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Slope stability problem is a major problem in geotechnical engineering with influence on 

structure and human life, and slope stability problem has drawn the attentions of many 

researchers and engineers for the past several decades. This study is aimed to investigate 

slope stability problem with a better understanding of the failure mechanism and some 

fundamental principles in slope stability analysis by several methods so that the complete 

stability and failure processes are investigated. From the present study, some outstanding 

fundamental questions in slope stability problem have been settled, and the works are 

beneficial to both academic and practical aspects. 

 

This study first begins with the typical upper bound limit equilibrium analysis where 

different modern heuristic optimization algorithms are modified and improved to locate 

the critical slip surface efficiently and precisely. This problem has been studied by many 

researchers in the past, but there is a major difficulty in this problem in that the objective 

function is non-smooth and non-convex and the solution might be trapped into local 

minimum easily. Towards this complicated problems, two modified optimization 

algorithms: improved harmony search method MHS and coupled algorithm of HS/PSO 

are developed. These two algorithms are demonstrated to be more efficient than the 



 

 

original methods, and are particularly suitable for highly complicated problems where 

there are several strong local minima in the solution domain. The knowledge and works 

gained in this part of work are useful for practical engineering and also become part of the 

tools for the later sections. 

 

Secondly, the extremum principle and the concept of variable factor of safety based on 

Pan’s postulate and equivalent variational principle are developed in this study. Using the 

new concept which can be viewed as an equivalent lower bound method, the long 

outstanding question on the interslice force function is finally settled using the 

mathematical tool developed in the first part of the present study. Slope stability problem 

can now become a statically determinate problem, and the interslice force function is 

actually taken as a variable instead of a prescribed function. This function is now 

determined by an equivalent lower bound principle which is missing in all the previous 

limit equilibrium formulation, which is major breakthrough in the basic formulation of 

the limit equilibrium method. Besides the new extremum LEM formulation, the author 

has also employed SRM to study the interslice force function. In general, it is found that 

the interslice force function is close to a bell shape and is also in agreement with the 

results from LEM, and such results clearly demonstrates that this function cannot be 

arbitrarily specified as what has been done for more than 40 years. The location of the 

thrust line also agrees well with the Janbu’s Rigorous method which is at 1/3 of slice 

height from the base for normal cases. As a further extension of the works, the extremum 

formulations are further extended to the concept of variable factor of safety formulation 

which can satisfy all the global and local equilibrium. Using this new concept, the stress 

re-distribution and residual strength concept can be cast into the LEM framework under a 

rigorous lower bound formulation. Progressive failure can now be cast into the 



 

 

framework of limit equilibrium method which is not possible in the past. 

 

The limitation of both LEM and SRM is the requirement on continuity which is not 

possible after the initiation of failure. The failure and post-failure mechanism are 

investigated by the use of Distinct Element Method (DEM) due to the demand in the 

consideration of large scale post-failure deformation. The use of DEM to investigate the 

slip surface is seldom considered in the past but has been achieved in the present study. 

The effect of water seepage on slope stability using a DEM approach is also an 

outstanding work which is worth to be investigated. In this study, it is found that the 

geometry of slope changes continuously, and tensile failure at the crest and shear failure 

in the middle of the slope are found. The failure mode for soil nailed slope and slope with 

by water flow are also studied by the DEM with interesting results obtained. 

 

For three-dimensional problems, there are several interesting problems to be considered. 

Three-dimensional effect of curvature with different nailing modes is considered by SRM, 

and the intercolumn force function is investigated (which is an outstanding item up to 

present). It is found that the intercolumn force function within the principal section 

containing the sliding direction is dominating over other sections. Concave geometry also 

gives higher global stability which is important for many highway slopes. For nailing 

pattern, the radial nailing mode gives lower factor of safety for convex slope but higher 

factor of safety for concave slope as compared with the parallel nailing mode. These 

results are both useful to the engineers as well as to the basic understanding of three-

dimensional slope stability problem. 

 

Based on the above research involving different methods, many fundamental principles 



 

 

and outstanding problems in slope stability analysis have been settled in the present 

research. For example, the search for critical failure surface can now be carried out with 

very high level of confidence even for very complicated problem. Many engineers 

arbitrarily assign interslice force function (f(x)) equal to 1.0 (or sine function) without any 

thought, as all textbooks and research papers give the view that this function is 

“fundamentally indeterminate” and is not critical for normal condition. The author has 

however pointed out the mistake of this common belief accepted by engineers/researchers 

for more than 40 years, and has also demonstrated that there are also cases where f(x) is 

important and has proposed a systematic way to determine this function for arbitrary 

problem based on the equivalent lower bound principle. This work is then extended to 

three-dimensional condition where no one has ever proposed any interslice force function, 

and this three-dimensional function can now be treated as determinate function. The 

knowledge about the initiation and post failure movement of slope by DEM has also 

provided clearer picture about the movement and internal stress distribution within a 

slope at different stages which is useful to assess the post-failure behaviour and the 

precautions that are required. 
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CHAPTER 1   Introduction 

 

1.1 Background and motivation 

Slope stability problem is always a main concern in geotechnical engineering. Natural or 

cut slopes have greatly influenced human’s properties and life, and for area like Hong 

Kong, slope failures can be fatal. There are many research works on the assessment of the 

stability of slopes under different geometry, soil properties and groundwater conditions in 

the past. Each stability analysis method differs from the others in some of the basic 

assumptions, but most of the stability analysis methods will give similar factors of safety 

for normal cases which are sufficient for normal engineering uses. Besides the factor of 

safety, the failure mechanism and post-failure mechanism are also important in some 

cases, and different methods of analysis are more suitable and efficient for specific 

aspects. In literature, limit equilibrium method, strength reduction method, limit analysis 

and distinct element method have been used for this problem, and the applications and 

limitations of these methods have been investigated and discussed by various researchers 

over the past 40 years. 

 

Even though LEM has been studied in details by various researchers in the past 40 years, 

there are still different variations of LEM and numerical techniques being put forward 

each year. In Hong Kong, possibly more than 98% of the analyses are still based on the 

LEM, as LEM possesses the advantages of simple in operation, fast in computation, easy 

to understand and the support from many engineers’ experience. Limit equilibrium 

method (LEM) using the method of slices is the classical slope stability analysis which 
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requires assumptions on the interslices force distribution before the problem can be 

solved. LEM can broadly be classified into ‘simplified’ and ‘rigorous’ approaches. In the 

simplified approach, either force or moment equilibrium is satisfied, but not both 

equilibrium conditions at the same time. Though this approach is a highly simplified 

method of analysis, it is still flavored by many engineers at present, as the concept behind 

the stability formulation is simple and straightforward. For the rigorous approach, both 

force and moment equilibrium have to be satisfied simultaneously, and assumptions on 

the interslices force distribution must be specified before the problem can be solved. 

Morgenstern and Price (1965) have proposed a relation between the interslice shear and 

normal force as a general formulation, and this interslice force function has drawn 

considerable attention by many researchers in the past. There is however no theoretical 

background to specify this function for an arbitrary problem, though Morgenstern (1992) 

has discussed that this function is not critical for normal cases if both force and moment 

equilibrium are satisfied. In some cases, the interslice force function can be critical which 

has been discussed by Abramson et al. (2002) and Cheng et al. (2010). A more in-depth 

investigation on the interslice force function and the basic problems in LEM is hence 

necessary and this will be carried out in this study.  

 

Strength Reduction Method (SRM), which is considered as an effective alternative to 

LEM, is becoming popular in recent decades. The concept of SRM is to modify the 

material properties and apply body forces due to the self weight and applied loadings to 

render the slope to the ultimate limit state. Such approach is also well accepted by 

engineers and researchers, and SRM is now available in some commercial geotechnical 

programs. Though SRM requires lengthy modeling and computational time compared 

with LEM, the factor of safety of a slope can be obtained with few assumptions (the main 
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assumption is the flow rule), and the critical failure surface is automatically generated in 

SRM without any search. Cheng et al. (2007) have tested many commercial SRM 

programs and have pointed out that every commercial program may come across some 

technical problems. The reasons behind these problems are related to the difficulties in 

defining the ultimate limit state for a complicated system and the solution of the nonlinear 

system (and the corresponding redistribution of unbalanced force) where the Hessian of 

the system matrix approaches zero near to the ultimate limit state. 

 

At present, there are only limited applications of the Distinct Element Method (DEM) for 

slope stability problem, and DEM is more suitable for qualitative instead of quantitative 

assessment of the stability of slope. The movement and growth after slope failure has 

launched is also important in many cases. Continuum based LEM or SRM are not capable 

to capture the post-failure mechanism, and this case should be analyzed by DEM. There is 

virtually no application of DEM to consider the important action of soil nail and the effect 

of seepage at present, and there are many outstanding works to be considered in this 

respect. This problem will be assessed by the use of two-dimensional particle flow 

program PFC in the present study.  

 

Although slope stability analysis has been well considered by many researchers in the 

past, there are still several major outstanding items which are worth considering. Since 

the interslice force function proposed by Morgenstern and Price (1965) cannot be 

determined within the classical context, an arbitrary value of 1.0 is commonly used by the 

engineers (commonly known as the Spencer’s method). The validity of this assumption 

has been questioned by many engineers in Hong Kong (and other countries). This is an 

important outstanding issue which will be considered in this study by LEM and SRM. 
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The general interslice force function which is an interesting and pioneer work is 

established and studied in the present work. 

 

For the classical stability analysis methods, a single factor of safety is assumed and 

failure is defined with respect to a failure mechanism (apply to both LEM and SRM). 

This condition applies to the complete failure condition but should be not realistic for 

normal cases where the slope is still stable. In real case, progressive failure is however 

commonly found, and this is particularly important when slope failure is induced by 

rainfall. Some efforts have been taken to study the failure mechanism with the concept of 

variable factor of safety (Chugh, 1986; Sarma and Tan, 2006), but these methods require 

assumptions which are actually questionable. To assess the progressive failure mode, a 

variable factor of safety LEM method is proposed in this study. This method can be 

considered as an equivalent lower bound method, and an improved optimization 

algorithm is proposed for the solution of this problem in this study. This new formulation 

is based on an equivalent variational principle and is much stronger in the foundation as 

compared with all the existing variable factor of safety formulations. 

 

Unlike idealized numerical modeling, most of the slope is three-dimensional in nature. 

Based on the investigation of 2D internal force function, 3D internal force distribution is 

also studied in form of intercolumn force function and thrust line. Besides, the effect of 

the curvature of slope will also be considered. The beneficial action of soil nail under the 

effect of curvature as another outstanding problem will also be studied in the present 

work. 
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1.2 Objectives  

This study will consider various aspects (which are not well considered in the past) about 

slope stability problems in greater depth which include: 

1. The interslice force function for two-dimensional slope will be evaluated and 

studied in details by LEM and SRM  

2. A variable factor of safety approach by the use of modern optimization algorithms 

will be proposed for LEM, and the concept of progressive failure can be considered by 

the LEM which is not possible for all the previous formulations.  

3. To investigate the progressive failure of slope and the post-failure conditions in 

more details, DEM based particle flow analysis for slope with soil nail and water seepage 

effect will be considered.  

4. Three-dimensional analysis on the stability of slope to assess the effect of 

curvature and soil nail on the stability of slopes. Three-dimensional intercolumn force 

function which is an outstanding item at present will be determined in the present study. 

 

1.3 Organization of thesis 

In Chapter 2, the advantages and limitations of different theories and methods for slope 

stability analysis will be discussed, and this chapter will concentrate on the classical limit 

equilibrium methods and strength reduction methods. 

 

Chapter 3 aims to establish the computational algorithm required for upper bound 

analysis of complicated geotechnical problems using the LEM. Two new global 

optimization algorithms have been proposed with illustration, and these methods will be 

used for the variable factor of safety limit equilibrium method required in Chapter 4. 
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Chapter 4 is devoted to the progressive failure of slope under simple and also complex 

conditions by DEM. This analysis gives clearer insight about the development of failure, 

microcosmic failure mechanism and the post-failure mechanism for slope. 

 

Chapter 5 will focus on the investigation of the interslice force function by both the limit 

equilibrium method and strength reduction method. Besides that, the variable factor of 

safety concept using new optimization algorithms will be proposed for the study of 

progressive failure using the LEM. 

 

Chapter 6 is about three dimensional slope failure which will be particularly useful for 

many highway slopes where curvature play an important effect on the stability of slopes. 

Three-dimensional intercolumn force function which is an outstanding item at present 

will be determined in the present study. 

 

Chapter 7 will be the overall discussion and conclusion of the whole study with 

recommendations.
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CHAPTER 2   Literature Review 

 

2.1 Analysis methods of slope stability problems 

Slope stability problems have attracted considerable attention from many researchers and 

engineers, from the past till present. Even though this problem has been studied in great 

details in the past, there are still many new methods coming up for slope stability analysis 

at present. In general, slope stability analysis methods can be classified as: limit 

equilibrium method, finite element / finite difference (strength reduction) method, limit 

analysis method, variational principle method and distinct element method. Limit 

equilibrium method (LEM) has the advantages of efficiency and the ease to determine the 

factor of safety, so it is still favoured by most of the engineers in routine analysis and 

design. LEM however requires assumptions on the distributions of the internal forces and 

location of the critical failure surface which can be critical and difficult for some 

complicated cases. Strength reduction methods (SRM) which is a stress field analysis 

usually does not suffer from convergence problem, and the limitations of LEM do not 

apply to SRM in general. SRM however requires more time in setting up the problem and 

solution of the problem, and SRM needs the assumption on flow rule which is not easily 

defined. In particular, it is very difficult to define nonuniform flow rule in a solution 

domain, and a single dilation angle (usually nonassociative) is assigned for an arbitrary 

problem. LEM and SRM methods are continuum based method which is not suitable if 

the post-failure mechanism has to be assessed, and distinct element method (DEM) which 

is discontinuity based method will be more suitable for this case. In literature, there are 

applications of limit analysis method and variational approach in slope stability analysis, 
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but these two methods are difficult to be used for real complicated problems and will not 

be discussed in details in the present work. 

 

2.1.1 Limit equilibrium method 

The limit equilibrium method (LEM) is well known to be a statically indeterminate 

problem, and method of slices based on the LEM is commonly used by engineers for 

assessing the factor of safety of slopes. To determine the factor of safety, assumptions on 

the distributions of internal forces (or thrust line) are required.  

 

Two of most famous LEM methods in the early development based on classical method 

of circular slip surface are Bishop’s Method and Janbu’s Method. Bishop (1955) assumed 

the interslice force is horizontal and determined the factor of safety by employing overall 

moment equilibrium. Janbu’s method (1975) also prescribed only horizontal interslice 

force (thrust line) but overall force equilibrium was considered.  

 

Morgenstern and Price (1965) adopted an assumption that the relation between the 

interslice normal and shear force could be specified to make the stability problem 

statically determinate and by the assumption, both force and moment equilibrium can be 

satisfied. In this method, the relation between interslice normal and shear force can be 

described as 

ExfX )(l=  or )(xf
E

X
l=  

in which X is the vertical component of the interslice force along the interslice surface; E 

is the normal component; )(xfl is the inclination of interslice force and λ can be 

determined by the condition that both force and moment equilibrium are satisfied when a 
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given f(x) is prescribed by the engineers. 

 

Later, Spencer (1967) indicated that the interslice forces could be assumed to be parallel 

to obtain the factor of safety. )(xf  is hence actually specified to be 1, and )(xfl  is 

constant in the Spencer’s method. Spencer’s method is essentially a specific case of 

Morgenstern-Price’s Method. Some researchers have also made different efforts on the 

investigation of interslice force function. Chen and Morgenstern (1983) have proposed 

that the interslice force relations for the first and last slices should be based on the Mohr-

circle consideration. Fan, Fredlund and Wilson (1986) have proposed a function similar to 

the error function which is derived from an elastic finite element stress analysis. The 

validity of this function should actually be questioned as the stress state for slope stability 

analysis should be the ultimate limit state instead of the elastic stress state. Liang, Zhao 

and Vitton (1997) adopted the hypothesis of least resistance which stated that among all 

the forces satisfying the geometrical boundary conditions of a system, the smallest 

interslice force derived from local moment equilibrium of a slice will be the required 

force. This method will eliminate the requirement for f(x) at the expense that the 

hypothesis is not necessarily the true phenomenon. The moment equilibrium of the last 

slice is also not considered in this formulation, and this formulation is very similar to the 

original Janbu’s rigorous method (1973) and can be modified from the Janbu’s rigorous 

method (1973) by varying the thrust line until the smallest interslice force is obtained. 

Convergence is also a problem in the real application of this method so that this method 

appears to be never used in practice. 

 

For “rigorous” methods, “failure to converge” is well known among many engineers, in 

particular, for complicated problems with heavy external loads or soil reinforcement. 
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Cheng et al. (2008b) have carried out a detailed study on the convergence problem in 

stability analysis and have concluded that there are two reasons for failure to converge 

with the rigorous methods. Firstly, the iteration method that is commonly used to 

determine the factor of safety may fail to converge because the interslice shear force is 

assumed to be zero in the first step of the iterative analysis. Cheng (2003) has developed 

the double QR method, which can evaluate the factor of safety and internal forces directly 

from a Hessenberg matrix. Based on this method, failure to converge in stability 

calculations due to the first reason can be eliminated. There are however some cases for 

which the double QR method determines that a physically acceptable answer does not 

exist for a given f(x), which means that no meaningful factor of safety will be available 

unless f(x) can be varied. Actually, some engineers have questioned the meaning of “no 

factor of safety available” for a given failure surface, as such a concept does not appear in 

structural engineering. So far, there is little previous study on this type of failure to 

converge, and no rigorous method can guarantee convergence for the general case. Since 

the critical failure surface may not necessarily converge according to the existing 

“rigorous” methods of analysis (Cheng et al. 2008b), there is always a chance that the 

critical failure surface may be missed during optimization analysis. It is also interesting to 

note that it has never been proved that a slip surface that fails to converge in stability 

analysis is not a critical slip surface, but all commercial programs will simply neglect 

those slip surfaces which fail to converge. On the other hand, Cheng et al. (2010) have 

proved that the critical slip surface may fail to converge using the classical rigorous 

method. Although this problem may not be critical in general, a failure surface with no 

factor of safety is still physically surprising. A system without factor of safety is not real 

and is just a human deficiency in making the wrong assumption, and this situation never 

appears in structural engineering or other similar disciplines. Factor of safety always exist 
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for a problem, but it is possible that we are not able to determine it simply because of the 

use of wrong assumption, and this is supported by the study by Cheng et al. (2008b) that 

many smooth slip surfaces can fail to converge using the popular Spencer’s analysis. 

 

For the LEM, one of the basic assumptions common to all of the traditional methods is a 

single factor of safety for the entire solution domain. Without this assumption, the slope 

stability problem will be statically indeterminate unless additional assumptions are used. 

The actual failure of a slope is however usually a progressive phenomenon. Chugh (1986) 

presented a procedure for determining a varying factor of safety along the failure surface 

within the framework of the LEM. Chugh (1986) predefined a characteristic shape for the 

variation of the local factor of safety along a failure surface, and this idea actually follows 

the idea of the inter-slice shear force function in the Morgenstern-Price’s method (1965). 

The suitability of this varying factor of safety distribution function is however 

questionable, and there is no simple way to define this function for a general problem, as 

the local factor of safety should be mainly controlled by the local soil properties, 

topography and shape of failure surface. Sarma and Tan (2006) have recently proposed a 

new formulation with varying factor of safety based on the critical acceleration concept. 

No factor of safety distribution function is required in this formulation, and the varying 

factor of safety can be approximately viewed as an indication of the progressive failure 

mechanism of the slope. The problem to this method is that the energy balance equation 

based on the limit analysis is used across the interface between adjacent blocks which is 

an assumption without proof. Lam et al. (1987) proposed a limit equilibrium method for 

the study of the progressive failure in slope under long-term condition. His main idea 

involved the recognition of the local failure and the operation of the post-peak strength. 

This concept is one of the progressive failure phenomena which applies when the 
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deformation is very large and there is a major reduction in the strength of soil, but this 

approach is not easy to implement and cannot be applied to the general progressive failure 

phenomenon. The formulations by Sarma and Tan (2006) or Chugh (1986) are not 

satisfactory but are easy to implement with an estimation of the progressive failure except 

that they cannot accept the post-peak strength in the analysis. 

 

2.1.2 Strength reduction method 

The strength reduction method (SRM) is first used in 2D slope stability analysis by 

Zienkiewicz et al. (1975). The concept of SRM analysis is to reduce the strength 

parameters (cohesion strength c’ and frictional strength tan ’ for example) by the factor 

of safety (larger than 1.0 in concept) in an implicit form while the body forces due to 

weight of soil and other external loads are applied until the system cannot maintain a 

stable condition. Such instable condition is usually indicated by (1) fail to converge in 

static equilibrium; (2) thorough plastic zone from toe to crest of slope; (3) large strain or 

strain increment and displacement. This procedure can determine the safety factor within 

a single framework for both two and three dimensional slopes, and it is implemented in 

some commercial geotechnical programs for engineering uses. The advantages of the 

SRM are: (1) the critical failure surface is found automatically from the application of 

gravity loads and/or the reduction of shear strength; (2) it requires no assumption on the 

interslice shear force distribution; and (3) it is applicable to many complex conditions and 

can give information such as stresses, movements, and pore water pressures. On the other 

hand, SRM suffers from long solution time required to develop the computer model and 

to perform the analysis, and SRM relies on the assumption of flow rule which is actually 

unknown in general. 

 



Studies of Slope Stability Problems by LEM, SRM and DEM 

13 

 

In strength reduction analysis, the convergence criterion is the most critical factor for the 

assessment of the factor of safety. Different criteria for the ultimate state have been used 

in practice according to the choice of the program: (1) maximum number of iteration is 

reached; (2) formation of a continuous failure mechanism; (3) sudden change in the 

displacement for some selected points. For simple problems, there are no major 

differences between these criteria, while greater differences may be obtained by different 

convergence criteria for some special cases. 

 

Recently, SRM appears to be a popular alternative to the LEM, but Cheng et al. (2007, 

2008) and Wei et al. (2008) have carried out extensive SRM studies and have found that 

there are also many practical limitations to the SRM. Cheng et al. (2007, 2008) and Wei et 

al. (2008) concluded that both LEM and SRM are useful to slope stability analysis, and 

each method cannot totally replace the other method in practical use. 

 

2.1.3 Distinct element method 

Distinct element analysis (DEM) discretizes the domain into discrete elements. The 

elements can be blocks (DDA by Shi, 1988) or particles (Cundall and Strack 1979). 

Program PFC models the movement and interaction of particles by the distinct element 

method, as described by Cundall and Strack (1979). The major application of distinct 

element method is to assess the behaviour of granular materials. The continuous 

deformations take account of 1) sliding and rotation of particles as rigid bodies and 2) 

elasticity of individual particles. Although the particles can be assumed as rigid elements, 

the behavior of the contacts is characterized using soft contact approach in which finite 

normal stiffness is taken to represent the stiffness which exists at the contact surface. The 

soft contact approach allows small overlapping area of particles which can be easily 
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observed. Stress on particle is then measured from this overlapping through the particle 

interface. 

 

While FEM and FDM are applied for investigation of the interslice force function and 

thrust line in Chapter 5, DEM will be adopted for the analysis of the slope failure 

mechanism in Chapter 4. 

 

2.1.4 Limit analysis method 

The limit analysis method includes the upper bound approach and the lower bound 

approach, and the general analysis process is the construction of a statically admissible 

stress field for the lower bound analysis or a kinematically admissible velocity field for an 

upper bound analysis. The lower bound approach has been used in 2D slope stability 

analysis by Chen (1975), Bottero et al. (1980), Zhang (1999), Kim et al. (2002), and 

Loukidis et al. (2003), while the application of this approach in 3D slope stability analysis 

has been conducted by Lyamin (1999), Lyamin and Sloan (2002a). Stress fields employed 

in the lower bound solutions are usually assumed without an apparent relation to the 

actual stress fields, and it is usually not easy to obtain the lower bound solutions for a 

practical slope problem. Therefore, the lower bound approach is seldom adopted as 

compared with the upper bound approach in slope stability analysis. Cheng et al. (2010) 

however proposed an equivalent lower bound approach by generalized interslice force 

function according to Pan extremum principles (1980). 

 

The upper bound approach was first used by Drucker and Prager (1952) to determine the 

critical height of a slope. Subsequently, Chen and Giger (1971), Chen (1975), Karal 

(1977a, 1977b) and Izbicki (1981) also applied and extended the upper bound approaches 
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in 2D slope analysis. Donald and Chen (1997) presented an upper bound method on the 

basis of a multi-wedge failure mechanism, and the sliding body was divided into a small 

number of discrete blocks. Some researchers have tried to use the finite element method 

to obtain the upper bound solution for structures and geotechnical problems 

(Anderheggen and Knopfel, 1972; Bottero et al., 1980; Sloan, 1988, 1989; Sloan and 

Kleeman, 1995; Kim et al., 2002; Loukidis et al., 2003). Chen (2004) and Chen et al. 

(2003b, 2004, 2005a) used rigid finite element method to establish a new upper bound 

formulation which renders the limit analysis of slope stability suitable to be conducted for 

different complex conditions.  

 

2.1.5 Variational calculus 

Baker and Garber (1978), Baker (1980) and Revilla and Castillo (1977) applied the 

calculus of variation to determine the factor of safety of a 2D slope. This approach was 

subsequently employed by Jong (1980) for vertical cut analysis in cohesive frictionless 

soil. Baker (2003) later has incorporated some additional physical restrictions into the 

basic limiting equilibrium framework so as to guarantee that the problem has a well-

defined minimum solution. Although the variational principle requires very few 

assumptions with no convergence problem during the solution, it is difficult to be adopted 

when the geometry or the ground/loading condition are complicated. Cheng et al. (2010) 

have developed the numerical algorithm based on the Pan’s extremum principle, and the 

formulation which relies on the use of modern heuristic optimization method can be 

viewed as an equivalent form of the variational method in a discretized form but is 

applicable for complicated real problem.  
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2.2 Optimization algorithms applied for slope stability 

problems 

Many geotechnical problems are governed by an optimization / extremum process. For 

example, the location of the critical failure surface is a typical minimization process while 

the lower bound principle is a typical optimization process. There are many mathematical 

techniques available for optimization analysis. While classical simplex or gradient 

methods can work for relatively simple problems, they can easily be trapped by a local 

minimum which may occur for a complicated problem. Currently, many researchers are 

turning to the modern global optimization methods which are not limited by the presence 

of a local minimum during the optimization process. 

 

Most of the modern global optimization algorithms are based on certain characteristics 

and behavior of biological, molecular, swarm of insects, and neurobiological systems. 

The genetic algorithms are based on the principles of natural genetics and natural 

selection; the simulated annealing method is based on the simulation of thermal annealing 

of critically heated solids; the particle swarm optimization is based on the behavior of a 

colony of living things, such as a swarm of insects or a flock of birds; the harmony search 

algorithm is conceptually based on the musical process of searching for a perfect state of 

harmony; the tabu search is the search strategy that uses memory and search history as its 

integrated component; the ant colony optimization is based on the cooperative behavior of 

real ant colonies, which are able to find the shortest path from their nest to a food source. 

 

Heuristic optimization algorithms are more suitable for complicated geotechnical 

problems where the global minimum is required but is difficult to be determined by the 

classical methods. More detailed discussion about the modern optimization methods will 
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be discussed in Chapter 3. 

 

2.3 Three-dimensional slope stability analysis and 

internal force function 

For simplicity, most of the slope stability problems are usually analyzed as two-

dimensional (2D) problem while slope failure is always three-dimensional (3D) in nature. 

Many researchers have considered on 3D slope study and various 3D slope stability 

methods are proposed basically by the extensions of the corresponding 2D analysis.  

 

Cavounidis (1987) has demonstrated that the factor of safety of a 3D slope should 

normally be greater than that for a corresponding 2D slope. The common 3D methods 

include those by Baligh and Azzouz (1975), Hovland (1977), Chen and Chameau (1982), 

Azzouz and Baligh (1983), Hungr (1987), Gens et al. (1988), Zhang (1988), Ugai (1988), 

Huang and Tsai (2000), Huang et al. (2002), Chang (2002), Chen et al. (2003a). The 

assumption which is adopted in most of these methods is that the failure mass is 

symmetrical about a known sliding direction, so asymmetric slope failure cannot be 

modeled directly by the classical 3D methods. Jiang and Yamagami (1999) proposed the 

axis rotation concept and the minimum factor of safety to determine the sliding direction, 

but this approach is time consuming in the geometry calculation. Huang and Tsai (2000) 

proposed a 3D asymmetrical slope stability analysis method where the sliding direction 

can be obtained with the direct determination of the factor of safety, but it is unreasonable 

that the sliding direction will be different for different soil columns. Lam and Fredlund 

(1993) in their development of a general LEM method have found that dominating 

intercolumn force functions are applied for normal and vertical shear forces on the xy- 

and yz- plane (xz- and yz- plane in this study) respectively. Cheng and Yip (2007) have 
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developed a new asymmetric 3D analysis model under which there is only one sliding 

direction for the whole sliding mass, and this simplification has overcome the 

convergence problem under transverse load in the formulation by Huang and Tsai (2000) 

and Huang et al. (2002).  

 

Giger and Krizek (1975, 1976) applied the upper bound approach in 3D slope stability 

analysis, where the stability of a vertical cut with a variable corner angle was analyzed. 

Michalowski (1989) proposed an upper bound formulation for 3D analysis of locally 

loaded slopes. Farzaneh and Askari (2003) later improved and extended this method to 

non-homogeneous 3D slopes. Chen et al. (2001a, 2001b) proposed another 3D upper 

bound approach which is extended from the corresponding 2D approaches by Donald and 

Chen (1997). In most of the 3D limit analysis methods, the column techniques which are 

usually used in 3D LEM are employed to construct the kinematically admissible velocity 

field. The finite element method has also been also used by some researchers (Lyamin 

and Sloan 2002b, Chen et al. 2005b) to obtain 3D upper bound solution.  

 

The variational method has been employed in 3D slope stability analysis by Leshchinsky 

et al. (1985), Ugai (1985), Leshchinsky and Baker (1986), Baker and Leshchinsky (1987), 

and Leshchinsky and Huang (1992). By such approaches, the minimum factor of safety 

and the associated failure surface can be obtained at the same time and the assumptions 

on the internal force distribution are not required. However, these methods are limited to 

homogeneous and symmetrical problems, so further study is required on the application 

in practical problems with complicated geometric and loading conditions. 
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CHAPTER 3   Optimization Algorithms and 

Applications in Geotechnical Engineering 

 

3.1 Introduction 

Optimization can be defined as the process of finding the conditions that give the 

maximum or minimum value of a function (Rao, 2009). In general, the optimum solution 

can be the maximum or minimum within a given solution domain, and can be classified 

as the global or local minimum. 

 

In the location of critical slip surface in slope stability analysis, the current trend is the 

adoption of the modern heuristic optimization algorithm instead of the gradient type 

optimization algorithms because:  

1. the objective function of the factor of safety f can be a non-continuous function and is 

usually non-smooth and non-convex so that gradient type optimization methods where 

continuity is required may not work (Cheng et al. 2008a). Most of gradient type 

methods rely on a creditable initial trial, otherwise, the results would be trapped into a 

local minima which normally exist in geotechnical engineering problems. Figure 3.1 

shows the typical domain with multiple local minima. If the initial trial starts near 

point C, the optimization procedure will easily find this local minimum but thereafter 

be trapped at C. The global minimum point E will then not be obtained. 

2. Some researchers set a series of sub-range for the whole search domain and multiple 

initials are established to avoid the influence of local minimum. Such effort is time-

consuming and cannot overcome the problems of discontinuity. When the number of 
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control variables is great, this method is still not satisfactory. 

3. Gradient type algorithms find the minimum by the condition of Ñf=0. If the global 

minimum lies at the edge of search domain like point B in Figure 3.1 where gradient 

Ñf¹0, the gradient type algorithm will fail. 

 

In recent years, some optimization methods that are conceptually different from the 

traditional mathematical programming techniques have been developed. These methods 

are labeled as modern or nontraditional methods of optimization. Most of these methods 

are emerging as popular methods for the solution of complex engineering problems, and 

these methods aims at the global optimum solution without the derivatives and the need 

for a continuous function or a good initial trial. The increasing number of published 

papers and applications in this area shows the growing attention from the geotechnical 

engineers and researchers for the efficiency and robustness of the modern optimization 

methods. This trend can also be seen from the optimization algorithms used in the 

commercial slope stability programs where the traditional optimization methods are now 

replaced with the use of modern heuristic optimization algorithms. 

 

3.2 Popular global optimization algorithms and 

comparison 

Most of the modern global optimization algorithms are based on certain characteristics 

and behavior of biological, molecular, swarm of insects, and neurobiological systems 

such as the Genetic Algorithm (GA), Simulated Annealing method (SA), Particle Swarm 

Optimization method (PSO), Harmony Search method (HS), Tabu Search (TS) and Ant 

Colony Optimization method (ACO). These methods are useful for both upper and lower 

bound analysis and will be briefly discussed in this section. 
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3.2.1 Genetic algorithm 

Although genetic algorithm (GA) was first presented systematically by Holland (1975), 

the basic ideas of analysis and design based on the concepts of biological evolution can 

be found in the work by Rechenberg (1965). Philosophically, GA is based on Darwin’s 

theory of survival of the fittest. The basic elements of natural genetics - reproduction, 

crossover, and mutation - are used in the genetic search procedure.  

 

In GA, the design variables are represented as strings of binary numbers, 0 and 1. For 

example, if a design variable xi is denoted by a string of length four (or a four-bit string) 

as 0 1 0 1, its integer (decimal equivalent) value will be (1) 2
0 

+ (0) 2
1
 + (1) 2

2 
+ (0) 2

3 

=1+0+4+0=5. If each design variable xi , i = 1, 2, . . . , n is coded in a string of length q, a 

design vector is represented using a string of total length nq. In general, if a binary 

number is given by bq−1 · · · b2b1b0, where bk = 0 or 1, k = 0, 1, 2, . . . , q-1, then its 

equivalent decimal number y (integer) is given by 

å
-

=

=
1

0

2
q

k

k

k by          (3.1) 

This indicates that a continuous design variable x can only be represented by a set of 

discrete values if binary representation is used. If a variable x (whose bounds are given by 

x
(l)

 and x
(u)

) is represented by a string of q binary numbers, as shown in Eq. (3.1), its 

decimal value can be computed as 
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q

lu
l b

xx
xx         (3.2) 

Thus, if a continuous variable is to be represented with high accuracy, we need to use a 

large value of q in its binary representation. In fact, the number of binary digits needed (q) 

to represent a continuous variable in steps (accuracy) of xD  can be computed from the 
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relation 

12
)()(

+
D
-

³
x

xx lu
q         (3.3) 

For example, if a continuous variable x with bounds 1 and 5 is to be represented with an 

accuracy of 0.01, we need to use a binary representation with q digits where 

4011
01.0

15
2 =+

-
³q    or  q = 9       (3.4) 

Eq. (3.4) shows why GA is naturally suited for solving discrete optimization problems. 

 

The computational procedure involved in maximizing the fitness function G(x1,x2, x3, . . . , 

xn) in the GA can be described by the following steps: 

1. Choose a suitable string length l = nq to represent the n design variables of the design 

vector X. Assume suitable values for the following parameters: population size m, 

crossover probability pc, mutation probability pm, permissible value of standard deviation 

of fitness values of the population (sf)max to use as a convergence criterion, and maximum 

number of generations (imax) to be used as the second convergence criterion. 

2. Generate a random population of size m, each consisting of a string of length l = nq. 

Evaluate the fitness values Gi , i = 1, 2, . . . ,m, of the m strings.  

3. Carry out the reproduction process. 

4. Carry out the crossover operation using the crossover probability pc. 

5. Carry out the mutation operation using the mutation probability pm to find the new 

generation of m strings. 

6. Evaluate the fitness values Gi, i = 1, 2, . . . ,m of the m strings of the new population. 

Find the standard deviation of the m fitness values. 

7. Test for the convergence of the algorithm or process. If sf ≤ (sf)max, the convergence 

criterion is satisfied and hence the process may be stopped. Otherwise, go to step 8. 
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8. Test for the generation number. If i ≥ imax, the computations have been performed for 

the maximum permissible number of generations and hence the process may be stopped. 

Otherwise, set the generation number as i = i + 1 and go to step 3. 

 

GA differs from the traditional methods of optimization in the following respects (Rao 

2009): 

1. A population of points (trial design vectors) is used to start the procedure instead of a 

single design point. If the number of design variables is n, usually the size of the 

population is taken as 2n to 4n. Since several points are used as candidate solutions, GA 

is less likely to get trapped at a local optimum. 

2. GA uses only the values of the objective function while the derivatives are not used. 

3. In GA, the design variables are represented as strings of binary variables that 

correspond to the chromosomes in natural genetics. Thus, the search method is naturally 

applicable for solving discrete and integer programming problems. For continuous design 

variables, the string length can be varied to achieve any desired resolution. 

4. The objective function value corresponding to a design vector plays the role of fitness 

in natural genetics. 

5. In every new generation, a new set of strings is produced by using randomized parents 

selection and crossover from the old generation (old set of strings). Although randomized, 

GA efficiently explores the new combinations with the available knowledge to find a new 

generation with better fitness or objective function value. 

 

3.2.2 Simulated annealing 

Simulated Annealing (SA) pioneered by Kirkpatrick, Gelatt and Vecchi in 1983 mimics 

the annealing process in material processing when a metal cools and freezes into a 
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crystalline state with minimum energy and larger crystal size so as to reduce the defects 

in metallic structures. The annealing process involves the careful control of temperature 

and cooling rate (often called annealing schedule). It has been proved that SA will 

converge to its global optimality if enough randomness is used in combination with very 

slow cooling (Yang 2008). 

 

Metaphorically speaking, this is equivalent to dropping some bouncing balls over a 

landscape, as the balls bounce and loose energy, they will settle down to some local 

minima. If the balls are allowed to bounce enough times and loose energy slowly enough, 

some of the balls will eventually fall into the global lowest locations, and hence the global 

minimum will be reached. The basic idea of SA algorithm is to use random search which 

not only accepts changes that improve the objective function, but also keeps some 

changes that are not ideal. In a minimization problem, for example, any better moves or 

changes that decrease the cost (or the value) of the objective function f will be accepted. 

However, some changes that increase f will also be accepted with a probability p. This 

probability p, also called the transition probability, is determined by 

 kTEep /d-=          (3.5) 

where k is the Boltzmann’s constant, and T is the temperature for controlling the 

annealing process. δE is the change of the energy level. This transition probability is 

based on the Boltzmann distribution in physics. The simplest way to link δE with the 

change of the objective function δf is to use 

fE gdd =                          (3.6) 

where γ is a real constant. For simplicity without losing generality, we can use k = 1 and γ 

= 1. Thus, the probability p simply becomes 

T

f

eTfp

d

d
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=),(         (3.7) 
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Whether or not we accept a change, we usually use a random number r as a threshold. 

Thus, if p > r or 

rep T

f

>=
-
d

          (3.8) 

this solution is accepted. 

 

Here, the choice of the right temperature is crucial. The special case T→0 corresponds to 

the gradient based method because only better solutions are accepted, and the system is 

essentially ascending or descending along a hill. For a given change δf, if T is too high 

(T→∞), then p→1, which means almost all changes will be accepted; the system is at a 

high energy state on the topological landscape, and the minima are not easily reached. On 

the other hand, if T is too low (T→0), the system may be trapped in a local minimum (not 

necessarily the global minimum), and there is not enough energy for the system to jump 

out of the local minimum to explore other potential global minima. 

 

Another important issue in SA is how to control the annealing or cooling process in order 

to ensure the system cools down gradually from a higher temperature to ultimately freeze 

to a global minimum state. There are many ways of controlling the cooling rate or the 

decrease of the temperature. Two commonly used annealing schedules are: linear and 

geometric cooling.  

 

For a linear cooling process, we have T = T0 − βt or T→T −δT, where T0 is the initial 

temperature, and t is the pseudo time for iterations. β is the cooling rate and should be 

chosen in such way that T →0 when t →tf (maximum number of iterations). This usually 

renders β = T0/tf . The geometric cooling essentially decreases the temperature by a 

cooling factor 0 <α<1 so that T is replaced by αT or  
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tTtT a0)( = , t = 1, 2, ..., tf       (3.9) 

Since 0 <α<1, T→ 0 when t→∞ in Eq.(3.9), thus there is no need to specify the maximum 

number of iterations tf. The cooling process should be slow enough to allow the system to 

remain stable. In practice, α = 0.7~0.9 is commonly used. In the case of a given 

temperature, multiple evaluations of the objective function are required. If too few 

evaluations are considered, the system will be at a risk of being unstable and subsequently 

fails to converge to the global optimum. On the other hand, if there are too many 

evaluations, it is time-consuming and the system will usually converge too slowly as the 

number of iterations to achieve stability might be exponential to the problem size. 

Therefore, there is a balance of the number of evaluations and solution quality. Either 

many evaluations at a few temperature levels or few evaluations at many temperature 

levels can be adopted.  

 

Some of the features of SA method are as follows (Yang, 2008): 

1. The quality of the final solution is not affected by the initial trials, except that the 

computational effort may increase with worse starting designs. 

2. Because of the discrete nature of the function and constraint evaluations, the 

convergence or transition characteristics are not affected by the continuity or 

differentiability of the functions. 

3. The convergence is also not influenced by the convexity status of the feasible space. 

4. The design variables are not required to be positive. 

5. The method can be used to solve mixed-integer, discrete, or continuous problems. 
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3.2.3 Particle swarm optimization 

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995, 

based on the swarm behaviour such as fish and bird schooling in nature. Though PSO has 

many similarities with GA, it is much simpler because it does not use mutation/crossover 

operators or pheromone (Yang 2008). Instead, it uses the real-number randomness and the 

global communication among the swarm particles. In this sense, it is also easier to 

implement as there is no encoding or decoding of the parameters into binary strings as 

those in GA. This algorithm searches a space of an objective function by adjusting the 

trajectories of individual agents, called particles, as the piecewise path formed by 

positional vectors in a quasi-stochastic manner. The particle movement has two major 

components: a stochastic component and a deterministic component. The particle is 

attracted toward the position of the current global best while at the same time it has a 

tendency to move randomly. When a particle finds a location that is better than any 

previously found locations, it updates it as the new current best for particle i. The aim is 

to find the global best among all the current best until the objective no longer improves or 

beyond a certain number of iterations. 

 

Consider an unconstrained maximization problem: 

Maximize f(X) 

with X
(l)

 ≤ X ≤ X
(u)

                       (3.10) 

where X
(l)

 and X
(u)

 denote the lower and upper bounds on X, respectively. The PSO 

procedure can be implemented through the following steps: 

1. Assume the size of the swarm (number of particles) is N. If a swarm size is too small, it 

is likely that it will take longer time to find a solution, or in some cases, we may not be 

able to find a solution at all. Usually a size of 20 to 30 particles is assumed for the swarm 



Studies of Slope Stability Problems by LEM, SRM and DEM 

28 

 

as a compromise. 

2. Generate the initial population of X in the range X
(l)

 and X
(u)

 randomly as 

X1,X2, . . . ,XN. Hereafter, for convenience, the particle (position of) j and its velocity in 

iteration i are denoted as )(i

jX  and )(i

jV , respectively. Thus the particles generated initially 

are denoted X1(0), X2(0), . . . ,XN(0). The vectors Xj (0) (j = 1, 2, . . . ,N) are called 

particles or vectors of coordinates of particles (similar to chromosomes in GA). Evaluate 

the objective function values corresponding to the particles as f[X1(0)], f[X2(0)],…, 

f[XN(0)]. 

3. Find the velocities of particles. All particles will be moving to the optimal point with a 

velocity. Initially, all particle velocities are assumed to be zero. Set the iteration number 

as i = 1. 

4. In the ith iteration, find the following two important parameters used by a typical 

particle j:  

(a) The historical best value of Xj(i) (coordinates of jth particle in the current iteration 

i), Pi, with the highest value of the objective function, f[Xj(i)], encountered by 

particle j in all the previous iterations. The historical best value of Xj(i) (coordinates 

of all particles up to that iteration), Pg, with the highest value of the objective 

function f[Xj(i)], encountered in all the previous iterations by any of the N particles.  

(b) Find the velocity of particle j in the ith iteration as follows: 

)];1([)]1([)1()( 2211 --+--+-= ircircii jgjijj XPXPVV  

j = 1, 2, . . ., N    (3.11) 

where c1 and c2 are the cognitive (individual) and social (group) learning rates, 

respectively, and r1 and r2 are uniformly distributed random numbers in the range 

[0,1]. The parameters c1 and c2 denote the relative importance of the memory 

(position) of the particle itself to the memory (position) of the swarm. The values of 
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c1 and c2 are usually assumed to be 2 so that c1r1 and c2r2 ensure that the particles 

would overfly the target about half the time.  

(c) Find the position or coordinate of the jth particle in ith iteration as 

Xj(i) = Xj(i−1) + Vj(i);  j = 1, 2, . . . ,N    (3.12) 

where a time step of unity is assumed in the velocity term in Eq.(3.12). Evaluate the 

objective function values corresponding to the particles as f[X1(i)], F[X2(i)],…, 

F[XN(i)]. 

5. Check the convergence of the current solution. If the positions of all particles converge 

to the same set of values, the method is assumed to have converged. If the convergence 

criterion is not satisfied, step 4 is repeated by updating the iteration number as i= i+1, and 

by computing the new values of Pi and Pg. The iterative process is continued until all 

particles converge to the same optimum solution. 

 

It is found that usually the particle velocities build up too fast and the maximum of the 

objective function is skipped (Rao 2009). Hence an inertia term, θ, is added to reduce the 

velocity. Usually, the value of θ is assumed to vary linearly from 0.9 to 0.4 as the iterative 

process progresses. The velocity of the jth particle, with the inertia term, is assumed as  

)]1([)]1([)1()( 2211 --+--+-= ircircii jgjijj XPXPVV q ;  

j=1, 2, . . . ,N      (3.13) 

The inertia weight coefficient θ was originally introduced by Shi and Eberhart in 1999 to 

dampen the velocities over time (or iterations), enabling the swarm to converge more 

accurately and efficiently compared to the original PSO algorithm with Eq.(3.11). 

Eq.(3.13) denotes an adapting velocity formulation, which improves its fine tuning ability 

in solution search. Eq.(3.13) shows that a larger value of θ promotes global exploration 

and a smaller value promotes a local search. To achieve a balance between global and 
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local exploration to speed up convergence to the true optimum, an inertia weight whose 

value decreases linearly with the iteration number has been used: 

i
i

i ×÷÷
ø
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çç
è
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-=

max

minmax
max)(

qq
qq                     (3.14) 

where θmax and θmin are the initial and final values of the inertia weight, respectively, and 

imax is the maximum number of iterations used in PSO.  

 

3.2.4 Harmony search 

Geem et al. (2001) and Lee and Geem (2005) developed a harmony search (HS) meta-

heuristic algorithm which is conceptually based on the musical process of searching for a 

perfect state of harmony. Harmony in music is analogous to the optimization solution 

vector, and the musician’s improvisations are analogous to local and global search 

schemes in optimization techniques. The HS algorithm does not require initial values for 

the decision variables. Furthermore, instead of a gradient search, the HS algorithm uses a 

stochastic random search which is based on the harmony memory consideration rate HR 

and the pitch adjustment rate PR so that the gradient of the objective function is not 

necessary during the analysis. The HS algorithm is a population-based search method. A 

harmony memory HM of size M is used to generate a new harmony which is probably 

better than the optimum in the current harmony memory. The harmony memory consists 

of M harmonies (slip surfaces) which are usually generated randomly. Consider 

{ }MhmhmhmHM ,...,21=   

( )imiii vvvhm ,...,, 21=                    (3.15) 

where each element of ihm  corresponds to that in vector V representing certain harmony. 

Consider the following optimization problem, where M=4, m=2. Suppose that HR=0.9, 
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PR=0.1. 
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The structure of HM is comprised of four randomly generated harmonies as shown in 

Table 3.1. The new harmony can be obtained using the harmony search algorithm as 

follows. A random number in the range [0, 1] is generated, for example 0.6 (<HR). One 

of the values from {1.0, 1.5, 0.5, 1.8} is chosen as the value of x1 in the new harmony. If 

the value of x1 is set to 1.0, another random number 0.95 (>HR) and a random value in 

the range [1, 3] are obtained. Suppose that a number 1.2 is obtained from the range [1,3]; 

then a coarse new harmony ( )2.1,0.1' =nhm  is generated. Fine tuning of the new harmony 

is obtained by adjusting the coarse new harmony according to the parameter PR. Suppose 

that two random values in the range [0,1] are generated, say 0.7 and 0.05. Since the 

former value of 0.7 is greater than PR, the value of x1 in hmn will remain unchanged. The 

latter value of 0.05 is less than PR and therefore the value of 1.2 should be adjusted; say 

1.10 is assigned to the new value of x2 until the fine new harmony hmn = (1.0, 1.10) is 

obtained. The objective function of the new harmony is then calculated as 1.21. The 

objective function value of 1.21 is better than that of the worst harmony hm4; therefore 

hm4 is excluded from the current HM and hmn is included in the HM. This completes one 

iteration loop. The algorithm continues until the termination criterion is satisfied. 

 

The iterative steps of the HS algorithm in the optimization are as follows. 

Step 1. Initialize the algorithm parameters HR, PR, and M, and randomly generate M 

harmonies (slip surfaces). 

Step 2. Generate a new harmony and evaluate it. 

Step 3. Update the HM, i.e. if the new harmony is better than the worst harmony in the 
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HM in terms of factor of safety, the worst harmony is replaced with the new harmony. 

Step 4. Repeat steps 2 and 3 until the termination criterion is achieved. 

 

Take the ith value of the coarse harmony '

nh , '

niv , for instance, with its lower bound and 

upper bounds named herein as maxmin , ii vv . A random number 0r  in the range [0,1] is 

generated. If 5.00 >r , '

niv  is adjusted to niv  using the Eq.(3.17), otherwise, Eq.(3.18) is 

used to calculate the new value of niv . 

( ) 5.00

'

max

' >´-+= rrandvvvv niinini                   (3.17) 

( ) 5.00min

'' £´--= rrandvvvv ininini                   (3.18) 

where rand denotes a random number in the range [0,1], is used to calculate the new 

value of νni.  

 

The number of objective function evaluations during the search for the optimum, denoted 

by NOF, can represent the computation time required by the optimization algorithm. The 

termination criterion is not reported by Geem et al. (2001), and many researchers just 

specify a fixed number of trials and take the minimum value from the trials as the global 

minimum. The original formulation is not good in that there is no guideline for the 

selection of a suitable number of trials and many researchers find this by a trial and error 

process. It is found that if a very large number of trials are specified, the optimum 

solution may be found at a relatively early stage and many unnecessary computations will 

be carried out (Cheng et al. 2008b), and Cheng has proposed the termination criterion for 

the harmony search algorithm (Cheng et al. 2007).  
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3.2.5 Tabu search 

Tabu search (TS) developed by Fred Glover in 1970s is a search strategy that uses 

memory and search history as its integrated component. Memory could introduce many 

degrees of freedom, especially for the adaptive memory use, which makes it almost 

impossible to use the rigorous theorems-and-proof approach to establish the convergence 

and efficiency of such algorithms. Therefore, even though TS works well for certain 

problems, it is difficult to analyze mathematically why it works well. Consequently, Tabu 

search remains a heuristic approach. TS is an intensive local search algorithm and the use 

of memory avoids the potential cycling of local solutions so as to increase the search 

efficiency. The recent tried or visited solutions are recorded and put into a Tabu list and 

new solutions should avoid those in the Tabu list. The Tabu list is an important concept in 

Tabu search, and it records the search moves as the recent history, and any new search 

move should avoid this list of previous moves. This will inevitably save time as previous 

moves are not repeated. Over a large number of iterations, this Tabu list could save 

tremendous amount of computing time and thus increase the search efficiency 

significantly (Yang 2008). 

 

3.2.6 Ant colony optimization 

Ant colony optimization (ACO) is based on the cooperative behavior of real ant colonies 

which find the shortest path from their nest to a food source. The method was developed 

by Dorigo et al. in the early 1990s. The ACO process can be explained by representing 

the optimization problem as a multilayered graph, where the number of layers is equal to 

the number of design variables and the number of nodes in a particular layer is equal to 

the number of discrete values permitted for the corresponding design variable. Thus each 
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node is associated with a permissible discrete value of a design variable. More 

particularly, let the colony consist of N ants. The ants start at the home node, travel 

through the various layers from the first layer to the last or final layer, and end at the 

destination node in each cycle or iteration. Each ant can select only one node in each 

layer in accordance with the state transition rule. The nodes selected along the path 

visited by an ant represent a candidate solution. Once the path is completed, the ant 

deposits some pheromone on the path based on the local updating rule. When all the ants 

complete their paths, the pheromones on the globally best path are updated using the 

global updating rule. In the beginning of the optimization process (i.e., in iteration 1), all 

the edges or rays are initialized with an equal amount of pheromone. So, in iteration 1, all 

the ants start from the home node and end at the destination node by randomly selecting a 

node in each layer. The optimization process is terminated if either the prescribed 

maximum number of iterations is reached or no better solution is found in a prescribed 

number of successive cycles or iterations. The values of the design variables denoted by 

the nodes on the path with the largest amount of pheromone are considered as the 

components of the optimum solution vector. In general, at the optimum solution, all ants 

travel along the same best (converged) path (Rao 2009). 

 

3.2.7 Comparisons and discussions on different heuristic algorithms 

Many practical optimization design problems are characterized by mixed continuous– 

discrete variables, and discontinuous and nonconvex design spaces. If standard nonlinear 

programming techniques are used for this type of problem, they will be inefficient, 

computationally expensive, and, in most cases, find a relative (local) optimum that is 

closest to the starting point (Rao 2009). In views of these limitations, the current trend is 

the adoption of the modern global optimization methods in this type of problem.  
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The uses of optimization methods in slope stability analysis have been discussed by 

Cheng (2007). For clarity, the procedures for the optimization algorithms are given in 

Figures 3.2-3.7. Cheng et al. (2007a) examined the performance of these major heuristic 

algorithms in geotechnical engineering. It is found that every global optimization method 

can be tuned to work well if suitable optimization parameters or initial trial are adopted. 

Since the suitable optimization parameters or the initial trial are difficult to be established 

for a general problem, the performance of a good optimization method should be 

relatively insensitive to these factors. The general comments on these heuristic 

optimization methods are: 

(1) For normal and simple problems, practically every method can work well. The HS and 

the GA are the most efficient method when the number of control variable is less than 20. 

The TS and the ACO are sometimes extremely efficient in the optimization process, but 

the efficiency of these two methods fluctuates significantly between different problems 

and these two methods not recommended to be used. 

(2) For normal and simple problems where the number of control variables exceeds 20, 

the HS and the PSO are the recommended solution as they are more efficient in the 

solution, and the solution time will not vary significantly between different problems.  

(3) For more complicated problems or when the number of control variables is great, the 

effectiveness and efficiency of the PSO is nearly the best in all of the studied examples. 

(4) Thin soft band create great difficulty in the global optimization analysis, and the PSO 

will be the best method in this case. However, using the domain transformation strategy 

by Cheng (2007), all the global optimization methods can work well for this case. 

(5) For complicated problems, where an appreciable amount of trial failure surfaces will 

fail to converge, the simulated annealing method and the PSO are the recommended 
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solutions. In views of the differences in the performance between different global 

optimization algorithms, a more satisfactory solution is the combined used of two 

different algorithms. For example, the PSO or the HS can be adopted for normal problems, 

while the SA can be adopted when the ‘failure to convergence’ counter is high. Further 

improvement can be achieved by using the optimized results from a particular 

optimization method as a good initial trial, and a second optimization method adopts the 

initial trial from the first optimization algorithm for the second stage of optimization with 

a reduced solution domain for each control variable. 

 

Heuristic algorithms are approximate and not accurate algorithms. These algorithms 

usually find a solution close to the best one, and they usually find it fast and easily. Cheng 

et al. (2008a) have commented that no particular optimization method is superior under 

all cases, but some methods (ACO and TS) may be less effective for problem where the 

objective functions are highly discontinuous. Cheng et al. (2007a) adopt a uniform set of 

parameters for every optimization method for all the problems. In normal most cases, it is 

found that these global optimization algorithms are relatively insensitive to the use of the 

optimization parameters. 

 

3.3 Modified harmony search algorithm for 

optimization problem (MHS) 

3.3.1 Modified harmony search algorithm 

There are many hydropower projects in China where the ground conditions are 

complicated with contrasting soil properties between each soil layer. The scale of the 

problem is also large so that the numbers of control variables become high. The problem 

is further complicated by the presence of several layers of weak zones which are usually 
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irregular in the geometry. To overcome these difficulties, two global optimization 

methods are developed in this study. 

 

Cheng et al. (2008b) have found that the original harmony search (OHS) algorithm works 

well for simple optimization problem with less than 25 control variables. For more 

complicated problems with a large number of control variables, the OHS algorithm 

requires a large number of trials before a good solution can be achieved. A new type of 

harmony search algorithm called the modified harmony search (MHS) algorithm has been 

developed in the present study to ensure the efficiency in the analysis.  

 

The MHS method differs from the original method in two aspects. The first difference is 

the probability of each harmony. The better the objective function value of one harmony, 

the more probable will it be chosen for the generation of a new harmony. A parameter d  

( 10 £< d ) is introduced. All the harmonies in HM are sorted by ascending order (for 

minimization problems, and by descending order for the maximization problem), and a 

probability is assigned to each of them. For instance, ( )ipr  indicates the probability to 

choose the ith harmony  

( ) ( ) 1
1

--´= i
ipr dd    i=1,2,…,M                (3.19) 

From Eq.(3.19), it can be seen that the larger the value of d , the more probable that it is 

the first harmony to be chosen. A new array ( ) MiiST ,..,2,1,0, = should be used to 

implement the above procedure of choosing the harmony. 

( ) ( )å
=

=
i

j

jpriST
1

                    (3.20) 

where ( )iST  represents the accumulating probability for the ith harmony. ( )0ST  equals to 

0.0 in the implementation. A random number cr  is chosen from the range [0, ( )MST ], and 
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the kth harmony in HM is chosen if the following criterion is satisfied: 

( ) ( ) MkkSTrkST c ,...,2,1,1 =£<-                  (3.21) 

The second modification in the MHS method is that other than one new harmony being 

generated in the OHS, a certain number of new harmonies ( Nhm ) are generated during 

each iteration step. The utilization of HM is intuitively more exhaustive when generating 

several new harmonies than when generating one new harmony during one iteration. In 

order to retain the structure of HM, the M  harmonies with lower objective functions (for 

the minimization optimization problem) from NhmM +  harmonies are included in the 

structure of HM again and Nhm  harmonies with higher objective functions are rejected. 

 

As described above, the HM as shown in Table 3.1 are reordered in ascending order. The 

new structure is demonstrated in Table 3.2. Suppose 2,5.0 == Nhmd , the arrays pr  and 

ST  obtained are given in column 5 and 6, respectively, in Table 3.2. As discussed above, 

a random number in the range [0, 1] is generated, e.g., 0.6( HR< ). One of the values from 

{1.0, 1.5, 0.5, 1.8} should be chosen as the value of 1x  in the new harmony. Given the 

value of cr , for example 0.7,  by using criterion Eq.(3.21) 0.5 is chosen to be the value 

of 1x . Another random number of 0.95( HR> ) is then chosen, and a random value in the 

range [1, 3], e.g., 1.2, is obtained, thus a coarse new harmony ( )2.1,5.0' =nhm  is 

generated. The fine tuned new harmony is obtained by adjusting the coarse new harmony 

according to the parameter PR . Suppose two random values in the range [0, 1], say 0.7, 

0.05, are generated randomly. Because the former is greater than PR , so the value of 1x in 

nhm '  remains unchanged. The latter is lower than PR , so the value of 1.2 should then be 

adjusted. For example, 1.10, is the new value of 2x , and the fine tuned new harmony 

( )10.1,5.0=nhm  is obtained. Similarly, the second new harmony ( )5.1,9.0'' =nhm  is also 
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obtained. The objective functions of the two new harmonies are calculated as 1.46 and 

2.26, respectively. So the four harmonies with lower objective functions as 

'''

21 ,,, nn hmhmhmhm  are introduced into HM as illustrated in Table 3.3, and one iteration 

loop is then finished. The algorithm continues until the termination criterion is satisfied. 

 

Besides the three parameters HR, PR, and M as used in the OHS algorithm, there are 

another two parameters Nhm,d  which can influence the performance of the proposed 

algorithm. Usually, the larger the value of Nhm is, the more iterations are investigated to 

achieve the termination criterion. Also, the larger the value ofd is, the fewer harmonies in 

HM are employed to generate the new harmonies. There is no simple way to determine 

the values of  and Nhmd . Three different values 0.1, 0.5 and 0.8 for d are found by trial 

and error in the MHS. Each d can be considered to be controlling a specific domain 

within [0,1]. For example, d=0.1 can be considered as a controlling domain [0,0.3] where 

0.3 is the average of 0.1 and 0.5. Similarly, d=0.1 controls domain [0.3,0.65] while d=0.8 

controls domain [0.65,1.0]. The present algorithm is not sensitive to the exact choice of d 

provided that the weighting of each d is approximately the same. Firstly, 1mN  iterations 

are performed yielding the best harmony  1ghm  with the objective function value of 1gf , 

then 2mN  iterations are continued and 2ghm  and 2gf  are obtained. If Eq.(3.22) is satisfied, 

1-M  harmonies are randomly generated with the extra 2ghm  comprising the initial HM 

for next value of d ; otherwise, 1ghm  and 1gf  are replaced with 2ghm  and 2gf  

respectively. 2mN  iterations are performed until Eq.(3.22) is satisfied. After Eq.(3.22) is 

satisfied, another value of d  is examined until all three values are tested. 

epsff gg £- 21                      (3.22) 
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where eps  is the termination tolerance of the algorithm and is specified as 0.0001 in the 

present study. After the three values of d  are applied, the search domain for the 

optimization problem is reduced as follows: 

( )
( ) h

h

´-+=

´--=

minmaxmax
'

minmaxmin
'

iigii

iigii

vvvv

vvvv
                  (3.23) 

where giv  represents the ith element of the best harmony so far ( ghm ), and h  is the 

reduced percentage. In this study, h is set to 0.1. min
'
iv  and max

'
iv  are the reduced 

minimum and maximum bounds to the value of the ith control variable, respectively. 

Besides ghm , 1-M  harmonies are randomly generated within the reduced search 

domains, both of which comprise the new initial HM for iteration. Figure 3.8 shows the 

flowchart of the MHS algorithm. 

 

3.3.2 Case studies for modified harmony search algorithm 

Most of the existing global optimization methods can work well for relatively simple 

problems. When the problem has complicated geometry with major differences in soil 

parameters between different soils, there might be no solution to the objective functions at 

discrete regions or points, the efficiency and the capability to escape from local minima 

for the solution algorithm will become important.  

 

To compare the performance of different algorithms, five procedures of slip surface 

generation (Cheng et. al, 2008b) are adopted as shown in Figure 3.9. In general, 

kinematically acceptable slip surface is concave upward and for failure soil mass to be 

divided into n slices, the slip surface is represented by n+1 vertices [V1,V2,…,Vn+1] with 

coordinates ( )11, yx , ( )22 , yx ,…, ( )11, ++ nn yx . The first vertex ( )11, yx  is usually at the toe 
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of simple slope and the last vertex ( )11, ++ nn yx  can be defined easily by engineering 

experience based on slope geometry or sufficiently wide domains can be specified by the 

engineers. In the first method of slip surface generation, P1, x-ordinates are decided by 

evenly dividing the slices on the horizontal direction and y-ordinates can be determined 

by slope geometry, properties and especially, rectifying the convex segments into concave 

segments as shown in Figure 3.9(a); In the second procedure, P2 shown in Figure 3.9(b), 

equal horizontal extent of each slice is also adopted, y2 is determined by the geometry and 

bedrock line,  yi+1  (i=2,…,n-1) is randomly generated between point G (intersection of 

line x=xi+1 and line between Vi and Vn+1) and bedrock line or point H (intersection of line 

x=xi+1 and line between Vi-1 and Vi), and therefore the convex segments can be avoided 

automatically in the generation of slip surface; The third procedure, P3 shown in Figure 

3.9(c), is conceptually similar with P2 except that it uses angle between the slices as 

control variable instead of y-ordinates; In the fourth procedure P4 as shown in Figure 

3.9(d), both x-ordinates and angle between the slices are control variables and the trial 

slip surface is generated in the similar procedure as P2 and P3; The fifth procedure P5 

shown in Figure 3.9(e) is based on the generation method by Greco (1996) and Malkawi 

et al. (2001): the x-ordinates and angles of first and last vertices are control variables,  as 

well as n random numbers in the range (-0.5, 0.5) representing the horizontal distance 

ratio which are adopted to determine the vertices at the middle portion of the slip surface 

(for example, the ratio of the horizontal distance between V2 and mid-point of line V1V6 to 

the horizontal distance between V2 and V6  is a control variable used to determine V2). The 

number of control variables in different generation procedures are listed in Table 3.4. 

From the procedures to generate the slip surface and corresponding number of control 

variables, it is anticipated that P1 requesting rectification of convex segments would 

employ more computation time, i.e. the NOF of P1 would be larger than the other 
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procedures before the optimization algorithm can obtain the satisfactory factor of safety. 

 

Several published examples are considered in this section to illustrate the effectiveness of 

the proposed algorithm MHS based on different slip surface generation methods. The first 

example is a simple homogeneous slope. The geotechnical parameters are: friction 

angle o0.10=f , cohesion 8.9=c  kPa, unit weight 64.17=g  kN/m
3
. Different 

researchers have examined this example using different optimization methods. Yamagami 

and Ueta (1988) used nonlinear programming methods to search for the critical slip 

surfaces and adopted Morgenstern and Price’s method assuming ( ) 0.1=xf  to calculate 

the factor of safety. Greco (1996) analyzed this example using pattern search and a Monte 

Carlo type method. Malkawi et al. (2001) used the Monte Carlo technique to solve this 

problem. In this study, the number of slices is specified as 20, 25, and 30. The MHS and 

Morgenstern and Price method are used to analyze this example. The minimum factors of 

safety corresponding to different number of slices and the associated critical slip surfaces 

are shown in Table 3.5 and Figure 3.10, respectively. It must be noted that the result by P1 

is slightly less satisfactory than the other results because the NOF required by P1 is up to 

210308 which is much more than all the other procedures. Except for the results by P1, all 

the results are almost the same both in the factors of safety and the critical slip surfaces 

which are illustrated in Table 3.5 and Figure 3.10, respectively. In view of the differences 

in the precision used for the geometry and factor of safety calculation, it can be concluded 

that all the minimum factors of safety from different researchers are practically the same, 

except for the result 1.238 by Malkawai et al. (2001) (when the result by P1 is excluded). 

When the critical solution reached by Malkawai et al. (2001) is analyzed, a factor of 

safety of 1.37 is, however, obtained by the present method instead of the value 1.238 by 

Malkawai et al. (2001). It appears that the result by Malkawai et al. (2001) is affected by 
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the multi-solution problem as discussed by Cheng (2003). 

 

The second example is taken from the study by Bolton et al. (2003). It is a case where a 

weak layer is sandwiched between two strong layers. The geotechnical properties for 

layers 1 to 3 respectively are friction angle o20 , o10  and o20 ; cohesion 28.73kPa, 0.0kPa, 

and 28.73kPa; and the unit weight is taken as 18.84kN/m
3
 for all three layers. Different 

researchers used different methods to perform this example. Bolton et al. (2003) used 

Spencer’s method to calculate the factor of safety, and the leap-frog algorithm was 

employed to search for the critical slip surface. The number of slices is assumed to be 20, 

25, and 30 as in example 1. The minimum factors of safety under different numbers of 

slices and the associated critical slip surfaces are shown in Table 3.6 and Figure 3.11 

respectively. The critical slip surfaces obtained by Bolton et al. (2003) are also illustrated 

in Figure 3.11 for comparison. As shown in Table 3.6, P1 is always inefficient for 

different number of slices in different cases because it requires large number of NOF to 

obtain a relatively high factor of safety. When the number of slices is equal to 30, the 

factor of safety by P4 is the best solution. However, the NOF required by P4 is the largest 

among all the five procedures. The result obtained by Bolton et al. (2003) is greater than 

those obtained by P2 to P4. The result 1.3086 is obtained by P5 which is slightly bigger 

than that by Bolton et al. (2003), but the number of iterations required is only 3362, 

which is smaller than all the other procedures. 

 

The third example is a case considered by Goh (1999) and the geotechnical parameters 

are listed in Table 3.7. The cross section of the example is sketched in Figure 3.12. Goh 

(1999) used a genetic algorithm for this example and obtained a minimum factor of safety 

equal to 1.387. Bolton et al. (2003) adopted the leap-frog optimization algorithm and 
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Spencer’s method to analyze this example and a minimum factor of safety equal to 1.359 

is obtained. It can be seen from Figure 3.13 and Table 3.8 that the results obtained by 

different researchers are practically the same except those by P1. The critical slip surface 

obtained by P5 is slightly upwards concave as compared with the solutions from other 

procedures or researchers. Once again, the results obtained by P1 are poor even for a large 

number of iterations while the performance of P5 appears to be very efficient.  

 

Example 4 is taken from the study by Arai and Tagyo (1985) where a layer of low 

resistance soil is interposed between two layers of soil with higher strengths. Geometrical 

features of the slope and values of shear-strength parameters of various layers are 

reported in Figure 3.14 and Table 3.9, respectively. Arai and Tagyo (1985) used Janbu’s 

simplified method in combination with the conjugate gradient method and obtained a 

minimum factor of safety of 0.405. The same example was also examined by Sridevi and 

Deep (1991) using the random search technique and a value of 0.401 is obtained. Greco 

(1996) used the Monte-Carlo method to solve the same problem and obtained a factor of 

safety of 0.388. Malkawi et al. (2001) also adopted the Monte Carlo technique with a 

factor of safety equal to 0.401 but the critical slip surface was very close to that by Greco 

(1996). Results by different researchers are shown in Table 3.10. The critical slip surfaces 

are summarized in Figure 3.15. The factors of safety obtained by P1 vary from 0.42 to 

1.17 and are totally unacceptable. The critical slip surfaces using 30 slices and P1 to P5 

are shown in Figure 3.15 and they are much different from those found by Arai and Tagyo 

(1985), Sridevi and Deep (1991), Greco (1996), and Malkawi et al. (2001) in the exit part 

of the slip surface (right hand side in Figure 3.15). The factors of safety found using P1 to 

P5 and the simplified Janbu’s method as given in Table 3.10 fall in between those 

obtained by Arai and Tagyo (1985) and by Greco (1996). Also, the critical slip surfaces 
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obtained by P1 to P4 are close to that obtained by Malkawi et al. (2001). The critical slip 

surfaces obtained by Arai and Tagyo (1985) and Sridevi and Deep (1991) pass through 

the stronger layer, whereas the critical slip surfaces found in this study, by Greco (1996), 

and by Malkawi et al. (2001) are all located in the weak layer. It is interesting to note that 

if the critical failure surface found by Greco (1996) is used for analysis, a factor of safety 

of 0.401 instead of 0.388 as reported by Greco (1996) is obtained. It appears that the 

result by Greco (1996) is questionable. 

 

Example 5 is considered by Zolfaghari et al. (2005) where a slope in layered soil is 

analyzed using the GA and the Morgenstern and Price method. Figure 3.16 shows the 

geometrical features of the analyzed slope, while Table 3.11 gives the geotechnical 

properties in layers 1 to 4. The number of slices used in this study is assumed to be 20, 25, 

and 30 and the results obtained are given in Table 3.12 and Figure 3.17. P1 appears to be 

always ineffective and the factors of safety range from 2.80 to 2.90. The results in Table 

3.12 are all smaller than that obtained by Zolfaghari et al. (2005) except for P1 and P2. A 

very surprising result is that the result 1.11 by P5 which is the best among all the different 

procedures has the smallest NOF. The results obtained by P2 and P4 are almost the same 

and the result obtained by P3 is slightly larger than that by Zolfaghari et al. (2005). 

Although the number of slices used by Zolfaghari et al. (2005) is not clearly stated, it can 

be seen from Figure 3.17 that greater portions of the critical slip surfaces found by P2, P3, 

P4 and P5 lie within the weakest layer as compared with that obtained by Zolfaghari et al. 

(2005) which are clearly more reasonable results.  
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3.3.3 Differences between the original harmony search and modified 

harmony search methods 

The MHS is developed because of the poor performance of the original method when the 

number of control variables exceeds 25. In order to compare the efficiency between the 

OHS and MHS, P2 is used to generate the trial slip surfaces, assuming the number of 

slices to be 20, 25 and 30 or equivalently the number of control variables are 21, 26 and 

31, respectively. The OHS algorithm is tested in the above five examples using NOF 

equal to 30000, 40000 and 50000 respectively. The comparison of the results obtained by 

the OHS and MHS is given in Table 3.13. 

 

From Figure 3.18 and Table 3.13, it can be concluded that the MHS attains the optimal 

solution with no loss of accuracy and with much less effort. In addition to that, 

considering the OHS requires a large number of trials for complicated problems with a 

large number of control variables (larger than 25 ) , the MHS is superior to the OHS 

algorithm in most cases. Since the MHS is more stable than OHS for most cases, 

harmony search algorithm that is referred at the rest of this chapter actually refers to the 

MHS instead of OHS. 

 

3.4 A coupled particle swarm optimization and 

harmony search algorithm 

3.4.1 Mixed optimization algorithm of particle swarm optimization and 

harmony search 

Another modified algorithm denoted as HS/PSO is developed in present study for cases 

where there are several strong local minima in the present. In the original PSO, the 

locations of the particles are updated by modifying the corresponding velocity vectors, 
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and it is found that incorrect value of q may lead to the trap into the local minimum which 

will be demonstrated in a later section. Generally speaking, a moderate value of 0.5 for q 

is used for all the problems, otherwise, a larger value of q can be applied at the initial 

analysis to search the solution space, which is then reduced linearly to a small value to 

find better results near the existing best position (Cheng et al. 2010b). On the other hand, 

the HS method is efficient and effective global optimization method when the number of 

control variables is less than 25 for many geotechnical problems as mentioned before. 

Modified harmony search (MHS) method as proposed in this study can overcome the 

limitation of the OHS method. From the study by Cheng et al. (2007a), the PSO is found 

to be a more stable method in the optimization analysis while the HS is a fast solution 

algorithm in some cases. So the combination of two optimization method can possibly 

result in a better performance under difficult cases.  

 

The procedure to generate a new harmony in HS can be introduced into the PSO to 

determine the locations of the particles beyond the boundary, thus the mixed optimization 

algorithm can make good use of the advantages in both the PSO and the HS. The detailed 

procedures for the presented mixed algorithm are as follows, and flow chart is shown in 

Figure 3.19: 

Step 1: Randomly generate N particles comprising a group of particles, and initialize the 

values of parameters. Set the counter of iteration 0j = . 

Step 2: If 0j = , evaluate all the particles in the group, else the particles with the modified 

positions are evaluated. Update iP  and gP . 

Step 3: Randomly choose zN  particles to ‘move’ by Eqs.(3.12) and (3.13) 

Step 4: Determine whether there are particles outside the allowable bounds. If yes, replace 

the old values with the new ones obtained by the MHS procedure. 
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Step 5: The counter of iteration j  is increased by 1, and the termination criterion is 

checked. If the termination criterion is satisfied, the algorithm will terminate, else, go to 

step 2 and continue. 

 

Only zN  particles other than all the particles are allowed to ‘move’ during each iteration 

in the mixed optimization. By this means, the computation result and the computation 

time can be maintained at a balance. In this study, zN  is set to 5. Several different values 

of zN  have been tried and it is found that the value of zN  has no major effect on the 

results. The other parameters are chosen to be the same as the PSO by Cheng et al. 

(2008d). The maximum and minimum extremum principles to be discussed in chapter 4 is 

implemented by using the mixed optimization algorithm as given above, and it is found 

that this approach is highly effective and efficient so that the factor of safety can be 

determined within a reasonable time suitable for routine design works. 

 

3.4.2 Case studies for coupled particle swarm optimization and 

harmony search algorithm 

To demonstrate the effectiveness of the present coupled optimization method HS/PSO, we 

will consider example 5 again as shown in Figure 3.20. Again, the soil parameters are 

shown in Table 3.11. The soil parameters for soil layer 3 are particularly low so that the 

majority of the slip surface will lie within this layer of soil. The minimum factors of 

safety using Spencer method for this problem are 1.50, 1.11, 1.361 and 1.09 by the GA 

(Zolfaghari et al.(2005)), the artificial fish swarm algorithm (AFSA) (Cheng et al. 

(2008c), the ACO (Kahatadeniya et al. (2009)) and the present algorithm. Since the soft 

band soil is a strong local minimum and the thickness of this layer is relatively small, the 
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GA and the ACO fail to provide a good solution for this problem. On the other hand, the 

AFSA and the present HS/PSO optimization analysis provide solutions which are nearly 

the same. In fact, it is difficult to differentiate precisely the critical slip surfaces from 

these two methods. 

 

The second geotechnical example is taken from example 2, and it is less difficult than the 

first case in term of optimization. For this problem, there is a “strong” minimum while the 

geometry is relatively simple, so the global minimum will attract the optimization 

solution paths for the HS and PSO which will be very efficient in the analysis. For the 

HS/PSO method, it is less affected by the attraction of any local minimum, so it is 

actually less efficient than the original HS or PSO methods for the present example. This 

feature is however important when a difficult problem is encountered, as the HS/PSO 

method will be less affected by the presence of several “strong” minimum so that it will 

be actually more efficient and effective for difficult problems. 

 

Another example is shown in Figure 3.21. It is one of the sections for a major hydropower 

project founded at a location with complicated ground conditions in China. There are 

several different layers of soft materials which are shown in shaded in Figure 3.21 while 

the material parameters are shown in Table 3.14. Detailed studies of this project using 

various methods and computer programs have been carried out by Cheng et al. (2008b), 

and satisfactory results have been obtained for most of the difficult sections. There are 

however some special sections where the results are very sensitive to the initial solution 

and a wide range of minimized results are obtained which are shown in Table 3.15. It is 

not easy to determine the critical failure surface automatically by the classical 

optimization methods, as there are several layers of soft materials which are strong local 
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minima affecting the direction of search for the global minimum as shown in Figure 3.22. 

For the present analysis, the left exit end of the failure surface is searched within the 

domain of x=260m to 330m while the right exit end is searched within the domain of 

x=520m to 575m. The failure surface based on the MHS is close to the original PSO 

methods and they are not shown for clarity in Figure 3.23. It is noticed that the failure 

surfaces from all the optimization methods are virtually the same at the right hand side as 

this is governed by the soil profiles and the geometry of this project. The major 

differences between the failure surfaces from different methods of optimization as shown 

in Figure 3.23 are: (1) the starting point of the critical failure surface from HS/PSO is 

x=278.0 while it ranges from 320.25 to 320.38 for all the other methods; (2) the exit angle 

of the failure surface for HS/PSO method is smaller than all the other methods; (3) all the 

optimization methods except for the HS/PSO is more attracted by soil 13 in the analysis 

so that the critical failure surfaces are deeper than that by the HS/PSO. In Table 3.15, it is 

clear that most of the global optimization methods are not satisfactory except for the 

AFSA which gives a factor of safety less than 2.0 (but still not good enough while HS, 

PSO are actually poor in performance) but requires 394527 trials in the analysis. Actually, 

when the number of control variable is large, it is found that HS can be very inefficient 

and sometimes non-effective. It can be viewed that all the optimization methods are 

attracted by the presence of the “strong” local minima during the search, except for the 

coupled HS/PSO analysis which is less affected by the “attraction” of the local minima. 

Based on the proposed coupling method, the minimum factor of safety is obtained as 1.65 

with 130156 evaluations, and the result is the best among all the five different global 

optimization as shown in Table 3.15. It is true that the present coupled optimization 

method is less efficient for simple problem which is demonstrated in examples 5 and 2, 

but the method is also more stable for problems where there are several “strong” local 
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minima. For the present large scale construction work, a good result is much more 

important than the time of computation, and the proposed coupled method has provided a 

good result without excessive computations. 

 

3.5 Conclusions and Discussions 

In slope stability analysis, the minimum factor of safety for all possible failure surfaces 

has to be determined, and this is a typical global optimization upper bound problem. For 

slope stability problems, practically all the modern optimization methods can work well if 

the geometry and ground conditions are relatively simple. For complicated problems, the 

factor of safety is very sensitive to the precise location of the critical solution and 

differences between different global optimization methods are found to be large. Since the 

ground topography, the boundary between individual soil layers and soil parameters 

distribution can be highly irregular in some cases, the objective function will be non-

convex in general. Furthermore, there are cases (about 10-15% of all the total trials) 

where there will be no solution available for the trial vectors, hence the objective function 

is also not continuous over the whole solution domain (Cheng et al. 2010b).  

 

An improved harmony search method MHS is developed in the present study. It is found 

that the MHS is highly efficient with no loss of accuracy. In fact, it performs better than 

the original harmony method in most cases. When the number of control variables is large, 

it is always found to be better than the original method but requires much less trials.  

 

The coupling of the PSO and HS as presented is a new approach in global optimization. It 

has been demonstrated that HS/PSO algorithm is efficient and effective for complicated 

geotechnical problems. Most of the examples in this study are difficult problems in global 
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optimization analysis, as the factors of safety are very sensitive to the precise locations of 

the critical failure surfaces. In addition, when Morgenstern-Price method is used for the 

analysis, ‘failure to converge’ is also relatively common and a large value is assigned to 

those cases that fail to converge (equivalent to a discontinuous objective function), and 

this will create further difficulties in the search direction. The proposed coupled 

optimization method has clearly demonstrated the advantages under these difficult cases. 



Studies of Slope Stability Problems by LEM, SRM and DEM 

53 

 

 

Table 3.1 The structure of HM 

                    Control variables 

HM 

x1 x2 Objective function 

hm1 1.0 1.5 2.25 

hm2 1.5 2.0 4.25 

hm3 0.5 1.5 2.50 

hm4 1.8 2.5 6.89 

 

Table 3.2 The reordered structure of HM 

                 Control variables 

HM 

x1 x2 Objective function ( )pr  ( )ST  

hm1 1.0 1.5 2.25 0.5 0.5 

hm2 0.5 1.5 2.50 0.25 0.75 

hm3 1.5 2.0 4.25 0.125 0.875 

hm4 1.8 2.5 6.89 0.0625 0.9375 

 

Table 3.3 The structure of HM obtained after the first iteration in the modified harmony 

search algorithm 

                 Control variables 

HM 

x1 x2 Objective function ( )pr  ( )ST  

hm1 0.5 1.10 1.46 0.5 0.5 

hm2 1.0 1.5 2.25 0.25 0.75 

hm3 0.9 1.5 2.26 0.125 0.875 

hm4 0.5 1.5 2.50 0.0625 0.9375 

 

Table 3.4 Summary of the number of control variables for different procedures 

Procedure P1 P2 P3 P4 P5 

Number of control variables n+1 n+1 n+1 2n 2n 

 

Table 3.5 Summary of results for example 1 using Morgenstern-Price’s method in 

determining the factor of safety 

Different procedures Minimum factors of safety NOFs 

P1 Number of slices=20 1.3380 97598 

Number of slices=25 1.3512 175147 

Number of slices=30 1.3656 210308 

P2 Number of slices=20 1.3379 10568 

Number of slices=25 1.3246 15208 

Number of slices=30 1.3365 15848 

P3 Number of slices=20 1.3242 6862 

Number of slices=25 1.3248 10581 

Number of slices=30 1.3230 13882 

P4 Number of slices=20 1.3235 16880 

Number of slices=25 1.3228 19126 

Number of slices=30 1.3224 23006 
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P5 Number of slices=20 1.3264 4072 

Number of slices=25 1.3295 4125 

Number of slices=30 1.3257 3973 

Yamagami 

And Ueta 

(1988) 

BFGS 1.338 unknown 

DFP 1.338 unknown 

Powell 1.338 unknown 

Simplex 1.339-1.348 unknown 

Greco(1996) Pattern search 1.327-1.33 unknown 

Monte Carlo 1.327-1.333 unknown 

Malkawi et al. 

(2001) 

Monte Carlo 1.238 unknown 

 

Table 3.6 Results from different procedures for example 2 

Different procedures Minimum factors of safety NOFs 

P1 Number of slices=20 1.9904 43868 

Number of slices=25 2.0257 78314 

Number of slices=30 2.4619 35330 

P2 Number of slices=20 1.2568 19368 

Number of slices=25 1.2408 16208 

Number of slices=30 1.2953 26648 

P3 Number of slices=20 1.3028 10019 

Number of slices=25 1.2473 11524 

Number of slices=30 1.2755 18456 

P4 Number of slices=20 1.2368 29512 

Number of slices=25 1.2564 25072 

Number of slices=30 1.2570 51168 

P5 Number of slices=20 1.2825 3201 

Number of slices=25 1.3103 5284 

Number of slices=30 1.3086 3362 

Bolton et al. 

(2003) 

Leap-frog (Spencer) 1.305 unknown 

 

Table 3.7 Geotechnical parameters for example 3 

layers g (kN/m
3
) c (kPa) f (degree) 

1 19.5 0.0 38.0 

2 19.5 5.3 23.0 

3 19.5 7.2 20.0 

 

Table 3.8 Factors of safety obtained by different researchers for example 3 (Spencer’s 

method) 

Different procedures Minimum factors of safety NOFs 

P1 Number of slices=20 1.4142 47113 

Number of slices=25 1.4211 92060 

Number of slices=30 1.4220 161445 
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P2 Number of slices=20 1.3599 10926 

Number of slices=25 1.3659 10656 

Number of slices=30 1.3622 21186 

P3 Number of slices=20 1.3619 11428 

Number of slices=25 1.3603 13258 

Number of slices=30 1.3600 14988 

P4 Number of slices=20 1.3591 24763 

Number of slices=25 1.3568 31039 

Number of slices=30 1.3578 34779 

P5 Number of slices=20 1.3599 2289 

Number of slices=25 1.3598 3519 

Number of slices=30 1.3683 3579 

Bolton et al. 

(2003) 

Leap-frog(Spencer) 1.359 unknown 

Goh (1999) GA(Spencer) 1.387 unknown 

 

Table 3.9 Geotechnical parameters for example 4 

layers g (kN/m
3
) c (kPa) f (degree) 

1 18.82 29.4 12.0 

2 18.82 9.8 5.0 

3 18.82 294.0 40.0 

 

Table 3.10 The factors of safety for example 4 

Different procedures Minimum factors of safety NOFs 

P1 Number of slices=20 0.4272 72657 

Number of slices=25 0.6696 117943 

Number of slices=30 1.1731 232967 

P2 Number of slices=20 0.3962 13768 

Number of slices=25 0.4006 13208 

Number of slices=30 0.3958 20648 

P3 Number of slices=20 0.4008 6871 

Number of slices=25 0.3959 12593 

Number of slices=30 0.3956 13908 

P4 Number of slices=20 0.3959 16929 

Number of slices=25 0.3959 21120 

Number of slices=30 0.3959 25448 

P5 Number of slices=20 0.4014 2458 

Number of slices=25 0.4138 3862 

Number of slices=30 0.3990 2148 

Arai and Tagyo 

(1985) 

Conjugate gradient 0.405 unknown 

Sridevi and 

Deep (1991) 

RST-2 0.401 unknown 

Greco (1996) Monte Carlo 0.388 unknown 

Malkawi et al. 

(2001) 

Monte Carlo 0.401 unknown 
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Table 3.11 Geotechnical parameters for example 5 

Layers g (kN/m
3
) c (kPa) f (degree) 

1 19.0 15.0 20.0 

2 19.0 17.0 21.0 

3 19.0 5.00 10.0 

4 19.0 35.0 28.0 

 

Table 3.12 Summary of results for example 5 

Different procedures Minimum factors of safety NOFs 

P1 Number of slices=20 2.8342 64900 

Number of slices=25 2.8408 124659 

Number of slices=30 2.9055 86332 

P2 Number of slices=20 1.2400 16968 

Number of slices=25 1.2674 20208 

Number of slices=30 1.1959 21848 

P3 Number of slices=20 1.2302 9969 

Number of slices=25 1.1394 13515 

Number of slices=30 1.2509 25703 

P4 Number of slices=20 1.1692 24756 

Number of slices=25 1.2154 50869 

Number of slices=30 1.2032 56059 

P5 Number of slices=20 1.1181 3881 

Number of slices=25 1.1117 5904 

Number of slices=30 1.1299 2371 

Zolfaghari et al. 

(2005) 

Genetic algorithm 1.24 unknown 

 

Table 3.13 Comparison between OHS and MHS 

Different cases and methods results NOFs 

 

Example 1 

OHS Number of slices=20 1.3387 30000 

Number of slices=25 1.3236 40000 

Number of slices=30 1.3442 50000 

MHS Number of slices=20 1.3379 10568 

Number of slices=25 1.3246 15208 

Number of slices=30 1.3365 15848 

Example 2 OHS Number of slices=20 1.3175 30000 

Number of slices=25 1.2370 40000 

Number of slices=30 1.2858 50000 

MHS Number of slices=20 1.2568 19368 

Number of slices=25 1.2408 16208 

Number of slices=30 1.2953 26648 

Example 3 OHS Number of slices=20 1.3830 30000 

Number of slices=25 1.3719 40000 

Number of slices=30 1.3837 50000 

MHS Number of slices=20 1.3599 10926 

Number of slices=25 1.3659 10656 

Number of slices=30 1.3622 21186 

Example 4 OHS Number of slices=20 0.3979 30000 

Number of slices=25 0.3967 40000 
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Number of slices=30 0.3970 50000 

MHS Number of slices=20 0.3962 13768 

Number of slices=25 0.4006 13208 

Number of slices=30 0.3958 20648 

Example 5 OHS Number of slices=20 1.2205 30000 

Number of slices=25 1.2827 40000 

Number of slices=30 1.2130 50000 

MHS Number of slices=20 1.2400 16968 

Number of slices=25 1.2674 20208 

Number of slices=30 1.1959 21848 

 

Table 3.14 Geotechnical parameters for example 6 

layers g(kN/m
3
) c’ (kPa) f’(degree) 

1 16.00 2000. 56.31 

2 24.00 2000. 56.31 

3 24.00 2000. 56.31 

4 26.00 1000. 50.20 

5 26.00 1400. 54.50 

6 26.00 1000. 44.70 

7 26.00 100.0 19.30 

8 26.00 100.0 19.30 

9 26.00 1000. 44.70 

10 26.00 1400. 54.50 

11 26.00 100.0 19.30 

12 26.00 100.0 19.30 

13 26.00 100.0 19.30 

14 23.00 130.0 22.30 

15 26.00 1400. 54.50 

16 26.00 100.0 19.30 

17 26.00 1400. 54.50 
 

 

Table 3.15 Minimum factors of safety for example 6 based on Spencer method (41 

control variables) 

Method of global 

optimization 

PSO MPSO AFSA MHM HM/PSO 

Min. factor of safety 2.18 2.15 1.83 1.98 1.65 

No. of trials 121124 59288 394527 132098 130156 

Min. factor of safety at 

evaluation number 

99824 35460 219284 98426 112342 
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Figure 3.1 Typical search domain with multiple local minimum 
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Figure 3.2 Flowchart for the genetic algorithm (GA) 
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Figure 3.3 Flowchart for the simulated annealing algorithm (SA) 

e£- gff0  

Initialize the parameters :        

( )nepsftfNtt gge ,,,,,,0 Vl  

Randomly generate an initial slip surface 0V  and evaluate the factor of safety 

0f  , 00; ffgg ==VV , ( ) nepsieift ,...2,1,100.1 =+=  

0tt = , Nit =0 

0V  is adjusted and new slip surface 1V  is 

obtained and its factor of safety 1f  

01 ffer -=  ter
s er /-£  

1010 ; ff ==VV ,if gff <1  then 11; ffgg ==VV  

1+= NitNit  NNit £  

( ) 01 fft = ,

( ) ( ) 2,..,,1 nepsiiftift =-=  

( ) ( )
nepsi

iftft

,...,2

1

=

£- e
 ett £  

gg ff == 00 ;VV  

Take gV  as the optimum solution 

and terminate the algorithm 

tt l=  

0=Nit  
Yes 

No 

Yes 

No 

Yes 

No 
No 

Yes 

No 

Yes 



Studies of Slope Stability Problems by LEM, SRM and DEM 

61 

 

 

 

 

Figure 3.4 Flowchart for the particle swarm optimization method (PSO) 
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Figure 3.5 Flowchart for generating a new harmony (HS) 
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Figure 3.6 Flowchart for the Tabu search (TS) 

 

 

Figure 3.7 Flowchart for the ant colony algorithm (ACO) 
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Figure 3.8 Flowchart for the modified harmony search algorithm (MHS) 

( )icd = , 0=itN , 1NNm =  

Generate Nhm  new harmonies and evaluate them and 

choose M  better harmonies from NhmM +  harmonies, 

record the best harmony 1ghm  and its evaluation 1gf  

mit NN =  No 

Yes 

epsff bg £-1  
No 

2NNN mm +=  

11; gbgb hmhff ==  

Yes 

1+= ii  

4=i  
Yes 

Reduce the search 

domain and 1-M  new 

harmonies generated 

together with 1ghm  

comprise HM 
No, 4>i  

Terminate the algorithm 

No, 4<i  

1-M  new 

harmonies 

randomly 

generated 

and 1ghm  

makes up the 

HM 

1+= itit NN  

Initialize the parameters 

,,,, NhmMPRHR bb hf , , 1=i , HM is 

randomly generated within the search domain 



Studies of Slope Stability Problems by LEM, SRM and DEM 

65 

 

 

(a) Generation method P1 and rectifying procedure for convex segments in P1 

 

(b) Generation method P2  

 

(c) Generation methods P3 & P4 

 

(d) Generation method P5  

Figure 3.9 Different generation methods of critical slip surfaces 
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Figure 3.10 Critical slip surfaces obtained by different procedures for example 1 
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Figure 3.11 Comparison of different critical slip surfaces for example 2 

 

20 25 30 35 40 45 50 55 60 65 70

20

22

24

26

28

30

32

34
          

          

          

 

Layer 1 

Layer 2 

Layer 3 

 

Figure 3.12 The cross-section of example 3 
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Figure 3.13 Comparison of different critical slip surfaces for example 3 
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Figure 3.14 Cross-section for example 4 

 
 

Figure 3.15 Critical slip surfaces obtained by different researchers for example 4 
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Figure 3.16 The geometry for example 5 
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Figure 3.17 Summary of critical slip surfaces for example 5 

0

0.5

1

1.5

1 2 3 4 5

different examples

a
v
e
ra

g
e
 f

a
c
to

r 
o

f 
s
a
fe

ty

OHM

MHM

0

10000

20000

30000

40000

50000

1 2 3 4 5

different examples

N
O

F OHM

MHM

 
 

Figure 3.18 The comparison of the average factor of safety and NOF between OHS and 

MHS 
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Figure 3.19 The flowchart of the coupled optimization method HS/PSO 
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Figure 3.20 Critical slip surface of example 5 using different kinds of optimization 

methods 
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Figure 3.21 Soft soil in shaded area for a dam project 
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Figure 3.22 A simple one-dimensional function with the presence of several “strong” 

maxima and minima for illustration of optimization  
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Figure 3.23 Critical failure surfaces by different global optimization methods based on 

the Spencer’s method (critical failure surface by MHS and MPSO are not 

shown for clarity) 
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CHAPTER 4 Study on the Failure Mechanism 

under Several Conditions by Distinct 

Element Method 

 

4.1 Introduction 

In practical applications, limit equilibrium method based on the method of slices or 

method of columns and strength reduction method based on the finite element method or 

finite difference method are used for slope stability analysis. These two major analysis 

methods take the advantage that the insitu stress field which is usually not known with 

good accuracy is not required in the analysis. The uncertainties associated with the stress-

strain relation can also be avoided by a simple concept of factor of safety. In general, this 

approach is sufficient for engineering analysis and design. If the condition of the slope 

after failure has initiated is required to be assessed, these two methods will not be 

applicable. Even if the insitu stress field and the stress-strain relation can be defined, the 

post-failure collapse is difficult to be assessed using the conventional continuum based 

numerical method, as sliding, rotation and collapse of the slope involve very large 

displacement or even separation without the requirement of continuity.  

 

The most commonly used numerical methods for continuous systems are the FDM, the 

FEM and the boundary element method (BEM). The basic assumption adopted in these 

numerical methods is that the materials concerned are continuous throughout the physical 

processes. This assumption of continuity requires that at all points in a problem domain, 

the material cannot be torn open or broken into pieces. All material points originally in 
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the neighborhood of a certain point in the problem domain remain in the same 

neighborhood throughout the whole physical process. Some special algorithms have been 

developed to deal with material fractures in continuum mechanics based methods, such as 

the special joint elements by Goodman (1976) and the displacement discontinuity 

technique in BEM by Crouch and Starfield (1983). However, these methods can only be 

applied with limitations (Jing and Stephansson, 1993): 

(1) large-scale slip and opening of fracture elements are prevented in order to maintain 

the macroscopic material continuity; 

(2) the amount of fracture elements must be kept to relatively small so that the global 

stiffness matrix can be maintained well-posed, without causing severe numerical 

instabilities; and 

(3) complete detachment and rotation of elements or groups of elements as a consequence 

of deformation are either not allowed or treated with special algorithms. 

 

Before the slope starts to collapse, the factor of safety serves as an important index in 

both the LEM and SRM to assess the stability of the slope. The movement and growth 

after failure has launched which is also important in many cases cannot be simulated on 

the continuum model, and this should be analyzed by the distinct element method (DEM).  

 

The distinct element method is an explicit method based on the finite difference 

principles which is originated in the early 1970s by a landmark work on the progressive 

movements of rock masses as 2D rigid block assemblages (Cundall, 1971a,b). Later, the 

works by Cundall are developed to the early versions of the UDEC and 3DEC codes 

(Cundall, 1980; Cundall and Hart, 1985). The method has also been developed for 

simulating the mechanical behavior of granular materials (Cundall and Strack, 1979a,b,c, 
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1982), with a typical early code BALL (Cundall, 1978) which later evolved into the codes 

of the PFC group for 2D and 3D problems of particle systems (Itasca, 1995). Through 

continuous developments and extensive applications over the last three decades, there has 

accumulated a great body of knowledge and a rich field of literature about the distinct 

element method. The main trend in the development and application of the method in 

rock engineering is represented by the history and results of the code groups 

UDEC/3DEC.  

 

In this chapter, Particle Flow Code (PFC2D) is used for the detailed investigation of the 

failure mechanism of slopes under several conditions. PFC models the movement and 

interaction of circular particles by the distinct element method, as described by Cundall 

and Strack (1979). The packing of granular material can be defined from statistical 

distributions of grain size and porosity, and the constitutive model acting at a particular 

contact consists of a stiffness model, a slip model, and a bonding model: the stiffness 

model establishes an elastic relation between the contact force and relative displacement; 

the slip model allows a relation between shear and normal contact forces such that two 

contacting balls may slip relative to one another; the bonding model serves to limit the 

total normal and shear forces that the contact can carry by enforcing bond-strength limits. 

Two types of bonds can be represented either individually or simultaneously – contact-

bond and parallel-bond; these bonds are referred to the contact and parallel bonds 

respectively (Itasca, 1995a,b). Although the individual particles are solid, these particles 

are only partially connected at the contact points which will change at different time step. 

Under low normal stresses, the strength of the tangential bonds of most granular materials 

will be weak and the material may flow like a fluid under very small shear stresses. 

Therefore, the behaviour of granular material in motion can be studied as a fluid-
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mechanical phenomenon of particle flow where individual particles may be treated as 

‘molecules’ of the flowing granular material. In many particle models for geological 

materials in practice, the number of particles contained in a typical domain of interest will 

be very large, similar to the large numbers of molecules. 

 

PFC runs according to a time-difference scheme in which calculation includes the 

repeated application of the law of motion to each particle, a force-displacement law to 

each contact, and a contact updating scheme. In each cycle, the set of contacts is updated 

from the known particles and known wall positions. Force-displacement law is firstly 

applied on each contact, and new contact force is then calculated according to the relative 

motion and constitutive relation. Law of motion is then applied to each particle to update 

the velocity, the direction of travel based on the resultant force, and the moment and 

contact acting on the particles. Although every particle is assumed as rigid material, the 

behavior of the contacts is characterized using soft contact approach in which finite 

normal stiffness is taken to represent the stiffness which exists at the contact. The soft 

contact approach allows small overlap between the particles which can be easily observed. 

Stress on particles is then determined from this overlapping through the particle interface. 

 

One of the primary objectives of the particle model is the establishment of the relations 

between microscopic and macroscopic variables/parameters of the particle systems, 

mainly through micromechanical constitutive relations at the contacts. It seems that the 

constitutive models of PFC are possible to be linked to those commonly used in 

continuum based methods: the stiffness linked to modulus of elasticity, friction 

coefficient to tan ’ (It should be pointed out that the friction coefficient in PFC is aimed 

to check whether the ratio of shear contact force to normal contact force is large enough 
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to render the particles slip. So it is a strength parameter and cannot be correlated directly 

to the ratio of shear stress to normal stress) and bond strength to c’. But we should 

recognize that the adopted microscopic parameters, including circular or spherical 

particles and their sizes and the contact relation between each two particles are 

established based on macroscopic parameters of whole mass from simulation experiment. 

Difference between both natures of parameters is inevitable. Therefore the parameters, 

particle sizes and distribution and model assembling should be carefully tested in trials 

before calculation in order to better reflect real behavior of soil. 

 

On the other hand, compared with a continuum, particles have an additional degree of 

freedom of rotation which enables them to transmit couple stresses, besides forces 

through their translational degrees of freedom. At certain moment, the positions and 

velocities of the particles can be obtained by translational and rotational movement 

equations and any special physical phenomenon can be traced back from every single 

particle interactions. Therefore, it is possible for PFC to analyze large deformation 

problems and flow process which will occur after slope failure has initiated. The main 

limitation of DEM is that there is great difficulty in relating the microscopic and 

macroscopic variables/parameters, hence DEM is mainly tailored towards qualitative 

instead of quantitative analysis.  

 

4.2 Large displacement simulation of slope failure by 

PFC 

4.2.1 Failure pattern of simple slope 

To assess the failure mechanism of slope, particularly the situation after the initiation of 

failure, PFC is used for the study of several slopes in this section. For simplicity, simple 
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slope with slope angle 45 and 60 are firstly considered. The height of slope is set as 

3m, and the base of both models is 14m long and 7m high. Friction is set to 0.4 and the 

density of particle is set to 1000kg/m
3
. Mohr-Coulomb criterion is adopted through the 

entire failure process. The typical numerical model for a soil nailed slope is shown in 

Figure 4.1, and the use of measure circles to recover the average stresses are also 

illustrated in this figure. It should be pointed out the local stresses from PFC can fluctuate 

rapidly and may be not realistic in the value because of the highly localized effect, and 

the use of averaged stress can give a much better picture about the stresses. 

 

Based on Figures 4.2-4.4 which show the progressive failure of a simple slope (without 

and with cohesive strength) under gravity, the progress failure of the slope, the post-

failure mechanism and a typical failure surfaces are clearly shown in Figure 4.3. From 

parametric study (not shown here), it is found that the collapse is more sensitive to the 

cohesive strength than the slope angle or friction angle, and the cohesive strength can be 

considered as a controlling variable when friction is fixed.  This result is actually well 

known among the engineers that cohesive strength is more important in the design in 

general. Actually, if c is large enough, the slope is stable which is shown in Figure 4.4. 

The failure mechanisms as shown in these figures are generally similar to that as 

predicted from LEM or SRM. It is noticed that failure seems to start from the crest of 

slope while in practical cases, failure seems to initiate from the toe in Hong Kong (usually 

in rainy times). The displacements at different phases are therefore investigated in this 

study. 

 

For the simple slope where gravity is the sole factor in the failure, the toe of the slope is 

the exit end of slip surface in classical slope stability theory. However, during the initial 
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failure as shown in Figures 4.5-4.8, the horizontal and vertical displacements are only 

slightly changed at the toe, while more than 0.5m movement in both the horizontal and 

vertical directions can be found at the crest. The results indicate that failure occurs firstly 

at the crest of the slope which this is a typical local failure while failure at toe is the 

initiation of global failure. The rotation and sliding along the assumed slip surface in 

classical concept seem not to dominate the initial failure mechanism. This is a clear 

illustration of the progressive failure of slope which can be modeled by PFC but not in 

FDM and FEM. In PFC, the failure of cohesionless slope initiates when the grains at the 

top firstly roll downwards with the resulted grains flow to the base of the slope. This flow 

causes the accumulation of grains near to the toe and finally sliding out. When the 

resistance at the toe is fully mobilized, the extent of the collapse is enlarged which is a 

global failure. In reality, completely cohesionless soil is not commonly found in practice, 

and the actual slope failure is usually induced by ground water flow under raining. 

Actually, failures initiated at the crest of slopes are also found in Hong Kong. In general, 

the prediction by the PFC computations is acceptable, and DEM has the ability to assess 

the progressive failure which is not possible for the continuum based methods. 

 

The typical displacement of the simple slope with c=0 and α=60° is given in Figure 4.3. 

The advantage of PFC over continuum based methods is also evident, as the displacement 

vectors clearly demonstrate the locations of the mobilized particles at different phases 

with different slope geometries due to the progressive failure. At the initial stage, 

basically only the particles around the slope face are mobilized. The grains at the crest 

slide down under the gravity and hence large-scale deformation of the slope start to 

initiate. The contact forces among particles are re-distributed and further failure develops 

gradually. When the slope angle approaches the natural angle of repose, the slope has 
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achieved a stable displacement. Such failure development demonstrates that the tension 

failure occurs firstly at the top of the slope, and hence accumulation of soil particles at the 

toe at the later stages. Of course, the concept of one “safety of factor” on a “critical slip 

surface” normally accomplished in LEM and SRM cannot predict such “progressive” 

failure procedure with the presence of continuously modified large displacement 

movement. Nevertheless, rough “critical slip surface” can be determined at the later stage 

of failure based on the displacement vectors at the later stage of failure in Figure 4.3g 

which is the global failure. 

 

4.2.2 Influence of soil-nail on the slope failure 

Soil nail is a common reinforcement used for slope stabilization. The essential concept of 

soil nailing is reinforcing the slope with closely spaced inclusions to increase the stability. 

When soil movement is induced by excavation for cut slopes or by natural environment 

changes for existing slopes, resistant tension force is generated in the soil nail and is 

transferred to the soil by the friction mobilized at the soil-nail interface. Three models of 

soil-nailed slope with slope angle of 60 are conducted in this section: (1) c=0; (2) 

c=2kPa and (3) c=5kPa. A set of two soil nails of density 2000kg/m
3
, stiffness 10MN/m, 

friction=0.4, contact-bond strength 10MN is introduced in the slope to study the effects of 

the soil nail on slope stability and failure mechanism. Since there is no soil nail in the 

original PFC program, in this study, the soil nails are simulated by installing and 

clumping grains along the excavated hole in the original model. If the grains are clumped 

rigidly, then the action is practically equivalent to that of a soil nail. 
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The use of soil nail head in continuum model has been demonstrated to be important by 

Cheng et al. (2007) by SRM, and the effect of soil nail head is also studied in this section. 

From Figures 4.9-4.11, it is obvious that the stability of the slope is increased by the use 

of soil nails, especially for the region close to the soil nails, though falling and 

accumulation of soil particles still exist at the crest and around the toe respectively. Due 

to the resistance provided by the soil nails, massive failure indicating the shear failure 

located inside the slope is not formed, which is a good illustration about the stabilizing 

effect of soil nail. Furthermore, basically only local failure by tension at the top of slope 

and shear at the interface between soil nail and soil mass can be found. From Figure 4.9 

where there is no nail head in the problem, it can be noticed that the region located near to 

the slope face between the soil nails seems not to be reinforced which is not surprising, 

and this is also the worry of many local engineers towards the use of soil nails in loose fill 

slope where the cohesive strength of soil is practically zero near to the slope surface. The 

stability of this local region has to be provided by the soil nail head and facing (if any), 

and this is a common understanding among the engineers in Hong Kong that a large soil 

nail head or even facing is required for a good slope stabilization work, even these 

elements do not appear in their computer model analysis. Without the soil nail head, the 

confining action from the soil nail cannot be transferred to the slope surface. For soil 

nailed slopes, failure initiates when the soil falls down by gravity at the upper part of the 

slope, and also the area between and beneath the soil nails to form tension failure. Similar 

to the situation without soil nail, the resulted accumulation of soil particles can later be 

found at the bottom of the slope. Therefore, in the view of geometry change, the 

progressive failure of soil-nailed slope is basically the same as that of slope without nail, 

except that the region of shear failure is smaller and the movement is smaller than an 
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unreinforced slope. For soil-nailed without nail head or facing, local failure is however 

dominant and must be controlled. 

 

Soil nail head is generally used in construction and is an effective component to the local 

stability of the slope. If nail head is used in the analysis (by bonding the adjacent grains to 

the exit end of nail on the slope face together), confining action is provided by the nail 

head to increase the local stability (Figures 4.12-4.14). For the slope failure, failure 

occurs only at the toe and crest without surface failure. The effect of cohesive strength 

can also be summarized from the displacement graph. Higher cohesion of soil will give 

higher stability with less failure which is obvious. More importantly, in Figure 4.14, there 

is no obvious tension crack at the upper part of the slope and the rundown to the bottom is 

also less noticeable if c is high enough. 

 

Figures 4.15-4.18 illustrate the local failure at the toe and the crest in more details. By 

logging the displacement history of ball 2673 at crest, it can be found that the particles 

around the top of the slope move downwards along the face and are limited by the soil 

nail after a short displacement has occurred and the corresponding loading is taken by the 

soil nails. For the bottom of the slope, the particles show the trend of moving out with 

upheaval. This failure is later controlled by the mobilized resistance of the soil nail. To 

sum up, soil nailing reinforces the global stability of the slope by resisting the formation 

of extended shear failure as well as limiting the local failure at the crest and toe. 

 

4.3 Stress state analysis by PFC 

Though it is difficult for PFC to give an over-all stress field similar to that in FLAC, 

measure circle (for instance as shown in Figure 4.1) can be specified to compute the 
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average stress within the circle at specified calculation step. For the stress state of the 

simple sandy slope, the stress is released and re-distributed during the collapse, so the 

majority of the changes take place at the initial stage of the failure as shown in Figure 

4.19. The same phenomenon exists for clay slope (tested but not shown) and soil-nailed 

slope (as shown in Figure 4.20).  

 

For cohesionless slope as shown in Figure 4.19, gradually increasing stress field can be 

found at the toe and decreasing stress field can be found at the crest. This result is 

reasonable as the stress descends at the crest under the unloading action. Due to limited 

amount of confining soil mass within this zone, the vertical stress dominates over the 

horizontal stress in the whole process. Both the vertical and horizontal stress drop to zero 

in the later stage when the soil collapses at the crest. At the toe, the state of stress is more 

complicated because of the continuous accumulation of sliding soil mass from the upper 

part of the slope. The comparison of the stress on the slip surface in Figure 4.19 shows 

that normal stress on the failure surface is nearly equal to the vertical normal stress and is 

much greater than the shear stress on the failure surface, which indicates that the vertical 

stress still dominates near the slope face at the toe. Tension failure at the crest is not 

obvious from the stress analysis, and this may be due to the stress from the measure circle 

being the averaged value instead of the local value.  

 

Soil nail is an efficient measure to reinforce the slope, as it mobilizes the shear strength 

on the contact surface to resist further failure. As shown in Figure 4.20, once there is 

slight displacement of soil, the tensile strength of the soil nails can be activated to take 

over the loading which will effectively reduce the instability of the stress field. The effect 

is particularly obvious for the soil mass below the nails. The particles slide out at the toe 
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only while the upper part of the slope which is well supported by the nails has almost no 

failure. So the normal and shear stress are very stable as compared with the situation 

without the nails. The soil mass above the nails is also well stabilized against collapse. 

There is only slight collapse but no obvious loss at the crest (referring to Figure 4.12), and 

the stress maintains stable which is different from the slope without nails (referring to 

Figure 4.19). Overall speaking, the soil nails effectively help the slope to maintain a 

stable stress field.  

 

The shear stress along the soil nails is also checked by several measure circles (Figure 

4.21). The action of the soil nails after the initiation of failure is clearly shown in Figure 

4.22. The value of the shear stress on the nails firstly increases after nails are installed and 

slight movement has occurred. The tensile strength of the soil nail is then mobilized to 

resist further shear failure and maintain the reinforced soil mass at a stable stress. It is 

reasonable that the lower soil nail has larger stress than the upper one as it bears more 

loading, while attention should be paid to the shear stress versus different positions of 

nails where there are large differences in the results. The shear stress at the bottom of the 

nail is much higher than that in the middle and the direction of the shear stress is even 

reversed. This indicates that the neutral point is approximately at the middle of the nails 

for the present problem, and the shear stress on the nails should be zero at the neutral 

point which is a well known result and is supported by various laboratory and field tests. 

The results also demonstrate that the portions of nails outside the failure zone actually 

take up the stabilization action. 

 

If the shear stress along the soil nails is investigated from the initial condition to the 

reinforced state with the installed soil nails, the results can be found in Figure 4.23. The 
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nail head moves with the surrounding soil so that the shear stress around the nail head is 

very small. At a distance away from the soil nail head, shear stress on the soil nails 

increases significantly, which indicates that this portion of soil nail is mobilized to resist 

further sliding and turns gradually to approximately zero at middle where the neutral 

point situates. At the bottom of both soil nails, the shear stress becomes positive and the 

lower soil nail sn2 obtains greatly larger stress than upper nail sn1. Such finding once 

again convinces the reinforcement mechanism by soil nails. 

 

4.4 Failure mode of slope influenced by water flow 

Most of the slope failures in Hong Kong occur within May to September. Within this 

period, heavy rain which may last for many hours are not uncommon. Besides the 

saturation of the soil, the seepage of water can also create a major effect to the stability of 

slope which is however not considered in routine analysis and design in Hong Kong. The 

influence of underground water and water flow is always an important concern in slope 

stability problems. Infiltration from the watershed or runoff on the ground surface can 

even cause a thrust to the impacted area and accelerate the failure. After the initiation of 

the failure, water acts a lubricant and the soil will experience very large movement and 

finally debris flow will occur. PFC has the particular advantage over continuum based 

method in that very large scale soil movement or even debris flow can be modeled by 

distinct element analysis. The models selected in this section take the properties of 

c=0.65kPa and density of soil particles equal to 1000kg/m
3
. In PFC the applied loading 

can be simulated by velocity field on wall, velocity on particles or external forces. The 

external forces are simulated by the following procedure: fix all boundary particles and 

remove the walls; execute one cycle to make the unbalanced force resulting from the wall 

deletion equal on each boundary particle; apply a force opposite to the unbalanced force 
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to each boundary particle. That is to say, such external forces can only be applied to 

boundary particles by use of a wall. Such limitation of PFC incurs that the effect of 

saturation and seepage is not possible to be done by directly applying negative body 

forces, and applying external forces by velocity field, as an approximate method, is used 

in the present study. The submerged effect of water is modeled layer by layer while the 

seepage effect due to water flow is simulated by an inclined velocity field of 5 gradually 

changing velocities (from 0.01/s to 0.001/s) oriented from the upper far-end of the 

underground water table. The polygonal line as shown in Figure 4.24 is the approximate 

imposed water table, and a smooth water table is not easily defined using the approximate 

numerical modeling method as discussed above.  

 

The progressive failure mechanism due to underground water flow in Figure 4.25 shows 

that slope failure is accelerated by the water as compared with a simple slope. Unlike the 

failure (both sliding at the crest and the accumulation at the toe) in simple slope which are 

influenced only by gravity, the pore water pressure induces a continuous sliding failure on 

the slope face. The failure zone develops towards the inside of the slope and results in 

obvious loss of soil grains as shown in Figure 4.25(c) and (d). In the later stage of failure, 

the driving force tends to be gentle with changed geometry and reduced slope angle and 

the development of failure becomes slower. 

 

If both the effect of underground water (reduce the effective density only) and water flow 

(including the seepage force) are taken into consideration, the failure becomes more 

complicated. The forward movement and upheaval at the toe are quite considerable as 

shown in Figure 4.26. The seepage force reduces the stability above the water table 

accompanying with an obvious settlements at the top of the slope. If the velocity 
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(equivalently seepage force) is reduced by half which indicates weaker water seepage 

force, the entire soil mass is pushed outwards, as shown in Figure 4.27. For the 

groundwater, the combined effects of buoyance force and water seepage induce deeper 

failure with large extent above the water table, and obvious zone of shear failure can be 

found. 

 

For the effective stress on the failure surface, smooth and relative stable normal and shear 

stresses at the crest and decreasing normal and shear stresses at the toe can be found as 

shown in Figure 4.28. The seepage force from the water flow induces buoyance force to 

the soil and reduces the effective stress, so the stress decreases as the time steps increase. 

Such phenomenon demonstrates that the water does not simply reduce the strength by 

reducing the effective stress, but the seepage force can greatly magnify the instability of 

the whole slope. 

 

4.5 Conclusions and Discussions 

This chapter is mainly focused on the failure mechanism of slope under the action of self 

weight, soil nail and water flow. It is found that for a slope with cohesionless soil, failure 

firstly occurs at the crest of the slope, and the failure gradually extends to the base of the 

slope and finally the slope angle will be equal to the friction angle of soil. The failure is 

generally caused by soil sliding where a precise slip surface cannot be found, and this is a 

typical surface slope failure. Considering the overall particles flow will reveal that the 

downward movement of the particles at the crest induces tensile failure, and tension crack 

may also be found at the crest of slope. The deposition of the particles at the toe causes 

the failure in the forms of sliding out and upheaval; and the area in the middle of the slope 

actually turns into a shear failure zone due to the continuous sliding of soil. When the 
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cohesive strength is relatively high, the overall instability can be reduced and the 

displacement is limited. The cohesive strength is hence an important factor in slope 

stability which is actually a well-known fact. In Hong Kong, the soil cohesive strength is 

usually controlled to a threshold limit even the soil tests may indicate a very high 

cohesive value. This practice is adopted because of the doubt on the long term cohesive 

strength of soil and the factor of safety is rather sensitive to the cohesive strength of soil. 

From this study, it seems that this practice is reasonable for Hong Kong where there are 

many slope failures each year.  

 

Soil nails can effectively reinforce the slope stability, especially when nail head is used in 

the numerical analysis, and the overall stability is greatly enhanced. Soil nail provides the 

resistance to soil movement by mobilizing the shear strength along the nail and massive 

movement of soil is restrained and limited. The stress field is also more stable under the 

action of soil nails. Failure for soil nailed slope is hence generally comprised of the 

tensile failure at the crest and the shear failure at the base. 

 

The effect of water flow in slope stability problem by PFC is more complicated in nature. 

The basic failure mechanism is similar to that of a simple slope: failure begins from the 

crest of slope due to gravity and extends to the middle of slope and then the toe. The 

sliding mass and accumulated particles can also be found for the case with water flow. On 

the other hand, water flow results in a thrust pushing the soil mass above the water table 

outwards with an obvious decrease in the stability of the slope and extended failure zone.  

 

To sum up, by the use of the distinct element method, it is found that slope failure occurs 

firstly at the crest because of insufficient resistance to driving forces like gravity or 
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combined influence of gravity and water. The soil particles slide continuously and enlarge 

the extent of failure to the lower part of the slope and eventually sliding out at the toe. 

Sliding out can further decrease the support to the upper soil mass and promote the whole 

failure, especially in the cases where water takes effect. The stability of the toe is hence 

also an important factor in maintaining the overall stability of a slope. The progressive 

failure of a slope is clearly investigated by the use of DEM which is not possible for LEM 

or SRM. On the other hand, it is very difficult to obtain a nice stress distribution by DEM, 

as the local results can fluctuate significantly in DEM. The use of average results will 

give a better picture about the stress distribution within the failed soil mass, but there will 

be a lack of accurate local results from the use DEM. Another major limitation of DEM is 

that the results are only qualitative instead of quantitative. Furthermore, the time required 

by DEM for computation is excessively long, and each example in the present chapter can 

takes several days to more than a week for the analysis. For design purpose, the use of 

LEM and SRM  appears to be unavoidable at present. 
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Figure 4.1 Basic numerical model of soil-nailed slope in PFC (α=60°, with nail head ) 
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Figure 4.2 Failure development of simple slope with c=0 and α=45° 
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Figure 4.3 Failure development of simple slope with c=0 and α=60° 
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Figure 4.4 Failure development of simple slope with c=5kPa and α=60° 
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Figure 4.5  X-position history of ball 2673 at crest (c=0, α=60°) 
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Figure 4.6  Y-position history of ball 2673 at crest (c=0, α=60°) 
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Figure 4.7  X-position history of ball 11870 at toe (c=0, α=60°) 
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Figure 4.8  Y-position history of ball 11870 at toe (c=0, α=60°) 
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Figure 4.9  Failure development of nailed slope with c=0 and no nail head 
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Figure 4.10  Failure development of simple slope with c=2kPa and no nail head 
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Figure 4.11  Failure development of simple slope with c=5kPa and no nail head 
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Figure 4.12  Failure development of simple slope with c=0 and nail head 
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Figure 4.13  Failure development of simple slope with c=2kPa and nail head 

 

 

 
Figure 4.14  Failure development of simple slope with c=5kPa and nail head (very stable) 
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Figure 4.15  X-position history of ball 2673 at crest (c=0, soil nailed with head) 
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Figure 4.16  Y-position history of ball 2673 at crest (c=0, soil nailed with head) 
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PFC2D 3.10

Itasca Consulting Group, Inc.
Minneapolis, MN  USA

Job Title: slope simulation with soil nail

View Title: x-position history of ball at toe
Step 116210  21:44:51 Tue Mar 15 2011

History
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  12 Ball 11870 X-Position
   Linestyle
    -1.124e+001 <-> -1.120e+001

 Vs.
   Step
     6.625e+004 <->  1.162e+005

 
Figure 4.17 X-position history of ball 11870 at toe (c=0, soil nailed with head) 

 

PFC2D 3.10

Itasca Consulting Group, Inc.
Minneapolis, MN  USA

Job Title: slope simulation with soil nail

View Title: y-position history of ball at toe
Step 116210  21:45:10 Tue Mar 15 2011

History

 0.70  0.75  0.80  0.85  0.90  0.95  1.00  1.05  1.10  1.15
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 3.77  13 Ball 11870 Y-Position
   Linestyle
     3.759e+000 <->  3.771e+000

 Vs.
   Step
     6.625e+004 <->  1.162e+005

 
Figure 4.18  Y-position history of ball 11870 at toe (c=0, soil nailed with head) 

x10^1 



Studies of Slope Stability Problems by LEM, SRM and DEM 

98 

 

 

 
(a) normal stress on failure surface vs. time steps 

 

(b) shear stress on failure surface vs. time steps 

 
(c) vertical normal stress vs. time steps 

Figure 4.19  The stress state of simple sandy slope (c=0) 
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(a) normal stress on failure surface vs. time steps 

 
(b) shear stress on failure surface vs. time steps 

 
(c) vertical normal stress vs. time steps 

Figure 4.20  Stress state of soil-nailed sandy slope (c=0) 
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Figure 4.21  Measure circles next to the soil nails 

 

 
 

Figure 4.22  Stress analysis of soil nail during failure (c=0) 

 

 
 

Figure 4.23  Stress analysis along soil nails (c=0) 
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Figure 4.24  Initial state of modeling considering pore water pressure and water flow 
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(e) 30x10

4
 step                                   Displacement graph 

 
(f) 100x10

4
 step                                    Displacement graph 

Figure 4.25  Failure development of slope with underground water 

 

 

 

 
(a) initial state after adding velocity of 5 inclined layers        Displacement graph 

 
(b) 1x10

4
 step                                 Displacement graph   

 
(c) 3x10
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 step                                Displacement graph   
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(d) 5x10

4
 step                                Displacement graph   

 
(e) 10x10

4
 step                                Displacement graph 

 
(f) 30x10

4
 step                                Displacement graph 

 
(g) 100x10

4
 step                               Displacement graph 

Figure  4.26  Failure development of slope with underground and water flow 
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(b) 3x10

4
 step                               Displacement graph 

  
(c) 5x10

4
 step                               Displacement graph 

  
(d) 10x10

4
 step                               Displacement graph 

  
(e) 30x10

4
 step                               Displacement graph 

  
(f) 100x10

4
 step                               Displacement graph 

Figure 4.27  Failure development of slope with underground and water flow (Half 

velocity) 
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(a) normal stress on failure surface 

 
(b) shear stress on failure surface 

Figure 4.28  The stress state of slope influenced by water flow (vel=0.01/s) 
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CHAPTER 5   Study on some Slope Stability 

Methods, the Problems and New Solutions 

 

5.1 Introduction  

Slope stability analysis using the limit equilibrium method is well known to be a statically 

indeterminate problem. All the slope stability methods must require assumptions on the 

internal forces or base forces before the problem can be solved. Broadly speaking, there 

are two major groups of “rigorous” methods in the limit equilibrium analysis: (1) internal 

variables in form of interslice forces relation or the thrust line locations; (2) boundary 

stresses in form of base normal forces.  

 

For the first group of methods, the Morgenstern-Price’s method (1965) and the Janbu’s 

rigorous method (1973) are the most important formulations. In the Morgenstern-Price’s 

method (1965) which is a method popular to many engineers, the inclination of the total 

internal force is usually expressed as lf(x), where l is the mobilization factor while f(x) is 

a function between 0 to 1 and x (within 0 to 1.0) is the ratio of the distance of any section 

from the left end of the failure surface to the total horizontal length of the failure surface. 

Since only the global moment equilibrium is used in the Morgenstern-Price’s formulation 

(1965), the back-calculated thrust line may lie outside the soil mass which is not possible, 

and this situation is equivalent to the violation of local moment equilibrium. In the 

Janbu’s method (1973), the distance between the thrust line and the base of slip surface is 

assumed to be known while the local moment equilibrium is used in the formulation. By 

taking moments about the centre of the base of each slice, the local and overall moment 
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equilibrium is implicitly satisfied, and the interslice shear forces can be calculated. As the 

problem is actually over-specified by 1 unknown, the moment equilibrium of the last slice 

is not checked or enforced in the Janbu’s rigorous method (1973), hence true moment 

equilibrium is still not maintained in this method. Besides these two methods, there are 

many other variants of slope stability methods which are usually based on these two 

important slope stability formulations. As long as a statically admissible stress field is 

defined over a domain, the solution will be a lower bound of the ultimate limit state. In 

this respect, LEM is an approximate but not an exact lower bound solution (Chen 1975), 

as force (lumped the stresses over a finite length) instead of stress at each region is 

considered in the classical LEM. 

 

In the second group of method, the variational principle by Baker and Garber (1978) 

using the base normal stress distribution along the potential slip surfaces is the 

representative method. The minimum factor of safety with respect to the base normal 

force as well as the location of the failure surface is then determined by the variational 

principle. It should be noted that in the Baker and Garber formulation (1978), the failure 

mass bounded by the potential slip surface and the ground surface is not divided into 

slices, and complete equilibrium can be achieved using this group of method which is not 

possible with the first group of method. The second group of method is however difficult 

to be adopted when the geometry or the ground/loading conditions are complicated. 

 

In the SRM, the major assumption is the use of flow rule. Since there is practically no 

restraint to the soil at the surface of the slope, Griffiths and Lane (1999) suggested that 

non-associated flow rule can be a good approximation in the analysis. For soil under the 

ground surface, the use of the flow rule is an open question, and engineers either adopt 
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non-associated flow rule (more common approach) or associated flow rule in the whole 

analysis. In this respect, SRM is not actually better than the LEM. SRM also suffers from 

the difficulties in defining the ultimate condition and the slip surface in complicated 

problems which are discussed by Cheng et al. (2007) and Wei and Cheng (2010). 

 

Some of the important questions about the fundamental problems of the LEM as raised by 

the engineers include: 

1. The meaning of failure to converge during stability analysis – this is particularly 

serious for slopes with external loads and soil reinforcement, as the external loads 

and soil reinforcement may create local stress concentration so that the problem is 

difficult to be defined by a simple interslice force function. 

2. Choice of f(x) for some special problems where f(x) is important in the analysis. 

3. For cases where f(x) is important, there will be a wide range of results based on 

different classical stability formulations, and the acceptability of the result is difficult. 

These questions are important to both researchers and engineers for certain difficult 

problems, but there are very few previous studies devoted to these three questions. 

 

In 1965, Morgenstern and Price (MP method) proposed that the relation between the 

interslice normal and shear force could be specified to make the stability problem 

statically determinate which is shown in Figure 5.1. Currently, most of the engineers 

adopt an interslice force relation in the form of  

 X = lf(x)E           (5.1) 

where X and E are the interslice shear force and interslice normal force respectively. 

 

Spencer (1967) later proposed that all the interslice forces could be assumed to be parallel 
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to obtain the factor of safety, and f(x) will then be equal to be 1 and hence )(xfl  is a 

constant to be determined. Lam and Fredlund (1993) introduced interslice force function 

to specify the relationships between intercolumn normal and horizontal shear forces, 

intercolumn normal and vertical shear forces for three-dimensional problems, but the 

three-dimensional intercolumn function f(x,y) was actually set to 1 in order to determine λ 

and the safety factor. Cheng and Yip (2007) have found that f(x,y) is not sensitive to the 

factor of safety based on some limited studies for simple slopes.  

 

The major assumption in LEM is f(x) which is important but is not adequately considered 

in the past. In this chapter, f(x) is taken as the control variable, and the upper and lower 

limits of the factor of safety will be determined by global optimization analysis which is 

actually mathematically equivalent to the use of variational principle. Based on this 

approach, f(x) will be determined and investigated. Furthermore, f(x) will also be 

determined by the strength reduction method, and the results from LEM and SRM will be 

compared. 

 

5.2 Investigation of interslice forces by limit 

equilibrium method 

5.2.1 Determination of bounds of safety factor and f(x)  

For a failure surface with n slices, there are n-1 interfaces and hence n-1 f(xi). f(x) will lie 

within the range of 0 to 1.0, while the mobilization factor l and the objective function 

factor of safety based on MP method will be determined for each set of f(xi). The 

maximum and minimum factors of safety of a prescribed failure surface satisfying force 

and moment equilibrium will then be given by the various possible f(xi) satisfying 

Eq.(5.2).  
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 Maximize (or minimize) factor of safety subject to 0 £f(xi) £1.0 for all i     (5.2) 

In carrying out the optimization analysis as given by Eq.(5.2), the constraints from the 

Mohr-Coulomb relation along the vertical interfaces between slices as given by Eq.(5.3) 

should be considered. 

 X £ E tan (f’) + c’L            (5.3) 

where L is the vertical length of the interface between slices. The constraint given by 

Eq.(5.3) should also satisfy the requirement that the line of thrust of the internal forces 

lies within the soil mass, and Eq.(5.3) can have a major impact on the factor of safety in 

some cases, which will be illustrated by numerical examples in the following section. 

Since other than the f(x), the MP method is totally governed by force and moment 

equilibrium, the maximum and minimum factors of safety found from varying f(x) will 

provide the upper and lower bounds to the factor of safety of the slope that are useful for 

some difficult problems. 

 

Pan (1980) has stated that the slope stability problem is actually a dual optimization 

problem which is not well known outside China. On one hand, the soil mass should 

redistribute the internal forces to resist the failure, which will result in a maximum factor 

of safety for any given slip surface, and this is called the maximum extremum principle. 

On the other hand, the slip surface with the minimum factor of safety is the most possible 

failure surface, which is called the minimum extremum principle. The maximum and 

minimum extremum principles are actually equivalent to the lower and upper bound 

methods, which are well known. Mathematically, the solution from the use of variational 

principles is an extremum of a function, and this is also equal to the global 

maximum/minimum of the function, which can also be determined from an optimization 

process. The “present proposal” can be viewed as a form of the discretized variational 
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principle (Cheng et al. 2011). 

 

Since the objective function is highly discontinuous, the factor of safety is obtained by the 

double QR method by Cheng (2003). The simulated annealing method which is more 

stable but less efficient is used to determine the extrema with any given slip surface 

according to Eq.(5.2). To evaluate the global minimum factor of safety of a slope, another 

global optimization analysis should be carried out for the factor of safety, which is an 

outer loop of the global optimization analysis. To ensure that “false” failure-to-converge 

due to iteration analysis (Cheng et al. (2008b)) is not encountered so as to reduce the 

discontinuity of the objective function, the factor of safety is determined by the more 

time-consuming but robust double QR method. Since the factor of safety is available for 

practically all of the failure surfaces, the more efficient modified harmony search method 

as developed previously can be used for locating the critical failure surface. The complete 

process is computationally intensive, but the use of modern global optimization processes 

can make this process a reality on a personal computer within an acceptable computation 

time. Most of the problems can be completed within 1 hour which is considered to be 

acceptable for engineering use. 

 

The maximum extremum principle is not new in engineering, and the ultimate limit state 

of a reinforced concrete beam is actually the maximum extremum state where the 

compressive zone of the concrete beam will propagate until a failure mechanism is 

formed. The ultimate limit state design of a reinforced concrete beam under the 

application of a moment is equivalent to the maximum extremum principle. For any 

prescribed failure surface, the maximum “strength” of the system will be mobilized when 

a continuous yield zone is formed which is similar to a concrete beam. Pan’s extremum 
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principle (1980) can provide a practical guideline for slope stability analysis, and it is 

equivalent to the calculus of variation method used by Baker and Garber (1978), Baker 

(1980) and Revilla and Castillo (1977). This dual extremum principle is proved by Chen 

(1998) based on lower and upper bound analyses, and it is further elaborated upon with 

applications to rock slope problems by Chen et al. (2001). The maximum extremum is 

actually the lower bound solution, and the present approach is actually a lower bound 

approach as well as a variational principle approach. 

 

5.2.2 Numerical studies of f(x) and comparisons with classical methods 

of analysis 

Cheng et al. (2010) have applied the simulated annealing method complying with Eqs. 

(5.2) and (5.3) to evaluate the two extrema of the factor of safety. To determine the 

maximum and minimum extrema by the simulated annealing method, a tolerance of 

0.0001 is used to control the optimization search and the factor of safety determination. 

This tolerance will terminate the search in a particular solution path during the 

optimization process (see also Cheng et al. 2007a for details of the heuristic optimization 

methods). Since 15 slices are adopted in the computation, there are in total 14 f(xi) 

unknowns in the analysis, and the number of trials required to evaluate the two extrema 

ranges from 25000 to 32000, which is controlled by the tolerance during the optimization 

search. Based on this study, it was found that about 30-80% of the trials can converge 

when f(x) is varied, and those trials that fail to converge are controlled by either Eq.(5.3), 

or no physically acceptable answer can be found from the double QR method. The 

number of trials which fail to comply with Eq.(5.3) is about 3-5 times that where no 

physically acceptable answer can be found by the double QR method, so the compliance 

with Eq.(5.3) (together with the requirement on the line of thrust), which has been 
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neglected in the MP method, is actually important if an arbitrary f(x) is defined. 

 

Consider a very simple 45° 6 m high slope with a circular failure surface (example 1) as 

shown in Figure 5.2. The unit weight of the soil is 19 kN/m
3
, while c’ and f’ vary as 

shown in Tables 5.1a and 5.1b. The differences between the two extrema are less than 2% 

of the results given by Spencer’s method (1967), which clearly indicates that the factor of 

safety is not sensitive to f(x) and that Spencer’s method (1967) gives a good result for this 

example (see Table 5.1a). It is also interesting to find that while the factor of safety is not 

sensitive to Eq.(5.3), l is quite sensitive to the Mohr-Coulomb relation along the 

interfaces as the mobilization of interslice shear force to achieve maximum and minimum 

resistance will involve higher l value. It is also observed that the values of l from the two 

extrema are generally greater than that from Spencer’s analysis (1967), and these 

observations also apply to all the other examples in this study.  

 

For the slope as shown in Figure 5.3 (example 2) with the soil parameters given in Table 

5.2, the various factors of safety are given in Tables 5.3a and 4.3b. With only the lower 

nail present, the differences between the two extrema as compared with Spencer’s result 

(1967) are about 5.9% and 4.4% when Eq.(5.3) is used or not used, respectively (see 

Table 5.1b). The corresponding results/differences when the two soil nails are present are 

10.5% and 4.1%. It can be observed that when the soil nail or external load is present, the 

choice of f(x) has a noticeable impact on the results, and the compliance with Eq.(5.3) is 

also a critical issue which should be considered in the determination of extrema. 

 

For example 3 in Figure 5.4, if a deep-seated failure surface is considered with a uniform 

pressure 30 kPa on top of the slope, the two extrema are 1.236 and 1.091 if Eq.(5.3) is not 
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applied, and the two extrema are 1.221 and 1.184 if Eq.(5.3) is considered. The 

corresponding factor of safety from Spencer’s method (1967) is 1.200. Once again, 

Eq.(5.3) appears to be important in the factor of safety determination.  

 

For examples 1 and 3, Spencer’s method (1967) is adequate for practical purposes. On the 

other hand, for example 4 as shown in Figure 5.5 where there are many external loads and 

several weak zones, the two extrema are given by 3.24 and 3.98, indicating that the 

choice of f(x) is actually important. For more complicated problems similar to examples 2 

and 4 where f(x) is important, the present approach can avoid the dilemma of choosing a 

suitable f(x) and can provide a solution with acceptable internal forces to the engineers. 

 

It is clearly demonstrated that based on the lower bound principle/extremum principle, the 

interslice force function which is considered to be an indeterminate relation for the last 40 

year can now be determined. This is also an outstanding and important breakthrough to be 

added to the classical LEM formulation, and every problem will be statically determinate 

when the concept of lower bound principle is fully utilized.  

 

5.3 Investigation of interslice forces by strength 

reduction method 

5.3.1 Calculation of the interslice force function by strength reduction 

method 

Recently, the strength reduction method (SRM) appears to be a popular alternative to the 

LEM, and Eq.(5.1) is not required in the analysis. Cheng et al. (2007, 2008) and Wei et al. 

(2009) have carried out extensive SRM studies and have found that there are many 

practical limitations to the SRM. Cheng et al. (2007, 2008) and Wei et al. (2008) 
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concluded that both LEM and SRM are useful to slope stability analysis, and each method 

cannot replace the other method in practical use. Based on the stresses at the ultimate 

limit state from SRM, f(x) can also be determined from the SRM. The procedures to 

determine f(x) from SRM are: 

1. Conduct the SRM to determine the stress and factor of safety. 

2. Determine the location of the failure surface and the failure soil mass is divided into 

slices. 

3. Determine the normal and shear stresses on the vertical interfaces between slices 

and carry out the integration to evaluate the interslice normal and shear forces. The 

ratio between the interslice shear force and normal force is denoted as lf(xi). The 

largest lf(xi) is taken as the reference and f(x) will be set to 1.0 at this location and l 

will be denoted as lmax. 

4. f(xi) will be determined as lf(xi)/ lmax. 

 

When the factor of safety (FOS) is taken into consideration for defining the f(x), c’ and 

tanf ’ are reduced and the author proposes another interslice force function f2(x) which 

should be expressed as  
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It will be shown later that the uses of the two f(x) can give useful insight about the 

internal forces distribution of a slope under the ultimate limit state. 

 

For the SRM analysis, program Phase2 based on the finite element analysis and FLAC3D 
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based on the finite difference method (FDM) are adopted. Non-associated flow rule is 

used for the analysis (dilation angle is set to 0), and maximum shear strain criterion is 

used for the definition of the critical slip surface. Cheng et al. (2007) have established that 

the uses of associated or non-associated flow rule are not critical in most cases, and 

associated flow rule has also been used for some cases in this study to confirm that this 

assumption is not critical to the present study in general. The numerical modeling is 

shown in Figure 5.6.  The cohesive strength c’ varies from 2kPa, 10kPa, 20kPa to 30kPa, 

whereas the friction angle f’ varies from 10°, 20°, 30° to 40°. The effect of the slope 

geometry will be discussed later while the unit weight, Young’s modulus and Poisson’s 

ratio are taken as 18.84kN/m
3
, 18MPa and 0.25 respectively in this study. As established 

by Cheng et al. (2007), the effects of Young’s modulus and Poisson’s ratio are generally 

negligible for most cases and will not be considered. 

 

In general, the critical failure surfaces from the SRM and LEM are close in most cases 

which are shown in Figure 5.7, and these results are similar to the results by Cheng et al. 

(2007). It can be noted that: 

1. Factor of safety from LEM and FDM agrees well with few exceptions, while 

results from FDM are usually higher than those from FEM. 

2. When c’ is small, differences in factor of safety are greatest for higher f’, and 

when c’ is relatively large, differences in factor of safety are greatest for lower f’. 

 

The investigation on f(x) for constant c’=2kPa and varying f’ from 10° to 40° is shown in 

Figure 5.8, which is followed by Figure 5.9 for the interslice force function with constant 

f’=10° and varying c’ from 2kPa to 30kPa. It should also be noted that interslice tension 

normal forces have developed in the later portion of the soil mass which is actually not 
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possible. To deal with this, two approaches are commonly adopted. Tension crack can be 

introduced and the portion of soil mass beyond the tension crack is neglected in the 

calculation (or a tensile cut off stress can be introduced if necessary). The location of the 

tension crack will be varied until no tension is found in the failure soil mass. Alternatively, 

most of the engineers or researchers will simply allow tension which is a simpler 

procedure, and this is the approach adopted in the present study. The results for f(x) or 

thrust line are hence illustrated up to the compression zone only and the general trend of 

f(x) is not greatly affected by this tension cut-off. 

  

As shown in Figures 5.8 and 5.9, the general shape of f1(x) for a 1:1 slope is an 

asymmetrical bell which can be divided into three segments. For the left exit end of the 

sliding soil mass where is near to the toe of slope, f(x) ascends rapidly to the peak value at 

around x=0.2. Such result is similar to the result based on the lower bound method by 

Cheng et al. (2010). Beyond the peak, f(x) maintains a relatively high value until x is 

close to 0.6. Beyond x=0.6, f(x) drops rapidly until tension develops between slices. In 

general, the results from SRM and LEM agree well. Based on the results in Figures 5.8 

and 5.9, it is clear that f(x) is close to 1.0 at region close to the toe of slope. Such results 

imply that the shear strength of soil is virtually fully mobilized near to the toe of the slope, 

which is in agreement with the understanding that the most of the slope failures initiate 

from the toe of slope. 

 

If the percentage of shear resistance mobilized along the interface between slices is 

considered, f2(x) should be used instead of f1(x) in the formulation. The results of analysis 

using f2(x) are shown in Figures 5.10 and 5.11 for illustration. Initially, F2(x) was 

calculated without consideration of factor of safety along the interface and the results are 
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shown in Figures 5.10a and c and 5.11a. After the application of the factor of safety by 

Eq.(5.4), f2(x) will give a much more reasonable distribution of the internal forces.  

 

The variations of the interslice force function for simple slopes with different geometries 

have also been investigated. Slopes of c=30kPa and f=40° with the same height and slope 

angle of 30°, 45° and 60° have been considered. For the f1(x) as shown in Figure 5.12, 

steeper slope possesses lower horizontal extent of bell-shaped function. For the f2(x) as 

shown in Figure 5.13, similar relationship between the slope angle and the function 

region can be found. Because of the narrower region and similar gradient, larger slope 

angle seems to be related to acuter bell-shaped function. Similar to the previous case, 

even though great differences in the gradient and peak value exist among different 

geometries when the factor of safety is not considered, similar forms of bell shape with or 

without obvious flatness for the interslice function can be obtained if the factor of safety 

is involved in f2(x). 

 

The λ obtained by different methods are tabulated in Table 5.4. The data shows that 

generally larger λ is obtained with larger f’, which means that more shear resistance is 

mobilized while less percentage of resistance is mobilized as c gets larger.  When the 

angle of slope is large, λ increases which indicates that more shear force is mobilized. 

 

To sum up, the two definitions of f(x) agree well with each other if the factors of safety 

are taken into calculation on the interslice surface. f1(x) is generally used in the original 

MP method but it ignores the shear strength effect so it might induce fluctuations in the 

results. The method presented in this study has however considered this problem 

indirectly by enforcing the Mohr-Coulomb relation along the vertical interface. f2(x) 
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which is proposed in the present study considers factor of safety directly along interslice 

surface. The interslice force function can be divided into two major forms: with or 

without obvious platform. SRM and LEM can both obtain similar forms of interslice 

force function corresponding to similar critical slip surface and factor of safety. Interslice 

force function is mainly related to the geometry of the slope, influenced by the cohesive 

strength and friction angle, and less affected by Poisson’s ratio, dilation angle and tensile 

strength which are not important or required in LEM. Considering such characteristic and 

the efficiency of LEM, specified reasonable interslice force function within LEM 

framework could give results more rapidly than SRM and more accurately than classical 

LEM with arbitrarily specified interslice force relationship. The use of the extremum 

principle can also effectively avoid convergence problem which is not possible with the 

classical limit equilibrium methods. 

 

 As mentioned by Cheng et al. (2010), for practical purposes, a simple formula as given 

by Eq.(5.5) will be sufficiently good for practical purposes. This will greatly simplify the 

definition of interslice force function with only 3 parameters a, b and c. Maximum 

location of f(x) by Eq.(5.5) will be located at x=0 which is slightly different from the 

present study. Such small differences are generally acceptable for practical purposes, and 

the addition of 1 more parameter to Eq.(5.5) will improve the curve fitting at the expense 

of 1 more parameter as shown in Figure 5.14. Eq.(5.5) is adequate for simple problems, 

while the numerical procedure as suggested in present study can be adopted for more 

general and complicated problems. 

f(x) = cot
-1

 (ax+b)/c             (5.5) 
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5.3.2 Back-calculation of thrust line 

Besides f(x), the thrust line in the Janbu’s Rigorous Method (1973) can also be used to 

determine the factor of safety. Janbu (1973) assumed the thrust line is located at 1/3 

interface height as measured from the base on each slice and formulated the general 

equations of equilibrium by resolving vertically and parallel to the base of each slice. By 

taking moments about the centre of the base for each slice, overall moment equilibrium is 

implicitly satisfied, and the interslice shear forces can be calculated. 

 

The procedure to determine the acting position of the thrust line on the interslice surface 

(as shown in Figure 5.1) is actually a back-calculation procedure. To calculate the 

interslice force, the total moment of the normal stresses with respect to the bottom of the 

slice is determined, and the centroid of the interslice normal force (thrust line) can then be 

evaluated. The interslice surface is subdivided into small segments which allow 

acceptable accuracy for the assumption that for each segment, the resultant force of the 

thrusting stress acted at the middle of the segment, therefore, the location of thrust line 

can be determined if the stresses are known. 

 

The position of the thrust line with various cohesion, friction angle and slope angle are 

shown in Figures 5.15-5.17. For comparison, the critical slip surface and thrust line with 

1/3 height from slice base according to the assumption in the Janbu’s Rigorous Method 

(1973) are also included. Basically, the thrust line calculated by SRM is almost the same 

as the thrust line assumed in the Janbu’s Rigorous Method (1973), except that there are 

minor difference when c’ is small. The results agree well with the assumption of 1/3 slice 

height which indicates that after stress re-distribution at ultimate limit state, the resultant 

interslice forces satisfy the general consideration that the lateral pressure acts at 1/3 
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height from the slice base. From Figure 5.15, the effect of the friction angle seems to be 

not critical to the position of the thrust line. The thrust line however deviates from the 1/3 

slice height apparently around the crest of the slope, and larger cohesive strength tends to 

cause the thrust line to move up. This is reasonable as the stress condition is composite in 

multiple slices and re-distribution cannot thoroughly render the interslice forces to 

classical soil pressure. The influence of the slope angle on the thrust line is also 

investigated and is shown in Figure 5.17. The thrust line deviates slightly from the 

generally assumed 1/3 height condition. 

 

Based on the above observation, re-distribution of stress drives the thrust line partially 

coincident with general soil pressure acting on the 1/3 from the base on each slice. It 

should be noticed that two probabilities may exist here: the difference between the thrust 

line from SRM and the assumed 1/3 height is relatively small; the difference is actually 

large but seems negligible. The latter situation can be caused by relatively small length of 

slice around the toe of slope. To further investigate the thrust line location from the slice 

base, more results are given in Figure 5.18. 

 

From the four typical slopes of (i) c’=2kPa, f’=10°; (ii) c’=2kPa, f’=40°; (iii) c’=30kPa, 

f’=10°; (iv) c’=30kPa, f’=40° in Figure 5.18, the thrust lines for the first few slices 

around the toe of slope are located at the half of the slice height, then drop rapidly to 0.40 

slice height and is located at about 0.3 slice height (which is close to assumption of 1/3) 

for more than 50% of the horizontal extent of the sliding soil mass. It is also illustrated 

that around the crest of the slope and forwards, the thrust line fluctuates which depends 

on different type of slope. If c’ is relatively large, the thrust line fluctuates more at the top 

of the slope, while for larger f’, the thrust line seems to be flatter. Therefore, the slope of 
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type (ii) possesses most well-proportioned thrust line. More importantly, as shown clearly 

in Figure 5.18, the starting position of the thrust line around the toe of slope is not 

sensitive to different types of slopes, while the existence of tension crack is more 

important which causes the thrust line to deviate from the assumption by Janbu at the top 

of the slope. 

5.4 Variable factor of safety method 

5.4.1 Variable factor of safety formulation 

For the LEM, one of the basic assumptions common to all of the traditional soil and rock 

slope stability methods is a single factor of safety for the entire solution domain. Without 

this assumption, the slope stability problem will be statically indeterminate unless 

additional assumptions are used. The actual failure of a slope is however usually a 

progressive phenomenon. If the shear strengths between adjacent blocks are fully 

mobilized, the unbalanced forces will distribute to the adjacent blocks until a failure 

mechanism is formed. This process is called the progressive failure of slope. This 

phenomenon is well known, but is difficult to be considered by the classical LEM. For a 

system with a factor of safety close to 1.0, the choices of the shear strength parameters 

become critical. The adoption of the maximum shear strength or the residual strength and 

the extent in the adoption of different design parameters for the analysis is difficult to be 

decided, but the results of analysis will be greatly affected by the choice of the parameters. 

In this section, a discretized numerical formulation for LEM will be provided based on 

the extremum principle by Cheng et al. (2010), which can be viewed as an equivalent 

form of the variational principle. Through such numerical procedures, a limit equilibrium 

formulation which can satisfy all the equilibrium conditions can be achieved. 
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A variable factor of safety LEM formulation using mixed optimization method combining 

the particle swarm optimization (PSO) with the harmony search (HS) (developed in 

chapter 3) is proposed in this chapter. It will be demonstrated that the overall factor of 

safety from this approach is close to the classical methods of analysis for normal 

problems, but the present approach can accept the post-peak strength in the analysis 

which provides an estimate to the progressive failure mechanism. With minor 

modification, the present formulation can also reduce to a special form of the classical 

Janbu’s rigorous method (1973). 

 

In the classical LEM, most of the formulations consider only the global moment (local 

moment equilibrium is not enforced) except for the Janbu’s rigorous method which 

however cannot satisfy the moment equilibrium for the last slice. Cheng et al. (2010) 

enforce the local moment by rejecting the f(x) associated with an unacceptable thrust line. 

In this chapter, the proposed formulation considers the local moment equilibrium 

explicitly with re-distribution of forces and the allowance of post-peak strength in the 

analysis. The values and the locations of the inter-slices forces are viewed as the control 

variables, and the group of inter-slices forces satisfying static equilibrium will be 

optimized to determine the maximum factor of safety. Consider the slope as shown in 

Figure 5.1, the soil mass between the potential slip surface and the ground surface is 

divided into n slices numbering from 1 to n. K0 represents the boundary thrust force and 

its value is usually equal to 0. Points A and B are the entrance and exit points of the 

sliding surface respectively with their x-coordinates denoted as xA and xB. The forces 

acting on a typical slice i are also illustrated in Figure 5.1. The boundary between i-1 slice 

and i slice intersects with the slip surface and the ground surface at point C and E 

respectively. Similarly, points D and F are also defined.  Ki-1 is the thrust force between i-
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1 and i slice and hi-1 is the vertical distance from the thrust point of Ki-1 to point C, while  

Ki represents the thrust force between i slice and i+1 slice, and hi is the vertical distance 

from the thrust point of Ki to point D. 
1ib -  is the angle between Ki-1 and the horizontal 

direction. iW  is the weight of slice i. iv  is the horizontal distance from the thrust line of 

iW  to the center point of slice base (used for moment arm). Pi and iU  are the effective 

normal force and the pore water pressure acting on the slice base respectively. Ti is the 

mobilized shear force required to maintain the static equilibrium condition. Qi is the 

external forces induced by earthquake. di is the distance from the thrust line of Qi to O 

(also used for the moment arm). bi is the slice width. αi is the inclination of slice base, 

namely, the angle from horizontal to the slice base in clockwise direction. gi is the 

distance from the thrust line of Pi to point O along the slice base. Usually, the centroid of 

Pi is assumed to be at point O, that is, 0ig =  under the classical formulation. In this study, 

ig  can changes during the optimization process which is a more flexible arrangement. In 

addition, the distance from point C to the thrust line of Pi is named as li. The local factor 

of safety for slice i is defined as the ratio of the available shear strength along a slice base 

to the driving shear stress along the slice as: 

tani i i i
s

i

P c
F

T

f +
=                       (5.6) 

where i

sF  is the local factor of safety for slice i, if  
is the effective friction angle of slice 

base, ic  equals ci’li and li is the base length of slice i. The total/global factor of safety can 

be defined as the ratio of the available shear strength along the slip surface to the driving 

shear stress along the whole slip surface, and it is given by Eq.(5.7) as: 
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If we define a force vector ),.,,,,( 1 iiiiiiii TPUQWKKH -= the maximum extremum can 
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where iH  represents the total forces imposed on slice i, x means the projection of force 

vectors in x-direction, y  means the projection of force vectors in y-direction.  oi MH ´  is 

the moment of vector iH  about point O. That means, the force vectors iH  (i=1,2,…,n) 

and the variables of ih , ,i ig b  (i=1,2,…,n) must satisfy the static equilibrium condition. 

There exist infinite groups of force vectors iH  and variables of ih , ,i ig b  which can 

satisfy the static equilibrium condition, and they will lead to different factors of safety 

according to Eq.(5.7). The factor of safety for a given slip surface will be the maximum 

value based on the lower bound principle (see Cheng et al. 2010) which can be 

determined from an optimization process. 

 

The next step is to determine the control variables for the maximum extremum principle. 

If 111 ,, --- iii Kh b  are known, there will be six remaining variables iiiiii gKTPh ,,,,, 1-b  to be 

determined based on the static equilibrium. Since there are only three static equilibrium 

equations available for slice i, in order to make the problem determinate, three variables 

should be taken as the control variables in the optimization process. In this study, we 
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assume that 0ig =  in the initial trial and take ,i ih b  as the control variables. The boundary 

conditions give 0 0nh h= = and 0 0nb b= = , so there are totally 2n-2 variables 

(
1 1 1 1,..., ; ,...,n nh h b b- - ) to be optimized. Based on the boundary conditions, the recursive 

procedures will determine the local factor of safety and the related normal forces, shear 

forces on the slice base and the thrust forces for all the slices. The global factor of safety 

is then determined by Eq.(5.7). Pi is limited to positive value in the optimization analysis 

which is also a constraint in the analysis. 

 

Furthermore, during the implementation of the maximum extremum principle, there is the 

possibility that i

sF <1.0. Two approaches are adopted in this study. The first approach 

allows the occurrence of i

sF <1.0, and the other approach will assign i

sF =1.0 by 

transferring the unbalanced thrust forces to its adjacent slice in the sliding direction. The 

former approach is called the approach of instantaneous loading condition (Ailc), and the 

latter is called the approach of gradual loading condition (Aglc). The details of the Aglc 

are as follows (take slice i for example): 

Step 1:  The force equilibrium equations in the x- and y-directions give: 
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Assuming 0ig =  initially, the moment equilibrium about point O leads to Eq.(5.10).  In 

the following, we denote the nominator in Eq.(5.9) as iM  for sake of clearer 

interpretation. ,i iP T  can be obtained as Eq.(5.11) by using the force Eq.(5.9) in x-and y- 
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directions and Eq.(5.10). 

1 2
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                  (5.11) 

where 1Ca  equals to iiiii KKQ bb coscos 11 -+ -- , and 2Ca  equals to 

bb sinsin 11 iiii KKW +-- -- . 

 

Step 2: Calculate the global factor of safety i

sF  by Eq.(5.6). If i

sF <1.0, local failure will 

occur, and iT  is adjusted to tani i iP cf + (or the residual strength if it is defined) with 

i

sF =1.0. The unbalanced thrust force will be distributed to Ki and Pi. Pi and Ki will be 

adjusted according to Eq.(5.12): 
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where 1Cb  equals 1 1cos cosi i i i iQ K cb a- -+ - , 2Cb equals 1 1sin sini i i i iW K cb a- -- - + , 

1Cd  equals sin tan cosi i ia f a- , and 2Cd equals cos tan sini i ia f a+ . Residual strength 

can hence be considered easily by step 2 in the present formulation. The moment 

equilibrium about an arbitrary moment point O will then be checked again. The variable 

ih  is calculated by Eq.(5.13) as follows: 
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Pan (1980) has pointed out that the acceptable ih  should be in the range between 

0.25 DF  and 0.5 DF , which is basically similar to the suggestion by Janbu in his 

“rigorous” method (1973). DF  represents the vertical distance from point D to point F 
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which can be adjusted if necessary. If the constraint 0.25 DF 0.5 DFih£ £  (or any other 

similar range defined by the engineer) is not satisfied, the boundary value will be set to ih . 

That is to say, if 0.25 DFih <  then 0.25 DFih = . The unbalanced moment induced by 

the violation of this constraint drives the force iP  to move along the slice base within a 

certain range. The maximum length for which iP  can move is set to 
cos

i

i

b
y

a
, where 

0 0.5y< £ . If ig  is lower than 
cos

i

i

b
y

a
, the computation for slice i will finish. y  is set 

to 0.1 in the present study, otherwise, the centroids of the base normal forces will be close 

to the edges of the slice and are not acceptable. The effect of this value on the factor of 

safety can be considered by using Eq.(5.14): 

sin cos tan
2 2

i i i
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è øè ø=                (5.14) 

The above-mentioned steps are applicable to all the slices except for the last one. For the 

last slice, ,n nh F  are equal to 0 from the boundary condition, so nF  can be pre-determined 

as 0.0 instead of using Eq.(5.10). By Eq.(5.9), Pi and Ti are determined and the local 

factor of safety n

sF  is obtained. The moment equilibrium condition is maintained by 

varying iP  within the acceptable range between 0 (at middle of slice) and 
cos

n

n

b
y

a
 (close 

to the edge of slice).  

 

For Ailc, only step 1 is required as 1.0i

sF <  is allowed. The optimization problem related 

to the maximum extremum principle (or lower bound method, Cheng et al. (2010)) for a 

given slip surface '
Z is stated as follows: 
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where ,b b- +  are the minimum allowed angle and the maximum allowed angle 

respectively. In the present study, the lower and upper limits of b-  and b+  are -45° to 0° 

and 0° to 70° respectively (it should be noted that b less than zero is allowed by many 

commercial software). There are totally 2n variables to be optimized for the maximum 

extremum, and the global factor of safety will be obtained from this optimization 

procedure based on the mixed optimization algorithm which will be discussed below.  

 

In the Aglc formulation, progressive failure can be considered approximately in two ways. 

If the global factor of safety exceeds 1.0, the system can redistribute the stresses for local 

yielding by Eqs.(5.12) and (5.13). That means, part of the failure surface can yield locally 

(with a local factor of safety 1.0) while the whole soil mass is still maintained in a stable 

state by the remaining portion of the failure surface where the local factors of safety 

exceed 1.0. If a residual strength is specified, the Aglc formulation can allow the use of 

the residual strength according to step 2 above during the stress-redistribution, which will 

further extend the local yield zone in the analysis. 

 

The present formulation is similar to that by Cheng et al. (2010) while a varying local 

factor of safety is defined with the explicit consideration of the local moment equilibrium 

of every slice which is not possible with other classical formulation. In the formulation by 

Cheng et al. (2010), the violation of local moment equilibrium (actually thrust line) is 

enforced indirectly by rejecting the trial f(x) which give a thrust line outside the soil mass 

(as Morgenstern-Price’s method does not consider local moment). The local moment 
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equilibrium is however automatically enforced for every slice in the present formulation 

which is not possible with the other existing methods. On the other hand, this method 

requires the concept of local and global factor of safety which is different from the 

previous lower bound method by Cheng et al. (2010). The incorporation of the residual 

strength is simple and direct in the present formulation, and progressive failure 

mechanism can be approximately estimated from the stress-redistribution in the present 

formulation. 

 

The present formulation requires the optimization analysis for any prescribed failure 

surface. The difficulties of the present optimization analysis are: 

1. Large number of control variables for the N-P type optimization problem. 

2. No solution may be obtained for some combinations of internal forces or thrust 

line locations, as the factor of safety function is a highly discontinuous function for the 

present formulation. 

3. Presence of multiple local minima for the objective function, and the objective 

function is not necessarily a convex function. 

 

To overcome the highly discontinuous nature of the objective function in the present 

formulation, a powerful, stable and fast global optimization method is required for the 

analysis. To maintain effectiveness and efficiency, a combination of the PSO and the HS 

algorithms for the present problem is proposed in chapter 3. The combination of the two 

algorithms is usually more stable towards difficult problems, but will be less efficient for 

simple problems. This optimization method is used for the present difficult optimization 

problem. 
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5.4.2 Comparisons among different methods 

We can find that the present maximum extremum method of analysis gives results similar 

to the classical methods of analysis for many prescribed failure surfaces. Example 5 as 

shown in Figure 5.19 is a simple slope considered by Greco (1996) and Yamagami and 

Ueta (1988). The geotechnical parameters for example 5 are: f’=10°, c’=9.8kPa, unit 

weight 64.17=g  kN/m
3
. Yamagami and Ueta (1988) used nonlinear programming 

methods and the Spencer’s method to search for the critical factor of safety. The 

optimization search algorithms included the DFP, BFGS, Powell, and simplex methods. 

Greco (1996) analyzed this example using the pattern search and the Monte Carlo method. 

Cheng et al. (2007a) have also obtained a minimum factor of safety 1.325 using the 

Spencer’s analysis by the PSO method. The results by Ailc, Aglc and MP (extremum 

principle) as shown in Table 5.5 are slightly higher than those by Greco (1996) and 

Yamagami and Ueta (1988) and Cheng (2008a). The number of slices n is assumed to be 

11 and 15 respectively for Ailc and Aglc while 15 slices are used in the MP approach in 

the present study. The critical failure surfaces by MP are not shown in the present chapter 

for clarity, as the failure surface usually lie between those from Ailc and Aglc. 

 

These results are normal as the present formulation is practically equal to the extremum 

of the lower bound solution, while the use of the Spencer’s method is actually a lower 

bound solution. These results are also similar to the lower bound results by Cheng et al. 

(2010). The critical slip surfaces and the thrust lines by Aglc and Ailc are generally quite 

similar. The line of thrust for the MP approach is not shown in Figure 5.19, as the local 

moment equilibrium is not enforced in the MP approach and there are locations where the 

line of thrust located outside the soil mass which is not correct (the MP method cannot 

automatically ensure the thrust line to lie within the soil mass). The local factors of safety 
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for Ailc and Aglc for the present problem are shown in Figure 5.20. The results have 

illustrated that the first few slices as measured from the left are more difficult to fail, and 

this results are reasonable as the a values for these slices are either negative or small 

positive numbers. The variation of b with different slice as shown in Figure 5.21 is 

basically equivalent to a complicated f(x) which is far from 1.0 (Spencer’s assumption).  

 

Example 6 is a slope in layered soils which is considered by Zolfaghari (2005) using 

genetic algorithm with the Spencer’s method. The geometric layout of the slope is shown 

in Figure 5.22 while the geotechnical properties for soil layers 1 to 4 are given in Table 

5.6. The critical factors of safety by Ailc, Aglc and the Spencer’s method by Cheng et al. 

(2007a) using the PSO as shown in Table 5.7 are all smaller than those by Zolfaghari 

(2005). Cheng et al. (2007a) have commented that the result by Zolfaghari (2005) is 

possibly trapped by a local minimum, as the portion of the critical failure surface lying 

within the soft band zone by Zolfaghari is less than that by Cheng (2007a). For the 

present problem, the critical failure surfaces by Cheng using the Spencer’s method is very 

close to those by Ailc, Aglc, which indicate that the present formulation will gives results 

close to that by the Spencer’s method. The results have also indicated the effectiveness of 

the mixed optimization algorithm to overcome the local minimum for a relatively difficult 

problem. The distribution of the local factor of safety and b are shown in Figures 5.23 and 

5.24. These results correspond to the left portion of the failure surface close to the failure 

surface with high basal angles which from the optimization analysis are also physically 

reasonable.  
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The local factor of safety along the interface between two adjoining slices is defined as 

ii

viviii
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= , where vif  is the average friction angle along the ith inter-slice 

and viC  is the average cohesion along ith inter-slice. The distribution of 1/z along the 

failure surface for the critical failure surfaces by Ailc, Aglc, the Spencer’s method 

(classical and extremum principle) for examples 5 and 6 are shown in Figures 5.25 and 

5.26. It is found that the factors of safety are much greater than unity, which is greatly 

different from the assumption by Sarma and Tan (2006) which assumed that the factor of 

safety along the interfaces between slices/blocks is unity at all the interfaces or in the 

limit analysis by Chen (1975). In this respect, the present approach has the advantage of 

requiring less assumption in the basic formulation. 

 

5.4.3 Assessment of residual strength and progressive failure 

Before the initiation of the ultimate condition, part of the soil mass has yielded and stress 

will re-distribute until a failure mechanism is formed. This process is called the 

progressive failure which is well known but is seldom considered. To overcome this 

problem, local safety of factor with consideration of residual strength can be introduced to 

investigate the actual failure mechanism. 

 

From the previous studies, it appears that there is no special advantage to the present 

formulation, even though an acceptable set of internal forces will always be determined 

from the present formulation without an assumption of f(x) or the thrust line. It also 

appears that the redistribution of stress in Aglc is not important for normal problems. 

There are however some cases where the consideration of approximate progressive failure 
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may greatly affect the results of analysis and design. The design of slope in such 

condition is difficult because: 

1. For normal condition, the weak zone at the front of the slope will be stressed 

beyond the peak strength from a normal elastic finite element stress analysis. The 

latter part of the weak zone will still be controlled within the peak strength. 

2. If the residual strength is used for the design, the factor of safety will be very low 

and seems unrealistic. 

3. If the peak strength is used for the design, the factor of safety will be high which 

also seems unrealistic, as part of the weak zone should be stressed beyond the 

peak strength so that the residual strength is activated. 

4. It is not easy to define the regions where the peak strength and residual strength 

are used for the analysis and design. 

 

Consider a slope problem in Hong Kong (example 7) where the soil properties are given 

in Table 5.8 and the ground profile is shown in Figure 5.27. Since there is a 200mm thick 

weak zone which is shown by the region from A to B in Figure 5.27, 9 layers of soil nails 

are provided in the slope stabilization design. The minimum factor of safety and the 

critical failure failures are obtained by the particle swarm optimization method by Cheng 

(2007 a, 2007c) with a precision of 0.0001 for the objective function in the optimization 

search (not precision for the factor of safety determination). Based on the Spencer’s 

method, the minimum factors of safety are 1.154 and 0.963 using the peak strength and 

the residual strength for soil layer 3. The critical failure surfaces based on the peak 

strength and the residual strength are virtually the same (follow line AB) as the failure is 

controlled purely by the weak zone. Using the formulation Aglc where the peak strength 

is used initially, but under stress-redistribution the residual strength will be used which is 
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similar to the concept by Lam et al. (1987), a global factor of safety 1.034 will be 

obtained. The base normal forces for the three cases are shown in Figure 5.28. Under the 

Aglc formulation, the initial 7.2m of the failure surface will be controlled by the residual 

strength with a local factor of safety 1.0 while the later part of the failure surface will still 

be controlled by the peak strength with a local factor of safety greater than 1.0. This 

phenomenon can be viewed as an assessment of the progressive failure development, 

where the initial 7.2m of the weak zone which has attained the residual strength is no 

longer able to take up additional increase of loads. The concept by Lam et al. (1978) 

which is actually not possible to be implemented into the classical limit equilibrium 

formulation can now be adopted under the present formulation. It is also noticed that the 

residual strength has played a significant role in the factor of safety of this slope and 

cannot be neglected in the analysis and design.  

 

5.5 Study on convergence 

Failure to converge for “rigorous” methods is well known to many engineers, particularly 

when there are external loads and soil nails. Cheng et al. (2008b) have carried out a 

detailed study on the convergence problem of Morgenstern-Price’s method (1965), and 

they found that one of the reasons for divergence is the use of an iteration method with 

zero interslice shear force in the first step of the iteration. Cheng (2003) has proposed the 

double QR method which determines the factor of safety directly without the requirement 

of an initial trial, and the factors can be classified into three groups: negative numbers, 

imaginary numbers, and positive numbers. If no physically acceptable solution is found 

from the positive results from the double QR method, the problem under consideration 

has no solution by nature. Every failure surface should physically bear a factor of safety, 

and for this kind of “failure to converge” which is the basic limitation of the assumed f(x), 
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it is possible to ensure convergence by tuning f(x) until a physically acceptable factor of 

safety is obtained. Based on the extremum principle as outlined in section 5.2, the 

problem of convergence will be investigated in this section. 

 

Consider the slope with a steep failure surface as shown in Figure 5.29. The factors of 

safety are 1.542, 1.570, 1.526, and 1.550 based on Bishop’s method (1955), Janbu’s 

simplified method (without the correction factor), the Swedish method, and Sarma’s 

method. The extrema are 1.602 and 1.547 if Eq.(5.3) is not enforced and are 1.564 and 

1.559 if Eq.(5.3) is considered. No physically acceptable result can be found for 

Spencer’s method (1967) using the double QR method, and “failure to converge” is the 

fundamental problem in assuming f(x)=1.0. 

 

If there is vertical loading of 30 kPa applied at the right hand side on the top of the slope 

as shown in Figure 5.4, the critical circular failure surface is to be determined. The 

minimum factors of safety from Spencer’s method (1967) using the double QR method 

and the iteration method are 0.995 and 0.989, respectively. Based on the harmony search, 

the percentages of surfaces that fail to converge are 6.2 and 24.6 for Spencer’s method 

(1967) for this problem, based on the double QR method and the iteration method 

respectively. It can be noted that there is a high percentage of failure by the classical 

iteration analysis, which has been investigated in detail by Cheng et al. (2008b). The 

double QR method has greatly overcome the limitations of the iteration method by direct 

evaluation of the factor of safety, but 6.2% of those slip surfaces still fail to converge due 

to the enforcement of f(x)=1.0 for the present simple problem. The minimum factors of 

safety using the harmony search for the extrema are 1.013 and 0.85 if Eq.(5.3) is not 

applied, and they are 1.002 and 0.901 if Eq.(5.3) is used; and there is virtually no failure 
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to converge based on the present approach. It can be observed that the lower bound of the 

factor of safety is relatively low as compared with the result by Spencer’s method (1967), 

which means that the choice of f(x) is actually important for this case and is contrary to 

the comment by Morgenstern (1992) that f(x) is not important except for isolated cases .  

 

Though the use of the simulated annealing method to determine the factor of safety of a 

single failure surface is time-consuming, the objective function factor of safety is 

practically a continuous function so that the more efficient harmony search method can be 

used to locate the critical failure surface. The present method is hence a practical solution 

for the engineer, and the time required to obtain the critical circular failure surface is 

about 10 minutes for the present problem, which can be considered as acceptable. A 

further advantage of the present method is that the upper and lower bounds of the factor 

of safety for the critical failure surface can be evaluated for reference. 

 

For the problem as shown in Figure 5.4, if c’=5 kPa and f’=20°, there are about 5700 f(x) 

during the optimization search for which no factors of safety associated with acceptable 

internal forces are found. These 5700 cases have been carefully examined and grouped 

into three major categories, apart from some cases that are completely random. The first 

two cases constitute about 15% of all the failure to converge cases and are shown in 

Figures 5.30 and 5.31. Type 1 f(x) fluctuates randomly with x, and the magnitude of the 

fluctuation is quite significant. For Type 2 f(x), f(x) is high at the two extremes of x and is 

low in the middle. Type 3 f(x) in Figure 5.32 constitutes about 80% of all the failure-to-

converge cases and is particularly important. Type 3 f(x) looks like Eq.(5.5) except that 

f(x) is near the maximum at the left for a short interval of x. Type 3 f(x) decreases rapidly 

toward 0 at about x=0.3 and is practically zero beyond that. It should be noted that a spike 
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have appeared after x=0.3 which is actually case dependent in general. In general, these 

three types of f(x) also apply to other soil parameters when there is no soil nail or external 

load. 

 

5.6 Conclusions and Discussions 

Factor of safety and the critical slip surface are the main interests to the engineers in slope 

stability analysis. In this chapter, the author has developed the extremum principle and 

the concept of variable factor of safety based on the Pan’s postulate (lower bound 

principle). Under such condition, the unknown f(x) becomes determinate. Actually, the 

use of the concept of ultimate limit state is the missing equation which will complement 

the force and moment equilibrium to give the factor of safety without additional 

assumption as in all the classical limit equilibrium methods. Besides the limit equilibrium 

method, the author has also adopted the SRM in determining f(x) and thrust line. Based 

on LEM and SRM, it is found that the interslice force function varies with slopes with 

different soil properties and geometry and should not be arbitrarily specified. Basically, 

for slopes controlled by self weight, interslice force function is a bell-shaped function 

which is similar to the results by Fan, Fredlund and Wilson (1986), except for a part near 

to the toe of slope.  

 

Cheng et al. (2007) and many others have found that the results from the LEM and SRM 

are similar in general. In the present study, one important difference is found, at least for 

all the existing limit equilibrium formulations. From the results in SRM, it is noticed that 

the factor of safety is introduced to the whole soil mass so that the factor of safety must 

be introduced into the interslice force relation. Such a requirement is however not 

mandatory in the LEM, and the factor of safety is only enforced at the slice base while the 
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Mohr-Coulomb relation along the vertical interface can be used without the application of 

the factor of safety. It is possible that the factor of safety can also be introduced to the 

interface force relation (though not used in any LEM method at present). For practical 

application, since the interslice shear force is not sensitive to the overall factor of safety, 

the enforcement of the factor of safety in the interslice force relation appears to be not a 

critical factor, though conceptually the factors of safety from LEM and SRM cannot be 

compared directly because of this requirement.  

 

In Janbu’s Rigorous Method (1973), the position of the thrust line is assumed at the 1/3 of 

slice length from the base to render the problem statically determinate. The above 

investigations on simple slope basically agree well with the Janbu’s Rigorous method 

(1973). Slight difference exists at the exit end of the sliding soil mass where the points of 

thrust line are located at nearly half of the slice height. When the slope angle is steep, the 

difference between the actual thrust line and 1/3 slice height is found to be small. When 

the sliding soil mass is deep-seated or the properties of slope is complex leading to below 

toe failure, more attention should be paid in defining the thrust line. 

 

For the two extrema from the present analysis, it is proposed that the maximum extremum 

should be taken as the factor of safety of the prescribed failure surface. As discussed, the 

internal forces within the soil mass should redistribute until the maximum resistance 

capacity of the soil mass is fully mobilized. Beyond that limit, the soil mass will start to 

fail. The present proposal also possesses an advantage in that it is independent of the 

definition of f(x). It is well known that there are also cases where f(x) may have a 

noticeable influence on the factor of safety. There is no clear guideline on the acceptance 

of the factor of safety due to the use of different f(x). The use of the maximum extremum 
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can also avoid this dilemma, which has been neglected in the past. The approach in 

section 5.2 is a typical lower bound approach, as statically admissible forces associated 

with a prescribed f(x) are considered. The selection of the maximum factor of safety is 

hence justified from the lower bound theorem. 

 

While an arbitrary choice of f(x) may be in conflict with Eq.(5.3) or no solution can be 

evaluated, the present approach, which is based on a global optimization method, 

provides results that are physically consistent and acceptable. The approach in section 5.2 

possesses the following advantages: (1) it avoids the assumption of f(x) or other similar  

relation, (2) it exhibits virtually no failure to converge, (3) consistent and acceptable 

internal forces complying with force and moment equilibrium are determined, (4) it 

provides the bounds to the actual factor of safety, (5) it determines f(x) during the 

evaluation of the factor of safety, and (6) the problem of the variational principle as 

discussed by Jong (1980, 1981) and Castilo and Luenco (1980, 1982) is automatically 

eliminated by using the global optimization analysis in the present approach. 

 

Within the context of classical slope stability analysis where the factor of safety is defined 

in terms of the ultimate shear strength and mobilized shear strength, there should only be 

a single factor of safety for a problem. On the other hand, for normal stable slope with an 

overall factor of safety greater than 1.0, at least part of the system is not situated at the 

ultimate condition. The present study has demonstrated that for such cases, the factors of 

safety based on a variable factor of safety and the classical approaches are similar. In this 

respect, the present formulation provides an alternative to the classical methods of 

analysis. For normal and practical problems, the present formulation provides no 

advantage over the classical methods of analysis. On the other hand, for those cases of 
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stable slopes where the factors of safety is slightly above 1.0 and part of the system may 

be controlled by the residual strength, the present formulation provides an estimation of 

the factor of safety which is not possible with the classical methods of analysis. 

 

Imposing Pan’s principle, two different extremum formulations based on variable factor 

of safety concept are proposed in section 5.2 and 5.4, which can consider global and local 

equilibrium and satisfying all the equilibrium conditions without any assumption as in the 

classical formulations. Pan’s principle is actually the combination of lower and upper 

bound approach which is purely a concept without any practical numerical procedures. 

The author has developed the global optimization methods in chapter 3 and the numerical 

algorithms for the Pan’s principle in chapter 5. The most difficult question in slope 

stability analysis can now be considered as  settled under the Pan’s principle or the lower 

bound method. 
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Table 5.1a Factors of safety from lower bound and Spencer’s analysis for Example 2 (* 

Spencer’s result violates Eq.(5.3)) 

Case 
Max. FOS 

no Eq.(5.3) 

Max FOS 

with 

Eq.(5.3) 

Min. FOS 

no Eq.(5.3) 

Min. FOS 

with 

Eq.(5.3) 

Spencer 

c’=0 kPa, f’=20° 0.759 0.749 0.738 0.743 0.745* 

c’=0 kPa, f’=40° 1.753 1.733 1.702 1.708 1.718 

c’=5 kPa, f’=20° 1.017 1.012 1.002 1.003 1.007 

c’=5 kPa, f’=40° 2.008 1.998 1.966 1.965 1.98 

c’=10 kPa, 

f’=20° 
1.280 1.277 1.268 1.267 1.272 

c’=10 kPa, 

f’=40° 
2.263 2.261 2.230 2.229 2.242 

 

Table 5.1b l from lower bound and Spencer’s analysis for Example 2 (* Spencer’s result 

violates Eq.(5.3)) 

Case 
Max. FOS 

no Eq.(5.3) 

Max FOS 

with 

Eq.(5.3) 

Min. FOS 

no Eq.(5.3) 

Min. FOS 

with 

Eq.(5.3) 

Spencer 

c’=0 kPa, f’=20° 1.867 1.0 1.888 1.0 0.522* 

c’=0 kPa, f’=40° 1.82 1.151 1.886 0.901 0.522 

c’=5 kPa, f’=20° 1.89 0.892 1.873 1.758 0.457 

c’=5 kPa, f’=40° 1.857 1.208 1.896 1.903 0.491 

c’=10 kPa, 

f’=20° 
1.711 1.024 1.889 1.893 0.407 

c’=10 kPa, 

f’=40° 
1.855 1.432 1.846 1.907 0.464 
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Table 5.2 Soil parameters of Example 2 

Soil 
Unit weight 

(kN/m
3
) 

Saturated unit 

weight (kN/m
3
) 

c’ (kPa) f’ (°) 

Top 18 20 5 36 

Second 

layer 
15 17 3 30 

 

Table 5.3a Factors of safety from lower bound approach and Spencer’s analysis of 

Example 2 

Case Max. FOS 

no Eq.(5.3) 

Max FOS 

with 

Eq.(5.3) 

Min. FOS 

no Eq.(5.3) 

Min. FOS 

with 

Eq.(5.3) 

Spencer 

Bottom nail 1.856 1.841 1.750 1.763 1.790 

2 nails 2.661 2.600 2.398 2.498 2.515 

 

Table 5.3b l from lower bound approach and Spencer’s analysis of Example 2 

Case Max. FOS 

no Eq.(5.3) 

Max FOS 

with 

Eq.(5.3) 

Min. FOS 

no Eq.(5.3) 

Min. FOS 

with 

Eq.(5.3) 

Spencer 

Bottom nail 1.149 0.944 0.924 1.902 0.488 

2 nails 1.435 1.281 1.149 2.011 0.547 

 

 

Table 5.4 Summation of λ obtained by different methods 

  LEM FDM FEM 

c’=2kPa 

β=45° 

f’=10° 0.7522 0.7889 0.7645  

f’=20° 0.9324 0.8192 0.8213  

f’=30° 0.9885 0.8232 0.8174  

f’=40° 1.2477 0.8830 0.8069  

f’=10° 

β=45° 

c’=2kPa 0.7522 0.7889 0.7645  

c’=10kPa 0.8996 0.7313 0.6792  

c’=20kPa 0.4936 0.5996 0.6510  

c’=30kPa 0.0320 0.5519 0.6467  

c’=30kPa 

f’=40° 

β =30° 0.5297 0.4536 0.4478  

β =45° 1.7007 0.7424 0.7644  

β =60° 0.7979 0.8837 0.9877  
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Table 5.5 Minimum factors of safety for example 5  

Methods of 

analysis 

Ailc Aglc MP Cheng 

(Spencer) 

Greco  

(Spencer) 

Yamagami 

(Spencer) n=11 n=15 n=11 n =15 

Factor of 

safety 
1.349 1.376 1.320 1.354 1.345 1.325 1.327 1.338 

 

Table 5.6 Geotechnical parameters for example 6 

Layers g (kN/m
3
) c’ (kPa) f’ (°)) 

1 19.0 15.0 20.0 

2 19.0 17.0 21.0 

3 19.0 5.00 10.0 

4 19.0 35.0 28.0 

 

Table 5.7 Minimum factors of safety for example 6  

Methods Ailc Aglc Cheng 

(Spencer) 

Zolfaghari 

(Spencer) n=11 n=21 n=11 n=15 

Factor of 

safety 
1.053 1.150 1.170 1.187 1.11 1.24 

 

Table 5.8 Geotechnical parameters of example 7 

Layers g (kN/m
3
) c’ (kPa)   

 (peak) 

f’ (°)  

(peak) 

c’ (kPa) 

 (residual) 

f’ (°) 

 (residual) 

1 20 10 40   

2 18 2 34   

3 18 2 24 0 21 

4 18 5 38   
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Figure 5.1 Interslice forces and determine of thrust line 
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Figure 5.2 A simple slope with a circular failure surface – example 1 
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Figure 5.3 A problem with two soils, two soil nails, and a water table – example 2 
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Figure 5.4 Slope with a deep-seated failure surface and a vertical pressure – example 3 
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Figure 5.5 A complicated problem where there is a wide scatter in the factor of safety – 

example 4 
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Figure 5.6 Numerical models for 1:1 slope in FDM and FEM 
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Figure 5.7 Comparisons of critical slip surfaces 
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a) SRM b)  LEM 

Figure 5.8 f1(x) of slope with varying f’ when c’=2kPa 
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Figure 5.9 f1(x) of slope with varying c’ when f’=10° 
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a) SRM (when FOS is not used)           b) SRM (when FOS is used) 
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c) LEM (when FOS is not used)           d) LEM (when FOS is used) 

Figure 5.10 f2(x) of slope with varying f’ when c’=2kPa 
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a) when FOS is not used                                b) when FOS is used 

Figure 5.11 f2(x) of slope with varying c’ when f’=10° 
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c)  LEM 

Figure 5.12 f1(x) when c’=30kPa and f’=40° 
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a)  FDM (when FOS is not used) b)  FEM (when FOS is not used) 
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c)  FDM (when FOS is used) d)  FEM (when FOS is used) 

Figure 5.13 f2(x) with varying slope angle when c’=30kPa and f’=40° 
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Figure 5.15 Thrust line of slope with varying f’ when c’=2kPa 
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Figure 5.16 Thrust line of slope with varying c’ when f’=10˚ 
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Figure 5.17 Thrust line of slope with varying slope angle when c’=30kPa and f’=40° 
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Figure 5.18 Proportion of position of thrust line to slice length 
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Figure 5.19 Critical slip surfaces and corresponding thrust lines by different methods for 

example 5 
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Figure 5.20 Distribution of the local factor of safety for example 5 (n=11) 
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Figure 5.21 Distribution of ib  (in radian) for example 5 (n=11) 
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Figure 5.22 Critical slips surfaces and thrust lines by different methods for example 6 
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Figure 5.23 Distribution of the local factor of safety for example 6 (n=11) 
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Figure 5.24 Distribution of ib  for example 6 (n=11) 
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Figure 5.25 The local factor of safety ζ at interfaces for example 5 
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Figure 5.26 The local factor of safety ζ at interfaces for example 6 
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Figure 5.27 A slope with a thin weak zone in Hong Kong – example 7 
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Figure 5.28 Base normal forces based on peak strength, residual strength and Aglc 

analyses 
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Figure 5.29 An example with a steep failure surface – example 8 
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Figure 5.30 Type 1 f(x) plotted against dimensionless x for failure to converge 

 
Figure 5.31 Type 2 f(x) plotted against dimensionless x for failure to converge 

 
Figure 5.32 Type 3 f(x) plotted against dimensionless x for failure to converge 
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CHAPTER 6 Slope Stability Analysis in Three-

dimension  

 

6.1 Introduction 

Although all slope failures are three-dimensional (3D) in nature, two-dimensional (2D) 

analysis is still adopted in most of the slope stability analysis because of various reasons. 

Most of 3D LEM methods including those by Hovland (1977), Chen and Chameau (1983), 

Zhang (1988), Ugai (1988), Lam and Fredlund (1993), Chang (2002), Chen et al. (2003a) 

adopt the assumption of symmetrical slip surface with a certain sliding direction. Such 

methods are basically the extension of 2D methods, where the interslice force relationship 

is extended to intercolumn force assumptions and the corresponding equilibrium 

equations are considered under 3D framework. Among these works, Lam and Fredlund 

(1993) in their development of a general LEM method have found that dominating 

intercolumn force functions are X/E and V/P with regard to the normal and vertical shear 

forces on the xy- and yz- plane (xz- and yz- plane in this study) respectively. Huang et al. 

(2002) in their general method for 3D slope stability analysis have also involved the 

intercolumn force, but their formulation suffers from several limitations which are 

discussed by Cheng and Yip (2007). Cheng and Yip (2007), on the other hand, developed 

an asymmetric model prescribing only one sliding direction for the whole failure mass. 

The convergence problem under transverse load in the Huang and Tsai formulation (2000) 

has been overcome under this new formulation, and Cheng and Yip (2007) have 

demonstrated that this approach is equivalent to rotation of sliding axis until the minimum 

factor of safety is determined. The advantage of this formulation is that there is no need to 
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carry out the axis rotation explicitly, which will save tremendous computations with no 

loss of accuracy. 3D NURBS surface and the simulated annealing method proposed by 

Cheng et al. (2005) are incorporated to locate the 3D critical slip surface.  

 

3D analysis by SRM is robust provided that sufficient computer time is allowed in the 

modelling. Many researchers have considered the 3D stability under different complex 

conditions of slope. Ugai and Leshchinsky (1995) have included a pseudo-static seismic 

force component in their 3D SRM analysis for vertical cuts. Zheng et al. (2005) have used 

program ANSYS to conduct an extensive SRM analysis in slope, tunnel and ultimate 

bearing capacity of foundations. Griffiths and Marquez (2007) have considered both 

vertical and inclined boundaries to investigate the constraint effect of slopes with finite 

length for several 3D slope examples by SRM. Deng et al. (2007) have also conducted 3D 

SRM to analyze the stability of a pre-existing landslide with multiple sliding directions. 

 

For many slopes, due to route selection, geology, neighbor constructions and other 

necessary consideration, the slopes are curved in the geometric layout. For the previous 

3D analysis methods, there are only limited works on the effect of curvature on the 

stability of slope. Rassam and Williams (1999) have conducted a survey on the curvature 

effect on fill slope stability with concave and convex faces by configuring the axi-

symmetric option in FLAC2D. To investigate the three-dimensional geometry effect for 

both convexity and concavity conditions, this chapter will conduct 3D analyses on 

different geometry by FLAC3D. Intercolumn force function will also be investigated to 

supplement the intercolumn force function which is an outstanding work up to present. 
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6.2 Failure mechanism of curvilinear slope 

Intuitively, curvature is the amount by which a geometric object deviates from being flat 

or straight. In general mathematics, curvature is in the inverse of the radius of curvature 

of 2D circle or 3D surface. In the point of view of civil engineering, curvature can be 

classified as concavity and convexity. The curvature of plane facing can be regarded as 

zero with infinite radius.  

 

By changing the orientation relative to the axis of symmetry, both convex and concave 

slopes can be obtained by extension of 2D slope using the basic section as shown in 

Figure 6.1. The simple slope is with section of similar geometry as those adopted in 2D 

analysis in Chapter 5. The friction angle of soil is prescribed as 20°, slope angle is 45°, 

height of slope is 6m, soil unit weight of 19kN/m
3
 and cohesive strength of 20kPa or 

4kPa are assumed. For pure convex and concave slopes with no transverse load, the 

problem domain is axi-symmetric. Similar to 2D plane-strain analysis, the tangential 

force or stress vector is zero in theory and only stress and force on the radial plane are 

considered as significant. Therefore, the radial intercolumn force function corresponds to 

f(x) and tangential intercolumn force function corresponds to f(y). For simplicity and 

clarity in this study, a slope is defined as locally convex when the curvature is positive or 

locally saddle when the curvature is negative according to the theorem of Gauss curvature. 

The radius of rotation about the axis of symmetry (R) is accordingly positive for convex 

and is negative for concave, and cylindrical coordinate system O(r, θ, z) will be adopted 

instead of the Cartesian coordinate system O(x,y,z) for the investigation of intercolumn 

force function, and f(r) and f(t) represent the radial and tangential intercolumn force 

function. By such definition, plane slope is the extreme situation of curvilinear slope with 

R=∞. 
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In general, the slip surfaces for 2D and 3D analyses are very similar for the present 

situation. The curvature seems to have not a noticeable influence on the 3D slope failure 

mechanism when the critical slip surface and the overall displacement vector are observed 

as shown in Figure 6.2(a), that is the critical slip surface is similar and the displacement is 

pointing to the slope toe in the radial direction in both convex and concave slope. 

However when the displacement vector at middle portion where influence by boundary 

condition can be eliminated are investigated as shown in Figure 6.2(b), the displacement 

vectors in convex slope is mainly downstream and only slight sliding out could be found 

at the slope toe while for concave slope the soil mass sliding out is obvious. Combined 

with the results of shear stress on middle section shown in Figure 6.2(c), the failure 

mechanism behind might be explained as: (1) failure soil mass in the convex slope evenly 

slides down from the concentrated ground at crest and through the diverging geometry 

until reaching the toe where the shear stress is mainly mobilized; noticeable shear stress 

mobilized could be found near the crest because possibly the concentrated ground at crest 

restricts the trigger of failure; (2) the converging geometry of concave slope forms 

arching effect; such effect increases shear stress significantly in almost whole failure 

mass and results in accumulation of soil hence larger upheaval displacement at toe as 

compared with that in convex slope (shown in Figure 6.3); the converging geometry 

towards downstream restricts the develop of failure. These restrictions from curvilinear 

geometry may be regarded as the reason why curvilinear slope obtains higher / slightly 

higher safety than plane slope (see Table 6.1). Furthermore, it should be noted that the 

diverging geometry in convex slope, compared to converging geometry in concave slope, 

imposes no positive influence on the restriction of failure development especially at 

middle height of slope as we have already spotted in the stress analysis (see Figure 
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6.12(c)). This result accounts for the fact that the factor of safety of convex slope (1.86) is 

about 10% lower than that of concave slope (2.05). 

 

In addition, different curvatures are also studied. Factors of safety of slope with different 

radii of curvature and different cohesive strength are investigated and the results are 

shown in Figure 6.4 and Table 6.1 with reference to the slope with plane facing as well. 

Different curvatures (0.2, 0.1, 0.667, 0.05) correspond to different radius of rotation about 

the symmetric axis (see Figure 6.1), i.e. R=5m, R=10m, R=15m, and R=20m, respectively. 

As shown in Figure 6.4, the effect of curvature is beneficial on factor of safety but is 

noticeable and important only when the curvature is significant. That means, unless the 

radius of curvature is small, the effect of curvature on factor of safety is not critical for 

most of the highway slopes if the soil is homogeneous. This result is however not 

necessarily true if the soil is nonhomogeneous, but then the effect of inhomogeneity will 

be more important than the effect of curvature. 

 

If the geometry of slope is complex, the slope profile is hardly defined by a single radius 

of curvature and thus the failure is complicated. Figure 6.5 shows two types of complex 

slope with similar basic section and properties as previous parameters.  Type 1 complex 

slope combines directly convex and concave portions while type 2 complex slope adopts 

a plane portion to connect both curvilinear portions. Bearing the findings from above 

study in mind, we anticipate the stability of complex slope would be enhanced by 

existence of curvilinear portions and be weakened by existence of plane portion. As 

shown in Figure 6.5, factor of safety for Type 1 complex slope is 2.0 and for Type 2 

complex slope is 1.89. Compared with the results of simple slope with c=20kPa 

(FOS=2.05 for concave slope, FOS=1.86 for convex slope and FOS=1.82 for plane slope), 
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factor of safety for complex slope ranges among the maximum and minimum factors of 

safety of constituent portions. These results agree well with the anticipation and can be 

further explained by studying the critical slip surface. Due to the local stabilization effect 

from curvilinear portion, the plastic zone initiated at portions with low stability only 

partly develops in portion with high stability and no continuous, thorough failure surface 

is essentially formed. So there is only local failure in complex slope. 

 

From the above investigations on simple slope, for homogeneous slope with 3D curvature, 

the failure is symmetric about the rotation axis with an axi-symmetrical shear failure. For 

the same radius of curvature, the concavity geometry shows higher factor of safety than 

the convex geometry which is an indication of the arch action introduced by the obvious 

confining action of the geometry. When different radii are concerned, the concavity 

geometry has more positive effect to the stability when the radius of curvature is small. 

Both curvilinear geometries are beneficial to the slope stability, but such merit is 

relatively small and is only significant when the curvature is significant.  

6.3 3D intercolumn force function on plane slope by 

stress analysis 

Compared with 2D plane strain analysis, 3D analysis on slope with plane slope is 

expected to give similar factor of safety and stress distribution if the length of the slope is 

large enough. The procedure to determine the intercolumn force function is similar to the 

interslice force function. The intercolumn force function is studied along both x-direction 

and y-direction as shown in Figure 6.6 and Figure 6.7, where x=0 indicates the exit end of 

the slip surface. For f(x), it is basically a simple extension of the 2D interslice force 

function. On the other hand, there seems to be no simple rule to define f(y) distribution. 

The actual distribution of f(y) is however not critical, as λy is as small as 1.9e-4 and 4.8e-



Studies of Slope Stability Problems by LEM, SRM and DEM 

165 

 

4 for c=20kPa and c=4kPa respectively. In fact, λy should be equal to 0 exactly for a plane 

slope. For this case, f(y) is actually a meaningless item as λy is zero. The peak value of f(x) 

is situated and maintained around the exit end of soil mass near the toe and decreases 

rapidly at the middle of the soil mass as shown in Figure 6.8. The abnormality is located 

at the later proportion of the soil mass where tension crack may exist. For this 3D failure 

which is actually a simple extension of 2D failure with same factor of safety and internal 

stresses, a 2D analysis is completely sufficiently good, and f(x) is similar to that by 2D 

SRM as shown in Chapter 5.  

 

6.4 Curvature effect on the internal force distribution 

Figure 6.9 illustrates f(r) and f(t) of curvilinear slope. It is obvious that there is no solid 

trend for f(t) while f(r) is still basically similar to that for 2D situation. The f(t) is 

investigated along different θz-planes as shown in Figure 6.10 where for both convex and 

concave slope, the distribution of f(t) is very random. This might result from the 

symmetric slope profile - actually most of the vertical intercolumn shear force is small as 

seen from attained λt shown in Figure 6.10 - therefore the f(t) can be neglected in this 

respect. 

 

In the investigation of f(r) as shown in Figure 6.11, both f(r) of convex and concave slope 

with R= 10m and c=20kPa is similar on different rz-planes which again due to the 

property of symmetry. However, it should be noted that f(r) seems to take different form 

when compared with 2D interslice force function. Further study is carried out among 

slopes with same properties except for different geometry, or saying different radii of 

rotation. The results on f(r) is given in Figure 6.12. Compared with the obvious platform 

of f(r) in the plane slope case, concave slope have peak f(r) at the lower exit end of soil 
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mass and f(r) continuously decreases towards the inner section of soil mass. For the 

convex slope, f(r) maintains high value for a shorter or longer distance from the toe of 

slope and then drops rapidly at about x/L=0.6 (where similarly as those in Chapter 5, x 

represents the distance from the exit end of slip surface and L represents the horizontal 

extent of slip mass). The main difference of f(r) among different geometries thus can be 

regarded as the starting locations where the function decreases. The formula of f(x) 

adopted in 2D analysis is still applicable to f(r) provided that some adjustment of the 

three constants (a,b, and c) in Eq.(5.5) is made. It should be noted that unlike plane and 

convex slope, the concave slope gives slightly higher factor of safety but the location of 

the maximum intercolumn force function has decreased to about 0.1-0.2 in length. This 

phenomenon indicates that the internal strength is well mobilized within concave slope. 

Such merits can also be found when factor of safety is relatively high as shown in Figure 

6.4. Table 6.1 summarizes attained factors of safety and maximum λr as well for slopes 

with different geometries. The relation of maximum λr and slope curvature is plotted in 

the same form as Figure 6.4. It is of interest that as shown in Figure 6.13 the maximum λr, 

i.e. maximum ratio of shear stress to normal stress on different θz-directional intercolumn 

surface increases as the curvature.  

 

The thrust line in 2D slope stability analysis has been demonstrated to be located 

generally at 1/3 or slightly higher of the interslice height from the base of slices and been 

proved as an alternative to interslice force function. In 3D analysis, the same result can be 

found in plane slope which are shown in Figure 6.14. The locations of radial and 

tangential thrust line of plane slope agree well with the assumption of 1/3. For the thrust 

line of curvilinear slope, however, the assumption is not always true. The radial thrust 

line in convex slope is found to be close to the 1/3 line as shown in Figure 6.15. The 
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tangential thrust line, on the other hand, deviates from the assumption evidently at 

different sections (Figure 6.15). As for thrust line location of concave slope shown in 

Figure 6.16, the radial and tangential thrust line are in the good accordance with each 

other while the difference between thrust line location and 1/3 line is noticeable at 

different sections. At the section near boundary where the displacement is confined, the 

resulted thrust line is slightly higher than the 1/3 line but the deviation becomes 

significant at the middle portion as Figure 6.16(b) indicates. That is to say, while location 

of thrust line is relatively stable in 2D analysis and 3D plane slope, it varies from case to 

case in 3D slopes influenced by curvature effect and the assumption of 1/3 line should not 

be regarded anymore as a stable and trustful assumption. 

 

6.5 Stability of locally loaded slope with curvature 

If local load is superimposed on a curved slope, the difference between concave and 

convex geometry becomes more apparent. Figure 6.17 illustrates the failure mode when 

the slope is bearing a 1m×1m square loading of 200kPa at the top and 1m away from the 

rim. It can be seen from Figure 6.17(a) that the failure becomes local failure and clustered 

around the loaded district as expected. For the failure at toe for the case of concave slope, 

there are two failure zones at the toe which are not connected. The factor of safety under 

such local loading decreases by about 5.9% in convex slope (from 1.86 dropping to 1.75 

as listed in Table 6.2) and 2.4% in concave slope (from 2.05 dropping to 2.0 as listed in 

Table 6.2), which indicates the concave slope is more unstable under local loading.  
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6.6 Assessment of different soil nailing modes on 

curvilinear slope 

The consideration of soil nailing modes is considered in this section and the factor of 

safety is summarized in Table 6.2. Generally, soil nails are installed into the slope in 

parallel mode in rows for ease of construction. For slope with no curvature, nails are 

parallel to each other at different section. For slope with curvature, however, nailing 

perpendicular to the slope which corresponds to the state that nails are in the radial 

direction is another possible installation method. In literature, the differences between 

these two nail installation methods have not been considered. In this section, two nailing 

mode will be investigated: (1) for radial mode, soil nails are installed radially with a 

possibility that there is some overlap of the stabilized zones, especially for the convex 

slope; (2) for parallel mode, soil nails are installed parallelly to each other and thus are 

installed with different horizontal angles with respect to the slope surface on plan. The 

soil nails are installed horizontally with length equal to 8m and vertical interval equal to 

2m as shown in Figure 6.18. The basic convex and concave slope are modeled in the way 

same as that in the former section and horizontal interval of soil nails is 1.6m, so there are 

totally 30 soil nails in 3 rows (namely: top, middle, and bottom) for each curvilinear slope. 

From the view of factor of safety only as listed in Table 6.2, for convex slope the parallel 

nailing mode is more beneficial and for concave slope radial nailing mode takes 

advantage. 

 

Using radial nails, the problem under consideration is still an axi-symmetric problem. 

factor of safety of both curvilinear slopes is enhanced by 0.14 compared with 

corresponding non-nailed slope. For the failure modes which are shown in Figure 6.19, 

the critical slip surface is a pronounced below toe failure for both cases. On the other 
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hand, due to the concentration of soil nails near to the top for convex slope, the failure 

zone extends to a much greater horizontal extent which is not observed for the case of 

concave slope. These findings which have not been reported previously are interesting, 

and the results reflect the combined effect of curvature and soil nail stabilization 

distribution.   

 

Figure 6.20 demonstrates the critical slip surface for the slope nailed in parallel mode. 

There are several changes in the results when the nails are installed in parallel mode as 

compared with radial mode for convex slope, but the changes to concave slope are not 

significant in general. For convex slope, below toe failure is much less significant and the 

thickness of the failure zone near to the toe is greatly reduced as compared with the case 

for radial mode nail installation.  

 

If the nail force distribution is examined which is shown in Figure 6.21, it is noticed that 

the nail installation mode is more important for convex slope but is not sensitive to 

concave slope. Another interesting phenomenon is that there are greater variations in the 

nail forces for different row of nail for different nail installation mode. Since a more 

uniform nail load distribution is good for economic design, it appears that the use of 

parallel nail installation mode which is easier for field installation is also a more 

economic design in general. 

 

6.7 Conclusions and Discussions 

This chapter investigated the intercolumn force function and the curvature effect on the 

stability of simple 3D slope. The effect of localized loading under different nailing modes 

is also investigated. The radial intercolumn force function f(r) in simple curvilinear slopes 
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is demonstrated to be similar to the 2D interslice force function and by some minor 

adjustments of the parameters, the same function can also be adopted for 3D radial 

intercolumn force function. It is thus proved that analysis of plane 3D slope can be 

simplified as 2D slope problem with good accuracy considering the tangential 

intercolumn force function of 3D plane slope is minor. On the other hand, for simple axi-

symmetric cases, since the tangential intercolumn force is minor or even zero, it is 

acceptable to conclude that the radial intercolumn force function is dominating in the 

overall stability. However, if the geometry is complex comprising of several portions with 

different curvature, it would be difficult to specify one radial and one tangential direction 

and thus the intercolumn force function is as almost impossible to be referred in similar 

form with 2D interslice force function. To generalize the intercolumn force function, the 

concept of spatial principal surfaces can be introduced which corresponds to the surface 

containing the principal stress σ1 and σ3. σ1 thus is related to maximum principal surface 

within which the intercolumn force function is dominating. The other principal surface 

contains intercolumn force function less significant which is f(t) in this study. The 

intercolumn force function within the surface perpendicular to the principal surfaces is 

small as investigated by Lam and Fredlund (1993). With this concept, the direction of 

maximum principal stress is consistent with the direction of dominating 

interslice/intercolumn force function. The overall potential sliding direction of instable 

soil mass can be hence determined as the overall resultant vector of the principal stress.  

 

The curvature of slope has a beneficial effect on the global stability due to restriction of 

failure trigger by convex slope and restriction of failure development by concave slope, 

especially when the resistance of soil is relatively high. Concave slope usually gives 

higher global stability than convex slope under the same loading and nailing mode 
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conditions which are shown in Table 6.2. In addition, the factor of safety of concave slope 

is less sensitive to the localized loading as compared with that of convex slope. 

 

The thrust line locations for 2D analysis agree well with the assumption of 1/3 column 

height, therefore, the thrust line is a good alternative to the interslice force function. 

However it is found in this study that such fitness is not always correct in 3D analysis. 

When the maximum ratio of vertical shear force to horizontal normal force on single 

intercolumn surface i.e. λr is investigated, it can be found in Table 6.1 that the λr is 

generally sensitive to sign (positive or negative) of the curvature but not sensitive to the 

value of curvature. Compared with the convex slope, concave slope has smaller peak 

value of intercolumn force function, which shows that concave slope is more capable of 

resisting driving force. 

 

In comparison with parallel nailing mode, the radial nailing mode gives lower factor of 

safety in convex slope but higher factor of safety in concave slope. This can give a 

reference guidance that parallel mode in reinforcing convex slope and radial mode in 

reinforcing concave slope are preferred. 
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Table 6.1 Summary of factor of safety and λ of simple slope with no loading 

 

geometry plane convex concave 

R ∞ ∞ R=+10 R=+20 R=-10 R=-20 

c c=20kPa c=4kPa c=20kPa c=4kPa c=20kPa c=4kPa c=20kPa c=4kPa c=20kPa c=4kPa 

FOS 1.82 0.49 1.86 0.49 1.82 0.49 2.05 0.52 1.94 0.51 

λrmax 0.7 0.7 1.7 1.0 1.7 0.9 0.36 0.4 0.36 0.4 

 

Table 6.2 Summary of factor of safety of different loading and nailing mode (R=±10m) 

geometry local loading 
nailing mode 

no nailing radial parallel 

convex 
0 1.86 2.00 2.10 

200kPa 1.75 1.82 1.87 

concave 
0 2.05 2.19 2.16 

200kPa 2.00 2.16 2.15 
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(a) Plane slope (basic section)                (b) convex slope              (c) concave slope 

 

Figure 6.1  Geometry of plane, convex and concave slopes 

 

     
convex(FOS=1.86)     concave(FOS=2.05) 

(a) critical slip surface and overall displacement 

 

      
convex(FOS=1.86)     concave(FOS=2.05) 

 (b) section view of displacement at middle portion 

 
(c) shear stress distribution near the middle portion  

Figure 6.2 Failure mode of simple curvilinear slope (R=10m, c=20kPa) 
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Figure 6.3 Displacement history of simple curvilinear slope (R=10m) 

 

 
Figure 6.4 Factor of safety of slopes with different curvature 

 

 
(a) Type 1 complex slope                         (b) Type 2 complex slope 

 

Figure 6.5 Critical slip surface of complex slope (c=20kPa) 
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(a) f(x) (λmax=λmin=0.74)    (b) f(y) (λmax=1.9e-4) 

Figure 6.6 f(x) and f(y) of plane slope (c=20kPa) 

 

   
(a) f(x) (λmax=λmin=0.70)    (b) f(y) (λmax=4.8e-4) 

Figure 6.7 f(x) and f(y) of plane slope (c=4kPa) 

 

   
(a) c=20kPa     (b) c=4kPa 

 

Figure 6.8 f(x) of plane slope on xz-plane 
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Figure 6.9 Intercolumn force function f(r) and f(t) for curvilinear slope (R= 10m, 

c=20kPa) 

 

 

  
(a) convex slope                                        (b) concave slope 

Figure 6.10 f(t) of curvilinear slope (R= 10m, c=20kPa) 
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(a) convex slope                                        (b) concave slope 

Figure 6.11 f(r) of curvilinear slope (R= 10m, c=20kPa) 

 

 
Figure 6.12 Summarized f(r) graph for slope with different R (c=4kPa) 

 

 
Figure 6.13 Maximum λr of slopes with different curvature 
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Figure 6.14 Thrust line of plane slope (R= , c=20kPa) 

 

 
(a) at section near boundary 

 
(b) at section of middle portion 

 

Figure 6.15 Thrust line of convex slope (R=+10m, c=20kPa) 
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(a) at section near boundary 

  
(b) at section of middle portion 

 

Figure 6.16 Thrust line of concave slope (R=-10m, c=20kPa) 
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convex(FOS=1.75)    concave(FOS=2.00) 

(a) overall view 

   
convex(FOS=1.75)     concave(FOS=2.00) 

(b) section view 

Figure 6.17 Failure mode of locally loaded curvilinear slope (200kPa, R=±10m) 

 

 
Figure 6.18 soil nailing on the slope section 

 

        
convex(FOS=2.00)   concave(FOS=2.19) 

Figure 6.19 Critical failure surface and soil nail stress of radially nailed curvilinear slope  
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convex(FOS=2.10)   concave(FOS=2.16) 

Figure 6.20 Critical failure surface and soil nail stress of parallely nailed curvilinear slope  

 

 
(a) radially nailed convex slope  (b) parallelly nailed convex slope 

 

   
(c) radially nailed concave slope  (d) parallelly nailed concave slope 

 

Figure 6.21 Maximum nail force on the convex and concave slope with no loading 
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CHAPTER 7  Conclusions, Discussions and 

Suggestions 

 

7.1 Conclusions 

Although many slope stability methods have been developed and slope stability problems 

have been considered for many years, there are still various limitations to the previous 

studies, and some of these limitations are considered in this study. In this study, Limit 

Equilibrium Method (LEM), Finite Element Method (FEM), Strength Reduction Method 

(SRM), Distinct Element Method (DEM) and Finite Difference Method (FDM) are 

adopted. The location of critical slip surface, the internal force distribution function, 

calculation of slope global stability, identification of local failure and failure mechanism 

are studied by different methods in this study. 

 

7.1.1 Findings from location of critical slip surface 

In this part of work, several optimization algorithms are implemented and improved to 

efficiently and precisely locate the critical slip surface. For slope stability problems, the 

critical slip surface is the surface on which the factor of safety is minimum among all the 

possible failure surfaces. The minimum factor of safety is thus a typical global 

optimization objective function. Practically all the modern optimization methods can 

work well if the geometry and ground conditions are relatively simple. Difficulties are 

that the objective function might be trapped into local minimum and “failure to converge” 

is relatively common for complicated problems.  
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An improved harmony search method MHS is developed in this study, and this new 

method is found to be efficient for large problems in the present study. In fact, it performs 

better than the original harmony method in most cases, especially when the number of 

control variables is large. Another new approach is developed by coupling the PSO and 

HS. HS/PSO algorithm is efficient and effective for complicated geotechnical problems. 

When Morgenstern-Price method is used for the analysis, ‘failure to converge’ is 

relatively common and a large value is assigned to those cases that fail to converge 

(equivalent to a discontinuous objective function), and this will create further difficulties 

in the search direction. The proposed coupled optimization method has been clearly 

proved of the advantages under these difficult cases. This part of work also provides the 

mathematical tools which are required for the later part of the work in LEM. 

 

7.1.2 Findings from analysis of failure mechanism by distinct element 

method 

By adopting DEM (PFC), it is found in the present study that for a slope with 

cohesionless soil, failure firstly occurs at the crest of the slope, and the failure gradually 

extends to the base of the slope until the final geometry where the slope angle is equal to 

the friction angle of soil. Due to the downward movement of the particles at the crest 

which induces tensile failure, tension crack may be found at the crest of the slope. Soil is 

deposited at the toe of slope, and the failure is in the forms of sliding out and upheaval; 

while middle part of the slope actually turns into a shear failure zone due to the 

continuous sliding of soil. When the cohesive strength is relatively high or soil nails are 

installed, the overall stability can be enhanced and the displacement is limited. The 

effectiveness of the cohesive strength and soil nails are hence important factors in slope 
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stability which is actually a well-known fact. In particularly, the soil nails are found to 

distribute the stresses within the soil mass and limit the development of local failure 

zones, so the overall stability is greatly improved by the presence of soil nail. It is also 

found that the use of nail head/facing is vital to the stress-redistribution and the 

prevention of local failure. Without the facing, local failure will control the stability of the 

slope. 

 

The basic failure mechanism of slope influenced by water flow is similar to that of a 

simple slope: failure begins from the crest of slope due to gravity and extends to the 

middle of slope and then the toe. Water flow with a noticeable seepage force will result in 

a thrust pushing the soil mass above the water table outwards with an obvious decrease in 

the stability of the slope and extended failure zone.  

 

It is found that DEM can simulate large scale deformation which is impossible in FEM 

and FDM, but a precise slip surface as given by LEM and SRM is difficult to be 

established due to the continuous change in the geometry and the fluctuation of the local 

stresses within the soil mass. A rough slip surface which is basically similar to that by 

LEM and SRM can however still be defined in general. Although DEM is seldom used by 

the engineers for assessing the stability of a slope, it appears that DEM possesses some 

advantages which are not possible for the classical LEM and SRM. 

 

7.1.3 Findings from interslice/intercolumn force function 

The present study has investigated the internal force function within 2D and 3D 

framework. The classical LEM based method of slices/columns includes many 

assumptions to solve the statically indeterminate problem. Either the 
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interslice/intercolumn force function or thrust line can render the slope stability problem 

statically determinate. By the use of extremum principle which is actually a lower bound 

principle, there is no need to make the assumptions on the internal force function. 

Treating this function as a variable, the function can be determined when the maximum 

strength of the system is fully mobilized. This function which is taken as indeterminate 

and impossible to be determined can now be determined under a rigorous framework. 

 

By employing SRM, interslice force function f(x) is found to vary with slopes with soil 

different properties and geometry and should not be arbitrarily specified. Basically, for 

slopes which are mainly controlled by self weight, f(x) is a bell-shaped function which is 

similar to the results by Fan, Fredlund and Wilson (1986), except for a part near to the toe 

of slope. The location of thrust line basically agrees well with the Janbu’s Rigorous 

method at 1/3 of slice height from the base. It can be considered that those variables 

which are taken as indeterminate in the past are now fully determinate, and these 

variables are sometimes important for some special case, even though Morgenstern (1992) 

has observed that these variables are not important for normal problems. 

 

For 3D internal force function, this study has introduced the concept of principal surface 

to determine the sliding direction and the corresponding dominating internal force 

function. For simple slopes with either plane surface or curvilinear profile intercolumn 

force function agrees well with the 2D interslice force function because of the symmetry. 

By some adjustments of the parameters in the 2D interslice force function, the same 

function can be adopted for 3D radial intercolumn force function. But for complex 

problems, 3D internal force function is complicated and 2D interslice force function will 

not apply. 
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7.1.4 Findings from development of  variable factor of safety 

The extremum principle and the concept of variable factor of safety based on Pan’s 

postulate are developed in this study. Even though the minimum extremum of factor of 

safety within whole domain is also determined, the maximum extremum should be taken 

as the factor of safety of the prescribed failure surface. The internal forces within the soil 

mass should redistribute until the maximum resistance capacity of the soil mass is fully 

mobilized. Beyond that limit, the soil mass will start to fail. The present proposal is 

independent of the definition of f(x) and exhibits virtually no failure to converge. There 

are also cases where f(x) may obviously influence on the factor of safety but no clear 

guideline on the acceptance of the factor of safety due to the use of different f(x) is 

available. The use of the maximum extremum can also avoid this dilemma, which has 

been neglected in the past. The approach in section 4.2 is a typical lower bound approach, 

as statically admissible forces associated with a prescribed f(x) are considered. The 

selection of the maximum factor of safety is hence justified from the lower bound 

theorem. 

 

The factor of safety is defined in terms of the ultimate shear strength and mobilized shear 

strength in classical slope stability analysis, so only one single factor of safety globally 

for a problem. The present study has demonstrated that for normal stable slope with an 

overall factor of safety greater than 1.0, the factors of safety based on a variable factor of 

safety and the classical approaches are similar. In this respect, the present formulation 

provides an alternative to the classical methods of analysis but no advantage is guaranteed. 

On the other hand, for those cases of stable slopes where the factors of safety is slightly 

above 1.0 and part of the system may be controlled by the residual strength, the present 
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formulation provides an estimation of the factor of safety which is not possible with the 

classical methods of analysis. 

 

Pan’s principle is actually the combination of the lower and upper bound approach which 

is purely a concept without any practical numerical procedures. Imposing Pan’s principle, 

two different extremum formulations based on variable factor of safety concept are 

proposed which can consider global and local equilibrium and satisfying all the 

equilibrium conditions without any assumption as in the classical formulations. This new 

formulation has the advantage that progressive failure can be considered for LEM which 

is not possible for all the previous LEM formulation. On the other hand, the present 

proposal is based on an equivalent variational principle with a solid theoretical 

background which is also not possible for all the previous LEM formulation. 

 

7.1.5 Findings from analysis of 3D effect on slope stability 

In the past, analysis for the stability of slope with curved geometry which is common in 

practical engineering is usually analyzed as a 2D problem, and the effect of curvature is 

usually neglected for simplicity. In this study, it has been demonstrated that the curvature 

is an evidently beneficial effect on global stability of concave slopes where arch action 

can develop, especially when the resistance of soil is relatively high. The concave slope 

generally gives higher global stability than convex slope under the same loading and 

nailing mode conditions as discussed. In addition, the factor of safety of concave slope is 

less sensitive to the localized loading. In comparison with parallel nailing mode, the 

radial nailing mode gives lower factor of safety in convex slope but higher factor of 

safety in concave slope.  
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7.2 Discussions 

7.2.1 Discussions on LEM and SRM 

SRM has the advantage that it can automatically locate the critical slip surface, and the 

failure modes can be detected by the shear strain distribution. Another advantage of SRM 

is that it can easily simulate more complex conditions with inclusions. On the other hand 

SRM can be sensitive to the convergence criterion and possible tedious computational 

time. 

 

LEM is more suitable and generally accepted for typical design with fast analysis. LEM is 

flexible in finding different local minima factor of safety and the corresponding slip 

surface which may be more difficult for SRM. However, LEM includes many 

assumptions to render the problem statically determinate. These assumptions have been 

taken to be indeterminate in the past, but have been solved within a rigorous framework 

under the present study. LEM is also not as powerful as SRM to simulate the interaction 

between reinforcement and soil, and to analyze some very complex situations.  

 

Both the LEM and SRM have their own advantages and disadvantages. Cheng et al. 

(2007) and many others have found that the results from the LEM and SRM are in general 

similar. In the present study, one important difference is found, at least for all the existing 

limit equilibrium formulations. From the results in SRM, it is noticed that the factor of 

safety is introduced to the whole soil mass so that the factor of safety must be introduced 

into the interslice force relation. Such a requirement is however not mandatory in the 

LEM, and the factor of safety is only enforced at the slice base while the Mohr-Coulomb 

relation along the vertical interface can be used without the application of the factor of 

safety. It is possible that the factor of safety can also be introduced to the interface force 
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relation (though not used in any LEM method at present). For practical application, since 

the interslice shear force is not sensitive to the overall factor of safety, the enforcement of 

the factor of safety in the interslice force relation appears to be not a critical factor, 

though conceptually the factors of safety from LEM and SRM cannot be compared 

directly because of this requirement.  

 

7.2.2 Discussions on FEM/FDM and DEM 

The major difference between FEM/FDM and DEM is the mechanical relation including 

the movement and interaction of discretized elements. The assumption of continuity in 

FEM/FDM requires that at all points in a problem domain, the material cannot be torn 

open or broken into pieces. All material points originally in the neighborhood of a certain 

point in the problem domain remain in the same neighborhood throughout the whole 

physical process. In DEM like PFC, the particles are assigned normal and shear stiffness 

and friction coefficients in the contact relation. Therefore large-scale deformation or post-

failure can be simulated by DEM while methods based on continuum can only simulate 

the situation before the failure launches. There is no way to assess the post-failure 

phenomenon using the classical approach.  

 

DEM can also define a slip surface, but not in a way as precise as LEM and DEM, since 

the geometry of slope changes continuously. Furthermore, it is also difficult to define the 

concept of factor of safety as in the traditional concept. The main limitation of DEM is 

that there is great difficulty in relating the microscopic and macroscopic 

variables/parameters, hence DEM is mainly tailored towards qualitative instead of 

quantitative analysis. 
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7.2.3 Discussions on 2D and 3D slope stability analysis 

In normal practical design, 3D slope is commonly analyzed in simplified 2D model. This 

study has elaborated the investigation on the 3D slope internal force function and 

analyzed localized loading effect and soil nailing systems in the scope of slopes 

influenced by 3D curvature effect. The obtained 3D internal force function is found to be 

similar to 2D internal force function only when the geometry is symmetric and the radial 

internal force function is concerned. If a slope with irregular geometry no matter how 

simple the basic cross-section is, the internal force function cannot be predicted using 2D 

internal force function equation. Assumption of thrust line located at 1/3 slice height is a 

good alternative as demonstrated in 2D analysis, but it is proved to either apparently 

deviated from assumed location  or even distribute randomly in even different sections of 

3D simple curvilinear slope. 

 

2D internal force function and thrust line can be used to predict 3D situation only for very 

limited 3D problems. Otherwise the problem will be simplified too much. Besides, 

considering that curvature effect is of significance to slope overall stability, 2D and 3D 

problems are clearly different though critical slip surface and factor of safety may be 

similar by 2D and 3D analysis in some cases. 

 

7.3 Recommendations and Suggestions 

This study has investigated various problems by LEM, SRM and DEM. LEM takes 

advantage on the efficiency but engineers should pay careful attention on the interslice 

force assumption. SRM essentially does not require such assumption but can give clear 

stress analysis, but the analysis is time-consuming and there are also many limitations to 
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SRM under special cases. DEM can give better understanding than other methods about 

the post-failure mechanism, but no index like the factor of safety is available. By the 

understanding of these methods and mechanism revealed by these methods, the slope 

stability problem can be solved effectively by combining all the merits of different 

methods. 

 

Based on the investigated interslice force function and the understanding of progressive 

failure from DEM, concept of variable factor of safety in 2D can be established. And 

making the use of the heuristic algorithms developed in this study, the complicated 

procedure to achieve variable factor of safety can be solved more stably. From these 

respects of this study, 2D slope stability problems are well understood. 

 

3D curvature effect which is usually ignored and simplified in the past is demonstrated as 

significant for even simple slopes. Besides, due to the existence, the prediction of 3D 

internal force becomes difficult. This study mainly focused on pure convex and concave 

slope or slopes with simple combination of different curvilinear portions. Further 

development on the internal force distribution by 3D analysis and determination of sliding 

direction of complicated slope can be expected based on the findings. 
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