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Abstract

With the development of the wireless communication systems, the frequency spectrum

crowding increases constantly. This trend strengthens the need for high performance

frequency control components steadily. Film bulk acoustic resonator (FBAR) has been

widely used in the frequency control components because of its small size, low insertion

loss, high quality factor and its capability of being integrated with other components on

silicon substrate. However, FBARs are suffering from the laterally propagating spurious

waves. These spurious waves degrade the performance of filters composed of FBARs

by increasing the insertion loss, introducing ripples in their passband and narrowing the

bandwidth. The goal of this study is to propose an efficient method to model the FBAR

structure, aiming to investigate the lateral spurious modes generation and improve the

quality factor of FBAR.

A two-dimensional finite-difference time-domain (FDTD) algorithm is proposed to

model the FBAR resonators. The partial derivatives of the equations of motion and the

quasi-static Maxwell’s equations are discretized to centered finite differences. The free

surface boundary condition is applied to the interface between the medium and air. At

the interface between different materials, the material properties are averaged to ensure

the stability under Courant condition. The two-dimensional fast Fourier transform (2D

FFT) method is applied to extract the dispersion characteristic of the Rayleigh-Lamb

modes propagating in the FBAR resonator. The proposed algorithm is validated by

comparing the obtained dispersion curve with the one obtained by the effective acoustic

impedance.

Wave scattering analysis for multimode excitation is developed to investigate the

lateral boundaries of FBAR resonators. To validate the proposed scheme, the reflection

of simultaneously excited antisymmetric Lamb wave modes at the free edge of a steel

plate is simulated using the FDTD method. By using the mode power coefficients, the

power of the Lamb modes is determined from the displacements on the surface of the

plate. The mode conversion coefficients obtained are in good agreement with the one

calculated by taking multiple measurements with single Lamb wave mode excitation
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using the finite element method (FEM). The proposed scheme is then applied to

investigate two generic free-standing bulk acoustic resonator (FBAR) structures. The

scattering coefficients of these two FBAR structures are calculated and analyzed.

Based on the scattering analysis of the two generic FBAR structures, a new structure

of FBAR resonator with frame-like airgap on bottom electrode is proposed to suppress

the spurious modes and improve the quality factor. Time domain and frequency domain

analysis are conducted to investigate the spurious waves in the proposed structure. From

both time domain and frequency domain results, it is observed that with an airgap on the

bottom electrode the excitation of the spurious waves in the active region is suppressed,

and the energy leaked into the passive region is reduced as well.

The overall results of this work indicate that the FDTD scheme is an appropriate

approach for modeling FBAR resonators, and the scattering analysis for multimode

excitation provides a simple way to design the lateral boundaries of FBARs.
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Chapter 1

Introduction

1.1 Background and motivation

According to the propagation properties of electromagnetic waves in air, all mobile

communication applications today are using frequencies between 400 MHz and 6 GHz,

which is shown in Figure 1.1 [5]. The performance means that different applications

require different insertion loss and steepness of the skirt for filters. For example, the PCS

band has a much more stringent requirement on filter performance than the Bluetooth

application. There is a strong demand to use this precious spectrum as efficiently as

possible. This demand has pushed people to allocate bands closer together and re-use

the spectrum as efficiently as possible [98]. In the meanwhile, the wireless

communication devices usually support several communication standards simultaneously.

This strengthens the need for high performance frequency-control components.

Duplexer is one of the most critical frequency-control components for overall radio

performance in mobile devices. The duplexer is composed of two filters, a transmit (TX)

filter and a receive (RX) filter. The popularity of slim phones with thin battery, which

has limited power capacity, has pushed the duplexer to maintain low insertion loss in the

pass-band. In the meanwhile, to hinder the interference of the strong transmitted signal

with the received signal, a sufficient isolation is required between the RX and TX band.

Before the advent of film bulk acoustic resonators (FBAR), duplexers used in cellphones

consisted of ceramic and surface acoustic wave (SAW) filters.

The ceramic filters utilizing the electromagnetic waves are relatively large in size,

compared with the RF filters consisted of BAW (bulk acoustic wave) /SAW resonators

utilizing acoustic waves, as it is shown in Figure 1.2. Figure 1.2 is only used to illustrate

the size comparison between the ceramic filters and BAW filters. This is because that the

electromagnetic wavelength in the GHz range is large. Even in ceramic filters with relative

permittivity εr ≈ 100 the electromagnetic wavelength is still in the order of mm [6]. This
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Figure 1.1: Frequency allocation for different communication standards

has limited the usage of ceramic filters in modern mobile devices, which require shrinking

the size of duplexers to save place for various applications.

(a) Ceramic duplexer 5.5× 24.5× 5: 674mm3

(b) FBAR duplexer 5 × 11.2 ×

1.75: 98mm3

Figure 1.2: Comparison the size of ceramic duplexer and FBAR duplexer (a) Ceramic

duplexer, (b) FBAR duplexer

In contrast, RF filters using acoustic waves, such as SAW and BAW, instead of

electromagnetic waves can be much smaller, only in the order of µm, while exhibiting

high performance. This benefits from that the propagation velocity of acoustic waves in

solids is approximately 103 to 105 times slower than that of electromagnetic waves.

SAW technology has entrenched position in filter applications for over 30 years [21,
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93]. Several advantages of SAW technology have helped it to consolidate its position in

traditional phone bands, with exception of the US-PCS band, which requires very high

quality factor and low insertion loss [5]. First, the big advantage of SAW technology is

that it is easy to create differential outputs without adding extra complexity to the process

[5]. The differential outputs can eliminate most of the common mode contaminating the

RX path. The second advantage is that filters based on SAW technology can have the

flexibility in terms of relative bandwidth. This is because that SAW designers have the

freedom to choose a combination of material and cut angle to obtain effective coupling

coefficients k2eff anywhere between 0.5% and 15% [81]. In a ladder filter the relative

bandwidth is directly linked to the effective coupling coefficient k2eff of the resonators.

Most important of all, SAW technology has the advantage of low cost, which is owing to

only few lithographic steps are necessary. Nevertheless, SAW filters for frequencies above 2

GHz are not easy to manufacture because that the lithography and patterning of the small

interdigitated transducers (IDT) finger is a big challenge. Due to the small IDT finger

width, the quality factor Q then drops dramatically, and to achieve high performance at

high frequencies is very demanding if not impossible.

To cover the frequency range in which SAW filters can hardly fulfill the high

demanding specifications, such as the US-PCS band, film bulk acoustic resonators

(FBAR) have entered the market in 2001 [99–101]. Compared with SAW resonator, film

bulk acoustic resonator (FBAR) is comparatively young and was demonstrated nearly

simultaneously by the research groups of Grudkowski [32], Nakamura [79], and Lakin [54]

in 1980. These devices were composed of the piezoelectric material zinc oxide (ZnO) and

two metal electrodes, which form a resonating membrane vibrating in the thickness

extensional mode. The membrane was supported by a thin silicon (Si) layer. In 1982, an

increased coupling was obtained by removing the Si support layer [55]. With regard to

CMOS (complementary metal-on-oxide semiconductor) compatibility, sputtered

aluminum nitride (AlN) was introduced as an alternative piezoelectric material by Wang

and Lakin [56, 124]. Today, AlN remains the piezoelectric material of choice in all

commercially available BAW devices, owing to its low intrinsic material losses, the

relatively high intrinsic coupling coefficient, the moderate dielectric constant, and the

possibility to have high volume manufacturing [3].

In 1995, Lakin proposed the so called solidly mounted resonator (SMR), which uses

quarter-wavelength thick layers to acoustically isolate the resonator from the substrate

[52]. The isolating layer, or the Bragg reflector, is formed by an alternating sequence

of high and low acoustic impedance materials. Figure 1.3 shows the configuration of

the two types of film bulk acoustic resonators (FBAR), the free-standing bulk acoustic
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resonator (FBAR), and the SMR. FBAR stands for both the free-standing bulk acoustic

resonator (FBAR) and the SMR in this chapter, if not specified. The details of the FBAR

resonator working principles and the two types of FBAR resonator will be discussed in

the next chapter. In 2002, SMR devices were demonstrated in high volumes by Infineon

[2, 4]. There are several benefits coming from the Bragg reflector underneath the bottom

electrode: better mechanical robustness, superior thermal heat transfer to the substrate,

and smaller temperature coefficient of frequency (TCF) owing to the oxide material with

positive TCF within the Bragg reflector [97]. However, bad effects also come along with the

presence of the Bragg reflector. Compared with the free-standing bulk acoustic resonator

(FBAR), SMR resonator always has some acoustic energy stored in the Bragg reflector,

which result in a lower coupling coefficient and a lower quality factor [96]. In addition, the

manufacturing process is more complicated due to the existence of the Bragg reflector.

electrodes

substrate

piezoelectric 

material

(a)

electrodes

substrate

Bragg

reflector

piezoelectric

material

(b)

Figure 1.3: Configuration of film bulk acoustic resonator (a) Free-standing Bulk Acoustic

Resonator (FBAR), (b) Solidly mounted resonator (SMR)

Several advantages of BAW technology in comparison with SAW are the superior

performance in terms of resistance to electro static discharge (ESD), temperature stability,

and the power handling ability [5]. Nevertheless, the most important factor for the choice

of BAW devices is the extremely high quality factor, which allows achieving superior filter

performances. The quality factor of the resonator determines the steepness of the skirts of

the filter and contributes to the improvement of the insertion loss. With the outstanding

quality factor of BAW devices, the skirts of the filters are steep and the insertion loss is

small. As a result, it was possible for the first time for an acoustic device to meet the high

demanding requirements of the US-PCS band replacing bulky ceramic filters in cellphones

[99]. Since then, FBAR has become a popular research topic. To meet the increasing

demand in bandwidth by modern communication standards, the frequency usage above

2GHz is predicted to proliferate in the future. This has promised FBAR a bright future

on the market. However, performance of FBAR needs to be improved to meet the more
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stringent new requirements.

The designing of FBAR resonators for RF filter applications is mainly determined by

four aspects: large piezoelectric coupling coefficient, high quality factor (Q-value), the

purity of the main resonance, and small temperature coefficient of frequency (TCF)[27].

The piezoelectric coupling coefficient is mainly determined by the piezoelectric and metal

electrode materials properties. AlN is now widely used because of its high intrinsic

coupling coefficient and convenient fabrication process. Metals with high acoustic

impedance, such as Ru, Mo, and W, are also used as electrodes to boost the achievable

effective coupling coefficient k2eff [36, 51, 132]. The free-standing bulk acoustic resonator

(FBAR) and the SMR both have laterally propagating spurious waves caused by

electrode edges [113]. These spurious waves degrade the performance of filters composed

of FBARs by increasing the insertion loss, introducing ripples in their passbands and

narrowing the bandwidth. The conversion of modes at the electrode edges and leakage of

acoustic power due to these spurious modes were studied using finite element/ boundary

element method (FEM/BEM) qualitatively [87]. Several researches have been done to

investigate the lateral spurious waves and to suppress them [46, 53, 60, 63, 91, 108]. One

method is so-called apodization technique. Here irregular resonator shape usually a

polygon with no two sides parallel is used to smear out the ripples introduced by the

spurious lateral waves within the passband of the filter [58]. Another method is adding

viscous acoustic materials at the perimeter of the electrodes to attenuate reflections of

the lateral acoustic modes at the electrode edges back into the electrode region [23].

Combining the two methods together may have even better performance of suppressing

the spurious modes. However, these two methods do not actually eliminate the spurious

modes generation. They only reduce the strength of the spurious modes. The quality

factor can not be improved by these two methods and the insertion loss of filters

composed of these FBARs is still high. Using frame-like electrodes to eliminate the

generation of the spurious modes is so far considered to be the best way to suppress the

spurious waves [37]. The frame-like method adopts a proper electrode overlapping the

top electrode to fulfill the boundary conditions between the main mode in the active area

of the resonator and the exponentially decaying displacement amplitude outside. By

satisfying the boundary conditions, the spurious modes generation is eliminated.

However, this frame-like method can not suppress the lateral modes below fs (fs is the

series resonance frequency of the FBAR) for FBARs with type II dispersion

characteristic [16]. These lateral modes generate unwanted ripples in the filter passband,

and they introduce significant loss below fs. A combination of a recessed frame with a

raised frame was introduced independently by Avago [102] and Infineon [116] to suppress
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the spurious lateral modes and improve the quality factor of FBARs with type II

dispersion. However, the gasket overlapping the top electrode may even introduce more

spurious waves caused by the gasket mode, which degrade the quality factor of the filters

below fs[15]. The lateral spurious modes propagating into the passive peripheral area

will also introduce losses and deteriorate the quality factor of the filter. This

phenomenon was qualitatively observed by numerical device analysis by various groups

[74, 87, 97, 116]. To meet the temperature stability requirements for some application

bands, a zero-drift resonator (ZDR) was introduced [82, 131]. As the frequency spectrum

crowding increases constantly, the further enhancement of the quality factor Q for FBAR

and ZDR is desired. The quality factor is currently limited by the lateral modes leaking

to the passive peripheral area [103]. Thus, more investigation needs to be done regarding

the origin and characteristics of the lateral waves and appropriate measures have to be

taken to suppress the lateral spurious modes and improve the quality factor.

Various approaches have been introduced to model the electromechanical

characteristics of the free-standing bulk acoustic resonator (FBAR) and SMR structures.

For small thickness-to-width ratios piezoelectric layer, the one-dimensional (1D) Mason

model [92] has been widely used to analyze the vertical structure of a given FBAR.

However, the 1D model can not predict the spurious lateral resonances caused by the

reflection of the electrode edges. Two-dimensional (2D) model was introduced to analyze

the ripples and the energy loss of the FBAR [73]. Due to the complexity of the exact

piezoelectric equations that describe the device and its loading conditions, applications

of these analytical approaches are limited. One of the commonly used numerical

methods to analyze a complex FBAR structure is the finite element method

(FEM)[62, 66]. However, FEM needs matrix inversion and has difficulty to handle large

dimensional or three dimensional problems. Therefore, the purpose of this research is to

propose a more efficient method to model the FBAR structure, aiming to investigate the

lateral spurious modes generation and improve the quality factor of FBAR.

1.2 Outline of dissertation

In Chapter 2, the working principle of FBAR resonator is reviewed, and the two types of

FBAR structure are discussed. Following that, the resonator properties for filter

application is discussed. The conventional modeling schemes of FBAR resonators are

also reviewed. The limitations of these modeling schemes are discussed and served as the

motivations of the developments in the rest of this dissertation.

In Chapter 3, the fundamental equations governing the elastic wave motion in solids
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are described. Moreover, the quasi-static approximation of the electromagnetic waves is

applied to derive the governing equations for acoustic waves in piezoelectric materials. The

finite-difference time-domain (FDTD) spatial and temporal discretizations of the governing

equations are demonstrated. The numerical dispersion and stability of the FDTD model

are discussed. The excitation source is discussed for different applications. The boundary

conditions of the numerical model are presented. The 2D-FFT method is used to obtain

the dispersion curve and the amplitudes of respective modes. Finally, the summary of the

FDTD model for simulating the FBAR resonators is given.

In Chapter 4, the wave scattering analysis for the nondestructive testing (NDT) and

FBAR is reviewed. The limitations of the existent wave scattering schemes are pointed

out. The derivation of the scattering analysis for multimode excitation is presented. After

checking the validity of the proposed method, the multimode wave scattering analysis is

applied on two generic free-standing bulk acoustic resonator (FBAR) structures.

In Chapter 5, based on the scattering analysis of the two generic free-standing bulk

acoustic resonator (FBAR) structures, a new structure of free-standing bulk acoustic

resonator (FBAR) with frame-like airgap on bottom electrode is proposed to suppress

the spurious modes and improve the quality factor. The proposed free-standing bulk

acoustic resonator (FBAR) structure is presented. The time domain analysis developed

in chapter 3 is carried out for the proposed structure. Then, the frequency domain

analysis is conducted to provide a more profound understanding for the phenomenon.

Chapter 6 summarizes the dissertation and major conclusions are given.
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Chapter 2

Properties of BAW devices and

design methods

2.1 Introduction

In this chapter, the working principle of bulk acoustic wave (BAW) resonators is

reviewed and the two types of thin-film bulk acoustic wave resonator (FBAR) structures

are discussed. In this chapter, FBAR stands for both the free-standing bulk acoustic

resonator (FBAR) and the SMR, is not specified. Following that, bandpass filters for

high performance applications are reviewed and the related resonator properties for filter

application are discussed. The conventional modeling schemes of FBAR resonators are

also reviewed. The limitations of these modeling schemes are discussed and served as the

motivations of the developments in the rest of this dissertation.

2.2 Thin-film Bulk Acoustic Wave Resonators

A FBAR resonator is composed of a piezoelectric material sandwiched by two metal

electrodes. When an alternating electric field is applied between the electrodes, acoustic

waves are excited in the piezoelectric material. To confine the acoustic waves within the

resonator, highly reflective boundaries are implemented. Air is considered to be a perfect

reflective boundary for acoustic waves and it is utilized as the reflective boundaries for

the free-standing bulk acoustic resonator (FBAR). An airgap is formed underneath the

bottom electrode of the free-standing bulk acoustic resonator (FBAR) to isolate the

resonator from the substrate. Another approach to isolate the resonator from the

substrate is to adopt a Bragg reflector underneath the bottom electrode, so called the

solidly mounted resonator (SMR). The Bragg reflector is composed of

quarter-wavelength thick layers with alternating high and low acoustic impedance. With
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approximately quarter-wavelength thick layer, the reflected wave from the bottom

interface of the first Bragg layer will be about 180 degrees out of phase with respect to

the incident wave at the interface of the bottom electrode and the first Bragg reflector

layer. This destructive interference makes the first Bragg layer and each succeeding layer

act like a mirror, reflecting the acoustic waves back into the resonator. SiO2 (silicon

oxide) is commonly chosen as the low-impedance layer in the Bragg reflector. As for the

high-impedance layer, AlN (aluminum nitride) and W (tungsten) are frequently adopted.

When metal is used for the high-impedance layer, it has to be carefully patterned to

avoid the parasitic capacitance, which will degrade the effective coupling coefficient [96].

Because each layer in the Bragg reflector is not a perfect reflector, acoustic energy will

penetrate into the Bragg reflector layer, which will degrade the quality factor as well. To

improve the quality factor of SMR resonator, the Bragg reflector was optimized for both

the longitudinal and shear waves [68]. Figure 2.1 illustrates the comparison of the two

types of FBAR resonators.

Substrate

PiezoelectricAir gapElectrodes

(a)

 Piezoelectric

Substrate

Bragg Reflector

Electrodes

(b)

Figure 2.1: Comparison of two types of film bulk acoustic resonators (a) Free-standing

Bulk Acoustic Resonator (FBAR), (b) Solidly mounted resonator (SMR)

d

n=0 n=1 n=2

Figure 2.2: Mechanical resonances in a plate of thickness d. The stress fields associated

with the resonances are plotted.

Figure 2.2 shows a prototype resonator consisting of a piezoelectric plate of thickness

d sandwiched by infinitely thin electrodes. Note that only the symmetric modes can be
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(a)

DCAB

(b)

DCAB

(c)

Figure 2.3: Resonator geometry for illustrating the generation of plate waves. (a)

Resonator having comparable lateral and thickness dimensions, (b) large lateral-to-

thickness dimensions, (c) large lateral-to-thickness dimensions with extended plate over

the active region of the resonator.

excited by the electric field. FBAR utilizes the fundamental longitudinal mode (n = 0) in

which the resonant frequency is determined by the thickness of the piezoelectric layer and

the acoustic wave velocity inside the piezoelectric layer. However, lateral modes are also

excited through the intrinsic Poisson coupling [49]. Figure 2.3 illustrates the generation

of the lateral plate wave modes. In Figure 2.3(a) a resonator with a lateral dimension

comparable to the piezoelectric plate thickness is displayed. Assuming a time harmonic

electric field is applied on the electrodes, lateral vibrations will be excited in addition to

the thickness vibrations, owing to the intrinsic Poisson coupling. Due to the small lateral

to thickness ratio, the lateral vibration and the thickness vibration are so tightly coupled

and not distinguishable in this case. However, in practical applications of FBAR resonator,

the dimension of the lateral direction is usually much larger than that of the thickness

direction, which is shown in figure 2.3(b). In this case, the lateral deformation of element

A can be canceled by the adjacent elements B and C. However, the end element D does

not have an adjacent cell on the right hand side to cancel the lateral deformation in that

direction. Thus, lateral waves are generated by the end cell D. A more practical FBAR

resonator model is illustrated in Figure 2.3(c). Here, the piezoelectric plate is supposed

to be larger than the overlap of the electrodes region, or the active region of the FBAR

resonator. Owing to the structural and electrical discontinuity, lateral modes are excited

at the boundary element D in this case as well. These spurious lateral modes excited at

the boundary will propagate throughout the plate, causing ripples on the impedance and

degrading the quality factor of FBAR.

2.3 Resonator properties for filter applications

2.3.1 Band-pass filters based on resonators

Thin film bulk acoustic wave resonators (FBAR) are widely used as frequency control

devices, such as oscillators and RF filters. RF filters composed of FBAR resonators can

be grouped into two categories, the electrically coupled filters and the acoustically coupled
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filters. These filter configurations are shown in Figure 2.4 [47]. In Figure 2.4, the ladder

and lattice filter are the electrically coupled filter, and the stacked crystal filter (SCF)

and coupled resonator filter (CRF) are the acoustically coupled filter. The acoustically

coupled filters usually show a wider bandwidth and a lower out-of-band rejection. They

also require more complex manufacturing, because of the additional layers [48]. In contrast,

the electrically coupled ladder or lattice filters have steep skirt selectivity, and high out-

of-band rejection. Thus, the ladder filters with high performance are commonly used in

high-end mobile communication systems.

(a) (b)

Piezoelectric

Ground Plane Electrodes

(c)

Piezoelectric

Coupling Layers

(d)

Figure 2.4: Schematic of filter topologies. (a) Ladder filter having series and parallel

resonators. (b) Balanced lattice filter. (c) Stacked crystal filter (SCF). (d) Coupled

resonator filter (CRF).

Figure 2.4(a) shows an unbalanced ladder-type filter consisting of three series and two

parallel or shunt resonators, hence called a 3-2. All the series resonators have the same

resonance and anti-resonance frequencies and likewise the shunt resonators are all identical

but different from the series resonators. The center frequency f0 of the ladder filter is at

the resonance frequency of the series resonator, as is shown in Figure 2.5. The shunt

resonators are mass-loaded to shift their frequency so that their anti-resonance frequency

fa,p is approximately at the resonance frequency fr,s of the series resonators [50]. At the

center frequency f0, the series resonators have the lowest impedance and current flow is

almost straight through the filter. To hinder the current flow to ground through the shunt

resonators, the shunt resonators should have high anti-resonance resistance. The steepness
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of the filter skirt is also determined by the minimum resistance Rmin at the resonance

frequency and the maximum resistance Rmax at the anti-resonance frequency. More ladder

sections can be added to improve the out-of-band rejection, but it will introduce more

insertion loss as well. Therefore, high-Q resonators are desired to provide low resonance

impedance and high anti-resonance impedance, and to form filters with small insertion

loss.

Figure 2.5: Admittance Ys and Yp of series and parallel resonators for ladder-type filter

and scattering parameter |S21| of the ladder-type filter.

2.3.2 Resonator figure of merit

As it is stated in Chapter 1, besides of temperature stability, three resonator properties

have to be considered for filter applications: the effective coupling coefficient k2eff , the

quality factor Q, and the spurious modes. Note, that the effective coupling coefficient

k2eff is different from the material coupling coefficient K2, which is merely related to the

material itself. The effective coupling coefficient k2eff can be thought of as the ratio of the

energy stored in the electric field and the energy stored in the acoustic field [92]. It is a

device property, related to the material and the resonator configuration as well.
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In general, the effective coupling coefficient k2eff is a measure for the effectiveness of

the electromechanical conversion that is independent of frequency, and can be obtained

by the following equation [57]

k2eff =
π

2

fs
fp

cot

(
π

2

fs
fp

)
, (2.1)

where fs is the series resonance frequency of the resonator, and fp is the parallel resonance

frequency of the resonator. For small k2eff , fp ≈ fs , equation (2.1) can be simplified to

the following equation by a first order approximation

k2eff =
(π
2

)2 fp − fs
fp

. (2.2)

The quality factor Q is a measure of losses for the resonator and is generally defined

as the ratio of the total stored energy to the dissipated energy per cycle [27]:

Q =
Etot

∆E
, (2.3)

where Etot is the total stored energy and ∆E is the energy lost per cycle. The quality factor

Q is frequency dependent and can be obtained by the brute-force method (BFM)[28]. This

method of extracting Q is first to fit the modified Butterworth Van Dyke (mBVD) model

to the resonator using a least-squares algorithm. (The mBVD model will be presented

in the next section.) Then the stored energy and the dissipated energy in one cycle can

be calculated at each frequency. Finally, taking the ratio of these two energy, the quality

factor Q can be obtained.

For filter applications, the overall figure of merit (FOM) M of the resonators is defined

as [133],

M =
k2eff

1− k2eff
Q . (2.4)

For small k2eff , equation (2.4) can be simplified as

M = k2effQ , (2.5)

which is the most commonly found formulation in literature. Since the quality factor Q is

dependent on the frequency, M is also a function of frequency.

As it is mentioned before, for ladder-type filters, it is desired to have the resonance

resistance Rs as small as possible and the anti-resonance resistance Rp as large as possible.

These resistances can be related to the FOM as [97]

Rs ∼ Xo/M(fs) , (2.6)

Rp ∼ Xo ·M(fp) , (2.7)
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where Xo is the capacitance reactance of the resonator. It can be obtained by the following

equation

Xo =
∣∣∣(ωC0

(
1 + k2eff

))−1
∣∣∣ ∼ ∣∣∣(ωC0)

−1
∣∣∣ . (2.8)

Here, C0 is the plate shunt capacitance, and can be obtained by C0 = εo ·εr ·A/d. A is the

area of the resonator; d is the thickness of the piezoelectric region; and εr is the relative

dielectric constant of the piezoelectric material.

It can be observed from equation (2.6) and (2.7) that the small Rs and large Rp

can be achieved by improving the FOM of the resonator. However, for thin-film bulk

acoustic resonator (FBAR) applications, the effective coupling coefficient k2eff is limited

by the available piezoelectric material. There is only a small amount of design flexibility

in adjusting k2eff . Therefore,the best approach to improve the resonator performance is

to achieve as high unloaded Q as possible [97].

Spurious waves not only introduce ripples in the passband and rejection bands of the

filter using FBAR resonators, but also deteriorate the quality factor Q of the filter by

leaking energy into the peripheral area. The Rayleigh-Lamb (RL) modes are the main

contributors of these spurious waves. When an alternating electric field is applied on the

electrodes, shear vertical (SV) waves will be excited along with the longitudinal waves

(also referred to as the thickness extensional (TE) waves) through the intrinsic Poisson

coupling. In an infinite three-dimensional volume, these two types of waves do not interact

with each other. However, in a plate, which is infinite in the lateral directions (x1 and x2

direction), and is finite in the thickness direction (x3 direction), these two groups of waves

will couple with each other by mutual scattering on the free boundary. After successive

reflection from the top and bottom faces of the plate, these two waves will reconstruct

themselves and form the so-called Rayleigh-Lamb (RL) modes [11].

The Rayleigh-Lamb modes can be further grouped into two families; the symmetric

modes (Sn) and the antisymmetric modes (An),which are also referred to as the flexure

modes. The symmetric modes are the ones that introduce ripples in the passband of

the filter using FBAR resonators. Because the relative position of the electrodes is not

changed for the flexure modes, the flexure modes are not coupled with the electric field

and thus not visible on the electric response of the filter. However, the flexure modes

also contribute to the energy leakage into the peripheral area of the resonator[118]. Thus,

to enhance the quality factor Q of the resonator, both the symmetric and antisymmetric

modes need to be investigated.

The dispersion property of the Rayleigh-Lamb modes can be derived based on the

“transverse” resonance principle described in Bert Auld’s book[11]. For an isotropic plate,

the dispersion relation for the symmetric modes is as
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tan ksvd/2

tan kld/2
= − 4β2klksv

(k2sv − β2)2
, (2.9)

and for antisymmetric modes as

tan ksvd/2

tan kld/2
= −

(
k2sv − β2

)2
4β2klksv

. (2.10)

Here, ksv and kl are the wavenumber of the shear vertical waves and the longitudinal

waves respectively; d is the thickness of the plate. β is the wavenumber of the RL modes,

and it is related to ksv and kl by the following equations

k2sv =

(
ω

vsv

)2

− β2 , (2.11)

and

k2l =

(
ω

vl

)2

− β2 . (2.12)

Here, vsv is the velocity of the shear vertical wave and vl is the velocity of the

longitudinal wave; ω = 2πf is the angular frequency. For multilayer structures with

anisotropic materials, such as AlN, the dispersion relation can be obtained by the

transfer matrix scheme as described in [1, 64, 109], or by experimentally measurement as

presented in [112].

The free-standing bulk acoustic resonators (FBARs) using AlN as the piezoelectric

material has a type II dispersion, which is quite different from FBAR resonators using

ZnO as the piezoelectric material, as it is shown in figure 2.6. Here, only the two lowest

symmetric and antisymmetric modes are shown, as they are in the frequency range between

fs and fp. Unlike type I dispersion, for type II dispersion, the S1 mode (or often referred

to as the TE1 mode) has two branches; one is with a positive group velocity (labeled as

S1(+)), and the other one has a negative group velocity (labeled as S1(−)).The group

velocity vg can be obtained by the following equation from the dispersion curve,

vg =
dω

dβ
. (2.13)

Here, ω is the angular frequency and β is the wavenumber of the mode.

Because of this type II dispersion characteristic, FBAR resonators with AlN as

piezoelectric material suffer a big energy loss below fs, which will in turn degrade the

quality factor of the resonator. As it is mentioned in Chapter 1, several approaches have

been proposed to eliminate these spurious modes. However, the quality factor of the

resonator is still limited by the lateral propagating spurious modes into the passive area

of the resonator[103]. Therefore, the goal of this work is to propose an efficient model to

investigate these spurious modes and to enhance the quality factor of FBAR resonators.
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(a)

(b)

Figure 2.6: Dispersion curve for the two types of FBAR resonators (a) type I dispersion

(Al/ZnO/Al with thickness of 0.2µm/1.6µm/0.2µm), (b) type II dispersion (Al/AlN/Al

with thickness of 0.3µm/3µm/0.3µm)
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2.4 Design methods for FBAR

With the popularity of the FBAR resonators, the design methods for FBAR resonators

have also become a hot topic. The aim of this section is to review the most frequently

used design methods for FBAR resonators. This section is divided into four parts. Firstly,

three analytic methods used for FBAR resonator design are examined, which are the Mason

model, the Butterworth Van Dyke (BVD) model, and the Mode Power Coefficient (MPC)

scheme. Secondly, the experimental laser interferometry method is reviewed. Following

that, the numerical method for FBAR resonator modeling is reviewed, which is the finite

element method (FEM). Finally, these design schemes are summarized. The limitations

of each scheme are discussed and served as the motivation to develop the finite-difference

time-domain (FDTD) model for FBAR resonator modeling.

2.4.1 Analytical method

Three analytic methods used for FBAR resonator design are reviewed in this section,

which are the Mason model, the Butterworth Van Dyke (BVD) model, and the Mode

Power Coefficient (MPC) scheme.

2.4.1.1 Mason model

Mason model is a physical model, where the mechanical or the piezoelectric plate is

represented as an acoustic transmission line[70, 88, 92]. Note that there are other

transmission line models, such as the KLM model [42], however, all acoustic transmission

line models give the equivalent results [106].

Figure 2.7 shows the representation of Mason model for the piezoelectric plate and

the pure mechanical plate with thickness d. For a piezoelectric plate, the Mason model

has three ports including two acoustical ports and one electrical port, as it is shown in

figure 2.7(a). For a nonpiezoelectric mechanical layer, Mason model only has two acoustical

ports, as it is shown in figure 2.7(b). The electrical response of the multilayer stack, such as

FBAR resonators, can be obtained by cascading transmission line sections of piezoelectric

and mechanical layers according to the physical stack under investigation. Figure 2.8 shows

the configuration of a SMR resonator as an example. The single top electrode on the left

is terminated by a free surface that is represented by an acoustic short. The substrate

is assumed to be infinite, which is represented by the specific acoustic impedance Z0 of

the layer. If the substrate is finite, a mechanical transmission line section should be used

again terminating the model by an acoustic short. For the free-standing bulk acoustic

resonators (FBARs), the Bragg reflector layers, or the mirror layers can be removed.
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Figure 2.7: Mason model for acoustic plates: (a) piezoelectric plate, (b) pure mechanical

plate.

Top
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Piezolayer

Bottom
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First mirror

layer

Other

layers

Last

layer
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terminating

impedance

Air

(acoustic
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Figure 2.8: Mason model for a multilayer resonator. The circuit is terminated on the left by

a free surface (an acoustic short) and on the right by a semiinfinitely thick substrate. Each

layer is represented by the corresponding transmission line sections with the piezoelectric

layer having the electrical port associated with it.
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The electric impedance Z of the multilayer resonator can be obtained by the following

equation

Z =

(
1

jωC0

)(
1− k2t

tanϕ

ϕ
Zin

)
, (2.14)

where

Zin =
(z1 + z2) cos

2ϕ+ jsin2ϕ

(z1 + z2) cos2ϕ+ j (z1z2 + 1) sin2ϕ
. (2.15)

Here z1 = Z1/Z0 and z2 = Z2/Z0 are the normalized input impedance of the two acoustic

ports, and Z0 is the specific acoustic impedance of the piezoelectric layer. ϕ = θ/2, θ = kd

is the phase across the piezoelectric film. k2t is the electromechanical coupling coefficient

of the thickness resonance, which is an intrinsic material property and can be obtained by

the following equation

k2t =
e233

cD33ε
S
33

. (2.16)

where material parameters e33, c
D
33, and εS33 denote the piezoelectric constant, the elastic

stiffness at constant dielectric displacement, and the dielectric constant at constant strain.

More details about these parameters will be presented in the next chapter.

The acoustic input impedance of the piezoelectric layer can be obtained by calculating

the acoustic impedance of each layer successively from both sides of the stack in direction

towards the piezoelectric layer. For a pure mechanical layer as shown in figure 2.7(b), when

Z1 is loaded at the port 1, the acoustic input impedance looking from port 2 Z2 = T2/v2

can be obtained by

Z2 = Z0
Z1cos(θ) + jZ0sin(θ)

Z0cos(θ) + jZ1sin(θ)
, (2.17)

where θ = kd is the phase across the mechanical layer, and Z0 is the specific acoustic

impedance of the corresponding mechanical layer.

Mason model is easy to implement when the material properties are known, and it is

widely used to analyze the main resonance behavior of the FBARs [3, 44, 45, 57, 61].

The series resonance frequency fs and the parallel resonance frequency fp of the

multilayer resonator can be predicted quite accurate by Mason model. It has been

applied to optimize the effective coupling coefficient of FBARs by adjusting the electrode

material and electrode thickness [57, 61, 123]. Another application of Mason model is to

optimize the SMR Bragg reflector to be effective for both the longitudinal and the shear

waves [68].

However, Mason model is a one-dimensional model, and it only takes the thickness

of the layers into consideration. Thus it can not take the lateral spurious modes into

consideration. The quality factor deterioration caused by the leakage of the spurious

modes can not be predicted by this model.
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2.4.1.2 Butterworth Van Dyke (BVD) model

Unlike Mason model, the Butterworth Van Dyke (BVD) model is a phenomenological

model, where the FBAR resonator is represented by an equivalent circuit model, as it is

shown in figure 2.9.

Lm Cm Rm

C0

Figure 2.9: Butterworth Van Dyke (BVD) model for resonators.

As it is shown in figure 2.9, the BVD model consists of four basic elements, a motional

inductor Lm, a motional capacitor Cm, a resistive loss term Rm, and the parallel connected

plate capacitor C0.

Series electrical impedance Zs of the motional branch can easily be obtained from the

model by

Zs = Rm + jωLm +
1

jωCm
, (2.18)

where the series resonance frequency ωs when Zs → 0 can be obtained as

ωs =
1√

LmCm
. (2.19)

The total impedance Zp can be obtained by the following equation

Zp =

(
jωC0 +

1

Rm + jωLm + 1
jωCm

)−1

, (2.20)

and the parallel resonance frequency ωp when Zp → ∞ is

ωp = ωs

√(
1 +

Cm

C0

)
. (2.21)

Series and parallel resonance quality factors can be obtained by the following equations

Qs =
1

ωsCmRm
, (2.22)

Qp = Qs

√
1 +

Cm

C0
. (2.23)

For the BVD-model, the effective electromechanical coupling coefficient k2eff can be

obtained by [57]

k2eff =
π2

8

Cm

C0
. (2.24)
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Figure 2.10: Modified Butterworth Van Dyke (mBVD) model for resonators.
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Figure 2.11: mBVD model with additional motional branches to model some of the

spurious modes.

The BVD model is widely used as high-level model for the simulation of FBAR devices

and design of filters [45, 57, 61]. As it is mentioned before, the BVD model can also be

applied to obtain the quality factor Q of the manufactured FBAR resonators [97]. To get a

better fit of the BVD model to the experimental results, a modified Butterworth Van Dyke

(mBVD) model has been proposed [59]. Figure 2.10 shows the mBVD model for the FBAR

resonators. In the mBVD model, two more resistors have been added, Rseries and R0.

With these two added resistors, the model can fit better to the experiment measurements.

And the quality factor at the series resonance frequency Qs and at the parallel resonance

frequency Qp will be different, depending on the frequency. More motional branches can

be added to the mBVD model to account for the spurious modes’ resonances, as it is

shown in Figure 2.11. However, it can only simulate the influence of the spurious modes.

Because it is a phenomenological model, it can not be used to investigate the generation

of the spurious modes and design the boundary of FBARs to reduce the spurious modes.

2.4.1.3 Mode Power Coefficient scheme

The mode power coefficient scheme is a method proposed to calculate the power carried by

the propagating Rayleigh-Lamb (RL) modes through the so-called mode power coefficient

(MPC). A brief derivation of the MPC is given below, and a more detailed description of
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the scheme can be found in reference [117, 118].

T0

x1

x3

T0

x1

x3

Figure 2.12: A line source T0δ(x1) on top of a multilayer structure.

Suppose plane waves with ∂/∂x2 = 0 are excited and propagated toward the ±x1

direction in a multilayer structure shown in Figure 2.12. The layers are homogeneous and

assumed to be infinitely wide along the x1 and x2 direction. The upper half (x3 < 0) is

assumed to be vacuum. The surface displacement un(x1) and stresses Tm(x1) normal to

the surface can be expressed in the Fourier integral form,

un(x1) =
1

2π

∫ +∞

−∞
un(β)e

(−jβx1) dβ , (2.25)

Tm(x1) =
1

2π

∫ +∞

−∞
Tm(β)e(−jβx1) dβ . (2.26)

Here, β is the wavenumber of the mode toward +x1 direction. The time dependency

exp(jωt) is omitted for simplicity.

Provided that the structure layers are linear and ∂/∂x2 = 0, un(β) and Tm(β) are

related to each other by

−jωun(β) = Ynm(β)Tm(β) , (2.27)

from the law of superposition and the orthogonality of the trigonometric functions. In

equation (2.27), Ynm(β) is the effective acoustic admittance, which was introduced by

Hashimoto et al. [35].

When a line source Tn(x1) = T0δ(x1)exp(jωt) is placed on the top surface at x3 = 0,

plane waves with ∂/∂x2 = 0 are excited and propagated along the waveguide. Here, δ(x1)

is the delta function and ω is the angular frequency. Power 2P per unit width supplied

by the surface stress is given by

2P = −j
ω

2

∫ +∞

−∞
un(x1)Tn(x1)

∗ dx1 . (2.28)

For a lossless waveguide, P is equal to the power per unit width excited to either the

+x1 or the −x1 direction. The waveguide eigen modes are complete and orthogonal to
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each other. Therefore, the power per unit width P toward +x1 direction can be expressed

as the sum of the power per unit width carried by the kth eigen mode Pk as

P =

N∑
k=1

Pk . (2.29)

Substitute Tn(x1) = T0δ(x1) at x3 = 0 and equation (2.27) into equation (2.28) and

apply the Cauchy-Riemann theorem of the complex integral theory, the power per unit

width Pk carried by the kth eigen mode can be obtained by the following equation

Pk = ckn

∣∣∣ukn(x1)∣∣∣2 . (2.30)

Here, ukn(x1) is the surface displacement associated with the excited kth eigen mode. And

ckn is defined as the mode power coefficient MPC; it can be obtained by the following

equation

ckn =
−jω2

4

∂Y −1
nn (β)

∂β
|β=βk

. (2.31)

By applying the MPC scheme, the power carried by the lateral propagating

Rayleigh-Lamb modes in an arbitrary multilayer waveguide can be obtained easily from

the calculated or measured surface displacements through equation (2.30). This

procedure is simpler and more efficient than the conventional technique based on the

estimation of total power flow passing through the whole waveguide cross section [11].

Because the conventional technique needs knowledge of the exact field distribution of

each mode, it becomes quite complex and fault-prone when the number of waveguide

layers is large. Therefore, the MPC scheme is adopted in chapter 4 to calculate the

scattering coefficients for multimode excitation and in chapter 5 to evaluate the power

carried by each propagating spurious modes.

2.4.2 Laser interferometry

Laser interferometry is widely used to investigate SAW and BAW devices. In laser

interferometry, a coherent laser beam is split into two beams, a measurement beam, and

a reference beam. The reference beam is reflected by a mirror and remains undisturbed,

while the measurement beam is interacting with the object of measurement and affected

by a physical property (temperature, displacement, etc.). The disturbed and undisturbed

beams are combined again by a beamsplitter after they were reflected by their designated

targets. At this point an interference pattern develops and is subsequently detected by a

photo detector to detect information about changes of the measurement object.

When investigating SAW and BAW devices by laser probing, usually the surface

vertical motion of the device is detected. The detector output is essentially sensitive to
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both the amplitude and phase of the surface vertical motion. Common interferometer

designs are the Michelson and the Mach-Zehnder [20, 26, 29, 40, 75]. To eliminate the

low frequency vibration disturbance, Sagnac interferometer was introduced to

characterize SAW and BAW devices operating in high frequencies [34, 38, 127]. The

obtained data can be used directly to observe the wave propagation in space domain, or

they can be transferred to the wavenumber domain for obtaining dispersion curve of the

resonator and/or the material parameters by fitting to the dispersion curves.

Laser interferometry has been proved to be an effective method to investigate RF SAW

and BAW devices. It can be applied to investigate the influence of the spurious modes

and the boundary conditions. However, it is time consuming and expensive to implement.

2.4.3 Numerical method

For complex resonator geometries and for considering second-order effects, such as spurious

modes, numerical simulation has been widely used. Finite element method (FEM) is

the most commonly used method to investigate SAW [14, 33, 41] and FBAR devices

[62, 66, 87, 108].

The FEM algorithm operates on the partial-differential equations (PDE) and solves

the equations either in the time domain or in the frequency domain. The structure is first

divided into n elements of finite size. Then, these elements again are defined by a certain

number of nodes. The degrees of freedom (DOF) of the physical problem (mechanical

displacement, electrical potential, . . . ) at these nodes are defined to be the basic unknowns

U(k). The DOFs U(k) are then presented as shape functions of the nodes within one

element. The index k represents the number of the node of the element. By using the

local material properties, the element forces F(k) (mechanical force, current, . . . ) can

be obtained by F(k) = M(k)U(k), where M(k) is the local stiffness matrix obtained by

applying the minimum energy principle on the shape functions. A global matrix is formed

for all the elements F = MU. Finally, boundary conditions are applied and the equations

are solved.

FEM scheme can handle complex structures easily and is convenient to investigate

the second-order effects of FBAR devices. Therefore, FEM simulation has been widely

applied to investigate the spurious modes in FBAR devices [66, 71, 72, 86]. Among these

applications, some were focused on optimizing the piston mode resonator [83, 115, 116].

Analysis of acoustic leakage in FBAR devices was also carried out using FEM simulation

qualitatively [114, 122] and quantitatively [120]. However, for FEM simulation, a matrix

must be inverted. Current linear-algebra technology limits the size of the matrix that can

be inverted and, thus, limits the number of unknowns that the FEM can handle. Another
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drawback of FEM is that non-physical spurious modes are commonly predicted. These

spurious modes must be excluded in a post-processing step, which can be a tedious task.

2.4.4 Summary of the methods for FBAR design

The advantages and disadvantages of the reviewed design methods are shown in Table 2.1.

According to this table, the FEM simulation is most suitable for investigating the second-

order effects of FBAR devices with complex structures. However, the FEM simulation

requires matrix inversion, which limits the number of unknowns it can handle. And it is

time consuming to simulate a large structure.

Base on this problem, the finite-difference time-domain (FDTD) method was

extended to investigate the characteristics of FBAR devices. FDTD method was first

derived by K. S. Yee to solve the electromagnetic problems of Maxwells equations [129].

The computation domain for a structure is discretized into cells and the partial

derivatives of the Maxwells curl equations are approximated by the second order

accuracy central differences. The response of the structure is then computed using the

leap-frog time-stepping algorithm by exciting a source into the computation domain.

Following Yees seminal concept, Madariaga introduced a first-order finite-difference

formulation for elasticity equations, which is widely used today [65]. The FDTD method

exhibits several advantages over other numerical methods. Specifically, the formulation

of FDTD is simple and straightforward, it is easy to implement with complex structures,

and the boundary conditions can be implemented easily. Furthermore, the update of the

variables in FDTD is based on the past field values at the nearest neighbor components,

which guarantees its accuracy, and the updating of the variables in FDTD does not need

a matrix inversion.

The FDTD method is now widely applied to various problems in the field of elasticity.

For instance, the FDTD method is applied to simulate the elastic wave propagation in

porous media [24, 130], to model elastic waves in boreholes [107], or to investigate the

interaction of elastic waves with buried land mines [105]. However, these applications in

the field of elasticity only involve the stress filed components and particle velocities. By

introducing the piezoelectric effect and the electric field components, the FDTD method

has been extended to investigate SAW devices [125].

In this study, the FDTD method has been developed to model FBAR resonators.

Due to the different working principle between SAW devices and FBAR resonators, the

FDTD model developed in this study is different from the one developed for

investigating SAW devices. Firstly, the wave utilized in SAW devices is propagating in

the lateral direction, while the wave utilized in FBAR devices is propagating in the
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Table 2.1: Summary of the advantages and disadvantages of the methods for FBAR design.
Design method Advantage Disadvantage

Mason model

1. Can be used to
analyze resonance
and antiresonance
frequencies, effective
coupling coefficient k2eff .

2. Can include electrode
material and thickness
influence.

1. Can not include second-
order effects, such as,
spurious modes.

BVD model

1. Can be used to calculate
quality factor Q and
effective coupling
coefficient k2eff of FBAR
resonators.

2. Can be implemented to
design filters using FBAR
resonators.

3. Can simulate the
influences of some of
the spurious modes.

1. Can not track the
physical principle for the
generation of the spurious
modes and, thus, can not
be used to design the
boundary of the FBAR
resonators.

MPC Scheme

1. The MPC coefficient is
easy to obtain.

2. The power carried by
the lateral propagating
modes are easy to obtain.

1. Need to know the
amplitude of the surface
displacement.

Laser interferometry

1. Can handle complex
structures.

2. Second-order effects, such
as, spurious modes, can
be investigated.

1. Time consuming and
expensive to implement.

FEM

1. Can handle complex
structures.

2. Second-order effects, such
as, spurious modes, can
be included.

1. Matrix inversion is
required.

2. Non-physical spurious
modes need to be post-
processed.
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thickness direction. Because the piezoelectrically stiffened elastic constant is dependent

on the wave propagation direction, a new equation was derived for calculating the

stiffened elastic constant for FBAR. Secondly, the boundary condition is different from

the one used in the FDTD model for SAW devices. Unlike the Rayleigh wave in the

SAW devices, which is nondispersive, the Rayleigh-Lamb (RL) waves in the FBAR

resonators are dispersive. Besides, several RL modes are propagating in the FBAR

devices within the interested frequency range. The development of the perfectly matched

layer (PML) for this problem is quite challenging. Instead of using the PML absorbing

boundary condition, an extra column has been added to the left and right side of the

model to simulate the free boundary condition. The updating equations for the variables

on the extra column have been developed in the FDTD model. Thirdly, to do scattering

analysis for FBAR resonators, different RL modes have to be excited in the model. The

field distribution of the particle velocities for different modes has to be calculated to

excite the corresponding mode in the model. In the FDTD model for analyzing SAW

devices, a simple Gaussian pulse is applied as the excitation source. The field

distribution of the variables for Rayleigh wave is not considered in the FDTD model.

Finally, the post processing method for interpreting the data obtained by the FDTD

simulation is different from the one used in the FDTD model for SAW devices. Prony’s

method is adopted to calculate the wavenumber and the phase velocity of the Rayleigh

wave in SAW devices. However, it is not suitable to apply Prony’s method to analyze the

data obtained for FBAR devices. To apply Prony’s method, the number of the modes

propagating in the structure has to be determined first. Several RL modes are

propagating in FBAR resonators and these modes have different cutoff frequency.

Therefore, at different frequency the number of the modes propagating in FBAR may be

different and it has to be determined by some other method, such as, the analytical

method. Besides, due to the resonance of the FBAR resonator, when applying a

Gaussian pulse to the structure, the response of the FBAR resonator is not a simple

pulse, but with resonance signals. Hence, it is difficult to determine the same signal at

different positions. The dispersion characteristic of the RL modes has made this work

even more challenging or impossible to be done. Furthermore, because of mode

conversion at the discontinuity boundaries, the amplitude of the reflected modes is a

combination of several waves and it is different at different positions. The reflected wave

is not a simple linear combination of the modes, which is the assumption of the Prony’s

method. Thus, the 2D-FFT method is applied to calculate the dispersion curve of the

RL modes propagating in the FBAR resonator, and to get the amplitude of respective

mode in this study.
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In the next chapter, the FDTD model for FBAR resonators will be introduced. In

chapter 4, the FDTD model will be combined with the MPC scheme to do the scattering

analysis for multimode excitation.
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Chapter 3

Acoustic waves in solids and in
FDTD model

3.1 Introduction

The first part of this chapter describes the fundamental equations governing the elastic

wave motion in solids. By combining the equations of wave motion in solids and the

quasi-static approximation of the electromagnetic waves, the governing equations for

acoustic waves in piezoelectric materials are derived. In this study, the differential

equations are solved by the finite-different time-domain method (FDTD). The FDTD

spatial and temporal discretizations of the governing equations are demonstrated. The

numerical dispersion and stability of the FDTD model are discussed. Different type of

excitation sources are discussed for investigating different properties of the structures.

The boundary conditions of the numerical model are presented. From the time-domain

particle velocity obtained by the FDTD, the 2D-FFT (two-dimensional fast Fourier

transform) method is used to obtain the dispersion curve and the amplitudes of

respective modes. Finally, the summary of the FDTD model for simulating the FBAR

resonators is given.

3.2 Governing equations

3.2.1 Governing equations for non-piezoelectric materials

The equation of motion, or Newtons law, strain-displacement relation and the elastic

constitutive relation form a fundamental set of equations which completely describes the

acoustic wave motion in a linear medium [10, 30, 95]. In a lossless non-piezoelectric

medium, the two basic field equations are the equation of motion

∇ ·T = ρ
∂2u

∂t2
− F , (3.1)

and the strain-displacement relation

S = ∇s(u
t) . (3.2)
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To completely describe the wave motion in a lossless medium, another equation is needed,

which is the elastic constitutive equation

T = c · S . (3.3)

Here, T is the mechanical stress, S is the mechanical strain, F is the inner body forces,

u is the particle displacement, ρ is the mass density of the material. And c is the elastic

stiffness constant, which is a 3× 3× 3× 3 matrix and describes the elastic characteristics

of the medium. ∇ is the Nabla operator,

∇ =
∂

∂x1
x̂1 +

∂

∂x2
x̂2 +

∂

∂x3
x̂3 . (3.4)

In Cartesian coordinates, the displacement vector u is defines as

u = u1 · x̂1 + u2 · x̂2 + u3 · x̂3 , (3.5)

and the tensors T and S are in matrix notation

T =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 , (3.6)

S =


S11 S12 S13

S21 S22 S23

S31 S32 S33

 . (3.7)

The notation of the tensor elements is such that the first subscript of each element

denotes its direction, and the second subscript denotes the normal to the plane to which

the component is effective. The stress is defined as the force acting on a unit area in the

solid. Thus, the stress component T11 represents a force applied in the x1 direction to a

unit area of the x2 − x3 plane (described by its normal vector in the x1 direction); the

stress component T13 represents a force applied in the x1 direction to a unit area of the

x1−x2 plane. Figure 3.1 shows the traction forces acting on an infinitesimally small cube

in a Cartesian coordinate system. Since body torques only exist in media with permanent

electric or magnetic polarization (ferroelectric or ferromagnetic materials), for piezoelectric

materials in this project, the stress matrix is symmetric [10], i. e., T12 = T21, T13 = T31 etc.

Consequently, the stress tensor T has only six independent components. Then, the more

convenient abbreviated notation [10] is commonly used instead of the double subscript:
T1 T6 T5

T6 T2 T4

T5 T4 T3

 =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 . (3.8)
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As a result, the stress vector T is represented by the following matrix

T =



T1

T2

T3

T4

T5

T6


. (3.9)

T11

T32

T22

T12

\T31

T21

T33

T23

T13

x2

x1

x3

Figure 3.1: Traction forces acting on an infinitesimally small cube.

In equation (3.2), ∇s is the symmetric part of ∇(ut), where ∇ is assumed to be a

column vector and ut is a row vector. In that case, the vector product ∇(ut) represents

a matrix

∇(ut) =


∂u1
∂x1

∂u2
∂x1

∂u3
∂x1

∂u1
∂x2

∂u2
∂x2

∂u3
∂x2

∂u1
∂x3

∂u2
∂x3

∂u3
∂x3

 , (3.10)

and the equation for strain S is

S = ∇s(u
t) =

1

2

(
∇(ut) +

(
∇(ut)

)t)
, (3.11)

where t is the transpose of the matrix. It is obvious that the strain tensor S is symmetric.

Then, similar to equation (3.8), the following abbreviated notation is commonly used
S1 S6 S5

S6 S2 S4

S5 S4 S3

 =


S11 2S12 2S13

2S21 S22 2S23

2S31 2S32 S33

 . (3.12)
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Consequently, the strain vector S can be represented by the following matrix

S =



S1

S2

S3

S4

S5

S6


= ∇Lm u , (3.13)

where ∇Lm is the gradient operator (L = 1 to 6 and m = 1 to 3) that transforms the

displacement u = [u1 u2 u3]
t into the strain matrix. This gradient operator ∇Lm has

a matrix representation

∇Lm =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0


. (3.14)

3.2.2 Governing equations for piezoelectric materials

For piezoelectric material, the acoustic fields are coupled with the electric fields. Thus,

the elastic constitutive equation (3.3) for piezoelectric material is

T = cES− eE , (3.15)

and the electric displacement D can be obtained by the following equation

D = εSE+ eS . (3.16)

Here, E is the electric field, εS is the permittivity, cE is the elastic stiffness constant, and

e is the piezoelectric stress constant. The superscript S and E have been added to ε and

c to show that these constants describe dielectric and elastic properties measured under

conditions of constant strain and constant electric field, respectively.

As it is mentioned before that the velocity of the elastic waves is 103 to 105 times

slower than that of the electromagnetic waves, the quasi-static approximation was used in

our work. According to the quasi-static approximation, the effect of the magnetic field is

negligible and the electric field can be derived from a scalar potential Φ

E = −∇Φ . (3.17)
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The governing equations for waves propagating in piezoelectric material shown below

can be obtained by combining the Maxwell’s equations (3.18-3.19), the equation of motion

(3.1), and the constitutive equations (3.15-3.16),

−∇×E =
∂B

∂t
= 0 , (3.18)

∇×H = εS
∂E

∂t
+

e

εS
∂S

∂t
, (3.19)

∂T

∂t
= cD

∂S

∂t
− e

εS
∂D

∂t
, (3.20)

∇ ·T = ρ
∂2u

∂t2
. (3.21)

Here, the quasi-static approximation is applied and the inner body forces F are zero. B is

the magnetic flux density vector, H is the magnetic field vector, cD is the piezoelectrically

stiffened elastic constant, which is different from the elastic stiffness constant cE . The

constant cD is defined for plane waves and depends on the wave propagation direction,

while the constant cE is measured under a static electric field. The detailed calculation of

the constant cD will be given in the next section.

3.2.2.1 Piezoelectrically stiffened elastic constant

The piezoelectrically stiffened elastic constant cD can be derived by using the quasi-static

approximation [10]. Substitute the strain S = ∇Lmu and the electric field equation (3.17)

into the piezoelectric stress equation (3.15), the following equation can be obtained

T = cE∇Lmu+ e∇Φ . (3.22)

Hence, the Newton’s law equation (3.21) can be written as

∇ · cE∇Lmu+∇ · e∇Φ = ρ
∂2u

∂t2
. (3.23)

Similarly, the electric displacement D in equation (3.16) can be represented as

D = −εS∇Φ+ e∇Lmu , (3.24)

and for a source-free medium, this must satisfy the Poisson’s equation ∇ ·D = 0 , so that

−∇ · εS∇Φ+∇ · e∇Lmu = 0 . (3.25)

Equations (3.23) and (3.25) can be expressed in the matrix form as

∇lKcEKL∇Lmum +∇lKeKm∇mΦ = ρ
∂2ul
∂t2

, (3.26)

∇lε
S
lm∇mΦ = ∇lelK∇Kmum . (3.27)
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Here, ∇lK (l = 1 to 3 and K = 1 to 6) is the transpose of ∇Lm in equation (3.14).

Let us consider a plane wave propagating in a direction Î in the medium.

Î = îl1 + ĵl2 + k̂l3 , (3.28)

where Î is a unit vector in the propagation direction, and l1, l2, and l3 are the projections

of Î on the three axes. Then the particle displacement u is proportional to

u ∝ ej(ωt−kÎ·r) , (3.29)

where r = îx1 + ĵx2 + k̂x3 and k is the wavenumber. Therefore, the derivative of the

gradient ∂u/∂x1 can be obtained by the following equation

∂

∂x1
ej(ωt−kÎ·r) = −jkl1e

j(ωt−kÎ·r) = −jkl1u . (3.30)

Similarly, the x2 and x3 derivatives of the gradient can be obtained. Thus, the divergence

operator ∇Lm can be represented by

∇Lm =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0


= −jk



l1 0 0

0 l2 0

0 0 l3

0 l3 l2

l3 0 l1

l2 l1 0


= −jklLm , (3.31)

and the transpose of ∇Lm is

∇lK = ∇t
Lm = −jk


l1 0 0 0 l3 l2

0 l2 0 l3 0 l1

0 0 l3 l2 l1 0

 . (3.32)

Consequently, equations (3.26) and (3.27) can be represented by

k2
(
llK cEKN lNm

)
um + k2 (llK eKm lm)Φ = ρω2ul , (3.33)

and

k2
(
ll ε

S
lm lm

)
Φ = k2 (ll elK lKm)um . (3.34)

The factor multiplying Φ on the left-hand side of equation (3.34) is scalar and can be

divided out, giving the following equation

Φ =
[ll elN lNm]

[ll ε
S
lm lm]

um . (3.35)

Substitute equation (3.35) into equation (3.33), and rearrange some of the terms, the

following equation can be obtained

k2
(
llK

(
cEKN +

[eKm lm][ll elN ]

ll ε
S
lm lm

)
lNm

)
um = ρω2ul . (3.36)
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This is the Christoffel equation for piezoelectric materials. The piezoelectrically stiffened

elastic constant matrix cDKN can be obtained by

cDKN = cEKN +
[eKm lm][ll elN ]

ll ε
S
lm lm

. (3.37)

The piezoelectrically stiffened elastic constant cD is dependent on the piezoelectric

constant, the permittivity and the wave propagation direction.

3.3 Elastic waves in two-dimensional model

The governing equations for the piezoelectric material and the electrodes in

two-dimensional model are developed in this section, which will be discretized into the

finite-difference time-domain (FDTD) governing equations in the next section. To

develop the two-dimensional governing equations, a schematic of the generic FBAR

resonator (shown in Fig.3.2) is considered.

Piezoelectric

material

Electrode

Electrode

h
x3

x1

Figure 3.2: Two-dimensional schematic of a generic FBAR resonator.

3.3.1 Governing equations for piezoelectric material

The piezoelectric material considered in this project is AlN, which belongs to the

hexagonal system[95]. Therefore, equations (3.15) and (3.16) can be expressed by the
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matrix equations



T1

T2

T3

T4

T5

T6


=



cE11 cE12 cE13 0 0 0

cE12 cE11 cE13 0 0 0

cE13 cE13 cE33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE44 0

0 0 0 0 0 cE66





S1

S2

S3

S4

S5

S6


−



0 0 e31

0 0 e31

0 0 e33

0 e15 0

e15 0 0

0 0 0




E1

E2

E3

 ,(3.38)


D1

D2

D3

 =


εS11 0 0

0 εS11 0

0 0 εS33




E1

E2

E3

+


0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0





S1

S2

S3

S4

S5

S6


.(3.39)

The elastic stiffness, mass density, permittivity and piezoelectric constants of AlN are

given in Table 3.1. Since AlN belongs to the hexagonal system, the stiffness component

cE66 can be obtained by cE66 = (cE11 − cE12)/2.

Table 3.1: Elastic stiffness, mass density, permittivity and piezoelectric constants of AlN

Elastic stiffness (1011 N/m2)
Mass
density
(kg/m3)

Permittivity
(εSr /εo)

Piezoelectric
constant
(C/m2)

cE11 cE12 cE13 cE33 cE44 ρAlN εS11 εS33 e15 e31 e33
3.45 1.25 1.20 3.95 1.18 3512 9 11 −0.48 −0.58 1.55

In this study, the Euler angles of the materials were set at < 0◦, 0◦, 0◦ >. Hence,

the crystalline axes X, Y, and Z coincided with the axes x1, x2, and x3, respectively

[19]. Therefore, no coordinate conversion is needed. A 2D FDTD (two-dimensional finite-

difference time-domain) model was set up to simulate the FBAR resonators. In this 2D

model, only the variables in the x1 − x3 plane were considered. Therefore, the governing

equations of waves propagating in AlN can be obtained by applying the material properties
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to equations (3.20) and (3.21), and eliminating the strain by equation (3.13),

∂T1

∂t
= cD11

∂2u1
∂x1∂t

+ cD13
∂2u3
∂x3∂t

− e31

εS33

∂D3

∂t
, (3.40)

∂T3

∂t
= cD13

∂2u1
∂x1∂t

+ cD33
∂2u3
∂x3∂t

− e33

εS33

∂D3

∂t
, (3.41)

∂T5

∂t
= cD44

∂2u1
∂x3∂t

+ cD44
∂2u3
∂x1∂t

− e15

εS11

∂D1

∂t
, (3.42)

ρAlN
∂2u1
∂t2

=
∂T1

∂x1
+

∂T5

∂x3
, (3.43)

ρAlN
∂2u3
∂t2

=
∂T5

∂x1
+

∂T3

∂x3
. (3.44)

The values of cD can be obtained by equation (3.37) derived in Section 3.2.2.1. Since in

FBAR the fundamental mode utilized is the thickness resonance mode, in this study the

wave vector direction is assumed to be along the x3-axis. Thus the wave vector in equation

(3.28) is

Î = k̂l3 . (3.45)

Substituting the values of the piezoelectric constant of AlN (shown in equation (3.38)) into

equation (3.37), the second factor in the numerator of the stiffening term can be obtained

by

[llelN ] =
[
0 0 1

]
0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

 =
[
e31 e31 e33 0 0 0

]
,

(3.46)
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and the first factor [eKm lm] is the transpose of [ll elN ]. Thus,

[eKm lm] [ll elN ] =



e31

e31

e33

0

0

0


[
e31 e31 e33 0 0 0

]

=



e231 e231 e31e33 0 0 0

e231 e231 e31e33 0 0 0

e31e33 e31e33 e233 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



. (3.47)

And the denominator is

ll ε
S
lm lm =

[
0 0 1

]
εS11 0 0

0 εS11 0

0 0 εS33




0

0

1

 = εS33 . (3.48)

Thus, the piezoelectrically stiffened elastic constant matrix cD of AlN can be expressed as

[
cD
]
=



cE11 +
e231
εS33

cE12 +
e231
εS33

cE13 +
e31e33
εS33

0 0 0

cE12 +
e231
εS33

cE11 +
e231
εS33

cE13 +
e31e33
εS33

0 0 0

cE13 +
e31e33
εS33

cE13 +
e31e33
εS33

cE33 +
e233
εS33

0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE44 0

0 0 0 0 0 cE66



. (3.49)

By rearranging the terms in equation (3.16) and differentiating the variables with
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respect to t, the detected electric field can be obtained by the following equations,

∂E1

∂t
= −e15

εS11

(
∂2u1
∂x3∂t

+
∂2u3
∂x1∂t

)
+

1

εS11

∂D1

∂t
, (3.50)

∂E3

∂t
= −e31

εS33

∂2u1
∂x1∂t

− e33

εS33

∂2u3
∂x3∂t

+
1

εS33

∂D3

∂t
. (3.51)

The electric potential U3 along the thickness direction is calculated by

U3 = −
∫
h
E3 dh , (3.52)

where h is the thickness of the piezoelectric material between the two electrodes (as shown

in Fig. 3.2). The electric impedance Z is calculated by

Z =
U(ω)

I(ω)
, (3.53)

where U(ω) is the electric potential in frequency domain, and I(ω) is the electric current

in frequency domain.

The governing equations with particle displacement contain second-order derivatives.

However, due to the second-order characteristics of the wave equations, the finite-difference

equations are complicated and the boundary conditions are difficult to implement. Because

of its simplicity, the first-order approach is presently the most popular approach for finite-

difference modeling in electromagnetics.

To simplify the governing equations (3.40) - (3.44) and (3.50) - (3.51) from the second-

order partial differential equations to the first-order partial differential equations, the

particle velocity is introduced for the particle displacement. The particle velocity is the

time derivative of the displacement vector:

v =
∂u

∂t
. (3.54)

Replacing ∂um
∂t with vm (m =1 and 3). The governing equations with only first-order
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derivatives can be obtained as

∂T1

∂t
= cD11

∂v1
∂x1

+ cD13
∂v3
∂x3

− e31

εS33

∂D3

∂t
, (3.55)

∂T3

∂t
= cD13

∂v1
∂x1

+ cD33
∂v3
∂x3

− e33

εS33

∂D3

∂t
, (3.56)

∂T5

∂t
= cD44

∂v1
∂x3

+ cD44
∂v3
∂x1

− e15

εS11

∂D1

∂t
, (3.57)

ρAlN
∂v1
∂t

=
∂T1

∂x1
+

∂T5

∂x3
, (3.58)

ρAlN
∂v3
∂t

=
∂T5

∂x1
+

∂T3

∂x3
, (3.59)

∂E1

∂t
= −e15

εS11

(
∂v1
∂x3

+
∂v3
∂x1

)
+

1

εS11

∂D1

∂t
, (3.60)

∂E3

∂t
= −e31

εS33

∂v1
∂x1

− e33

εS33

∂v3
∂x3

+
1

εS33

∂D3

∂t
. (3.61)

3.3.2 Governing equations for metal

The electrode materials for FBAR resonators, such as the commonly used Al, W, and

Ru, are non-piezoelectric materials, which belong to the cubic system [95]. Thus, the

piezoelectric constants e do not exist for these materials, and the elastic stiffness constants

and permittivity need not to be measured under a constant electric field and a constant

strain, respectively. Equations (3.15) and (3.16) can be simplified and expressed in the

following matrix equations

T1

T2

T3

T4

T5

T6


=



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44





S1

S2

S3

S4

S5

S6


, (3.62)


D1

D2

D3

 =


ε11 0 0

0 ε11 0

0 0 ε11




E1

E2

E3

 . (3.63)

Here, cij and εij are the elastic stiffness constant and permittivity of non-piezoelectric

materials, respectively.

58



Aluminum is used as the electrodes in this study. The elastic stiffness, mass density

and permittivity of Al are given in Table 3.2.

Table 3.2: Elastic stiffness, mass density, and permittivity of Al
Elastic stiffness (1010 N/m2) Mass

density
(kg/m3)

Permittivity
(εr/εo)

c11 c12 c44 ρAl ε11
10.80 6.13 2.85 2700 1

There is no electric field within the metal electrodes. Thus, applying the material

properties of Al to equations (3.20) and (3.21), the first-order governing equations of wave

propagating in Al can be expressed as

∂T1

∂t
= c11

∂v1
∂x1

+ c12
∂v3
∂x3

, (3.64)

∂T3

∂t
= c12

∂v1
∂x1

+ c33
∂v3
∂x3

, (3.65)

∂T5

∂t
= c44

∂v1
∂x3

+ c44
∂v3
∂x1

, (3.66)

ρAl
∂v1
∂t

=
∂T1

∂x1
+

∂T5

∂x3
, (3.67)

ρAl
∂v3
∂t

=
∂T5

∂x1
+

∂T3

∂x3
. (3.68)

3.4 FDTD spatial and temporal discretizations

As the governing equations (3.55)-(3.61) and (3.64)-(3.68) in the partial differential form

cannot be solved analytically, in this study, the numerical finite-difference scheme is used.

In the finite-difference scheme, the partial differential equations are commonly discretized

using centered finite differences. Let f(x) be one of the continuous function in the system

of the governing equations. For a finite difference ∆x, the derivative of a function f = f(x)

with respect to x at the point x0 can be approximated by a centered finite difference:

∂f

∂x
|x=x0 =

f(x0 +∆x/2)− f(x0 −∆x/2)

∆x
− (∆x)2

24

∂3f

∂x3
|x=x0 − (∆x)4

384

∂5f

∂x5
|x=x0 + · · ·

=
f(x0 +∆x/2)− f(x0 −∆x/2)

∆x
+O

(
∆x2

) .

(3.69)

In equation (3.69), the term O
(
∆x2

)
denotes the error term. The smaller the finite

difference ∆x is, the higher accuracy can be obtained. When the finite difference ∆x is
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sufficiently small, equation (3.69) can be approximated to

∂f

∂x
|x=x0 =

f(x0 +∆x/2)− f(x0 −∆x/2)

∆x
. (3.70)

A second-order accurate centered finite difference is obtained by equation (3.70).

In the FDTD algorithm, the governing partial differential equations are

approximated by the second-order accurate centered finite difference for both the space

and time derivatives.

3.4.1 FDTD spatial discretization

When applying the centered finite difference discretization to the governing partial

differential equations, a discrete grid of regular rectangular shape arises. The spatial

layout of the field variables in the proposed FDTD model is shown in Figure 3.3. In this

layout, each field component is surrounded by the field components it is dependent

on[84]. One important characteristic of the finite-difference grid is that the particle

velocity and the stress components are not allocated at the same points in space. The

structure of the finite-difference grid is quite similar to the one used for the

electromagnetic finite-difference modeling, which is called the Yee-cell[111]. The main

difference between the proposed FDTD model and the electromagnetic FDTD model is

that the proposed FDTD model includes the electric and acoustic field components

instead of the electric and magnetic field components.

1
x 

3
x 

i i+1

j

j+1

1 3 3
, ,T T E

1
v

3
v

5 1
,T E

Figure 3.3: Spatial layout of the variables in the FDTD model.

The finite-difference grid can be viewed as being composed of basis cells. Each basis
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cell is characterized by the space step sizes ∆x1 and ∆x3 in the x1 and x3 direction,

respectively. The position of the cell component in real space can be identified by x1 =

i ·∆x1 and x3 = j ·∆x3 [84]. The positions of the field components of the (i, j)-th cell in

real space are listed in Table 3.3.

Table 3.3: Positions of the field components of the (i, j)-th cell in the finite-difference grid.
Field component x1 x3

T1 i∆x1 j∆x3
T3 i∆x1 j∆x3
T5

(
i+ 1

2

)
∆x1

(
j + 1

2

)
∆x3

v1
(
i+ 1

2

)
∆x1 j∆x3

v3 i∆x1
(
j + 1

2

)
∆x3

E1

(
i+ 1

2

)
∆x1

(
j + 1

2

)
∆x3

E3 i∆x1 j∆x3

3.4.2 FDTD temporal discretization

The same centered finite-difference approximation is applied to the field components in

time [84]. The time derivative of a function f = f(t) at t0 can be expressed by introducing

a finite difference ∆t:

∂f

∂t
|t=t0 =

f(t0 +∆t/2)− f(t0 −∆t/2)

∆t
. (3.71)

In the temporal discretization, the discrete time is labeled with the index n. Assuming

the increment time of the finite-difference algorithm to be ∆t, the values of the stress and

electric field components are set to be known at the full time step, t = n∆t, while the values

of the particle velocity components are evaluated at the half time step, t =
(
n+ 1

2

)
∆t.

This time update scheme is the so-called leap-frog scheme[111]. Note that this method is

an explicit method. Updating the values of the components only depends on the results

at the previous times.

Applying finite differences in both space and time, the partial differential equations

are approximately discretized into difference equations. For example, applying the

discretization to equation (3.56) yields(
T3

∣∣∣n+1
i,j − T3

∣∣∣ni,j )
∆t

=

[
cD13
∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
+

cD33
∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)]

− e33

εS33

D3

∣∣∣n+1
i,j −D3

∣∣∣ni,j
∆t

.

(3.72)

By rearranging the terms, the FDTD equation for the longitudinal stress T3 at the
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incremented time t = (n+ 1)∆t can be obtained as

T3

∣∣∣n+1
i,j = T3

∣∣n
i,j +∆t

[
cD13
∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
+

cD33
∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)]

− e33

εS33

(
D3

∣∣∣n+1
i,j −D3

∣∣n
i,j

) .

(3.73)

The symbol T3

∣∣∣n+1
i,j denotes the numerical value of the stress component T3 at the position

x1 = i∆x1 and x3 = j∆x3 at the time t = (n+1)∆t. According to equation (3.73), T3

∣∣∣n+1
i,j

can be evaluated by the stress component at the previous time step T3

∣∣∣ni,j and the adjacent

particle velocities at the previous half time step. The effect of the external electric field is

also included by including the difference between the current field value D3

∣∣∣n+1
i,j and the

previous field value D3

∣∣∣ni,j .
3.4.3 Governing equations of piezoelectric material in FDTD model

By applying the finite-difference scheme in space and time as it is stated in Section 3.4.2,

the discrete governing equations of AlN in the FDTD model can be obtained. Firstly, for

the stress components in AlN, equations (3.55) - (3.57) are discretized as

T1

∣∣∣n+1
i,j = T1

∣∣n
i,j +∆t

[
cD11
∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
+

cD13
∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)]

− e31

εS33

(
D3

∣∣∣n+1
i,j −D3

∣∣n
i,j

) ,

(3.74)

T3

∣∣∣n+1
i,j = T3

∣∣n
i,j +∆t

[
cD13
∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
+

cD33
∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)]

− e33

εS33

(
D3

∣∣∣n+1
i,j −D3

∣∣n
i,j

) ,

(3.75)

T5

∣∣∣∣n+1
i+ 1

2
,j+ 1

2

= T5

∣∣∣ni+ 1
2
,j+ 1

2

+∆t

[
cD44
∆x3

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j+1

− v1

∣∣∣∣n+ 1
2

i+ 1
2
,j

)
+

cD44
∆x1

(
v3

∣∣∣∣n+ 1
2

i+1,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j+ 1
2

)]

− e15

εS11

(
D1

∣∣∣∣n+1
i+ 1

2
,j+ 1

2

−D1

∣∣∣ni+ 1
2
,j+ 1

2

)
.

(3.76)
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Secondly, for the particle velocity components in AlN, equations (3.58) and (3.59) are

discretized as

v1

∣∣∣∣n+ 1
2

i+ 1
2
,j

= v1

∣∣∣∣n− 1
2

i+ 1
2
,j
+

∆t

ρAlN

[
1

∆x1

(
T1

∣∣n
i+1,j − T1

∣∣n
i,j

)
+

1

∆x3

(
T5

∣∣∣ni+ 1
2
,j+ 1

2

− T5

∣∣∣ni+ 1
2
,j− 1

2

)]
,

(3.77)

v3

∣∣∣∣n+ 1
2

i,j+ 1
2

= v3

∣∣∣∣n− 1
2

i,j+ 1
2

+
∆t

ρAlN

[
1

∆x1

(
T5

∣∣∣ni+ 1
2
,j+ 1

2

− T5

∣∣∣ni− 1
2
,j+ 1

2

)
+

1

∆x3

(
T3

∣∣n
i,j+1 − T3

∣∣n
i,j

)]
.

(3.78)

Finally, for the electric components in AlN, equations (3.60) and (3.61) are discretized as

E1

∣∣∣∣n+1
i+ 1

2
,j+ 1

2

= E1

∣∣∣ni+ 1
2
,j+ 1

2

− e15∆t

εS11

[
1

∆x3

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j+1

− v1

∣∣∣∣n+ 1
2

i+ 1
2
,j

)
+

1

∆x1

(
v3

∣∣∣∣n+ 1
2

i+1,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j+ 1
2

)]

+
1

εS11

(
D1

∣∣∣∣n+1
i+ 1

2
,j+ 1

2

−D1

∣∣∣ni+ 1
2
,j+ 1

2

)
,

(3.79)

E3

∣∣∣n+1
i,j = E3

∣∣n
i,j − e31∆t

εS11∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
− e33∆t

εS33∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)

+
1

εS33

(
D3

∣∣∣n+1
i,j −D3

∣∣n
i,j

) .

(3.80)

3.4.4 Governing equations of metal in FDTD model

Similarly, by applying the finite-difference scheme in space and time as it is stated in

Section 3.4.2, the discrete governing equations of Al in the FDTD model can be obtained.

Note that the commonly used W and Ru will have the same governing equations as

Al, because they all belong to the cubic system. For the stress and particle velocity

components in Al, equations (3.64) - (3.68) are discretized as

T1

∣∣∣n+1
i,j = T1

∣∣n
i,j +∆t

[
c11
∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
+

c12
∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)]
,

(3.81)

T3

∣∣∣n+1
i,j = T3

∣∣n
i,j +∆t

[
c12
∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
+

c33
∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)]
,

(3.82)
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T5

∣∣∣∣n+1
i+ 1

2
,j+ 1

2

= T5

∣∣∣ni+ 1
2
,j+ 1

2

+∆t

[
c44
∆x3

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j+1

− v1

∣∣∣∣n+ 1
2

i+ 1
2
,j

)
+

c44
∆x1

(
v3

∣∣∣∣n+ 1
2

i+1,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j+ 1
2

)] ,

v1

∣∣∣∣n+ 1
2

i+ 1
2
,j

= v1

∣∣∣∣n− 1
2

i+ 1
2
,j
+

∆t

ρAl

[
1

∆x1

(
T1

∣∣n
i+1,j − T1

∣∣n
i,j

)
+

1

∆x3

(
T5

∣∣∣ni+ 1
2
,j+ 1

2

− T5

∣∣∣ni+ 1
2
,j− 1

2

)]
,

(3.83)

v3

∣∣∣∣n+ 1
2

i,j+ 1
2

= v3

∣∣∣∣n− 1
2

i,j+ 1
2

+
∆t

ρAl

[
1

∆x1

(
T5

∣∣∣ni+ 1
2
,j+ 1

2

− T5

∣∣∣ni− 1
2
,j+ 1

2

)
+

1

∆x3

(
T3

∣∣n
i,j+1 − T3

∣∣n
i,j

)]
.

(3.84)

3.5 Numerical analysis of the FDTD algorithm: dispersion
and stability

The FDTD algorithm provides a good approximation to the real physical behavior of the

fields. However, the finite-difference approximation of derivatives of continuous functions

unavoidably introduces an error to the solution. To reduce the numerical error to an

acceptable extent, the numerical dispersion and stability of the FDTD scheme are discussed

in this section. The restrictions of the spatial step sizes ∆x1 and ∆x3 and the time step

size ∆t are investigated, respectively.

3.5.1 Numerical dispersion

Numerical dispersion is an undesired nonphysical effect inherently present in the FDTD

algorithm. The finite-difference approximation of derivatives of continuous functions

unavoidably introduces an error to the solution. This means that the wave propagation

velocity of the numerical solution will generally differ from the actual wave velocity, and

vary with frequency, the spatial grid size, and the wave propagation direction. The

differences of phase velocities numerically obtained by the FDTD method from the

actual phase velocities is referred to as numerical dispersion, which exposes itself as a

distortion of the waveform.

In practice, in order to reduce this numerical dispersion to an acceptable extent, the

space step size should not exceed one twentieth of the minimum wavelength excited within

the model. That is

∆x1,∆x3 <
λmin

20
, (3.85)
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and

λmin =
vmin

fmax
, (3.86)

where fmax is the maximum frequency of the excited source, and vmin is the minimum

phase velocity of the acoustic wave propagating in the structure.

3.5.2 Numerical stability

Numerical instability is an undesired possibility that the numerically calculated results

can spuriously increase without limit as time-marching continues. The FDTD algorithm

samples the acoustic and electric fields at discrete points both in time and space. The

sampling step sizes (∆t in time, ∆x1, and ∆x3 in space) must satisfy certain restrictions

to guarantee the stability of the solution. Specifically, to ensure the stability of the FDTD

scheme, the time increment step size ∆t should be chosen to satisfy the Courant condition

[111]:

vmax∆t

√
1

∆x21
+

1

∆x23
≤ 1 , (3.87)

where vmax is the maximum phase velocity of the acoustic wave propagating in the

structure. If a square cell with ∆x1 = ∆x3 is chosen, equation (3.87) is simplified to

vmax
∆t

∆x1
≤ 1√

2
. (3.88)

Note that the Courant condition only provides a relationship between the spatial grid size

and the time step. Satisfaction of the Courant condition does not guarantee the numerical

accuracy of the solution. One must still comply with the sampling theory requirements

with respect to the highest excited frequency in the model. Usually, when the spatial grid

size is chosen according to the numerical dispersion requirements as it is stated in Section

3.5.1, the time step size chosen to satisfy the Courant condition will implicity comply with

the sampling theory requirements.

3.6 Excitation source

In this section, three types of source waveforms will be discussed, the Gaussian pulse

waveform, the toneburst waveform, and the sinusoidal waveform. These three types of

waveforms will be applied to different FDTD simulations in this study.

3.6.1 Gaussian pulse waveform

Gaussian pulse waveform is suitable for wideband analysis. The pulse characteristic is

dependent on the frequency range of the simulation[111]. The Gaussian pulse in time

domain is expressed as:

g(t) = exp

(
−4π(t− t0)

2

τ2

)
. (3.89)
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In our analysis, τ and t0 equal to
2

fmax
. For example, the Gaussian pulse with the maximum

simulation frequency of 2 GHz is shown in Figure 3.4. The frequency domain characteristic

is obtained by FFT (fast Fourier transform). This waveform was applied as the excitation

source of the electric displacement (D) to calculate the dispersion characteristic of FBAR.

3.6.2 Toneburst waveform

The toneburst waveform is suitable for narrowband analysis. Generally, the toneburst used

in this study is a sinusoidal wave of several cycles multiplied by a window function h(t).

The window function is used to smooth the turn-on and turn-off procedure of the source

and reduce the influence of the sidelobes. The time domain expression of the toneburst

wave is

g(t) = sin(ω0t) · h(t) (0 ≤ t ≤ t1) , (3.90)

where ω0 is the center frequency of the interested frequency range, h(t) is a window

function and t1 stands for the duration of the wave.

A sinusoidal wave of five cycles modified by a Hanning window at the frequency of

1.315 GHz is shown in Figure 3.5 as an example. The toneburst waveform was used as

the excitation source for multimode excitation scattering analysis in Chaper 4.

3.6.3 Sinusoidal waveform

A sine or cosine function is a single-frequency waveform, which is suitable for the steady

state analysis. The time domain expression of the sinusoidal wave is simply

g(t) = sin(ω0t) . (3.91)

A sinusoidal wave at the frequency of 1.331 GHz is shown in Figure 3.6 as an example.

Here, only part of the sine wave is shown for a clear view. In FDTD simulation, the

sinusoidal waveform is excited for a limited duration, and the turn-on and turn-off of the

wave will add other frequency components to the frequency spectrum. Thus, the frequency

domain characteristic of the sinusoidal waveform is not a single line at the frequency of ω0,

as it is shown in Figure 3.6(b). The sinusoidal waveform excitation was used to observe

the steady state response of FBAR resonators in Chapter 5. To observe the steady state

response, the simulation should be run long enough such that the transient response due

to the turn on of the sources die out and only the sinusoidal response persists.
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(a)

(b)

Figure 3.4: Gaussian pulse waveform with maximum frequency of 2GHz: (a) in the time
domain, (b) in the frequency domain.
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(a)

(b)

Figure 3.5: Toneburst waveform of five cycles at 1.315 GHz: (a) in the time domain, (b)
in the frequency domain.
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(a)

(b)

Figure 3.6: Sinusoidal waveform at 1.331 GHz: (a) in the time domain, (b) in the frequency
domain.
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3.7 Boundary conditions

When implementing the FDTD scheme, the boundary conditions should be treated in

a special manner. Two kinds of boundary conditions are discussed in this section: the

external boundaries (air and medium interfaces), and the internal boundaries (boundaries

within the medium caused by a change in material properties). Here, only the stress and

particle velocity components are considered, because the electric field intensity is only

used to observe the electric response, and it does not affect the wave propagation.

3.7.1 Free surface boundary condition

The numerical model of the FBARs (free-standing bulk acoustic resonators) is bounded

at its top and bottom face by a free surface. A free surface is the interface between a

medium and air. In air, all elastic fields vanish. Consequently, due to the continuity of

the normal stress, all normal stress components on the interface between the air and the

material should be zero [104]:

T3(x1, x3 = 0 or h) = 0 , (3.92)

T5(x1, x3 = 0 or h) = 0 , (3.93)

where h is the total thickness of the model.

Since in the numerical simulation the stress component T5 is not located on the interface

(shown in Fig. 3.3), condition (3.93) should be treated in a special way by adding an extra

row above and below the model (Fig. 3.7). With this extra row, the shear stress T5 at

x3 = 0 is averaged on the interface and the average is set to be zero:(
T5

∣∣∣n
i,− 1

2

+ T5

∣∣∣n
i, 1

2

)
2

= 0 . (3.94)

T5

∣∣∣n
i, 1

2

is located within the model, so it is calculated using the normal update equations.

Based on equation (3.94), the transverse stresses on the extra row T5

∣∣∣n
i,− 1

2

can be obtained

by the following equation:

T5

∣∣∣ni,− 1
2

= −T5

∣∣∣ni, 1
2

. (3.95)

Consequently, the velocity on the interface v1

∣∣∣∣n+ 1
2

i,0 can be evaluated using the normal

governing equations by the values of the transverse stress components on the extra row

T5

∣∣∣n
i,− 1

2

. Similarly, the same approach can be applied to the bottom surface.

The particle velocity components on the extra row v3

∣∣∣∣n+ 1
2

i,− 1
2

can be used to calculate

the longitudinal stresses on the surface T1

∣∣∣n+1
i,0 . However, the velocity components on the

extra row v3

∣∣∣∣n+ 1
2

i,− 1
2

cannot be calculated by the normal governing equations. They should
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Figure 3.7: FDTD grid with an extra row inserted on the top interface.

be treated in a special manner. The update equation for the velocity components on the

extra row v3

∣∣∣∣n+ 1
2

i,− 1
2

is obtained by setting T3

∣∣∣ni,0 on the top interface to zero. Without

external excitation, by implementing the stress free condition of T3 on the top interface,

the following equation can be obtained from equation (3.75):

0 = 0 +∆t

[
cD13
∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,0
− v1

∣∣∣∣n+ 1
2

i− 1
2
,0

)
+

cD33
∆x3

(
v3

∣∣∣∣n+ 1
2

i, 1
2

− v3

∣∣∣∣n+ 1
2

i,− 1
2

)]
. (3.96)

By rearranging the terms of equation (3.96), the update equation for particle velocity v3

on the extra row is obtained:

v3

∣∣∣∣n+ 1
2

i,− 1
2

= v3

∣∣∣∣n+ 1
2

i, 1
2

+
cD13∆x3

cD33∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,0
− v1

∣∣∣∣n+ 1
2

i− 1
2
,0

)
. (3.97)

Now, the stress free boundary condition is satisfied on the top surface and all the field

components on the surface are determined.

In a similar way, the update equation for particle velocity v3 on the bottom extra row

is as below:

v3

∣∣∣∣n+ 1
2

i,j+ 1
2

= v3

∣∣∣∣n+ 1
2

i,j− 1
2

− cD13∆x3

cD33∆x1

(
v1

∣∣∣∣n+ 1
2

i+ 1
2
,j
− v1

∣∣∣∣n+ 1
2

i− 1
2
,j

)
. (3.98)

Similarly, the free surface also exist on the left and right air and medium interfaces.

The stress free condition on the left or right boundary is applied by setting stress fields
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T1 and T5 to zero:

T1(x1 = 0 or L, x3) = 0 , (3.99)

T5(x1 = 0 or L, x3) = 0 , (3.100)

where L is the length of the model.
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Figure 3.8: FDTD grid with an extra row inserted on the top interface and an extra
column inserted on the left boundary.

Since T5 is not located on the left or right boundary (shown in Fig. 3.3), an extra

column should also be added on the left side and right side of the model. Condition

(3.100) should be treated in a special way by adding an extra column on the left and right

side of the model (Fig. 3.8). With this extra column, the shear stress T5 is averaged on

the interface and the average is set to be zero:

T5

∣∣∣n
i− 1

2
,j− 1

2

+ T5

∣∣∣n
i+ 1

2
,j− 1

2

2
= 0 . (3.101)

For i ̸= 0, T5

∣∣∣n
i− 1

2
,j− 1

2

is calculated by equation (3.101). T5

∣∣∣n
i+ 1

2
,j− 1

2

is located inside

the module, so it is calculated using the normal update equations. However, for i = 0, T5

is at the intersection of the extra row and extra column, and equation (3.101) is not valid

any more. Thus, T5

∣∣∣n− 1
2
,− 1

2

is calculated by averaging the two nearest point around it (in

Fig. 3.8 T5 at point 1 is calculated by averaging the values of T5 on point 2 and 4). The

shear stress components T5 at the other intersections are treated in a similar way. The

stress free condition T1 equal to zero is used to derive the update equation for v1 on the

72



extra column. Without external excitation, by implementing the stress free condition of

T1 on the left interface, the following equation can be obtained from equation (3.74):

0 = 0 +∆t

[
cD11
∆x1

(
v1

∣∣∣∣n+ 1
2

1
2
,j

− v1

∣∣∣∣n+ 1
2

− 1
2
,j

)
+

cD13
∆x3

(
v3

∣∣∣∣n+ 1
2

0,j+ 1
2

− v3

∣∣∣∣n+ 1
2

0,j− 1
2

)]
. (3.102)

Consequently, the update equation for v1 on the left extra column is obtained by

rearranging the terms of equation (3.102):

v1

∣∣∣∣n+ 1
2

− 1
2
,j

= v1

∣∣∣∣n+ 1
2

1
2
,j

+
cD13∆x1

cD11∆x3

(
v3

∣∣∣∣n+ 1
2

0,j+ 1
2

− v3

∣∣∣∣n+ 1
2

0,j− 1
2

)
. (3.103)

In a similar way, the update equation for particle velocity v1 on the right extra column is

as below:

v1

∣∣∣∣n+ 1
2

i+ 1
2
,j

= v1

∣∣∣∣n+ 1
2

i− 1
2
,j
− cD13∆x1

cD11∆x3

(
v3

∣∣∣∣n+ 1
2

i,j+ 1
2

− v3

∣∣∣∣n+ 1
2

i,j− 1
2

)
. (3.104)

From equation (3.97) and (3.103), the particle velocity v3 on the extra row at point

5 (Fig. 3.8) is calculated by v3 at point 7 and v1 at points 6 and 8, whereas the particle

velocity v1 on the extra column at point 8 is calculated by v1 at point 6 and v3 at points

5 and 7. v3 on the extra row at point 5 and v1 on the extra column at point 8 can not be

calculated unless one of them is calculated by another method. In this project, v3 on the

extra row at point 5 is calculated by averaging the two nearest points around it (in Fig.

3.8 v3 at point 5 is calculated by averaging the values of v3 at point 7 and 9). v3 on the

other corner of the structure are calculated in a similar way. The parameters used on the

extra row and extra column are the same as the parameters used in the adjacent material.

Finally, the stress free boundary condition is satisfied and all the field components on the

surface are determined.

3.7.2 Interface boundary condition

The interface boundary conditions are applied at the interfaces between two different

materials. Figure 3.9 shows a cross section of the FDTD grid at an interface between

two materials. To minimize the number of the field components that are located on

the interface, the boundary is placed such that it always passes through the shear stress

components, as it is shown in Fig. 3.9. Thus, the normal particle velocity components are

always placed on the interface. To ensure that the Courant condition is a sufficient stability

condition, the material properties such as the elastic stiffness constants and material mass

densities are averaged at the interface boundary [104].

As shown in Figure 3.9, the interface boundaries contain the shear stress components

(T5) and the particle velocity components (v1 and v3). However, the longitudinal stress

components (T1 and T3) will never lie on the boundary. Thus, the longitudinal elastic

stiffness constants do not have to be averaged. At an interface between two materials, the
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Figure 3.9: Finite-difference grid at the interface between two materials.

mass density of the material is averaged (Eq. 3.105) and the inverse of the shear elastic

stiffness constant is averaged (Eq. 3.106).

ρavg =
ρmaterial 1 + ρmaterial 2

2
, (3.105)

cavg =
2

1
cmaterial 1

+ 1
cmaterial 2

, (3.106)

where ρmaterial 1 and ρmaterial 2 are the mass densities in the material 1 and the material

2, respectively. cmaterial 1 and cmaterial 2 are the shear elastic stiffness constants in the

material 1 and the material 2, respectively. Then, this boundary condition is applied

to the discrete finite-difference grids. For instance, the material mass density used to

calculate v3 |i+1,j+0.5 on the interface in Fig. 3.9 is:

ρavg |i+1,j+0.5 =
ρ |i+1,j−0.5 + ρ |i+1,j+1.5

2
. (3.107)

And, the averaged shear elastic stiffness constants used for calculating the shear stress

component T5 |i+0.5,j−0.5 on the interface in Fig. 3.9 are:

cavg |i+0.5,j−0.5 = 2

(
1

c |i−0.5,j−0.5
+

1

c |i+1.5,j−0.5

)−1

. (3.108)
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For the shear stress components at the corner of the interface, the shear elastic stiffness

constants must be averaged among all the four adjacent cells. For example, the averaged

shear elastic stiffness constants used for calculating the shear stress component

T5 |i+0.5,j+0.5 (shown in Fig. 3.9) are

cavg |i+0.5,j+0.5 = 4

(
1

c |i−0.5,j+0.5
+

1

c |i+0.5,j+1.5
+

1

c |i+1.5,j+0.5
+

1

c |i+0.5,j−0.5

)−1

,

(3.109)

where c |i+1.5,j+0.5 and c |i+0.5,j−0.5 are located on the interface of two materials and can

be obtained in a similar way as equation (3.108).

Following this averaging method, all material properties located at the interface of

different materials can be determined.

In practice, a viscous acoustic damping material, such as a viscoelastic material, such

as polyimide, can be added at the boundary to absorb the outgoing acoustic waves. The

substrate on which the piezoelectric layer is deposited will influence the quality of the

piezoelectric layer. Some metals lead to better c-axis-oriented crystal structure than

others, because of crystallographic compatibility between them and the AlN layer.

Molybdenum (Mo), tungsten (W), aluminum (Al) and platinum (Pt) are some of the

materials commonly used in AlN-based FBAR fabrication. Additional post-processing

technique such as annealing of the piezoelectric-deposited wafer may be applied to

improve the crystals quality and smooth the interface between the metal and

piezoelectric layer [18].

3.8 2D-FFT method

FBAR resonators utilize the fundamental longitudinal mode along the thickness

direction. However, Rayleigh-Lamb modes are also excited and propagate along the

lateral direction. The purpose of this study is to investigate these spurious modes within

the FBAR resonators. The two-dimensional Fourier transformation (2D FFT) method is

applied to extract the dispersion curve of these Rayleigh-Lamb modes, and obtain the

amplitudes of each mode at a specified frequency.

The 2D FFT method was proposed to measure the amplitudes and velocities of

Lamb waves when many propagating modes are present in nondestructive testing (NDT)

applications [7, 8]. Assuming a harmonic acoustic wave propagating in a plate along x1

direction, the particle velocity on the surface v(x1, t) may be expressed as

v(x1, t) = A(ω)ej(ωt−βx1−θ) , (3.110)

where A(ω) is a frequency dependent amplitude constant, ω is the angular frequency,

β is the wavenumber, and θ denotes the phase. Applying the 2D FFT analysis to the
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particle velocity on the surface v(x1, t) is composed of two steps: firstly, a temporal Fourier

transform is applied to transform the data from the time to frequency domain; then a

spatial Fourier transform is applied to transform the data to the frequency-wavenumber

domain. Theoretically, applying 2D FFT analysis to equation (3.110) giving

V (β, f) =

∫ +∞

−∞

∫ +∞

−∞
v(x1, t)e

−j(ωt+βx1)dx1 dt . (3.111)

The discrete two-dimensional Fourier transform can be defined in a similar way to the

one-dimensional discrete Fourier transform (DFT) given in standard texts (for example

[80]). A two-dimensional array of amplitudes at discrete frequencies and wavenumbers can

be obtained by applying the discrete 2D FFT transform to the data gained experimentally

or numerically. As in the one-dimensional case, the sampling rate of data in time and in

space must be sufficiently high to avoid aliasing. Window functions such as the Hanning

window may be applied to reduce the influence of the sidelobes, and zeros may be padded

to the end of the signal to smooth the FFT result. Details of the fast Fourier transform

algorithm, aliasing, leakage, zero padding and other effects associated with discrete Fourier

transform can be found in standard texts (for example [85]).

x3

PassiveActive

x1

 AlN 
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air
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Figure 3.10: 2D FDTD model of FBAR resonator for dispersion analysis.

A Gaussian pulse with maximum frequency of 2 GHz as shown in section 3.6.1 is applied

as the excitation source for a FBAR resonator (shown in Fig. 3.10). Here, Gaussian pulse is

applied as the electric displacement D3 in the thickness direction within the active region,

the electric displacement D1 in the lateral direction is assumed to be negligible. The

particle velocity components v1(x1, t) on the top surface at the passive region calculated

by the FDTD method are recorded. Then 2D FFT algorithm is applied to these recorded

data to get the dispersion curve of the Rayleigh-Lamb modes propagating in the passive

region, as shown in Fig. 3.11(a). The dispersion characteristic of the passive region is also

obtained by the effective acoustic impedance, as shown in Fig. 3.11(b). It can be observed

that the dispersion curve obtained by FDTD simulation and 2D FFT extraction is in good
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agreement with the one obtained by the effective acoustic impedance. The amplitude of

each mode can be obtained for a specified frequency. Thus, the FDTD algorithm presented

in this chapter can be used to investigate the spurious modes in FBAR resonators.

77



(a)

(b)

Figure 3.11: Dispersion curve for FBAR resonator passive region (AlN/Al with thickness
of 3µm/0.6µm: (a) obtained by 2D-FFT method, (b) obtained by the effective acoustic
impedance (This graph is courtesy of F. Thalmayr, Sand 9, Inc..).
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3.9 Summary

The proposed FDTD scheme for modeling FBAR resonators is summarized in Figure 3.12.

The initial value of the stress, particle velocity, and electric field components is zero. At

t = 0, a source, electrical source or mechanical source, is applied to the model. Then

the stress field components are calculated at t and the free surface boundary condition is

set. The electric field components are calculated at t as well. After a half time step, the

particle velocity components are calculated at t = t + 1/2. If the iteration time t does

not exceed the upper limit of the iteration time tmax, the procedures are iterated. The

proposed FDTD model will be used to do the scattering analysis for multimode excitation

in Chapter 4 and investigate the FBAR resonator proposed in Chapter 5.

Begin

Initialize the components of stresses, 

particle velocities and electric fields

A source is applied to the model

Stresses T are updated

Free surface boundary condition

Particle velocities v are updated

Electric fields E are updated

t > tmax

End

YES

NO

t = 0

t = t + 1/2

t =t + 1/2

Figure 3.12: The proposed FDTD procedure for modeling the FBAR.
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Chapter 4

Wave scattering analysis for
multimode excitation

4.1 Introduction

In this Chapter, the wave scattering analysis for the nondestructive testing (NDT) and

film bulk acoustic resonators (FBAR) is reviewed. The limitations of the existing wave

scattering schemes are pointed out. The derivation of the scattering analysis for multimode

excitation is presented. After checking the validity of the proposed method, the multimode

wave scattering analysis is applied to two generic free-standing bulk acoustic resonator

(FBAR) structures.

4.1.1 Nondestructive testing

A common application of acoustic wave scattering analysis is the ultrasonic nondestructive

testing (NDT) to detect cracks, defects and delamination in plates and other more complex

structures. The standard ultrasonic testing method uses bulk stress waves. In pulse

excitation method, a bulk wave pulse is excited in the test medium. When the bulk wave

pulse interacts with a defect, it is partially or totally back scattered, depending on the

defect properties. By measuring the time of flight and amplitude of the reflected wave,

the location of the defect and the acoustic impedance mismatch can be determined. The

disadvantages of using bulk waves are: firstly, the investigation of thin plates and detection

of defects on or very close to an interface are limited by the finite pulse bandwidth of the

bulk wave, and secondly, using bulk waves is essentially one-dimensional, that is the area

interrogated is along a line joining the two transducers (shown in Fig. 4.1). This one-

dimensional characteristic has limited bulk wave application in testing large structures.

More details about the standard ultrasonic NDT can be found in standard text books [17].

To solve the difficulties of bulk wave testing, Worlton proposed to use Lamb waves

for fast nondestructive testing of plate-like structures [126]. Since then there has been an

increasing interest in the applications of Lamb waves and other guided waves in NDT.
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Figure 4.1: Schematic representation of nondestructive testing using bulk waves (a) pulse-
echo mode, (b) pitch-catch mode, and (c) through-transmission mode.
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Figure 4.2 shows a typical setup for investigation of a plate by Lamb waves. Due to the

characteristics of Lamb waves, they produce stresses throughout the thickness of the

plate. Therefore, the whole thickness of the plate is interacted with the Lamb waves.

This property has enabled the possibility to detect defects that are located at or very

near interfaces, or at other internal locations [39]. Lamb waves have also been applied to

determine the elastic and viscoelastic properties of materials [13, 89]. Furthermore,

because Lamb waves are essentially two-dimensional waves, exciting a specific Lamb

wave into the plate, the Lamb wave can interrogate a two-dimensional area between the

transmitting transducer and the receiving transducer (Fig. 4.2). Thus, Lamb waves has

been widely use for coarse, fast inspection on large plates or plate-like structures

[12, 22, 67, 94].

Interrogated area

d

Plate

Transmitter Receiver

Figure 4.2: Schematic representation of nondestructive testing using Lamb waves.

4.1.2 Wave scattering in FBAR

Piezoelectric

material

Electrode

Electrode

h1 h2

Passive Active Passive

Lateral free

boundary

Lateral free

boundary

Figure 4.3: Sketch of a thin film resonator with lateral free boundaries.

For FBARs and other thin film resonating devices, the electrode thickness is typically

in the order of several hundred nm, and the thickness of the whole device is usually in the

order of a few µm. Therefore, the step height h1−h2 of the lateral boundaries is significant

comparing with the overall device thickness h1(shown in Fig. 4.3). Consequently, the

dispersion curves of the active and passive area are quite different for these devices. For
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example, the dispersion characteristics of a FBAR resonator with the combination of

Al/AlN/Al (with thickness of 0.3µm/3µm/0.3µm) for different regions are shown in Figure

4.4. Here, modes An are the propagating antisymmetric Lamb modes, and Sn are the

propagating symmetric Lamb modes in the active region. Because the passive region is not

symmetric, the modes propagating in this region do not show symmetric nor antisymmetric

behavior. These modes are referred as pseudo symmetric (pSn) and pseudo antisymmetric

(pAn) modes respectively, in analogy to the Lamb mode nomenclature. To get a clear

view, the dispersion curves for S1 and pS1 mode of the active and passive area are plotted

together in Fig. 4.4(c). The field distribution of each mode are also with significant

differences in different sections of the resonator. Moreover, the lateral boundary conditions

cannot be fulfilled by a single mode.

To satisfy the boundary conditions, a finite number of forward and backward

propagating and an infinite amount of evanescent modes have be to considered.

Therefore, scattering analysis has to be conducted to investigate these forward and

backward scattering modes at the lateral boundaries. Note that the evanescent modes

only exist in the vicinity of the discontinuity boundaries. By applying the scattering

analysis to FBARs, energy conversion paths, power transfer below the cut-off frequency,

and mechanical excitation of modes can be explained [117]. Scattering analysis can be

applied for further improvement of FBAR device analysis and design with regard to

border regions. The purpose of this chapter is to propose a more efficient scattering

analysis scheme, aiming to investigate the lateral spurious modes and improve the

quality factor of FBAR.
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(c)

Figure 4.4: Dispersion curves of a FBAR with the combination of Al/AlN/Al (with
thickness of 0.3µm/3µm/0.3µm) (a) Active area, (b) Passive area, (c) Active area vs
passive area for S1 and pS1 mode.

4.2 Methods for scattering analysis

Three methods for wave scattering analysis will be reviewed in this section: Torvik’s

method, time domain FEM simulation (TD-FEM), and frequency domain FEM

simulation (FD-FEM). The limitations of these methods will be pointed out, and serve

as the motivation for proposing the scattering analysis for multimode excitation in the

next section.

4.2.1 Torvik’s method

A semi-analytical method has been proposed by Torvik [121] for analyzing the

backscattering of Lamb waves from the free edge of a plate. In Torvik’s analysis, it has

been assumed that the propagating modes in the semi-infinite plate and in an infinite

extended plate are identical. A harmonic Lamb wave at frequency ωo is excited and

propagating in the x1 direction (shown in Fig. 4.5) and it is completely reflected at the

plate free edge (x1 = 0). Because this model is two-dimensional, shear stresses in

addition to the longitudinal stresses are present. Unlike the longitudinal stress, shear

stress reflecting from a free edge does not change its sign. Therefore, a single reflection

mode can not fulfill the boundary conditions of zero traction on the free edge. This

implies that wave conversion happens and the reflected waves include finite propagating
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Figure 4.5: Lamb wave reflection at the plate free edge.

and an infinite evanescent eigenmodes. In other words, the traction free boundary

condition should be satisfied by the incident and reflected waves:

Tinc · n ·Ainc +
∑
k

Tref, k · n ·Aref, k = 0 . (4.1)

Here, Tinc is the stress vector of the incident wave; Tref, k is the stress vector of the kth

reflected wave. Ainc is the amplitude of the incident wave, and Aref, k is the amplitude of

the kth reflected wave. And n is the normal vector on the edge. The reflection coefficients

in amplitude can be obtained by the following equation:

rk =
Aref, k

Ainc
, (4.2)

where rk is the reflection coefficient of the kth reflected mode in amplitude. The Lamb

wave power reflection coefficients Rk can also be obtained by the following equation:

Rk =
Pref, k

Pinc
, (4.3)

where Pinc is the power of the incident wave, and Pref, k is the power of the kth reflected

mode. The power can be obtained by multiplying the calculated or measured displacement

amplitude square with the mode power coefficient as described in section 2.4.1.3 [118]. Or

it can be obtained by relating the calculated or measured displacement amplitude to power

through the coefficient ζ as described in [78]. The calculation of the coefficient ζ needs the

knowledge of the exact field distribution of the respective mode [77]. Thus, it is difficult

to calculate and fault-prone for multilayer structures. The mode power coefficients on the

other hand are easy to calculate, and therefore, are adopted in this study.

In order to obtain the reflection coefficients, the amplitudes of respective mode have

to be determined. The free boundary is discretized into m = 1 . . .M collocated points,
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which represent the whole field on the free edge (shown in Fig. 4.5). In the waveguide

k = 1 . . . N propagating and evanescent eigenmodes are assumed to be present. Then,

equation 4.1 can be written in discretized form as

Tinc(m) · n ·Ainc +
∑
k

Tref, k(m) · n ·Aref, k = 0 , (m = 1 . . .M) , (4.4)

where Tinc(m) is the stress vector of the incident mode at location m, and Tref, k(m) is

the stress vector of the kth reflected mode at location m. Equation (4.4) can be written

in matrix form as

Tinc(m) · n ·Ainc +M ·Aref = 0 , (4.5)

where Aref is the vector including all the N reflected mode amplitudes and M is a 2M×N

matrix. n is perpendicular to axis x3 in this case, thus Tref, k(m) · n is a 2×N matrix T ref,1
1 (m) T ref,2

1 (m) · · · T ref,N
1 (m)

T ref,1
5 (m) T ref,2

5 (m) · · · T ref,N
5 (m)

 , (4.6)

T ref,k
1 (m) is the longitudinal stress component and T ref,k

5 (m) is the shear stress component

of the kth reflected mode at location m. For the general case when n is not perpendicular

to one of the axis, M is a 3M ×N matrix. Then, the unknown reflected mode amplitudes

can be calculated by

Aref = −
(
MtM

)−1
MtTinc(m) · n ·Ainc , (4.7)

where the exponents t and −1 mean respectively transpose and inverse of a matrix. Note

that the value of N and M should be sufficient big to ensure the accuracy of this method.

Torvik’s method is only applicable to single mode excitation. Moreover, the

implementation of Torvik’s method requires the knowledge of the imaginary or complex

wavenumbers β of the evanescent modes at a given frequency, which are difficult to

calculate. The field distribution of respective mode also has to be calculated precisely,

which has increased the difficulty to carry out this method even more. Thus, pure

numerical method using FEM simulation has been proposed, which will be reviewed in

the next two sections.

4.2.2 Time domain FEM simulation

The most common method to perform scattering analysis is the time-domain FEM

simulation (TD-FEM). A schematic of the TD-FEM method is shown in Fig. 4.6. A

two-dimensional model is set up to model the waveguide and the scattering boundary.

The waveguide and the scattering boundary are discretized into elements, which are

defined by a certain number of nodes. The number of nodes should be large enough, that
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is a minimum of 20 nodes per wavelength is usually required. A single mode at a

frequency ωo is excited at the left end of the plate. A transient analysis is set up, and a

large number of time steps is simulated. For 0 < t < t1, a finite acoustic burst of the

desired incident mode is excited at the left end of the plate by imposing its theoretical

longitudinal and shear displacements u1(x3, t)exp(jωot) and u3(x3, t)exp(jωot) on the

FEM DOF (Fig. 4.6(a)). The incident mode is propagating forward and scattered at the

right edge for t2 < t < t3 as shown in Fig. 4.6(b). For t > t3, only the reflected waves are

propagating in the plate. The surface displacements u(x1, t) are monitored and recorded

during this process. Consequently, a two-dimensional fast Fourier transform (2D FFT) is

applied to these recorded displacements

u(β, ω) =

∫ +∞

−∞

∫ +∞

−∞
u(x1, t)e

−j(ωt+βx1)dx1 dt . (4.8)

The dispersion characteristic of the plate can be obtained by u(β, ω). Surface amplitude

Aref,k of the k
th reflected mode can be obtained by Aref,k = |u(βk, ωo)|. It can be compared

directly to the amplitude of the incident mode or related to the respective mode power as

described in chapter 2.

Scattering geometry

Incident mode

0 < t < t1

Monitored surface nodes u(x1,t)

(a)

Scattering geometry

Incident mode

t2 < t < t3Reflected

modes
Scattering

Monitored surface nodes u(x1,t)

(b)

Scattering geometry

Monitored surface nodes

t3 < t
Propagation of 

reflected modes 

Monitored surface nodes u(x1,t)

(c)

Figure 4.6: Schematic of different time steps in the time-domain FEM analysis for wave
scattering (a) Lamb wave burst to excite the incident mode, (b) reflection of the incident
mode at the right boundary, and (c) propagation of the reflected waves.

It should be noted that in addition to the amplitude Aref,k of the kth reflected mode
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at the frequency of ωo, the amplitudes of the reflected modes at other frequencies can

also be obtained by this method. However, these values are not utilized by this method,

because this method is only applicable to single mode excitation at the frequency of ωo.

It is a waste of resources. To use the resources more efficiently, frequency domain FEM

simulation was proposed [119], which will be reviewed in the next section.

4.2.3 Frequency domain FEM simulation

To get rid of the redundant data obtained by time-domain FEM (TD-FEM) analysis,

Thalmayr et. al. have proposed a frequency-domain FEM (FD-FEM) analysis method for

single mode incident wave scattering [119]. Fig. 4.7 shows a schematic setup of the FD-

FEM analysis for wave scattering. Similar to TD-FEM analysis, first, a two-dimensional

model of the waveguide and the scattering boundary is set up. A single mode at a frequency

ωo is excited at the left end of the plate by imposing its theoretical longitudinal and shear

displacements u1(x3, ωo)exp(jωot) and u3(x3, ωo)exp(jωot) on the FEM DOF (Fig. 4.7).

To isolate the injected wave from the backscattered waves, TD-FEM analysis can separate

these waves by time or by the 2D-FFT method. Besides, this isolation can be achieved

by implementing an appropriated injection damping mechanism (IDM) in the FD-FEM

analysis model (shown in Fig. 4.7). The IDM should be designed properly. Both the

forward propagating injected wave and the backward propagating backscattered waves

are strongly damped within the IDM. Meanwhile, a sufficient amount of energy of the

injected wave arrives at the left end of the undamped or regular waveguide. Then, the

surface displacements u(x1, ωo) are monitored and recorded. Finally, a one-dimensional

fast Fourier transform (1D FFT) is applied to these recorded displacements

u(β, ωo) =

∫ +∞

−∞
u(x1, ωo)e

−jβx1dx1 . (4.9)

Surface amplitude Aref,k of the kth reflected mode can be obtained by Aref,k = |u(βk, ωo)|.

It can be compared directly to the amplitude of the incident mode or related to the

respective mode power as described in chapter 2.

Scattering 

geometryMonitored surface nodes u(x1,  )

Wave scatterering 

Reflected

modes

Incident

mode

IDM 

h

Figure 4.7: Schematic of the frequency-domain FEM setup for the analysis of wave
scattering.
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To eliminate the influence of the evanescent modes, the displacements are recorded

in a sufficient distance from the scattering boundary. This FD-FEM analysis method is

more efficient than the TD-FEM analysis in terms of the time consumption[119]. However,

it can only be applicable to single mode excitation wave scattering analysis. Therefore,

a more efficient wave scattering analysis method has been proposed to utilize the data

obtained by 2D FFT method for multimode excitation wave scattering, which will be

presented in the next section.

4.3 Scattering analysis for multimode excitation

All the wave scattering analysis methods reviewed in section 4.2 have the same problem:

they can only be applied to single mode excitation wave scattering analysis. However,

experimentally excitation via transducers of finite dimensions inevitably excites multiple

modes at any particular frequency. Therefore, a more efficient wave scattering analysis

method for multimode excitation is proposed, which will be described in this section.

h

x3

P3

ur
ui

x1

P1 P2

Defect

L

Figure 4.8: Schematic of the model setup for the analysis of multimode excitation wave
scattering.

A pulse-echo setup for multimode excitation wave scattering analysis using guided

Lamb waves is depicted in Figure 4.8. Lamb waves are excited by a multimode transducer

such as a Nd:YAG laser at P1 and the scattered Lamb waves are examined by another

transducer at P2. The plate can be a single-layer plate or multi-layer composite laminates

with neglectable losses. For the sake of illustration, P2 is assumed to be lie between P1

and the defect, which is located at P3. In this setup, both incident waves and scattered

waves are measured by the transducer at P2.

Suppose a toneburst with center angular frequency ωo is excited by the transducer at

P1. It is assumed that the bandwidth of the toneburst is narrow so that the temporal

function of the toneburst can be represented by ejωot. In practice, the method can be
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used for wideband signals provided that both the transmitting and receiving transducers

are broadband devices. The excited toneburst consists of N Lamb wave modes with

displacement distribution Ψn(x3) and amplitude an:

ui(x3, t) =
N−1∑
n=0

anΨn(x3)e
jωot (t ≥ 0) . (4.10)

Due to the dispersive property of Lamb waves, the excited Lamb wave modes

propagate along the plate with phase velocity vn = ωo/βn (n = 1, 2, ..., N − 1) where βn

is the wavenumber of the nth Lamb wave mode. The wavenumbers can be analytically

determined by finding the root of the dispersion equation derived from the Navier’s

displacement equation [90] or numerical methods such as the finite element method

(FEM) [8]. The displacement expression along the direction x1 can be written as

ui(x1, x3, t) =
N−1∑
n=0

anΨn(x3)e
j(ωot−βnx1) (t ≥ 0) . (4.11)

Due to the difference in phase velocity, the incident Lamb wave modes scattered by

the defect at different time tn where tn = L/vn and L is the separation between the

measurement point and the defect. The distance L can be accurately estimated by

measuring the time-of-flight (tTOF ) of the fastest reflected Lamb wave mode:

L = tTOF ×Max[vn]/2 . (4.12)

At the defect, each incident Lamb wave mode is scattered into N propagating Lamb

wave modes Ψn(x3) as well as evanescent modes Φk(x3). The reflected wave of the nth

incident Lamb wave mode can be written as

urn(x1, x3, t) =

N−1∑
m=0

amnΨm(x3)e
j(ωot+βmx1) +

∞∑
k

bkΦk(x3)e
(jωot+αkx1) (t ≥ tn) , (4.13)

where amn is the amplitude of the mth Lamb wave mode converted from the nth Lamb

wave mode, αk and bk are, respectively, the attenuation constant and amplitude of the kth

evanescent mode. The evanescent modes only exist in the vicinity around the defect and

do not carrying power along the structure. Hereafter, only the N propagating modes are

considered.

Combining all the scattered Lamb wave modes, the scattered waves consists of N ×N

components:
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ur(x1, x3, t) =
N−1∑
n=0

urn(x1, x3, t) . (4.14)

In general, the scattered Lamb wave modes overlap in time-domain so that it is difficult

to determine the N ×N unknown mode conversion coefficients amn.

Alleyne et. al. [8, 9] have used the two-dimensional Fourier transform (2D FFT) to

analyse the scattering of defects by various Lamb wave modes. The method presented

here is an extension of the 2D FFT method. By applying the spatial Fourier transform

to the measured incident and scattered Lamb waves at P2, we have the spectrum with

2N components located at the wavenumber kx = ±β0, β1, ..., βN−1. The components

correspond to the N incident Lamb wave modes and N scattered Lamb wave modes. The

expression of the incident and scattered waves in wavenumber domain are:

Ui(kx, x3, t) =

N−1∑
n=0

anΨn(x3)δ(kx + βn)e
jωot , (4.15)

Ur(kx, x3, t) =
N−1∑
n=0

N−1∑
m=0

amnΨm(x3)δ(kx − βm)ejωo(t−tn) . (4.16)

In practice, the displacements on the surface (x3 = h) of the structure are measured.

The amplitude of the nth incident Lamb wave mode and nth scattered Lamb wave mode

on the surface of the structure in wavenumber domain are:

Ain = anΨn(h)e
jωot at kx = −βn , (4.17)

Arn =

N−1∑
m=0

anmΨn(h)e
jωo(t−tm) at kx = βn . (4.18)

Figure 4.9 shows a typical spectrum of a structure which supports three propagating

Lamb wave modes.

Combining the Eq. (4.17) and Eq. (4.18), we can express the amplitude of the scattered

Lamb wave modes in terms of the incident Lamb wave modes:

Arn =
N−1∑
m=0

rnmAime−jωotm , (4.19)

rnm =
anmΨn(h)

amΨm(h)
, (4.20)
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Figure 4.9: Spectrum of a typical Lamb wave measured by the transducer at P2. Three
Lamb modes are supported by the structure at the measuring frequency.

where rnm is the complex mode amplitude conversion coefficient from mode m to mode n.

As the Arn is the vector sum of all Lamb waves converted from all the incident Lamb

wave modes, in order to extract the mode conversion coefficient of each mode. The above

measurement is repeated with another (N − 1) different excitations. Finally, we can set

up a matrix equation.

Ar = rTAi , (4.21)

Ar =


A1

r0 A2
r0 · · · AN

r0

A1
r1 A2

r1 · · · AN
r1

...
...

. . .
...

A1
r,N−1 A2

r,N−1 · · · AN
r,N−1

 , (4.22)

Ai =


A1

i0 A2
i0 · · · AN

i0

A1
i1 A2

i1 · · · AN
i1

...
...

. . .
...

A1
i,N−1 A2

i,N−1 · · · AN
i,N−1

 , (4.23)

T =


e−jωot0 0 · · · 0

0 e−jωot1 · · · 0
...

...
. . .

...

0 0 · · · e−jωotN−1

 , (4.24)
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r =


r00 r01 · · · r0,N−1

r10 r11 · · · r1,N−1

...
...

. . .
...

rN−1,0 rN−1,1 · · · rN−1,N−1

 , (4.25)

where the superscript p in Ap
in and Ap

rn is used to denote the pth measured spectral

components of the Lamb wave modes. The complex mode amplitude conversion coefficient

rnm on surface can be determined by solving Eq. (4.21) with N different excitations.

The complex mode amplitude conversion coefficient rnm on surface can be further

related to the power scattering coefficients snm by the mode power coefficients cn [118].

The incident power of the mth Lamb wave mode expressed in terms of the mode power

coefficient cm is

Pm = cm|amΨm(h)|2 , (4.26)

and the power of the Lamb wave converted from mode m to mode n can be expressed as

Pnm = cn|anmΨn(h)|2 . (4.27)

The power scattering coefficient snm is defined as

snm =
Pnm

Pm
. (4.28)

Combining equations (4.20) and (4.26 - 4.28) together, we have

snm =
cn
cm

|rnm|2 . (4.29)

The phase factor e−jωotm in matrix T only affects the phase of the complex mode

amplitude conversion coefficient rnm. Omitting e−jωotm in matrix T will not influence the

value of the power scattering coefficient snm. This is reasonable since the power scattering

coefficient snm is only related to the scattering boundary. This was confirmed by the

validation example in the next section.

4.4 Validation of the scattering analysis for multimode
excitation

In this section, the reflection of the two lowest antisymmetric modes A0 and A1 at the

free edge of a plate is considered to verify the validity of the proposed scheme presented in
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section 4.3. The thickness of the plate is 1.0 mm. The free edge (P3) and the observation

point (P2) are, respectively, 100 mm and 65 mm away from the excitation point (P1). The

plate is stainless steel with density ρ = 7800 kg/m3, Young’s modules E = 200.43 GPa,

and Poisson ratio v = 0.29.

A two-dimensional finite-difference time-domain (FDTD) model (developed in chapter

3) is set up to simulate the propagation of the Lamb waves. Both the temporal-derivatives

and spatial-derivatives in the equation of motion, which relates the particle velocity and

the stress, are approximated by second-order centred finite differences as described in

chapter 3. The particle velocity is adopted in the FDTD simulation in order to simplify

the formulation. As mentioned in chapter 3, the particle velocity is related to the particle

displacement u by v = ∂u/∂t in time-domain and V = jωoU in frequency-domain. The

zero traction condition is enforced on the boundaries. As it is mentioned in section 3.5, to

reduce the artificial numerical dispersion effects to an acceptable extent, the spatial step

size ∆x1 and ∆x3 are set to both 5×10−5 m, which is approximately equal to one twentieth

of the smallest wavelength of the toneburst. To ensure the stability of the simulation, the

time increment interval is chosen to be 6× 10−9 s in order to satisfy the Courant stability

condition [111].

A five-cycle Lamb wave toneburst (demonstrated in section 3.6.2) composed of A0

and A1 modes is numerically launched by imposing their theoretical particle velocity

components [8] v(x3) at P1

v(x3) = K1v
0(x3) +K2v

1(x3) , (4.30)

where vi(x3) is the particle velocity of the Ai mode, and Ki are arbitrary constants, which

are set to 1 and 5 in this simulation. The number of cycles of the toneburst should be

chosen such that the toneburst covers the frequency range of interest. It is better not to

choose a too large number to reduce the simulation time. In this case, the bandwidth

of the toneburst covers the frequency-thickness product range of 2.5MHz · mm < F <

3.5MHz·mm. Within this frequency-thickness product range, only these two antisymmetric

modes are above their cutoff frequencies.

Figure 4.10 shows the normalized time history and its wavenumber spectrum at

frequency 2.6 MHz of the incident Lamb wave collected at 30 mm away from the

excitation point P1. Because of dispersive property of Lamb waves, the A0 and A1

modes cannot be distinguished in time-domain. On the other hand, the wavenumber

spectrum shows that the incident Lamb wave consists of two modes with phase constant

2.45 rad/mm and 5.91 rad/mm, which are corresponding to the A1 mode and A0 mode,

respectively.
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(a)

(b)

Figure 4.10: Incident Lamb waves at x1 = 30mm when the input A0 and A1 modes are
excited at x1 = 0. (a) Time history, (b) Wavenumber spectrum at frequency = 2.6 MHz.
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Figure 4.11(a) shows the normalized time history of the Lamb wave collected at P2.

The duration of the simulation is long enough to include the incident Lamb wave and the

reflected Lamb waves from the free end of the plate. The incident Lamb wave consists of

two overlapping tonebursts while the reflected wave contains more than two overlapping

tonebursts because of the mode conversion at the free edge [78, 121]. Figure 4.11(b)

shows the wavenumber spectrum at frequency 2.6 MHz of the Lamb wave collected at

P2. It can be observed that the reflected wave consists of mode A0 and mode A1 only

but more than two tonebursts are observed in time domain. It is because the reflection

boundary is symmetric, no mode conversion from antisymmetric to symmetric modes can

occur. Besides, the incident mode A0 and A1 have different phase velocity so that they

arrive at the boundary at different time. After the reflection from the boundary, there

are four tonebursts travelling in the plate. They are A1 mode converted from the incident

A1 mode, A0 mode converted from the incident A1 mode, A1 mode converted from the

incident A0 mode, and A0 mode converted from the incident A0 mode. Since the two

reflected A1 mode converted from the incident A0 mode and the incident A1 mode have

the same wavenumber at a given frequency, these two waves cannot be distinguished from

both time-domain history and the wavenumber-domain spectrum. To distinguish these

two waves, the simulation is repeated with the constants K1 = 0.3 and K2 = 11 for the

amplitude of the two incident Lamb wave modes. The amplitudes of the two incident

modes are determined by the Ki values. Therefore, the second set of two Ki values should

not be proportional to the first set of values to make sure that the matrix Ai is invertible

in Eq. (4.21) to get the conversion coefficient r. If K1 is larger than K2 for the first set

of values, it is better to chose K1 smaller than K2 for the second set of values to reduce

the numerical error, and vice versa. The complex amplitude of the incident modes (Ai0

and Ai1) and reflected modes (Ar0 and Ar1) can be obtained by applying 2D FFT to

the time sequence of the equally allocated monitoring points on the top surface. With

the two wavenumber spectra obtained from the simulations, the complex mode amplitude

conversion coefficients rnm are determined by solving the matrix equation (Eq. (4.21)).

Fig. 4.12 shows the amplitude of the conversion coefficients rnm for A0 and A1 modes

reflecting from the free edge. The result shows that all the coefficients of a multimode

incident Lamb wave can be resolved. It can also be observed that the amplitude of

the conversion coefficient r10 is much larger than that of r01 for the specified frequency-

thickness range. This implies that mode A0 is more sensitive to the free boundary condition

than mode A1. As it is mentioned in section 4.1.1, Lamb waves are commonly used in

nondestructive testing (NDT) applications. Because of this kind of phenomenon, i.e.

each mode is sensitive to different types of defects, most previous work exciting a pure
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(a)

(b)

Figure 4.11: Scattered Lamb waves at P2. (a) Time history, (b) Frequency spectrum.
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Figure 4.12: Amplitude of the conversion coefficients rnm for A0 and A1 modes reflecting
from the free edge.

Lamb wave mode for testing rely on partial knowledge of the defect[25, 31, 43, 69, 76,

110]. If multimode excited Lamb waves can be applied in NDT applications, various

defects can be detected simultaneously and the testing process will become more robust.

Moreover, the resolution of a NDT generally depends on the guided wavelength of the

Lamb mode. Therefore, in order to detect small defects, Lamb mode with higher phase

velocity operated at higher frequency-thickness product should be used. However, for large

frequency-thickness product, structures support a large number of propagating Lamb wave

modes. Therefore, it is challenging to excite a pure Lamb wave mode for large frequency-

thickness product, that is multimode Lamb wave modes will inevitably be present. The

scheme proposed in this chapter has provided a simple way to extract and interpret the

multimode Lamb wave modes scattering information and thus, make the application of

Lamb wave modes in NDT simpler.

In order to compare with the results obtained by other methods [119, 121] the power

scattering coefficients smn are calculated by Eq. (4.29). The mode power coefficients cn are

calculated by the effective acoustic admittance as described in section 2.4.1.3. The mode

power coefficients cn for mode A0 and A1 are shown in Fig. 4.13. Figure 4.14 shows the

power scattering coefficients calculated by the proposed method. The result shows that
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all the coefficients of a multimode incident Lamb wave can be resolved. It is also observed

that s10 = s01, which is consistent with the reciprocal property of the free space boundary.

Besides, s00 = s11 because of the conservation of energy (s11 + s01 = s00 + s10 = 1). The

accuracy of the results is also validated by comparing with the results obtained by single

mode excitation FEM scheme [119] in Fig. 4.15. It is observed that our obtained results

are in good agreement with the one obtained by FEM method. Before doing the scattering

analysis, the energy differences between the incident modes and reflected modes are also

calculated to check the computation accuracy, which are shown in Table 4.1 and Table

4.2 for the first set of data and the second set of data, respectively. PAn,inc (n=0, 1)

is the power of the incident mode An, and Pinc is the total incident power calculated by

Pinc = PA0,inc+PA1,inc. PAn,ref (n=0, 1) is the power of the reflected mode An, and Pref is

the total reflected power calculated by Pref = PA0,ref+PA1,ref . Energy difference between

the incident modes and the reflected modes Pdif is calculated by Pdif = (Pref −Pinc)/Pinc.

It is observed that the energy difference is smaller than 0.25% at all frequencies. The

accuracy of the results can be improved by increasing the simulation time and elongating

the structure to allocate more monitoring points on the surface to improve the frequency

and wavenumber resolution, respectively.

A similar problem was analyzed by time-domain FEM (TD-FEM) method [78] and

frequency-domain FEM (FD-FEM) method [119]. The calculation time to obtain a single

set of scattering parameters was reported to be 24 hours by the use of the TD-FEM

method, and less than 20 seconds by the use of FD-FEM method with a Pentium Core

2 Duo personal computer [119]. The simulation time for the structure mentioned in this

work is around 4 hours by a computer with Intel Xeon 3.33 GHz CPU and 16 GB of

RAM. Merely regarding the simulation time, FD-FEM method is superior to the TD-

FEM method and the FDTD scattering analysis scheme proposed in this work. However,

the scattering analysis scheme proposed in this work can be applied to obtain the scattering

parameters for multimode excitation for a frequency range, while the FD-FEM method can

only obtain the response at a single frequency for each simulation. Therefore, the proposed

multimode scattering analysis scheme is especially useful when the scattering parameters

need to be calculated over a wide frequency range or in practice where a single mode

excitation is challenging or impossible. In addition, the simulation time of the proposed

FDTD method can be reduced by parallelization, and an almost linear speed-up with the

number of processors can be achieved [104].
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Figure 4.13: Mode power coefficient cn for A0 and A1 modes propagating in steel plate.

Figure 4.14: Power scattering coefficients snm for A0 and A1 modes reflecting from the
free edge.
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Figure 4.15: Power scattering coefficients snm for mode A0 reflecting from the free edge;
⃝ obtained by FDTD simulation, solid lines are obtained by FEM method[119].

Table 4.1: Energy difference between the incident modes and the reflected modes for the
first set of data.

frequency
(MHz)

PA0,inc

10−8W
PA1,inc

10−8W
Pinc

10−8W
PA0,ref

10−8W
PA1,ref

10−8W
Pref

10−8W
Pdif

(%)

2.5 17.40 1.38 18.78 4.81 13.97 18.78 0.03

2.6 18.53 1.61 20.14 6.15 14.03 20.19 0.24

2.7 20.49 1.64 22.14 7.66 14.48 22.14 0.03

2.8 19.12 1.47 20.59 8.17 12.44 20.61 0.07

2.9 16.40 1.23 17.63 7.87 9.78 17.65 0.10

3.0 13.18 0.94 14.12 7.00 7.12 14.12 0.04

3.1 9.31 0.67 9.99 5.55 4.45 10.00 0.13

3.2 6.16 0.40 6.56 4.01 2.55 6.56 0.03

3.3 3.08 0.19 3.27 2.24 1.04 3.27 0.00

3.4 1.36 0.08 1.44 1.07 0.37 1.44 0.14

3.5 0.49 0.02 0.51 0.42 0.10 0.51 0.01

102



Table 4.2: Energy difference between the incident modes and the reflected modes for the
second set of data.

frequency
(MHz)

PA0,inc

10−8W
PA1,inc

10−8W
Pinc

10−8W
PA0,ref

10−8W
PA1,ref

10−8W
Pref

10−8W
Pdif

(%)

2.5 1.57 4.21 5.79 3.65 2.14 5.79 0.03

2.6 1.72 4.98 6.70 4.12 2.60 6.72 0.24

2.7 1.88 5.34 7.22 4.24 2.99 7.22 0.03

2.8 1.80 5.03 6.82 3.81 3.02 6.83 0.05

2.9 1.56 4.37 5.94 3.15 2.79 5.94 0.08

3.0 1.27 3.45 4.72 2.37 2.35 4.72 0.01

3.1 0.92 2.50 3.42 1.61 1.81 3.42 0.11

3.2 0.62 1.60 2.21 0.98 1.23 2.21 -0.05

3.3 0.32 0.75 1.07 0.44 0.62 1.07 -0.07

3.4 0.14 0.35 0.49 0.19 0.30 0.49 -0.04

3.5 0.05 0.11 0.16 0.06 0.10 0.16 -0.16

4.5 Multimode wave scattering analysis in generic FBAR
model

The proposed multimode scattering analysis scheme is applied to study two generic

FBAR resonators in this section. For simplicity, firstly, the generic FBAR resonator with

symmetric electrodes on top and bottom is set up to analyze the scattering phenomena

of two lowest antisymmetric Lamb modes scattering on the discontinuities. Following

that, a practical FBAR structure with bottom electrode extended to the whole structure

is investigated. The power scattering coefficients of these two generic FBAR structures

are compared and a new structure with frame-like airgap on bottom electrode was

proposed based on the scattering analysis of these two structures, which will be

investigated in the next chapter.

4.5.1 Generic FBAR model with symmetric electrodes

The generic FBAR resonator with symmetric electrodes on top and bottom (shown in Fig.

4.16) is set up to analyze the scattering phenomena of two lowest antisymmetric Lamb

modes scattering on the discontinuities in this section. The FBAR resonator is composed

of a piezoelectric AlN layer with 3µm thickness sandwiched between two Al electrodes

with 0.6µm in thickness. The scattering boundary (P3) and the observation point in the

active region (P2) are, respectively, 150 µm and 95 µm away from the excitation point

(P1). The observation point in the passive region (P4) and the outer boundary (G) are,

respectively, 50 µm and 500 µm away from the scattering boundary (P3). The material

properties used in this study was presented in section 3.3.

A two-dimensional finite-difference time-domain (FDTD) model (developed in chapter

3) is set up to simulate the propagation of the Lamb waves. Both the temporal-derivatives
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Figure 4.16: Schematic of a generic FBAR resonator with symmetric electrodes for Lamb
wave scattering analysis.

and spatial-derivatives in the wave propagation governing equations, which relates the

particle velocity and the stress, are approximated by second-order centred finite differences

as described in section 3.4. The particle velocity is adopted in the FDTD simulation in

order to simplify the formulation. As mentioned in chapter 3, the particle velocity is related

to the particle displacement u by v = ∂u/∂t in time-domain and V = jωoU in frequency-

domain. The zero traction condition is enforced on the boundaries and the structure is

long enough to eliminate the scattering from the outer boundary (G as shown in Fig. 4.16).

As it is mentioned in section 3.5, to reduce the artificial numerical dispersion effects to an

acceptable extent, the spatial step size ∆x1 and ∆x3 are set to both 5 × 10−8 m, which

is approximately equal to one twentieth of the smallest wavelength of the toneburst. To

ensure the stability of the simulation, the time increment interval is chosen to be 3×10−12

s in order to satisfy the Courant stability condition [111].

A eight-cycle Lamb wave toneburst (demonstrated in section 3.6.2) composed of A0

and A1 modes is numerically launched by imposing their theoretical particle velocity

components [11]v(x3) at P1

v(x3) = K1v
0(x3) +K2v

1(x3) , (4.31)

where vi(x3) is the particle velocity of the Ai mode, and Ki are arbitrary constants, which

are set to 7 and 1 in this simulation. The bandwidth of the toneburst covers the frequency

range of 1 GHz < f < 1.6 GHz. The resonance frequency fs of the FBAR resonator is

approximately 1.298 GHz and the antiresonance frequency fa is approximately 1.331 GHz.

For simplicity, only the frequency range 1.300 GHz < f < 1.330 GHz is considered in this

simulation. The dispersion characteristics of the active region and the passive region of

the FBAR resonator are shown in Fig. 4.17. It can be observed from Fig. 4.17 that

within the interested frequency range, only modes A0, A1, S0 and S1 are above their

cutoff frequencies in the active region, and only modes A0, A1 and S0 are above their

cutoff frequencies in the passive region. When the incident wave arrives at the scattering
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boundary at P3, mode conversion happens, and the converted waves are partially reflected

back into the active region, while others are propagating forward into the passive region.

Since the scattering boundary at P3 is symmetric, no mode conversion from antisymmetric

to symmetric modes can occur. Therefore, within the investigated frequency range, only

modes A0 and A1 are propagating in both active and passive regions of the structure.

Figure 4.18 shows the normalized time history and its wavenumber spectrum at

frequency 1.315 GHz of the incident Lamb wave collected at 50 µm away from the

excitation point P1. Because of dispersive property of Lamb waves, the A0 and A1

modes cannot be distinguished in time-domain. On the other hand, the wavenumber

spectrum shows that the incident Lamb wave consists of two modes with phase constant

0.98 rad/µm and 1.79 rad/µm, which are corresponding to the A1 mode and A0 mode,

respectively.

The reflected waves propagating back into the active region are examined first. Figure

4.19(a) shows the normalized time history of the Lamb wave collected at P2. The duration

of the simulation is long enough to include the incident Lamb wave and the reflected Lamb

waves from the discontinuity at P3. The incident Lamb wave consists of two overlapping

tonebursts while the reflected wave contains more than two overlapping tonebursts because

of the mode conversion at the boundary (P3). Figure 4.19(b) shows the wavenumber

spectrum at frequency 1.315 GHz of the Lamb wave collected at P2. It can be observed that

the reflected wave consists of mode A0 and mode A1 only but more than two tonebursts

are observed in time domain. As it is mentioned before, because the scattering boundary

is symmetric, no mode conversion from antisymmetric to symmetric modes can occur.

Besides, the incident mode A0 and A1 have different phase velocity so that they arrive at

the boundary at different time. Therefore, after the reflection from the boundary, there

are four tonebursts travelling in the active region. They are A1 mode converted from the

incident A1 mode, A0 mode converted from the incident A1 mode, A1 mode converted from

the incident A0 mode, and A0 mode converted from the incident A0 mode. Since the two

reflected A1 mode converted from the incident A0 mode and the incident A1 mode have

the same wavenumber at a given frequency, these two waves cannot be distinguished from

both time-domain history and the wavenumber-domain spectrum. To distinguish these

two waves, the simulation is repeated with the constants K1 = 0.1 and K2 = 17 for the

amplitude of the two incident Lamb wave modes. The complex amplitude of the incident

modes (Ai0 and Ai1) and reflected modes (Ar0 and Ar1) can be obtained by applying 2D

FFT to the time sequence of the equally allocated monitoring points on the top surface of

the active region. With the two wavenumber spectra obtained from the simulations, the

complex mode amplitude conversion coefficients of the reflected modes rrnm are determined
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(a)

(b)

Figure 4.17: Dispersion characteristics of FBAR resonator with symmetric electrodes. (a)
Active region, (b) Passive region.
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(a)

(b)

Figure 4.18: Incident Lamb waves at x1 = 50µm when the input A0 and A1 modes are
excited at x1 = 0. (a) Time history, (b) Wavenumber spectrum at frequency = 1.315 GHz.
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by solving the matrix equation (Eq. (4.21)).

Finally, the power scattering coefficients of the reflected modes srmn are calculated

by Eq. (4.29). The mode power coefficients cn are calculated by the effective acoustic

admittance as described in section 2.4.1.3. The mode power coefficients cn for mode A0

and A1 in the active region are shown in Fig. 4.20. Table 4.3 shows the power scattering

coefficients of the reflected waves calculated by the proposed method. srmn is the power

reflection coefficient of mode An converted into Am, and srAn
is the total power reflection

coefficient for mode An calculated by srAn
= sr0n+sr1n (n = 0,1). Figure 4.21 shows the the

power scattering coefficients of the reflected waves for the interested frequency range. It is

observed that the power reflection coefficients of mode A0 and A1 are increasing with the

increase of the frequency. Within the investigated frequency range, less than 40% energy

of mode A0 and less than 50% energy of mode A1 are reflecting back into the active region.

The majority energy of mode A0 and A1 is lost for the investigated structure.

Table 4.3: Power scattering coefficients of the reflected waves srmn for FBAR with
symmetric electrodes.

frequency
(GHz)

sr00 sr10 srA0
sr01 sr11 srA1

1.300 0.112 0.238 0.350 0.234 0.189 0.423

1.305 0.112 0.245 0.357 0.239 0.189 0.428

1.310 0.116 0.252 0.367 0.245 0.190 0.435

1.315 0.120 0.251 0.371 0.248 0.193 0.441

1.320 0.118 0.261 0.379 0.255 0.194 0.449

1.325 0.125 0.265 0.390 0.259 0.195 0.454

1.330 0.123 0.268 0.391 0.262 0.199 0.461

Following the same procedure, the power scattering coefficients of the transmitted

modes stmn can be calculated by Eq. (4.29). Figure 4.22(a) shows the normalized time

history of the Lamb wave collected at P4. It is observed that no reflecting waves from

the outer boundary are present. Figure 4.22(b) shows the wavenumber spectrum at

frequency 1.315 GHz of the Lamb wave collected at P4. It is confirmed that the

transmitted wave consists of forward propagating mode A0 and mode A1 only. The

complex amplitude of the transmitted modes (At0 and At1) can be calculated by

applying 2D FFT to the time sequence of the equally allocated monitoring points on the

top surface of the passive region. The complex amplitude of the transmitted modes (At0

and At1) are used instead of the reflected modes (Ar0 and Ar1) in the matrix (Eq.

(4.22)) to calculate the complex mode amplitude conversion coefficients of the

transmitted modes rtnm by solving the matrix equation (Eq. (4.21)). The mode power

coefficients cn for mode A0 and A1 in the passive region are shown in Fig. 4.23. Table

4.4 shows the power scattering coefficients of the transmitted waves calculated by the
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(a)

(b)

Figure 4.19: Scattered Lamb waves at P2 for FBAR with symmetric electrodes. (a) Time
history, (b) Frequency spectrum.
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Figure 4.20: Mode power coefficient cn for A0 and A1 modes propagating in active region
for FBAR with symmetric electrodes.

Figure 4.21: The power scattering coefficients srnm for A0 and A1 modes reflecting from
the symmetric boundary at P3.
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proposed method. stmn is the power transmission coefficient of mode An converted into

Am, and stAn
is the total power transmission coefficient for mode An calculated by

stAn
= st0n + st1n (n = 0,1). Figure 4.24 shows the the power scattering coefficients of the

transmitted waves for the interested frequency range. It is observed that the power

transmission coefficients of mode A0 and A1 are generally decreasing with the increase of

the frequency. Within the investigated frequency range, more than 60% energy of mode

A0 and more than 50% energy of mode A1 are propagating into the passive region,

causing energy leakage in FBAR resonators.

Table 4.4: Power scattering coefficients of the transmitted waves stmn for FBAR with
symmetric electrodes.

frequency
(GHz)

st00 st10 stA0
st01 st11 stA1

1.300 0.517 0.135 0.652 0.159 0.397 0.556

1.305 0.512 0.141 0.653 0.165 0.392 0.557

1.310 0.498 0.144 0.642 0.169 0.379 0.548

1.315 0.497 0.155 0.652 0.177 0.384 0.561

1.320 0.460 0.157 0.617 0.172 0.364 0.536

1.325 0.471 0.166 0.637 0.186 0.361 0.547

1.330 0.453 0.165 0.618 0.185 0.333 0.518

To ensure the time convergence of the simulation, two different time steps 59, 000

and 60, 000 were used respectively. The differences of amplitudes of the incident modes,

reflected modes and transmitted modes calculated by using these two different time steps

are less than 0.004% for all points. The energy differences between the incident modes

and the converted modes are also calculated to check the computation accuracy, which

are shown in Table 4.5 and Table 4.6 for the first set of data and the second set of data,

respectively. PAn,inc (n=0, 1) is the power of the incident mode An, and Pinc is the total

incident power calculated by Pinc = PA0,inc+PA1,inc. PAn,ref (n=0, 1) is the power of the

reflected mode An, PAn,tra (n=0, 1) is the power of the transmitted mode An, and Pconv

is the total converted power calculated by Pconv = PA0,ref + PA1,ref + PA0,tra + PA1,tra.

Energy difference between the incident modes and the converted modes Pdif is calculated

by Pdif = (Pconv − Pinc)/Pinc. It is observed that the energy difference is smaller than

5% for all points. Energy conservation is also checked by combining Table 4.3 and Table

4.4, shown in Table 4.7. srAn
(n=0, 1) is the total power reflection coefficient for mode An

(shown in Table 4.3). stAn
(n=0, 1) is the total power transmission coefficient for mode

An (shown in Table 4.4). And stotalAn
(n=0, 1) is the total power scattering coefficient for

mode An, calculated by stotalAn
= srAn

+ stAn
. By energy conservation, stotalAn

should be equal

to 1. It is observed that the error is less than 3% at all frequencies. The accuracy of the

results can be improved by increasing the simulation time and elongating the structure to
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(a)

(b)

Figure 4.22: Transmitted Lamb waves at P4 for FBAR with symmetric electrodes. (a)
Time history, (b) Frequency spectrum.
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Figure 4.23: Mode power coefficient cn for A0 and A1 modes propagating in passive region
for FBAR with symmetric electrodes.

Figure 4.24: The power scattering coefficients stnm for A0 and A1 modes transmitted into
the passive region.
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allocate more monitoring points on the surface to improve the frequency and wavenumber

resolution, respectively.

Table 4.5: Energy difference between the incident modes and the converted modes for the
first set of data.
frequency
(GHz)

PA0,inc

10−8W
PA1,inc

10−8W
Pinc

10−8W
PA0,ref

10−8W
PA1,ref

10−8W
PA0,tra

10−8W
PA1,tra

10−8W
Pconv

10−8W
Pdif

1.300 79.31 22.90 102.21 6.02 7.25 69.02 22.98 105.28 0.030

1.305 77.29 22.69 99.98 6.97 8.57 67.53 21.08 103.97 0.040

1.310 79.06 23.26 102.32 9.00 10.27 67.04 19.67 105.99 0.036

1.315 76.59 22.57 99.17 10.08 11.39 64.52 18.11 104.10 0.050

1.320 77.97 23.32 101.29 12.08 14.13 60.21 16.34 102.76 0.015

1.325 75.45 22.66 98.11 13.94 15.69 58.56 14.49 102.68 0.047

1.330 75.81 22.98 98.79 15.40 18.29 54.94 12.42 101.06 0.023

Table 4.6: Energy difference between the incident modes and the converted modes for the
second set of data.
frequency
(GHz)

PA0,inc

10−8W
PA1,inc

10−8W
Pinc

10−8W
PA0,ref

10−8W
PA1,ref

10−8W
PA0,tra

10−8W
PA1,tra

10−8W
Pconv

10−8W
Pdif

1.300 0.31 4.23 4.55 1.33 1.36 0.19 1.48 4.36 -0.040

1.305 0.30 4.05 4.35 1.27 1.29 0.19 1.44 4.19 -0.037

1.310 0.30 4.01 4.31 1.26 1.27 0.19 1.43 4.15 -0.036

1.315 0.28 3.79 4.07 1.18 1.19 0.20 1.41 3.99 -0.020

1.320 0.27 3.76 4.04 1.16 1.16 0.22 1.37 3.92 -0.030

1.325 0.26 3.55 3.81 1.08 1.07 0.26 1.33 3.74 -0.018

1.330 0.25 3.49 3.74 1.04 1.02 0.29 1.25 3.60 -0.035

Table 4.7: Power scattering coefficients of the converted modes for FBAR with symmetric
electrodes.

frequency
(GHz)

srA0
stA0

stotalA0
srA1

stA1
stotalA1

1.300 0.350 0.652 1.002 0.424 0.556 0.980

1.305 0.357 0.653 1.010 0.428 0.557 0.985

1.310 0.367 0.642 1.009 0.436 0.548 0.984

1.315 0.371 0.652 1.023 0.442 0.561 1.003

1.320 0.379 0.617 0.996 0.449 0.536 0.985

1.325 0.390 0.636 1.026 0.454 0.547 1.001

1.330 0.392 0.618 1.010 0.461 0.518 0.979

4.5.2 Generic FBAR model with asymmetric electrodes

A practical generic FBAR resonator with asymmetric electrodes (bottom electrode is

extended to the whole structure as shown in Fig. 4.25) is set up to analyze the scattering

phenomena of the two lowest antisymmetric Lamb modes at the discontinuities in this

section. The FBAR resonator is again composed of a piezoelectric AlN layer with 3µm

thickness sandwiched between two Al electrodes with 0.6µm in thickness. The scattering

boundary (P3) and the observation point in the active region (P2) are, respectively, 300
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µm and 210 µm away from the excitation point (P1). The observation point in the passive

region (P4) and the outer boundary (G) are, respectively, 25 µm and 600 µm away from

the scattering boundary (P3). The material properties used in this study was presented

in section 3.3.

Piezoelectric

material

Electrode

x3

x1

Electrode

P2P1 P3

P4 G

Active region Passive region

Figure 4.25: Schematic of a generic FBAR resonator with asymmetric electrodes for Lamb
wave scattering analysis.

Similarly, a two-dimensional finite-difference time-domain (FDTD) model (developed

in chapter 3) is set up to simulate the propagation of the Lamb waves. The spatial step

size and temporal step size are chosen to be the same used to analyze the FBAR resonator

with symmetric electrodes in section 4.5.1.

A eight-cycle Lamb wave toneburst (demonstrated in section 3.6.2) composed of A0

and A1 modes is numerically launched by imposing their theoretical particle velocity

components v(x3) [11] at P1 as described by Eq. (4.31). The constants K1 and K2 are

set to 0.14 and 23 in this simulation. The bandwidth of the toneburst again covers the

frequency range of 1 GHz < f < 1.6 GHz. The dispersion characteristic of the active

region is the same as the one for the FBAR resonator with symmetric electrodes (shown

in Fig. 4.17(a)). The dispersion characteristic of the passive region is shown in Fig. 4.26.

Because the passive layer is not symmetric, the modes propagating in this region do not

show symmetric nor antisymmetric behavior. These modes are referred as pseudo

symmetric (pSn) and pseudo antisymmetric (pAn) modes respectively, in analogy to the

Lamb mode nomenclature. Again, only the frequency range 1.300 GHz < f < 1.330 GHz

is considered in this simulation. When the incident wave arrives at the scattering

boundary P3, mode conversion happens, and the converted waves are partially reflected

back into the active region, while others are propagating forward into the passive region.

Since the scattering boundary at P3 is asymmetric, mode conversion from antisymmetric

to symmetric modes occurs. Therefore, it can be observed from Fig. 4.17(a) and Fig.

4.26 that within the investigated frequency range, A0, A1, S0 and S1(+) are propagating

in the active region, while pA0, pA1 and pS0 are propagating in the passive region.

Figure 4.27 shows the normalized time history and its wavenumber spectrum at
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Figure 4.26: Dispersion characteristic of FBAR resonator with asymmetric electrodes in
the passive region.

frequency 1.315 GHz of the incident Lamb wave collected at 50 µm away from the

excitation point P1. Because of dispersive property of Lamb waves, the A0 and A1

modes cannot be distinguished in time-domain. On the other hand, the wavenumber

spectrum shows that the incident Lamb wave consists of two modes with phase constant

0.98 rad/µm and 1.79 rad/µm, which are corresponding to the A1 mode and A0 mode,

respectively.

The reflected waves propagating back into the active region are examined first. Figure

4.28(a) shows the normalized time history of the Lamb wave collected at P2. The duration

of the simulation is long enough to include the incident Lamb wave and the reflected Lamb

waves from the discontinuity at P3. The incident Lamb wave consists of two overlapping

tonebursts while the reflected wave contains more than two overlapping tonebursts because

of the mode conversion at the boundary (P3). Figure 4.28(b) shows the wavenumber

spectrum at frequency 1.315 GHz of the Lamb wave collected at P2. It can be observed

that the reflected wave consists of four modes, mode A0, A1, S0 and S1. Each backward

reflected mode is a combination of the mode converted from the incident mode A0 and A1.

Take the reflected mode A1 as an example, since the two reflected A1 mode converted from

the incident A0 mode and the incident A1 mode have the same wavenumber at a given

frequency, these two waves cannot be distinguished from both time-domain history and the

wavenumber-domain spectrum. To distinguish these two waves, the simulation is repeated

with the constants K1 = 7 and K2 = 1 for the amplitude of the two incident Lamb wave

116



(a)

(b)

Figure 4.27: Incident Lamb waves at x1 = 50µm when the input A0 and A1 modes are
excited at x1 = 0. (a) Time history, (b) Wavenumber spectrum at frequency = 1.315 GHz.
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modes. The complex amplitude of the incident modes (Ai0 and Ai1) and reflected modes

(Ar0, Ar1, Sr0, and Sr1) can be obtained by applying 2D FFT to the time sequence of

the equally allocated monitoring points on the top surface of the active region. With

the two wavenumber spectra obtained from the simulations, the complex mode amplitude

conversion coefficients of the reflected antisymmetric modes rranm and symmetric modes rrsnm

are determined by solving the matrix equation (Eq. (4.21)). Two set of matrix equations

are obtained, one with the reflected antisymmetric modes A0 and A1, and the other one

with the reflected symmetric modes S0 and S1.

Finally, the power scattering coefficients of the reflected antisymmetric modes sramn and

symmetric modes srsmn are calculated by Eq. (4.29). The mode power coefficients cn are

calculated by the effective acoustic admittance as described in section 2.4.1.3. The mode

power coefficients cn for mode A0, A1, S0 and S1 in the active region are shown in Fig. 4.29.

Table 4.8 shows the power scattering coefficients of the reflected waves calculated by the

proposed method. sramn is the power reflection coefficient of mode An converted into mode

Am, and srsmn is the power reflection coefficient of mode An converted into mode Sm. srAn
is

the total power reflection coefficient for mode An calculated by srAn
= sra0n+sra1n+srs0n+srs1n

(n = 0,1). Figure 4.30 shows the the power scattering coefficients of the reflected waves

for the interested frequency range. It is observed that the power reflection coefficients of

mode A0 and A1 are increasing with the increase of the frequency. Within the investigated

frequency range, less than 34% energy of mode A0 and less than 44% energy of mode A1

are reflecting back into the active region. The majority energy of mode A0 and A1 is lost

into the passive region. It is also observed that mode A0 is mainly converted into modes

S1 and A1, while mode A1 is mainly converted into modes S0 and A0. By reciprocity, if

the incident mode is S1, most of its energy will be converted into A0, and if the incident

mode is S0, most of its energy will be converted into A1.

Table 4.8: Power scattering coefficients of the reflected waves sramn and srsmn for FBAR with
asymmetric electrodes.
frequency
(GHz)

sra00 sra10 srs00 srs10 srA0
sra01 sra11 srs01 srs11 srA1

1.300 0.005 0.093 0.025 0.126 0.249 0.088 0.010 0.211 0.049 0.359

1.305 0.004 0.090 0.020 0.130 0.243 0.094 0.008 0.212 0.052 0.366

1.310 0.005 0.099 0.012 0.139 0.254 0.107 0.013 0.220 0.039 0.380

1.315 0.007 0.106 0.017 0.140 0.269 0.102 0.013 0.221 0.042 0.378

1.320 0.010 0.125 0.014 0.141 0.290 0.122 0.012 0.222 0.048 0.404

1.325 0.036 0.129 0.028 0.141 0.333 0.125 0.023 0.222 0.052 0.421

1.330 0.043 0.112 0.034 0.140 0.330 0.116 0.050 0.211 0.053 0.430

Following the same procedure, the power scattering coefficients of the transmitted

antisymmetric modes stamn and symmetric modes stsmn can be calculated by Eq. (4.29).
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(a)

(b)

Figure 4.28: Scattered Lamb waves at P2 for FBAR with asymmetric electrodes. (a) Time
history, (b) Frequency spectrum.
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Figure 4.29: Mode power coefficient cn for A0, A1, S0 and S1 modes propagating active
region for FBAR with asymmetric electrodes.

Figure 4.30: The power scattering coefficients sramn and srsmn for A0 and A1 modes reflecting
from the asymmetric boundary at P3.
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Figure 4.31(a) shows the normalized time history of the Lamb wave collected at P4. It

is observed that no reflecting waves from the outer boundary are present. Figure 4.31(b)

shows the wavenumber spectrum at frequency 1.315 GHz of the Lamb wave collected at P4.

It is confirmed that the transmitted wave consists of forward propagating mode pA0, pA1

and pS0 only. The complex amplitude of the transmitted modes (At0, At1, and St0) can be

calculated by applying 2D FFT to the time sequence of the equally allocated monitoring

points on the top surface of the passive region. The complex amplitude of the transmitted

modes (At0, At1 and St0) are used instead of the reflected modes (Ar0 and Ar1) in the

matrix (Eq. (4.22)) to calculate the complex mode amplitude conversion coefficients of

the transmitted modes rtanm and rtsnm by solving the matrix equation (Eq. (4.21)). The

mode power coefficients cn for mode pA0, pA1 and pS0 in the passive region are shown

in Fig. 4.32. Table 4.9 shows the power scattering coefficients of the transmitted waves

calculated by the proposed method. stamn is the power transmission coefficient of mode

An converted into mode Am, and stsmn is the power transmission coefficient of mode An

converted into mode Sm. stAn
is the total power transmission coefficient for mode An

calculated by stAn
= sta0n + sta1n + sts0n (n = 0,1). Figure 4.33 shows the the power scattering

coefficients of the transmitted waves for the interested frequency range. It is observed that

the power transmission coefficients of mode A0 and A1 are decreasing with the increase of

the frequency. Within the investigated frequency range, more than 66% energy of mode

A0 and more than 56% energy of mode A1 are propagating into the passive region, causing

energy leakage in FBAR resonators.

Table 4.9: Power scattering coefficients of the transmitted waves stamn and stsmn for FBAR
with asymmetric electrodes.

frequency
(GHz)

sta00 sta10 sts00 stA0
sta01 sta11 sts01 stA1

1.300 0.738 0.013 0.002 0.753 0.014 0.460 0.149 0.624

1.305 0.730 0.015 0.004 0.749 0.015 0.458 0.148 0.620

1.310 0.726 0.015 0.004 0.745 0.017 0.448 0.149 0.613

1.315 0.722 0.017 0.002 0.740 0.018 0.444 0.174 0.637

1.320 0.718 0.029 0.002 0.749 0.022 0.419 0.176 0.618

1.325 0.653 0.031 0.002 0.687 0.028 0.349 0.202 0.579

1.330 0.644 0.024 0.001 0.669 0.024 0.340 0.196 0.560

To ensure the time convergence of the simulation, two different time steps 59, 000

and 60, 000 were used respectively. The differences of amplitudes of the incident modes,

reflected modes and transmitted modes calculated by using these two different time steps

are less than 2% for all points. The energy differences between the incident modes and the

converted modes are also calculated to check the computation accuracy, which are shown

in Table 4.10 and Table 4.11 for the first set of data and the second set of data, respectively.
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(a)

(b)

Figure 4.31: Transmitted Lamb waves at P4 for FBAR with asymmetric electrodes. (a)
Time history, (b) Frequency spectrum.
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Figure 4.32: Mode power coefficient cn for pA0, pA1 and pS0 modes propagating in passive
region for FBAR with asymmetric electrodes.

Figure 4.33: The power scattering coefficients stamn and stsmn for A0 and A1 modes
transmitted into the passive region.
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PAn,inc (n=0, 1) is the power of the incident mode An, and Pinc is the total incident power

calculated by Pinc = PA0,inc+PA1,inc. PAn,ref (n=0, 1) is the power of the reflected mode

An, and PSn,ref (n=0, 1) is the power of the reflected mode Sn. PpAn,tra (n=0, 1) is the

power of the transmitted mode pAn, and PpS0,tra is the power of the transmitted mode

pS0. Pconv is the total converted power calculated by Pconv = PA0,ref +PA1,ref +PS0,ref +

PS1,ref + PpA0,tra + PpA1,tra + PpS0,tra. Energy difference between the incident modes and

the converted modes Pdif is calculated by Pdif = (Pconv − Pinc)/Pinc. It is observed that

the energy difference is smaller than 5% at all frequencies. Energy conservation is also

checked by combining Table 4.8 and Table 4.9, shown in Table 4.12. srAn
(n=0, 1) is the

total power reflection coefficient for mode An (shown in Table 4.8). stAn
(n=0, 1) is the

total power transmission coefficient for mode An (shown in Table 4.9). And stotalAn
(n=0,

1) is the total power scattering coefficient for mode An, calculated by stotalAn
= srAn

+ stAn
.

By energy conservation, stotalAn
should be equal to 1. It is observed that the error is less

than 4% at all frequencies. The accuracy of the results can be improved by increasing the

simulation time and elongating the structure to allocate more monitoring points on the

surface to improve the frequency and wavenumber resolution, respectively.

Comparing Table 4.4 with Table 4.9, it is observed that with symmetric electrodes, less

energy is propagating into the passive region for both mode A0 and A1. Therefore, less

energy is lost and the quality factor Q is higher for FBAR with symmetric electrodes than

the one with asymmetric electrodes. But, a FBAR resonator with symmetric electrodes is

not suitable for practical application. A more practical FBAR structure with frame-like

airgap on bottom electrode is proposed and will be investigated in the next chapter.
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Table 4.12: Power scattering coefficients of the converted modes for FBAR with
asymmetric electrodes.

frequency
(GHz)

srA0
stA0

stotalA0
srA1

stA1
stotalA1

1.300 0.249 0.753 1.002 0.359 0.624 0.983

1.305 0.243 0.749 0.992 0.366 0.620 0.986

1.310 0.254 0.745 0.999 0.380 0.613 0.993

1.315 0.269 0.740 1.009 0.378 0.637 1.014

1.320 0.290 0.749 1.039 0.404 0.618 1.022

1.325 0.333 0.687 1.020 0.421 0.579 1.000

1.330 0.330 0.669 0.999 0.430 0.560 0.990
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Chapter 5

FBAR with frame-like airgap on
bottom electrode for suppression
of spurious modes

5.1 Introduction

Based on the scattering analysis of the two generic free-standing bulk acoustic resonator

(FBAR) structures in Chapter 4, a new structure of FBAR resonator with frame-like

airgap on bottom electrode is proposed to suppress the spurious modes and improve the

quality factor [128]. The proposed FBAR structure is presented first. Following that, the

time domain analysis developed in Chapter 3 is carried out for the proposed structure.

Furthermore, the frequency domain analysis is conducted to provide a more profound

understanding for the phenomenon. Finally, some discussions on the simulation results

are given.

The proposed FBAR structure is shown in Fig. 5.1. In this structure, a frame-like

airgap is formed on the bottom electrode of FBAR. The airgap is put aligned to the top

electrode, where the discontinuity lies. The spurious waves are generated at the

discontinuity boundary. Therefore, the airgap allocated at the discontinuity boundary is

applied to change the boundary condition and suppress the spurious waves. The

piezoelectric material used in this investigation is AlN and the electrode metal is Al. The

material properties used in this simulation is presented in section 3.3.

A two-dimensional finite-difference time-domain (FDTD) model (developed in chapter

3) was set up to simulate the structure. The zero traction condition was enforced on the

boundaries and the structure was long enough to eliminate the scattering from the outer

boundary. As it is mentioned in section 3.5, to reduce the artificial numerical dispersion

effects to an acceptable extent, the spatial step size ∆x1 and ∆x3 were both set to 5×10−8

m, which was approximately equal to one twentieth of the smallest wavelength of the

excitation source. To ensure the stability of the simulation, the time increment interval
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W

d

x1

x3

ActivePassive Passive

Figure 5.1: The proposed FBAR resonator with frame-like airgap to suppress the spurious
modes.

was chosen to be 3× 10−12 s in order to satisfy the Courant stability condition [111].

Firstly, time domain analysis is carried out in the next section. A sinusoidal wave at

antiresonance frequency of the structure is used as the excitation source in the FDTD

simulation. The displacements are extracted to analyze the proposed structure.

Furthermore, the frequency domain analysis is conducted to provide a more profound

understanding for the phenomenon in section 5.3. A Gaussian pulse is applied as the

excitation source in this case. The power of each spurious mode is calculated and

analyzed for the proposed structure.

5.2 Time domain analysis for the proposed structure

In this section, a sinusoidal wave (demonstrated in section 3.6.3) at antiresonance

frequency of the structure was used as the excitation source in the FDTD simulation.

The thickness of the piezoelectric layer was 3 µm and the thicknesses of the top and

bottom electrode layer were both 0.6 µm. The width of the top electrode was 100 µm

and the width of the whole structure was 500 µm. The displacements on the top layer

and bottom layer of the piezoelectric material as shown in Fig. 5.2 were observed. Due

to the spatial discretization of the FDTD algorithm, the particle velocity v3 (thus the

particle displacement u3) does not lie on the top or bottom interface between the

electrode and the piezoelectric material. Thus, the top layer is the first layer below the

interface of the top electrode and the piezoelectric material and the bottom layer is the

first layer above the interface of the bottom electrode and the piezoelectric material. The

displacements were extracted at the time instant when the resonator was in a steady

resonant state. The structure was large enough that there are no reflection waves from

the outer boundary.
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AlN

Top observation layer

Bottom observation layer

100 m

500 m

0.6 m

0.6 m

3 m

Figure 5.2: Observation displacement layers in the time domain analysis.

The displacement u3 along the top observation layer at t = 18 ns is shown in Fig.

5.3. The depth of the airgap was 0.6 µm in this case, which is corresponding to totally

removing the bottom electrode in the airgap region. Because of symmetry, only the right

passive region of the structure is shown in Fig. 5.3(b). Fig. 5.3(c) shows the displacement

distribution in the active region, or the overlap of the top electrode and bottom electrode

region. In the ideal case, no spurious wave generated in the structure, the displacement

inside the active region should be a flat line. In Fig. 5.3, it is observed that the amplitude

of the ripples of the proposed structure is much smaller than that of the structure without

airgap on the bottom electrode. The ripples are generated by resonance of the plate waves

in the transverse direction [46], which are the sources of the spurious modes. So, the

smaller amplitude of the ripples means less lateral spurious waves and less energy is leaked.

Energy trapping is also observed in Fig. 5.3. The displacement u3 along the bottom layer

is displayed in Fig. 5.4. Similar phenomenon is observed in Fig. 5.4. Therefore, only the

displacements on the top layer are considered in the rest of this chapter. A different time

instant is chosen for Fig. 5.4 to show that the amplitude of ripples is reduced at different

time instants.

The influence of the airgap width and depth on the spurious wave suppression are

investigated in the next two subsections.
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(a)

(b)
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(c)

Figure 5.3: Displacement u3 along the top observation layer for FBAR resonator with
(w = 10 µm) and without (w = 0 µm) airgap on the bottom electrode (a) The whole
structure, (b) The right passive region of the structure, (c) Active region.

Figure 5.4: Displacement u3 along the bottom observation layer for FBAR resonator with
(w = 10 µm) and without (w = 0 µm) airgap on the bottom electrode.
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5.2.1 FBAR with different bottom electrode airgap width

The effect of the bottom electrode airgap width on the spurious wave suppression is

examined in this section. To reduce the simulation time, the width of the whole

structure was reduced to 300 µm. The airgap depth was fixed to 0.6 µm as shown in Fig.

5.5. The width of the airgap was varied from 0.5 µm to 12 µm with a step of 0.5 µm. A

sinusoidal wave at antiresonance frequency of the structure was used as the excitation

source for all the cases.

AlN

W x1

x3

Active

Passive Passive

100 m

0.6 m

0.6 m

3 m

0.6 m

300 m

Figure 5.5: The FBAR resonator with airgap on the bottom electrode for time domain
analysis on the effect of the airgap width.

Figure 5.6 shows the comparison of displacements of FBAR with bottom electrode

airgap width of 0.5 µm and 3 µm. It is quite obvious that the amplitude of the ripples

of the structure with 0.5 µm airgap width is much larger than that of the structure with

3 µm airgap width in both active and passive regions. Figure 5.7 shows the comparison

of displacements of FBAR with bottom electrode airgap width of 2 µm and 7 µm. It can

be observed that the amplitude of the ripples does not have too much difference for these

two different airgap widths.

As the amplitude of the ripples in the passive region is proportional to the leakage

power, the sum of the square of the displacement amplitude along the top observation

layer in the passive region (Pi =
∑

(ui(x1j))
2) were calculated and compared for different

airgap width. Due to symmetry, only the right passive region was investigated. Figure

5.8 shows the sum of the square of the displacement amplitude in the right passive region

for different airgap width. It is observed that the sum decreases quickly from the width of

0 µm (without airgap) to the width of 2 µm. When the width is larger than 2 µm, the sum

shows a quasi-periodic behavior, and the difference between different width is relatively

small. For the active region, similar phenomenon can be observed for the displacement

amplitude. However, it is difficult to compare them in the way for the passive region,
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(a)

(b)
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(c)

Figure 5.6: Displacement u3 along the top observation layer of the piezoelectric material
for different airgap width (a) The whole structure, (b) The right passive region of the
structure, (c) Active region.

Figure 5.7: Displacement u3 along the top observation layer of the piezoelectric material
for different airgap width.
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because it is difficult to separate the spurious waves from the desired longitudinal waves.

More detailed analysis is conducted in the frequency domain in section 5.3.1.

Figure 5.8: Sum of the square of the displacement amplitude in the right passive region
for different airgap width.

5.2.2 FBAR with different bottom electrode airgap depth

The effect of the bottom electrode airgap depth on the spurious wave suppression is

investigated in this section. The width of the whole structure used in this case was again

300 µm. The airgap width was fixed to 3 µm as shown in Fig. 5.9. The depth of the

airgap was increased from 0 to 0.6 µm with a step of 0.1 µm. A sinusoidal wave at

antiresonance frequency of the structure was used as the excitation source for all the

cases.

It is observed in Fig. 5.10 that the amplitude of ripples of structure with 0.1 µm

airgap depth is much larger than that of structure with 0.6 µm airgap depth. The sum

of the square of the displacement amplitude along the top observation layer in the right

passive region (Pi =
∑

(ui(x1j))
2) were also calculated and compared for different airgap

depth (shown in Fig. 5.11). It is observed that as the depth of the airgap increases,

the sum decreases quickly. Structure with 0.6 µm airgap depth has the best performance,

which is corresponding to totally removing the bottom electrode in the airgap region. This

is undesirable because the structure cannot connect to other devices after removing the

bottom electrode in the airgap region. Fortunately, 0.1 µm difference of the depth will
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Figure 5.9: The FBAR resonator with airgap on the bottom electrode for time domain
analysis on the effect of the airgap depth.

not affect the performance too much, which is shown in Fig. 5.12. More detailed analysis

is conducted in the frequency domain in section 5.3.2.
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(a)

(b)
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(c)

Figure 5.10: Displacement u3 along the top observation layer of the piezoelectric material
for different airgap depth (a) The whole structure, (b) The right passive region of the
structure, (c) Active region.

Figure 5.11: Sum of the square of the displacement amplitude in the right passive region
for different airgap depth.
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Figure 5.12: Displacement u3 along the top observation layer of the piezoelectric material
for different airgap depth.

5.3 Frequency domain analysis for the proposed structure

In this section, the frequency domain analysis is conducted to provide a more profound

understanding for the observed phenomenon in time domain. A Gaussian pulse with

maximum frequency of 2 GHz (demonstrated in section 3.6.1) was used as the excitation

source. The particle velocities vn(x1, t) (n=1,3) on the top surface in the active region

and the passive region were calculated and recorded by the FDTD model. The power of

each propagating Lamb mode was calculated by Eq. (2.30). The amplitude of the particle

displacement used in Eq. (2.30) were obtained by applying 2D FFT to the recorded

particle velocities vn(x1, t) (n=1,3) on the top surface in the active region and the passive

region, respectively. Since the particle velocity is related to the particle displacement u

by v = ∂u/∂t in time domain, the amplitude of the particle displacement in frequency

domain can be calculated by U(ωo) = V (ωo)/jωo.

The proposed structure has the same configuration in the active region as the one

investigated in section 4.5.1 and 4.5.2. Therefore, the dispersion characteristic in the

active region is the same as the one shown in Fig. 4.17(a). For the passive region, only a

small part of the bottom electrode was cut out. Excluding this small part, the remaining

part in the passive region has the same layer configuration as the one investigated in

section 4.5.2. Thus, the dispersion characteristic in the passive region is the same as the
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one shown in Fig. 4.26. The resonance frequency fs of the investigated FBAR resonator

was approximately 1.298 GHz and the antiresonance frequency fa was approximately

1.331 GHz. For simplicity, only the frequency range 1.300 GHz < f < 1.330 GHz was

considered. Within this frequency range, Lamb modes A0, A1, S0 and S1(+) are

propagating in the active region, and pA0, pA1 and pS0 are propagating in the passive

region. These Lamb modes are the unwanted spurious modes. The mode power

coefficients used to calculate the power of each mode are the same as the one used in

section 4.5.2 (shown in Fig. 4.29 and Fig. 4.32).

The influence of the airgap width and depth on the spurious wave suppression is

investigated in the next two subsections. Furthermore, the power of the spurious modes

at different frequency is also investigated for a specified airgap width and depth.

5.3.1 Power of the spurious modes for different airgap width

The effect of the airgap width on the spurious wave suppression is examined in this section.

The top electrode width was extended to 192 µm to improve the spatial resolution in the

active region, and the whole structure width was extended to 1400 µm to avoid the outer

boundary reflection. The airgap depth was fixed to 0.5 µm as shown in Fig. 5.13. The

width of the airgap was varied from 1 µm to 12 µm with a step of 1 µm. The power of the

propagating Lamb modes was compared for different gap width in the active region and

the passive region. Due to the symmetry of the structure, only the modes propagating in

the right passive region were analyzed. The amplitude of the longitudinal mode was also

compared for different airgap width.

AlN

W x1

x3

Active

Passive Passive

192 m

0.6 m

0.6 m

3 m

0.5 m

1400 m

Figure 5.13: The FBAR resonator with airgap on the bottom electrode for frequency
domain analysis on the effect of airgap width.

Figure 5.14 shows the power of the propagating Lamb modes in the active region at

1.33 GHz, which is near the antiresonance frequency. It is observed that the power of
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mode A0 and A1 decreases quickly from the width of 0 µm (without airgap) to the width

of 2 µm. When the width is larger than 2 µm, the power shows a quasi-periodic behavior,

and the difference between different width is relatively small. The power for mode S0

and S1 decreases quickly from the width of 0 µm (without airgap) to the width of 1 µm.

When the width is larger than 1 µm, the power also shows a quasi-periodic behavior. It

can also be observed that the power of mode S0 and S1 is larger than that of mode A0 and

A1 for airgap width larger than 2 µm. Similar phenomenon was also observed at other

frequencies within the investigated frequency range. For example, the power of different

propagating Lamb modes in the active region at 1.3 GHz, which is near the resonance

frequency, is plotted in Fig. 5.15.

Figure 5.14: Power of Lamb modes in the active region at 1.33 GHz for different airgap
width.

The total power of Lamb modes in the active region at 1.33 GHz is also shown in Fig.

5.16. It is observed that the total power of the spurious modes decreases quickly from the

width of 0 µm (without airgap) to the width of 2 µm. When the width is larger than 2 µm,

the total power shows a quasi-periodic behavior, and the difference between different width

is relatively small. Similar phenomenon was also observed at other frequencies within the

investigated frequency range. For example, the total power of the spurious modes in the

active region at 1.3 GHz, which is near the resonance frequency, is plotted in Fig. 5.17.

Figure 5.18 shows the power of the propagating Lamb modes in the passive region

at 1.33 GHz, which is near the antiresonance frequency. It is observed that the power
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Figure 5.15: Power of Lamb modes in the active region at 1.3 GHz for different airgap
width.

Figure 5.16: The total power of Lamb modes in the active region at 1.33 GHz for different
airgap width.
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Figure 5.17: The total power of Lamb modes in the active region at 1.3 GHz for different
airgap width.

of mode pA0 and pA1 decreases quickly from the width of 0 µm (without airgap) to the

width of 2 µm. When the width is larger than 2 µm, the power difference between different

width is relatively small. On the other hand, the power for mode pS0 increases quickly

from the width of 0 µm (without airgap) to the width of 2 µm. When the width is larger

than 2 µm, the power difference for different width is relatively small. It can also be

observed that the power of mode pS0 is much smaller than that of mode pA0 and pA1

when the width is smaller than 2 µm, and it is a little bit larger than that of mode pA0

and pA1 when the width is larger than 2 µm. This has resulted in quick reduction of

total leakage power from the width of 0 µm to the width of 2 µm, which is shown in Fig.

5.19. It is also observed that the total leakage power shows a quasi-periodic behavior,

and the difference for different width is relatively small, when the width is larger than

2 µm. Similar phenomenon was also observed at other frequencies within the investigated

frequency range, with the exception at 1.3 GHz. At 1.3 GHz, similar to the mode pA0

and pA1, the power of mode pS0 decreases quickly as the width increases from 0 µm to

2 µm, shown in Fig. 5.20. For the total leakage power, the same phenomenon is observed

for the whole investigated frequency range. For example, the total leakage power at 1.3

GHz, which is near the resonance frequency, is plotted in Fig. 5.21.

From Fig. 5.16, Fig. 5.17, Fig. 5.19, and Fig. 5.21, it is observed that the total

144



Figure 5.18: Power of Lamb modes in the passive region at 1.33 GHz for different airgap
width.

Figure 5.19: The total leakage power of Lamb modes in the passive region at 1.33 GHz
for different airgap width.

145



Figure 5.20: Power of Lamb modes in the passive region at 1.3 GHz for different airgap
width.

Figure 5.21: The total leakage power of Lamb modes in the passive region at 1.3 GHz for
different airgap width.
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spurious modes power in both active region and passive region decreases quickly as the

width increases from 0 µm to 2 µm. When the width is larger than 2 µm, the power

shows a quasi-periodic behavior, and the difference for different width is relatively small.

This is in good agreement with results obtained by time domain analysis (shown in Fig.

5.8). Since the excitation source was the same for all cases, reduction in spurious modes

power in the active region and leakage power in the passive region means that more power

has been stored in the main longitudinal mode within the investigated frequency range.

Because the mode power coefficient for the longitudinal mode is not easy to calculate, and

it should be the same for all cases, the amplitude of the longitudinal mode at 1.33 GHz was

compared for different gap width, shown in Fig. 5.22. It is observed that the amplitude

of the longitudinal mode increases quickly as the gap width increases from 0 µm to 2 µm.

When the width is larger than 2 µm, the amplitude shows a quasi-periodic behavior, and

the difference for different width is relatively small. This result is consistent with the

reduction of spurious mode power as shown in Fig. 5.16, Fig. 5.17, Fig. 5.19, and Fig.

5.21. Similar phenomenon was also observed at other frequencies within the investigated

frequency range.

Figure 5.22: Amplitude of the longitudinal mode at 1.33 GHz for different airgap width.

5.3.2 Power of the spurious modes for different airgap depth

Following the same procedure, the effect of the airgap depth on the spurious wave

suppression is examined in this section. The dimension of the structure was the same as

the one used in the previous subsection. The airgap width was fixed to 8 µm as shown in
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Fig. 5.23. The depth of the airgap was varied from 0 µm to 0.6 µm with a step of

0.1 µm. A Gaussian pulse with maximum frequency of 2 GHz was used as the excitation

source for all cases. The power of the propagating Lamb modes in the active region and

the passive region was compared for different airgap depth. Due to the symmetry of the

structure, only the modes propagating in the right passive region were analyzed. The

amplitude of the longitudinal mode was also compared for different airgap depth.

AlN

d

x1

x3

Active

Passive Passive

192 m

0.6 m

0.6 m

3 m

8 m

1400 m

Figure 5.23: The FBAR resonator with airgap on the bottom electrode for frequency
domain analysis on the effect of the airgap depth.

Figure 5.24 shows the power of the propagating Lamb modes in the active region at

1.33 GHz, which is near the antiresonance frequency. It is observed that the power of

mode A0, S0, and S1 decreases quickly from the depth of 0 µm (without airgap) to the

depth of 0.6 µm. However, the power of mode A1 increases as the depth increases from

0 µm to 0.1 µm, then it decreases as the depth increases. It can also be observed that

the power of mode S0 and S1 is larger than that of mode A0 and A1 with the depth

larger than 0.2 µm. Similar phenomenon was also observed at other frequencies within

the investigated frequency range. For example, the power of propagating Lamb modes in

the active region at 1.3 GHz for different airgap depth is plotted in Fig. 5.25.

The total power of the propagating Lamb modes in the active region at 1.33 GHz is

also shown in Fig. 5.26. It is observed that the total power decreases quickly from the

depth of 0 µm (without airgap) to the depth of 0.6 µm. Similar phenomenon was also

observed at other frequencies within the investigated frequency range. For example, the

total power of the propagating Lamb modes in the active region at 1.3 GHz is plotted in

Fig. 5.27.

Figure 5.28 shows the power of the propagating Lamb modes for different airgap depth

in the passive region at 1.33 GHz, which is near the antiresonance frequency. It is observed

that the power of mode pA0 and pA1 decreases quickly from the depth of 0 µm (without
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Figure 5.24: Power of Lamb modes in the active region at 1.33 GHz for different airgap
depth.

Figure 5.25: Power of Lamb modes in the active region at 1.3 GHz for different airgap
depth.
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Figure 5.26: The total power of Lamb modes in the active region at 1.33 GHz for different
airgap depth.

Figure 5.27: The total power of Lamb modes in the active region at 1.3 GHz for different
airgap depth.
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airgap) to the depth of 0.6 µm. On the other hand, the power of mode pS0 increases

quickly from the depth of 0 µm (without airgap) to the depth of 0.6 µm. It can also be

observed that the power of mode pS0 is much smaller than that of mode pA0 and pA1 when

the depth is less than 0.4 µm, and it is close to that of mode pA0 and pA1 when the depth

is larger than 0.4 µm. This has resulted in quick reduction of total leakage power from the

depth of 0 µm to the depth of 0.6 µm, which is shown in Fig. 5.29. Similar phenomenon

was also observed at other frequencies within the investigated frequency range, with the

exception at 1.3 GHz. At 1.3 GHz, similar to the mode pA0 and pA1, the power of mode

pS0 decreases quickly as the depth increases from 0 µm to 0.6 µm, shown in Fig. 5.30.

For the total leakage power, the same phenomenon is observed for the whole investigated

frequency range. For example, the total leakage power at 1.3 GHz, which is near the

resonance frequency, is shown in Fig. 5.31.

Figure 5.28: Power of Lamb modes in the passive region at 1.33 GHz for different airgap
depth.

From Fig. 5.26, Fig. 5.27, Fig. 5.29, and Fig. 5.31, it is observed that the total

spurious modes power in both active region and passive region decreases quickly as the

depth increases from 0 µm to 0.6 µm. The difference between the depth of 0.5 µm and

the depth of 0.6 µm is relatively small. This is in good agreement with results obtained

by time domain analysis (shown in Fig. 5.11). Since the excitation source was the same

for all cases, reduction in spurious modes power in the active region and leakage power
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Figure 5.29: The total leakage power of Lamb modes in the passive region at 1.33 GHz
for different airgap depth.

Figure 5.30: Power of Lamb modes in the passive region at 1.3 GHz for different airgap
depth.
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Figure 5.31: The total leakage power of Lamb modes in the passive region at 1.3 GHz for
different airgap depth.

in the passive region means that more power has been stored in the main longitudinal

mode within the investigated frequency range. Because the mode power coefficient for

the longitudinal mode is not easy to calculate, and it should be the same for all cases,

the amplitude of the longitudinal mode at 1.33 GHz was compared for different airgap

depth, shown in Fig. 5.32. It is observed that the amplitude of the longitudinal mode

increases as the gap depth increases from 0 µm to 0.6 µm. This result is consistent with

the reduction of spurious mode power as shown in Fig. 5.26, Fig. 5.27, Fig. 5.29, and Fig.

5.31. Similar phenomenon was also observed at other frequencies within the investigated

frequency range.
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Figure 5.32: Amplitude of the longitudinal mode at 1.33 GHz for different airgap depth.

5.3.3 Power of the spurious modes at different frequency

In this section, the power of the spurious modes at different frequency is investigated. The

dimension of the structure was the same as the one used in the previous two subsections.

The airgap width was fixed to 3 µm and the depth was fixed to 0.5 µm. The power of the

propagating Lamb modes was compared at different frequency in both the active region

and the passive region. Due to the symmetry of the structure, only the modes propagating

in the right passive region were analyzed. The amplitude of the longitudinal mode was

also calculated at different frequency.

Figure 5.33 shows the power of the propagating Lamb modes in the active region at

different frequency. It is observed that within the investigated frequency range the spurious

modes power of the proposed FBAR resonator is lower than that of the one without the

airgap on the bottom electrode. It is also observed that the power of mode S0 and S1

is generally higher than that of mode A0 and A1 (shown in Fig. 5.34). To get a clear

view on whether the introduction of the frame-like airgap on the bottom electrode can

suppress the spurious wave generation or not, the total power of the spurious modes was

also compared with the one without airgap on the bottom electrode as shown in Fig. 5.35.

It can be observed that the proposed FBAR resonator can reduce the total power by more

than 4 dB throughout the investigated frequency range.

Figure 5.36 shows the power of the propagating Lamb modes in the passive region

at different frequency. It is observed that the power of the spurious mode pA0 and pA1
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(d)

Figure 5.33: Power of Lamb modes in the active region of FBAR resonator with and
without airgap on the bottom electrode at different frequency (a) mode A0, (b) mode A1,
(c) mode S0, and (d) mode S1.
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Figure 5.34: Power of Lamb modes in the active region of FBAR resonator with an airgap
(w = 3µm, d = 0.5µm) on the bottom electrode at different frequency.

Figure 5.35: Total power of Lamb modes in the active region of FBAR resonator with and
without airgap on the bottom electrode.
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is lower than that of the one without the airgap on the bottom electrode within the

investigated frequency range. However, the power of mode pS0 is higher than that of the

one without frame on the bottom electrode (shown in Fig. 5.36(c)). It is also observed

that the power of mode pS0 is generally higher than that of mode pA0 and pA1 as shown

in Fig. 5.37. To get a clear view on whether the application of the frame-like airgap on

the bottom electrode can suppress the energy leakage or not, the total leakage power is

plotted in Fig. 5.38. It can be observed that the proposed FBAR resonator can reduce

the total leakage power by more than 6 dB throughout the investigated frequency range.

From Fig. 5.35 and Fig. 5.38, it is observed that both the total power of the spurious

modes within the active region, and the total leakage power of the spurious modes in the

passive region are significantly reduced by etching an airgap on the bottom electrode of

FBAR. Since the same input power was applied to these two structures, the reduction

of the power of spurious modes in the active region and the leakage power in the passive

region means that more power has been stored in the main longitudinal mode within the

investigated frequency range. Because the mode power coefficient for the longitudinal

mode is not easy to calculate, and it should be the same for these two structures, only

the amplitude of the longitudinal mode is plotted in Fig. 5.39. It is observed that the

amplitude of the longitudinal mode is generally larger than that of the one without airgap

on the bottom electrode. This result is consistent with the reduction of spurious mode

power as shown in Fig. 5.35 and Fig. 5.38.
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Figure 5.36: Power of Lamb modes in the passive region of FBAR resonator with and
without airgap on the bottom electrode at different frequency (a) mode pA0, (b) mode
pA1, and (c) mode pS0.

Figure 5.37: Power of Lamb modes in the passive region of FBAR resonator with an airgap
(w = 3µm, d = 0.5µm) on the bottom electrode at different frequency.
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Figure 5.38: Total leakage power of Lamb modes in the passive region of FBAR resonator
with and without airgap on the bottom electrode.

Figure 5.39: Amplitude of the longitudinal mode for FBAR resonator with and without
airgap on the bottom electrode at different frequency.
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5.4 Discussion

A free-standing bulk acoustic resonator (FBAR) with airgap on bottom electrode was

proposed to suppress the spurious waves in this section. It was observed in time domain

that, with proper width and depth of the airgap, the amplitude of the ripples of the

proposed FBAR resonator in both the active region and the passive region was

significantly reduced. By introducing an airgap on the bottom electrode, the impedance

difference between the active region and the peripheral region is increased. Thus, more

energy has been trapped in the active region, which is consistent with the scattering

analysis results obtained in chapter 4. Besides, the peripheral region with an airgap on

the bottom electrode has a higher cut-off frequency than the active region. Due to its

type II dispersion characteristic, for the fundamental thickness extensional mode, the

corresponding wavenumber in the peripheral region is real, which satisfies the continuity

conditions. Therefore, less spurious waves are excited. More detailed analysis was carried

out in the frequency domain. The frequency domain investigation has confirmed that the

power of each propagating Lamb mode in the active region was reduced when the

frame-like airgap was introduced on the bottom electrode. Consequently, the total power

of the spurious modes in the active region was reduced by the application of airgap on

the bottom electrode. However, not all the leakage power of the spurious modes in the

passive region was reduced. The leakage power of mode pA0 and pA1 was reduced, while

the leakage power of mode pS0 was increased. Fortunately, the reduction of the power of

mode pA0 and pA1 was larger than the increase of the power of mode pS0. Thus, the

total leakage power of the Lamb modes in the passive region was reduced with the

application of airgap on the bottom electrode. The amplitude of the longitudinal mode,

or the thickness extensional mode (the mode utilized in the FBAR resonator), was

generally larger than that of the one without airgap on the bottom electrode. Therefore,

it is confirmed that with an airgap on the bottom electrode, the excitation of the

spurious modes in the active region can be suppressed, and the leaking of energy in the

passive region can also be reduced. Consequently, the quality factor of the resonator is

enhanced.
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Chapter 6

Conclusion and outlook

Several achievements on improving the analysis and design of film bulk acoustic resonator

(FBAR) can be claimed by this study:

The finite-difference time-domain (FDTD) scheme was developed in chapter 3 to

model the FBAR resonator. The partial derivatives of the equations of motion and the

quasi-static Maxwell’s equations were discretized to centered finite differences. The free

surface boundary condition was applied to the interface between the medium and air. At

the interface between different materials, the material properties such as the elastic

stiffness constants and the material mass density were averaged to ensure the stability

under Courant condition. A wideband Gaussian pulse was applied as the excitation

source, and the particle velocities were calculated and recorded. These data were

processed by 2D FFT method to get the dispersion curve of the Rayleigh-Lamb modes

propagating in the FBAR resonator. Compared with the dispersion curve obtained by

the effective acoustic impedance, it was confirmed that the FDTD algorithm and the 2D

FFT method can efficiently investigate the effects of various waves excited inside FBAR

devices.

Wave scattering analysis for multimode excitation was derived in chapter 4. The

theoretical background of the new scheme was presented. To validate the proposed scheme,

the reflection of simultaneously excited antisymmetric Lamb wave modes at the free edge of

a steel plate was simulated using the FDTD method. By using the mode power coefficients,

the power of the Lamb modes was determined from the displacements on the surface of

the plate. The mode conversion coefficients obtained were in good agreement with the

one calculated by taking multiple measurements with single Lamb wave mode excitation

using the finite element method (FEM). The proposed scheme was then applied to two

generic free-standing bulk acoustic resonator (FBAR) structures. From the results of

these two structures, it was observed that the structure with symmetric electrodes has

less energy leaked into the passive region. The proposed scheme can be used to enhance

the performance of FBAR devices by modifying their boundaries. It also provides a simple
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way to detect various defects simultaneously in nondestructive testing (NDT) applications.

Based on the scattering analysis of the two generic FBAR structures in chapter 4, a

new FBAR resonator with frame-like airgap on bottom electrode was proposed to

suppress the spurious modes and improve the quality factor in chapter 5. Both time

domain and frequency domain analysis were carried out to investigate the spurious waves

in the proposed structure. From both time domain and frequency domain results, it was

observed that with an airgap on the bottom electrode the excitation of spurious modes

in the active region was suppressed, and the energy leaked into the passive region was

also reduced. Therefore, the proposed structure can reduce the ripples of its impedance

and enhance its quality factor as well.

This dissertation provides the basis for the development of FBAR resonator model

using the finite-difference time-domain method and the multimode wave scattering

analysis. Some future work may be conducted, such as:

1) Absorbing boundary conditions, such as perfectly matched layer (PML), may be

developed to emulate the infinite region or the acoustic wave absorbers. With PML

added to the outer boundary, the dimension of the model can be reduced.

Consequently, the memory size and the simulation time can be reduced.

2) Parallelization of the FDTD model can be conducted to further reduce the simulation

time. An almost linear speed-up with the number of processors can be achieved.

3) The proposed FDTD algorithm can be extended from 2D to 3D. Suppression of

spurious modes was achieved by means of transversal cuts of the layered FBAR

structure [18]. The 3D model combined with the wave scattering analysis algorithm

proposed by this study can be used to investigate the field components of such kind

of structure and find out the underlying mechanisms.

4) A lateral transmission line model similar to Mason model can be set up regarding

the lateral dimensions of the different resonator sections. Each resonator section

can be seen as a transmission line for the propagating modes. Each propagating

waveguide mode can be seen as a port, and the ports at the interface of two lateral

resonator sections are connected over the scattering matrix. The lateral transmission

line model covering the mechanical coupling and effective scattering of modes on the

borders can be applied to design the lateral boundaries of resonators.
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