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ABSTRACT 

Void in metal is an empty space encased by a sharp metallic surface. The 

void formation and growth process in irradiated metal is a complicated 

process involving multiple spatial (from 10
-1

 to 10
2
 nanometers) and 

temporal (from nanoseconds to several days, months or even years) scales, as 

well as interactions with other types of defects, such as point defects 

(vacancies and self-interstitials), line defects (dislocations), plane defects 

(grain boundary) and volume defects (precipitates). Since metal with the 

supersaturated point defects is in a meta-stable state, local random 

fluctuations of vacancy concentration may result into the nucleation of void 

embryos. After the nucleation, the void embryo will grow or shrink 

depending on whether the net vacancies or interstitials flow in. Action of the 

void surface tension causes a vacancy emission from the void. Due to the 

dependence of the vacancy emission rate on the void surface curvature, void 

embryos with sizes larger than some critical one will continuously grow 

from the supersaturated solution of vacancies, while the smaller embryos 

will be re-dissolved.  

Since it is difficult to simulate the complex sharp interface structure 
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using a numerical method for the cases of void ensemble, which involves a 

complex topological change of surface of multiple voids in a system, the 

phase-field method, using the concept of a diffuse interface, is a good 

alternative choice for the simulation of void evolution. The phase-field 

method is a powerful numerical simulation tool for studying microstructure 

evolution during phase transformation. In order to quantitatively simulate 

void evolution in metals using the phase-field method, the free energy 

functional of the system is first developed. In this functional the vacancy 

concentration is the only order parameter, which evolution is governed by 

the Cahn-Hilliard equation. The vacancy concentration is unity in the void, 

close to zero in the matrix, and between one and zero within the diffuse 

interface region. Thus, in the phase-field approach voids are treated as a kind 

of precipitates of vacancies. In this thesis, a single void dynamics after the 

nucleation, when only vacancies are present in the metal matrix, is 

quantitatively studied under various conditions by using a phase-field 

method. The results obtained with sharp boundary approach of void 

evolution of classical thermodynamics are used as the benchmark for the 

results obtained with the phase-field method. 

Since the realistic void-metal interface is very sharp, in order to 
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effectively model the void evolution through using a diffuse interface to 

mimic the sharp interface, the phase-field model should be built properly 

with the physical mechanisms of void evolution maintained. In order to be 

consistent with the classical thermodynamics, the phase-field model should 

be able to reproduce the classical thermodynamics of void evolution in 

conditions under the sharp interface limit. The void-metal diffuse interface is 

customarily modeled by a Ginzburg-type gradient energy term with a 

coefficient which is parameterized from surface tension. The interfacial 

energy in the diffuse interface approach consists of two parts: the gradient 

energy due to the variation of vacancy concentration across the interface, and 

the local free energy due to the vacancies in non-equilibrium state within the 

diffuse interface. The competition between these two parts determines the 

thickness of the void-metal interface. The larger the local free energy due to 

the non-equilibrium vacancies, the narrower the interface will be; and the 

larger the gradient energy, the wider the interface will be. Within the 

interface region, the local free energy due to the non-equilibrium vacancies is 

equal to the gradient energy for flat interface case in equilibrium state 

because the chemical potential is constant zero across the interface in 

equilibrium state. For the curved interface case, the relationship between 

these two kinds of energy is more complicated because the chemical 
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potential is spatially non-zero constant across the interface in equilibrium 

state. The chemical potential in the curved interface case is inversely 

proportional to the void radius in equilibrium state.  

In the present work, following the results obtained by A. A. Semenov 

and C. H. Woo, the gradient energy coefficient is treated as a constant 

independent of void size. Realistic concentrations of single vacancies, which 

correspond to the real experimental conditions, are used in the simulations. 

The real, rather than the reduced, time is used as well. This allows us to 

make a direct comparison between the results obtained by the phase-field 

model and those derived from the sharp boundary approach.  

The simulations are performed by using the material parameters of 

molybdenum and copper in three-dimensional space. The vacancy 

concentration varies across many orders of magnitude across the interface 

region. In order to maintain the stability of numerical scheme, tiny time steps 

and spatial grid sizes are used. For the high supersaturation of vacancy 

concentration, the developed phase-field model reproduces very well the 

results of the sharp boundary approach on the behavior of single void 

evolution within the classical thermodynamics framework. Around the 

critical point for void evolution, due to the sensitivity of void growth 
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behavior to the parameters of system conditions, the results obtained with 

phase-field method deviate slightly from those obtained with sharp boundary 

approach. The ultrafine spatial scales of the void-metal diffuse interface and 

the fourth-order parabolic non-linear partial differential equation of the 

Cahn-Hilliard equation, both of which require using a very tiny time step and 

spatial grid size, present a challenge to numerically efficient modeling of the 

evolution of a void ensemble under irradiation conditions because this tiny 

time step and spatial grid size result in enormous calculations for numerical 

simulations in three-dimensional Cartesian coordinates of a system of large 

domain. 
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Chapter 1: Introduction 

 

1.1 Motivations 

The first observation of irradiation-induced voids was carried out in stainless 

steel using neutron irradiation in 1967 by Cawthorne and Fulton [1]. Later 

voids were found in nickel by Norris in 1970 [2], using electron irradiation, 

and in other irradiated metals by Evans [3-5]. The presence of voids in 

materials will cause microstructural change of materials and influence the 

thermo-mechanical properties of materials, including changes such as those 

of thermal conductivity, ductility and creep properties, and even structural 

instabilities such as volumetric swelling and cracking, especially under long 

period irradiation conditions. Such irradiation-induced microstructural 

change is a very complex phenomenon that spans a wide range of length and 

time scales. The volumetric swelling of the material due to formation of 

voids leads to density decrease, which has a significant impact on the 

yielding behavior of structural materials. In order to design 

radiation-resistant materials for nuclear reactor components, researchers 

should understand the underlying physical mechanism of void formation and 

be able to predict the effect of irradiation conditions on morphological 
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evolution of voids and their subsequent impact on material properties. Thus, 

researchers pay a lot of attentions to this area and many experimental and 

theoretical works have been done since the first observation of void in 

irradiated metal. Many theoretical models and methodologies, such as 

classical nucleation theory and rate theory, are employed to study void 

evolution qualitatively and quantitatively.  

However, these theories can only explain simple cases, or they are 

mean field theories that can only give spatial averages. It is desired to 

develop a predictive simulation tool based on fundamental thermodynamics 

for investigating the kinetics of void under irradiated conditions. To better 

understand the process of microstructural evolution, such a tool should be 

able to obtain spatial resolution of microstructural evolution in the irradiated 

materials. The rapidly changing landscape of computational materials 

science now shows great promise for theoretical predictions of 

microstructural evolution during materials processing, environmental attack 

and phase transformation. The phase-field method has become increasingly 

popular since early 1990, due to breakthroughs in its computational 

methodologies. It has been successfully applied to predict structural 

evolution on scales ranging all the way from nano-, micro- and meso-scale, 

to the macroscale. Thus the phase-field method is expected to be an 
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appropriate tool to give the spatial resolution of microstructure evolution of a 

system with void nucleation and growth. 

A physical void in metal is an empty space encased by a sharp metallic 

surface. Within this space, there are no atoms, nor are there vacancies, which 

are present in the metallic matrix. These voids are formed through the 

classical nucleation and growth mechanism according to the classic 

nucleation theory. The void embryos are nucleated through stochastic 

fluctuations of vacancy concentration at discrete sites under the condition of 

supersaturated vacancy concentration. The vacancy concentration in the 

metallic matrix is very dilute, even under irradiation conditions with 

continuous production of vacancies. Due to the curvature of the void surface 

and the thermal fluctuation, the vacancies are continuously emitted from the 

void surfaces. Meanwhile, vacancies and self-interstitials flow into void. 

These processes result in the elimination or addition of atoms on the void 

surface. If the net amount of vacancies that jump into the void cannot 

balance those that jump out, the void will shrink, or even re-dissolve.  

Since, in irradiated metal, vacancies and interstitials are created in 

equal numbers by the irradiation of energetic particles, such as electrons, 

neutrons or ions, there should be no net voids left, because the vacancies and 
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interstitials will be annihilated by recombination with each other when they 

meet. However, an asymmetry in the number of freely migrating vacancy 

defects over self-interstitials in the matrix of irradiated metal will result in 

void growth through certain bias mechanisms, which include dislocation bias 

[6] and production bias [7-9]. These mechanisms, which mainly originate 

from the behavioral difference between vacancies and self-interstitials, 

generally cause an asymmetry in the numbers of existing freely migrating 

defects. Because of the dislocation bias mechanism, more interstitials will 

diffuse into the sinks such as dislocation loops and network dislocations. And 

with the production bias mechanism, more self-interstitials will be produced 

in the form of interstitial clusters. These defect clusters are produced by the 

aggregation of point defects, or even directly produced in collision cascades 

generated by the irradiation of energetic particles, mainly heavy particles 

such as neutrons or ions.  

The void nucleation and growth process is a phase transition process, 

which is determined by the laws of thermodynamics. There is a sharp 

interface between the void and matrix phase that plays a very important role 

in void nucleation and evolution due to the presence of surface tension. The 

void evolution process is also a kind of void surface moving process, which 

is a Stefan problem. Conventionally, solving this problem requires explicitly 
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tracking of the position of the moving surface and applying the boundary 

conditions to it. It is difficult to deal with, especially for the evolution of void 

ensembles.  

Rather than the tricky explicit tracking of the position of void surface 

in the above sharp boundary approach (SBA), phase-field methodology 

offers us a more simple and convenient method to deal with it, via indirect 

tracking of the void surface, based on the concept of diffuse interface. In the 

phase-field model (PFM), the infinitely thin sharp surface is replaced by the 

diffuse interface with finite thickness. This description of void surface by 

diffuse interface results in a vacancy concentration field that is assumed to be 

continuously distributed everywhere in space, including voids, where the 

local concentration of single vacancies approaches unity. Based on this 

assumption and the conservation of vacancies, the void and the matrix are 

uniformly treated through the vacancy concentration as an order parameter 

governed by the Cahn-Hilliard equation [10]. The boundary conditions at the 

interface are implicitly incorporated into the model, which leads to the 

description of void evolution without tracking the interfacial positions. Thus, 

the interfacial boundary conditions are automatically satisfied around the 

interface. The mass conservation is also satisfied, as the vacancies flowing 

into the void correspond to the atoms flowing out from it.  
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A system involving the void growth and shrinkage with the motion of 

the void surface is a system in a non-equilibrium state. According to the 

principles of non-equilibrium thermodynamics, the driving force of system 

evolution is the difference in the chemical potentials of various parts of the 

system. The driving force (the gradient of chemical potential) determines the 

flux of point defects [11]. Since there are no point defects inside the void, the 

chemical potentials of point defects in the void are equal to zero, and the 

fluxes are determined by the corresponding values of chemical potentials in 

the metallic matrix.  

From the foregoing, the principles of the non-equilibrium 

thermodynamics of void evolution should be correctly built in the 

phase-field framework with the underlying physical mechanism maintained, 

which can reflect the kinetic characteristic of the void growth or shrinkage. 

Since the vacancy concentration in the PFM becomes an order parameter 

which has physical meaning only within the matrix, the thermodynamic 

potential in the regions where the concentration cannot be treated as dilute 

should be interpolated by using phenomenological terms. Thus, construction 

of the Cahn-Hilliard-type thermodynamic potential [10, 12-14] is crucial for 

the correct development of a phase-field model. This potential 

conventionally consists of the two terms: the bulk free energy and the 
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Ginzburg-type gradient energy [12]. The bulk free energy should be a double 

well function whose two local minimum values correspond to matrix phase 

and void phase, respectively. The gradient energy term is a key ingredient in 

the PFM, as it ensures the thermodynamic equivalence of the physical and 

the emulated void. 

The conventional method or theory mostly used to study void 

evolution and ordering in irradiated metal is rate theory [15, 16]. Due to the 

mean field character, rate theory has some limitations for the study of void 

nucleation and growth. Due to its strong ability to simulate microstructure 

evolution, several attempts have been made to use the phase-filed method for 

the study of the void evolution. The two-dimensional phase field method has 

been used to model void growth and void ordering in irradiated metals in 

recent years. 

The first phase field simulation of void evolution in two dimensions in 

irradiated metal was done by Hui-Chia Yu and Wei Lu who proposed a 

phase-field model based only on the Cahn-Hilliard equation [17]. The void 

nucleation and growth process were treated as a phase separation process by 

spinodal decomposition. The elastic interaction was taken into account and 

was of the central importance for the void ordering in simulations of an 
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annealing process in the metals molybdenum and nickel, respectively. The 

elastic anisotropy and elastic interaction between void surface and vacancies 

result in anisotropic diffusion of vacancies, even if the diffusivity is isotropic, 

as the vacancies migrate faster along the elastically compliant directions, 

which further causes the void ordering. Very large unrealistic thermodynamic 

equilibrium vacancy concentration and initial vacancy concentration, which 

are 0.1 and 0.32 respectively, are used in the simulation. 

The group of Srujan Rokkam, et al. proposed a phase-field model 

based on both the Cahn-Hilliard equation and the Allen-Cahn equation 

[18-20]. They studied the void nucleation and growth process behavior under 

the condition of supersaturated vacancy concentration in the matrix with 

stochastic vacancy generation rate by building a phase field model in two 

dimensions using the Cahn-Hilliard equation coupled with the Allen-Cahn 

equation [18]. The source fluctuations instead of thermal fluctuation of 

vacancies, which is the basis of the mechanism of classical nucleation 

models, were used as the initial driving force for the void nucleation. 

Landau-type free energy was used in the functional of the Allen-Cahn 

equation. In this model the elastic interaction was not taken into account. An 

order of 10
-4

 for thermodynamic equilibrium vacancy concentration at the 

melting point of copper (1276K) was used. The interaction between different 
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voids through the competition for vacancies was studied. The spinodal 

decomposition mechanism was used to realize the void nucleation process in 

Rokkam et al‟s simulations. Ostwald ripening and void nucleation and 

growth behavior were studied also, under different conditions, such as under 

the influence of grain boundary and self-interstitials. Based on the same 

model, they studied the influence of grain boundary on void nucleation 

behavior in irradiated polycrystalline metals [19]. Furthermore, they 

incorporated the self-interstitials into this model and the influence of 

self-interstitials on void nucleation and growth behavior were studied [20].  

Shenyang Hu et al. built a phase-field model based only on the 

Cahn-Hilliard equation by incorporating the self-interstitial atoms, in order 

to study the evolution of a void ensemble in a metal with vacancy diffusion 

and 1-D migration of self-interstitials during irradiation [21]. The influence 

of diffusivity of self-interstitials on the formation of void lattice was studied. 

Large diffusivity of self-interstitials compared to the diffusivity of vacancies 

favored the void ordering, while increasing the generation rate of interstitials 

delayed the formation of the void lattice. In their paper [22] they built a 

phase-field model based on the Cahn-Hilliard equation without taking into 

account the self-interstitials, in order to study the void migration in a 

temperature gradient field. Furthermore, they extended their model to take 
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into account the generation and recombination of vacancies and 

self-interstitials, in order to study void migration and evolution [23].  

However, as pointed out in Ref. [24] by A. A. Semenov and C. H. Woo, 

there are many problems or drawbacks on the research of void evolution 

using PFM in the above-mentioned published works [18-23].  

First, these works of Hui-Chia Yu and Wei Lu, Srujan Rokkam et al, 

and Shenyang Hu et al assumed very high thermal equilibrium vacancy 

concentration (10
-4

 to 10
-2

 atomic fraction) in the matrix, which is far from 

the real physical value (about 3.3×10
-11

 for molybdenum at half melting 

temperature (1442K), and 3.17×10
-10

 for copper at half melting temperature 

(679K)).  

Second, very high initial vacancy concentrations, ranging from 10
-2

 to 

10
-1

 atomic fraction, were used in these simulations, at temperatures ranging 

from 500k to 1000k, and these concentrations are far from those of 

experimental reality (experimental observations of vacancy concentration for 

void formation are on the order of 10
-10

 and 10
-8

 for molybdenum and copper, 

respectively).  

Finally, the void nucleation and growth process is not the same as the 
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phase separation process in a binary system through spinodal decomposition. 

However, these papers treat the void nucleation process as a spinodal 

decomposition process.  

There usually are two types of phase separation mechanisms: 

nucleation and growth mechanism and spinodal decomposition mechanism. 

The mainly difference between them is that there is free energy barrier for 

the phase transition through the nucleation and growth, while there is not 

such energy barrier for spindoal decomposition. For a system at a 

temperature above a critical point, there is only one phase and the ratios 

between components can be arbitrary due to the domination of effect of 

entropy over enthalpy in the free energy at high temperature. Phase 

separation of a system is possible when temperature is below the critical 

point. If phase separation for a system start from an initial supersaturated 

meta-stable state, which is in an area termed binodal region in the phase 

diagram, there is an energy barrier for phase transition. The overcoming of 

this energy barrier via spontaneously stochastic thermal fluctuation can lead 

to the formation of new phase embryos abruptly and locally. The new phase 

embryos may grow or shrink away under certain conditions. This is the 

phase separation mechanism of nucleation and growth. Below the critical 

temperature, in addition to the binodal region, there is another region in the 
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phase diagram, called spinodal region in which system is in an unstable state. 

If phase separation for a system starts from this spinodal region, an 

infinitesimal fluctuation in concentration will result in continuous global 

phase separation, because there is no energy barrier. This is the phase 

separation mechanism of spinodal decomposition. The void embryos are 

nucleated abruptly and locally and the vacancy concentration in a small 

region should reach unity very quickly and uniformly. Therefore, considering 

the physical consistency, the spinodal decomposition mechanism cannot be 

used to mimic the void nucleation process. Due to the characteristics of PFM, 

it can only be used to model the void evolution process after the nucleation. 

The nucleation process should be treated in another way.  

In addition to the above problems, there is another drawback to the 

phase-field model of studying void migration in a gradient temperature field 

under different conditions that was employed by Shenyang Hu‟s group [21], 

in which the Cahn-Hilliard equation based on the free energy functional they 

propose will not reproduce the diffusion equation or satisfy Fick‟s second 

law in the matrix. 

The theoretical foundation of phase-field modeling for void evolution 

was built by A. A. Semenov and C. H. Woo [24, 25]. Through analyzing the 
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characteristics of void nucleation and growth in classical nucleation theory, 

they built a model by only using the Cahn-Hilliard equation to connect the 

void evolution of classical thermodynamics and that of the phase-field 

approach. In this model, in which the nucleation of a single void in an 

infinite domain was considered, the total free energy change due to the single 

void formation through stochastic fluctuation of vacancy concentration was 

assumed to be equal to the corresponding total free energy functional change 

used in the Cahn-Hilliard equation. Through this equivalence of the voids 

according to classical thermodynamics with sharp boundary and those in the 

phase-field model with a diffuse interface, the gradient energy coefficient for 

a flat interface, as well as for a curved interface, can be determined by 

reproducing the thermodynamic properties of the void in an equilibrium state 

in the classical nucleation model with the phase-field model. Semenov and 

Woo also analyzed the influence of void radius on the gradient energy 

coefficient, as well as the thickness of the void-matrix interface. Based on 

their work, the quantitative study of void evolution via the phase-field model 

can be realized. 

 

1.2 Outline of content 
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The major goal of the present work is to make phase field simulations of a 

single void evolution in a three-dimensional domain after its nucleation 

mainly by following the framework proposed by A. A. Semenov and C. H. 

Woo [24, 25]. In order to realize this target, a Cahn-Hilliard type free energy 

functional is constructed properly by interpolating the free energy of a 

system with only void and vacancies present according to classical 

thermodynamics. The key point in constructing the free energy functional is 

to choose a proper gradient energy coefficient, which is derived by following 

the work of A. A. Semenov and C. H. Woo in ref. [24], and to construct a 

double well function of bulk free energy. The sharp boundary approach and 

the rate theory are used as benchmarks to study single void evolution in a 

spherical domain.  

In Chapter 2, general introduction of background and concepts related 

to this work will be given. The two mechanisms of diffusion-controlled 

phase transition are introduced in section 2.1. Section 2.2 gives general 

introductions to the sharp boundary approach and to the rate theory. Section 

2.3 gives general introductions to the phase-field method. In section 2.4, 

brief introductions of several major types of defects are given. 

Correspondingly different irradiation conditions are given in section 2.5. The 

bias mechanisms for net vacancies available for void formation are 
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introduced in section 2.6.  

Chapter 3 gives a detailed theoretical description of the sharp boundary 

approach to void formation and growth, as well as a description of void 

evolution in rate theory. Chapter 4 describes the theory of phase-field 

modeling of void evolution in detail. Section 4.1 is a general introduction of 

the total free energy in the system. The total chemical potential is described 

in section 4.2. Section 4.3 presents information concerning the bulk free 

energy that was constructed. The chemical potential due to bulk free energy 

and uphill diffusion behavior are discussed in section 4.4. Section 4.5 is 

concerned with the interfacial energy, and the derivation processes of the 

gradient energy coefficient for a flat interface and a curved interface are 

presented. In section 4.6, the governing equation (Cahn-Hilliard equation) of 

vacancy diffusion is discussed.  

Chapter 5 gives the numerical methods in detail to solve Cahn-Hilliard 

equation in spherical coordinates and Cartesian coordinates. Chapter 6 

presents the results and discussions of single void evolution under different 

conditions by using PFM, SBA and RT. In section 6.1 and 6.2, a single void 

dynamics in the spherical coordinates are studied by using the material 

parameters of molybdenum and copper, respectively. Section 6.3 presents the 
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study of a single void dynamics in Cartesian coordinates by using PFM. In 

the final chapter, the conclusions of the simulation results are made and 

suggestions for further research are formulated. 
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Chapter 2:  Literature review 

 

Since it is related to the defects ranging from zero-dimensional point defects 

to two- or three- dimensional extended defects and their motions and 

interactions, void evolution covers the span from microscale to mesoscale 

spatially, and from picosecond to several days, months or even years 

temporally. Thus, it is a very complicated problem involving many concepts 

and mechanisms. In this chapter, the major concepts and mechanisms used in 

this work are presented. 

 

2.1 Two mechanisms of diffusive phase transition 

2.1.1 Nucleation and growth  

There is always thermal fluctuation of solute particle concentration in a 

solution when the absolute temperature is above zero. The small new phase 

embryos will be nucleated at thermally fluctuating sites, the chance of 

occurrence of which increases with temperature. The new phase embryos 

may also be nucleated directly by input stochastic excitations from external 
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environment, such as the influence of stochastically energetic incident 

particles on void nucleation in radiated metal. A phase of supersaturated 

concentration of solute particles is in a meta-stable state which is a 

prerequisite condition for nucleation. However, the thermal 

fluctuation-induced nucleus results in the instability of the formerly 

meta-stable state of the parent phase of supersaturated concentration of 

solute particles, and the nucleus grows further to form a stable void (new 

phase) if its radius is larger than a critical radius (to be discussed in a later 

chapter); otherwise, it will disappear quickly. An interface is formed between 

the nucleus and the parent phase. The presence of this interface brings about, 

in the new phase, a surface tension which inclines to shrink the embryo by 

emitting the solute particles to the parent phase which surrounds it. This 

interface imposes an energy barrier to the nucleation. If the energy of the 

thermal fluctuation in the solution is smaller than this barrier, the embryo 

will be re-dissolved. If this barrier is overcome, the new thermally stable 

phase will be formed. The growth and shrinkage of the new phase is only 

through the motion of the interface as schematically shown in Fig. 2.1a. 
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               (a)                                (b)       

Fig. 2.1. Schematic illustration of the mechanisms of spinodal decomposition and 

nucleation and growth, (a) nucleation and growth through normal diffusion, (b) 

spinodal decomposition through up-hill diffusion. 

There are two types of mechanisms of nucleation: homogeneous 

nucleation and heterogeneous nucleation. Homogeneous nucleation is 

nucleation without preferential nucleation sites, and occurs spontaneously 

and randomly. Heterogeneous nucleation forms at preferential sites such as 

phase boundaries or impurities, which facilitate nucleation. It requires less 
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energy than homogeneous nucleation because the effective surface energy at 

preferential sites is lower - thus lowering the free energy barrier. The 

supersaturation needed for nucleation is reduced as well. Thus, 

heterogeneous nucleation occurs much more often than homogeneous 

nucleation. 

 

2.1.2 Spinodal decomposition 

Nucleation requires a large composition fluctuation, a result of thermal 

fluctuation or a result of directly stochastic irradiation by energetic particles 

in the case of void nucleation, as mentioned in the previous section. However, 

there is another type of phase formation mechanism, in which no nucleation 

stage is present. This is called spinodal decomposition. This mechanism 

differs from nucleation and growth mechanism not only because it occurs 

without a nucleation process but also because it occurs uniformly throughout 

the material (not just at discrete nucleation sites) as shown in Fig. 2.1b. 

Spinodal decomposition will make a solution of two or more components 

separate into distinct regions with distinctly different chemical compositions 

and physical properties through up-hill diffusion, which inclines to make 

each region rich in one component to form a new phase. Uphill diffusion 
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occurs when the second derivative of free energy with respect to composition 

becomes negative, which results in solute diffusion from a low concentration 

zone to a high concentration zone in the solution. It has a negative diffusion 

coefficient. The corresponding critical concentration (or minimum solute 

concentration) for uphill diffusion can be obtained by equating to zero the 

second derivative of free energy with respect to composition.  

When the new phase is formed, there is an interface between the 

different phases and hence a rise in the system‟s free energy which is the 

same as in the nucleation and growth mechanism. If the free energy decrease 

due to the solute flowing from the low concentration zone (old phase) to the 

high concentration zone (new phase) is less than the free energy increase due 

to the formation of the interface, the new phase will shrink by outflow of 

solutes to the old phase. Conversely, the new phase will grow by inflow of 

solutes. The spinodal decomposition mechanism can be used to provide a 

means of producing a very finely dispersed microstructure that can 

significantly enhance the physical properties of the material, such as in the 

formation of precipitates in metal. 

 

2.1.3 The difference between spinodal decomposition 
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mechanism and nucleation and growth mechanism 

Spinodal decomposition mechanism is temperature dependent. There is no 

spinodal decomposition mechanism above the critical temperature at which 

the solvent and solute are miscible and the solutes can be dissolved in the 

solvent in any proportion as Fig.2.2 shown. Below that critical temperature, 

there are two regions: the meta-stable region, or nucleation and growth 

region, and unstable, or spinodal, region. Within the meta-stable region the 

system is stable in regard to small fluctuations but is unstable in regard to 

large fluctuations. In the spinodal region an arbitrarily small fluctuation in 

composition will make the homogeneous system unstable, which results in 

one part of the system getting more concentrated at the expense of another; 

hence the phase involves continuous separation. Thus, there is no 

thermodynamic barrier for this mechanism to form new phases inside the 

spinodal region and the decomposition is controlled solely by diffusion. It is 

in simple contrast to the nucleation and growth mechanism, and can be 

treated purely as a diffusion problem. Many of the characteristics of such 

decomposition can be described by an approximate analytical solution to the 

Cahn-Hilliard equation.  
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Fig. 2.2. The phase diagram of two diffusive phase transition mechanisms. 

Usually, nucleation according to the nucleation and growth mechanism 

is large in degree and small in extent while spinodal decomposition is small 

or even infinitesimal in degree but large in extent, and composition 

fluctuation spreads throughout a large volume. Thus, interface thickness in 

the spinodal decomposition mechanism is large, while that in the nucleation 

and growth mechanism is small or even zero. In the spinodal decomposition 

case the interfacial energy consists of gradient energy and bulk free energy, 

due to the composition variation through the interface and finite width of the 

interface; while in the sharp interface case of nucleation and growth 

mechanism, the interfacial energy is determined by the surface tension and 

the corresponding surface area. 
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2.2 Sharp boundary approach and rate theory 

2.2.1 Sharp interface 

Interfaces play a vital role in the phase transition process. In conventional 

theoretical analysis and simulations of phase transition and micro-structural 

evolution, the interfaces between two phases are considered to be infinitely 

sharp, with zero thickness. The sharp interface model was originally 

proposed by Gibbs [26]. Some physical properties, such as composition, are 

assumed to vary discontinuously from one phase to another phase across the 

sharp interface, and the chemical potential of solute particles changes 

continuously across a flat sharp interface. For two phases separated by a 

curved sharp interface, the presence of surface tension results in a jump, not 

only in composition, but also in pressure or even in the chemical potential of 

solute particles [27] across the sharp interface. The physical characteristics 

of the sharp interface can be described as surface tension and interface 

curvature. The interfacial energy is proportional to the interfacial area, with 

the surface tension as the proportionality constant. 

In modeling based on sharp interface, a set of differential equations are 

solved with flux and other mechanical conditions matched and mass 

conserved at the interface. Some variables are discontinuous across the 
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interface. The position of the moving interface should be explicitly tracked 

mathematically. Thus, such models are very difficult to simulate, especially 

for the complex phase morphologies. Sharp interface simulations are mostly 

restricted to one-dimensional systems or simplified phase morphologies - 

those, for example, that involve spherical grains.  

 

2.2.2 Classical nucleation theory 

Conventionally, in the classical nucleation theory the phase interface is 

treated as a sharp interface whose physical property is depicted by surface 

tension. The classical nucleation theory [28] is based on the changes in 

Gibbs free energy associated with the formation of a nucleus or embryo in a 

supersaturated solution. There is a free energy barrier, or nucleus formation 

energy, for new phase embryo formation, which is determined by the 

temperature, surface tension and solute particle concentration 

super-saturation ratio in the solution. The solute particle concentration 

super-saturation ratio should be greater than one. It is the ratio of solute 

particle concentration in the parent phase to the thermal equilibrium solute 

particle concentration (or saturated solute particle concentration). The 

nucleation rate is inversely proportional to the free energy barrier. Whether 
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the embryo will grow or not is determined by the derivative of free energy 

difference between those solute particles in the new phase and those in the 

parent phase with respect to the embryo radius; or by whether a solute 

particle jump from parent phase to new phase will result in a decrease of the 

system free energy or not. The free energy consists of two parts: the 

interfacial part and the volume part. Since the interfacial energy originates 

from surface tension and is proportional to the embryo surface area, it is the 

dominant part of the free energy if the embryo size is small because its 

curvature is very large. The volume part of free energy is dominant when the 

size of the embryo is large because it is proportional to the volume of 

embryo.  

The interfacial energy will increase if the embryo absorbs a solute 

particle because the surface area is thereby increased. However, the volume 

part of free energy will drop if a solute particle jumps from parent phase into 

embryo because the chemical potentials of solute particles in the old (parent) 

phase and the new one are different. Therefore, the embryo will grow if 

absorbing a particle results in an increase of interfacial energy smaller than 

the decrease of the volume part of free energy. The embryo will shrink if the 

emission of a particle from it results in a decrease of interfacial energy 

greater than the increase of the volume part of free energy. In other words, if 
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the free energy released by forming the embryo‟s volume is enough to create 

its surface, the embryo will grow; otherwise, it will shrink. Regardless of 

whether the embryo grows or shrinks, the total free energy should not 

increase for a spontaneous evolution process. Thus, the driving force for 

phase transformation is the difference in Gibbs free energy between the final 

and initial states of the system. 

The phase transition through the mechanism of nucleation and growth 

can generally be divided into two stages, namely, the nucleation stage and 

the growth stage. For the nucleation stage, the nucleation process is totally 

determined by the local discrete stochastic fluctuation of concentration of 

solute particles. The nucleation rate in classical nucleation theory is inversely 

proportional to the free energy barrier in an Arrhenius relationship, which 

describes how many embryos per units of time and volume exceed the 

critical size. Thus the classical nucleation theory is widely used to predict the 

rate of first-order phase transitions. For the growth stage, the diffusion of 

solute particles plays the dominant role once the embryo is nucleated. There 

may be an effect, called „Ostwald ripening‟, after the nucleation, which is 

that the large embryo grows at the expense of the small one because, in order 

to be stable, the small embryo requires large solute concentration in the 

matrix due to its large curvature.  
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2.2.3 Rate theory 

The rate theory [15, 16, 29-31] is the most used theory in studying void 

evolution. Many of the concepts and equations involved are borrowed from 

chemical kinetics. The theory proposes and builds on a concept called „loss 

media‟ or „effective media‟, which assumes that the discrete randomly 

distributed sinks can be approximated by a continuum distribution. It treats 

different extended defects as sinks, into or out of which the vacancies and 

interstitials will flow. The strengths of the various sinks are proportional to 

their density and size. The loss rate of vacancy and interstitial to the sinks is 

proportional to the sink strength. Vacancies and interstitials can also escape 

from the sinks due to thermal emission.  

The sinks can be grouped into two types according to their capacity to 

absorb point defects: saturable sinks and unsaturable sinks. Coherent 

precipitates and impurity defects are saturable sinks; and dislocations, voids, 

grain boundary, gas bubbles and incoherent precipitates are unsaturable sinks. 

The sinks can also be divided into two types according to their preference for 

absorbing deferent types of defect: bias sinks and neutral sinks. Neutral sinks 

have no preference for interstitials or vacancies, but bias sinks do. Usually, a 
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dislocation is treated as a bias sink, which prefers to absorb more interstitials 

than vacancies; and other types of defects are treated as neutral sinks. Beside 

the major concepts of sinks and sink strength, there are other concepts, such 

as defect generation rate, thermal emission rate of defects from sinks, and 

recombination rate of vacancy and interstitial in the matrix. All of the values 

mentioned above are spatially homogenous. Thus, rate theory is a mean field 

theory [15].  

In order to determine the strength of one type of sink and vacancy 

distribution and interstitials distribution, a sink with radius R is planted at the 

center of a spherical region that is free of other sinks. This spherical region is 

embedded in the effective medium [15]. Then the boundary value problem of 

the diffusion equation of vacancies and interstitials with other terms 

(generation rate, thermal emission rate and loss rate in sinks) can be solved, 

with spherical coordinates by assuming that the steady state is reached at 

each moment. This is a good approximation due to the short relaxation time 

of the diffusion field of vacancies and interstitials. The continuity of defect 

concentration at the sink free-effective medium interface should be satisfied 

in solving diffusion equations in the two regions. The other sink strengths 

can be determined in the same way. The flux of point defects into and out of 

these sinks will be almost equal to the flux at the actual sinks in the real body. 
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The reciprocal of the square root of the sink strength is the mean free path of 

point defects in the effective media. With the rate theory, several system 

model parameters (such as generation rate of defects and magnitude of 

dislocation bias) should be obtained by fitting them to the experimental data. 

 

2.3 Phase-field Approach 

2.3.1 Diffuse interface 

In contrast to the zero width of interface in the sharp interface model, the 

interface width with the diffuse interface approach is finite. The diffuse 

interface concept arises from the specific expression of gradient energy in 

the heterogeneous system proposed by Cahn and Hilliard [12]. Thus, the 

diffuse interface plays the vital role in the phase field method, in which the 

interface is treated the same as the matrix and new phases, and in which the 

evolution of phase-field variables is governed by the same phase-field 

equations. Those variables representing the microstructure gradually and 

continuously vary across the interface.  

The mass conservation and other interfacial boundary conditions are 

automatically satisfied around the interface. The interface width is 
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determined by the competition between the gradient energy and the bulk free 

energy. The thicker interface will decrease the gradient energy, but it will 

increase the bulk free energy by introducing more materials, which is in 

non-equilibrium state, into the interface [12]. The larger the gradient energy 

coefficient is, the wider the width of the interface will be. In the matrix, the 

profiles of field variables are almost the same as in the sharp-interface model. 

The position of the interfaces is implicitly given by the profiles of 

phase-field variables in the microstructural evolution process of the whole 

system, therefore avoiding the necessity of explicit tracking of the interface 

position. The uphill diffusion occurring within the interface is the means for 

the new phases to grow. The effect of interfacial curvature of the new phase 

is implicitly contained in the gradient of phase-field variables across the 

interface. 

Although the specific expression of gradient energy is given by Cahn 

and Hilliard [12], the gradient energy coefficient is difficult to determine. 

There are two ways to do so. The first is to use a systematic asymptotic 

expansion of phase-field variables in both the interfacial region (inner 

expansion) and in the bulk (outer expansion), and matched them order by 

order [32, 33]. The results give partial differential equations and a series of 

boundary conditions at the interface, which should correspond to the sharp 
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interface model. The comparison between the partial differential equations 

and the corresponding equations in the sharp interface model provides the 

values of the gradient energy coefficient and other parameters used in the 

phase-field model. The second method is to make the free energy in the 

sharp interface model equal to that in the diffuse interface model [24, 25]. 

The phase-field model should recover the sharp interface model when the 

interface width goes to zero. The main drawback with this is that, to properly 

model relevant physical phenomena, the interface must be extremely thin, 

which results in a large gradient of phase-field variables within the interface 

region. This large gradient of variables across the interface poses certain 

difficulties in the phase field simulations, which require small grid size and 

time step size for a resolution high enough to capture the physics of the 

problems studied. In addition to the above large gradient of order parameters 

across the interface, the high-order (fourth-order) derivative of phase-field 

variables is present in the Cahn-Hilliard equation, which imposes a 

constraint on the time-step size as well. 

 

2.3.2 Phase-field method 

The phase-field method is a mathematical technique based on the diffuse 
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interface, thermodynamics and kinetic principles to model microstructure 

evolution. In order to approach the problem, the phase field method usually 

uses the Cahn-Hilliard equation [10] and the time-dependent 

Ginzburg-Landau equation (or Allen-Cahn equation) [34, 35] to depict the 

evolution of conserved variables and non-conserved order parameters that 

are smooth and continuous functions over space and time, respectively. Both 

are nonlinear partial differential equations, which are solved numerically. 

Conserved variables are usually used to represent the different local 

compositions. The non-conserved order parameters are usually used to 

represent structural heterogeneities which consist of spatially distributed 

phases of different crystal structures, such as grains of different orientations, 

domains of different structural variants and structural defects. The 

thermodynamic potential - the free energy in classical thermodynamics - is 

approached by the free energy functional in the phase-field method. 

As mentioned in the previous section, the introduction of 

Ginzburg-Landau type gradient energy into the phase-field model leads to 

the concept of diffuse interface which makes the simulation process without 

need to explicitly track the position of the interface between different phases 

for solving a Stefan problem during the microstructural evolution of the 

system. Thus this approach avoids the difficult mathematical problem of 



Chapter 2: Literature review  

34 

 

applying boundary conditions to the interface, the solution of which would 

otherwise be required for the compositions to match properly on both sides 

of the interface. With the phase-field method, boundary conditions at the 

interface are incorporated into the model implicitly and the location of the 

interface is obtained from the numerical solution of the phase-field order 

parameters.  

Because of the above inherent properties, the phase-field method can 

easily treat topological changes, such as coalescence of two phases or break 

up of interface. Therefore, the evolution of complex phase morphologies can 

be predicted without making any a priori assumptions about the shape of the 

phases. Due to the characteristics mentioned above, such as the employing of 

the order parameter to represent different phases and the use of the free 

energy functional to approach the thermodynamic potential - the free energy 

of classical thermodynamics, the phase-field method is of phenomenological 

character. The phenomenological parameters used in the phase-field method 

are determined from experimental and theoretical information. It is a good 

tool for quantitative study and understanding of the irreversible 

thermodynamics of a non-equilibrium system and the kinetics of phase 

transformations. The simulation scale, grid size and time step size are 

strongly limited by the physical thickness of the interface.  
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In addition to the effect of surface tension  mimicked by the 

combination effect of Ginzburg-Landau type gradient energy and bulk free 

energy which mainly consists of the enthalpy and the free energy due to 

entropy, the other physical effects and interactions, such as thermal 

equilibrium defects concentration, elastic interaction, electrostatic interaction 

and magnetic interaction can also be incorporated into the phase-field 

method through the configuration of the total free energy functional of the 

system. The thermal equilibrium single defects concentration is realized 

through the incorporation of formation enthalpy of single defects and the 

mixing entropy of single defects into the bulk free energy. Due to the 

above-mentioned characteristics, the phase-field method is very useful for 

the study of phase transition and microstructure evolution. 

After the proposal of the Cahn-Hilliard type of free energy functional 

[12] and the Cahn-Hilliard equation[10], the phase-field method was 

introduced by Fix [36] and Langer [37], and this was followed by a lot of 

theory analysis work [32, 38-42]. The first realistic numerical simulations 

using the phase field method were in solidification dynamics [43-50]. It was 

then used in other areas of research and has become a powerful tool for 

simulating microstructural evolution in a wide variety of materials, such as 

those involving solid-state phase transformation [51-53], grain growth and 
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coarsening [54-58], crack propagation [59-62], ferroelectrics [63-66], 

ferromagnetics [67-70], dislocation [71-75], and precipitates [76-81].  

 

2.4  Defects in the metal 

In order to understand the formation mechanism of voids under irradiation 

conditions, we first need to know the major types of defects in the irradiated 

metal. Defects in the metal can be grouped into two types: point defects and 

extended defects. Extended defects can be grouped into line defects, planar 

defects and volume defects. Point defects are considered to be zero 

dimensional. Line defects, planar defects and volume defects are considered 

to be one, two and three dimensional defects, respectively. The following 

sections give a simple introduction to these four types of defects. 

 

2.4.1 Point defects 

1. Single vacancy defects 

Point defects include vacancies, interstitials and substitutionals. A vacancy 

defect is formed when an atom is missing from a normal lattice site in a 
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crystalline material. The neighboring atoms around the vacancy will not 

collapse due to the stability of crystal structure and only a slight inward 

relaxation and tensile stress will be produced in the lattice around the 

vacancy. The formation energy of a single vacancy is the energy needed to 

remove an atom from its interior lattice site and place it on the crystal 

surface. For temperatures within the range of absolute zero to melting point 

in the crystal, there is an equilibrium vacancy concentration (or saturated 

vacancy concentration) which is due to the fact that the thermally fluctuating 

atom at the lattice site has the probability to overcome the formation energy 

barrier of vacancies and jump from the interior lattice site to the crystal 

surface, with a vacancy left behind. A certain number of vacancies can lower 

the Gibbs free energy of the crystal, while the creation of vacancies will 

increase it through incidentally energetic particles from outside. The 

formation energy of vacancy in many metals is about 1 ev. 

The thermal equilibrium vacancy concentration in the metal is 

governed by the Arrhenius equation, and increases exponentially with 

temperature. Mono- and di-vacancies play a major role in the migration 

mechanism of atomic diffusion. Due to thermal fluctuation, an atom adjacent 

to a vacancy may have some chance to jump to the vacant site by 

overcoming an energy barrier between the saddle point and the equilibrium 
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position. The energy needed to overcome the energy barrier, or the energy 

needed by atoms to break bonds with neighbors, and to cause the lattice 

distortions during jump, is called migration energy or activation energy. The 

vacancy diffusion is isotropic in three dimensions, and the diffusion is 

described as a random walk process. There is no correlation effect between 

any two consecutive jumps of a vacancy. The diffusion constant is defined as 

a phenomenological coefficient which relates a net flux of vacancies per unit 

area to the vacancy concentration gradient whose direction is opposite to the 

flux direction. The direction of the flow of atom is opposite to that of the 

vacancies. The system with vacancy diffusion is in a non-equilibrium state. 

There are two main self-diffusion mechanisms for vacancies: the 

mono-vacancy mechanism and the di-vacancy mechanism. For most metals, 

the mono-vacancy mechanism dominates over a wide temperature range; the 

di-vacancy mechanism plays a role near the melting temperature [82].  

2. Single interstitial defects 

An interstitial is a kind of anti-defect of vacancy, in which an atom is 

squeezed into a non-lattice site or two or more atoms occupy one or more 

lattice sites and the number of atoms larger than the number of lattice sites. 

A strong compression stress or strain is produced in the lattice around the 
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inserted atom, even a small impurity atom (foreign atom), and this gives rise 

to a large elastic interaction between interstitials and other defects. A 

self-interstitial defect occurs when a non-foreign atom is squeezed into a 

non-lattice site. When a self-interstitial meets a vacancy, both of them will 

be annihilated. Self-interstitials are likely present in pure crystals, in the form 

of dumbbells and crowdions.  

A dumbbell is similar to a di-vacancy, which is orientated along one of 

the principal lattice directions. However, a dumbbell consists of two atoms 

that share the same lattice site , while a di-vacancy consist of two vacancies 

occupying two consecutive lattice sites respectively. There are two types of 

dumbbells, <100> and <110> dumbbells. Usually a <100> dumbbell is a 

stable configuration in fcc crystals, and a <110> dumbbell is a stable 

configuration in bcc crystals [83, 84]. Dumbbell diffusion is isotropic in 

three dimensions, the same as vacancy diffusion.  

A crowdion is an additional atom inserted into a string of atoms so that 

all of them have a small displacement from their corresponding lattice sites, 

which are oriented along the close-packed lattice direction, and it migrates 

along this direction also. Crowdions are only oriented along one 

close-packed <110> lattice direction in fcc crystals and along a <111> lattice 
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direction (explained below) in bcc crystals.  

In nonmagnetic bcc metals the <111> crowdion configuration is the 

ground state and the <110> dumbbell configuration is the meta-stable state 

[85, 86]. The difference of formation energy between that for the <111> 

crowdion and that for the <110> dumbbell configuration is small. In fcc 

metals the <100> dumbbell configuration is the ground state and the <110> 

crowdion configuration is the meta-stable state. Under thermal fluctuation, 

these two configurations can mutually convert to each other.  

The formation energy for a single self-interstitial is higher than that for 

a single vacancy while the migration energy of self-interstitials is far smaller 

than that of vacancies in the same metal. So, interstitials generally diffuse 

faster than vacancies, because the bonding of interstitials to the surrounding 

atoms is normally weaker and because there are many more interstitial sites 

than vacancy sites to jump to.  

The crowdion migrates along one dimension (a close-packed lattice 

direction) before converting to the dumbbell, which migrates in three 

dimensions isotropically. The diffusion path of a crowdion along one 

dimension is segmented due to the thermal conversion to a dumbbell or to a 

change to another close-packed direction. Thus, the diffusion of 
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self-interstitials consists of three-dimensional isotropic diffusion of 

dumbbells and of one-dimensional anisotropic diffusion of crowdions along 

those crystalline close-packed directions in crystals. The increase of 

temperature leads to a decrease in the proportion of crowdion in 

self-interstitials and to an increase in the frequency of thermal reorientations 

of crowdions in other close-packed directions, which largely shortens the 

crowdion mean free path in a given close-packed direction. 

3. Substitutional defects 

A substitutional defect occurs when a host atom located at a lattice site in a 

crystal structure is replaced by a different type of atom, which is an impurity. 

If the substitutional atom is smaller than the original atom, then the lattice 

around the substitutional atom is in tension, otherwise the lattice is in 

compression. The diffusion of substitutional defects relies on the 

concentration of vacancies and the activation energy to allow the defects to 

exchange positions with adjacent vacancies [87]. The pre-exponential factors 

and activation energies for diffusion of substitutional atoms are smaller than 

for self-diffusion of host atoms.  

There is a binding energy between substitutional atom and vacancy, 

which leads to many migration steps of the impurity atom and the vacancy 
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without dissociation [88]. After the first jump of a substitutional atom to an 

adjacent vacant lattice site, the substitutional atom tends to exchange sites 

with the vacancy again. Such successive exchanges of position do not lead to 

an effective migration, but have a correlated effect on the diffusion processes 

of the substitutional atom and the vacancy, respectively. The substitutional 

atom can form saturable defect traps (vacancy type trap and interstitial type 

trap), which are at the recombination centers of vacancies and 

self-interstitials. A vacancy trap will only have a certain probability of 

trapping a vacancy, through the binding energy between the vacancy and the 

substitutional atom. A self-interstitial may flow into the trap and recombine 

with the vacancy. An interstitial trap is the counterpart of the vacancy trap: it 

will only trap an interstitial, and the vacancy will then flows in to recombine 

with the trapped interstitial. The trapped vacancy or interstitial will be 

reemitted from the trap by overcoming the binding energy. 

 

2.4.2 Extended defects (defect clusters) 

The minimum defect clusters are di-vacancy and di-interstitial. Two or more 

adjacent vacancies may bond together to form a di- or a multi- vacancy 

through the binding energy among them. Two vacancies that form a 
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di-vacancy are located at each other‟s first- or second- nearest neighbor 

lattice sites. The resulting di-vacancy is oriented along the line connecting 

the two vacancies. The di-interstitial consists of two adjacent dumbbells 

bonded together by binding energy. In addition to the above-mentioned 

di-vacancy and di-interstitial, and to other multi-vacancies and 

multi-interstitials, there are many other types of defect clusters. Defect 

clusters are agglomerations of many single point defects arranged in certain 

ways. They can be grouped into three types: dislocations (line defects), 

planar defects and volume defects. Defect cluster may disassociate through 

the emission of point defects due to surface tension, or line tension, and 

thermal fluctuation. 

 

2.4.2.1 Line defects (Dislocations) 

Dislocations are line defects. They may move under applied stress, and this 

is a mechanism for the origin of plastic deformation of crystals. Dislocations 

can dissociate into two or more dislocations and combine with other 

dislocations. There are distortions in the lattice around the line of dislocation. 

The magnitude of distortion and direction of lattices caused by dislocation 

are described by the Burgers vector. The elastic strain energy associated with 
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the dislocation is proportional to the square of the Burgers vector. For 

metallic crystal, the Burgers vector for a dislocation will point in the 

direction of close-packed crystallography, whose magnitude equals that of 

the inter-atomic spacing. Two dislocations meeting from opposite directions 

will result in the annihilation of both. The slip of dislocation results in 

permanent (plastic) deformation of crystal material. If the dislocation is fixed 

by other defects, or if its motion is impeded, the crystal material will become 

hard and brittle. Entanglement among dislocations hinders the motion of 

dislocation. An increase of dislocation density increases the chance of 

overlap of dislocations through cold working or other methods which can 

produce new dislocations in the crystal. 

There are two primary types of dislocation, edge dislocation and screw 

dislocation. An edge dislocation can be viewed when an extra portion of a 

plane of atoms in the close-packed crystallographic plane is inserted into a 

crystal with the edge of the plane in the crystal‟s interior. A screw 

dislocation can be formed by cutting halfway through a crystal and sliding 

the two parts in opposite directions along the cutting plane to form a fault 

that looks rather like a spiral staircase. For an edge dislocation, the Burgers 

vector and motion direction are perpendicular to the dislocation line; for a 

screw dislocation, the Burgers vector is parallel to the dislocation line and 
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perpendicular to the direction of motion. The edge dislocation moves on the 

slip planes of the dislocation line and Burgers vector. The screw dislocation 

moves on the plane on which its line lies.  

Both types of dislocation are formed under applied shear stress whose 

direction is parallel to that of the Burgers vector. The stress produced by the 

edge dislocation is asymmetrical. The atoms experience a compression stress 

near the section of the extra plane of atoms inserted into the crystal, while 

the atoms near section of the missing plane experience tensile stress. The 

stress produced by the screw dislocation is symmetrical with respect to the 

dislocation line. The atoms near the screw dislocation line experience a shear 

stress. Other types of dislocation are hybrids of these two basic dislocations. 

They include mixed dislocation which is of both edge and screw character 

and whose Burgers vector is neither perpendicular nor parallel to the line 

direction.  

There is also a mechanism of dislocation motion other than the slip of 

dislocations discussed above. It is known as dislocation climb, and is 

realized through addition of vacancies or self-interstitials to the termination 

of the extra portion of a plane of atoms of the dislocation. Dislocation climb 

allows an edge dislocation to move perpendicular to, and hence out of, its 
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slip plane. This type of dislocation can be regarded as a source, or as a sink, 

of point defects in the crystal. Dislocation climb is temperature dependent - 

the climb will occur much more rapidly at high temperatures than at low 

temperatures due to the increase in vacancy migration at high temperatures. 

The compressive stress perpendicular to the extra half-plane of atoms of an 

edge dislocation favors positive climb, in which atoms are removed from the 

half-plane edge; while tensile stress favors the negative climb, by which 

atoms are added to the half-plane edge.  

As mentioned in the previous sections the presence of vacancies and 

self-interstitials will lead the entropy of crystal to increase and the free 

energy of crystal to decrease. In a thermodynamic equilibrium state, the free 

energy originating from the formation enthalpy of vacancies and 

self-interstitials is offset by the free energy originating from the entropy of 

the disordered state, which leads to a thermal equilibrium concentration of 

both types of point defects, vacancies and self-interstitials. The presence of 

dislocations will lead to an increase of entropy and a decrease of free energy 

in the crystal. However, the energy of dislocation formation is much higher 

than that of a point defect, and the entropy is never able to balance the 

enthalpy in the free energy, so that dislocations are never in thermodynamic 

equilibrium with their surroundings.  
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According to its mobility, dislocations can be divided into two types: 

sessile dislocations and glissile dislocations. A sessile dislocation is one that 

cannot glide, but has to be moved by some form of mass transport, such as 

climb; a glissile dislocation is one that can move by pure slip. Similarly to 

substitutional atoms, sessile dislocation can form saturable defect traps as 

well. A sessile dislocation will trap defects with a certain probability, and 

will also attract their corresponding opposite kind of defect to migrate to 

them and recombine, - i.e, vacancy sessile dislocations will attract 

interstitials and interstitial sessile dislocations will attract vacancies - thus 

they become recombination center of point defects. The point defects may be 

reemitted into the matrix from the sessile dislocation by overcoming the 

energy binding the sessile dislocation and the point defects. 

A dislocation line must either end on the surface of a crystal or at 

another dislocation, or form a closed loop called a dislocation loop. 

Dislocation loops have been found frequently in crystals. If a dislocation 

loop and its Burgers vector lie in the same plane in which the dislocation 

loop slips, the loop can expand or shrink by gliding under the applied stress. 

When the Burgers vector is not in the plane of the loop, the slip surface 

defined by the dislocation line and its Burgers vector is a cylindrical surface. 

Such a dislocation is called a prismatic dislocation loop. It glides 
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conservatively along the cylindrical slip surface. There are two types of 

prismatic dislocation loop: the vacancy type dislocation loop and the 

interstitial type dislocation loop. The prismatic dislocation loop can expand 

or shrink through climb influenced by its stacking-fault and line-tension 

forces and the supersaturation ratio of point defects in the crystal.  

Under excess vacancy concentration the vacancy-type loop will grow 

by absorbing vacancies, while the interstitial-type loop will shrink. Under 

excess self-interstitial concentration the interstitial-type loop will grow by 

absorbing self-interstitials, while the vacancy-type loop will shrink. 

Increasing temperature will result in the decrease of growth rate of both 

types of loop, or even their shrinkage, because higher temperature leads to 

higher thermal equilibrium point defect concentration and vacancies and 

self-interstitials will be emitted from vacancy- and interstitial- type loops, 

respectively. The interaction between a prismatic dislocation loop and an 

edge dislocation can lead to a dislocation loop moving close to the edge 

dislocation without shrinking or expanding [89].  

Some crowdion clusters may form perfect glissile dislocation loops. 

Like single crowdions, the crowdion clusters can move one-dimensionally 

by thermal activation, with extremely small migration energies [90]. An edge 
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dislocation can be thought of as an ensemble of crowdions or clusters of 

interstitials [91]. Usually, the interstitial dislocation loop is more stable than 

the vacancy dislocation loop, so that interstitial dislocation loops tend to 

exist longer than vacancy dislocation loops. The reason for this is that the 

emission of interstitials from both the interstitial dislocation loop and 

vacancy dislocation loop is very difficult due to the larger formation energy 

for interstitials than for vacancies, while the emission of vacancies is easy for 

both the interstitial dislocation loops and vacancy dislocation loops. 

However, the emission of vacancy will lead interstitial dislocation loops to 

grow and vacancy dislocation loops to shrink. Thus, the counterpart effect of 

shrinking interstitial dislocation loops and growing vacancy dislocation 

loops through thermal emission of interstitials is inhibited due to the large 

formation energy required for interstitials. 

 

2.4.2.2 Planar defects 

A planar defect is a discontinuity of the perfect crystal structure across a 

plane. There are many types of planar defects, such as free surface, phase 

interface, grain boundaries, twin boundary and stacking fault. Free surface is 

external. Grain boundary and twin boundary and stacking fault are internal 
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but same phase. Phase interface occur between different phases. In the 

following I will only introduce grain boundary and phase interface which are 

very important for the void evolution. 

1. Grain boundaries 

Crystal material generally consists of a number of crystal grains that are 

separated by a grain boundary. The crystalline structure of each grain is 

identical but the orientations of the grains are not. The grain boundary is a 

narrow zone where the atoms are not properly spaced or perfectly arranged. 

The range of grain size is from nanometers to millimeters. Grain boundaries 

limit the lengths and motions of dislocations. Therefore, making grain size 

smaller can strengthen crystal material. The grain size can be controlled by 

the cooling rate when the material is cast or heat treated. Generally, rapid 

cooling produces smaller grains, whereas slow cooling results in larger 

grains. A grain boundary can be curved, but it tends to be planar when in 

thermal equilibrium, and this minimizes the boundary area and hence the 

boundary energy.  

There are two types of grain boundary. One is a low-angle boundary, in 

which two adjacent grains are tilted towards each other at a small angle. The 

grain boundary is composed of isolated dislocations. The other is a 
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high-angle boundary, with the misorientation of the two grains being large 

and arbitrary. The migration speed of atoms in the grain boundary is very fast, 

even at low temperature. Such a boundary is also a location of the point 

defect sinks and sources. 

2. Phase interface defects 

An interface is a very narrow region of contact between two phases, in which 

the properties are not that of either phase. New phases can nucleate from old 

phases when some thermodynamic conditions are satisfied. The growth and 

shrinkage of new phases are realized by the movement of the interface, 

which is controlled by the flow of particles between phases, across the 

interface.  

There are two main types of phase, precipitates and cavities, which can 

form defects in otherwise solid metallic material. The phase interfaces 

between precipitates or cavities and the parent metallic phase is a sharp 

interface whose width is very small. A misfit strain is produced in the phase 

interface between precipitates and the parent phase, and surface tension is 

present in the phase interface between cavities and the parent phase. The 

conservation law of mass (defects) should be satisfied when across the phase 

interface. The concentration of defects is not a continuous function of 
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position across the phase interface, such as in the case of evolution of 

precipitates, by absorbing or emitting substitutional impurity atoms or, in the 

case of evolution of voids, by absorbing or emitting vacancies and 

self-interstitials. However, the chemical potential should be a continuous 

function of position across the phase interface when the system is in an 

equilibrium state. 

 

2.4.2.3 Volume defects 

1. Precipitates 

A precipitate is a region where a lot of impurity atoms aggregate to form a 

new phase. It can be formed through nucleation, spinodal decomposition, or 

eutectoid decomposition. The presence of the second, new phase precipitates 

often causes crystal lattice distortions when the precipitate particles differ in 

size and crystallographic structure from the host atoms. The presence of 

smaller solute particles which consist of precipitate in a host lattice leads to a 

tensile stress, whereas larger solute particles which consist of precipitate lead 

to a compressive stress. A misfit strain or eigen-strain will be present at the 

interface between the original phase matrix and the precipitate.  
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There are two types of precipitates: coherent and incoherent. A 

coherent precipitate is a precipitate that has continuous lattice structure with, 

or atomic arrangement with, the matrix from which the precipitate is formed. 

An incoherent precipitate is one that has no continuous lattice structure with 

the crystal structure of the surrounding matrix. The precipitates will grow 

when the impurity atoms flows in and will shrink when they flow out. When 

the precipitate nuclei are formed, the impurity atoms will diffuse from small 

to large precipitate particles under the surface tension. This is the Ostwald 

ripening effect. The evolution of precipitates is mainly determined by the 

temperature, concentration of impurity atoms and the elastic interaction 

between them and other precipitates and defects.  

There are strong elastic interactions between precipitates and 

dislocations. The precipitate particles can act as obstacles to impede the 

movement of dislocations and thereby strengthen alloys. Such a process of 

formation of uniformly dispersed precipitate particles is known as 

precipitation hardening or age hardening. Some types of precipitate will 

favor crack generation and propagation in the material, such as hydrides. The 

growth of hydrides may eventually lead to irreversible metal plastic 

deformation through crack generation and propagation, depending on 

temperature and hydride expansion during precipitation. The surface of 
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coherent precipitates can either trap interstitials or vacancies through a finite 

binding energy, the same as the substitutional atoms and sessile dislocations 

do. The surface of a coherent precipitate will form a recombination center of 

interstitials and vacancies to influence the swelling rate of the metal further. 

The trap capacity of coherent precipitates for point defects is finite due to the 

fact that defects are only trapped at the surface of coherent precipitates. The 

incoherent precipitates have unsaturable capacity for point defects and hence 

play a role like that of voids.  

2. Voids (Cavities) 

A void is an empty space encased by a metallic surface; it also can be viewed 

as an agglomeration of vacancies or precipitates of vacancies. Unlike the 

usual precipitate formation process, by which precipitates can be formed 

through any of the three methods mentioned previously, the formation of a 

void can only occur through the nucleation and growth process, which is a 

phase transformation process. There is a sharp phase interface between void 

and parent phase, and hence a surface tension. The void embryos can be 

nucleated either through the thermal fluctuation of vacancies or through the 

aggregation of large vacancy clusters generated by a neutron or other 

energetic particle irradiation to overcome the formation energy barriers of 
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void nuclei. Adding a vacancy or emitting an interstitial will favor void 

growth, and adding an interstitial or emitting a vacancy will favor void 

shrinkage. Whether the void will grow or not is mainly determined by the net 

flux of vacancy flow in or out.  

A supersaturated vacancy concentration is required for the void to be 

stable or to grow. The void is of unrestricted capacity for the in-migration of 

vacancies and self-interstitials. The surface of the void is the center of 

recombination of vacancy and self-interstitial. The void evolution behavior is 

influenced by many physical parameters of the metal, such as the formation 

energy of vacancies, formation energy of self-interstitials, migration energy 

of vacancies, migration energy of self-interstitials, surface tension of void 

surface and temperature. Thus it is affected by vacancy concentration, 

self-interstitial concentration, migration speed of vacancies, migration speed 

of self-interstitial in the metallic matrix and void size. The void is the net 

accumulation of vacancies. The volume swelling of irradiated metal is the 

result of void formation in them. The swelling rate is the fraction of 

vacancies to the void in the metal, and each single vacancy contributes an 

approximate atomic volume to the overall volume increase of the crystal. 

Other types of defect will not have any significant effects on the volume 

change of the metal. The void evolution process (growth or shrinkage) is a 
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free energy dissipative process due to the diffusion and/or recombination of 

vacancies and self-interstitials. A tensile stress is produced around the void in 

the matrix. The voids tend to attract each other through elastic interaction. 

Since the range of elastic strain of the void is extremely small, the elastic 

interaction between two voids becomes significant only when they are very 

close. The elastic interaction between the void and the point defects is very 

small comparing to the elastic interaction between dislocation and point 

defects [16].  

 

2.5 Irradiation conditions 

The types of defect produced in the metal will be different under different 

irradiation conditions. Thus different irradiation conditions will produce 

different defect structures in irradiated metal and further result in different 

microstructure of irradiated metal. There are two major types of irradiations 

conditions in terms of the energy that the incident particles carry – electron 

irradiation and neutron or heavy ion irradiation. 

2.5.1 Electron irradiation 

Due to the energy that the incident particles carry, the types of defect 
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produced by collision vary. Under electron irradiation, the majority of point 

defects in a metal are generated in the form of isolated Frenkel pairs, created 

when an atom is kicked out from the lattice site, by the momentum 

transferred from the incident electrons, and squeezes into a non-lattice site to 

form a self-interstitial, with a vacancy left behind. The energy of incident 

electrons used in irradiation typically varies from the keV to MeV and a 

displacement threshold energy of the order of 10 - 50 eV has to be 

transferred from an electron to an atom to form a Frenkel pair [92]. The 

Frenkel pairs are produced and distributed statistically. The vacancy and 

self-interstitial in a Frenkel pair are easily annihilated through recombination 

after their generation. If a vacancy and a self-interstitial lie close to each 

other, there is a significant overlap of their lattice distortions. Upon thermal 

activation and elastic interaction the self-interstitial may migrate to the 

vacancy and recombine. Avoiding the recombination of vacancy and 

interstitial to form a stable Frenkel pair depends on the separation between 

them - usually several atomic distances. There is some probability that the 

vacancy and interstitial in a stable Frenkel pair will diffuse to different sinks 

before their mutual annihilation through recombination. The concentration of 

vacancies and self-interstitials is supersaturated under continuous electron 

irradiation. The momentum transferred from an incident electron to an atom 
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is not large enough to form defect clusters (such as vacancy type dislocation 

loops and interstitial type dislocation loops) directly, but defect clusters can 

still be formed through nucleation and growth in electron irradiated metal 

[93].  

Electron radiation induced diffusion of point defects is a mechanism by 

which the migration of atoms is induced by the direct or indirect collision of 

an incident electron with atoms. This mechanism leads to an effect similar to 

that of the migration of atoms by thermal activation. This mechanism 

explains the defect cluster formation in electron-irradiated metal at very low 

temperature, at which the thermal motion of defects cannot be expected, 

especially for vacancies. The operation of this mechanism is the reason that 

defects can still migrate together to form clusters at very low temperature. 

Thus the voids can be present in the electron-irradiated metal, even at 

relatively low temperature. The first observation of void formation in nickel 

by electron irradiation was carried out by Norris in 1970 [2]. An initial 

bombardment with argon ion particles before the electron irradiation is 

needed for void formation - without it the void will not be formed. The gas 

atoms produced by ion bombardment play a role in the void formation under 

electron irradiation.  
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2.5.2 Neutron or heavy ion irradiation 

The kinetic energy transferred initially from the collision of energetic 

incident particles, such as neutrons or heavy ions, with primary knock-on 

atoms is far greater than the displacement threshold energy. A displacement 

cascade will occur as a sequence of atomic collisions of primary knock-on 

atoms. There will be no more damage produced when knock-on atom energy 

eventually goes below the threshold displacement energy for damage 

production, because each generation of recoil atoms has, on average, less 

energy than the previous generation.  

A thermal spike or displacement spike occurs in the process of 

displacement cascade produced by the energetic neutrons or ion particles 

irradiation. This is characterized by the formation of a transient under-dense 

region in the center of the cascade and an over-dense region around it. The 

core region of the cascade is disordered, melts for an short initial period, and 

then solidifies, with the original crystallographic orientation maintained [92, 

94]. The atoms are ejected from the core region of the cascade to the 

over-dense region, where a high concentration of self-interstitials will be 

formed. After the cascade, the core region cools down as a result of the 
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kinetic energy being transferred to the ambient through phonons and 

electrons The core region then becomes a under-dense region full of 

vacancies and without self-interstitials [95]. The removal of atoms from the 

core region of the cascade results in a vacancy-rich depleted zone after 

resolidification. The vacancy population in the depleted zones can 

agglomerate and collapse athermally into dislocation loops and 

stacking-fault tetrahedra in many metals.  

Therefore, in the created defects in the displacement cascade process, 

there are not only point defects such as mono-vacancies, single 

self-interstitials and Frenkel pairs, but also defect clusters, such as 

dislocation loops and even void embryos. Both vacancies and interstitials 

and their clusters are produced in a highly localized and segregated pattern, 

with their distributions spatially separated from each other. These defect 

clusters may be either mobile or immobile. The first observation of 

irradiation-induced voids was carried out in stainless steel using neutron 

irradiation in 1967 by Cawthorn and Fulton [1], and this was the start of 

research in this area. 
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2.6 Bias mechanisms for net vacancies available 

for void formation and growth 

2.6.1 Dislocation bias 

There is a preferential absorption of self-interstitials over vacancies at 

dislocations through a mechanism called stress induced preferential 

absorption, which operates when the long-range elastic interaction between 

dislocations and self-interstitials is larger than that between dislocations and 

vacancies. Thus the dislocations will attract self-interstitials more strongly 

than vacancies, which results in a slightly higher rate of self-interstitial 

absorption to dislocations than that of vacancies through migration. 

Therefore, net vacancies will be left for void formation and swelling, 

because the numbers of vacancies and of self-interstitials created are equal in 

the irradiation process, in particular, under electron irradiation condition. 

This mechanism of void formation and swelling is known as dislocation bias 

[6]. Thus, there will be no volume swelling if there is no void nucleation and 

growth, because the vacancies and self-interstitials will be annihilated by 

recombination or absorption at sinks, such as dislocations or grain 

boundaries, without volume change. The mutual interaction, by using mobile 

defects as the media, between the climb and motion of edge dislocations and 
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the void nucleation and growth determines the evolution of the micro- and 

macro-structure of material.  

 

2.6.2 Production bias 

As mentioned previously, both vacancies and interstitials in cascade damage 

are generated not only in the form of Frenkel pairs but also in the form of 

clusters. The vacancy clusters, such as vacancy dislocation loops, are 

produced in the core region of the cascade; the ejected atoms from the core 

region form the interstitial dislocation loops in the matrix around the core 

region. At relatively high temperatures vacancy loops are thermally unstable 

due to line tension and shrink by emitting vacancies. Thus the 

immobilization of vacancies in vacancy loops is only temporary. Re-emitted 

vacancies will be available as freely migrating vacancies to various sinks, 

including voids. Due to the large binding energy of self-interstitials, which is 

close to their formation energy, self-interstitial clusters are thermally stable 

even at relatively high temperatures, until they are removed by growing 

loops or climbing dislocation segments, or are annihilated by the excess of 

vacancies. Thus self-interstitials are locked in interstitial loops from the 

moment they are created.  
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The lifetime of interstitial clusters is dominated by their destruction, 

when interstitial clusters are annihilated by the excess of vacancies or by 

growing loops or climbing dislocation segments, and is considerably longer 

than that of vacancy clusters, which is dominated by thermal annealing. 

Therefore, vacancies are emitted from vacancy clusters and are available for 

voids to grow, while fewer, or no, self-interstitials which would cause the 

void to shrink, are emitted from immobile interstitial clusters. Thus, there is 

also an asymmetry in the production of mobile point defects. This 

mechanism that results in net freely migrating vacancy defects in the matrix 

is called production bias [7-9].  

The difference in the stability and lifetime between vacancy clusters 

and interstitial clusters generated during the cascade process gives rise to the 

biased production of available vacancies and self-interstitials. This 

production bias mechanism can only occur under neutron or heavy ion 

irradiation conditions and is absent in the case of Frenkel pair production 

under electron irradiation. The dislocation bias mechanism can operate under 

both electron irradiation and neutron or heavy ion irradiation, conditions. 

The number of self-interstitials tied up in the clusters represents 

approximately the number of vacancies available for void growth, and this 

number basically determines the strength of the production bias. Both the 
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production bias and the dislocation bias occur because the preferential 

trapping of interstitial atoms at dislocations provides the excess of vacancies 

required to sustain the void. The net result of the production bias is the same 

as that of the dislocation bias: the provision of an excess of vacancies. 

However, the physical processes involved in the two mechanisms are very 

different. In the case of the dislocation bias, the strain-field interaction drives 

the self-interstitial atoms to migrate to dislocations, where they are 

preferentially annihilated. In the case of production bias, the 

interstitial-interstitial interaction (and not the interstitial-dislocation elastic 

interaction) locks up the interstitials in dislocation loops.   
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Chapter 3: The sharp boundary approach of 

void evolution 

 

The sharp boundary approach (SBA) or classical nucleation theory treats the 

void as a spherical vacuum space encased by a sharp metallic surface in 

which there are no atoms and vacancies [24, 96]. The void embryos are 

nucleated at discrete sites locally and occasionally by the large stochastic 

fluctuation of vacancies overcoming an energy barrier which is about one 

third of the surface energy of the corresponding void embryos. The 

vacancies diffuse from the high concentration zone to the low concentration 

zone in the matrix under the driving force produced by the gradient of 

chemical potential. As previously mentioned, the formation of vacancies 

need an external force or thermal fluctuation to act on atoms to break the 

bonds between them and kick them away from lattice sites, which will 

increase the enthalpy of the system. There is a minimum energy Ev
f
 needed 

to form a single vacancies. The formation energy of n vacancies is almost 

linearly proportional to the number of vacancies, which can be written as 

nEv
f
, because the vacancies in the metal are in a weak solution whose 

concentration is very dilute and the interaction among vacancies is very 
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small [97]. For simplicity, we assume that the volume of a single vacancies is 

equal to the atomic volume of the metal and that an atomic volume Ω is 

added to the volume of the void when a vacancy jumps into the void. Based 

on this assumption and the fact that the vacancy concentration is far smaller 

than unity in the irradiated metal, the vacancy concentration Cv is defined as 

n/N=nΩ ≈ n/na, where N = na + n is the number of lattice sites per unit 

volume in the single crystal and equals to 1/Ω, n being the number of 

vacancies per unit volume and na the number of atoms per unit volume.  

 

3.1 The Gibbs free energy of the system with the 

presence of vacancies 

The isothermal and isobaric conditions are usually considered in experiments 

of void formation and evolution in metal under irradiation conditions 

because to fix the metal volume is more difficult than fixing the pressure. 

Therefore, the Gibbs free energy thermodynamic potential is chosen in 

studying void formation and evolution. The Gibbs free energy and the free 

energy density of metal with vacancies present can be written as follows: 

        0, , , , , ,f

cl a a v a

V

F P T n n n P T nE P T TS n n dV      (3.1) 
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        0, , , , , ,f

cl a a v af P T n n n P T nE P T TS n n     (3.2) 

where µ0(P,T) is the chemical potential of pure metal without vacancies, 

Ev
f
(P,T) the formation energy of a single vacancies, P the pressure, T the 

absolute temperature. naµ0(P,T) + nEv
f
(P,T) is enthalpy, which is related to 

the chemical potential of every atom and the formation energy of vacancies. 

Thus the production of vacancies will increase the enthalpy of the system 

due to the energy required to break the bonds. The energy term, –TS(na,n), in 

thermodynamic potential equation (3.2), is related to entropy originating 

from the thermal fluctuation. The competition between enthalpy due to the 

formation of vacancies and the energy due to entropy will minimize the local 

Gibbs free energy and dissipate the total Gibbs free energy of the system. 

The configurational, or mixing, entropy is rewritten as follows: 

 lnBS k w   (3.3) 

where kB is the Boltzmann constant and w the number of microstates related 

to the vacancy distribution in the metal. The number of microstates is written 

as follows: 

 
 

! !

! ! ! !

n

N

a

N N
w C

N n n n n
  


  (3.4) 

Thus 
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ln ln ln
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a

B a a a a

n n
S k w k

n n

k n n n n n n n n


 

      

  (3.5) 

substituting equation (3.5) into equation (3.2), the Gibbs free energy density 

can be written as follows: 

        0, , , ln ln lnf

cl a v B a a af P T n P T nE P T k T n n N n n n n        (3.6) 

The chemical potential of vacancies in a weak solution is  
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(3.7) 

The approximation in above equation holds because the vacancy 

concentration is very dilute in metal. 

We assume that the creation of vacancies and the addition of atoms to 

the system are independent of each other. The total number of lattice sites 

equals the sum of the number of atoms and the number of vacancies. 

Therefore, the expression of Gibbs free energy density can be written as 

follows: 
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 (3.8) 

The chemical potential µa of atoms in the lattice with vacancies present 

can be obtained from following derivation: 

 

 
 

        

 

 

   

 

0

0

0

0

0

,
,

, , ln ln ln

, ln

, ln

, ln 1

,

cl

a

a

f

a v B a a a a

a

a
B

a

B

B v

B v

f P T
P T

n

n P T nE P T k T n n n n n n n n

n

n n
P T k T

n

N
P T k T

N n

P T k T C

P T k TC


















        





 

 


  

 

(3.9) 

Both the chemical potential of vacancies and that of atoms in the metal 

with vacancies present are functions of vacancy concentration. In fact, the 

Gibbs free energy density can be written as a function of vacancy 

concentration as well, which is useful because we can make an extrapolation 

from it to get the Gibbs free energy density that can be used in the 

phase-field method. Since we will mainly study the influence of vacancy 

behavior on void evolution, it will be convenient to focus only on the 

influence of vacancy concentration on the thermodynamic potentials, in this 

study. The configurational entropy and free energy density related to the 

vacancies can be written as follows: 
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 (3.11) 

Since the vacancy concentration in metal is very dilute, the approximation in 

the last step of equation (3.11) is automatically satisfied. The construction of 

free energy density used in the phase-field method should base on expression 

(3.11). In other words, the free energy density used in the phase-field method 

should be able to reduce to expression (3.11) when the vacancy 

concentration is close to zero. 

 

3.2 The void formation mechanism in the sharp 

boundary approach 

According to classical nucleation theory, a super-saturated solution is in a 

meta-stable state, which is stable for the infinitesimal fluctuation due to the 

requirements for formation of a new phase surface and unstable for relatively 

large fluctuations which can overcome the energy barrier due to formation of 
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surface. A system evolves from a meta-stable state towards the stable 

equilibrium state through the nucleation and growth of new phases. The 

critical energy for the formation of a void is determined by competition 

between a volume free energy, which favors creation of the void, and a 

surface free energy, which favors its dissolution. The critical radius results 

from this competition. For a system involving only a flat external surface in 

the thermodynamic equilibrium state, the chemical potential µve(P,T) of 

vacancies in the metal should be written as follows [26, 28, 98]: 

    , , lnf

ve v B veP T E P T k T C    (3.12) 

where Cve is the saturated vacancy concentration, or thermal equilibrium 

vacancy concentration. We can choose this thermodynamic equilibrium state 

as a reference state by assuming that its chemical potential is equal to zero. 

Then the saturated vacancy concentration or thermal equilibrium vacancy 

concentration is given by: 

  exp ,f

ve v BC E P T k T     (3.13) 

And the equation (3.7) can be rewritten as: 

    , lnv BP T k T SR   (3.14) 

where SR = Cv/Cve is the super-saturation ratio, which is supersaturated for 
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Cv > Cve and under-saturated for Cv < Cve. The change in the Gibbs free 

energy thermodynamic potential due to the aggregation of m vacancies to 

form a void nucleus (formation energy of a void nucleus) is given by [26]: 

    , ,cl v v sm P T P T A       
 

 (3.15) 

where µv'(P,T) is the chemical potential of vacancies in the reference state, 

which thus equals the saturated vacancy chemical potential µve(P,T). It 

should be noted that µv'(P,T) is not the chemical potential of vacancies in the 

void, because there are no atoms in the void, and consequentially no 

vacancies. µv(P,T) is the chemical potential of supersaturated vacancy in the 

metal, γs the surface tension, and A the area of void surface. If the void is 

spherically symmetrical with a radius R, the void surface area A = 4πR
2
 and 

m = 4πR
3
/(3Ω).  

The Gibbs free energy change consists of two parts. The first part, 

m[µv'(P,T) – µv(P,T)], is the energy change due to the difference of m 

vacancies between the reference state and the supersaturated state in the 

metal, which is negative and decreases the system Gibbs free energy, and 

favors void formation and growth. The second part, γsA, is the energy needed 

to create the void surface, which is positive and increases the system Gibbs 

free energy, and suppresses void formation and growth. The equation (3.15) 
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can also be written as follows: 

  
3

24
, ln 4

3

f

cl v B v s

R
E P T k T C R


        

 (3.16) 

According to the thermodynamics, the spontaneous process that the 

system inclines to is the process of reduction of system Gibbs free energy to 

reach a stable state, which requires that the differential of Δcl with respect to 

void radius be negative in the process. Thus for void growth process dR > 0, 

it requires d(Δcl)/dR < 0. For void shrinkage process dR < 0, it requires 

d(Δcl)/dR > 0. The expression of the derivative of Gibbs free energy change 

Δcl with respect to void radius R is written as follows: 

  24
ln 8cl B

v ve s

d k T
R C C R

dR

 
 


  


 (3.17) 

If the jumping of vacancies into the void will result in the reduction of 

system Gibbs free energy, the void will grow; otherwise it will shrink. Thus 

there is a critical void radius for void evolution. If the void radius exceeds 

the critical value the jumping of vacancies into the void will result in the 

reduction of the system Gibbs free energy and the growth of the void; 

otherwise it will not. The critical void radius can be obtained by assuming 

that the derivative of Gibbs free energy change Δcl, with respect to void 

radius R, equals zero. 
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
  (3.18) 

From the above equation one can get the critical void radius for a system 

with vacancy concentration Cv in the matrix. 
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B v ve
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k T C C

 
  (3.19) 

Fig. 3.1a and b show the critical void radius Rc as a function of vacancy 

concentration for molybdenum and copper, respectively. Fig. 3.1c and d show 

the critical void radius as a function of temperature for molybdenum and 

copper, respectively. The critical void radius decreases with the increase of 

vacancy concentration (see Fig. 3.1a and b) and increases with temperature 

when the vacancy concentration is fixed (see Fig. 3.1c and d). Each point in 

Fig. 3.1 represents a state of the system, and each state point on the curves in 

Fig. 3.1 represents an unstable equilibrium state, in which the void neither 

grows nor shrinks but will easily enter a non-equilibrium state (growth or 

shrinkage of void) under the influence of even a very small fluctuation of 

vacancy concentration. Thus, any deviation from this unstable equilibrium 

state induced by a small disturbance from the environment will result in the 

continuous growth (or shrinkage) of the void. For a void to be in an unstable 

equilibrium state, a small void requires high vacancy concentration in the 
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matrix, while, at higher temperatures, a larger radius is required for the void 

to be in an unstable equilibrium state.  

Each curve in Fig. 3.1 separates the whole domain into two regions. 

Any state point in the top area on the right side of the curve in Fig. 3.1a and b 

corresponds to the growth of a void, or to thermally stable state, while the 

bottom area on the left side of the curve corresponds to the shrinkage of a 

void. Any point in the top area on the left side of the curve in Fig. 3.1c and d 

corresponds to the growth of a void, while any point in the bottom area on 

the right side of the curve corresponds to the shrinkage of the void. 

   

 

                  (a)                               (b) 
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                  (c)                              (d) 

Fig. 3.1. Critical void radius, Rc, as a function of vacancy concentration, Cv, in the 

matrix at two different temperatures (a) for molybdenum and (b) for copper, and as 

a function of temperature, T, for two different vacancy concentrations in the matrix 

(c) for Mo and (d) for Cu. 

For a system with multiple voids, the voids with radius R > Rc will 

grow and the voids with radius R < Rc will shrink and dissolve. The 

vacancies emitted from the surface of shrinking voids into the matrix will 

favor the growth of larger voids. This phenomenon is known as Ostwald 

ripening. Corresponding to this critical void radius there is a critical vacancy 

concentration CveR (or thermal emission vacancy concentration) required in 

the matrix for the system with a void with radius R to be in an equilibrium 

state.  

    exp 2 f

veR s v BC R E k T   
 

 (3.20) 
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When the vacancy concentration in the matrix is bigger than CveR, the void 

will grow and vise versa. A system with vacancy concentration in the matrix 

equaling to CveR is very sensitive to vacancy concentration fluctuation 

because a small vacancy concentration increase or decrease will result in the 

continuous growth (or shrinkage) of the void. 

The thermal equilibrium vacancy concentration, Cve, is related to a flat 

surface; the thermal emission vacancy concentration, CveR, is related to a 

curved surface. The ratio of CveR to Cve is the critical super-saturation ratio of 

vacancy concentration in the matrix for a void with a radius of R not to 

shrink. 

  exp 2veR
c s B

ve

C
SR Rk T

C
      (3.21) 

And the corresponding chemical potential is  

  
2

ln s
vR B veR vek T C C

R





   (3.22) 

The chemical potential in the matrix in an equilibrium state is inversely 

proportional to the void radius. 
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                  (a)                              (b) 

 

                (c)                                  (d) 

Fig. 3.2. Supersaturation ratios of vacancy concentration, SRc, (a) for molybdenum 

and (b) for copper, and thermal emission vacancy concentration, CveR, (c) for 

molybdenum and (d) for copper as functions of temperature, T, for voids of 

different radius, R. 

The critical supersaturation ratio of vacancy concentration for a void in 

equilibrium with the system is determined by the absolute temperature and 

the radius of the void and is not related to the formation energy of the 
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vacancy. Fig. 3.2a and b show that SRc decreases as temperature increases in 

molybdenum and copper, respectively, while the thermal emission vacancy 

concentration CveR increases with temperature (Fig. 3.2c and d). The curves of 

CveR are close to the curve of Cve when the void radius approaches infinity 

(Fig. 3.2c and d). From the graphs in Fig. 3.2 we can see that the larger the 

void is, the smaller vacancy concentration or supersaturation ratio needed for 

a void to be in an unstable equilibrium state.  

The equation (3.17) can be rewritten in terms of Rc as follows:  

 
28

8cl s
s

c

d R
R

dR R

  
 


    (3.23) 

In a meta-stable state, the vacancy concentration in the matrix is 

supersaturated (Cv > Cve) or µv'(P,T) – µv(P,T) < 0. A thermal fluctuation in 

vacancy concentration may result in the nucleation of a void by the 

overcoming of a free energy barrier. This energy barrier, which is the 

maximum of formation energy [28] of the void, can be obtained by the 

integration of equation (3.23) with respect to void radius from 0 to Rc (or by 

directly substituting the critical void radius Rc into equation (3.16)). The 

formation energy is equal to one third of the surface energy. 

  
24

3

c s
cl c

R
R

 
   (3.24) 
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It is indicated from equation (3.25) that the formation energy of void is 

totally determined by the surface energy of the void, and not related to the 

difference of chemical potential of vacancies in the reference state and in the 

supersaturated state in the matrix. The nucleation rate of voids mainly 

depends on the energy barrier [28] 

 
 

0 exp cl cvoid
v

B

RdN
N

dt k T

 
  

 
 (3.25) 

Nv0 is the pre-exponential coefficient associated with the characteristic time 

scales of motion in the system (nucleation frequency). The nucleation rate of 

void is inversely proportional to the formation energy of void. The larger the 

void nucleus, the smaller the nucleation probability of it will be. 

The above analysis is based on equilibrium thermodynamics, which 

can only be used to obtain some criterion to determine whether a void is 

stable or not under different conditions. In order to obtain the void growth 

rate or the microstructural evolution speed of system, the vacancy diffusion 

behavior in the metal should be studied.  

 

3.3 Vacancy diffusion in the matrix 
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For any state deviating from thermodynamic equilibrium, there are 

thermodynamic driving forces to make the mass transport phenomenon occur. 

According to non-equilibrium thermodynamics, the local thermodynamic 

equilibrium can be assumed for a system close to equilibrium state. Thus the 

concepts of equilibrium thermodynamics can be extended to these 

non-equilibrium conditions, in which the flows are small and the driving 

forces gradually throughout in space. Based on these assumptions, we can 

obtain a linear relationship between the flows and the driving forces for the 

near-equilibrium system [99].  

 i ij j

j

LJ X  (3.26) 

where Ji is the flux of species i and Xj the driving force of species j. Xj is the 

gradient of chemical potential, which is related to concentration or density. 

Lij are the kinetic coefficients which describe the cross-coupling effects of 

the different forces. They have the following relations: 

 ij jiL L  (3.27) 

Equation (3.27) is called the Onsager relations in irreversible 

thermodynamics. Equation (3.26) is an extension of Fick‟s first law. For a 

system containing the vacancies and self-interstitials, equation (3.26) can be 
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rewritten as follows: 

    , ,vv vi
v v i

M M
t t     

 
J r r  (3.28) 

    , ,iv ii
i v i

M M
t t     

 
J r r  (3.29) 

where Jv is the flux of vacancies, Ji the flux of self-interstitials; ∇ the 

gradient operator; Mvv and Mii the mobility of vacancies and self-interstitials,  

respectively; and Mvi = Miv is the mobility due to the mutual influence of 

diffusion of vacancies and self-interstitials. The gradient of chemical 

potential is the driving force for the diffusion of vacancies and 

self-interstitials. The other effects, such as the influence of the temperature 

gradient on the diffusion of point defects and the heat flow for a 

non-isothermal system, can be incorporated into the system in the same way. 

If Mvi is small, the diffusion of vacancies and self-interstitials are 

independent of each other. 

In this work, the influence of vacancies on void evolution is the main 

concern. The effect of self-interstitials created by irradiation is ignored, 

which means that the concentration of vacancies calculated in this work is 

the net value after all possible annihilation mechanisms due to recombination 

and interaction of vacancies with other types of defects, such as 
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self-interstitials, dislocations, grain boundaries and so on. The elastic 

interaction between void and point defects will not be taken into account 

because its effect is relatively small [16]. The equation (3.28) is rewritten as 

follows: 

  ,v
v v

M
t  


J r  (3.30) 

where Mv is given by 

 
 ,v

v

B

DC t
M

k T


r
 (3.31) 

where D is the diffusion coefficient. The diffusion coefficient is temperature 

dependent and a scalar for vacancies whose diffusion is isotropic. 

 0 exp
m

v

B

E
D D

k T

 
  

 
 (3.32) 

where D0 is the pre-factor and m

vE  is the migration energy of vacancy. 

Substituting equations (3.7) and (3.31) into equation (3.30), one gets 

  ,v v

D
C t  


J r  (3.33) 

At positions where there are neither sources nor sinks, the conservation 

of mass should hold. The continuity equation and Fick‟s second law are 

written as follows: 
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r

r

 (3.35) 

Through equation (3.35) the vacancy distribution in the matrix and the void 

growth rate can be obtained. In spherical coordinates, the diffusion equation 

(3.35) is rewritten as 
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      

 (3.36) 

For a system with spherical symmetry 

 2

2

( , ) 1 ( , )v vC r t C r t
Dr

t r r r

   
  

   
 (3.37) 

Based on the above analysis, the growth rate of a void (or the velocity of 

surface motion) is 

 
( , )v

v r R
r R

dR C r t
J D

dt r



  


 (3.38) 

For the derivation process of equation (3.38), see Appendix A. Equation 

(3.38) indicates that the void growth rate is proportional both to the diffusion 

constant of vacancies and the gradient of vacancy concentration at the void 
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surface or the gradient of chemical potential at the void surface. Thus the 

void growth rate is related to the migration energy of vacancies. However, 

the nucleation rate and the critical radius of voids are independent of the 

migration energy, while related to the formation energy of vacancies. 

 

3.4 Rate theory of void evolution 

The rate theory (RT) [15, 29-31] is based on chemical kinetics and is the 

most used theory for the study of void evolution. The vacancy concentration 

distribution in the matrix and the void growth rate in RT can be obtained by 

assuming that the steady-state of vacancy diffusion is reached at all times; 

therefore, the left hand side of equation (3.37) is equal to zero under certain 

boundary conditions. This is approximately true if the void evolution rate 

(dR/dt) is small. The time ∆τ for the void surface to move the very tiny 

distance ∆R << R is about ∆R/(dR/dt)  R∆R/(DC). The corresponding 

relaxation time ∆t of the vacancy diffusion field in front of the void surface 

is about ∆R
2
/(2D). The vacancy concentration C in the solution is very dilute 

under experimental conditions and ∆R << R, as a result, ∆t is far smaller than 

∆τ. Thus, it can be considered that the steady-state of the diffusion field in 

front of the void surface is reached, i.e., the time derivative in equation (3.37) 
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can be set approximately equal to zero. This is proved by our results in the 

next section, in which the void evolution curves obtained with SBA coincide 

with those obtained by this steady-state assumption, especially at high 

temperature.  

Under the condition that the radius of the spherical region L is far 

greater than the void radius and in the absence of interstitials diffusion, the 

void growth rate can be written as: [100], 

 
1

( )b veR

dR
D C C

dt R
  ,  when L R    (3.39) 

Otherwise, 

 ( )
( )

b veRr R

dR L
J D C C

dt R L R
   


 (3.40) 

The geometric structure of the above model is shown in Fig. 3.3. For the 

derivation of equations (3.39) and (3.40), see Appendix B. These equations 

are conventionally used in the rate theory treatment of void ensemble 

evolution under irradiation [15, 29, 30]. 
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Fig. 3.3. Schematic illustration of a cross section of a spherical domain with a 

spherical void. R is the void radius, and L the radius of the system. 

Whether the void will grow or shrink is determined by the difference 

between the vacancy concentrations at system boundary Cb and at void 

surface CveR. The equilibrium state is reached when Cb equals CveR, which 

means that the vacancies flowing in and out of the void balance each other; 

otherwise the system will be in a non-equilibrium state. The equation (3.39) 

is a good tool for us to understand the relationship between void growth rate 

and system parameters such as temperature, void radius and vacancy 

concentration at the boundary. 



Chapter 4: Phase-field model of void evolution  

88 

 

Chapter 4: Phase-field model of void 

evolution 

 

In PFM for void evolution, the whole system is treated as a system 

composed of two phases: the phase of void and the phase of matrix. There is 

a diffuse interface between these two phases. The vacancy concentration is 

used as the order parameter, whose value is unity in the void and very small 

(within a range from 10
-12

 to 10
-5

, according to the environment temperature) 

in the matrix but varies from almost zero (in the matrix) to unity (in the void) 

within the interface. Since the vacancy concentration in the void is far 

greater than in the matrix, in order to realize void growth the uphill diffusion 

within the interface zone is needed in the simulation. In addition, the 

vacancy concentration changes by many orders of magnitude within the 

narrow interface zone. This imposes a huge difficulty for the simulation of 

PFM of void evolution. 

 

4.1 Total free energy functional 
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How to configure a free energy functional which can capture the physical 

character of void evolution under the vacancy diffusion in the matrix is of 

crucial importance. According to Cahn and Hilliard [12], the free energy of a 

non-uniform system can be rewritten as the sum of two contributions - the 

functions of the local composition and of its derivatives, respectively - based 

on the assumption that the local free energy of a non-uniform system 

depends both on its composition and on the composition of its near 

environment. For a system containing vacancies with cubic or isotopic 

symmetry, due to the invariant of local free energy to the symmetry 

operations of axis inversion and of rotation around a fourfold axis, without 

concerning the effect of external surface and neglecting terms in derivatives 

higher order than the second, the Taylor expansion of total free energy F can 

be written as follows: 

      
22 3 3

0

1 1
, , ,v v v v v

V V

F f C C C d r f C C d r      
     (4.1) 

The integration is conducted over the total volume V, where f(Cv, ∇Cv, ∇2Cv, 

···) is the local free energy per lattice site of a system containing vacancies; 

f0(Cv) is the local free energy per lattice site of uniform vacancy 

concentration or local bulk free energy; α(∇Cv)
2
 is the free energy related to 

non-uniform vacancy concentration, or the Ginzburg-type gradient energy, 
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which describes some kinds of interactions between the vacancies locally; 

and α the gradient energy coefficient, which measure the strength or range of 

these interactions of non-uniform vacancy concentration. The total free 

energy functional F with the presence of vacancies in the matrix consists of 

bulk free energy Fb and gradient energy Fg.  

           
2 3

0

1
v v v b v g v

V

F C f C C d r F C F C    
 

 (4.2) 

Higher-order gradient terms, such as (∇2Cv)
2, which can describe correlations 

on still smaller scales [33], can be included if necessary. It should be noted 

here that, although the free energy functional F is the interpolation of the true 

free energy (equation (3.2)) used in the thermodynamics, they are totally 

different [33]. The bulk free energy and gradient energy [12] are written as, 

respectively, 

      3 3

0

1
( , ) ( , )B

b v v b v

V V

k T
F C f C t d r C t d r 

  r r  (4.3) 

  
2

2 3 2 3[ ( , )] [ ( , )]B
g v v v

V V

k T
F C C t d r C t d r

 
   
  r r  (4.4) 

where b(Cv(r,t)) is the free energy per lattice site, α relates to the surface 

tension, κ
2
 = α/(kBT) the reduced gradient energy coefficient, and κ is of a 

unit of length which characterizes an “interaction length” among vacancies. 
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In fact, the free energy functional expressed by equation (4.2) only 

takes into account the free energy originating from short range interaction. 

However, free energy accounts for long range interactions, such as the elastic 

interaction, electric dipole-dipole interactions and electrostatic interactions 

as well, and these can be introduced to the total free energy functional by 

adding following term [101] 

   3 3

l

V V

F G d rd r


    r r  (4.5) 

where G(r – r') is a green function which describes long range interaction. 

 

4.2 The chemical potential 

The chemical potential of vacancies in the PFM is a variational derivative of 

the free energy functional with respect to vacancy concentration: 

  
   0 22

v v

v v

v v

F C f C
C C

C C


 




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
 (4.6) 

Equation (4.6) only holds for the condition that the vacancy concentration is 

fixed at the system boundary (Dirichlet boundary condition), or for the 

condition that the number of vacancies of the whole system is conserved 

(periodic boundary condition). For the derivation processes for equation 
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(4.6), see Appendix C. Any heterogeneity in chemical potential, which is the 

driving force ∇µ(Cv), will produce a redistribution of chemical potential until 

it is constant throughout the whole system, and the system reaches an 

equilibrium state. In the SBA, the driving force ∇µ(Cv) for vacancy diffusion 

can be reduced to ∇Cv, which means that any heterogeneity in vacancy 

concentration will produce a flow of vacancies until the vacancy 

concentration is homogeneous everywhere. Here in the PFM the driving 

force ∇µ(Cv) can be reduced to ∇Cv only in the matrix. In the thermodynamic 

equilibrium state, the driving force ∇µ(Cv) should be zero everywhere and 

the chemical potential should be spatially identical throughout the whole 

system. For a system containing a void with radius R in the thermodynamic 

equilibrium state in the PFM, the chemical potential at any position within 

the system should be equal to the chemical potential in the matrix obtained 

with SBA (see equation (3.22)). Thus, in a thermodynamic equilibrium state, 

by combining equation (4.6) and (3.22) we get 
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v s
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
 

 
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
 (4.7) 

The chemical potential in the system in the equilibrium state is inversely 

proportional to the void radius. 
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4.3 The bulk free energy 

There are two requirements for the bulk free energy. First, in order to recover 

the SBA, the reduced bulk free energy per lattice site b(Cv(r,t)) must satisfy 

the corresponding limit [97], i.e., it should be consistent with the free energy 

density used in the SBA and RT (see equation (3.11)). Thus the reduced bulk 

free energy per lattice site should approach kBT(CvlnCv/Cve – Cv) for Cv  0. 

This can be written as follows: 

      lnb v v v ve v vC C C C C C     (4.8) 

Second, since the vacancy concentration is the order parameter, the 

reduced bulk free energy per lattice site, a phenomenological function with 

parameters fitted to experimental data, should be a double well function that 

has two global minima - for vacancy concentration at Cve and at unity - 

which represent the matrix phase and void phase, respectively. 

The following interpolation of equation (4.8) will be used in PFM: 

        ln 1 ln 1 1
f

v
b v v v v v v v

B

E
C C C C C C C

k T
        (4.9) 

This is a symmetrical double well function, symmetric around 0.5vC   

with the two minima at C  Ce and C  1. It is the extrapolation of the free 
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energy density in SBA (see expression (3.11)). From expression (4.9) one 

can find that, if Cv approaches zero, kBTb(Cv(r,t))/Ω will be reduced to 

expression (3.11). Thus (4.9) satisfies the dilute solution limit.  

Fig. 4.1 show the curves of b for Mo and Cu at four different 

temperatures. The diagrams in the column to the right show the curves of b 

around the point of saturated vacancy concentration, which is one of the 

minima of function b. 

 

 

(a)                              (b) 
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                 (c)                                (d) 

 

                (e)                                (f) 

 

                 (g)                                (h) 

Fig. 4.1. The curves of the bulk free energy, b, for Mo at temperature 1100 K (a) (b) 

and 1750 K (c) (d), and for Cu at temperature 550K (e) (f) and 850K (g) (h). (b) (d) 

(f) (h), are the curves around the point of saturated vacancy concentration, Cve, on 

the corresponding curves (a) (c) (e) (g), respectively. bmax is the height of the 

energy barrier between two minima in the bulk free energy, b. 

The increase of temperature decreases the free energy barrier bmax and 
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increases the saturated vacancy concentration. From Fig. 4.1, we can find that 

the maxima of bulk free energy for molybdenum are 7.2 kBT and 4.3 kBT at 

temperatures 1100 K and 1750 K, and for copper are 6.1 kBT and 3.7 kBT at 

temperatures 550 K and 850 K, respectively. 

 

4.4 The bulk chemical potential and uphill 

diffusion 

In order to be consistent with equation (3.30) used in the SBA, the flux per 

unit area in the PFM is rewritten as follows:  
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where  
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which is the bulk chemical potential and 
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where the transport coefficient M is related to the diffusivity and is position 

dependent 

   ( , )[1 ( , )]v v v

B

D
M C C t C t

k T
 r r  (4.13) 

which is the interpolation of formula (3.31). This type of formula of mobility 

combined with equation (4.10), can guarantee that the Cahn-Hilliard 

equation in the matrix is reduced to the diffusion equation (3.35) in the SBA. 

According to equation (4.10), the direction of vacancy flow is against the 

vacancy concentration gradient ∇Cv when De(Cv) is smaller than zero. This 

phenomenon is called uphill diffusion. Assume that the vacancy 

concentration profile is of sinusoidal shape. 

 0 ( , )cos( )vC C A t  k k r  (4.14) 

where k is wave vector, A(k,t) the amplitude, then  
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where, k
2
 = k·k. Since M(Cv) is always positive, in order to make De(Cv) 

smaller than zero, the following relation should be satisfied  
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Since 0 < k < ∞, the range of wave number k for the uphill diffusion should 

be determined. Substituting expression (4.11) into equation (4.16) gets 
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Thus, the range for the up-hill diffusion to occur is 

 0 ck k   (4.18) 

where  

 
2f

v B
c

E k T
k




  (4.19) 

This is the largest wave number for up-hill diffusion to occur, and the 
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corresponding wave length is  
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2
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c f

c v Bk E k T

 
  


 (4.20) 

If the wave length of the sinusoidal of the vacancy concentration 

fluctuation is smaller than  2 2f

v BE k T   , no matter what its 

amplitude is, up-hill diffusion will not occur. For each basic wave whose 

wave number is smaller than kc, there is a corresponding vacancy 

concentration Cvu(k) for up-hill diffusion to occur.  

  
 21 1 2

2

f

B v

vu

k T E k
C k

   
 

       0 ck k    (4.21) 

Cvu(k) increases with the increase of both the temperature and wave number 

k. If k is close to zero, which corresponds to a long wave length, the vacancy 

concentration for uphill diffusion is 

 
 1 1 2

2

f

B v

vu

k T E
C

 
  (4.22) 

This means that the uphill diffusion will be more easily to occur for the 

vacancy concentration fluctuation in a larger area. A large fluctuation area of 

vacancy concentration with small amplitude can result in the decrease of the 

Gibbs free energy of the system and make the system unstable. In order to 
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realize the up-hill diffusion, the wave length should be infinite for the wave 

with infinitesimal amplitude. For molybdenum, Ev
f
/(kBT) is about 31 at 

temperature 1100 K and 19.9 at temperature 1750K.  is equal to 1nm at 

temperature 1100K and 0.63nm at temperature 1750K. The critical wave 

vector kc is about 5.39×10
9
 rad/m at temperature 1100K and 6.72×10

9
 

rad/m at temperature 1750 K, whose corresponding wave length λc is 

1.166nm and 0.935 nm, respectively. Assuming that the vacancy 

concentration profile of a void is of a sinusoidal shape with λ = 2R, the value 

of κ
2
k

2
 is about 9.87 at temperature 1100 K and 3.92 at temperature 1750 K 

for a void with radius 1 nm. The corresponding critical vacancy 

concentration for uphill diffusion is 0.024 at temperature 1100 K and 0.032 

at temperature 1750 K. 

Any function of vacancy concentration profile can be expanded by 

using the sinusoidal basis (see equation (4.14)), which is a kind of Fourier 

transform.  

   0
0

2
, ( , )cos( )vC t C A t d





  r k k r k  (4.23) 

The occurrence of up-hill diffusion does not require that the vacancy 

concentration profile is of a sinusoidal shape (or basic wave) whose wave 
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number k < kc; it only requires that the Fourier expansion of vacancy 

concentration profile contains the basic wave with k < kc. Thus, the critical 

vacancy concentration for spinodal decomposition to occur is equal to Cvu 

(see equation (4.22)), which can also be determined as follows 
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b v
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 (4.24) 

or 
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 (4.25) 

The critical value for uphill diffusion is determined by the bulk free energy. 

Fig. 4.2 show the curves of chemical potential and the critical vacancy 

concentration for uphill diffusion. The critical value for uphill diffusion for 

molybdenum is about 0.016 at temperature 1100 K and 0.026 at temperature 

1750 K and for copper about 0.019 at temperature 550 K and 0.03 at 

temperature 850 K as shown in Fig. 4.2. These values are far greater than the 

vacancy concentration in the matrix, which guarantees that uphill diffusion 

will not occur in the matrix and only occur within the void-matrix interface. 

As such, the void formation and growth via spindoal decomposition of 

vacancy concentration (or uphill diffusion globally) can be avoided, to 
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ensure the vacancy diffusion in the matrix is the same as that obtained with 

SBA. The chemical potentials at critical vacancy concentration are 26.51 kBT 

(1100 K) and 15.23 kBT (1750 K) for molybdenum and 22.03 kBT (550 K) 

and 12.95 kBT (850 K) for copper. 

 

 

                 (a)                               (b) 

 

                  (c)                                (d) 

Fig. 4.2. Profile of chemical potential of molybdenum at temperatures 1100 K (a) 

and 1750 K (b) and of copper at temperatures 550 K (c) and 850 K (d). The blue 
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point on each curve corresponds to the critical point for uphill diffusion, and 

corresponding vacancy concentration, Cv, beside the blue point is the critical 

vacancy concentration for uphill diffusion. 

 

4.5 The interfacial energy and gradient energy 

coefficient 

In the phase field model the width of interface is finite. This finite interface 

thickness and the interfacial energy originate from finite correlation lengths 

on a microscopic scale. This interfacial energy is characterized by the surface 

tension in the case of the SBA. In order for the phase-field model to 

reproduce the void evolution in the SBA, the relation between the interfacial 

energy used in the PFM and the surface tension should be built. One can 

expect that the interface thickness and interfacial energy are proportional to 

surface tension. In this section, the interfacial energy and gradient energy 

coefficient will be studied.  

The interfacial energy consists of two types of free energy within the 

interface: the bulk free energy and the gradient energy. The interface width is 

dictated by the competition between the chemical potential due to the 

gradient energy and that due to the bulk free energy which produce opposite 
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effects in determining the width. The bigger gradient energy coefficient will 

make the interface width larger. The wider, or the more diffuse, of the 

interfacial region, the smaller the contribution of the gradient energy will be. 

However, for wider interfaces, there are more materials, within which the 

phase-field variables are of non-equilibrium values, are introduced into the 

interfacial regions. These materials in non-equilibrium states will make the 

contribution of bulk free energy to the interfacial energy larger. Thus, larger 

values of the gradient energy coefficient result in more diffuse interfaces, 

whereas the larger bulk free energy (or height of barrier between the two 

wells in the bulk free energy function) result in sharper interfaces [12].  

The interfacial energy in the PFM is written as follows: 

 

   
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



 (4.26) 

The chemical potential formula (4.6) can be rewritten as follows: 
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 (4.27) 

where α = 2
kBT, and -coefficient is of a unit length which characterizes an 

“interaction length” of vacancies. At equilibrium state, the chemical potential 

should be constant throughout the system. 
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 (4.28) 

This can also be derived as in Appendix D. According to the boundary 

conditions, Cv = Cb = CveR at r  . The chemical potential in the PFM is 

equal to that in the SBA. i.e., μ(Cv)/kBT = ln(CveR /Cve). Therefore, in the 

equilibrium state, we have 
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 (4.29) 

The gradient energy coefficient is the key point for the gradient energy. It 

will be derived and discussed in the following sections for the flat surface 

case and the curved surface case. The derivation of κ-coefficient follows the 

work by A. A. Semenov and C. H. Woo [24], under the assumptions that the 
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width of interface is small,   is size independent, and the system is in the 

equilibrium state. 

 

4.5.1 Flat interface 

For a flat interface between the void and matrix, CveR = Cve in equilibrium 

state. Equation (4.28) becomes one dimensional and 
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 (4.30) 

Multiplying both side of equation (4.30) by dCv/dx and integrating it with 

respect to x which is the spatial coordinates, then produces 
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C const

x
 
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 
 (4.31) 

At a position far from the flat interface x  , dCv/dx equals zero and b(Cve) 

≈ –Cve. Thus the constant is equal to –Cve. The above equation becomes 

  
2

2 v
b v ve

C
C C

x
 

 
   
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 (4.32) 

Equation (3.30) indicates that, for a flat interface case, the chemical potential 

due to bulk free energy is offset it due to gradient energy in the equilibrium 
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state. From equation (4.32) we can find that the bulk free energy is equal to 

the gradient energy. Both of the bulk free energy and the gradient energy are 

half of the interfacial energy. Substituting equation (4.32) into equation (4.26) 

gets us 
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 (4.33) 

Where S is the interface area, ∆F/S = γs. Combing equations (4.32) and 

(4.33), we have 
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B
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Assuming κ is independent of the vacancy concentration, one can get the 

expression of κ from equation (4.34). 
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where Is = 1/I1 and 
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Considering the specific expression of b (see equation (4.9)), κ decreases 

with increasing of temperature. 
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At equilibrium state the interface width is given by 
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which is derived from equation (4.32). From the above, one can see that a 

larger   makes the interface wider and a higher bulk free energy across the 

interface makes the interface narrower. Equation (4.37) is approximately 

related to the maximum of reduced bulk free energy per lattice site bmax, 

  
1

2
maxbl  


   (4.38) 

(See Appendix E for the proof). The larger the maximum of bulk free energy 

is, the better the approximation of equation (4.38) will be. Due to the 

formula used in this thesis, it can be further expressed as follows: 
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 (4.39) 

Since bmax decreases with temperature increase, l increases with 

temperature increase. Based on equation (4.39), the width of interface is 

about 3.1Å at 1100K and 3.7Å at 1750K. Thus the grid size should be 

smaller than this width which imposes a strong constraint on the simulation 

size of system and on the time step size as well.  

 



Chapter 4: Phase-field model of void evolution  

109 

 

4.5.2 Curved interface 

For simplicity, assume that the void is of spherical symmetry. The schematic 

geometric illustration model is shown in Fig. 3.3. In spherical coordinates, 

equation (4.29) is rewritten as follows: 
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 (4.40) 

Multiplying both side of equation (4.40) by dCv/dr and integrating it with 

respect to r in spherical coordinates produces 
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This can also be written as follows:  
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 (4.42) 

For boundary conditions Cv(r = 0) = 1 and Cv(r) = CveR, then 
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According to the SBA, the formation energy of a void with critical radius Rc 

is 
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The free energy change due to the formation of a void with critical radius, Rc, 

is 
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In order to obtain the gradient energy coefficient, κ, assume there is a 

perturbation of vacancy concentration 

 0( ) ( )v v vC C C  r r  (4.46) 

which is small  0( )v vC C r  everywhere, except in a small but finite 

volume δV << V, and satisfies the conservation condition, i.e., 
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And assume 
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and  
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Rc is the radius of the void in the SBA model, Rph the radius of the void 

defined in the phase-field method and Rsd the radius of the domain of the 

system. The relation between these radii is Rc < Rph << Rsd < ∞. 

The formation energy of a void with critical radius in the PFM can be 

rewritten as follows: 
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 (4.50) 

Multiplying both sides of equation (4.42) by 4r
3
/3 and integrating it with 

respect to r gets us 
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Combining equation (4.50) and (4.51) produces 

 

22
2

0

2
4

3

sdR

vB
dCk T

F r dr
dr




 
   

  
  (4.52) 

Expression (4.52) indicates that the gradient energy is 1.5 times of the 

formation energy of void. In fact, we also can derive an expression for F 

without the need to use the gradient energy term by employing the same 

derivation process as above. 
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Equating F in equations (4.44) and (4.52), one can get 
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Obtaining the gradient energy coefficient results in 
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Equating F in equations (4.44) and (4.53), one can get the value of the 

integral in equation (4.53): 

    
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4
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2 3

sdR

s c
v veR ve v veR

B

R
C C C C C r dr

k T
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      (4.56) 

The value of the integral on the left hand side of equation (4.56) should be 

positive and increase with Rc
2
, not Rc

3
. From equation (4.56) and (3.24), one 

can find that, in the equilibrium state, the right hand side of equation (4.56) 

is half of the formation energy of a void in the case of the SBA. Since in the 

equilibrium state, the chemical potential in the void is the same as it in the 

matrix, the left hand side of equation (4.56) is the bulk free energy due to the 

introduction of non-equilibrium material (vacancies) into the interfacial 
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region. Thus the bulk free energy due to the introduction of non-equilibrium 

material (vacancies) into the interfacial region is half of the formation energy 

of the void. This is total different from the case of flat surface, in which the 

gradient energy is equal to the bulk free energy of the non-equilibrium 

vacancies within the interface region and both of them are half of the 

interfacial energy. The reason of this phenomenon is following: In the flat 

surface case, the chemical potential in the matrix is zero, while in the curved 

surface case, the chemical potential in the matrix is not equal to zero, which 

is inversely proportional to the void radius, because of the curved surface 

present. Thus the differences between the chemical potential of vacancies in 

the interfacial region and that in the matrix region are different for the flat 

surface case and the curved surface case. 

Since the vacancy concentration variation is mainly within the 

interface, equation (4.55) can be simplified to the following equation by 

assuming r = Rc. 
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2 sd
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
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
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 (4.57) 

In fact, one also can obtain the above expression through equation (4.43) by 

assuming r = Rc. Equation (4.43) can be simplified as follows: 
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This indicates that the above derivation process of the gradient energy 

coefficient is correct. Equation (4.54) can reproduce the expression of the 

gradient energy coefficient for a flat surface (formula (4.35)) by using 

equation (4.57) as follows: 
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 (4.59) 

In the case of flat surface in equilibrium state, in terms of the specific 

expression of bulk free energy used, for 
2
Cv = 0 the equation (4.28) 

becomes 
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C k T C k T

 
    

 
 (4.60) 

The solutions for equation (4.60) are Cv = Cve, 0.5 and 1 – Cve, as shown in 

Fig. 4.3. Cv = Cve and 1 – Cve are in the matrix and void, respectively; only 

when Cv = 0.5 is it within the interface. 
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Fig. 4.3. The vacancy concentration for the position at which 
2
Cv=0 in equilibrium 

state. µb is the chemical potential of vacancies due to bulk free energy. ln(CveR/Cve) 

is the chemical potential of vacancies in a system with a void with radius R in 

equilibrium state. C1, C2 and C3 are three equilibrium vacancy concentrations, and 

their positions are within the matrix, interface region and void, respectively. 

For a spherical void case, the corresponding three equilibrium vacancy 

concentrations: Cve, 0.5 and 1 – Cve are no longer valid. The corresponding 

three equilibrium vacancy concentrations for a spherical void in equilibrium 

with the system will be discussed below. From equation (4.29) one can get 

 
 

   ln 1 2 ln
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    

 
 (4.61) 

The corresponding three solutions for equation (4.61) are C1, C2 and C3 (see 

Fig. 4.3). It is obvious that C1 = CveR and C3 = 1 – CveR. The slope of the 

chemical potential curve in Fig. 4.3 is 
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 (4.62) 

Since the term 1/[Cv(1–Cv)] around Cv = 0.5 is far smaller than the term 

Ev
f
/kBT, whose value is about 62 at temperature 1100 K, the slope around Cv 

= 0.5 within a big range is almost constant, as shown in Fig. 4.3. 
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 (4.63) 

And 
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 (4.64) 

Combining equations (4.63) and (4.64), one gets 
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s B

f

c v B
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R E k T

 
 


 (4.65) 

From the above equation it is obvious that the value of C2 increases with the 

void radius and decreases with the increase of temperature. But the effect of 

temperature on C2 is not as significant as that of the void radius. When the 

critical void radius approaches infinity, C2 is close to 0.5, which reproduces 

the results of the flat surface case. For any void with finite radius, C2 should 

be smaller than 0.5. At temperature 1100 K, the term γsΩ/kBT is about 1 nm 
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and the term Ev
f
/kBT is about 31. For a void with a critical radius Rc=1 nm, C2 

is about 0.466. For a void with a critical radius Rc = 0.3 nm which only 

contains several vacancies, C2 is about 0.385. Thus, the deviation of C2 from 

0.5 is very small for those voids which are not very tiny.  

At the point Cv = 0.5, according to equation (4.40), one can get 

following relations: 
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 
 (4.66) 

since ln(CveR/Cve) is always bigger than zero  
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 (4.67) 

Thus, within the interface, 
2
Cv < 0 wherever Cv > C2, and 

2
Cv > 0 

wherever Cv < C2. This means that the vacancy concentration profile within 

the interface is convex wherever Cv > C2 and is concave wherever Cv < C2. 

Therefore, the place where Cv = C2 is the inflection point, as shown in Fig. 

4.4. The vacancy concentration at the inflection point decreases with a 

decrease in the critical radius of the void. 
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Fig. 4.4. a schematic illustration of vacancy concentration profile in spherical 

coordinates. ∆l is the width of the interface, and C2 is the vacancy concentration 

whose position is at R2 which is an inflection point. Profile 1 corresponds to an 

equilibrium state, and profile 2 corresponds to a growth state.  

Profile 1 in Fig. 4.4 corresponds to a void in equilibrium state; profile 2 

corresponds to a void in growth state. The above analysis is useful for the 

following derivation for the gradient energy coefficient. Expanding Cv(r) in 

the Taylor series around the point Cv = 0.5 on the vacancy concentration 

profile, we can get  

        
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m m
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v v m m m

r R r R

dC d C
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      (4.68) 

where Rm is the position of the point Cv = 0.5. Thus, the vacancy 

concentration at the point Cv = C2 is 
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where R2 is the position of the point Cv = C2. Equation (4.66) can be 

rewritten as follows 
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Assuming Rm ≈ Rc is appropriate because Rm is almost at the middle of the 

interface. Combing equations (4.65), (4.69) and (4.70), we can get 
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where R = R2 – Rm. From equation (4.65) we also can get the gradient of 

vacancy concentration at the point Cv = 0.5, which is written as follows: 
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Since the terms γsΩ/kBT, R and Ev
f
/kBT – 2 are positive, the slope dCv/dr at 

the point r = Rm where Cv = 0.5 is negative. In fact, the vacancy 

concentration gradient is always negative within the interface because the 

spherical coordinates are used and the vacancy concentrations in the void are 
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bigger than those in the matrix.  

Equating equations (4.71) and (4.73) gets us 

  2 1
2

2

f

c v BRR E k T     (4.74) 

And substituting equation (4.74) into (4.72) gets us 
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v

r R

d C
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

  (4.75) 

In fact, this result is also simply implied by equation (4.70). The first term on 

the left hand side and the term on the right hand side of equation (4.70) are 

inversely proportional to Rc, which means the value of the second term on 

the left hand side is far smaller than for the other two terms. Therefore, the 

second term is negligible and approach to zero. From above results we can 

find that κ
2
 is proportional to R which is the distance between two points at 

which both (1/r
2
)d(r

2
dCv/dr)/dr and d

2
Cv/dr

2
 are zero. 

Assuming that the width of interface is l and the vacancy 

concentration gradient within the interface is a constant which is equal to the 

slope at the point Cv = 0.5 as Fig 4.5 shown, the slope at Rm can be expressed 

in terms of l, as follows: 
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Fig. 4.5. the approximation of slope of vacancy concentration profile in the 

interfacial region by the value of the slope at the point where vacancy concentration 

is equal to 0.5. ∆l is the width of the interface. 

Equating equations (4.73) and (4.76) produces the value of R. 
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 (4.77) 

R is inversely proportional to the critical void radius and increases with 

temperature. At temperature 1100 K, γsΩ/kBT is about 2 nm, and Ev
f
/kBT is 31. 

For a void with a critical radius 2 nm and an interface width assumed to be 

0.4 nm, R is about 0.014 nm, which indicates that the distance between the 
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two points at Cv = 0.5 and Cv = C2 on the vacancy concentration profile is 

very tiny. 

Under the conditions used in the derivation of equation (4.76) and 

according to equation (4.55), κ
2
 can also be expressed as follows: 
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It also can be directly attained by substituting equation (4.77) into (4.74). 

Equation (4.78) indicates the relation between the κ-coefficient and the 

interface thickness. In order to determine the value of the gradient energy 

coefficient, the interface width should be known. The exact determination of 

interface width l is very difficult; here we will use the interface width 

obtained in the flat surface case to approximate it, which is hold for large 

void. Substituting expression (4.37) into equation (4.78), one gets 
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where 
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It should be noted that I2 is different from Is in the equation (3.34). κ is 
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approximately inversely proportional to T. 

 

4.6 The Cahn-Hilliard equation 

According to the conservation law of mass and the equation (4.10), the 

Cahn-Hilliard equation is usually written as follows [10]: 
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Considering the free energy functional we construct, equation (4.81) can be 

further rewritten as follows: 
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 (4.82) 

This equation can be easily modified to include a noise term and terms 

related to vacancy-interstitial recombination. The spontaneous process 

governed by the Cahn-Hilliard equation (4.82) is a free energy dissipation 

process (see Appendix G). Equation (4.82) can be further simplified to  
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which is a nonlinear equation and contains a fourth order gradient term. 

From equation (4.83) one can easily find that the Cahn-Hilliard equation 

(4.82) is reduced to diffusion equation (3.35) when the vacancy 

concentration approaches zero. In order to benchmark the model, the 

evolution of a single void planted in a spherical region in the spherical 

coordinates will be studied by using the PFM, SBA and RT, respectively. 

Then, the evolution of a single void with three-dimensional Cartesian 

coordinates will be studied. Due to the non-linearity and variable mobility, 

equation (4.82) is very difficult to solve. Numerical methods are needed to 

solve it. 
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Chapter 5: The numerical method of solving 

phase-field equations 

 

In numerical calculation, using reduced time step size, grid size and 

parameters will be convenient. τ is the normalization factor of time, l the 

normalization factor of length, t the time step size, r the grid size, t′ the 

reduced time step size, and r′ the reduced grid size. t′=t/τ, r′=r/l, t′=t/τ, 

r′=r/l, κ′=κ/l, D′=Dτ/l
2
, M′=D′kBTCv(1-Cv). In the simulations, t is equal 

to τ and r is equal to l. 

 

5.1 Spherical coordinates 

In spherical coordinates, equation (4.82) is written as 
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 (5.1) 

For reduced units, the equation is 
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 (5.2) 
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A second-order 2-step explicit BDF/AB finite difference numerical scheme 

is used to solve this equation [102, 103]. It is a second order 2-step backward 

differentiation formulas method (BDF2) for the time derivative of vacancy 

concentration on the left hand side of equation (5.2) and a second-order 

2-step Adams-Bashforth method (AB2) for the treatment of the right hand 

side terms of equation (5.2). A three-point central difference approximation 

for the treatment of the Laplace operator in space is used. This second-order 

scheme provides the best accuracy/cost ratio and is sufficiently accurate. The 

second-order 2-step BDF/AB finite difference numerical scheme for 

equation (5.2) is written as follows: 
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where 2 22n n n

i bi B r vik T C       and  1n n n

i vi vi BM D C C k T   . ′r
2
 is the 

reduced Laplace operator in spherical coordinates. A three-point 

approximation for ′r
2
 at a given time step n is 
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Since it is a second order finite difference method scheme in time, the value 

of vacancy concentration at the first time step is unknown. Here, the vacancy 

concentration at the first time step is obtained by the first order forward 

Euler method, which is written as 

 1 0 0

vi vi viC C t f    (5.6) 

where Cvi
0
 and fvi

0
 are the initial values of Cvi and fvi, respectively. In the 

numerical simulations, for convenience, both t′ and r′ are set equal to 

unity.  

 

5.2 Cartesian coordinates 

Equation (4.82) in three-dimensional Cartesian coordinates in reduced units 

is written as 
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r
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Here, for solving the above equation, the second-order 2-step explicit 

BDF/AB finite difference numerical scheme is used as well. However, in 

space, due to the very small vacancy concentration in the matrix and the 

variation of many orders of magnitude of the vacancy concentration across 
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the interface, the conventional seven-point central difference approximation 

for the Laplace operator in three dimensions is not accurate enough. A 

27-point stencil for discrete Laplacian approximations is used [104]. Other 

than the central point, the other 26 points are 6 points on the 6 faces, 12 

points on the 12 edges and 8 points at the 8 corners. In three-dimensional 

Cartesian coordinates, the equation (5.3) is rewritten as follows: 

 
          1 1 1

, , , , , , , , , ,

1
4 2 2

3

n n n n n

v v v v vi j k i j k i j k i j k i j k
C C C t f f       

 
 (5.8) 

where 
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The forward difference and backward difference of chemical potential on the 

face points along x direction are written as follows: 

 
 
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 

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





 (5.13) 

The forward difference and backward difference of chemical potential along 

the y and z directions can be written in a similar format, following the same 

principle. 

The forward difference and backward difference of chemical potential on the 

edge points along the (y,z) direction are written as follows:  
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 (5.14) 

The forward difference and backward difference of chemical potential along 

(–y,z), (x,z), (–x,z), (x,y) and (–x,y) directions can be written in a similar 

format. Along the (x,y,z) direction, they can be written as follows: 
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(5.15) 

In equations (5.9), (5.10), (5.11), and (5.12), the corresponding mobility 

coefficients before these forward difference terms and backward difference 

terms of chemical potential are  
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The mobility coefficients for the other directions are not listed here because 

they can be written by following the same principle. The chemical potential 

and reduced mobility at time step n in the above equations are written as 

follows, respectively: 

      
2 2

, , , , , ,
2n n n

b B vi j k i j k i j k
k T C       (5.19) 
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The 27-point stencil approximation for the Laplace operator in 

three-dimensional Cartesian coordinates is written as follows: 
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 
 (5.21) 

where the finite difference of the Laplace operator on the face points is 
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On the edge points it is 
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and on the corner points it is 
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 (5.24) 

In the simulation, for the sake of convenience, x′, y′ and z′ are set equal 

to 1. 
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Chapter 6: Results and discussion 

 

According to the study in paper [24, 25] at a given temperature the gradient 

energy coefficient can be treated as a constant without void-size dependence, 

not only for large voids, but also for voids with sizes comparable with those 

of a lattice constant. In the following, for the sake of convenience, the 

dynamics of a single void in the molybdenum and copper in the phase-field 

framework based on the work of A. A. Semenov and C. H. Woo [24, 25] will 

be studied, with the assumption that the gradient energy coefficient is 

constant for a fixed temperature. The concentration of single vacancies, Cv, 

which is a conserved variable, represents the only order parameter governed 

by the Cahn-Hilliard equation. And the real, rather than reduced, time is used 

in the simulations. A direct quantitative comparison between the results 

obtained with the PFM and those derived from the SBA can be also made. 

 

6.1 Single void dynamics in spherical coordinates 

in material molybdenum 
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6.1.1 Boundary conditions and initial conditions 

The following equation (4.82) is numerically solved for the case of a single 

spherical void, i.e., when a void of some initial radius is put in the center of a 

spherical volume with the radius, L, as shown in Fig. 3.3. Equation (4.82) is 

the fourth order in the spatial coordinates, and so requires four boundary 

conditions. They are taken as follows: 

 
2 2

0
( , ) 0, ( , ) , 0, ) 0v v b v vr r L r L r L

C r t C r t C C C
   

       (6.1) 

Here Cb is the vacancy concentration at the volume boundary. It is assumed 

to be fixed. The first condition in (6.1) results from the requirement for Cv to 

be differentiable. It can be easily seen from equations (4.81), (4.82) and 

(4.83) that the last two mean that far away from the void, both the chemical 

potential, , of vacancies and their flux, J, are independent of the void-metal 

interface characteristics, and are entirely determined by the vacancy 

concentration and its gradient, as the chemical potential of vacancies, , and 

their flux, J, are entirely determined by the vacancy concentration and its 

gradient in the sharp boundary case. The initial condition is 

 ( 0) 1, ( 0)
ini ini

v v br R R r L
C t C t C

  
     (6.2) 

Due to a diffuse character of the interface, the void radius, R, cannot be 
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defined uniquely within the phase-field framework. Here, similar to [25], the 

value of R is defined as  

 
min

1/3

2

0

( ) 3 ( , )

r

R t r C r t dr
  

  
  
  (6.3) 

In equation (6.3), rmin is the spatial position, where vacancy concentration 

reaches the local minimum. Since, outside the void, vacancy concentration is 

very low and the diffuse interface is very sharp [25], possible alternative 

definitions of the void radius will result in minor differences in the value of 

R , but there are no significant differences.  

In SBA, the boundary and initial conditions are 

 ( , ) , ( , ) , ( 0)
ini

v veR v b v br R r L R r L
C r t C C r t C C t C

   
     (6.4) 

For CveR, which depends on void radius and temperature, see equation (3.20). 

The equations (3.37) and (3.38) will be solved by using a numerical tool 

called PDECHB software package [105, 106]. Since this is a moving 

boundary problem (R changes with time), in order to sovle the above two 

equations by PDECHB, one needs to transform equations (3.37) and (3.38) 

to a fixed boundary problem. They become the following: 
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 (6.5) 

 
0

1 ( , )v

x

dR C x t
D

dt L R x 




 
 (6.6) 

where, x = (r – R)/(L – R), r = R + (L – R)x, L the radius of the spherical 

region, and r the length of the matrix in the spherical region. The value of x 

is in the interval [0,1]. For the derivation process of equations (6.5) and (6.6) 

see Appendix F. The boundary conditions and initial conditions become 

 
0 1

( , ) , ( , ) , ( , 0)v veR v b v bx x
C x t C C x t C C x t C

 
     (6.7) 

 

6.1.2 Model parameters and material parameters 

In PFM, a spherical domain with the radius L = 11.8 nm is discretized along 

the radial direction into a uniform grid with the grid size l = 0.147 nm. The 

value of l is chosen as less than the characteristic width of the interface, 

which is determined by the gradient energy coefficient, . It is found in [25] 

that the value of  may be treated as relatively constant, almost independent 

of the void size. Depending on temperature, it is maintained at about one or 

two lattice constants a0 [24, 25]. In the phase-field approach the gradient 
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energy coefficient is usually considered as an adjustable parameter and the 

value of I2, depending on temperature, is about 0.75. In the following 

numerical calculations, for simplicity, the integral I2 is assumed to be equal 

to unity. From equation (4.79), this assumption means that the effective value 

of the surface tension is actually equal to s/I2. For the numerical scheme to 

be stable the time step, , is taken to be  = 10
–15

 s. 

Material parameters used in the calculations correspond to the case of 

molybdenum. They are listed in Table 6.1. Temperatures in the calculations 

are chosen so that the void evolution may be both significantly affected and 

practically unaffected by the vacancy emission from the void. 

Table 6.1 

Material parameters for molybdenum.  

Parameter   Value 

Vacancy formation energy, Ev
f
 
a
  

Vacancy migration energy, Ev
m
 
a
  

Vacancy diffusivity pre-exponential, D0 
a
  

Surface tension, γs 
b
  

Lattice constant, a0 
a
  

Atomic volume, Ω  

3.0 eV 

1.62 eV 

1.310
–5

 m
2
/s 

2.05 J/m
2
 

3.1 A 

a0
3
/2 
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      a
 Reference [107].  

      b
 Reference [108].  

To mimic the real experimental conditions all numerical calculations are 

performed for the very low values of vacancy concentration Cb ( 10
–9

 – 

10
–7

).  

 

6.1.3 Vacancy concentration profile and chemical potential 

profile 

It follows from equation (3.39) that the void growth rate does not depend 

explicitly on time. Taking into account the smallness of the time step, , this 

property makes much easier the comparison between the void dynamics 

following from the PFM and the SBA. Indeed, instead of considering the 

void evolution over long time periods during which significant changes in 

the void radius can be realized, we may just compare the void growth rates at 

different values of the initial void radius, Rini. The equivalence in the growth 

rates would obviously mean the equivalence in the void evolution during the 

corresponding period of time. The characteristic time required for the 

vacancy diffusion field to approach its steady-state spatial distribution is of 
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the order of tR = Rini
2
/(2D). Thus, for the purpose of the present study, it is 

sufficient to consider the void evolution during the time intervals t >> tR. 

 

 

                  (a)                               (b) 

Fig. 6.1. Concentration profiles after t = 10
–5

 s for the cases of void growth (a, Cb = 

10
–8

) and shrinkage (b, Cb = 2.510
–9

) at T = 1750 K and Rini = 3.54 nm. PFM, SBA 

and RT represent phase-field method, sharp boundary approach and rate theory, 

respectively. 

In Fig. 6.1, we present the concentration profiles calculated with PFM, 

SBA and RT for two different vacancy concentrations at the external 

boundary (r = L), with both the temperature and the initial void radius kept 

unchanged. Values of Cb = 10
–8

 and Cb = 2.510
–9

 correspond to the cases of 

void growth and shrinkage, respectively. According to the figure, PFM 
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reproduces quite well the characteristic r
–1

 behavior of the vacancy 

concentration distribution, which follows from the rate-theory approximation 

in the sharp boundary case.  

Both in the PFM and in the SBA, whether void shrinkage or growth is 

realized depends on the value of the vacancy chemical potential at the 

void-metal interface compared to its value   kBTln(Cb/Ce) at the volume 

boundary r = L. The difference is that in the SB case this value is equal to 

kBTln(CeR/Ce), while in the diffuse interface approach it is given by equation 

(4.27). Note that, despite very sharp spatial dependence of vacancy 

concentration within the diffuse interface, the chemical potential calculated 

with equation (4.27) remains practically constant (Fig. 6.2). 

  

 

        (a)                    (b) 

Fig. 6.2. Profiles of the chemical potential, µ, after t = 10
–5

 s calculated with 
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equation (4.27) for the cases of void growth (a) and shrinkage (b) at T = 1750 K and 

Rini = 3.54 nm. 

When the chemical potential of vacancies at r = L is larger than its 

value at the interface there is a positive flux of vacancies from the external 

boundary towards the void, which results in void growth (Fig. 6.3). In the 

opposite case, the shrinkage of void takes place due to the outflow of 

vacancies from the void into the matrix (Fig. 6.4). From Fig. 6.3b and Fig. 6.4b 

one can easily see that the void growth rates obtained with the PFM and SBA 

reach the steady-state values after a very short initial period. In other words, 

the characteristic time tR required for the vacancy diffusion field to attain its 

steady-state profile is indeed much shorter than the time intervals considered 

in the numerical calculations. Since on the time scales under consideration 

the absolute values of the void radius changes are still relatively small, these 

changes are almost linear with time (Fig. 6.3a and Fig. 6.4a). Comparing the 

results presented in Fig. 6.3 and Fig. 6.4, one can find that, after the short 

initial periods, the void growth curves obtained by the three different 

methods demonstrate very similar behavior.  
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        (a)            (b) 

Fig. 6.3. (a) Change in the void radius R = R – Rini versus time at T = 1100 K, Cb = 

1.010
–7

, Rini = 1.02 nm. (b) Void growth rate (GR) versus time under the same 

conditions as in (a). 

 

 

       (a)              (b) 

Fig. 6.4. (a) Change in the void radius R = R – Rini versus time at T = 1750 K, Cb = 

2.510
–9

, Rini = 2.95 nm. (b) Void growth rate (GR) versus time under the same 
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conditions as in (a). 

Since the void radius is almost unchanged for a period which is far 

longer than the characteristic time, tR, this time interval, tR, and void growth 

rate can also be obtained by using the separation of variables and power 

series solution method to solve the diffusion equation (3.37) for fixed 

vacancy concentration at the void surface and volume boundary (see 

Appendix H). Fig. 6.5a shows the vacancy concentration profile obtained by 

equation  

 (H. 29) with the exponent n = 1000 at four different moments. The 

initial uniform distribution of vacancy concentration will relax to steady state 

distribution very quickly. This can also be seen from Fig. 6.5b. The 

difference between a non-steady state vacancy profile and the steady state 

profile (see equation (H. 35)) decreases to zero very quickly with time. The 

exact non-steady state growth rate seen in equation (H. 32) in Appendix H, 

which will approach the steady state growth rate (equation (3.39) or equation 

(H. 33)) within very short time intervals, tR, which is about 10
–5

 s, as shown 

in Fig. 6.5c. 
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                   (a)                               (b) 

 

(c) 

Fig. 6.5. Vacancy concentration profile, Cv, and growth rate (GR) versus time 

obtained through solving diffusion equation by using the separation of variables and 

power series method under the conditions of R = 1.02 nm, L = 11.8 nm and Cb = 

5×10
–5

. (a) the vacancy concentration profiles at three different moments and steady 

state (t = infinity), (b) the difference ∆Cv between the non-steady state vacancy 

concentration profile and the steady state vacancy concentration profile at three 

different moments, (c) the growth rate (GR) versus time. 
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1. At temperature 1100K 

For a case with void radius 1 nm and Cb = 10
–7

, D = 4.9×10
–13

 m
2
/s, L = 

11.81 nm, Rini = 1.02 nm (corresponding to the case in Fig. 6.3), the time 

needed for the growth rate to drop to a value which is bigger than the steady 

state growth rate by 1/10 through numerical calculation using PDECHEB 

software package is tnum = 1.8×10
–5

 s. And this time, obtained through the 

above separation of variables and power series solution method with 

choosing the exponent n = 10, is 

 52 1
1.793 10

10

ns s
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s

R R R
R S t s

R L R


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The two values are almost the same. In fact, n = 3 is good enough because 
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good estimation for calculating the time. Then equation (H. 32) is reduced to 
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The vacancy concentration distribution is reduced to 
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And equation (H. 36) is reduced to 
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Through this first order approximation (exponent n = 1), the time needed for 

the growth rate to drop to a value which is bigger than the steady state 

growth rate by 1/10 is 
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 (6.12) 

The difference between 1.54×10
–5

 s and 1.8×10
–5

 s is very small. Thus 

equation (6.9) can be used as an analytical formula to estimate the growth 

rate for the initial stage. 

2. At temperature 1750K 

For a case with void radius 1 nm and Cb = 2.5×10
–9

, D = 2.8×10
–10

 m
2
/s, L = 

11.81 nm, Rini = 3.54 nm (corresponding to the case in Fig. 6.1b), the time 

needed for the growth rate to drop to a value which is bigger than the steady 

state growth rate by 1/10 through numerical calculation using PDECHEB 

software package is about tnum = 5.2×10
–8

 s. This time, obtained though the 

above separation of variables and power series solution method by choosing 
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n = 10, is 
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For the first order estimation  
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These two are almost the same. Thus, for the case of high temperature, the 

equation (6.9) is a better approximation formula for the calculation of void 

growth rate than it is for relatively low temperature. 

However, equation (6.9) is very poor for estimating the growth rate at t 

= 0 s, because 2D(Cb - CeR)/(L - R) is finite. Yet again, from equation (H. 32) 

the growth rate should be infinite, because 
2

1

n

n

S a




    at t = 0 s. Thus 

the first order estimation for void growth rate is very poor at t = 0 s. And the 

growth rate is infinite at t = 0 s because the initial vacancy concentration at 

void surface r = R is Cb bigger than the thermal emission vacancy 

concentration, CeR. So the first order term can only be used to estimate the 

growth rate and vacancy concentration distribution after the initial stage. 
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This is the reason that the first order term is a good estimation for void 

growth rate at high temperature: because the diffusion constant is large at 

high temperature, thus the required time for the initial relaxation period of 

the vacancy field can be small.  

Thus, in order to obtain precise results, more higher-order terms are 

needed to be calculated. Since it is only valid for those cases without 

boundary motion, the separation of variables and power series method for 

solving the diffusion equation is good for the analysis of void evolution 

within a relatively small time interval but small time interval should be larger 

than the relaxation time of vacancy diffusion field because the void radius is 

almost unchanged within this time interval. From the above calculation and 

analysis, we can get a precise solution of the diffusion equation for the cases 

without boundary motion, or those with void radius almost unchanged, by 

using the separation of variables and power series method. 

 

6.1.4 Void evolution with no vacancy emission 

In this section we consider the void growth in a solution that is highly 

supersaturated, i.e., when Cb >> CeR. In this case the effect of vacancy 
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emission on the void evolution is negligible. Indeed, from equation (3.39) 

the void growth rate in the RT approximation can be written as  

 bDCdR

dt R
  (6.15) 

According to the foregoing, within sufficiently short time intervals, which, 

however, are much larger than the relaxation time of the vacancy diffusion 

field, the void growth rate remains almost unchanged. Thus, instead of 

instantaneous growth rates, the growth rates averaged over the corresponding 

time intervals can be used to study the relationship between the PFM and the 

SBA. This is the case for Fig. 6.6 – Fig. 6.8, in which the presented growth 

rates are results of the averaging over a time period of 10
–4

 s. 

 

  

Fig. 6.6. Average void growth rate (AGR) as a function of vacancy concentration at 

the volume boundary, Cb, at T = 1100 K, Rini = 1.02 nm. 
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In Fig. 6.6 the average void growth rate is shown as a function of the 

vacancy concentration, Cb, at the volume boundary. In agreement with 

equation (6.15), the void growth rates obtained by the three different 

methods are directly proportional to Cb. From Fig. 6.6, the slopes of the lines 

obtained with PFM, SBA and RT are about 5.6710
–4

 m/s, 5.6810
–4

 m/s and 

5.2810
–4

 m/s, respectively. Since vacancy emission from the void is 

negligible in the considered case, the difference in the absolute values 

between the PFM and SBA cannot be removed by varying the effective 

surface tension of the void. Most probably this difference is a property of the 

free-energy density (equation (4.9)) adopted in the present consideration. 

Note also that in the case of solidification similar differences are typically 

observed when the results of the phase-field model and the capillary 

approximation are compared [109]. 

Void growth rate as a function of initial void radius is presented in Fig. 

6.7. According to equation (6.15), in this case the void growth rate should be 

inversely proportional to the radius of the void. Fig. 6.7 demonstrates that this 

tendency is reproduced quite well in the phase-field approach. 
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Fig. 6.7. Average void growth rate (AGR) as a function of initial void radius, Rini, at 

T = 1100 K, Cb = 1.010
-7

. 

Within the temperature range at which the vacancy emission from 

voids still remains negligible, the temperature dependence of void growth 

rate is entirely determined by the vacancy diffusion coefficient 

D = D0exp(Ev
m
/kBT) (equation (6.15)). Fig. 6.8 shows that the growth rate 

increases with temperature in the same way for all three methods. 
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Fig. 6.8. Average void growth rate (AGR) as a function of temperature, T, at Cb = 

5.010
–8

 and Rini = 1.02 nm.  

 

6.1.5 Void evolution in the vicinity of critical size  

In the sharp boundary case the critical size of the void Rc corresponds to the 

maximum of free energy change caused by the void formation [24] (see 

equation (3.19)). From the kinetic point of view, Rc is the unstable stationary 

solution of equation (3.39); i.e.,  

  2 lnc s B b eR k T C C       (6.16) 

It is easy to see from equation (3.39) that a subcritical void shrinks over time, 

while a supercritical one keeps growing. Obviously, the void evolution in the 

vicinity of critical size is very sensitive even to small changes in the 

environmental parameters, such as, for example, the void surface tension and 

the vacancy concentration at the volume boundary, Cb. Since the phase-field 

model is only an approximation for the sharp-boundary case, the most 

significant deviations between these two approaches should be expected 

when void sizes are close to the critical one. As an example, in the following 

we consider the behavior of the average void growth rate near the critical 
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size at 1750 K. The calculated growth rates are results of the averaging over 

a time period of 10
–5

 s. The time period is chosen an order of magnitude 

shorter than in the foregoing section because vacancy migration at 1750 K is 

several orders of magnitude faster than at 1100 K. 

 

  

    (a)                (b) 

Fig. 6.9. (a) Average void growth rate (AGR) as a function of vacancy 

concentration at the volume boundary, Cb, at T = 1750 K, Rini = 3.54 nm. (b) 

Matching value of the surface tension coefficient s as a function of vacancy 

concentration at the volume boundary, Cb. 

Fig. 6.9a shows that in both approaches void growth rate increases 

linearly with the vacancy concentration at the volume boundary. The critical 

value of Cb corresponding to the zero growth rate is about 4.6910
-9

 in the 

case of SBA and RT and about 4.5810
-9

 in the case of PFM. On the other 
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hand, the slopes of the curves obtained with SBA and PFM are 11.310
-2

 m/s 

and 7.6710
-2

 m/s, respectively; i.e., unlike in the case described in section 

6.1.4, there is a substantial difference between them. However, due to the 

sensitivity of void evolution to the surface tension coefficient, these curves 

can be matched by varying the value of this coefficient. The matching values 

as a function of vacancy concentration at the boundary are presented in Fig. 

6.9b. 

 

 

     (a)         (b) 

Fig. 6.10. (a) Average void growth rate (AGR) as a function of initial void radius, 

Rini, at T = 1750 K, Cb = 5.010
-9

. (b) Matching value of the surface tension 

coefficient, s, as a function of initial void radius.  

As far as the effect of the initial void radius on the void growth rate is 

concerned, the average void growth rate as a function of initial void radius is 
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shown in Fig. 6.10a. From this figure, the critical void radius is 

approximately equal to 3.25 nm in the case of SBA and RT and to 3.42 nm in 

the case of PFM. As in Fig. 6.9a, there is a substantial difference in the slopes 

of the curves obtained with SBA and PFM. This difference can be also 

removed by varying the value of the surface tension coefficient (Fig. 6.10b). 

According to equation (6.16), the higher vacancy concentration at the 

boundary of the volume corresponds to the lower critical void size. Thus, 

both from Fig. 6.9b and from Fig. 6.10b it follows that the effective interfacial 

tension, or the gradient-energy coefficient, should be a decreasing function 

of the void radius for the void growth rates resulting from the PFM and the 

SBA to match, in the vicinity of critical size. 

 

 

Fig. 6.11. Average void growth rate (AGR) as a function of temperature, T, at Cb = 

5.010
-9

 and Rini = 3.54 nm. 



Chapter 6: Results and discussion  

156 

 

Finally, Fig. 6.11 demonstrates the effect of temperature on the void 

growth rate. Clearly, there is a good agreement between the two approaches. 

PFM and SBA give the critical temperatures at which void growth rate 

changes its sign as 1754 K and 1755.5 K, respectively. Since vacancy 

emission from the void plays a dominant role in the void evolution in the 

vicinity of this critical temperature, the void growth rate decreases with the 

temperature increase. This is unlike the case in section 6.1.4, where the effect 

of temperature is entirely determined by the temperature dependence of the 

vacancy diffusion coefficient.  

 

6.2 Single void dynamics in spherical coordinates 

in copper 

6.2.1 Model parameters and material parameters 

The model configuration and solution methods for PFM and SBA are the 

same as in the section 6.1, as are the boundary conditions and initial 

conditions. In PFM, a spherical domain with the radius L = 10.93 nm is 

discretized along the radial direction into a uniform grid of grid size l = 

0.228 nm. The value of l is chosen to be less than the characteristic width of 
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the interface, which is determined by the gradient energy coefficient . For 

the numerical scheme to be stable the time step  is taken to be  = 510
-16

 s. 

The material parameters of copper used in the simulations are listed in Table 

6.2. Temperatures in the calculations are chosen so that the void evolution 

may be revealed, both in temperature ranges where they are significantly 

affected and in those where they are practically unaffected by the vacancy 

emission from the void. 

Table 6.2 

Material parameters for copper.  

Parameter   Value 

Vacancy formation energy, Ev
f
 
a
  

Vacancy migration energy, Ev
m
 
a
  

Vacancy diffusivity pre-exponential, D0 
a
  

Surface tension, γs 
b
  

Lattice constant, a0 
a
  

Atomic volume, Ω  

1.28 eV 

0.7 eV 

1.310
-5

 m
2
/s 

1.3 J/m
2
 

3.615 A 

a0
3
/4 

      a
 Reference [107].  

      b
 Reference [108].  

To mimic the real experimental conditions all numerical calculations are 
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performed for very low values of vacancy concentration Cb ( 10
-8

 – 10
-7

). 

 

6.2.2 Vacancy concentration profile and chemical potential 

profile 

As in section 6.1, since the void growth rate does not explicitly depend on 

time and only depends on the void radius, R, the vacancy concentration at 

boundary, Cb, and the temperature, T, indirectly through the thermal emission 

vacancy concentration, CeR, and diffusion constant, D, the characteristics of 

void dynamics under different R, Cb and T will be studied. Again, instead of 

considering the void evolution over long time periods, during which 

significant changes in the void radius can be realized, we just compare the 

void growth rates at different values of the initial void radius, Rini. 

Equivalence in the growth rates would obviously mean equivalence in the 

void evolution during the corresponding period of time. The considered time 

intervals, t, of void evolution in the simulation are far greater than the 

characteristic times required for a vacancy diffusion field that is relaxing 

from an initial uniform spatial distribution, to approach its steady-state 

spatial distribution. This characteristic time is of the order of tR = Rini
2
/(2D). 
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      (a)          (b) 

Fig. 6.12. Concentration profiles after t = 10
-5

 s for the cases of void growth (a, Cb = 

910
-8

) and shrinkage (b, Cb = 610
-8

) at T = 850 K and Rini = 2.505 nm. 

Fig. 6.12 show the concentration profiles calculated with PFM, SBA 

and RT for two different vacancy concentrations at the external boundary (r 

= L), under the same temperature and the initial void radius. The values of Cb 

= 910
-8

 and Cb = 610
-8

 correspond to the cases of void growth and 

shrinkage, respectively. The concentration profiles obtained with PFM are 

very similar to those obtained with SBA and RT and reproduce quite well the 

characteristic r
-1

 behavior of the vacancy concentration distribution, which is 

a steady state distribution of vacancy concentration, from the rate theory 

approximation. 
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      (a)            (b) 

Fig. 6.13. Profiles of the chemical potential, µ, after t = 10
-5

 s calculated with eq. (6) 

for the cases of void growth (a) and shrinkage (b) at T = 850 K and Rini = 2.505 nm. 

Since the fluxes of vacancies are governed by the gradient of chemical 

potential in both PFM and SBA, the void evolution depends on the 

difference between the vacancy chemical potential   kBTln(Cb/Ce) at the 

matrix boundary r = L and at the void-metal interface. The value of chemical 

potential at void surface in the SBA is equal to kBTln(CeR/Ce), while within 

the diffuse interface in the PFM it is given by equation (4.27). For the PFM 

to perfectly reproduce the SBA, the chemical potential within the diffuse 

interface should also be equal to kBTln(CeR/Ce). Despite very sharp spatial 

dependence of vacancy concentration within the diffuse interface, the 

chemical potential calculated with equation (4.27) remains practically 
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constant (Fig. 6.13). 

  

 

       (a)              (b) 

Fig. 6.14. (a) Change in the void radius, R = R – Rini, versus time at T = 550 K, Cb 

= 10
-7

, Rini = 1.126 nm. (b) Void growth rate (GR) versus time under the same 

conditions as in (a). 

If the chemical potential at r = L is larger than its value at the interface, 

this gives rise to a driving force that makes vacancies flow from the external 

boundary towards the void, which results in void growth (Fig. 6.14). For the 

inverse case, the driving force produces the outflow of vacancies from the 

void into the matrix (Fig. 6.15). Since in the matrix the Cahn-Hilliard 

equation (4.82) in PFM reproduces the diffusion equation (3.35) in SBA, 

whether the void grows or shrinks can also be explained through the 
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comparison between the vacancy concentration value at r = L and at the 

transition point between the diffuse interface and the matrix. When the 

vacancy concentration at the transition point between the diffuse interface 

and the matrix is equal to that at r = L, the void will neither grow nor shrink, 

which is an unstable equilibrium state. This is indicated from equation (3.39) 

for the SBA case also, because the void growth rate is zero when Cb is equal 

to CeR.  

From Fig. 6.14b and Fig. 6.15b one can easily see that the void growth 

rates obtained with the PFM and SBA reach the steady-state values after a 

very short initial period. In other words, the characteristic time tR required 

for the vacancy diffusion field to attain its steady-state profile is indeed much 

shorter than the time intervals considered in the numerical calculations. 

Since on the time scales under consideration the absolute values of the void 

radius variations are still relatively small, these changes are almost linear 

with time (Fig. 6.14a and Fig. 6.15a). Comparing the results presented in Fig. 

6.14 and Fig. 6.15, one finds that, after the short initial periods, the void 

growth curves obtained by the three different methods indicate very similar 

behavior. 
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     (a)                 (b) 

Fig. 6.15. (a) Change in the void radius, R = R – Rini, versus time at T = 850 K, Cb 

= 610
-8

, Rini = 2.505 nm. (b) Void growth rate (GR) versus time under the same 

conditions as in (a). 

 

6.2.3 Void evolution under strong supersaturation  

In this section the void growth under the condition of a solution of high 

supersaturation, i.e., Cb >> CeR, will be considered. The number of vacancies 

emitted from the void surface is far smaller than that for those flowing into 

the void. Thus, it has no effect on the void growth rate as equation (6.15) 

shows. It is the same as that in the molybdenum cases, in which, due to the 

very dilute vacancy concentration in the matrix and small diffusion 

coefficient (which is about 510
-12

 m
2
/s at 550 K), the void growth rate 
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remains almost unchanged over short time intervals (which, however, are 

much larger than the relaxation time of the vacancy diffusion field). Thus, 

instead of the instantaneous growth rates, the growth rates averaged over the 

corresponding time intervals can be used to study the relationship between 

the PFM and the SBA. In Fig. 6.16 - Fig. 6.18, the presented growth rates are 

results of the averaging over a time period of 210
-4

 s. 

  

 

Fig. 6.16. Average void growth rate (AGR) as a function of vacancy concentration 

at the volume boundary, Cb, at T = 550 K, Rini = 1.126 nm. The curve of SBA 

coincides with that of RT, and the following corresponding cases are the same. 

In Fig. 6.16 the average void growth rate is shown as a function of the 

vacancy concentration Cb at the volume boundary. The void growth rates 

obtained by the three different methods are directly proportional to Cb, which 
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is consistent with equation (6.15). In Fig. 6.16, the slopes of the lines 

obtained with PFM, SBA and RT are about 4.7710
-3

 m/s, 4.9310
-3

 m/s and 

4.9710
-3

 m/s, respectively. These three lines almost coincide with each other, 

except for the low vacancy concentration cases. 

 

 

Fig. 6.17. Average void growth rate (AGR) as a function of initial void radius, Rini, 

at T = 550 K, Cb = 10
-7

. 

Fig. 6.17 shows the void growth rate as a function of initial void radius 

Rini. In this case the temperature T and the vacancy concentration Cb at the 

volume boundary are fixed. The fixation of T leads to the vacancy diffusion 

coefficient D being fixed as well. According to equation (6.15), the void 

growth rate should be inversely proportional to the radius of the void. Fig. 

6.17 demonstrates that this tendency is reproduced quite well in the PFM. 
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Fig. 6.18. Average void growth rate (AGR) as a function of temperature, T, at Cb = 

10
-7

 and Rini = 1.126 nm. 

Since the initial void radius and Cb are temperature independent, and 

CeR remains negligible compared to the values for Cb at 550K, the 

temperature dependence of the void growth rate is entirely determined by the 

vacancy diffusion coefficient D = D0exp(Ev
m
/kBT) (equation (6.15)). Thus, 

the void growth rate increases with temperature as a function of exp(1/T). 

Fig. 6.18 shows this behavior for the results obtained with all three methods.  

 

6.2.4 Void evolution in the vicinity of critical size  

In the sharp boundary case, according to classical nucleation theory, a 

supersaturated solution is in a meta-stable state which is stable for 



Chapter 6: Results and discussion  

167 

 

infinitesimal fluctuations due to the formation of the surface of the void, and 

unstable for relative large fluctuations which can overcome the barrier 

formed by surface free energy. The critical energy for the formation of a void 

is determined by a competition between a volume term which favors creation 

of the void and a surface term which favors its dissolution, which is the 

maximum in the free energy change caused by the void formation [24]. The 

void evolution in the vicinity of critical size is very sensitive even to small 

changes in the environmental parameters, such as the void surface tension 

and the vacancy concentration at the volume boundary, Cb, as is discussed in 

section 6.1.5. Thus, the void evolution in the vicinity of critical size easily 

brings some errors to the PFM simulations. Since the PFM is only an 

approximation for the SBA, the most significant deviations between these 

two approaches should be expected when void sizes are close to the critical 

one. As an example, the following mainly considers behavior of the average 

void growth rate near the critical size at around 850 K. The calculated 

growth rates are results of the averaging over a time period of 2.510
-5

 s 

which is of an order of magnitude shorter than in the foregoing section 

because vacancy migration at 850 K is several orders of magnitude faster 

than at 550 K. 
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    (a)              (b) 

Fig. 6.19. (a) Average void growth rate (AGR) as a function of vacancy 

concentration at the volume boundary, Cb, at T = 850 K, Rini = 2.505 nm. (b) 

Matching value of the surface tension coefficient s as a function of vacancy 

concentration at the volume boundary. 

According to equation (6.15), the void growth rate only depends on the 

vacancy concentration at the volume boundary, Cb, when the temperature, T, 

and initial void radius, Rini, are fixed. Fig. 6.19a shows that, in both the PFM 

and the SBA approach, void growth rate increases linearly with the vacancy 

concentration at the volume boundary. The critical value of Cb corresponding 

to the zero growth rate is about 7.3310
-9

 in the case of SBA and RT and 

about 7.2810
-9

 in the case of PFM. The slopes of the curves obtained with 

SBA and PFM are 4.7710
-1

 m/s and 3.4610
-1

 m/s, respectively; i.e., unlike 

in the foregoing section, the difference between them is relatively big. 
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However, like in the molybdenum cases in section 6.1.5, due to the 

sensitivity of void evolution to the surface tension coefficient, these curves 

can be matched by varying the value of this coefficient. The matching values, 

as a function of vacancy concentration at the boundary, are presented in Fig. 

6.19b. 

  

 

       (a)           (b) 

Fig. 6.20. (a) Average void growth rate (AGR) as a function of initial void radius, 

Rini, at T = 850 K, Cb = 7.510
-8

. (b) Matching value of the surface tension 

coefficient s as a function of initial void radius.  

The average void growth rate as a function of initial void radius, Rini, is 

shown in Fig. 6.20a. In this case, the average void growth rate increases with 

the void radius, which is totally different from the corresponding case in the 

foregoing section. Here, the thermal emission vacancy concentration, CeR, is 



Chapter 6: Results and discussion  

170 

 

comparable to Cb and decreases significantly as void radius increases. eRC , 

rather than void radius, plays the dominant role in determining the void 

growth. From Fig. 6.20a, the critical void radius is approximately equal to 

2.46 nm in the case of SBA and RT and to 2.44 nm in the case of PFM. As in 

Fig. 6.19, there is a substantial difference in the slopes of the curves obtained 

with SBA and PFM. This difference can be removed by varying the value of 

the surface tension coefficient (Fig. 6.20b). 

 

 

       (a)                  (b) 

Fig. 6.21. Average void growth rate (AGR) as a function of temperature, T, at Cb = 

7.510
-8

 and Rini = 2.505 nm. 

Finally, Fig. 6.21 demonstrates the effect of temperature on the void 

growth rate. PFM and SBA give the critical temperature, at which average 

void growth rate changes its sign, as equal to 851.4 K and 851 K, 
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respectively. Since vacancy emission from a void plays a dominant role in 

the void evolution in the vicinity of the critical point, void growth rate 

decreases with increasing temperature. This is unlike in section 6.2.3, where 

the effect of temperature is entirely determined by the temperature 

dependence of the vacancy diffusion coefficient. The difference in the slopes 

of the curves obtained with SBA and PFM can be also removed by varying 

the value of the surface tension coefficient (Fig. 6.21b). 

In summary, for cases with spherical coordinates of void evolution 

around the critical point, the corresponding values of system parameters 

obtained with PFM match very well those obtained with SBA. Only the 

trends of void evolution predicted by PFM are a little bit different from the 

predictions made with SBA. These small differences may be due to the 

nature of PFM, in which the sharp boundary at the void surface is treated as 

a diffusive interface. In these cases, the void evolution is sensitive to the 

system parameters, which may deviate simulation results obained with PFM 

from those with SBA. Around the critical point at a relative low temperature, 

either the void size is small, or the equilibrium vacancy concentration in the 

matrix is extremely dilute. Any small uncertainty errors from the numerical 

scheme or other problems will make the simulations result errors large. 

Around the critical point at a relative high temperature, although the void 
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size and the equilibrium vacancy concentration can be relatively large, the 

increase of temperature will increase the thickness of the interface, which 

will make the results obtained with PFM deviate from those obtained with 

SBA. The particular form of free-energy density adopted in the current study 

may lead to the differences in these trends as well, because the thickness of 

the interface is dictated by the competition between the bulk chemical 

potential and the chemical potential due to gradient energy.  

The characteristic spatial scales of the void-metal diffuse interface are 

about one or two lattice constants, across which the variation of vacancy 

concentration is several orders of magnitude. This may bring some errors to 

the simulation, especially for the void evolution around the critical point. 

The dynamic equivalence between PFM and SBA requires the gradient 

energy coefficient to be dependent on the void size, which may be 

particularly true for the voids with sizes close to the critical one. This 

presents a challenge for modeling the evolution of an ensemble of voids 

under irradiation. One possible way to solve this problem is to use the 

method of matched asymptotic expansion [13, 33] to relate the PFM to the 

SBA. In this case the gradient-energy coefficient may become dependent on 

the void size even for voids, the sizes of which are significantly larger than 

critical.  
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6.3 Single void dynamics in 3D Cartesian 

coordinates in molybdenum 

6.3.1 Boundary conditions and initial conditions 

In this section a single void evolution in a cubic volume will be studied. 

Equation (4.82) is numerically solved by using the numerical scheme 

described in section 5.2. A single spherical void is put in the center of a cubic 

domain with side-length 2L. The boundary conditions are written as follows: 

 
2 2( , ) , 0, ) 0v b v vV V V

C t C C C
  

    
r r r

r  (6.17) 

where ∂V is the domain boundary which is the six faces of the cubic domain. 

The initial condition is ( , 0) 1
ini

v L R
C t

 
 

r
r  within the void and 

( , 0)v bC t C r  for other areas in the domain outside the void. Here, the 

void radius R is defined the same way as in the previous spherical coordinate 

case (see equation (6.3)).  

 

6.3.2 Model parameters and material parameters 

Material parameters used in the calculations correspond to the case of 
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molybdenum. They are listed in Table 6.1. The cubic domain with the 

side-length 2L = 21.26 nm is discretized into 48×48×48 uniform cubic grids 

with the side-length l = 0.4429 nm which is about three times that it used in 

section 6.1.2. The gradient energy coefficient is also the same as that used in 

section 6.1.2, i.e., I2 in the equation (4.79) is assumed to be equal to unity. 

For the numerical scheme to be stable the time step, , is taken to be 5×10
–12

 

s, which is bigger than that used in section 6.1.2 because here the grid size is 

larger. 

 

6.3.3 Vacancy concentration profile 

Fig. 6.22a and b show the vacancy concentration contour on cross section 

planes of a three-dimensional domain of a case of void growth. The void is 

in the center of the cubic domain and the vacancy concentration is minimal 

in the adjacent vicinity of the surrounding void surface. This is indicated in 

Fig. 6.22b as well. The vacancy concentration profile is similar to that in the 

spherical coordinate case. The vacancy concentration in the void is unity; it 

decreases drastically from unity to an order of 10
-10

 across the interface. The 

vacancies will diffuse in the matrix from the system boundary to the lowest 

vacancy concentration position and flow into the void further through uphill 



Chapter 6: Results and discussion  

175 

 

diffusion within the interface. 

 

 

            (a)                                (b) 

 

   (c) 

Fig. 6.22. Concentration profiles at t = 10
–4

 s for the cases of void growth under the 

conditions Cb = 510
–8

, T = 1100 K and Rini = 0.88 nm. (a) The contour of the 

vacancy concentration in three dimensions, with a cross section plane whose 
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direction is along x-direction at x = L. (b) The vacancy concentration contour on the 

three cross section planes along the x-, y- and z- directions, respectively. (c) The 

vacancy concentration profile along the y-direction at x = L and z = L. 

Fig. 6.23a shows that the void radius increases with time in a void 

growth case. Fig. 6.23b shows the corresponding process of void growth rate 

versus time. After an initial short period of large growth rate, the growth rate 

approaches to a constant value, which exhibits the same behavior as in the 

case of void growth in a spherical domain (see sections 6.1.3 and 6.2.2). 

 

 

                (a)                               (b)  

Fig. 6.23. (a) Change in the void radius R = R – Rini versus time at T = 1100 K, Cb 

= 6.010
–8

, Rini = 1.366 nm. (b) Void growth rate (GR) versus time under the same 

conditions as in (a). 
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6.3.4 Void evolution without vacancy emission 

In this section, void evolution under different conditions will be studied. This 

void growth is similar to the cases of void growth studied with spherical 

coordinates (see section 6.1.4). The void evolution is under the condition of 

high supersaturation of vacancy concentration. Similarly to the cases of void 

evolution in the spherical domain, instead of instantaneous growth rate, the 

average growth rates will be used in the following study of void evolution 

under different conditions. These average rates are the results of averaging 

over a time period of 3.5×10
–4

 s. A case of void growth behavior within such 

a time period is shown in Fig. 6.23. This time interval is very short, but it is 

much larger than the relaxation time of the vacancy diffusion field, and the 

void growth rate remains almost unchanged. This is discussed in section 

6.1.4. According to equation (6.15), for large supersaturation at volume 

boundary, the growth rate should linearly increase with time. Fig. 6.24 shows 

this behavior very well. 
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Fig. 6.24. Average void growth rate (AGR) as a function of vacancy concentration 

at the volume boundary, Cb, at T = 1100 K, Rini = 1.366 nm. 

Fig. 6.25 shows the average growth rate versus the initial void radius. 

This is similar, but with a larger range of initial void radius, to the case in the 

spherical domain, shown in Fig. 6.7, where the curve shows an inverse 

relationship between the average growth rate and the initial void radius. Fig. 

6.26 shows the average growth rate change with temperature. The trend of 

the curve in Fig. 6.26 is also similar to that in Fig. 6.8, and shows that the 

average growth rate increases with the temperature. The reason for this has 

been discussed in section 6.1.4. Through the above study of void evolution in 

a cubic domain with the Cartesian coordinates, one can find that the void 

dynamics in a cubic domain with the Cartesian coordinates are very similar 

to those in a spherical domain with the spherical coordinates. 
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Fig. 6.25. Average void growth rate (AGR) as a function of initial void radius, Rini, 

at T = 1100 K, Cb = 5.010
–8

. 

 

Fig. 6.26. Average void growth rate (AGR) as a function of temperature, T, at Cb = 

1.010
–7

 and Rini = 2.2 nm. 
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Chapter 7: Conclusions and 

recommendations for future work 

 

7.1 Conclusions 

A quantitative study of single void evolution in the phase-field framework 

with thermodynamic consistency has been conducted. Through constructing 

the free energy functional of a system with only vacancies and voids 

presence [24], with the principles of the non-equilibrium thermodynamics of 

void evolution correctly built in and with the physical mechanism 

maintained, the phase-field method can numerically emulate single void 

dynamics at very low vacancy concentrations, which correspond to the real 

experimental conditions. The key points for realization of a successful 

phase-field modeling of void evolution are as follows: 

1. The void-metal sharp interface is mimicked by using a diffuse interface 

via the combination effects of gradient energy and bulk free energy, 

which should ensure the thermodynamic equivalence of the physical and 

the emulated void in the PFM. 

2. Due to the local conservation of vacancies, the Cahn-Hilliard equation 
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should be used. In this way, the vacancy concentration becomes an order 

parameter. 

3. Since the vacancy concentration is unity in the void in the PFM instead 

of zero in reality, the thermodynamic potential of Gibbs free energy in 

the SBA should be interpolated for the regions, such as in the interface 

and void, in which vacancy concentrations are far greater than thermal 

equilibrium concentration, by using phenomenological terms. 

4. In order to reproduce the kinetic characteristic of the void growth or 

shrinkage, the vacancy concentration profile in the matrix in the PFM 

should be the same as that in the SBA. The vacancy concentration in the 

void should be identical unity. The uphill diffusion should only occur 

within the narrow diffuse interface, in void growth cases.  

The goal of this thesis has been to build a phase-field model which can 

correctly depict the evolution of single void under different conditions, 

through investigating the thermodynamics of void nucleation and evolution 

and benchmarking the results obtained by the PFM with those obtained by 

the SBA. In this thesis, the following work has been done. 

1. A bulk free energy has been proposed, based on the thermodynamic 
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potential used in the SBA. It is a double well function with two global 

minima at thermal equilibrium vacancy concentration and unity, 

respectively. 

2. By following the phase-field theory proposed by A. A. Semenov, the 

gradient energy coefficient, which is related to the surface tension, for a 

flat surface and for a curved surface of a spherical void, have been 

derived. The relationship between the gradient energy coefficient and the 

width of interface has been analyzed also. 

3. Based on the proposed free energy functional, and on the variable 

mobility which related to the diffusion coefficient, the Cahn-Hilliard 

equation can be reduced to the diffusion equation in the matrix, and 

uphill diffusion will only occur within the diffuse interface. 

4. By solving the Cahn-Hilliard equation with spherical coordinates, the 

phase-field numerical modeling of a single void evolution after 

nucleation in a spherical domain has been performed under different 

system conditions, by using the experimental material parameters of 

molybdenum and copper. The results of this modeling have been 

compared to the results obtained with the SBA. The vacancy 

concentration profiles in the matrix obtained with the PFM are almost 
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the same as those obtained with the SBA. At relatively low temperatures, 

when vacancies emitted from voids are negligible, the trends of void 

evolution predicted by the PFM agree quite well with those obtained 

with the SBA. For cases of void evolution around a critical point, which 

is an unstable equilibrium state between the growth state and shrinkage 

state, the results of average void growth rate versus system parameters 

obtained with the PFM match very well those obtained with the SBA. 

The trends of void evolution predicted by the PFM are a little bit 

different from those by SBA. 

5. The single void evolutions in a cubic domain after nucleation, with the 

Cahn-Hilliard equation solved using Cartesian coordinates, have been 

studied under different system conditions by using the experimental 

material parameters of molybdenum. The simulation results of the PFM 

of single void evolution, using three-dimensional Cartesian coordinates, 

show the same behavior as those obtained when using the spherical 

coordinates. In contrast to the PFM, with spherical coordinates, this 

PFM with three-dimensional Cartesian coordinates can be used to study 

the evolution of multiple voids. The complex morphological and 

topological changes, such as coalescence and break-up of the boundary, 

can be easily captured. Other types of defects or new phases, such as 
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interstitials and dislocations, can be incorporated into this PFM with 

three-dimensional Cartesian coordinates as well. Thus the spatial 

correlation between the voids, and even the dislocations, can be captured 

by using the point defects as the media for spatial correlation. The 

elastic interaction between the dislocations and point defects can be 

taken into account as well. 

 

7.2 Recommendations for future work 

The present work has succeeded as a study of single void evolution and 

present significant progress in the three-dimensional phase-field simulation 

of void evolution. But there is still much to do. The following items are 

recommended. 

1. Incorporate the self-interstitials into the model. The self-interstitials 

cannot form the volume type of defect clusters, as voids do, but they 

have strong interaction with line defect - dislocation, which are sinks 

and sources of self-interstitials as well. For the sake of convenience, the 

influence of single self-interstitials on the void evolution should be 

studied without considering dislocation. The dislocation should be 
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incorporated into the model at step 3. Thus, the governing equation of 

self-interstitials can use the diffusion equation, and the free energy 

functional of self-interstitials can directly use the free energy of classical 

thermodynamics. However, due to the three-dimensional isotropic 

migration of dumbbell and one-dimensional anisotropic migration of 

crowdions in crystalline close-packed directions, the anisotropic 

diffusion constant should be used. Due to the difference of formation 

energy between dumbbell and crowdion, their thermal equilibrium 

concentrations will be different, and this will result in the difference of 

their corresponding proportions in the self-interstitials. Since the 

dumbbell and crowdion convert to each other under thermal fluctuation, 

the difference in their proportions in self-interstitials may be reflected by 

configuring the anisotropic diffusion constant and both types of 

self-interstitials may be treated as one type. The vacancies and 

self-interstitials are kinds of matter and anti-matter. They will annihilate 

each other when they meet. Thus, the recombination rate term should be 

added to both the Cahn-Hilliard equation, which governs the vacancy 

diffusion and to the diffusion equation, which governs the 

self-interstitials diffusion.  

2. In order to mimic the thermal fluctuation of defect concentration, the 
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stochastic term (Langevin noise term) should be added to the 

Cahn-Hilliard equation, and also to the diffusion equation. The 

Cahn-Hilliard equation will then be changed to the Cahn-Hilliard-Cook 

equation [110]. Also, the diffusion equation for self-interstitials should 

be added with a stochastic term. Here, the stochastic term is not used to 

represent the nucleation driving force. The nucleation process should be 

realized in other ways. The generation of vacancies and self-interstitials 

in the irradiated metal is a random process. Thus, the generation of 

vacancies and self-interstitials can also be mimicked by a stochastic 

term. 

3. If the extended defects dislocation, which is the origin of the dislocation 

bias effect, is incorporated into the model, the Allen-Cahn equation 

should be used to describe the spatiotemporal evolution of long range 

order parameters, which will represent the phases of dislocation. Since 

dislocation is one type of extended defect, as the void, a correct 

phase-field modeling of dislocation with thermodynamics consistency 

should first be built, just as has been done for single void evolution in 

the present work. Similar to the surface tension and corresponding 

thermal emission vacancy concentration in the void case, there is a line 

tension and stacking-fault around the dislocation and corresponding 
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thermal emission vacancy concentration (see the introductions in section 

2.4.2.1). They can be mimicked by a gradient energy term as well. In 

contrast to the small elastic interaction between the voids and the 

vacancies, there are large elastic interactions between the dislocations 

and the vacancies and self-interstitials, and these should be taken into 

account.  This will be a very complicated task, because there are many 

types of dislocations, such as vacancy dislocation loops, self-interstitial 

dislocation loops and dislocation networks, and there are several slip 

planes on which there is a Burgers vector of dislocation.  
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Appendices 

Appendix A  The derivation of void growth rate 

According to the Fick‟s first law, the flux density of vacancies is given by 

    
1

, ,v vD n t D C t     


J r r  (A. 1) 

Due to the mass conservation the continuity equation can be written as 

follows: 

 S S 0v
v v

S S

dN dV
d d

dt dt
     

 J J
 

   (A. 2) 

where Nv is the number of vacancies in a void and V is the volume of the 

void,  the atomic volume, n(r,t) = Cv(r,t)/Ω, Cv(r,t) vacancy concentration 

whose value range is from zero to unity. For a case of spherical void with 

spherical coordinates, equation (A. 2) can be rewritten as follows: 

 
3

24
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3
v r R

d R
R J
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




 
  

 
 (A. 3) 

where v r R
J


 is the vacancy flow density at void surface, which has 

following relations with vacancy concentration and diffusion coefficient 

according to equation (A. 1). 
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 
 (A. 4) 

where R is the void radius. Equation (A. 3) becomes 

 
( )
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J
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 


 (A. 5) 

Combining equation (A. 4) and equation (A. 5) one can get 

 
( ) ( , )v

v r R
r R

dR t C r t
J D

dt r



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
 (A. 6) 

Above equation indicates that the void growth rate is proportional to the 

vacancy concentration gradient at the void surface.
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Appendix B  The derivation of void growth rate in 

RT 

In steady state, the vacancy concentration distribution will not vary with time, 

which means that the derivative of vacancy concentration with respect to 

time is zero. 

 
 ,

0
vC r t
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
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
 (B. 1) 
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Equation (B. 2) has following type of general solution 

  v

A
C r B

r
   (B. 3) 

Applying boundary conditions Cv(r) = CveR at r = R and Cv(r) = Cb at r = L to 

equation (B. 3) one can get 
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 (B. 4) 

thus, the solution of equation (B. 2) is 

  
1

( )v b veR b veR

L R RL
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where R is the void radius, L the radius of the system. The flux density 
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distribution is given by 
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At the void surface, the flux density is given by 
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Therefore, the void growth rate is  

   | ( )
( )

r R b veR

dR L
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If L >> R, then 

 
1

( )b veR

dR
D C C

dt R
   (B. 9) 

At steady state, the void growth rate is inversely proportional to the void 

radius, and proportional to the difference of the vacancy concentration 

between at the system boundary and at the void surface.
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Appendix C  The derivation of the expression of 

chemical potential in the PFM 

The variation of free energy functional is 
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C

 

   

    
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  

  

   
             

   
              



 

  n  (C. 1) 

For the cases that the vacancy concentration is fixed at the system boundary 

Cv = 0, or there are no vacancies flowing in or out through system boundary, 

or the periodic boundary condition, ∇Cv ·n = 0, we have following relations 

   0v vC C dS    n  (C. 2) 

where n is the unit vector normal to the system boundary, S the closed 

surface of the system. It should be noted here, exactly, the vacancy flux 

density is Jv = M(Cv)∇µv(Cv) ≠ D∇Cv, such as in the interface region. 

However, in the matrix, especially at volume boundary, Jv = D∇Cv holds. 
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Thus, for vacancy conservation, it has Jv·n = D∇Cv ·n = 0 

Therefore, the variation of free energy functional is 

  
  2 301

2v

v v v

vV

f C
F C C C d r

C
  

 
   
  
  (C. 3) 

and the chemical potential is 

  
   0 22

v v

v v

v v

F C f C
C C

C C


 




    


 (C. 4) 
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Appendix D  The chemical potential in 

equilibrium state in the PFM 

The boundary conditions and the Green‟s formula:  

   2 3( )( )v v v v v v

V

C C d C C C C d r           S  (D. 1) 

Here S is the closed surface of the volume V. The variation of free energy 

functional is 
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k T
C C C d r

k T C
C C d r

C

 

    
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  

      
 

    
 

 
   

  





 r

  (D. 2) 

In equation (D. 1) Cv(r) is an arbitrary deviation satisfying the conservation 

relation 

 
3( ) 0v

V

C d r  r  (D. 3) 

Thus, the functional F(Cv(r)) reaches its extremum when Cv(r) is a solution 

of the following equation:  

 
  2 22

v

v

v

d C
C const

dC


    (D. 4) 
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Appendix E  The estimation of interface thickness 

In order to analyze and get the approximate value of the thickness of 

interface, we can expand the right hand side of equation (4.37) in the Taylor 

series around C = 0.5 which is at the middle of the interface and the 

maximum of bulk free energy also by assuming that   is independent to 

the vacancy concentration. Cve is very small even at a very high temperature, 

which is about 10
-12

 at 1100K. It can be omitted by comparing to 

(0.5)b which is far bigger than unity. 
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 (E. 1) 

where maxb  is the maximum of bulk free energy ( ( ))b C r . In the above 

derivation process   is assumed to be independent to the vacancy 

concentration. The larger the maximum of bulk free energy is, the error of 

approximation of  
1

2
maxb 


 to the interface width will be smaller, because 

the higher order terms in Taylor series are inversely proportional to the 

maximum of bulk free energy.
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Appendix F  The transformation of coordinates of 

diffusion equation 

Let 

 
r R

x
L R





 (F. 1) 

where x varies between 0 (r = R) and 1 (r = L). 

Then r = R + (L - R)x. Therefore, 
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 (F. 3) 

Substituting equations (F. 2) and (F. 3) into equation (3.37), one gets 
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 (F. 4) 

or 
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 (F. 5) 

The void growth rate can be written as follows: 

 
0

( , ) 1 ( , )v v

r R x

dR C r t C x t
D D

dt r L R x 
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 (F. 6) 
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Appendix G  The free energy dissipation in the 

diffusion process of vacancies governed by the 

Cahn-Hilliard equation 

The free energy functional can be written as follows: 

   2 2( , ) ( ( , )) ( ( , ))B
v b v v
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The free energy changed with time is 
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where, n is the unit vector normal to the system boundary, and Je is the flux 

density of entropy which flow in or out through the system boundary. It is 

written as follows: 

 
     

 

2

2

2

2

v
e v v v B v

v v B v v
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  

 
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   

J

J J

 (G. 4) 

which indicates that the entropy flux is related to the vacancy flux. 

According to the principle of minimum entropy production, entropy 

production rate is 

    
21i

v v

dS
M C C

dt T
     (G. 5) 

Since we study the free energy dissipation of a spontaneous process of 

vacancy diffusion in a system, there should be no vacancies flowing in or out 

through system boundary and without the production and annihilation of 

vacancies in the system. Thus, following boundary conditions should be 

satisfied. 

     0v v v vM C C D C       J n n n  (G. 6) 

Equation (G. 6) only holds at the system boundary, which has been discussed 

in Appendix C. Since D ≠ 0 and M(Cv) ≠ 0, thus ˆ ˆ 0vn C n       at the 

system boundary. And entropy flux density at the system boundary is 
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      22 0e v v B v vC k T C        J n J n n J  (G. 7) 

Above equation means that, under the conditions of vacancies conservation 

and of without vacancies flowing in and out through the system boundary, 

there is no entropy flowing in and out through the system boundary. Thus 

equation (G. 3) becomes 

 
 v i

V

dF C T dS
dV

dt dt
 

 
 (G. 8) 

Since the entropy produced by the spontaneous process of vacancy diffusion 

in the system always increases with time (dSi/dt ≥ 0, see equation (G. 5)), the 

free energy of the system will decrease with time (dF/dt ≤ 0). In equilibrium 

state, the entropy production rate is zero, thus 

 
 

0v i

V

dF C T dS
dV

dt dt
  

 
 (G. 9)  

which means that there is no free energy dissipation in equilibrium state. 
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Appendix H  Solving diffusion equation of fixed 

boundary position case using separation of 

variables and power series solution method 

The separation of variables and power series solution method will be used to 

solve the diffusion equation for a case with fixed vacancy concentration at 

the void surface and at the system boundary (void radius R unchanged). The 

diffusion equation with spherical coordinates is 

 2

2

( , ) 1 ( , )C r t C r t
Dr

t r r r

   
  

   
 (H. 1) 

Boundary conditions: 

 L bC C  at r L , (H. 2) 

 R eRC C  at r R  (H. 3) 

where L is the radius of the system; the thermal emission vacancy 

concentration, CeR is a constant, which means that the thermal emission 

vacancy concentration will almost not change with time or the void radius 

varies very slowly with time. 

Due to the linearity of equation (H. 1), the solution of it can be defined 

as the sum of two functions v(r,t) and w(r): 
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    ( , ) ,C r t v r t w r   (H. 4) 

v(r,t) depends on position and time, w(r) is temporal independent. Both of 

them are the solutions of equation (H. 1). For w(r), we have 

 2

2

1 ( ) ( )
0

w r w r
Dr

r r r t

   
  

   
 (H. 5) 

So the function w(r) is the steady-state distribution of vacancy concentration. 

The solution of equation (H. 5) under the boundary conditions wL = Cb at r = 

L and wR = CeR at r = R is  

  
1

( )b eR
b eR

LC RC LR
w r C C

L R r L R


  

 
 (H. 6) 

The solution process of equation (H. 5) is shown in Appendix C. Substituting 

equation (H. 4) into equation (H. 1) gets us 

 2

2

( , ) ( , )v r t D v r t
r

t r r r

   
  

   
 (H. 7) 

The boundary conditions of equation (H. 7) are 

 0L L L b bv C w C C      at r L , (H. 8) 

 0R R R eR eRv C w C C      at r R  (H. 9) 

The method of separation of variables will be used to solve equation (H. 7). 
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Assume the solution of equation (H. 7) is a product of two functions 

which is written as follows: 

    ( , )v r t X r T t  (H. 10) 

Substituting equation (H. 10) into equation (H. 7) gets 

 
 

   

 
2 2

2

1 dX r dT td
r k

X r r dr dr T t Ddt

 
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 (H. 11) 

Thus, the partial differential equation (H. 7) becomes two ordinary 

differential equations 
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 
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  
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 (H. 13) 

The solution of equation (H. 12) is 

  
2k DtT t Ee  (H. 14) 

The solution of equation (H. 13) can be written as follows: 

  
   sin cosk r R k r R

X r A B
r r

  
  
 

 (H. 15) 

Then  
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  (H. 16) 

where, r ≥ R. Appling boundary conditions (H. 8) and (H. 9) to equation (H. 

16) we can get 
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0k DtB Ee
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  , 0B , (H. 17)  
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  sin 0k L R     and 
n

k
L R





 (H. 19) 

Thus 
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 (H. 20) 

and 
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 (H. 21) 

For each one of k there is a solution function to equations (H. 12) and (H. 13). 

There are infinite solution functions to equations (H. 12) and (H. 13) because 

n is integer whose value is from 1 to infinity. Those functions are orthogonal 

eigen-functions. 
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The general solution of equation (H. 7) can be written as follows: 
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Then the solution of equation (H. 1) is 
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Now we need to obtain the value of Fn which can be solved by taking 

advantage of the orthogonality between those eigen-functions. 

The initial concentration C(r,0) is Cb, equation (H. 23) becomes 

  0
0

1

1
( ) sineR n

b eR
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  (H. 24) 

Multiply both side of equation (H. 24) by  sin
m

r r R
L R

 
  

 and 

integrate it from R to L gets 
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 (H. 25) 

where 
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 (H. 26) 

and 
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 (H. 27) 

Thus 
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  (H. 28) 

and the vacancy concentration field is 
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Therefore the void growth rate is 
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where,  
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For L >> R 
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  (H. 33) 

where nsR is growth rate of non-steady state and sR  is growth rate of steady 

state. From the comparison of equation (H. 32) and equation (H. 33), one can 

find that there is a decay term that depicts the decrease of the growth rate due 

to the relaxation of initial uniform distribution of vacancy concentration to 

steady state distribution. 
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The term S(t) decay to zero with time t (see formula (H. 31)). The decay 

speed is mainly determined by the diffusion constant. Through the 

comparison between equation  (H. 29) and (H. 6), we can find that the 

differences between the non-steady state of vacancy concentration 

distribution and the steady state of vacancy concentration distribution are 

written as follows: 
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  (H. 36) 

∆C(r,t) originates from the initial uniform vacancy concentration distribution 

in the matrix. It decreases with time quickly.  
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