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Abstract

The main purposes of this thesis focus on the nonlinear spectral properties of higher

order tensor with the help of the spectral theory and fixed point theory of nonlinear

positively homogeneous operator as well as the constrained minimization theory of

homogeneous polynomial. The main contributions of this thesis are as follows.

We obtain the Fredholm alternative theorems of the eigenvalue (included E-eigenvalue,

H-eigenvalue, Z-eigenvalue) of a higher order tensor A. Some relationship between the

Gelfand formula and the spectral radius are discussed for the spectra induced by such

several classes of eigenvalues of a higher order tensor. This content is mainly based on

the paper 5 in Underlying Papers.

We show that the eigenvalue problem of a nonnegative tensor A can be viewed as

the fixed point problem of the Edelstein Contraction with respect to Hilbert’s projective

metric. Then by means of the Edelstein Contraction Theorem, we deal with the exis-

tence and uniqueness of the positive eigenvalue-eigenvector of such a tensor, and give

an iteration sequence for finding positive eigenvalue of such a tensor, i.e., a nonlinear

version of the famous Krein-Rutman Theorem. This content is mainly based on the

paper 2 in Underlying Papers.

We introduce the concept of eigenvalue to the additively homogeneous mapping

pairs (f, g), and establish existence and uniqueness of such a eigenvalue under the

boundedness of some orbits of f, g in the Hilbert semi-norm. In particular, the nonlinear
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Perron-Frobenius property for nonnegative tensor pairs (A,B) is given without involving

the calculation of the tensor inversion. Moreover, we also present the iteration methods

for finding generalized H−eigenvalue of nonnegative tensor pairs (A,B). This content

is mainly based on the paper 1 in Underlying Papers.

We introduce the concepts of Pareto H-eigenvalue and Pareto Z-eigenvalue of higher

order tensor for studying constrained minimization problem and show the necessary

and sufficient conditions of such eigenvalues. We obtain that a symmetric tensor has

at least one Pareto H-eigenvalue (Pareto Z-eigenvalue). What is more, the minimum

Pareto H-eigenvalue (or Pareto Z-eigenvalue) of a symmetric tensor is exactly equal to

the minimum value of constrained minimization problem of homogeneous polynomial

deduced by such a tensor, which gives an alternative methods for solving the minimum

value of constrained minimization problem. In particular, a symmetric tensor A is

copositive if and only if every Pareto H-eigenvalue (Z−eigenvalue) of A is non-negative.

This content is mainly based on the papers 3 and 4 in Underlying Papers.
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Chapter 1

Overview

1.1 Introduction

As a natural extension of the concept of matrices, an m-order n-dimensional tensor A

consists of nm elements in the real field R:

A = (ai1···im), ai1···im ∈ R, i1, i2, · · · , im = 1, 2, · · · , n.

Throughout this thesis, the superscript ’T ’ always indicates transposition and |α| always

stands for the absolute value of a number α. For an element x = (x1, x2, · · · , xn)T ∈ Rn

or Cn (here C is the set of all complex number), Axm is defined by

Axm =
n∑

i1,i2,··· ,im=1

ai1i2···imxi1xi2 · · ·xim (1.1)

An m−order n-dimensional tensor A is called nonnegative (or respectively positive),

denoted A ≥ Θ (or respectively A > Θ), if ai1i2···im ≥ 0 (or respectively ai1i2···im > 0),

where Θ is the zero operator (Θx = θ for all x, here θ = (0, 0, · · · , 0)T ). An m-order

n-dimensional tensor A is said to be symmetric if its entries ai1···im are invariant for any

permutation of the indices.
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In 2005, Qi [59] and Lim [40] independently defined eigenvalues and eigenvectors of a

real symmetric tensor, and explored their practical application in determining positive

definiteness of an even degree multivariate form. Qi [60, 61] defined E-eigenvalues and

the E-characteristic polynomial of a tensor, and obtained an E-eigenvalue of a tensor

is a root of the E-characteristic polynomial if A is regular. These works extended the

classical concept of eigenvalues of square matrices, forms an important part of numer-

ical multi-linear algebra, and has found applications or links with automatic control,

statistical data analysis, optimization, magnetic resonance imaging, solid mechanics,

quantum physics, higher order Markov chains, spectral hypergraph theory, Finsler ge-

ometry, etc, and attracted attention of mathematicians from different disciplines. For

more details, see Chang [10], Chang, Pearson and Zhang [11], Chang, Pearson and

Zhang [12], Friedland, Gauber and Han [19], Hu, Huang and Qi [26], Hu and Qi [29],

Hu and Qi [27], Hu, Huang, Ling and Qi [28], Li, Qi and Zhang [39], Ni, Qi, Wang and

Wang [54], Yang and Yang [69,70], Zhang [74] and the references cited therein.

Pareto eigenvalue

It is obvious that each m-order n-dimensional symmetric tensor A defines a homoge-

neous polynomial Axm of degree m with n variables and vice versa. When m = 2, the

corresponding homogeneous polynomial is a homogeneous polynomial of degree 2 with

n variables, i.e. a quadratic form induced by symmetric matrix. Seeger [67] first intro-

duced and used the concept of Pareto eigenvalue for studying the equilibrium processes

defined by linear complementarity conditions.

A real number µ is called Pareto eigenvalue of the symmetric matrix A if there exists

a non-zero element x ∈ Rn such that
Ax2 = µxTx

Ax− µx ≥ θ

x ≥ θ,

(1.2)
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where xTy =
n∑
i=1

xiyi, the usual inner product in the Euclidean space Rn. Seeger [67]

gave the necessary and sufficient conditions of Pareto eigenvalue of a symmetric matrix

A. Hiriart-Urruty and Seeger [25] showed that a symmetric matrix A is copositive if

and only if its Pareto eigenvalues are all nonnegative.

A real symmetric matrix A is said to be copositive if x ≥ θ implies xTAx ≥ 0.

The concept of copositive matrix was introduced by Motzkin [47] in 1952, which is

an important concept in applied mathematics and graph theory. Recently, Qi [63]

extended this concept to the higher order symmetric tensor and obtained its some nice

properties as ones of copositive matrices. Let A be a real symmetric tensor of order m

and dimension n. A is said to be copositive if Axm ≥ 0 for all x ∈ Rn
+.

In this thesis, we will introduce the notion of Pareto eigenvalue to a higher order

and symmetric tensor, and seek some methods to generalize and develop the Pareto

eigenvalue properties from symmetric matrices to symmetric tensors. Moreover, we will

give the relationship between the Pareto eigenvalue problem of symmetric tensor and

the constrained minimization problem of homogeneous polynomial deduced by such a

tensor, and will study the copositivity of a symmetric tensor by means of the Pareto

eigenvalue of such a tensor.

Additively homogeneous mappings

For x ∈ Rn and a nonnegative tensor A of order m and dimension n, let

fA(x) =
1

m− 1
log(A(exp(x))m−1), (1.3)

where Axm−1 is a vector in Cn with its ith component defined by

(Axm−1)i =
n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim for i = 1, 2, . . . , n
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and log(x) = (log(x1), · · · , log(xn))T and exp(x) = (exp(x1), · · · , exp(xn))T . Clearly,

for x ∈ Rn and µ ∈ R, γ = exp(µ) > 0 is a positive real number, and so

fA(µ+ x) =
1

m− 1
log(A(exp(µ+ x))m−1)

=
1

m− 1
log(A(exp(µ) exp(x))m−1)

=
1

m− 1
log(A(γ exp(x))m−1)

=
1

m− 1
log(γm−1A(exp(x))m−1)

=
1

m− 1
log(γ)m−1) +

1

m− 1
log(A(exp(x))m−1)

= log(γ) + fA(x) = log(exp(µ)) + fA(x)

=µ+ fA(x),

where µ + x = (µ + x1, µ + x2, · · · , µ + xn)T . The mapping fA in the above equa-

tion is called additively homogeneous (Gunawardena and Keane [21]). Such a class

of mappings appears classically in a remarkable variety of mathematical disciplines

such as the matrices over the max-plus semiring, Markov decision theory, the theory

of stochastic games, the optimal control problems, the discrete event systems models

(see [2,4,22,23,42,43,68] for different applications). Batap [4] established the max ver-

sion of the Perron-Frobenius theorem. Recently, Gaubert and Gunawardena [22] proved

the nonlinear version of Perron-Frobenius theorem about the additively homogeneous

mappings.

Recently, Chang, Pearson Zhang [11] firstly used and studied the notion of eigen-

values of higher order tensors pairs (or tensor pencils). For two m-order n-dimensional

real tensors A and B, a number µ is called a B-eigenvalue of A if both Axm−1 and

Bxm−1 are not identical to zero and there exists x ∈ Cn \ {θ} such that

Axm−1 = µBxm−1,

and call x a B-eigenvector of A. If B = I, the unit tensor, then the B-eigenvalue is said

to be eigenvalue, and the real B-eigenvalue with real eigenvector is called H-eigenvalue.

In this thesis, we will introduce the concept of generalized eigenvalue of the ad-
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ditively homogeneous mapping pairs (f, g), and study the properties of such eigen-

values, and then discuss the nonlinear Perron-Frobenius properties of such mappings

pairs. Furthermore, we will establish the Perron-Frobenius properties of the generalized

H−eigenvalue problem for strictly nonnegative tensor pairs (A,B).

Positively homogeneous mappings

For an m-order n-dimensional tensor A, when (Axm−1)[
1

m−1
] can be well defined, let

FA(x) = (Axm−1)[
1

m−1
]. (1.4)

It is easy to see that the operators FA is continuous and positively homogeneous, i.e.,

FA(tx) = tFA(x) for all t > 0.

Many mathematical workers studied the spectral properties of nonlinear positively

homogeneous operators, and gave different definition of the spectrum about such a class

of operators. For more details, see Appell, Pascale and Vignoli [1], Deimling [15], Fucik,

Necas, Soucek, Soucek [18], Feng and Webb [17], Meghea [49] and Nussbaum [50–52].

For m = 2, Birkhoff [6] proved that the famous Perron Theorem can be considered

a special case of the Banach Contraction Principle. That is, a nonnegative primitive

matrix A is a Banach contraction with respect to Hilbert’s projective metric (the detail

definition of such a metric see Chapter 3, Page 30). So, A has a unique positive

eigenvalue λ with a positive eigenvector x∗. Moreover, for all x ≥ θ and x 6= θ, we have

the convergence of the following iterative sequence

lim
k→∞

Akx

‖Akx‖
= x∗ > 0 and lim

k→∞

‖Ak+1x‖
‖Akx‖

= ‖Ax∗‖ = λ > 0. (1.5)

Still by means of the properties of Hilbert’s projective metric, Bushell [7,8] proved that

a linear and strictly positive mapping T (T (P̊ ) ⊂ P̊ for a cone P ) with finite projective

diameter 4(T ) = sup{d(Tx, Ty);x, y ∈ P+} is a Banach contraction. Namely,

d(Tx, Ty) ≤ βd(x, y),

5



where β = tanh(4(T )
4

) =
exp(

4(T )
2

)−1
exp(

4(T )
2

)+1
< 1. So, by Banach Contraction Principle, the same

conclusions still hold. Kohlberg and Pratt [34] showed that the Hilbert’s projective met-

ric is the only metric that can turn strictly positive linear mappings into Banach contrac-

tions. When a mapping is positively homogeneous of degree p (T (λx) = λpTx, λ > 0,

0 < p < 1), Bushell [8] showed for Hilbert’s projective metric d,

d(Tx, Ty) ≤ pd(x, y).

That is, T was a Banach contraction. So, by Banach Contraction Principle, the con-

clusions (1.5) remain true also. On Rn, Kohlberg [35] successfully turned a continuous,

positively homogeneous and strongly increasing (Tx < Ty for x ≤ y with x 6= y)

mapping into an Edelstein contraction, i.e.

d(Tx, Ty) < d(x, y) with x 6= y. (1.6)

By Edelstein Contraction Theorem (Edelstein [16]), the conclusions (1.5) were easily ob-

tained. Krause [36] proved a mapping T with the following condition (i) is an Edelstein

contraction with respect to Hilbert’s projective metric d,

(i) For any x, y ∈ U and 0 ≤ λ ≤ 1: If λx ≤ y, then λTx ≤ Ty and λ < 1, then

λTx < Ty.

In this thesis, we will explore the spectral properties (for example, the Fredholm

alternative type results and the Gelfand formula) and fixed point theorems of such a

class of operator, and then employing them, to discuss the corresponding properties of

eigenvalue (E-eigenvalues) of higher order tensor.

1.2 Outline of the Thesis

The main objection to this thesis will centre around the nonlinear spectral properties

of higher order tensor. Our studied techniques is based on the spectral theory and fixed

6



point theory of nonlinear positively homogeneous operator as well as the constrained

minimization problem of homogeneous polynomial.

In chapter 2, we will study the nonlinear Fredholm alternative type results and the

Gelfand formula for such a class of positively homogeneous operators induced by higher

order tensors. Moreover, we will investigate the Fredholm alternative theorems of the

eigenvalue (included E-eigenvalue, H-eigenvalue, Z-eigenvalue) of a higher order tensor

A. For the spectra induced by such several classes of eigenvalues of a higher order

tensor, some relationship between the Gelfand formula and the corresponding spectral

radius will be discussed.

In chapter 3, we will discuss the existence and uniqueness of the positive eigenvalue-

eigenvector for such a class of nonlinear mappings in a Banach space by means of the

Edelstein Contraction Theorem, and will deal with an iteration sequence for finding

positive eigenvalue of such a tensor. As an application, we will consider that the eigen-

value problem of a nonnegative tensor A can be viewed as the fixed point problem of

the Edelstein Contraction with respect to Hilbert’s projective metric. Furthermore, we

will explore the nonlinear Perron-Frobenius property to a nonnegative tensor A.

In chapter 4, we will introduce the concept of eigenvalue to the increasing and

additively homogeneous mapping pairs (f, g), and will discuss existence and uniqueness

of such a eigenvalue. Also, the Collatz-Wielandt min-max type property will be studied

for such a class of mapping pairs. As an application, we will investigate the nonlinear

Perron-Frobenius property for nonnegative tensor pairs (A,B) without involving the

calculation of the tensor inversion and the iteration methods for finding generalized

H−eigenvalue of nonnegative tensor pairs (A,B).

In chapter 5, the concepts of Pareto H-eigenvalue and Pareto Z-eigenvalue of higher

order tensor will be introduced for studying constrained minimization problem. We

will study the existence of Pareto H-eigenvalue (Pareto Z-eigenvalue) of a symmetric

tensor and will establish the relationship between the minimum Pareto H-eigenvalue

7



(or Pareto Z-eigenvalue) of a symmetric tensor and the minimum value of constrained

minimization problem of homogeneous polynomial deduced by such a tensor. We also

investigative the correspondence of the copositivity of a symmetric tensor A to the

Pareto H-eigenvalue (Z−eigenvalue) of A.

In chapter 6, we will sum up this thesis and give some suggestions for future studies.
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Chapter 2

Fredholm alternative type results

and Gelfand formula

2.1 Introduction

For an element x = (x1, x2, · · · , xn)T ∈ Rn or Cn and an m-order n-dimensional tensor

A, Axm−1 is a vector in Rn (or Cn) with its ith component defined by

(Axm−1)i =
n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim for i = 1, 2, . . . , n.

Let

FA(x) = (Axm−1)[
1

m−1
] and TAx =

(xTx)−
m−2

2 Axm−1, x 6= θ

θ, x = θ

(2.1)

when (Axm−1)[
1

m−1
] is well defined, where x[k] = (xk1, x

k
2, · · · , xkn)T and θ = (0, 0, · · · , 0)T ,

the zero element of a vector space Cn. It is easy to see that both operators FA and

TA defined by higher order tensor A are continuous and positively homogeneous. So,

our main interests are to study the spectral properties of this class of operators, and

employing them, to discuss the properties of higher order tensor.
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Many mathematical workers gave different definition of the spectrum for nonlinear

operators, for example, the Rhodius spectra and Neuberger spectra for Fréchet differen-

tiable operators, the Kachurovskij spectra and Dorfner spectra for Lipschitz continuous

operators and so on. For more details, see Appell, Pascale and Vignoli [1]. The spectra

defined by the measure of noncompactness also can be found in Deimling [15], Nuss-

baum [50–52].

The well-known Fredholm alternative theorem says that for a linear bounded and

compact operator T on a Banach space X, λ ∈ C \ {0} either is an eigenvalue of T or

belongs to its resolvent set ρ(T ).

The Fredholm alternative theorem was extended to nonlinear operator. Fucik,

Necas, Soucek, Soucek [18] gave a nonlinear Fredholm alternative type theorem of an

odd compact operator. Feng and Webb [17] obtained the surjectivity results of Fred-

holm alternative type for nonlinear operator equations. Recently, Meghea [49] showed

a result of Fredholm alternative type of a−homogeneous odd compact operator in a

normed space.

Motivated by the above results, we will study the Fredholm alternative type results

and the spectral radius for a class of positively homogeneous operators in this chapter.

In order to reaching this purpose, we first study the completeness of the space CH(X),

the set of all compact, continuous and positively homogeneous operators defined on a

Banach space X. On the basis the completeness of CH(X), the nonlinear Fredholm

alternative type results and the Gelfand formula of the spectral radius are obtained

respectively. As an application, we will give the Fredholm alternative theorems for the

eigenvalue (E-eigenvalue, H-eigenvalue, Z-eigenvalue) of a higher order tensor A. We

will show the Gelfand formula of the spectral radius for the spectra induced by such

some classes of eigenvalue of a higher order tensor.
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2.2 The norm of positively homogeneous operators

Let X be a Banach space over the field K = R (the set of all real number) or K = C

(the set of all complex number) with the norm ‖ · ‖, and T : X → X be an operator. T

is called

• homogeneous if T (tx) = tTx for each t ∈ K and all x ∈ X;

• positively homogeneous if T (tx) = tTx for each t > 0 and all x ∈ X;

• compact if it takes bounded subsets of X into relatively compact subsets of X.

A real (or complex) number λ is said to be an eigenvalue of the operator T if there

exists a non-zero element x ∈ X such that Tx = λx, and x is called an eigenvector

corresponding to λ.

By CH(X) we denote the set of all compact, continuous and positively homogeneous

operators T : X → X. ∀T ∈ CH(X), define

‖T‖ = sup{‖Tx‖ : ‖x‖ = 1}. (2.2)

As usual, we denote by θ the zero element of a vector space X, and by Θ the zero

operator Θx = θ for all x ∈ X. Then ‖ · ‖, defined by (2.2) is a norm on the operator

space CH(X) with the algebraic operations defined in the usual way:

(αT1 + βT2)(x) = αT1x+ βT2x, for α, β ∈ K and x ∈ X.

In fact, for T, F ∈ CH(X), the following results are easy to be proved.

(1) ‖T‖ = sup‖x‖≤1 ‖Tx‖ = supx 6=θ
‖Tx‖
‖x‖ .

(2) ‖T‖ < +∞ since T is compact.

(3) ‖T‖ = 0 ⇔ T = Θ.
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(4) ‖T + F‖ ≤ sup
‖x‖=1

‖Tx‖+ sup
‖x‖=1

‖Fx‖ = ‖T‖+ ‖F‖.

(5) ‖λT‖ = sup
‖x‖=1

‖λTx‖ = |λ| sup
‖x‖=1

‖Tx‖ = |λ|‖T‖, for all λ ∈ K.

So the operator space CH(X) is a norm space. Furthermore, we also have the

following results resembling the properties of the bounded linear operators.

Lemma 2.2.1 Let X be a Banach space and ‖ · ‖ be defined by (2.2). Then

(i) for all x ∈ X and T ∈ CH(X), ‖Tx‖ ≤ ‖T‖‖x‖.

(ii) ‖TF‖ ≤ ‖T‖‖F‖ for all T, F ∈ CH(X).

(iii) (CH(X), ‖ · ‖) is a Banach space.

(iv) CH(Cn) is a set of all continuous and positively homogeneous operators.

Proof. (i) If x = θ, then Tθ = θ, and so the conclusion is obvious. If x 6= θ, then

‖x‖ > 0. By the definition (2.2) of the operator norm, we have

‖Tx‖
‖x‖

= ‖T (
x

‖x‖
)‖ ≤ sup

‖x‖=1

‖Tx‖ = ‖T‖.

(ii) If F = Θ, then the conclusion is obvious. If F 6= Θ, we may assume Fx 6= θ for

x ∈ X with ‖x‖ = 1, then by the positively homogeneous property of T, F and the

definition (2.2) of the operator norm, we have

‖T (Fx)‖ = ‖T (
Fx

‖Fx‖
‖Fx‖) = ‖Fx‖‖T (

Fx

‖Fx‖
)‖ ≤ ‖T‖‖Fx‖ ≤ ‖T‖‖F‖.

So ‖TF‖ = sup
‖x‖=1

‖TFx‖ ≤ ‖T‖‖F‖.

(iii) Let {Tk} be a Cauchy sequence of CH(X). Then as k, i→∞,

‖Tk − Ti‖ = sup
‖x‖=1

‖Tkx− Tix‖ → 0. (2.3)

So, for all x ∈ S = {x ∈ X; ‖x‖ = 1}, ‖Tkx − Tix‖ → 0 (uniformly for x). Thus for

x ∈ X and x 6= θ, we have

‖Tk(
x

‖x‖
)− Ti(

x

‖x‖
)‖ =

‖Tkx− Tix‖
‖x‖

→ 0,

12



and so for each x ∈ X,

‖Tkx− Tix‖ → 0 (k, i→∞). (2.4)

That is, {Tkx} ⊂ X is a Cauchy sequence of X. Since X is complete, for each x ∈ X,

there is x∗ ∈ X such that Tkx → x∗. Let Tx = x∗ = lim
k→∞

Tkx. Then T is an operator

from X to itself. Since ‖Tkx− Tx‖ = lim
i→∞
‖Tkx− Tix‖, we have

‖Tkx− Tx‖
‖x‖

=
‖(Tk − T )x‖
‖x‖

= lim
i→∞

‖(Tk − Ti)x‖
‖x‖

≤ lim
i→∞
‖Tk − Ti‖

which means

‖Tk − T‖ = sup
x 6=θ

‖(Tk − T )x‖
‖x‖

≤ lim
i→∞
‖Tk − Ti‖.

From (2.3), we obtain that lim
k→∞
‖Tk − T‖ = 0.

Now we show that T ∈ CH(X). Obviously, T is positively homogeneous. Next we

show T is continuous. Indeed, take a sequence {xk} ⊂ X such that xk → x ∈ X. Using

(i), we have

‖Txk − Tx‖ ≤ ‖Txk − Tixk‖+ ‖Tixk − Tjxk‖+ ‖Tjxk − Tjx‖+ ‖Tjx− Tx‖

≤ ‖T − Ti‖‖xk‖+ ‖Ti − Tj‖‖xk‖+ ‖Tjxk − Tjx‖+ ‖Tj − T‖‖x‖.

Since Tj is continuous for each j, lim
k→∞
‖Tjxk − Tjx‖ = 0. So we have

lim sup
k→∞

‖Txk − Tx‖ ≤ ‖T − Ti‖‖x‖+ ‖Ti − Tj‖‖x‖+ ‖Tj − T‖‖x‖.

Let i, j →∞. Then we have lim
k→∞
‖Txk − Tx‖ = 0, which implies T is continuous.

Finally, we show T is compact. Let M be a bounded subset of X. Then we only

need prove that T (M) is a relatively compact subsets of X, i.e. ∀ε > 0, there exists a

finite ε−net Kε ⊂ X for T (M). In fact, for all ε > 0, since lim
k→∞
‖Tk − T‖ = 0, there is

an l ∈ N such that

‖T − Tl‖ <
ε

3c
,

where c is a positive real number with sup{‖x‖;x ∈M} ≤ c. Using the fact that Tl(M)

is relatively compact, choose a finite subset Mε = {x1, x2, . . . , xN} such that

∀y ∈ Tl(M),∃ xi ∈Mε with ‖y − Tlxi‖ <
ε

3
.
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That is, Tl(Mε) is a finite ε
3
−net for Tl(M). For any z ∈ T (M), there is x0 ∈ M such

that z = Tx0. Then

Tlx0 ∈ Tl(M), ∃ xj ∈Mε with ‖Tlx0 − Tlxj‖ <
ε

3
.

Let Kε = T (Mε) = {Tx1, Tx2, . . . , TxN}. Without loss of generality, we may assume

sup{‖x‖;x ∈Mε} ≤ c. Then we have

‖z − Txj‖ ≤ ‖Tx0 − Tlx0‖+ ‖Tlx0 − Tlxj‖+ ‖Tlxj − Txj‖

≤ ‖T − Tl‖‖x0‖+
ε

3
+ ‖Tl − T‖‖xj‖

≤ 2c‖T − Tl‖‖+
ε

3
< ε,

which shows that for ε > 0, Kε is a finite ε−net for T (M). Since ε is arbitrary, T (M)

is totally bounded, and hence relatively compact.

(iv) It follows from (i) that T (K) is a bounded subset for any bounded subset K of Cn,

and hence T (K) is relatively compact. So T is compact.

2.3 Some auxiliary results of positively homogeneous

operators

Let X be a Banach space. When T ∈ L(X) (L(X) is the set of all bounded linear

operators), the spectral radius of T may be calculated in case of a complex Banach

space by the Gelfand formula

rσ(T ) = lim
k→∞
‖T k‖

1
k = inf

k∈N
‖T k‖

1
k . (2.5)

Then for T ∈ CH(X), whether or not its Gelfand formula holds also. In this section,

we will study some properties of the spectral of T when T ∈ CH(X).

Lemma 2.3.1 Let X be a Banach space and T ∈ CH(X). Then there exists r(T ) ∈ R

such that lim
k→∞
‖T k‖ 1

k = r(T ) and r(T ) ≤ ‖T‖. More generally, r(T ) ≤ ‖T k‖ 1
k for all

positive integer k.
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Proof. It follows from Lemma 2.2.1 (ii) that

‖T k‖ ≤ ‖T k−1‖‖T‖ ≤ · · · ≤ ‖T‖k, and so ‖T k‖
1
k ≤ ‖T‖.

Then the sequence {‖T k‖ 1
k } is bounded. So both lim sup

k→∞
‖T k‖ 1

k and lim inf
k→∞

‖T k‖ 1
k exist.

If there exists a sufficiently large k such that ‖T k‖ = 0, then the conclusions obviously

hold.

If for arbitrary positive integer k, ‖T k‖ > 0, then we only need prove that

lim sup
k→∞

‖T k‖
1
k ≤ lim inf

k→∞
‖T k‖

1
k .

Fixed a positive integer k. Let µ = max{‖T i‖; i = 1, 2, . . . , k − 1} > 0. Then for any

positive integer l, we have

l = ilk + rl, 0 ≤ rl < k.

So lim
l→∞

ilk
l

= 1 since 1 = ilk
l

+ rl
l

and 0 ≤ rl
l
< k

l
. By Lemma 2.2.1 (ii), we have

‖T l‖ = ‖T ilkT rl‖ = ‖(T k)ilT rl‖ ≤ ‖(T k)il‖‖T rl‖ ≤ ‖T k‖il‖T rl‖.

Thus,

‖T l‖
1
l ≤ (‖T k‖

1
k )

ilk

l µ
1
l .

Taking the superior limit on the two sides as l→∞,

lim sup
l→∞

‖T l‖
1
l ≤ ‖T k‖

1
k

since lim
l→∞

ilk
l

= 1 and lim
l→∞

µ
1
l = 1 (µ > 0). Taking the inferior limit on the two sides as

k →∞, we have lim sup
k→∞

‖T k‖ 1
k ≤ lim inf

k→∞
‖T k‖ 1

k . The desired conclusion follows.

Let T ∈ CH(Cn). Following the definition of spectrum of the matrices, we define the

spectrum of T , say σ(T ), to be the set of all eigenvalues of T . Assume that σ(T ) 6= ∅,

then we call the number

rσ(T ) = sup{|λ|;λ ∈ σ(T )} (2.6)

the spectral radius of T , where |λ| stands for the absolute value of a number λ. Let

CH0(Cn) be a set of all continuous and homogeneous operators. Clearly, CH0(Cn) is a

closed subspace of CH(Cn).
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Theorem 2.3.2 Let T ∈ CH(Cn) and r(T ) = lim
k→∞
‖T k‖ 1

k . Then

(i) rσ(T ) ≤ ‖T‖;

(ii) σ(T ) is a compact subset in C;

(iii) λ is not an eigenvalue of T if λ > r(T );

(iv) rσ(T ) ≤ r(T ) for all T ∈ CH0(Cn).

Proof. (i) Let λ ∈ σ(T ). It follows from the definition of the eigenvalue that there

exists a non-zero vector x ∈ Cn such that Tx = λx, and so,

‖Tx‖ = ‖λx‖ = |λ|‖x‖.

Therefore, we have

|λ| = ‖Tx‖
‖x‖

=

∥∥∥∥T ( x

‖x‖

)∥∥∥∥ ≤ ‖T‖.
Since λ is arbitrary in σ(T ), then rσ(T ) ≤ ‖T‖.

(ii) It follows from (i) that σ(T ) is bounded. Now we show that σ(T ) is closed. Choose

a sequence {λk} ⊂ σ(T ) and λ ∈ C such that lim
k→∞

λk = λ. We only need to show that

λ ∈ σ(T ). In fact, for each k, there exists xk 6= θ such that Txk = λkxk. Since ‖xk‖ > 0

for all k and T ∈ CH(Cn), then we have

λk

(
xk
‖xk‖

)
=

Txk
‖xk‖

= T

(
xk
‖xk‖

)
for all k.

Let yk = xk
‖xk‖

. Then the sequence {yk} is bounded and ‖yk‖ = 1, and hence there is a

subsequence {yki} of {yk} and some y ∈ Cn such that lim
i→∞

yki = y. By the continuity,

we obtain that

lim
i→∞

Tyki = Ty and lim
i→∞

λkiyki = λy,

and so, Ty = λy and ‖y‖ = 1, i.e., λ ∈ σ(T ).

(iii) Suppose λ is an eigenvalue of T . It follows from the definition of the eigenvalue

that ∃x 6= θ such that Tx = λx. Then by λ > r(T ) ≥ 0 and the positive homogeneity

of T , we have

T kx = T k−1(Tx) = λT k−1x = · · · = λkx,

and hence

‖T kx‖ = λk‖x‖, i.e. λk =
‖T kx‖
‖x‖

= ‖T k( x

‖x‖
)‖.
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Thus

λk =

∥∥∥∥T k ( x

‖x‖

)∥∥∥∥ ≤ sup
‖x‖=1

‖T kx‖ = ‖T k‖,

and so λ ≤ ‖T k‖ 1
k . Let k →∞, we have λ ≤ r(T ), a contradiction.

(iv) Take λ ∈ σ(T ). Then ∃x 6= θ such that Tx = λx. It follows from the homogeneity

of T that

T kx = T k−1(Tx) = λT k−1x = · · · = λkx,

and hence |λk|‖x‖ = ‖T kx‖ ≤ ‖T k‖‖x‖. Thus |λ|k ≤ ‖T k‖, i.e., |λ| ≤ ‖T k‖ 1
k . So we

have that |λ| ≤ lim
k→∞
‖T k‖ 1

k , and so rσ(T ) ≤ r(T ) = lim
k→∞
‖T k‖ 1

k .

Following Theorem 2.3.2 (ii), for T ∈ CH(Cn), we can modify the definition of the

spectral radius rσ(T ) to be

rσ(T ) = max{|λ|;λ ∈ σ(T )}.

Theorem 2.3.3 Let X be a Banach space and T ∈ CH(X). If λ ∈ K with λ 6= 0 is

not an eigenvalue of T , then there exists α > 0 such that

‖λx− Tx‖ ≥ α‖x‖ for all x ∈ X. (2.7)

Proof. x = θ, then the conclusion is obvious. Suppose for any ε > 0, there is xε 6= θ

such that ‖λxε − Txε‖ < ε‖xε‖. Then

inf
‖x‖=1

‖λx− Tx‖ ≤ ‖λ(
xε
‖xε‖

)− T (
xε
‖xε‖

)‖ =
‖λxε − Txε‖
‖xε‖

< ε.

Since ε is arbitrary,

inf
‖x‖=1

‖λx− Tx‖ = 0.

Then there exists xk with ‖xk‖ = 1 such that

lim
k→∞
‖λxk − Txk‖ = 0.

Since T is compact, there is xki such that Txki → y ∈ X as i→∞, and hence

‖λxki − y‖ ≤ ‖λxki − Txki‖+ ‖Txki − y‖ → 0.
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Then xki →
y
λ

= x as i→∞, and so Txki → Tx = y(i→∞). Therefore, Tx = y = λx.

Since ‖xk‖ = 1 for all k, ‖ y
λ
‖ = ‖x‖ = 1. So λ is an eigenvalue of T , a contradiction.

Obviously, if the inquality (2.7) holds, then λ is not an eigenvalue of T . So it is easy

to obtain the nonlinear Fredholm Alternative type results.

Corollary 2.3.4 Let X be a Banach space and T ∈ CH(X). If λ ∈ K with λ 6= 0, then

either λ is an eigenvalue of T or there exists α > 0 satisfying (2.7).

For an m-order n-dimensional tensor A, λ ∈ C is called an eigenvalue of A, if there

exists a vector x ∈ Cn \ {θ} such that

Axm−1 = λx[m−1], (2.8)

where x[m−1] = (xm−11 , · · · , xm−1n )T , and call x an eigenvector of A associated with the

eigenvalue λ. We call such an eigenvalue H-eigenvalue if it is real and has a real eigen-

vector x, and call such a real eigenvector x an H-eigenvector. These concepts were first

introduced by Qi [59] for the higher order symmetric tensors. Lim [40] independently

introduced this notion but restricted x to be a real vector and λ to be a real number.

Qi [59, 60] extended some nice properties of matrices to the higher order symmetric

tensors. The Perron-Frobenius theorem for nonnegative matrix had been generalized

to the higher order nonnegative tensors with various conditions by Chang, Pearson and

Zhang [11,14] and others.

For an m-order n-dimensional tensor A, when (Axm−1)[
1

m−1
] is well defined, let

FA(x) = (Axm−1)[
1

m−1
].

Then FA ∈ CH(Cn) and λm−1 is an eigenvalue of A if and only if λ is an eigenvalue of

FA.

For an m-order n-dimensional tensor A, a number µ ∈ C is called E-eigenvalue of

A, if there exists a vector x ∈ Cn \ {θ} such that

Axm−1 = µx(xTx)
m−2

2 , (2.9)
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and call a vector x an E-eigenvector of A associated with the E-eigenvalue µ. If x is

real, then µ is also real. In this case, µ and x are called Z-eigenvalue of A and Z-

eigenvector of A associated with µ, respectively. These concepts were first introduced

by Qi [59,60] for a higher order tensor. Qi [61] defined the E-characteristic polynomial

of a tensor, and showed that if A is regular, then a complex number is an E-eigenvalue

if and only if it is a root of the E-characteristic polynomial. Let

TAx =

‖x‖2A
(

x
‖x‖2

)m−1
, x 6= θ

θ, x = θ,

(2.10)

where ‖x‖2 =
√
x21 + x22 + · · ·+ x2n. Clearly, TA ∈ CH(Cn) and µ is an E−eigenvalue

of A if and only if µ is an eigenvalue of TA.

For x ∈ Cn and p ≥ 1, it is known well that

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

and ‖x‖∞ = max
1≥i≥n

|xi|

are the norms defined on Cn. Then for T ∈ CH(Cn), it is obvious that

‖T‖p = max
‖x‖p=1

‖Tx‖p and ‖T‖∞ = max
‖x‖∞=1

‖Tx‖∞

are the norms defined on CH(Cn). Now we give the norm of the positively homogeneous

operators FA and TA.

Theorem 2.3.5 Let A be an m-order n-dimensional tensor. Then

(i) ‖FA‖∞ ≤ max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im |

) 1
m−1

;

(ii) ‖TA‖∞ ≤ max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im|

)
.
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Proof. (i) It follows from the definition of the norm that

‖FA‖∞ = max
‖x‖∞=1

‖FAx‖∞

= max
‖x‖∞=1

max
1≤i≤n

∣∣∣∣∣∣
(

n∑
i2,··· ,im=1

aii2···imxi2xi3 · · ·xim

) 1
m−1

∣∣∣∣∣∣
≤ max
‖x‖∞=1

max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im||xi2||xi3 | · · · |xim|

) 1
m−1

≤ max
‖x‖∞=1

max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im|‖x‖m−1∞

) 1
m−1

= max
‖x‖∞=1

max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im|

) 1
m−1

‖x‖∞

= max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im|

) 1
m−1

.

(ii) It follows from the definition of the norm that ‖x‖2 ≥ ‖x‖∞ and

‖TA‖∞ = max
‖x‖∞=1

‖TAx‖∞

= max
‖x‖∞=1

max
1≤i≤n

∣∣∣∣∣‖x‖−(m−2)2

n∑
i2,··· ,im=1

aii2···imxi2xi3 · · ·xim

∣∣∣∣∣
≤ max
‖x‖∞=1

‖x‖−(m−2)∞ max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im||xi2||xi3| · · · |xim|

)

≤ max
‖x‖∞=1

‖x‖−(m−2)∞ ‖x‖m−1∞ max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im|

)

= max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im |

)
.

This completes the proof.

Let x(0) = (1, 1, · · · , 1)T . Then ‖x(0)‖∞ = 1, and so a simple calculation of

‖FA(x(0))‖∞ (or ‖TA(x(0))‖∞) yields to the following conclusions.

Theorem 2.3.6 Let A be an m-order n-dimensional nonnegative tensor. Then
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(i) ‖FA‖∞ = max
1≤i≤n

(
n∑

i2,··· ,im=1

aii2···im

) 1
m−1

;

(ii) max
1≤i≤n

(
n∑

i2,··· ,im=1

aii2···im

)
≥ ‖TA‖∞ ≥ n−

m−2
2 max

1≤i≤n

(
n∑

i2,··· ,im=1

aii2···im

)
.

Combining Theorems 2.3.2 (i) and 2.3.5, the following conclusions are obtained.

Corollary 2.3.7 Let A be an m-order n-dimensional tensor. Then

(i) |λ| ≤ (rσ(FA))m−1 ≤ max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im|

)
for all eigenvalues λ of A;

(ii) |µ| ≤ rσ(TA) ≤ max
1≤i≤n

(
n∑

i2,··· ,im=1

|aii2···im|

)
for all E-eigenvalues µ of A.

2.4 Fredholm alternative type results and Gelfand

formula of higher order tensors

Theorem 2.4.1 Let A be an m-order n-dimensional tensor. If λ ∈ C\{0}, then either

λm−1 is an eigenvalue (H-eigenvalue) of A or

inf
‖x‖=1

‖λx− FAx‖ > 0. (2.11)

Proof. It is obvious that FA ∈ CH(Cn). Then it follows from the Corollary 2.3.4 that

either λ is an eigenvalue (H-eigenvalue) of FA or there exists α > 0 satisfying

‖λx− FAx‖ ≥ α‖x‖ for all x ∈ Cn. (2.12)

If λ is an eigenvalue of FA, then a simple conversion between FA and A, it is easy

to show that λm−1 is an eigenvalue of A. Suppose λ satisfies (2.15). Then for all

x ∈ Cn \ {θ},

‖λ(
x

‖x‖
)− FA(

x

‖x‖
)‖ =

‖λx− FAx‖
‖x‖

≥ α > 0,

and hence the desired conclusion follows.
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Theorem 2.4.2 Let A be an m-order n-dimensional tensor. If µ ∈ C\{0}, then either

µ is an E-eigenvalue of A or

inf
‖x‖2=1

‖µx−Axm−1‖2 > 0. (2.13)

Proof. Let TA be defined by (2.10). Then TA ∈ CH(Cn). From the Corollary 2.3.4, it

follows that either µ is an eigenvalue of TA or there exists α > 0 satisfying

‖µx− TAx‖2 ≥ α‖x‖2 for all x ∈ Cn. (2.14)

If µ is an eigenvalue of TA, then µ is an E-eigenvalue of A. Suppose µ satisfies (2.14).

Then for all x ∈ Cn \ {θ}, we have

‖µ(
x

‖x‖2
)− TA(

x

‖x‖2
)‖2 = ‖µ(

x

‖x‖2
)−A(

x

‖x‖2
)m−1‖2 ≥ α > 0,

and hence the desired conclusion follows.

If A is an m-order n-dimensional tensor and m is even, then the operators FA,

TA ∈ CH0(Cn). Following Theorems 2.3.2 (iv), the following conclusions are obvious.

Theorem 2.4.3 Let A be an m-order n-dimensional tensor where m is even. Then

(i) |λ|
1

m−1 ≤ rσ(FA) ≤ lim
k→∞
‖F k
A‖

1
k for all eigenvalues (H-eigenvalues) λ of A;

(ii) |µ| ≤ rσ(TA) ≤ lim
k→∞
‖T kA‖

1
k for all E-eigenvalues (Z-eigenvalues) µ of A.

Recalled that a tensor A is called reducible if there exists a nonempty proper index

subset N ⊂ {1, 2, · · · , n} such that

ai1i2···im = 0 for all i1 ∈ N , for all i2, i3, · · · , im /∈ N .

If A is not reducible, then we call it irreducible. The notion of irreducible tensor

is first introduced by Lim [40]. Chang, Pearson, Zhang [11] adopted this notion in

their subsequent work. Let Rn
+ = {x ∈ Rn;xi ≥ 0 for all i} and Rn

++ = {x ∈ Rn;xi >

0 for all i}. If x ∈ Rn
+ (x ∈ Rn

++), then it is said that a vector x is nonnegative (positive).
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A tensor A is called weakly symmetric if the associated homogeneous polynomial Axm

satisfies

∇Axm = mAxm−1.

This concept was first introduced and used by Chang, Pearson, and Zhang [14] for

studying the properities of Z−eigenvalue of nonnegative tensors. In the sequel, Θ

denotes zero tensor, and the symbol A ≤ B (A < B) means that ai1i2···im ≤ bi1i2···im

(ai1i2···im < bi1i2···im) for all i1, i2, · · · , im, and the operation A+B (kA) implies that its

elements are defined by ai1i2···im + bi1i2···im (kai1i2···im) for all i1, i2, · · · , im.

Lemma 2.4.4 Suppose that both m-order n-dimensional tensors B and A are weakly

symmetric and nonnegative.

(i) If B is irreducible, then rσ(TB) is a positive Z−eigenvalue with a nonnegative

Z−eigenvector;

(ii) If Θ ≤ A < B, then rσ(TA) ≤ rσ(TB).

Proof. (i) It follows from Theorems 2.5 and 2.6 of Chang, Pearson and Zhang [14] that

there exists Z-eigenvalue λ0 > 0 with a positive Z-eigenvector x such that ‖x‖2 = 1,

and hence, TBx = Bxm−1 = λ0x. Let

λ∗ = max{λ′;λ′ is nonnegative Z-eigenvalue of B with a nonnegative Z−eigenvector}.

Then λ∗ > 0 and from Theorem 4.7 of Chang, Pearson and Zhang [14], it follows that

λ∗ = max
‖x‖2=1,x∈Rn

+

min
xi>0

(Bxm−1)i
xi

.

We claim that

rσ(TB) = λ∗, i.e., λ∗ ≥ |λ| for all λ ∈ σ(TB).

Indeed, let λ ∈ σ(TB) and y be a E-eigenvector corresponding to λ satisfying ‖y‖2 = 1.

Then

|λ||y| = |λy| = |TBy| =
∣∣Bym−1∣∣ ≤ B|y|m−1,

where |y| = (|y1|, |y2|, · · · , |yn|)T for y ∈ Cn. This implies that

|λ||yi| =
∣∣(Bym−1)

i

∣∣ ≤ (B|y|m−1)
i
, ∀i,
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and hence

|λ| ≤ min
|yi|>0

(B|y|m−1)i
|yi|

≤ max
‖x‖2=1,x∈Rn

+

min
xi>0

(Bxm−1)i
xi

= λ∗. (2.15)

(ii) Let µ ∈ σ(TA) and z be a E-eigenvector corresponding to µ satisfying ‖z‖2 = 1.

Then |µ||z| = |Azm−1| ≤ A|z|m−1 ≤ B|z|m−1. Since B is irreducible, rσ(TB) is the

largest Z−eigenvalue of B and

rσ(TB) = max
‖x‖2=1,x∈Rn

+

min
xi>0

(Bxm−1)i
xi

by (i) and Theorem 4.7 of Chang, Pearson and Zhang [14]. By the same argumentation

of (2.15), we obtain that |µ| ≤ rσ(TB), and so rσ(TA) ≤ rσ(TB).

Lemma 2.4.5 Let an m-order n-dimensional tensor A be weakly symmetric and non-

negative. Then

(i) (rσ(FA))m−1 is an H−eigenvalue of A with a nonnegative H−eigenvector;

(ii) rσ(TA) is an Z−eigenvalue of A with a nonnegative Z−eigenvector.

Proof. (i) It follows from Theorem 2.3 of Yang and Yang [69] that (rσ(FA))m−1 is an

H−eigenvalue of A with a nonnegative H−eigenvector.

(ii) Let Ak = A + 1
k
E , where E is a tensor with all entries being 1. Then Θ ≤ A <

Ak+1 < Ak, and hence, rσ(TA) ≤ rσ(TAk+1
) ≤ rσ(TAk

) for all positive integer k by

Lemma 2.4.4 (ii). Thus, there exists a real number µ0 such that

lim
k→∞

rσ(TAk
) = µ0 ≥ rσ(TA).

The remainders of the proof are the same as ones of Theorem 2.3 of Yang and Yang [69]

other than a few small changes, we omit it.

Theorem 2.4.6 Let A be an m-order n-dimensional weakly symmetric and nonnega-

tive tensor. Then

(i) |λ|
1

m−1 ≤ rσ(FA) ≤ lim
k→∞
‖F k
A‖

1
k for all eigenvalues (H-eigenvalues) λ of A;

(ii) |µ| ≤ rσ(TA) ≤ lim
k→∞
‖T kA‖

1
k for all E-eigenvalues (Z-eigenvalues) µ of A.
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Chapter 3

Eigenvalue problem and fixed point

theory

3.1 Introduction

The well-known Banach Contraction Principle says that if T is a strict contraction from

a complete metric space (X, d) to itself, i.e.,

for some β with 0 ≤ β < 1, d(Tx, Ty) ≤ βd(x, y) for all x, y ∈ X, (3.1)

then T has unique fixed point x∗ ∈ X (x∗ = Tx∗) and lim
k→∞

T kx = x∗ for all x ∈ X.

Edelstein [16] relaxed the strict contraction condition (3.1) by permitting β = 1 and

obtained the following result which is referred to as the Edelstein Contraction Theorem.

Theorem 3.1.1 (The Edelstein Contraction Theorem) Let (X, d) be a metric space

and T : X → X be a contraction (which is called Edelstein Contraction ), that is

d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. (3.2)
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If T also satisfies the condition

∃x, x∗ ∈ X such that ∃{T kix} ⊂ {T kx} with lim
i→∞

d(T kix, x∗) = 0, (3.3)

then T has a unique fixed point x∗ ∈ X and lim
k→∞

d(T kx, x∗) = 0.

Clearly, the condition (3.3) is replaced by the fact that metric space X is compact or

the range R(T ) = T (X) is relatively compact, then the conclusions still hold.

For solving the eigenvalue-eigenvector problem of linear mapping, many proof meth-

ods have been used. Among them, the proof technique applying the Banach Contraction

Principle is very straightforward and simple, which has been widely employed by many

mathematicians. Birkhoff [6] showed that the famous Perron Theorem can be viewed

as a special case of the Banach Contraction Principle. That is, if the range R(T ) of

a bounded positive linear transformation T has finite diameter 4(T ) with respect to

Hilbert’s projective metric d, then T can be viewed as a strict contraction with con-

traction coefficient β = tanh(4(T )
4

) < 1. So by the Banach Contraction Principle,

the Perron-Frobenius theorem can be easily obtained. Furthermore, for a nonnegative

primitive square matrix A, there exists x∗ > 0 such that

Akx

‖Akx‖
→ x∗ (k →∞) for all x ≥ 0 and x 6= 0. (3.4)

Still by means of the properties of Hilbert’s projective metric d, Bushell [7, 8] proved

that a positive linear mapping T can be properly turned into a strict contraction with

contraction coefficient β ≤ tanh(4(T )
4

). It is natural to try to define another metric,

a little simpler than Hilbert’s projective metric, which would also turn positive linear

mappings into strict contractions. Kohlberg and Pratt [34] showed that the above

experiment was essentially impossible. Also see Nussbaum [51, 52] for the results of

contraction ratio of linear mappings.

The above results dealt with linear mappings. Spontaneously, we have the following

question:
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Problem 1 Does there exist a class of nonlinear positive mappings such that they can

be turned into (strict) contraction?

When a mapping is positively homogeneous of degree p (T (λx) = λpTx, λ > 0),

Bushell [8] showed for Hilbert’s projective metric d, d(Tx, Ty) ≤ pd(x, y). Under the

condition 0 < p < 1, Bushell [8,9] proved that a monotone increasing mapping T which

is positively homogeneous of degree p is a Banach strict contraction with contraction co-

efficient β = p with respect to Hilbert’s projective metric, and hence there exists unique

x∗ such that x∗ = Tx∗. Potter [57] proved that a continuous, monotone increasing and

γ−concave mapping T (0 < γ < 1) is a Banach strict contraction with contraction co-

efficient β = γ with respect to Hilbert’s projective metric, where a γ−concave mapping

T : K → K says that T (λx) ≥ λγTx for all x ∈ K and 0 < λ ≤ 1. Nussbaum [51] devel-

oped Potter’s work to study the eigenvalue-eigenvector problem of the sum mapping of

1−concave mapping and γ−concave mapping. Recently, with the help of Banach Con-

traction Principle, Huang, Huang and Tsai [31] extend Bushell’s results to γ−concave

mappings. Applying the techniques of Nussbaum [51], Huang, Huang and Tsai [32]

continued their early work to extend Bushell’s results to the eigenvalue-eigenvector

problem of the sum mapping of 1−concave mapping and γ−concave mapping.

Clearly, with the aid of the nice properties of Hilbert’s projective metric, both

positively homogeneous mapping of degree p with 0 < p < 1 and γ−concave mapping

with 0 < γ < 1 boil down to the Banach strict contraction. On m−dimensional

Euclidean space Rm, a class of positively homogeneous mappings of degree 1 (for short,

positively homogeneous mappings), a class of more general mappings, has also beeen

viewed as a special case of the Edelstein contraction with respect to Hilbert’s projective

metric under adding some conditions by Kohlberg [35] and Krause [36].

Let Rn
+ = {x ∈ Rn;x ≥ θ} , Rn

− = −Rn
+ and Rn

++ = {x ∈ Rn;x > θ} , where

θ = (0, 0, · · · , 0)T . On Rn
+, without the additivity (T (x+ y) = Tx+Ty), Kohlberg [35]

successfully turned a continuous, positively homogeneous and primitive mapping into
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an Edelstein contraction, defined by (3.2) with respect to Hilbert’s projective metric

d, and so obtained the similar results as the Perron-Frobenius theorem. Also in Rn
+,

instead of the additivity, homogeneity and primitivity of linear mapping, Krause [36]

used the following conditions:

(i) There exist numbers a > 0, b > 0 and a vector v > θ such that av ≤ Tx ≤ bv for

all x ∈ U = {x ∈ Rm
+ ; p(x) = 1}, where p : Rm

+ → R+ is a continuous mapping which is

not identically 0 and positively homogeneous and increasing;

(ii) For any x, y ∈ U and 0 ≤ λ ≤ 1: If λx ≤ y, then λTx ≤ Ty and if λ < 1, then

λTx < Ty.

Such a nonlinear mapping T successfully becomes an Edelstein contraction with re-

spect to Hilbert’s projective metric d by Krause [36]. The condition (i) guarantees the

compactness of a subset with respect to Hilbert’s projective metric, and hence by the

Edelstein Contraction Theorem, the conclusion (3.4) is reached obviously. Moreover,

the limit x∗ is a positive eigenvector with positive eigenvalue as required.

In this chapter, we will turn a class of nonlinear mappings defined on a Banach

space into the Edelstein contractions with respect to Hilbert’s projective metric, and

furthermore, applying the Edelstein Contraction Theorem to achieve our purposes.

It is our final goal to study the existence and uniqueness of the positive eigenvalue-

eigenvector for a (eventually) strongly increasing, positively homogeneous, (eventually)

strongly positive and compact mapping in a Banach space, and to give an iteration

sequence for finding a positive eigenvector with positive eigenvalue. That is, a nonlinear

version of the famous Krein-Rutman Theorem is presented.

The Krein-Rutman Theorem deals with the existence of the positive eigenvalue-

eigenvector for a linear, positive and compact mapping (Deimling [15, Theorem 19.2]).

Ogiwara [55, 56] studied the nonlinear Perron-Frobenius problem for order-preserving

mappings on a positive cone of an ordered Banach space. Recently, the nonlinear
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Krein-Rutman Theorem has been studied by Chang in [10] and by Mahadeva in [41],

respectively. Mahadeva [41] considered a strongly positive and strongly increasing,

positively homogeneous, compact continuous mapping T on a Banach space together

with the condition:

∃u ∈ P, u 6= θ such that MTu ≥ u for some constant M > 0. (3.5)

Chang [10] extended Mahadeva’s result by removing the condition (3.5) and provided a

unified proof for linear and nonlinear, also for finite dimension and infinite dimension.

Our proof techniques are different from those of Chang [10] and Mahadeva [41]. We

turn a (eventually) strongly increasing and positively homogeneous mapping into an

Edelstein contraction with respect to Hilbert’s projective metric, and then verify such

a mapping satisfies the condition (3.3) under adding some proper conditions. So by the

Edelstein Contraction Theorem, the desired aims are reached.

As an application, we will show that the eigenvalue problem of a nonnegative tensor

A can be viewed as the fixed point problem of the Edelstein Contraction with respect

to Hilbert’s projective metric. As a result, the nonlinear Perron-Frobenius property of

a nonnegative tensor A is reached easily.

3.2 Preliminaries and basic results

Let P be a closed cone of a real Banach space X and θ be the zero element of X. A

partial ordering ≤ with respect to P is defined in X by saying x, y ∈ X,

x ≤ y(x < y) if and on if y − x ∈ P (y − x ∈ P̊ ),

where P̊ is the interior of P . Let P+ = {x ∈ P ;x 6= θ}. If x, y ∈ P+, we define

M(x, y) =

 inf{µ;x ≤ µy},

∞, {µ;x ≤ µy} = ∅
and m(x, y) = sup{λ;x ≥ λy}. (3.6)
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The following basic properties of M,m are proved by Bushell in [8]; see also Nussbaum

[51,52] for more details.

Lemma 3.2.1 (Bushell [8, Lemma 2.1, Corollary, Theorem 2.3]) For x, y ∈ P+,

(i) 0 ≤ m(x, y) ≤M(x, y) ≤ ∞;

(ii) m(x, y) = 1
M(x,y)

;

(iii) m(x, y)y ≤ x ≤M(x, y)y whenever M(x, y) <∞;

(iv) 0 < m(x, y) ≤M(x, y) < +∞ whenever x, y ∈ P̊ .

In P+, Hilbert’s projective metric d(·, ·) is defined by

d(x, y) = log

(
M(x, y)

m(x, y)

)
.

This concept was introduced by David Hilbert in 1895 in a paper [24] on the foundations

of geometry and has been widely used in proving the existence and uniqueness of fixed

point for a nonlinear positive mapping and others. Furthermore, the existence and

uniqueness of the positive eigenvalue can be obtained easily for such a mapping. The

following basic properties of d are proved by Bushell in [8,9] see also Nussbaum [51,52]

for more details.

Lemma 3.2.2 (Bushell [8, Theorem 2.1, Lemma 2.2]) (1) For all x, y ∈ P̊ ,

d(λx, µy) = d(x, y) for all λ > 0, µ > 0.

(2) (P̊ , d) is a pseudo-metric space, i.e. the metric d satisfies the conditions: ∀x, y, z ∈

P̊

(i) 0 ≤ d(x, y) < +∞, d(x, x) = 0;

(ii) d(x, y) = d(y, x);
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(iii) d(x, y) ≤ d(x, z) + d(z, y);

(iv) d(x, y) = 0 if and only if x = λy, for some λ > 0.

(3) (P̊
⋂
S1, d) is a metric space, where Sr = {x ∈ X; ‖x‖ = r}. Obviously, for all

r > 0, so is (P̊
⋂
Sr, d) also.

Using similar techniques of Nussbaum [51, Eq.(1.21)] and Bushell [9, Theorem 2.2],

the following lemmas are obtained.

Lemma 3.2.3 Let {xk} ⊂ P̊ and x ∈ P̊ . If lim
k→∞
‖xk − x‖ = 0, then

lim
k→∞

d(xk, x) = 0.

Proof. Since x ∈ P̊ , then there exists δ > 0 such that

Bδ(x) = {y ∈ X; ‖x− y‖ < δ} ⊂ P.

Without loss of generality, we may assume ‖xk−x‖ > 0. Since lim
k→∞
‖xk−x‖ = 0, there

exists a positive integral N such that

0 < ‖xk − x‖ <
δ

2
, for all k > N,

and hence 1− 2‖xk−x‖
δ

> 0. So x± δ(xk−x)
2‖xk−x‖

∈ Bδ(x) ⊂ P, and hence

x ≥ ± δ(xk − x)

2‖xk − x‖
= ±δ

2
(

xk
‖xk − x‖

− x

‖xk − x‖
).

Therefore, we have

(1 +
δ

2‖xk − x‖
)x ≥ δxk

2‖xk − x‖
≥ (

δ

2‖xk − x‖
− 1)x,

and so, multiplying 2‖xk−x‖
δ

to the two sides of the above inequality, we have

(1 +
2‖xk − x‖

δ
)x ≥ xk ≥ (1− 2‖xk − x‖

δ
)x.

By the definition of M(xk, x) and m(xk, x), we obtain for all k > N ,

1 +
2‖xk − x‖

δ
≥M(xk, x) ≥ m(xk, x) ≥ 1− 2‖xk − x‖

δ
> 0.
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Thus, we have
M(xk, x)

m(xk, x)
≤ δ + 2‖xk − x‖
δ − 2‖xk − x‖

,

and hence

d(xk, x) = log

(
M(xk, x)

m(xk, x)

)
≤ log

(
δ + 2‖xk − x‖
δ − 2‖xk − x‖

)
.

Consequently, lim
k→∞

d(xk, x) = 0.

Lemma 3.2.4 Let the norm ‖ ·‖ in X be monotonic, i.e. θ ≤ x ≤ y means ‖x‖ ≤ ‖y‖.

Then for all x, y ∈ Er = P̊
⋂
Sr (r > 0), we have

(i) 0 < m(x, y) ≤ 1 ≤M(x, y) <∞;

(ii) ‖x− y‖ ≤ r(exp(d(x, y))− 1).

If {xk} ⊂ Er, x ∈ Er (r > 0) and lim
k→∞

d(xk, x) = 0, then

lim
k→∞
‖xk − x‖ = 0.

Proof. It follows from Lemma 3.2.1 that 0 < m(x, y) ≤ M(x, y) <∞ and m(x, y)y ≤

x ≤M(x, y)y for all x, y ∈ Er. Then we have

m(x, y)r = m(x, y)‖y‖ ≤ ‖x‖ = r ≤M(x, y)‖y‖ = M(x, y)r,

and hence

0 < m(x, y) ≤ 1 ≤M(x, y) <∞.

So,

m(x, y)y ≤ y and x ≤M(x, y)y.

Then, we have

x− y ≤M(x, y)y −m(x, y)y = m(x, y)(
M(x, y)

m(x, y)
− 1)y,

and so,

‖x− y‖ ≤ m(x, y)(
M(x, y)

m(x, y)
− 1)‖y‖ ≤ r(exp(d(x, y))− 1).
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In particular,

‖xk − x‖ ≤ r(exp(d(xk, x))− 1).

As a result, the limits lim
k→∞

d(xk, x) = 0 implies

lim
k→∞
‖xk − x‖ = 0.

This complets the proof.

Let X be a real Banach space with the usual partial ordering induced by a closed

cone P , and T : X → X be a mapping. We also need the following definitions and facts

for T . T is called

• positively homogeneous if T (tx) = tTx for each t > 0 and all x ∈ X,

• increasing if Tx ≤ Ty for x ≤ y,

• strongly increasing if Tx < Ty for x ≤ y with x 6= y in case P̊ 6= ∅,

• eventually strongly increasing if T kx < T ky for some positive integer k and all

x ≤ y with x 6= y in case P̊ 6= ∅,

• strictly increasing if Tx < Ty for x < y in case P̊ 6= ∅,

• positive if T (P ) ⊂ P ,

• strongly positive if T (P+) ⊂ P̊ in case P̊ 6= ∅,

• eventually strongly positive T k(P+) ⊂ P̊ for some positive integer k,

• strictly positive if T (P̊ ) ⊂ P̊ in case P̊ 6= ∅.

Clearly, for a linear mapping T , its (strong, eventually strong, strict) increasing coin-

cides with its (respectively strong, eventually strong, strict) positiveness.

We say that a mapping T is compact if it takes bounded subsets of X into relatively

compact subsets of X. A real number λ is said to be an eigenvalue of the mapping T

if there exists a non-zero x ∈ X such that Tx = λx.
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Lemma 3.2.5 Let T : X → X be a mapping. If T is positively homogeneous and

strongly (strictly) increasing, then T is strongly (strictly) positive.

Proof. It follows from the positive homogeneousness of T that Tθ = θ because Tθ =

T (tθ) = tTθ for each t > 0. Since x ≥ θ (x > θ) for all x ∈ P+ (x ∈ P̊ ) and T

is strongly (strictly) increasing, Tx > Tθ = θ (Tx > Tθ = θ), and so T (P+) ⊂ P̊

(T (P̊ ) ⊂ P̊ ).

3.3 Existence and uniqueness of the positive eigen-

value

In this section, let X be a real Banach space with the usual partial ordering induced

by a closed cone P , and P̊ 6= ∅. Now we show that a strongly increasing and positively

homogeneous nonlinear mapping can be an Edelstein contraction on the metric space

(P̊
⋂
Sr, d) for each r > 0.

Theorem 3.3.1 Let T : X → X be a strongly increasing and positively homogeneous

mapping. If the norm ‖ · ‖ in X is monotonic, then T is an Edelstein contraction with

respect to Hilbert’s projective metric d on Er = P̊
⋂
Sr (r > 0), i.e.

d(Tx, Ty) < d(x, y) for all x, y ∈ Er with x 6= y. (3.7)

Proof. Let x, y ∈ Er with x 6= y. Then following Lemmas 3.2.4 and 3.2.1, we have for

all x, y ∈ Er ⊂ P̊ ,

0 < m(x, y) ≤ 1 ≤M(x, y) <∞ and m(x, y)y ≤ x ≤M(x, y)y.

Since x 6= y, then M(x, y) and m(x, y) can not be both equal to 1, and so M(x, y)y

and m(x, y)y can not be both equal to x. Without loss of generality, we may assume
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M(x, y)y 6= x. By the strong monotonicity and positive homogeneousness of T , we

obtain

m(x, y)Ty = T (m(x, y)y) ≤ Tx < T (M(x, y)y) = M(x, y)Ty.

Therefore we have

0 < m(x, y) ≤ m(Tx, Ty) and M(Tx, Ty) < M(x, y),

and hence
M(Tx, Ty)

m(Tx, Ty)
<
M(x, y)

m(x, y)
.

It follows from the properties of the function log that

log

(
M(Tx, Ty)

m(Tx, Ty)

)
< log

(
M(x, y)

m(x, y)

)
.

Consequently, d(Tx, Ty) < d(x, y) as required.

Now we prove a property of a strongly positive, positively homogeneous and com-

pact continuous nonlinear mapping under Hilbert’s projective metric d. Namely, the

condition (3.3) of Edelstein Contraction Theorem (Theorem 3.1.1) can be satisfied by

such a mapping.

Theorem 3.3.2 Let T : X → X be a strongly positive, positively homogeneous and

continuous mapping. If Fry = rTy
‖Ty‖ for r > 0 is compact, then for all y ∈ P+, the

sequence {F k+1
r y} contains a subsequence which converges to a point of Er with respect

to Hilbert’s projective metric d, that is, x = rTy
‖Ty‖ ,

∃x∗ ∈ Er such that ∃{F ki
r x} ⊂ {F k

r x} with lim
i→∞

d(F ki
r x, x

∗) = 0. (3.8)

Proof. Take y ∈ P+. From the strong positiveness of T , it follows that Ty ∈ P̊ and

‖Ty‖ > 0. Let x = rTy
‖Ty‖ . Clearly, x ∈ Er = P̊

⋂
Sr. By positive homogeneousness of T ,

we have

Fr(Frx) = Fr(
rTx

‖Tx‖
) =

rT ( rTx
‖Tx‖)

‖T ( rTx
‖Tx‖)‖

=
rT 2x

‖T 2x‖
=

rT 3y

‖T 3y‖
.
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Similarly, we also have

F k
r x =

rT kx

‖T kx‖
=

rT k+1y

‖T k+1y‖
= F k+1

r y ∈ Er for all k > 0.

From compact continuity of Fr, it follows that there exists {F kix} ⊂ {F kx} such that

for some x′ ∈ X,

lim
i→∞
‖F ki

r x− x′‖ = 0,

and hence

lim
i→∞
‖F ki+1

r x− Frx′‖ = 0.

Then by the closedness of P and {F k
r x} ⊂ Er, we have x′ ∈ P and ‖x′‖ = r. Thus we

obtain Tx′ ∈ P̊ . Let x∗ = Frx
′ = rTx′

‖Tx′‖ . Then x∗ ∈ Er ⊂ P̊ .

As a result, we have shown that there exists {F ki+1
r x} ⊂ {F k

r x} ⊂ P̊ such that

lim
i→∞
‖F ki+2

r y − x∗‖ = lim
i→∞
‖F ki+1

r x− x∗‖ = 0 and x∗ ∈ P̊ .

By Lemma 3.2.3, the desired result follows.

Combining Theorems 3.3.1 and 3.3.2, a nonlinear version of the famous Krein-

Rutman Theorem can be obtained.

Theorem 3.3.3 Let T : X → X be a strongly increasing, positively homogeneous and

continuous mapping. If the norm ‖ · ‖ in X is monotonic and Fry = rTy
‖Ty‖ is compact

for r > 0, then

• T has a unique positive eigenvalue λ > 0 with a positive eigenvector y∗ ∈ P̊ ;

• the equation Tx = λx for x ∈ P+ implies that x = γy∗ for some real number

γ > 0.

Furthermore, for each y ∈ P+, we have

lim
k→∞

T ky

‖T ky‖
= y∗ > θ and lim

k→∞

‖T k+1y‖
‖T ky‖

= λ > 0.
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Proof. It follows from Theorem 3.3.1 that T is an Edelstein contraction with respect

to Hilbert’s projective metric d on Er = P̊
⋂
Sr (r > 0), that is

d(Tx, Ty) < d(x, y) for all x, y ∈ Er with x 6= y.

Let Frz = rTz
‖Tz‖ for r > 0 and all z ∈ P+. Then for all x, y ∈ Er with x 6= y, we have

Tx, Ty ∈ P̊ and so ‖Tx‖ > 0 and ‖Ty‖ > 0. By Lemma 3.2.2(1), we obtain

d(Frx, Fry) = d(
r

‖Tx‖
Tx,

r

‖Ty‖
Ty) = d(Tx, Ty) < d(x, y).

From Lemma 3.2.2(3) and 3.2.5, it follows that (Er, d) is a metric space and T is

strongly positive. So the Theorem 3.3.2 assures that the condition (3.3) of Edelstein

Contraction Theorem (Theorem 3.1.1) holds. For all z ∈ Er, clearly, Frz = rTz
‖Tz‖ ∈ Er,

and so Fr(Er) ⊂ Er.

Consequently, following the Edelstein Contraction Theorem, for each r > 0, there

exists unique xr ∈ Er such that

Frxr =
rTxr
‖Txr‖

= xr and lim
k→∞

d(F k+1
r y, xr) = 0 for all y ∈ P+.

Let x = rTy
‖Ty‖ . Then x ∈ Er. From Lemma 3.2.4, we obtain

lim
k→∞
‖ rT

kx

‖T kx‖
− xr‖ = lim

k→∞
‖F k

r x− xr‖ = 0 for all y ∈ P+.

In particular (r = 1), there exists a unique x1 ∈ E1 such that

F1x1 =
Tx1
‖Tx1‖

= x1 and lim
k→∞
‖ T kx

‖T kx‖
− x1‖ = 0.

Let y∗ = x1, λ = ‖Ty∗‖ and λr = ‖Txr‖
r

. Clearly, xr, y
∗ ∈ P̊ , and λr > 0, λ > 0 with

for each r > 0, ‖xr‖ = r, Txr = λrxr, T y
∗ = λy∗, ‖y∗‖ = 1.

Now we show the uniqueness of λ. For any given r > 0, from Frxr = rTxr
‖Txr‖ = xr, it

follows that Txr
‖Txr‖ = xr

r
, and so

xr
r
∈ E1 and F1(

xr
r

) =
T (xr

r
)

‖T (xr
r

)‖
=

Txr
‖Txr‖

=
xr
r
.
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By the uniqueness of y∗ = x1 in E1, we obtain

xr
r

= y∗, i.e., xr = ry∗.

Thus,

λr =
‖Txr‖
r

=
r‖Ty∗‖

r
= ‖Ty∗‖ = λ for each r > 0,

and so Txr = λxr for each r > 0.

Next we construct an iteration with initial value y ∈ P+. Take y ∈ P+. Then

Ty ∈ P̊ . Let x = Ty
‖Ty‖ . Then x ∈ E1. Therefore, by the positive homogeneousness of

T , we have

F k
1 (x) =

T kx

‖T kx‖
=

T k( Ty
‖Ty‖)

‖T k( Ty
‖Ty‖)‖

=
T k+1y

‖T k+1y‖
,

and hence,

lim
k→∞
‖ T k+1y

‖T k+1y‖
− y∗‖ = lim

k→∞
‖F k

1 (x)− y∗‖ = 0 for all y ∈ P+.

The desired conclusion follows.

Corollary 3.3.4 Let T : X → X be a strongly increasing, positively homogeneous and

continuous mapping. If the norm ‖ · ‖ in X is monotonic and Fry = rTy
‖Ty‖ is compact

for r > 0, then

• T has a unique positive eigenvalue λ > 0 with a unique positive eigenvector y∗ ∈

S1 ∩ P̊ ;

• for all y ∈ P+, we have

lim
k→∞
‖T ky‖

1
k = λ > 0.

Proof. It follows from Theorem 3.3.3 that T has a unique positive eigenvalue λ > 0

with a unique positive eigenvector y∗ ∈ S1 ∩ P̊ and

lim
k→∞

‖T k+1y‖
‖T ky‖

= λ > 0 for all y ∈ P+.
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Then for all ε > 0, there exists a positive integer N such that for k ≥ N ,

λ− ε < ‖T
k+1y‖
‖T ky‖

< λ+ ε,

and so

(λ− ε)‖T ky‖ < ‖T k+1y‖ < (λ+ ε)‖T ky‖.

Therefore, we have

(λ− ε)k−N+1‖TNy‖ <(λ− ε)k−N‖TN+1y‖ < · · · < (λ− ε)2‖T k−1y‖

< (λ− ε)‖T ky‖ <‖T k+1y‖ < (λ+ ε)‖T ky‖

<(λ+ ε)2‖T k−1y‖ < · · · < (λ+ ε)k−N‖TN+1y‖

<(λ+ ε)k−N+1‖TNy‖,

and hence

(λ− ε)
k−N+1

k+1 ‖TNy‖
1

k+1 < ‖T k+1y‖
1

k+1 < (λ+ ε)
k−N+1

k+1 ‖TNy‖
1

k+1 .

So, we obtain

λ− ε ≤ lim
k→∞
‖T ky‖

1
k ≤ λ+ ε.

Since ε is arbitrary, the desired conclusion follows.

Theorem 3.3.5 Let T : X → X be eventually strongly increasing, positively homoge-

neous and continuous. Suppose that the norm ‖ · ‖ of X is monotonic and Fry = rTy
‖Ty‖

is compact for r > 0. Then

• T has a unique positive eigenvalue λ > 0 with a positive eigenvector y∗ ∈ P̊ ;

• the equation Tx = λx for x ∈ P+ implies that x = γy∗ for some real number

γ > 0;

• for each y ∈ P+, we have

lim
k→∞

T ky

‖T ky‖
= y∗ > θ and lim

k→∞

‖T k+1y‖
‖T ky‖

= lim
k→∞
‖T ky‖

1
k = λ.
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Proof. It follows from the definition of eventually strongly increasing mapping that

S = T t is strongly increasing for some positive integer t. Then Fz = Sz
‖Sz‖ is an Edelstein

contraction with respect to Hilbert’s projective metric d on E1 = P̊
⋂
S1. Consequently,

following the Edelstein Contraction Theorem, there exists unique y∗ ∈ E1 such that

Fy∗ =
Sy∗

‖Sy∗‖
= y∗ and lim

k→∞
d(F k+1y, y∗) = 0 for all y ∈ P+.

Then Sy∗ = ‖Sy∗‖y∗, and so

F (
Ty∗

‖Ty∗‖
) =

S( Ty∗

‖Ty∗‖)

‖S( Ty∗

‖Ty∗‖)‖
=

T (Sy∗)

‖T (Sy∗)‖
=

T (y∗‖Sy∗‖)
‖T (y∗‖Sy∗‖)‖

=
Ty∗

‖Ty∗‖
,

and hence, Ty∗

‖Ty∗‖ is a fixed point of F . So by the uniqueness, we have

Ty∗

‖Ty∗‖
= y∗, i.e., Ty∗ = λy∗ and λ = ‖Ty∗‖ > 0.

From Theorem 3.3.3, we easily obtain that λ is unique and for all y ∈ P+,

lim
k→∞

T ky

‖T ky‖
= lim

k→∞

T k+ty

‖T k+ty‖
= lim

k→∞

Sky

‖Sky‖
= y∗.

The desired conclusion follows.

Remark 3.3.1 Our proof techniques are totally different from the ones of Chang [10]

and Mahadeva [41], which may be regarded as a unified proof for linear and nonlinear

mapping in Banach space. We directly reach our main goals by means of Edelstein

Contraction Theorem.

A cone P is called solid if P̊ 6= ∅, normal if there exists a constant M such that

‖x‖ ≤ M‖y‖ for all x, y ∈ P with x ≤ y. Clearly, the cone Rn
+ = {x ∈ Rn;x ≥ 0}

of the finite dimensional space Rn is normal and solid. It is well known that if P is a

normal cone in a Banach space with norm ‖ · ‖, then there exists an equivalent norm

‖ · ‖1 such that

‖x‖1 ≤ ‖y‖1 for all x, y ∈ P with x ≤ y.
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That is, the norm ‖ · ‖1 in X is monotonic (Nussbaum [51]). So the following results

are obtained easily, which are the improvement, development and complement of main

results in Krause [36] and Kohlberg [35].

Corollary 3.3.6 Let X be a real Banach space with the usual partial ordering induced

by a normal solid cone P , T : X → X be a (eventually) strongly increasing, positively

homogeneous and continuous mapping. Suppose that Fry = rTy
‖Ty‖ is compact for r > 0.

Then

• T has a unique positive eigenvalue λ with a positive eigenvector y∗ ∈ P̊ ;

• the equation Tx = λx for x ∈ P+ implies that x = γy∗ for some real number

γ > 0;

• for all y ∈ P+, we have

lim
k→∞

T ky

‖T ky‖
= y∗ > θ and lim

k→∞

‖T k+1y‖
‖T ky‖

= λ = lim
k→∞
‖T ky‖

1
k .

On a finite dimensional Euclidean space Rn, the compactness of T can be removed.

Theorem 3.3.7 Let T : Rn → Rn be a strongly increasing, positively homogeneous and

continuous mapping. Then

• T has a unique positive eigenvalue λ > 0 with a positive eigenvector y∗ ∈ Rn
++;

• the equation Tx = λx for x ∈ Rn
+ \ {θ} implies that x = ry∗ for some real number

r > 0.

Furthermore, for all y ∈ Rn
+ \ {θ}, we have

lim
k→∞

T ky

‖T ky‖
= y∗ > θ and lim

k→∞

‖T k+1y‖
‖T ky‖

= λ = lim
k→∞
‖T ky‖

1
k .
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Proof. Take y ∈ Rn
+ \{θ}. From the strong positiveness of T (Lemma 3.2.5), it follows

that Ty ∈ Rn
++ and ‖Ty‖ > 0. Let Frz = rTz

‖Tz‖ and x = rTy
‖Ty‖ . Clearly, x ∈ Er = {z ∈

Rn
++; ‖z‖ = r > 0}. By positive homogeneousness of T , we have

F k
r x =

rT kx

‖T kx‖
=

rT k+1y

‖T k+1y‖
∈ Er for all k > 0.

Since ‖F k
r x‖ = r for all k > 0, then there exists {F kix} ⊂ {F kx} such that for some

x′ ∈ X, F ki
r x

‖·‖−→ x′, and hence F ki+1
r x

‖·‖−→ Frx
′ and ‖x′‖ = r. Thus Tx′ ∈ Rn

++. Let

y∗ = Frx
′ = rTx′

‖Tx′‖ . Clearly, y∗ ∈ Er.

Therefore, we have F ki+1
r x

‖·‖−→ y∗ ∈ Er. By Lemma 3.2.3, we obtain

F ki+1
r x

d(·,·)−→ y∗ ∈ Er.

That is, the conclusion of Theorem 3.3.2 follows. Obviously, the norm ‖ · ‖ in Rn
+ is

monotonic. By the same proof techniques of Theorem 3.3.3, the desired result follows.

Theorem 3.3.8 Let T : Rn → Rn be a eventually strongly increasing, positively homo-

geneous and continuous mapping. Then

• T has a unique positive eigenvalue λ > 0 with a positive eigenvector y∗ ∈ Rn
++;

• the equation Tx = λx for x ∈ Rn
+ \{θ} implies that x = γy∗ for some real number

γ > 0.

Furthermore, for all y ∈ Rn
+ \ {θ}, we have

lim
k→∞

T ky

‖T ky‖
= y∗ > θ and lim

k→∞

‖T k+1y‖
‖T ky‖

= λ = lim
k→∞
‖T ky‖

1
k .

For a nonnegative square matrix A, let Tx = Ax. Obviously, T is positively ho-

mogeneous and compact continuous, and moreover, its (eventually) strong increasing
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coincides with (eventually) strong positiveness. The Perron-Frobenius theorem is de-

rived easily. So our proof may be viewed as a unified proof for linear and nonlinear

mapping in Banach space.

Corollary 3.3.9 Let A be a nonnegative, primitive square matrix. Then A has a unique

positive eigenvalue λ > 0 with a positive eigenvector y∗ ∈ Rn
++, and the equation Tx =

λx for x ∈ Rn
+ \ {θ} implies that x = ry∗ for some real number r > 0.

Furthermore, for all y ∈ Rn
+ \ {θ}, we have

lim
k→∞

Aky

‖Aky‖
= y∗ > θ and lim

k→∞

‖Ak+1y‖
‖Aky‖

= λ = lim
k→∞
‖Aky‖

1
k .

We also have the following problems awaiting further research and thought.

Problem 2 In Theorem 3.3.1–3.3.3, whether or not the strong positiveness (strong

increase) of T is replaced by the strict positiveness (strict increase, respectively) of T

or the other weaker conditions.

Problem 3 Whether is there really necessary for the norm ‖ · ‖ in Theorem 3.3.3 and

3.3.5 to be monotonic?

3.4 Positive eigenvalue of nonnegative tensors

For an m-order n-dimensional tensor A, when (Axm−1)[
1

m−1
] can be well defined, let

FA(x) = (Axm−1)[
1

m−1
].

An m−order n-dimensional tensor A is called nonnegative (or respectively positive),

denoted A ≥ Θ (or respectively A > Θ), if ai1i2···im ≥ 0 (or respectively ai1i2···im > 0).
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Chang, Pearson, and Zhang [12] showed that the strong increase of the mapping FA

with a nonnegative tensor A coincides with its strong positiveness (Also see Hu, Huang

and Qi [26]).

Theorem 3.4.1 Let FA with a nonnegative tensor A be strongly positive. Then FA

is an Edelstein contraction with respect to Hilbert’s projective metric d on Er = {x ∈

Rn
++; ‖x‖ = r > 0}, i.e.

d(FAx, FAy) < d(x, y) for all x, y ∈ Er with x 6= y. (3.9)

Proof. It follows from the definitions of FA and Axm−1 that FA is positively homo-

geneous. Clearly, the norm ‖ · ‖ in Rn is monotonic. Since the (eventually) strong

positiveness of FA is equivalent to its (eventually) strong increasing (see Chang, Pear-

son, and Zhang [12], Hu, Huang and Qi [26]), then following Theorem 3.3.1, the desired

result is reached.

Corollary 3.4.2 Let FA with a nonnegative tensor A be strongly positive. Then

• the tensor A has a unique positive eigenvalue λm−1 with a positive eigenvector

y∗ ∈ Rn
++;

• if x ≥ θ(x 6= θ) is a eigenvector corresponding to λm−1, then x = γy∗ for some

real number γ > 0.

Furthermore, for all y ∈ Rn
+ \ {θ}, we have

lim
k→∞

F k
Ay

‖F k
Ay‖

= y∗ > θ and lim
k→∞
‖F k
Ay‖

1
k = λ. (3.10)

Proof. Similarly to Theorem 3.4.1, we also have FA is strongly increasing, positively

homogeneous. It follows from the definitions of FA and Axm−1 that FA is compact
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and continuous. Following Theorem 3.3.7 or 3.3.3, there exists an unique λ > 0 and

y∗ ∈ Rm
++ such that

FAy
∗ = (A(y∗)m−1)[

1
m−1

] = λy∗.

Furthermore, for all y ∈ Rn
+ \ {0}, we have

lim
k→∞

F k
Ay

‖F k
Ay‖

= y∗ > 0 and lim
k→∞

‖F k+1
A y‖
‖F k
Ay‖

= λ = lim
k→∞
‖F k
Ay‖

1
k .

Let µ = λm−1. Then µ > 0 and

A(y∗)m−1 = λm−1(y∗)[m−1] = µ(y∗)[m−1].

This yields the desired conclusion.

A higher order tensor A is called primitive if FA is eventually strongly positive

(Chang, Pearson, and Zhang [12]). So, by Theorem 3.3.8 or 3.3.5, the following result

is obtained easily.

Corollary 3.4.3 Assume that FA is eventually strongly positive (or equivalently, A is

primitive). Then

• the tensor A has a unique positive eigenvalue λm−1 with a positive eigenvector

y∗ ∈ Rn
++;

• if x ≥ θ(x 6= θ) is a eigenvector corresponding to λm−1, then x = γy∗ for some

real number γ > 0.

Furthermore, for all y ∈ Rn
+ \ {θ}, we have

lim
k→∞

F k
Ay

‖F k
Ay‖

= y∗ > θ and lim
k→∞
‖F k
Ay‖

1
k = λ. (3.11)

A tensor A is called reducible, if there exists a nonempty proper index subset N ∈

{1, 2, · · · , n} such that

ai1i2···im = 0 for all i1 ∈ N , for all i2, i3, · · · , im /∈ N .

45



If A is not reducible, then we call it irreducible.

The notion of irreducible tensor is first introduced by Lim [40]. Chang, Pearson,

Zhang [11] adopted this notion in their subsequent work. Chang, Pearson, and Zhang

[12] showed that A + I is primitive whenever A is irreducible, where I is unit tensor

(its entries are δi1i2···im with δi1i2···im = 1 if and only if i1 = i2 = · · · = im and the others

are zero). So, the following result is obtained easily.

Corollary 3.4.4 Assume that A is irreducible. Then

• A has a unique positive eigenvalue (λm−1−1) with a positive eigenvector y∗ ∈ Rn
++;

• if x ≥ θ(x 6= θ) is a eigenvector corresponding to (λm−1 − 1), then x = γy∗ for

some real number γ > 0.

Furthermore, for all y ∈ Rn
+ \ {θ}, we have

lim
k→∞

F k
A+Iy

‖F k
A+Iy‖

= y∗ > θ and lim
k→∞
‖F k
A+Iy‖

1
k = λ > 1. (3.12)

Proof. It follows from Theorem 3.3.8 (or 3.3.5 or Corollary 3.4.4) that λy∗ = FA+Iy
∗

and

λ = ‖FA+Iy∗‖ = ‖(A(y∗)m−1 + (y∗)[m−1])[
1

m−1
]‖ > ‖y∗‖ = 1.

Since

λy∗ = FA+Iy
∗ = (A(y∗)m−1 + (y∗)[m−1])[

1
m−1

],

we have

λm−1(y∗)[m−1] = A(y∗)m−1 + (y∗)[m−1],

and hence

(λm−1 − 1)(y∗)[m−1] = A(y∗)m−1.

The desired conclusion follows.
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Chapter 4

Generalized eigenvalue problem

4.1 Introduction

Recently, Chang, Pearson Zhang [11,13] generalized the notion of eigenvalues of higher

order tensors to tensor pairs (or tensor pencils). For two m-order n-dimensional real

tensor A, B, (µ, x) ∈ C × (Cn \ {θ}) is called an eigenvalue-eigenvector pairs of A

relative to B, if both Axm−1 and Bxm−1 are not identical to zero and the n-system of

equations:

(A− µB)xm−1 = θ,

i.e.,
n∑

i2,··· ,im=1

(aii2···im − µbii2···im)xi2 · · ·xim = 0, i = 1, 2, · · · , n, (4.1)

possesses a solution, where θ = (0, 0, · · · , 0)T . µ is called a B-eigenvalue of A, and

x is called a B-eigenvector of A associated with µ. If B = I, the unit tensor, then

the B-eigenvalues are the eigenvalues, and the real B-eigenvalues with real eigenvectors

are the H-eigenvalues. Chang, Pearson and Zhang [11] also gave the Perron-Frobenius

theorem to the tensor pairs (A,B) involving the calculation of the inversion of B. Very

recently, Zhang [74] established the existence of real eigenvalue of higher order real
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tensor pairs with the help of the Brouwer degree.

In this chapter, with the aid of the property of topical mapping, we will present

a new iterative technique to extend the nonlinear Perron-Frobenius property to the

tensor pairs (A,B) without the requirement of the tensor inversion, where a condition

sufficiently guarantees that A has a unique positive B-eigenvalue with a correspond-

ing positive B-eigenvector. Also the well-known Collatz-Wielandt min-max theorem is

extended to the tensor pairs (A,B).

A mapping f : Rn → Rn is called additively homogeneous if

for all λ ∈ R, x ∈ Rn, f(x+ λ) = f(x) + λ, (4.2)

where x+λ = (x1 +λ, x2 +λ, · · · , xn+λ)T . In the sequel, we will omit the terminology

”additively”, when the additive characteristic is clear from the context. f is said to be

increasing if

for all x, y ∈ Rn, x ≤ y =⇒ f(x) ≤ f(y), (4.3)

where ≤ is the usual partial order on Rn(x ≤ y ⇐⇒ xi ≤ yi, for all i = 1, 2, . . . , n).

Following Gunawardena and Keane [21], a mapping f : Rn → Rn which satisfies (4.2)

and (4.3) is known as topical mapping. It is easy to obtain that a topical mapping must

necessarily be nonexpansive in the l∞ norm,

for all x, y ∈ Rn, ‖f(x)− f(y)‖ ≤ ‖x− y‖, (4.4)

where ‖x‖ = max
1≤i≤n

|xi|.

The theory of the topical mappings is very interesting because it appears classi-

cally in a remarkable variety of mathematical disciplines such as the matrices over the

max-plus semiring, Markov decision theory, the theory of stochastic games, the optimal

control problems, the discrete event systems models (see [2,4,22,23,42,43,68] for differ-

ent applications). A fundamental problem about a topical mapping f is the existence

and uniqueness of the eigenvalue and its corresponding eigenvector, which is to

find x ∈ Rn and λ ∈ R such that f(x) = λ+ x. (4.5)
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If such a λ ∈ R exists in (4.5), we call it an eigenvalue of f , and call x ∈ Rn an eigen-

vector of f associated with λ. In the applications of discrete event systems, the eigen-

value provides the output, and eigenvectors provide stationary schedules. In stochastic

control, the eigenvalue provides the optimal remuneration in unit time, and eigenvec-

tors provide stationary remuneration [2]. Batap [4] established the max version of the

Perron-Frobenius theorem. Recently, the nonlinear Perron-Frobenius theorem about

topical mapping were obtained by Gaubert and Gunawardena [22].

Let Rn
+ = {x ∈ Rn;x ≥ θ} and Rn

++ = {x ∈ Rn;x > θ}. For x ∈ Rn and a strictly

nonnegative tensor A of order m and dimension n, let

f(x) =
1

m− 1
log(A(exp(x))m−1), (4.6)

where log(x) = (log(x1), · · · , log(xn))T and exp(x) = (exp(x1), · · · , exp(xn))T . It is

easy to see that f(x) is a topical mapping. Furthermore, y ∈ Rn is an additive eigen-

vector of f with eigenvalue λ ∈ R if and only if exp(y) ∈ Rn
++ is an H-eigenvector of A

in Qi’s definition with H-eigenvalue exp((m− 1)λ) :

A(exp(y))m−1 = exp((m− 1)λ)(exp(y))[m−1]. (4.7)

Note that (additive) eigenvectors of f(x) connect bijectively to the (multiplicative)

H-eigenvectors of A all of whose components are positive. The word eigenvector (eigen-

value) will be used in both contexts; the reader should have no difficulty inferring the

right meaning.

Note further that a nonnegative tensor A connects to a topical mapping f if and

only if A is strictly nonnegative, i.e., FA(x) = (Axm−1)[
1

m−1
] > θ for all x > θ, which

is defined by Hu, Huang and Qi [26]. Moveover, they established the Perron-Frobenius

theorem for such a tensor.

The classical Perron-Frobenius theorem was extended to matrix pairs (A,B) (or

matrix pencils) by many mathematical researchers. For instance, see Mangasarian [44],
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Mehrmann,Nabben and Virnik [45], Mehrmann, Olesky, Phan, Van den Driessche [46]

for various studies.

Motivated by the eigenvalue theory of the tensor pairs (A,B) as well as matrix

pairs (A,B), spontaneously, we introduce the concept of the eigenvalue to the topical

mapping pairs (f, g).

Let f, g be two topical mappings on Rn. If there exists λ ∈ R and x ∈ Rn such that

f(x) = λ+ g(x), (4.8)

we call λ the g-eigenvalue of f , and call x ∈ Rn the g-eigenvector of f associated with

λ.

In this chapter, our purpose is to establish the existence and uniqueness of the

eigenvalue with a corresponding eigenvector for the topical mapping pairs (f, g) if some

orbits of f, g is bounded in the Hilbert semi-norm. That is, the nonlinear Perron-

Frobenius property is extended to topical mapping pairs (f, g). Our approach is mo-

tivated by the study of the tensor pairs, the matrix pairs, and the coincidence points

problem (fixed point problem) about nonlinear mappings, see Ref. [4, 13, 65, 73, 74].

It is based on the construction of eigenvalue for topical mappings as these were in-

troduced in the context [21–23]. By particularizing the mapping g or f , some other

methods and related results can be derived from our main theorems. In particular,

taking f(x) = 1
m−1 log(A(exp(x))m−1) and g(x) = 1

m−1 log(B(exp(x))m−1), our results

reduces to the Perron-Frobenius property of the eigenvalue problem for strictly non-

negative tensor pairs (A,B) without the requirement of the tensor inversion, i.e., the

existence and uniqueness of positive eigenvalue with a corresponding positive eigenvec-

tor for strictly nonnegative tensor pairs (A,B); in the case that f(x) = log(A(exp(x)))

and g(x) = log(B(exp(x))), we obtain that the Perron-Frobenius property for matrix

pairs (A,B).

The rest of the chapter is organized as follows. In Section 4.2, we introduce the
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notion of eigenvalue for topical mapping pairs (f, g) as well as some related concepts, and

show several nice properties of topical mapping pairs (f, g) such as the Collatz-Wielandt

min-max type property, the independence of χ(f, g) and so on, and give some lemmas

and results. In Section 4.3, we study the existence and uniqueness of the eigenvalue

with a corresponding eigenvector for the topical mapping pairs (f, g). In Section 4.4,

as an application, the nonlinear Perron-Frobenius property of the nonnegative tensor

pairs (A,B) (or matrix pairs (A,B)) is provided without the calculation of the tensor

(matrix) inversion. Some related results derived from our main theorems and some

concluding remarks can be found also in this section.

4.2 Properties of topical mapping pairs

Let a, b ∈ R. We write a∨ b and a∧ b indicating max{a, b} and min{a, b}, respectively.

Following Gunawardena, Keane [21] and Gaubert, Gunawardena [22], we also define

t, b : Rn → R as (“top function”) t(x) = x1 ∨ x2 ∨ · · · ∨ xn, and (“bottom function”)

b(x) = x1∧x2∧· · ·∧xn. Clearly, b(x) = −t(−x), and both of which are topical mappings.

It is easy to see that the supremum norm (or l∞ norm) on Rn can be written as

‖x‖ = t(x) ∨ (−b(x)) (4.9)

and

‖x‖H = t(x)− b(x) (4.10)

defines a semi-norm on Rn, which is referred to as the Hilbert semi-norm. dH(x, y) =

‖ log(x)− log(y)‖H gives the Hilbert projective metric on Rn
++ while ‖x‖ can define the

Thompson’s “part” metric on Rn
++. For more details of Hilbert projective metric and

Thompson’s metric, see Nussbaum [50–52].

For a topical mapping f on Rn, using (4.2) and (4.3), we easily obtain the following
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nonexpansiveness properties (see [21–23]): for all x, y ∈ Rn,

‖f(x)− f(y)‖ ≤ ‖x− y‖; (4.11)

‖f(x)− f(y)‖H ≤ ‖x− y‖H ; (4.12)

t(f(x)− f(y)) ≤ t(x− y). (4.13)

For two topical mappings f, g on Rn with fg = gf , if x is a g-eigenvector of f with

associated g-eigenvalue λ, i.e., (λ, x) ∈ R× Rn is a solution of (4.8),

f(x) = g(x) + λ,

then by the homogeneity (4.2) of f, g, we easily obtain

fk(x) = gk(x) + kλ,

and hence

b(
fk(x)− gk(x)

k
) = t(

fk(x)− gk(x)

k
) = λ. (4.14)

That is, if g-eigenvalue λ of f exists, then it must be

λ = lim
k→∞

b(
fk(x)− gk(x)

k
) = lim

k→∞
t(
fk(x)− gk(x)

k
).

Let y ∈ Rn be any given. Then we have f(y) = g(y) + (f(y)− g(y)), and so

f(y) ≤ g(y) + t(f(y)− g(y)).

It follows from the additive homogeneity (4.2) and increasing (4.3) of f, g that

f 2(y) ≤ g(f(y)) + t(f(y)− g(y)) ≤ g2(y) + 2t(f(y)− g(y)).

Therefore, we have

fk(y) ≤ gk(y) + kt(f(y)− g(y)),

and hence,

b(
fk(y)− gk(y)

k
) ≤ t(

fk(y)− gk(y)

k
) ≤ t(f(y)− g(y)). (4.15)
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A comparison between (4.14) and (4.15), one can not help asking: for two topical

mappings f, g, whether or not the following two limits exist for each y ∈ Rn,

lim
k→∞

b(
fk(y)− gk(y)

k
) and lim

k→∞
t(
fk(y)− gk(y)

k
);

if such limits exist, whether or not it is equal to some g-eigenvalue λ of f , and both

limits are independent of y ∈ Rn.

Next we go and try to answer (partially) the above questions with the aid of the

following classical lemma.

Lemma 4.2.1 (Krengel [38, Lemma 5.1]) If {ak}k≥1 is a subadditive sequence of real

numbers, i.e.,

ak+j ≤ ak + aj for all k, j ∈ N,

where N is the set of all positive integer. Then lim
n→∞

ak

k
= γ := inf

k∈N

ak

k
.

Following the nonexpansiveness property (4.13) and (4.11) of two topical mappings

f, g together with Lemma 4.2.1, we have the following.

Proposition 4.2.2 Let f, g be two topical mappings on Rn with f(g(y)) = g(f(y)) for

some y ∈ Rn. Then the following limits all exist and

lim
k→∞
‖f

k(y)− gk(y)

k
‖ = inf{‖f

k(y)− gk(y)

k
‖; k ∈ N}, (4.16)

lim
k→∞

b(
fk(y)− gk(y)

k
) = sup{b(f

k(y)− gk(y)

k
); k ∈ N}, (4.17)

lim
k→∞

t(
fk(y)− gk(y)

k
) = inf{t(f

k(y)− gk(y)

k
); k ∈ N}. (4.18)

Furthermore, they are independent of y ∈ Rn, only depend on f, g.

Proof. First we show (4.16). Let ak = ‖f
k(y)−gk(y)

k
‖. It follows from the nonexpansive-
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ness property (4.11) of f, g along with f(g(y)) = g(f(y)) that

ak+j = ‖f
k+j(y)− fkgj(y) + fkgj(y)− gk+j(y)

k + j
‖

≤ ‖f
k+j(y)− fkgj(y)‖

k + j
+
‖fkgj(y)− gk+j(y)‖

k + j

≤ ‖f
j(y)− gj(y)

j
‖+ ‖f

k(y)− gk(y)

k
‖

= ak + aj.

An application of Lemma 4.2.1 yields the desired result.

Similarly, from the nonexpansiveness property (4.13) of f, g, it is easy to see (4.18).

Since t(g
k(y)−fk(y)

k
) = −b(f

k(y)−gk(y)
k

), then we obtain easily (4.17).

Next we prove the independentness. It follows from the nonexpansiveness property

(4.11) of f, g that for all x ∈ Rn,

‖(fk(x)− gk(x))− (fk(y)− gk(y))‖ ≤‖fk(x)− fk(y)‖+ ‖gk(y)− gk(x)‖

≤ 2‖x− y‖,

then we have

‖f
k(x)− gk(x)

k
− fk(y)− gk(y)

k
‖ ≤ 2‖x− y‖

k
.

Therefore,

lim
k→∞
‖(fk(x)− gk(x))

k
− (fk(y)− gk(y)

k
‖ = 0,

which means that

lim
k→∞
‖f

k(x)− gk(x)

k
‖ = lim

k→∞
‖f

k(y)− gk(y)

k
‖

That is, the limit (4.16) is independent of y ∈ Rn. Using the same proof technique,

the limit (4.18) is independent of y ∈ Rn. By duality, the independentness of the limit

(4.17) is obtained easily also.

Since both (4.17) and (4.18) are only dependent on f, g, the concept of cycle-time

(vector) in Gunawardena and Keane [21] may be extended to topical mapping pairs
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(f, g). We call the value of (4.17) and (4.18) the generalized lower cycle-time and

generalized upper cycle-time of (f, g), respectively denoted by χ(f, g) and χ(f, g), i.e.,

χ(f, g) = lim
k→∞

b(
fk(y)− gk(y)

k
) and χ(f, g) = lim

k→∞
t(
fk(y)− gk(y)

k
).

We call

χ(f, g) = lim
k→∞

fk(y)− gk(y)

k

the generalized cycle-time vector of (f, g). When g = I, identity mapping on Rn, we still

call them lower cycle-time of f , cycle-time vector of f , upper cycle-time of f , denoted

respectively by χ(f), χ(f), χ(f). Clearly,

χ(f, g)e ≤ χ(f, g) ≤ χ(f, g)e,

where e = (1, 1, · · · , 1)T ;

whenever f1(x) ≤ f2(x) for all x ∈ R, then χ(f1, g) ≤ χ(f2, g);

whenever g1(x) ≤ g2(x) for all x ∈ R, then χ(f, g1) ≥ χ(f, g2).

Proposition 4.2.3 Let f, g be two topical mappings on Rn with f(g(x)) = g(f(x)) for

some x ∈ Rn. Then for any s ∈ N, we have

χ(f s, gs) = sχ(f, g) and χ(f s, gs) = sχ(f, g). (4.19)

Proof. We only show the first equation. Another is similar, we omit it. It follows from

the definition of χ(f, g) that ∀ε > 0,∃k0 ∈ N such that

fk(x)− gk(x) ≤ t(fk(x)− gk(x)) ≤ k(χ(f, g) + ε) for all k ≥ k0.

Following the homogeneity (4.2) and monotonicity (4.3) of f s, gs, we have

(fk)s(x) ≤ (gk)s(x) + ks(χ(f, g) + ε) for all k ≥ k0,

and hence
(f s)k(x)− (gs)k(x)

k
≤ s(χ(f, g) + ε) for all k ≥ k0.
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Therefore, χ(f s, gs) ≤ sχ(f, g).

Similarly, ∀ε > 0,∃k1 ∈ N such that for all k ≥ k1

(f s)k(x)− (gs)k(x) ≤ t(f s)k(x)− (gs)k(x)) ≤ k(χ(f s, gs) + ε).

Then we have

fks(x) ≤ gks(x) + k(χ(f s, gs) + ε),

and so (ks = l)

f l(x)− gl(x) ≤ l

s
(χ(f s, gs) + ε).

Therefore,
1

s
χ(f s, gs) ≥ χ(f, g) = lim

l→∞
t(
f l(x)− gl(x)

l
).

The desired result follows.

However, the existence of χ(f, g) and χ(f, g) depends on the fact that f(g(x)) =

g(f(x)) for some x ∈ Rn. Hence, one may ask:

Problem 4 Do the generalized lower cycle-time and generalized upper cycle-time of

non-commutative topical mapping pairs (f, g) exist? or Can the condition ”f(g(x)) =

g(f(x)) for some x ∈ Rn” be removed or weakened in Proposition 4.2.1?

Next we introduce the notions of the generalized super-eigenspace, generalized sub-

eigenspace and generalized slice space for the topical mapping pairs (f, g), and further-

more, give the like Collatz-Wielandt property of (f, g). The generalized super-eigenspace

Sλ(f, g) associated to λ, generalized sub-eigenspace Sλ(f, g) associated to λ, and gen-

eralized slice space Sλµ(f, g) associated to λ and µ, are defined respectively by

Sλ(f, g) = {x ∈ Rn; f(x) ≤ λ+ g(x)},

Sλ(f, g) = {x ∈ Rn; f(x) ≥ λ+ g(x)},
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Sλµ(f, g) = {x ∈ Rn; µ+ g(x) ≤ f(x) ≤ λ+ g(x)}.

It is obvious from (4.2) and (4.3) that all such spaces are invariant subsets whenever

f and g commutate with each other. When g = I, the identity mapping on Rn, we

still call them super-eigenspace of f associated to λ, sub-eigenspace of f associated to

λ, slice space of f associated to λ and µ, denoted respectively by Sλ(f), Sλ(f), Sλµ(f).

Let Λ(f, g) ⊂ R denote the set of those λ for which the corresponding generalized

super-eigenspace is nonempty:

Λ(f, g) = {λ ∈ R;Sλ(f, g) 6= ∅}.

Clearly, for any topical mapping pairs (f, g) on Rn and any λ, µ ∈ R,

Sλ(f, g) ∩ Sλ(g) ⊂ Sλ(f);

Sλ+µ(f, g) = Sλ(f − µ, g);

λ ≤ µ⇒ Sλ(f, g) ⊂ Sµ(f, g).

Now we give the like Collatz-Wielandt formula of the topical mapping pairs (f, g).

Proposition 4.2.4 Let f, g be two topical mappings on Rn with fg = gf . Then

χ(f, g) ≤ inf
x∈Rn

t(f(x)− g(x)) = inf Λ(f, g). (4.20)

Proof. Let a = infx∈Rn t(f(x)− g(x)) and b = inf Λ(f, g). Then ∀ε > 0,∃y ∈ Rn such

that

f(y)− g(y) ≤ t(f(y)− g(y)) ≤ a+ ε.

Then we have f(y) ≤ g(y)+a+ε, and hence Sa+ε(f, g) 6= ∅. Therefore, b = inf Λ(f, g) ≤

a+ ε. Since ε is arbitrary, then b ≤ a.
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Following the definition of b = inf Λ(f, g), for all ε > 0, there exists λ ∈ Λ(f, g) such

that

λ ≤ b+ ε.

This implies that Sλ(f, g) ⊂ Sb+ε(f, g), and so Sb+ε(f, g) 6= ∅. Then taking x ∈

Sb+ε(f, g), and hence f(x)− g(x) ≤ b+ ε. Thus,

a = inf
y∈Rn

t(f(y)− g(y)) ≤ t(f(x)− g(x)) ≤ b+ ε.

Since ε is arbitrary, then b ≥ a. So a = b.

Now we show χ(f, g) ≤ infx∈Rn t(f(x)− g(x)). In fact, since f(y) ≤ g(y) + t(f(y)−

g(y)), then fk(y) ≤ gk(y) + kt(f(y)− g(y)), and hence,

χ(f, g) = lim
k→∞

t(
fk(y)− gk(y)

k
) ≤ t(f(y)− g(y)).

Since χ(f, g) is independent of y ∈ Rn, then the desired result follows.

From this proposition, we have a conjecture on χ(f, g).

Conjecture χ(f, g) = inf
x∈Rn

t(f(x)− g(x)).

4.3 Eigenvalue problem of topical mapping pairs

It follows from (4.14) that the g-eigenvalue of f must be χ(f, g) if such a g-eigenvalue

exists for two commutative topical mappings f , g. In particular, the g-eigenvalue of f

is unique by Proposition 4.2.2. Then, what conditions would make a topical mapping

f possess g-eigenvector. In this section, we will try to deal with this question. We

extend the results of Gaubert and Gunawardena [22, Theorem 9] to topical mapping

pairs (f, g).
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Theorem 4.3.1 Let f, g be two topical mappings on Rn with fg = gf . Assume that

some orbits {fk(y)} and {gk(y)} of f, g are bounded in the Hilbert semi-norm as k →∞.

If there exists x ∈ Rn such that g(x) ≥ x, then f has a g-eigenvector z associated to

the g-eigenvalue χ(f, g).

Proof. Let F = f − χ(f, g). Then F is a topical mapping and

χ(F, g) = lim
l→∞

t(
f l(x)− lχ(f, g)− gl(x)

l
) = 0.

Following Proposition 4.2.3, we have χ(F k, gk) = kχ(F, g) = 0 for each k ∈ N, and

hence

χ(F k, gk) ≤ χ(F k, gk) = 0.

From Proposition 4.2.4, it follows that for all k ∈ N,

t(F k(x)− gk(x)) ≥ χ(F k, gk) = 0. (4.21)

By symmetry,

b(F k(x)− gk(x)) ≤ χ(F k, gk) ≤ 0. (4.22)

Since both fk(y) and gk(y) are bounded in the Hilbert semi-norm, then so is {fk(y)−

gk(y)}, and hence for all k ∈ N and some M ′ > 0,

‖F k(y)− gk(y)‖H = ‖fk(y)− gk(y)‖H ≤M ′.

By (4.12), we have

‖(F k(y)− gk(y))− (F k(x)− gk(x))‖H

≤ ‖F k(y)− F k(x)‖H + ‖gk(x)− gk(y)‖H

≤ 2‖x− y‖H ,

and hence for all k ∈ N and some M > 0

max{‖F k(x)‖H , ‖gk(x)‖H , ‖F k(x)− gk(x)‖H} ≤M. (4.23)
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It follows from (4.21) and (4.22) that −b(F k(x)− gk(x) ≥ 0 and

‖F k(x)− gk(x)‖ = t(F k(x)− gk(x)) ∨ (−b(F k(x)− gk(x)))

≤ t(F k(x)− gk(x)) + (−b(F k(x)− gk(x))

= ‖F k(x)− gk(x)‖H ≤M.

Thus, ‖F k(x)− gk(x)‖ is bounded. Since g(x) ≥ x by the assumption, then

· · · ≥ gk+1(x) ≥ gk(x) ≥ · · · ≥ g2(x) ≥ g(x) ≥ x, (4.24)

and so b(gk(x)) is bounded from below as k → ∞. As ‖gk(x)‖H = t(gk(x)) − b(gk(x))

remains bounded by (4.23), then ‖gk(x)‖ is bounded as k → ∞, and hence, so is

‖F k(x)‖.

Next we iteratively defined a sequence {xk} to find some coincidence points of map-

pings F, g, and further such a point is a g-eigenvector of f .

x1 = g(x),

x2 = F (x1) = F (g(x)),

x3 = g(x2) = g(F (g(x))) = F (g2(x)),

...

x2k = F (x2k−1) = F k(gk(x)),

x2k+1 = g(x2k) = F k(gk+1(x)),

...

(4.25)

Then we have

‖x2k − F k(x)‖ = ‖F k(gk(x))− F k(x)‖ ≤ ‖gk(x)− x‖

and

‖x2k+1 − F k(x)‖ = ‖F k(gk+1(x))− F k(x)‖ ≤ ‖gk+1(x)− x‖.

This together with the boundedness of both ‖gk(x)‖ and ‖F k(x)‖ imply that the se-

quence {xk} is bounded in the supremum norm as k → ∞. Thus, we can choose

u, v ∈ Rn such that

u = lim
l→∞

∧
k≥l

x2k and v = lim
l→∞

∧
k≥l

x2k+1
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where ∧xk = (∧xk1,∧xk2, · · · ,∧xkn). It follows from (4.24) and the monotonicity of g, F

that

x2k = F k(gk(x)) ≤ F k(gk+1(x)) = x2k+1 for all k ∈ N,

which means u ≤ v. By continuity and monotonicity of g, F , we have

g(u) = lim
l→∞

g(
∧
k≥l

x2k) ≤ lim
l→∞

∧
k≥l

g(x2k) = lim
l→∞

∧
k≥l

x2k+1 = v

and

F (v) = lim
l→∞

F (
∧
k≥l

x2k−1) ≤ lim
l→∞

∧
k≥l

F (x2k−1) = lim
l→∞

∧
k≥l

x2k = u

From the monotonicity of g along with the fact that g(u) ≤ v and u ≤ v, it follows that

g(F (v)) ≤ g(u) ≤ v and F (v) ≤ u ≤ v. (4.26)

Let G = gF . Using the same iterative technique as (4.25), we can define a sequence

{yk},
y1 = F (v), y2 = G(y1), y3 = F (y2),

· · · · · · ,

y2k = G(y2k−1) = F k(Gk(v)),

y2k+1 = F (y2k) = F k+1(Gk(v)),

· · · · · · .

By the monotonicity of F,G and (4.26), we obtain

y2k+2 = G(y2k+1) = F k+1(Gk(G(v)))

≤ F (F k(Gk(v))) = F (y2k) = y2k+1 = Gk(F k(F (v)))

≤ F k(Gk(v)) = G(F k(Gk−1(v))) = G(y2k−1) = y2k.

That is, for all k ∈ N,

y2k+2 ≤ y2k+1 ≤ y2k, and hence yk+1 ≤ yk.

This implies that the sequence {yk} is nonincreasing as k → ∞. Since both ‖gk(x)‖

and ‖F k(x)‖ is bounded as k →∞ and

‖gk(x)− gk(v)‖ ≤ ‖x− v‖ and ‖F k(x)− F k(v)‖ ≤ ‖x− v‖,
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then ‖gk(v)‖, ‖F k(v)‖ and ‖Gk(v)‖(= ‖F k(gk(v))‖) are bounded also. Thus, the se-

quence {yk} is nonincreasing and bounded in the supremum norm as k → ∞. This

implies that {yk} must converge to a point in Rn, say z. By continuity of G,F , we have

F (z) = lim
k→∞

F (y2k) = lim
k→∞

y2k+1 = z

and

g(F (z)) = G(z) = lim
k→∞

G(y2k−1) = lim
k→∞

y2k = z.

As a result,

g(z) = g(F (z)) = z = F (z).

Consequently, F (z) = f(z)− χ(f, g) = g(z), as required.

Corollary 4.3.2 Let f, g be two topical mappings on Rn with fg = gf . Assume that

some generalized super-eigenspace Sλ(f, g) is non-empty and bounded in the Hilbert

semi-norm. If there exists x ∈ Rn such that g(x) ≥ x, then f has a g-eigenvector z

associated to the g-eigenvalue χ(f, g).

Proof. Since Sλ(f, g) is non-empty and bounded in the Hilbert semi-norm, we may

take y ∈ Sλ(f, g), i.e.,

f(y) ≤ g(y) + λ.

By the assumption fg = gf and (4.2) and (4.3), we have for all k ∈ N

f(fk(y)) = fk(f(y)) ≤ fk(g(y) + λ) = g(fk(y)) + λ

and

f(gk(y)) = gk(f(y)) ≤ gk(g(y) + λ) = g(gk(y)) + λ.

Thus, fk(y), gk(y) ∈ Sλ(f, g) for all k ∈ N, and so they are bounded in the Hilbert

semi-norm as k →∞. By Theorem 4.3.1, the desired result follows.

Corollary 4.3.3 Let f, g be two topical mappings on Rn with fg = gf . Assume that

some super-eigenspaces Sλ(f) and Sµ(g) are non-empty and bounded in the Hilbert
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semi-norm. If there exists x ∈ Rn such that g(x) ≥ x, then f has a g-eigenvector z

associated to the g-eigenvalue χ(f, g).

Proof. Since Sλ(f) and Sµ(g) are non-empty and bounded in the Hilbert semi-norm,

we may choose y ∈ Sλ(f) and y∗ ∈ Sµ(g), i.e.,

f(y) ≤ y + λ and g(y∗) ≤ y∗ + µ.

By (4.2) and (4.3), we have for all k ∈ N

f(fk(y)) = fk(f(y)) ≤ fk(y + λ) = fk(y) + λ

and

g(gk(y∗)) = gk(g(y∗)) ≤ gk(y ∗+µ) = gk(y∗) + µ.

Thus, fk(y) ∈ Sλ(f) and gk(y∗) ∈ Sµ(g) for all k ∈ N, and so they are bounded in the

Hilbert semi-norm as k →∞. Since

‖gk(y∗)− gk(y)‖H ≤ ‖y∗ − y‖H ,

{gk(y)} is bounded in the Hilbert semi-norm as k → ∞ also. By Theorem 4.3.1, the

desired result follows.

Let g(x) = x for all x ∈ Rn. Then we have the following which is one of the most

important results in Gaubert and Gunawardena [22].

Corollary 4.3.4 (Gaubert and Gunawardena [22, Theorem 9]) Let f be a topical

mappings on Rn. If some orbits of f are bounded in the Hilbert semi-norm, then f has

an eigenvector in Rn associated to a unique eigenvalue χ(f).
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4.4 Generalized H−eigenvalue of nonnegative ten-

sors

For an m-order n-dimensional tensor A, when (Axm−1)[
1

m−1
] can be well defined, let

FA(x) = (Axm−1)[
1

m−1
].

A is called strictly nonnegative if FA(x) > θ for all x > θ, which is first defined by Hu,

Huang and Qi [26]. They also showed that each weakly irreducible nonnegative tensor

is strictly nonnegative.

Let an m-order n-dimensional tensor A be nonnegative. A is called reducible, if

there exists a nonempty proper index subset N ∈ {1, 2, · · · , n} such that

ai1i2···im = 0 for all i1 ∈ N , for all i2, i3, · · · , im /∈ N .

If A is not reducible, then we call it irreducible.

The directed graph of A, G(A) = (V,E(A)), where V is its vertex set {1, 2, · · · , n}

and E(A) is the set of its all edges (the edge (i, j) ∈ E(A) if and only if aii2···im > 0

for some ik = j, k = 2, 3, · · · ,m). An m-order n-dimensional tensor A is called weakly

irreducible if G(A) is strongly connected.

The notion of irreducible tensor is first introduced by Lim [40]. Chang, Pearson,

Zhang [11] adopted this notion in their subsequent work, and obtained the Perron-

Frobenius theorem for such tensor pairs (A,B) which involves the calculation of the

inverse of B. The concept of weakly irreducible tensor is first introduced by Friedland,

Gauber, Han [19], and the Perron-Frobenius theorem was proved for such a class of

tensor. They also showed that each irreducible nonnegative tensor is weakly irreducible.

Yang and Yang [70] gave the following definition of weakly irreducible tensor, which

directly reveals the relationship between the weakly irreducible tensor and irreducible

tensor, and also showed the equivalence of this definition and Friedland, Gauber, Han’s.
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An m-order n-dimensional nonnegative tensor A is called weakly reducible, if there

exists a nonempty proper index subset N ∈ {1, 2, · · · , n} such that

ai1i2···im = 0 for all i1 ∈ N , for some ij /∈ N , j = 2, 3, · · · ,m.

If A is not weakly reducible, then we call it weakly irreducible.

Theorem 4.4.1 Let A,B be two weakly irreducible and nonnegative tensors with same

order m and same dimension n and FA(FB(y)) = FB(FA(y)) for some y ∈ Rn
++. Then

for each x ∈ Rn, two limits

lim
k→∞

max
i=1,··· ,n

(
log(F k

A(exp(x)))− log(F k
B(exp(x)))

k

)
i

(4.27)

lim
k→∞

min
i=1,··· ,n

(
log(F k

A(exp(x)))− log(F k
B(exp(x)))

k

)
i

(4.28)

exists and only depends on A,B, where (x)i = xi for x = (x1, x2, · · · , xn)T .

Proof. Let f(x) = log(FA(exp(x))) and g(x) = log(FB(exp(x))). Then both f and g

are topical mappings and

f 2(x) = log(FA(exp(log(FA(exp(x)))))) = log(F 2
A(exp(x))),

and hence, the following can be done in the same manner,

fk(x) = log(F k
A(exp(x))) and gk(x) = log(F k

B(exp(x))).

Let v = log(y). It follows from the fact that FA(FB(y)) = FB(FA(y)) that

f(g(v)) = log(FA(exp(log(FB(exp(v)))))) = log(FA(FB(exp(log(y)))))

= log(FA(FB(y))) = log(FB(FA(y)))

= log(FB(FA(exp(log(y))))) = log(FB(exp(log(FA(exp(v))))))

=g(f(v)).

From Proposition 4.2.2, the desired conclusion follows.
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Since both the limits (4.27) and (4.28) only depend on A,B, as already mentioned

(see page 55), we respectively call the value of (4.27) and (4.28) the generalized lower

cycle-time and generalized upper cycle-time of A,B, denoted by χ(A,B) and χ(A,B),

i.e.,

χ(A,B) = lim
k→∞

min
i=1,··· ,n

(
log(F k

A(exp(x)))− log(F k
B(exp(x)))

k

)
i

χ(A,B) = lim
k→∞

max
i=1,··· ,n

(
log(F k

A(exp(x)))− log(F k
B(exp(x)))

k

)
i

.

We also call

χ(A,B) = lim
k→∞

log(F k
A(exp(x)))− log(F k

B(exp(x)))

k

the generalized cycle-time vector of (A,B). When FAFB = FBFA, it is easy to obtain

the following result from Proposition 4.2.4.

Theorem 4.4.2 Let A,B be two weakly irreducible and nonnegative tensors with same

order m and same dimension n with FA(FB) = FB(FA). Then

χ(A,B) ≤ inf
x∈Rn

max
i=1,··· ,n

(log(FA(exp(x)))− log(FB(exp(x))))i . (4.29)

We now show the Perron-Frobenius property for nonnegative tensor pairs (A,B)

without the requirement of the tensor inversion, which is referred to as an immediate

conclusions of Theorem 4.3.1.

Theorem 4.4.3 Let A,B be two weakly irreducible and nonnegative tensors with order

m and dimension n and FAFB = FBFA. If ∃x > θ such that Bxm−1 ≥ x[m−1], then

A has a unique positive B-eigenvalue exp((m − 1)λ) with a corresponding positive B-

eigenvector, where

λ = χ(A,B) = lim
k→∞

max
i=1,··· ,n

(
log(F k

A(exp(x)))− log(F k
B(exp(x)))

k

)
i

.

Proof. Let f(x) = log(FA(exp(x))) and g(x) = log(FB(exp(x))). Similarly to Theorem

4.4.1, we also have fg = gf, and both directed graph G(f) and G(g) are strongly
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connected by Friedland, Gauber, Han [19, Lemma 3.2]. It follows from Gaubert and

Gunawardena [22, Theorem 10] that both Sλ(f) and Sλ(g) are bounded in the Hilbert

semi-norm. From the assumption Bxm−1 ≥ x[m−1], taking x∗ = log(x), we have

g(x∗) = log(B(exp(x∗))m−1)[
1

m−1
] = log(Bxm−1)[

1
m−1

]

≥ log(x[m−1])[
1

m−1
] = log(x) = x∗.

By Corollary 4.3.3, there exists z ∈ Rn such that f(z) = g(z) + λ, where λ = χ(f, g) =

χ(A,B). That is,

A(exp(z))m−1 = exp((m− 1)λ)B(exp(z))m−1.

Let v = exp(z) and µ = exp((m − 1)λ). Clearly, µ > 0 and v > 0. This yields the

desired result.

When m = 2, we have the Perron-Frobenius property for nonnegative matrix pairs.

Corollary 4.4.4 Let A,B be two n×n nonnegative and irreducible matrices with AB =

BA. If ∃x > θ such that Bx ≥ x, then the nonnegative matrix pairs (A,B) has a unique

positive eigenvalue exp(χ(A,B)) with a corresponding positive eigenvector, where

χ(A,B) = lim
k→∞

max
i=1,··· ,n

(
log(Ak(exp(x)))− log(Bk(exp(x)))

k

)
i

. (4.30)

Remark 4.4.1 In Corollary 4.4.4, if B = E, the unit matrix, then it is not difficult to

derive the classical Perron-Frobenius theorem of nonnegative matrix. In Theorem 4.4.3,

if B = I, the unit tensor, then the nonlinear Perron-Frobenius theorem (Friedland,

Gauber, Han [19, theorem 3.2]) of higher order nonnegative tensor can be reached.

Remark 4.4.2 Theorem 4.3.1 actually provides a method for constructing g-eigenvector

of f , while g-eigenvalue of f may be obtained by calculating the generalized upper cycle-

time χ(f, g) (Proposition 4.2.2),

χ(f, g) = lim
k→∞

t(
fk(y)− gk(y)

k
) for all y ∈ Rn.
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Since χ(f, g) is independent of the initial value y ∈ Rn, we may take some special

point to make it easier for computing. For example, the initial value y = θ or e =

(1, 1, · · · , 1)T or the unit vector, etc.

Remark 4.4.3 Reviewing the proof of Theorem 4.3.1 again, it is not difficult to see

that the conclusions still hold if g in the hypothesis, “there exists x ∈ Rn such that

g(x) ≥ x”, is replaced by f . On the other hand, we also have the following questions:

is such a condition necessary? Can it be removed or be replaced by other more general

condition to meet the same conclusion? So, we have to work hard for further study.

Remark 4.4.4 The commutativity of topical mapping pairs (f, g) seems not to be nec-

essary for the existence of eigenvalue-eigenvector. The following is an example that a

non-commutative topical mapping pairs may possess eigenvalue-eigenvector.

Example 4.4.5 Consider the topical mappings f, g : R3 → R3

f(x) =


x2 ∨ x3

(x1 ∨ x2) ∧ x3
(x2 ∨ x3) ∧ x1

 , g(x) =


x2 ∨ x1
x3 ∨ x2
x1 ∨ x3

 .

It is easy to see that fg 6= gf . However, 0 is an g-eigenvalue of f , i.e., f(x) = g(x) for

all x1 = x2 = x3. Furthermore, for x = (1, 2, 3), g(x) ≥ x.
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Chapter 5

Pareto eigenvalue of higher order

tensors

5.1 Introduction

Let A be an m-order n-dimensional tensor. For an element x = (x1, x2, · · · , xn)T ∈ Rn

or Cn, Axm is defined by

Axm =
n∑

i1,i2,··· ,im=1

ai1i2···imxi1xi2 · · ·xim ; (5.1)

Axm−1 is a vector in Rn (or Cn) with its ith component defined by

(Axm−1)i =
n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim for i = 1, 2, . . . , n. (5.2)

An m-order n-dimensional tensor A is said to be symmetric if its entries ai1···im are

invariant for any permutation of the indices. Clearly, each m-order n-dimensional sym-

metric tensor A defines a homogeneous polynomial Axm of degree m with n variables

and vice versa.

Given an m-order n-dimensional symmetric tensor A, we consider a constrained
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optimization problem of the form:

min
1

m
Axm

s.t. xTx[m−1] = 1

x ∈ Rn
+.

(5.3)

Then the Lagrange function of the problem (5.3) is given clearly by

L(x, λ, y) =
1

m
Axm +

1

m
λ(1− xTx[m−1])− xTy (5.4)

where x, y ∈ Rn
+, λ

m
∈ R is the Lagrange multiplier of the equality constraint and y is

the Lagrange multiplier of non-negative constraint. So the solution x of the problem

(5.3) satisfies the following conditions:

Axm−1 − λx[m−1] − y = θ (5.5)

1− xTx[m−1] = 0 (5.6)

xTy = 0 (5.7)

x, y ∈ Rn
+, (5.8)

where θ = (0, 0, · · · , 0)T . The equation (5.6) means that
n∑
i=1

xmi = 1. It follows from

the equations (5.5), (5.7) and (5.8) that

xTy = xTAxm−1 − λxTx[m−1] = 0

x ≥ θ,Axm−1 − λx[m−1] = y ≥ θ,

and hence, 
Axm = λxTx[m−1]

Axm−1 − λx[m−1] ≥ θ

x ≥ θ.

(5.9)

Following Qi [59] (H−eigenvalue of the tensor A) and Seeger [67] (Pareto eigenvalue

of the matrix A), for a m-order n-dimensional tensor A, a real number λ is called Pareto

H−eigenvalue of the tensor A if there exists a non-zero vector x ∈ Rn satisfying the
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system (5.9). The non-zero vector x is called a Pareto H−eigenvector of the tensor A

associated to λ.

Similarly, for given an m-order n-dimensional symmetric tensor A, we consider

another constrained optimization problem of the form (m ≥ 2):

min
1

m
Axm

s.t. xTx = 1

x ∈ Rn
+.

(5.10)

Obviously, when x ∈ Rn, xTx = 1 if and only if (xTx)
m
2 = 1. The corresponding

Lagrange function may be written in the form

L(x, µ, y) =
1

m
Axm +

1

m
µ(1− (xTx)

m
2 )− xTy.

So the solution x of the problem (5.10) satisfies the conditions:

Axm−1 − µ(xTx)
m
2
−1x− y = θ, 1− (xTx)

m
2 = 0, xTy = 0, x, y ∈ Rn

+.

Then we also have
n∑
i=1

x2i = 1 and


Axm = µ(xTx)

m
2

Axm−1 − µ(xTx)
m
2
−1x ≥ θ

x ≥ θ.

(5.11)

Following Qi [59] (Z−eigenvalue of the tensor A) and Seeger [67] (Pareto eigenvalue

of the matrix A), for an m-order n-dimensional tensor A, a real number µ is said to be

Pareto Z−eigenvalue of the tensor A if there is a non-zero vector x ∈ Rn satisfying the

system (5.11). The non-zero vector x is called a Pareto Z−eigenvector of the tensor A

associated to µ.

So the constrained optimization problem (5.3) and (5.10) of homogeneous polyno-

mial may be respectively solved by means of the Pareto H-eigenvalue (5.9) and Pareto

71



Z−eigenvalue (5.11) of the corresponding tensor. It will be an interesting work to

compute the Pareto H-eigenvalue (Z−eigenvalue) of a higher order tensor.

When m = 2, both Pareto H−eigenvalue and Pareto Z−eigenvalue of the m-order

n-dimensional tensor obviously changes into Pareto eigenvalue of the symmetric matrix

A, i.e., µ is called Pareto eigenvalue of the symmetric matrix A if there exists a non-zero

element x ∈ Rn (or Cn) such that 
Ax2 = µxTx

Ax− µx ≥ θ

x ≥ θ.

(5.12)

The concept of Pareto eigenvalue is first introduced and used by Seeger [67] for study-

ing the equilibrium processes defined by linear complementarity conditions. For more

details, also see Hiriart-Urruty and Seeger [25].

In this chapter, we will study the properties of the ParetoH-eigenvalue (Z−eigenvalue)

of a higher order tensor A. It will be proved that a real number λ is Pareto H-

eigenvalue (Z−eigenvalue) of A if and only if λ is H++-eigenvalue (Z++-eigenvalue)

of some |N |-dimensional principal sub-tensor of A with corresponding H−eigenvector

(Z−eigenvector) w and∑
i2,··· ,im∈N

aii2···imwi2wi3 · · ·wim ≥ 0 for i ∈ {1, 2, · · · , n} \ N .

So we may calculate some Pareto H-eigenvalue (Z−eigenvalue) of a higher order tensor

by means of H++-eigenvalue (Z++-eigenvalue) of the lower dimensional tensors. What’s

more, we will show that

min
x≥0
‖x‖m=1

Axm = min{µ;µ is Pareto H-eigenvalue of A} (5.13)

min
x≥0
‖x‖2=1

Axm = min{µ;µ is Pareto Z-eigenvalue of A}. (5.14)

Therefore, we may solve the constrained minimization problem for homogeneous poly-

nomial and test the (strict) copositivity of a symmetric tensor A with the help of
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computing the Pareto H-eigenvalue (or Pareto Z-eigenvalue) of a symmetric tensor. As

a corollary, a symmetric tensor A is copositive if and only if every Pareto H-eigenvalue

(Z−eigenvalue) of A is non-negative and A is strictly copositive if and only if every

Pareto H-eigenvalue (Z−eigenvalue) of A is positive.

5.2 Preliminaries and Basic facts

In 1952, Motzkin [47] introduced the concept of copositive matrices, which is an impor-

tant concept in applied mathematics and graph theory. A real symmetric matrix A is

said to be

• copositive if x ≥ θ implies xTAx ≥ 0;

• strictly copositive if x ≥ θ and x 6= θ implies xTAx > 0.

Recently, Qi [63] extended this concept to the higher order symmetric tensors and

obtained its some nice properties as ones of copositive matrices. Let A be a real

symmetric tensor of order m and dimension n. A is said to be

• copositive if Axm ≥ 0 for all x ∈ Rn
+;

• strictly copositive if Axm > 0 for all x ∈ Rn
+ \ {θ}.

Let ‖ · ‖ denote any norm on Rn. Now we give the equivalent definition of (strict)

copositivity of a symmetric tensor in the sense of any norm on Rn.

Lemma 5.2.1 Let A be a symmetric tensor of order m and dimension n. Then

(i) A is copositive if and only if Axm ≥ 0 for all x ∈ Rn
+ with ‖x‖ = 1;
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(ii) A is strictly copositive if and only if Axm > 0 for all x ∈ Rn
+ with ‖x‖ = 1;

(iii) A is strictly copositive if and only if A is copositive and the fact that Axm = 0

for x ∈ Rn
+ implies x = θ.

Proof. (i) When A is copositive, the conclusion is obvious. Conversely, take x ∈ Rn
+.

If ‖x‖ = 0, then it follows that x = θ, and hence Axm = 0. If ‖x‖ > 0, then let y = x
‖x‖ .

We have ‖y‖ = 1 and x = ‖x‖y, and so

Axm = A(‖x‖y)m = ‖x‖mAym ≥ 0.

Therefore, Axm ≥ 0 for all x ∈ Rn
+, as required.

Similarly, (ii) is easily proved.

(iii) Let A be strictly copositive. Clearly, A is copositive. Suppose there exists

x0 ∈ Rn
+ and x0 6= θ such that Axm0 = 0, which contradicts the strict copositivity of A.

Conversely, if x 6= θ and x ∈ Rn
+, then Axm 6= 0. Since A is copositive, Axm > 0. The

conclusion follows.

Let A be an m-order n-dimensional symmetric tensor. A number λ ∈ C is called an

eigenvalue of A if there exists a nonzero vector x ∈ Cn satisfying

Axm−1 = λx[m−1], (5.15)

where x[m−1] = (xm−11 , · · · , xm−1n )T , and call x an eigenvector of A associated with the

eigenvalue λ. We call such an eigenvalue H-eigenvalue if it is real and has a real eigen-

vector x, and call such a real eigenvector x an H-eigenvector. These concepts were first

introduced by Qi [59] to the higher order symmetric tensor, and the existence of the

eigenvalues and its some application were studied also. Lim [40] independently intro-

duced these concept and obtained the existence results using the variational approach.

A number µ ∈ C is said to be an E-eigenvalue of A if there exists a nonzero vector

x ∈ Cn such that

Axm−1 = µx(xTx)
m−2

2 . (5.16)
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Such a nonzero vector x ∈ Cn is called an E-eigenvector of A associated with µ, If

x is real, then µ is also real. In this case, µ and x are called a Z-eigenvalue of A

and a Z-eigenvector of A (associated with µ), respectively. Qi [59–61] first introduced

and used these concepts and showed that if A is regular, then a complex number is

an E-eigenvalue of higher order symmetric tensor if and only if it is a root of the

corresponding E-characteristic polynomial. Also see Hu and Qi [27], Hu, Huang, Ling

and Qi [28], Li, Qi and Zhang [39] for more details.

In homogeneous polynomial Axm defined by (5.1), if we let some (but not all) xi

be zero, then we have a homogeneous polynomial with fewer variables, which defines

a lower dimensional tensor. We call such a lower dimensional tensor a principal sub-

tensor of A. That is, An m-order r-dimensional tensor B is called principal sub-tensor

of an m-order n-dimensional tensor A if there is a set N that composed of r elements

of {1, 2, · · · , n} such that B consists of rm entries of A = (ai1···im) and

B = (ai1···im), for all i1, i2, · · · , im ∈ N .

The concept were first introduced and used by Qi [59] to the higher order symmetric

tensor.

Recently, Qi [62] introduced and used the following concepts for studying the prop-

erties of hypergraph. An H-eigenvalue λ of A is called

• H+-eigenvalue of A, if its H-eigenvector x ∈ Rn
+;

• H++-eigenvalue of A, if its H-eigenvector x ∈ Rn
++.

Similarly, we introduce the concepts of Z+-eigenvalue and Z++-eigenvalue. An Z-

eigenvalue µ of A is said to be

• Z+-eigenvalue of A, if its Z-eigenvector x ∈ Rn
+;

• Z++-eigenvalue of A, if its Z-eigenvector x ∈ Rn
++.
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5.3 Pareto H-eigenvalue and Pareto Z-eigenvalue

LetN be a subset of the index set {1, 2, · · · , n} andA be a tensor of order m and dimen-

sion n. We denote the principal sub-tensor of A by AN which is obtained by homoge-

neous polynomial Axm for all x = (x1, x2, · · · , xn)T with xi = 0 for i ∈ {1, 2, · · · , n}\N .

The symbol |N | denotes the cardinality of N . So, AN is a tensor of order m and di-

mension |N | and the principal sub-tensor AN is just A itself when N = {1, 2, · · · , n}.

Theorem 5.3.1 Let A be a m-order and n-dimensional tensor. A real number λ is

Pareto H-eigenvalue of A if and only if there exists a nonempty subset N ⊆ {1, 2, · · · , n}

and a vector w ∈ R|N | such that

ANwm−1 = λw[m−1], w ∈ R|N |++ (5.17)∑
i2,··· ,im∈N

aii2···imwi2wi3 · · ·wim ≥ 0 for i ∈ {1, 2, · · · , n} \ N (5.18)

In such a case, the vector y ∈ R|N |+ defined by

yi =

wi, i ∈ N

0, i ∈ {1, 2, · · · , n} \ N
(5.19)

is a Pareto H-eigenvector of A associated to the real number λ.

Proof. First we show the necessity. Let the real number λ be a Pareto H-eigenvalue

of A with a corresponding Pareto H-eigenvector y. Then by the definition (5.9) of the

Pareto H-eigenvalue, the Pareto H-eigenpairs (λ, y) may be rewritten in the form

yT (Aym−1 − λy[m−1]) =0

Aym−1 − λy[m−1] ≥θ

y ≥θ

(5.20)
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and hence

n∑
i=1

yi(Aym−1 − λy[m−1])i =0 (5.21)

(Aym−1 − λy[m−1])i ≥0, for i = 1, 2, . . . , n (5.22)

yi ≥0, for i = 1, 2, . . . , n. (5.23)

Combining the equation (5.21) with (5.22) and (5.23), we have

yi(Aym−1 − λy[m−1])i = 0, for all i ∈ {1, 2, . . . , n}. (5.24)

Take N = {i ∈ {1, 2, . . . , n}; yi > 0}. Let the vector w ∈ R|N | be defined by

wi = yi for all i ∈ N .

Clearly, w ∈ R|N |++. Combining the equation (5.24) with the fact that yi > 0 for all

i ∈ N , we have

(Aym−1 − λy[m−1])i = 0, for all i ∈ N ,

and so

ANwm−1 = λw[m−1], w ∈ R|N |++.

It follows from the equation (5.22) and the fact that yi = 0 for all i ∈ {1, 2, · · · , n} \N

that

(Aym−1)i ≥ 0, for all i ∈ {1, 2, · · · , n} \ N .

By the definition (5.2) of Aym−1, the conclusion (5.18) holds.

Now we show the sufficiency. Suppose that there exists a nonempty subset N ⊆

{1, 2, · · · , n} and a vector w ∈ R|N | satisfying (5.17) and (5.18). Then the vector y

defined by (5.19) is a non-zero vector in R|N |+ such that (λ, y) satisfying (5.20). The

desired conclusion follows.

Using the same proof techniques as that of Theorem 5.3.1 with appropriate changes

in the inequalities or equalities (y[m−1] is replaced by (yTy)
m−2

2 y and so on). We can

obtain the following conclusions about the Pareto Z-eigenvalue of A.
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Theorem 5.3.2 Let A be a m-order and n-dimensional tensor. A real number µ is

Pareto Z-eigenvalue of A if and only if there exists a nonempty subset N ⊆ {1, 2, · · · , n}

and a vector w ∈ R|N | such that

ANwm−1 = µ(wTw)
m−2

2 w, w ∈ R|N |++ (5.25)∑
i2,··· ,im∈N

aii2···imwi2wi3 · · ·wim ≥ 0 for i ∈ {1, 2, · · · , n} \ N (5.26)

In such a case, the vector y ∈ R|N |+ defined by

yi =

wi, i ∈ N

0, i ∈ {1, 2, · · · , n} \ N
(5.27)

is a Pareto Z-eigenvector of A associated to the real number µ.

Following Theroem 5.3.1 and 5.3.2, the following results are obvious.

Corollary 5.3.3 Let A be a m-order and n-dimensional tensor. If a real number λ is

Pareto H-eigenvalue (Z-eigenvalue) of A, then λ is H++-eigenvalue (Z++-eigenvalue,

respectively) of some |N |-dimensional principal sub-tensor of A.

Since the definition of H+-eigenvalue (Z+-eigenvalue) λ of A means that Axm−1 −

λx[m−1] = 0 (Axm−1 − λ(xTx)
m
2
−1x = 0, respectively) for some non-zero vector x ≥ 0,

the following conclusions are trivial.

Proposition 5.3.4 Let A be a m-order and n-dimensional tensor. Then

(i) each H+-eigenvalue (Z+-eigenvalue) of A is its Pareto H-eigenvalue (Z-eigenvalue,

respectively);

(ii) the Pareto H-eigenvalues (Z-eigenvalues) of a diagonal tensor A coincide with its

diagonal entries. In particular, a n-dimensional and diagonal tensor may have at

most n distinct Pareto H-eigenvalues (Z-eigenvalues).
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It follows from the above results that some Pareto H-eigenvalue (Z−eigenvalue) of

a higher order tensor may be calculated by means of H++-eigenvalue (Z++-eigenvalue,

respectively) of the lower dimensional tensors.

Example 5.3.5 Let A be a 4-order and 2-dimensional tensor. Suppose that a1111 =

1, a2222 = 2, a1122 +a1212 +a1221 = −1, a2121 +a2112 +a2211 = −2, and other ai1i2i3i4 = 0.

Then

Ax4 = x41 + 2x42 − 3x21x
2
2

Ax3 =

 x31−x1x22

2x32−2x21x2



When N = {1, 2}, the principal sub-tensor AN is just A itself. λ1 = 0 is a H++-

eigenvalue of A with a corresponding eigenvector x(1) = (
4√8
2
,

4√8
2

)T , and so it follows

from Theorem 5.3.1 that λ1 = 0 is a Pareto H-eigenvalue with Pareto H-eigenvector

x(1) = (
4√8
2
,

4√8
2

)T .

λ2 = 0 is a Z++-eigenvalue of A with a corresponding eigenvector x(2) = (
√
2
2
,
√
2
2

)T ,

and so it follows from Theorem 5.3.2 that λ2 = 0 is a Pareto Z-eigenvalue of A with

Pareto Z-eigenvector x(2) = (
√
2
2
,
√
2
2

)T .

When N = {1}, the 1-dimensional principal sub-tensor AN = 1. Obviously, λ3 = 1

is both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector

w = 1 and a2111w
3 = 0, and hence it follows from Theorem 5.3.1 and 5.3.2 that

λ3 = 1 is both Pareto H-eigenvalue and Pareto Z-eigenvalue of A with a corresponding

eigenvector x(3) = (1, 0)T .

Similarly, when N = {2}, the 1-dimensional principal sub-tensor AN = 2. Clearly,

λ4 = 2 is both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigen-

vector w = 1 and a1222w
3 = 0, and so λ4 = 2 is both Pareto H-eigenvalue and Pareto

Z-eigenvalue of A with a corresponding eigenvector x(4) = (0, 1)T .
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Example 5.3.6 Let A be a 3-order and 2-dimensional tensor. Suppose that a111 =

1, a222 = 2, a122 = a212 = a221 = 1
3
, and a112 = a121 = a211 = −2

3
. Then

Ax3 = x31 + x1x
2
2 − 2x21x2 + 2x32

Ax2 =

 x21 +
1

3
x22 −

4

3
x1x2

2x22 +
2

3
x1x2 −

2

3
x21



When N = {1}, the 1-dimensional principal sub-tensor AN = 1. Obviously, λ1 = 1

is both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector

w = 1 and a211w
2 = −2

3
< 0, and so λ1 = 1 is neither Pareto H-eigenvalue nor Pareto

Z-eigenvalue of A.

When N = {2}, the 1-dimensional principal sub-tensor AN = 2. Clearly, λ2 = 2

is both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector

w = 1 and a122w
2 = 1

3
> 0, and so λ2 = 2 is both Pareto H-eigenvalue and Pareto

Z-eigenvalue of A with a corresponding eigenvector x(2) = (0, 1)T . But λ = 2 is neither

H+-eigenvalue nor Z+-eigenvalue of A.

Remark 5.3.1 The Example 5.3.6 reveals that a Pareto H-eigenvalue (Z-eigenvalue)

of a tensor A may not be its H+-eigenvalue (Z+-eigenvalue) even when A is symmetric.

5.4 Pareto eigenvalue and Constrained minimiza-

tion

Let A be a symmetric tensor of order m and dimension n and ‖x‖k = (|x1|k + |x2|k +

· · · + |xn|k)
1
k for k ≥ 1. Denote by e(i) = (e

(i)
1 , e

(i)
2 , · · · , e

(i)
n )T the ith unit vector in Rn,
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i.e.,

e
(i)
j =

1 if i = j

0 if i 6= j

for i, j ∈ {1, 2, · · · , n}.

We consider the constrained minimization problem

γ(A) = min{Axm; x ≥ θ and ‖x‖m = 1}, (5.28)

Theorem 5.4.1 Let A be a m-order and n-dimensional symmetric tensor. If

λ(A) = min{λ;λ is Pareto H-eigenvalue of A},

then γ(A) = λ(A).

Proof. Let λ be a Pareto H-eigenvalue of A. Then there exists a non-zero vector

y ∈ Rn such that

Aym = λyTy[m−1], y ≥ θ,

and so

Aym = λ
n∑
i=1

ymi = λ‖y‖mm and ‖y‖m > 0. (5.29)

Then we have

λ = A(
y

‖y‖m
)m and ‖ y

‖y‖m
‖m = 1.

From (5.28), it follows that γ(A) ≤ λ. Since λ is arbitrary, we have

γ(A) ≤ λ(A).

Now we show γ(A) ≥ λ(A). Let S = {x ∈ Rn;x ≥ 0 and ‖x‖m = 1}. It follows from

the continuity of the homogeneous polynomial Axm and the compactness of the set S

that there exists a v ∈ S such that

γ(A) = Avm, v ≥ θ, ‖v‖m = 1. (5.30)

81



Let g(x) = Axm − γ(A)xTx[m−1] for all x ∈ Rn. We claim that for all x ≥ θ, g(x) ≥ 0.

Suppose not, then there exists non-zero vector y ≥ 0 such that

g(y) = Aym − γ(A)
n∑
i=1

ymi < 0,

and hence γ(A) ≤ A( y
‖y‖m )m < γ(A), a contradiction. Thus we have

g(x) = Axm − γ(A)xTx[m−1] ≥ 0 for all x ∈ Rn
+. (5.31)

For each i ∈ {1, 2, · · · , n}, we define a one-variable function

f(t) = g(v + te(i)) for all t ∈ R1.

Clearly, f(t) is continuous and v + te(i) ∈ Rn
+ for all t ≥ 0. It follows from (5.30) and

(5.31) that

f(0) = g(v) = 0 and f(t) ≥ 0 for all t ≥ 0.

From the necessary conditions of extremum of one-variable function, it follows that the

right-hand derivative f ′+(0) ≥ 0, and hence

f ′+(0) = (e(i))T∇g(v) =m(e(i))T (Avm−1 − γ(A)v[m−1])

=m(Avm−1 − γ(A)v[m−1])i ≥ 0.

So we have

(Avm−1 − γ(A)v[m−1])i ≥ 0, for i ∈ {1, 2, · · · , n}.

Therefore, we obtain

f(0) = g(v) = Avm − γ(A)vTv[m−1] =0 (5.32)

Avm−1 − γ(A)v[m−1] ≥θ (5.33)

v ≥θ

Namely, γ(A) is a Pareto H-eigenvalue of A, and hence γ(A) ≥ λ(A), as required.

It follows from the proof of the inquality γ(A) ≥ λ(A) in Theorem 5.4.1 that γ(A)

is a Pareto H-eigenvalue of A, which implies the existence of Pareto H-eigenvalue of a

symmetric tensor A.
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Theorem 5.4.2 If a m-order and n-dimensional tensor A is symmetric, then A has

at least one Pareto H-eigenvalue γ(A) = min
x≥0
‖x‖m=1

Axm.

Since (xTx)
m
2 = ‖x‖m2 , using the same proof techniques as that of Theorem 5.4.1 with

appropriate changes in the inequalities or equalities (xTx[m−1] and y[m−1] are respectively

replaced by (xTx)
m
2 and (yTy)

m−2
2 y. We can obtain the following conclusions about the

Pareto Z-eigenvalue of a symmetric tensor A.

Theorem 5.4.3 Let A be a m-order and n-dimensional symmetric tensor. Then A

has at least one Pareto Z-eigenvalue µ(A) = min
x≥0
‖x‖2=1

Axm. What’s more,

µ(A) = min{µ;µ is Pareto Z-eigenvalue of A}. (5.34)

As the immediate conclusions of the above results together with Lemma 5.2.1, it is

easy to obtain the following results about the copositive (strictly copositive) tensor A.

Corollary 5.4.4 Let A be a m-order and n-dimensional symmetric tensor. Then

(a) A always has Pareto H-eigenvalue. A is copositive (strictly copositive) if and only

if all of its Pareto H-eigenvalues are nonnegative (positive, respectively).

(b) A always has Pareto Z-eigenvalue. A is copositive (strictly copositive) if and only

if all of its Pareto Z-eigenvalues are nonnegative (positive, respectively).

Now we give an example for solving the constrained minimization problem for ho-

mogeneous polynomial and testing the (strict) copositivity of a symmetric tensor A

with the help of the above results.
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Example 5.4.5 Let A be a 4-order and 2-dimensional tensor. Suppose that a1111 =

a2222 = 1, a1112 = a1211 = a1121 = a2111 = t, and other ai1i2i3i4 = 0. Then

Ax4 = x41 + x42 + 4tx31x2

Ax3 =

x31+3tx21x2

x32+tx
3
1



When N = {1, 2}, the principal sub-tensor AN is just A itself. λ1 = 1 + 4
√

27t

is H++-eigenvalue of A with a corresponding eigenvector x(1) = ( 4

√
3
4
, 4

√
1
4
)T . Then

it follows from Theorem 5.3.1 or Proposition 5.3.4 that λ1 = 1 + 4
√

27t is Pareto H-

eigenvalues with Pareto H-eigenvector x(1) = ( 4

√
3
4
, 4

√
1
4
)T .

When N = {1}, the 1-dimensional principal sub-tensor AN = 1. Obviously, λ2 = 1

is both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigenvector

w = 1 and a2111w
3 = t. Then when t > 0, it follows from Theorem 5.3.1 and 5.3.2 that

λ2 = 1 is both Pareto H-eigenvalue and Pareto Z-eigenvalue of A with a corresponding

eigenvector x(2) = (1, 0)T ; when t < 0, λ2 = 1 is neither Pareto H-eigenvalue nor Pareto

Z-eigenvalue of A.

Similarly, when N = {2}, the 1-dimensional principal sub-tensor AN = 1. Clearly,

λ3 = 1 is both H++-eigenvalue and Z++-eigenvalue of AN with a corresponding eigen-

vector w = 1 and a1222w
3 = 0, and so λ3 = 1 is both Pareto H-eigenvalue and Pareto

Z-eigenvalue of A with a corresponding eigenvector x(3) = (0, 1)T .

So the following conclusions are easily obtained:

(i) Let t < − 1
4√27 . Then λ1 = 1 + 4

√
27t < 0 and λ3 = 1 are Pareto H-eigenvalues of

A with Pareto H-eigenvectors x(1) = ( 4

√
3
4
, 4

√
1
4
)T and x(3) = (0, 1)T , respectively.

It follows from Theorem 5.4.1 and 5.4.2 that

γ(A) = min
x≥0
‖x‖4=1

Ax4 = min{λ1, λ3} = 1 +
4
√

27t < 0.
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The polynomial Ax4 attains its minimum value at x(1) = ( 4

√
3
4
, 4

√
1
4
)T . It follows

from Corollary 5.4.4 that A is not copositive.

(ii) Let t = − 1
4√27 . Then λ1 = 1 + 4

√
27t = 0 and λ3 = 1 are Pareto H-eigenvalues of

A with Pareto H-eigenvectors x(1) = ( 4

√
3
4
, 4

√
1
4
)T and x(3) = (0, 1)T , respectively.

It follows from Theorem 5.4.1 and 5.4.2 that

γ(A) = min
x≥0
‖x‖4=1

Ax4 = min{λ1, λ3} = 0.

The polynomial Ax4 attains its minimum value at x(1) = ( 4

√
3
4
, 4

√
1
4
)T . It follows

from Corollary 5.4.4 that A is copositive.

(iii) Let 0 > t > − 1
4√27 . Clearly, 0 < 1 + 4

√
27t < 1. Then λ1 = 1 + 4

√
27t and λ3 = 1

are Pareto H-eigenvalues of A. It follows from Theorem 5.4.1 and 5.4.2 that

γ(A) = min
x≥0
‖x‖4=1

Ax4 = min{λ1, λ3} = 1 +
4
√

27t > 0.

The polynomial Ax4 attains its minimum value at x(1) = ( 4

√
3
4
, 4

√
1
4
)T . It follows

from Corollary 5.4.4 that A is strictly copositive.

(iv) Let t = 0. Then λ1 = λ2 = λ3 = 1 are Pareto H-eigenvalues of A with Pareto H-

eigenvectors x(1) = ( 4

√
3
4
, 4

√
1
4
)T and x(2) = (1, 0)T and x(3) = (0, 1)T , respectively.

It follows from Theorem 5.4.1 and 5.4.2 that

γ(A) = min
x≥0
‖x‖4=1

Ax4 = min{λ1, λ2, λ3} = 1 > 0.

The polynomial Ax4 attains its minimum value at x(1) = ( 4

√
3
4
, 4

√
1
4
)T or x(2) =

(1, 0)T or x(3) = (0, 1)T . It follows from Corollary 5.4.4 that A is strictly coposi-

tive.

(v) Let t > 0. Then λ1 = 1 + 4
√

27t and λ2 = λ3 = 1 are Pareto H-eigenvalues of

A with Pareto H-eigenvectors x(1) = ( 4

√
3
4
, 4

√
1
4
)T and x(2) = (1, 0)T and x(3) =

(0, 1)T , respectively. It follows from Theorem 5.4.1 and 5.4.2 that

γ(A) = min
x≥0
‖x‖4=1

Ax4 = min{λ1, λ2, λ3} = 1 > 0.
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The polynomial Ax4 attains its minimum value at x(2) = (1, 0)T or x(3) = (0, 1)T .

It follows from Corollary 5.4.4 that A is strictly copositive.
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Chapter 6

Conclusions and suggestions for

further research

In this thesis, we develop and extend some spectral properties of matrices to higher

order tensors. Our studied methods are mainly to defined the proper operators based

on the definition of eigenvalue of higher order tensors, and then to study some nonlinear

spectral properties of such operators. So, the corresponding properties of higher order

tensor are proved. We also introduce the concept of Pareto H-eigenvalue and Pareto Z-

eigenvalue to higher order tensors and study their properties by means of the constrained

minimization problem of homogeneous polynomial.

In Chapter 2, we obtain the Fredholm alternative theorems of the eigenvalue (in-

cluded E-eigenvalue, H-eigenvalue, Z-eigenvalue) of a higher order tensor A, and prove

some relationship between the Gelfand formula and the spectral radius for the spectra

induced by such several classes of eigenvalues of a higher order tensor.

In Chapter 3, we discuss the existence and uniqueness of the positive eigenvalue-

eigenvector for a class of nonlinear and positively homogeneous mappings in a Banach

space by means of the Edelstein Contraction Theorem. We successfully turn the eigen-
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value problem of a class of nonnegative tensor into the fixed point problem of the

Edelstein Contraction with respect to Hilbert’s projective metric, and then by some

fixed point theory, we obtain some solution of the eigenvalue problem of such a class

of nonnegative tensors. Furthermore, we find an iteration sequence which strongly

converges to positive eigenvalue of such a tensor.

In Chapter 4, we introduce the notion of eigenvalue to the additively homogeneous

mapping pairs (f, g), and discuss the existence and uniqueness of such a eigenvalue,

and also obtain the Collatz-Wielandt min-max type property of such a class of map-

ping pairs. As an application, we obtain the iteration sequence for finding generalized

H−eigenvalue of the nonnegative tensor pairs (A,B).

In Chapter 5, we introduce the concepts of Pareto H-eigenvalue and Pareto Z-

eigenvalue of higher order tensor for studying constrained minimization problem. Fur-

thermore, we study the existence of Pareto H-eigenvalue (Pareto Z-eigenvalue) of a

symmetric tensor and establish that the minimum Pareto H-eigenvalue (or Pareto Z-

eigenvalue) of a symmetric tensor exactly is the minimum value of constrained min-

imization problem of homogeneous polynomial deduced by such a tensor. In partic-

ular, a symmetric tensor A is copositivie if and only if all the Pareto H-eigenvalue

(Z−eigenvalue) of A are nonnegative.

The following topics are worth of serious consideration.

• In Chapter 2, we define the spectrum of T (Page 15), and give some relationship

between the Gelfand formula and the spectral radius (Theorem 2.4.3, 2.4.6). The

following topics subject to further research: whether the above spectral radius is

exactly equivalent to the largest eigenvalue of T ∈ CH(Cn) or some subclass of

operators in CH(Cn). In particular, for a higher order tensor A, is the following

equations hold?

max{|λ|
1

m−1 ;λ is eigenvalue of A} = lim
k→∞
‖F k
A‖

1
k
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and

max{|µ|;µ is E-eigenvalue of A} = lim
k→∞
‖T kA‖

1
k .

• In Chapter 3, the eigenvalue problem of a primitive and nonnegative tensor Amay

be viewed as the fixed point problem of the Edelstein Contraction with respect to

Hilbert’s projective metric (Theorem 3.4.1). However, it isn’t still known whether

or not a strictly positive operator FA (or equivalently, a strictly nonnegative

tensor) has the same properties. For a tensor, not necessary nonnegative, whether

or not we may obtain similar conclusions.

• In Chapter 4, the existence and uniqueness of generalized H−eigenvalue of the

nonnegative tensor pairs (A,B) are showed under the condition FAFB = FBFA

(Theorem 4.4.3 or 4.3.1). Clearly, the condition of the commutativity is very

strong, then it is greatly significant to such a condition is removed or be replaced

by other more general condition to meet the same conclusion.

• In Chapter 5, the concepts of Pareto H-eigenvalue (Page 70, the system (5.9))

and Pareto Z-eigenvalue (Page 71, the system (5.11)) are introduced and used

to study the properties of a higher order tensor. Then we will continue to study

how to define Pareto H-spectra ( or Pareto Z-spectra) and dicuss its some prop-

erties such as the Pareto spectral radius. Of course, it will be very interesting

to show the number of Pareto H-eigenvalue (or Pareto Z-eigenvalue) of a tensor

and to construct an algorithm that converges to Pareto H-eigenvalue (or Pareto

Z-eigenvalue) of a tensor.
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Index

I, 46

E-eigenvalue, 74

E-eigenvector, 75

G(A), 64

H-eigenvalue, 74

H-eigenvector, 74

H+-eigenvalue, 75

H++-eigenvalue, 75

Sλ(f, g), 56

Sλ(f, g), 57

Sλµ(f, g), 57

Z-eigenvalue, 75

Z-eigenvector, 75

Z++-eigenvalue, 75

Z+-eigenvalue, 75

Λ(f, g), 57

Θ, 1

χ(A,B), 66

χ(f, g), 55

Rn
++, 27

Rn
+, 27

Rn
−, 27

AN , 76

Axm, 1, 69

Axm−1, 9, 69

B-eigenvalue, 4, 47

B-eigenvector, 4, 47

CH(X), 11

CH(Cn), 12

L(X), 14

P̊ , 29

χ(A,B), 67

χ(A,B), 66

χ(f, g), 55

σ(T ), 15

θ, 9

χ(A,B), 66

χ(f, g), 55

e(i), 80

e
(i)
j , 81

g-eigenvalue, 50

g-eigenvector, 50

x[k], 9

additively homogeneous, 48

Banach Contraction Principle, 25

bottom function b, 51

compact, 11, 33

copositive matrix, 3, 73

copositive tensor, 3, 73
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directed graph G(A) of A, 64

Edelstein Contraction, 25

Edelstein contraction, 6

Edelstein Contraction Theorem, 25

eigenvalue, 11, 33, 49, 74

eigenvalue-eigenvector pairs, 47

eigenvector, 11, 49, 74

eventually strongly increasing, 33

eventually strongly positive, 33

Fredholm alternative theorem, 10

Gelfand formula, 14

generalized cycle-time vector, 55, 66

generalized lower cycle-time, 55, 66

generalized slice space, 56

generalized sub-eigenspace, 56

generalized super-eigenspace, 56

generalized upper cycle-time, 55, 66

Higher order tensor, 1

Hilbert projective metric, 51

Hilbert semi-norm, 51

Hilbert’s projective metric, 30

homogeneous, 11

increasing, 33, 48

irreducible, 22, 23, 46, 64

monotonic, 32

nonlinear Fredholm alternative theorem, 18

nonnegative tensor, 1

normal, 40

Pareto H−eigenvalue, 70

Pareto H−eigenvector, 71

Pareto Z−eigenvalue, 71

Pareto Z−eigenvector, 71

Pareto eigenvalue, 2, 72

partial ordering, 29

positive, 33

positive tensor, 1

positively homogeneous, 5, 11, 33

primitive tensor, 45

principal sub-tensor, 75

pseudo-metric, 30

reducible, 22, 45, 64

slice space, 57

solid, 40

spectral radius, 15, 17

spectrum of T , 15

strict contraction, 25

strictly copositive matrix, 73

strictly copositive tensor, 73

strictly increasing, 33

strictly nonnegative, 49, 64

strictly positive, 5, 33

strongly increasing, 6, 33

strongly positive, 33

sub-eigenspace, 57

super-eigenspace, 57

symmetric tensor, 1, 69
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top function t, 51

topical mapping, 48

unit tensor, 46

weakly irreducible, 64, 65

weakly reducible, 65

weakly symmetric, 23

zero operator, 1
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[43] J. Mallet-Pareta and R.D. Nussbaum, A basis theorem for a class of max-plus

eigenproblems, J. Differential Equations, 189(2003) 616-639.

[44] O.L. Mangasarian, Perron-Frobenius properties of Ax−λBx, J. Math. Anal. Appl.,

36(1971) 86-102.

98



[45] V. Mehrmann, R. Nabben and E. Virnik, Generalisation of the Perron-Frobenius

theory to matrix pencils, Linear Algebra Appl., 428(2008) 20-38.

[46] V. Mehrmann, D. Olesky, T. Phan, P. Van den Driessche, Relations between

Perron-Frobenius results for matrix pencils, Linear Algebra Appl., 287(1998) 257-

269.

[47] T.S. Motzkin, Copositive Quadratic forms, National Bureau of Standards Report,

1818 (1952) 11-12.

[48] D.H. Martin, Copositlve matrices and definiteness of quadratic forms subject to

homogeneous linear inequality constraints, Linear Algebra Appl., 35(1981) 227-258.

[49] I. Meghea, Some results of the Fredholm Alternative type for operators of λJϕ − S

form with applications, U.P.B. Sci. Bull., Series A, 72(4)(2010) 21-32.

[50] R.D. Nussbaum, Convexity and log convexity for the spectral radius, Linear Algebra

Appl., 73(1986) 59-122.

[51] R.D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, Memoirs

of the AMS, 75(391), 1988.

[52] R.D. Nussbaum, Iterated nonlinear maps and Hilbert’s projective metric, II, Mem-

oirs of the AMS, 79(401), 1989.

[53] M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor,

SIAM J. Matrix Anal. Appl., 31 (2009) 1090-1099.

[54] G. Ni, L. Qi, F. Wang and Y. Wang, The degree of the E-characteristic polynomial

of an even order tensor, J. Math. Anal. Appl., 329(2007) 1218-1229.

[55] T. Ogiwara, Nonlinear Perron-Frobenius problem for order-preserving mappings,

I, Proc. Japan Acad. Ser. A Math. Sci., 69(8) (1993), 312–316.

[56] T. Ogiwara, Nonlinear Perron-Frobenius problem for order-preserving mappings,

II. applications, Proc. Japan Acad. Ser. A Math. Sci., 69(8)(1993), 317–321.

99



[57] A.J.B. Potter, Applications of Hilbert’s projective metric to certain classes of non-

homogeneous operators, Quart. J. Math. Oxford, 28(1977) 93-99.

[58] L. Ping and F. Y. Yu, Criteria for Copositive Matrices of Order Four, Linear

Algebra Appl., 194(1993) 109-124.

[59] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40(2005)

1302-1324.

[60] L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325(2007)

1363-1377.

[61] L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homoge-

neous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput.,

41(2006) 1309-1327.

[62] L. Qi, H+-eigenvalues of Laplacian and signless Laplacian tensors, Preprint, De-

partment of Applied Mathematics, The Hong Kong Polytechnic University, Novem-

ber, 2012. arXiv:1303.2186 [math.SP] 9 Mar 2013

[63] L. Qi, Symmetric Nonnegative Tensors and Copositive Tensors, 439(1)(2013) 228-

238.

[64] L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl.,

439(2013) 228-238.

[65] Y. Song, Coincidence points of weakly compatible mappings, Bull. Kor. Math. Soc.,

45(2008), 607-614

[66] J. Schauder, Der Fixpunktsatz in Funktionalroaumen, Studia Math. 2(1930) 171-

180.

[67] A. Seeger, Eigenvalue analysis of equilibrium processes defined by linear comple-

mentarity conditions, Linear Algebra Appl., 292(1999), 1-14.

[68] J. M. Vincent, Some ergodic results on stochastic iterative discrete event systems,

Discrete Event Dynamic Systems, 7(1997), 209-233.

100



[69] Y. Yang and Q. Yang, Further Results for Perron-Frobenius Theorem for Nonneg-

ative Tensors, SIAM J. Matrix Anal. Appl., 31(5)(2010) 2517-2530.

[70] Q. Yang and Y. Yang, Further Results for Perron-Frobenius Theorem for Nonneg-

ative Tensors II, SIAM J. Matrix Anal. Appl., 32(4)(2011) 1236-1250.

[71] L. Zhang and L. Qi, Linear convergence of an algorithm for computing the largest

eigenvalue of a nonnegative tensor, Numerical Linear Algebra with Applications,

19(2012) 830-841.

[72] L. Zhang, L. Qi and Y. Xu, Linear convergence of the LZI algorithm for weakly

positive tensors, J. Compu. Math., 30(2012) 24-33.

[73] Q. Zhang and Y. Song, Fixed point theory for generalized ϕ−weak contractions,

Appl. Math. Letters, 22(1)(2009) 75-78.

[74] T. Zhang, Existence of real eigenvalues of real tensors, Nonlinear Analysis,

74(8)(2011) 2862-2868.

101


	Abstract
	Underlying papers
	Acknowledgment
	Lists of Notations
	Overview
	Introduction
	Outline of the Thesis

	Fredholm alternative type results and Gelfand formula
	Introduction
	The norm of positively homogeneous operators
	Some auxiliary results of positively homogeneous operators
	Fredholm alternative type results and Gelfand formula of higher order tensors

	Eigenvalue problem and fixed point theory
	Introduction
	Preliminaries and basic results
	Existence and uniqueness of the positive eigenvalue
	Positive eigenvalue of nonnegative tensors

	Generalized eigenvalue problem
	Introduction
	Properties of topical mapping pairs
	Eigenvalue problem of topical mapping pairs
	Generalized H-eigenvalue of nonnegative tensors

	Pareto eigenvalue of higher order tensors
	Introduction
	Preliminaries and Basic facts
	Pareto H-eigenvalue and Pareto Z-eigenvalue
	Pareto eigenvalue and Constrained minimization

	Conclusions and suggestions for further research
	Index
	Bibliography



