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Abstract

This thesis focuses on studying the algorithms and applications of positive semi-

definite space tensors. A positive semi-definite space tensors are a special type semi-

definite tensors with dimension 3. Positive semi-definite space tensors have some

applications in real life, such as the medical imaging. However, there isn’t an al-

gorithm with good performance to solve an optimization problem with the positive

semi-definite space tensor constraint, and the structure of positive semi-definite space

tensors is not well explored. In this thesis, firstly, we try to analysis the properties

of positive semi-definite space tensors; Then, we construct practicable algorithms to

solve an optimization problem with the positive semi-definite space tensor constraint;

Finally we use positive semi-definite space tensors to solve some medical problems.

The main contributions of this thesis are shown as follows.

Firstly, we study the methods to verify the semi-definiteness of space tensors and

the properties of H-eigenvalue of tensors. As a basic property of space tensors, the

positive semi-definiteness show significant importance in theory. However, there is

not a good method to verify the positive semi-definiteness of space tensors. Based

upon the nonnegative polynomial theory, we present two methods to verify whether

a space tensor positive semi-definite or not. Furthermore, we study the smallest H-

eigenvalue of tensors by the relationship between the smallest H-eigenvalue of tensors

and their positive semi-definiteness.

Secondly, we consider the positive semi-definite space tensor cone constrained

vii



convex program, its structure and algorithms. We study defining functions, defining

sequences and polyhedral outer approximations for this positive semi-definite space

tensor cone, give an error bound for the polyhedral outer approximation approach,

and thus establish convergence of three polyhedral outer approximation algorithms

for solving this problem. We then study some other approaches for solving this

structured convex program. These include the conic linear programming approach,

the nonsmooth convex program approach and the bi-level program approach. Some

numerical examples are presented.

Thirdly, we apply positive semi-definite tensors into medical brain imagining.

Because of the well-known limitations of diffusion tensor imaging (DTI) in regions of

low anisotropy and multiple fiber crossing, high angular resolution diffusion imaging

(HARDI) and Q-Ball Imaging (QBI) are used to estimate the probability density

function (PDF) of the average spin displacement of water molecules. In particular,

QBI is used to obtain the diffusion orientation distribution function (ODF) of these

multiple fiber crossing. The ODF, as a probability distribution function, should be

nonnegative. We propose a novel technique to guarantee nonnegative ODF by min-

imizing a positive semi-definite space tensor convex optimization problem. Based

upon convex analysis and optimization theory, we derive its optimality conditions.

And then we propose a gradient descent algorithm for solving this problem. We also

present formulas for determining the principal directions (maxima) of the ODF. Nu-

merical examples on synthetic data as well as MRI data are displayed to demonstrate

our approach.
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Chapter 1

Introduction

1.1 Background

Since Qi defined the eigenvalues of tensors[54] in 2005, the research on tensors has

got more and more attention. Now there are several research directions on tensors:

• 1. Eigenvalues of Tensors,

• 2. Applications in Biomedical Engineering,

• 3. Nonnegative Tensors,

• 4. Spectral Hypergraph Theory,

• 5. Computational Polynomial Optimization,

• 6. Tensor Decomposition,

• 7. Space Tensor Conic Program.

A lot of papers and applications are already finished on above research directions in

recent years. For nonnegative tensors, Chang, Friedland, Pearson et al. studied the

properties of several kinds of nonnegative tensors [9, 10, 11, 48]. A method [42] for

computing the largest H-eigenvalue of a nonnegative tensor is studied. The linear
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convergence of this method is proved under some assumptions [79, 80] . Spectral hy-

pergraph theory is another hot topic on tensors. In 2012 and 2013, the international

conference on spectral theory of tensors are held in Tianjin China and Fuzhou Chi-

na. In these conferences, experts discussed the relationship between the spectrums

of tensors and hypergraphs. They gave us plenty of good and new results [33, 34, 38].

In [58] and [61], tensors are used to construct a program which is used for medical

imagining. This program overcomes some defects in traditionary methods. In this

thesis, we focus on studying the space tensor conic program. This problem involves

several research direction, such as eigenvalues of tensors, computational polynomial

optimization, applications in biomedical engineering, etc. For example, the program

in [58, 61] is a space tensor conic program. But now there is not a good method to

solve such program with special structure of space tensor conic, even the structure

of space tensor conic is not clear now, so it inspires us to do this research from study

the positive semi-definite space tensor.

1.1.1 The Positive Semi-definite Tensor

A n dimension m order real tensor A consistes of Ai1,¨¨¨ ,im P <, ij P t1, ¨ ¨ ¨ , nu.

Real matrixes and vectors could be considered as 2 order tensor and 1 order tensor,

respectively. We denote the set of the n dimension m order real tensor as <mn .

Especially, we call this type of tensors as the space tensors, when n “ 3. If the

entries of A are invariant under any index permutation, we call A as a symmetric

tensor, which we call as the supersymmetric tensor in [53], and the set of symmetric

real tensors is denoted by Smn .

The product of a tensor A P <mn and vectors x1, x2, ¨ ¨ ¨ , xm P <n is defined as

[53, 54]:

Ax1x2 ¨ ¨ ¨ xm “
n
ÿ

i1,¨¨¨ ,im“1

Ai1,i2,¨¨¨ ,impx1qi1px2qi2 ¨ ¨ ¨ pxmqim . (1.1)
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Especially, when xi, i “ 1, ¨ ¨ ¨ ,m are the same as x, the above equation could be

written as Axm in short.

We call A P Smn as a positive semi-definite tensor, when A satisfies:

Axm ě 0, @ x P <n. (1.2)

If A satisfies (1.2), we denote it as A ľ 0.

We call A P Smn as a positive definite tensor, when A satisfies:

Axm ą 0, @ 0 ‰ x P <n. (1.3)

If A satisfies (1.3), we denote it as A ą 0.

We denote the set of the positive semi-definite tensor as Smn,`. Obviously, when

m is odd, A could not be positive semi-definite, so in this thesis, we always suppose

that m is even.

The definition of the positive semi-definite tensor is just like the definition in

the matrix case. In matrix case, we have several methods to verify whether a ma-

trix positive is semi-definite or not. For example, finding all the eigenvalues of the

matrix is a practical method. In [53, 54], Qi defined H-eigenvalue (eigenvalue) and

Z-eigenvalue (E-eigenvalue) of A P Smn . And in [53], we know that when A ľ 0,

its H-eigenvalues or Z-eigenvalues must be nonnegative, so we could compute all H-

eigenvalues or Z-eigenvalues of A to verify the positive semi-definiteness of A. We

could use the elimination method to get them [61]. However, it is very difficult,

especially when the dimension or order of A is large, since we need to solve a large

degree polynomial at last. As is well known, when the degree of the polynomial

is large, the algorithm of finding the roots of polynomials is not stable. We also

could use another algorithm to find H-eigenvalues or Z-eigenvalues of A, such as the

power method (TPM). In [42, 82], Ng and Zhou provided an algorithm for finding

the largest eigenvalue of a nonnegative tensor A, and in [79, 80, 81], we proved the
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convergence theorem of this algorithm for some kinds of nonnegative tensors. From

these paper, it is easy to find that this algorithm only suits some kinds of nonnegative

tensors, and it can only get the largest H-eigenvalue of A under some assumptions.

For the normal tensor, SS-HOPM [36] gave us another approach. Using this method,

we may get the smallest H-eigenvalue of A, but it is not guaranteed. In other words,

if we find a convergence point by SS-HOPM, and it is corresponding to a negative

H-eigenvalue of A, we could verify A is not positive semi-definite. But if we get the

convergence point corresponding to a nonnegative H-eigenvalue, we could not verify

whether there is a negative H-eigenvalue of A.

1.1.2 The Positive Semi-definite Tensor in the Magnetic Res-
onance Imaging

It is well-known that the popular magnetic resonance imaging (MRI) model, the dif-

fusion tensor imaging model (DTI) [4, 5, 6] breaks down in regions of low anisotropy

and multiple fiber crossing. In order to overcome the defects of DTI, Tuch et al [73]

proposed a novel approach, high angular resolution diffusion imaging (HARDI) in

2002. In 2004, Tuch [72] further introduced Q-ball imaging (QBI) to reconstruct the

diffusion orientation distribution function (ODF) of the underlying fiber population

of a biological tissue.

The ODF is a function on the unit sphere describing the probability averaged over

the voxel that a particle will diffuse into any solid angle. As the water molecules

in normal tissues tend to diffuse along fibers when contained in fiber bundles [6],

the principal directions (maxima) of the ODF agree with the true synthetic fiber

directions. Tuch [72] showed that the ODF can be estimated directly from the raw

HARDI signal on a single sphere of q-space by the Funk-Radon transformation. This

is the main idea of QBI.

The Funk-Radon transformation involves integral with the Dirac delta function.
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In [17], Descoteax et al. proposed to use the Funk-Hecke theorem and higher or-

der spherical harmonics to obtain a mathematical simplification of the Funk-Radon

transformation. It was shown that the ODF estimation in [17] is up to 15 times

faster than the numerical method in [72].

In [16], Descoteax etal. showed that spherical harmonics and higher order tensors

restricted to the unit sphere were each a base of the same functional space. Ghosh

etal. [24] presented a polynomial based approach to extract maxima of the orientation

distribution function in diffusion MRI. In [8], using the Z-eigenvalue concept, Bloy

and Verma proposed to determine the principal directions (maxima) of the ODF by

their curvatures. An excellent recent survey of higher order diffusion tensor methods

in diffusion MRI is made by Ghosh and Deriche [23].

In the study of the apparent diffusion coefficient (ADC) profile, in 2003, Ozarslan

and Mareci [45] proposed to model the ADC profile with higher order diffusion tensors

(HODT), that can reflect more complex micro-geometries of biological tissues. An

intrinsic property of the diffusivity profile is positive semi-definite [2, 3, 12, 16, 22, 75].

In [58], Qi proposed to approximate the ADC profile by a positive semi-definite

diffusion tensor of either second or higher order. In that paper, Qi showed that we

may regard a higher order tensor as a vector, and the diffusivity function as the inner

product of two vectors. Such a viewpoint not only is convenient, but also provides an

additional mathematical tool. For example, in [58], Qi used this vision to derive the

subgradients of the smallest Z-eigenvalue function of the diffusivity function, which

is a measure of the positive definiteness of the diffusivity function.

The ODF, as a probability distribution function, should be nonnegative, which

means the tensor A in ODF must be positive semi-definite. In the MRI research,

the tensor A are calculated by the least squares method. Let Ā be the solution of

the least squares problem. Because of noise, it is not guaranteed that the tensor,

obtained by the least squares method, are positive semi-definite. MRI researchers
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have made efforts to correct this noise effect. But until now, no ODF models have

addressed this well. Recently, Tournier et al. [71] proposed a nonnegativity penalty

fiber orientation distribution (FOD) model by penalizing FOD values. That model

does not completely forbid negative FOD values. Some other approaches had been

proposed to preserve positive semi-definiteness of a diffusion tensor of second order

or fourth order [2, 3, 16, 22]. None of them can work for arbitrary high order

diffusion tensors. In [58], a comprehensive model, called PSDT (positive semi-definite

tensor), was proposed to approximate the diffusivity function by a positive semi-

definite diffusion tensor of either second or higher order. A nonnegative diffusion

orientation distribution function model was further proposed in [61].

It was proved in [58] that Sm3,` is a closed convex cone. The PSDT minimization

problem was proposed there:

mintP pxq ” pHpX q ´HpX̄ qqTQpHpX q ´HpX̄ qq : X P Sm3,`u, (1.4)

where X̄ P Sm3 , Q is an nˆn positive semi-definite matrix, HpX q : Sm3 Ñ <
pm`1qpm`2q

2

which stretches a symmetric tensor into a vector.

In chapter 4, we will study algorithms for solving the following structured convex

program:

mintfpX q : gpX q ď 0,X P Sm3,`u, (1.5)

where f : Sm3 Ñ < and g : Sm3 Ñ <p are twice continuously differentiable convex

functions. Clearly, the PSDT problem (1.4) is a special case of (1.5).

1.2 Summary of Contributions of the Thesis

The original contributions of this thesis are as follows:

• Two kinds of the methods based on the theory of the nonnegative polynomial

are presented to verify whether the tensor is positive semi-definite or not. The
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structure of the cone of the positive semi-definite space tensor is analyzed, some

properties of Smn,` are shown. By the relationship of positive semi-definite ten-

sors and their smallest H-eigenvalue, the properties of the smallest H-eigenvalue

of tensors are discussed. Algorithms for verifying the positive semi-definiteness

of tensors are presented, and the numerical results are presented to show the

effectiveness of the algorithms.

• The structure and algorithms of the positive semi-definite space tensor cone

constrained convex program (PSDT) are considered. We study defining func-

tions, defining sequences and polyhedral outer approximations for this positive

semi-definite space tensor cone, give an error bound for the polyhedral outer ap-

proximation approach, and thus establish convergence of three polyhedral outer

approximation algorithms for solving this problem. Some other approaches for

solving this structured convex program is studied too, including the conic linear

program approach, the nonsmooth convex program approach and the bi-level

program approach. Some numerical examples are presented.

• We proposes a novel technique to guarantee nonnegative ODF by minimizing a

convex optimization problem, which involves a convex quadratic objective func-

tion constrained by the nonnegativity requirement on the smallest Z-eigenvalue

of the diffusivity tensor. Based upon convex analysis and optimization theory,

we derive its optimality conditions. And then we propose a gradient descent al-

gorithm for solving this problem. We also present formulas for determining the

principal directions (maxima) of the ODF. Numerical examples on synthetic

data as well as MRI data are displayed to demonstrate our approach.

1.3 Organization of the Thesis

The thesis is structured as follows.
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• Chapter 2 reviews the preliminary knowledge.

• Chapter 3 focuses on how to verify the positive semi-definiteness of a symmetric

space tensor. Firstly, we give two methods based on the theory of the nonneg-

ative polynomial to deal with this problem. Then we use the relationship be-

tween the positive semi-definiteness of tensors and their smallest H-eigenvalue

(Z-eigenvalue) to study the properties of the smallest H-eigenvalue of tensors.

Thirdly, some algorithms are presented to verify the positive semi-definiteness

of space tensors. In the last part of this chapter, we give some numerical test

results.

• Chapter 4 works on how to compute the space positive semi-definite tensor

cone program. Firstly, we study the structure of the positive semi-definite

space tensor cone program and its polyhedral outer approximation algorithms.

We also study the other methods on solving the positive semi-definite space

tensor cone program in section 4.2 in this chapter. Finally, we present the

numerical results in the last section of chapter 4.

• In chapter 5, we first show that there is a constant linear transformation re-

lation between the vector versions of the raw HARDI signal and the ODF in

the homogeneous polynomial basis. Such a linear transformation connection

between the HARDI signal and the ODF not only saves the computational

time, but also makes the nonnegative ODF model possible. Based upon this,

a nonnegative ODF model is presented. In section 5.2, we present formulas for

determining the principal directions (maxima) of the ODF, based on optimiza-

tion theory, which is more precise. Numerical examples on synthetic data as

well as MRI data are displayed in section 5.3 to demonstrate our approach.

• Chapter 6 concludes the whole thesis and plans the future work.
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Chapter 2

Preliminaries

In this chapter, we introduce some basic definitions, theorems and notions used in

this thesis.

2.1 The Definition and Properties of the Eigen-

value and E-eigenvalue of Tensors

In [53], Qi introduced the definition of the H-eigenvalue (eigenvalue) and the Z-

eigenvalue (E-eigenvalue) of a tensor A P <mn .

For a vector x P <n, we use xi to denote its components, and xrms to denote a

vector in <n such that

x
rms
i “ xmi

for all i. By definition of the tensor product in [53, 54], Axm´1 with a vector x P <n

denotes a vector in <n, whose ith component is

n
ÿ

i2,¨¨¨ ,im

Ai,i2,¨¨¨ ,imxi2 ¨ ¨ ¨ xim

.

A real number λ P < is called an H-eigenvalue of A, iff Dx P <n satisfies

Axm´1
“ λxrm´1s,
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x is called the H-eigenvector corresponding to λ.

A real number λ P < is call a Z-eigenvalue of A, iff Dx P <n satisfies

"

Axm´1 “ λx
xTx “ 1

,

x is called the Z-eigenvector corresponding to λ.

A number λ P C is call an eigenvalue of A, iff Dx P Cn satisfies

Axm´1
“ λxrm´1s,

x is called the eigenvector corresponding to λ.

A number λ P C is called an E-eigenvalue of A, iff Dx P Cn satisfies

"

Axm´1 “ λx
xTx “ 1

,

x is called the E-eigenvector corresponding to λ.

The two groups of the definitions of the eigenvalue of a tensor A are different at

the regions which λ and x belong to. It makes some different properties.

We import an important theorem here.

Theorem 2.1. [53] Assume that m is even. The following conclusions hold for

A P Smn :

(a) A always has H-eigenvalues. A is positive definite (positive semi-definite) if

and only if all of its H-eigenvalues are positive (nonnegative).

(b) A always has Z-eigenvalues. A is positive definite (positive semi-definite) if

and only if all of its Z-eigenvalues are positive (nonnegative).

2.2 Nonnegative Polynomials

If a polynomial Pnk Q ppxq ě pąq0, @x P <k, we call ppxq is a nonnegative (positive)

polynomial. The theory of nonnegative polynomial has been studied for a long time,
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since Hilbert’s 17th problems were proposed. A lot of theories on this topic have

been discovered. Here we only present the theorems we need as shown in theorem

2.2. More details could be found in [50, 35, 63, 31, 52, 46, 65, 43, 37, 39, 51].

Theorem 2.2. [63]

(a) ppxq P Pm1 , ppxq ě 0, then Dq1pxq, q2pxq P P
m
2

1 , ppxq “ q2
1pxq ` q

2
2pxq;

(b) a not null homogeneous polynomial ppxq P P4
3 , ppxq ě 0, then Dqipxq P P2

3 , i “

1, 2, 3, 4, ppxq “
ř4
i“1 q

2
i pxq.

(c) a not null homogeneous polynomial ppxq P P2k
3 , ppxq ě 0, then there exist not

all null homogeneous polynomial p1pxq P PK1
3 and homogeneous polynomial

p2pxq P PK2
3 in x P <3, where K1 “ 2t

pk´1q2

2
u, K2 “ 2k `K1, so that

p1pxqppxq “ p2pxq,

where p1pxq “
ř

q2
1,ipxq, q1,ipxq P P

K1
2

3 , p1pxq “
ř

q2
2,ipxq, q2,ipxq P P

K2
2

3

2.3 Cone Programs

In this thesis, we will see two kinds of cone programs, the variable of which is

constrained by a cone constraint. We introduce them in brief. The most common

cone program is the semi-definite program (sdp), for which the variable is a symmetric

positive semi-definite matrix X. The general form of sdp is:

min fpXq

s.t. gpXq ď 0 (2.1)

X ľ 0,

where fpXq : Snˆn Ñ <, gpXq : Snˆn Ñ <p. A lot of optimization problems can

be turned into (2.1), such as Linear program (LP), Second Order Cone program
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(SOCP). Now we usually use the interior point method to solve (2.1), which is an

iteration method with the iteration points in the interior of the feasible set of (2.1).

More details and algorithms of sdp could be found in [76, 68, 41, 77, 78, 30]. Some

softwares for solving the linear sdp are directly available [20, 69, 70, 74].

We will see another cone program at chapter 4 and chapter 5. The general form

of this program is

min fpX q

s.t. gpX q ď 0 (2.2)

X ľ 0,

where X is a symmetric tensor, fpX q : Smn Ñ <, gpX q : Smn Ñ <p. (2.2) is like

(2.1), except that the variable becomes a symmetric tensor from a symmetric matrix.

This change makes some differences, we will discuss its applications, algorithms and

properties in chapter 4 and chapter 5.

It is noticed that all the experiments in this thesis are implemented in Matlab by

using a personal computer with a dual-core 2.4G CPU and 2GB RAM.
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Chapter 3

On Semidefiniteness Space Tensor

Cone

If we want to use the positive semi-definite tensors in normal life and work, we must

know how to verify whether a tensor positive semi-definite or not. In this chapter,

we discuss some methods to verify the positive semi-definiteness of a space tensor

A P Sm3 , where m is even.

Firstly, we present some notions and symbols used in this chapter.

Notions and Symbols: Nnpxq in x P < means a column vector p1, x, ¨ ¨ ¨ , xnqT P

<n`1; Mnpxq in x P <3 is denoted by pBpi, j, kqxi1x
j
2x

k
3q in lexicographic order, where

Bpi, j, kq “

d

n!

i!j!k!
. For example M2pxq “ px2

1,
?

2x1x2,
?

2x1x3, x
2
2,
?

2x2x3, x
2
3q
T ,

so if x2
1` x

2
2` x

2
3 “ 1, we get ||Mnpxq||2 “ 1; ă A,B ą“

ř

i

ř

j Ai,jBi,j; C is denoted

by a set of matrices tCiu; CX denotes a vector pă Ci, X ąq, CTy “
ř

i Ciyi; the dual of

the cone K is defined as K˚ “ tx| ă x, y ąě 0, @y P Ku; Bpx, εq “ tx|||x´x˚|| ď εu;

RankpAq is the rank of a matrix A; I is the identity matrix.
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3.1 Two Methods for Verifying the Positive Semi-

definiteness of a Tensor

In this section, we present two methods for verifying whether a tensor A P Sm3 is

positive semi-definite not. Firstly, we introduce an important lemma:

Lemma 3.1. (1) the next two statements are equivalent.

a) ppxq P Pm1 , ppxq ě 0, @x P <

b) D H P Sp
m
2
`1qˆpm

2
`1q, H ľ 0, so that

Nm
2
pxqTHNm

2
pxq “ ppxq;

(2) the next two statements are equivalent.

a) for a not null homogeneous polynomial ppxq P P4
3 , ppxq ě 0, @x P <3

b) D H P S6ˆ6, H ‰ 0, H ľ 0, so that

MT
2 pxqHM2pxq “ ppxq;

(3) the next two statements are equivalent.

a) for a not null homogeneous polynomial ppxq P P2k
3 , ppxq ě 0, @x P <3

b) D not all null homogeneous polynomial p1pxq P PK1
3 and homogeneous

polynomial p2pxq P PK2
3 in x P <3, where K1 “ 2t

pk´1q2

2
u, K2 “ 2k `K1,

so that

p1pxqppxq “ p2pxq,

where

p1pxq “MT
K1
2

pxqH1MK1
2
pxq, H1 P S

K̄1ˆK̄1 , H1 ľ 0,

p2pxq “MT
K2
2

pxqH2MK2
2
pxq, H2 P S

K̄2ˆK̄2 , H2 ľ 0,

where K̄i “
pKi`4qpKi`2q

8
, i “ 1, 2.
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Proof. From theorem 2.2, we know that

(a) ppxq P Pm1 , ppxq ě 0, then Dq1pxq, q2pxq P P
m
2

1 , ppxq “ q2
1pxq ` q

2
2pxq;

(b) a not null homogeneous polynomial ppxq P P4
3 , ppxq ě 0, then Dqipxq P P2

3 , i “

1, 2, 3, 4, ppxq “
ř4
i“1 q

2
i pxq.

(c) a not null homogeneous polynomial ppxq P P2k
3 , ppxq ě 0, then D not all null

homogeneous polynomial p1pxq P PK1
3 and homogeneous polynomial p2pxq P

PK2
3 in x P <3, where K1 “ 2t

pk´1q2

2
u, K2 “ 2k `K1, so that

p1pxqppxq “ p2pxq,

where p1pxq “
ř

q2
1,ipxq, q1,ipxq P P

K1
2

3 , p1pxq “
ř

q2
2,ipxq, q2,ipxq P P

K2
2

3 .

(1) Notice when qipxq P P
m
2

1 , i “ 1, 2, Dqi P <
m
2
`1, i “ 1, 2. Thus qipxq “ qTi Nm

2
pxq,

then q2
1pxq ` q2

2pxq “
ř2
i“1 q

T
i Nm

2
pxqqTi Nm

2
pxq “ NT

m
2
pxq

ř2
i“1 qiq

T
i Nm

2
pxq. Let H “

ř2
i“1 qiq

T
i , so ñ in (1) is true. If DH ľ 0, which satisfies Nm

2
pxqTHNm

2
pxq “ ppxq, it

is easy to see ppxq ě 0. ð is true.

(2) Because
ř4
i“1 q

2
i pxq, qipxq P P2

3 ô MT
2 pxq

ř4
i“1 qiq

T
i M2pxq, where qipxq “

qTi M2pxq. Let H “
ř4
i“1 qiq

T
i , so we have ñ too. ð is also easy to get.

(3)ñ could be proved by the same way in (2). ð: Because plpxq “MT
Kl
2

pxqHlMKl
2

pxq “

řrl
i q

2
l,ipxq, l “ 1, 2, rl “ RankpHlq, where ql,rpxq “ qTl,rMKl

2

pxq, Hl “
řrl
i“1 ql,iq

T
l,i. We

just need to prove that if Dp1pxq “
ř

q2
1,ipxq, q1,ipxq P P

K1
2

3 , p1pxq “
ř

q2
2,ipxq, q2,ipxq P

P
K2
2

3 , p1pxqppxq “ p2pxq, p1pxq, p2pxq not all zero, then ppxq ě 0, @x P <3. It is clear

that p1pxq ě 0, p2pxq ě 0, so ppxq must be nonnegative on tx|p1pxq ą 0u. Let

∆ “ tx|p1pxq “ 0u, if Dx˚ P ∆, ppx˚q ă 0, then Dε ą 0, ppxq ă 0, @x P Bpx˚, εq. Now

we have p1pxq “ 0, @x P Bpx˚, εq which means p1pxq ” 0, p2pxq ” 0, it contradicts

that p1pxq, p2pxq are not all null, so ppxq ě 0, @x P <3. l
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3.1.1 The First Method

From lemma 3.1(3), for a tensor A P Sm3 , where m “ 2kpk ě 1q, A ľ 0 ô Axm ě

0, @x P <3, which is equivalent to DH1 ľ 0, H2 ľ 0, so that MT
K1
2

pxqH1MK1
2
pxqAxm “

MT
K2
2

pxqH2MK2
2
pxq, where K1, K2 is defined in the lemma 3.1(3). Because there is a

vector p satisfying Axm “ pTMmpxq, by comparing the coefficients of every term, we

could get the corresponding equations:

$

’

’

&

’

’

%

C1H1 “ p1,
C2H2 “ p2,
Ap1 “ p2,

H1 ľ 0, H2 ľ 0,

(3.1)

whereA P <K̂2ˆK̂1 satisfying that pAp1q
TMK2pxq “ AxmpT1MK1pxq, K̂i “

pKi`2qpKi`1q
2

;

C1 “ tC1
t u, C1

t P <K̄1ˆK̄1 , t “ 1, ¨ ¨ ¨ , K̂1, C2 “ tC2
t u, C2

t P <K̄2ˆK̄2 , t “ 1, ¨ ¨ ¨ , K̂2,

pCltqi,j “
"

1 i` j “ t` 1
0 otherwise

, l “ 1, 2,

K̄i are defined in lemma 3.1(3).

Using above symbols, we setup the next program:

val “ max ă I,H1 ą

s.t. C1H1 “ p1,

C2H2 “ p2, (3.2)

Ap1 “ p2,

H1 ľ 0, H2 ľ 0,

ă I,H1 ąď 1.

If A ‰ 0,A ľ 0, D H1 ľ 0, H2 ľ 0 and not all them are zero matrixes, in other

words, ă I,H1 ąą 0 or ă I,H2 ąą 0. Because the constraints is homogenous
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except ă I,H1 ąď 1, we have val “ 1. If A ń 0, because H1 “ 0, H2 “ 0 are

always feasible for (3.2), then we have val “ 0. It is easy ot see that ă I,H1 ą and

ă I,H2 ą are good marks for verifying whether A is positive semi-definite or not.

We summarize the above discussion into theorem 3.1:

Theorem 3.1. (1) Suppose A P S2k
3 ,A ‰ 0, then val “ 1 ô A ľ 0; val “ 0 ô A ń

0.

(2) If A ľ 0, and A č 0,A ‰ 0, then A has a 0 H-eigenvalue and Z-eigenvalue,

and H2 ľ 0, H2 č 0. Furthermore, supposing x is the H-eigenvector (Z-eigenvector)

of A corresponding to H-eigenvalue (Z-eigenvalue) 0, then MK2pxq is the eigenvector

of H2 corresponding to eigenvalue 0.

Proof. From the above discission, (1) is true.

(2) It is easy to see that the first part of (2) is true. If A ľ 0, from lemma 3.1(3)

and (1), we get MT
K1
pxqH1MK1pxqAxm “ MT

K2
pxqH2MK2pxq and ă I,H1 ąą 0.

If A has 0 H-eigenvalue and Z-eigenvalue, then Dx P <3, such that Axm “ 0 ñ

MT
K2
pxqH2MK2pxq “ 0. If x is H-eigenvector (Z-eigenvector) corresponding to H-

eigenvalue (Z-eigenvalue) 0, then MT
K2
pxqH2MK2pxq “ 0. Since H2 ľ 0, which tell

us that MK2pxq is the eigenvector corresponding to 0 eigenvalue of H2. l

From theorem 3.1, if we get H2, we could find all the eigenvectors of H2 cor-

responding to 0 which could be expressed by MK2pxq, then we bring them back to

Axm´1 to test whether x is the H-eigenvector (Z-eigenvector) of A corresponding to

0. The disadvantage of the first method is that the scale of the program (3.2) is

Opm4q. Thus when the m is lager, the program is not solvable in the numerical view.

3.1.2 The Second Method

Notice that when n “ 3, for every A, there exists an upleft triangular matrix E P

ULRpm`1qˆpm`1q, then Axm “
řm
i“0

řm´i
j“0 Ei`1,j`1x

i
1x

j
2x

m´i´j
3 . We set this map A to
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E as EpAq : Sm3 ÞÑ <pm`1qˆpm`1q, it is easy to see that EpAq is a bijection.

Lemma 3.2. When m is even,

A P Sm3,` ô E “ EpAqsatisfies

$

&

%

řm
i“0

řm´i
j“0 Ei`1,j`1y

i
1y
j
2 ě 0, @y1, y2 P <

řm
i“0Ei`1,m´i`1y

i
1 ě 0 @y1 P <

Em`1,1 ě 0

Proof. Because A P Sm3,` ô Axm ě 0, @x P <3, we discuss three cases:

1) x3 ‰ 0, x2, x1 are arbitrary, then Axm “ xm3
řm
i“0

řm´i
j“0 Ei`1,j`1p

x1
x3
qipx2

x3
qj.

Because m is even, y1 “
x1
x3

, y2 “
x2
x3

, then
řm
i“0

řm´i
j“0 Ei`1,j`1y

i
1y
j
2 ě 0.

2) x3 “ 0, x2 ‰ 0, x1 is arbitrary, then Axm “
řm
i“0Ei`1,m´i`1x

i
1x

m´i
2 ě 0.

Because x2 ‰ 0, let y1 “
x1
x2

, then Axm “ xm2
řm
i“0Ei`1,m´i`1y

i
1 ě 0, because m is

even,
řm
i“0Ei`1,m´i`1y

i
1 ě 0.

3) x3 “ 0, x2 “ 0, x1 is arbitrary, then Axm “ Em`1,1x
m
1 , so Em`1,1 ě 0. l

Theorem 3.2. Suppose ppxq “ pTNmpxq P Pm1 , where p P <m`1, then the next two

statements are equivalent:

(1) ppxq ě 0, @x P <

(2) the value of the program

min pTy

s.t. CTy ľ 0. (3.3)

is nonnegative, where C “ tCiu, i “ 1, ¨ ¨ ¨ ,m`1, pCiql,k “
"

1, l ` k “ i` 1
0, else

, Ci P

<pm2 `1qˆpm
2
`1q.

Proof. If ppxq P Pm1 , ppxq ě 0, @x P <, from lemma 3.1(1) we know that there

exists a matrix A ľ 0, A P <p1`m
2
qˆp1`m

2
q satisfying Nm

2
pxqTANm

2
pxq “ ppxq. Since
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ppxq “ pTNmpxq, by comparing the coefficient of xi, we have CA “ p,A ľ 0 which

means

"

CX “ p
X ľ 0

(3.4)

has solution. We will prove that if (3.4) has solution, then

"

pTy ă 0
CTy ľ 0

(3.5)

doesn’t have solution. If (3.4) and (3.5) have solutions X˚, y˚, then ă CX˚´p, y˚ ą“

0, so we have pTy˚ “ă CX˚, y˚ ą“ă CTy˚, X˚ ą. Since X˚ ľ 0, CTy˚ ľ 0, we have

ă CTy˚, X˚ ąě 0, which is contrary to pTy˚ ă 0. If (3.4) has solution, (3.5) doesn’t

have solution, which means the value of (3.3) is nonnegative.

If the value of (3.3) is nonnegative, which means @y P <m`1 satisfying CTy ľ 0,

pTy is nonnegative. Let y “ Nmpxq, CTy “ N1`m
2
pxqN1`m

2
pxqT ľ 0, since pTNmpxq “

ppxq, we have ppxq ě 0, @x P <. l

Theorem 3.3 shows that A P Sm3,` is equal to that both the values of two programs

below are nonnegative.

Theorem 3.3. A P Sm3,` ô the values of the programs

min wT1 Ew2

s.t. CTw1 ľ 0, (3.6)

CTw2 ľ 0,

min eTw

s.t. CTw ľ 0 (3.7)

are nonnegative, where C is defined in theorem 3.2, E “ EpAq, e “ epAq “ pEi`1,m´i`1q
m
i“0.
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Proof. By lemma 3.2, we just need to consider three cases:

1) Let qpy1, y2q “
řm
i“0

řm´i
j“0 Ei`1,j`1y

i
1y
j
2, qpy1, y2q could be considered as a poly-

nomial in y1 with the parameter y2, we use qy2py1q to express this. If qpy1, y2q ě

0, @y1, y2, it means @y2, qy2py1q ě 0, @y1, where qy2py1q “ qTy2Nmpy1q “ Nmpy2q
TEpAqNmpy1q.

By theorem 3.2, @y2, qy2py1q ě 0, @y1 ô @y2, the value of the program

min qTy2w1

s.t. CTw1 ľ 0 (3.8)

is nonnegative. qTy2w1 could be considered as a polynomial in y2 with the parameter

w1, we have qw1py2q “ wT1 EpAqTNmpy2q, so the nonnegative value of (3.8) means that

@w1 satisfying CTw1 ľ 0, qw1py2q ě 0, @y2. By theorem 3.2, we get @w1 satisfying

CTw1 ľ 0, qw1py2q ě 0, @y2 ô the value of the program

min wT2 EpAqw1

s.t. CTw2 ľ 0 (3.9)

is nonnegative. So qpy1, y2q ě 0, @y1, y2 ô the value of the program

min wT2 EpAqw1

s.t. CTw1 ľ 0 (3.10)

CTw2 ľ 0

is nonnegative.

2)
řm
i“0Ei`1,m´i`1y

i
1 “ eTNmpy1q ě 0, by theorem 3.2, it is equivalent to that

the value of the program

min eTw

s.t. CTw ľ 0 (3.11)

is nonnegative.
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3) From lemma 3.2, Em`1,1 ě 0, but it is implied in the nonnegative value of

(3.7). l

Notice that it is easy to check whether the value of the program (3.7) is nonneg-

ative or not, but it is difficult to solve (3.6), because it is a bilinear sdp program.

Let ĒpAq “ 1
2

ˆ

0 EpAq
EpAqT 0

˙

, which is a symmetric matrix, and ĒpAq :

Sm3 ÞÑ S2pm`1qˆ2pm`1q is a bijection too. We denote its inverse operation as Ē´1. Let

C̄i “

$

’

’

&

’

’

%

ˆ

Ci 0
0 0

˙

i “ 1, ¨ ¨ ¨ ,m` 1
ˆ

0 0
0 Ci´m´1

˙

i “ m` 2, ¨ ¨ ¨ , 2m` 2
,

where Ci is defined in theorem 3.2, so (3.6) could be turned to

min wT ĒpAqw

s.t. C̄Tw ľ 0 (3.12)

Use above symbols, the below corollary is true.

Corollary 3.1. Sm3,` “ Ē´1ptwwT |C̄Tw ľ 0u˚
Ş

Ωuq
Ş

tA P Sm3 |epAq “ CX,X ľ 0u,

where Ω “ tY |Y “

ˆ

0 Z
ZT 0

˙

, Z P ULRpm`1qˆpm`1qu.

Proof. From theorem 3.3, it is easy to see that Sm3,` is the intersection of two parts.

Sm3,` “ Λ1

č

Λ2,

where

Λ1 “ tA P Sm3 |ĒpAq makes the value of p3.12q nonnegativeu,

Λ2 “ tA P Sm3 |epAq makes the value of p3.7q nonnegativeu.
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1) Λ1 “ tA P Sm3 |w
T ĒpAqw ě 0, @ w satisfying C̄Tw ľ 0u “ tA P Sm3 | ă

ĒpAq, wwT ąě 0, @ w satisfying C̄Tw ľ 0u.

Because tY P Smˆm| ă Y,wwT ąě 0, @w satisfying C̄Tw ľ 0u “ twwT |C̄Tw ľ

0u˚. Since ĒpAq P Ω “ tY |Y “

ˆ

0 Z
ZT 0

˙

, Z P ULRpm`1qˆpm`1qu, then we have

Λ1 “ Ē´1
ptwwT |C̄Tw ľ 0u˚

č

Ωq.

2) Λ2 “ tA P Sm3 |epAqTy ě 0, @ y satisfying CTy ľ 0u “ tA P Sm3 |epAq “

CX,X ľ 0u. l

3.2 Finding the Smallest H-eigenvalue

Because the positive semi-definiteness of a tensor and its smallest H-eigenvalue are

related, if we get the positive semi-definiteness of a tensor, it is natural to ask how

we could get its smallest H-eigenvalue. This is the aim of this section.

The program (3.13) in lemma 3.3 is similar as (3.6). It gives us a way to find the

global minimal of a polynomial ppxq P Pm1 .

Lemma 3.3. Suppose ppxq “ pTNmpxq P Pm1 , where p P <m`1. Let v1 and Π1 be the

value and minimal solution set of

min pTy

s.t. CTy ľ 0, (3.13)

eT1 y “ 1,

where C is defined in theorem 3.2, e1 “ p1, 0, 0, ¨ ¨ ¨ 0q
T , v2 and Π2 are the value and

minimal solution set of

min ppxq,

then
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(1) if v2 ‰ ´8, then @x˚ P Π2, Nmpx
˚q P Π1;

(2) if v1 ‰ ´8, then D x˚ satisfying that Nmpx
˚q P Π1 and x˚ P Π2;

(3) v1 “ ´8 ô v2 “ ´8;

so v1 “ v2.

Proof. The KKT equations of (3.13) is

$

’

’

&

’

’

%

CX ` ue1 “ p,
eT1 y “ 1,
X ľ 0, CTy ľ 0,
ă CTy,X ą“ 0

(3.14)

where e1 “ p1, 0, ¨ ¨ ¨ , 0q
T P <m`1.

(1)@x˚ P Π2, let y “ Nmpx
˚q, then CTy “ N1`m

2
px˚qN1`m

2
px˚qT ľ 0. Taking

u “ ppx˚q, we have qpxq “ pp ´ ppx˚qe1q
TNmpxq “ ppxq ´ ppx˚q ě 0, @x P <, then

by lemma 3.1(1) DX˚ ľ 0 satisfying CX˚ “ p´ ppx˚qe1, and ă CTNmpx
˚q, X˚ ą“ă

CX˚, Nmpx
˚q ą“ă p ´ ppx˚qe1, Nmpx

˚q ą“ 0 so Nmpx
˚q, ppx˚q, X˚ solve (3.14).

Because (3.13) is a linear sdp program, then Nmpx
˚q must be in the optimal solution

set of (3.13).

(3) ð: If v1 “ ´8, and v2 “ ppx˚q ‰ ´8, where x˚ is a minimal solution, then

Nmpx
˚q, ppx˚q, X˚ are the solutions of (3.14), where X˚ is defined in (1). Then from

the theory of the linear sdp program, it shows that v1 ‰ ´8, which contradicts that

v1 “ ´8, so we have v2 “ ´8.

ñ: If v2 “ ´8, for every a small enough number M ă 0, Dx̂, ppx̂q “M . Noticing

that Nmpx̂q is the feasible point of (3.13), we have v1 “ ´8.

(2) v1 ‰ ´8, then from (3), v2 ‰ ´8, so D x˚, x˚ P Π2. From (1), Nmpx
˚q is a

minimal solution of (3.13). l

By lemma 3.3, we could solve a linear sdp program to find the global minimal

of a polynomial. In this way, we overcome the disadvantage of algorithm for finding

roots of the polynomial.
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For the 3 dimension case, we could get lemma 3.4.

Lemma 3.4. Suppose ppxq P Pm3 , ppxq “
ř

i`j`kďm Di,j,kx
i
1x

j
2x

k
3, we construct next

program

min Dw1w2w3

s.t. CTwi ľ 0, i “ 1, 2, 3 (3.15)

eT1wi “ 1, i “ 1, 2, 3,

where C and e1 are defined in lemma 3.3. Let v1 and Π1 be the minimal value and

solution of (3.15), v2 and Π2 be the minimal value and solution of

min
xP<3

ppxq,

then

(1) If v2 ‰ ´8, then @px˚1 , x
˚
2 , x

˚
3q
T P Π2, pNmpx

˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq P Π1;

(2) If v1 ‰ ´8, then D px˚1 , x
˚
2 , x

˚
3q so that px˚1 , x

˚
2 , x

˚
3q P Π2,

pNmpx
˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq P Π1;

(3) v1 “ ´8 ô v2 “ ´8;

so v1 “ v2.

Proof. (3) ð: Because v2 “ ´8, then D xk “ pxk,1, xk,2, xk,3q
T P <3, ppxkq Ñ ´8.

It is easy to show that pNmpxk,1q, Nmpxk,2q, Nmpxk,3qq is the feasible point of (3.15),

we have

DNmpxk,1qNmpxk,2qNmpxk,3q “ ppxkq Ñ ´8,

so the value of (3.15) is ´8.
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ñ: Because v1 “ ´8, D w1, w2, satisfying CTwi ľ 0 and eT1wi “ 1, i “ 1, 2, then

the value of

min Dw1w2w

s.t. CTw ľ 0, (3.16)

eT1w “ 1

is ´8. From lemma 3.3(3), minxP< Dw1w2Nmpxq “ ´8. For a small enough number

M , D x1 so that Dw1w2Nmpxq “M , then we consider

min Dw1wNmpx1q

s.t. CTw ľ 0, (3.17)

eT1w “ 1.

It is easy to see that the value u2 of (3.17) is not larger than M . If u2 “ ´8,

then by lemma (3.4), minxP< Dw1NmpxqNmpx1q “ ´8, we could find another small

enough number M 1 ď M , D x2, Dw1Nmpx2qNmpx1q “ M 1. If u2 ‰ ´8, then

D x2 so that Dw1Nmpx2qNmpx1q ď M . By the same way, we could get x3, so that

DNmpx3qNmpx2qNmpx1q ďM , which means v2 “ ´8.

(1) Because v2 ‰ ´8, then v1 ‰ ´8. For every px˚1 , x
˚
2 , x

˚
3q
T P Π2, it is easy

to see that pNmpx
˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq is the feasible point of (3.15), we have v1 ď

v2 “ DNmpx
˚
1qNmpx

˚
2qNmpx

˚
3q. Let pw˚1 , w

˚
2 , w

˚
3 q be the minimal solution of (3.15),

we consider next program

min Dw1w
˚
2w

˚
3 ,

s.t. CTw1 ľ 0 (3.18)

eT1w1 “ 1

By lemma 3.3, solving (3.18) is equivalent to finding the global minimal value

and solution of q1pxq “ DNmpx1qw
˚
2w

˚
3 . Suppose x˚˚1 P arg minxP< q1pxq. Then from
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lemma 3.3, Nmpx
˚˚
1 q belongs to the set of the global minimal solution of (3.18), the

value of (3.18) is v1.

It is easy to get that the value of

min DNmpx
˚˚
1 qw2w

˚
3 ,

s.t. CTw2 ľ 0, (3.19)

eT1w2 “ 1,

is v1 too, then Nmpx
˚˚
2 q is the global minimal solution of (3.19), where

x˚˚2 P arg min
xP<

q2pxq “ DNmpx
˚˚
1 qNmpxqw

˚
3 .

It is also easy to get that the value of

min DNmpx
˚˚
1 qNmpx

˚˚
2 qw3,

s.t. CTw3 ľ 0, (3.20)

eT1w3 “ 1,

is v1, then Nmpx
˚˚
3 q is the global minimal solution of (3.20), where

x˚˚3 P arg min
xP<

q3pxq “ DNmpx
˚˚q

1 Nmpx
˚˚
2 qNmpxq.

Now we get v1 “ DNmpx
˚˚
1 qNmpx

˚˚
2 qNmpx

˚˚
3 q “ ppx˚˚1 , x˚˚2 , x˚˚3 q ě v2, so v1 “

v2, which means v2 and pNmpx
˚˚
1 q, Nmpx

˚˚
2 q, Nmpx

˚˚
3 qq are global minimal value and

solution of (3.15). Notice that pNmpx
˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq are also feasible point of

(3.15), and v2 “ DNmpx
˚
1qNmpx

˚
2qNmpx

˚
3q, so pNmpx

˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq P Π1.

(2) If v1 ‰ ´8, then v2 ‰ ´8. From (1), we have Dpx˚1 , x
˚
2 , x

˚
3q P Π2 and

pNmpx
˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq P Π1. l

Using above lemma, we could construct following theorem which could give out

the smallest H-eigenvalue of A P Sm3 .
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Theorem 3.4. For A P Sm3 , let Di,j,k “

"

pEpAqqi,j k “ m` 3´ i´ j
0 else

D P <3
m`1.

Suppose the smallest H-eigenvalue of A and its H-eigenvector are λ1 and px˚1 , x
˚
2 , x

˚
3q
T ,

and (3.21) has minimal solution, then λ1, pNmpx
˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq are the mini-

mal value and optimal solution of the program

min Dw1w2w3

s.t. CTwi ľ 0, i “ 1, 2, 3

eT1wi “ 1, i “ 1, 2, 3 (3.21)

eTm`1pw1 ` w2 ` w3q “ 1,

where e1 is defined in lemma 3.3, em`1 “ p0, 0, 0 ¨ ¨ ¨ , 1q
T P <m`1, wi P <m`1.

Proof. Notice that the smallest H-eigenvalue λ1 of A P Sm3 , which must exist by

theorem 2.1, could be defined as the global minimal value of the next program [53]:

min Axm

s.t. xm1 ` x
m
2 ` x

m
3 “ 1, (3.22)

Firstly, we will prove that λ1 “ minx maxλ Lpx, λq “ maxλ minx Lpx, λq, Lpx, λq “

Axm ´ λpxm1 ` xm2 ` xm3 ´ 1q. λ1 “ minx maxλ Lpx, λq is easy to get from the op-

timization theory. We just need to prove minx maxλ Lpx, λq “ maxλ minx Lpx, λq

true.

It is oblivious that minx maxλ Lpx, λq ě maxλ minx Lpx, λq. Because Axm ě

λ1px
m
1 ` xm2 ` xm3 q, @x P <3, we have Lpx, λq ě pλ1 ´ λqpxm1 ` xm2 ` xm3 q ` λ,

maxλ minx Lpx, λq ě maxλ minxpλ1 ´ λqpxm1 ` xm2 ` xm3 q ` λ “ λ1. Because λ1 “

minx maxλ Lpx, λq ě maxλ minx Lpx, λq ě λ1, we have λ1 “ minx maxλ Lpx, λq “

maxλ minx Lpx, λq.
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From lemma 3.3, we could solve

min Dw1w2w3 ` λpe
T
mpw1 ` w2 ` w3q ´ 1q

s.t. CTwi ľ 0, i “ 1, 2, 3 (3.23)

eT1wi “ 1, i “ 1, 2, 3

to get the minimal value of minx Lpx, λq.

Let Λ “ tpw1, w2, w3q| CTwi ľ 0, eT1wi “ 1, i “ 1, 2, 3u, and suppose the minimal

value of (3.21) is λ̂, since pNmpx
˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq is the feasible point of (3.21),

then we have DNmpx
˚
1qNmpx

˚
2qNmpx

˚
3q “ λ1 ě λ̂ “ minpw1,w2,w3qPΛ maxλ L̄pwi, λq ě

maxλ minpw1,w2,w3qPΛ L̄pwi, λq “ maxλ minx Lpx, λq “ minx maxλ Lpx, λq “ λ1, where

L̄pwi, λq “ Dw1w2w3`λpe
T
mpw1`w2`w3q´1q, so λ1 “ λ̂, and pNmpx

˚
1q, Nmpx

˚
2q, Nmpx

˚
3qq

must be the minimal solution of (3.21). l

We could not get a similar theorem for Z-eigenvalue, since we could not get

minx maxλ Lpx, λq “ maxλ minx Lpx, λq, where Lpx, λq “ Axm ´ λpxTx ´ 1q is the

lagrange function of

min Axm

s.t. x2
1 ` x

2
2 ` x

2
3 “ 1, (3.24)

which defines the smallest Z-eigenvalue of A.

3.3 Algorithms for Verifying the Positive Semi-

definiteness of a Tensor

In this section, we present algorithms to verify the positive semi-definiteness of a

tensor A. It is easy to get the algorithm 3.1 from theorem 3.1(1).

Algorithm 3.1. S1: Given a tensor A P Sm3 , then generate A;

S2: Solving (3.2) to get val;
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S3: If val “ 1, report A is positive semi-definite; if val “ 0, report A is not

semi-definite.

From theorem 3.3, it is easy to see that if we wish to check A is positive semi-

definite or not, we just need to solve (3.6) and (3.7). Because (3.7) is a linear sdp, it

can be solved by any linear sdp program software. The difficult part is to solve (3.6)

or (3.12). They are not convex sdp programs. We could use an alternate direction

method (als) to solve (3.6), but it could not guarantee to give us the global solution

of (3.6). Because we only need to check the value of (3.6), we could use different

start points for als method. If one of the convergent points finds the negative optimal

value, we can see that A is not positive semi-definite from theorem 3.3.

Algorithm 3.2. S1: Given a tensor A P Sm3 , get E “ EpAq, e “ epAq, ε ą 0;

S2: Solve program (3.7) to get the optimal value ν1, if ν1 ă ´ε, stop and report

that A is not positive semi-definite;

S3: Select a start point w0
1 satisfying CTw0

1 ľ 0, ν0
2 “ w0T

1 Ew0
1 and k “ 0;

S4: Solve

min wkT1 ETw

s.t. CTw ľ 0 (3.25)

||w||8 ď 1

to get the optimal solution wk2 ;

S5: Solve

min wkT2 Ew

s.t. CTw ľ 0 (3.26)

||w||8 ď 1
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to get the optimal solution wk`1
1 ;

S6: Set νk`1
2 “ wkT2 Ewk1 , if νk`1

2 ă ´ε, then stop and report that A is not

positive semi-definite;

S7: If νk`1
2 ´ νk2 ą ´ε, stop; else goto S4, k “ k ` 1.

If algorithm 3.2 terminates at S7, we could choose another start point w0
1. In

numerical tests, we suggest to use five different points p1, 1, ¨ ¨ ¨ , 1qT , p1, 0, ¨ ¨ ¨ , 0qT ,

p0, ¨ ¨ ¨ , 0, 1qT , p1, 0, ¨ ¨ ¨ , 0, 1qT , and p1,´1, 1, ¨ ¨ ¨ ,´1, 1qT as the start points. If algo-

rithm 3.2 with all above start points still terminate at S7, we could conjecture that

A is positive semi-definite.

Theorem 3.5. If algorithm 3.2 does’t stop at Step2 and Step6, then v2 must con-

verge.

Proof. Because the feasible set of

min wT1 Ew2

s.t. CTw1 ľ 0,

CTw2 ľ 0, (3.27)

||w1||2 ď 1, ||w2||2 ď 1,

is bounded, we have the value of (3.27) is low bounded. From the algorithm 3.2, it

is easy to get vk2 ě vk`1
2 , so v2 converges. l

There is a linear sdp program in algorithm 3.1. We could use any sdp software

to solve it [20, 69, 70, 74], and its result val is necessary and sufficient mark to check

whether A is positive semi-definite or not. If m is small, we prefer to use algorithm

3.1. When m is large, even when m “ 16, 20, the scale of program (3.2) are 561, 1362,

while the program of (3.6) and (3.7) are m ` 1, we prefer to use algorithm 3.2 in

numerical view.
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Table 3.1: The results of algorithm 3.2 for first four test examples

the smallest Z-eigenvalue of A psd the result of algorithm 3.2
(a) 0.75 Yes Yes
(b) -0.8571 No No
(c) -0.8285 No No
(d) -0.8285 No No

3.4 Numerical Results

In this part, we give some numerical examples to test our theories and algorithms.

Firstly, we construct some test tensors. We present 5 kinds of A, where the last

one is random.

(a) A P S4
3 ,Ai,i,i,i “ i, i “ 1, 2, 3,Ai,i,i`1,i`1 “ Ai,i`1,i,i`1 “ Ai`1,i`1,i,i “ Ai`1,i,i`1,i “

Ai`1,i,i,i`1 “ Ai,i`1,i`1,i “ 1, i “ 1, 2, and zero otherwise.

(b) A P S4
3 ,Ai,i,i,i “ i, i “ 1, 2, 3,Ai,i,i`1,i`1 “ Ai,i`1,i,i`1 “ Ai`1,i`1,i,i “ Ai`1,i,i`1,i “

Ai`1,i,i,i`1 “ Ai,i`1,i`1,i “ ´1, i “ 1, 2, and zero otherwise.

(c) A P S8
3 , Ai,i,¨¨¨ ,i “ 2, Ai,i,¨¨¨ ,1 “ Ai,i,¨¨¨ ,1,i “ Ai,1,¨¨¨ ,i “ A1,i,¨¨¨ ,i “ 1, i “ 2, 3, and

zero otherwise.

(d) A P S8
3 , Ai,i,¨¨¨ ,i “ 2, Ai,i,¨¨¨ ,1 “ Ai,i,¨¨¨ ,1,i “ Ai,1,¨¨¨ ,i “ A1,i,¨¨¨ ,i “ ´1, i “ 2, 3, and

zero otherwise.

(e) A P Sm3 , Ai1,i2,¨¨¨ ,im is random in [-1, 1].

We will test algorithm 3.2. For testing algorithm 3.2, we first use the elimination

method to calculate all Z-eigenvalues to show the positive semi-definiteness of the

test examples. Then we use different start points to test algorithm 3.2. If all the

results aren’t right, we mark it as failure, otherwise we mark it as success. For the

last random test example, we test 500 times, and get the ratio of the success.

31



Table 3.2: The results of algorithm 3.2 for (e)

m the success ratio of the algorithm 3.2
4 99.8%
6 99.6%
8 99.6%
10 99.0%

From table 3.1 and table 3.2, it is easy to see that algorithm 3.2 has the good

performance for verifying the positive semi-definiteness of tensors.
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Chapter 4

Some Algorithms for Semidefinite

Space Tensor Conic Convex

Program

In this chapter, we focus on how to solve program (1.5), which is a positive semi-

definite space tensor cone program. It is easy to get the KKT functions of (1.5):

BfpX q `
p
ÿ

i“1

µiBgipX q “ Y

µ ě 0, gpX q ď 0

µigipX q “ 0, i “ 1, ¨ ¨ ¨ , p (4.1)

X P Sm3,`,Y P S
m,˚
3,`

ă X ,Y ą“ 0

4.1 Structure and Polyhedral Outer Approxima-

tion Algorithms

4.1.1 Two Assumptions

We now make two assumptions on (1.5).

Assumption 4.1. (1.5) has an interior point X̂ .
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This assumption is needed for many algorithms [25, 26]. In the case of (1.4), it

holds naturally, as by [60], any positive definite vector X in Sm3 is an interior point

of Sm3,`.

Assumption 4.2. (1.5) has an optimal solution X ˚ in a simple compact region R,

such as a ball (B “ tA|}A}2 ď ∆u).

This assumption is also needed for many algorithms [25, 26]. If this assumption

holds, then (1.5) is equivalent to the bounded convex program

mintfpX q : gpX q ď 0,X P R X Sm3,`u. (4.2)

Proposition 4.1. Suppose that assumption 4.1 holds and that function f is strongly

convex, i.e., there is a positive constant c such that for any X , X̃ P Sm3 , we have

fpX q ě fpX̃ q` ă ∇fpX̃ q, pX ´ X̃ q ą ` c
2
}X ´ X̃ }2.

Then assumption 4.2 holds with

R “

"

X P Smn |}X ´ X̂ } ď
2

c

›

›

›
∇fpX̂ q

›

›

›

*

.

Proof. Suppose that X P Sm3 and fpX q ď fpX̂ q. Then

fpX̂ q ě fpX q ě fpX̂ q` ă ∇fpX̂ q, pX ´ X̂ q ą ` c
2
}X ´ X̂ }2.

This implies that X P R. As R is a compact region, the conclusion follows.

Note that for problem (1.4), the objective function is strongly convex if Q is

positive definite.

4.1.2 Defining Functions

Suppose that φ : Sm3 Ñ < is a concave function and

Sm3,` “ tX P Smn |φpX q ě 0u.
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Such as the minimal eigenvalue of X could be considered as a type of φ. Then we

call φ a defining function of the cone Sm3,` and we may rewrite (1.5) as

mintfpX q : gpX q ď 0, φpX q ě 0u. (4.3)

Let Ω̄ be a compact convex set in <3 and the origin is an interior point of Ω̄. Let

Ω be the boundary surface of Ω̄. Then

φΩ̄pX q “ mintX ym : y P Ω̄u

and

φΩpX q “ mintX ym : y P Ωu

are concave functions as they are defined by minimization problems. Whenever X is

positive semi-definite, φΩ̄pX q “ 0. On the other hand, if X is positive definite, then

φΩpX q ą 0; if X is positive semi-definite but not positive definite, then φΩpX q “ 0.

Hence, both φΩ̄ and φΩ are defining functions of Sm3,`, but φΩ presents more informa-

tion than φΩ̄. Furthermore, when deal with space tensors, Ω̄ is three-dimensional,

while Ω is two-dimensional. Thus, we only use φΩ in the following discussion. We

call Ω a defining surface of Sm3,`.

Let Ω̄ “ B̄ be the unit ball in <3. Then

φBpX q “ mintX ym : y2
1 ` y

2
2 ` y

2
3 “ 1u

is the smallest Z-eigenvalue function discussed in [53, 56, 60, 58].

Let Ω̄ “ C̄ be the unit cube in <3. Let C1 “ tp1, t1, t2q : ´1 ď t1, t2,ď 1u,

C2 “ tpt1, 1, t2q : ´1 ď t1, t2,ď 1u, C3 “ tpt1, t2, 1q : ´1 ď t1, t2,ď 1u and D “

C1 Y C2 Y C3. Let

φDpX q “ mintX ym : y P Du.

Then we see that φD is also a defining function of Sm3,`, though D is only about a half

of C, as we have X p´yqm “ X ym since m is even. Thus, we also call D a defining
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surface of Sm3,`. Then we have

φDpX q “ mintφkpX q : k “ 1, 2, 3u,

where for k “ 1, 2, 3,

φkpX q “ mintdkptq : ´1 ď t1, t2 ď 1u, (4.4)

t P <2, d1ptq “ X

¨

˝

1
t1
t2

˛

‚

m

, d2ptq “ X

¨

˝

t1
1
t2

˛

‚

m

and d3ptq “ X

¨

˝

t1
t2
1

˛

‚

m

. As the

minimization problem for defining φk only involves a two-variable vector t in the unit

square, computationally, the defining function φD may be better than the defining

function φB.

The defining functions φB and φD are both nonsmooth. A question is if there

exists a smooth defining function or a set of smooth defining functions of Sm3,`.

4.1.3 Polyhedral Outer Approximations

Let F Ă <3 be a finite set. Let y P F . By the definition of Sm3,`, for any X P Sm3,`,

we have

X ym “
m
ÿ

i“0

m´i
ÿ

j“0

EpX qi`1,j`1y
i
1y
j
2y
m´i´j
3 ě 0, (4.5)

where EpX q is defined in section 3.1.2. Note that this is a linear constraint with

respect to X . Let

Sm3,`pF q “ tX P Sm3 |X ym ě 0, @y P F u.

Then Sm3,`pF q is a polyhedral cone and Sm3,` Ă Sm3,`pF q. We call Sm3,`pF q an polyhedral

out approximation of Sm3,`, generated by the finite set F . We may use Sm3,`pF q to

relax the nonsmooth constraints of (1.5). We have the following twice continuously

differentiable convex program:

mintfpX q : gpX q ď 0,X P Sm3,`pF qu, (4.6)
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The twice continuously differentiable convex program (4.6) is a relaxation of the

nonsmooth convex program (1.5). We may solve (4.6) by a conventional method.

Suppose that XF is a solution of (4.6). If XF P Sm3,`, then XF is also an optimal

solution of (4.6). Otherwise, fpXF q is a lower bound of (4.6). Furthermore, we have

the following error bound result.

Proposition 4.2. Suppose that assumption 4.1 holds and φ is a defining function

of Sm3,`. Assume that (4.6) has an optimal solution XF . If φpXF q ă 0, then we have

0 ď f˚ ´ fpXF q ď σ
”

fpX̂ q ´ fpXF q
ı

,

where

f˚ “ inftfpX q : gpX q ď 0,X P Sm3 u,

σ “
´φpXF q

φpX̂ q ´ φpXF q
, X̂ P Sm3,`

and 0 ă σ ă 1.

Proof. Since (4.6) is a relaxation of (1.5), we have 0 ď f˚ ´ fpXF q. Since X̂ P Sm3,`

and φpXF q ă 0, we have 0 ă σ ă 1. Then

φpp1´ σqXF ` σX̂ q ě p1´ σqφpXF q ` σφpX̂ q “ 0.

Thus, p1´σqXF `σX̂ P Sm3,`. Since gpXF q ď 0 and gpX̂ q ď 0, we have gpp1´σqXF `

σX̂ q ď 0. This implies that p1 ´ σqXF ` σX̂ is a feasible point of (1.5). We have

f˚ ď fpp1´ σqXF ` σX̂ q. Thus, we have

0 ď f˚ ´ fpXF q
ď fpp1´ σqXF ` σX̂ q ´ fpXF q
ď σrfpX̂ q ´ fpXF qs.

This proves the proposition.
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This proposition says that if ´φpXF q is small, then fpXF q is close to f˚. In the

next theorem, we will show that if F is denser on a compact defining surface Ω, then

fpXF q is closer to f˚. We now need assumption 4.2. Instead of solving (4.6), we now

solve

mintfpX q : gpX q ď 0,X P R X Sm3,`pF qu. (4.7)

Theorem 4.1. Suppose that assumptions 4.1 and 4.2 hold. Let F Ă Ω, where Ω is a

compact defining surface of Sm3,`. Let φ “ φΩ be the defining function associated with

Ω. Then (4.7) has an optimal solution XF . If φpXF q ě 0, then XF is an optimal

solution of (1.5) and (4.2). If φpXF q ă 0, then we have

´φpXF q ďMρpF q

and

0 ď fpX ˚q ´ fpXF q ď σ̄
”

fpX̂ q ´ fpXF q
ı

,

where X ˚ is an optimal solution of (4.2),

σ̄ “
MρpF q

φpX̂ q `MρpF q
,

0 ă σ̄ ă 1, M is a constant depending on R and Ω only, and

ρpF q “ max tdistpy, F q : y P Ωu .

Proof. By assumptions 4.1 and 4.2, (4.7) has an optimal solution. Denote this op-

timal solution as XF . If φpXF q ě 0, then the conclusions hold obviously. Suppose

that φpXF q ă 0. Suppose that yF is an optimal solution of

φpXF q “ mintXFym : y P Ωu.

Then φpXF q “ XFymF . Let ȳ be the the closest point in F to yF . Then XF ȳm ě 0

and

}yF ´ ȳ} ď ρpF q.
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Let M be the Lipschitz constant of the function LpX , yq ” X ym on the compact set

R ˆ Ω. Then

´φpXF q “ ´XFymF ď XF ȳm ´ XFymF ďMρpF q.

The remaining conclusions now follow from proposition 4.2.

4.1.4 The Basic Polyhedral Outer Approximation Algorithm

By theorem 4.1, if we let Fk Ă Ω such that ρpFkq Ñ 0 as k Ñ 8, and denote

X pkq “ XFk
, where XFk

is an optimal solution of (4.7) with F “ Fk, then we have

a polyhedral outer approximation algorithm. To distinguish this algorithm from its

improved version in next subsection, we call this algorithm the basic polyhedral outer

approximation algorithm.

Theorem 4.2. Under assumptions 4.1 and 4.2, we have

lim
kÑ8

fpX pkqq “ f˚,

where f˚ is the optimal objective function value of (4.2), and any accumulation point

of tX pkqu is an optimal solution of (4.2).

The proof of theorem 4.2 follows the proof of theorem 4.1. We omit it. We now

discuss possible schemes to construct Fk. Let Ω “ D, the closed half surface of

the unit cube. Let F0 be the set of the seven vertices of D. Let Fk be the set of

grid points on D, with the grid length as 1
2k´1 , for k “ 0, 1, ¨ ¨ ¨ . Then ρpFkq “

?
2

2k
.

Furthermore, we have Fk Ă Fk`1 and hence fpX pkqq ď fpX pk`1qq for all k. Denote

Sk “ Sm3,`pFkq for k “ 0, 1, ¨ ¨ ¨ . Then from (4.5), we have

S0 “

$

’

’

&

’

’

%

X P Sm3 :
m
ř

i“0

m´i
ř

j“0

EpX qi`1,j`1 ě 0,
m
ř

i“0

m´i
ř

j“0

EpX qi`1,j`1p´1qi`j ě 0,

m
ř

i“0

m´i
ř

j“0

EpX qi`1,j`1p´1qj ě 0,
m
ř

i“0

m´i
ř

j“0

EpX qi`1,j`1p´1qi ě 0

,

/

/

.

/

/

-

(4.8)

39



and

S1 “

$

’

’

&

’

’

%

EpX qm`1,1 ě 0, EpX q1,m`1 ě 0, E1,1 ě 0,
X P S0 :

řm
i“0EpX qi`1,m ě 0,

řm
i“0EpX qi`1,m´i`1p´1qi ě 0,

řm
i“0EpX qi`1,1 ě 0,

řm
i“0EpX qi`1,1p´1qi ě 0,

řm
i“0EpX q1,i`1 ě 0,

řm
i“0EpX q1,i`1p´1qi ě 0

,

/

/

.

/

/

-

(4.9)

4.1.5 Defining Sequences and An Iterative Polyhedral Outer
Approximation Algorithm

In the basic polyhedral outer approximation algorithm, the number of constraints

in (4.7) is huge when k is big. This is not practical. Furthermore, the sequence

tX pkq : k “ 0, 1, ¨ ¨ ¨ u is not iterative. The point X pk`1q is obtained without using

the knowledge of X pkq. We now explore an improved version of that algorithm. We

call a sequence in <3 a defining sequence of Sm3,` if for any X P Sm3 , X is positive

definite if and only if X ym ě 0 for any y in that sequence. We see that the sequence

consisting of all points in Fk for all k is such a defining sequence. We now give a

general formula for this sequence. As X ym is an even function, for grid points y and

´y, we only need to include one of them. Thus, in F0, we only need to include four

vertices:

G0 “ tp1, 1, 1q, p1, 1,´1q, p1,´1, 1q, p´1, 1, 1qu.

We see that S0 “ Sm3,`pG0q. Then for any X P Sm3 , X is positive semi-definite if and

only if X ym ě 0 for any y P Γ ” G0 YD1 YD2 YD3, where

D1 “ tp1, t1, t2q : ´1 ď t1 ď 1,´1 ă t2 ă 1u,

D2 “ tpt2, 1, t1q : ´1 ď t1 ď 1,´1 ă t2 ă 1u,

D3 “ tpt1, t2, 1q : ´1 ď t1 ď 1,´1 ă t2 ă 1u.

We see that G0, D1, D2 and D3 are disjoint each other, and if y P Γ then ´y R Γ.

Hence, we may take all the grid points from Γ. Let

Gk “ pFkzFk´1q X Γ
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for k “ 1, 2, ¨ ¨ ¨ . Then the set

G “ G0 YG1 YG2 Y ¨ ¨ ¨

is what we want. We may write out the general formula for points in Gk as: pt1, t2, 1q,

pt2, 1, t1q, pt1, t2, 1q for t1 “ ´1` i
2k´1 and t2 “ ´1` 2j´1

2k´1 , for i “ 0, ¨ ¨ ¨ , 2k and j “

1, ¨ ¨ ¨ , 2k´1, and pt1, t2, 1q, pt2, 1, t1q, pt1, t2, 1q for t1 “ ´1` 2i´1
2k´1 and t2 “ ´1` j

2k´2 ,

for i “ 1, ¨ ¨ ¨ , 2k´1 and j “ 1, ¨ ¨ ¨ , 2k´1 ´ 1. Then |Gk| “ 9ˆ 22k´2.

We now give an iterative polyhedral outer approximation algorithm. Suppose

that assumptions 4.1 and 4.2 hold.

Algorithm 4.1. (An Iterative Polyhedral Outer Approximation Algorithm)

S1: Let k “ 0, µ´1 “ 1 and F “ G0. Let N be a positive integer.

S2: Let µk “ µk´1. Compute an optimal solution of (4.7) and denote it as X pkq.

S3: If µk ě N , stop. Otherwise, let Hk “ ty P Gµk : X pkqym ă 0u.

S4: If Hk “ H, let µk “ µk ` 1 and go to S3. Otherwise, let F “ Hk Y F and

k “ k ` 1. Go to Step 1.

Theorem 4.3. Suppose that assumptions 4.1 and 4.2 hold. Then we have fpX pkqq ď

fpX pk`1qq ď fpX ˚q for all k. If N Ñ 8, then we have a sequence tX pkq : k “

0, 1, ¨ ¨ ¨ u Ă R. If X ˚˚ is an accumulation point of tX pkqu, then X ˚˚ is an optimal

solution of (1.5).

Proof. At the kth iteration, X pkq is an optimal solution of (4.7). On the other hand,

X pk`1q is an optimal solution of

mintfpX q : gpX q ď 0,X P R X Sm3,`pHk Y F qu, (4.10)
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which is a restriction of (4.7). Hence, fpX pkqq ď fpX pk`1qq. As (4.7) and (4.10) are

relaxations of (4.2), we have fpX pkqq ď fpX pk`1qq ď fpX ˚q for all k. This proves the

first conclusion.

Suppose that N Ñ 8 and X pkiq Ñ X ˚˚, where tki : i “ 0, 1, ¨ ¨ ¨ u is a subsequence

of t0, 1, ¨ ¨ ¨ u. Assume that φpX ˚˚q “ ´ε ă 0. Then there is y˚˚ P D such that

X ˚˚py˚˚qm “ φpX ˚˚q “ ´ε ă 0. Because of the structure of Gµ, there is K1 ą 0 and

δ ą 0 such that for all µ ě K1, there is a yµ P Gµ such that yµ P Npy
˚˚; δq ” ty P

D : }y ´ y˚˚} ď δu and X ˚˚pyµq ď ´2
3
ε. Since X pkiq Ñ X ˚˚, there is a K2 ě K1 such

that for all ki ě K2 and y P Npy˚˚; δq,

ˇ

ˇX pkiqym ´ X ˚˚ym
ˇ

ˇ ď
1

3
ε. (4.11)

As µki ě ki, we have yµki P Npy
˚˚; δq such that X ˚˚pyµki q

m ď ´2
3
ε. Combining it

with (4.11), we have

X pkiqpyµki q
m
ď ´

1

3
ε ă 0 (4.12)

and

X pki`1qpyµki q
m
ď ´

1

3
ε ă 0. (4.13)

According to (4.12), we have yµki P Hk. This implies that yµki P F forever after the

kth iteration. Thus

X pki`1qpyµki q
m
ě 0,

as X pki`1q is an optimal solution of (4.13), with yµki P F now. This contradicts (4.13).

Hence, we have φpX ˚˚q ě 0. This shows that X ˚˚ is an optimal solution of (1.5).

The proof of the theorem is completed.
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4.1.6 Another Iterative Polyhedral Outer Approximation Al-
gorithm

In algorithm 4.1, the set F expands steadily as k increases. Hence, the number of

constraints in (4.7), though is much less than the number of constraints in (4.6) in

the basic polyhedral outer approximation algorithm, is still somewhat large when k

is big. We now give another iterative polyhedral outer approximation algorithm to

improve this. Suppose that assumptions 4.1 and 4.2 hold.

Algorithm 4.2. (Another Iterative Polyhedral Outer Approximation Algorithm)

S1: Let k “ 0, µ´1 “ 1 and F “ G0. Let N be a positive integer.

S2: Let µk “ µk´1. Compute an optimal solution of (4.7) and denote it as X pkq.

S3: If µk ě N , stop. Otherwise, let Hk “ ty P Gµk : X pkqym ă 0u.

S4: If Hk “ H, let µk “ µk ` 1 and go to S3. Otherwise, let F̄ “ ty P F :

X pkqym “ 0u. Let F “ Hk Y F̄ and k “ k ` 1. Go to S2.

Theorem 4.4. Suppose that assumptions 4.1 and 4.2 hold. Then we have fpX pkqq ď

fpX pk`1qq ď fpX ˚q for all k. If N Ñ 8, then we have a sequence tX pkq : k “

0, 1, ¨ ¨ ¨ u Ă R. If furthermore tX pkqu converges to a point X ˚˚, then X ˚˚ is an

optimal solution of (1.5).

The proof of this theorem is similar to the proof of theorem 4.3. We omit it.

Remark We see that the number of constraints in (4.7) is stable in algorithm

4.2. A cost of this improvement is that the second conclusion of theorem 4.4 is a

little weaker than the second conclusion of theorem 4.3.
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4.2 The Other Approaches

4.2.1 The Conic Linear Program Approach

If f is a convex quadratic function and g is an affine function, then (1.5) can be con-

verted to a conic linear program (CLP) via a second-order cone transformation [60].

Theoretically, CLP problems can be solved by polynomial-time interior point algo-

rithms [40, 41]. In this approach, a self-concordant function needs to be established.

The smallest Z-eigenvalue function φBpX q has some properties of a self-concordant

function. But it is nonsmooth and thus does not satisfy the differentiability re-

quirements of a self-concordant function. Further investigation on possible smooth

defining functions of the positive semi-definite space tensor cone Sm3,` is needed to

establish a self-concordant function.

A closed convex cone is a symmetric cone if it is a self-dual and homogeneous cone

[19]. However, unlike the semi-definite problem (SDP) and the second-order cone

problem (SOCP), where the semi-definite matrix cone and the second-order cone are

self-dual, the positive semi-definite space tensor cone Sm3,` is not self-dual [60]. We

may check if the positive semi-definite space tensor cone Sm3,` is a homogeneous cone

or not. A closed convex cone K with nonempty interior is homogeneous if for any two

interior points u and v of K, there exists an invertible linear mapping T such that

T pKq “ K and T puq “ v, i.e., the group of automorphisms of K acts transitively on

the interior of K. If the positive semi-definite space tensor cone Sm3,` is a homogeneous

cone, then we may use the techniques on homogeneous cones [28] to construct interior

point algorithms to solve the CLP with the conic constraint X P Sm3,`. If the positive

semi-definite space tensor cone Sm3,` is not a homogeneous cone, then we may further

check if it is a hyperbolic cone [28, 62] or not. Hyperbolic cones contain homogeneous

cones as a subclass [28, 62]. If the positive semi-definite space tensor cone Sm3,` is

a hyperbolic cone, then we may use the techniques on hyperbolic cones [28, 62] to

44



construct interior point algorithms to solve the concerned CLP. Finally, it is possible

that the positive semi-definite space tensor cone Sm3,` is not a hyperbolic cone. Then

we will analyze the properties of the positive semi-definite space tensor cone further,

to see what kind of interior point algorithms are suitable for solving the concerned

CLP.

Therefore, the conic linear program approach for solving this problem is not ready

for practical use at this moment.

4.2.2 The Nonsmooth Convex Program Approach

We now discuss algorithms for solving the nonsmooth convex program (1.5). Under

assumptions 4.1 and 4.2, we may covert it to a standard convex feasibility problem

[25, 26]. A convex feasibility problem is to compute a point in a convex set S̄, where

S̄ is contained in a compact set R, and is assumed to contain an interior [25, 26].

Then we need an oracle which for every point x̄ P R returns either a statement that

x̄ is feasible, or a cutting plane to separate x̄ from the feasible set. With such an

oracle, we may apply the analytic center cutting plane method in [25, 26], and obtain

a convergence estimate in Opnplog 1{εq2q calls to the oracle. As f and g are twice

smooth, it is easy to handle them. The key part of this oracle is to solve

φDpxq “ mintX ym : y P Du.

We have the following proposition.

Proposition 4.3. Given X P Sm3 . Then X P Sm3,` if and only if the following three

conditions are satisfied:

(i) X P S0;

(ii) for any stationary point s of ψk for ´1 ď s ď 1 and k “ 1, ¨ ¨ ¨ , 6, we have

ψkpsq ě 0, where ψ1psq “ X

¨

˝

1
1
s

˛

‚

m

, ψ2psq “ X

¨

˝

1
´1
s

˛

‚

m

, ψ3psq “ X

¨

˝

1
s
1

˛

‚

m

, ψ4psq “
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X

¨

˝

1
s
´1

˛

‚

m

, ψ5psq “ X

¨

˝

s
1
1

˛

‚

m

and ψ6psq “ X

¨

˝

s
1
´1

˛

‚

m

;

(iii) for any stationary point t of dk, where ´1 ď t1, t2 ď 1 and k “ 1, 2, 3, we

have dkptq ě 0.

Proof. The “only if” part follows from the definition of positive semi-definiteness of

X . The “if” part follows from (4.4) and the fact that φD is a defining function of

Sm3,`. Note that C has 12 edges and D contains 9 edges. Because the fact that X ym

is an even function for y, we only need to consider six edges in (ii).

The condition (i) is easy to check. It is not difficult to find stationary points of

ψk for k “ 1, 2, 3. To find stationary points of dk, we need to solve

"

B

Bt1
dkptq “ 0,

B

Bt2
dkptq “ 0.

This is a two-variable polynomial system. We may use the Sylvester formula [15] to

solve it.

4.2.3 The Bi-Level Program Approach

We can write our problem (1.5) into the following bi-level program problem:

min fpX q

s.t. gpX q ď 0,

min
yP<3
X ym ě 0.

Due to the harmonic property of the function X ym, the above program is equivalent

to

min fpX q

s.t. gpX q ď 0, (4.14)

φpX q “ min
yP<3,||y||“1

X ym ě 0.
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As discussed in subsection 4.1.3, φpX q is a concave function. Thus (4.14) is a

convex program. The dual program can be written as

max
τP<p,ρP<

Lpτ, ρq

s.t. τ ě 0, ρ ě 0, (4.15)

where

Lpτ, ρq “ min
X
tfpX q ` τTgpX q ´ ρφpX qu. (4.16)

Thus we can apply a dual algorithm for solving (4.15).

Algorithm 4.3. (Dual Algorithm for Structured Convex Problems)

S1: τ0 “ 0, ρ0 “ 0, k “ 0.

S2: Compute

zpkq :“ ∇Lpτk, ρkq “
ˆ

∇τLpτk, ρkq
∇ρLpτk, ρkq

˙

. (4.17)

S3: if zpkq ď 0 and

`

zpkq
˘T

ˆ

τk
ρk

˙

“ 0,

then stop.

Carry out a line search, namely computing αk ą 0 and let

ˆ

τk`1

ρk`1

˙

:“

„ˆ

τk
ρk

˙

` αkz
pkq



`

,

k :“ k ` 1, and go to S2.

It is easy to show that the above algorithm is convergent if certain line search

conditions are satisfied. Indeed, the above algorithm is a truncated gradient method
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for the dual problem. The analysis of Calamai and Moré [14] can be used. Namely,

we can try

αk “ minr2αk´1, γs

first, and if necessary, we reduce αk by a fractor of 2 until the line search condition

Lpτk`1, ρk`1q ě Lpτk, ρkq ` c1p∇Lpτk, ρkqT
ˆ

τk`1 ´ τk
ρk`1 ´ ρk

˙

is satisfied, where γ ą 0 and c1 P p0, 0.5q are constants. More details can be found

in chapter 11 of Sun and Yuan [67].

4.3 Numerical Results

We report some numerical experiments for algorithm 4.1 and algorithm 4.2. For

algorithm 4.1 and 4.2, we take N “ 9. When k is equal to N , there are 9ˆ216 points

in Gk and ρpFkq is about 2´8. The problems we test for algorithm 4.1 and 4.2 are:

Example 4.1.

min

"

1

2
pHpX q ´HpX̄ qqTQpHpX q ´HpX̄ qq : AEpX q ď b,X P Sm3,`

*

Example 4.2.

min

"

1

2
pHpX q ´HpX̄ qqTQpHpX q ´HpX̄ qq : X P Sm3,`

*

In examples 4.1 and 4.2, HpX q is a map from Sm3 to <
pm`1qpm`2q

2 , Q “ PDP T is a

positive definite matrix, where the orthogonal matrix P and the diagonal matrix D

as well as X̄ P Sm3 are all generated randomly. To make it easy to compare, we set
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A “ p1, 1 ¨ ¨ ¨ , 1q P <1ˆ pm`1qpm`1q
2 , b “ pm`1qpm`2q

2
. Example 4.2 is the PSDT model in

[58].

We test 7 different orders for every algorithms, 4 small orders and 3 lager orders:

m=4; m=8; m=12; m=16; m=20; m=30; m=40, the dimensions of HpX q are 15, 45,

91, 153, 231, 496, 861, respectively.

The numpConq, numpGq, λmin
`

X pkq
˘

and k in the following tables mean the

number of the constraints in the relaxation program, the number of points in Gk, the

minimum Z-eigenvalue of X pkq and the number of iteration when Algorithm stops.

We use the method in [58] to calculate all the eigenvalues and eigenvectors of X pkq,

and take the least one as λmin
`

X pkq
˘

. Failure means that the time Algorithm cost

is too long or the data overflows from the Ram. At each order we test 5 examples,

and get the averages of timepsq numpConq and λmin
`

X pkq
˘

.

Table 4.1: Example 4.1 for algorithms 4.1 and 4.2 in the small order case

Algorithm 4.1 Algorithm 4.2

numpGq m timepsq numpConq λmin
`

X pkq
˘

timepsq numpConq λmin
`

X pkq
˘

9ˆ 216 4 0.1187 7.4 ´1.79ˆ 10´4 0.1156 7.6 ´1.79ˆ 10´4

9ˆ 216 8 0.947 11.8 ´2.75ˆ 10´4 0.778 7.6 ´1.85ˆ 10´4

9ˆ 216 12 1.861 15.2 ´1.36ˆ 10´3 1.713 12 ´6.1ˆ 10´5

9ˆ 216 16 6.685 31 ´1.31ˆ 10´4 4.77 17.6 ´7.57ˆ 10´5

Table 4.2: Example 4.2 for algorithms 4.1 and 4.2 in the small order case

Algorithm 4.1 Algorithm 4.2

numpGq m timepsq numpConq λmin
`

X pkq
˘

timepsq numpConq λmin
`

X pkq
˘

9ˆ 216 4 0.0844 5.4 ´1.46ˆ 10´4 0.1344 5.8 ´2.6ˆ 10´4

9ˆ 216 8 0.6438 10 ´1.69ˆ 10´4 0.8218 10.2 ´3.2ˆ 10´4

9ˆ 216 12 1.437 14.4 ´6.6ˆ 10´5 2.034 18.6 ´1.42ˆ 10´4

9ˆ 216 16 6.929 17 ´1.13ˆ 10´4 5.809 27 ´1.16ˆ 10´4

We see that algorithm 4.1 and 4.2 can be used to solve some large scale problems.

The failure in table was caused by the storage problem. It is worth improving the

49



Table 4.3: Example 4.1 for algorithms 4.1 and 4.2 in the lager order case

Algorithm 4.1 Algorithm 4.2
numpGq m timepsq numpConq timepsq numpConq
9ˆ 216 20 13.2 38.4 13.5 38
9ˆ 216 30 152 64 144.1 34
9ˆ 216 40 failure failure

Table 4.4: Example 4.2 for algorithms 4.1 and 4.2 in the lager order case

Algorithm 4.1 Algorithm 4.2
numpGq m timepsq numpConq timepsq numpConq
9ˆ 216 20 13.9 40 14.1 38.4
9ˆ 216 30 136.3 66.2 141.1 33.4
9ˆ 216 40 665.9 81 695.1 129

storage use in these two algorithms. On the other hand, algorithm 4.1 is efficient for

solving some small order problems for Q “ I.
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Chapter 5

An Application of Semidefinite

Space Tensor Conic Convex

Program

In this chapter, we present a nonnegative ODF model. The ODF values are strictly

nonnegative in our model.

5.1 Nonnegative Diffusion Orientation Distribu-

tion Function

Suppose that we use an m order symmetric space tensor A to denote the raw HARDI

signal S. Here m should be an even number as the signal is antipodally symmetric.

Let x “ px1, x2, x3q be a unit direction. Then the HARDI signal at the direction x

has the value

Spxq “ Axm “
m
ÿ

i“0

m´i
ÿ

j“0

EpAqi`1,j`1x
i
1x

j
2x

m´i´j
3 . (5.1)

Obviously, there are

n̄ “
m`1
ÿ

i“1

i “
1

2
pm` 1qpm` 2q
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independent components EpAq. Let k “ j ` 1 ` ip2m ` 3 ´ iq{2, sk “ EpAqi´1,j´1

and x̂k “ xi1x
j
2x

m´i´j
3 . We set the map A to s as HpAq : Sm3 ÞÑ <

pm`1qpm`2q
2 . Then

we may rewrite (5.1) as

Spxq “ sT x̂,

i.e., we may regard Spxq as the scalar product of vectors s and x̂ in <n̄. This point

of view will be useful later.

Similarly, we may use an m order symmetric tensor B to denote the ODF Ψ. Let

x “ px1, x2, x3q be a unit direction. Then the ODF value at the direction x has the

value

Ψpxq “ Bxm “
m
ÿ

i“0

m´i
ÿ

j“0

EpBqi`1,j`1x
i
1x

j
2x

m´i´j
3 “ uT x̂, (5.2)

and u “ pu1, ¨ ¨ ¨ , uk, ¨ ¨ ¨ , un̄q
T is a vector in <n̄ with uk “ EpBqi,j.

We have seen that from (5.1) and (5.2), the properties of A and B could be

presented by s and u. So, for convenience, we say that:

Definition 5.1. We say that a vector s “ HpAq P <
pm`1qpm`2q

2 has a property iff the

corresponding tensor A P Sm3 has this property.

Let

Ω “ tx P <3 : x2
1 ` x

2
2 ` x

2
3 “ 1u.

We also use spherical co-ordinates pθ, φq, 0 ď θ ď π, 0 ď φ ď 2π, with

x “

¨

˝

x1

x2

x3

˛

‚“

¨

˝

sin θ cosφ
sin θ sinφ

cos θ

˛

‚.

Let Y q
l denote the spherical harmonics (SH) of order l and degree q. Explicitly,

it is given as follows

Y q
l “

d

2l ` 1

4π
¨
pl ´ qq!

pl ` qq!
P q
l pcos θqeiqφ,
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where P q
l is an associated Legendre polynomials, which can be obtained analytically

from the following set of equations,

Plpxq “
1

2ll!
p
d

dx
q
l
px2

´ 1ql,

P q
l pxq “ p´1qqp1´ x2

q
q
2 p
d

dx
q
qPlpxq, q ě 0

P´ql pxq “ p´1qq
pl ´ qq!

pl ` qq!
P q
l pxq.

Let l “ 0, 2, 4, ¨ ¨ ¨ ,m and q “ ´l, ¨ ¨ ¨ , 0, ¨ ¨ ¨ , l. A single index p in terms of l and

q is used such that p ” ppl, qq “ pl2 ` l ` 2q{2` q. Then p “ 1, ¨ ¨ ¨ , n. If p “ ppl, qq,

then define lppq “ l. Explicitly, if pl2 ´ l ` 2q{2 ď p ď pl2 ` 3l ` 2q{2, then lppq “ l.

Consequently, we have lp1q “ 0, lppq “ 2 for 2 ď p ď 6, lppq “ 4 for 7 ď p ď 15, so

on.

As in [8, 16, 17], the real spherical harmonics of order less than or equal to m,

are

Rppθ, φq “

" ?
2RepY

|q|
l q, if ´ l ď q ď 0,

?
2p´1qq`1ImpY q

l q, if 0 ă q ď l,

for p “ 1, ¨ ¨ ¨ , n, where RepY q
l q and ImpY q

l q represent the real and imaginary parts

of Y q
l respectively. Thus, the HARDI signal S can be described as

Spθ, φq “
n
ÿ

p“1

cpRppθ, φq.

Moreover, Descoteaux et al. [17] showed that the ODF can be expressed as

Ψpθ, φq “
n
ÿ

p“1

2πPlppqp0qcp
looooomooooon

c1p

Rppθ, φq,

where Plppqp0q is a Legendre polynomial with simple expression

Plppqp0q “ p´1q
lppq
2

3 ¨ 5 ¨ ¨ ¨ plppq ´ 1q

2 ¨ 4 ¨ ¨ ¨ lppq
.
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This demonstrated that the ODF can be estimated by scaling of the HARDI signal’s

spherical harmonic coefficients.

It is noticed that, as a probability distribution function, the ODF should be

nonnegative over its entire domain. However, as pointed out in [47], this constraint

has been more challenging to satisfy within the spherical harmonics framework. In

the following theorem, we show that there is a constant linear transformation relation

between the vector versions of the HARDI signal and the ODF in the homogeneous

polynomial basis. Such a linear transformation connection between the HARDI

signal and the ODF makes the nonnegative ODF model possible.

Theorem 5.1. For p, k “ 1, ¨ ¨ ¨ , n, let

tpk “

ż

Ω

xi1x
j
2x

m´i´j
3 RppxqdΩ.

Then T “ ptpkq is an nˆn invertible matrix. Let D be an nˆn diagonal matrix with

its diagonal elements as Plp1qp0q, ¨ ¨ ¨ , Plpnqp0q. Let A “ 2πT´1DT . Then we have

u “ As.

Proof. We note that both the mth-order tensor polynomials restricted to the sphere

and the even order spherical harmonics up to order m, are bases for the same function

space. So, for the vector version s of a HARDI signal S, there exists a vector c of

spherical harmonic coefficients such that c “ Ts (see [16] for details). Thus, T is

invertible. By [17], we have

Ψpxq “
n
ÿ

p“1

2πPlppqp0qcpRppxq,

where cp, p “ 1, ¨ ¨ ¨ , n are the spherical harmonics series coefficients of Spxq. Hence,

the spherical harmonics series coefficients of Ψpxq are ψp “ 2πPlppqp0qcp. Let c and ψ
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are vectors in <n with components cp and ψp for p “ 1, ¨ ¨ ¨ , n, respectively. Then we

have c “ Ts and ψ “ Tu. Thus, u “ 2πT´1DTs “ As. The proof is complete.

Suppose that HARDI samples in N gradient directions tgh : gh P Ω, h “

1, ¨ ¨ ¨ , Nu, N ąą n, and the corresponding HARDI signals on these N gradients

are tdh : h “ 1, ¨ ¨ ¨ , Nu. Then tĝh “ Hpghq : h “ 1, ¨ ¨ ¨ , Nu are N vectors in

<n. We assume that tĝh : h “ 1, ¨ ¨ ¨ , Nu spans <n, i.e., there are n vectors among

these N vectors, which are linearly independent, or we say that tĝh : h “ 1, ¨ ¨ ¨ , Nu

has rank n. We call this assumption the full rank assumption. This assumption

is necessary such that the N gradient directions tgh : h “ 1, ¨ ¨ ¨ , Nu can reflect

the signal Spgq sufficiently. Let C be an n ˆ N matrix, whose column vectors are

ĝh, h “ 1, ¨ ¨ ¨ , N . Let B “ CCT . Then B is an n ˆ n positive semi-definite sym-

metric matrix. Under the full rank assumption, B is a positive definite symmetric

matrix. We also let d be a vector in <N , with components tdh : h “ 1, ¨ ¨ ¨ , Nu.

The least squares problem for finding an mth order tensor A to reflect the signal

Spgq is to find s̄ P <n such that

F ps̄q “ min
sP<n

F psq, (5.3)

where

F psq “
N
ÿ

h“1

pSpghq ´ dhq
2
“

N
ÿ

h“1

`

sT ĝh ´ dh
˘2
.

It is well-known that under the full rank assumption the solution of the least

squares problem (5.3) is

s̄ “ B´1Cd. (5.4)

The function F is a convex quadratic function. Actually, by (5.4), for any s P <n,

we have

F psq “ ps´ s̄qTBps´ s̄q. (5.5)
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With u “ As, given by theorem 5.1, we have ODF Ψpxq “ uT x̂. However, in this

way, we cannot guarantee Ψpxq ě 0 for all x P Ω. In fact, Ψpxq ě 0 for all x if and

only if u is positive semi-definite in the sense of definition 5.1. Thus, based on the

results of [58], we formulate a new model as

F ps˚q “ mintF psq : λminpAsq ě 0u. (5.6)

Here, λminpuq is smallest Z-eigenvalue of u

λminpuq “ mintΨpxq : x2
1 ` x

2
2 ` x

2
3 “ 1u. (5.7)

Its solution method was given in [58]. For completeness, we give it in section 5.4.

We now have the following theorem:

Theorem 5.2. λminpAsq is a continuous concave function of s. Hence, (5.6) is a

convex optimization problem.

If λminpAs̄q ě 0, then s˚ “ s̄ is a global minimizer of (5.6). If the full rank

assumption holds, then (5.6) has a unique global minimizer.

Suppose that the full rank assumption holds and λminpAs̄q ă 0. Then , s˚ is the

unique global minimizer of (5.6) if and only if there is a positive number µ such that

"

Bps˚ ´ s̄q “ µAT x̂˚,
λminpAs

˚
q “ 0,

(5.8)

"

ps˚qTBps˚ ´ s̄q “ 0,
px̂˚qTAs˚ “ 0,

(5.9)

where AT x̂˚ is a subgradient [64] of the concave function λmin at s˚.

Proof. Let sp1q, sp2q P <n, 0 ď t ď 1 and s “ tsp1q` p1´ tqsp2q. Suppose x˚ is a global

minimizer of (5.7). Then px˚1q
2 ` px˚2q

2 ` px˚3q
2 “ 1 and

λminpAsq “ Ψpx˚q
“ tpx̂˚qTAsp1q ` p1´ tqpx̂˚qTAsp2q

ě tλminpAs
p1qq ` p1´ tqλminpAs

p2qq.
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This shows that λminpAsq is a concave function of s. Since λminpAsq is a concave

function defined in the whole space <n, according to convex analysis [64], it is a

continuous function. By (5.5), F is a convex quadratic function of s. Hence, (5.7) is

a convex optimization problem.

If λminpAs̄q ě 0, then s̄ satisfies the constraint of (5.6). Since ∇F ps̄q “ 0, s˚ “ s̄

is a global minimizer of (5.6). If the full rank assumption holds, then F is strictly

convex. Hence, (5.6) has a unique global minimizer in this case.

Suppose that the full rank assumption holds and λminpAs̄q ă 0. Then, (5.6),

has a unique global minimizer s˚, λminpAs
˚q ě 0 and F ps˚q ą F ps̄q. Suppose that

λminpAs
˚q ą 0. Since λminpAsq is continuous, in the segment connecting s˚ and s̄,

there is s̃ such that λminpAs̃q “ 0 and F ps̃q ă F ps˚q, which contradicts that s˚ is a

global minimizer of (5.6). Hence, we have λminpAs
˚q “ 0. Now, (5.8) follows from

(5.5) and the optimality condition of the convex optimization problem (5.6). By

(5.7), we have

λminpAs
˚
q “ Ψpx˚q “ ps˚qTAT x̂˚.

From this and the second equation of (5.8), we have the second equation of (5.9).

Let the two sides of the first equation of (5.8) take inner product with s˚. Combining

with the second equation of (5.9), we have the first equation of (5.9).

Suppose that x is a global minimizer of (5.7). Since Ψpxq “ uT x̂, we have

λminpAsq “ x̂TAs. (5.10)

When m is even, if x is a global minimizer of (5.7), then y “ ´x is also a global

minimizer of (5.7). However, we have ŷ “ x̂ in this case. Therefore, such x̂ in (5.10),

generated by a global minimizer x, may still be unique even if the global minimizers

are not unique. By convex analysis, we know that if such x̂ in (5.10) is unique,

then λminpAsq is differentiable at s and its gradient is AT x̂. If such x̂ is not unique,

then any of such AT x̂ is a subgradient of λminpAsq at s and the subdifferential of
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λminpAsq at s is the convex hull of all such AT x̂. With such knowledge of gradients

and subgradients of λminpAsq, we may solve convex optimization problem (5.6) by a

standard convex programming method [32].

Under the full rank assumption, we may use (5.4) to calculate s̄. If λminpAs̄q ě 0,

then s˚ “ s̄ and we have the solution needed. If λminpAs̄q ă 0, by Theorem 2,

λminpAs
˚q “ 0. Hence, in this case, we only need to solve an equality constrained

optimization problem.

F ps˚q “ mintF psq : λminpAsq “ 0u. (5.11)

Then we have u “ As˚ and the nonnegative ODF Ψpxq “ uT x̂.

Clearly, problem (5.11) still has (5.8) as its optimality condition under the full

rank assumption. We may consider to solve this equality constrained problem by

some standard minimization methods [44].

Let P` denote a projection operator which may project a tensor onto the positive

semi-definite cone. A projected gradient descent algorithm for solving nonnegative

ODF model can be presented as follows.

Algorithm 5.1 (PSD-ODF). S1: Given constant ε ą 0. Calculate s̄ by (5.4)

and then get an initial guess ū “ As̄. If λminpuq ě 0, Stop; Otherwise set

u1 “ P`puq.

S2: Set d1 “ ´A
´TBA´1pu1 ´ ūq and k “ 1.

S3: If |uTkA
´TBA´1puk ´ ūq| ą ε or λminpukq ą ε does not hold, stop.

S4: Compute tk such that uk`1 :“ uk` tkdk satisfies uTk`1A
´TBA´1puk`1´ ūq “

0;

S5: Compute λminpuk`1q. if λminpuk`1q ă 0, then set uk`1 “ P`puk`1q.
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S6: Compute dk`1 “ ´A
´TBA´1puk`1 ´ ūq and set k “ k ` 1, goto S3.

One of the advantages of homogeneous polynomial basis over spherical harmonic

basis is that the local maxima of the ODF can be easily computed. In the next

section, we present formulas for determining the principal directions of the ODF.

5.2 Principal Directions of ODF

Recently, using the Z-eigenvalue concept introduced in [53], Bloy and Verma [8] pro-

posed to determine the principal directions (maxima) of the ODF by their curvatures.

In this section, we use optimization theory to determine the principal directions

(maxima) of the ODF.

After a nonnegative ODF u is found, we may solve

maxtΨpxq : x2
1 ` x

2
2 ` x

2
3 “ 1u. (5.12)

The optimization conditions of (5.12) are (5.15), the same as the optimality con-

ditions of (5.7). Actually, in section 5.4, we give the method to calculate all the

Z-eigenvalues [53] of u. The largest Z-eigenvalue λmax gives the global maximum

value of u. Then, the corresponding solution x, called as the Z-eigenvector of u,

associated with λmax, is the leading principal direction of u. The Z-eigenvectors

of u, associated with the other Z-eigenvalues, include local maximizers, local mini-

mizers and saddle points. Suppose that px, λq is a solution of (5.15). Then λ is a

Z-eigenvalue of u, x is a stationary point of (5.12).

The Hessian of the Lagrangian function of (5.15) at px, λq

∇2
xLpx, λq “ R ´mpm´ 1qλI,

Where I is the 3ˆ 3 unit matrix and R “ prijq is a 3ˆ 3 symmetric matrix. Denotes
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Figure 5.1: Illustration for the principal directions of ODF

mpi, jq “ m´ i´ j, then

r11 “

m
ÿ

i“2

m´i
ÿ

j“0

ipi´ 1qEpBqi`1,j`1x
i´2
1 xj2x

mpi,jq
3 ,

r12 “

m
ÿ

i“1

m´i
ÿ

j“1

ijEpBqi`1,j`1x
i´1
1 xj´1

2 x
mpi,jq
3 ,

r13 “

m
ÿ

i“1

m´i´1
ÿ

j“0

impi, jqEpBqi`1,j`1x
i´1
1 xj2x

mpi,jq´1
3 , (5.13)

r22 “

m
ÿ

i“0

m´i
ÿ

j“2

jpj ´ 1qEpBqi`1,j`1x
i
1x

j´2
2 x

mpi,jq
3 ,

r23 “

m
ÿ

i“0

m´i´1
ÿ

j“1

jmpi, jqEpBqi`1,j`1x
i
1x

j´1
2 x

mpi,jq´1
3 ,

r33 “

m
ÿ

i“0

m´i´2
ÿ

j“0

mpi, jqpmpi, jq ´ 1qEpBqi`1,j`1x
i
1x

j
2x

mpi,jq´2
3 .

Clearly, x is an eigenvector of R with eigenvalue mpm´ 1qλ. Then, by optimization

theory and [56], if the other two eigenvalues of R are less than mpm´ 1qλ, then x is

a local maximizer of (5.15). On the other hand, if x is a local maximizer of (5.15),

then the other two eigenvalues of R are less than or equal to mpm´ 1qλ.

In figure 5.1, the red line denotes the maximum principal direction, the blue one
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is the second principal direction, and the black one is the third principal direction.

Suppose that x is a local maximizer of (5.12) with Z-eigenvalue λ. If λ is less

than or equal to one of the other Z-eigenvalues which are corresponding to saddle

points or local minimizers, then such a direction is not significant. We thus call a Z-

eigenvalue of u a principal Z-eigenvalue, if it is greater than all the other eigenvalues

which are corresponding to saddle points or local minimizers. Then, a Z-eigenvector

of u, associated with a principal Z-eigenvalue, is regarded as a principal direction.

In figure 5.1, we give an illustration for the principal direction of ODF.

5.3 Experimental Results

In this section, we report some experimental results on our method applied to sim-

ulated dataset as well as real human brain dataset. Firstly, we generate synthetic

HARDI data by the following multilinear model [1]:

Spgiq “
n
ÿ

k“1

pke
´bgiDkgi ` noise, (5.14)

where n P t0, 1, 2, 3u is the number of fibers, pk is the proportion of tissue in the

voxel that corresponds to the kth fiber (
řf
k“1 pk “ 1), b is the b-value, gi is the

ith gradient direction for i P t1, ¨ ¨ ¨ , 81u, and Dk is the diffusion tensor of the kth

fiber. This synthetic data generation is relatively standard and has advantage of

analytic computation of the ODF [17]. The noise was typically generated by Ri-

cian noise (complex Gaussion noise) with standard deviation of 1{σ, producing a

signal to noise ratio (SNR) of σ. In our experiments, unless special instructions,

the b value equals to 3000 sec{mm2 and the diffusion tensors were selected such

as Dk “ diagp1700, 200, 200q ˆ 10´6 mm2{sec for k “ 1, 2, 3. And we generated

Rician-corrupted data S as done in [18]. For each noise-free data x, we computed S
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Table 5.1: Z-eigenvalues and eigenvectors of a 4th order tensor, where the ODF was
estimated by LS method

x1 x2 x3 λ
1 -0.0055 0.0002 1.0000 -0.7344
2 0.0048 1.0000 0.0024 -0.6048
3 -0.1634 0.7117 0.6832 0.0878
4 0.1559 0.7119 0.6847 0.0906
5 0.0137 0.7211 0.6927 0.0941
6 -0.1689 -0.7120 0.6816 0.0945
7 0.1577 -0.7135 0.6826 0.0985
8 0.0174 -0.7225 0.6911 0.1020

as:

S “

d

ˆ

x
?

2
` nr

˙2

`

ˆ

x
?

2
` ni

˙2

where nr and ni „ N p0, σ2q. The value S is the realisation of a random variable

with a Rician p.d.f. of parameters x and σ.

First, we demonstrate qualitatively that our method can guarantee nonnegative

diffusivity by comparing it with the Least Squares (LS) method. The LS method is

a simple approach to estimate the coefficients of an ODF function, which is fast but

does not guarantee positive diffusivity. We estimate the ODF fitting with 4th order

diffusion tensor in the homogeneous polynomial basis using these two algorithms.

For the single tensor model, the ODF function (the SNR was fixed to 35) estimated

by the LS method, fitting with a 4th order tensor, is ODF pxq “ uT x̂, where u is a 15-

dim vector with up1q “ ´0.7344, up2q “ ´0.0010, up3q “ 1.7255, up4q “ ´0.0140,

up5q “ ´0.6048, up6q “ 0.0142, up7q “ 0.0055, up8q “ 0.0203, up9q “ ´0.0096,

up10q “ ´0.1701, up11q “ 0.0035, up12q “ ´0.2132, up13q “ ´0.0650, up14q “

´0.0035, up15q “ 7.1234. Using the method provided in Appendix, we can compute

all the Z-eigenvalues and the associated eigenvectors, which are listed in table 5.1.

From table 5.1, we can see that there are two negative eigenvalues and the smallest
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Table 5.2: Z-eigenvalues and eigenvectors of a 4th order tensor, where the ODF was
estimated by PSD method

g1 g2 g3 λ
1 -0.0023 0.0001 1.0000 0.0001
2 0.0017 1.0000 0.0015 0.1297
3 -0.0100 0.7160 0.6980 1.2786
4 -0.0135 -0.7168 0.6971 1.2862

Figure 5.2: (borrowed from [47] to illustrate effects of the approach with guaranteed
nonnegative diffusivity.) Without projection (left), the final ODF estimation contains
negative-valued regions (the side lobes in black). Meanwhile, enabling projection
results in elimination of these negative side lobes (right).

Z-eigenvalue is´0.7344, attained at p´0.0055, 0.0002, 1.0000q. This demonstrates the

need for enforcing the positive semi-definite property of the estimated tensor since

negative diffusivity profiles are not meaningful from the point of view of physics.

But our method can guarantee positive diffusivity. In the same case, the ODF

function estimated by the our method is ODF pxq “ uT x̂, with up1q “ 0.0001,

up2q “ ´0.001, up3q “ 4.9965, up4q “ ´0.014, up5q “ 0.1297, up6q “ 0.0142,

up7q “ 0.0055, up8q “ 0.0203, up9q “ ´0.0096, up10q “ 3.1009, up11q “ 0.0035,

up12q “ 3.0578, up13q “ ´0.065, up14q “ ´0.0035, up15q “ 7.8579. We compute all

Z-eigenvalues and the associated eigenvectors and list them in Table 2. We can see

that the smallest Z-eigenvalue is 0.0001, attained at p´0.0023, 0.0001, 1.0000q.

We also borrowed a picture from [47] to illustrate effects of the approach with

guaranteed nonnegative diffusivity. If a final ODF estimation contains negative dif-

fusivity, it will result in negative side lobes as indicated in black in figure 5.2. Mean-
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Figure 5.3: Effects of varying SNR on the detected maximum of the ODF estima-
tions by LS` method, CSD method and our positive semi-definite (PSD) approach
for b “ 3000.

while, the approach with guaranteed nonnegative diffusivity can eliminate these side

lobes completely.

In figure 5.4, the red line is for b “ 1000, while black is for b “ 3000. The y-axis

is the mean of the estimated angular error.

Next, in order to compare the robustness of our method in the presence of noise,

we generated the signals by (5.14) at 5 different SNR ranging from 10 to 50 and

repeated the experiments 10 times. We estimate the ODF fitting with 6th order

diffusion tensor. We choose to compare our PSD method against the following two

methods: (1) a nonnegative constrained Least Squares (LS+) method: solve (5.4)

and by using the linear transformation to get ū “ As̄, then set negative ODF as

zero, i.e. project it onto the nonnegative space, finally get the solution u “ P`pūq;

(2) and a constrained spherical deconvolution (CSD) method [71]. For the CSD

method, a constraint is introduced to minimize the appearance of negative values

in the reconstructed FOD. But it does not completely forbid negative FOD values.
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Figure 5.4: Effects of varying SNR on the detected maximum of the ODF estima-
tions by PSD method for different b-values.

We implemented the CSD method with λ “ 1 and τ “ 10% of the mean initial

FOD amplitude (see [71] for a detailed description of these parameters). Then, we

computed the means of angles errors in degree between the actual fiber orientations

and the maxima of estimated ODF / FOD. The results are plotted in figure 5.3.

As would be expected the means of the degree error decreases as the SNR increases.

The PSD method compares favorably to the least squares (LS+) method. Comparing

with the PSD method, the CSD method gains an improvement of approximately 1˝.

Figure 5.4 also shows the precision of PSD method in the presence of varying levels of

noise, for different b-values. The red line is for b “ 1000, while black is for b “ 3000.

As we can see from figure 5.4, when SNR “ 50, the angular error is about 3.3˝ at

b “ 1000 while it is about 2.4˝ at b “ 3000.

Next we worked on a phantom dataset [49], which was acquired on a GE Healcare

Signa 1.5T scanner. It had 4000 gradient directions and for our experiments we

used a b-value of 4000s{mm2. The phantom had a geometry of two fiber bundles
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Figure 5.5: ODF profile from a Phantom dataset.

crossing perpendicularly close to X-axis and the Y-axis. Figure 5.5 shows the ODF

profiles. We estimated the 2nd order diffusion tensor (shown in the up) and the

4th order diffusion tensor (shown in the down) using our method. The extracted

principle direction of ODF indicate the known fiber geometry of the phantom. These

results also demonstrate that high order tensor estimation is necessary since 2nd order

diffusion tensor fails to approximate complex local tissue structure.

Figure 5.6 is shown on the Generalized Fractional Anisotropy (GFA) map, where

GFA was defined by Tuch [72] asGFA “ stdpODF q
rmspODF q

. We also reconstructed ODFs with

principal directions for a region of interest, where contains crossing fiber bundles.

In the next experiment, we are interested to estimate the ODF profiles from

human brain dataset with size of 90ˆ90ˆ60, which was acquired on a 1.5T scanner

at b “ 1000s{mm2 using 60 encoding directions, with voxel dimensions of 1.875mmˆ
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Figure 5.6: Reconstructed ODFs from human brain with sharpening

1.875mmˆ 2mm. We show some reconstructed ODFs with sharpening in figure 5.6,

in which the parameter α “ 0.006. We can detect there are multiple fibers in

which some crossing are due to diverging or splitting fibers. We also show some

reconstructed ODFs with principal directions in the region of interest (ROI). These

results show that our nonnegative ODF profiles model can depict the characterization

of diffusion anisotropy which was consistent with known neuroanatomy.
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5.4 Appendix: The Solution Method for (5.7)

According to optimization theory, the optimality conditions of (5.7) have the form:
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m
ÿ

i“1

m´i
ÿ

j“0

ibi,jx
i´1
1 xj2x

mpi,jq
3 “ mλx1,

m
ÿ

i“0

m´i
ÿ

j“1

jbi,jx
i
1x

j´1
2 x

mpi,jq
3 “ mλx2,

m
ÿ

i“0

m´i´1
ÿ

j“0

mpi, jqbi,jx
i
1x

j
2x

mpi,jq´1
3 “ mλx3,

x2
1 ` x

2
2 ` x

2
3 “ 1.

, (5.15)

where bi,j “ EpBqi`1,j`1. The additional “m” on the right hand sides of the first

three equations make it the same as the definition of Z-eigenvalues [53, 55, 56, 57, 8]

for the symmetric tensor x. If px, λq is a solution of (5.15), then x is a stationary

point of (5.7) and

λ “ Ψpxq (5.16)

is a Z-eigenvalue of u. Then, the smallest Z-eigenvalue of u is the optimal value of

(5.7).

We may solve (5.15) in the following way:

Case 1: x3 “ x2 “ 0. By (5.15), this only happens if bm´1,1 “ bm´1,0 “ 0. In

this case, x1 “ ˘1, λ “ bm,0.

Case 2: x3 “ x1 “ 0. By (5.15), this only happens if b1,m´1 “ b0,m´1 “ 0. In

this case, x2 “ ˘1, λ “ b0,m.
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Case 3: x3 “ 0, x1 ‰ 0 and x2 ‰ 0. Then (5.15) becomes

$
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’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

m
ÿ

i“1

ibi,m´ix
i´1
1 xm´i2 “ mλx1,

m´1
ÿ

i“0

pm´ iqbi,m´ix
i
1x

m´i´1
2 “ mλx2,

m´1
ÿ

i“0

bi,m´i´1x
i
1x

m´i´1
2 “ 0,

x2
1 ` x

2
2 “ 1.

(5.17)

We may eliminate λ in (5.17) and have the following equations of x1 and x2:

$

’

’

’

’

’

&

’

’

’

’

’

%

m
ÿ

i“1

ibi,m´ix
i´1
1 xm´i`1

2 “
m´1
ř

i“0

pm´ iqbi,m´ix
i`1
1 xm´i´1

2 ,

m´1
ÿ

i“0

bi,m´i´1x
i
1x

m´i´1
2 “ 0,

x2
1 ` x

2
2 “ 1.

Let t “ x1
x2

. We have

$

’

’

’

&

’

’

’

%

m
ÿ

i“1

ibi,m´it
i´1

“
m´1
ř

i“0

pm´ iqbi,m´it
i`1,

m´1
ÿ

i“0

bi,m´i´1t
i
“ 0.

(5.18)

We may solve the two one-variable equations of (5.18) separately. If they have

common solutions t, then (5.15) has solutions

x1 “
t

?
1` t2

, x2 “
˘1

?
1` t2

, x3 “ 0, λ “ Ψpxq.

Case 4: x3 ‰ 0. We may eliminate λ in (5.15) and have the following equations
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of x:
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(5.19)

Let w “ x1
x3

, v “ x2
x3

. Then we have

$

’

’

’

’

&

’

’

’

’

%

m
ÿ

i“1

m´i
ÿ

j“0

ibijw
i´1vj “

m
ř

i“0

m´i´1
ř

j“0

mpi, jqbijw
i`1vj,

m
ÿ

i“0

m´i
ÿ

j“1

jbijw
ivj´1

“
m
ř

i“0

m´i´1
ř

j“0
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(5.20)

For solving system (5.20), we first regard it as a system of polynomial equations of

variable w and rewrite it as

"

γ0w
m ` γ1w

m´1 ` ¨ ¨ ¨ ` γm “ 0,
τ0w

m´1 ` τ1w
m´2 ` ¨ ¨ ¨ ` τm´1 “ 0,

where γ0, ¨ ¨ ¨ , γm, τ0, ¨ ¨ ¨ , τm´1 are polynomials of v, which can be calculated by

(5.16). By the Sylvester theorem, the above system of polynomial equations in

w possesses solutions if and only if its resultant vanishes [15]. The resultant of this

system of polynomial equations is the determinant of the following p2m´1qˆp2m´1q

matrix

V :“

¨
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˚

˚
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0 0 ¨ ¨ ¨ γ0 γ1 γ2 ¨ ¨ ¨ γm´1 γm
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˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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which is a polynomial equation in variable v. After finding all real roots of this

polynomial, we can substitute them to (5.20) to find all the real solutions of w.

Then, using x1 “
w?

1`w2`v2
, x2 “

v?
1`w2`v2

, x3 “
˘1?

1`w2`v2
, λ “ Ψpxq, we may find

all the solutions of (5.15) in this case.

Combine all the possible solutions of (5.15) in these four cases, and find λminpAsq,

the smallest value of λ of these solutions. This solves (5.7).
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Chapter 6

Conclusions and future work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

6.1 Conclusions

There are a lot of applications with the positive semi-definite space tensor. Whether

in theory or in real life, the study of the positive semi-definite space tensor is very

useful. In this thesis, we focus on this subject.

How to verify the positive semi-definiteness of a symmetric space tensor is the

first thing we are interested. Based on the theory of the nonnegative polynomial, we

construct two methods to verify the positive semi-definiteness of a symmetric space

tensor in chapter 3. Both methods have their advantages and disadvantages. When

the order of the tensor A is small, we prefer to use the first method, in this case

we just need to solve a linear sdp program. But when the order of the tensor A is

large, we prefer to use the second method. Although solving (3.6) is difficult, the

sign of the value of (3.6) is our concern. Furthermore, from the numerical results of

this chapter, it is easy to see that we almost get the right results by the als method.

Based on the relationship of the positive definiteness of tensors and their smallest

H-eigenvalue, we also discuss the properties of the smallest H-eigenvalue of tensors

73



from the optimization view, which gives us a new perspective to analyze the smallest

H-eigenvalue of tensors.

In chapter 4, we study the algorithms for solving (1.5), which is a program with

a positive semi-definite space tensor cone constraint. This program is like the sdp

program, but it has its special problems. We try to use the polyhedral outer approxi-

mation method to solve (1.5) in section 4.1, which is a grid method. We approximate

the positive semi-definite space tensor cone constraint by a series of grids. In theo-

ry, we get the error bound between the solution of polyhedral outer approximation

method and the real solution. From the view of the numerical tests in section 4.3, the

polyhedral outer approximation method works well as our expected. Furthermore,

we discuss some other algorithms for solving (1.5) or (1.4) in section 4.2, including

the conic linear program approach, the nonsmooth convex program approach and

the bi-level program approach.

In chapter 5, we show that there is a constant linear transformation relation

between the vector versions of the raw HARDI signal and the ODF in the homoge-

neous polynomial basis firstly. Such a linear transformation connection makes the

nonnegative ODF model possible. Then we propose a new reconstruction framework

to estimate nonnegative ODFs from HARDI data. Features of this model includes

minimizing a convex optimization problem with a convex quadratic objective func-

tion constrained by the nonnegativity requirement on the smallest Z-eigenvalue of

the diffusivity tensor. So, it can guarantee the positive semi-definite property of

the estimated high order tensor (not limited to 4th order tensor), which is the main

contribution of our work. This property is essential since negative diffusivity profiles

are not meaningful from the point of view of physics. Finally, based on optimization

theory, we present a computational method for determining the principal directions

of the ODF. Numerical examples on synthetic data as well as MRI data are displayed

to demonstrate our approach.
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6.2 Future Work

Firstly, we still don’t find a perfect method to verify the positive semi-definiteness

of a tensor. The two methods we provided are still needed to be improved. In the

future, we will look for another better method to deal with this problem.

Secondly, it is easy to see that when we use the polyhedral outer approximation

algorithm, we need to fine the grid more and more dense if we want to get a better

approximate solution. It will bring the larger computing cost. This problem is caused

by the lack of properties of the positive semi-definite tensor we can use. To solve

this problem, we will explore more properties of the positive semi-definite tensors in

the future.

Thirdly, we will extend the nonnegative ODF model to tractography. Further,

we also would like to use this model to analyze the real datasets at b “ 3000 (or

higher b-values) where fiber crossings could be better detected.
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[65] K. Schmüdgen. The K-moment problem for compact semi-algebraic sets. Math.
Ann., 289(2) (1991), 203 - 206.

[66] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11-12 (1999), 625-653. Special
issue on Interior Point Methods (CD supplement with software).

[67] W. Sun and Y. Yuan, Optimization Theory and Methods, Springer Verlag,
Berlin, Germany, 2006.

[68] M.J. Todd. Semidefinite optimization. Acta. Numer., 10 (2001), 515-560.

[69] K.C. Toh, R.H. Tutuncu, M.J. Todd. SDPT3 version 4.0 (beta)- a MATLAB
software for semidefinite-quadratic-linear programming. [updated in 17 July,
2006]. http://www.math.nus.edu.sg/mattohkc/sdpt3.html.

[70] K.C. Toh, R.H. Tutuncu, M.J. Todd. On the implementation and
usage of SDPT3 - a MATLAB software package for semidefinite-
quadratic-linear programming version 4.0[OL]. [17 July, 2006].
http://www.math.nus.edu.sg/mattohkc/sdpt3.html.

82



[71] J-D. Tournier, F. Calamante and A. Connelly, “Robust determination of the fi-
bre orientation distribution in diffusion MRI: Non-negativity constrained super-
resolved spherical deconvolution”, Neuroimag, 35 (2007), 1459-1472.

[72] D.S. Tuch, “Q-ball imaging”, Magnetic Resonance in Medicine, 52 (2004) 1358-
1372.

[73] D.S. Tuch, T.G. Reese, M.R. Wiegell, N.G. Makris, J.W. Belliveau and V.J.
Wedeen, “High angular resolution diffusion imaging reveals intravoxel white
matter fiber heterogeneity”, Magnetic Resonance in Medicine, 48 (2002), 454-
459.

[74] R.H. Tutuncu, K.C. Toh, M.J. Todd. Solving semidefinite-quadratic-linear pro-
grams using SDPT3. Math. Prog., 95 (2003), 189-217.

[75] Z. Wang, B.C. Vemuri, Y. Chen and T.H. Mareci, “A constrained variational
principle for direct estimation and smoothing of the diffusion tensor field from
complex DWI”, IEEE Trans. Med. Imaging, 23 (2004), 930-939.

[76] H. Wolkowicz, R. Saigal, L. Vandenberghe. Handbook of Semidefinite Program-
ming, Kluwer, 2000.

[77] Y.Y. Ye, Interior Ponit Algorithm: Theory and Analysis. New York: John Wiley
and Sons, 1997.

[78] Y.Y. Ye, Linear Conic Programming. Stanford University, December, 2004.

[79] L. Zhang and L. Qi, ”Linear convergence of an algorithm for computing the
largest eigenvalue of a nonnegative tensor”, Numerical Linear Algebra with Ap-
plications, 19 (2012), 830-841.

[80] L. Zhang, L. Qi and Y. Xu, ”Linear convergence of the LZI algorithm for weakly
positive tensors”, Journal of Computational Mathematics, 30 (2012), 24-33.

[81] L. Zhang, L.Qi, Z. Luo and Y. Xu, ”The dominant eigenvalue of an essentially
nonnegative tensor”, Numer. Linear Algebra Appl., 00 (2013), 1-13.

[82] G. Zhou, L. Caccetta and L. Qi, ”Convergence of an algorithm for the largest
singular value of a nonnegative rectangular tensor”,Linear Algebra and Its Ap-
plications 438 (2013), 959-968.

83


	Certificate of Originality
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Notations
	1 Introduction
	1.1 Background
	1.1.1 The Positive Semi-definite Tensor
	1.1.2 The Positive Semi-definite Tensor in the Magnetic Resonance Imaging

	1.2 Summary of Contributions of the Thesis
	1.3 Organization of the Thesis

	2 Preliminaries
	2.1 The Definition and Properties of the Eigenvalue and E-eigenvalue of Tensors
	2.2 Nonnegative Polynomials
	2.3 Cone Programs

	3 On Semidefiniteness Space Tensor Cone
	3.1 Two Methods for Verifying the Positive Semi-definiteness of a Tensor
	3.1.1 The First Method
	3.1.2 The Second Method

	3.2 Finding the Smallest H-eigenvalue
	3.3 Algorithms for Verifying the Positive Semi-definiteness of a Tensor
	3.4 Numerical Results

	4 Some Algorithms for Semidefinite Space Tensor Conic Convex Program 
	4.1 Structure and Polyhedral Outer Approximation Algorithms
	4.1.1 Two Assumptions
	4.1.2 Defining Functions
	4.1.3 Polyhedral Outer Approximations
	4.1.4 The Basic Polyhedral Outer Approximation Algorithm
	4.1.5 Defining Sequences and An Iterative Polyhedral Outer Approximation Algorithm
	4.1.6 Another Iterative Polyhedral Outer Approximation Algorithm

	4.2 The Other Approaches
	4.2.1 The Conic Linear Program Approach
	4.2.2 The Nonsmooth Convex Program Approach
	4.2.3 The Bi-Level Program Approach

	4.3 Numerical Results

	5 An Application of Semidefinite Space Tensor Conic Convex Program
	5.1 Nonnegative Diffusion Orientation Distribution Function
	5.2 Principal Directions of ODF
	5.3 Experimental Results
	5.4 Appendix: The Solution Method for (5.7)

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future Work

	Bibliography



