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Abstract

We study the problem of mining on uncertain objects whose locations are un-

certain and described by probability density functions (pdf). Clustering and classi-

fication are two important tasks in data mining.

Clustering on uncertain objects is different from traditional case on certain ob-

jects. UK-means is proposed based on K-means but it is time consuming. Pruning

techniques are proposed to improve the efficiency of UK-means. First we analyze

existing pruning algorithms and experimentally show that there exists a new bot-

tleneck in the performance due to the overhead of pruning candidate clusters for

assignment of each uncertain object in each iteration. In this thesis, we will show

that by considering squared Euclidean distance, UK-means (without pruning tech-

niques) is reduced to K-means and performs much faster than pruning algorithms,

however, with some discrepancies in the clustering results due to different distance

functions used. Thus, we propose Approximate UK-means to heuristically identify

objects of boundary cases and re-assign them to better clusters. In addition, we pro-

pose three models for the representation of cluster representative (certain model,

uncertain model and heuristic model) to calculate expected squared Euclidean dis-

tance between objects and cluster representatives. The experimental results show

that our approach (Approximate UK-means) reduces the discrepancies of K-means’

clustering results by taking more time than K-means.

In the case of classification on uncertain objects, some existing algorithms are

hundreds or thousands times more complex than traditional ones, because an uncer-

tain object is represented by hundreds or thousands of samples. Due to the complex

representation of uncertain objects and existing algorithms, it is time consuming to
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classify uncertain objects. In this thesis, we propose a novel supervised UK-means

algorithm to classify uncertain objects more efficiently. In supervised UK-means,

we consider to select features that can capture the relevant properties of uncertain

data similarly to feature selection on certain objects. We also extend supervised

UK-means to ensemble learning. We experimentally demonstrate that our proposed

approaches are more efficient than existing algorithms and can attain comparatively

accurate results on non-overlapping data sets.

In supervised UK-means, the classes are assumed to be well separated. But the

real data are usually distributed arbitrarily and the classes cannot be separated by

simple linear boundaries. We propose Supervised UK-means with Multiple Sub-

classes (SUMS) which considers that the objects in the same class can be further

divided into several groups (subclasses) within the class and tries to learn the sub-

class representatives to classify objects more accurately. Moreover, we propose a

Bounded Supervised UK-means with Multiple Subclasses (BSUMS) to avoid over-

fitting. From our experiments, Supervised UK-means with Multiple Subclasses

(SUMS) and BSUMS perform better than supervised UK-means on synthetic data

sets and real data sets.

Keywords: UK-means, uncertain objects, clustering, classification, expected

distance
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Chapter 1

Introduction

While a great number of research have been focused on mining and queries on re-

lational databases [91], the focus has been on databases that data represented by

exact values. In many real-life applications, however, the raw data (for example,

in the case of sensor data) are not precise or accurate when they were collected

or produced due to the limitation of the underlying equipment or other reasons.

There are many sources of uncertain data, for example, sensor readings, informa-

tion extracted from input sources by using probabilistic parsing, results obtained by

predictive softwares in stock market, and so on.

For example, some temperature sensors are installed to monitor the temperature

of a location. The temperature values observed by the sensor are not accurate due to

the limitation of equipments. The real value of temperature at a given time cannot be

exactly known and is uncertain. Another example for uncertain data, in an online

shopping system (hotel booking system), different customers may give different

scores to a hotel. The rating of a hotel is uncertain.

1
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Uncertain data can be represented by an exact value with margins of error, with

or without a (density) probability distribution function (pdf). The result can also be

in the form of a set of values or an interval, one of which maybe the real value. How-

ever, only exact values can be stored in traditional databases, so that uncertain data

have to be transferred into exact value by using value with the highest frequency or

calculating mean value or weighted average (for numerical attributes). The storage

and mining in databases can become simpler when existing mining techniques and

database systems are used. It is obvious that in the databases, the intermediate or

final results from the mining tasks and queries will also be approximate or maybe

wrong by approximating the uncertain source data values. For example, in cluster-

ing application, the locations of centroids of clusters may be deviated from the real

ones, which can make data be assigned to wrong clusters. In the case of classifi-

cation, the learned classifier may be different from the real ones, or some testing

objects will be predicted by a wrong label.

In this thesis, we consider the problem of data mining applications (clustering

and classification) on uncertain objects with multidimensional uncertainty where an

object is represented by an uncertain region over which a discrete probability distri-

bution function (PDF) or a probability density function (pdf) is defined. Formally,

we consider a set of n objects oi, 1 ≤ i ≤ n in an m-dimensional space. An object oi

is represented by a pdf fi: IRm → IR (IR represents real number space) that speci-

fies the probability density of each possible location of object oi. In this thesis, the

applications discussed just require that for each object oi, the uncertain region Ai of

each object oi is finite, (i.e. ∀x < Ai, fi(x) = 0) without relying on any special forms

of the pdf ( fi). Thus, a bounding box can be used to bound each object. In practice,
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the probability density of an object is just concentrate in a very small region, so that

the assumption is convincing.

1.1 Overview of Uncertain Data Mining

There have been some researches in uncertain database [57]. Data uncertainty are

mainly classified into two types. One is existential uncertainty caused by being un-

certain about the existence of an object or a data tuple [12, 23, 30, 84]; The other is

value uncertainty caused by not knowing the value precisely. Recently relationship

uncertainty is proposed by Bin Jiang et al. in [56]. The task of summarizing the re-

lationship uncertainty in [56] between objects is learning the order of the values on

a dimension of the domain. For example, a traveler gives a higher score to a hotel

whose location is close to the central, and a lower score to a hotel that is far from

the central, which likely means that the user prefers the hotel near central. Learning

the order of values can infer more knowledge of domain.

In this thesis, we focus on value uncertainty. In value uncertainty, the value of an

object is not unique, and the samples are used to represent an object. Sometimes, an

object is represented by hundreds or thousands samples, which makes the problem

of mining uncertain data different from that of mining certain data. The uncertain

data is value uncertain data in this thesis. The mining techniques handling uncertain

data are different from those on certain data. Because the representation of uncertain

data are more complex than certain data, traditional methods on certain data cannot

be used directly.

Some applications on mining (i.e. clustering and classification) were proposed
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for value uncertain data. When clustering uncertain data, for example in UK-means,

the similarity calculation (i.e. distance) between uncertain objects are more com-

plex than that between exact objects in K-means compared with traditional tech-

niques. UK-means [22] can be considered as a generalization of K-means. The

only difference between UK-mean and K-mean is that expected distance is used for

distance calculation in UK-means. In [62, 63], fuzzy distance is used to measure

the distance between objects which is different from that used in traditional certain

case.

A second application is classification. The aim of classification on certain ob-

jects is to predict the labels of objects with the minimum error loss. The uncertainty

of objects may affect the results of classifier. In [17], the model of data is defined as

a bounded geometric region. The key idea of [17] is to get an optimized probabilis-

tic separation that are on the two sides of the boundary between the two classes.

The classification algorithms on uncertain objects try to provide classifiers that can

predict the labels of objects by the minimum probability error loss.

Other applications were also developed to handle uncertain objects. The meth-

ods are different and more complex than those on certain data, because uncertain

information are taken into account. Thus, a large amount of challenges are faced on

the field of uncertain data mining.

1.2 Challenges of Uncertain Data Mining

There are a number of special challenges on some fronts posed in the field of un-

certain data mining. The challenges are mainly include two broad issues: model
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of uncertain data and the applications on uncertain data. Data management and

mining application working on uncertain data are the examples of uncertain data

applications. Some challenges are described in detail as followings:

The model of uncertain data

A number of models have been discussed in [2] and [86]. The proper model can

capture the characteristic of data. The complexity of model directly affects the

efficiency of database management and data mining algorithms. It is a challenge

to estimate an appropriate model for uncertain data that can catch real uncertain

information of data or close enough to its real model.

The metrics between uncertain data

A large amount of work are proposed to measure the distance between certain ob-

jects [18, 100, 101], but few can be directly used in uncertain data. The metrics for

uncertain objects should consider the uncertain information of objects. The metrics

can affect the efficiency of the applications on uncertain data. It is still a problem to

measure the similarity between objects with considering uncertain information as

well as keeping the calculation methods efficient.

The mining algorithms on uncertain data

The model of uncertain data and the operation on them are the two keys of uncertain

data mining algorithms. It is certainly that developing mining algorithms on uncer-

tain data is a challenging work. The algorithms should perform efficiently when

mining uncertain objects by using complex uncertain model.
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1.3 Contributions of the Thesis

There are a few challenges and open problems in the task of clustering and classifi-

cation on uncertain objects.

Clustering on uncertain objects

Before clustering uncertain objects, we propose expected squared Euclidean dis-

tance to calculate the distance between objects efficiently. Different from tradi-

tional work on certain objects, we propose three models for the representation of

cluster representative (certain model, uncertain model and heuristic model) to cal-

culate expected squared Euclidean distance between objects and cluster representa-

tives. Then we propose Approximate UK-means to heuristically identify objects of

boundary cases and re-assign them to better clusters.

Classification on uncertain objects

We build supervised UK-means based on UK-means to classify uncertain objects.

Considering the relevant properties of uncertain data, we extend supervised UK-

means to feature selection and Adaboost, respectively.

On the other hand, in real applications, the data are usually distributed arbitrarily

and the classes cannot be separated by simple linear boundaries. Thus, we consider

the objects in the same class can be further divided into several groups (subclasses)

within the class. We use PG-means (projected Gaussian) [45] to estimate the num-

ber of subclasses in a class and train the subclass representatives by UK-means.
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1.4 Outline of the Thesis

The reminder of this thesis is organized as follows. In Chapter 2, we briefly dis-

cuss previous work that have been applied on uncertain data mining. In Chapter

3, Approximate UK-means is proposed to heuristically clustering uncertain objects

efficiently. In Chapter 4, we present supervised UK-means for classifying uncertain

objects, and extend supervised UK-means to feature selection and Adaboost. We

overcome the limitation of supervised UK-means by further dividing classes into

multiple subclasses in Chapter 5. Finally, we present our conclusions and discuss

future work in Chapter 6.



Chapter 2

Literature Review

A large number of challenges are proposed to the field of uncertain data. The chal-

lenges can be divided into two broad issues: modeling the uncertain data and a

variety of applications working with them, i.e. clustering, classification and other

data mining tasks on uncertain data. In this chapter, we first introduce the models

used for uncertain data in Section 2.1, then we review clustering on uncertain data

in Section 2.2, classification on uncertain data in Section 2.3, and other data min-

ing tasks on uncertain data in Section 2.4. Finally, we summarize this chapter in

Section 2.5.

2.1 Modeling Uncertain Data

The problem of uncertain data model has been deeply studied in the literature [1,

43, 44, 53, 85]. The uncertain data model is represented in two way: probabilistic

database [14, 49, 86] and uncertain data [24, 49, 92]. Both of the two models are

the formalism of the “possible worlds model” [1, 31, 53, 54, 86].

8
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A probabilistic database [14, 49, 86] contains a number of probabilistic tables.

T is a probabilistic table that is represented by a set of uncertain tuples. In T, P(t)

is used to describe the appearing probability of t in T, t is the tuple in T. All the

possible tuples are consistent with a given schema. It is important to note that the

probabilistic table is represented by an exponential number of tuples.

A probability density function (pdf) is used to describe an uncertain object [24,

49, 92] in a domain U. Actually, we have no idea of the probability function. A

number of samples or instances are collected or generated with assuming an ap-

proximating probability density function. The sum of the probabilities of an object

is 1. Additionally, uncertain objects and probabilistic databases are equivalent and

can be converted to each other without considering the dependency between ob-

jects in the discrete case [76]. On the other side, there are also uncertain models for

semistructured and structured XML data [50, 51, 74, 96, 110].

2.2 Clustering

Clustering is a classic problem in real life [47, 48, 68, 69]. The task of cluster-

ing is that the objects assigned into the same group are more similar than objects

from other classes [9, 68]. A large amount of clustering algorithms have been

proposed. Clustering algorithms are summarized based on their models. Several

typical cluster models have been proposed, i.e. connectivity models (hierarchical

clustering [88]), centroid models (k-means) [47, 48, 69], distribution models [72],

density models (DBSCAN and OPTICS [10, 36]), subspace model [6] and so on.

K-means and UK-means
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K-means [69] is used to cluster certain objects. In K-means, if an object o is as-

signed to a cluster c, it means that c’s representative is the closest one among all

clusters to o based on Euclidean distance. UK-means [22] is a generalization of

the traditional K-means algorithm to handle uncertain objects whose locations are

represented by pdfs. The only difference between UK-means and K-means is that,

between an object and a cluster representative, expected Euclidean distance is calcu-

lated instead of Euclidean distance in UK-means. For arbitrary pdfs, the bottleneck

of UK-means is the calculation of expected distance, which are computationally ex-

pensive. Thus, pruning techniques were proposed to remove the candidate clusters

from consideration, which are certainly not closest to an object, reducing a large

amount of expected distance calculation.

2.2.1 Pruning Techniques

The basic idea of pruning techniques is using simple distance calculation to iden-

tify cluster representatives which could not be the closest one to a given uncertain

object. Hence, the expected distance calculation between the object and those rep-

resentatives can be skipped.

MinMax-BB

Each object oi is bounded by a minimum bounding rectangle (MBR)1 in MinMax-

BB [73], outside which the object has zero (or negligible) probability of occur-

rence. The minimum distance (MinDisti, j) and the maximum distance (MaxDisti, j)

are calculated to prune unnecessary expected distance calculations. Among all the

1The pruning techniques require that for each object oi, the uncertain region Ai of each object oi

is finite, i.e. ∀x < Ai, fi(x) = 0. Thus, each object can be bounded by a finite bounding box.
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maximum distances, the minmax distance which is used to prune unnecessary ex-

pected distance calculations is the smallest one. The overhead of MinMax-BB in-

cludes the time of MinDisti, j and MaxDisti, j calculation.

VDBi

VDBi [58] is another pruning method using Voronoi diagrams [33] to consider the

spatial relationships among cluster representatives. VDBi is more efficient than

MinMax-BB by using Voronoi-cell pruning and bisector pruning. For Voronoi-cell

pruning, given K cluster representatives, the Voronoi diagrams divide the space

IRm into K cells called V(pc1),V(pc2), ...,V(pc j), ...,V(pck) with the properties of

d(x, pc j) < d(x, pck)∀x ∈ V(pc j), pc j , pck . Therefore, object oi can be assigned

to cluster c j directly without any expected distance computation with the MBR

of object oi completely falling into any Voronoi cell (i.e. V(pc j)). Bisector prun-

ing considers the case of distinct cluster representative pair (i.e. pc j and pck from

a set K of cluster representatives). The points in the perpendicular bisector ly-

ing on the boundary of a cell V(pc j) and its adjacent cell V(pck) are denoted by

pc j |pck . The hyperplane which is perpendicular to the line segment joining pc j

and pck and passes through the mid-point of the line segment is called the bisec-

tor. The space IRm is divided into two halves. H j/k denotes the half containing

pc j (excluding the hyperplane). Thus, the following properties are obtained: (i)

∀pc j , pck ∈ K, d(y, pc j) < d(y, pck)∀y ∈ H j/k; (ii) d(y, pc j) = d(y, pck)∀y ∈ pc j |pck . If

MBRi lies completely in H j/k, pck can be pruned from K. Thus, VDBi can be more

efficient than MinMax-BB. If a candidate cluster c j cannot be pruned by VDBi,

neither does MinMax-BB. However, if VDBi may prune a candidate cluster c j that

cannot be pruned by MinMax-BB [58]. The overhead of VDBi includes the time of
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Voronoi diagrams construction, Voronoi-cell pruning and bisector pruning.

SHIFT

The pruning methods can be more efficient with the use of cluster-shift technique.

Because it is likely that the cluster representatives shift by small distance in the

next iteration, the tighter bound can be made to prune candidate clusters more effi-

ciently. Cluster-shift (SHIFT) technique can be applied in MinMax-BB and VDBi.

The additional overhead of SHIFT technique includes the time of cluster represen-

tative shift calculation between two consecutive iterations. Although the pruning

techniques have reduced most of expected distance calculations, it is still expensive

to use these pruning techniques for each object in each iteration. Thus, the pruning

process becomes a new bottleneck.

2.2.2 Density-based Clustering

Recently, there have been studies on density-based clustering on uncertain data.

FDBSCAN [62] and FOPTICS [63] are based on DBSCAN [36] and OPTICS [10]

respectively to handle density-based clustering on uncertain objects. In DBSCAN,

clusters are formed based on the definitions of reachability and core objects. In

FDBSCAN, the definitions of core objects and reachability are re-defined by inte-

grating the information of fuzzy distance functions to handle uncertain objects. If

the probability that the number of other objects that are close to o exceeds a certain

probability threshold, o is a core object. Whether o is “reachable” from another

object x depends on both the probability that x is a core object and the probability

of o being close to x. OPTICS is modified in a similar way for FOPTICS to handle

uncertain data.
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2.2.3 Fuzzy Clustering

Fuzzy logic [84] has been studied for a long time. Fuzzy clustering is another

research area related to uncertain data clustering. Among most widely used fuzzy

clustering methods [16, 35], for example, in fuzzy c-means, the object is associated

with a degree of belongingness for each cluster. Normal or fuzzy data have used

fuzzy clustering methods to produce fuzzy clusters [87, 89]. The difference between

our work and fuzzy clustering is that we developed the model for clustering on

uncertain objects. In our work, each object can only belong to one cluster while

in fuzzy clustering each object can belong to more than one cluster with different

degrees. The other important difference is that we handle uncertain objects while

fuzzy clustering does not.

Additionally, compared with previous work, the cluster representative is con-

sidered as a certain point. However, in our work the uncertainty of cluster represen-

tative is taken into account.

2.3 Classification

Classification is another classic task in real applications. More research has focused

on the problem of classification on certain data [42, 70, 81]. Some work has been

extended to handle uncertain data.

SVM

In [17], support vector machine is used to classify uncertain data. In the method, the

uncertain object is assumed as a simple bounded geometric model. Support vector

machine creates margins by using uncertain objects which overlap the boundary.
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In the model, the size of uncertain area of objects are different. If more part of the

uncertain area of an object overlaps the boundary, the margin will be influenced and

adjusted by the classifier. The difference between traditional SVM and uncertain

SVM is that uncertain SVM computes the degree of separation between the two

classes [5] by using the probability of a given data point lying on either side of

the boundary. In uncertain SVM, the size of uncertainty area is estimated in the

algorithm, but the maximum boundary of objects is given in our model.

uRules

In [80], uRule is proposed based on Rule-based algorithm to classify uncertain in-

formation. The difference between Rule-based and uRule is that the instances are

partly covered by the rule in uRule. The key idea in uRule is that the algorithm com-

putes which proportion of the instances is covered by a rule based on the uncertain

attribute interval and probabilistic function. uRule considers to classify uncertain

numerical and categorical data.

Uncertain Decision Tree and Naive Bayes

In [94, 95], an uncertain object is associated with a probability density function

(pdf) and a finite region. The decision tree classifier is extended to handle uncertain

data by using averaging or distribution-based approach. To improve the efficiency,

some pruning techniques were proposed without affecting the results of decision

tree. In [82], the uncertain model is the same as that in [94, 95]. In [82], Naive

Bayes is extended to classify uncertain data. Three approaches are proposed (aver-

aging, formula-based, and sample-based) to calculate the probability of object label

and assign it to the class with highest probability.

The uncertain data are represented by hundreds or thousands samples, so, the
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classification methods are more complex when handling uncertain data. The com-

putational cost on uncertain data classification are expensive. Thus, in this thesis

we propose supervised UK-means to classify uncertain data which is simpler and

more time-saving than existing methods.

2.4 Other Mining Techniques on Uncertain Data

There are also studies on other data mining tasks on uncertain data, such as outlier

detection, frequent pattern mining, and domain orders learning.

In [4, 55, 71, 97], outlier detection is discussed. In [55] and [4], an uncertain

object is represented by a probability density function (pdf). In [4], an uncertain

point o is a (α, β)-outlier, if the probability of Y falling into a region of some sub-

space is less than β whose density is at least α. Wang et al. [97] proposed outlier

detection on an uncertain table based on distance method. The table is consist of

a set of tuples, and each tuple is represented by an appearing probability. Possible

world semantics in [1, 31, 53, 54, 86] are the basis of outlier definition. Matsumoto

et al. [71] proposed a new implementation for outlier detection by using parallelized

cross-platform OpenCL framework on uncertain data. Different from other work,

Jiang et al. [55] also considers outlier instances while others only focus on the out-

lier objects.

The problem of frequent pattern mining on uncertain data are proposed in the

literature [3, 15, 28, 29, 67, 108]. Expected support [3, 28, 29, 67, 108] and fre-

quentness probability [15] are proposed to handle uncertainty, and both follow the

possible world semantics. Frequent pattern mining was first extended to handling
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uncertain data by Chui et al. [29]. Chui et al. [29] modified the classic Apriori

algorithm to U-Apriori by using expected support. Chui et al. [28] also devel-

oped a pruning technique to speed up the U-Apriori algorithm. Aggarwal et al. [3]

extended non-candidate generation algorithms to uncertain data (i.e. H-mine algo-

rithm [75] and FP-growth algorithm [46]). Frequentness probability is used in [15]

to measure the support of an itemset in an uncertain transaction database.

Learning domain orders on certain data is widely studied in the application of

mining user preferences, for example, preference queries and recommendation sys-

tems [65] on large databases [25, 26, 41, 60, 64]. The framework of preference

learning in multidimensional space for numerical and categorical domains is pro-

posed in [59]. In [7], a framework of combining and expressing the preferences

is proposed. On the other side, the model of domain order is related to the notion

of dominance relationship in skyline query processing [19, 27, 40, 61, 90]. A large

number of skyline variations are also proposed in the literature [21, 34, 77, 93, 109].

However, few work focuses on handling uncertain data. Jiang et al. [56] first

brought domain learning into uncertain data. They learn domain orders on uncertain

data by using greedy method.

2.5 Summary

In this chapter, we briefly introduce the model of uncertain data, and review the

methods that have been used in clustering and classification on uncertain data. In

this chapter, we also give a glance at other mining techniques on uncertain data.

In Chapter 3, we analyze existing algorithms for clustering uncertain data. Ex-
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isting algorithms are time consuming because of the calculation of expected dis-

tance. We reduce UK-means to K-means by using expected squared distance. Then

we propose Approximate UK-means to heuristically identify objects of boundary

cases and re-assign them to better clusters. Additionally, we consider the uncer-

tainty of cluster representative and propose three models for cluster representative.

The major result of Chapter 3 is published in Proceedings of the 23rd Australasian

Joint Conference on Artificial Intelligence (AI 2010) [52].

In Chapter 4, we build an efficient classifier based on UK-means to handle un-

certain data which is much faster than existing methods. To capture related prop-

erties of data, we extend feature selection to supervised UK-means. Moreover, we

also extend ensemble model to supervised UK-means based on Adaboost [38]. The

major result of Chapter 4 is published in Proceedings of the 24th Australasian Joint

Conference on Artificial Intelligence (AI 2011) [105].

In Chapter 5, we overcome the limitation of supervised UK-means when a class

is divided by other classes. We propose supervised UK-means with multiple sub-

classes (SUMS). In SUMS, we estimate the number of subclasses first, and then

learn the subclass representatives. To avoid overfitting, we add a condition on

SUMS. The major result of Chapter 5 is published in Proceedings of the 25th Aus-

tralasian Joint Conference on Artificial Intelligence (AI 2012) [106].



Chapter 3

Clustering on Uncertain Objects

In this chapter, we develop a clustering framework to summarize uncertain objects

efficiently and effectively.

In previous work, UK-means is based on K-means for clustering on uncertain

objects. UK-means is time consuming due to expensive distance computational

cost. Ngai et al. [58, 73] improve the efficiency of UK-means by pruning candidate

clusters. However, existing algorithms are still undesirably slow due to the overhead

of pruning candidate clusters for each object in each iteration.

In this chapter, we reduce UK-means to K-means by using squared Euclidean

Distance and heuristically reduce the discrepancy generated by different distance

metrics. Compared with previous work, we consider the uncertainty of cluster

representative. Three models are developed for representing cluster representative

(certain model, uncertain model and heuristic model) to calculate expected squared

Euclidean distance between objects and cluster representatives. We briefly intro-

duce uncertain objects clustering in Section 3.1. In Section 3.2, we illustrate some

18
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clustering techniques on uncertain objects. In Section 3.3, we discuss three models

for representing cluster representatives. In Section 3.4, we introduce “Approxi-

mate UK-means” which heuristically identifies objects on the boundary cases and

re-assigns them to better clusters in order to reduce the discrepancies in clustering

results. Section 3.5 demonstrates the efficiency and effectiveness of Approximate

UK-means by extensive experiments. We summarize this chapter in Section 3.6.

3.1 Introduction

Clustering of such “uncertain” data can be illustrated by the following simple re-

alistic example. Consider sensors on wild animals that update their locations pe-

riodically. The sample locations of an animal over a period generate a (discrete)

probability distribution function (PDF) which describes the possible location of the

animal. Clustering results on those animals may reveal the possible groups and in-

teractions between them. In our work, we consider the problem of clustering objects

with multidimensional uncertainty where an object is represented by an uncertain

region over which a discrete probability distribution function (PDF) or a probability

density function (pdf) is defined.

Formally, we consider a set of n objects oi, 1 ≤ i ≤ n in an m-dimensional

space. An object oi is represented by a pdf fi: IRm → IR (IR represents real

number space) that specifies the probability density of each possible location of

object oi. The methods to be discussed in this chapter just require that for each

object oi, the uncertain region Ai of each object oi is finite, (i.e. ∀x < Ai, fi(x) = 0)

without relying on any special forms of the pdf ( fi). Thus, a bounding box can be
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used to bound each object. In practice, the probability density of an object is just

concentrate in a very small region, so that the assumption is convincing.

The goal of clustering is to group n these objects into K clusters so that the sum

of expected Euclidean distances (EED) [22] between the uncertain objects and their

cluster centers is minimized. Thus, suppose C(oi) = c j represents that object oi is

assigned to cluster c j, and pC(oi) is the cluster’s representative point, we want to find

the K cluster representatives such that the objective function
∑n

i=1 EED(oi, pC(oi)) =∑n
i=1(
∫

fi(x)ED(x, pC(oi))dx) is minimized where ED is the Euclidean distance func-

tion based on a metric d (i.e. Euclidean distance in UK-means and pruning algo-

rithms, squared Euclidean distance in our methods).

3.2 Clustering Techniques on Uncertain Objects

Efficiency is important in real time application. The bottlenecks of uncertain ob-

ject clustering are expected distance calculation and pruning of candidate clusters.

However, by considering squared Euclidean distance (instead of Euclidean distance

as in UK-means), UK-means can be reduced to K-means (so, no pruning of clus-

ters is necessary) [66], which is running much faster with some discrepancies in the

clustering results as shown in the experimental section.

3.2.1 Expected Distance Calculation between Uncertain Objects

If each attribute is seen as a dimension, a certain object is represented as a point

in a multidimensional space produced by the domains of all attributes. Because of

the system limitation and uncertain nature during data collection, the imperfect data
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quality causes uncertain attribute values of an object. A set of points are used to

represent an uncertain object, and each point is a possible location of the object. A

probability distribution function (PDF) is defined for representing the distribution

of the probabilities of possible location. A finite or infinite region can also be

used to represent an uncertain object by covering all the possible locations of the

object (especially for infinite number of possible locations). UD(oi) is noted as the

uncertain domain (region) of object oi. A probability density function (pdf), fi, is

used to indicate the probability density of each possible location within the region

(
∫

UD(oi)
fi(x) dx = 1).

There are two uncertain objects oi, o j, whose pdfs are fi(xi), f j(x j), where xi and

x j are possible locations of them and o j. The uncertain domains of them are UD(oi)

and UD(o j). The distance between possible locations (xi and x j) of uncertain ob-

jects is denoted as D(xi, x j). The expected distance and the pdf of the expected

distance between oi and o j are given as following.

E(D(oi, o j)) =
∫

UD(oi)

∫
UD(o j)

D(xi, x j) fi(xi) f j(x j) dxi dx j . (3.1)

The pdf Di, j is defined to return the probability of a distance value as following:

Di, j(s) =
∫

UD(oi)

∫
UD(o j)

F(D(xi, x j), s) fi(xi) f j(x j) dxi dx j . (3.2)

where s is a non-negative real number; F(x, y) = 1 if x = y; F(x, y) = 0 otherwise.

In other words, Di, j(s) returns the probability that the distance between object oi, o j

is actually s. The expected distance between oi and o j can be represented in terms

of Di, j(s) as Equation (3.3). When PDFs (e.g. Fi) are used instead of pdfs(e.g. fi),∫
UD(oi)

∫
UD(o j)

fi(xi) f j(x j) dxi dx j is changed to
∑

UD(oi)
∑

UD(o j) Fi(xi)F j(x j).

E(D(oi, o j)) =
∫ ∞

0
Di, j(s)s ds . (3.3)
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The distance function D can be Euclidean distance, squared Euclidean distance

and Manhattan distance, etc. The following section presents the analytical solutions

of expected distance calculation of uncertain objects. In the case of clustering on

uncertain objects, both the objects and cluster representatives are uncertain objects

like oi and o j.

3.2.2 Reduce UK-means to K-means

An uncertain object can also be represented as a set of points, each of which is a pos-

sible location of object oi [58, 73, 104]. As Figure 3.1 shows, the uncertain domain

is divided into a number of grid cells. Each grid cell represents a possible location of

oi. The expected Euclidean distance (EED) from object oi (represented by a pdf fi)

to the cluster representative pc j is the weighted average of the distances between the

samples in oi and pc j , i.e. EED(oi, pc j) =
∑T

t=1
∑|c j |×T

z=1 Fi(si,t)Fpc j
(pc j,z)ED(si,t, pc j,z),

where T is the number of samples in oi, |c j| is the number of objects assigned to

cluster c j, si,t is the location (vector) of the tth sample of oi, pc j,z is the location

(vector) of the zth sample of cluster representative pc j , Fi(si,t) =
∫

x∈cellt
fi(x)dx (Fi

is a discrete probability distribution function over T grid cells, cellt is the grid cell

that sample si,t represents, x is the possible location of sample st in cellt), which is

similar to Fpc j
(pc j,z), and the metric ED is Euclidean distance used in [22, 58, 73],

squared Euclidean distance in [104] and our method.

By using expected squared Euclidean distance, Lee. et al. [66] shows that UK-

means algorithm can be reduced to K-means. In the following, we are going to

show another derivation by applying the analytic solution in [104]. We will first

define the mean vector and the trace of covariance matrix of an uncertain object
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jcp
io

Figure 3.1 Expected distance calculation from oi to pc j in [22, 58, 73]

given its samples as follows. Suppose oi is a m× 1 (m is the number of dimensions)

mean vector of an uncertain object oi, which is the weighted mean of all T samples

(or possible locations) in the object as Formula (3.4).

oi =

T∑
t=1

si,t × Fi(si,t). (3.4)

Where si,t represents the tth sample of object oi. Suppose Σoi is a m × m covariance

matrix of samples of oi. trace(Σoi) is the sum of all diagonal elements in Σoi . On

the other hand, trace(Σoi) can also be expressed as Equation (3.5):

trace(Σoi) =
T∑

t=1

||si,t − oi||2 × Fi(si,t). (3.5)

In [104], the expected squared Euclidean distance (ESED) between two uncer-

tain objects oi and o j can be obtained by

ES ED(oi, o j) = ||oi − o j||2 + trace(Σoi) + trace(Σo j). (3.6)

It is obvious that we can preprocess the uncertain objects and obtain their oi and

trace(Σoi) in the beginning so that Expected Squared Euclidean Distance (ESED)

between any object oi and any cluster representative pc j can be easily obtained.

Given an uncertain object oi, to find the closer one out of two cluster representa-

tives pc j and pck , we could calculate the difference between their ESED from oi:
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ES ED(oi, pck) − ES ED(oi, pc j) = (||oi − pck ||2 + trace(Σoi) + trace(Σpck
)) − (||oi −

pc j ||2+ trace(Σoi)+ trace(Σpc j
)) = ||oi− pck ||2− ||oi− pc j ||2+ trace(Σpck

)− trace(Σpc j
),

where pck and pc j are the mean vectors of pck and pc j respectively. As a result, it

is no longer necessary to add trace(Σoi) in ESED. Instead of calculating the whole

ESED, we only need to calculate a part of the Expected Squared Euclidean distance

(PESED) between uncertain object oi and cluster representative pc j as follows:

PES ED(oi, pc j) = ||oi − pc j ||2 + trace(Σpc j
). (3.7)

In this chapter, the mean vector of cluster representatives pc j are obtained by

Equation (3.8), where |c j| is the number of objects assigned to cluster c j.

pc j =
1
|c j|

|c j |∑
i=1

oi. (3.8)

Compared with the traditional expected distance calculation method in [58, 73],

the execution time of expected squared Euclidean distance calculation is not related

to the number of samples. The overhead time in our method is the precomputation

of mean vector and trace(Σoi) (trace(Σpc j
) is obtained by trace(Σoi) and |c j|, to be

discussed later). The consideration of uncertainty of clustering representative will

be introduced in Section 3.3.

3.3 Models of Cluster Representative

3.3.1 Certain Model of Cluster Representative

In most related work, pc j is assumed to be a certain point, so pc j is obtained by

Equation (3.8) and trace(Σpc j
) = 0. From Equation (3.7), instead of calculating
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PESED, we only need to calculate Means’ Expected Squared Euclidean distance

(MSED) between uncertain object oi and cluster representative pc j as follows:

MS ED(oi, pc j) = ||oi − pc j ||2. (3.9)

In this model, we can preprocess the uncertain objects and obtain their oi in the

beginning so that Mean Squared Euclidean Distance (MSED) between any object

oi and any cluster representative pc j can be readily obtained.

3.3.2 Uncertain Model of Cluster Representative

From Equation (3.7), if the difference between trace(Σpc j
) and trace(Σpck

) is quite

large, the variance of cluster representative is likely to affect clustering results. In

this model, we consider to represent a cluster representative as an uncertain ob-

ject. In Equation (3.7), pc j is assumed to be an uncertain object, pc j is obtained by

Equation (3.8) and trace(Σpc j
) is represented as Equation (3.10).

trace(Σpc j
) = trace(

|c j |∑
z=1

Σoz

|c j|
)

=

∑|c j |
z=1 trace(Σoz)

|c j|2
.

(3.10)

where oz is the object assigned to cluster c j, and |c j| is the number of objects as-

signed to cluster c j. Furthermore, the part of Expected Squared Euclidean distance

(PESED) between object oi and cluster representative pc j can be obtained from

Equation (3.11).

PES ED(oi, pc j) = ||si − pc j ||2 +
∑|c j |

z=1 trace(Σoz)

|c j|2
. (3.11)
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In this model, we can preprocess the uncertain objects and obtain their oi and

trace(Σoi) in the beginning. The uncertainty of each cluster c j (trace(Σpc j
)) should

be calculated during each iteration. Part of Expected Squared Euclidean Distance

(PESED) between any object oi and any cluster representative pc j can then be ob-

tained. The uncertain model of cluster representative is slower than certain model

because of the calculation of trace(Σoi) (once in the beginning) and trace(Σpc j
).

trace(Σpc j
) is related to the sample variance of objects assigned to the cluster c j and

|c j| (the number of objects assigned to c j).

3.3.3 Heuristic Model of Cluster Representative

The heuristic model considers the cluster representative as a certain object at first

to cluster objects, and then heuristically considers the uncertainty of cluster repre-

sentatives. In this model, we first calculate Means’ Squared Euclidean distance by

Equation (3.9) using certain model (K-means). When the algorithm using certain

model converges, we use the uncertain cluster representative model to re-cluster

objects based on the clustering results obtained by certain model. The experimental

results of clustering algorithms are shown in Section 3.5.

3.4 Approximate UK-means

In Section 3.2, UK-means is reduced to K-means by using squared Euclidean dis-

tance while UK-means originally uses Euclidean distance. It is not surprising that

the clustering results of K-means will deviate from those of UK-means.
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Figure 3.2 An example of the cause of discrepancy.

3.4.1 Discrepancy

The order of cluster representatives sorted by their expected distances to a given

object may be different from that sorted by expected squared distances. Figure 3.2

gives an example of discrepancy between these two distance functions. Assume

an uncertain object has two samples in two grid cells and the probabilities of these

two samples are 0.5. The distances from one sample of the uncertain object to

cluster representatives c1 and c2 are 1 and 3 respectively. The distances from the

other sample of the uncertain object to c1 and c2 are 5 and 4 respectively. Thus, the

uncertain object will be assigned to cluster c1 according to expected distance ( 1+5
2 <

3+4
2 ). However, the uncertain object belongs to cluster c2 according to expected

squared distance (12+52

2 < 32+42

2 ).

Figure 3.3 gives an example of the same clustering result no matter expected

distance or expected squared distance is used. The assumption of this case is the

same as that of Figure 3.2. The distances from one sample of the uncertain object

to c1 and c2 are 1 and 3 respectively. The distances from the other sample of the

uncertain object to c1 and c2 are 2 and 4. The uncertain object is assigned to cluster

c1 if the expected distance is used ( 1+2
2 <

3+4
2 ), and it is also assigned to cluster c1
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Figure 3.3 An example of the same clustering result.

if the expected squared distance is used instead ( 12+22

2 < 32+42

2 ). It means the order

of cluster representatives sorted by their expected distances to a given object is the

same as that sorted by expected squared distances.

Discrepancy is used to measure the difference of clustering results between

two clustering algorithms based on purity. Purity is the maximum probability that

a cluster in algorithm A contains objects of the same cluster from algorithm B. The

purity of cluster ci is defined as Equation(3.12).

probi = max
j

probi j. (3.12)

where probi j is the probability that a member of cluster ci in algorithm A belongs to

cluster c j in algorithm B. Note that probi j =
ni j

ni
where ni is the number of objects in

cluster ci in algorithm A, and ni j is the number of objects of cluster c j (in algorithm

B) within these ni objects. The overall purity of clustering result of algorithm A is

defined as Equation(3.13).

purity =
K∑

i=1

ni

n
probi. (3.13)

where n is the number of uncertain objects, K is the number of clusters, and the
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range of purity is [0, 1]. Finally we define discrepancy as Equation(3.14).

discrepancy = 1 − purity. (3.14)

3.4.2 Boundary Case

Definition of Boundary Case pcm and pcq are two closest cluster representatives

of object oi. averageMS ED is the average of MS ED(oi, pcm) and MS ED(oi, pcq)

where MSED is Means’ Squared Euclidean Distance. Assume MS ED(oi, pcm) <

MS ED(oi, pcq), object oi is defined to be a boundary case if MS ED(oi, pcm) ≥ β ×

averageMS ED(0 ≤ β ≤ 1.0), where β is an input parameter. β ranges from 0 to 1

and is fixed in the algorithm. If β is close to 1, the two MSEDs of the boundary

case oi from the two closest cluster representatives will be close and oi is close

to the boundary between clusters cm and cq. We notice that objects assigned to a

cluster that is different from another algorithm are likely near the boundary between

clusters. Therefore, we propose a heuristic called Approximate UK-means.

3.4.3 Algorithms

The basic idea of the heuristic is picking out objects near the boundary between

two closest clusters and re-assigning them in the first clustering iteration of Ap-

proximate UK-means. In Approximate UK-means, if object oi is a boundary case,

we calculate the expected Euclidean distances from oi to pcm and pcq and assign oi

to the closest cluster. The above is only done in the first clustering iteration of

Approximate UK-means because we observed that the assignment of objects

in the first iteration is the most important, which will greatly affect the later
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Algorithm 1 Approximate UK-means of Certain Model

1: randomly initialize all cluster representatives (reps) mean vectors pc j ;

2: for i=0; i < n; i++ do

3: precompute the mean vector oi of object oi;

4: end for

5: repeat

6: if this is the first iteration then

7: find and re-assign boundary cases by Algorithm 4;

8: else

9: for i=0; i < n; i++ do

10: for j=0; j < K; j++ do

11: compute Means’ Squared Euclidean Distance MS ED(oi, pc j) = ||oi −

pc j ||2;

12: end for

13: assign oi to cluster cm where pcm is the closest cluster rep by MS ED;

14: end for

15: end if

16: update all cluster reps pc j by Equation(3.8);

17: until all cluster reps converge

iterations due to the shift of cluster representatives.

Algorithm 1 shows Approximate UK-means using certain cluster representative

model, where n is the number of objects, and K is the number of clusters.

Algorithm 2 shows Approximate UK-means using uncertain cluster represen-

tative model. In Algorithm 2, the cluster representative is uncertain, and initialize
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Algorithm 2 Approximate UK-means of Uncertain Model

1: randomly initialize all cluster representatives (reps) mean vectors pc j and

trace(Σpc j
) = 0;

2: for i=0; i < n; i++ do

3: precompute the mean vector oi and trace(Σi) of object oi;

4: end for

5: repeat

6: if this is the first iteration then

7: find and re-assign boundary cases by Algrithm 4;

8: else

9: for i=0; i < n; i++ do

10: for j=0; j < K; j++ do

11: compute Part of Squared Euclidean Distance PES ED(oi, pc j) = ||oi−

pc j ||2 + trace(Σpc j
);

12: end for

13: assign oi to cluster cm where pcm is the closest cluster rep by PES ED;

14: end for

15: end if

16: update all cluster reps pc j by Equation(3.8) and trace(Σpc j
) by

Equation(3.10);

17: until all cluster reps converge

trace(Σpc j
) = 0. In clustering process, the expected squared Euclidean distance

includes the term trace(Σpc j
). When update pc j , trace(Σpc j

) is calculated as well.

Algorithm 3 shows Approximate UK-means using heuristic cluster representa-
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tive model. In Algorithm 3, the initial cluster representatives are the same as those

of Algorithm 2. The clustering process is a combination of certain model and un-

certain model. The cluster representative is assumed to be certain at first. Thus, we

calculate the MSED between uncertain object oi and cluster representative pc j and

update the mean vector of cluster representative (pc j) during the certain clustering

process. When the shift of cluster representative converges, then we use uncertain

model to calculate the PESED between uncertain object oi and cluster representa-

tive pc j , and update pc j and trace(Σpc j
) during the uncertain cluster representative

update process.

In all the Approximate UK-means, heuristic (Algorithm 4) is used to find and re-

assign boundary cases. The time complexity of Approximate UK-means is O(nKT1),

where n is the number of objects, K is the number of clusters, and T1 iteration times.

In the experiments, we set β from 0.7 to 1. If β = 1, the inequality of boundary case

becomes MS ED(oi, pcm) ≥ averageMS ED. In other words, the inequality of bound-

ary case is MS ED(oi, pcm) ≥ MS ED(oi, pcq)(β = 1.0). However, pcm is the closest

cluster representative, so MS ED(oi, pcm) ≤ MS ED(oi, pcq), by definition the algo-

rithm cannot find boundary cases. If MS ED(oi, pcm) is equal to MS ED(oi, pcq),

then the Euclidean distance between oi and pcm is the same as Euclidean distance

between oi and pcq . The re-assignment of cluster representative will become un-

necessary and redundant. Thus, Approximate UK-means is reduced to K-means if

β = 1.0. In the definition, MS ED(oi, pcm) ≥ β × averageMS ED(0 ≤ β ≤ 1.0), then oi

is considered as boundary case. In other words, if
MS ED(oi,pcq )
MS ED(oi,pcm ) ≤

2
β
−1, oi is boundary

case. When β decreases, 2
β
− 1 become larger. Thus, more objects are considered as

boundary cases because more objects satisfy the inequality and will be re-checked
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Algorithm 3 Approximate UK-means of Heuristic Model

1: randomly initialize all cluster representatives (reps) mean vectors pc j and

trace(Σpc j
) = 0;

2: Line 2-17 same as Line 2-17 in Algorithm 1;

3: repeat

4: for i=0; i < n; i++ do

5: for j=0; j < K; j++ do

6: compute Part of Squared Euclidean Distance PES ED(oi, pc j) = ||oi −

pc j ||2 + trace(Σpc j
);

7: end for

8: assign object oi to cluster cm where pcm is the closest cluster rep by

PES ED;

9: end for

10: update all cluster reps pc j by Equation(3.8) and trace(Σpc j
) by

Equation(3.10);

11: until all cluster reps converge

again. In fact, experimental results in the next section show that this heuristic can

significantly reduce the discrepancies of clustering result by up to 70% compared

with K-means. The tradeoff is only 25% more execution time, which is still at least

10 times faster than existing pruning algorithms.
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Algorithm 4 Heuristic for Finding Boundary Case
1: for i=0; i < n; i++ do

2: for j=0; j < K; j++ do

3: compute Means’ Squared Euclidean Distance MS ED(oi, pc j) = ||oi−pc j ||2;

4: end for

5: let pcm and pcq be the 1st and 2nd closest cluster reps by MS ED;

6: averageMS ED = (MS ED(oi, pcm) + MS ED(oi, pcq))/2;

7: if MS ED(oi, pcm) ≥ β × averageMS ED then

8: compute oi’s expected Euclidean distances (EED) from pcm and pcq , and

assign oi to cluster with smaller EED;

9: else

10: assign object oi to cluster cm;

11: end if

12: end for

3.5 Experimental Evaluation

In this section, we evaluate Approximate UK-means using three different models

experimentally by comparing it with K-means and pruning UK-means (MinMax-

SHIFT and VDBi-SHIFT) [58, 73]. Section 3.5.2 compares their execution time

and Section 3.5.3 compares their clustering results. All algorithms were written in

Java and were run on a Linux machine with an Intel 2.5GHz Pentium(R) Dual-Core

processor and 8GB of main memory.
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Table 3.1 Parameters for experiments using data sets.

Parameter Description Baseline Value

n number of uncertain objects 20000

K number of clusters 50

T number of samples per object 196

S maximum size of MBR, S × S 5

mindis minimum distance between two clusters 2

D number of dimensions 2

σ standard deviation of Gaussian distribution 16

β the factor of picking out boundary cases 0.8

3.5.1 Data Sets

For ease of comparison with previous work like [58, 73, 94] which used synthetic

data sets only, we generated 125 random data sets for the experiments. For each data

set, a set of n uncertain objects represented by MBRs with size S ×S was randomly

generated in 2D space [0, 100] × [0, 100]. An MBR is divided into
√

T ×
√

T grid

cells. Each grid cell corresponds to a sample. Each sample is associated with a

randomly generated probability value. All probabilities in an MBR are normalized

to have their sum equal to 1. For each data set, a set of K cluster representatives

was randomly initialized and was repeatedly used in all experiments on the same

data set for more fair comparisons. This is to eliminate variations in the results due

to the uses of different sets of initial cluster representatives.

To make the clustering results more reasonable, we also generated 125 data
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sets with Gaussian distribution. The n uncertain objects in a data set were equally

grouped into K clusters. For each cluster, the centers of n
K uncertain objects were

generated from a Gaussian distribution, whose mean and standard deviation are

equal to the cluster center and σ respectively. The cluster center was randomly

generated and was restricted to have a minimum distance mindis with other cluster

centers.

The parameters used for the experiments on random data sets and gaussian data

sets are summarized in Table 3.1. For each set of parameters, a set of five experi-

ments was run on five different randomly generated data sets. Each experiment was

repeated on the six algorithms. The average value of five runs on each algorithm

was taken and reported.

3.5.2 Execution Time

Varying Sample Number

In the experiments, we varied the sample number T of an object from 100 to 900.

The other parameters were kept at baseline values. Figure 3.4(a) shows the execu-

tion time of the six algorithms on random data sets. However, all three Approx-

imate UK-means run almost as fast as K-means and their execution time grows

much slower than MinMax-SHIFT and VDBi-SHIFT. The significant improvement

in the performance of Approximate UK-means is due to two reasons: (i) the dis-

tance calculation is done much faster (Figure 3.4(b)), and (ii) the overhead is much

reduced as no pruning is necessary (Figure 3.4(c)). Figure 3.4(b) also shows that

the (expected) distance calculation time of Approximate UK-means (in all three

models) does not change a lot with sample number T , because PESED calculation
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Figure 3.4 (a) Total clustering time with varying T on random data sets (RDS) (b) (Ex-

pected) distance calculation time with varying T on RDS (c) Overhead time with varying T

on RDS.

0 200 400 600 800 1000
0

10

20

30

40

50

60

sample number
(a)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

 

 

K−means
A. UK−means(C. model)
A. UK−means(UnC. model)
A. UK−means(H. model)
MinMax−SHIFT
VDBi−SHIFT

0 200 400 600 800 1000
0

2

4

6

8

10

12

sample number
(b)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

 

 

K−means
A. UK−means(C. model)
A. UK−means(UnC. model)
A. UK−means(H. model)
MinMax−SHIFT
VDBi−SHIFT

0 200 400 600 800 1000
0

5

10

15

20

sample number
(c)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

 

 

K−means & A. UK−means
MinMax−SHIFT
VDBi−SHIFT

Figure 3.5 (a) Total clustering time with varying T on Gaussian data sets (GDS) (b) (Ex-

pected) distance calculation time with varying T on GDS (c) Overhead time with varying

T on GDS.

does not depend on sample number. And the expected distance calculation in the

first clustering iteration of Approximate UK-means is only a minor cost. In Fig-

ure 3.4(a), the total execution time of the three Approximate UK-means models is

similar. The (expected) distance calculation in Approximate UK-means using Un-

certain model (UnC. model) and Approximate UK-means using Heuristic model

(H. model) add the variance of cluster representative. Thus, the uncertain model

and heuristic model cost a little more time than certain model (Figure 3.4(b)). The

execution time comparison of six algorithms on Gaussian data sets with varying T

(Figure 3.5) is similar to that on random data sets (Figure 3.4).
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Figure 3.6 (a) Total clustering time with varying K on RDS (b) (Expected) distance cal-

culation time with varying K on RDS (c) Overhead time with varying K on RDS.

Varying Cluster Number

In the experiments, we varied the cluster number K from 10 to 100. The other pa-

rameters were kept at baseline values. Figure 3.6 shows the execution time of the six

algorithms on random data sets. Figure 3.6(a) shows that the total execution time

of all six algorithms grows as K increases. However, all Approximate UK-means

almost spend the same time as K-means and its execution time grows much slower

than MinMax-SHIFT and VDBi-SHIFT. From Figure 3.6(b), (expected) distance

calculation of K-means is more efficient than the other five algorithms. (Expected)

distance calculation of Approximate UK-means (all three models) is faster than

MinMax-SHIFT and VDBi-SHIFT if K is smaller than 100. The overhead time

of Approximate UK-means is not related to K while the overhead time of pruning

techniques grows linearly with K (Figure 3.6(c)). Similar to the situation of varying

sample number T , in Figure 3.6(a), the total execution time of all the three Approx-

imate UK-means models is similar. Moreover, the uncertain model and heuristic

model cost a little more time than certain model (Figure 3.6(b)). The execution

time comparison of six algorithms on Gaussian data sets with varying K (Figure

3.7) is similar to that on random data sets (Figure 3.6).



3.5. Experimental Evaluation 39

0 20 40 60 80 100
0

10

20

30

40

50

60

cluster number
(a)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

 

 

K−means
A. UK−means(C. model)
A. UK−means(UnC. model)
A. UK−means(H. model)
MinMax−SHIFT
VDBi−SHIFT

0 20 40 60 80 100
0

1

2

3

4

5

6

cluster number
(b)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

 

 

K−means
A. UK−means(C. model)
A. UK−means(UnC. model)
A. UK−means(H. model)
MinMax−SHIFT
VDBi−SHIFT

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

cluster number
(c)

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

 

 

K−means & A. UK−means
MinMax−SHIFT
VDBi−SHIFT

Figure 3.7 (a) Total clustering time with varying K on GDS (b) (Expected) distance cal-

culation time with varying K on GDS (c) Overhead time with varying K on GDS.

Varying Maximum Size of MBR

In the experiments, we varied the maximum MBR size (S × S ) by varying S from

5 to 25. The other parameters were kept at their baseline values. Figure 3.8(a) and

Figure 3.9(a) show the execution time of the six algorithms on random data sets

and Gaussian data sets respectively. Figure 3.8(a) and Figure 3.9(a) show that the

total execution time of pruning algorithms increases as S increases while K-means

and Approximate UK-means (all three models) do not increase with S . However,

all Approximate UK-means run almost as fast as K-means and its execution time

grows much slower than MinMax-SHIFT and VDBi-SHIFT. The significant im-

provement in the performance of all Approximate UK-means is due to two reasons:

(i) the distance calculation is done much faster (Figure 3.8(b) and Figure 3.9(b)),

and (ii) the overhead is much reduced as no pruning is necessary (Figure 3.8(c)

and Figure 3.9(c)). In Figure 3.8(a) and (b), the total execution time of all three

Approximate UK-means models is similar, and the (expected) distance calculation

time of all three Approximate UK-means models is also similar.

Varying Object Number

In the experiments, we varied the object number n from 5000 to 60000. The other
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Figure 3.8 (a) Total clustering time with varying S on RDS (b) (Expected) distance cal-

culation time with varying S on RDS (c) Overhead time with varying S on RDS.
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Figure 3.9 (a) Total clustering time with varying S on GDS (b) (Expected) distance cal-

culation time with varying S on GDS (c) Overhead time with varying S on GDS.

parameters were kept at their baseline values. Figure 3.10(a) and Figure 3.11(a)

show that the total execution time of all six algorithms increases as object number n

increases. However, all Approximate UK-means run almost as fast as K-means, and

their execution time grows much slower than MinMax-SHIFT and VDBi-SHIFT

which is similar to other cases. In Figure 3.10(a) and Figure 3.11(a), the execu-

tion time of the three Approximate UK-means models is similar to each other. In

Figure 3.10(b) and Figure 3.11(b) the (expected) distance calculation time of Ap-

proximate UK-means using Uncertain model (UnC. model) is similar to that of

using Heuristic model (H. model), but it is longer than Certain model (C. model).

Varying Dimension Number

In the experiments, we varied the dimension number D from 2 to 6 on random data
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Figure 3.10 (a) Total clustering time with varying n on RDS (b) (Expected) distance

calculation time with varying n on RDS (c) Overhead time with varying n on RDS.
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Figure 3.11 (a) Total clustering time with varying n on GDS (b) (Expected) distance

calculation time with varying n on GDS (c) Overhead time with varying n on GDS.

sets. The other parameters were kept at baseline values. Figure 3.12(a) shows the

total execution time of the six algorithms grows as D increases on random data

sets. All three Approximate UK-means models run almost as fast as K-means and

their execution time grows much slower than MinMax-SHIFT and VDBi-SHIFT.

The significant improvement in the performance of Approximate UK-means is due

to two reasons: (i) the distance calculations are done much faster in low dimen-

sion space (Figure 3.12(b)), and (ii) the overhead is much reduced as no pruning is

necessary (Figure 3.12(c)).

Varying σ

In this experiment, we varied the standard deviation σ per cluster from 8 to 40
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Figure 3.12 (a) Total clustering time with varying D on RDS (b) (Expected) distance

calculation time with varying D on RDS (c) Overhead time with varying D on RDS.
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Figure 3.13 (a) Total clustering time with varying σ on GDS (b) (Expected) distance

calculation time with varying σ on GDS (b) Overhead time with varying σ on GDS.

on Gaussian data sets. The other parameters were kept at baseline values. Fig-

ure 3.13(a) shows that the total execution time of all the algorithms does not in-

crease as σ increases, and the execution time in all Approximate UK-means and K-

means is much faster than that of MinMax-SHIFT and VDBi-SHIFT. Figure 3.13(b)

and (c) show that the time of distance calculation and overhead in Approximate

UK-means and K-means is much faster than that of pruning techniques.

From Figure 3.4(a) to 3.13(a), the execution time in all Approximate UK-means

and K-means increases much slower than MinMax-SHIFT and VDBi-SHIFT, and

the total execution time of all the three Approximate UK-means models is similar

to each other. In Figures 3.4(b)-3.13(b), we can see that the (expected) distance

calculation time of Approximate UK-means using Uncertain model (UnC. model)
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is similar to that of using Heuristic model (H. model), but costs a bit more time

than certain model (C. model). In Figures 3.4(c)-3.13(c), the overhead time used

for pruning in MinMax-SHIFT and VDBi-SHIFT occupies a large portion of total

execution time, which is the new bottleneck of pruning UK-means, and the over-

head time in all Approximate UK-means are the same for different β values. The

overhead of Approximate UK-means is the mean vector calculation of uncertain

objects. The three Approximate UK-means have the same overhead time.

3.5.3 Discrepancy of Clustering Results

This section compares the clustering results of Approximate UK-means using three

different models with UK-means (pruning algorithms) by discrepancy. It is em-

phasized that there is no “true” or “correct” clustering result because even the

K-means running on traditional certain objects may give different clustering

results by using different distance metrics or different seeds. In fact, the dis-

crepancy between the results of UK-means and K-means is due to the different

distance metrics used. It does not mean that the clustering result by K-means

is wrong. Therefore, here we would like to only point out the changes that

K-means may bring to UK-means (given the same seeds) and also how much

Approximate UK-means may reduce these changes.

For each comparison, we ran Approximate UK-means using three different

models of cluster representative with different β values ranging from 0.7 to 1 to

study the effect of β on the discrepancy. Note that when β equals 1, all Approxi-

mate UK-means is reduced to K-means (the variance of cluster representatives was

initiated to be zero). Figure 3.14 and Figure 3.15 show five data sets where the
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Figure 3.14 (a) Discrepancy of Approximate UK-means using certain cluster representa-

tive and K-means with respect to pruning UK-means (b) Reduction in discrepancy of clus-

tering results of Approximate UK-means using certain cluster representative with respect

to K-means on RDS as β varies.

discrepancy were reduced most by Approximate UK-means on random data sets

and Gaussian data sets respectively. The pairs of Figure 3.16 and Figure 3.17, Fig-

ure 3.18 and Figure 3.19 are similar to Figure 3.14 and Figure 3.15 which also show

five data sets with the discrepancy reduced most by uncertain and heuristic models.

The settings of the 5 lines are on the baseline except the parameter specified in

the figures. Figure 3.14(a)-3.19(a) show the discrepancy between the clustering re-

sults of Approximate UK-means and UK-means (also K-means and UK-means at

β = 1.0). In Figures 3.14(b)-3.19(b), the algorithm is K-means and the reduction

in discrepancy with respect to itself is zero at β = 1.0, so we eliminate the point

β = 1.0. Figures 3.14(b)-3.19(b) show the reduction in discrepancy of Approximate

UK-means with respect to K-means. The figures show that the reduction is stable as

β decreases. Approximate UK-means tries to identify boundary cases and re-assign

them to reduce discrepancy.
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Figure 3.15 (a) Discrepancy of Approximate UK-means using certain cluster representa-

tive and K-means with respect to pruning UK-means (b) Reduction in discrepancy of clus-

tering results of Approximate UK-means using certain cluster representative with respect

to K-means on GDS as β varies.
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Figure 3.16 (a) Discrepancy of Approximate UK-means using heuristic cluster repre-

sentative and K-means with respect to pruning UK-means (b) Reduction in discrepancy

of clustering results of Approximate UK-means using heuristic cluster representative with

respect to K-means on RDS as β varies.

Table 3.2 and Table 3.3 show the additional reduction in discrepancy of Approx-

imate UK-means using uncertain model with respect to Approximate UK-means
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Figure 3.17 (a) Discrepancy of Approximate UK-means using heuristic cluster repre-

sentative and K-means with respect to pruning UK-means (b) Reduction in discrepancy of

clustering results of Approximate UK-means using heuristic cluster representative model

with respect to K-means on GDS as β varies.
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Figure 3.18 (a) Discrepancy of Approximate UK-means using uncertain cluster repre-

sentative and K-means with respect to pruning UK-means (b) Reduction in discrepancy of

clustering results of Approximate UK-means using uncertain cluster representative model

with respect to K-means on RDS as β varies.

using certain model on some random data sets and Gaussian data sets which were

improved most by uncertain model. The uncertain model of cluster representative
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Figure 3.19 (a) Discrepancy of Approximate UK-means using uncertain cluster repre-

sentative and K-means with respect to pruning UK-means (b) Reduction in discrepancy of

clustering results of Approximate UK-means using uncertain cluster representative model

with respect to K-means on GDS as β varies.

can reduce the discrepancy caused by uncertainty of cluster representatives. In Ta-

ble 3.2 and Table 3.3, uncertain model can reduce the discrepancy with respect to

certain model up to 21.9% and 77.0% on random and Gaussian data sets respec-

tively. The MBR size of uncertain object is large, and the object is more uncertain

which makes the cluster representative more uncertain.

From the experiments, (i) our experimental results show that on average the

execution time of Approximate UK-means is only 25% more than K-means (while

pruning algorithms are 300% more) and our approach reduces the discrepancies of

K-means’ clustering results up to 70%; (ii) Approximate UK-means using uncertain

model can additionally reduce the discrepancy of Approximate UK-means using

certain model up to 77% with only a little more execution time on some data sets.
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Table 3.2 Reduction in discrepancy of clustering results of Approximate UK-means (Un-

certain) with respect to Approximate UK-means (Certain) on RDS.

Parameter discrepancy (cer-

tain model)

discrepancy (uncer-

tain model)

Reduction rate

D = 3 0.04853 0.0379 21.9%

S = 15 0.08647 0.07855 9.2%

k = 100 0.04896 0.04507 7.8%

Table 3.3 Reduction in discrepancy of clustering results of Approximate UK-means (Un-

certain) with respect to Approximate UK-means (Certain) on GDS.

Parameter discrepancy (cer-

tain model)

discrepancy (uncer-

tain model)

Reduction rate

k = 100 0.02051 0.00472 77.0%

T = 144 0.01205 0.00698 42.1%

S = 15 0.21812 0.17684 18.9%
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3.6 Summary

This chapter proposed a heuristic on efficient and effective clustering on uncertain

data.

After applying the analytic solution in [104] to reduce UK-means to K-means,

we experimentally show that K-means performs much faster than existing pruning

algorithms proposed in [58, 73] with some discrepancies in clustering results due to

different distance functions used. We propose Approximate UK-means to heuris-

tically identify objects of boundary cases and re-assign them to better clusters. In

addition, we consider the uncertainty of cluster representative. The expected dis-

tance calculation considering the uncertainty of cluster representative is a bit slower

than certain model. The best reduction of discrepancy of uncertain model is 21.9%

and 77.0% with respect to certain model on random data sets and Gaussian data sets

respectively.

Our experimental results show that Approximate UK-means using reduces the

discrepancies of K-means’ clustering results up to 70% with the execution time

only 25% more than K-means (while pruning algorithms are 300% slower than

K-means). The significant improvement in the speed is due to (i) the distance cal-

culation is done much faster, (ii) the overhead is much reduced as no pruning is

necessary, and (iii) it only needs to load samples in the beginning while pruning

algorithms needs to load them for every expected distance calculation.



Chapter 4

Distance Based Classification on

Uncertain Objects

In this chapter, we develop a classification framework to classify uncertain objects.

The aim of classification on uncertain data is to predict the label of a testing

instance from a set of class labels. Though some algorithms have been extended to

classify uncertain information, the problem of building classifiers on uncertain data

is still a challenge. The algorithms take quite a long time to process uncertain data

because of intensive computational bottleneck.

In this chapter, we built an efficient classifier based on UK-means to handle

uncertain data which is much faster than other algorithms. Additionally, we capture

related properties of data by extending supervised UK-means to feature selection.

We also extend supervised UK-means to ensemble model based on Adaboost [38].

We first give an introduction of classification on uncertain objects in Section 4.1.

Two approaches (Averaging and Distribution-based) to handle uncertain objects

50
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and feature selection on uncertain objects are described in detail in Section 4.2. The

ensemble learning is introduced in Section 4.3. The experimental evaluation on the

performance of the algorithms are shown in Section 4.4. Finally we summarize this

chapter in Section 4.5.

4.1 Introduction

The classification of uncertain data can be illustrated by the following simple re-

alistic example. We want to learn a model to classify the climate type of cities.

The temperature is uncertain during a day, or a month even at the same place. We

have to consider the uncertainty of temperature when we learn the model. A lot of

problems have been proposed in classification, but most of them focus on certain

data [42, 81]. Similar to clustering on uncertain objects, the problem of classifying

objects also considers multidimensional uncertainty where an object is represented

by an uncertain region over which a discrete probability distribution function (PDF),

or a probability density function (pdf), is defined. Formally, we consider a training

set of N labeled objects oi, 1 ≤ i ≤ N in an m-dimensional space. oi is associated

with a class label c j(c j ∈ L), where L is a class label set. Hence, our task is to

construct a model that is able to predict the label of uncertain object correctly.

4.2 Supervised UK-means

Classification is an important task in machine learning. [98, 99] shows that the

learning based on similarity metrics can perform better in multimedia data classi-
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fication and retrieval. Similarly to [98, 99], we learn a model based on expected

Euclidean distance in UK-means. In supervised model, there are a set of N train-

ing objects o1, o2, ..., oN , and m numerical (real-valued) feature attributes A1, ..., Am.

The domain of attribute Au(1 ≤ u ≤ m) is dom(Au). Each oi is associated with a

probability density function (pdf fi(x)) and a class label c j (c j ∈ L, where L is the

set of all class labels), where x is a possible location of oi, and UD(oi) is uncertain

domain of oi. Each tuple x is associated with a feature vector x = (x̃1, x̃2, ..., x̃m),

where x̃u ∈ dom(Au)(1 ≤ u ≤ m). The goal of supervised UK-means is to find

K class representatives which can predict a testing object otest to class ck with the

minimum expected Euclidean distance.

In supervised UK-means, the initial class representative is obtained by the mean

vector of training objects associated with class labels. Then, we predict the labels of

testing objects with the minimum expected Euclidean distance between objects and

class centers. To obtain more accurate classification results, we repeat the testing

process and update the class representatives until the algorithm converges. Algo-

rithm 5 shows the generalized supervised UK-means, where N is the number of

training objects, n is the number of testing objects, and K is the number of class

labels.

In [82, 95], Averaging Approach and Distribution-based Approach are proposed

to modify decision tree algorithm to handle uncertain data. Similarly, we also use

these approaches to handle uncertain objects in supervised UK-means. In addition,

we try to capture relevant properties on uncertain data by feature selection.
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Algorithm 5 Supervised UK-means Algorithm
1: for i=0; i < N; i++ do

2: compute oi of training objects by Equation (3.4);

3: end for

4: for j=0; j < K; j++ do

5: calculate all class representatives mean vectors pc j by Equation (3.8);

6: end for

7: for i=0; i < n; i++ do

8: compute oi of testing object by Equation (3.4);

9: end for

10: repeat

11: for i=0; i < n; i++ do

12: for j=0; j < K; j++ do

13: compute expected distance between testing object and class representa-

tive EED(oi, pc j) =
∫

UD(oi)
fi(x)ED(oi, pc j) dx;

14: end for

15: assign object oi to the nearest class ck;

16: end for

17: update all cluster representatives by Equation (3.8);

18: until all cluster representatives converge

4.2.1 Averaging Approach

A straightforward method to deal with uncertain object is to replace each pdf with

its expected value [82, 95]. Then the object is converted into exact value object,
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which reduces the problem back to that for certain data. Originally, object oi is

represented by T grid cells with pdf as Figure 3.1 shown. In Averaging approach,

the expected distance between oi and class representative pc j is the exact distance

between the mean vector oi of oi and the mean vector pc j
of pc j . oi and pc j

are

calculated as Equation (3.4) and Equation (3.8). In Averaging approach, line 13

of Algorithm 5 is changed to EED(oi, pc j) = ED(oi, pc j
) (where ED is Euclidean

Distance). The time complexity of averaging approach is O(1). Averaging approach

is time saving, but loses some uncertain information.

4.2.2 Distribution-based Approach

In distribution-based approach, the training and testing object are uncertain, and are

represented by samples based on their own distributions. The difference between

Averaging and Distribution-based approach is the calculation method of expected

distance between oi and pc j . In this approach, line 13 of Algorithm 5 is replaced

by EED(oi, pc j) =
∑T

t=1 Fi(si,t)ED(si,t, pc j
), which is the same as that in UK-means.

The time complexity of distribution-based approach is O(T ), where T is the number

of samples of an object. Our distribution-based approach is different from that

in [79], their work aims at summarizing the value distribution on identifier attributes

(categorical attributes). The value distribution in [79] is based on all the values of

the identifier attribute in the data set. As mentioned before, we focus on numerical

attributes, and each value is described by T samples. The samples of value are

distributed by a certain probability distribution (i.e. uniform distribution).

Weighted Expected Euclidean Distance

We select features in Distribution-based supervised UK-means. Here weighted ex-
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pected distance (||.||w) is calculated instead of expected Euclidean distance. ||.||w is

calculated sample by sample. The weighted distance between si,t and pc j is calcu-

lated as Equation (4.1), where si,t,u is the t-th sample of object oi on u-th dimension,

and wu is the weight factor w on the u-th dimension. Furthermore, ||.||w is calculated

as Equation (4.2), which is the weighted average of weighted Euclidean distance

between sample si,t of object oi and class center pc j (pc j
is the mean vector of pc j).

||si,t − pc j ||w =

√√
m∑

u=1

w2
u × (si,t,u − pc j,u

)2. (4.1)

||oi − pc j ||w =
T∑

t=1

Fi(si,t)||si,t − pc j
||w. (4.2)

Feature Selection

In previous supervised UK-means, all features are considered to be equally impor-

tant. To build a classifier with high accuracy, it is necessary to select features from

feature set to capture the relevant properties on uncertain data. There have been

quite a lot of feature selection techniques to make the classifier more compact and

accurate. In [8], modified K-means is combined with Simulated Annealing to adapt

the weight of each feature. Feature selection in [39] maximizes the margins be-

tween objects from different classes. [8] and [39] focus on exact value data, and

averaging approach converts uncertain objects into deterministic point objects. So

the existing algorithms can be readily used, but they cannot be directly used to

distribution-based approach. Here we just extend distribution-based approach to

feature selection based on [39].

Definition 1 Let Q be a set of uncertain objects and oq ∈ Q. Let w be a weight
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vector over the feature set A, then the distance function of oq is

θ(oq,w(A)) = (
K∑

j=1, j,C(oq)

||oq − pc j ||w) − ||oq − pC(oq)||w. (4.3)

where ||.||w is weighted distance and has been described in detail before.

Definition 1 defines w(A) to indicate the weight values on the feature set A.

θ(oq,w(A)) can also be written as θ(oq,w). Similar to Simba [39], to make θ(oq,λw) =

|λ|θ(oq,w) for any scalar λ, w is normalized in the way that max w2
u = 1(1 ≤ u ≤ m)

(where wu is the u-th value of w(A), m is the number of attributes) to guarantee that

||.||2w ≤ ||.||2, where ||.|| is Euclidean distance when w = (1, ..., 1)1.

Definition 2 Given a training set N (Q ⊆ N) and a weight vector w, the distance

based evaluation function is

e(w) =
∑
oi∈N
θ(oi,w). (4.4)

Definition 2 gives the evaluation function of feature selection. In the function,

we aim to make all the objects in the training set N nearest to the class that they are

labeled and farthest to other classes. The task of feature selection is to find w(A)

that can maximize the evaluation function e(w).

Distance Based Feature Selection Algorithm (DBFS)

To find the feature weight w(A) that can maximize the distance evaluation function

e(w). We use gradient ascent to maximize Formula (4.4) [39], since the evaluation

function e(w) can be seen smooth almost everywhere (lim∆→0e(w + ∆) = e(w)).

The gradient of e(w) is shown as follows (Formula (4.5)) when it is evaluated on a

1The distance used in this chapter is Euclidean distance.
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sample oq:

▽e(w)u =
∂e(w)
∂wu

=
∑
oq∈N

∂θ(oq,w)
∂wu

=
1
2

∑
oq∈N

((
K∑

j=1, j,c(oq)

||oq − pc j ||2

||oq − pc j ||w
) −
||oq − pC(oq)||2

||oq − pC(oq)||w
)wu.

(4.5)

Similar to Simba [39], we use gradient over e(w) to obtain ▽e(wu) (we write as

▽u for simplicity). A subset Q is randomly picked from training set N to evaluate

e(w). In each iteration we use one object to calculate one term of the vector ▽ and

add it to the weight vector w. We have illustrated that the evaluation of ▽ is invariant

(i.e. ▽u = ▽e(λwu)∀λ ≥ 0, see Proof 1). Therefore, since w increases by adding ▽u

during each iteration, the algorithm typically converges by decreasing the relative

effect of the term ▽u (divided by increasing w). Different from Simba [39], we use

distance function for uncertain data in Algorithm 6.

Lemma 1 ▽(λwu) = ▽e(wu).

Proof 1 In Formula (4.6), because ||.||λw = λ||.||w which has been described in

weighted expected Euclidean distance, Formula (4.6) is equal to Formula (4.5).

▽(λwu) =
∂e(λw)
∂wu

=
∑
oq∈S

∂θλwoq

∂wu

=
1
2

∑
oq∈N

((
K∑

j=1, j,c(oq)

||oq − pc j ||2

||oq − pc j ||λw
) −
||oq − pC(oq)||2

||oq − pC(oq)||λw
)λwu.

(4.6)

Selecting features on uncertain data is T (the number of samples of oi) times

more complex than that on certain data. The computational complexity of DBFS
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Algorithm 6 Distance Based Feature Selection Algorithm (DBFS)
1: initialize weight vector w = (1, 1, ..., 1);

2: pick randomly Q ⊆ N when N is training set;

3: for q = 1...|Q| do

4: pick an object oq from Q;

5: for u = 0; u < m; u + + do

6: ▽u =
1
2

∑
oq∈Q((

∑K
j=1, j,C((oq))

||oq−pc j ||
2

||oq−pc j ||w
) − ||oq−p(oq) ||2

||oq−pc(oq) ||w )wu;

7: wu = wu + ▽u;

8: end for

9: end for

10: w = w2

w2
max

;

is O(m|Q|T K) where m is the number of features, |Q| is the number of iterations

(usually 20 epochs), and K is the number of class labels. If we iterate over the whole

training set N, the computational complexity is O(mNT K). DBFS spends time on

||.||w (weighted distance) calculation. DBFS is used in distribution-based approach

(DBA). In Algorithm 5, we use DBFS in the training process to evaluate the weight

values on feature set A. Then, testing objects are predicted by weighted expected

Euclidean distance. In Section 4.4, distribution-based approach (DBA) which uses

DBFS to select features is noted as weighted distribution-based approach (Weighted

DBA for short).
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4.3 Ensemble Learning Model on Uncertain Objects

UK-means is proposed for clustering. In its application of classification, it is not

enough for the class representative pc j (mean vector of the class) to represent a

class. In this case, there always exist some objects which are closer to other class

representatives.

4.3.1 The Motivation of Ensemble Supervised UK-means

Figure 4.1 gives an example. In Figure 4.1, the red rectangle objects (o1 (0,0), o2

(3,0), o3 (0,3))are belonging to class c1. The blue circle objects (o4 (3,3), o5 (9,0), o6

(12,3), o7 (3,6)) are from class c2. The class representative of c1 (pc1
) is (1,1) and the

class representative of c2 (pc2
) is at point (6.75,3). From the training set, supervised

UK-means learned the classifier L1 with pc1
(1,1) and pc2

(6.75,3). Then in the

classifying process, we assign the training objects based on L1 and get the result

that o1, o2, o3, o5, o6, o7 are assigned correctly except o4 assigned to c1 belonging to

c2. Thus, the classifier should be improved for the objects belonging to a class but

closer to other class representatives.

From the simple instance, we can see that it is difficult for the mean vector of

each class (class representative) to classify the objects. In this chapter, we also try

to use the ensemble model to combine the weak learners obtained from Adaboost.

This framework constructs a number of classifiers from the training objects. The

key idea of the method is to combine the weak learners together and the decision is

made by weighted voting of the classifiers.
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2cp

1cp

Figure 4.1 The example of misclassification in supervised UK-means

Figure 4.2 The structure of ensemble learning model

4.3.2 Typical Ensemble Learning

Ensemble learning constructs a series of classifiers and predicts the testing objects

by (weighted) voting of the classifiers. The structure of the ensemble learning

method is shown as Figure 4.2. The object oi is predicted by weak learners, and

the decision is made based on the weighted vote of all the predictions obtained

from the weak learners. Ensemble learning has been well studied in the litera-

ture [83, 103, 107].

Bagging

Bagging straightly manipulates the training set by randomly drawn N training sam-
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ples from the original training set. The original training set contains N training

objects. The randomly generated training set that contains N training samples is

bootstrap replicate of the original one. In each replication, there are 63.2% objects

from the original training set appearing more than one time on average [20].

AdaBoost

AdaBoost (Short for Adaptive Boosting) [38] has been widely used to with other

algorithms and can improve the performance of other learning algorithms. In Ad-

aboost, subsequent classifiers are built adaptively by in favor of objects that are

misclassified in previous classification procedure. In Adaboost, the weak classi-

fiers are learned several times. During each time, the weights of objects in the

data set is updated to indicate the importance of training objects for classification.

The weights of misclassified objects are increased while the weights of correctly

classified objects are decreased. Adaboost can make new classifier focus more on

misclassified objects.

4.3.3 Adaptive Supervised UK-means

The ensemble model for supervised UK-means is based on Adaboost [38]. In Adap-

tive supervised UK-means, each subsequent classifier can be obtained in favor of

the objects which are misclassified in previous classifiers. Algorithm 7 shows the

Adaptive Supervised UK-means in detail, where hu(oi) , C(oi) means oi is misclas-

sified by hu (C(oi) is the class label that object oi belongs to, hu(oi) is the class oi

assigned to by learner hu). For the misclassified object oi, the value of M(oi) is −1.

Otherwise, the value of M(oi) is 1. hu assigns objects by the minimum expected

Euclidean distance. The (weighted) vote is made by h(oi) =
∑U

u=1(αuhu(oi)), where
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αu = ln 1−ϵu
ϵu

(ϵu is error rate of hu). For example, with the assumption α1 = 0.5,

h1(oi) = c1, α2 = 0.3, h2(oi) = c1, α3 = 0.2, h1(oi) = c2, oi is assigned to c1 by

α1 + α2 > α3.

In Algorithm 8, the class representative is calculated by weighted mean vector

of object which is different from Equation (3.8). Each object is associated with

a weight du(oi), which is the weight of object oi obtained from learner h(u−1). In

Algorithm 7, we assign object oi by the minimum expected Euclidean distance

between oi and the mean vector of class representative pc j
(pc j

is the output of

Learn ht).

Let us go back to the example of Figure 4.1, object o4 is misclassified in super-

vised UK-means as we have explained before. In the first iteration, the weight of

each objects is initialized as 1
7 . The class representatives (pc1

(1,1) and pc2
(6.75,3))

misclassify o4. The new weight of object o4 is 6
7 while the new weight of other

objects is 1
42 (1

7exp(−ln6 × M(oi))). The new classifier is pc1
(1,1) and pc2

( 44
13 ,3)

obtained by Formula (4.7). All the objects are classified correctly and ϵ2 is 0 which

makes α2 = ln 1
0 positive infinite. Then the second classifier will decide the re-

sult. Thus, the ensemble model of Figure 4.1 can assign all objects correctly. This

is a special instance because of the 100% accuracy of the second classifier with

α2 = +∞.

4.4 Performance Evaluation

A set of experiments has been performed to compare supervised UK-means with

UDT [95]. All codes were written in Java and were run on a Windows machine
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Algorithm 7 Adaptive Supervised UK-means based on Adaboost [38]
Input: a set S of N labeled objects (oi, c j), i = 1, 2, ...,N, class label c j ( j ∈

1, 2, ...,K), Learn (a learning algorithm), a constant U.

Output: h(oi) =
∑U

u=1(αuhu(oi)) (where hu(oi) is the decision of object oi made by

learner hu).

1: for i=0; i < N; i++ do

2: compute oi of training objects by oi =
∑T

t=1 si,t × Fi(si,t);

3: end for

4: for i=0; i < N; i++ do

5: Initialize d1(oi) = 1
N ;

6: end for

7: for u=1;u ≤ U; u++ do

8: compute all normalized weight du(oi) = du(oi)/
∑

du(oi);

9: hu = learn(du);

10: ϵu =
∑

i du(oi)[hu(i) , C(oi)];

11: if ϵu ≥ 1
2 then

12: stop;

13: else

14: αu = ln 1−ϵu
ϵu

;

15: update all du+1(oi) = du(oi)e(−αu M(oi));

16: end if

17: end for

with an Intel 2.66GHz Pentium(R) Dual-Core processor and 4GB of main memory.
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Algorithm 8 Learn ht

Input: a set S of N labeled objects
{
(oi, c j), i = 1, 2, ...,N

}
, class labels c j ( j ∈

{1, 2, ...,K}), the weight of N objects {du(oi), i = 1, 2, ...,N}.

Output: weak learner hu.

1: for j = 0; j < K; j + + do

2: obtain weak learner by calculating mean vector pc j
of pc j (Formula (4.7));

pc j
=

1∑|c j |
i=1 du(oi)

|c j |∑
i=1

(du(oi) × oi)(oi ∈
{
oi|C(oi) = c j

}
). (4.7)

3: end for

4: output hu = (pc1 , pc2 , ..., pcK ).

4.4.1 Data Sets

We run experiments on 4 UCI [11] data sets to study the performance of our algo-

rithms and compare with the work in [95]. The parameters of the chosen data sets

used for the experiments are summarized in Table 4.1. The attributes of all the 4

data sets are numerical obtained from measurements. Classifiers are built on the

numerical attributes and their “class label” attributes. For the data sets “Iris” and

“Breast Cancer”, the accuracy is measured by 10-fold cross validation. For other

2 data sets, a certain number of objects are chosen randomly as testing objects and

the performance results are the average of 10 runs.

The 4 data sets contain “point values” without any uncertainty. In most physical

measures, the involved random noise follows Gaussian distribution. The quantiza-

tion noise introduced by digitization of the measured values is described by uni-

form distribution. Thus, we follow the common practice in the research work of
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Table 4.1 Selected data sets from the UCI machine learning repository.

Data Set Training Tuples No. of Attributes No. of Classes Test Tuples

Iris 150 4 3 10-fold

BreastCancer 569 30 2 10-fold

Ionosphere 311 32 2 40

Segment 2120 14 7 200

this area [5, 22, 58, 73, 82, 94, 95]. For each object oi on the u-th dimension (i.e.

the attribute Au), the certain value vi,u shown in a data set is considered as the mean

of a pdf fi,u, defined over an interval [ai,u, bi,u]. The range of values for Au (over the

whole data set) is noted and the width of [ai,u, bi,u] is set to un × |Au|, where |Au| de-

notes the width of the range for Au and un is a parameter to control the uncertainty

of data set [82, 94, 95]. We use two methods to generate pdf fi,u. One is uniform

distribution, which implies the pdf to be fi,u = (bi,u − ai,u)−1. The other is Gaussian

distribution, which we set the standard deviation to be 1
4 × (bi,u − ai,u) (the same as

that in [95]). We use T samples to generate pdf over the interval. The point value

is transformed into uncertain samples on Gaussian or uniform distribution by using

the controlled parameter un and T samples. To compare with the work in [95], T

is set to be 100 and un is from 1% to 20%. The point-value data become uncertain

when we apply appropriate error model (un and pdf) for them.

In many real applications (such as real time system), it is difficult for users to

tolerate the system if a classification algorithm keeps the users waiting for a long

time. Thus, it will be more desirable to improve the efficiency with the trade off of
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some loss in accuracy.

4.4.2 Execution Time

We separately analyze the “training time” and “testing time”. Table 4.2 and Ta-

ble 4.3 show the training time and testing time of Averaging (AVG) approach,

Distribution-based approach (DBA), Weighted DBA, Ensemble DBA (Adaptive Su-

pervised UK-means) compared with total time of uncertain decision tree (UDT) [95]

on 4 selected UCI data sets. AVG can be considered as supervised UK-means for

point value data while DBA, Weighted DBA and Ensemble DBA are supervised

UK-means to handle uncertain objects. Ensemble DBA costs time on learning clas-

sifiers and calculating the weight of objects. In the experiments, un does not affect

the execution time, so here we use un = 0.05. Because only total time is given in

UDT [95], we show the total time of UDT in Table 4.2 and Table 4.3. Table 4.2

and Table 4.3 tell us that training time is larger than testing time in AVG, DBA,

Weighted DBA and Ensemble DBA. We can also see that the total time of AVG,

DBA, Weighted DBA and Ensemble DBA is shorter than that of UDT. On the 4

data sets, AVG is at least 98 times faster than UDT while DBA is at least 15 faster

than UDT. Weighted DBA and Ensemble DBA are at least 4 and 6 times faster than

UDT.

In Table 4.2 and Table 4.3, Distribution-based approach (DBA) and Weighted

DBA are slower than AVG because of the expected distance calculation between

uncertain objects and class centers. Weighted DBA has to calculate the weight

values over feature set sample by sample which is a bit time consuming. However,

the objects used to evaluate weight are chosen from the subset of training set, so
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Table 4.2 Training time (Milliseconds).

Data Set AVG DBA Weighted DBA Ensemble DBA UDT

Iris 9.2 36 79.7 118.7 909.9

BreastCancer 12.4 331.2 855.7 928.1 8363.6

Ionosphere 18.9 226.5 851.5 648.3 4272.7

Segment 76.4 3035.8 3796.8 7715.7 59090.9

Table 4.3 Testing time (Milliseconds).

Data Set AVG DBA Weighted DBA Ensemble DBA UDT

Iris 0 1.5 3.1 7.7 909.9

BreastCancer 1.6 61.0 78.0 85.9 8363.6

Ionosphere 3.1 47.0 60.6 59.2 4272.7

Segment 12.5 490.1 588.3 859.2 59090.9
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Figure 4.3 Effects of increasing T on Distribution Based Approach

the weight calculation does not take more time than the time used in information

gain in UDT. Ensemble DBA costs more time than other DBAs because of the time

costing on a series of weak learners. In the experiments, the distribution of samples

(uniform or Gaussian distribution) does not affect the execution time of uncertain

algorithms. Thus, we just presents the execution time of uncertain algorithms on

Gaussian distribution here.

Scalability on T Uncertain object is T times more complex than certain object.

If T increases, more time will be cost. The scalability of algorithms on T is shown

from Figure 4.3 to Figure 4.5. The time of all the three algorithms increases linearly

with T . Moreover, our algorithms are faster than UDT, and the time of our algo-

rithms does not increase as fast as UDT [95] when T increases. From Figure 4.3 to

Figure 4.5, we can see our algorithms are scalable on T . Moreover, the scalability

of our algorithms are better than UDT.

4.4.3 Accuracy

Figure 4.6 and Figure 4.7 show the accuracy with changing uncertainty un under

different values of Weighted DBA and Ensemble DBA. In UDT, the accuracy also
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Figure 4.4 Effects of increasing T on Weighted Distribution Based Approach
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Figure 4.5 Effects of increasing T on Ensemble Distribution Based Approach

changes with the setting of un. To compare the effect of un, we put the accuracy of

AVG which is exact point value algorithm at un = 0. In AVG, the point value on

each dimension of an instance is the original data from the data sets. From the fig-

ures, the accuracy is improved if uncertainty is taken into account. In addition, the

controlled parameter un which describes the uncertainty of data sets can affect the

classifier results. If the controlled parameter un is consistent with the uncertainty

of the data, the algorithms will attain a better accuracy. For each object oi on the

j-th dimension (|A j| is the range of attribute A j), the point value is vi, j. If we perturb

vi, j by adding a Gaussian noise whose mean equals to 0 and the standard deviation

being σ = 1
4 (un × |A j|). Thus, the perturbed value is ṽi, j = vi, j + δi, j (δi, j is a random

generated number following N(0, σ2))[95]. If un is consistent with the error model
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Figure 4.6 Accuracy of Weighted DBA with controlled parameter un (Gaussian pdf)
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Figure 4.7 Accuracy of Ensemble DBA with controlled parameter un (Gaussian pdf)

of the data, the algorithm will be more accurate. From the two figures, we can see

the accuracy is different as un changes. The closer un to the real noise model the

better accuracy will attain.

Table 4.4 shows accuracy of our algorithms compared with UDT [95]. Table 4.4

chooses the accuracy of DBA (Gaussian pdf or uniform pdf), Weighted DBA (Gaus-

sian pdf) and Ensemble DBA by the best results on un. We compare our algorithms

and UDT under the same un. From Table 4.4, Weighted DBA and Ensemble DBA

both are more accurate than DBA and AVG. AVG can be considered as classifica-

tion on certain values. The experiments demonstrate that the accuracy is improved

if we take value uncertainty into account. From Table 4.2, Table 4.3 and Table 4.4,

our algorithms save 78%-99% time on the data sets with 5%-13% accuracy loss. In
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Table 4.4 Accuracy.

Data Set AVG DBA

(Gaus-

sian)

DBA

(Uni-

form)

Weighted

DBA

Ensemble

DBA

UDT un

Iris 0.9267 0.94 0.9467 0.9667 0.9667 0.9467 0.2

BreastCancer 0.879 0.893 0.880 0.904 0.913 0.955 0.15

Ionosphere 0.788 0.818 0.798 0.823 0.825 0.915 0.1

Segment 0.738 0.759 0.763 0.78 0.796 0.929 0.05

many real applications (such as real time systems), the users have a higher require-

ment on execution time than accuracy. In “Iris”, the accuracy of DBA is competitive

to UDT, and the accuracy of Weighted DBA and Ensemble DBA is better than UDT.

Though the accuracy of UDT outperforms that of DBAs on the other three data sets,

DBAs can still be considered if the users prefer to get an acceptable result without

waiting for a long time.

4.5 Summary

In this chapter, we study the problem of classification on uncertain objects whose lo-

cations are presented by probability density functions (pdf). Supervised UK-means

is more efficient than existing algorithms because it is less complex compared with

them. Our contributions of this chapter include: i) we build a classifier based on

UK-means and experimentally demonstrate that supervised UK-means algorithm
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can classify uncertain objects more efficiently than existing algorithms; ii) Consid-

ering the relevant properties of uncertain data, we extend supervised UK-means to

feature selection and Adaboost.



Chapter 5

Classification on Uncertain Data with

Multiple Subclasses

In this chapter, we develop a framework to classify uncertain objects with multiple

subclasses in this chapter.

Supervised UK-means assumes the classes are well separated. However, in

classification, the classes are often in arbitrary shape which makes the boundary

between classes concave or convex but not a single line. In this chapter, we first

introduce the problem of classification on uncertain data with multiple subclasses

in Section 5.1. We briefly describe existing work on cluster number estimation in

Section 5.2. We propose supervised UK-means with multiple subclasses (SUMS)

in Section 5.3 to tackle the problem caused by objects divided by other classes.

Bounded SUMS in Section 5.4 is an improvement of SUMS. Section 5.5 demon-

strates the advantage of our work by extensive experiments. Finally we summarize

this chapter in Section 5.6.

73
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Figure 5.1 (a) An example of one class (‘x’) divided by another class (‘+’) (b) Another

example of one class (‘+’) divided by another class (‘x’).

5.1 Introduction

In some cases, a class’s objects are separated (disconnected) by objects from other

classes. Figure 5.1(a) shows that one class (represented by ‘x’) is divided by another

class (‘+’). We denote the data set as “Middle” which means that one class is

divided in the middle. Figure 5.1(b) is another example showing that each class is

divided by other classes and the boundary between classes is concave and convex.

We denote the example as “Side” with the meaning that each class being divided on

two sides. For the above cases, our solution (supervised UK-means with multiple

subclasses, or SUMS) is using a multiple class representatives to represent a class.

We consider the problem as the estimation of the number of groups or sub-

classes (k) in each class. The key idea of estimation of k is to use splitting and/or

merging methods to increase and/or decrease the number of clusters, which makes

the model fit the data. Each subclass (cluster belonging to a class) can be con-

sidered as a Gaussian mixture model. Several algorithms have been proposed to
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determine k automatically [37, 45, 78, 102]. Most of them are based on K-means

or Expectation Maximization. In a classification problem, training objects are la-

beled by class labels. When we consider objects from the same class and further

divide them into subclasses, we ignore their labels. In other words, labels of objects

are considered during inter-class training, and in the process of the estimation of k

(the number of subclasses in a class) during intra-class training, the labels of ob-

jects from the same class are ignored. On the other side, the estimation of number

of subclasses will take extra time. Moreover, the estimation on uncertain objects

is more complex than traditional estimation algorithms. The estimation procedure

will slow down the supervised UK-means with multiple subclasses (SUMS). We

propose a bounded supervised UK-means with multiple subclasses (BSUMS) by

adding a bound in SUMS to improve the efficiency and avoid the number of sub-

classes being overestimated.

5.2 Related Work on Cluster Number Estimation

Some work has been proposed to estimate the number of clusters (subclasses) dur-

ing data clustering. X-means [78] learns k by using K-means. The model for each

k is obtained by trying many values of k in X-means. Each model is scored by

Bayesian Information Criterion (BIC) and the highest one is chosen in X-means.

Other scoring criteria can also be used in X-means. In X-means, the weakness is

the assumption of all the cluster covariances being spherical with the same width.

X-means is likely to overfit the data when the clusters are non-spherical. Bayesian

K-means [102] uses Maximization-Expectation (ME) to learn a mixture model. ME
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maximizes over the hidden variables (assignment of examples to clusters), and com-

putes an expectation over model parameters (center location and covariances). The

algorithm works well but it is time consuming. G-means (Gaussian means) [45] is

based on K-means. The key idea of G-means is projection and statistical test. In

G-means, k is initialized by a small number. The cluster is split into two clusters if

the objects from the cluster are not from a Gaussian distribution. G-means performs

well when the clusters are separable, but it is difficult for overlapping clusters. PG-

means (Projected Gaussian means) [45] is proposed to handle more complex cases,

especially for overlapping clusters, non-Gaussian data, and so on. Moreover, PG-

means is faster than variational Bayesian K-means. PG-means is based on projec-

tions and statistical tests to determine whether a whole mixture model fits the data

well. PG-means cannot be directly used in our UK-means classification, because

PG-means is used for handling certain objects. In Section 5.3.2, we will describe

how to modify PG-means for our problem. To avoid overfitting of data, we add a

bound to terminate estimating the number of subclasses earlier.

5.3 Supervised UK-means with Multiple Subclasses

(SUMS)

5.3.1 SUMS

Algorithm 9 shows supervised UK-means with multiple subclasses (SUMS), where

N is the number of training objects, K is the number of class labels, kl is the number

of subclasses of the l-th class.
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Algorithm 9 Supervised UK-means with Multiple Subclasses (SUMS)
Input: training set {o1, o2, ..., oN} with class labels c j ( j ∈ {1, 2, ...,K}).

Output: learner of subclass representatives.

1: for i = 0; i < N; i + + do

2: compute oi of training objects by Equation (3.4);

3: end for

4: for i = 0; i < K; i + + do

5: estimate the number of subclasses (ki) by PG-means and get the subclass

representatives (pci1
, pci2
, ..., pciki

) by using Algorithm 10;

6: end for

7: repeat

8: for m = 0; m < N; m + + do

9: for i = 0; i < K; i + + do

10: for j = 0; j < ki; j + + do

11: compute expected Euclidean Distance by EED(om, pci j
) =∑T

t=1 Fm(sm,t)ED(sm,t, pci j
);

12: end for

13: end for

14: assign object om to the subclass with the minimum EED(om, pclq
);

15: end for

16: update all subclass representatives by Equation (5.1);

17: until all subclass representatives converge

First, Algorithm 9 calculates the mean vector of uncertain objects for the pur-

pose of calculating the mean vector of (sub)class representative (pc jk
). In [13], a
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semi-supervised model based seeded K-means is applied to K-means clustering. In

seeded K-means, not all the objects are labeled, and the labeled objects are selected

as seeds to generate initial cluster representatives. All the unlabeled objects and

labeled objects are used for clustering until the algorithm converges. Different from

the seeded K-means [13], our model is a supervised model which all the n objects

are labeled. We use all the n labeled objects to generate K initial class (subclass)

representatives. From Line 4 to Line 6, the number of subclass representatives is

estimated and the subclass representatives are trained by the objects labeled by the

same class. The number of subclasses of each class is estimated by Algorithm 10.

The subclass representatives are trained by UK-means based on the objects from

the same class. From Line 7 to Line 17, the objects are reassigned to the subclasses

by the minimum expected Euclidean distance, then the subclass representatives are

updated by the new assignment until the algorithm converges. The mean vector pc jk

(k-th subclass representative pc jk
of class c j) is obtained by Equation (5.1), where

|c jk | is the number of objects assigned to subclass c jk , and C(oi) = c jk means that

object oi is assigned to subclass c jk .

pc jk
=

1
|c jk |

∑
oi∈{oi |C(oi)=c jk}

oi. (5.1)

Compared with the work in [13], we consider the uncertainty of objects and the

substructure in classes. The time complexity of the algorithm is decided by the time

spending on the estimation of ki (the number of subclasses) and the calculation of

subclass representatives. The time complexity of training subclass representatives

is O(NTktotal), where N is the number of training objects, T is the number of sam-

ples of object, and ktotal is the total number of subclasses of all classes. The time
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complexity of estimation of ki (the number of subclasses) will be discussed in Sec-

tion 5.3.2.

5.3.2 Estimation of ki

PG-means is short for Projected Gaussian means. The key idea of PG-means [37]

is to learn a model that contains ki centers by Expectation Maximization algorithm.

The data set and the learned model are both projected to a dimension in PG-means.

Kolmogorov-Smirnov (KS) test is applied after the projection. The test is used to

check the fitness of the projected model. In [37], PG-means uses standard Gaussian

mixture model together with Expectation-Maximization learning while in SUMS

we use UK-means instead.

Assume a data set M (M v N(µ,Σ)) is sampled from a single Gaussian cluster

in d dimension, where µ = E[M] is a d × 1 mean vector and Σ = cov[M] is a d × d

covariance matrix. Given a d×1 projection vector P of the unit length (||P|| = 1), M

can be projected along P as M
′
= PT M. Then, M

′ v N(µ
′
, σ), where µ

′
= PTµ and

σ2 = PTΣP. The one-dimensional projection along P can be obtained by cluster

model projection [37].

The following are the two hypotheses that used in PG-means [37]:

H0: The data around the center are sampled from a Gaussian.

H1: The data around the center are not sampled from a Gaussian.

PG-means repeats this projection and test step several times for a single learned

model. If H0 is rejected by any test with H1 being accepted which means that

the data does not follow the distribution of the model, then one more subclass is

added and a new EM learning will start (UK-means in our algorithm). If the null
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hypothesis (H0) for a given model is accepted by any test, then PG-means will

terminate.

The univariate Kolmogorov-Smirnov (KS) test is used to calculate the fitness

of projected model in PG-means after projection. The KS test statistic is D =

maxX |F(X)−S (X)|which means the maximum absolute difference between the true

cumulative distribution function (CDF) of F(x) with the sample CDF S (X) [37].

The method of ki estimation is shown as Algorithm 10. PG-means uses UK-means

(Line 12) to learn a model containing ki centers. In our work, we use UK-means

instead of EM training [37]. In UK-means, object is only belonging to one subclass.

The worst case is that each object belongs to a subclass, and the time complexity

of Algorithm 10 is O(Jn2T ), where J is the number of projections, n is the number

of objects from a class, T is the number of samples. Following the work in [37],

we use random projection [32] to project both the data and the model. Other pos-

sible methods (e.g. principal component analysis) can also be used here. We try

to find sufficient but not a large number of projections and tests to discover a fit-

ting model. To make UK-means converge faster (Line 12), each UK-means starts

with ki learned subclass representatives and a new randomly initialized subclass

representative. Thus, in practice, UK-means converges much faster than randomly

generating all ki + 1 subclass representatives.

In [37], they followed Dasgupta’s conclusion. In Dasgupta’s conclusion, Gaus-

sian can be measured by c-separation1 [32]. In [32, 37], they gave the conclusion

1For any c > 0, in a d dimension space, assume µ1 and µ2 are the two cluster centers, and the

spherical covariances Σ of the two clusters are the same for simplicity, c-separation is that the vector



5.3. Supervised UK-means withMultiple Subclasses (SUMS) 81

Algorithm 10 Estimation of ki [37]
Input: The mean vector set (M) of objects labeled by ci, confidence α, number of

projections J.

Output: the number of subclasses (ki) of class ci and subclass representatives

(pci1
, pci2
, ..., pcki

).

1: Initialize ki = 1 and the class with the mean and covariance of M.

2: for j = 0; j < J; j + + do

3: Randomly generate a d × 1 projection vector P.

4: Project both the model and M to P with the same projection vector.

5: Use KS test to check the fitness of the model at significance level α.

6: if H0 is rejected by any test then

7: break out of the loop.

8: end if

9: end for

10: if H0 is rejected by any test then

11: Initialize the ki + 1-th subclass representative (the ki previously learned plus

one new subclass).

12: Run UK-means on the ki+1 subclasses to learn ki+1 subclass representatives.

13: ki = ki + 1 and go to Line 2.

14: end if

15: H0 is accepted by each test; stop and return the model.

that if J random projections are performed, the probability with all J projections

m connecting the two centers (m = µ2 − µ1) satisfies the condition ||m|| ≥ c
√

trace(Σ).
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being ‘bad’2 is less than error:

Pr(J bad pro jections) = Er f (
√

1/2)J < error. (5.2)

Where Erf is the standard Gaussian error function. Approximately J times projec-

tions are needed to keep the two subclass means c-separated, and the detail is shown

as follows [32, 37] :

J < log(ϵ)/log(Er f (
√

1/2)) ≈ −2.6198log(ϵ). (5.3)

For example, if ϵ is 0.01, 12 projections are needed. In the experiments, we use

J = 12 projections to estimate the number of subclasses in a class.

5.4 Bounded Supervised UK-means with Multiple Sub-

classes (BSUMS)

In Algorithm 10, we can see that UK-means is used to cluster objects and calculate

new subclass representatives when any test rejects the null hypothesis (H0). During

each time ki increases by 1, the objects are reclustered by UK-means. The exe-

cution time of ki estimation is related to the final value of ki. At last, UK-means

will be executed ki times which is a bit time consuming. Moreover, expected dis-

tance calculation in supervised UK-means is T times more expensive than distance

calculation in K-means. PG-means assumes each class is a mixture of Gaussian

models. In the experiments, we found that sometimes the number of subclass (ki)

2The probability of J is a ‘bad’ projection, for example, that when do projection, c-separation

between cluster means (i.e. µ1, µ2) cannot be maintained.
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Figure 5.2 (a) Overestimated subclass representatives of “Middle” learned by SUMS (b)

Overestimated subclass representatives of “Side” learned by SUMS.

is likely to be overestimated. In Figure 5.2(a), class (‘x’) is divided into four sub-

classes. In fact, it is not necessary to further divide the class (‘x’) into so many

subclasses, and just two subclass representative is enough for class (‘x’). In Fig-

ure 5.2(b), the left subclass is further divided into four subclasses which the number

of subclasses of class (‘x’) is overestimated. To make supervised UK-means with

multiple subclasses (SUMS) more efficient, we add an upper bound for terminating

the estimation earlier in SUMS by not considering extra subclasses. The bound

(δ ≥ 2) sets an upper bound for the number of subclasses (ki ≤ δ). Algorithm 10

will end when all the tests accept the null hypothesis (H0) or ki is larger than δ.

Different from Algorithm 10, in BSUMS Line 6 and 10 is If any test rejected the

null hypothesis (H0) and ki ≤ δ.
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5.5 Experimental Evaluation

In this section, we compare supervised UK-means with multiple subclasses (SUMS)

and bounded supervised UK-means with multiple subclasses (BSUMS) with super-

vised UK-means in [105] and seeded K-means in [13]. All algorithms were written

in Matlab and were run on a Windows machine with an Intel 2.66GHz Pentium(R)

Dual-Core processor and 4GB of main memory.

5.5.1 Synthetic Data sets

We have done the experiments on the two typical data sets shown in Figure 5.1(a)

and Figure 5.1(b). In Figure 5.1(a), the class (‘x’) is divided by the class (‘+’).

The number of objects in class (‘+’) is 100, and the number of objects in class

(‘x’) is 200 with equally distribution on the two sides of class (‘+’). The centers

of uncertain objects were generated from a Gaussian distribution, whose mean and

standard deviation are equal to the class center and σ respectively. The above set of

uncertain objects represented by MBRs with size S ×S were generated in 2D space

[−100, 100]× [−100, 100]. An MBR is divided into
√

T ×
√

T grid cells. Each grid

cell corresponds to a sample. Each sample is associated with a randomly generated

probability value. All probabilities in an MBR are normalized to have their sum

equal to 1. Similarly, in Figure 5.1(b), the number of objects in class (‘x’) is 200,

and the number of objects in class (‘+’) is 200. The class (‘x’) and the class (‘+’)

are divided into two subclasses by each other. Each subclass has 100 objects.

In Figures 5.3 and 5.4, symbol ‘o’ is the learned (sub)class representative of a

class. In Figure 5.1(a), the centers of class ‘x’ is (1, 4) and (8, 4), and the center of
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Table 5.1 Accuracy of SUMS on synthetic data sets.

Data Set SUMS Seeded K-means Supervised UK-means

Middle 0.9667 (kmax = 3) 0.5 0.5333

Side 0.9525 (kmax = 5) 0.5 0.5250

class (‘+’) is (4, 4). As Figure 5.3(a) shows, in supervised UK-means, the learned

mean vector of class (‘x’) is (1.4586, 4.1002) while the learned mean vector of

class (‘+’) is (7.3606, 4.0012). Figure 5.3(b) shows, in BSUMS, the learned class

representatives of class (‘+’) is (4.2605, 4.3418) while the learned (sub)class repre-

sentatives of class (‘x’) is (0.4853, 4.5173) and (8.4765, 4.2470). In Figure 5.1(b),

the subclass representatives of class (‘x’) is (0, 4) and (8, 4) and the centers of class

(‘+’) is (4, 4) and (12, 4). The learned subclass representatives of class (‘x’) are

(0.3906, 4.1120) and (8.1468, 4.0784) while the learned subclass representatives of

class (‘+’) are (3.8085, 4.1901) and (11.8984, 4.0354) (Figure 5.4(b)) in BSUMS.

In Figure 5.4(a), the supervised UK-means can only learn one class representative

for each class (the class representative of class (‘x’) is (2.1115, 4.1398) and the class

representative of class (‘+’) is (10.0523, 4.0693)). In Figure 5.3(a) and 5.4(a), the

learned class representative is far from some objects from the same class but sepa-

rated by objects from other classes which makes the accuracy of classifier low. In

Figure 5.3(b) and 5.4(b), the learned subclass representatives can improve the per-

formance of supervised UK-means, because the subclass representatives are closer

to the subset of objects they are representing. We use the same way to generate the

testing data sets of “Middle” and “Side” with 10% size of training sets to measure

the accuracy of the algorithms.
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Figure 5.3 (a) Class representatives of “Middle” learned by supervised UK-means (b)

Subclass representatives of “Middle” learned by BSUMS.
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Figure 5.4 (a) Class representatives of “Side” learned by supervised UK-means (b) Sub-

class representatives of “Side” learned by BSUMS.

We use kmax to illustrate the maximum estimated number of subclasses among

classes in SUMS. For example, if PG-means estimates k1 = 2 and k2 = 3 in SUMS,

we denote kmax as 3. Table 5.1 and Table 5.2 show that there is not much dif-

ference between the results of SUMS and bounded SUMS (BSUMS). We can see

that SUMS and BSUMS can overcome the limitation of supervised UK-means and

seeded K-means. From the experiments, SUMS and BSUMS with PG-means can
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Table 5.2 Accuracy of BSUMS on synthetic data sets.

Data Set BSUMS (δ = 2) BUMS (δ = 3) BSUMS (δ = 4) BSUMS (δ = 5)

Middle 0.9667 0.9667 0.9333 0.9333

Side 0.925 0.925 0.925 0.925

learn the subclass representatives of the synthetic data sets while seeded K-means

and supervised UK-means just learn the mean of each class. SUMS and BSUMS

improves the accuracy of supervised UK-means and seeded K-means. We also did

experiments on other synthetic data sets which also show that SUMS and BSUMS

can learn subclasses more accurately than supervised UK-means and seeded K-

means when the classes are divided by other classes.

5.5.2 Scalability

We also analyze the performance of supervised UK-means with multiple subclasses

(SUMS) and bounded SUMS (BSUMS) by changing some parameters in Table 5.3.

In base case, each class includes 4 subclasses, and the subclasses are distributed as

Figure 5.5. The objects (‘+’) belong to a class, and the objects denoted by (‘x’) are

labeled by the other class.

Value of δ

In the experiments, δ is used to set the upper bound for the number of learned

subclass representatives (ki). Figure 5.6(a) shows the execution time of BSUMS

by varying δ. In BSUMS, both the data and the model are projected to the same

dimension by PG-means [37]. In these experiments, if the number of subclasses
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Table 5.3 Parameters for experiments using data sets.

Parameter Description Baseline Value

K number of classes 2

T number of samples per object 49

S maximum size of MBR, S × S 0.25

D number of dimensions 2

σ standard deviation of Gaussian distribution 1

kpre pre-defined number of subclasses 4

n number of objects per subclass 50
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Figure 5.5 (a) Base case data distribution on training data set (b) Base case data distribu-

tion on testing data set.

is larger than δ, algorithm 10 will terminate even though the estimated model does

not fit the data well. Figure 5.6(a) shows that the execution time increases when δ

varies from 2 to 3. But the execution time does not change much when δ is larger

than 3, because kmax in BSUMS (δ = 3, 4) is 3 on baseline data set. From Figure 5.6

(b), δ = 2 is enough for base case classification.
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Figure 5.6 (a) Execution time of BSUMS with varying δ on synthetic data sets (b) Accu-

racy of BSUMS with varying δ on synthetic data sets

Pre-defined Number of Subclasses kpre

In the experiments, we varied the pre-defined subclass number kpre from 2 to 5. The

other parameters were kept at baseline values. Figure 5.7(a) shows the execution

time of all the algorithms increases as kpre increasing. If kpre is increasing, the total

number of objects become larger, because the number of objects per subclass (n) is

fixed at 50. SUMS, BSUMS and supervised UK-means cost more time than seeded

K-means for the reason of expected distance calculation. Moreover, SUMS and

BSUMS increase faster than supervised UK-means and seeded K-means, because

SUMS and BSUMS cost more time on PG-means when kpre increases. BSUMS

(δ = 2) is faster than SUMS and BSUMS (δ = 3, 4). Figure 5.7(b) shows that

the accuracy of SUMS and BSUMS outperforms that of supervised UK-means and

seeded K-means when kpre is larger than 2. When kpre is 2, all the algorithms can

perform well because the subclasses from the same class are not separated. In the

cases of kpre = 3, 4, 5, kmax is 3 in SUMS and BSUMS (δ = 3, 4). Thus, there is no

difference between the accuracy of SUMS and BSUMS (δ = 3, 4). For kpre = 3, 4,
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Figure 5.7 (a) Execution time with varying ki on synthetic data sets (b) Accuracy with

varying ki on synthetic data sets

though kpre is larger than 2, δ = 2 can also learn the main distribution of the data

sets in the experiments and attain the same level as δ = 3, 4. The top lines that look

so close together are 0.82 (δ = 2, kpre = 5), 0.8 (δ = 3, 4, kpre = 5 and SUMS),

1 (δ = 2, 3, 4 and SUMS, kpre = 2), 1 (δ = 2, 3, 4 and SUMS, kpre = 3), 0.975

(δ = 2, 3, 4 and SUMS, kpre = 4). To make it clearer, Table 5.4 shows the accuracy

of the 6 lines in Figure 5.7(b).

Number of Objects n

In the experiments, we varied the object number of each subclass n from 50 to

250. The other parameters were kept at baseline values. Figure 5.8(a) shows the

execution time of BSUMS, SUMS, seeded K-means and supervised UK-means.

The execution time increases with n varying from 50 to 250, for the reason that

the time cost on (expected) distance calculation increases linearly by increasing n.

SUMS and BSUMS using PG-means which make themselves increase faster than

supervised UK-means and seeded K-means. Seeded K-means is faster than other

algorithms, because the distance calculation for certain object is faster than that for
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Table 5.4 Accuracy with varying kpre on synthetic data set.

Pre-defined Number of

Subclasses (kpre)

2 3 4 5

Seeded K-means 1 0.5 0.5 0.5

Supervised UK-means 1 0.502 0.502 0.5

BSUMS (δ = 2) 1 1 0.975 0.82

BSUMS (δ = 3) 1 1 0.975 0.8

BSUMS (δ = 4) 1 1 0.975 0.8

SUMS 1 1 0.975 0.8
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Figure 5.8 (a) Execution time with varying n on synthetic data sets (b) Accuracy with

varying n on synthetic data sets

uncertain objects. BSUMS (δ = 2) is faster than SUMS and BSUMS (δ = 3, 4)

for the reason that it can terminate the algorithm earlier. Similar to other cases, the

accuracy of SUMS and BSUMS performs better than that of supervised UK-means

and seeded K-means with varying n (Figure 5.8(b)).

Number of Dimensions D
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Figure 5.9 (a) Execution time with varying D on synthetic data sets (b) Accuracy with

varying D on synthetic data sets

In the experiments, we varied the dimension number D from 2 to 5. The other

parameters were kept at baseline values. Similar to the above cases, Figure 5.9(a)

shows that the execution time of seeded K-means is faster than other algorithms

because of the simplest distance calculation. BSUMS and SUMS cost more time

than supervised UK-means for the reason of using PG-means. The execution time

of SUMS and BSUMS does not increases fast when D become larger, because

the time of PG-means is mainly affected by ki (estimated subclass number). The

accuracy of BSUMS and SUMS performs better than that of supervised UK-means

and seeded K-means with varying D shown by Figure 5.9(b).

Number of Classes K

In the experiments, we varied the class number K from 2 to 5. Different from other

cases, we add a class with 2 subclasses every time. The other parameters were

kept at baseline values. Figure 5.10(a) shows that the execution time of all the

algorithms. Different from other cases, SUMS and BSUMS is faster than super-

vised UK-means when K is larger than 4. In the experiments, SUMS and BSUMS
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Figure 5.10 (a) Execution time with varying K on synthetic data sets (b) Accuracy with

varying K on synthetic data sets

can find the (sub)class representatives more efficiently than supervised UK-means.

Supervised UK-means spends more time to make the algorithm converge. Simi-

lar to other cases, the accuracy of BSUMS and SUMS performs better than that

of supervised UK-means and seeded K-means with varying K which is shown in

Figure 5.10(b).

From Figure 5.6(a) to Figure 5.10(a), it shows that the execution time of SUMS,

BSUMS, seeded K-means and supervised UK-means increases when the number of

classes (K) become larger (as well as the pre-defined number of subclasses (kpre),

the number of dimensions (D), the number of objects per subclass (n)). From Fig-

ure 5.6(b) to Figure 5.10(b), it is obvious that the accuracy of BSUMS and SUMS

is better than that of supervised UK-means and seeded K-means. For the cases in

these experiments, the accuracy is affected by the distribution of objects (i.e. over-

lapping of objects from different classes, subclasses distribution).
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Table 5.5 Selected data sets from the UCI machine learning repository.

Data Set Training Tuples No. of Attributes No. of Classes Test Tuples

Iris 150 4 3 10-fold

BreastCancer 569 30 2 10-fold

Ionosphere 351 32 2 10-fold

5.5.3 Real Data Sets

To demonstrate that SUMS and BSUMS can improve the accuracy of supervised

UK-means and seeded K-means [13], we also done experiments on real data sets.

The parameters of the selected data sets used for the experiments are summarized

in Table 5.5. The attributes of all the data sets are numerical obtained from mea-

surements. Classifiers are built on the numerical attributes and their “class label”

attributes. For the chosen data sets, we use 10-fold cross validation to measure

the accuracy. The 3 data sets contains “point values” without uncertainty. In those

existing research papers, they also use database without uncertainty and then add

uncertainty into the data [5, 22, 58, 73, 82, 94, 95]. We follow the common practice

in the research work of this area [5, 22, 58, 73, 82, 94, 95] to generate the uncer-

tainty of synthetic data sets and real data sets. Each object is represented by an

MBR with size 0.25 × 0.25 in a multiple dimension space, which is divided into
√

49 ×
√

49 grid cells. Each grid cell corresponds to a sample. Each sample is as-

sociated with a randomly generated probability value. All probabilities in an MBR

are normalized to have their sum equal to 1.
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Table 5.6 Accuracy on real data sets.

Data Set SUMS BSUMS Supervised UK-means Seeded K-means

Iris 0.927 0.927 0.913 0.899

BreastCancer 0.895 0.895 0.843 0.842

Ionosphere 0.871 0.815 0.706 0.702

In Table 5.6, SUMS and BSUMS with PG-means can classify the objects more

accurately compared with supervised UK-means and seeded K-means [13] on real

data sets. Supervised UK-means and seeded K-means learn one class representative

for each class. However, the objects of a class may be distributed closer to other

class representatives. SUMS and BSUMS can train more than one (sub)class rep-

resentatives for each class by PG-means. In SUMS and BSUMS, PG-means tries

to estimate the number of subclasses of a class and learn local subclass represen-

tatives which may be closer to the objects belonging to the same class. BSUMS

is a bounded SUMS, where PG-means terminates earlier if the estimated number

of subclass (ki) exceeds the bound δ. Thus, the accuracy will be affected. On Iris

and BreastCancer, the classification quality is not affected by δ. In Ionosphere,

SUMS performs better than BSUMS but the difference is very small (5.6%). The

experiments show that supervised UK-means with multiple subclasses (SUMS) and

bounded supervised UK-means with multiple subclasses (BSUMS) can improve the

accuracy of supervised UK-means and seeded K-means on both synthetic and real

data sets .
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5.6 Summary

In this chapter, we propose supervised UK-means with multiple subclasses (SUMS)

using PG-means (projected Gaussian means) for the purpose of handling objects

from the same class disconnected by other classes. To make SUMS more efficient,

we propose bounded SUMS (BSUMS) to avoid the number of subclasses being

overestimated. Our experimental results demonstrate that both SUMS and BSUMS

can overcome the limitation of supervised UK-means and seeded K-means when a

class is divided by other classes.



Chapter 6

Conclusions and Future Work

Uncertainty is an inherent characteristic for collecting data. The problem of sum-

marizing uncertain objects poses a number of challenges. In this thesis, we focus

on value uncertainty. We summarize our contributions in Section 6.1. Then, we

discuss some future work in Section 6.2.

6.1 Conclusions

In this thesis, we investigate the problem of clustering and classification on uncer-

tain data. We model the uncertain data as uncertain objects whose locations are

uncertain and described by probability density functions (pdf). Our contributions

in this thesis include:

• We develop an effective and efficient clustering framework to discover com-

mon patterns among uncertain objects. In previous work, UK-means is re-

duced to K-means by using expected squared Euclidean distance instead of

97
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expected Euclidean distance to overcome the bottleneck of existing tech-

niques. Due to different distance functions used in clustering, we propose

Approximate UK-means to reduce the discrepancy by heuristically identify-

ing objects of boundary cases and re-assigning them. In addition, we consider

the uncertainty of cluster representative for clustering uncertain objects.

• We develop a classification framework for uncertain objects. Existing algo-

rithms are too complex and time consuming. We use supervised UK-means

to classify uncertain objects efficiently with the trade off of some loss in ac-

curacy. To enhance supervised UK-means, we extend supervised UK-means

to feature selection and Adaboost respectively.

• In real applications, objects from the same class may be disconnected by other

classes. Thus, we propose supervised UK-means with multiple subclasses

(SUMS) to tackle the problem. SUMS uses PG-means (projected Gaussian

means) to estimate the number of subclasses and then assign objects to their

closest subclass representatives. To make SUMS more efficient, a bound is

set to avoid subclasses being overestimated which is noted as bounded SUMS

(BSUMS).

6.2 Future Work

It is meaningful to extend our work to more sophisticated models for uncertain data.

In this thesis, we consider the value uncertainty that exists inherently to uncertain

data.
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• Distance Metrics

In this thesis, we focus on value uncertainty. Each object is presented by a

probability density distribution (pdf). Most work measures the distance be-

tween uncertain objects without considering uncertainty of pdf. For example,

the pdf of an object is uniform distribution, and the pdf of the other object

is gaussian distribution. Thus, the distance between the two objects is more

precise if the pdfs of the two objects are considered. However, sometimes

the pdfs of objects may be different. In future work, we should also consider

difference between the pdfs when we measure the distance between uncertain

objects.

• Categorical Attributes

In real applications, some data sets contain categorical attributes. However,

few techniques can handle categorical attributes on uncertain data. In fu-

ture work, we will consider clustering and classification on uncertain data

described by numerical attributes as well as uncertain data with categorical

attributes.

• Objects Overlapping

Supervised UK-means performs better when the data sets are well separated.

It is more effective to apply our work to data sets which are more well sep-

arated with less overlapping. In future work, we will try to find an efficient

way to define objects overlapping to use supervised UK-means more appro-

priately.
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