufficient guard-interval

To reduce the cyclic-prefix overhead in block-based cyclically prefixed single-carrier

modulation, herein proposed is a zeros-inserting precoder that can reduce the net

overhead in symbols. This precoder allows the formation a data-group that contains

only interference and noise but not the desired signal, thereby facilitating a sub-

sequent “signal to interference-plus-noise” (SINR) maximizer. Also proposed is an

accompanying two-stage linear equalizer, that may be pre-computed off-line. This

equalizer’s first stage is a linear minimum mean-square-error (LMMSE) based linear

frequency-domain equalizer (FDE); the equalizer’s second stage is its second stage is

a SINR-maximizer in the time-domain. Monte Carlo simulations show the proposed

scheme’s capability to shorten the cyclic prefix (CP) more than the inserted number

of zero-energy symbol-periods, thereby reducing the transmission’s net overhead.

(2) “Blind” reception-beamforming to null unknown interference for block-based single-

carrier transmission with an insufficient guard interval
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This work proposes a “blind” beamformer to spatially pass the signal-of-interest, but

to spatially null any co-channel interference, any adjacent-channel interference, any

out-of-system interference, and/or any spatio-temporally correlated additive noises.

This proposed scheme’s transmission uses zero-padding in an insufficient guard inter-

val, shorter than the temporally spreading channel’s order. This proposed scheme’s

receiver first undergoes frequency-domain equalization, to “clear” the data of the

signal-of-interests energy during the nominally zero-padded guard interval, to facili-

tate subsequent “signal-to-interference-and-noise ratio” maximization in the spatial

dimension to realize the aforementioned “blind” beamformer.
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Chapter 1

Introduction

1

This dissertation presents 8 research projects by the candidate student since September

2009. These 8 research projects may be categorized into two loosely related research areas:

Chapters 2-7 describe 6 research projects on space-time signal processing for acoustic

sensor arrays. Chapters 8 describe 2 research projects on signal processing for single-

carrier block-based transmission/reception.

1.1 The Acoustic Vector-Sensor

1.1.1 The Acoustic Particle-Velocity Sensor

Customary microphones (monopoles) treat the acoustic wavefield as a space-time field

of the pressure scalar. This overlooks information in the underlying acoustic “particle

velocity vector” - a three-dimensional vector representing the three partial derivatives

of the pressure-field, taken with respect to the three Cartesian spatial coordinates. To

measure any one such Cartesian component of this acoustic particle-velocity field vector,

needed is an acoustic particle-velocity sensor (a dipole) that is oriented along that Cartesian

axis.

Acoustic velocity-sensor technology has been used in underwater-acoustics and air-

acoustics for over a century [2], and is the subject of recently renewed interest [30], [94].

The acoustic velocity-sensor’s various hardware implementations are discussed in [56].

1.1.2 The Velocity-Sensor Triad

A velocity-sensor triad (a.k.a. vector-hydrophone) consists of three identical, but orthogo-

nally oriented, acoustic velocity-sensors – all spatially co-located in a point-like geometry,

see Figure 1.1. The entire velocity-sensor triad thus distinctly measures all three Carte-

sian components of the particle-velocity vector. The velocity-sensor triad thus treats the

acoustic wavefield as a vector-field (i.e., the particle-velocity field), not merely as a scalar

1This chapter is taken from the several papers [158, 162, 165, 163, 159, 160] jointly authored by the

candidate and his chief supervisor.
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field (i.e., pressure-field), as by the customary microphone or hydrophone. More precisely,

an acoustic vector-sensor (placed at the origin of the three-dimensional Cartesian coordi-

nates) would have this 3×1 array-manifold [26], [59], in response to a unit-power incident

acoustic wave that has traveled through an homogeneous isotropic medium:

a(θ, φ)
def
=



u(θ, φ)

v(θ, φ)

w(θ)




def
=




sin θ cosφ

sin θ sinφ

cos θ


 , (1.1)

where 0 ≤ θ ≤ π symbolizes the elevation-angle measured from the vertical z-axis, 0 ≤
φ < 2π denotes the azimuth-angle measured from the positive x-axis, u(θ, φ) refers to

the direction-cosine along the x-axis, v(θ, φ) represents the direction-cosine along the y-

axis, and w(θ) refers to the direction-cosine along the z-axis. The first, second, and third

components in a(θ, φ) correspond to the acoustic velocity-sensors aligned along the x-axis,

the y-axis, and the z-axis, respectively. These three components together give a Frobenius

norm,
√

[u(ψ, φ)]2 + [v(ψ, φ)]2 + [w(ψ)]2 = 1,∀ψ, φ.

Figure 1.1: A geometric illustration of a velocity-sensor triad.

1.1.3 The Customary Acoustic Vector-Sensor: Three Orthogonally Ori-

ented Velocity-Sensors Collocating with a Pressure-Sensor

The acoustic vector-sensor (a.k.a. vector-hydrophone), consists of three acoustic velocity-

sensors (identical, but oriented orthogonally, and collocated) plus an acoustic pressure-

sensor — these four component-sensors together constitute one acoustic vector-sensor

(a.k.a. a vector-hydrophone). This acoustic vector-sensor thus distinctly measures each

Cartesian component of the particle-velocity vector plus the pressure scalar, all at the

same point in space.
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Mathematically, for an acoustic vector-sensor located at the Cartesian coordinates’

origin, it would have the 4× 1 array-manifold [26, 59, 135]

a(θ, φ)
def
=




u(θ, φ)

v(θ, φ)

w(θ)

1




def
=




sin θ cosφ

sin θ sinφ

cos θ

1



, (1.2)

in response to a unit-power incoming acoustic wave, that has traveled through an homoge-

neous isotropic medium. The array-manifold’s fourth element corresponds to the acoustic

pressure-sensor. The entire four-element array-manifold always gives a Frobenius norm of
√
2, regardless of ψ and φ.

For a literature survey of the acoustic vector-sensor’s hardware implementations, sea/air

trials and associated direction-finding algorithms, please see [122, 134, 154]. Acoustic

vector-sensors are commercially available as the “Uniaxial P-U Probe” from Acoustech.2

1.1.4 The Acoustic Vector-Sensor’s Advantages in Eigen-Based Direction-

Finding

The acoustic vector-sensor’s unique array-manifold is advantageous to eigen-based direction-

finding algorithms. It has been exploited using the “Estimation of Signal Parameters via

a Rotation Invariance Technique” (ESPRIT) [33, 34, 44, 53, 86, 99, 110, 120, 134], using

the “MUltiple SIgnal Classification” (MUSIC) [44, 76, 110, 129, 139, 137], using the Root-

MUSIC [40, 124, 140], using the beamspace-based DOA-estimation [35], [69], or using other

subspace-based parameter-estimation methods [107, 111, 119, 130, 133, 137, 141, 149, 154].

The acoustic vector-sensor has also been used for source-tracking [51, 88, 109, 119, 139,

150].

The above eigen-based algorithms eigen-decompose the space-time data-correlation

matrix, to estimate each incident source’s steering vector a as â = ca, to within an

unknown complex-value scalar c. Normalize â to give
√
2 â
‖â‖ , of which the top three

elements will be unambiguous estimates of the three Cartesian direction-cosines u(θ, φ),

v(θ, φ), and w(θ). Direction finding is thereby achieved, despite the unknown complex-

value c mentioned above.

It is important to recognize that the above “self normalization” approach of direction-

finding is predicated on both

{i} a unity Frobenius norm for the first three components of the array manifold regard-

less of the arrival-angles of θ and φ, and

{ii} a unity value for the fourth component regardless of the arrival-angles of θ and φ.

This acoustic vector-sensor “self-normalization” direction-finding is advantageous in

the following ways:

2http://www.acoustechcorporation.com (date last viewed 6/1/12)
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{1} A four-component acoustic vector-sensor exploits information in the acoustic-particle-

velocity vector-field, in addition to the information in the pressure scalar-field.

{2} Multiple incident sources’ azimuth-angles and the elevation-angles may be estimated

and automatically matched, using only one acoustic vector-sensor [53, 51, 134].

{3} This self-normalization direction-finding approach may be creatively synergized with

the customary interferometry direction-finding approach (which estimates the spatial

phase delay among the data sets collected at physically displaced antennas) to offer

unusual capabilities:

(a) Direction-of-arrival estimation accuracy can be improved by orders of magni-

tude without requiring additional microphones or hydrophones. [34]

(b) Direction-of-arrival estimation can be achieved without prior knowledge/estimation

of the nominal/actual geometric array-grid and without any calibration-source,

thereby adding unprecedented “real-world” deployment. [33]

(c) No prior coarse estimates is needed to initiate the MUSIC (MUltiple SIgnal

Classification) iterative parameter-estimation routine. Instead MUSIC can now

self-initiates its iteration. [44]

(d) Blind geolocation, beamforming, and interference-rejection are possible for frequency-

hopping sources of unknown and arbitrary hop-sequences and directions-of-

arrival. [134]
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Chapter 2

Closed-Form Direction-Finding

Using Collocated but

Orthogonally Oriented

Higher-Order Acoustic Sensors

1

2.1 Literature Review of Higher-Order Acoustic Sensor

2.1.1 The Acoustic Velocity-Sensor – First-Order Spatial Derivative of

the Acoustic Pressure-Field

Each Cartesian component of the acoustic particle-velocity field vector represents a first-

order spatial derivative of the pressure-field along that Cartesian coordinate, and may be

directly measured (without computing any spatial derivative) by a velocity-sensor aligned

in parallel to that Cartesian coordinate.

2.1.2 Directional Acoustic Sensors that Measure a Higher-Order Spatial

Derivative of the Acoustic Pressure-Field

While the acoustic velocity-sensor measures a first-order spatial derivative of the incident

pressure-field, the second-order and higher-order spatial derivatives of the pressure-field

could likewise be defined. Second-order and higher-order acoustic sensors have in fact

been implemented directly, without computing any derivative of the data collected by

lower-order sensors:

{i} The second-order dipole-mode (a.k.a cosine beampattern) acoustic sensors are im-

plemented by piezoelectric rings in [43] and by piezoelectric hollow cylinders in [65].

1This chapter is taken from [158], jointly authored by the candidate and his chief supervisor.
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{ii} The third-order quadrupole-mode (a.k.a cosine-squared beampattern) acoustic sen-

sors are implemented by piezoelectric rings in [43], by piezoelectric hollow cylinders

in [65], and by the wagon-wheel transducer in [74].

{iii} The fourth-order acoustic sensors are implemented by the wagon-wheel transducer

in piezoelectric hollow cylinders in [65].

{iv} Arbitrarily higher-order acoustic sensors are implemented by a“piezoelectric ceramic

spherical shell whose surface is sectionally electroded” in [4], and by the spherical

radiator in [6].

Indeed, the directivity and the beam-patterns of higher-order directional sensors have

been investigated in [1, 3, 5, 8, 9, 36, 42, 52, 60, 105, 100, 128]. Moreover, [106] derives the

Cramér-Rao bounds (in open form) for direction finding using such higher-order directional

sensors.

No closed-form direction-finding algorithm is yet available in the open literature for

such higher-order acoustic sensors, however. The present work fills this literature gap.

Subsequently listed are closed-form direction-finding formulas for various compositions of

collocated higher-order acoustic vector-sensors. Their corresponding validity-regions are

also identified for unambiguous estimation of the direction-of-arrival. These new results

will allow high-order directional acoustic sensors to be straight-forwardly adopted in the

direction-finding methods cited in [122, 134, 154]. For example, the subsequently derived

(2.4)-(2.6) or (2.11)-(2.13) may directly substitute for the direction-cosine estimation e-

quations (15)-(17) in [53]. These new results will retain the many advantages in those

earlier direction-finding methods.

2.2 Measurement Model of the Generalized Acoustic Vector-

Sensor Consisting of Higher-Order Directional Acoustic

Sensors

The kth-order acoustical sensor has a gain-pattern2 of cosk γ, where γ refers to the angle

between the directional sensor’s orientation and the incident source’s direction-of-arrival.

(Please see p. 1232 of [105].)

For a directional acoustical sensor aligned along the x-axis, its (θ, φ) directivity may be

obtained by considering a position-vector of (θ, φ, r) in the spherical coordinates of Figure

2.1. A unit-length position-vector would give a length of sin(θ) cos(φ) = cos γ, when

projected along the x-axis. Hence, this x-axis aligned kth-order directional acoustical

sensor has a directivity of [cos γ]k = [sin(θ) cos(φ)]k. Likewise, a kth-order directional

acoustical sensor has a directivity of [cos η]k = [sin(θ) sin(φ)]k, if aligned along the y-

axis. Similarly, a kth-order directional acoustical sensor, if aligned along the z-axis, has a

2 The gain-pattern here refers to the sensor’s registered voltage as a function of the incident source’s γ.
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Figure 2.1: Inter-relation among the various spatial angles.

directivity of [cos θ]k. These give the 3× 1 generalized array manifold,

a(kx,ky,kz,×) =




{sin(θ) cos(φ)}kx

{sin(θ) sin(φ)}ky

{cos(θ)}kz


 =




ukx

vky

wkz


 . (2.1)

With the addition of a pressure-sensor, the generalized array manifold becomes 4× 1:

a(kx,ky,kz ,
√
) =




{sin(θ) cos(φ)}kx

{sin(θ) sin(φ)}ky

{cos(θ)}kz

1




=




ukx

vky

wkz

1



. (2.2)

The × (
√
) symbol in the superscript refers to the absence (presence) of a pressure-sensor

in the acoustic vector-sensor.

Numerous eigenstructure-based (i.e., subspace-based) direction-finding schemes exploit

the unique array manifolds of directional acoustic sensors (i.e., acoustic particle-velocity

sensors) that measure the first-order spatial derivative of the incident pressure-field. 3

This section will show that a general kth-order acoustic sensor can be used in all above-

mentioned subspace-based direction-finding schemes, in replacement of first-order direc-

tional sensors.

All aforementioned eigenstructure-based parameter-estimation algorithm involve an

intermediate step that estimates each incident source’s steering vector, but correct to only

within an unknown complex-value scalar c. That is, available from each algorithm is the

3For literature surveys, please see [122, 134, 154].
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estimate,

â
def
=








âx

ây

âz

âp




≈ c a(kx,ky,kz ,
√
), if the pressure-sensor is present,



âx

ây

âz


 ≈ c a(kx,ky,kz ,×), if the pressure-sensor is absent.

(2.3)

The approximation becomes a straight equality in noiseless or asymptotic cases.

The issue here is whether â suffices to unambiguously estimate the source’s azimuth-

elevation arrival-angles, despite that c is not prior known. The next two sections will

answer in the affirmative.

2.3 Closed-Form Estimation-Formulas With a Pressure-Sensor

A key insight is that
[
a(kx,ky,kz,

√
)
]
4
= 1,∀θ, φ and ∀kx, ky, kz. Further examination of

(2.1) reveals that

|u| =

∣∣∣∣
[
a(kx,ky,kz,

√
)
] 1

kx

1

∣∣∣∣

|v| =

∣∣∣∣
[
a(kx,ky,kz,

√
)
] 1

ky

2

∣∣∣∣

|w| =

∣∣∣∣
[
a(kx,ky,kz,

√
)
] 1

kz

3

∣∣∣∣ .

All these lead to

|û| =

∣∣∣∣∣
âx
âp

1
kx

∣∣∣∣∣

|v̂| =

∣∣∣∣∣
ây
âp

1
ky

∣∣∣∣∣

|ŵ| =

∣∣∣∣∣
âz
âp

1
kz

∣∣∣∣∣ .

The only remaining task is to determine the sign of these three direction-cosines. If a

particular direction-cosine’s order is odd, then its sign equals the sign of ℜ
(
âx
âp

)
, where ℜ

refers to the real part of the entity inside the parentheses. If a particular direction-cosine’s

order is even, needed will be a prior knowledge of the direction-cosine’s sign.
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In summary,

û =





∣∣∣∣
(
âx
âp

) 1
kx

∣∣∣∣ sign
(
ℜ
(
âx
âp

))
, if kx is odd

∣∣∣∣
(
âx
âp

) 1
kx

∣∣∣∣ sign (u) , if kx is even

(2.4)

v̂ =





∣∣∣∣
(
ây
âp

) 1
ky

∣∣∣∣ sign
(
ℜ
(
ây
âp

))
, if ky is odd

∣∣∣∣
(
ây
âp

) 1
ky

∣∣∣∣ sign (v) , if ky is even

(2.5)

ŵ =





∣∣∣∣
(
âz
âp

) 1
kz

∣∣∣∣ sign
(
ℜ
(
âz
âp

))
, if kz is odd

∣∣∣∣
(
âz
âp

) 1
kz

∣∣∣∣ sign (w) , if kz is even.

(2.6)

Iff kx is even, the above estimates would require prior knowledge of the sign of u. Iff ky

is even, the above estimates would require prior knowledge of the sign of v. Iff kz is even,

the above estimates would require prior knowledge of the sign of w.

Hence, unambiguous would be the azimuth-elevation direction-of-arrival estimation,

with a validity-region over the entire spherical coordinates, if and only if kx, ky, kz are all

odd. If exactly one of kx, ky, kz is even, then the unambiguous estimation’s validity-region

would be halved to only an hemisphere round the vector-sensor. For each additional even

entity among kx, ky, kz , the unambiguous estimation’s validity-region would be further

halved.

Then, θ and φ may be estimated as

θ̂ = arccos ŵ (2.7)

φ̂ = sign (v̂) arccos

{
û

sin(θ̂)

}
. (2.8)

2.4 Closed-Form Estimation-Formulas Without any Pressure-

Sensor

Without any pressure-sensor in the acoustic vector-sensor, the unknown complex number

c cannot be determined as in Section 2.3. However, as u2 + v2 + w2 = 1,∀θ, φ, it holds

that

∣∣∣∣∣

(
âx
c

) 2
kx

∣∣∣∣∣+
∣∣∣∣∣

(
ây
c

) 2
ky

∣∣∣∣∣+
∣∣∣∣∣

(
âz
c

) 2
kz

∣∣∣∣∣ = 1. (2.9)

Hence, |c| may be estimated by solving the above polynomial in (2.9). Then,

∠̂c =
∠âξ, if ζkξ > 0

−∠âξ, if ζkξ < 0,
(2.10)

where ζ = u if ξ = x, ζ = v if ξ = y, and ζ = w if ξ = z. The sign of ζ is a priori unknown.

However, ζkξ may be set as positive, if kξ is even. Otherwise, a prior knowledge of the

24



sign of ζ would be required. Algebraic manipulations then give

ĉ =





|c|ej∠âξ , if kξ is even

|c|ej∠âξ , if kx, ky, kz are all odd and if ζ > 0

|c|ej∠(−âξ), if kx, ky, kz are all odd and if ζ < 0

Further algebraic manipulations give

û =





∣∣∣∣
(
âx
ĉ

) 1
kx

∣∣∣∣ sign
(
ℜ
(
âx
ĉ

))
, if kx is odd

∣∣∣∣
(
âx
ĉ

) 1
kx

∣∣∣∣ sign (u) , if kx is even
(2.11)

v̂ =





∣∣∣∣
(
ây
ĉ

) 1
ky

∣∣∣∣ sign
(
ℜ
(
ây
ĉ

))
, if ky is odd

∣∣∣∣
(
ây
ĉ

) 1
ky

∣∣∣∣ sign (v) , if ky is even

(2.12)

ŵ =





∣∣∣∣
(
âz
ĉ

) 1
kz

∣∣∣∣ sign
(
ℜ
(
âz
ĉ

))
, if kz is odd

∣∣∣∣
(
âz
ĉ

) 1
kz

∣∣∣∣ sign (w) , if kz is even.
(2.13)

Unambiguous estimation for the azimuth-elevation angle-of-arrival, over the entire

sphere around the vector-sensor, would be impossible without the pressure-sensor. Even

if kx, ky, kz are all odd, ∠̂c in (2.10) would still require prior information that reduces

the unambiguous validity-region to an hemisphere. If exactly one of kx, ky, kz is even, the

unambiguous validity-region would remain at an hemisphere, because prior information

would become necessary in (2.11)-(2.13) whereas ∠̂c in (2.10) would need no prior infor-

mation. For each additional kx, ky, kz is also even, the unambiguous validity-region would

be further halved once again.

Then, θ and φ may be estimated as in (2.7) and (2.8) of Section 2.3.

2.5 How the Sensor-Order Affects Estimation Accuracy

Consider a kzth-order sensor oriented along the z-axis. Its gain-pattern equals coskz(θ).

Figure 2.2 shows the sensor’s sensitivity to θ, at various θ values and for kz = 1, 3, 5, 7.

Where θ satisfies d coskz (θ)
dθ ≥ d cos(θ)

dθ (i.e. coskz−1(θ) ≥ 1
kz
, shown by solid curve-segments

in Figure 2.2), the kzth-order sensor is more sensitive to θ than a first-order sensor would.

As kz increases, the inequality would be satisfied by a narrower range of θ. Also,as kz

increases, d coskz (θ)
dθ will increase within this θ-range, implying greater sensitivity to θ.

Similarly for the x-axis sensor, coskx−1(γ) ≥ 1
kx
, the resolution of γ = arccos(sin θ cosφ

will be improved by kx > 1.

Furthermore, for the y-axis sensor, if cosky−1(η) ≥ 1
ky
, the resolution of η = arccos(sin θ sinφ)

will be improved by ky > 1.
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Figure 2.2: The range of θ where the kzth-order sensor will be more sensitive to θ than

the first-order sensor would be.

2.6 Summary

For three higher-order acoustic sensors orthogonally oriented in a collocated with an op-

tional pressure-sensor, this chapter presents the azimuth-elevation direction-finding for-

mulas in closed form. The three sensors may have arbitrarily different orders among

themselves. Unambiguous azimuth-elevation angle-of-arrival over the entire sphere is pos-

sible iff the pressure-sensor is present and all higher-order sensors are of odd orders.
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Chapter 3

Azimuth-Elevation Direction

Finding Using a Microphone and

Three Orthogonal Velocity Sensors

as a Non-collocated Subarray

1

3.1 This Work’s Contributions

The direction-of-arrival estimation precision of a sensor-array depends on the spatial extent

of the array aperture. The larger the aperture is, the finer the sensor-array’s resolution

will be for the direction-of-arrival. Unfortunately, the acoustic vector-sensor’s spatial

collocation gives a point-like aperture in space. While this spatial collocation simplifies

the mathematics governing the acoustic vector-sensor’s array manifold, thereby making

possible the “self-normalization” approach of direction finding, it would be useful if the

aperture may be enlarged without increasing the number of component-sensors, while

retaining the full advantages of {1} − {3} in Section 1.1.4. Moreover, hardware-wise, it

could be difficult and costly to physically collocate (or co-center) the four component-

sensors all exactly at one point in space. This work will show how to displace the four

component-sensors, while still retaining the aforementioned algorithmic advantages.

This contribution is nontrivial, as spatially spread particle-velocity sensors suffer phase-

shifts among them, due to their displacements. Therefore, the array-manifold of (1.2)

would become inapplicable, and the “self-normalization” direction-finding approach would

apparently be inapplicable. Nonetheless, this chapter succeeds in advancing a class of new

closed-form direction-finding algorithms applicable even when the four component-sensors

spread out arbitrarily in the three-dimensional space.

Besides retaining advantages {1} - {3} in Section 1.1.4, the presently proposed new

1This chapter is taken from [162], jointly authored by the candidate and his chief supervisor.
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class of algorithms also provide these additional advantages:

{4} The spatial resolution is enhanced over the azimuth/elevation, because the four

component-sensors now extend over a larger spatial aperture (instead of co-centered

at one point). That is, the present scheme spatially extends the geometric aperture,

but requires no additional component-sensor.

{5} Hardware can be simplified, as the four component-sensors need no longer be collo-

cated, thereby reducing the hardware cost.

The remainder of this chapter is as follows: The new approach will be developed first

for a simple array-geometry in Section 3.2, as an illustrative case. For the general case of

an arbitrary array-configuration of spatially spread particle-velocity sensors and pressure

sensor, the new approach will be fully developed in Section 3.3. Section 3.4 will show

how to adopt this new scheme to an eigen-based parameter-estimation algorithm, in the

case of one acoustic vector-sensor, using [53] as a concrete example. Section 3.5 will do

the same, but for the case of multiple acoustic vector-sensors, using [33] as a concrete

example. Monte Carlo simulations there will verify the proposed scheme’s efficacy in

direction finding, despite the spatial non-collocation and the extended aperture of the

acoustic vector-sensor. Section 4.6 will conclude the chapter.

3.2 The New Approach – for a Particularly Simple Array

Configuration, as Illustration

The proposed algorithmic approach allows all four component-sensors to be arbitrarily

located and arbitrarily oriented. Nonetheless for pedagogical reasons, a particularly simple

array-configuration (shown in Figure 3.1) will first be discussed here in this section, to

illustrate the proposed algorithmic philosophy. The arbitrarily general array-configuration

will be discussed in details in Section 3.3.

3.2.1 The Array Manifold for a Particular Array-Configuration in Fig-

ure 3.1

Referring to the sample array-configuration in Figure 3.1: The pressure sensor lies at

the Cartesian origin. The x-axis oriented particle-velocity sensor lies on the x-axis, at

a distance of ∆px from the Cartesian origin. The y-axis oriented particle-velocity sensor

lies on the y-axis, at a distance of ∆py from the Cartesian origin. The z-axis oriented

particle-velocity sensor lies on the z-axis, at a distance of ∆pz from the Cartesian origin.

Here, ∆px, ∆py, or ∆pz may each be positive or negative. Figure 3.1 illustrates one special

case where ∆px > 0, ∆py > 0, and ∆pz > 0. There in the figure, the particle-velocity

sensors oriented along the x-axis, y-axis, and z-axis are identified respectively as Vx, Vy,

and Vz, and the pressure sensor as P .
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Figure 3.1: The “pyramid-like” array configuration with four component-sensors. Illus-

trated here is the special case of ∆px > 0, ∆py > 0, and ∆pz > 0.

This spatially distributed array-configuration’s array-manifold differs from the spatially

collocated array-manifold in (1.2), but equals

apyramid =




u ej
2π
λ
∆pxu

v ej
2π
λ
∆pyv

w ej
2π
λ
∆pzw

1



. (3.1)

This new array-manifold in (3.1) now depends on the incident signal’s frequency; and

the Cartesian direction cosines now appear in the phases, in addition to the magnitudes

in (1.2). The presence of u(θ, φ), v(θ, φ), w(θ) in the magnitudes (not in the phases) of

this array manifold’s entries allows unambiguous direction finding over the entire spherical

surface spanned by θ ∈ [0, π] and φ ∈ [0, 2π), as will be shown in Section 7.15. This array

configuration is “simple” relative to the more general arbitrarily spaced configuration to

be introduced in Section 3.3, in that the first three entries here in (3.1) each depends on

only one of the three Cartesian direction cosines u, v, w.

3.2.2 A New Direction-Finding Algorithm for a Particular Array-Configuration

in Figure 3.1

Eigen-decompose the space-time correlation matrix of the data collected by the four

component-sensors. Then obtainable, for each incident source, is the steering-vector esti-

mate2

â ≈ [px, py, pz, pp]
T def

= c apyramid. (3.2)

2This would not limit this proposed scheme to only one incident source.
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where the superscript T denotes transposition. This steering-vector estimate â is correct

with regard to the true value apyramid to within an unknown complex-value constant c.

With a noiseless condition or with an infinite number of snapshots, the above approxima-

tion becomes equality. To simplify the subsequent exposition, the following development

will write all such approximations as equalities.

Normalize the first component of (3.2) by the fourth component, thereby giving

px
pp

= u ej
2π
λ
(∆pxu). (3.3)

From (3.3), two complementary estimators of u are obtainable:

{i} An one-to-many relationship exists between ej2π
∆px

λ
u and u ∈ [−1, 1], for the ex-

tended aperture case of
∆px

λ > 1
2 . Hence,

ûphs =
1

2π

λ

∆px
∠
px
pp

= m
λ

∆px
+ u (3.4)

can estimate u, but ambiguously to within some (unknown) integer multiple (m×)

of the frequency-dependent entity of ± λ
∆px

, where m refers to a to-be-determined

integer.

{ii} The frequency-independent entity

ûmag =

∣∣∣∣
px
pp

∣∣∣∣ = ±u (3.5)

can estimate u, but also ambiguously, to within a ± sign.

These two estimates, ûphs and ûmag, can disambiguate each other as follows:

{a} If ûmag = u, the cyclic ambiguity may be resolved by

m̂+
u

def
= argmin

m

∣∣∣∣∣∣∣∣∣






m

λ

∆px
+

=ûphs︷ ︸︸ ︷
1

2π

λ

∆px
∠
px
pp


−

=ûmag︷︸︸︷∣∣∣∣
px
pp

∣∣∣∣





∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

def
= ǫ+u (m)

(3.6)

{b} If ûmag = −u, the cyclic ambiguity may then be resolved by

m̂−
u

def
= argmin

m

∣∣∣∣∣∣∣∣∣






m

λ

∆px
+

=ûphs︷ ︸︸ ︷
1

2π

λ

∆px
∠
−px
pp


−

=ûmag︷ ︸︸ ︷
−
∣∣∣∣
px
pp

∣∣∣∣





∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

def
= ǫ−u (m)

(3.7)

{c} To decide between ûmag = u versus ûmag = −u: Choose ûmag = u, if ǫ+u (m̂
+
u ) <

ǫ−u (m̂
−
u ). Choose ûmag = −u, if ǫ+u (m̂+

u ) ≥ ǫ−u (m̂
−
u ).
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{d} Hence, u can now be unambiguously estimated as

û =





(
m̂+

u + 1
2π∠

px
pp

)
λ

∆px
, if ǫ+u (m̂

+
u ) < ǫ−u (m̂

−
u ).(

m̂−
u − 1

2π∠
px
pp

)
λ

∆px
, if ǫ+u (m̂

+
u ) ≥ ǫ−u (m̂

−
u ).

(3.8)

The estimates, v̂ and ŵ, may be obtained similarly as for û via (3.3)-(3.8).

Finally, û, v̂, ŵ together give the angle-of-arrival estimates,

θ̂ = arccos ŵ, (3.9)

φ̂ =





− arccos
(

û
sin(θ̂)

)
, if v̂

sin(θ̂)
< 0

arccos
(

û
sin(θ̂)

)
, if v̂

sin(θ̂)
≥ 0.

(3.10)

This arrival-angle estimates enjoy a support-region over the entire spherical space spanning

θ ∈ [0, π) and φ ∈ (−π, π]. Hence, direction finding is achieved unambiguously, despite

the four component-sensors’ non-collocation and despite their sparse spacings.

Because this “simple” array-configuration in (3.1) has its first three entries each depen-

dent on only one of the three Cartesian direction cosines u, v, w, only one sign-ambiguity

needs be disambiguated above for each velocity-sensor. In contrast, an arbitrarily spaced

array-configuration (to be introduced in Section 3.3) would be shown to require all three

sign-ambiguities be handled for each velocity-sensor.

3.3 The New Scheme for the General ArbitraryArray-Configuration

This section will show how the algorithmic philosophy in Section 3.2 can apply to the

arbitrarily general array-configuration of Figure 3.2.

Figure 3.2: The acoustic vector-sensor’s four component-sensors spaced arbitrarily in the

three-dimensional space.
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3.3.1 The Array Manifold for the General Array-Configuration in Figure

3.2

Let the pressure sensor be located again at the origin of the spherical coordinates, without

loss of generality. However, allow the three orthogonally oriented particle-velocity sensors

be placed arbitrarily in three-dimensional space.

For this general configuration of a spatially distributed acoustic vector-sensor, its 4×1

array-manifold equals

agen(θ, φ) =




u ej
2π
λ
[∆px sinαx cos βxu+∆px sinαx sinβxv+∆px cosαxw]

v ej
2π
λ
[∆py sinαy cos βyu+∆py sinαy sinβyv+∆py cosαyw]

w ej
2π
λ
[∆pz sinαz cos βzu+∆pz sinαz sinβzv+∆pz cosαzw]

1



. (3.11)

For the new symbols introduced in (3.12), please refer to Figure 3.2 for their definitions.

3.3.2 A New Direction-Finding Algorithm for the General Array-Configuration

in Figure 3.2

Eigen-decompose the space-time data-correlation matrix of the data collected by the four

component-sensors. Then, obtainable is the steering-vector estimate â for each incident

source, where

â ≈ [px, py, pz, pp]
T def

= c agen. (3.12)

Normalize each of the first three components of (3.12) by the fourth component, thereby

producing

px
pp

= u ej
2π
λ
∆pxhx, (3.13)

py
pp

= v ej
2π
λ
∆pyhy , (3.14)

pz
pp

= w ej
2π
λ
∆pzhz , (3.15)

where

hx = u sin(αx) cos(βx) + v sin(αx) sin(βx) + w cos(αx), (3.16)

hy = u sin(αy) cos(βy) + v sin(αy) sin(βy) + w cos(αy), (3.17)

hz = u sin(αz) cos(βz) + v sin(αz) sin(βz) + w cos(αz) (3.18)

represent the direction-cosines obtained by projecting the propagation directional vector

onto the axes on which ∆px, ∆py, ∆pz respectively lie. These non-Cartesian direction-

cosines (hx, hy, hz) are counterpart to the Cartesian direction-cosines (u, v, w) in the earlier

Section 3.2, where the three particle-velocity sensors are located on the three Cartesian

axes.

The next Section 3.3.2) will explain how to estimate hx, hy, hz , from which Section

3.3.2) will show how to estimate u, v, w.
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Figure 3.3: Geometric illustration of hx, hy and hz.

To Estimate the Non-Cartesian Direction-Cosines, hx, hy, hz

Consider first the estimation of hx.

From (3.13), two complementary estimators of hx can be obtained (somewhat like the

case in Section 3.2):

{i} A many-to-one relationship exists between hx and ej2π
∆px

λ
hx , for a sparse spacing of

∆px

λ > 1
2 . In other words,

ĥx,phs =
1

2π

λ

∆px
∠
px
pp

= m
λ

∆px
+ hx (3.19)

would estimate hx to ambiguously to within some integer multiple (m×) of the

frequency-dependent entity of ± λ
∆px

, where m represents a to-be-determined integer.

{ii} The magnitude ûmag =
∣∣∣pxpp
∣∣∣, v̂mag =

∣∣∣pypp
∣∣∣ and ŵmag =

∣∣∣ pzpp
∣∣∣ (all of which are frequency-

independent) could estimate hx to within a ± sign ambiguity. That is,

ĥ(su,sv,sw)
x,mag = suûmag sin(αx) cos(βx) + sv v̂mag sin(αx) sin(βx) + swŵmag cos(αx),

(3.20)

with su, sv, sw ∈ {+1,−1}.

Next, define

m̂(su,sv,sw) def
= argmin

m

∣∣∣∣∣∣∣∣∣∣







m

λ

∆px
+

=ĥx,phs︷ ︸︸ ︷
1

2π

λ

∆px
∠

(
su
px
pp

)



− ĥ(su,sv,sw)
x,mag





∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

def
= ǫx(m)

. (3.21)

The sign ambiguity in each of su, sv, sw implies that there exist altogether eight possible

candidates for m̂(su,sv,sw).
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The above procedure in (3.19)-(3.21) for hx can be analogously applied for hy and for

hz .

To choose among the eight candidates of m̂(su,sv,sw), 3 choose

(sou, s
o
v, s

o
w)

def
= argmin

(su,sv,sw)

∑

ξ=x,y,z

ǫ2ξ(m̂
(su,sv,sw)). (3.22)

This allows hx, hy and hz to be unambiguously estimated as

ĥx =

(
m̂(sou,s

o
v,s

o
w) +

1

2π
∠
soupx
pp

)
λ

∆px
, (3.23)

ĥy =

(
m̂(sou,s

o
v,s

o
w) +

1

2π
∠
sovpy
pp

)
λ

∆py
, (3.24)

ĥz =

(
m̂(sou,s

o
v,s

o
w) +

1

2π
∠
sowpz
pp

)
λ

∆pz
. (3.25)

To Estimate the Cartesian Direction-Cosines u, v, w

To estimate the Cartesian direction-cosines u, v, w,

If r(A) = 3 where r(·) denotes the rank of matrix,4then




û

v̂

ŵ


 =




sin(αx) cos(βx) sin(αx) sin(βx) cos(αx)

sin(αy) cos(βy) sin(αy) sin(βy) cos(αy)

sin(αz) cos(βz) sin(αz) sin(βz) cos(αz)




−1 


ĥx

ĥy

ĥz




(3.26)

The arrival-angles may thus be estimated as

θ̂ = arccos ŵ, (3.27)

φ̂ =





− arccos
(

û
sin(θ̂)

)
, if v̂

sin(θ̂)
< 0

arccos
(

û
sin(θ̂)

)
, if v̂

sin(θ̂)
≥ 0.

(3.28)

Hence, a spatially spread acoustic vector-sensor can be used with any eigen-based

parameter-estimation algorithm to perform direction finding. This technique may be ap-

plied to a single spatially spread acoustic vector-sensor alone (as will be demonstrated in

Section 3.4), or to an array of multiple spatially spread acoustic vector-sensors (as will be

demonstrated in Section 3.5).

3The above number of candidates may be reduced, if prior knowledge exists of the specific hemisphere

or quadrant from which the incident source impinges. For example, suppose a source is prior known to

impinge from the upper hemisphere: Then w > 0, i.e. sx,w = sy,w = sz,w = +1, thereby sow = +1. The

number of possible candidates in (3.21) and (3.22) would then reduce from eight to four. Only {sou, s
o
v}

needs to be determined in step {b}.
4The following square matrix is invertible, iff (αξ, βξ) 6= (αν , βν) and (αξ, βξ) 6= (π − αν , βν ± π),

∀ξ 6= ν where ξ, ν ∈ {x, y, z}. In terms of the array-configuration in Figure 3.2, this represents a mild

condition that no two particle-velocity sensors may lie on a same radial line emanating from the Cartesian

coordinates’ origin.
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3.4 A Complete Algorithm to Demonstrate Section 3.3’s

Proposed Scheme for a Single Acoustic Vector-Sensor

that is Spatially Distributed

This section will demonstrate how the technique developed in Section 3.3 may be applied

to a single spatially spread acoustic vector-sensor alone. This demonstration will be via

adopting the “Uni-Vector-Hydrophone ESPRIT” algorithm of [53] (originally developed

for an acoustic vector-sensor of collocated component-sensors) to accommodate a spatially

distributed acoustic vector-sensor, via the technique in Section 3.3.

3.4.1 A Review of [53], Which is for One Acoustic Vector-Sensor Con-

sisting of Only Collocated Component-Sensors

Suppose that K number of acoustic waves have traveled through an isotropic homoge-

neous medium, and impinge on an acoustic vector-sensor of spatially collocated component-

sensors placed at the origin of the Cartesian coordinates. Suppose that the kth incoming

signal sk(t) has power Pk, a temporally monochromatic frequency fk (which is distinct

from all other incident signals’ frequencies), and an initial phase ϕk.
5

The 4× 1 data-vector (observed at time t) equals

z(t) =

K∑

k=1

√
Pkake

j2πfkt+ϕk + n(t), (3.29)

where ak = a(θk, φk) symbolizes the kth incident source’s steering vector from (1.2), and

n(t) denotes the additive noise.

The Uni-Vector-Hydrophone ESPRIT algorithm [53] would form two time-delayed

data-subsets, {z(tn), ∀n = 1, . . . , N} and {z(tn +∆T ),∀ n = 1, . . . , N}, out of the ob-

served data. In the above, ∆T represents the time-delay between the two data-subsets.

The Uni-Vector-Hydrophone ESPRIT algorithmic steps are highlighted below. Their

underlying motivations are explained in the detailed exposition in [53] itself.

{1} Form two M ×N data-matrices Z1 = [z(t1), z(t2), · · · , z(tN )] and

Z2 =[z(t1 +∆T ), z(t2 +∆T ), · · · , z(tN +∆T )]. Form a 2M × N data-matrix Z =

[ZT
1 ,Z

T
2 ]

T

{2} Eigen-decompose ZZH to give a 2M ×K signal-subspace eigenvector matrix Es =

[ET
1 ,E

T
2 ]

T , whose K columns contain the K principal eigenvectors corresponding to

the K largest-magnitude eigenvalues.

{3} Compute a K ×K matrix,

Ψ
def
=

(
EH

1 E1

)−1 (
EH

1 E2

)
= T−1ΦT,

5 The technique proposed in Section 3.3 may be readily applied to other data models, and is not

restricted to the one reviewed here of [53]. This present data model serves only as an illustrative example.

For example, wideband signals could be handled, by first applying the discrete Fourier transform (DFT)

to the time-domain data, then each DFT-component can be subsequently processed individually.
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whose kth eigenvalue may be denoted as Ψ equals [Φ]k,k = ej2πfk△T , with the kth

column of T being the corresponding right-eigenvector, for all k = 1, . . . ,K.

{4} These K impinging sources’ steering-vectors are estimated as

[â1, · · · , âK ] =
1

2

{
E1T

−1 +E2T
−1Φ−1

}
,

each to within an unknown complex-value multiplicative scalar, which arises from

the eigen-decomposition of Ψ.

{5} From âk, the direction cosines may be estimated as

ûk
def
=

[âk]1
[âk]4

, (3.30)

v̂k
def
=

[âk]2
[âk]4

, (3.31)

ŵk
def
=

[âk]3
[âk]4

, (3.32)

where [v]j symbolizes the jth entry if the vector v. The kth source’s two-dimensional

direction-of-arrival may finally be estimated as

θ̂k = arcsin

(√
û2k + v̂2k

)
= arccos(ŵk), (3.33)

φ̂k = arctan (v̂k/ûk) . (3.34)

3.4.2 Applying Section 3.3’s Proposed Scheme to [53] for One Acoustic

Vector-Sensor with Spatially Spread Component-Sensors

Consider the spatially spread acoustic vector-sensor of Section 3.3, instead of the spatially

collocated acoustic vector-sensor in [53]. The only change in the data-model of (3.29) is

that now ak = agen(θk, φk) of (3.12). Then, Section 3.4.1’s algorithmic steps {1} - {4}
remain valid with no change, step {5} of Section 3.4.1 now needs be replaced by the

procedure in Section 3.3.

Monte Carlo simulations below will demonstrate the proposed scheme’s direction-

finding efficacy and extended-aperture capability, despite the irregular array-configuration.

The following settings are used for the array-configuration in Figure 3.2: {αx = 80◦, βx =

15◦}, {αy = 85◦, βy = 70◦}, {αz = 10◦, βz = 40◦}, ∆ = ∆px = 20
7 ∆py = 20

9 ∆pz. Two pure-

tone signals at digital frequencies (i.e. the actual frequencies divided by the time-sampling

frequency) f ′1 = 0.45 and f ′2 = 0.3, impinge respectively from (θ1, φ1) = (60◦, 140◦) and

(θ2, φ2) = (125◦,−40◦). All incident signals have unity power. The complex-phases ϕ1 and

ϕ2 are deterministic. The additive noise is zero-mean, Gaussian, white spatio-temporally,

with a known power of σ2 = 20dB.

Figure 3.4(a) plots a “composite root-mean-square-error” (CRMSE) 6of the first source’s

three Cartesian direction-cosine estimates, versus the inter-antenna spacing parameter ∆
λ ,

6The estimation bias is about an order-of-magnitude smaller than the corresponding estimation standard

deviation, and hence not shown.
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with λ referring to the shortest wavelength among all incident sources’ wavelengths. Fig-

ure 3.4(b) does the same for the second source. This “composite root-mean-square-error”

(CRMSE) is defined as 1
I

∑I
i=1

√
δ2
u,k,i

+δ2
v,k,i

2 , where δu,k,i (δv,k,i) symbolizes the error in

estimating the kth source’s x-axis (y-axis) direction-cosine during the ith Monte Carlo

experiment. Each data-point thereon consists of I = 500 statistically independent Monte

Carlo experiments, each of which involves 200 temporal snapshots.

Figures 3.4(a) and 3.4(b) clearly demonstrate the proposed scheme’s success in resolv-

ing the incident sources, even if the acoustic vector-sensor’s four component-sensors are

non-collocated and indeed very sparsely distributed in space. The collocated case (i.e.

∆ = 0) has its estimation error indicated in these figures by a dash-dot line, to ease

comparison with the proposed scheme’s performance. Note that the proposed scheme’s

estimation-error variance drops by about 1.5 orders-of-magnitude, as ∆ increases (for the

proposed scheme) by 2 orders-of-magnitude. Incidentally, this ESPRIT-based estimation

approximates the Cramér-Rao lower bound, to the extent that ESPRIT does so.
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Figure 3.4: Monte Carlo simulations verifying the efficacy of the proposed scheme for a

single acoustic vector-sensor alone.

3.5 A Complete Algorithm to Demonstrate Section 3.3’s

Proposed Scheme for Several Acoustic Vector-Sensors,

Each of Which is Spatially Distributed.

This section will demonstrate how the technique developed in Section 3.3 may be ap-

plied to a several spatially spread acoustic vector-sensors. This demonstration will be via

adopting the algorithm of [33] (originally developed for acoustic vector-sensors each con-

sisting of collocated component-sensors) to accommodate a spatially distributed acoustic

vector-sensor, via the technique in Section 3.3.
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3.5.1 A Review of [33], Which is for Several Acoustic Vector-Sensors

Each Consisting of Collocated Component-Sensors

Suppose that there exist L acoustic vector-sensors (with L > K) at arbitrary and possibly

unknown locations. Let the ℓth acoustic vector-sensor’s unknown location be (xℓ, yℓ, zℓ).

All else remains the same as in Section 3.4.1.

The 4L×1 array manifold for the entire L-element acoustic vector-sensor array is ak
def
=

a(θk, φk)⊗q(θk, φk), where the spatial phase factor q(θk, φk)
def
=

[
e
j2π

x1uk+y1vk+z1wk
λk , . . . , e

j2π
xLuk+yLvk+zLwk

λk

]T
,

and ⊗ symbolizes the Kronecker-product operator.

The 4L× 1 data-vector (observed at time t) equals

z(t) =

K∑

k=1

√
Pkake

j2πfkt+ϕk + n(t), (3.35)

Define a 4L×K array matrixA
def
= [a1, . . . ,aK ] which may be partitioned into four L×4

subarray data blocks {A1, . . . ,A4}. Aj
def
= JjA, and Jj

def
=
[
0L,L×(j−1), IL,0L,L×(J−j)

]
is

a L × JL subarray-selection matrix, where 0M,N denotes a M × N zero matrix and IM

denotes an M × M identity matrix. Thus, the subarray data blocks {A1, . . . ,A4} are

interrelated as

A1 =




u1
. . .

uK




︸ ︷︷ ︸
def
=Φ(u)

A4, A2 =




v1
. . .

vK




︸ ︷︷ ︸
def
=Φ(v)

A4, A3 =




w1

. . .

wK




︸ ︷︷ ︸
def
=Φ(w)

A4

The algorithmic steps of [33] are highlighted below. Their underlying motivations are

explained in the detailed exposition in [33] itself.

{1} Form two M×N data-matrices Z = [z(t1), z(t2), · · · , z(tN )]. Eigen-decompose ZZH

to give a 4L ×K signal-subspace eigenvector matrix Es, whose K columns contain

the K principal eigenvectors corresponding to the K largest-magnitude eigenvalues.

{2} Construct the signal-subspace matrix pencil {Es1,Es4}, {Es2,Es4}, and {Es3,Es4},
where Es1 = J1Es, Es2 = J2Es, Es3 = J3Es, and Es4 = J4Es. Compute a K ×K

matrix,

Ψ(u) def
=

(
EH

s1Es1

)−1 (
EH

s1Es4

)
=
(
T(u)

)−1
Φ(u)T(u),

Ψ(v) def
=

(
EH

s2Es2

)−1 (
EH

s2Es4

)
=
(
T(v)

)−1
Φ(v)T(v),

Ψ(w) def
=

(
EH

s3Es3

)−1 (
EH

s3Es4

)
=
(
T(w)

)−1
Φ(w)T(w),

where T(u), T(v) and T(w) are nonsingular matrices.

{3} These K impinging sources’ steering-vectors are estimated as

[âk]1 ≈
[
Φ(u)

]
k,k
,

[âk]2 ≈
[
Φ(v)

]
k,k
,

[âk]3 ≈
[
Φ(w)

]
k,k
,
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for k = 1, . . . ,K, where [M]i,j symbolizes the (i, j)th entry of the matrix M.

{4} From âk, the direction cosines may be estimated as

ûk
def
= [âk]1 , (3.36)

v̂k
def
= [âk]2 , (3.37)

ŵk
def
= [âk]3 . (3.38)

The kth source’s two-dimensional direction-of-arrival may finally be estimated as

θ̂k = arcsin

(√
û2k + v̂2k

)
= arccos(ŵk), (3.39)

φ̂k = arctan (v̂k/ûk) . (3.40)

3.5.2 Applying Section 3.3’s Proposed Scheme to [33] for Multiple A-

coustic Vector-Sensors Each with Spatially Spread Component-

Sensors

Consider an array of several spatially spread acoustic vector-sensor, instead of the spatially

collocated acoustic vector-sensor in [33]. The only change in the data-model of (3.35) is

that now ak = agen(θk, φk) ⊗ q(θk, φk). Then, Section 3.5.1’s algorithmic steps {1} -

{3} remain valid with no change, step {4} of Section 3.5.1 now needs be replaced by the

procedure in Section 3.3. Monte Carlo simulations below will verify the efficacy of this

synergy.

Here, L = 5, at the locations of (3.9λ, 2.1λ, 1.8λ), (2.1λ, 0.9λ, 1.5λ), (4.5λ, 3.6λ, 5.7λ),

(2.1λ, 3.3λ, 1.5λ), (6.0λ, 5.4λ, 3.3λ). Each acoustic vector-sensor follows the spatial distri-

bution array-configuration in Figure 3.2, with {αx = 15◦, βx = 75◦}, {αy = 40◦, βy = 45◦},
{αz = 35◦, βz = 85◦}, ∆ = ∆px = 20

7 ∆py = 20
9 ∆pz.

Two pure-tone signals at digital frequencies f ′1 = 0.4 and f ′2 = 0.3, impinge respectively

from (θ1, φ1) = (60◦, 135◦) and (θ2, φ2) = (150◦,−40◦). All incident signals have unity

power. The complex-phases ϕ1 and ϕ2 are deterministic.

Figure 3.5(a) plots a “composite root-mean-square-error” (CRMSE) of the first source’s

three Cartesian direction-cosine estimates, versus the signal-to-noise ratio SNR when ∆
λ =

3. Figure 3.5(b) does the same for the second source. Each data-point thereon consists

of I = 500 statistically independent Monte Carlo experiments, each of which involves

100 snapshots. Noticeably lower estimation errors are offered by the spatially spread

constitution of each acoustic vector-sensor, relative to the case of collocated component-

sensors within each acoustic vector-sensor.

3.6 Overview of the Proposed Algorithm

The main steps of the algorithm can be summarized as follows:

1. estimate sources’ steering vectors

a) for one acoustic vector-sensor with spatially spread component-sensors, refer to
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Figure 3.5: Monte Carlo simulations verifying the efficacy of the proposed scheme for

multiple acoustic vector-sensors.

Section 3.4.1’s algorithmic steps {1} - {4},
b) for several acoustic vector-sensors, each of which is spatially distributed, refer to

Section 3.5.1’s algorithmic steps {1} - {3}.

2. estimate the non-cartesian direction-cosines, hx, hy , hz

{i} low-variance estimate of hx, but with 2π cyclic ambiguity, is obtain by (3.19),

{ii} high-variance estimate of hx, but with no 2π cyclic ambiguity, is obtain by

(3.20),

{iii} use {ii} to resolve 2π cyclic ambiguity in {i} by (3.21),

{iv} resolve sign ambiguity by (3.22),

{v} apply (3.19)-(3.22) for hy, hz ,

{vi} hx, hy , hz are estimated by (3.23)-(3.25),

3. estimate the Cartesian direction-cosines, u, v, w, by (3.26)

4. estimate elevation-angle θ andazimuth-angle φ, by (3.27)-(3.28)

3.7 Summary

Many advantages are advanced by the recent synergy between customary interferometry-

based direction finding and the new self-normalization approach of direction finding. This

chapter further generalizes this synergy, by proposing a new direction-finding algorithm

to allow the acoustic vector-sensor’s four component-sensors may be spatially displaced

over a general array-grid, perhaps with a much extended spatial aperture, thereby im-

proving direction-finding accuracy by orders of magnitude, while mitigating hardware-

implementation difficulties in spatially collocating the four component-sensors at one point

in space.

An electromagnetic counterpart exists in [156] for this proposed acoustic vector-sensor

scheme. Both the electromagnetic and the acoustic schemes are predicated on how each

component-sensor’s magnitude relates to the incident sources’ unknown but to-be-estimated

parameters. Due to the fundamental differences between acoustics and electromagnetics,
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these magnitudes take on entirely different mathematical forms. Hence, the proposed al-

gorithmic steps (and the applicable array configurations) are fundamentally different here

from [156].
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Chapter 4

Acoustic Direction Finding Using

a Spatially Spread Tri-Axial

Velocity Sensor

1

4.1 This Work’s Contribution

The literature on tri-axial velocity sensor direction finding mostly presumes that the three

uni-axial velocity sensors are spatially collocated. This imposes a non-trivial complication

in hardware implementation and can be achieved only approximately at best. This de-

manding requirement of spatial collocation requirement is relaxed for the four-component

acoustic vector sensor (i.e. the three uni-axial velocity sensors plus one mandatory pressure

sensor) in Chapter 3, to allow the four component-sensors to be located separately, thereby

realizing an extended spatial aperture, consequentially improving the azimuth/elevation

resolution of incident emitters. Despite the spatial separation among these “component

sensors”, the scheme in Chapter 3 allows closed-form localization using eigen-based pa-

rameter estimation algorithms, without open-ended iterative searches. Furthermore, the

new spatially spread configuration in Chapter 3 would also avoid the considerable difficul-

ties/costs in hardware implementation to collocate the four “component sensors”.

One shortcoming of the scheme in Chapter 3, however, is its requirement of a pressure

sensor, to be deployed along with the three uni-axial velocity sensors. This would be

problematic for nearfield localization, to estimate the emitter’s radial distance from the

four-component “acoustic vector sensor” (in addition to the emitter’s azimuth/elevation

angle of arrival), because the pressure sensor’s data differ from the tri-axial velocity sensor’s

data by a magnitude-scaling factor and a complex phase [135], both of which vary with

the emitter-sensor distance and the signal frequency. Please see [135] for the details.

This work will propose a new algorithm to estimate the incident emitters’ azimuth-

elevation direction of arrival via eigen-based parameter-estimation algorithms, based on

1This chapter is taken from [165], jointly authored by the candidate and his chief supervisor.
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data collected from only a tri-axial velocity sensor which is spatially separated to spread

over a large spatial aperture (thereby improving resolution in three-dimensional space),

even without the pressure sensor (to avoid the aforementioned complex phase and magni-

tude scaling factor that vary with signal frequency and with the emitter-sensor distance).

4.2 The New Scheme’s Underlying Philosophy – Illustrated

by a Simple Array Configuration

To motivate the proposed scheme, this section will focus on one particularly simple array

configuration to spatially spread the three uni-axial velocity sensors. The proposed scheme

will later be developed in Section 4.3 to any arbitrary array configuration.

4.2.1 The New Array Manifold for the Illustrative Example of Figure

4.1

In the simple array configuration of Figure 4.1, a z-axis oriented velocity sensor is placed

at the Cartesian origin, whereas an x-axis (y-axis) oriented velocity sensor lies on the

x-axis (y-axis), at a distance ∆x (∆y) from the Cartesian origin. The displacements, ∆x

and ∆y, may each be positive or negative, though the special case of ∆x > 0 and ∆y > 0 is

illustrated Figure 4.1, which labels the uni-axial velocity sensor oriented along the x-axis

(y-axis, z-axis) as Vx (Vy, Vz).

Figure 4.1: The tri-axial velocity sensor has its three component-sensors spatially spread

over three-dimensional space in a “triangle-like” array configuration. Illustrated here is

the special case of ∆x > 0 and ∆y > 0.

This spatially distributed tri-axial velocity sensor has an array manifold different from

the spatially collocated array manifold of (1.2), because the two off-origin uni-axial velocity

sensors introduce the “spatial phase factors” of ej
2π
λ
∆xu and ej

2π
λ
∆yv. Hence, Figure 4.1

43



has the array manifold,

atriangle =




u ej
2π
λ
∆xu

v ej
2π
λ
∆yv

w


 . (4.1)

This new array-manifold in (4.1) now depends on the incident signal’s wavelength, λ.

However, its Frobenius norm nonetheless equals unity ∀θ, φ, λ (or equivalently ∀u, v, w, λ).

4.2.2 The Proposed Self-Normalization Direction Finding Algorithm for

the Illustrative Example of Figure 4.1

In eigen-based approaches of direction finding, the uni-axial velocity sensor’s observed

data would be formed into a 3× 3 spatial correlation matrix. Then, eigen-decompose this

3 × 3 matrix (plus any additional processing to decorrelate any cross-correlated incident

signals, and/or to decouple simultaneous sources’ steering vectors). Thereby obtainable

would be the steering vector estimate for each incident source:

â ≈




px

py

pz




def
= c atriangle, (4.2)

which is correct with respect to the true value atriangle, to within an unknown complex-

value scalar of c. The unknown c arises from the eigen-decomposition, but may be esti-

mated as

ĉ =
√

|px|2 + |py|2 + |pz|2 ej∠(swpz), (4.3)

if prior knowledge is available on the sign (sw) of w. If there were no noise and/or if there

were an infinite number of snapshots, the approximation in (4.2) would become a equality.

The subsequent exposition will write all such approximations as equalities, for simplicity.

Next, normalize the first component in (4.2) by ĉ to give

px e
−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

= u ej
2π
λ
(∆xu). (4.4)

From (4.4), two complementary estimators of u may be obtained, simultaneously, in par-

allel:

{i} An one-to-many relationship links the complex phase factor ej2π
∆x
λ

u and u ∈ [−1, 1],

for the extended aperture case of ∆x

λ > 1
2 . Hence, exploiting the complex phase of

only the first element of â,

ûphs =
1

2π

λ

∆x
∠

supx e
−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

= m
λ

∆x
+ u (4.5)

can be obtained as an estimate u, but only ambiguously to within some (to-be-

determined) integer multiple (m×) of ± λ
∆x

, where m denotes a to-be-determined

integer in
{
⌈12 − ∆x

λ ⌉, · · · , ⌊12 + ∆x

λ ⌋
}
.
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{ii} An one-to-two relationship connects the magnitude |u| and u ∈ [−1, 1]. Hence,

exploiting the relative magnitude of px,

ûmag =

∣∣∣∣∣
px√

|px|2 + |py|2 + |pz|2

∣∣∣∣∣ = ±u (4.6)

can be obtained as an estimate u, but only ambiguously to within some to-be-

determined ± sign.

These two estimates, ûphs and ûmag, can disambiguate each other, as below:

{a} If ûmag = u, resolve the cyclic ambiguity via

m̂+
u

def
= argmin

m

∣∣∣∣∣∣∣∣∣∣







m

λ

∆x
+

=ûphs︷ ︸︸ ︷
1

2π

λ

∆x
∠

px e
−j∠(swpz)

√
|px|2 + |py|2 + |pz|2




−

=ûmag︷ ︸︸ ︷∣∣∣∣∣
px√

|px|2 + |py|2 + |pz|2

∣∣∣∣∣





∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

def
= ǫ+u (m)

.

(4.7)

{b} If ûmag = −u, resolve the cyclic ambiguity through

m̂−
u

def
= argmin

m

∣∣∣∣∣∣∣∣∣∣







m

λ

∆x
+

=ûphs︷ ︸︸ ︷
1

2π

λ

∆x
∠

−px e−j∠(swpz)

√
|px|2 + |py|2 + |pz|2




−

=ûmag︷ ︸︸ ︷

−
∣∣∣∣∣

px√
|px|2 + |py|2 + |pz|2

∣∣∣∣∣





∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

def
= ǫ−u (m)

.

(4.8)

{c} How to decide between ûmag = u versus ûmag = −u? Decide in favor of ûmag = u, if

ǫ+u (m̂
+
u ) < ǫ−u (m̂

−
u ). Choose ûmag = −u, if ǫ+u (m̂+

u ) ≥ ǫ−u (m̂
−
u ).

{d} Hence, u is unambiguously estimated from the phase factor as

ú =





(
m̂+

u + 1
2π∠

px e−j∠(swpz)√
|px|2+|py|2+|pz|2

)
λ
∆x
, if ǫ+u (m̂

+
u ) < ǫ−u (m̂

−
u );(

m̂−
u + 1

2π∠
−px e−j∠(swpz)√
|px|2+|py|2+|pz|2

)
λ
∆x
, if ǫ+u (m̂

+
u ) ≥ ǫ−u (m̂

−
u ).

(4.9)

The y-axis Cartesian direction cosine estimate, v́, may be obtained analogously via

(4.4)-(4.9).

{e} Items {c} and {d} indicate that both the magnitude and the phase of the first two

entries of atriangle can offer information on u, v. Between ûmag and ú, which should

be used? It makes intuitive sense that the choice should result in a steering vector

closest to orthogonality to the data’s noise subspace. Using this philosophy, proceed

as follows: Let En denote 3×(3−K) noise subspace eigenvector matrix that contains

the 3−K number of eigenvectors spanning the noise subspace of the data correlation
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matrix, where K is the number of incident sources. Then, (u, v) may be estimated

as

(û, v̂) =





(souûmag, s
o
v v̂mag), if

∥∥∥a (souûmag, s
o
v v̂mag)

H En

∥∥∥
2
<
∥∥∥a (ú, v́)H En

∥∥∥
2
,

(ú, v́), if
∥∥∥a (souûmag, s

o
v v̂mag)

H En

∥∥∥
2
>
∥∥∥a (ú, v́)H En

∥∥∥
2
,

(4.10)

where sou(s
o
v) is the estimate of the sign su(sv) of u(v) ), ‖ · ‖ denotes the Frobenius

norm of the vector inside, and H symbolizes the Hermitian operator.

Finally, û and v̂ together give azimuth/elevation arrival angle estimates,

φ̂ =





arctan
(
v̂
û

)
, if sou = +1

π + arctan
(
v̂
û

)
, if sou = −1 and sov = +1

−π + arctan
(
v̂
û

)
, if sou = −1 and sov = −1,

(4.11)

θ̂ =





arcsin
(

û
cos(φ̂)

)
, if sow = +1

π − arcsin
(

û
cos(φ̂)

)
, if sow = −1.

(4.12)

These angle-of-arrival estimates enjoy a validity region over an hemisphere defined over

θ ∈ [0, π/2) and φ ∈ (−π, π]. The ±π terms appear above, because of the following

considerations: If s◦u = −1 and s◦v = −1), then φ̂ ∈
(
−π,−π

2

)
. If s◦u = +1, then φ̂ ∈

(−π
2 ,

π
2

)
. If s◦u = −1 and s◦v = +1), then φ̂ ∈

(
π
2 , π

)
If sw = +1, then θ̂ ∈

[
0, π2

]
. If

sw = −1, then θ̂ ∈
(
π
2 , π
]
.

To summarize: With prior knowledge of the sign of w, the azimuth/elevation angle of

arrival has been estimated unambiguously, despite any sparse non-collocation among the

three uni-axial velocity sensors. 2

This array configuration is simpler than the arbitrary configuration to be introduced

in Section 4.3, in that the first two elements here in (4.1) each depends on only one of the

three Cartesian direction cosines (i.e. u, v, w). Hence, only one sign ambiguity requires

disambiguation at each uni-axial velocity sensor, whereas all three sign ambiguities need

to be resolved for each uni-axial velocity sensor of the arbitrarily spaced configuration to

be introduced in Section 4.3.

4.3 The New Scheme for Any Arbitrarily Spread Tri-Axial

Velocity Sensor

This section will show how the algorithmic philosophy in Section 4.2 can apply to the

arbitrarily general array configuration of Figure 4.2, so long as the three uni-axial veloc-

ity sensors remain orthogonal among themselves. The algorithm’s basic philosophy here

remains as in Section 4.2: To resolve the one-to-many cyclic ambiguity in ûphs, by the

one-to-two sign ambiguity in ûmag.

2This prior knowledge of the sign of w may be replaced by a prior knowledge of the sign of u (v), if the

x-axis (y-axis) oriented uni-axial velocity sensor is placed at the Cartesian origin and if the z-axis oriented

uni-axial velocity sensor is relocated somewhere on the z-axis.
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Figure 4.2: The tri-axial velocity sensor is spread arbitrarily over three-dimensional space,

while retaining orthogonal orientations among its three component-sensors.

4.3.1 The Array Manifold for an Arbitrarily Spread Tri-Axial Velocity

Sensor

Let the z-axis oriented uni-axial velocity sensor lies again at the origin of the spherical

coordinates, without loss of generality.3 However, allow the other two uni-axial velocity

sensors be located arbitrarily in three-dimensional space.

For such general spacing, the corresponding 3× 1 array manifold equals

agen(θ, φ) =




u ej
2π
λ
[u∆x sin(αx) cos(βx)+v∆x sin(αx) sin(βx)+w∆x cos(αx)]

v ej
2π
λ
[u∆y sin(αy) cos(βy)+v∆y sin(αy) sin(βy)+w∆y cos(αy)]

w


 . (4.13)

The symbols αx, αy, βx, βy are graphically defined in (4.13). Unlike the simple array man-

ifold (4.1) in Section 4.2, each complex phase in (4.13) now depends on all three Cartesian

direction cosines (u,v,w). Consequentially, the subsequent disambiguation would become

more complicated, but the approach remains as before in Section 4.2.

4.3.2 The Proposed Algorithm for an Arbitrarily Spread Tri-Axial Ve-

locity Sensor

By eigen-decomposition of the spatial correlation matrix of the collected data, the following

steering vector estimate will be obtained, instead of the estimate in (4.14):

3If it is another uni-axial velocity sensor that lies at the origin, or if none of the uni-axial velocity sensors

lie at the origin, the entire array manifold in (4.13) would simply be multiplied by a common spatial phase

factor, which will not materially affect the subsequent development.
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â ≈




px

py

pz




def
= c agen, (4.14)

With prior knowledge of sw (defined earlier above (4.4)), normalize each of the first

three components of (4.13) by the same ĉ as defined in Section 4.2, thereby yielding

px e
−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

= u ej
2π
λ
∆xhx , (4.15)

py e
−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

= v ej
2π
λ
∆yhy , (4.16)

where

hx = u sin(αx) cos(βx) + v sin(αx) sin(βx) + w cos(αx), (4.17)

hy = u sin(αy) cos(βy) + v sin(αy) sin(βy) + w cos(αy) (4.18)

symbolize the non-Cartesian direction cosines obtained by projecting the gradient vector

onto the respective axes on which ∆x and ∆y, respectively, lie. These non-Cartesian

direction cosines (hx, hy) are counterpart to the Cartesian direction cosines (u, v) in the

Section 4.2 where all uni-axial velocity sensors lie on some Cartesian axis.

Figure 4.3: A geometric illustration of the non-Cartesian direction cosines, hx and hy, in

three-dimensional space.

Next, Section 4.3.2) will explain how to estimate the non-Cartesian direction cosines

(hx, hy), from which Section 4.3.2) will show how to estimate the Cartesian direction

cosines (u, v, w).

To Estimate the Non-Cartesian Direction Cosines (hx, hy)

Consider first the estimation of hx.
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From (4.15), two complementary estimators of hx can be computed simultaneously in

parallel (somewhat like the case in Section 4.2):

{i} Amany-to-one relationship connects hx and e
j2π∆x

λ
hx, for a sparse spacing of ∆x

λ > 1
2 .

Thus,

ĥx,phs =
1

2π

λ

∆x
∠

(
supxe

−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

)
= m

λ

∆x
+ hx (4.19)

would estimate hx, ambiguously to within some integer multiple (m×) of ± λ
∆x

, where

m represents a to-be-determined integer.

{ii} The magnitudes

ûmag =

∣∣∣∣∣
px√

|px|2 + |py|2 + |pz|2

∣∣∣∣∣ ,

v̂mag =

∣∣∣∣∣
py√

|px|2 + |py|2 + |pz|2

∣∣∣∣∣ ,

ŵmag =

∣∣∣∣∣
pz√

|px|2 + |py|2 + |pz|2

∣∣∣∣∣

together can estimate hx to within a ± sign ambiguity:

ĥ(su,sv)x,mag = suûmag sin(αx) cos(βx) + sv v̂mag sin(αx) sin(βx) + swŵmag cos(αx),

(4.20)

with su, sv, sw ∈ {+1,−1}, sw known, but su and sv yet to be determined.

Next, estimate m ∈
{
⌈12 − ∆x

λ ⌉, · · · , ⌊12 + ∆x

λ ⌋
}
, in terms of any su and sv:

m̂(su,sv) def
= argmin

m

∣∣∣∣∣∣∣∣∣∣∣







m

λ

∆x
+

=ĥx,phs︷ ︸︸ ︷
1

2π

λ

∆x
∠

(
supxe

−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

)



− ĥ(su,sv)x,mag





∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

def
= ǫx(m)

.

(4.21)

The sign ambiguity in su and the sign ambiguity in sv together imply four possible can-

didates for m̂(su,sv).

The above procedure in (4.19)-(4.21) for hx can be applied analogously for hy.

To choose among the four candidates of m̂(su,sv), choose

(sou, s
o
v)

def
= argmin

(su,sv)

[
ǫ2x

(
m̂(su,sv)

)
+ ǫ2y

(
m̂(su,sv)

)]
. (4.22)

The above facilitates hx and hy to be unambiguously estimated as

ĥx =

(
m̂(sou,s

o
v) +

1

2π
∠

soupxe
−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

)
λ

∆x
, (4.23)

ĥy =

(
m̂(sou,s

o
v) +

1

2π
∠

sovpye
−j∠(swpz)

√
|px|2 + |py|2 + |pz|2

)
λ

∆y
. (4.24)
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The disadvantage of omitting the pressure sensor (which is required in Chapter 3) is

that the emitter may now be localized to only within an hemisphere. This is because only

two constraints are available:

{1} m λ
∆x

+ ĥx,phs = ĥx,mag from (4.19), and

{2} m λ
∆y

+ ĥy,phs = ĥy,mag, which is a counterpart of (4.19) for hy.

To Estimate the Cartesian Direction Cosines (u, v)

From (4.17)-(4.18),

[
ĥx

ĥy

]
=

[
sin(αx) cos(βx) sin(αx) sin(βx) cos(αx)

sin(αy) cos(βy) sin(αy) sin(βy) cos(αy)

]

︸ ︷︷ ︸
= M




ú

v́

sw
√
1− ú2 − v́2


 .(4.25)

The above defined matrix M would have a full rank of two, if and only if the two non-

Cartesian direction cosines hx and hy are non-parallel. Therefore, the Cartesian direction

cosines may be estimated from the phase factor as (ú, v́)

=





(
χ1+([b]2[a]3−[a]2[b]3)χ2

χ3
, χ4−χ2

χ5

)
, if

(
ûmag −

∣∣∣χ1+([b]2[a]3−[a]2[b]3)χ2

χ3

∣∣∣
)2

+
(
v̂mag −

∣∣∣χ4−χ2

χ5

∣∣∣
)2

<
(
ûmag −

∣∣∣χ1−([b]2[a]3−[a]2[b]3)χ2

χ3

∣∣∣
)2

+
(
v̂mag −

∣∣∣χ4+χ2

χ5

∣∣∣
)2
,

(
χ1−([b]2[a]3−[a]2[b]3)χ2

χ3
, χ4+χ2

χ5

)
, if

(
ûmag −

∣∣∣χ1+([b]2[a]3−[a]2[b]3)χ2

χ3

∣∣∣
)2

+
(
v̂mag −

∣∣∣χ4−χ2

χ5

∣∣∣
)2

>
(
ûmag −

∣∣∣χ1−([b]2[a]3−[a]2[b]3)χ2

χ3

∣∣∣
)2

+
(
v̂mag −

∣∣∣χ4+χ2

χ5

∣∣∣
)2
,

(4.26)

where

χ1 = [b]21[a]3
{
− ([a]2[b]2 + [a]3[b]3) ĥx +

(
[a]22 + [a]23

)
ĥy

}

+[a]21[b]3
{
−
(
[b]22 + [b]23

)
ĥx + ([a]2[b]2 + [a]3[b]3) ĥy

}

+[a]1[b]1
{(

[b]22[a]3 + [a]2[b]2[b]3 + 2[a]3[b]
2
3

)
ĥx −

(
[a]2[b]2[a]3 + [a]22[b]3 + 2[a]23[b]3

)
ĥy

}
,

χ2 = |[b]1[a]3 − [a]1[b]3|

·
{(

[a]21[b]
2
2 + [b]22[a]

2
3 − 2[a]2[b]2[a]3[b]3 + [a]21[b]

2
3 + [a]22[b]

2
3 − [b]22ĥ

2
x − [b]23ĥ

2
x + [b]21

(
[a]22 + [a]23 − ĥ2

x

)

+2 ([a]2[b]2 + [a]3[b]3) ĥxĥy −
(
[a]21 + [a]22 + [a]23

)
ĥ2
y −2[a]1[b]1

(
[a]2[b]2 + [a]3[b]3 − ĥxĥy

))} 1
2
,

χ3 =
{
[b]21

(
[a]22 + [a]23

)
+ ([b]2[a]3 − [a]2[b]3)

2 − 2[a]1[b]1 ([a]2[b]2 + [a]3[b]3) + [a]21
(
[b]22 + [b]23

)}

· ([b]1[a]3 − [a]1[b]3) ,

χ4 = [b]21[a]2ĥx + [a]2[b]
2
3ĥx + [b]2

(
[a]21 + [a]23

)
ĥy − [a]1[b]1

(
[b]2ĥx + [a]2ĥy

)
− [a]3[b]3

(
[b]2ĥx + [a]2ĥy

)
,

χ5 = [b]21
(
[a]22 + [a]23

)
+ ([b]2[a]3 − [a]2[b]3)

2 − 2[a]1[b]1 ([a]2[b]2 + [a]3[b]3) + [a]21
(
[b]22 + [b]23

)
,

a = [sin(αx) cos(βx), sin(αx) sin(βx), cos(αx)] ,

b = [sin(αy) cos(βy), sin(αy) sin(βy), cos(αy)] .

Both the magnitude and the phase of the first two entries of agen offer information on

u and v. Analogous to {e} in Section 4.2.2,

(û, v̂) =





(souûmag, s
o
v v̂mag), if

∥∥∥a (souûmag, s
o
v v̂mag)

H En

∥∥∥
2
<
∥∥∥a (ú, v́)H En

∥∥∥
2
.

(ú, v́), if
∥∥∥a (souûmag, s

o
v v̂mag)

H En

∥∥∥
2
>
∥∥∥a (ú, v́)H En

∥∥∥
2
.
(4.27)
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The azimuth/elevation arrival angles may then be estimated as in (4.11) and (4.12).

Hence, the arbitrarily spread (but still orthogonal) tri-axial velocity sensor may be

used with any eigen-based parameter-estimation algorithm for two-dimensional direction

finding. This proposed scheme may apply to a single tri-axial velocity sensor, or to an

array consisting of multiple tri-axial velocity sensors. 4 5

4.4 Monte Carlo Simulations to Verify the Proposed Scheme’s

Efficacy

The proposed scheme may be used with any eigen-based parameter estimation algorithm,

to estimate the emitters’ azimuth/elevation angles of arrival. To illustrate how, this section

will adopt the “Uni-Vector-Hydrophone ESPRIT” algorithm of [53], which was originally

developed for a four-component acoustic vector sensor with all its component sensors

collocating in a point-like geometry. To adopt [53] to the spatially spread tri-axial velocity

sensor, simply replace equations (15)-(17) of [53] by the procedure proposed in Section 4.3

of the present work. 6

Monte Carlo simulations are conducted to verify the proposed scheme’s efficacy and

aperture extension, despite its irregular array configuration. The following settings are

used: αx = 85◦, βx = 5◦, αy = 95◦, βy = 80◦, ∆ = ∆x = 5
6∆y. There exist two pure

tone signals, at digital frequencies f ′1 = 0.46 and f ′2 = 0.36, respectively with deterministic

complex phases ϕ1 and ϕ2 that are randomly generated for each Monte Carlo experiment

from a uniform distribution over [0, 2π). These two signals impinge respectively from

(θ1, φ1) = (130◦, 50◦) and (θ2, φ2) = (45◦,−135◦). All incident signals have unity power.

The additive noise is Gaussian, zero mean, white spatio-temporally, with a known power

of σ2 = 25dB.

Figure 4.4(a) plots the “composite root mean square error” (CRMSE) 7of the first

source’s three Cartesian direction cosine estimates, versus the spacing parameter ∆
λmin

,

with λmin referring to the shortest wavelength among all incident sources’ wavelengths.

This “composite root mean square error” is defined as 1
I

∑I
i=1

√
δ2
u,k,i

+δ2
v,k,i

2 , where δu,k,i

(δv,k,i) denotes the error in estimating the kth source’s x-axis (y-axis) direction cosine at

the ith Monte Carlo experiment. Each figure’s every icon represents I = 1000 statistically

independent Monte Carlo experiments, each of which involves 80 temporal snapshots.

4This arbitrarily spread case would degenerate to the simple case in Section 3.2 if αx = π/2 and βx = 0.

Then, (4.19) would degenerate to (4.5), and (4.20) would degenerate to (4.6).
5If ∆x = ∆y = 0 in (4.13), this arbitrarily spread case will degenerate to the case where the three

uni-variate velocity sensors are all collocated. Then, (4.19)-(4.27) would no longer hold. Instead, φ and θ

may estimated simply via (4.11)-(4.12) with û (v̂) replaced by px (py).
6The proposed scheme can handle data models other than that in [53]. This section’s simulations

serve only as an illustrative example. For instance, wideband data could first be segmented via a sliding

time-domain window, then processed by a “short time discrete Fourier transform” (ST-DFT), before each

DFT-component is individually processed.
7The estimation bias is roughly an order of magnitude below the corresponding estimation standard

deviation, hence not shown.
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Figure 4.4(b) does the same for the second source.

Figures 4.4(a) and 4.4(b) together demonstrate that the proposed scheme successfully

resolves the two incident emitters, even if the three uni-axial velocity sensors are not

collocated, but spaced apart, sparsely. The collocated case (i.e. ∆ = 0) has its estimation

error indicated in these figures by a horizontal dotted line, to ease comparison with the

proposed scheme’s performance. The proposed scheme’s CRMSE drops by about an order-

of-magnitude, as ∆ increases (for the proposed scheme) by an order-of-magnitude from
∆

λmin
= 100 to ∆

λmin
= 101. Incidentally, this ESPRIT-based estimation approximates

the Cramér-Rao lower bound, to the extent that the parameter estimation algorithm of

ESPRIT can do so.
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Figure 4.4: Monte Carlo simulations verifying the aperture extension efficacy of the pro-

posed scheme for an arbitrarily spread tri-axial velocity sensor.

4.5 Overview of the Proposed Algorithm

The main steps of the algorithm can be summarized as follows:

1. adopt “Uni-Vector-Hydrophone ESPRIT” algorithm of [53] to estimate sources’ s-

teering vectors

2. estimate the non-cartesian direction-cosines, hx, hy

{i} low-variance estimate of hx, but with 2π cyclic ambiguity, is obtain by (4.19),

{ii} high-variance estimate of hx, but with no 2π cyclic ambiguity, is obtain by

(4.20),

{iii} use {ii} to resolve 2π cyclic ambiguity in {i} by (4.21),

{iv} resolve sign ambiguity by (4.22),

{v} apply (4.19)-(4.22) for hy,

{vi} hx, hy are estimated by (4.23)-(4.24),
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3. the estimates of the Cartesian direction-cosines (u, v) from phase factors hx, hy, can

be obtained from (4.26), denoted as (ú, v́).

4. the estimates of the Cartesian direction-cosines (u, v) are also available from magni-

tudes of (4.15)-(4.16), denoted as (ûmag, v̂mag).

5. determine between (ú, v́) and (ûmag, v̂mag), which should be used by (4.27)

6. estimate azimuth-angle φ and elevation-angle θ, by (4.11)-(4.12)

4.6 Summary

The collocating tri-axial velocity sensor has been used in many eigen-based closed-form

algorithms to estimate the azimuth/elevation direction of arrival. This work shows how

those earlier eigen-based closed-form algorithms can be modified to apply to any arbitrarily

spread tri-axial velocity sensor, even if the three uni-axial velocity sensors are placed

anywhere in three-dimensional space, thereby extending their spatial aperture from a

point to span a large aperture, refining the tri-axial velocity sensor’s azimuth/elevation

resolution.

If this tri-axial velocity sensor is accompanied by a pressure sensor, the scheme in

Chapter 3 can be used instead. There, the isotropic pressure sensor can serve as a phase

reference, facilitating the three uni-axial velocity sensors’ relative complex phases be esti-

mated. However, the above approach is not viable in the present work without any pressure

sensor. Instead, the presently proposed algorithm exploits the fact that a tri-axial velocity

sensor’s data must have a Frobenius norm that is independent of the incident emitter’s

azimuth/elevation direction of arrival and that is independent of the incident signal’s

frequency.

There exists an electromagnetic counterpart [156], which is predicated on an electric

dipole’s and a magnetic loop’s magnitude responses and phase responses, which differ prin-

cipally from those in (4.1) and (4.13) for the acoustic tri-axial velocity sensor presently

under study. On account of the fundamental disparity between acoustics and electromag-

netics, the algorithmic steps and the allowable array configurations are basically different

between the present work and [156].
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Chapter 5

“Blind” Calibration of an Array of

Acoustic Vector-Sensors Suffering

Gain Errors / Mis-Location /

Mis-Orientation

1

5.1 Literature Review of Relevant Calibration Algorithms

While the open literature contains many array-calibration algorithms, they are not tailored

to the acoustic vector-sensor, in not exploiting any uniqueness of the acoustic vector-

sensor’s distinctive array manifold.

This presently proposed “blind calibration” algorithm relates to (but advances beyond)

a class of array-calibration/direction-finding algorithms [57, 64, 95, 96, 152] for an array

of ideal subarrays suffering from non-ideal inter-subarray relationships. 2

1. [57, 152] assume these subarrays to have perfectly known gain response, phase re-

sponse, linear geometry, and identical orientation; only the inter-subarray spacings

need calibration.

2. [64] relaxes the assumptions in [57] to allow uncertainties in gain/phase between

different subarrays (but not within any subarray), as well as an arbitrary (but a

priori known) orientation for each subarray.

3. [95] further relaxes the assumptions in [64] to allow inter-subarray mis-orientations,

which (unlike the present work) is nonetheless limited to one dimensional rotation

1This chapter is taken from [163], jointly authored by the candidate, his chief supervisor, and Dr.

Fangjiong CHEN.
2[75] allows gain/phase uncertainties within any subarray, but no mis-orientation and no dislocation

across subarrays.
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on the azimuthal plane, but not the full trivariate Euler angles for three-dimensional

mis-orientation allowed in the present work. 3

In contrast to the above limited set of non-idealities, this present work explicitly calibrates

the intra-subarray idealities – i.e., each vector-sensor’s non-ideal gain-responses – in ad-

dition to the inter-subarray mis-locations and inter-subarray mis-orientation. In sea/field

deployment, it could be difficult to place/keep every vector-sensor at its nominal orienta-

tion and location. GPS could correct gross errors, but fine deviations may remain, and

could significantly degrade the overall array’s performance. That is, inter-vector-sensor

mis-orientations and dislocations likely occur in the sea/field deployment and require cal-

ibration. On the other hand, during the manufacturing/assembly process in the factory,

intra-vector-sensor non-idealities could be more easily avoided and corrected. The vector-

sensor’s component-sensors (namely, the three uni-axial velocity-sensors and one pressure-

sensor) are physically fused together and are fixated to a supporting frame, during the

manufacturing/assembly process. Hence, intra-vector-sensor mis-orientation and disloca-

tion could be reduced in the design/manufacturing process to within specified precision,

or at least be calibrated in the factory during the quality-assurance inspection stage.

A few algorithms [129, 144, 145, 151] are devised for the acoustic vector-sensor, but

they all (unlike the present work)

1) perform aided calibration (as opposed to “blind” calibration”), necessitating cooper-

ative emitters to impinge from prior known directions-of-arrival (and perhaps with

prior known magnitudes).

2) neglect any inter-vector-sensor dislocation.

Furthermore, [144, 145, 151] (also unlike the present work) cannot handle three-dimensional

mis-orientation.

For “blind” calibration4 of acoustic vector-sensors, the present work is first to the open

literature (to the best of the present authors’ knowledge),

a) to “blindly” calibrate acoustic vector-sensors.

b) to calibrate (“blindly” or otherwise) the intra-vector-sensor gain-uncertainties.

c) to require no iterative search and no exhaustive search, in calibrating the acoustic

vector-sensors.

d) to be computationally very efficient in calibrating acoustic vector-sensors - computa-

tionally orders-of-magnitude more efficient than by maximum-likelihood estimation.

The presently proposed algorithm breaks the original non-linear optimization prob-

lem, from a high dimension into several optimization problems, that are of much

3On the other hand, [96] generalizes [57] by allowing intra-subarray mutual coupling but not the relaxed

assumptions in [64] and [95]. This mutual coupling consideration is irrelevant to the present investigation,

as acoustic sensors suffer no mutual coupling.
4“Blind” calibration means the unavailability of any calibrating source of prior known arrival direction.
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lower dimensions and that can each be solved as a set of linear equations, thereby

facilitating much faster and more likely convergence to the global optimum.

The above are achieved via an interplay between two distinct but complementary ap-

proaches of direction finding:

(A) The (customary) interferometry approach: The spatial phase delay between two

spatially displaced vector-sensors encapsulates the information on the directions-of-

arrival of the incident sources.

(B) The approach via ”particle-velocity-field vector normalization”[26]: A vector-sensor’s

constituent particle-velocity-sensors and/or pressure-sensor give the incident particle-

velocity vector, whose normalization (to unity Frobenius norm) produces the incident

source’s three Cartesian direction-cosines and thus the azimuth-elevation arrival-

angles. Both the azimuth-angles and the elevation-angles may thus be estimated

and automatically matched with only one vector-sensor.

5.2 Mathematical Modeling of Gain / Mis-Location / Mis-

Orientation Non-Idealities in an Acoustic Vector-Sensor

The array manifold in (1.2) is ideal, in presuming perfect gain-responses as well as in

presuming perfect conformity to the nominal locations and the nominal orientations. If

such hypothetical ideality is violated by the ℓth vector sensor,5 its array-manifold would

become

a
(ℓ)
k = J(ℓ) G

(
G(ℓ)

)
R̃
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)




uk

vk

wk

1



q
(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

(5.1)

J(ℓ) =

{
diag {1, 1, 1, 1} , for a four-component “complete” vector-sensor

diag {1, 1, 1, 0} , if the pressure-sensor is absent.
(5.2)

In the above,

1. the intra-vector-sensor gain deviation is represented by a 4× 4 diagonal matrix,

G
(
G(ℓ)

)
= diag

{
g(ℓ)x , g(ℓ)y , g(ℓ)z , g(ℓ)p

}
. (5.3)

2. the mis-orientation is represented by a 4× 4 diagonal matrix,

R̃
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)
= diag

{
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)
, 1
}
, (5.4)

5Inter-vector-sensor mis-location and mis-orientation may more likely occur, if the acoustic vector-

sensors are deployed far apart, as on a sparse array-grid.
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where

R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)
=




cos φ̃(ℓ) sin φ̃(ℓ) 0

− sin φ̃(ℓ) cos φ̃(ℓ) 0

0 0 1







1 0 0

0 cos γ̃(ℓ) sin γ̃(ℓ)

0 − sin γ̃(ℓ) cos γ̃(ℓ)







cos θ̃(ℓ) 0 − sin θ̃(ℓ)

0 1 0

− sin θ̃(ℓ) 0 cos θ̃(ℓ)


 .

(5.5)

Any mis-orientation in three-dimensional space may be represented by (5.5), which

involves three sequential rotations: 1) a rotation by an angle of θ̃(ℓ) on the x-z plane,

2) then a second rotation by an angle of γ̃(ℓ) on the y-z plane, and 3) lastly a third

rotation by an angle of φ̃(ℓ) on the x-y plane.

3. q
(ℓ)
k = ej

2πfk
c

(x(ℓ)uk+y(ℓ)vk+z(ℓ)wk) represents the kth source’s spatial phase factor,

relating the ℓth vector-sensor’s nominal location
(
x(ℓ), y(ℓ), z(ℓ)

)
to the reference-

location of (0, 0, 0), with fk denoting the kth narrowband source’s center-frequency,

and c symbolizing the propagation speed.

4. e
j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

corresponds to the kth source’s spatial phase-factor re-

lating the ℓth vector-sensor’s nominal location
(
x(ℓ), y(ℓ), z(ℓ)

)
and actual location(

x(ℓ) +∆
(ℓ)
x , y(ℓ) +∆

(ℓ)
y , z(ℓ) +∆

(ℓ)
z

)
. Each acoustic vector-sensor may be arbitrar-

ily mis-located as a unit. However, within each acoustic vector-sensor, individual

component-sensors suffer no intra-vector-sensor dislocation, but remain collocated

within each acoustic vector-sensor. This assumption is reasonable, because the intra-

vector-sensor collocation can be readily assured during the manufacturing process

in a factory, than any precise inter-vector-sensor spacing-grid during deployment in

the field.

To ease subsequent exposition, define G(ℓ) =
{
g
(ℓ)
x , g

(ℓ)
y , g

(ℓ)
z , g

(ℓ)
p

}
, and∆(ℓ) =

{
∆

(ℓ)
x ,∆

(ℓ)
y ,∆

(ℓ)
z

}
.

These, along with θ̃(ℓ), γ̃(ℓ) and φ̃(ℓ), constitute the ℓth vector-sensor’s deterministic, un-

known, to-be-calibrated non-ideality parameters.

If g
(ℓ)
x = g

(ℓ)
y = g

(ℓ)
z = g

(ℓ)
p = 1 and θ̃(ℓ) = γ̃(ℓ) = φ̃(ℓ) = ∆

(ℓ)
x = ∆

(ℓ)
y = ∆

(ℓ)
z = 0, then

the ℓth non-ideal array manifold (5.1) would degenerate to the ideal array manifold of

(1.2).

Of the L vector-sensors deployed, one must serve as a reference unit, to be indexed at

ℓ = 1 and to be located exactly at
(
x(1), y(1), z(1)

)
= (0, 0, 0), without loss of generality.

This first vector-sensor, by definition, is to suffer no mis-location and no mis-orientation

(i.e., ∆(1) has all zero entries), with g
(1)
p prior known, but g

(1)
x , g

(1)
y , g

(1)
z may remain arbi-

trary and unknown. If this reference acoustic vector-sensor has no pressure-sensor, then

prior knowledge is needed of gx, gy, gz and of which hemisphere each source impinges from.

(Regarding this presumed existence of a reference-vector-sensor with a priori known orien-

tation and location: This amounts to only a prior known coordinate system for the overall

array. This requirement is common to all measurement systems.)
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Stacking all L vector-sensors’ individual steering vectors, the entire array may be

characterized by the 4L× 1 steering vector,

ak =

[(
a
(1)
k

)T
, · · · ,

(
a
(L)
k

)T]T
.

The subsequently proposed vector-sensor array “blind” calibration algorithm will con-

sist of these five steps, to be developed in details in Sections 5.4 to 5.8 below.

Step #1 Section 5.4 will estimate the K incident sources’ individual steering-vectors, in or-

der to allow subsequent steps to exploit the vector-sensor array-manifold’s unique

characteristics.

Step #2 Section 5.5 will “blindly” calibrate each 3L velocity-sensor’s gain-uncertainty, by

exploiting each velocity-sensor’s correspondence to a Cartesian direction-cosine of

an incident source.

Step #3 Section 5.6 will estimate each incident source’s azimuth-elevation direction-of-arrival,

by exploiting the vector-sensor’s array-manifold as the incident pressure-wavefield’s

spatial gradient.

Step #4 Section 5.7 will “blindly” calibrate all L− 1 (non-reference) vector-sensors’ individ-

ual mis-orientation, by again exploiting the vector-sensor’s array-manifold as the

incident pressure-wavefield’s spatial gradient.

Step #5 Section 5.8 will calibrate all L−1 (non-reference) vector-sensors’ individual displace-

ments from their nominal grids.

5.3 Measurement Data Model

Let there be K ≥ 3 number of incident signals. 6 At the ℓth vector-sensor, the following

Mℓ × 1 data-vector is received at time t:

z(ℓ)(t) =

K∑

k=1

a
(ℓ)
k sk(t) + n(t). (5.6)

The proposed “blind” calibration method could be applied to wide classes of inci-

dent signals. As illustration, the following three special cases will be explain in details

subsequently:

1. Pure-tone signals: The kth signal is a pure tone sk(t) =
√
Pke

j(2πfkt+ϕk), at fre-

quency fk, distinct from the other K− 1 frequencies, and at a uniformly distributed

random phase of ϕk statistically independent from all ϕℓ 6= ϕk. Please see the details

in Sections 5.4.1 and 5.9.1.
6If fk is a priori unknown ∀k, then it is required that K ≤ min{Mℓ,∀ℓ}. If all prior known, then no

upper limit needs be imposed on K, because a bandpass filter could then be constructed to separate each

pure tone from all other pure tones.

For each step, minimum required/allowed number of sources is 3. No limits for the maximum re-

quired/allowed number of sources.
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2. Narrowband (not pure-tone) random signals that each has a subband unoccupied

overlapped by all other incident signals: The kth incident signal’s aforementioned

non-overlapping subband is centered at fk. The kth incident signal is sk(t) =
√
Pkak(t)e

j(2πfkt+ϕk), where ak(t) represent the subbanded signal’s envelope, which

changes only slowly with respect to the carrier period 1/fk. Please see the details

in Sections 5.4.2 and 5.9.1.

3. Narrowband (not pure-tone) random signals, all occupying the same spectrum over

the same duration: The kth incident signal is given by sk(t) =
√
Pkak(t)e

j(2πfot+ϕk),

where ak(t) represents the kth source’s signal envelope, which changes only slowly

with respect to the carrier period 1/fo = 1/fk,∀k. Please see the details in Sections

5.4.3 and 5.9.1.

Moreover, Pk denotes the signal power (a priori unknown to the receiver); ϕk signifies

a random phase (uncorrelated to all other random entities). It is further assumed that

(θk, φk) 6= (θj , φj),∀k 6= j ∈ {1, · · · ,K}. The additive noise n(t) is modeled as zero mean,

spatio-temporally uncorrelated, with (a priori unknown) power PN .

The present calibration problem aims to estimate all aforementioned array-manifold

non-ideality parameters plus the sources’ arrival-angles, given the M × N collected data

Z = [z(Ts), z(2Ts), · · · , z(NTs)], where M =
∑L

ℓ=1Mℓ, N > 2M + 1 7 and Ts symbolizes

the a priori known time-sampling period. 8

The above data model is parameterized by 2K+10L−7 number of unknown real-value

scalars:

a) 2K number of unknown direction-of-arrival scalars,

b) 3(L− 1) number of unknown mis-orientation scalars,

c) 3(L− 1) number of unknown mis-location scalars, and

d) 4L− 1 number of unknown gain-uncertainty scalars.

On the other hand, there exist 4KL number of constraints from the 4KL real-value scalar

measurements at any time instant. For a unique estimation of the directions-of-arrival

and the non-ideality parameters, it is necessary that

K ≥ 1

2

(
10L− 7

2L− 1

)
⇔

{
K ≥ 2, if L = 1,

K ≥ 3, if L > 1.
(5.7)

The above inequality compares the number of nonlinear constraints versus the number of

unknown scalars, by considering all L acoustic vector-sensors as a whole. 9 10

7For a justification of this inequality, please refer to [53].
8 The proposed algorithm also works for narrowband signals having nonzero bandwidths, if each signal

has a prior known subband wherein only that signal exists
9The presently proposed approach, however, would need at least three sources, (i.e. K ≥ 3), even if

L = 1. Otherwise, these subsequent equations cannot be solved: (5.19), (5.20), (5.21), (5.26), and (5.33).
10The proposed algorithm allows the reference-unit to have either all 4 component-sensors or only the

3 velocity-sensors; the latter case would require prior knowledge of gx, gy, gz and would require (for the

algorithmic step in (5.18)) a prior knowledge of which hemisphere in which each incident source lies.

59



With more separable sources, the data could yield more (nonlinear) constraints to

estimate each acoustic vector-sensor’s non-ideal parameters and direction-of-arrival.

5.4 Proposed Algorithm’s Step #1: Estimation of Each

Source’s Steering-Vector

This step estimates, for all L vector-sensors, each incident source’s M × 1 steering vector

{ak,∀k = 1, 2, · · · ,K}, to within an (unknown) complex-value constant. These steering-

vector estimates (though ambiguous), would allow the subsequent steps to exploit the

salient attributes of the vector-sensor array-manifold for “blind” array calibration. This

steering-vector estimation is achieved by computing the principal eigenvector of a data

correlation matrix (to be formed suitably as explained below).

This step may be realized by various approaches, in order to fit the incident sources’

spectra and statistics. As illustrations, three common cases will be considered below:

Section 5.4.1 will handle pure-tone signals. Section 5.4.2 will deal with narrowband signals,

each with a subband unoccupied by all other incident signals. Section 5.4.3 will investigate

narrowband signals, all of which occupy the same band during the same time period. In

any case, this algorithmic step #1 is unaffected by the presence/absence of any pressure-

sensor in any of the L vector-sensors.

5.4.1 For the special case of pure-tone signals

The “multiple pure tones” signal model may be handled by the “Uni-Vector-Hydrophone

ESPRIT” method [53], which exploits each pure-tone’s temporal “invariance” over the

sampling instants {Ts, 2Ts, · · · , NTs}. The following will summarize the algorithmic steps

of this Uni-Vector-Hydrophone ESPRIT algorithm. For the motivations underlying these

algorithmic steps, please refer to the lengthy exposition in [53] itself.

{1} Form an M ×N data-matrices Z1 = [z(Ts), z(2Ts), · · · , z((N − 1)Ts)] and Z2 =

[z(2Ts), z(3Ts), · · · , z(NTs)]. Then, form a 2M ×N data-matrix Z = [ZT
1 ,Z

T
2 ]

T

{2} Eigen-decompose ZZH , such that Es = [ET
1 ,E

T
2 ]

T is a 2M ×K matrix (the signal-

subspace eigenvector matrix), whose K columns are the K principal eigenvectors

associated with the K largest-magnitude eigenvalues.

{3} Define the K ×K matrix,

Ψ
def
=

(
EH

1 E1

)−1 (
EH

1 E2

)
= T−1ΦT,

where the kth eigenvalue of Ψ equals
{
[Φ]k,k = ej2πfk△T , ∀k = 1, . . . ,K

}
, and the

corresponding right-eigenvector constitutes the kth column of T.

{4} The K impinging sources’ steering-vectors may be estimated, each to within a
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complex-value multiplicative scalar, as

[â1, · · · , âK ] =
1

2

{
E1T

−1 +E2T
−1Φ−1

}

= [c1a1, · · · , cKaK ] . (5.8)

These K unknown complex-value multiplicative scalars c1, . . . , cK arise from the

eigen-decomposition of Ψ.

5.4.2 For the special case of narrowband random signals, each with a

subband unoccupied by any other incident signal

Suppose that the kth signal’s non-overlapping sub-spectrum is centered at fk. Comb-filter

the M ×N received data matrix Z = [z(Ts), z(2Ts), · · · , z(NTs)] around fk, to isolate the

kth narrowband spectrum, to produce an M ×N data matrix Zk. Then, eigen-decompose

ZkZ
H
k , such that Esk is the M × 1 eigenvector associated with the largest-magnitude

eigenvalue. The kth impinging source’s steering-vector may then be estimated, to within

a complex-value multiplicative scalar, as âk = Esk ,∀k = 1, . . . ,K.

5.4.3 For the special case of narrowband random signals, all occupying

the same band during the same period

Suppose all K incident narrowband signals are centered fo. These signals then are not

isolated at any subband, as for the cases in Sections 5.4.1 and 5.4.2. Instead, a spatial

invariance is to be constructed, by presuming two reference vector-sensors sharing an

identical orientation that is prior known. Without loss of generality, assume these reference

vector-sensors as indexed at ℓ = 1, J .11

The first algorithmic step is to eigen-decompose the data-correlation matrix ZZH ,

producing an M ×K signal-subspace eigenvector matrix Es, whose K columns are the K

principal eigenvectors associated with the K largest-magnitude eigenvalues. That is,

Es ≈ AT = [a1, · · · ,aK ]T, (5.9)

where T is an tentatively unknown but nonsingular K ×K coupling matrix. If noiseless

or if an infinite number of snapshots exist, the above approximation would become exact.

The Jth subarray may be defined asAJ
def
= JJA, where JJ

def
=
[
0MJ ,

∑J−1
i=1 Mi

, IMJ
,0MJ ,

∑L
i=J+1 Mi

]

symbolizes an MJ ×M subarray-selection matrix, 0m,n signifies an m × n zero matrix,

and Im denotes an m ×m identity matrix. The first subarray and the Jth subarray are

11 As in Sections 5.4.1 and 5.4.2, the ℓ = 1st vector-sensor serves as a reference in location, orientation,

and in the gain of its pressure sensor (if present). Moreover for this signal model in Section 5.4.3, this ℓ = 1st

vector-sensor ’s g
(1)
x , g

(1)
y , g

(1)
z are also assumed as prior known; and the Jth vector-sensor’s orientation,

g
(J)
p , g

(J)
x , g

(J)
y , g

(J)
z also need to be prior known. These additional assumptions are needed, in order to

subsequently form the “spatial invariance” matrix of Ψ(J).
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interrelated through a “spatial invariance” matrix of Ψ(J):

(
G
(
G(J)

)
R̃
(
θ̃(J), γ̃(J), φ̃(J)

))−1
AJ

=
(
G
(
G(1)

)
R̃
(
θ̃(1), γ̃(1), φ̃(1)

))−1
A1




q
(J)
k e

j
2πfk

c

{
uk∆

(J)
x +vk∆

(J)
y +wk∆

(J)
z

}

. . .

q
(J)
K e

j
2πfK

c

{
uK∆

(J)
x +vK∆

(J)
y +wK∆

(J)
z

}




︸ ︷︷ ︸
def
=Φ(J)

,

(5.10)

where
(
G
(
G(J)

)
R̃
(
θ̃(J), γ̃(J), φ̃(J)

))−1
aligns the Jth vector-sensor’s orientation to the

Cartesian axes and
(
G
(
G(1)

)
R̃
(
θ̃(1), γ̃(1), φ̃(1)

))−1
achieves the same for the first vector-

sensor.

Construct the signal-subspace matrix pencil {Ẽs1 , ẼsJ}, where

Ẽs1
def
=

(
G
(
G(1)

)
R̃
(
θ̃(1), γ̃(1), φ̃(1)

))−1
J1Es︸ ︷︷ ︸
≈A1T

,

ẼsJ
def
=

(
G
(
G(J)

)
R̃
(
θ̃(J), γ̃(J), φ̃(J)

))−1
JJEs︸ ︷︷ ︸
≈AJT

.

There exists a K ×K nonsingular matrix Ψ(J) relating Ẽs1 and ẼsJ , where

Ψ(J) def
=

(
ẼH

s1Ẽs1

)−1 (
Ẽs1ẼsJ

)
= T−1Φ(J)T. (5.11)

Therefore, T may be computed by eigen-decomposing Ψ(J).

TheK impinging sources’ steering-vectors may be estimated, each to within a complex-

value multiplicative scalar, as follows:

[â1, · · · , âK ] = EsT
−1.

Again, T denotes a non-singular matrix containing the right-eigenvectors of Ψ(J).

In addition to the reference (i.e. the first) vector-sensor whose array manifold is fully

calibrated, the ℓth vector-sensor whose intra-vector-sensor gain deviation.

5.5 Proposed Algorithm’s Step #2: “Blind” Calibration of

Each Vector-Sensor’s Gain-Uncertainties

Step #1 of the last section has isolated each source’s steering vector, to allow the present

step and the subsequent steps to exploit the vector-sensor array-manifold’s unique char-

acteristics.

Step #2 will now exploit each velocity-sensor’s direct measurement of each Cartesian
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direction-cosine. Drawing upon (5.8),

[
â
(ℓ)
k

]
1

≈ ck g(ℓ)x u
(ℓ)
k q

(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

︸ ︷︷ ︸
=
[
a
(ℓ)
k

]

1

, (5.12)

[
â
(ℓ)
k

]
2

≈ ck g(ℓ)y v
(ℓ)
k q

(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

︸ ︷︷ ︸
=
[
a
(ℓ)
k

]

2

, (5.13)

[
â
(ℓ)
k

]
3

≈ ck g(ℓ)z w
(ℓ)
k q

(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

︸ ︷︷ ︸
=
[
a
(ℓ)
k

]

3

, (5.14)

[
â
(ℓ)
k

]
4

≈ ck g(ℓ)p q
(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

︸ ︷︷ ︸
=
[
a
(ℓ)
k

]

4

, (5.15)

12 where the approximations are due to noises in the data model.

Each equation above represents a one-to-one correspondence between (i) an element in

the ℓth vector-sensor’s kth steering-vector estimate â
(ℓ)
k , and (ii) a direction-cosine of the

kth source amplitude-scaled by the ℓth vector-sensor’s gain uncertainty. Such one-to-one

correspondences would be unavailable for an array of displaced microphones, wherein the

direction-cosines are embedded between two sensors’ data, but not wholly within any

one sensor’s individual data. That inter-sensor embedment of the direction-cosines would

require more complicated signal processing in direction finding, than if via (5.12)-(5.15)

above.

There remains the elimination of the unknown complex-value scalar ck from (5.12)-

(5.15). The following will first evaluate ck.

1. If the reference vector-sensor has a pressure-sensor, (5.15) gives
[
â
(1)
k

]
4
≈ ck

[
a
(1)
k

]
4
.

Then, the corresponding g
(1)
p =

[
a
(1)
k

]
4
would need to be prior known, in order to

give

ck ≈

[
â
(1)
k

]
4

g
(1)
p

, ∀k. (5.16)

2. If the reference vector-sensor has no pressure-sensor, proceed as follows:

(i) Its velocity-sensors’ g
(1)
x , g

(1)
y , g

(1)
z would need to be prior known. From (5.12)-

(5.14),

∣∣∣
[
â
(1)
k

]
1

∣∣∣ ≈ |ck|g(1)x

∣∣∣u(1)k

∣∣∣ ,
∣∣∣
[
â
(1)
k

]
2

∣∣∣ ≈ |ck|g(1)y

∣∣∣v(1)k

∣∣∣ ,
∣∣∣
[
â
(1)
k

]
3

∣∣∣ ≈ |ck|g(1)z

∣∣∣w(1)
k

∣∣∣ .

12(5.12)-(5.15) are based on (5.1).
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The above three lines have used the fact that g
(1)
x and g

(1)
y and g

(1)
z are non-

negative. Next, recall that
∣∣∣u(1)k

∣∣∣
2
+
∣∣∣v(1)k

∣∣∣
2
+
∣∣∣w(1)

k

∣∣∣
2
= 1, consequentially

|ck| ≈




∣∣∣∣∣∣

[
â
(1)
k

]
1

g
(1)
x

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

[
â
(1)
k

]
2

g
(1)
y

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

[
â
(1)
k

]
3

g
(1)
z

∣∣∣∣∣∣

2


−1/2

. (5.17)

(ii) As the reference vector-sensor is located at origin, it suffers no mis-location.

From (5.12)-(5.14),

[
â
(1)
k

]
1

≈ |ck|g(1)x u
(1)
k ej∠ck ,

[
â
(1)
k

]
2

≈ |ck|g(1)y v
(1)
k ej∠ck ,

[
â
(1)
k

]
3

≈ |ck|g(1)z w
(1)
k ej∠ck .

The above three lines have exploited the fact that ∠g
(1)
x = ∠g

(1)
y = ∠g

(1)
z = 0.

At least one of sign
(
u
(1)
k

)
or sign

(
v
(1)
k

)
or sign

(
w

(1)
k

)
would also need to be

prior known, in order to evaluate

∠ck =





∠sign
(
u
(1)
k

) [
â
(1)
k

]
1
, if sgn

(
u
(1)
k

)
is prior known;

∠sign
(
v
(1)
k

) [
â
(1)
k

]
2
, if sgn

(
v
(1)
k

)
is prior known;

∠sign
(
w

(1)
k

) [
â
(1)
k

]
3
, if sgn

(
w

(1)
k

)
is prior known.

(5.18)

Here, sign(·) signifies the sign of the real-value number inside the parentheses. The

above (5.17) and (5.18) together give the complex-value scalar ck.

With {ck, k = 1, · · · ,K} thus evaluated, the gain uncertainties may be calibrated for

the ℓth vector-sensor as follows: With (5.12)-(5.14),

∣∣∣
[
â
(ℓ)
k

]
1

∣∣∣ ≈ |ck| g(ℓ)x

∣∣∣u(ℓ)k

∣∣∣ ,
∣∣∣
[
â
(ℓ)
k

]
2

∣∣∣ ≈ |ck| g(ℓ)y

∣∣∣v(ℓ)k

∣∣∣ ,
∣∣∣
[
â
(ℓ)
k

]
3

∣∣∣ ≈ |ck| g(ℓ)z

∣∣∣w(ℓ)
k

∣∣∣ .

Recall that u2k + v2k + w2
k = 1,∀θk, φk. Hence,

1

|ck|2




∣∣∣∣∣∣

[
â
(ℓ)
k

]
1

g
(ℓ)
x

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

[
â
(ℓ)
k

]
2

g
(ℓ)
y

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

[
â
(ℓ)
k

]
3

g
(ℓ)
z

∣∣∣∣∣∣

2
 = 1, ∀k, ∀ℓ.

Note that the same ck affects all L steering-vector estimates in
{
â
(ℓ)
k , ∀ℓ

}
. Hence, rewrite

the above in matrix form as



∣∣∣
[
â
(ℓ)
1

]
1
/c1

∣∣∣
2 ∣∣∣

[
â
(ℓ)
1

]
2
/c1

∣∣∣
2 ∣∣∣

[
â
(ℓ)
1

]
3
/c1

∣∣∣
2

...
...

...∣∣∣
[
â
(ℓ)
K

]
1
/cK

∣∣∣
2 ∣∣∣

[
â
(ℓ)
K

]
2
/cK

∣∣∣
2 ∣∣∣

[
â
(ℓ)
K

]
3
/cK

∣∣∣
2




︸ ︷︷ ︸
def
= Ψ(ℓ)




(
g
(ℓ)
x

)−2

(
g
(ℓ)
y

)−2

(
g
(ℓ)
z

)−2




=




1
...

1




︸ ︷︷ ︸
def
= 1K

.
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The above Ψ(ℓ) would be full ranked for any K ≥ 3, except at a few discrete parametric

values, that would occur with probability 0 due to noises in the data model. Hence,

ĝ(ℓ)x =

[[(
Ψ(ℓ)

)H
Ψ(ℓ)

]−1 (
Ψ(ℓ)

)H
1K

]−1/2

1

, (5.19)

ĝ(ℓ)y =

[[(
Ψ(ℓ)

)H
Ψ(ℓ)

]−1 (
Ψ(ℓ)

)H
1K

]−1/2

2

, (5.20)

ĝ(ℓ)z =

[[(
Ψ(ℓ)

)H
Ψ(ℓ)

]−1 (
Ψ(ℓ)

)H
1K

]−1/2

3

. (5.21)

Specifically at K = 3, the simplification of
[(
Ψ(ℓ)

)H
Ψ(ℓ)

]−1 (
Ψ(ℓ)

)H
=
(
Ψ(ℓ)

)−1
holds.

Furthermore, if a pressure-sensor exists at the ℓth vector-sensor, (5.15) gives
∣∣∣
[
â
(ℓ)
k

]
4

∣∣∣ ≈
ck g

(ℓ)
p , then

ĝ(ℓ)p =

∣∣∣∣∣∣

[
â
(ℓ)
k

]
4

ck

∣∣∣∣∣∣
. (5.22)

This step does not require the “reference vector-sensor” (indexed at ℓ = 1) to be free

of gain uncertainty.

5.6 Proposed Algorithm’s Step #3: Estimation of Each In-

cident Source’s Azimuth-Elevation Direction-of-Arrival

Recall that the reference vector-sensor (indexed at ℓ = 1) suffers no mis-orientation.

Taking the absolute value of the both sides of each of (5.12)-(5.14),

∣∣∣u(1)k

∣∣∣ =

∣∣∣
[
â
(1)
k

]
1

∣∣∣

|ck| g(1)x

,

∣∣∣v(1)k

∣∣∣ =

∣∣∣
[
â
(1)
k

]
2

∣∣∣

|ck| g(1)y

,

∣∣∣w(1)
k

∣∣∣ =

∣∣∣
[
â
(1)
k

]
3

∣∣∣

|ck| g(1)z

.

On the other hand, the signs of u
(1)
k and v

(1)
k and w

(1)
k may be respectively obtained as

sgn
(
u
(1)
k

)
= sgn


ℜ




[
â
(1)
k

]
1

ck




 ,

sgn
(
v
(1)
k

)
= sgn


ℜ




[
â
(1)
k

]
2

ck




 ,

sgn
(
w

(1)
k

)
= sgn


ℜ




[
â
(1)
k

]
3

ck




 .
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The Cartesian direction-cosines may thus be estimated as




ûk

v̂k

ŵk


 =

1

|ck|




sgn

(
ℜ
{[

â
(1)
k

]

1
ck

}) ∣∣∣
[
â
(1)
k

]
1

∣∣∣ / ĝ(1)x

sgn

(
ℜ
{[

â
(1)
k

]

2
ck

}) ∣∣∣
[
â
(1)
k

]
2

∣∣∣ / ĝ(1)y

sgn

(
ℜ
{[

â
(1)
k

]

3
ck

}) ∣∣∣
[
â
(1)
k

]
3

∣∣∣ / ĝ(1)z




, ∀k. (5.23)

Hence, the kth incident source’s azimuth-angle and elevation-angle, respectively, may

be estimated as

θ̂k = arccos ŵk, (5.24)

φ̂k =




arccos ûk

sin θ̂
, if v̂k > 0,

− arccos ûk

sin θ̂
, if v̂k < 0.

(5.25)

The presence or the absence of the pressure-sensor would make no difference to this

algorithmic step #3. However, if the “reference vector-sensor” (indexed at ℓ = 1) has

no pressure-sensor, then the direction estimates in (5.24)-(5.25) would have their validity

region restricted to an hemisphere.

5.7 Proposed Algorithm’s Step #4: “Blind” Calibration of

Each Vector-Sensor’s Mis-Orientation

Given any mis-orientation at the ℓth vector-sensor, {uk, vk, wk}would appear as
{
u
(ℓ)
k , v

(ℓ)
k , w

(ℓ)
k

}
,

with



u
(ℓ)
k

v
(ℓ)
k

w
(ℓ)
k


 = R

(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)


uk

vk

wk


 , ∀k, ℓ,

where the 3× 3 matrix R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)
has been defined in (5.5).

With K sources,




û1 v̂1 ŵ1

...
...

...

ûK v̂K ŵK




︸ ︷︷ ︸
def
=Γ(1)

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]T
≈




û
(ℓ)
1 v̂

(ℓ)
1 ŵ

(ℓ)
1

...
...

...

û
(ℓ)
K v̂

(ℓ)
K ŵ

(ℓ)
K




︸ ︷︷ ︸
def
= Γ(ℓ)

,

where the superscript T symbolizes transposition.

If the ℓth vector-sensor contains a pressure-sensor, (5.23) holds with its superscript (1)
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substituted by (ℓ),∀ℓ, and ck substituted by
[
â
(ℓ)
k

]
4
. Hence,



û
(ℓ)
k

v̂
(ℓ)
k

ŵ
(ℓ)
k


 =

1

|ck|




sgn

(
ℜ
{[

â
(ℓ)
k

]

1[
â
(ℓ)
k

]

4

}) ∣∣∣
[
â
(ℓ)
k

]
1

∣∣∣ / ĝ(ℓ)x

sgn

(
ℜ
{[

â
(ℓ)
k

]

2[
â
(ℓ)
k

]

4

}) ∣∣∣
[
â
(ℓ)
k

]
2

∣∣∣ / ĝ(ℓ)y

sgn

(
ℜ
{[

â
(ℓ)
k

]

3[
â
(ℓ)
k

]

4

}) ∣∣∣
[
â
(ℓ)
k

]
3

∣∣∣ / ĝ(ℓ)z




, ∀k, ℓ.

If ℓth vector-sensor contains no pressure-sensor,
[
â
(ℓ)
k

]
4
would not exist; hence, sgn

(
ℜ
{[

â
(ℓ)
k

]

1[
â
(ℓ)
k

]

4

})
,

sgn

(
ℜ
{[

â
(ℓ)
k

]

2[
â
(ℓ)
k

]

4

})
, sgn

(
ℜ
{[

â
(ℓ)
k

]

3[
â
(ℓ)
k

]

4

})
would need to be substituted by sgn (ûk) , sgn (v̂k) , sgn (ŵk),

respectively. Therefore,



û
(ℓ)
k

v̂
(ℓ)
k

ŵ
(ℓ)
k


 =

1

|ck|




sgn (ûk)
∣∣∣
[
â
(ℓ)
k

]
1

∣∣∣ / ĝ(ℓ)x

sgn (v̂k)
∣∣∣
[
â
(ℓ)
k

]
2

∣∣∣ / ĝ(ℓ)y

sgn (ŵk)
∣∣∣
[
â
(ℓ)
k

]
3

∣∣∣ / ĝ(ℓ)z


 , ∀k, ℓ.

On the other hand,

R̂(ℓ) =

[((
Γ(1)

)H
Γ(1)

)−1 (
Γ(1)

)H
Γ(ℓ)

]T
, ∀ℓ. (5.26)

The above R̂(ℓ) would be full ranked for any K ≥ 3, except for parameters at a few discrete

values, that would occur with probability 0 due to noises in the data model. Specifically

at K = 3, the following simplifications hold:
((

Γ(1)
)H

Γ(1)
)−1 (

Γ(1)
)H

=
(
Γ(1)

)−1
, and

R̂(ℓ) =
([

Γ(1)
]−1

Γ(ℓ)
)T

. However, (5.5) may be written as

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
1,1

= cos θ̃(ℓ) cos φ̃(ℓ) − sin γ̃(ℓ) sin θ̃(ℓ) sin φ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
1,2

= cos γ̃(ℓ) sin φ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
1,3

= cos φ̃(ℓ) sin θ̃(ℓ) + cos θ̃(ℓ) sin γ̃(ℓ) sin φ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
2,1

= − cos φ̃(ℓ) sin γ̃(ℓ) sin θ̃(ℓ) − cos θ̃(ℓ) sin φ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
2,2

= cos γ̃(ℓ) cos φ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
2,3

= cos θ̃(ℓ) sin γ̃(ℓ) cos φ̃(ℓ) − sin θ̃(ℓ) sin φ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
3,1

= − cos γ̃(ℓ) sin θ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
3,2

= − sin γ̃(ℓ),

[
R
(
θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)

)]
3,3

= cos γ̃(ℓ) cos θ̃(ℓ),

where [·]i,j denotes the (i, j)th entry of the matrix inside the square brackets. Therefore,

67



the ℓth vector-sensor’s mis-orientation parameters can be “blindly” calibrated as

θ̂(ℓ) = arctan

(
−
[
R̂(ℓ)

]
3,1
/
[
R̂(ℓ)

]
3,3

)
, (5.27)

γ̂(ℓ) = arcsin

(
−
[
R̂(ℓ)

]
3,2

)
, (5.28)

φ̂(ℓ) = arctan

([
R̂(ℓ)

]
1,2
/
[
R̂(ℓ)

]
2,2

)
. (5.29)

This algorithmic step is facilitated by each velocity-sensor’s direct measurement of one

Cartesian direction cosine of the incident source. Such a simple mis-orientation calibration

step would be unviable for, say, an array of isotropic microphones/hydrophones. 13

5.8 Proposed Algorithm’s Step #5: Calibration of the Vector-

Sensors’ Mis-Location

Recall that each velocity-sensor directly measures each Cartesian direction-cosine, as men-

tioned earlier in (5.12)-(5.15), which respectively give:

[
â
(ℓ)
k

]
1[

â
(1)
k

]
1

≈ g
(ℓ)
x

g
(1)
x

u
(ℓ)
k

u
(1)
k

q
(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

,

[
â
(ℓ)
k

]
2[

â
(1)
k

]
2

≈ g
(ℓ)
y

g
(1)
y

v
(ℓ)
k

v
(1)
k

q
(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

,

[
â
(ℓ)
k

]
3[

â
(1)
k

]
3

≈ g
(ℓ)
z

g
(1)
z

w
(ℓ)
k

w
(1)
k

q
(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

,

[
â
(ℓ)
k

]
4[

â
(1)
k

]
4

≈ g
(ℓ)
p

g
(1)
p

q
(ℓ)
k e

j
2πfk

c

{
uk∆

(ℓ)
x +vk∆

(ℓ)
y +wk∆

(ℓ)
z

}

.

Hence, the spatial phase-factor due to the ℓth vector-sensor’s mis-location equals

β
(ℓ)
k

def
= ∠

(
e
−j 2π

λk
{ûkx

(ℓ)+v̂ky
(ℓ)+ŵkz

(ℓ)} [
â
(ℓ)
k

]
4
/
[
â
(1)
k

]
4

)

if the ℓth vector-sensor contains a pressure-sensor.

However, if the ℓth vector-sensor has no pressure-sensor, then the three velocity-

sensors’ data need to be used as follows:

β
(ℓ)
k

def
=

1

3

3∑

i=1

∠

(
e
−j 2π

λk
{ûkx

(ℓ)+v̂ky
(ℓ)+ŵkz

(ℓ)} [
â
(ℓ)
k

]
i
/
[
â
(1)
k

]
i

)
.

13The step in (5.26) is analogous to [129]; however, the present method (unlike [129]) does not require

any cooperative emitter of a prior known direction-of-arrival, but explicitly estimates the 3(L − 1) mis-

orientation angles of θ(ℓ), γ(ℓ), φ(ℓ),∀ℓ > 1.
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Accounting for all K ≥ 3 sources,




2π
λ1
û1

2π
λ1
v̂1

2π
λ1
ŵ1

...
...

...
2π
λK
ûK

2π
λK
v̂K

2π
λK
ŵK




︸ ︷︷ ︸
def
=Π




∆
(ℓ)
x

∆
(ℓ)
y

∆
(ℓ)
z




︸ ︷︷ ︸
def
=ε

≈




β
(ℓ)
1
...

β
(ℓ)
K




︸ ︷︷ ︸
def
= ν

.

The dislocation is assumed here as sufficiently small, such that no 2π cyclic ambiguity

arises, i.e. the dislocation would be a fraction of a wavelength. Hence, {∆(ℓ)
x ,∆

(ℓ)
y ,∆

(ℓ)
z }

may be estimated as

∆̂(ℓ)
x = [ε]1, (5.30)

∆̂(ℓ)
y = [ε]2, (5.31)

∆̂(ℓ)
z = [ε]3, (5.32)

where

ε
def
=

[(
ΠHΠ

)−1
ΠH

ν

]T
. (5.33)

The above Π would be full ranked for any K ≥ 3, except for parameters at a few discrete

values, that would occur with probability 1 due to the noises in the data model. Specifically

at K = 3, the simplification of
(
ΠHΠ

)−1
ΠH = Π−1 holds.

This algorithmic step #5 is again facilitated by each velocity-sensor’s direct measure-

ment of one distinct Cartesian direction-cosine. However, this algorithmic step #5’s simple

form would be unavailable for an array of isotropic sensors.

5.9 Monte Carlo Simulations

5.9.1 The Proposed Scheme’s Efficacy for “Blind” Calibration & Direc-

tion Finding

The proposed scheme (developed in Sections 5.5 to 5.8) is demonstrated here, via Monte

Carlo simulations shown in Figure 5.1, for its efficacy to “blindly” calibrate the intra-

vector-sensor gain uncertainty, the inter-vector-sensor mis-orientation, and the inter-vector-

sensor dislocation. Plotted in Figure 5.1 are the performance metrics defined in Table 5.1.

Therein, δθ,k,i (δφ,k,i) symbolizes the ith Monte Carlo trial’s estimation-error for θk (φk);

and λmin is defined as the minimum of λ1, . . . , λK . Furthermore, CRB(g
(1)
p ) = 0 and

δ
g
(1)
p ,i

= 0,∀i, both by definition of the data model.

For the special case of pure-tone signals

The simulation scenario is detailed below: There exist K = 3 pure-tone incident signals,

at digital frequencies f ′1 = 0.47, f ′2 = 0.11, and f ′3 = 0.28, which are a priori unknown to

the algorithm. Each pure tone has a random phase, uniformly distributed between [0, 2π)

radians, independently generated at each Monte Carlo trial, and independent across the
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Table 5.1: Definitions of the performance metrics plotted in Figures 5.1-5.4
Composite Mean-Square Error (Comp-RMSE) Composite Cramér-Rao Bound (Comp-CRB)

DoA

√

√

√

√

1
2KI

∑K
k=1

∑I
i=1

(

δ2θ,k,i + δ2φ,k,i

) √

1
2K

∑K
k=1

(

CRB(θk) + CRB(φk)
)

gain uncertainty

√

√

√

√

√

√

√

√

1
4LI

∑I
i=1

∑L
ℓ=1











δ2

g
(ℓ)
x ,i

+ δ2

g
(ℓ)
y ,i

+ δ2

g
(ℓ)
z ,i

+ δ2

g
(ℓ)
p ,i











√

√

√

√

√

1
4L

∑L
ℓ=1



CRB(g
(ℓ)
x ) + CRB(g

(ℓ)
y ) + CRB(g

(ℓ)
z ) + CRB(g

(ℓ)
p )





mis-orientation

√

√

√

√

√

√

1
3(L−1)I

∑I
i=1

∑L
ℓ=2





δ2
θ̃(ℓ),i

+ δ2
γ̃(ℓ),i

+ δ2
φ̃(ℓ),i







√

√

√

√

1
3(L−1)

∑L
ℓ=2

[

CRB(θ̃(ℓ)) + CRB(γ̃(ℓ)) + CRB(φ̃(ℓ))
]

dislocation

√

√

√

√

√

√

√

√

1
3(L−1)Iλ2

min

∑I
i=1

∑L
ℓ=2











δ2

∆
(ℓ)
x ,i

+ δ2

∆
(ℓ)
y ,i

+ δ2

∆
(ℓ)
z ,i











√

√

√

√

√

√

1
3(L−1)λ2

min

∑L
ℓ=2



CRB(∆
(ℓ)
x ) + CRB(∆

(ℓ)
y ) + CRB(∆

(ℓ)
z )





Table 5.2: The five non-ideal acoustic-vector-sensors’ actual Cartesian locations, actu-

al mis-locations, actual misorientations, actual gain nonidealities for the simulations in

Figures 5.1-5.4
ℓ 1 2 3 4 5

Construction 4-component 4-component 4-component 4-component 4-component
(xℓ,yℓ,zℓ)

λmin
(0, 0, 0) (−1.5, 1.8, 1.9) (2.2, −1.9, 1.5) (1.8, 2.0, 2.1) (−2.1, −1.9, 2.3)













∆(ℓ)
x ,∆(ℓ)

y ,∆(ℓ)
z













λmin
(0, 0, 0) (0.17, 0.18, 0.17) (−0.19, 0.18, 0.17) (0.17, −0.15, −0.13) (−0.18, 0.19, −0.20)

(θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)) (0.0◦, 0.0◦, 0.0◦) (6.2◦,−6.5◦, −6.0◦) (7.3◦,−6.9◦, 6.7◦) (6.1◦, 6.0◦, 6.3◦) (7.2◦, −6.5◦, 6.6◦)

(g(ℓ)x , g(ℓ)y , g(ℓ)z , g(ℓ)p ) (0.80, 1.20, 1.19, 1.00) (1.18, 0.81, 1.21, 1.19) (1.21, 0.82, 1.20, 1.23) (1.18, 1.21, 0.84, 1.17) (1.16, 0.82, 1.18, 1.24)

signals. The emitters’ respective azimuth-elevation directions-of-arrival are (θ1, φ1) =

(38◦, 25◦), (θ2, φ2) = (82◦,−143◦), and (θ3, φ3) = (121◦,−73◦), also a priori unknown

to the receiver. There exist L = 5 non-ideal vector-sensors, with non-ideal gains, mis-

orientations, and mis-locations as indicated in Table 5.2. At each Monte Carlo trial, the

collected data consist of N = 500 snapshots, corrupted by additive Gaussian noise, white

over time, white also across all velocity-sensors and all pressure-sensors. Each icon in

Figure 5.1 consists of I = 100 statistically independent Monte Carlo trials.

The Monte Carlo simulations in Figure 5.1 verify that the proposed algorithm offers

highly accurate “blind” calibration and direction finding.

If vector-sensor contains pressure-sensor, for SNR = 10dB, the R.M.S.E. for gain esti-

mation is 0.0243 which is about 12% of the gain deviation, the R.M.S.E. for mis-orientation

estimation is 0.9408◦ which is about 14.4% of the orientation deviation, the R.M.S.E. for

dislocation estimation is 0.04982λmin which is about 28.5% of the location deviation, and

the R.M.S.E. for DOA estimation is 1.002◦.

If vector-sensor contains no pressure-sensor, for SNR = 10dB, the R.M.S.E. for gain

estimation is 0.02657 which is about 13% of the gain deviation, the R.M.S.E. for mis-

orientation estimation is 1.231◦ which is about 18.9% of the orientation deviation, the

R.M.S.E. for dislocation estimation is 0.03394λmin which is about 19.4% of the location

deviation, and the R.M.S.E. for DOA estimation is 0.9258◦.

For the special case of narrowband random signals, each with a subband un-

occupied by any other incident signal

There are again K = 3 signals with non-overlapping subbands, centered at f ′1 = 0.47,

f ′2 = 0.11, and f ′3 = 0.28, wherein the envelopes are statistically independent over time

and across signals, complex-valued, and circularly complex Gaussian distributed, with

a zero mean and unit variance. The other simulation scenario and setting are same as
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Section 5.9.1.

For SNR = 10dB, the R.M.S.E. for gain estimation is 0.0245 which is about 12% of the

gain deviation, the R.M.S.E. for mis-orientation estimation is 1.001◦ which is about 15%

of the orientation deviation, the R.M.S.E. for dislocation estimation is 0.05325λmin which

is about 30% of the location deviation, and the R.M.S.E. for DOA estimation is 1.118◦.

For the special case of narrowband random signals, all occupying the same

band during the same period

The simulation scenario is same as Section 5.9.1, except that f ′1 = f ′2 = f ′3 = 0.13. Please

also see endnote 11.

For SNR = 10dB, the R.M.S.E. for gain estimation is 0.03076 which is about 15% of

the gain deviation, the R.M.S.E. for mis-orientation estimation is 1.147◦ which is about

18% of the orientation deviation, the R.M.S.E. for dislocation estimation is 0.04728λmin

which is about 27% of the location deviation, and the R.M.S.E. for DOA estimation is

0.6727◦.

5.9.2 The Proposed Scheme’s Orders-of-Magnitude Computational Sim-

plicity Over the Maximum Likelihood Estimation (MLE)

To highlight the computational efficiency of the proposed scheme, it will be compared

here against maximum-likelihood estimation (MLE) of the non-ideality parameters and

the directions-of-arrival.

The MLE minimizes the objective function,

F (µ) =

∥∥∥∥∥z̃−
K∑

k=1

ak(µ)⊗ sk

∥∥∥∥∥

2

, (5.34)

where the 4LN × 1 vector z̃ is re-sized from the 4L×N data-matrix Z, and

µ = [θ1, . . . , θK , φ1, . . . , φK ,

g(1)x , . . . , g(L)x , g(1)y , . . . , g(L)y , g(1)z , . . . , g(L)z , g(2)p , . . . , g(L)p ,

∆(2)
x , . . . ,∆(L)

x ,∆(2)
y , . . . ,∆(L)

y ,∆(2)
z , . . . ,∆(L)

z ,

θ̃(2), . . . , θ̃(L), γ̃(2), . . . , γ̃(L), φ̃(2), . . . , φ̃(L)
]

(5.35)

contains all 2K+10L−7 (=49 for k = 3 and L = 5) number of to-be-estimated parameters,

which are exactly the same as the proposed method assumes (see Section 5.3).

The MLE thus equals

µ̂ = arg
µ

minF (µ), (5.36)

with F (µ) iteratively evaluated via MATLAB’s built-in minimization function “fminunc”,

which uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, to be set at the stop-

ping criteria of MaxFunEvals= 104 for the maximum number of function evaluations,

and MaxIter= 104 for the maximum number of iterations. These iterations are initial-

ized at the ideal acoustic vector-sensors’ nominal values of g
(ℓ)
x = g

(ℓ)
y = g

(ℓ)
z = g

(ℓ)
p = 1,
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θ̃(ℓ) = γ̃(ℓ) = φ̃(ℓ) = ∆
(ℓ)
x = ∆

(ℓ)
y = ∆

(ℓ)
z = 0, and the direction-of-arrival values as indicated

on the figures.

The simulation scenario is detailed below: There exist K = 3 pure-tone incident

signals, at digital frequencies f ′1 = 0.47, f ′2 = 0.16, and f ′3 = 0.38, which are a prior-

i unknown to the receiver. Each pure tone has a random phase, uniformly distributed

between [0, 2π) radians, independently generated at each Monte Carlo trial, and indepen-

dent across the signals. The emitters’ respective azimuth-elevation directions-of-arrival

are (θ1, φ1) = (80◦, 20◦), (θ2, φ2) = (40◦,−155◦), and (θ3, φ3) = (85◦, 105◦), also a priori

unknown to the receiver. There exist L = 5 non-ideal acoustic vector-sensors, with non-

ideal gains, mis-orientations, and mis-locations as indicated in Table 5.3. At each Monte

Carlo trial, the collected data consist of N = 80 snapshots, corrupted by additive Gaussian

noise, white over time, white also across all velocity-sensors and all pressure-sensors. Each

icon in Figure 5.5 consists of I = 100 statistically independent Monte Carlo trials.

Table 5.3: The five non-ideal acoustic-vector-sensors’ actual Cartesian locations, actual

mis-locations, actual misorientations, actual gain nonidealities for the simulations in Figure

5.5
ℓ 1 2 3 4 5

Construction 4-component 4-component 4-component 4-component 4-component

(xℓ,yℓ,zℓ)
λmin

(0, 0, 0) (0.22, 0.22, 0) (0.25, 0.25, 0) (0.28, 0.28, 0) (0.32, 0.32, 0)




∆(ℓ)
x ,∆(ℓ)

y ,∆(ℓ)
z







λmin
(0, 0, 0) (0.01, 0.02, 0.03) (0.021, 0.018, 0.037) (0.015, 0.018, 0.020) (0.032, 0.026, 0.010)

(θ̃(ℓ), γ̃(ℓ), φ̃(ℓ)) (0.0◦, 0.0◦, 0.0◦) (8◦, 5◦, 9◦) (3◦, 6◦, 2◦) (4◦, 5◦, 8◦) (6◦, 10◦, 7◦)

(g(ℓ)x , g(ℓ)y , g(ℓ)z , g(ℓ)p ) (1.12, 1.10, 1.03, 1) (0.9, 1.06, 1.20, 1.17) (1.06, 0.97, 1.11, 1.02) (1.10, 1.06, 1.02, 1.15) (0.9, 0.91, 1.14, 1.05)

Figure 5.5 plots the various composite MSE’s versus the computational complexity,

for the proposed scheme and for maximum likelihood estimation. This computational

complexity is measured in terms of elapsed CPU time, as indicated by MATLAB’s built-

in functions “TIC” and “TOC”. 14 In Figure 5.5, the TolFun value for MLE varies from

[10−1, 10−1.5, . . . , 10−5.5, 10−6]. The simulation scenario and setting are same as for Figure

5.1, except that SNR= 25dB here.

Figure 5.5 shows that the MLE would require a computational time over three orders-

of-magnitude over that of the proposed method (i.e., the lone circle icon at the lower

left corner of each subfigure), for comparable composite MSE’s. Why is the proposed

scheme so much simpler in computational load? This is because the proposed algorithm

(unlike the MLE) needs no exhaustive/iterative search, but solves mostly linear equations.

The MLE has a computational load that increases with the number N of snapshots, but

the proposed method’s computational load (after forming the data-correlation matrix) is

independent of N .

Furthermore, the MLE is predicated on a perfect prior knowledge of the noise’s full

14 The proposed scheme’s CPU-time consists of time in estimating the array’s steering vectors by the

“Uni-Vector-Hydrophone” ESPRIT in Section 5.4, for gain-uncertainty calibration in solving (5.19)-(5.22),

for mis-orientation calibration in solving (5.27)-(5.29), and for mis-location calibration in solving (5.30)-

(5.32). The MLE’s CPU-time is the time to minimize the objective function in (5.36) via MATLAB’s

built-in function “FMINUNC”.
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space-time statistics - a demanding and perhaps unrealistic requirement, not imposed by

the proposed scheme.

5.10 Summary

Herein advanced is the first algorithm in the open literature (to the best of the authors’

knowledge) to “blindly” calibrate the intra-acoustic-vector-sensor gain-uncertainty, as well

as the inter-acoustic-vector-sensor dislocation and mis-orientation, that may exist in a

distributed array of acoustic vector-sensors. The proposed algorithm is computationally

simpler than maximum-likelihood estimation by orders-of-magnitude.
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Proposed algorithm
Composite CRB

(d) Composite mean square error (Comp-RMSE) in es-

timating the azimuth-elevation directions-of-arrival.

Figure 5.1: Each acoustic vector-sensor contains pressure sensor: Monte Carlo simulations

verify the efficacy of proposed scheme (in Sections 5.5 to 5.8) for “blind” calibration

of intra-vector-sensor gain uncertainties, inter-vector-sensor mis-orientations, and inter-

vector-sensor dislocations, as well as for direction finding, in the presence of pure-tone

signals.
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Proposed algorithm
Composite CRB

(d) Composite mean square error (Comp-RMSE) in es-

timating the azimuth-elevation directions-of-arrival.

Figure 5.2: Each acoustic vector-sensor contains no pressure sensor: Monte Carlo simula-

tions verify the efficacy of proposed scheme (in Sections 5.5 to 5.8) for “blind” calibration

of intra-vector-sensor gain uncertainties, inter-vector-sensor mis-orientations, and inter-

vector-sensor dislocations, as well as for direction finding, in the presence of pure-tone

signals.
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Proposed algorithm
Composite CRB

(d) Composite mean square error (Comp-RMSE) in es-

timating the azimuth-elevation directions-of-arrival.

Figure 5.3: Monte Carlo simulations verify the efficacy of proposed scheme (in Sections 5.5

to 5.8) for “blind” calibration of intra-vector-sensor gain uncertainties, inter-vector-sensor

mis-orientations, and inter-vector-sensor dislocations, as well as for direction finding, in

the presence of narrowband random signals, each with a subband unoccupied by any other

incident signal.
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Proposed algorithm
Composite CRB

(d) Composite mean square error (Comp-RMSE) in es-

timating the azimuth-elevation directions-of-arrival.

Figure 5.4: Monte Carlo simulations verify the efficacy of proposed scheme (in Sections 5.5

to 5.8) for “blind” calibration of intra-vector-sensor gain uncertainties, inter-vector-sensor

mis-orientations, and inter-vector-sensor dislocations, as well as for direction finding, in

the presence of narrowband random signals, all occupying the same band during the same

period.
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Proposed algorithm

MLE initialized at (θk + 10◦, φk + 10◦)

MLE initialized at (θk + 15◦, φk + 15◦)

MLE initialized at (θk + 20◦, φk + 20◦)

Composite CRB

(d) Composite mean square error (Comp-RMSE) in es-

timating the azimuth-elevation directions-of-arrival.

Figure 5.5: The proposed scheme (i.e., the lone circle icon at the lower left corner of each

subfigure) requires only about 0.1% of the MLE’s computational load, for comparable

composite RMSE’s.
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Chapter 6

A Lower Bound of

Direction-of-Arrival Estimation for

an Acoustic Vector Sensor Subject

to Sensor Breakdown

1

6.1 Literature review

Direction-finding accuracy has been assessed for ideal acoustic vector sensors in terms of

the Cramér-Rao bound in [26, 35, 45, 53, 58, 62, 70, 98, 103, 106, 133, 135, 149]. For non-

ideal vector sensors with gain responses, unequal phase responses, spatial dislocation from

the nominal array grids, misorientation – their direction-finding Cramér-Rao bounds have

been derived in [122]. However, a real-world acoustic vector sensor could have some of

its constituent sensor(s) inoperational altogether. For this, the present work analytically

derives an approximate lower bound of the direction-of-arrival estimation error variance.

6.2 The Mathematical Model

6.2.1 An Ideal Acoustic Vector Sensor’s Array Manifold

For an ideal four-element acoustic vector sensor located at the origin of the three-dimensional

Cartesian coordinates, its far-field 4× 1 array manifold equals [26, 135]:

a
def
=




1

sin θ cosφ

sin θ sinφ

cos θ




(6.1)

1This chapter is taken from [159], jointly authored by the candidate and his chief supervisor.
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Table 6.1: Various failure cases for the acoustic vector sensor and their corresponding

closed-form Cramér-Rao bounds
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Array Manifold

Sa=

CRB(S)(θ) = CRB(S)(φ) =

1
√

× ×

[

sin(θ) cos(φ)

]

∞ ∞

2 ×
√

×

[

sin(θ) sin(φ)

]

∞ ∞

3 × ×
√

[

cos(θ)

]

∞ ∞

4
√ √

×













sin(θ) cos(φ)

sin(θ) sin(φ)













CRBx,y(θ) = σ2

2M
1

cos2 θ
CRBx,y(φ) = σ2

2M
1

sin2 θ

5
√

×
√













sin(θ) cos(φ)

cos(θ)













CRBx,z(θ) = σ2

2M
1

sin2 θ
CRBx,z(φ) = σ2

2M

(

− cot2 θ+csc2 θ csc2 φ
)

sin2 θ

6 ×
√ √













sin(θ) sin(φ)

cos(θ)













CRBy,z (θ) = σ2

2M
1

sin2 θ
CRBy,z(φ) = σ2

2M

(

− cot2 θ+csc2 θ sec2 φ
)

sin2 θ

7
√ √ √























sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)























CRBx,y,z(θ) = σ2

2M
CRBx,y,z(φ) = σ2

2M
1

sin2 θ

where θ ∈ [0, π] symbolizes the elevation angle measured from the vertical z-axis, φ ∈
[0, 2π) denotes the azimuth angle measured from the positive x-axis. The first compo-

nent in a corresponds to the pressure sensor. The second, third and fourth components

correspond to the velocity sensors aligned along the x-axis, the y-axis, and the z-axis,

respectively.

6.2.2 Sensor-Failure Model

Any particular velocity sensor must either function or fail, over the entire time-window

when measurements are collected. Let pℓ denote probability that the ℓth velocity sensor

breaks down. Alternatively, pℓ could be construed as the probability of the following

composite event: the ℓth velocity sensor has either failed or been falsely identified as

having failed. Any two velocity sensors would fail independently. The acoustic vector

sensor’s direction-finding capability needs not be affected by the presence or absence of

the pressure sensor. This is because the pressure sensor in isotropic, thus provides no

information on the incident wavefield’s direction-of-arrival. Columns 2-4 of Table 6.1 list

the only 7 possible operational states of the acoustic vector sensor.

The receiver is assumed to perfectly detect any failed velocity sensor, and would then

disregard any output from any allegedly failed velocity sensor. If under two velocity sensors

are identified as operational, the receiver system would need to shut down, as direction

finding would be infeasible. Such a scenario would occur very rarely, as any well designed
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velocity sensor would fail with only a small probability.

This chapter will derive an approximate lower bound for the direction-of-arrival esti-

mation error variance, conditioned on the event that the whole receiver system remains

operational. – in other words, conditional on at least two velocity sensors remain opera-

tional. This event occurs if and only if any of Table 6.1’s failure cases #4 to #7 occur.

6.2.3 Review of the Wong-Wu-Hsu-Song Approximate Lower Bound

[155]

The Wong-Wu-Hsu-Song approximate lower bound ALB≥2 was developed in [155], for the

estimation of the one-dimensional direction-of-arrival φ, using a linear array of L number

of uniformly spaced sensors that are identical and isotropic. In that context,

ALB≥2(φ) = E

[(
φ̂− φ

)2 ∣∣∣Q ≥ 2

]

=



p

L−2(1− p)2
∑

{u1,u2}⊆ Ω

CRB
{u1,u2}
2 (φ) + pL−3(1− p)3

∑

{u1,u2,u3}⊆ Ω

CRB
{u1,u2,u3}
3 (φ)

+ · · ·+ p(1− p)L−1
∑

{u1,u2,··· ,uL−1}⊆Ω

CRB
{u1,u2,··· ,uL−1}
L−1 (φ)

+ (1− p)LCRB
{u1,u2,··· ,uL}
L (φ)

} 1

1− pL − L(1− p)pL−1
, (6.2)

where Ω refers to the set of L sensors, Q denotes the number of operational sensors out of

all L sensors, CRB
{u1,u2,··· ,uq}
q (φ) symbolizes the Cramér-Rao bound of the arrival-angle

estimate φ̂, with the q operational sensors indexed by u1, u2, · · · , uq.

6.3 Derivation of the Approximate Lower Bound

6.3.1 The Data Model for Any Failure Case in Table 6.1

To focus on the phenomenon of random sensor breakdown, the following analysis will pre-

sume a simple model of the incident signal and a simple model of the noise. For more

complex signal/noise scenarios, the present analytic approach can be modified straightfor-

wardly.

Consider a spatially fixed point source in the far field, emitting a unit-power sinusoid

signal s(t) = exp
{
j
(
2πc
λ t+ ϕ

)}
, at a known wavelength λ, a known propagation speed c,

and a known initial phase ϕ. This signal impinges upon an acoustic vector sensor located

at the spherical coordinates’ origin. This signal is corrupted by a 3× 1 vector of additive

noise n(t), which is modeled as stochastic, Gaussian distributed, with a zero mean, with

a diagonal spatial co-variance matrix Γ0 = diag[σ2v , σ
2
v , σ

2
v ], under a zero temporal self-

correlation. Modeled as deterministic but a priori unknown are the scalars θ, φ, and σv,

grouped as elements of the vector ρ.

At each time instant t, a fully operational acoustic vector sensor would collect a 3× 1

data vector,

z(t) = as(t) + n(t). (6.3)
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Altogether, there exist N such time-samples, represented as a 3 × 3 data matrix, Z
def
=

[(z(t1))
T , · · · , (z(tN ))T ]T , where ti 6= tj,∀i 6= j.

Direction-finding aims to estimate the azimuth arrival angle φ and the elevation ar-

rival angle θ, based on the observations Z. All other unknown parameters are nuisance

parameters.

Suppose exactly one of the three velocity sensors is inoperational, as for failure cases

#4-6 in Table 6.1. Then define a 2 × 3 selection-matrix S that equals a 3 × 3 identity-

matrix I3 with one row omitted. If it is the x-axis (y-axis, z-axis) velocity sensor that has

failed, omit the first (second, third) row. Hence, (6.3) becomes

Sz(t) = Sas(t) + Sn(t). (6.4)

If all three velocity sensors are operational (as for failure case #7 in Table 6.1), then

(6.4) would remain applicable with S degenerating to I3.

6.3.2 The Cramér-Rao Bound (CRB) for Each Specific Failure Case in

Table 6.1

For the complex-value Gaussian Z and the unknown parameter vector ρ of Section 6.3.1,

[24] (p. 525 and Appendix 15C) gives,

[
CRB(S)(ρ)

]−1
= J

(S)
ρ,ρ =




J
(S)
θ,θ J

(S)
θ,φ J

(S)
θ,σv

J
(S)
φ,θ J

(S)
φ,φ J

(S)
φ,σv

J
(S)
σv,θ

J
(S)
σv ,φ

J
(S)
σv,σv




= 2Re

[(
∂ (Sa⊗ s)

∂ρ

)H

(SΓ0 ⊗ IN)−1

(
∂ (Sa⊗ s)

∂ρ

)]

+Tr

[
(SΓ0 ⊗ IN)−1 ∂ (SΓ0 ⊗ IN)

∂ρ
(SΓ0 ⊗ IN )−1 ∂ (SΓ0 ⊗ IN )

∂ρ

]
,

(6.5)

where Re[·] denotes the real-value part of the entity inside [·], Tr[·] represents the trace

operator, s
def
= [s(t1), · · · , s(tN )], and ⊗ symbolizes the Kronecker product.

As only the elevation arrival angle θ and the azimuth arrival angle φ are to-be-

estimated, the Cramér-Rao bounds for {θ, φ} would equal the diagonal entries in,

[
CRB(S)(θ) ∗

∗ CRB(S)(φ)

]
=

[[
J
(S)
θ,θ J

(S)
θ,φ

J
(S)
φ,θ J

(S)
φ,φ

]
−
[
J
(S)
θ,σv

J
(S)
φ,σv

](
J (S)
σv ,σv

)−1 [
J
(S)
θ,σv

J
(S)
φ,σv

]]−1

.(6.6)

where ∗ denotes an entry not of interest to the present investigation. The above equation

has used the well-known partitioned-matrix inversion formula.

Table 6.1 lists the expressions of CRB(S)(θ) and CRB(S)(φ), derived using (6.6), for

each of the seven failure cases. Note Table 6.1’s failure cases #1-3, where exactly one

velocity sensor remains operational. There, CRB(S)(θ) and CRB(S)(φ) approach infinity,

meaning one velocity sensor would be inadequate for direction-finding. Thus, a functional

acoustic vector sensor system requires at least two operational velocity sensors.
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6.3.3 Derivation of the Approximate Lower Bound for the Direction-of-

Arrival Estimation Error Variance

TheWong-Wu-Hsu-Song approximate lower bound was developed in [155] for one-dimensional

direction-of-arrival estimation, but the acoustic vector sensor here can determine the two-

dimensional azimuth-elevation direction-of-arrival of the incident wavefield.

For the elevation angle estimation error variance, the Wong-Wu-Hsu-Song approximate

lower bound [155] becomes

ALB≥2(θ) = E

[(
θ̂ − θ

)2 ∣∣∣Q ≥ 2

]

=
3∑

q=2

(
E

[(
θ̂ − θ

)2 ∣∣∣ exactly q velocity sensors operational

]

Pr
{
exactly q velocity sensors operational

∣∣∣Q ≥ 2
})

, (6.7)

The outer summation starts from Q = 2, because the entire direction-finding system would

be inoperational (with an undefined estimate and thus an undefined estimation error) if

only one or zero velocity sensor works.

Typically the velocity sensors come in a lot from one manufacturer. Hence, all the

velocity sensors are characterized by the same breakdown probability p. Hence, re-write

(6.7) as

ALB≥2(θ) =

{
p (1− p)2 [CRBx,y(θ) + CRBx,z(θ) + CRBy,z(θ)] + (1− p)3 CRBx,y,z(θ)

}

∑3
Q=2

(
3
Q

)
p3−Q (1− p)Q

=
σ2

2M

(1− p+ 2p csc2 θ + p sec2 θ)

1 + 2p
. (6.8)

The above expression has drawn upon the CRB(S)(θ) expressions in Table 6.1. This

ALB≥2(θ) is plotted in Figure 6.1.

Some qualitative observations on ALB≥2(θ):

{a} This ALB≥2(θ) is independent of φ, as expected, because the θ may be estimated

by examining the power along the vertical axis alone or by examining the power on

the entire horizontal plane as a whole – neither of which is affected by φ.

{b} As p → 0, ALB≥2(θ) → σ2

2M , which is independent of θ, in addition to being inde-

pendent of φ.

{c} For p > 0, ALB≥2(θ) approaches infinity at θ = 0, π2 , π, due to the sin θ factor

in the denominators of CRBx,z(θ) and CRBy,z(θ), and due to the cos θ factor in

the denominator of CRBx,y(θ). These CRBx,z(θ), CRBy,z(θ), CRBx,y(θ) would be

increasingly significant to ALB≥2(θ) as p increases, hence the aforementioned peaks

become more prominent as p increases.

Similarly for φ̂,

ALB≥2(φ) =
σ2

2M(1 + 2p)

1− 2p cot2 θ + 4p csc2(2φ) csc2 θ

sin2 θ
. (6.9)
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Figure 6.1: ALB≥2(θ) derived in (6.8), which is independent of φ.

This ALB≥2(φ) is plotted in Figures 6.3 and 6.2.

Some qualitative observations on ALB≥2(φ):

{d} At all p, ALB≥2(φ) goes to infinity at θ = 0, π. This is because all of CRBx,y(φ) and

CRBy,z(φ), CRBx,z(φ) and CRBx,y,z(φ) have infinite peaks at θ = 0, π.

{e} At p = 0, ALB≥2(φ) is independent of φ, because CRBx,y,z(φ) is so. However, for

p > 0, ALB≥2(φ) would depend on CRBx,y(φ) and CRBy,z(φ), CRBx,z(φ), all latter

two of which depend on φ and approach infinity at φ = 0, π2 , π. As p increases, these

peaks become more prominent.

6.3.4 Verification by Monte Carlo Simulation of the Maximum Likeli-

hood Estimator

The maximum likelihood estimator can asymptotically attain the Cramer-Rao bound, if

the latter exists. Though the approximate lower bound is not necessarily a Cramer-Rao

bound, the maximum likelihood estimation error variance will serve below as a benchmark

of the approximate lower bound.

Figure 6.4 shows Monte Carlo simulations of the maximum likelihood estimator, veri-

fying the tightness of the new metric of ALB≥2, derived in (6.8) and (6.9). Here, p = 0.2,

θ = 30◦, φ = 40◦, λ
c = 450Hz. Each data point is based on 2000 independent Monte Carlo

experiments to simulate the arrays sensor-failure scenario and to simulate the maximum

likelihood estimator. The maximum likelihood estimator uses 200 snapshots of data, with

its iteration initialized at θ = 10◦ and φ = 70◦. The MATLAB built-in optimization

function “FMINUNC” is used, with an allowable maximum of 10, 000 iterations or 10, 000

evaluations of the optimization cost function.
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(a) φ = 15o
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(b) φ = 135o

Figure 6.2: ALB≥2(φ) derived in (6.8), when φ = 15◦, 135◦.

6.4 Summary

This work derives approximate lower bounds for azimuth-elevation direction-of-arrival es-

timation using an acoustic vector sensor whose component sensors are individually subject

to failure. Monte Carlo simulations of the maximum likelihood estimator verify the tight-

ness of these bounds.
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(b) θ = 70o

Figure 6.3: ALB≥2(φ) derived in (6.8), when θ = 15◦, 70◦.
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Figure 6.4: Maximum likelihood estimations verify the tightness of the the proposed met-

rics derived in (6.8) and (6.9).
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Chapter 7

Three Dimensional Localization of

a Near Field Emitter of Unknown

Spectrum Using an Acoustic

Vector Sensor

1

7.1 The Acoustic Vector Sensor’s Near-field Array-Manifold

An acoustic vector sensor (a.k.a. vector hydrophone) is composed of three identical ve-

locity sensors2 in orthogonal orientations, and one pressure sensor (a.k.a. microphone or

hydrophone) — all collocated spatially as a compact unit. A velocity sensor measures

the particle velocity vector field’s component along the velocity sensor’s orientation. This

particle velocity vector equals the spatial gradient of the customary pressure scalar field.3

Both the particle velocity vector field and the pressure scalar field are thus measured di-

rectly by an acoustic vector sensor’s four constituent sensors. Hence, the overall acoustic

vector sensor measures both the vector plus the pressure scalar. This contrasts with a

customary microphone or hydrophone, measuring only the acoustic pressure.

More precisely: Consider a point emitter incident with unit power upon an acoustic

vector sensor, located at the Cartesian coordinates’ origin. This acoustic vector sensor

1This chapter is taken from [160], jointly authored by the candidate and his chief supervisor.
2For a literature survey on the hardware implementations of velocity sensors, please refer to [7, 30].
3For a discussion of the acoustics physics underlying velocity sensor technology, please see [94].
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would have this array manifold [135] 4 5

a = a(θ, φ,R)
def
=




u(θ, φ)

v(θ, φ)

w(θ)
1√

1+
(

c
2πfR

)2
e
j arctan c

2πfR




(7.1)

where θ ∈ [0, π] symbolizes the elevation angle of arrival measured from the positive z-

axis, φ ∈ [0, 2π) represents the azimuth angle of arrival measured from the positive x-axis,

u(θ, φ) = sin(θ) cos(φ) signifies the direction cosine along the x-axis, v(θ, φ) = u(θ, φ)

refers to the direction cosine along the y-axis, w(θ) = cos(θ) denotes the direction cosine

along the z-axis, R symbolizes the distance between the acoustic vector sensor and the

incident emitter, f denotes the incident signal’s frequency. Specifically, the first, second,

and third components in (7.1) correspond to the acoustic velocity sensors aligned along

the x-axis, the y-axis, and the z-axis, respectively. The fourth component corresponds to

the pressure sensor, which is isotropic. That fourth component would degenerate to unity

for sufficiently large R, as for a source in the far field.

7.1.1 The Acoustic Vector Sensor for Source Localization

The acoustic vector sensor is versatile for source localization, on account of these proper-

ties:

(i) A single acoustic vector sensor possesses an intrinsic two dimensional directivity in

the azimuth and the elevation, because the acoustic vector sensor simultaneously

measures all three Cartesian components of the particle velocity field vector.

(ii) Among the three velocity sensors, their subarray manifold is independent of incident

wavefield’s frequency spectrum and of the radial separation of the emitter and the

sensor. [135, 153, 154].

(iii) Multiple emitters’ azimuth angles of arrival and the elevation angles of arrival may

be estimated and then automatically matched, with only one acoustic vector sensor.

[53].

For literature survey on direction finding algorithms exploiting the acoustic vector

sensor’s unique array manifold, please see [157]. In this literature, most works can handle

only narrowband sources incident from only the far field. Wideband sources are handled in

[61, 66, 76, 78, 87, 134, 147], but only if the sources lie in the far field. Near field sources are

handled in [53, 132], but using an incorrect array manifold for the acoustic vector sensor

– the correct array manifold has been derived only subsequently and recently in [135].

4The near field measurement models in [53, 132] for an acoustic vector sensor are incorrect.
5In [135], an extra multiplicative term ρ0c exists in the fourth element of (7.1), where ρ0 refers to the

known density of the propagation medium, and c signifies the known propagation speed. Instead, (7.1)

here has normalized the magnitude of each element to range between 0 and 1.
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For both wideband and near field, this work is first to propose any source localization

algorithm using an acoustic vector sensor. 6

7.1.2 Whether to Exploit ∠ [a]4 or |[a]4| to Estimate R

Three dimensional localization of an emitter requires the estimation of the emitter’s radial

separation R from the sensors, in addition to the estimation of the azimuth elevation

direction of arrival. Information of R is available from the vector a, exclusively in its

fourth entry. There, both the phase ∠ [a]4 and the magnitude |[a]4| offer information on

R. Which should be used, or should both be used?

The following will show that ∠ [a]4 is more sensitive to R, than |[a]4| is. From (7.1),

∣∣∣∣
∂∠ [a]4
∂R

∣∣∣∣ =
c

f

2π
(

c
f

)2
+ 4π2R2

∣∣∣∣
∂|[a]4|
∂R

∣∣∣∣ =

(
c

f

)2 2π
[(

c
f

)2
+ 4π2R2

]3/2

Hence,

∣∣∣∂∠[a]4∂R

∣∣∣
∣∣∣∣
∂|[a]4|
∂R

∣∣∣∣
=

√
1 +

(
R
2πf

c

)2

> 1, ∀R (7.2)

That is, the phase of [Z(k◦)] embeds information on R in a way more sensitive to R than

the magnitude is. Hence, the former should be used.

7.2 The Proposed Algorithm - Signal of Unknown Spec-

trum, in Temporally White Noise

Subsequent steps will demonstrate how to geolocate the near field emitter in three dimen-

sions. The key insights are

(a) The array manifold’s first three entries, which are frequency independent.

(b) The azimuth elevation direction of arrival information is contained exclusively in the

array manifold’s first three entries, whose Frobenius norm must equal one, regardless

of the direction of arrival and regardless of the radial distance. That is, [u(θ, φ)]2 +

[v(θ, φ)]2 + [w(θ)]2 = 1), ∀θ, φ.

(c) The radial distance information is contained exclusively in the array manifold’s

fourth entry, the magnitude and the phase of which each has a one-to-one corre-

spondence to the radial distance R.

6Please refer to [122, 154] for extended literature surveys on acoustic vector sensor beam pattern anal-

ysis, hardware implementations, sea trials, atmospheric trials, in-room trials, and practical applications.
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7.2.1 Data Statistical Model

For the near field acoustic vector sensor described in (7.1), it gathers the following 4× 1

vector measurement at time t = mT :

z(m) =

√
P
M

{
M∑

k=1

a

(
θ, φ,R,

k − 1

M
Fs

)
S(k) ej2π

m(k−1)
M

}

+n(m)

where S(k) denotes the kth component of the discrete Fourier Transform (DFT) of the

incident discrete time sequence {s(m), m = 0, · · · ,M − 1} (which may be a priori un-

known), M refers to the total number of snapshots, Fs symbolizes the sampling frequency,

and n(m) represents a zero mean spatiotemporally uncorrelated random noise sequence

of a priori unknown power Pn.

The present problem is to estimate θ, φ,R, based on the M number of snapshots in

Mz = [z(1), z(2), · · · , z(M)].

7.2.2 Estimation of Azimuth Elevation Arrival Angles from time-domain

Mz

This subsection exploits the aforementioned insight (a) that the array manifold’s first three

entries ,which contain the azimuth elevation direction of arrival information, are frequency

independent.

The data correlation matrix of the received signal from the first three components can

be computed as Rsub = Msub
z Msub

z

H
, where Msub

z =
[
I3 03×1

]
Mz indicating the first

three rows of Mz, and I3 symbolizes the 3×3 identity matrix and H denotes the Hermitian

operator.

Let e denote the eigenvector associated with the largest eigenvalue of Rsub, then the

Cartesian direction cosines may be estimated as

û = sign(u)
|[e]1|
‖e‖2

(7.3)

v̂ = sign(v)
|[e]2|
‖e‖2

(7.4)

ŵ = sign(w)
|[e]3|
‖e‖2

, (7.5)

The above sign(·) term estimates the sign of each of the first three entries of a. Then,

{θ, φ} may be unambiguously estimated as

θ̂ = arccos {ŵ} (7.6)

φ̂ =




− arccos

{
û

sin(θ̂)

}
, v̂

sin(θ̂)
≤ 0

arccos
{

û
sin(θ̂)

}
, v̂

sin(θ̂)
≥ 0

(7.7)

Notice that sign(u), sign(v) and sign(w) can be determined based on the information

from one DFT bin that will be elucidated in the following subsections.
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7.2.3 To Estimate the Steering Vector At a Chosen DFT bin

From Mz, compute its discrete Fourier transform (DFT) MZ = [Z(1),Z(2), · · · ,Z(M)].

From the first M+2
2 columns of MZ, identify the column (i.e. the discrete frequency) giving

the maximum spectral magnitude. This DFT bin must also gives the highest signal-to-

noise power ratio, as the additive noise has been presumed as white. That is identify the

value of k◦, such that fk◦ = (k◦−1)
M Fs corresponding to That is,

k◦ = arg max
1≤k≤M

2
+1

∑
‖Z(k)‖ , (7.8)

where ‖ · ‖ denotes the Frobenius norm of the vector inside. Only the first M+2
2 DFT bins

need be searched, because of their magnitude symmetry with the remaining DFT bins.7

The above identified Z(k◦) represents an ambiguous estimate of the steering vector.

That is,

Z(k◦) ≈ κa

(
θ, φ,R,

(k◦ − 1)

M
Fs

)
, (7.9)

where κ denotes an unknown complex value non zero scalar.

7.2.4 To Estimate R from |[Z(k◦)]4|

The radial distance R has a one-to-one correspondence with |[a]4|, where [·]i symbolizes

the ith entry of the vector inside the square brackets. Note that the above refers to only

the magnitude of [a]4, not its phase. This |[a]4| is not directly available, but earlier steps

have estimated a to within an unknown scalar κ, which is complex value. Unambiguous

estimation of |[a]4| would require the estimation of only |κ|, but not the phase ∠κ of κ.

To estimate |κ|, draw upon insight (b) stated at the beginning of this section, that

the steering vector’s first three entries must have a unity Frobenius norm regardless of the

emitter’s three dimensional location. That is,

|̂κ| =

3∑

i=1

|[Z(k◦)]i|2 (7.10)

Now, to estimate R, draw upon insight (b) stated at the beginning of this section, that

a one-to-one mapping exists between |a| and R. That is,

R̂mag =

cM
(k◦−1)Fs

2π

√(
|̂κ|

|[Z(k◦)]4|

)2

− 1

. (7.11)

In the above, both |̂κ| and R̂mag have exploited only the magnitudes of the entries of

Z(k◦), not their phases.

7The array manifold in (7.1) suggests that R may be more accurately estimated for a larger λ. Hence,

(7.8) could search over only 1 ≤ k ≤ fL ≪ M
2
+ 1, for some suitably chosen fL.
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As an estimate of R, available here is R̂mag. The latter may be computed and then be

compared against [Z(k◦)]4, to give

κ̂ = [Z(k◦)]4 / [a]4

= [Z(k◦)]4 e
−j arctan c

2πR̂mag

M
Fs(k◦−1)

√√√√1 +

(
c

2πR̂mag

M

Fs(k◦ − 1)

)2

.

This same complex value κ̂ would also interrelated the complex value [Z(k◦)]i exactly

back to the real value [a]i, through [a]i = [Z(k◦)]i /κ̂ for i = 1, 2, 3, but only under

noiseless conditions. However, under noisy conditions, the above interrelations would

become approximate, necessitating the removal of any imaginary value part in [Z(k◦)]i /κ̂

to ensure a real value [a]i for i = 1, 2, 3.

Thus, sign(u), sign(v) and sign(w) in (7.3)-(7.5) can be determined as

sign(u) = sign

(
[Z(k◦)]1

κ̂

)
(7.12)

sign(v) = sign

(
[Z(k◦)]2

κ̂

)
(7.13)

sign(w) = sign

(
[Z(k◦)]3

κ̂

)
, (7.14)

where ℜ(·) refers to the real value part of the entity inside the parentheses and ‖ · ‖2
denotes the 2 norm operator.

7.2.5 To Estimate R from ∠ [Z(k◦)]4

This subsection exploits the aforementioned insight (b) that a one-to-one mapping exists

also between R and ∠ [a]4.

As a one-to-one mapping exists between R and ∠ [a]4; thus, an approximate one-to-one

mapping also exists between R̂phs and ∠ [Z(k◦)]4. Therefore, consider the complex phase

of the fourth entry of the vector equation in (7.9),

∠ [Z(k◦)]4 − ∠̂κ = arctan
c

2πfR̂phs

. (7.15)

Setting f =
(
k◦−1
M

)
Fs, (7.15) gives:

R̂phs =
c

2π

M

(k◦ − 1)Fs
cot
(
∠ [Z(k◦)]4 − ∠̂κ

)
, (7.16)

where

∠̂κ = ∠

(
[Z(k◦)]1 /û+ [Z(k◦)]2 /v̂ + [Z(k◦)]3 /ŵ

3

)
(7.17)

In the above, both ∠̂κ and R̂phs have exploited only the phases of the entries of Z(k◦),

not their magnitudes.

7.2.6 Estimation of R Base on All the Frequency Bins

In this subsection, the results from all the DFT bins are combined by some sort of subspace

method as in [10]. The basic procedures are as follows:
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At each DFT bin

Let E
(k)
n denote the 4 × 3 noise subspace eigenvector matrix for data correlation matrix

R(k) def
= Z(k)Z(k)H . The distance from orthogonality between array manifold and noise

subspace may be measured as

∥∥∥∥a
(
θ, φ,R, (k−1)

M Fs

)H
E

(k)
n

∥∥∥∥
2

. Smaller this value is, closer

to orthogonal steering vector and noise subspace will likely be.

For all the DFT bins

The distance from orthogonality between steering vector and noise subspace at different

DFT bins can be combined using arithmetic mean metric so as to find range R that yields

the minimum of the following estimator.

R̂ = arg
R

min

M+2
2∑

k=2

∥∥∥∥∥a
(
θ̂, φ̂, R,

(k − 1)

M
Fs

)H

E(k)
n

∥∥∥∥∥
2

(7.18)

Notice that this optimization problem can be effectively solved by initializing with R =

R̂phs.

7.3 The Proposed Algorithm - Signal of Unknown Spec-

trum, in Temporally Colored Noise

If the additive noise is temporally colored, the DFT bin satisfying (7.8) would not neces-

sarily give the highest signal-to-noise power ratio. Instead, some sort of “signal subspace

fitting” like procedure in Section 7.2.6 could be used to identify the DFT bin most ad-

vantageous for use in Sections 7.2.4 to 7.2.5. The basic idea is as follows: At any one

frequency fk, the weaker the noise is, the closer to orthogonal steering vector and noise

subspace will likely be.

The following is one such rudimentary procedure: The steering vector which is the

“most orthogonal” to noise subspace eigenvector matrix E
(k)
n occurs at the k̃th DFT bin,

with k̃ equal to

arg
2≤k≤M+2

2

min

∥∥∥∥∥a
(
θk, φk, Rk,

(k − 1)

M
Fs

)H

E(k)
n

∥∥∥∥∥
2

where θk, φk are estimated respectively from (7.6) and (7.7) in which the signs of direction

cosines are determined via (7.12)-(7.14) but replacing k◦ therein by k, and Rk is estimated

from Z(k), via (7.16) but replacing k◦ therein by k.

After thus identifying k̃, the emitter’s azimuth elevation arrival angles may be esti-

mated as θ̂ = θk̃ and φ̂ = φk̃, the emitter’s range R may be estimated from (7.18) by

initializing with θ̂ = θk̃, φ̂ = φk̃, R̂ = Rk̃.

7.4 Verification by Monte Carlo Simulations

The following Monte Carlo simulations verify the efficacy of the new source localization

algorithms proposed in Sections 7.2 and 7.3.
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Here, the emitter lies at θ = 60o, φ = 40o, R = 25m. For underwater acoustic

applications: fs = 400Hz, c = 1524m/s, M = 800. The temporally colored Gaussian noise

is generated as follows for Figure 7.2: Pass a temporally white zero mean Gaussian noise

sequence through an equiripple filter bandpass filter, which is realized by the MATLAB

built-in function fdesign.bandpass(Fst1= 30
fs/2

, Fp1= 40
fs/2

, Fp2= 180
fs/2

, Fst2= 195
fs/2

, Ast1=60,

Ap=1, Ast2=60).

Each icon in Figures 7.1 and 7.2 consists of I = 2000 statistically independent Monte

Carlo trials.8 These figures plot the “root mean square errors” of the Cartesian direction

cosines, RMSE(θ̂, φ̂) = 1√
2I

∑I
i=1

√
δ2θ,i + δ2φ,i, where δθ,i (δφ,i) symbolizes the ith Monte

Carlo trial’s estimation error in θ̂ (φ̂). Also plotted is RMSE(R) = 1
I

∑I
i=1

√
δ2R,i, where

δR,i symbolizes the ith trial’s estimation error in R̂. Because the noise spectrum may be

arbitrary and unknown, the Cramér-Rao bound is not derived.

These figures show that the direction of arrival can be estimated within 0.8◦ for 5dB

SNR in white noise, and to within 1.5◦ for 5dB SNR in colored noise. The distance is

less accurately estimated: a 4% error can be obtained only for white noise SNR exceeding

15dB and for colored noise SNR over 10dB. Note that the colored noise case allows better

estimation accuracy, because the noise power is unevenly distributed over the DFT bins,

with some DFT bin enjoying above average SNR and thus offering better estimation

accuracy.

7.5 Summary

Herein proposed are algorithms to localize a near field source, emitting a signal of unknown

spectrum, based on data collected by one acoustic vector sensor, corrupted additively by

white noise or by unknown colored noise. Monte Carlo algorithms verify the efficacy of

these algorithms.

8For Figure 7.1, the optimization in (7.8) is over 20 ≥ k ≥ 40. The lower limit arises because underwater

acoustic signals seldom falls below 10Hz. The upper limit corresponds to a fL = 20Hz. These are not used

for Figure 7.2, where the noise spectrum is a priori unknown.
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Figure 7.1: Monte Carlo simulations verify the efficacy of the source localization algorithm

proposed in Section 7.3 for an incident signal of unknown spectrum corrupted additively

by temporally white zero mean Gaussian noise.
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Figure 7.2: Monte Carlo simulations verify the efficacy of the source localization algorithm

proposed in Section 7.3 for an incident signal of unknown spectrum corrupted additively

by zero mean Gaussian noise of unknown temporal correlation.
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Chapter 8

“Blind” Reception to Null

Unknown Interference for

Block-Based Single-Carrier

Transmission with an Insufficient

Guard Interval

1

8.1 Literature Review

Single-carrier (SC) block-based (BB) cyclic-prefixed (CP) transmission combines two ad-

vantages: (i) The use of a single carrier (unlike the use of multiple carriers) avoids high

peak-to-average power ratios (PAPR) in the modulator output. (ii) Block-based transmis-

sion’s cyclic prefix converts the linear convolution between the transmitted signal and the

channel impulse response (CIR) into a circular convolution, thereby allowing the receiver

to enjoy the simplicity of single-tap equalization at each discrete-Fourier-transform (DFT)

bin.

Uplink wireless communication often requires a single transmit-antenna (to simplify the

mobile handset) but allows multiple receive-antenna (which can be readily accommodated

at a base-station). For such a “single-input multiple-output” (SIMO) scenario, several

schemes [67, 68, 79, 80, 81, 97, 108, 125] have been proposed for SC-BB-CP transmission.

Among them, [68, 80, 79] allow an insufficient guard interval (GI), and [97] alone can handle

co-channel / adjacent-channel interference (but only if these interferers’ channel impulse

responses are prior known). In contrast, this present work provides both advantages,

plus the additional advantages of (a) allowing unknown channel impulse responses of the

1The “Single-Input Single Output” (SISO) part in this chapter is taken from [148], jointly authored by

the candidate and his chief supervisor. The “Single-Input Multiple Output” (SIMO) part in this chapter

is taken from [164], jointly authored by the candidate, his chief supervisor, and Prof. Yung-Fang CHEN.
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unknown co-channel / adjacent-channel interferences, and (b) allowing unknown spatio-

temporal correlation of any additive noises.

These superior capabilities are achieved in the proposed scheme here by “blind” beam-

forming, that maximizes the “signal to interference-plus-noise” ratio (SINR) across the

multiple receive-antennas. This “max-SINR” blind beamforming is predicated on the use

of zero-padding in each transmitter symbol-block’s insufficient guard interval, which may

be shorter than the order of the time-spreading channel. 2 3

8.2 Review of Block-Based Cyclically-Prefixed Singe-Carrier

Transmission Model

8.2.1 At the Single-Antenna Transmitter

The information-bearing symbols {u(j),∀j} are segmented at the transmitter, into blocks

ofN symbols. Represent the kth block as anN -element vector, u(k) =
[
u−N

2
+1(k), · · · , uN

2
(k)
]T
,

where un(k) = u
(
kN + N

2 − 1 + n
)
, for n = −N

2 + 1, . . . , N2 .

Prefix u(k) with a length-G guard interval, which could be a cyclic prefix (CP), i.e.

a replication of the last v entries of u(k). Mathematically, this cyclic-prefixing operation

equals the multiplication of u(k) into an (N +G)×N cyclic-prefix-insertion matrix Tcp =[
0G×(N−G) IG

IN

]
, to produce the (N + G)-element vector, ũ(k) = Tcpu(k). This CP

serves to reduce or to eliminate up to up to G taps of inter-block interference (IBI), caused

by a frequency-selective fading-channel. The guard interval needs not be a cyclic prefix as

above, but could be entirely zero-energy symbols, or some mix of the two.

8.2.2 The Channel Fading & Additive Noise

The desired signal is herein modeled to travel through Q + 1 time-delayed multipaths

to each of L receive-antennas 4, where Q + 1 < N + G. Between the transmit-antenna

and the ℓth receive-antenna, the channel is modeled as time-invariant, characterized by a

discrete-time impulse-response
{
h
(ℓ)
0 , h

(ℓ)
1 , · · · , h(ℓ)Q

}
of up to order Q.

Consider the kth symbol-block reaching the ℓth receive-antenna. That symbol-block of

N +G symbols is corrupted additively by co-channel interference (CCI), adjacent-channel

interference (ACI), out-of-system interference, and/or other noises, which are together

summed in an (N + G) × 1 vector η
(ℓ)(k), modeled to be zero-mean and statistically

independent from u(k).

2Among the earlier cited references, “max-SINR” beamforming is used in only [80], but [80] presumes

the total absence of all interference and colored noise in the collected data.
3Among the earlier cited references, zero padding is used in the transmitted signal’s guard interval

in only [108], which uses time-domain equalization, which is the computationally more complicated than

the frequency-domain equalization (FDE) here. Moreover, [108] offers none of the advantages mentioned

earlier.
4For Single-Input Single-Output (SISO) system, L = 1. For Single-Input Multiple-Output (SIMO)

system, L ≥ 2.
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At the ℓth receive-antenna, that kth symbol-block thus produces the data,

r̃(ℓ)(k) = H
(ℓ)
0 Tcpu(k)︸ ︷︷ ︸

ũ(k)

+H
(ℓ)
1 Tcpu(k − 1)︸ ︷︷ ︸

ũ(k−1)

+η
(ℓ)(k),

where H
(ℓ)
0 ∈ C

(N+G)×(N+G) denotes a lower triangular Toeplitz matrix with its first col-

umn equal to[
h
(ℓ)
0 , h

(ℓ)
1 , · · · , h(ℓ)Q , 0, · · · , 0

]T
, H

(ℓ)
1 ∈ C

(N+G)×(N+G) symbolizes an upper triangular Toeplitz

matrix with its first row being [0, · · · , 0, h(ℓ)Q , · · · , h(ℓ)1 ], and C refers to the set of all

complex-value numbers.

8.2.3 Processing at the Receive-Antenna

The receiver deletes the cyclic prefix from the received signal, via Rcp = [0N×G IN×N ],

to produce an N × 1 vector,

x(ℓ)(k) = Rcp

[
H

(ℓ)
0 ũ(k) +H

(ℓ)
1 ũ(k − 1) + η

(ℓ)(k)
]

︸ ︷︷ ︸
=r̃(ℓ)(k)

=
(
RcpH

(ℓ)
0 Tcp +H

(ℓ)
ISI

)

︸ ︷︷ ︸
=C(ℓ)

u(k)−H
(ℓ)
ISIu(k)

+H
(ℓ)
IBIu(k − 1) +Rcpη

(ℓ)(k), (8.1)

at the ℓth receive-antenna. The above N ×N inter-block interference (IBI) matrix equals

H
(ℓ)
IBI ,RcpH

(ℓ)
1 Tcp =




h
(ℓ)
Q · · · h

(ℓ)
G+1

. . .
...

0
. . .

...

0N,N−Q+G
...

. . . h
(ℓ)
Q

... · · · 0




,

H
(ℓ)
ISI , H

(ℓ)
IBIP,

P ,

[
0G×(N−G) IG

IN−G 0(N−G)×G

]
.

In (8.1), the N × N matrix C(ℓ) equals WH
ND(ℓ)WN and is circulant, regardless of the

relative magnitudes of G and Q. Here, WN denotes the N ×N discrete Fourier transform

(DFT) matrix; and the N ×N matrix D(ℓ) signifies the channel transfer-function matrix,

which is diagonal for G ≥ Q, with its (k, k)th entry equal to the kth DFT coefficient of

the channel impulse response
{
h
(ℓ)
0 , h

(ℓ)
1 , · · · , h(ℓ)Q

}
appended by (N −Q− 1) zeros. That

is, [D]
(ℓ)
k,k =

∑Q
q=0 h

(ℓ)
q e−j 2π

N
kq, ∀k = 0, . . . , N − 1.

8.3 The Proposed Zero-Inserting Precoder

To suppress the ISI and IBI, but with a length-G insufficient cyclic prefix: [72] proposes in-

serting 2(Q−G) zero-energy symbols to correspond to the Q−G non-zero columns in HIBI
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plus the Q−G non-zero columns in HISI . The present scheme will not incur this 2(Q−G)-
symbol overhead, but deploys a guard interval (comprising of zero-energy symbols, plus

an optional cyclic prefix) that may be shorter than the channel impulse response. From

the data received during the zero-energy symbol-intervals, the proposed scheme estimates

the combined effects of the signal-of-interest’s self-interference, of any multiple-access-user

interference, of any overlaid interference, and of the additive noises. This zeros-inserting

precoder allows the receiver to subsequently form a data-subgroup containing mostly in-

terference and noise, but little SOI. This will then facilitate the receiver to suppress these

very same interference and noise. (This approach has some philosophical resemblance to

the null-subcarriers-based method in [84, 101, 127] for OFDM and [126] for SC-FDMA,

though the system architectures and the algorithmic details there are very different.)

The present scheme can operate with any non-zero number of zero-energy symbols,

with or without a cyclic prefix. This zeros-inserting precoding can be realized by an

N × (N − P ) precoding matrix Tzero, formed by inserting P number of all-zero rows into

an (N − P ) × (N − P ) identity matrix. For example, appending all these zeros would

require a precoding matrix of Tzero =

[
I(N−P )×(N−P )

0P×(N−P )

]
.

8.4 The Proposed SISO Receiver

In the Single-Input Single-Output (SISO) architecture, at the receiver, (8.1) remains valid

despite the zero-inserting precoder, but now has u(k) = Tzeros(k). Moreover, the super-

script (ℓ), which appears in Sections 8.2.2-8.2.3, will be removed in this section as L = 1

in SISO receiver. The proposed linear equalizer involves a post-FFT linear single-tap-

per-subcarrier frequency-domain equalizer (FDE) W, followed by a post-IFFT signal-to-

interference-and-noise (SINR) maximizer in the time-domain. These are shown in Figure

8.1.

Figure 8.1: The proposed zero-inserting precoder and the proposed two-stage equalizer for

SISO SC-CP system.

99



8.4.1 Linear Minimum Mean-Square-Error (LMMSE) Frequency-Domain

Equalization (FDE)

The first stage is a single-tap-per-subcarrier frequency-domain linear equalizer (FDE),

W = DH

(
DDH +

1

SNR
IN

)−1

, (8.2)

where superscript H denotes complex-conjugate transposition, SNR
def
= σ2

s

σ2
n
, σ2s refers to

the signal power, and σ2n symbolizes the noise power. The N × N diagonal W of (8.2)

reduces the signal-of-interest’s energy in the zero-energy symbol-intervals. (This W would

constitute a linear minimum-mean-square-error (LMMSE) equalizer, if no interference

existed and if G ≥ Q.) The output of W equals

y(k) = WH
NWWN {Cu(k)−HISIu(k) +HIBIu(k − 1) + n(k)}︸ ︷︷ ︸

=x(k)

. (8.3)

8.4.2 SINR-Maximizer

For the second stage:

(a) Form a P × N “zero-selection” matrix, to block all information-bearing symbol-

intervals (which have non-zero energy at transmission). E.g., Jzero =
[
0P×(N−P )

∣∣IP×P

]

would be compatible with the earlier defined Tzero.

(b) Also form a (N − P ) × N “zero-removal” matrix, to remove the precoder-inserted

zeros. E.g., Rzero =
[
I(N−P )×(N−P )

∣∣0(N−P )×P

]
would be compatible with the earlier

defined Tzero and Jzero.

Next, form the (N −P )×P matrix U, to minimize the mean-squared error ξ between the

signal-output from Rzero and Jzero, i.e.

ξmin = min
U

E
[
‖i(k)−UJzeroy(k)‖22

]

︸ ︷︷ ︸
,ξ

, (8.4)

where i(k) , RzeroW
H
NWWN [−HISIu(k) +HIBIu(k − 1) + n(k)] represents the in-

terference and noises in the information-bearing symbols’ durations. The optimization

in (8.4) can be solved via the principle of orthogonality, i.e. E[UJzeroy(k) (i(k) −
UJzeroy(k))

H ] = 0, to yield

U = RzeroRi(k)i(k)J
H
zero

[
JzeroRy(k)y(k)J

H
zero

]−1
, which may be pre-calculated off-line, us-

ing the prior knowledge that

Ri(k)i(k) , WH
NWWN

{
HISIRu(k)u(k)(W

H
NWWNHISI)

H

+HIBIRu(k−1)u(k−1)(W
H
NWWNHIBI)

H +Rn(k)n(k)(W
H
NWWN )H

}
.(8.5)

Lastly, the (N − P ) × 1 transmitted symbol-vector s(k) is estimated by the receiver as

ŝ(k) = (Rzero −UJzero)y(k).
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Table 8.1: The proposed scheme’s computational complexity, versus that of the customary

LMMSE-FDE

LMMSE-Based FDE The Proposed 2-Stage Equalizer

# of complex-value multiplications N log2N +N N log2N +N + (N − P )P

# of complex-value additions 2N log2N 2N log2N + (N − P )P

The real-time computational complexity of this proposed precoder/equalizer scheme is

compared in Table 8.5 against the customary LMMSE-FDE (i.e. (8.2) alone, without the

precoder and without the SINR-maximizer) in terms of N and P . As W and U may be

pre-computed off-line, while Tzero, Rzero and Jzero involve no multiplication nor addition

– these do not contribute to the real-time computational load.

8.5 Monte Carlo Simulations for SISO Receiver

The information-bearing symbols {s(k)} are modulated with equi-probable QPSK-symbols.

The transmitted signal has N = 64. The channel impulse response has Q + 1 = 11

complex-valued taps, each randomly generated and not cross-correlated among them-

selves. Each tap’s real-value part and imaginary-value part are not cross-correlated.

Each tap is Gaussian, zero-mean. The qth tap has an exponentially decaying variance

of σ2q =

(
1− e

− Ts
TRMS

)
e
−q Ts

TRMS ,∀q = 0, · · · , Q, where Ts denotes the sampling period,

and TRMS symbolizes the root-mean-square delay-spread of the channel. The additive

noise is complex-value, temporally uncorrelated, zero-mean, Gaussian, with a noise power

of σ2
η(k)η(k).

Consider these two curves in Figure 8.2:

(i) The top dashed black curve at G = 6 and P = 0 (i.e. an insufficient CP but no

zeros-inserting precoding).

(ii) The bottom green curve at G = 0 and P = 6 (i.e. no CP but 6 zeros-inserted by the

precoder, as proposed in this chapter).

These two curves both incur a same overhead of P + G = 6 symbols, but the proposed

scheme lowers the BER by 1− 9×10−4

3.8×10−3 = 76% at SNR= 15dB, and by 1− 3.2×10−5

1.4×10−3 = 98% at

SNR= 25dB. In terms of the computational complexity for case (ii) above, Table suggests

that the proposed scheme would increase the popular LMMSE-FDE method’s number of

complex-value multiplications by 60% and the number of complex-value additions by 45%.

Alternatively, if the transmission overhead is lightened to just 4 inserted zeros (i.e.
(6+64)−(4+64)

6+64 = 2.9% reduction overhead on the data-rate) but no cyclic prefix, then the

proposed scheme can still lower the BER by 1 − 2.9×10−3

3.8×10−3 = 24% at SNR= 15dB, and by

1− 7.8×10−4

1.4×10−3 = 44% at SNR= 25dB.
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Figure 8.2: The BER of the proposed scheme ’s BER performance of the proposed algo-

rithm Ib with P zero-energy symbols inserted at the end of symbol-block v.s. MMSE-FDE

with length of G = 6 CP inserted where P ≤ G. The channel has an exponential decay

with Ts

Trms
= 1

4 .
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8.6 The Proposed SIMO Receiver

An SIMO-beamforming receiver will be proposed here, for use with a GI that can be

insufficient (despite the zero padding) as described earlier in Section 8.3. This L-sensor

receiver will first equalize the SOI separately at each sensor in the frequency-domain, before

“blind” spatial beamforming to constructively sum the SOI’s multipaths and to suppress

any a priori unknown co-channel interference, adjacent-channel interference, and/or spatio-

temporally colored noises.

8.6.1 Pseudo Linear Minimum Mean-Square-Error (LMMSE) Frequency-

Domain Equalization (FDE) at Each Sensor

At the ℓth sensor, the received data is first processed by some frequency-domain equal-

izer (FDE), apart from other sensor’s data. Any FDE could do. The purpose here is to

“clear” the nominally zero-energy intervals of the received data of any SOI energy. These

zero-energy intervals contain no SOI energy at transmission, but the channel’s temporal

spreading has “smeared” SOI energy onto these nominally zero-energy intervals at recep-

tion. When these nominally zero-energy intervals are again cleared of the SOI energy,

they could contain only the interferences and the noises, thereby facilitating subsequent

“blind” estimation of these same interferences and noises.

Although any FDE could be used, one possibility is a pseudo “linear minimum mean-

square-error” (LMMSE) FDE5

W(ℓ) = [D(ℓ)]H
(
D(ℓ)[D(ℓ)]H +

1

SNR
IN

)−1

, (8.6)

which is an N×N diagonal matrix. In the above, the superscript H denotes the Hermitian

operation, and SNR refers to the signal-to-noise power ratio in linear scale (not in dB). This

pseudo-LMMSE FDE would be exactly LMMSE, if there exists no co-channel / adjacent-

channel / out-of-system interference, and if the additive noise is temporally white, as

in the data models presumed in [67, 68, 79, 125, 148]. This pseudo-LMMSE FDE has

NOT presumed any prior knowledge of any spatio-temporal statistics of any co-channel

interference, any adjacent-channel interference, and/or any noises. Subsequently presented

Monte Carlo simulations will show that this pseudo-LMMSE FDE can nonetheless clear

the nominally zero-energy intervals of the smeared SOI energy, adequately so.

The FDE would output

y(ℓ)(k) = WH
NW(ℓ)WNx(ℓ)(k).

5Other possibilities include the “zero forcing” (ZF) FDE, obtainable from (8.6) by setting the “SNR”

parameter to ∞.

103



8.6.2 Eigen-Based Spatial Beamforming in the Time-Domain

At each “zero-energy” symbol (“zero-energy” at transmission) in kth symbol-block, form

the L× 1 spatial snapshot,

yp(k) =
[
y(1)p (k), y(2)p (k), . . . , y(L)p (k)

]T
, (8.7)

∀p ∈{N − P + 1, . . . , N}. In the above, the superscript T refers to transposition. Over

K symbol-blocks, the L× L “interference plus noise” (I+N) spatial correlation matrix is

estimated as

RI+N =
1

KP

K∑

k=1

N∑

p=N−P+1

yp(k) (yp(k))
H . (8.8)

On the other hand, the symbol-block’s remaining N − P symbols would contain the

signal-of-interest, any interference, and noise. Hence, similar to (8.7) and (8.8), the L×L

“signal plus interference and noise” (S+I+N) spatial correlation matrix is estimated as

RS+I+N =
1

K(N − P )

K∑

k=1

N−P∑

p=1

yp(k) (yp(k))
H .

Then compute the generalized eigenvector corresponding to the largest-magnitude gen-

eralized eigenvalue of the matrix pencil {RS+I+N,RI+N}, to yield the spatial beamformer

weight vector wopt that maximizes the “signal to interference-and-noise ratio” (SINR):

(Please see Section IV-C in [13])

SINR(w) =
wH{RS+I+N −RI+N}w

wHRI+Nw

=
wHRS+I+Nw

wHRI+Nw
− 1.

This spatial beamformer outputs an 1×N symbol-vector

z(k) =
wH

optY(k)

‖wopt‖
,

where ‖ · ‖ represents the Frobenius norm, and Y(k) =
[
y(1)(k),y(2)(k), · · · ,y(L)(k)

]
.

The earlier equalization stage of Section 8.6.1 is essential to this beamforming stage

here. Otherwise, the data at the nominally zero-padding interval would still contain such a

significant amount of the SOI that RI+N would be erroneously estimated thereof, causing

the spatial beamformer to erroneously null much of the SOI, while erroneously passing

much of the “I+N”.

8.7 Monte Carlo Simulations for SIMO Receiver

Figure 8.3 presents Monte Carlo simulations that verify the proposed scheme’s efficacy

despite an insufficient “guard interval”, that requires only an overhead of P + G (i.e.

P inserted zeroes plus a G-length of cyclic prefix), shorter than a channel order of Q.
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Figure 8.3 shows the proposed scheme’s bit-error rate (BER) below those of a equal-weight

beamformer and of a single receive-antenna. 6

The simulation settings are as follows:

1. The signal-of-interest’s (SOI) information-bearing symbols are QPSK-modulated

and equi-probable. The transmitted signal has N = 64 symbol-periods per symbol-

block. The channel impulse response’s Q+1 = 7 complex-valued taps are each ran-

domly generated, with each tap’s real-value part and imaginary-value part not cross-

correlated and each white, Gaussian, zero-mean, with a variance of σ2q = e
−q Ts

TRMS ,

∀q = 0, . . . , Q, where Ts denotes the sampling period, TRMS symbolizes the root-

mean-square (RMS) delay-spread of the channel, set here at Ts = TRMS.

2. The receiver has L = 5 half-wavelength spaced isotropic sensors. The desired signal’s

Q + 1 = 7 time-delayed multipaths respectively have the directions-of-arrival θ0 =

−10◦, θ1 = 0◦, θ2 = −20◦, θ3 = 40◦, θ4 = 75◦, θ5 = 60◦, θ6 = 45◦ relative to the

normal to the array-axis.

3. There is 1 CCI source, of the same time-frequency structure and statistical prop-

erties as the SOI. This CCI’s channel is statistically identical as (but statistically

independent from) the SOI’s channel, except that the CCI’s Q+1 = 7 time-delayed

multipaths arrive at 50◦, 10◦, 60◦, 20◦, −15◦, 0◦, and 55◦. This CCI has a 8-symbol-

period arrival-delay relative to the SOI.

4. There is 1 ACI source, of the same temporal structure and statistical properties

as the SOI, except that its carrier-frequency is 1.25× that of the SOI. This ACI’s

channel is statistically identical as (but statistically independent from) the SOI’s

channel, except that the ACI’s Q + 1 = 7 time-delayed multipaths arrive at 40◦,

−50◦, 30◦, −10◦, 5◦, 65◦, and 75◦. This ACI has a 10-symbol-period arrival-delay

relative to the SOI.

5. The additive noise is complex-value, spatio-temporally correlated, with a constant

power. The (N +G)×L matrix N =
[
η
(1)(k), · · · ,η(L)(k)

]
·D of spatio-temporally

colored noise is generated as N = UN+G,N+GGUL,L. Here, UJ,K is a J ×K matrix

of statistically independent complex-value entries, each having a real-value part and

an imaginary part statistically independent from each other, but with each part

uniformly distributed in [0, 1]. Likewise, G is an (N +G)×L matrix of statistically

independent complex-valued entries, each circularly complex Gaussian distributed,

with a zero mean and unit variance. Lastly, D is an L × L diagonal matrix, whose

ℓth entry equals (SNR ‖η(ell)(k)‖), where ‖ · ‖ denotes the Frobenius norm of the

entry inside.

6Figure 8.3 has no curve at P = 0 for the SINR-maximization beamformer, because P = 0 would

mean no zero-energy symbol inserted, thereby precluding the formation of any RI+N to realize any SINR-

maximization beamformer in (8.9).
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6. Each data-point on Figure 8.3 is based on 500 independent Monte Carlo experiments,

each involving 600 symbol-blocks, which are processed as 12 consecutive groups of

K = 50 symbol-blocks. The bit-error rate (BER) is calculated by considering the

QPSK’s real-value part and imaginary-part each as a separate bit.
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Figure 8.3: Monte Carlo simulations verify the efficacy of proposed insufficient-GI “max-

SINR”-beamforming scheme.

These simulations verify the proposed scheme’s efficacy in handling CCI and/or ACI

of unknown channel impulse responses and in handling additive noises of unknown spatio-

temporal correlation, despite allowing an insufficient guard interval to reduce the overhead

in transmission.

Moreover, Figure 8.3 shows that the more zero-padding replaces cyclic-prefixing in the

insufficient GI, the lower the BER is. This is because more zero-padding allows more

observation of the interferences and the noises in the near-absence of the SOI, hence a

more accurate estimate of RI+N , thereby better spatial beamforming, to reject the “I+N”

and to constructively sum the SOI’s multipaths.

8.8 Summary

For SISO / SIMO cyclic-prefixed block-based single-carrier-based communication systems,

at the transmitter, this chapter proposes a zero-inserting time-domain precoder which al-

lows observation of the interferences and the noises, then facilitate the receiver to suppress

these very same interference and noise. Section 8.4 introduces a two-stage equalizer for a
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single receiver antenna, to allow an insufficient guard interval, in order to reduce the trans-

mission overhead. Section 8.6 extends the single-input single-output (SISO) architecture

used in Section 8.4 to multiple receive-antennas, for the additional capabilities of “blind”

spatial focusing towards the signal-of-interest (SOI) and “blind” spatial suppression of

any unknown co-channel / adjacent-channel / out-of-system interferences impinging from

unknown directions-of-arrival.
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Chapter 9

Conclusion

Chapters 2-7 introduce six contributions towards hydrophone-array signal processing.

chapter 2 presents azimuth-elevation direction-finding closed-form formulas to estimate

an incident source’s azimuth-elevation angle-of-arrival (AOA), for various combinations of

higher-order directional acoustic sensors, that are orthogonally oriented in a collocated

triad. Also identified are the validity-regions for unambiguous estimation of the azimuth-

elevation arrival-angle. In contrast, Chapters 3-7 concerns only the zero-order acoustic

sensor (i.e. acoustic pressure sensor) and/or the first-order acoustic sensor (i.e. acoustic

particle-velocity sensor).

The works presented in chapters 2, 5-7 are based on the collocated geometry of acoustic

vector-sensor, while chapters 4 and 3 allows the acoustic vector-sensor’s component-sensors

to be spread out arbitrarily in the three-dimensional space. Specifically, chapter 3 proposes

a new direction-finding algorithm to allow the acoustic vector-sensor’s four component-

sensors to be spatially separated over a general array-grid, perhaps with a much extended

spatial aperture, thereby improving direction-finding accuracy while mitigating hardware

implementation difficulties in spatially collocating the three velocity-sensors at one point

in space. One shortcoming of the direction-finding algorithm introduced in chapter 3,

however, is its requirement of a pressure sensor, to be deployed along with the three

uni-axial velocity sensors. This would be problematic for near-field localization to es-

timate the emitter’s radial distance from the “acoustic vector sensor”, in addition to

the emitter’s azimuth-elevation angle-of-arrival, because the pressure sensor’s data dif-

fer from the uni-axial velocity sensors’ data by a distance-dependent frequency-dependent

magnitude-scaling factor and by a distance-dependent frequency-dependent complex phase

[135], though these factors arise only for an emitter lying in the near-field of the acous-

tic vector sensor. Chapter 4 shows how the direction-finding of incident emitters can be

achieved using three orthogonally oriented uni-axial velocity sensors which are spatially

separated.

Chapter 5 advances the first algorithm in the open literature (to the best of the authors’

knowledge) to “blindly” calibrate the intra-acoustic-vector-sensor gain-uncertainty, as well

as the inter-acoustic-vector-sensor dislocation and mis-orientation, that may exist in a

distributed array of acoustic vector-sensors. The proposed algorithm is computationally
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simpler than maximum-likelihood estimation by orders-of-magnitude.

Chapter 6 derives approximate lower bounds for azimuth-elevation direction-of-arrival

estimation using an acoustic vector sensor whose component sensors are individually sub-

ject to failure. This approximate lower bound equals a weighted sum of Cramér-Rao

bounds, conditioned on disjoint events of sensor breakdown, that together define the over-

all phenomenon of random sensor breakdown. Its tightness is verified by Monte Carlo

simulation of a maximum likelihood estimator.

The near-field wideband source localization problem is addressed using an acoustic

vector-sensor by chapter 7, which develops a parameter estimation algorithm to localize a

near field source, emitting a signal of unknown spectrum, based on data collected by one

acoustic vector sensor, corrupted additively by white noise or by unknown colored noise.

Chapter 8 introduce two contributions towards signal processing for single-carrier

block-based transmission/reception.

Chapter 8 first proposes a zero-inserting time-domain precoder, which allows observa-

tion of the interferences and the noises, then facilitate the receiver to suppress these very

same interference and noise for both single-input single-output (SISO) and single-input

multiple-output SIMO receivers. From the data received during the zero-energy symbol-

intervals, Section 8.4 introduces a two-stage equalizer for a single receiver antenna, to

estimates the combined effects of the signal-of-interests self-interference, of any multiple-

access-user interference, of any overlaid interference, and of the additive noises. These

denigrating effects are then subtracted from the information-bearing parts of the symbol-

block, via a SINR-maximizer in the receiver. Section 8.6 extends the SISO architecture

used in Section 8.4 to multiple receive-antennas. The multiple receiver-sensors will first

equalize the SOI separately at each sensor in the frequency domain, before “blind” spa-

tial beamforming to constructively sum the SOIs multipaths and to suppress any a priori

unknown co-channel interference, adjacent-channel interference, and/or spatio-temporally

colored noises.
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