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Abstract

Semi-infinite programming has been long an important model of optimization prob-

lems, arising from areas such as approximation, control, probability. Generalized semi-

infinite programming has also been an active research area with relatively short history.

Nonetheless it has been known that the study of a generalized semi-infinite program-

ming problem is much more difficult than a semi-infinite programming problem. The

purpose of this thesis is to develop necessary optimality conditions for semi-infinite and

generalized semi-infinite programming problems with penalty functions techniques as

well as other approaches.

We introduce two types of p-th order penalty functions (0 < p ≤ 1), for semi-infinite

programming problems, and explore various relations between them and their relations

with corresponding calmness conditions. Under the exactness of certain type penalty

functions and some other appropriate conditions especially second order conditions of

the constraint functions, we develop optimality conditions for semi-infinite program-

ming problems. This process is also applied to generalized semi-infinite programming

problems after being equivalently transformed into standard semi-infinite programming

problems.

Via the transformation of penalty functions of the lower level problems, we study

some properties of the feasible set of the generalized semi-infinite programming problem

which is known to possess unusual properties such as non-closedness, re-entrant cor-

ners, disjunctive structures, and further establish a sequence of approximate optimiza-

tion problems and approximate properties for generalized semi-infinite programming

problems.

We also investigate nonsmooth generalized semi-infinite programming problems via
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generalization differentiation and derive corresponding optimality conditions via varia-

tional analysis tools. Finally, we characterize the strong duality theory of generalized

semi-infinite programming problems with convex lower level problems via generalized

augmented Lagrangians.
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Chapter 1

Introduction and Literature Review

1.1 Semi-Infinite Programming

Semi-infinite programming problems and generalized semi-infinite programming prob-

lems consist of an important branch of mathematical programming, arising in various

fields such as (reverse) Chebyshev approximation, engineering design, physical science,

probability, statistics, optimal control, robust optimization.

Throughout the thesis, we always treat semi-infinite programming problems and

generalized semi-infinite programming problems separately. When the index set does

not depend on the decision variables, generalized semi-infinite programming problems

reduce to standard semi-infinite programming problems. However, generalized semi-

infinite programming problems are much harder to solve than standard semi-infinite

programming problems and all major methods for standard semi-infinite programming

problems cannot be directly applied to the study of generalized semi-infinite program-

ming problems.

The semi-infinite programming problem (SIP) is of the form:

min f(x) s.t. g(x, t) ≤ 0, t ∈ T, (1.1)

where f is a function defined on Rn and T an arbitrary set. If f(x) = cTx and

g(x, t) = a(t)Tx + b(t) for some functions a(t) and b(t), then problem (1.1) is referred

to as the linear semi-infinite programming problem (LSIP), otherwise, as the nonlinear
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semi-infinite programming problem. If f and g(·, t), t ∈ T are convex functions, then

problem (1.1) is referred to as the convex semi-infinite programming problem. If T

depends on x, it is referred to as the generalized semi-infinite programming problem

(GSIP).

It has been over fifty years since the term, “semi-infinite” programs, was first in-

troduced by Charnes, Cooper, and Kortanek in 1962 [17]. Since then, semi-infinite

programming has been under intensive study and has been a mature area of opti-

mization. There have been a large number of works on semi-infinite programming

problems. Some general literature on semi-infinite programming problems include the

books [51, 56, 11, 30, 35, 36, 113, 37], optimization textbooks with semi-infinite pro-

gramming chapters [83, 2, 41, 108, 8] and review articles [107, 53, 125, 119, 89, 45, 126].

In general, we only review the works on nonlinear semi-infinite programming prob-

lems with the index set T having a topological structure. However, one point worthy

of mentioning is the introduction of the generalized finite sequence space in the 1960s,

attached with the formal Lagrange multipliers and dual variables, in linear semi-infinite

programming problems irrespective of the structure of the index set. When the index

set is a compact Hausdorff space, due to a result of Rogosinski [117], the generalized

finite sequence space is related to the finite signed Borel measure space on the index

set, which serves as the dual space for general semi-infinite programming problems.

Reduction methods The reduction methods intend to replace the semi-infinite

system by a finite system. For a convex semi-infinite system, based on the Helly-type

theorem of open convex sets [80], equivalence between SIP and the finite subproblem

was established in [4]. The similar approach was extended in [9] to quasi-convex SIP.

Without convexity, the so-called reduction ansatz (linear independence, strict com-

plementarity, second order sufficient conditions) was introduced by Wetterling [140] to

describe the feasible set locally by a finite number of smooth functions, and was fully

used to derive the second order optimality conditions by Hettich and Zencke [56], see

also [124, 71, 78].

Abstract formulation Let G(x) = g(x, ·) and K = C(T )−. SIP can be put into

the general form of abstract optimization problems in Banach spaces

min f(x) s.t. G(x) ∈ K, (1.2)
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where f : X → R, G : X → Z, X and Z are Banach spaces and K ⊂ Z is a

closed convex cone with non-empty interior points. Kawasaki [75] derived second order

necessary conditions for problem (1.2) via the second order analysis with an emphasis

of the envelope-like effect due to the infiniteness of constraints. A new term, also

referred to as sigma or curvature term by other authors, occurs along the second order

derivative of the Lagrangian function in the optimality conditions. The obtained results

were applied to the following min-max problem

minS(x) := sup{g(x, t) : t ∈ T}, (1.3)

involving the sup-tpye functions, see [76, 77] for more details, which can be equivalently

reformulated as in form (1.2)

min v s.t. G(x)− ve ∈ K,

where e ≡ 1, an element in C(T ). In [76] it was shown that the upper second order

derivative of S is closed related to the curvature term.

A more general sup-type function

S(x) := sup{g(x, t) : t ∈ T (x)}, (1.4)

was consider by Shapiro [124]. Differentiability properties of S was considered under

strong second order sufficient conditions and then was used to derive second order

optimality conditions for semi-finite programs. Similar second order conditions are also

given by Hettich and Jongen [52] under reduction ansatz.

Nonsmooth formulation Let h(x) = supt∈T g(x, t). SIP problem (1.1) can be

reformulated as

min f(x) s.t. h(x) ≤ 0. (1.5)

In general h is a nonsmooth function even if g is smooth. It is known that h is directional

differentiable under the differentiability of g. Pschenichnyi [111] used this model to

derive the FJ-type optimality for SIP. Using certain generalized second order directional

derivative, such as the one following a parabolic curve, second order analysis can be

processed for (1.5). Ben-Tal et al. [5] derived the second order conditions for SIP with

C2 data via a general second order conditions for problem (1.5).
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The function h can be viewed as the composition of a max-function (a proper convex

function) and a smooth function if g is smooth. Based on the ideas from [64, 65, 66],

Ioffe [67] obtained the first and second order optimality conditions for SIP with C1,1

data via the Clarke generalized directional derivative.

Converting the semi-infinite constraints into a C1,1 constraint∫ b

a

max{g(x, t), 0}dt = 0,

when g is C2 and T = [a, b], Yang [141] obtained the second order optimality condi-

tions in terms of generalized second order directional derivatives, see Yang [142, 143],

by directly applying the corresponding second order conditions for C1,1 constrained

optimization problems.

Penalty function methods As an early development of theory of penalty func-

tions, Pietrzykowski [105] devised a sequence of penalty functions (referred to as poten-

tial functions) to approximate the constraint optimization problem in locally compact

metric spaces. The author also proposed the integral-type penalty function for SIP

with penalty parameter c > 0

f(x) + c

∫
T

g+(x, t) dt,

to approximate SIP (1.1). Extending the work [105] but requiring some geometric

structure of variable spaces and convexity of defining functions, Pietrzykowski [106]

obtained the convergence result of penalty functions. The author also suggested the

p-order penalty function for some p > 0:

f(x) + c

∫
T

(g+(x, t))p dt.

Conn and Gould [24] introduced a strengthened integral-type penalty function and de-

rived sufficiency conditions for the exact penalization. Polak et al. [109] presented an

interior penalty function algorithm for solving semi-infinite min-max problems. The

penalty term for the max-type function maxt∈[0,1] g(x, t) takes the form of
∫

[0,1]
1/[c −

g(x, t)] dt with c > g(x, t). A general review on exact penalty functions for SIP can

also be found in Coope and Price [25]. Rückmann and Shapiro [122] proposed an aug-

mented Lagrangian approach for SIP and studied necessary and sufficient conditions for

existence of the augmented Lagrange multipliers—elements of the space of generalized

finite sequence. Recently, Huy and Kim [62] derived sufficient conditions with respect
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to the limiting subdifferential and limiting normal cone along with other assumptions

for the exactness of the sharp Lagrangian of the augmented Lagrangian approach as

well as the stability of the perturbed infinite systems.

With the advancement of modern variational analysis, set-valued analysis and non-

smooth analysis, see for example [116, 93, 94, 97, 102], it is possible to use tools of

generalized differentials/derivatives to analyze and study the semi-infinite systems and

the semi-infinite problems especially those with nonsmooth data. For example, use

the limiting/basic/Mordukhovich subdifferentials and/or coderivatives to derive the

necessary optimality conditions for nonsmooth SIP problems, to characterize or es-

timate the Lipschitz-like properties of the set defined by infinite systems, the dif-

ferentiability properties of the solution set and the optimal value of SIP problems,

see [14, 16, 148, 15, 20, 28, 63, 61, 98, 100, 101, 99].

1.2 Generalized Semi-Infinite Programming

The generalized semi-infinite programming problem (GSIP) is of the form

min f(x) s.t. g(x, y) ≤ 0, y ∈ Y (x), (1.6)

with the index set Y (x) usually defined by inequality constraints

Y (x) := {y ∈ Rm | v(x, y) ≤ 0}. (1.7)

This problem is called the generalized (or general) semi-infinite programming prob-

lem since the variable space is of finite dimension and the index set is variable dependent

and in general is infinite. When Y is not x-dependent, it reduces to the standard (or

ordinary) semi-infinite programming problem. The lower level problem associated with

GSIP is

max g(x, y) s.t. y ∈ Y (x). Q(x)

Study of GSIP has a much shorter history than the study of SIP problems and

GSIP turns out to be a much harder problem than SIP. Early studies on GSIP starting

around the middle of 1980s came from applications, for example, maneuverability of
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robotics by Graettinger [39], Graettinger and Krogh [40], Hettich and Still [54], and

the time minimal control problems by Krabs [84]. Other modeling sources also include

the reverse Chebyshev approximation problems [58], terminal problems [73, 74], and

parametric data envelopment analysis [103].

Some of the early systematic studies of GSIP are Klatte [78] and Hettich and

Still [55]. Both articles used the reduction ansatz to transform GSIP into finite non-

linear programming problem (C1,1 problem), and thus derived the stability properties

of stationary points and the first and second order necessary optimality conditions, re-

spectively. Jongen et al. [68] first derived the FJ-type optimality conditions for GSIP

with a basic argument without any regularity assumptions and showed the possible

difficulty and complexity of the structure of the feasible set with illustrating examples.

Speciality of GSIP. GSIP has some properties not shared by SIP and nonlinear

programming problems. The feasible set of GSIP is not always closed, see examples

from [68]. Theoretically, the feasible set of GSIP can be represented as the level set

of the value function of the lower level problems. The value function is usually only

upper semi-continuous, which is true if the data is continuous and Y is locally bounded,

but not lower semi-continuous. Thus the loss of lower semi-continuity will lead to the

nonclosedness of the feasible set.

The feasible set of GSIP can also be expressed in the following formula, see [128]:

[prx(gphY ∩ GC)]C , (1.8)

where prx denotes the projection onto the x-space, gphY = {(x, y) | v(x, y) ≤ 0}
is the graph of the mapping Y , G := {(x, y) | g(x, y) ≤ 0}, and AC denotes the set

complement. This formula discloses some topological features of the feasible set of GSIP

which are not known from standard SIP or finite nonlinear programming: an inherent

disjunctive structure and non-closedness. Another feature of the feasible set of GSIP

is the re-entrant corners. It has been shown that the properties of non-closedness and

re-entrant corners are related to the Mangasarian-Fromovitz constraint qualification

(MFCQ) and the linear independence constraint qualification (LICQ) of the lower level

problem, respectively, see [135]. These structural observations have lead to closer looks

at optimality conditions and solution methods for GSIP.

One of the recent advancements of the study of GSIP is the exploration via the sym-
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metric representation of the closure of the feasible set M . A symmetric representation

for the closure of M is as follows, see [46, 47]: For a generic data (g, v1, · · · , vl), and

under some additional assumption, that the family Y (x), x ∈ Rn, is locally bounded,

the closure M of the feasible set can be described as follows

M = {x ∈ Rn | g(x, y) ≤ 0, y ∈ Y <(x)} (1.9)

= {x ∈ Rn | σ(x, y) ≤ 0, y ∈ Rn}, (1.10)

where

Y <(x) = {y ∈ Rm | vi(x, y) < 0, i = 1, · · · , l},

and

σ(x, y) = min{g(x, y);−v1(x, y), · · · ,−vl(x, y)}.

Moreover, for each x̄ ∈ M , there exists some neighborhood U of x̄ and a nonempty

compact set V such that

M ∩ U = {x ∈ U | σ(x, y) ≤ 0, y ∈ V }. (1.11)

An earlier similar result from Stein [127] is that

M ∩ U ⊂ {x ∈ U | σ(x, y) ≤ 0, y ∈ V }. (1.12)

Motivated by the simple and symmetric representation of the closure of the feasible set

of GSIP, some recent works focused on the characterizations of the closure of the feasible

set of GSIP problem and the corresponding problem restricted on its closure. Günzel

et al. [47] proposed the symmetric reduction ansatz and represented the M locally by a

set defined by a finite number of inequalities. Guerra-Vázquez et al. [43] proposed the

symmetric MFCQ assumption for points in the right hand of equation (1.10). Under

symmetric MFCQ, relation (1.10) holds and the interior and boundary of M have easy

representations related to σ. Jongen and Shikhman [69] introduced the nonsmooth

symmetric reduction ansatz to generalize the ansatz in [47] and thus described M as a

set defined by finitely many inequalities of max-type functions.

Approaches for GSIP One core idea of the study of GSIP is to transform GSIP

problem into known problems, such as standard semi-infinite programming problem or

nonlinear programming problem.

Reduction ansatz Reduction ansatz is a method introduced by Wetterling [140]

as well as Hettich and Jongen [52] to transform the standard SIP into finite nonlinear
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programming problems. As mentioned earlier, Klatte [78] and Hettich and Still [55]

applied the reduction method to GSIP case.

The basic assumptions of reduction ansatz at given point x̄ are the assumptions

of nondegeneracy (i.e. LICQ, strict complementarity slackness, and second order suffi-

ciency condition) or the strong stability in the sense of Kojima [81] at all ȳ ∈ Y0(x̄) along

with other mild conditions. Under reduction ansatz, Y0(x̄) is finite and the feasible set

M can be finitely defined around x̄ by

M ∩ U = {x ∈ U | g(x, yi(x)) ≤ 0, i = 1, · · · , s},

where U is a neighborhood of x̄ and yi, i = 1, · · · , s, are continuously differentiable

functions defined on U and thus their derivatives can be calculated explicitly.

It is possible that GSIP can be transformed into standard SIP problem if some

stability property is present on the index set Y . In fact, Y (x) is homeomorphic to Y (x̄)

for all x near x̄ if Mangasarian-Fromovitz constraint qualification (MFCQ) holds on

Y (x̄), see, Guddat et al [42]. Assuming the compactness of the feasible set of GSIP and

LICQ for lower level problem, Weber [139] transformed it into a standard SIP. So did

Still [135] by replacing LICQ with MFCQ.

Under these schemes, these authors established the optimality conditions for GSIP

via the reduced problems and also prepared ways to possible numerical aspects for

GSIP. However, the reduction ansatz, by eliminating the variable dependence of the

index set, has its drawbacks. It may destroy some properties of the defining function

such as linearity, convexity; it may be too expensive to compute the transformation

and the new index set explicitly or approximately; in contrast to SIP, the assumptions

to guarantee the reduction cannot be interpreted as ‘weak’ assumptions.

Nonlinear programming formulation. Letting φ(x) be the value function of

the lower level problem Q(x), GSIP can be equivalently formulated as the standard

(probably nonsmooth) mathematical programming problem

min f(x) s.t. φ(x) ≤ 0. (1.13)

Under this reformulation and with some estimates (the first and second order directional

derivatives) of the value function of Q(x) and other appropriate assumptions (some

CQ’s on lower level problems), Ruckmann and Shapiro [120, 121] derived the first and
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the second order optimality conditions for GSIP. They gave a shorter proof for the

optimality conditions in [68]. Extending the results by Ruckmann and Shapiro [120],

Stein [127] considered GSIP without CQ’s on the lower level problems (referred to as

degenerate).

GSIP with convex lower level problems. Another class of tractable GSIP is

the one with convex lower level problems. The convexity means that for all x ∈ Rn,

all functions −g(x, ·) and vi(x, ·), i = 1, · · · , l, are convex. However, the feasible set of

GSIP is not necessarily convex even though the functions g and v are assumed to be

linear with respect to (x, y).

A number of works explored this convexity property to replace the lower level prob-

lems via either the strong duality theory or KKT optimality system of the lower level

problems. Thus GSIP problems are reduced into known optimization problems and var-

ious optimization techniques are introduced to deal with the reduced GSIP problems,

such as the branch-and-bound approach by Levitin and Tichatschke [86], the smoothing

technique via regularization by Levitin and Tichatschke [86], interior point technique

by Stein and Still [131], and the semi-smooth approach by Stein and Tezel [132, 133].

More works in this aspect can be referred to Levitin [87] and Stein and Winterfeld [134].

Constraint qualifications A major topic in optimization theory is to explore

properties, referred to as constraint qualifications or regularity conditions, among the

feasible set and its defining functions in order to obtain more informative optimal-

ity conditions. The development of constraint qualifications is parallel to its study in

nonlinear programming. The extended Mangasarian-Fromovitz constraint qualification

(EMFCQ) was first introduced by Jongen et at. [68] to obtain the KKT-type optimal-

ity conditions for GSIP. Guerra-Vázquez and Rückmann [44] developed two extensions

of Kuhn-Tucker constraint qualification that lead to KKT-type optimality conditions

and discussed various relationships among them and the Abadie constraint qualifica-

tion [127], EMFCQ. Recently, extending existing results, Ye and Wu [145] considered

various constraint qualifications leading to a weaker form of KKT-type optimality con-

ditions for GSIP which is natural under the setting of the infinite index.
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1.3 Penalty Functions

One of the techniques we used in this thesis is the theory of penalty functions such

as exact lower order penalty functions for standard and generalized semi-infinite pro-

gramming problems, penalty functions as approximation and augmented Lagrangians

for generalized semi-infinite programming problems.

By associating the constrained optimization problem min{f(x) : x ∈ X}, with a

sequence of unconstrained optimization problems min{f(x) + cP (x) : x ∈ Rn} where

P is a nonnegative function that characterizes the feasible set X by P = 0 and c > 0

is a penalty parameter, the penalization theory maintains that under mild assump-

tions there exists a solution path x(c) of the unconstrained problems converging to

x(∞) which belongs to the solution set of original constrained optimization problem,

see for example Eremin [29], Zangwill [147], Pietrzykowski [105], and Fiacco and Mc-

Cormick [31].

A more attractive observation is the possibility of existence of exact penalty func-

tions where the constrained problem can be replaced by one unconstrained problem or

the convergence of x(c) is finite, see, e.g., [29, 147, 50, 104].

The common penalty functions include P (x) = dist(x,X), the l∞ penalty P (x) =

max{(gi)+(x), hj(x) : i ∈ I, j ∈ J}, the l1 penalty P (x) =
∑

i∈I(gi)+(x) +
∑

i∈J |hj(x)|,
and the quadratic penalty P (x) =

∑
i∈I(gi)+(x)2 +

∑
i∈J |hj(x)|2, when X = {x|gi(x) ≤

0, hj(x) = 0, i ∈ I, j ∈ J}. The most radical one, always exact, is the indicator function

P (x) = δX(x).

Another known type of penalty functions is the augmented Lagrangian, combining

Lagrangians with penalty methods, or called method of multipliers, see, e.g., Hestenes [50]

and Rockafellar [114] where the constrained optimization problems with feasible sets

defined by equality constraints and equality/inequality constraints are considered, re-

spectively. More details for method of multipliers are referred to the book by Bert-

sekas [6].

The importance of penalty methods not only lies in that it provides an effective

approach to solve optimization problems but also its close relationship with basic theory

of optimization. Ioffe [64] established the first order necessary optimality conditions of
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constrained optimization problems via variational analysis through the exact penalty

function

max{f(x),max
i∈I

gi(x)}+ c(‖h(x)‖+ dist(S, x)),

where X := {x ∈ S | g(x) ≤ 0, h(x) = 0}. Based on the same idea of the above exact

penalty function, optimality conditions were further developed in [65, 66].

Han and Mangasarian [48] derived sufficient conditions for the exactness of a general

class of penalty functions, and obtained the KKT-type optimality conditions via exact

penalty functions working as a constraint qualification.

Fletcher [33] also provided a simple derivation of the first and second order op-

timality conditions of constrained optimization problems by virtue of the l1 penalty

function.

While providing a comprehensive review of the theory of exact penalty functions,

Burke [13] obtained the fundamental theory of constrained optimization problems by

use of l1 exact penalty functions. Since the exactness of l1 penalty functions of requires

constraints regularity conditions, different penalty functions are desirable under weaker

conditions or in case of degenerate problems. Warga [138] established the equivalence

between constrained optimization problems with some generalized analytic functions

and the exact penalty functions of lower order. Luo et al. [91] extended the work of

Warga to mathematical programs with equilibrium constraints.

Rubinov and Yang [118] showed that the exactness of lower order penalty func-

tions (or referred to as non-Lipschitz penalty functions) is equivalent to the generalized

calmness-type condition. Clarke [22] and Burke [12] established the equivalence between

the exactness of penalty functions of order one and the calmness condition. Huang and

Yang [60] proposed a unified augmented Lagrangian scheme including the lower or-

der penalty functions to derive the theory of duality and exact penalization extending

the work of Rockafellar and Wets with convex augmenting functions. Recently, Yang

and Meng [144] derived optimality conditions in terms of Dini directional derivatives

via lower order exact penalty functions for mathematical programming problems and

obtained the KKT-type optimality conditions by further introducing the second order

qualifications via generalized second order directional derivatives. Meng and Yang [92]

further developed KKT-type optimality conditions via the contingent derivative of lower

order penalty functions for mathematical programming problems and mathematical
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programs with complementarity constraints.

The most extremal and simple penalty function involving the indicator function of

X is

f(x) + δX(x),

which is obviously equivalent to the original constrained optimization problem and

serves as a basic variant model for constrained optimization. The development of

optimality conditions via this penalty function is closely related to generalized dif-

ferentiation and calculus rules from modern variational analysis, exemplified by Mor-

dukhovich [94].

Another element permeating the process of analysis in this thesis is the direct and

indirect use of generalized differentiation, a centerpiece of variational analysis and its

applications. The presence of nonsmoothness is no matter that the optimization prob-

lem itself is smooth or nonsmooth. Considering nonsmooth semi-infinite programming,

we present the fundamental theory of semi-infinite programming in the framework of

generalized differentiation. The advancement of variational analysis invigorates opti-

mization theory both in depth and width, see more details from the monographs of

Rocakfellar and Wets [116] and Mordukhovich [93, 94].

1.4 Purpose of the Thesis

Optimality conditions at the core of optimization theory not only provide criteria to

identify the optimal solutions but also prepare passages of numerical analysis. This

thesis concentrates on the development of various necessary optimality conditions for

both semi-infinite programming problems and generalized semi-infinite programming

problems. We propose and analyze different approaches to the study of semi-infinite

programming problems and generalized semi-infinite programming problems.

In the first part of the thesis, we propose two types of lower order penalty functions,

max-type and integral-type, for SIP problems and analyze the relationships between

each other and with the corresponding concepts of calmness. The max-type penalty

function generalizes the l∞ penalty function in nonlinear programming. Under the ex-

actness of the 1-order max-type penalty functions, the KKT-type optimality conditions
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hold. The integral-type penalty functions, which are stronger than the max-type penalty

functions, are more attuned to SIP. Under the exactness of the low order integral-type

penalty functions along with some assumptions of second order derivatives of the defin-

ing functions, we obtain necessary optimality conditions which are slightly weaker than

the KKT-type optimality conditions. Different from the penalty function theory of

nonlinear programming, we show by examples that the proposed lower order penalty

functions neither imply nor be implied by the Abadie constraint qualification. Thus,

lower order penalty functions at least theoretically can deal with some of SIP that

cannot be dealt with existing approaches.

In the second part of the thesis, we focus on the study of generalized semi-infinite

programming problems. Firstly, applying the lower order penalty function technique

used in the first part, we derive the necessary optimality conditions for GSIP after

an appropriate transformation. The transformation is done through the augmented

Lagrangians of the lower level problems of GSIP. The success of the lower order penalty

approach depends on the calculus of the generalized second order directional derivatives

of the augmented Lagrangians.

Secondly, we consider approximation schemes for GSIP. The feasible set of GSIP is

in general of unusual properties not shared with standard semi-infinite programming

problems and finite problems. Also, GSIP is in itself of bilevel structure and its every

feasible point is a global solution of the lower level problems. Techniques to deal with the

complex structure are required. We propose penalty functions of simple constructions

to approximate of the irregular feasible set and thus give approximate problems and

derive convergence results.

Thirdly, due to the intrinsic nonsmoothness, we may consider GSIP with Lipschitz

continuous functions and derive corresponding optimality conditions by tools of modern

variational analysis. We propose two different approaches. One is to reformulate the

GSIP as a min-max problem via the optimal value functions of the lower level problems.

The other one is to formulate GSIP as a bilevel problem. Both approaches depend on

the estimates of the generalized subdifferentials of the optimal value functions of the

lower level problems.

Finally, we consider the weak and strong duality theory for GSIP via the augmented

Lagrangian approach. A generalized augmented Lagrangian will be constructed for a
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mathematical program with complementarity constraints which is derived from GSIP

with convex lower level problems.

The outline of the thesis is as follows. Section 2.1 presents a basic review of the

optimality conditions and qualifications for semi-infinite problems. Section 2.2 and 2.3

present no penalty-related and penalty-related approaches to derive necessary optimal-

ity conditions. Section 2.4 considers a lower order exact penalty functions approach for

semi-infinite programming problems. In Chapter 3, we focus on generalized semi-infinite

problems. Section 3.2 considers the concept of calmness for generalized semi-infinite

problems. Section 3.3 considers approximations of generalized semi-infinite problems

via the lower order penalty transformations. Section 3.4 derives optimality conditions

for nonsmooth generalized semi-infinite problems. Section 3.5 continues the lower order

penalty approach for generalized semi-infinite problems. Section 3.6 considers general-

ized semi-infinite problems with convex lower problems.

1.5 Notation

Lastly, we summarize some notations and definitions which will be used throughout the

thesis.

Let B denote the closed unit ball of the n-dimensional vector space Rn and B(x, r)

denote the ball center at x with radius r. For C ⊂ Rn, coC, coneC, intC, and clC

denote the convex hull, convex cone hull, interior, and closure of C, respectively.

A set C is locally closed at x̄ if there is a neighborhood V of x̄ such that C ∩ V is

closed. The indicator function δC of C is defined by

δC(x) =

0 if x ∈ C,

∞ if x /∈ C.

The horizon cone C∞ of C is defined by

C∞ =

{x | ∃xk ∈ C, λk ↓ 0,with λkxk → x} if C 6= ∅,

{0} if C = ∅.

The polar cone C◦ of C is defined by C◦ = {x∗ | 〈x, x∗〉 ≤ 0 for all x ∈ C}.
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A cone K ⊂ Rn is pointed if the only solution of x1 + · · · + xp = 0 with xi ∈ K is

xi = 0 for all i = 1, · · · , p.

Let {Ck}∞k=1 be a sequence of subsets in Rn. The outer and inner limit sets of {Ck}
are respectively defined by

lim sup
k→∞

Ck = {x ∈ Rn | ∃ subsequence {Ci}∞i=1 of {Ck},∃xi ∈ Ci with xi → x},

lim inf
k→∞

Ck = {x ∈ Rn | ∀k large ∃xk ∈ Ck with xk → x}.

The limit of the sequence exists if the outer and inner limit sets are equal:

lim
k→∞

Ck := lim sup
k→∞

Ck = lim inf
k→∞

Ck.

The extended reals R := R∪{±∞}. For a function f : Rn → R, the effective domain

of f is denoted by

domf := {x ∈ Rn | f(x) <∞}.

We call f a proper function if f(x) < ∞ for at least one x ∈ Rn and f(x) > −∞
for all x ∈ Rn; otherwise it is improper. The epigraph, hypograph and graph of f are

respectively defined by

epif = {(x, r) ∈ Rn+1 | f(x) ≤ r},

hypof = {(x, r) ∈ Rn+1 | r ≤ f(x)},

and gphf = {(x, f(x)) | x ∈ Rn}.

A function f is lower semi-continuous at x̄ (lsc) if lim infx→x̄ f(x) ≥ f(x̄); it is upper

semi-continuous at x̄ (usc) if −f is lsc at x̄. We say f is continuous at x̄ if it is both

lsc and usc at x̄. The level set of f is denoted by

lev≤αf := {x ∈ Rn | f(x) ≤ α}.

A function f is (lower) level bounded if the level set lev≤αf is bounded for each α ∈ R.

A function f is Lipschitz continuous on D ⊂ Rn if there is a constant κ ∈ R+ :=

[0,∞) with

|f(x)− f(y)| ≤ κ‖x− y‖, for all x, y ∈ D.

The constant κ is called a Lipschitz constant for f on D. We say f is Lipschitz continuous

at x̄ or locally Lipschitz at x̄ if there is a neighborhood V of x̄ and constant κ ∈ R+
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with

|f(x)− f(y)| ≤ κ‖x− y‖, for all x, y ∈ V .

For set-valued mapping S : Rn ⇒ Rm, the graph of S is denoted by gphS := {(x, y) |
y ∈ S(x)}. The outer and inner limits of S at x̄ are respectively defined by:

lim sup
x→x̄

S(x) =
⋃

xk→x̄

lim sup
k→∞

S(xk), and lim inf
x→x̄

S(x) =
⋂

xk→x̄

lim inf
k→∞

S(xk).

We say S is outer semi-continuous at x̄ (osc) if

lim sup
x→x̄

S(x) ⊂ S(x̄),

or equivalently lim supx→x̄ S(x) = S(x̄), and inner semi-continuous at x̄ (isc) if

lim inf
x→x̄

S(x) ⊃ S(x̄),

or equivalently when S is closed-valued, lim infx→x̄ S(x) = S(x̄). It is called continuous

at x̄ if both conditions hold, i.e., if S(x) → S(x̄) as x→ x̄.

A mapping S has the Aubin property (or Lipschitz-like property) relative to X at x̄

for ȳ, where (x̄, ȳ) ∈ gphS, if gphS is locally closed at (x̄, ȳ) and there are neighborhoods

V of x̄ and W of ȳ and a constant κ ∈ R+ such that

S(x′) ∩W ⊂ S(x) + κ‖x− x′‖B for all x, x′ ∈ X ∩ V .

The tangent cone TC and regular tangent cone T̂C of C at x̄ are respectively defined

by

TC(x̄) = lim sup
λ↓0

C − x̄

λ
and T̂C(x̄) = lim inf

x
C−→x̄,λ↓0

C − x

λ
.

The regular normal cone N̂C of C at x̄ is defined by

N̂C(x̄) = {v ∈ Rn | lim sup

x
C−→x̄

〈v, x− x̄〉/‖x− x̄‖ ≤ 0},

The (general) normal cone NC of C at x̄ is defined by

NC(x̄) = lim sup
x→x̄

N̂C(x).

A set C is regular at x̄ ∈ C in the sense of Clarke if it is locally closed at x̄ and every

normal vector of C at x̄ is a regular normal vector, i.e., NC(x̄) = N̂C(x̄). A function
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f : Rn → R is called subdifferentially regular at x̄ if f(x̄) is finite and epif is Clarke

regular at (x̄, f(x̄)) as a subset of Rn × R.

The regular subdifferential ∂̂f of f at x̄ is defined by

∂̂f(x̄) = {u ∈ Rn | lim inf
x→x̄,x 6=x̄

(f(x)− f(x̄)− 〈u, x− x̄〉)/‖x− x̄‖ ≥ 0}.

The (general) subdifferential ∂f and singular subdifferential ∂∞f of f at x̄ are respec-

tively defined by

∂f(x̄) = lim sup

x
f−→x̄

∂̂f(x) and ∂∞f(x̄) = lim sup

x
f−→x̄

λ↓0

λ∂̂f(x).

The upper regular subdifferential ∂̂+f and upper subdifferential ∂+f of f at x̄ are

respectively defined by

∂̂+f(x̄) = −∂̂(−f)(x̄) and ∂+f(x̄) = lim sup

x
f−→x̄

∂̂+f(x).

It turns out that [116]

∂̂f(x̄) = {v | (v,−1) ∈ N̂epif (x̄, f(x̄))},

∂f(x̄) = {v | (v,−1) ∈ Nepif (x̄, f(x̄))},

∂+f(x̄) = {v | (−v, 1) ∈ Nhypof (x̄, f(x̄))},

which may as well serve as the definitions of these subdifferentials of f at x̄. While

∂∞f(x̄) ⊂ {v | (v, 0) ∈ Nepif (x̄, f(x̄))}

which holds with equality when f is locally lsc at x̄.
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Chapter 2

Semi-Infinite Programming

In this chapter we consider the following semi-infinite programming problems

min f(x) s.t. g(x, t) ≤ 0, t ∈ T, (2.1)

where f : Rn → R and g : Rn×T → R are continuouly differentiable and T is a Hausdorff

compact space.

Although the linear and convex SIP and semi-infinite systems are precursors of the

study of SIP and are still active research aspects of SIP, see, e.g., [36, 38, 9, 90], we only

concentrate on the nonlinear semi-infinite programming problems and its optimality

conditions and related qualifications.

2.1 Optimality and Qualifications

In this section we provide a review of basic optimality conditions for semi-infinite pro-

gramming problems and its various constraint qualifications. One purpose of this section

is to emphasize the impact of the intrinsic nature of the ‘infiniteness’ in SIP, which leads

to different types of optimality conditions for SIP compared with nonlinear program-

ming problems.

First, we begin with some basic notations and definitions. Denote its feasible set by

M = {x ∈ Rn | g(x, t) ≤ 0, t ∈ T},
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and the active index set at x

T (x) := {t ∈ T | g(x, t) = 0}.

Recall the tangent cone of M at x is defined by

TM(x) := lim sup
λ↓0

λ−1(M − x),

and define the linearized cone of M at x by

LM(x) := {d : 〈∇g(x, t), d〉 ≤ 0, t ∈ T (x)},

Denote the derivable cone of M at x by

ΓM(x) := {d : there is a curve x(s) ∈M for s ∈ [0, s0] such that x(0) = x, x′+(0) = d}

and the strictly linearized cone

lM(x) := {d : 〈∇g(x, t), d〉 < 0, t ∈ T (x)}.

Then the following inclusions hold:

lM(x) ⊂ ΓM(x) ⊂ TM(x) ⊂ LM(x).

Denote by N ′(x) the convex cone generated by {∇xg(x, t), t ∈ T (x)}:

N ′(x) := cone(∪t∈T (x)∇xg(x, t)).

It is easy to see that LM(x) = N ′(x)◦ = (clN ′(x))◦.

Definition 2.1.1. We say that the FJ-type optimality condition of SIP problem (2.1)

holds at a local optimal solution x̄ ∈ Rn if there exist λi ≥ 0, i = 0, · · · , k, and ti ∈
T (x̄), i = 1, · · · , k such that k ≤ n,

∑k
i=0 λi = 1, and

λ0∇f(x̄) +
k∑

i=1

λi∇g(x̄, ti) = 0. (2.2)

We say that the KKT-type optimality condition of SIP problem (2.1) holds at a local

optimal solution x̄ ∈ Rn if there exist λi ≥ 0, and ti ∈ T (x̄), i = 1, · · · , k, such that

k ≤ n and

∇f(x̄) +
k∑

i=1

λi∇g(x̄, ti) = 0. (2.3)

We also say that the feasible point x̄ is an FJ/KKT point of SIP if the FJ/KKT-type

optimality condition of SIP holds at x̄.
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It is easy to see that (2.2) and (2.3) are respectively equivalent to the conditions

0 ∈ co {∇f(x̄),∇g(x̄, t), t ∈ T (x̄)}, and

∇f(x̄) ∈ N ′(x̄).

Below is a basic theorem in optimization theory.

Lemma 2.1.1 (Farkas lemma). Let A ⊂ Rn be arbitrary. Then for every v ∈ Rn,

exactly one of the following holds:

(i) v ∈ cl(coneA);

(ii) there is a solution η of

〈η, v〉 > 0, 〈η, a〉 ≤ 0, a ∈ A.

The Farkas lemma, as well as its various variants, is a centerpiece in theory of

optimization and the inequality/equality systems. One important feature here is that

the ‘cl’ in the first relation is caused by the ‘infiniteness’ of the set A.

Proposition 2.1.1. The function φ(x) := maxt∈T g(x, t) is directionally differentiable

with

φ′(x; d) = max
t∈T (x)

〈∇xg(x, t), d〉, for all d ∈ Rn.

If x̄ is a local solution of SIP (2.1), then x̄ is also a local solution of the unconstrained

optimization problem

min
x

max{f(x)− f(x̄),max
t∈T

g(x, t)}.

Applying Proposition 2.1.1 to the max-function max{f(x) − f(x̄),maxt∈T g(x, t)}, we

obtain the necessary optimality conditions

max{〈∇f(x̄), d〉, max
t∈T (x̄)

〈∇g(x̄, t), d〉} ≥ 0, for all d ∈ Rn,

which is equivalent to

0 ∈ co{∇f(x̄);∇g(x̄, t), t ∈ T (x̄)}.

An alternative approach is given by Abadie [1] as follows.
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Proposition 2.1.2. Let x̄ be a local optimal solution of SIP (2.1). Then the following

necessary optimality condition holds:

〈∇f(x̄), d〉 ≥ 0 for all d ∈ TM(x̄).

To obtain more informative optimality conditions, certain constraint qualifications

(CQ) are needed. We list the constraint qualifications as follows.

(i) lM(x) 6= ∅,

(ii) TM(x) = LM(x),

(iii) cl (coTM(x)) = LM(x),

(iv) TM(x)◦ = N ′(x),

(v) TM(x)◦ = clN ′(x),

(vi) TM(x) = N ′(x)◦.

Compared with CQ’s of nonlinear optimization, the first three are usually referred to

as the extended Mangasarian-Fromovitz constraint qualification (EMFCQ), Abadie’s

constraint qualification (EACQ), and Guignard constraint qualification (GCQ), respec-

tively. EMFCQ was first appeared in Jongen et al. [70] and was earlier introduced

by Krabs [82] as regularity. For ACQ it may be referred to [88]. Unlike in nonlin-

ear programming, ACQ is not sufficient to derive the KKT-tpye optimality conditions.

The following proposition establishes the relationships between the preceding CQ’s and

various optimality conditions.

Proposition 2.1.3. (1) The relations between the above various conditions are

(i) ⇒ (ii) ⇒ (iii); (iv) ⇒ (iii); (ii) = (vi); (iii) = (v).

(2) Under either (i) or (iv), the KKT-tpye optimality condition holds; under ei-

ther (ii) or (iii), the primal type optimality holds:

〈∇f(x), d〉 ≥ 0 for all d ∈ LM(x),

which by Farkas Lemma is equivalent to

−∇f(x) ∈ clN ′(x).
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Based on above discussions, the optimality conditions can be written in various

forms, primal or dual forms, under various constraint qualifications, as follows.

(i) 〈∇f(x), d〉 ≥ 0, for all d ∈ TM(x),

(ii) 〈∇f(x), d〉 ≥ 0, for all d ∈ LM(x),

(iii) 〈∇f(x), d〉 ≥ 0, for all d ∈ lM(x),

(iv) max{〈∇f(x), d〉, 〈∇g(x, t), d〉, t ∈ T (x)} ≥ 0, for all d ∈ Rn,

(v) 0 ∈ co {∇f(x),∇g(x, t), t ∈ T (x)},

(vi) ∇f(x) ∈ clN ′(x),

(vii) ∇f(x) ∈ N ′(x).

In all, we may have three different types of optimality conditions – (v), (vi), (vii).

(v) is equivalent to (iv) and is called the FJ-type optimality. (vii) is the KKT-type

optimality which holds under EMFCQ. (vi) is equivalent to (ii) which may hold under

ACQ. (i), (iii) , and (v) hold without any qualifications. The closeness of N ′(x) is a

key property which differs from nonlinear programming and is always closed. In semi-

infinite settings, the system {∇g(x, t), t ∈ T (x)} is also referred to as Farkas-Minkowski

system if N ′(x) is closed.

2.2 Optimality without Penalty

Note that in this section the normal cones and the corresponding subdifferentials can

be understood as in convex analysis as related sets are convex.

Let x̄ be a local optimal solution of SIP (2.1). Let K = C(T )− be the nonempty

closed convex subset of C(T ), which is the space of continuous functions on T . The

polar cone of K is the set of nonnegative measures µ ∈ C(T )∗, i.e., µ(A) ≥ 0 for any

Borel set A ⊂ T.

Let y ∈ K. Denote by I(y) the contact points of y:

I(y) = {t ∈ T | y(t) = 0}. (2.4)
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Then the tangent cone

TK(y) = {z ∈ C(T ) | z(t) ≤ 0, t ∈ I(y)}, (2.5)

and the normal cone

NK(y) = {µ ∈ C(T )∗ | supp(µ) ⊂ I(y), µ � 0}. (2.6)

Proposition 2.2.1. For a sequence of convex sets Ak in a norm linear space X, con-

verging to A, let xk Ak

−→ x, yk ∈ NAk(xk), yk w∗−→ y and {‖yk‖} be bounded. Then

y ∈ NA(x).

Proof. Assume the contrary, y /∈ NA(x). Then there is ε > 0 and u ∈ A such that

〈y, u− x〉 = ε.

Since Ak → A, there is a sequence uk ∈ Ak converging to u. Then it is easy to see

〈yk, uk − xk〉 = 〈yk − y, u− x〉+ 〈yk, uk − u+ x− xk〉+ 〈y, u− x〉 ≥ ε

2

for all k sufficiently large. This can’t hold since yk ∈ NAk(xk).

Theorem 2.2.1 (subgradients of distant functions at out-of-set points [93, Theorem

1.99]). For any T 6= ∅, a subset of a Banach space, and any x̄ /∈ T ,

∂̂dist(x, T ) = N̂T (ρ)(x̄) ∩ {x∗ ∈ X∗ | ‖x∗‖ = 1}, (2.7)

where T (ρ) = {x ∈ X | dist(x, T ) ≤ ρ} with ρ = dist(x̄, T ).

Theorem 2.2.2. Let x̄ be a local optimal solution of the SIP problem (2.1). Suppose

that f(·) and g(·, t), t ∈ T are continuously differentiable and that ∇g(x, t) is continuous

in (x, t). Then there exist λ0 ≥ 0 and µ ∈ NK(g(x̄)) with max{λ0, ‖µ‖} = 1 such that

0 = λ0∇f(x̄) + 〈∇g(x̄, ·), µ〉. (2.8)

Proof. Define

θδ(x) = dist((f(x), g(x)), Cδ,x̄), (2.9)
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where g(x) := g(x, ·) ∈ C(T ), Cδ,x̄ := (f(x̄) − δ + R−) ×K and δ > 0. It is assumed

that the norm chosen for R×C(T ) is such that ‖(r, 0)‖ = |r| (we take the max-norm).

Then

θδ(x̄) ≤ δ + inf θδ(x). (2.10)

Using Ekeland’s variational principle, for each δ > 0, there is an xδ such that

‖x̄− xδ‖ ≤
√
δ, (2.11)

θδ(x) +
√
δ‖x− xδ‖ > θδ(xδ), for any x 6= xδ. (2.12)

The last inequality means that xδ minimizes that function

θ̃δ(x) := θδ(x) +
√
δ‖x− xδ‖.

Note that θδ(xδ) > 0 otherwise it contradicts the optimum of x̄ for problem (2.1) and

so (f(xδ), g(xδ)) /∈ Cδ,x̄. From the generalized Fermat rule for optimality: 0 ∈ ∂θ̃δ(xδ),

and in addition to some appropriate rules of subdifferential calculus (see, e.g. [23, Th3.2

of Chapter 2]), we have that there exists

(λδ, µδ) ∈ NCδ,x̄+dist((f(xδ),g(xδ)),Cδ,x̄)B(xδ)

such that ‖(λδ, µδ)‖ = 1 and

0 ∈ λδ∇f(xδ) + ∂g(xδ)
∗µδ +

√
δB, (2.13)

where ∂g(xδ) = ∇xg(x, ·) ∈ C(T )n. Applying the Alaoglu theorem, we may let (λ0, µ)

be a w∗-limit point of the sequence {(λδk , µδk)} for some δk → 0. We also have that

µ ∈ NK(g(x̄)) by Proposition 2.2.1 and the fact that Cδ,x̄ + dist((f(xδ), g(xδ)), Cδ,x̄) →
(f(x̄) + R−) ×K. Since ∇f(x) and ∇g(x, t) are continuous, then ∇f(xδk) → ∇f(xx̄)

and ∇g(xδk , t) → ∇g(x̄, t) for each t ∈ T . Thus we complete the proof by letting δ → 0

in (2.13).

A theorem from Rogosinski [117] is as follows.

Theorem 2.2.3 ([126, 117]). Let T be a metric space equipped with its Borel sigma

algebra B, qi : T → R, i = 1, · · · , k, be measurable functions, and µ be a (nonnegative)

measure on (T,B) such that q1, · · · , qk are µ-integrable. Then there exists a (nonnega-

tive) measure η on (T,B) with a finite support of at most k points such that∫
T

qi dµ =

∫
T

qi dη, i = 1, · · · , k.
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Thus by applying Rogosinski’s Theorem we obtain the following theorem.

Theorem 2.2.4. Let the assumptions of Theorem 2.2.2 hold. Then there exist λ0 ≥ 0

and ti ∈ I(g(x̄)), λi ≥ 0, i = 1, · · · , L(≤ n) with
∑L

i=0 λi = 1 such that

0 = λ0∇f(x̄) +
L∑

i=1

λi∇g(x̄, ti). (2.14)

2.3 Optimality with Penalty

In this section, we adapt an approach from Bertsekas and Ozdaglar [7], where the

generalized Fritz-John optimality conditions are derived for nonlinear programming

and subsequently new constraint qualifications are introduced and relations with other

known qualifications are investigated. This approach is also adapted by Kanzow and

Schwartz [72] to study mathematical programs with equilibrium constraints.

Let x̄ be a local optimal solution of SIP problem (2.1) and associate it with a

sequence of problems:

(Pk) min
x∈B(x̄,ε)

Fk(x) := f(x) +
k

2

∫
T

g+(x, t)2 dµ(t) +
1

2
‖x− x̄‖2 (2.15)

where µ is a nonnegative regular Borel measure on T . Let xk sovle (Pk) (since the

feasible set of problem (Pk) is compact, the solution exists). Then we have

Fk(x
k) ≤ Fk(x̄), (2.16)

that is

f(xk) +
k

2

∫
T

g+(xk, t)2 dµ(t) +
1

2
‖xk − x̄‖2 ≤ f(x̄), for all k. (2.17)

As {xk} is bounded, we may also assume that xk → x∗, if needed by taking a subse-

quence, and thus ∫
T

g+(xk, t)2 dµ(t) → 0.

Then by continuity,
∫

T
g+(x∗, t)2 dµ(t) = 0, and by the penality (under appropriate

assumption): x∗ is feasible. Then

f(x∗) +
1

2
‖x∗ − x̄‖2 ≤ f(x̄), (2.18)

f(x̄) ≤ f(x∗), (2.19)
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which imply that x∗ = x̄. By optimality for Pk at xk and the calculus rule for the

integral term [112], we have

0 = ∇f(xk) + k

∫
T

g+(xk, t)∇g(xk, t) dµ(t) + (xk − x̄) for k large enough. (2.20)

By Theorem 2.2.3, there exists nonnegative measure δk with a finite support of no larger

than n points such that∫
T

g+(xk, t)∇g(xk, t) dµ(t) =

∫
T

g+(xk, t)∇g(xk, t) dδk(t). (2.21)

As δk is of finite support, we assume that δk(t) =
∑

i λkiχ
k
T (tki) with suppδk = {tki : i},

λki > 0, and χk
T (t) = 1, for t ∈ suppδk, otherwise, 0, then∫

T

g+(xk, t)∇g(xk, t) dµ(t) =
∑

i

λkig+(xk, tki)∇g(xk, tki). (2.22)

Let γk =
√

1 + k2
∑

i(λkig+(xk, tki))2, µk0 = 1
γk , µki = λkig+(xk,tki)

γk . Then ‖µk‖ = 1 for

µk := (µki)
ik
i=0, and

0 = µk0∇f(xk) + µki∇g(xk, tki) +
1

γk
(xk − x̄). (2.23)

Without loss of generality we may assume that |suppδk| = L, a constant no larger than

n. By compactness, assume that

µk0 → λ0, µki → λi, i = 1, · · · , L, (2.24)

tki → t̄i, i = 1, · · · , L. (2.25)

Taking the limit in (2.23), we obtain

0 = λ0∇f(x̄) +
L∑

i=1

λi∇g(x̄, t̄i). (2.26)

If λi > 0, then from the definition of µki it follows that λig(x
k, tki) > 0 for all k large

enough. And we also have f(xk) < f(x̄).

Theorem 2.3.1 (Optimality). Let x̄ be a local optimal solution of SIP problem (2.1).

Assume that the support of the measure µ is T , which implies
∫

T
g+(x, t) dµ(t) is a

penalty term, see e.g., (2.34), then we have

(i) there are nonnegative real numbers λ0, · · · , λL, L ≤ n not all zero, t̄i ∈ T such

that

0 = λ0∇f(x̄) +
L∑

i=1

λi∇g(x̄, t̄i). (2.27)
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(ii) if J := {i : λi > 0, i ≥ 1} 6= ∅, there is {xk}, converging to x̄, {tki}, converging to

t̄i such that

f(xk) < f(x̄), λig(x
k, tki) > 0, i ∈ J. (2.28)

Remark 2.3.1. We can use the objective function

Fk(x) := f(x) +
k

2
max
t∈T

[g+(x, t)]2 +
1

2
‖x− x̄‖2

along with the subdifferential calculus rule for max-type functions to obtain the same

results.

Assumption 2.3.1. Given x̄ and any t̄i ∈ I(x̄), i ≤ L,L ≤ n, there is no nonzero

λ ∈ RL, no xk → x̄, tki → t̄i, such that

(i)
∑L

i=1 λi∇g(x̄, t̄i) = 0, λ ≥ 0,

(ii)
∑L

i=1 λig(x
k, tki) > 0, for all k.

Theorem 2.3.2. Let the assumptions of Theorem 2.3.1 and Assumption 2.3.1 hold.

Then there are nonnegative real numbers λ1, · · · , λn not all zero, and t̄i ∈ T such that

0 = ∇f(x̄) +
n∑

i=1

λi∇g(x̄, t̄i). (2.29)

2.4 Lower Order Penalization

In this section we study optimality conditions of SIP via exact penalty functions. We

will investigate relations between the lower order exact penalty function and the calm-

ness condition and consequently apply the lower order exact penalty functions to de-

rive optimality conditions. More specifically, we will propose two types of pth-order

(0 < p ≤ 1) penalty functions, the max-type and integral-type, generalizations of the

l∞ and l1 penalty functions in nonlinear programming problems, respectively. We will

then study the relationship of exactness of the penalty functions and the equivalence be-

tween the exactness of penalty functions and the corresponding concept of calmnesses.

Under the assumption of exactness of the penalty functions, the first-order optimality

conditions for SIP are derived. For cases p = 1 and p < 1, we adopt different penalty

functions. To a degree, we prefer the stronger one, integral-type penalty functions,

to derive optimality conditions. It is also shown that, playing the roles of constraint

qualifications, exact penalty function approaches are different from the traditional ones.
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The penalty function methods for nonlinear programming problems have been widely

investigated, see [29, 147, 104, 114, 6, 13, 118, 144]. An integral-type l1 penalty function

for SIP was proposed by Pietrzykowski [105], but not always exact. Improved by Conn

and Gould [24], an exact penalty function, extending the l1 penalty function of the non-

linear programming problem, was devised. Algorithms for SIP based on exact penalty

functions was developed by Coope and Price [25]. Auslender et al. [3] considered the

convex SIP, developed Remez-type and integral-tpye algorithms counpled with penalty

and smoothing methods and proved the convergence of primal and dual sequences.

2.4.1 Penalty Functions and Calmness

Consider the following semi-infinite programming problems:

min f(x) s.t. g(x, t) ≤ 0, t ∈ T, (2.30)

where f : Rn → R and g : Rn × T → R are continuously differentiable real-valued

functions, and T is a compact Hausdorff space.

Let M = {x ∈ Rn | g(x, t) ≤ 0, t ∈ T} be the feasible region and

T (x) = arg max
t∈T

g(x, t) = {t ∈ T | g(x, t) = max
t∈T

g(x, t)}

be the index set of active constraints of SIP. A penalty function F : Rn → R is of the

following form

F (x) = f(x) + ρP (x),

where ρ > 0 is a penalty parameter and P : Rn → R+ is a penalty term satisfying

P (x) = 0 ⇔ x ∈M.

Let x̄ be a local optimal solution of SIP (2.30). F is said to be locally exact at x̄ if

there exists ρ̄ > 0 such that x̄ is a local optimal solution of F for any ρ ≥ ρ̄.

Let 0 < p ≤ 1 and [a]+ = max{a, 0}. We consider two types of pth-order penalty

functions, i.e., max-type penalty and integral-type penalty functions. A pth-order max-

type penalty function for SIP is defined as,

F p
max(x) = f(x) + ρmax

t∈T
gp
+(x, t), (2.31)
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where gp
+(x, t) =

(
max{g(x, t), 0}

)p
.

Let µ be a nonnegative regular Borel measure defined on T with the support of µ

being equal to T , that is supp(µ) = T , where the support of µ is defined as the set of

the points t ∈ T such that any open neighborhood V of t has a positive measure:

supp(µ) := {t ∈ T | µ(V ) > 0, for any open neighborhood V of t}.

Two pth-order integral-type penalty functions for SIP are defined respectively by

F p
int(x) = f(x) + ρ

∫
T

gp
+(x, t) dµ(t), (2.32)

F̄ p
int(x) = f(x) + ρ(

∫
T

g+(x, t) dµ(t))p. (2.33)

With the assumption supp(µ) = T ,
∫

T
gp
+(x, t) dµ(t) and (

∫
T
g+(x, t) dt)p are penalty

terms, i.e., ∫
T

gp
+(x, t) dµ(t) = 0 ⇐⇒ g(x, t) ≤ 0, ∀t ∈ T, (2.34)∫

T

g+(x, t) dµ(t) = 0 ⇐⇒ g(x, t) ≤ 0, ∀t ∈ T.

It is obvious that the second equivalence follows from (2.34). Thus we show only the

necessity of (2.34) since the sufficiency is trivial. Suppose that there exists t0 ∈ T such

that g(x, t0) > 0. The continuity of g ensures the existence of a neighborhood V of t0

and α > 0 such that g(x, t) > α for all t ∈ V . Thus,∫
T

gp
+(x, t) dµ(t) ≥

∫
V

gp
+(x, t) dµ(t) ≥ αpµ(V ) > 0,

where the last step comes from the fact that T = supp(µ). This leads to a contradiction.

It is clear from the definition that if F p
max (resp. F p

int and F̄ p
int) is locally exact at

x∗, then so is F p̃
max (resp. F p̃

int and F̄ p̃
int) for all p̃ ∈ (0, p).

If the set T is finite, say T = {t1, · · · , ts}, then the feasible set M is defined by a

finite number of inequalities and hence SIP becomes a standard nonlinear programming

problem. Correspondingly, taking a measure µ =
∑s

i=1 δti , where δti is the Dirac

measure defined on T , the pth-order penalty functions (2.31), (2.32) and (2.33) take
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the form of

F p
max(x) = f(x) + ρ max

1≤i≤s
gp
+(x, ti), (2.35)

F p
int(x) = f(x) + ρ

s∑
i=1

gp
+(x, ti), (2.36)

F̄ p
int(x) = f(x) + ρ(

s∑
i=1

g+(x, ti))
p, (2.37)

respectively, where (2.36) and (2.37) are the pth-order penalty functions for a nonlinear

programming problem considered in Meng and Yang [92] and Yang and Meng [144]. It

is easy to see that the exactness of all three penalty functions (2.35), (2.36) and (2.37)

are equivalent.

Let T be a compact subset of Rm and µ be the Lebesgue measure. If T = cl(intT ),

then supp(µ) = T. Here the ‘support’ is understood as the support of the Lebesgue

measure with respect to T :

supp(µ) = {t ∈ T |
∫

B(t,δ)∩T

dµ(t) > 0 for all δ > 0}.

Especially, if T is a convex set with nonempty interior points, then supp(µ) = T, see,

e.g., [116, Theorem 2.33].

Throughout the chapter we will make the assumptions that T = supp(µ) whenever

the integeral-type penalty function is dealt with and that in all examples T is assumed

to be a compact subset of Rm and µ, for simplicity, is assumed to be the Lebesgue

measure.

Note that for p ∈ (0, 1), the following inequality∫
T

g+(x, t)p dµ(t) ≤ µ(T )1−p(

∫
T

g+(x, t) dµ(t))p

holds by Hölder’s inequality, see [85, Theorem 5.1]. Thus the exactness of F p
int implies

that of F̄ p
int. We give the following example to show that the exactness of penalty

function F̄ p
int is indeed strictly weaker than that of F p

int.

Example 2.4.1. Consider SIP problem

min f(x) s.t. g(x, t) ≤ 0, t ∈ T,
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where f(x) =

x2, if x ≥ 0,

−x 5
3 , otherwise,

g(x, t) = 2tx − t2 and T = [−1, 1]. Then for x ≤ 0

sufficiently small,
∫

T
g+(x, t)1/2 dt =

∫ 0

2x
(2tx − t2)1/2 dt=

∫ 1

−1
x2(1 − s2)1/2 ds = π

2
x2,

where t = (1 − s)x, and (
∫

T
g+(x, t) dt)1/2 = (−4

3
x3)1/2. Thus it follows that F̄

1/2
int is

exact at x∗ = 0 and F
1/2
int is not.

Next, we explore the relationship between the two exact penalty functions F p
max and

F p
int. First, let us introduce, for x ∈ Rn,

A(x) = arg max
t∈T

g+(x, t) = {t ∈ T | g+(x, t) = max
t∈T

g+(x, t)}.

Theorem 2.4.1. Let 0 < p ≤ 1 and supp(µ) = T . We have

(a) if F p
int is a local exact penalty function at x̄, so is F p

max;

(b) if F p
max is a local exact penalty function at x̄ and

lim inf
x→x̄

µ(A(x)) > 0, (2.38)

so is F p
int.

Proof. (a) It is easy to see that gp
+(x, t) ≤

(
max
t∈T

g+(x, t)
)p

= max
t∈T

gp
+(x, t),∀x ∈ Rn. So,∫

T

gp
+(x, t) dµ(t) ≤

∫
T

max
t∈T

gp
+(x, t) dµ(t) = µ(T ) max

t∈T
gp
+(x, t),

where µ(T ) > 0, since supp(µ) = T . By assumption that F p
int is a local exact penalty

function at x̄, there exists ρ̄ > 0 such that for every ρ ≥ ρ̄ there exists δρ > 0 such that

F p
int(x) = f(x) + ρ

∫
T

gp
+(x, t) dµ(t) ≥ f(x̄), for all x ∈ B(x̄, δρ). (2.39)

Let ρ̂ = µ(T )ρ̄. For each ρ ≥ ρ̂, we have

F p
max(x) = f(x) + ρmax

t∈T
gp
+(x, t) ≥ f(x) +

ρ

µ(T )

∫
T

gp
+(x, t) dµ(t). (2.40)

Note that ρ
µ(T )

≥ ρ̄. It follows from (2.39) and (2.40) that

F p
max(x) ≥ f(x) +

ρ

µ(T )

∫
T

gp
+(x, t) dµ(t) ≥ f(x̄), for all x ∈ B(x̄, δρ/µ(T )).

This means that F p
max is a local exact penalty function at x̄.
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(b) The condition (2.38) is equivalent to that there exist ε > 0 and δ1 > 0 such that

µ(A(x)) ≥ ε, for all x ∈ B(x̄, δ1).

Thus, for any x ∈ B(x̄, δ1), we have∫
T

gp
+(x, t) dµ(t) ≥

∫
A(x)

gp
+(x, t) dµ(t) = µ(A(x)) max

t∈T
gp
+(x, t) ≥ εmax

t∈T
gp
+(x, t). (2.41)

Since F p
max is a local exact penalty function, there exists ρ̄ > 0 such that x̄ is also a

local minimum of F p
max for all ρ ≥ ρ̄; that is, for every ρ ≥ ρ̄, there exist δρ > 0 (with

δρ < δ1) such that

F p
max(x) = f(x) + ρmax

t∈T
gp
+(x, t) ≥ f(x̄), for all x ∈ B(x̄, δρ). (2.42)

Let ρ̂ = ρ̄
ε
. For any ρ ≥ ρ̂ (implying ρε ≥ ρ̄), it follows from (2.41) and (2.42) that for

all x ∈ B(x̄, δρε),

F p
int(x) = f(x) + ρ

∫
T

gp
+(x, t) dµ(t) ≥ f(x) + ρεmax

t∈T
gp
+(x, t) ≥ f(x̄).

That is, F p
int is a local exact penalty function at x̄.

A well-known result for linear programming is that the l1 penalty function is always

exact (so is for the lower-order penalty function). A natural question arises: whether

this result remains true for the linear SIP. The answer is negative. The following

example illustrates that for any 0 < p ≤ 1, there always exists a linear SIP such that

the penalty function F p
max is not exact.

Example 2.4.2. Let 0 < p ≤ 1 and q = 1
p
≥ 1. Consider a linear SIP of the form

minx s.t. (2q)t2q−1x− (2q − 1)t2q ≤ 0, t ∈ [−1, 1],

with the local optimal solution x̄ = 0. The p-order max-type penalty function can be

rewritten as

F p
max(x) = f(x) + ρ[

(
max
t∈T

g(x, t)
)
+
]p.

For any x ∈ [−1, 1], we have

max
t∈T

g(x, t) = max
t∈[−1,1]

(2q)t2q−1x− (2q − 1)t2q = x2q ≥ 0, (2.43)
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where the second equality follows from the fact that

∇tg(x, t) = 0 ⇒ 2q(2q − 1)t2q−2x− (2q − 1)2qt2q−1


< 0, t > x,

= 0, t = x,

> 0, t < x,

so the maximum in (2.43) is attained at t = x.

For any fixed ρ > 0, we have

F p
max(x) = f(x) + ρ[

(
max
t∈T

g(x, t)
)
+
]p = x+ ρx2pq = (1 + ρx)x < 0, (2.44)

when x < 0 is sufficiently close to 0. This implies that F p
max is not a local exact penalty

function at x̄ = 0. Neither is F p
int, by Theorem 2.4.1 (a).

Clearly,

A(x) =

{
T (x), if x /∈M,

T, otherwise.

Since µ(T ) > 0 by the assumption supp(µ) = T , the condition (2.38) can be rewritten

as

lim inf
x→x̄

µ(A(x)) = lim inf
x→x̄
x/∈M

µ(T (x)) > 0.

The following example shows that the condition (2.38) is not necessary.

Example 2.4.3. Consider the following linear SIP problem

minx1 s.t. tx1 + t3x2 ≤ 0, t ∈ [−1, 1],

with M = {(0, 0)}. The point x̄ = (0, 0) is the optimal solution. It is obvious that

lim inf
x→x̄

µ(A(x)) = 0. Next, we check the exactness of integral-type penalty function

F 1
int(x1, x2) := x1 + ρ

∫ 1

−1

[tx1 + t3x2]+ dt.

It suffices to consider the area {(x1, x2)|x1 < 0}. For x1 < 0, 0 < −x1

x2
≤ 1,

F 1
int(x1, x2) = x1 + ρ(

∫ 0

−
√
−x1

x2

+

∫ 1

√
−x1

x2

)tx1 + t3x2 dt = x1[1−
ρ

2
(−1− x2

2x1

− x1

x2

)].
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Since 1
2s

+ s ≥
√

2, for s ∈ (0, 1], F 1
int(x1, x2) ≥ 0 for ρ large enough. For x1 < 0, 1 <

−x1

x2
, or x1 < 0, x2 < 0,

F 1
int(x1, x2) = x1 + ρ

∫ 0

−1

tx1 + t3x2 dt = x1[1− ρ(
1

2
− 1

4
(−x2

x1

))].

In both above cases, for some ρ > 0, F 1
int ≥ 0 holds. Thus F 1

int is locally exact at x̄.

Let C(T ) denote the space of all continuous functions u on T equipped with the

max-norm ‖u‖∞ = max
t∈T

|u(t)|.

It is well known that the exact penalty function has close relationships with the

concept of calmness. Corresponding to the two penalty functions F p
max and F p

int, we

introduce the following two kinds of calmness, respectively.

For u ∈ C(T ), let M(u) = {x ∈ Rn | g(x, t) ≤ u(t), t ∈ T}.

Definition 2.4.1. Let 0 < p ≤ 1 and x̄ be a local optimal solution of SIP.

(i) We say that SIP is pth-order max-type calm at x̄, if there exists a positive scalar

ρ such that, for any uk ∈ C(T ) with 0 6= uk → 0 under the max-norm and any

xk ∈M(uk) with xk → x̄, the following relation holds:

f(xk)− f(x̄)

‖uk‖p
∞

+ ρ ≥ 0, for all k.

(ii) We say that SIP is pth-order integral-type calm at x̄, if there exists a positive

scalar ρ such that, for any uk ∈ C(T ) with 0 6= |uk|pint → 0 and any xk ∈ M(uk)

with xk → x̄, the following relation holds:

f(xk)− f(x̄)

|uk|pint

+ ρ ≥ 0, for all k, (2.45)

where |u|pint =
∫

T
|u(t)|p dµ(t).

We assert that local exact penalization and calmness are equivalent under a mild

assumption.

Theorem 2.4.2. Let 0 < p ≤ 1 and x̄ be a local optimal solution of SIP. The following

statements are equivalent:

(a) SIP is pth-order max-type calm at x̄;

(b) F p
max is a local exact penalty function at x̄.
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Moreover, if supp(µ) = T , then the following statements are equivalent:

(c) SIP is pth-order integral-type calm at x̄;

(d) F p
int is a local exact penalty function at x̄.

Proof. (a) ⇒ (b). Loss of local exactness at x̄ is to say that for any ρk → ∞, there is

xk converging to x̄ such that

f(xk) + ρk max
t∈T

gp
+(xk, t) < f(x̄) + ρk max

t∈T
gp
+(x̄, t) = f(x̄).

This inequality implies the infeasibility of xk, maxt∈T g
p
+(xk, t) > 0 and maxt∈T g

p
+(xk, t) →

0 as k →∞. By choosing uk(t) = g+(xk, t), it is easy to check the failure of pth-order

max-type calmness at x̄.

(b) ⇒ (a). Suppose that SIP is not pth-order max-type calm at x̄. Then there exist

sequences of {ρk} ⊂ R , {uk} ⊂ C(T ) and {xk} ⊂ Rn with ρk → ∞, 0 6= uk → 0 ,

xk ∈M(uk) and xk → x̄, such that

f(xk)− f(x̄)

‖uk‖p
∞

+ ρk < 0, for all k.

That is

f(xk) + ρk‖uk‖p
∞ < f(x̄), for all k.

Then

F p
max(x

k) = f(xk) + ρ̄max
t∈T

gp
+(xk, t) ≤ f(xk) + ρ̄‖uk‖p

∞ < f(x̄) = F p
max(x̄), for all k,

where ρ̄ is the constant given in the definition of the local exactness of F p
max. This

contradicts the local exactness of F p
max at x̄. Thus SIP is pth-order max-type calm at

x̄.

(c) ⇒ (d). Suppose to the contrary that there exist sequences {ρk} and {xk} satis-

fying ρk →∞ and xk → x̄ as k →∞ such that

f(xk) + ρk

∫
T

max{g(xk, t), 0}p dµ(t) < f(x̄), for sufficiently large k. (2.46)

Let uk(t) = max{g(xk, t), 0}. So, uk ∈ C(T ), since g is continuous. Thus the above

inequality yields

f(xk) + ρk|uk|pint = f(xk) + ρk

∫
T

uk(t)
p dµ(t) < f(x̄). (2.47)
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It follows from (2.46) that, for sufficiently large k, xk is infeasible, and hence |uk|pint 6= 0,

due to the fact supp(µ) = T . Noting that when ρk → ∞, xk → x̄, and (2.47), we get

|uk|pint → 0. Therefore,

f(xk)− f(x̄)

|uk|pint

+ ρk < 0, for sufficiently large k,

contradicting the pth-order integral-type calmness of SIP at x̄.

(d) ⇒ (c). Suppose that SIP is not pth-order integral-type calm at x̄. Then there

exist sequences ρk → +∞, uk ∈ C(T ) with 0 6= |uk|pint → 0, and {xk} with xk → x̄

satisfying g(xk, t) ≤ uk(t) for all t ∈ T such that

f(xk)− f(x̄)

|uk|pint

+ ρk < 0, for sufficiently large k

or equivalently,

f(xk)− f(x̄) + ρk

∫
T

|uk(t)|p dµ(t) < 0.

Combining this with the fact that g(xk, t) ≤ uk(t) for t ∈ T yields max{g(xk, t), 0} ≤
|uk(t)| we obtain

f(xk)− f(x̄) + ρk

∫
T

|g(xk, t)|p dµ(t) < 0, for sufficiently large k.

This contradicts the local exactness of F p
int, since xk converges to x̄.

Next, we discuss that how different perturbations will affect the calmness of the SIP

problem. Let u ∈ C(T ) and ũ ∈ R. Consider the following perturbation problems of

SIP

(Pu) min f(x) s.t. g(x, t) ≤ u(t), t ∈ T,

and

(Pũ) min f(x) s.t. g(x, t) ≤ ũ, t ∈ T.

The equivalence between the max-type calmness of problems Pu and Pũ can be estab-

lished via the problem

(P‖u‖∞) min f(x) s.t. g(x, t) ≤ ‖u‖∞, t ∈ T.

That calmness of Pu implies that of Pũ is obvious since the ũ as a constant function

belongs to C(T ). For the reverse implication, with the formulation of P‖u‖∞ , it follows

36



from the definition of calmness. Besides, it is easy to see that the max-type calmness

of Pũ reduces to the calmness of the following nonlinear program with one inequality

constraint:

min f(x) s.t. φ(x) ≤ ũ, t ∈ T,

where φ(x) := maxt∈T g(x, t).

The following example shows that only considering the right-hand-side constant

perturbation is not enough to ensure the integral-type calmness.

Example 2.4.4. Consider the semi-infinite programming

min−x s.t. t2x ≤ t3, t ∈ [0, 1].

Then the feasible set M = (−∞, 0] and the optimal solution x̄ = 0. It is easy to compute

that for x > 0 near 0, we have

F
1
3

max = −x+ ρmax[t2x− t3]
1
3
+ = −x+

4ρ

27
x

and

F̄
1
3

int = −x+ ρ(

∫ 1

0

[t2x− t3]+dt)
1
3 = −x+

ρ

12
x

4
3 .

That is F
1
3

max is locally exact but F̄
1
3

int is not exact. Note that exactness of F
1
3

int implies

that of F̄
1
3

int. So F
1
3

int is not exact.

From the equivalence between exactness of penalty functions and calmness and the

discussion above, we have that the problem is calm under the constant perturbation

min−x s.t. t2x ≤ t3 + α, t ∈ [0, 1],

where α is a constant. However, it is not calm under the functional perturbation.

Hence, the functional perturbation and constant perturbation are essentially different

for establishing the exactness of integral-type penalty function.

2.4.2 Optimality Conditions

In this section, we shall employ the local exactness of F p
max, F

p
int and F̄ p

int(0 < p ≤ 1)

to develop first-order optimality conditions of SIP. Two cases are treated separately

according to the different value p. We consider first the case when p = 1.
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Theorem 2.4.3. If F 1
max is locally exact at a local solution x̄, then x̄ is a KKT point.

Proof. If F 1
max is exact at x̄, then there exist δ > 0 and ρ̄ > 0 such that

F 1
max(x) = f(x) + ρmax

t∈T
g+(x, t) ≥ f(x̄), for all x ∈ B(x̄, δ), ρ ≥ ρ̄,

which is equivalent to

F 1
max(x) = f(x) + ρmax

t∈T ∗
g(x, t) ≥ f(x̄), for all x ∈ B(x̄, δ), ρ ≥ ρ̄, (2.48)

where t∗ is any given point not belonging to T , T ∗ := T ∪ {t∗} and g(x, t∗) ≡ 0. By

Fermat’s rule,

0 ∈ ∇f(x̄) + ρ conv{∇xg(x̄, t) | t ∈ T ∗(x̄)}, for any ρ ≥ ρ̄,

with T ∗(x̄) = {t ∈ T ∗ | g(x̄, t) = maxt∈T ∗ g(x̄, t)}. By Carathéodory’s theorem, there

are numbers λi ≥ 0, t̄i ∈ T ∗(x̄), i = 1, · · · , n+ 1 such that
∑n+1

i=1 λi ≤ 1 and

∇f(x̄) +
n+1∑
i=1

ρλi∇g(x̄, t̄i) = 0.

This means that x̄ is a KKT point.

Below we give an example for which F 1
max is exact but F 1

int is not.

Example 2.4.5. Consider the SIP problem with f(x) = −x1 − x2, g(x, t) = tx1 +

t2x2, T = [0, 1]. Then the feasible set M = {x ∈ R2 | x1 + x2 ≤ 0, x1 ≤ 0} and thus

x∗ = (0, 0) is the optimal solution. We also have that

max
t∈[0,1]

g+(x, t) =


x1 + x2, if x1 + x2 ≥ 0, x1 + 2x2 ≥ 0,

0, if x1 + x2 ≤ 0, x1 ≤ 0,

− x2
1

4x2
, otherwise .

Noting that −x1−x2− x2
1

4x2
= − (2x2+x1)2

4x2
, it is easy to see that for ρ ≥ 1, F 1

max is exact at

x̄. x̄ is a KKT point as well: by taking λ = 1, t = 1, (−1,−1) + 1 · (1, 1) = 0. However,

for x ∈ {x|x1 ≤ 0, x1 +x2 ≥ 0}, F 1
int(x) = −x1−x2 + ρ[1

2
x1 + 1

3
x2− 1

6

x3
1

x2
2
] = ρ

6
[x1− x3

1

x2
2
] +

(ρ
3
− 1)[x1 + x2] = (x1+x2)

6
[(2ρ − 6) + ρx1

x2
− ρ

x2
1

x2
2
]. So, by taking x = (−s + s2, s), s ↓ 0,

we know that for ρ large enough F 1
int(x) < 0 and thus F 1

int is not exact at x̄.
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Compared with p = 1, the case of p ∈ (0, 1) needs more effort. First, we briefly

describe some notation that will be used in the sequel. Given a continuous function

h : Rn → R, upper Dini-directional derivative of h at a point x in the direction d ∈ Rn

is defined by

D+h(x; d) = lim sup
λ↓0

h(x+ λd)− h(x)

λ
.

The generalized lower and upper second-order directional derivatives of a C1,1 function

h at x in the direction d ∈ Rn are defined by

h◦◦(x; d) = lim inf
y→x,λ↓0

〈∇h(y + λd), d〉 − 〈∇h(y), d〉
λ

,

h◦◦(x; d) = lim sup
y→x,λ↓0

〈∇h(y + λd), d〉 − 〈∇h(y), d〉
λ

.

Let

LM(x) = {d ∈ Rn | 〈∇xg(x, t), d〉 ≤ 0, t ∈ T (x)},

T=(x, d) = {t ∈ T (x) | 〈∇xg(x, t), d〉 = 0},

T<(x, d) = {t ∈ T (x) | 〈∇xg(x, t), d〉 < 0}.

Before stating the main results, we present two lemmas for reference, one of which

is compiled from [144] for the estimates of the directional derivative D+g
p
+(x, t; ·) at

x ∈ Rn.

Lemma 2.4.1 (Fatou’s Lemma, [85, Corollary 5.7]). Let (X,M, µ) be a measured space

and fk : X → [0,+∞) be integrable for each k. Assume that lim infk→∞ ‖fk‖1 exists.

Then
∫

X
lim infk→∞ fk(t) dµ(t) ≤ lim infk→∞

∫
X
fk(t) dµ(t).

Lemma 2.4.2 ([144]). Let h̄(x) = (max{h(x), 0})p with 0 < p < 1 and h be continu-

ously differentiable at x.

(a) If h(x) < 0, then D+h̄(x; d) = 0;

(b) If h(x) = 0 and 〈∇h(x), d〉 < 0, then D+h̄(x; d) = 0;

(c) If p = 0.5, h(x) = 0 and 〈∇h(x), d〉 = 0, then D+h̄(x; d) ≤
√

max{1
2
h◦◦(x; d), 0};

(d) If 0.5 < p < 1, h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x; d) is finite, then D+h̄(x; d) =

0;

(e) If 0 < p < 0.5, h(x) = 0, 〈∇h(x), d〉 = 0 and h◦◦(x; d) < 0, then D+h̄(x; d) = 0.
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Now we establish a necessary optimality condition for SIP by virtue of the exact

penalty function F p
int.

Theorem 2.4.4. Let p ∈ (0, 1) and F p
int be locally exact at x̄. Under any one of the

three assumptions below,

(i) p = 0.5 and g◦◦(x̄, t; d) ≤ 0 for all t ∈ T=(x̄, d) and d ∈ LM(x̄),

(ii) 0.5 < p < 1 and g(·, t) is C1,1, for all t ∈ T=(x̄, d), and

(iii) 0 < p < 0.5 and g◦◦(x̄, t; d) < 0, for all t ∈ T=(x̄, d) and 0 6= d ∈ LM(x̄), we have

〈∇f(x̄), d〉 ≥ 0, for all d ∈ LM(x̄). (2.49)

Proof. For 0 < p < 1, and 0 6= d ∈ LM(x̄), we have

0 ≤ D+F
p
int(x̄; d)

= 〈∇f(x̄), d〉+ ρ lim sup
λ↓0

∫
T

gp
+(x̄+ λd, t)

λ
dµ(t)

≤ 〈∇f(x̄), d〉+ ρ lim sup
λ↓0

∫
T\T (x̄)

gp
+(x̄+ λd, t)

λ
dµ(t) (2.50)

+ ρ lim sup
λ↓0

∫
T <(x̄,d)

gp
+(x̄+ λd, t)

λ
dµ(t) + ρ lim sup

λ↓0

∫
T=(x̄,d)

gp
+(x̄+ λd, t)

λ
dµ(t).

Firstly, we claim that for any t ∈ T ,
gp
+(x̄+λd,t)

λ
→ 0 as λ → 0. Note that T =

(T\T (x̄)) ∪ T<(x̄, d) ∪ T=(x̄, d). Since, for t ∈ T\T (x̄), g(x̄, t) < 0, thus by (a) of

Lemma 2.4.2,

D+g
p
+(x̄, t; d) = 0, for all d ∈ Rn.

Similarly, for t ∈ T<(x̄, d), g(x̄, t) = 0 and 〈∇xg(x̄, t), d〉 < 0, by (b) of Lemma 2.4.2,

we still have

D+g
p
+(x̄, t; d) = 0.

In the remaining, we consider the case t ∈ T=(x̄, d), that is g(x̄, t) = 〈∇xg(x̄, t), d〉 =

0. We consider three subcases:

Subcase (i) p = 0.5. We have, by (c) of Lemma 2.4.2 and the assumption,

0 ≤ D+g
p
+(x̄, t; d) ≤

√
max{1

2
g◦◦(x̄, t; d), 0} = 0.

Subcase (ii) 0.5 < p < 1. We have, by (d) of Lemma 2.4.2 and the assumption g(·, t) is

C1,1, D+g
p
+(x̄, t; d) = 0.
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Subcase (iii) 0 < p < 0.5. We have, by (e) of Lemma 2.4.2 and the assumption

g◦◦(x̄, t; d) < 0, D+g
p
+(x̄, t; d) = 0.

In all, we have D+g
p
+(x̄, t; d) = 0. Noting the nonnegativity of

gp
+(x̄+λd,t)

λ
, thus we obtain

the claim.

Secondly, we claim that for any constant ε > 0 there exists λ∗ > 0 such that
gp
+(x̄+λd,t)

λ
≤ ε for all (t, λ) ∈ T × (0, λ∗). Indeed, by the continuity of

gp
+(x̄+λd,t)

λ
with

respect to (t, λ), for any t ∈ T , there exists neighborhood Vt of t and λt > 0 such that
gp
+(x̄+λd,t′)

λ
≤ ε, for all (t′, λ) ∈ Vt× (0, λt). By the compactness of T , there are t1, · · · , tk

belonging to T such that T ⊂
⋃

k Vtk . By letting λ∗ = min1≤i≤k λti , we obtain the claim.

Thirdly, applying Fatou’s Lemma to the sequence of functions {ε− gp
+(x̄+λd,t)

λ
: λ ↓ 0},

the last three terms in (2.50) vanish. Thus we have proved 〈∇f(x̄), d〉 ≥ 0 for all

d ∈ LM(x̄).

Remark 2.4.1. (i) By Farkas Lemma [53], (2.49) is equivalent to

−∇f(x̄) ∈ cl cone{∇xg(x̄, t), t ∈ T (x̄)}.

Then (2.49) is weaker than the KKT-type optimality condition which is defined as

−∇f(x̄) ∈ cone{∇xg(x̄, t), t ∈ T (x̄)}.

(2.49) also implies that

max{〈∇f(x̄), d〉, 〈∇xg(x̄, t), d〉, t ∈ T (x̄)} ≥ 0, for all d ∈ Rn,

which is equivalent to the FJ-tpye optimality condition 0 ∈ conv{∇f(x̄),∇xg(x̄, t), t ∈
T (x̄)} due to the compactness of the set {∇xg(x̄, t), t ∈ T (x̄)}. However, it is easy

to see that the reverse does not always hold. For example, consider the problem

minx2 s.t. tx1 + x2
2 ≤ 0, t ∈ [−1, 1]. Indeed, only the FJ-type optimality condition

holds at the unique feasible point x̄ = (0, 0), where ∇f(x̄) = (0, 1)T ,∇xg(x̄, t) =

(t, 0)T , t ∈ [−1, 1]. So, the optimality condition (2.49) is one between the FJ-type

and KKT-type optimalities.

(ii) In general, without any constraint qualifications, the following optimality condition

of SIP holds at x̄

〈∇f(x̄), d〉 ≥ 0, for all d ∈ lM(x̄),
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where lM(x̄) := {d ∈ Rn|〈∇xg(x̄, t), d〉 < 0, t ∈ T (x̄)}, which is equivalent to the

FJ-type optimality condition. Imposing a constraint qualification which ensures

that any d ∈ LM(x̄) is also a feasible direction, then we can also have the opti-

mality condition (2.49). Here d ∈ Rn is said to be a feasible direction if there is a

smooth feasible arc emanating from x̄ with tangent d. Furthermore, with an addi-

tional constraint qualification, the KKT-type optimality condition can be obtained.

For example, the (extended) Mangasarian-Fromovitz constraint qualification, i.e.

lM(x̄) 6= ∅, serves both the roles. More details are referred to Krabs [82, 83] and

Hettich and Kortanek [53].

(iii) The extended Abadie CQ [88] is said to hold at x̄ if TM(x̄) = (cone ∪t∈T (x̄)

∇xg(x̄, t))
◦, where TM(x) is the tangent cone of the feasible set M at x ∈ M and

K◦ denotes the negative polar cone of K. Since 〈∇f(x̄), d〉 ≥ 0 for all d ∈ TM(x̄),

see [128], then, under the extended Abadie CQ, the optimality condition (2.49)

still holds. As a comparison, the Abadie extended CQ is not satisfied for Exam-

ple 2.4.8, but assumptions in Theorem 2.4.4 are satisfied. The following example

adapted from [144] shows that extended Abadie CQ is satisfied but assumptions of

Theorem 2.4.4 are not.

Example 2.4.6. Consider the SIP problem

minx s.t. t(x4 − x2 − x) + x8 ≤ 0, t ∈ [1, 2].

It is easy to see that for some sufficiently small δ > 0, M∩[−δ, δ] = [0, δ]. Thus x̄ = 0 is

locally optimal. It is easy to check that ACQ holds at x̄, and assumption (i) of Theorem

2.4.4 is not satisfied. Also F
1
2

int is locally exact at x̄. Note that F
1
2

int(x) = x+ρ
∫ 2

1
(t(x4−

x2 − x) + x8)
1
2
+ dt ≥ x+ ρ

∫ 2

1
(t(x4 − x2 − x)) 1

2 dt = x+ 2ρ
3
(2

3
2 − 1)(x4 − x2 − x) 1

2 ≥ 0 for

all x < 0 small enough since the dominate term is
√
−x.

It should be noted that when 0 < p < 1, we use integral-type exact penalty func-

tions, instead of max-type exact penalty functions, to deal with necessary optimality

conditions of SIP, while when p = 1 we use the max-type penalty function. The reason

why we do so can be shown by the following example (letting q = 1 in Example 2.4.2.)

Example 2.4.7. Consider the following linear SIP

min x s.t. 2tx− t2 ≤ 0, t ∈ [−1, 1].
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The optimal solution is x̄ = 0. It is easy to see that F
1
2

max is exact at x̄. We now show

that F
1
2

int is not exact. Indeed, for x ∈ (−1
2
, 0) sufficiently small, we have

F
1
2

int(x) = x+ ρ

∫ 1

−1

(2tx− t2)
1
2
+ dt = x+ ρ

∫ 0

2x

(2tx− t2)
1
2 dt = x+

ρπ

2
x2 < 0.

Since the constraint function is linear, then the second-order condition g◦◦(x̄, t; d) = 0

is true for all t and d. But

〈∇f(x̄), d〉 < 0,

whenever d ∈ R−. So, for this example, we cannot develop the optimality conditions

by only assuming the exactness of F
1
2

max and the second-order conditions presented in

Theorem 2.4.4.

As we have mentioned before, sometimes we must resort to the lower-order penalty

function, since the l1 penalty function may fail to be exact. Therefore, we give an

example to illustrate that Theorem 2.4.4 is applicable, but Theorem 2.4.3 fails. Note

that, for this example, the extended Abadie CQ does not hold.

Example 2.4.8. Consider the following SIP problem

minx3 s.t. tx6 + x12 ≤ 0, t ∈ T = [0, 1].

The optimal solution is x̄ = 0. It is clear that F 1
max is not exact at x̄ = 0. The extended

Abadie CQ is invalid at x̄, since ∇xg(x̄, t) = 0 for all t ∈ T and

{0} = TM(x̄) 6= LM(x̄) = R.

Theorem 2.4.4 is applicable for the case of p = 1
2
. In fact, by a simple calculation, we

have for x ≥ 0,

F
1
2

int(x) ≥ x3 + ρ

∫ 1

0

max{tx6, 0}
1
2 dt ≥ 0;

and for x < 0,

F
1
2

int(x) ≥ x3 + ρ

∫ 1

0

max{tx6, 0}
1
2 dt = (1− ρ

∫ 1

0

t
1
2 dt)x3 = (1− 2

3
ρ)x3 ≥ 0,

whenever ρ ≥ 3
2
. So, F

1
2

int is a local exact penalty function at x̄. To be summarized, all

assumptions given in Theorem 2.4.4 are satisfied.
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Next we employ the local exactness of F̄int(0 < p < 1) to develop the optimality

condtition (2.49) of SIP. We first give a proposition that is needed in the proof of the

necessary optimality conditions.

Proposition 2.4.1. Let g : R+ → R+ be a nonnegative function and f : R+ → R be

continuous and strictly increasing. Then

lim sup
λ→λ0

f(g(λ)) ≤ f(lim sup
λ→λ0

g(λ)). (2.51)

Proof. Let {λk} be a sequence such that limk→∞ λk = λ0 and

lim sup
λ→λ0

f(g(λ)) = lim
k→∞

f(g(λk)).

Then lim supk→∞ g(λk) ≤ lim supλ→λ0
g(λ). As the limit limk→∞ f(g(λk)) exists and f is

strictly increasing, limk→∞ g(λk) exists. If limk→∞ g(λk) = ∞, then lim supλ→λ0
g(λ) =

∞. Thus (2.51) holds. Assume now that limk→∞ g(λk) < ∞. By the continuity and

monotonicity of f ,

lim
k→∞

f(g(λk)) = f( lim
k→∞

g(λk)) ≤ f(lim sup
λ→λ0

g(λ)),

and the assertion (2.51) also holds.

Theorem 2.4.5. Let p ∈ (0, 1) and F̄ p
int be locally exact at x̄. Under any one of the

three assumptions below,

(i) p = 0.5 and g◦◦(x̄, t; d) ≤ 0 for all t ∈ T=(x̄, d) and d ∈ LM(x̄),

(ii) 0.5 < p < 1 and g(·, t) is C1,1, for all t ∈ T=(x̄, d), and

(iii) 0 < p < 0.5 and g◦◦(x̄, t; d) < 0, for all t ∈ T=(x̄, d) and d ∈ LM(x̄), we have

〈∇f(x̄), d〉 ≥ 0 for all d ∈ LM(x̄). (2.52)

Proof. Given d ∈ LM(x∗), we have that

0 ≤ D+F̄
p
int(x

∗, d) =〈∇f(x∗), d〉+ ρ lim sup
λ↓0

(
∫

T
g+(x∗ + λd, t) dµ(t))p

λ

≤〈∇f(x∗), d〉+ ρ

(
lim sup

λ↓0

∫
T
g+(x∗ + λd, t) dµ(t)

λ1/p

)p

,

(2.53)

where the last inequality follows from Proposition 2.4.1. Note that

lim sup
λ↓0

∫
T
g+(x∗ + λd, t) dµ(t)

λ1/p
= lim sup

λ↓0

∫
T

(
gp
+(x∗ + λd, t)

λ

)1/p

dµ(t).
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Following exactly the proof in Theorem 2.4.4, we have any t ∈ T ,

gp
+(x∗ + λd, t)

λ
→ 0 as λ→ 0.

and that for any constant ε > 0 there exists λ∗ > 0 such that
gp
+(x∗+λd,t)

λ
≤ ε for any

(t, λ) ∈ T×(0, λ∗). By applying Fatou’s Lemma to the sequence {ε1/p−
(

gp
+(x∗+λd,t)

λ

)1/p

},
we have

lim inf
λ↓0

∫
T

(
ε1/p −

(
gp
+(x∗ + λd, t)

λ

)1/p
)

dµ(t)

≥ µ(T )ε1/p −
∫

T

lim sup
λ↓0

(
gp
+(x∗ + λd, t)

λ

)1/p

dµ(t)

≥ µ(T )ε1/p −
∫

T

(
lim sup

λ↓0

gp
+(x∗ + λd, t)

λ

)1/p

dµ(t)

= µ(T )ε1/p −
∫

T

(D+g
p
+(x∗, t; d))1/p dµ(t)

= µ(T )ε1/p,

where the second inequality again follows from Proposition 2.4.1. Thus

lim sup
λ↓0

∫
T

(
gp
+(x∗ + λd, t)

λ

)1/p

dµ(t) = 0,

and so the second term of the last term in (2.53) vanishes. This completes the proof.

2.5 A Numerical Scheme Based on Lower Order

Penalty Functions

In this section, we propose a conceptual algorithm based on our lower order penalty

functions F p. Here we only use the integral-type penalty functions.

In general, the algorithm with penalty functions proceeds as follows, see for example

Fiacco and McCormick [31].

Let ε > 0 and the sequence {ρk} be strictly monotonically increasing to +∞.

Step 1. For ρ1 > 0, find an unconstrained local minimum of F p(x, ρ1). Denote it by

x(ρ1).
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Step 2. Given x(ρk), find an unconstrained local minimum x(ρk+1) of F p(x, ρk+1).

Step 3. Stop if ‖xρk+1
− xρk

‖ < ε, otherwise return to Step 2.

Note that in Step 1 and 2 of the algorithm we need to solve an unconstrained

problem

minF p(x, ρk) = f(x) + ρk

∫
T

gp
+(x, t)dµ(t) s.t. x ∈ Rn. (2.54)

We can choose any unconstrained method to derive its local optimal solutions. As there

is an integral involved, we may proceed with techniques from numerical integration.

If T is an interval, say [a, b], the most widely used integration method is Simpson’s

rule, which is a discretization method by approximating the integral with finite sums

corresponding to some partition of the interval of integration [a, b]. If T is a subset of

a multidimensional space, the curse of dimensionality occurs when one try to phrase

the multiple integral as repeated one-dimensional integrals by appealing to Fubini’s

theorem. Monte Carlo and sparse grids are two known methods to overcome this curse.

More details are referred to Stoer and Burlirsch [137].

For simplicity’s sake, consider T = [a, b]. For any integral
∫ b

a
h(t)dt, the integrand

h is replaced by an interpolation polynomial P (t). Specifically, consider a uniform

partition of [a, b] given by

ti = a+ id, i = 0, · · · ,m, d = (b− a)/m.

The interpolation polynomial Pm is of degree m or less with

P (ti) = hi := h(ti), i = 0, · · · ,m.

Then Newton-Cotes formulas ∫ b

a

Pm(t)dt = d

m∑
i=0

hiαi

with αi being weights solely depending on m, provide approximate values for
∫ b

a
h(t)dt.

When m = 2, it is Simpson’s rule.

With above described integration technique and letting hm(x) be the approximate

integral of interpolation polynomial of gp
+(x, t) obtained from Newton-Cotes formula,

problem (2.54) can be approximated by

min f(x) + ρkhm(x) s.t. x ∈ Rn.
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Let xk
m be a local solution of the above problem. Then xk

m may provide approximate

solution of xρk
.
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Chapter 3

Generalized Semi-Infinite

Programming

3.1 Introduction

Problem description. The generalized semi-infinite programming problem (GSIP) is

of the following form

min f(x)

s.t. g(x, y) ≤ 0, y ∈ Y (x),
(3.1)

where f : Rn → R, g : Rn×Rm → R, and Y : Rn ⇒ Rm is a set-valued mapping. GSIP

features that its index set is variable dependent and in general is of infinite elements.

When Y is not x-dependent, it reduces to the standard semi-infinite programming

problem. Usually, we assume that Y is defined by a system of inequalities

Y (x) := {y ∈ Y0 | v(x, y) ≤ 0}, (3.2)

where the function v : Rn → Rl and Y0 ⊂ Rm.

For simplicity, we will not consider the cases when there are multiple semi-infinite

constraints and when there are equality constraints present in the definitions of (3.1)

and (3.2). In our considerations, the set Y0 is taken as either Rm or a compact subset

of Rm, which will be specified in later sections.
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The lower level problem. The lower level problem associated with GSIP is

Q(x) max g(x, y) s.t. y ∈ Y (x). (3.3)

This is a parameterized optimization problem (x as a parameter). The estimates of the

value function of Q(x) and keeping track of the solution set Y0(x) of Q(x) are crucial for

the study of GSIP. Since the value function of Q(x) is usually nonsmooth even though

all defining functions are smooth, nonsmooth analysis techniques are involved.

Denote by M and clM the feasible set and the closure of the feasible set of GSIP,

respectively. Let Y0(x) = {y ∈ Y (x) | g(x, y) = 0} the active index set at x, and φ(x)

be the optimal value function of Q(x):

φ(x) =

supy∈Y (x) g(x, y), if Y (x) 6= ∅,

−∞, otherwise.
(3.4)

Note that when Y (x) = ∅ the point x is always feasible. GSIP problem (3.1) is equiva-

lent to the following optimization problem with one constraint:

min f(x) s.t. φ(x) ≤ 0. (3.5)

It is shown that the feasible set M possesses topological structures not known to stan-

dard semi-infinite problems or finite problems. It turns out that a GSIP problem is

a much harder problem than an SIP problem. Early studies [78, 55] neglecting these

special structures managed to investigate the GSIP problem by transforming it into

finite nonlinear programming under regularity conditions. To give an impression of the

structure of GSIP, we list below some basic and useful properties related to Y and M :

(i) If Y is locally bounded and osc at x, then φ is usc at x;

(ii) If Y is isc at x, then φ is lsc at x;

(iii) M is closed if Y is isc on Rn;

(iv) M can be reformulated as

M = [prx(gphY ∩ GC)]C , (3.6)

where prx denotes the projection onto the x-space, gphY is the graph of the

mapping Y , G := {(x, y) | g(x, y) ≤ 0}, and AC is the set complement of A in RN ;
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(v) An upper estimate of closure of M can be given as

clM ⊂ {x | σ(x, y) ≤ 0, y ∈ Rm}, (3.7)

where

σ(x, y) = min{g(x, y),−v1(x, y), · · · ,−vl(x, y)}; (3.8)

(vi) Generically (for the function space with respect to (g, v)),

clM = {x | σ(x, y) ≤ 0, y ∈ Rm}. (3.9)

Upper semi-continuity of φ is easy to obtain provided that the defining functions are

continuous. Lower semi-continuity of φ, which attributes the closeness of M , is more

demanding but also desirable. From the formula of M in (iv), the special structures of

M such as the noncloseness and disjunctiveness, can be anticipated since it is obtained

by some basic set operations of half closed/open planes if by taking all defining functions

being linear. The symmetric representation formula of M in (vi) prompts a lot of recent

research on GSIP [46, 47, 43, 69].

Since the feasible set M is not always closed, it is reasonable to consider the corre-

sponding optimization problem on clM , the closure of M , that is

min f(x) s.t. x ∈ clM. (3.10)

GSIP and problem (3.10) are equivalent in the sense that if f is continuous then they

share the same optimal value.

Assume that GSIP is bounded below. Let x̄ ∈ clM solve GSIP. Several cases occur:

1. x̄ is an infeasible solution and φ(x̄) > 0;

2. x̄ is a feasible solution with Y (x̄) = ∅ and φ(x̄) = −∞;

3. x̄ is a feasible solution with Y (x̄) 6= ∅ and φ(x̄) < 0;

4. x̄ is a feasible solution with Y (x̄) 6= ∅ and φ(x̄) = 0.

In the second case, usually x̄ is an interior point of the domain of feasible set of GSIP

problem provided that the data involved are continuous. In the third case, x̄ is also an

50



interior point if φ is upper semi-continuous, which is guaranteed in general. Thus, we

in most times focus on the last situation.

Although we concentrate on necessary optimality conditions, there are some litera-

ture on sufficient optimality conditions such as [55, 121, 129].

Outline of this chapter is as follows. Section 3.2 provides a short introduction of

calmness condition for GSIP problems. Section 3.3 proposes the approximate problems

for GSIP via penalty functions of the lower level problems. Section 3.4 investigates

optimality conditions for nonsmooth GSIP problems. Section 3.5 derives optimality

conditions for GSIP via lower order penalty functions developed in Section 2.4. Sec-

tion 3.6 derives the strong duality theory of GSIP with convex lower level problems via

generalized augmented Lagrangians.

3.2 Calmness

As mentioned, GSIP can be equivalently reformulated as the following optimization

problem with one nonsmooth constraint

min f(x) s.t. φ(x) ≤ 0, (3.11)

where φ is the optimal value function of the lower level problem Q(x). Let φ̃(x) =

max{φ(x), 0} = φ+(x). Then GSIP can be rewritten as

min f(x) s.t. φ̃(x) ≤ (or =)0. (3.12)

It is easy to see that the following result holds.

Proposition 3.2.1. If φ̃(x) = 0 and φ is upper semicontinuous at x, then φ̃ is contin-

uous at x.

Definition 3.2.1 (calmness). Let p(u) be the value function of the following perturbed

problem

P (u) min f(x) s.t. φ(x) ≤ u. (3.13)

GSIP is said to be calm at an optimal solution x̄ if there are constants ᾱ ≥ 0 and ε > 0

such that for every (x, u) ∈ Rn × R with ‖x− x̄‖ ≤ ε and φ(x) ≤ u, we have

f(x) + ᾱ‖u‖ ≥ f(x̄).
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Remark 3.2.1. (i) The definition of calmness can be independent of the optimal so-

lution x̄. We may say the family of perturbed problems P (u) is calm at u = 0 if

we have

lim inf
u→0

p(u)− p(0)

‖u‖
> −∞.

(ii) The definition of calmness of GSIP at x̄ in Clarke [22, Def. 6.4.1] is: there are

constants ᾱ ≥ 0 and ε > 0 such that for every (x, u) ∈ Rn × R with ‖x − x̄‖ ≤
ε, |u| ≤ ε and φ(x) ≤ u, we have

f(x) + ᾱ‖u‖ ≥ f(x̄).

Due to the continuity property of φ̃ at x̄ = 0 from Proposition 3.2.1, we have that

the two versions of definitions of calmness are equivalent, as can be seen from [12].

A basic and important result about calmness is its equivalence to the exact penal-

ization.

Theorem 3.2.1 (Burke [12, Theorem 1.1]). Let x̄ satisfy φ(x̄) ≤ 0. Then GSIP is

calm at x̄ with the constants ᾱ, ε as in the Definition 3.2.1 if and only if x̄ is a local

minimum of radius ε for

Pα(x) := f(x) + αφ+(x), (3.14)

for all α ≥ ᾱ.

The function φ as the optimal value function of the lower level problem is in general

hard to obtain and thus difficult to deal with.

Next we use the penalty function of the lower level problem to replace φ and obtain

a relaxation of GSIP problem. Let ḡ(x, y, c) be a penalty function associated the lower

level problem Q(x) and

ψ(x, c) := sup
y∈Y0

ḡ(x, y, c). (3.15)

For example, ḡ(x, y, c) := g(x, y) − cα(x, y) for c > 0 and some nonnegative function

α which satisfies that α(x, y) = 0 if and only if v(x, y) ≤ 0. We may take α(x, y) =∑l
i=([vi(x, y)]+)2 or

∑l
i=1[vi(x, y)]+. With the assumptions of the compactness of Y0
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and continuity of the data, the known result about penalization is that for x with

Y (x) 6= ∅,
φ(x) = inf

c
ψ(x, c)

where φ(x) = supy∈Y (x) g(x, y), is the optimal value of the lower level problem Q(x).

Since ψ(x, c) ≥ φ(x) for any c > 0, we have

{x | ∃c > 0 s.t. ψ(x, c) ≤ 0} ⊂M. (3.16)

Consider the following perturbed problem

min f(x) s.t. ψ(x, c) ≤ u. (3.17)

The calmness of above problem (3.17) at x̄ is defined as

there exists ε > 0, α > 0 such that for any (x, c) satisfying ψ(x, c) ≤
u, ‖x− x̄‖ ≤ ε, |u| ≤ ε, we have that

f(x)− f(x̄) ≥ −α|u|. (3.18)

This calmness leads to the following exactness :

for some ε′ > 0, α′ > 0, we have for each x ∈ B(x0, ε
′), there is cx > 0

such that for all c ≥ cx,

f(x) + α′ψ+(x, c) ≥ f(x0). (3.19)

The feasible set of the problem (3.17) is a subset of the feasible set of GSIP and thus

the two problems are not equivalent. However, the calmness conditions for these two

problems are the same.

Proposition 3.2.2. (i) The calmness of problem (3.17) is equivalent to the exactness

condition (3.19);

(ii) The calmness of problem (3.17) at x̄ is equivalent to the calmness of GSIP.

Proof. (i). Exactness of (3.17) implies its calmness: proof is direct.

The reverse direction: loss of exactness is to say that for all k → ∞, there is ρk →
∞, (xk, ck) ∈ Rn × R+, x

k → x0 such that

f(xk) + ρkψ+(xk, ck) < f(x0),

53



this implies that ρkψ+(xk, ck) → 0. By letting uk = ψ+(xk, ck), it easily leads to a

contradiction regarding the calmness assumption.

(ii). From inequality (3.19), the monotonicity of ψ with respect to c and the zero

gap property, we have that (by letting c→∞)

f(x) +Mφ+(x) ≥ f(x0).

The equivalence follows easily.

3.3 Lower Level Penalty Transform

Due to the complexity of the structure of GSIP, simple and tractable approximations

for GSIP and its feasible set are important aspects of the research of GSIP. Stein [127]

used the following function

σ(x, y) = min{g(x, y),−v1(x, y), · · · ,−vl(x, y)} (3.20)

to provide an upper estimate of the closure of the feasible set of GSIP and thus developed

approximates for the tangent cone of the feasible set and first order necessary optimality

conditions for GSIP with degenerate index sets. Recent researches based on the function

σ gave sufficient conditions that characterize the closure of the feasible set, see [46, 47,

43, 69]. Still [136] described several approaches to transform GSIP but with ‘good’

lower level value functions into simpler problems, such as dual-, penalty-, discretization-,

reduction-, and Karush-Kuhn-Tucker (KKT)-methods.

In this section, we consider inner and outer approximations of the feasible set of

GSIP problem via the penalty functions of the lower level problem, consider corre-

sponding approximating problems of GSIP, and derive some properties between the

approximate solutions and the solutions of GSIP, and between the optimal vaules of

the approximating problems and GSIP. Under some appropriate assumptions, we try

to approximate and/or characterize the feasible set of GSIP (or the closure of the fea-

sible set) by use of some simple functions – here we choose the penalty functions. Our

analysis features that we make no assumptions that the feasible set is closed or of some

regularity properties of the lower level problems. It turns out that the approximate
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problems can effectively approximate the optimization problems under its closure in-

stead of the original problem and an asymptotic problem provides a lower estimate for

GSIP.

As in Section 3.2, given any x ∈ Rn, associate the lower level problem Q(x) with

the penalty problem with parameter c > 0:

ψ(x, c) := max
y∈Y0

ḡ(x, y, c), (3.21)

where ḡ(x, y, c) := g(x, y) − cα(x, y) is a penalty function for the lower level problem

Q(x). We may take α(x, y) =
∑

i([vi(x, y)]+)2 for example. Due to the compactness

of Y0 and continuity of the data, the solution set Ỹx of Q(x) is nonempty and for any

c > 0 the solutions of its corresponding penalty problem exist and their cluster points

belong to Ỹx.

Lemma 3.3.1. (i) For any x satisfying Y (x) 6= ∅ we have

φ(x) = inf
c
ψ(x, c), (3.22)

where φ(x) is the optimal value function of Q(x).

(ii) For x satisfying Y (x) = ∅, we still have

φ(x) = −∞ = inf
c
ψ(x, c). (3.23)

Some properties of φ and ψ are listed as follows.

(i) φ is usc and ψ is continuous and non-increasing in c.

(ii) For y ∈ Y (x), g(x, y) = ḡ(x, y, c) and thus ψ(x, c) ≥ φ(x).

(iii) M = {x | φ(x) ≤ 0}.

(iv) {x | φ(x) < 0} = {x | ∃c > 0 s.t. ψ(x, c) < 0} ⊂ intM .

(v) {x | φ(x) ≤ 0} ⊇ {x | ∃c > 0 s.t. ψ(x, c) = 0}.

The fact that φ is only usc can be problematic. It leads to the nonclosedness of M . In

general, the lower semi-continuity is a standard assumption for minimization problems

and is not as easy to guarantee as the upper semi-continuity. Besides, the strong duality
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result for the lower level problem Q(x) is equivalent to the lower semi-continuity of φ

at x. This perspective hints the difficulty in dealing with GSIP. Below we provide some

common results that ensure the lower semi-continuity of φ.

Proposition 3.3.1 ([59, 34]). The following assertions hold:

(i) If the set-valued mapping Y is isc at x, then φ is lsc at x.

(ii) If Y (x̄) 6= ∅, and MFCQ holds at some ȳ ∈ arg maxy∈Y (x̄) g(x̄, y), then φ is con-

tinuous at x̄.

(iii) Under the assumption that

{y ∈ Y0 | v(x, y) ≤ 0} ⊂ cl{y ∈ Y0 | v(x, y) < 0},

Y is isc at x. Thus, we have that φ is continuous at x.

(iv) if Y0 is convex, if each vi is continuous and is convex w.r.t. y for every fixed x,

and if there is a y such that v(x, y) < 0, then Y is isc at x.

Remark 3.3.1. For a usc function φ, neither

cl{x | φ(x) < 0} ⊂ {x | φ(x) ≤ 0}

nor

cl{x | φ(x) < 0} ⊃ {x | φ(x) ≤ 0}

holds. For example, φ(x1, x2) =


−1, if x2 < 0,

0, if x1 > 0, x2 ≥ 0,

1, otherwise.

To some extent, the set

{x ∈ Rn | ∃c > 0 s.t. ψ(x, c) < 0}

provides an inner approximation of the feasible set M of GSIP.

Proposition 3.3.2. If cl intM = clM and intM = {x | φ(x) < 0}, then clM =

cl (Pr{(x, c) : ψ(x, c) ≤ 0}).
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Proof. Since {x | ∃c > 0 s.t.ψ(x, c) ≤ 0} ⊂M , then cl Pr{(x, c) | ψ(x, c) ≤ 0} ⊂ clM .

On the other hand, for x ∈ clM , there exists xk ∈ intM such that xk → x. Then

φ(xk) < 0 by assumption and thus there exists ck > 0 such that ψ(xk, ck) < 0 due

to the zero gap property of penalization. This leads to the other inclusion clM ⊂
cl Pr{(x, c) | ψ(x, c) ≤ 0}.

Based on the previous discussions, it prompts us to consider the following two

problems:

(P ) min f(x) s.t. x ∈ clM,

(Pc) min f(x) s.t. ψ(x, c) ≤ 0.

We intend to use problem (Pc) to approximate problem (P ). Denote by Mc the feasible

set of (Pc) and by val (P ) the optimal value of problem (P). Then it is obvious that

Mc1 ⊂ Mc2 ⊂ M for all 0 < c1 ≤ c2. However the relation cl M = cl ∪c>0 Mc =

limc→∞ Mc may not always hold.

Proposition 3.3.3. Let clM = cl int M, int{x | φ(x) = 0} = ∅ or {x | φ(x) = 0} ⊂
cl{x | φ(x) < 0}. Then the following assertions hold:

(i) val (Pc) → val (P), as c →∞;

(ii) lim supc→∞(ε-arg min(Pc)) ⊂ ε-arg min(P ), for ε > 0;

(iii) lim supc→∞(εc-arg min(Pc)) ⊂ arg min(P ), for εc ↓ 0;

(iv) lim supc→∞(arg min(Pc)) ⊂ arg min(P ).

Proof. (i) If int{x | φ(x) = 0} = ∅, then intM ⊂ {x | φ(x) < 0} and thus intM = {x |
φ(x) < 0}. Then assumptions of Proposition 3.3.2 are satisfied. Then cl M = {x | ∃c >
0 s.t. ψ(x, c) ≤ 0}. Under the assumption {x | φ(x) = 0} ⊂ cl{x | φ(x) < 0}, using

basic properties of φ and ψ, we still have cl M = {x | ∃c > 0 s.t. ψ(x, c) ≤ 0}. Thus

Mc → clM . And since Mc ⊂M , the result (i) follows.

(ii) Let x be a cluster point of ε-arg min(Pc), i.e., for some xck
∈ ε-arg min(Pck

),

xck
→ x. Then x ∈ cl M. Assume the contrary, that f(x) > val(P) + ε. Then there is a
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δ > 0 such that for all x′ ∈ B(x, δ)∩cl M, f(x′) > val(P)+ε+∆ with ∆ := f(x)−(val(P)+ε)
2

.

For ck large enough, xck
belongs to B(x, δ) ∩ cl M, and thus

f(xck
) > val(P) + ε+ ∆.

On the other hand, from (i),

val (P) + ∆ ≥ val (Pck)

for ck large enough. Then we get

f(xck
) > val(Pck) + ε,

which contradicts that xck
is ε-optimal for (Pck

).

(iii) is a consequence of (ii). Since

lim sup
c→∞

(εc-arg min(Pc)) ⊂ lim sup
c→∞

(ε-arg min(Pc)),

then for any ε > 0, lim supc→∞(εc-arg min(Pc)) ⊂ lim supc→∞(ε-arg min(P )). Letting

ε→ 0, (iii) holds. Similarly, since lim supc→∞(arg min(Pc)) ⊂ lim supc→∞(εc-arg min(Pc)),

then (iv) also holds.

On the other hand, for any ε > 0, the set

{x ∈ Rn | ∃c > 0 s.t. ψ(x, c) ≤ ε}

provides an outer approximation of the feasible set M of GSIP. Under some stability

assumption of the sets {ψ(x, c) ≤ ε} w.r.t. ε (or the projection of them), we obtain the

equivalence between GSIP and SIP.

Consider the following SIP problem

min
(x,c)∈Rn×R+

f(x) s.t. ḡ(x, y, c) ≤ 0, y ∈ Y0 (3.24)

which can also be written as

min f(x) s.t. ψ(x, c) ≤ 0. (3.25)

The corresponding perturbed problem:

SIP(ε) min f(x) s.t. ψ(x, c) ≤ ε. (3.26)
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Another description of SIP(ε), the asymptotic case of SIP is the problem

(SIPa) min{lim sup f(xk) : lim supψ(xk, ck) ≤ 0}. (3.27)

In (SIPa), we may restrict our consideration to the sequences {(xk, ck)} with {ck} being

non-decreasing. Otherwise, just replace {(xk, ck)} by {(xk,max1≤i≤k c
i)}.

Let p(ε) = val SIP(ε) = inf(x,c){f(x) : ψ(x, c) ≤ ε}. The following inclusion is

obvious: for any ε > 0,

{x | ψ(x, c) ≤ 0 for some c > 0} ⊂M ⊂ {x | ψ(x, c) ≤ ε for some c > 0}. (3.28)

Proposition 3.3.4. The following properties are obvious:

(i) val (SIP) ≥ val (GSIP), val (SIP) ≥ val SIP(ε);

(ii) M = ∩ε>0M ε where M ε = Pr{(x, c) | ψ(x, c) ≤ ε};

(iii) M ⊆ limε→0M ε where M ε = pr{(x, c) | ψ(x, c) ≤ ε}.

Proposition 3.3.5. val (SIPa) = lim infε→0 p(ε).

Proof. Let α = val (SIPa) and β = lim infε→0 p(ε). Show by contradiction that α < β

and α > β.

First, let α < β. Then there is a δ > 0, ε0 > 0 such that

val (SIPa) + δ < p(ε),∀ε ∈ (0, ε0].

Let {(xk, ck)}k be the optimal solution of (SIPa). Then there is εk → 0 such that

ψ(xk, ck) ≤ εk, f(xk) → val (SIPa).

On the other hand, xk is a feasible solution of SIP(ε) and thus

f(xk) ≥ p(εk) > δ + α.

Letting k → ∞, a contradiction is obtained and thus α < β does not hold. Similarly,

we obtain that α > β also fails.

We also have β = lim infε↓0 p(ε).
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In all, we have

p(0) = val (SIP) ≥ val (GSIP) ≥ val (SIPa) = lim inf
ε↓0

p(ε) (3.29)

since val (SIP) ≥ val (GSIP) ≥ p(ε) for any ε > 0.

Theorem 3.3.1. (i) Problem (SIPa) provides a lower estimate for GSIP.

(ii) If p is lsc at ε = 0, then SIP and GSIP are equivalent. Especially, if (SIPε) is

calm at ε = 0, then p is lsc at ε = 0.

Proof. (i) follows directly from relation (3.29).

(ii) If p is lsc at ε = 0, then all quantities in (3.29) are equal. Thus the equivalence of

SIP and GSIP follows. The calmness means that for some M > 0, the relation

p(ε)− p(0) ≥ −M |ε|,

for all ε near 0, then p is lsc at ε = 0.

Note that there always exists a sequence {(xk, ck)} such that

lim sup
k→∞

ψ(xk, ck) ≤ 0, and f(xk) → val SIPa. (3.30)

Furthermore, if x̄ is a limit point of a subsequence of {xk} and x̄ is also feasible for

GSIP, then x̄ solves GSIP.

3.4 Nonsmooth Generalized Semi-Infinite Program-

ming

In this section we mainly focus on GSIP problem with defining functions being Lipschitz

continuous:

min f(x) s.t. g(x, y) ≤ 0, y ∈ Y (x), (3.31)

where Y (x) := {y ∈ Rm | v(x, y) ≤ 0}, and derive its necessary optimality conditions

via the generalized differentiation. We will consider the following two cases with differ-

ent approaches:
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1. developing optimality via the min-max formulation with Lipschitz lower level

optimal value function;

2. developing optimality via bilevel formulation under the assumption of partial

calmness(not necessarily with Lipschitz lower level value function).

With the nonlinear programming formulation

min f(x) s.t. φ(x) ≤ 0,

we relate GSIP to the min-max problem

min
x

max{f(x)− f(x̄), φ(x)}.

On the other hand, we can also relate GSIP to the following bilevel problem

min
(x,y)

f(x) s.t. g(x, y) ≤ 0,

y ∈ arg max{g(x, y) : y ∈ Y (x)}.
(3.32)

The problem (3.32) is a special bilevel optimization problem in that its upper level

constraint is the same as the object of its lower level problem. However, there is a

slight difference between GSIP problem (3.31) and problem (3.32). The feasible set of

problem (3.32) is a subset of problem (3.31) in that the feasible set of problem (3.31)

is the combination of the feasible set of problem (3.32) and the complement of domY .

For more comparisons between GSIP problems and bilevel problems, see Stein and

Still [130].

The bilevel problem (3.32) is equivalent to the following problem via the value

function φ(x):

min
(x,y)

f(x) s.t. y ∈ Y (x), g(x, y) ≤ 0, φ(x)− g(x, y) ≤ 0.

It can be rewritten as a nonlinear programming problem

min
(x,y)

f(x) s.t. (x, y) ∈ Ω, G(x, y) ≤ 0, (3.33)

where Ω = {(x, y) | g(x, y) ≤ 0, v(x, y) ≤ 0} and G(x, y) = φ(x)− g(x, y). Dempe and

Zemkoho [27] introduced the following WMFCQ

∂G(x̄, ȳ) ∩ (−bdNΩ(x̄, ȳ)) = ∅,
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to derived the necessary optimality conditions for the bilevel problem. They also took

an alternate approach to use the concept of partial calmness, introduced by Ye and

Zhu [146] which is weaker than WMFCQ. The partial calmness corresponding to the

above bilevel problem is of the following form

f(x)− f(x̄) + k|u| ≥ 0,∀(u, x, y) ∈ V(0,x̄,ȳ) : (x, y) ∈ Ω, G(x, y) ≤ u.

Finally, let’s remark that a bilevel problem can be formulated as a GSIP problem.

Consider a bilevel problem of the form

min
x,y
{F (x, y) : y ∈ S(x)},

where S(x) = {y | y solves min f(x, y) s.t. g(x, y) ≤ 0}.
(3.34)

The lower level optimal value function reformulation of the bilevel programming prob-

lem (3.34) is

min
x,y

F (x, y) s.t. f(x, y)− v(x) ≤ 0,

g(x, y) ≤ 0,

where v(x) is the value function of the lower level problem. Let

Y (x, y) = {z | g(x, z) ≤ 0} (independent of y).

Then the bilevel problem (3.34) is reformulated as the following GSIP problem

min
x,y

F (x, y) s.t. f(x, y)− f(x, z) ≤ 0, z ∈ Y (x, y),

g(x, y) ≤ 0.
(3.35)

The equivalence between the bilevel problem (3.34) and GSIP problem (3.35) is easy

to obtain. Note that y∗ ∈ S(x) is to say that g(x, y∗) ≤ 0, and f(x, y∗) ≤ f(x, z) for all

z satisfying g(x, z) ≤ 0.

It is different from the case when transforming a GSIP problem into a bilevel problem

that the set Y (x, y) ≡ Y (x) = ∅ makes no differences for the two problems. That is,

x is not feasible for both problems. For the GSIP formulation, if Y (x, y) = ∅, then

by convention that sup{f(x, y) − f(x, z) | z ∈ Y (x, y)} = −∞. On the other hand,

Y (x, y) = ∅ means that there is no y such that g(x, y) ≤ 0. Thus, x is not feasible for

the GSIP problem (3.35).
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More details of the value function reformulation for bilevel problem can be found in

Chen and Florian [19] and Ye and Zhu [146].

Given a function f : Rn → R and a point x̄ with f(x̄) finite. Recall that the regular

subdifferential of f at x̄ is defined by

∂̂f(x̄) := {u ∈ Rn | lim inf
x→x̄,x 6=x̄

(f(x)− f(x̄)− 〈u, x− x̄〉)/‖x− x̄‖ ≥ 0}. (3.36)

The general (basic, limiting) and singular subdifferential of f at x̄ are defined respec-

tively by

∂f(x̄) := lim sup

x
f−→x̄

∂̂f(x) and ∂∞f(x̄) := lim sup

x
f−→x̄,λ↓0

λ∂̂f(x).

The upper regular subdifferential of f at x̄ is defined by ∂̂+f(x̄) := −∂̂(−f)(x̄), and

the upper subdifferential of f at x̄ ∂+f(x̄) := lim sup
x

f−→x̄
∂̂+f(x).

The following definitions are required for further development.

Definition 3.4.1 ([93, Definition 1.63]). Let S : X ⇒ Y with x̄ ∈ domS.

(i) Given ȳ ∈ S(x̄), we say that the mapping S is inner semi-continuous at (x̄, ȳ)

if for every sequence xk → x̄ there is a sequence yk ∈ S(xk) converging to ȳ as

k →∞.

(ii) S is inner semi-compact at x̄ if for every sequence xk → x̄ there is a sequence

yk ∈ S(xk) that contains a convergent subsequence as k →∞.

(iii) S is µ-inner semicontinuous at (x̄, ȳ) (µ-inner semicompact at x̄) if in above two

cases, xk → x̄ is replaced by xk → x̄ with µ(xk) → µ(x̄).

Here the concept of µ-inner semicontinuity/semicompactness is important for our

considerations. It is typical that the value function φ of the lower level problem Q(x)

of GSIP is not continuous, even taking value −∞.

Theorem 3.4.1 (subdifferentiation of maximum functions [93, Theorem 3.46]). Con-

sider the maximum function of the form

(maxφi)(x) = max{φi(x) | i = 1, · · · , l}. (3.37)
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Let φi be lsc around x̄ for i ∈ I(x̄) and be usc at x̄ for i /∈ I(x̄). Assume the qualification

holds:

[
∑

i∈I(x̄)

x∗i = 0, x∗i ∈ ∂∞φi(x̄)] ⇒ x∗i = 0, i ∈ I(x̄). (3.38)

Then

∂(maxφi)(x̄) ⊂ ∪{
∑

i∈I(x̄)

λi∂φi(x̄) | (λ1, · · · , λl) ∈ Λ(x̄)}, (3.39)

where Λ(x̄) = {(λ1, · · · , λl) | λi ≥ 0,
∑l

i=1 λi = 1, λi(φi(x̄)− (maxφi)(x̄)) = 0}.

Note that the qualification (3.38) always holds if all related functions are locally

Lipschitz.

The following two results are about continuity properties and estimates of subdif-

ferentials of marginal functions which are crucial to our analysis for GSIP problems.

Proposition 3.4.1 (limiting subgradients of marginal functions [97]). Consider the

parametric optimization problem

µ(x) := inf{ϕ(x, y) | y ∈ G(x)}, (3.40)

and let M(x) := {y ∈ G(x) | µ(x) = ϕ(x, y)}, G(x) := {y ∈ Rm | ϕi(x, y) ≤ 0, i =

1, · · · , l}. For simplicity, we don’t consider the case with equality constraints involved.

(i) Assume that M is µ-inner semicontinuous at (x̄, ȳ) ∈ gphM , that ϕ and all ϕi are

Lipschitz continuous around (x̄, ȳ), and that the following qualification condition

is satisfied:

only the vector (λ1, · · · , λl) = 0 ∈ Rl satisfies the relation 0 ∈
l∑

i=1

λi∂ϕi(x̄, ȳ)

for some (λ1, · · · , λl) ∈ Rl
+ with λiϕi(x̄, ȳ) = 0, i = 1, · · · , l. (3.41)

One has the inclusions

∂µ(x̄) ⊂ {u∗ ∈ X∗ | (u∗, 0) ∈ ∂ϕ(x̄, ȳ) +
l∑

i=1

λi∂ϕi(x̄, ȳ)

for some (λ1, · · · , λl) ∈ Rl
+ with λiϕi(x̄, ȳ) = 0, i = 1, · · · , l}.
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(ii) Assume that M is µ-inner semicompact at x̄, and all ϕ, and ϕi are Lipschitz

continuous around (x̄, ȳ) for all ȳ ∈ M(x̄) and the qualification (3.41) holds for

all (x̄, ȳ), ȳ ∈M(x̄). Then

∂µ(x̄) ⊂ ∪ȳ∈M(x̄){u∗ ∈ X∗|(u∗, 0) ∈ ∂ϕ(x̄, ȳ) +
l∑

i=1

λi∂ϕi(x̄, ȳ),

for some (λ1, · · · , λl) ∈ Rm
+ with λiϕi(x̄, ȳ) = 0, i = 1, · · · , l}. (3.42)

Proposition 3.4.2 (Lipschitz continuity of marginal functions [95, Theorem 5.2]).

Continue to consider the parametric problem (3.40) in Propostion 3.4.1. Then the

following assertions hold:

(i) Assume that M is µ-inner semicontinuous at (x̄, ȳ) ∈ gphM and ϕ is locally

Lipschitz around this point. Then µ is Lipschitz around x̄ provided that it is lsc

around x̄ and G is Lipschitz-like around (x̄, ȳ).

(ii) Assume that M is µ-inner compact at x̄ and ϕ is locally Lipschitz around (x̄, ȳ)

for all ȳ ∈ M(x̄). Then µ is Lipschitz around x̄ provided that it is lsc around x̄

and G is Lipschitz-like around (x̄, ȳ) for all ȳ ∈M(x̄).

Now we are prepared to develop the optimality conditions for GSIP problem (3.31).

Given a local solution x̄ of problem (3.31), associate it with the following min-max

problem

min
x

max{f(x)− f(x̄), φ(x)}, (3.43)

where φ(x) := supy∈Y (x) g(x, y). Let Y0(x) := {y ∈ Y (x) : φ(x) = g(x, y)}. Denote by

F (x) = max{f(x)− f(x̄), φ(x)}.

If x̄ solves GSIP (3.31), then x̄ also solves problem

min{F (x) : x ∈ Rn}

and thus by generalized Fermat’s rule, cf. [116, Theorem 10.1], we have

0 ∈ ∂F (x̄). (3.44)
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So, calculus for the maximum function and the estimate of subdifferentials are essential

to proceed. From equation (3.44) and Theorem 3.4.1, there exists µ ∈ [0, 1] such that

(if φ is Lipschitz)

0 ∈ µ∂f(x̄) + (1− µ)∂φ(x̄) ⊂ µ∂f(x̄) + (1− µ)co ∂φ(x̄). (3.45)

Note that for a Lipschitz function φ,

co ∂φ(x̄) = −co ∂(−φ)(x̄). (3.46)

Theorem 3.4.2 (optimality for GSIP with Lipschitz lower level otpimal value func-

tion). Consider the GSIP problem (3.31), and let x̄ ∈M be its locally optimal solution.

Assume that all functions f, g and v are Lipschitz continuous, Y0 is φ-inner semi-

compact at x̄ and Y is Lipschitz-like at (x̄, ȳ) for all ȳ ∈ Y0(x̄). Then there is ȳj ∈ Y0(x̄)

and λ̄0 ≥ 0, λ̄j ≥ 0, ᾱj
i ≥ 0, i = 1, · · · , l, j = 1, · · · , k such that

∑k
j=1 λ̄j = 1 and

0 ∈ (λ̄0∂f(x̄), 0) +
k∑

j=1

λ̄j[−∂(−g)(x̄, ȳj)−
l∑

i=1

ᾱj
i∂vi(x̄, ȳ

j)]. (3.47)

If in addition g and all components of v are regular at all (x̄, ȳj), then the optimality is

of the form

0 ∈ λ̄0∂f(x̄) +
k∑

j=1

λ̄j[−∂x(−g)(x̄, ȳj)−
l∑

i=1

ᾱj
i∂xvi(x̄, ȳ

j)], (3.48)

0 ∈
k∑

j=1

λ̄j[−∂y(−g)(x̄, ȳj)−
l∑

i=1

ᾱj
i∂yvi(x̄, ȳ

j)]. (3.49)

Note that −∂(−g) = ∂+g.

Proof. Under regularity and Lipschitz continuity, since the following calculus rule for

basic subgradients holds, see [116, Corollary 10.11]:

∂xf(x, y) = {u | ∃ v s.t. (u, v) ∈ ∂f(x, y)},

equations (3.48) and (3.49) follow directly from (3.47). Note that the function −φ is in

position of µ in Proposition 3.4.1. Under our assumptions, by Proposition 3.4.2, −φ is

Lipschitz continuous and the estimate of ∂(−φ)(x̄) is

∂(−φ)(x̄) ⊂ ∪ȳ∈Y0(x̄){u∗ ∈ X∗ | (u∗, 0) ∈ ∂(−g)(x̄, ȳ) +
l∑

i=1

αi∂vi(x̄, ȳ),

for some (α1, · · · , αl) ∈ Rl
+ with αivi(x̄, ȳ) = 0, i = 1, · · · , l}. (3.50)
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If x̄ ∈M solves GSIP, then it also solves minx F (x). By equations (3.44)– (3.46), there

exists µ ∈ [0, 1] such that

0 ∈ µ∂f(x̄)− (1− µ)co ∂(−φ)(x̄). (3.51)

Combining (3.50) and (3.51), there is ȳj ∈ Y0(x̄) and λj ≥ 0, αj
i ≥ 0, i = 1, · · · , l, j =

1, · · · , k such that
∑k

j=1 λj = 1 and

0 ∈ (µ∂f(x̄), 0) + (1− µ)
k∑

j=1

λj[−∂(−g)(x̄, ȳj)−
l∑

i=1

αj
i∂vi(x̄, ȳ

j)]. (3.52)

Letting λ̄0 = µ, λ̄j = (1−µ)λj, ᾱ
j
i = αj

i , i = 1, · · · , l, j = 1, · · · , k, we obtain the desired

result.

Corollary 3.4.1. In addition to the assumptions in Theorem 3.4.2, assume that f , g

and v are continuously differentiable. Then the optimality condition at the optimal point

x̄ is that there exist ȳj ∈ Y0(x̄) and λ̄0 ≥ 0, λ̄j ≥ 0, ᾱj
i ≥ 0, i = 1, · · · , l, j = 1, · · · , k

such that
∑k

j=1 λ̄j = 1 and

0 = λ̄0∇xf(x̄) +
k∑

j=1

λ̄j[∇xg(x̄, ȳ
j)−

l∑
i=1

ᾱj
i∇xvi(x̄, ȳ

j)], (3.53)

0 =
k∑

j=1

λ̄j[∇yg(x̄, ȳ
j)−

l∑
i=1

ᾱj
i∇yvi(x̄, ȳ

j)]. (3.54)

Next we consider the case where the lower level value function φ fails to be Lipschitz

and give estimates of the subdifferential of φ and thus further derive the optimality

conditions for GSIP. However, it requires to use the Clarke convexified subdifferential.

There are two different approaches to define the Clarke’s normal cone. On one hand,

it can be defined by the polar cone of the Clarke’s tangent cone

NA(x) := T̂A(x)◦,

where T̂A(x) = lim inf
y

A−→x,t↘0

A−y
t

or defined via the generalized directional derivative of the

(Lipschitzian) distant function dist(·, A), see Clarke [21]. On the other hand, it can be

defined by the closed convex hull of the (general) normal cone

NA(x) := cl coNA(x).
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For this definition and the equivalence of the two definitions, see for example, Rock-

afellar and Wets [116].

The Clarke subgradients and Clarke horizon subgradients of f at x are defined by

∂f(x) := {v | (v,−1) ∈ N epi f (x, f(x))},

and ∂
∞
f(x) := {v | (v, 0) ∈ N epi f (x, f(x))}.

(3.55)

The relationship between the Clarke subsubdifferentials and basic subdifferentials is

also referred to Mordukhovich [93, Theorem 3.57].

Proposition 3.4.3. Let f be proper and lsc around x̄ ∈ dom f . Then

∂f(x̄) = cl co [∂f(x̄) + ∂∞f(x̄)].

If, in particular, f is Lipschitz continuous at x̄, then

∂f(x̄) = cl co ∂f(x̄).

The general/basic normal cone NA enjoys the robustness property

NA(x̄) = lim sup
x→x̄

NA(x̄)

provided that the setting is finite dimension [93, page 11]. However, this is not true for

the convexified cone NA, see for example Rockafellar [115]:

A := {x ∈ R3|x3 = x1x2 or x3 = −x1x2} and x̄ = (0, 0, 0).

The normal cone NA(x̄) is just the x3-axis, but NA(x) is the x2x3-plane for all x =

(x1, 0, 0). The following proposition is from Rockafellar [115].

Proposition 3.4.4. If A is convex, or if NA(x̄) is pointed, then the multifunction NA

is closed at x̄, that is, for all xk → x̄, yk NA(xk)−−−−→ ȳ, one has ȳ ∈ NA(x̄).

Proposition 3.4.5. The Clarke normal cone has the robustness property

NA(x) = lim sup
y→x

NA(y)

provided that NA(x) is pointed.
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Proof. It suffices to prove that lim supy→x coNA(y) ⊂ cl co lim supy→xNA(y) = NA(x).

Let v ∈ lim supy→x coNA(y). Then there are yk ∈ A, vik ∈ NA(yk), i = 1, · · · , n+1 such

that
n+1∑
i=1

vik → v as k →∞,

since the sets NA(yk) are cones. Let λk =
∑n+1

i=1 ‖vik‖. Then {λk} is bounded, that

is also to say {vik} are bounded for all i. Otherwise,
∑n+1

i=1
vik

λk
→ 0. That is v1 +

· · · + vn+1 = 0, where vi is the limit of {vik

λk
}k for each i. Note that vi ∈ NA(x) since

NA(x) = lim supy→xNA(y). Thus v1 = · · · = vn+1 = 0 by the pointedness of NA(x).

On the other hand,
∑

i ‖vi‖ = 1. This is a contradiction. Thus the sequence {vik} is

bounded. By taking subsequences, we may assume that vik → vi. Then vi ∈ NA(x) and

v = v1 + · · ·+ vn+1. This completes the proof.

Proposition 3.4.6. Consider the parametric optimization problem same as (3.40):

µ(x) := inf{ϕ(x, y) | y ∈ G(x)}

with corresponding solution mapping M : X ⇒ Y . Let x̄ ∈ domM . Assume that the

following conditions hold:

(i) ϕ is lower semi-continuous at x̄;

(ii) M is µ-inner semi-compact at x̄ and M(x̄) is nonempty and compact;

(iii) If (ui, wi) ∈ ∂̄∞ϕ(x̄, ȳi), (vi,−wi) ∈ NgphG(x̄, ȳi), ȳi ∈M(x̄), i ≤ n+1, and
∑

i ui+

vi = 0, then ui = vi = 0, wi = 0;

(iv) The cones NgphG(x̄, ȳ) and Nepiϕ(x̄, ȳ, ϕ(x̄, ȳ)) for all ȳ ∈M(x̄) are pointed.

Then we have the inclusion

∂̄µ(x̄) ⊂ co(
⋃

ȳ∈M(x̄)

{u | (u, 0) ∈ ∂̄ϕ(x̄, ȳ) +NgphG(x̄, ȳ)}).

Proof. (Sketch. The definition of ∂̄ = cl co {∂ + ∂∞}. The proof is divided into two

parts. First the set on the right hand of the required inclusion, denoted by Λ, is closed.

The second step is to justify that ∂ + ∂∞ ⊂ Λ.)

Let
∑n+1

i=1 λ
k
i u

k
i → u, λk

i ≥ 0,
∑

i λ
k
i = 1, and

(uk
i , 0) = (xk

1i, y
k
1i) + (xk

2i, y
k
2i), i = 1, 2, . . . , n+ 1, (3.56)
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where (xk
1i, y

k
1i) ∈ ∂̄ϕ(x̄, ȳk

i ), (xk
2i, y

k
2i) ∈ NgphG(x̄, ȳk

i ), ȳk
i ∈ M(x̄), i = 1, · · · , n + 1. We

have to show that u ∈ Λ. We may assume that ȳk
i → ȳi, i = 1, · · · , n + 1, as M(x̄) is

compact. We show first that the sequence {zk := (zk
i )i = (xk

1i, y
k
1i, x

k
2i, y

k
2i)}k is bounded.

Suppose on the contrary that ‖zk‖ → ∞. Then for each i,

1

‖zk‖
(uk

i , 0) =
1

‖zk‖
(xk

1i, y
k
1i) + (uk

2i, v
k
2i), with (uk

2i, v
k
2i) =

1

‖zk‖
(xk

2i, y
k
2i). (3.57)

Multiplying (3.57) by λk
i and taking summation over i, we have

1

‖zk‖
(
∑

i

λk
i x

k
1i,
∑

i

λk
i y

k
1i) + (

∑
i

λk
i u

k
2i,
∑

i

λk
i v

k
2i) → (0, 0). (3.58)

Note that for each i, by definition of ∂̄,

(
1

‖zk‖
(xk

1i, y
k
1i),

−1

‖zk‖
) ∈ N epiϕ(x̄, ȳk

i , ϕ(x̄, ȳk
i )). (3.59)

Let (uk
1i, v

k
1i) := 1

‖zk‖(x
k
1i, y

k
1i) → (u1i, v1i). Then by assumption (iv) and Proposition 3.4.5

one has (u1i, v1i, 0) ∈ N epiϕ(x̄, ȳi, ϕ(x̄, ȳi)) and thus (u1i, v1i) ∈ ∂̄∞ϕ(x̄, ȳi). Then

1

‖zk‖
(
∑

i

λk
i x

k
1i,
∑

i

λk
i y

k
1i) →

∑
λi(u1i, v1i), (3.60)

where λi := limk λ
k
i ,
∑
λi = 1. Let (uk

2i, v
k
2i) → (u2i, v2i) ∈ NgphG(x̄, ȳi). Then v1i+v2i =

0 from (3.56). Combining (3.58) and (3.60), we have∑
λi((u1i, v1i) + (u2i, v2i)) = 0. (3.61)

Based on the assumption (iii), we have (u1i, v1i) = (0, 0), (u2i, v2i) = (0, 0). This

contradicts the fact that (u1i, v1i, u2i, v2i) is of norm 1 and thus {zk} is bounded.

Then (xk
1i, y

k
1i), (xk

2i, y
k
2i) have convergent subsequences, say (xk

1i, y
k
1i) → (x1i, y1i) ∈

∂̄ϕ(x̄, ȳi), (x
k
2i, y

k
2i) → (x2i, y2i) ∈ NgphG(x̄, ȳi). Thus u =

∑
λiui with ui = x1i + x2i.

That is to say Λ is closed.

Next, we justify that ∂ + ∂∞ ⊂ Λ. Assume that u1 ∈ ∂µ(x̄), u2 ∈ ∂∞µ(x̄). Under

the semi-compactness assumption, invoking [93, Theorem 1.108], one gets that

∂µ(x̄) ⊂ {u | (u, 0) ∈ ∪ȳ∈M(x̄)∂(ϕ(x̄, ȳ) + δ((x̄, ȳ), gphG))}, (3.62)

∂∞µ(x̄) ⊂ {u | (u, 0) ∈ ∪ȳ∈M(x̄)∂
∞(ϕ(x̄, ȳ) + δ((x̄, ȳ), gphG))}. (3.63)

Employing the sum rule from [93, Theorem 3.36] to the two above leads to

(u1 + u2, 0) ∈ [∂ϕ(x̄, ȳ) +NgphG(x̄, ȳ)] + [∂∞ϕ(x̄, ȳ) +NgphG(x̄, ȳ)]

⊂ cl co [∂ϕ(x̄, ȳ) + ∂∞ϕ(x̄, ȳ)] +NgphG(x̄, ȳ)

= ∂̄ϕ(x̄, ȳ) +NgphG(x̄, ȳ),

(3.64)

which completes the proof.
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Theorem 3.4.3 (convexified normal cone to inequality system [96]). Consider G de-

fined by inequality system G(x) = {y | φ(x, y) ≤ 0}. Let φ be Lipschitz and the

qualification (non-smooth MFCQ) at (x̄, ȳ) hold

[
∑

i∈I(x̄,ȳ)

λiwi = 0 with wi ∈ ∂φi(x̄, ȳ), λi ≥ 0] ⇒ λi = 0 for i ∈ I(x̄, ȳ). (3.65)

Then

NgphG(x̄, ȳ) ⊂ {
∑

i∈I(x̄,ȳ)

λi∂̄φi(x̄, ȳ) | λi ≥ 0}.

As mentioned, GSIP can be relaxed into the following bilevel programming problem

min
(x,y)

f(x) s.t. g(x, y) ≤ 0, v(x, y) ≤ 0, φ(x)− g(x, y) ≤ 0. (3.66)

The feasible set of above problem is a subset of the feasible set M of (3.31). Thus, if

x̄ solves GSIP and φ(x̄) = 0, and Y (x̄) 6= ∅, then x̄ also solves problem (3.32). The

perturbed version of the above bilevel problem is

min
(x,y)

f(x) s.t. g(x, y) ≤ 0, v(x, y) ≤ 0, φ(x)− g(x, y) ≤ u. (3.67)

Problem (3.32) is said to be partially calm at (x̄, ȳ) if

there is κ > 0 and a neighborhood V of (x̄, ȳ, 0) ∈ Rn × Rm × R such that

for all (x, y, u) ∈ V feasible for (3.67) we have

f(x)− f(x̄) ≥ −κ|u|.

(3.68)

Under the partial calmness condition, problem (3.32) can be transformed into the prob-

lem below, for some constant κ > 0,

min
(x,y)

f(x) + κ[φ(x)− g(x, y)] s.t. g(x, y) ≤ 0, v(x, y) ≤ 0. (3.69)

Theorem 3.4.4 (necessary conditions of optimality of GSIP). Let x̄ be an optimal

solution of GSIP with φ(x̄) = 0, and Y (x̄) 6= ∅. Let the data functions f , g and v be

Lipschitz and the partial calmness condition (3.68) hold at (x̄, ȳ) for some ȳ ∈ Y0(x̄).

Assume that the following conditions hold:

(i) Qualificaiton (3.65) holds for Ω := {(x, y) | v(x, y) ≤ 0, g(x, y) ≤ 0} at (x̄, ȳ);

(ii) Y0 is φ-inner semi-compact at x̄ and Y0(x̄) 6= ∅;

(iii) If (ui, wi) ∈ ∂̄∞g(x̄, ȳi), (vi,−wi) ∈ NgphY (x̄, ȳi), ȳi ∈ Y0(x̄), i ≤ n+1, and
∑

i ui +

vi = 0, then ui = vi = 0 and wi = 0;
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(iv) The cones NgphY (x̄, y) and Nepi g(x̄, y, g(x̄, y)) are pointed for all y ∈ Y0(x̄).

Then there is κ > 0, λi ≥ 0, ȳi ∈ Y0(x̄), i = 1, · · · , r such that
∑r

i=1 λi = 1, and

0 ∈ (∂̄f(x̄), 0) + κ
r∑

i=1

λi[∂̄g(x̄, ȳi)− ∂̄g(x̄, ȳ)] +
r∑

i=1

NgphY (x̄, ȳi) +NΩ(x̄, ȳ). (3.70)

Proof. Let Ω = {(x, y) | v(x, y) ≤ 0, g(x, y) ≤ 0}. Under our assumptions, GSIP

can be relaxed into problem (3.32) and (x̄, y) also solves (3.32) for all y ∈ Y0(x̄).

Due to the partial calmness of (3.32), we also have (x̄, ȳ) solves (3.69). Under the

qualification assumption, the necessary optimality condition for problem (3.69) is, see

for example [26, Theorem 5.1] or [96, Theorem 6.2],

0 ∈ (∂f(x̄), 0) + κ(∂φ(x̄), 0) + κ∂(−g)(x̄, ȳ) +NΩ(x̄, ȳ). (3.71)

If v ∈ ∂+(−φ)(x), then −v ∈ ∂̄φ(x). Indeed, by definition,

∂+(−φ)(x) = {v|(−v, 1) ∈ Nhypo(−φ)(x,−φ(x))}

= {v|(−v,−1) ∈ Nepiφ(x, φ(x))}

⊂ {v|(−v,−1) ∈ N epiφ(x, φ(x))}.

Thus, ∂φ(x) = −∂+(−φ)(x) ⊂ ∂̄φ(x) = −∂̄(−φ)(x) and from (3.71),

0 ∈ (∂̄f(x̄), 0)− κ(∂̄(−φ)(x̄), 0) + κ∂̄(−g)(x̄, ȳ) +NΩ(x̄, ȳ). (3.72)

Applying Proposition 3.4.6 to −φ, there are λi ≥ 0, ȳi ∈ Y0(x̄), i = 1, · · · , r such that∑r
i=1 λi = 1 and

(∂̄(−φ)(x̄), 0) ⊂
r∑

i=1

λi[∂̄(−g)(x̄, ȳi) +NgphY (x̄, ȳi)]. (3.73)

So, noting that ∂̄(−g) = −∂̄g,

0 ∈ (∂̄f(x̄), 0) + κ

r∑
i=1

λi∂̄g(x̄, ȳi)− κ∂̄g(x̄, ȳ) + κ

r∑
i=1

λiNgphY (x̄, ȳi) +NΩ(x̄, ȳ)

⊂ (∂̄f(x̄), 0) + κ
r∑

i=1

λi[∂̄g(x̄, ȳi)− ∂̄g(x̄, ȳ)] +
r∑

i=1

NgphY (x̄, ȳi) +NΩ(x̄, ȳ).

This completes the proof.

72



3.5 Lower Order Penalization

In this section we consider the following GSIP problem

min f(x) s.t. g(x, y) ≤ 0, y ∈ Y0 ∩ Y (x), (GSIP)

where Y0 is a nonempty closed subset of Rm, Y (x) = {y ∈ Rm | v(x, y) ≤ 0} and the

functions f : Rn → R, g : Rn × Rm → R and v : Rn × Rm → Rl are twice continuously

differentiable in x ∈ Rn. Let val(GSIP) be the optimal value of the problem (GSIP)

and MGSIP be the feasible set of (GSIP). For any x ∈ Rn, the lower level problem

associated with (GSIP) is

Q(x) max
y∈Y0

g(x, y) s.t. v(x, y) ≤ 0.

Let φ(x) be the optimal value of the problem Q(x). It is clear that

x ∈MGSIP iff φ(x) ≤ 0.

As in Polak and Royset [110], we will associate (GSIP) with an SIP problem via the aug-

mented Lagrangian of the lower level problem. Let f̄(x, µ, c) = f(x) and the augmented

Lagrangian of the lower level problem

ḡ(x, y, µ, c) = g(x, y)− 1

2c

l∑
i=1

{([cvi(x, y) + µi]+)2 − µ2
i }, (µ, c) ∈ Rl × R++.

Consider the following SIP problem

min
(x,µ,c)∈Rn×Rl×R++

f̄(x, µ, c) s.t. ḡ(x, y, µ, c) ≤ 0, y ∈ Y0. (SIPg)

Let val(SIPg) be the optimal value of (SIPg) and MSIPg be the feasible set of (SIPg).

For 0 < p ≤ 1, let the integral-type double penalty function of (GSIP) be defined

by

Gp
int(x, µ, c) := f̄(x, µ, c) + ρ

∫
Y0

ḡp
+(x, y, µ, c) dy.

Since g and v are twice continuously differentiable in x, then ḡ is C1,1 in (x, µ, c), see

Hiriart-Urruty et al. [57]. This property allows us to apply Theorem 2.4.4 to (SIPg). As

for (SIP), combining with the exact penalization assumption of Gp
int(x, µ, c), we develop

the first-order optimality conditions for (GSIP).
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Before proceeding, we will investigate the relations between optimal solutions of (GSIP)

and (SIPg). Let H̄(x, µ, c) = supy∈Y0
ḡ(x, y, µ, c). Under the convention that sup ∅ =

−∞, φ(x) = −∞ if Y0 ∩ Y (x) = ∅. It is easy to see that

H̄(x, µ, c) ≥ φ(x),∀ (x, µ, c).

Thus we obtain the relation between the optimal values of (SIPg) and (GSIP) as follows

val(SIPg) ≥ val(GSIP).

Let ν(x, u) = maxy∈Y0 ĝ(x, y, u), where

ĝ(x, y, u) =

g(x, y), if v(x, y) ≤ u,

−∞, otherwise.

Then ν(x, 0) = φ(x) is the optimal value of the lower level problem Q(x).

Next we recall some concepts from Rockafellar [114]. Problem Q(x) is said to satisfy

the quadratic growth condition if there is a c ≥ 0 such that ḡ(x, y, 0, c) is bounded above

as a function of y ∈ Y0. Problem Q(x) is said to be stable of degree q (a nonnegative

integer) if there is a neighborhood U of the origin in Rl and a Cq function πx : U → R

such that

ν(x, u) ≤ πx(u),∀u ∈ U, and ν(x, 0) = πx(0).

Theorem 3.5.1 (Rockafellar [114]). Under the quadratic growth condition,

φ(x) = min
(µ,c)

H̄(x, µ, c)

iff the problem Q(x) is stable of degree 2. Note that here the symbol ‘min’ represents

that the minimum is attained.

Therefore, we have the following equivalence proposition.

Proposition 3.5.1. Assume that Y0∩Y (x) 6= ∅ for all x ∈ Rn. If for all x ∈ Rn, Q(x)

satisfies the quadratic growth condition and is stable of degree 2, then problems GSIP

and SIPg are of the same optimal value, i.e., val(GSIP ) = val(SIPg), and furthermore,

(1) if x̄ is a local optimal solution of (GSIP) in a neighborhood B(x̄, δ) with respect to

the feasible set of GSIP, then there exists µ̄ ∈ Rl and c̄ ∈ R such that (x̄, µ̄, c̄) is

a local optimal solution of (SIPg) in the neighborhood B(x̄, δ)×Rl+1 with respect

to the feasible set of (SIPg);
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(2) if (x̄, µ̄, c̄) is a local optimal solution of (SIPg) in a neighborhood B(x̄, δ) × Rl+1

w.r.t the feasible set of (SIPg), then x̄ is a local optimal solution of (GSIP) in

the neighborhood B(x̄, δ) w.r.t. the feasible set of (GSIP).

Proof. (1) Given a local solution x̄ of (GSIP), we need to show that for any (x, µ, c) ∈
B(x̄, δ) × Rl+1 feasible for (SIPg), we have f̄(x, µ, c) ≥ f̄(x̄, µ̄, c̄) for some (µ̄, c̄). That

is, for (x, µ, c) ∈ B(x̄, δ)×Rl+1 satisfying H̄(x, µ, c) ≤ 0, we have f(x) ≥ f(x̄). By The-

orem 3.5.1, there exists (µx, cx) such that H̄(x, µ, c) ≥ H̄(x, µx, cx) = φ(x). Especially,

for x̄, there is (µ̄, c̄) satisfying the corresponding relations. Thus φ(x) ≤ 0. That is x

is feasible for (GSIP). Then by the optimality of x̄ for (GSIP), f(x) ≥ f(x̄) and this

completes the proof.

(2) The proof can proceed similarly. For any x ∈ B(x̄, δ) satisfying φ(x) ≤ 0, there is

(µx, cx) such that H̄(x, µx, cx) = φ(x) ≤ 0, that is (x, µx, cx) is feasible for (SIPg). Then

f(x) = f̄(x, µx, cx) ≥ f̄(x̄, µ̄, c̄) = f(x̄).

Note that it is enough to assume that the conditions, Y0 ∩ Y (x) 6= ∅, the quadratic

growth condition and the stablility of degree 2, hold for all x near a given point x̄, in

the proposition above, to guarantee the local equivalence between (GSIP) and (SIPg).

Under the assumptions of Proposition 3.5.1, we transform (GSIP) into an equivalent

SIP problem.

Assume that Y0 is compact. Let Y ∗
0 = {y ∈ Y0 : ḡ(x̄, y, µ̄, c̄) = 0} and

D(x̄, µ̄, c̄) := {d = (d1, d2, d3) ∈ Rn × Rl × R :

〈∇xḡ(x̄, y, µ̄, c̄), d1〉+ 〈∇µḡ(x̄, y, µ̄, c̄), d2〉+∇cḡ(x̄, y, µ̄, c̄)d3 ≤ 0, y ∈ Y ∗
0 },

where

∇xḡ(x, y, µ, c) = ∇xg(x, y)−∇T
x v(x, y)[cv(x, y) + µ]+,

∇µḡ(x, y, µ, c) = −1

c
([cv(x, y) + µ]+ − µ),

∇cḡ(x, y, µ, c) =
1

2c2

l∑
i=1

{([cvi(x, y) + µi]+)2 − µ2
i − 2c[cvi(x, y) + µi]+vi(x, y)}.

Proposition 3.5.2. Let x̄ be a local optimal solution of (GSIP) and the assumptions of

Proposition 3.5.1 hold. Let (µ̄, c̄) be the corresponding multiplier and penalty parameter
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as in (1) of Proposition 3.5.1. Then the cone D(x̄, µ̄, c̄) is of the following form

{d = (d1, d2, d3) ∈ Rn × Rl × R : 〈∇xg(x̄, y)−∇T
x v(x̄, y)µ̄, d1〉 ≤ 0, y ∈ Y ∗

0 }. (3.74)

Proof. Under the assumption of stability of degree 2, given any ỹ ∈ Y ∗
0 , ỹ solves the

problem maxy∈Y0 ḡ(x̄, y, µ̄, c̄) for which the following holds

min
(µ,c)

max
y∈Y0

ḡ(x̄, y, µ, c) = max
y∈Y0

min
(µ,c)

ḡ(x̄, y, µ, c)) = max
y∈Y0∩Y (x̄)

g(x̄, y).

Or equivalently, that (ỹ, µ̄, c̄), ỹ ∈ Y ∗
0 is the saddle point of the augmented Lagrangian

ḡ(x̄, ·, ·, ·). That is also to say that each ỹ ∈ Y ∗
0 solves the lower level problem

max{g(x̄, y) : y ∈ Y0, v(x̄, y) ≤ 0}

and the augmenting multiplier µ̄ is also the Lagrange multiplier of the lower level

problem. By the first order necessary optimality conditions, for y ∈ Y ∗
0 ,

0 ∈ ∇y[g(x̄, y)− µ̄Tv(x̄, y)] +NY0(y), 〈µ̄, v(x̄, y)〉 = 0, v(x̄, y) ≤ 0, µ̄ ≥ 0.

Define the index set

I(y) = {i ∈ {1, · · · , l} : c̄vi(x̄, y) + µ̄i > 0}. (3.75)

It is easy to see that I(y) = {i ∈ {1, · · · , l} : µ̄i > 0} and

[c̄vi(x̄, y) + µ̄i]+ = µ̄i, i = 1, · · · , l, (3.76)

and thus ∇µḡ(x̄, y, µ̄, c̄) = 0,∇cḡ(x̄, y, µ̄, c̄) = 0,∀y ∈ Y ∗
0 .

Theorem 3.5.2. Let the assumptions of Proposition 3.5.1 hold. Let x̄ be a local optimal

solution of (GSIP) and

G1
max(x, µ, c) := f̄(x, µ, c) + max

y∈Y0

ḡ+(x, y, µ, c)

be locally exact at (x̄, µ̄, c̄) where the pair (µ̄, c̄) is obtained from Proposition 3.5.1.

Then the following KKT-type optimality condition holds: there exist λ̄j ≥ 0 not all

zero, ȳj ∈ Y ∗
0 , 1 ≤ j ≤ n such that

∇xf(x̄) +
n∑

j=1

λ̄j[∇xg(x̄, ȳ
j)−∇T

x v(x̄, ȳ
j)µ̄] = 0. (3.77)
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Proof. By Theorem 2.4.3, there exists λj ≥ 0 and yj ∈ Y ∗
0 , 1 ≤ j ≤ n+ l+ 1 such that∑

λj = 1 and

∇xf̄(x̄, µ̄, c̄) +
∑

j

λj∇xḡ(x̄, y
j, µ̄, c̄) = 0.

That is, by noting (3.76), ∇xf(x̄) +
∑

j λj[∇xg(x̄, y
j) −∇T

x v(x̄, y
j)µ̄] = 0. As ∇xf(x̄)

is a n-dimensional vector, by Carathéodory’s theorem, there exist λ̄j ≥ 0 not all zero,

ȳj ∈ {y1, · · · , yn+l+1}, 1 ≤ j ≤ n such that (3.77) holds.

Theorem 3.5.3. Let the assumptions of Proposition 3.5.1 hold. Let x̄ be a local optimal

solution of (GSIP) and Gp
int be locally exact at the point (x̄, µ̄, c̄) where the pair (µ̄, c̄)

is obtained from Proposition 3.5.1. Then, under one of the following assumptions,

(i) 0.5 < p ≤ 1,

(ii) p = 0.5 and ḡ◦◦(x̄, y, µ̄, c̄; d) ≤ 0 for all d ∈ D(x̄, µ̄, c̄) and y ∈ Y ∗
0 with 〈∇ḡ(x̄, y, µ̄, c̄), d〉 =

0,

(iii) 0 < p < 0.5 and ḡ◦◦(x̄, y, µ̄, c̄; d) < 0 for all 0 6= d ∈ D(x̄, µ̄, c̄) and y ∈ Y ∗
0 with

〈∇ḡ(x̄, y, µ̄, c̄), d〉 = 0, we have

〈∇f̄(x̄, µ̄, c̄), d〉 ≥ 0,∀d ∈ D(x̄, µ̄, c̄). (3.78)

Proof. For p = 1. As the exactness of integral-type penalty function implies that of the

max-type penalty function, Theorem 2.4.3 of Chapter 2 implies that ∇f̄ at (x̄, µ̄, c̄) is

a positive linear combination of {∇ḡ(x̄, y, µ̄, c̄) : y ∈ Y ∗
0 } and thus (3.78) holds. The

rest cases of the proof follow directly from Theorem 2.4.4 of Chapter 2.

Corollary 3.5.1. Let the assumptions of Theorem 3.5.3 hold. Assume that the convex

cone generated by {∇ḡ(x̄, y, µ̄, c̄) : y ∈ Y ∗
0 } is closed, so is the case when Y ∗

0 is of

finite elements. Then the KKT-type optimiality condition holds, that is, there exist

λj ≥ 0, αj ≥ 0 and yj ∈ Y ∗
0 , j = 1, · · · , k, such that ∇f(x̄)+

∑k
j=1 λj∇xL(x̄, yj, αj) = 0.

Proof. By Farkas Lemma, see, e.g., Hettich and Kortanek [53], and the closedness of

the convex cone of {∇ḡ(x̄, y, µ̄, c̄) : y ∈ Y ∗
0 }, there are yj ∈ Y ∗

0 , λj ≥ 0, j = 1, · · · , k
such that

∇xf(x̄) +
k∑

j=1

λj∇xḡ(x̄, yj, µ̄, c̄) = 0,

k∑
j=1

λj∇µḡ(x̄, yj, µ̄, c̄) = 0,
k∑

j=1

λj∇cḡ(x̄, yj, µ̄, c̄) = 0.
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Let αij = [c̄vi(x̄, yj) + µ̄i]+, αj = (α1j, · · · , αlj)
T , and L(x, y, α) = g(x, y) − αTv(x, y).

So, the system is

∇f(x̄) +
k∑

j=1

λj∇xL(x̄, yj, αj) = 0,

k∑
j=1

λjαj = µ̄

k∑
j=1

λj,

∑k
j=1 λj[g(x̄, yj)− αT

j v(x̄, yj)] = 0.

Remark 3.5.1. The yj, j = 1 · · · , k are also the solutions of the problems

max
y∈Y0

ḡ(x̄, y, µ̄, c̄).

Then, by the first order optimality conditions, we have ∇yḡ(x̄, yj, µ̄, c̄) ∈ NY0(yj), i.e.,

∇yL(x̄, yj, αj) ∈ NY0(yj), j = 1, · · · , k,

where N denotes the normal cone. If Y0 is of the form

{y ∈ Rm | h(y) ≤ 0},

with h : Rm → Rr differentiable and some regularity condition holds, then one can

further have that for each j, there is a βj ∈ Rr such that

∇yL(x̄, yj, αj)−∇T
y h(yj)βj = 0,

βj ≥ 0, βT
j h(yj) = 0.

Remark 3.5.2. If (x̄, µ̄, c̄) solves Gp
int, then so does (x̄, µ̄, c) for any c ≥ c̄. Since

for any (x, y, µ), c1 ≤ c2, ḡ(x, y, µ, c1) ≥ ḡ(x, y, µ, c2), it follows that Gp
int(x, µ, c1) ≥

Gp
int(x, µ, c2).

With Proposition 3.5.2, we further have the following result.

Corollary 3.5.2. Under the assumptions of Theorem 3.5.3, the optimality condition

takes the following form

〈∇f(x̄), d〉 ≥ 0, ∀d ∈ Rn : 〈∇xg(x̄, y)−∇T
x v(x̄, y)µ̄, d〉 ≤ 0, y ∈ Y ∗

0 .
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In Theorem 3.5.3, we need to estimate the generalized upper second-order directional

derivative ḡ◦◦(x̄, y, µ̄, c̄; d) for d ∈ D(x̄, µ̄, c̄). To do so, it is enough to calculate the

generalized second-order directional derivatives of the two parts,

g(x, y) +
m∑

i=1

µ2
i

2c
and −

m∑
i=1

([cvi(x, y) + µi]+)2

2c
.

The first one is C2 and its generalized second-order directional derivative is easy to

compute. For the second part, denote by hi(x, y, µ, c) = ([cvi(x,y)+µi]+)2

2c
for i = 1, · · · ,m.

Proposition 3.5.3. Let d ∈ D(x̄, µ̄, c̄) and y ∈ Y ∗
0 . Then

ḡ◦◦(x̄, y, µ̄, c̄; d) = dT
1 [∇2

xg(x̄, y)−
l∑

i=1

µ̄i∇2
xvi(x̄, y)]d1

−
∑

i∈I(y)

(
√
c̄dT

1∇xvi(x̄, y) +
d2i√
c̄
)2 +

l∑
i=1

d2
2i

c̄
. (3.79)

Proof. Let d ∈ D(x̄, µ̄, c̄). We claim that

(−
m∑

i=1

hi)
◦◦(x̄, y, µ̄, c̄; d) = −

∑
i∈I(y)

(hi)◦◦(x̄, y, µ̄, c̄; d) = −
∑

i∈I(y)

dT∇2hi(x̄, y, µ̄, c̄)d

(3.80)

where the second equality holds since hi is C2 for i ∈ I(y). On one hand,

(−
m∑

i=1

hi)
◦◦(x̄, y, µ̄, c̄; d) = −(

m∑
i=1

hi)◦◦(x̄, y, µ̄, c̄; d)

≤ −
∑

i∈I(y)

(hi)◦◦(x̄, y, µ̄, c̄; d)− (
∑

i/∈I(y)

hi)◦◦(x̄, y, µ̄, c̄; d)

= −
∑

i∈I(y)

(hi)◦◦(x̄, y, µ̄, c̄; d).

On the other hand,

(
m∑

i=1

hi)◦◦(x̄, y, µ̄, c̄; d) =
∑

i:c̄vi(x̄,y)+µ̄i 6=0

(hi)◦◦(x̄, y, µ̄, c̄; d) + (
∑

i:c̄vi(x̄,y)+µ̄i=0

hi)◦◦(x̄, y, µ̄, c̄; d)

since the hi’s are C2 for i : c̄vi(x̄, y) + µ̄i 6= 0. Next, we claim that the second term of

the right hand side of the above equation vanishes. By definition of generalized second-

order directional derivative, for any sequences (xν , µν , cν) → µ̄, λν ↓ 0 as ν → ∞, the

last term is no larger than

lim inf
ν→∞

〈∇(
∑

i:c̄vi(x̄,y)+µ̄i=0 hi)((x
ν , y, µν , cν) + λνd)−∇(

∑
i:c̄vi(x̄,y)+µ̄i=0 hi)(x

ν , y, µν , cν), d〉
λν

,
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which is equal to zero by choosing any sequences (xν , µν , cν) → (x̄, µ̄, c̄), λν ↓ 0 such

that for all i with c̄vi(x̄, y) + µ̄i = 0,

cνvi(x
ν , y) + µν

i

2cν
< 0 and

(cν + λνd3)vi(x
ν + λνd1, y) + (µν

i + λνd2i)

2(cν + λνd3)
< 0,

which implies that for all ν, hi((x
ν , y, µν , cν) + λνd) = 0 and hi(x

ν , y, µν , cν) = 0. The

sequences can be chosen as follows. Let (xν , µν , cν) = (x̄, µν , c̄) with µν
i ↑ µ̂i for all i

with c̄vi(x̄, y) + µ̄i = 0 and µν
i = µ̄i for the other i’s. Then the first strict inequality

satisfies. This also means that the continuous function Fi(x, µ, c) := cvi(x,y)+µi

2c
is strictly

less than 0 at (x̄, µν , c̄). Thus, for given d = (d1, d2, d3) ∈ Rn ×Rm ×R, there is λν ↓ 0

such that Fi(x̄+λνd1, µ
ν +λνd2, c

ν +λνd3) < 0. This is just the second strict inequality.

Combining these two parts, formula (3.80) follows.

Note that

α◦◦(x; d) =

0, if β(x) ≤ 0,

2[β(x)dT∇2β(x)d+ 〈∇β(x), d〉2], if β(x) > 0.
(3.81)

for a function α(x) := ([β(x)]+)2 with β being C2. Therefore, we have

(hi)◦◦(x̄, y, µ̄, c̄; d) = µ̄id
T
1∇2

xvi(x̄, y)d1 + c̄〈∇xvi(x̄, y), d1〉2 +
d2

2i

c̄
+
µ̄2

i d
2
3

c̄3

+ 2d2i〈∇xvi(x̄, y), d1〉 − 2
µ̄id2id3

c̄2
, i ∈ I(y).

The conclusion follows easily.

Proposition 3.5.4. Assume that the functions g(·, y) and −v(·, y) are concave for

each y. If I(y) = {1, · · · , l} and 〈∇xvi(x, y), d1〉 = 0 for d ∈ D(x̄, µ̄, c̄), y ∈ Y ∗
0 and

i ∈ I(y), then assumption (ii) of Theorem 3.5.3 holds. Moreover, if at least one of

g(·, y),−vi(·, y), i = 1, · · · , l is stongly concave, then assumption (iii) of Theorem 3.5.3

holds.

Proof. Under our assumptions and the formula in Proposition 3.5.3, we have

ḡ◦◦(x̄, y, µ̄, c̄; d) = dT
1 [∇2

xg(x̄, y)−
l∑

i=1

µ̄i∇2
xvi(x̄, y)]d1.

As the concavity is equivalent to the negative semi-definiteness of its Hessian, inequality

ḡ◦◦(x̄, y, µ̄, c̄; d) ≤ 0 holds. Also, note that the strong concavity of a function H is

equivalent to say that for some σ > 0, H(·) + σ‖ · ‖2 is concave, see for example [116],

and thus our assertion follows.
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Finally, we present below an example which verifies our theroem.

Example 3.5.1. Consider the following GSIP problem

min
x∈R

x3 s.t. − y ≤ 0, y ∈ Y0 ∩ Y (x),

with Y0 = [−1, 1], Y (x) = {y ∈ R : x3 − y ≤ 0}. Then M = {x : x ≥ 0} and

Y0 ∩ Y (x) = ∅, if x > 1. Define ḡ(x, y, µ, c) = −y − 1
2c

([c(x3 − y) + µ]2+ − µ2) and the

double penalty function

Gp
int(x, µ, c) = x3 + ρ

∫ 1

−1

[ḡ(x, y, µ, c)]p+ dy.

The solution is unique and the KKT multiplier for the lower level problem is unique,

equal to {1}.

The value function of the perturbed problem of the lower level problem Q(x) is

ν(x, u) = u − x3 for all points near (x, u) = (0, 0), and is twice continuously differ-

entiable. Thus the lower level problem is stable of degree 2 (in a neighborhood of the

origin). Therefore, the original GSIP can be equivalently transformed into an SIP in a

neighborhood of the origin.

We will verify that penalty function G1
int is not locally exact but G

1
2
int is locally exact

at (x̄, µ̄, c̄) = (0, 1, c̄) for some c̄ > 0. For this we only need to consider points near

(0, 1, c̄). It is also enough to consider the case when x ≤ 0.

Let x ≤ 0. The effective integral interval of y consists of the two parts: A := {y : x ≤
0, c(x3−y)+µ ≤ 0, ḡ(x, y, µ, c) ≥ 0} and B := {y : x ≤ 0, c(x3−y)+µ ≥ 0, ḡ(x, y, µ, c) ≥
0}. Then A = {y : x ≤ 0, x3+µ/c ≤ y ≤ µ2/(2c)} and B = {y : x ≤ 0, y ≤ x3+µ/c, y ∈
[x3−(1− µ+

√
(1− µ)2 − 2cx3)/c, x3−(1− µ−

√
(1− µ)2 − 2cx3)/c]}. By choosing c̄

large enough, and since (x, µ, c) is in a neighborhood of (0, 1, c̄), then A = ∅ and B = {y :

x ≤ 0, y ∈ [x3 − (1− µ+
√

(1− µ)2 − 2cx3)/c, x3 − (1− µ−
√

(1− µ)2 − 2cx3)/c]}.
So,

Gp
int(x, µ, c) = x3 + ρ

∫ x3−(1−µ−
√

(1−µ)2−2cx3)/c

x3−(1−µ+
√

(1−µ)2−2cx3)/c

[− c
2
y2 − (1− µ− cx3)y − c

2
x6 − x3µ]

1
p dy

= x3 + ρ(
c

2
)

1
p

∫ √(1−µ)2−2cx3/c

−
√

(1−µ)2−2cx3/c

(
(1− µ)2 − 2cx3

c2
− y2)

1
p dy.

81



It is easy to calculate that

G1
int(x, 1, c̄) = x3 +

ρc̄

2

∫ √
−2c̄x3/c̄

−
√
−2c̄x3/c̄

−2x3

c̄
− y2 dy = x3 +

4ρ

3
· (2
c̄
)

1
2 · (−x)

9
2 = x3 + ρ · o(|x3|)

G
1
2
int(x, µ, c) = x3 + ρ ·

√
c

2
· (1− µ)2 − x3

c2
·
∫ 1

−1

√
1− y2 dy

= x3 + ρ ·
√
c

2
· (1− µ)2 − x3

c2
· π
2

≥ x3 + ρ ·
√
c

2
· 1

c2
· π
2
· (−x3).

Then G
1
2
int(x, µ, c) ≥ 0 near (0, 1, c̄). Thus G1

int is not exact and G
1
2
int is exact.

We also have D(x̄, µ̄, c̄) = R3 and ḡ◦◦(x̄, y, µ̄, c̄; d) ≡ 0. Hence, all the conditions in

the Theorem 3.5.3 (ii) are satisfied and thus the optimality conditions for GSIP hold.

3.6 GSIP with Convex Lower Level Problem

In this section we consider a special class of GSIP problems, the one with convex lower

level problems. In particular, we consider the following GSIP problem

min f(x) s.t. g(x, y) ≤ 0, y ∈ Y (x), (3.82)

where

Y (x) := {y ∈ Rm | vi(x, y) ≤ 0, i = 1, · · · , l},

and the real valued functions −g(x, ·) and vi(x, ·), i = 1, · · · , l are convex.

Still, denote by Q(x) the lower level problem

max g(x, y) s.t. y ∈ Y (x). (3.83)

Definition 3.6.1 (generalized augmenting function [60]). A function σ : Rm → R+ ∪
{∞} is said to be a generalized augmenting function if it is proper, lower semicontinu-

ous, level-bounded on Rm, arg miny σ(y) = {0}, and σ(0) = 0.

Definition 3.6.2 (NCP function). A function φ : R2 → R is called an NCP function

if it satisfies that

φ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.
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The existence of a C∞ NCP function is clear from a theorem by Whitney [10].

But smooth NCP functions are usually degenerate at the origin. Some common NCP

functions include the natural residual(NR) or min-function [79]

φNR(a, b) =
1

2
(a+ b−

√
(a− b)2) = min{a, b},

the Fischer-Burmeister (FB) function [32]

φFB(a, b) = a+ b−
√
a2 + b2,

and also the penalized Fischer-Burmeister NCP-function [18], for λ ∈ [0, 1],

φλ(a, b) = λφFB(a, b) + (1− λ)a+b+.

Smoothing functions of NR and FB NCP functions are respectively

φ(a, b, τ) =
1

2
(a+ b−

√
(a− b)2 + 4τ 2),

φ(a, b, τ) = a+ b−
√
a2 + b2 + 2τ 2.

If φ is either an NR or FB NCP function, then

φ(a, b, τ) = 0 if and only if a ≥ 0, b ≥ 0, ab = τ 2.

For a zero (a, b) of φ(·, ·, τ) the gradient ∇φ(·, ·, τ) w.r.t. (a, b) does not explicitly

depend on τ and is given by (a+ b)−1(b, a).

Next we describe two general assumptions for the convex lower level problem Q(x).

Assumption 3.6.1. The functions −g(x, ·) and vi(x, ·), i = 1, · · · , l, are convex.

Assumption 3.6.2 (Slater CQ). Given x ∈ Rn, there is a y ∈ Rm such that vi(x, y) <

0, for all i = 1, · · · , l.

Proposition 3.6.1 ([33]). Let assumptions 3.6.1 and 3.6.2 hold for a given x ∈ Rn.

Then y ∈ Y (x) is a global solution of the lower level problem Q(x) if and only if there

are γi, i = 1, · · · , l, such that

∇yg(x, y)−
l∑

i=1

γi∇yvi(x, y) = 0, γivi(x, y) = 0, γi ≥ 0, vi(x, y) ≤ 0, i = 1, · · · , l.

(3.84)
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It follows that the feasible set of the problem (3.82) is closed, see, e.g., (iv) of

Proposition 3.3.1. Thus under assumptions 3.6.1 and 3.6.2 for each x ∈ Rn, the GSIP

problem (3.82) can be equivalently reformulated as

min
x,y,γ

f(x)

s.t. g(x, y) ≤ 0,

∇yg(x, y)−
l∑

i=1

γi∇yvi(x, y) = 0,

γivi(x, y) = 0, γi ≥ 0, vi(x, y) ≤ 0, i = 1, · · · , l.

(3.85)

The above problem (3.85) is usually referred to as the mathematical program with

complementarity (or equilibrium) constraints. The NCP function is usually introduced

to reformulate the complementarity constraints. Let

Φ(γ,−v(x, y), u) := (φ(γ1,−v1(x, y), u1), · · · , φ(γl,−vl(x, y), ul)
T .

Then the above mathematical program with complementarity constraints is reformu-

lated as perturbed problem GSIP(u)

min f(x)

s.t. g(x, y) ≤ 0,

∇yg(x, y)−
∑

i

γi∇yvi(x, y) = 0,

Φ(γ,−v(x, y), u) = 0.

GSIP(u)

Define G(x, y, γ, u) : Rn+m+2l → R1+m+l by

G(x, y, γ, u) :=


g(x, y)

∇yg(x, y)−
∑

i γi∇yvi(x, y)

Φ(γ,−v(x, y), u)

 . (3.86)

Then GSIP(u) can be written as the following parameterized unconstrained optimiza-

tion problem

inf
(x,y,γ)

F (x, y, γ, u), (3.87)

where

F (x, y, γ, u) := f(x) + δR−×0{m+l}(G(x, y, γ, u)), (3.88)
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and let p(u) be its optimal value function. Thus p(0) is the optimal value of prob-

lem (3.82). The generalized augmented Lagrangian l : Rn × Rl × Rl × (0,∞) → R̄
as

l(x, y, γ, ω, r) := inf{F (x, y, γ, u) + rσ(u)− 〈ω, u〉 : u ∈ Rl}, (3.89)

where σ is a generalized augmenting function, and the generalized augmented La-

grangian dual function is defined as

ψ(ω, r) := inf
(x,y,γ)

l(x, y, γ, ω, r), ω ∈ Rl, y > 0. (3.90)

Then both l(x, y, γ, ω, r) and ψ(ω, r) are concave and upper semi-continuous in (ω, r) ∈
Rl ×R+ and nondecreasing in r since they are pointwise infima of a collection of affine

functions of (ω, r) which are nondecreasing in r. The generalized augmented Lagrangian

dual problem is defined as

P (ω, r) inf{F (x, y, γ, u) + rσ(u)− 〈ω, u〉 : (x, y, γ, u) ∈ Rn × Rm × Rl × Rl}. (3.91)

Let S and V (ω, r) be the solution sets of the problems (3.82) and P (ω, r), respectively.

Note that p(0) and ψ(ω, r) are the optimal values of the problems (3.82) and P (ω, r),

respectively.

Besides, we have

sup
(ω,r)

l(x, y, γ, ω, r) =

f(x), if (x, y, γ) is feasible for problem (3.85),

+∞, otherwise.

That is to say, the optimal value p(0) of the GSIP problem (3.82) satisfies

p(0) = inf
(x,y,γ)

sup
(ω,r)

l(x, y, γ, ω, r). (3.92)

The weak duality holds:

ψ(ω, r) ≤ p(0),∀(ω, r) ∈ Rl × (0,∞), (3.93)

since for any (x, y, γ), l(x, y, γ, ω, r) ≤ F (x, y, γ, 0) = f(x).

Theorem 3.6.1. Let the following assumptions hold

(1) The feasible set of the GSIP problem (3.82) is nonempty;
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(2) For any α ∈ R, the set {(x, y) : F (x, y, γ, u) ≤ α for some γ ∈ Rl} is bounded

locally uniform in u;

(3) The vectors {∇yvi(x, y) : vi(x, y) = 0} are linearly independent for any y ∈ Y (x),

any x ∈ Rn;

(4)

∃(ω̄, r̄) : inf
(x,y,γ)

l(x, y, γ, ω̄, r̄) > −∞. (3.94)

Then

(i) S is nonempty and compact;

(ii) for any r ≥ r̄+1, V (ω̄, r) is nonempty and compact, where (ω̄, r̄) is a pair meeting

F (x, y, γ, u) + r̄σ(u)− 〈ω̄, u〉 ≥ m0,∀(x, y, γ, u), (3.95)

for some m0 ∈ R;

(iii) for each selection (x(r), y(r), γ(r), u(r)) ∈ V (ω̄, r), with r ≥ r̄ + 1, the optimal

path (x(r), y(r), γ(r), u(r)) is bounded and its limit takes the form (x∗, y∗, γ∗, 0),

where x∗ ∈ S;

(iv) p(0) = limr→∞ ψ(ω̄, r);

(v) zero duality gap holds:

p(0) = sup
(ω,r)

ψ(ω, r).

Proof. (i) By definition of F , we have F is lower semi-continuous. Since F (x, y, γ, u)

is proper and level-bounded in (x, y) locally uniformly in u, F (·, ·, ·, 0) is also proper

and level bounded in (x, y, γ). Then the solution set of the problem (3.85) is nonempty

compact. Therefore, the set S as the projection of the solution set of problem (3.85) is

also nonempty and compact.

(ii) Let x̄ be such that f(x̄) is finite. Let

U(r) := {(x, y, γ, u) : F (x, y, γ, u) + rσ(u)− 〈ω̄, u〉 ≤ f(x̄)}.

It is obvious U(r) 6= ∅ and closed. Then U(r̄+ 1) is compact. If not, then assume that

there exists a sequence {(xk, yk, γk, uk)} ⊆ U(r̄ + 1) such that ‖(xk, yk, γk, uk)‖ → ∞.
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Since (xk, yk, γk, uk) ⊆ U(r̄ + 1), we have

F (xk, yk, γk, uk) + r̄σ(uk)− 〈ω̄, uk〉+ σ(uk) ≤ f(x̄). (3.96)

Combining with (3.95), we get

σ(uk) ≤ f(x̄)−m0.

By the level boundedness of σ, we have that {uk} is bounded. Assume, or just by

taking a subsequence if necessary, uk → ū. From (3.96), we have

F (xk, yk, γk, uk) ≤ f(x̄) + 〈ω̄, uk〉.

As F is level-bounded in (x, y) locally uniform in u, then {(xk, yk)} is bounded. We

may assume that {(xk, yk)} → (x̄, ȳ). F (xk, yk, γk, uk) <∞ is equivalent to

g(xk, yk) ≤ 0, (3.97)

∇yg(x
k, yk)−

∑
i

γk
i ∇yvi(x

k, yk) = 0, (3.98)

vi(x
k, yk) ≤ 0, γk

i ≥ 0, (3.99)

vi(x
k, yk)γk

i = −(uk
i )

2, i = 1, · · · , l. (3.100)

Then we have g(x̄, ȳ) ≤ 0, v(x̄, ȳ) ≤ 0.

Since (LICQ) holds for any point y ∈ Y (x̄), then we have {γk} is also bounded. Oth-

erwise, let γk → ∞ and γk

|γk| → γ, |γ| = 1. Thus, from vi(x
k, yk)

γk
i

|γk| = −(uk
i )

2 1
|γk| ,

by letting k → ∞, we have γi = 0 for inactive index i with vi(x̄, ȳ) 6= 0. For

∇yg(x
k, yk) −

∑
i γ

k
i ∇yvi(x

k, yk) = 0, dividing by |γk|, and letting k → ∞, we get∑
i:vi(x̄,ȳ)=0 γi∇yvi(x̄, ȳ) = 0, contradicting the (LICQ) assumption. Then {(xk, yk, γk, uk)}

is bounded and therefore U(r̄+ 1) is compact. It follows easily that, for any r ≥ r̄+ 1,

V (ω̄, r) is nonempty and compact.

Proofs of (iii)-(v) follow similarly as in Huang and Yang [60].

(iii) Given optimal path (x(r), y(r), γ(r), u(r)), r →∞, due to the compactness property

proved in (ii), we may assume that a sequence (x(rk), y(rk), γ(rk), u(rk)), as rk → ∞,

converges to the point (x∗, y∗, γ∗, u∗). As was done in [60], we can check that u∗ = 0,

x∗ is feasible for problem (3.82) and x∗ ∈ S.
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Remark 3.6.1. The perturbed feasible system we considered in Theorem 3.6.1 is

g(x, y) ≤ 0,

∇yg(x, y)−
l∑

i=1

γi∇yvi(x, y) = 0,

− γivi(x, y) = u2
i , γi ≥ 0, vi(x, y) ≤ 0, i = 1, · · · , l.

The more general perturbed system is

g(x, y) ≤ α,

∇yg(x, y)−
l∑

i=1

γi∇yvi(x, y) = β,

− γivi(x, y) = u2
i , γi ≥ 0, vi(x, y) ≤ 0, i = 1, · · · , l.

Replacing the parameter u by (α, β, u), the assertions of Theorem 3.6.1 still hold. Note

that if we also perturb the constraints vi(x, y) ≤ 0, i = 1, · · · , l, the same proofs won’t

hold and thus we are not sure that same results hold or not.

Algorithmically, Stein and Winterfeld [134] considered the following system of inner

approximation of the feasible set M

g(x, y) + lu2 ≤ 0,

∇yg(x, y)−
l∑

i=1

γi∇yvi(x, y) = 0,

− γivi(x, y) = u2, γi ≥ 0, vi(x, y) ≤ 0, i = 1, · · · , l,

where l is the number of lower level constraints and u is a one-dimensional parameter.

Remark 3.6.2. If lim‖(x,y)‖→∞ max {f(x), g(x, y), v1(x, y), · · · , vl(x, y)} = ∞, then the

boundedness condition (2) of Theorem 3.6.1 holds.

Remark 3.6.3. (i) If infx∈Rn f(x) > −∞, then the condition (3.94) is satisfied with

(ω̄, r̄) = (0, r), for any r ∈ (0,∞).

(ii) Let σ(u) = ‖u‖.

(a) If for some L > 0, p(u) ≥ p(0) − L‖u‖ for all u, then (3.94) holds. Indeed,

under such conditions,

inf
(x,y,γ)

l(x, y, γ, ω, r) = inf
u
{p(u)+rσ(u)−〈ω, u〉} ≥ inf

u
{p(0)+(r−L−‖ω‖)‖u‖}.

88



So choosing r large enough for given ω such that r − L − ‖ω‖ > 0 will fulfil

the condition (3.94).

Especially, if f(x) ≥ p(0) − L‖u‖ for all (x, y, γ, u) feasible for GSIPu, then

condition (3.94) holds.

(b) If there exist α ≥ 0, β ∈ R, L > 0 and a neighborhood V0 of u = 0 such

that p(u) ≥ p(0) − L‖u‖ for all u ∈ V0, and p(u) ≥ −α‖u‖ + β for all u,

then (3.94) holds. It suffices to show that these conditions are equivalent to

the one in (a).

(c) The following condition is also sufficient for (3.94): for all ε > 0, there exists

(x(ε), y(ε), γ(ε)) such that

F (x, y, γ, u)− F (x(ε), y(ε), γ(ε), 0) + ε ≥ −L‖u‖,∀(x, y, γ),∀u.

(iii) Conditions in (a)–(c) of (ii) are also necessary.

(iv) Likewise, for σ(u) = ‖u‖2 =
∑
u2

i being the quadratic augmenting function, we

can obtain some necessary and sufficient conditions for (3.94).

(1) If for some u∗ and some neighborhood V of u = 0, p(u)−p(0) ≥ 〈u∗, u〉−c‖u‖2

holds for all u ∈ V and for some α > 0 and β ∈ R, p(u) ≥ −α‖u‖2 + β holds for

all u, then (3.94) holds.

(2) If there exists u∗ such that p(u)− p(0) ≥ 〈u∗, u〉 − c‖u‖2 for all u, then (3.94)

holds.

Just consider the following two conditions of any given function φ:

(a) The proximal subgradients ∂pφ(0) 6= ∅, i.e., there exist u∗ and some neighbor-

hood V of u = 0 such that φ(u) − φ(0) ≥ 〈u∗, u〉 − c‖u‖2 for all u ∈ V , and

for some α > 0 and β ∈ R, φ(u) ≥ −α‖u‖2 + β for all u.

(b) there exists u∗ such that φ(u)− φ(0) ≥ 〈u∗, u〉 − c‖u‖2 for all u.

Then (a) ⇔ (b):

Let (a) hold. Take any u∗ ∈ ∂pφ(0) and V (0) specified in (a). If (b) fails, then

there is {ui} /∈ V (0) (which implies that ui 6= 0) such that

φ(ui)− φ(0) ≤ 〈u∗, ui〉 − i‖ui‖2,∀i.

Then by assumption of (a),

−α‖ui‖2 + β ≤ 〈u∗, ui〉 − i‖ui‖2,∀i.
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That is (i − α)‖ui‖2 + β ≤ 〈u∗, ui〉,∀i, a contradiction. Conversely, if (b) holds,

then it is clear that ∂pφ(0) 6= ∅. Pick α > c so large that −‖u∗‖‖u‖ ≥ −α‖u‖2,∀u :

‖u‖ > 1. So taking β = −‖u∗‖, (a) holds.

Exact penalization

Definition 3.6.3. A vector ω̄ is said to support an exact penalty representation for

GSIP problem (3.82) if, for all r > 0 sufficiently large, the problem is equivalent to

minimizing l(x, y, γ, ω̄, r) with respect to (x, y, γ) in the sense that

inf
x∈M

f(x) = inf
(x,y,γ)

l(x, y, γ, ω̄, r), argminxf(x) = pr(argmin(x,y,γ)l(x, y, γ, ω̄, r)),

where M denotes the feasible set of problem (3.82) and pr is the projection of (x, y, γ)

onto the first argument.

Theorem 3.6.2. (i) If ω̄ supports an exact penalty representation for GSIP prob-

lem (3.82), then there exists r̂ > 0 and a neighborhood W of 0 ∈ Rl such that

p(u) ≥ p(0) + 〈ω̄, u〉 − r̂σ(u), for all u ∈ W. (3.101)

(ii) The converse is true if, in addition,

(a) p(0) is finite;

(b) there is an r̄′ > 0 such that

inf{F (x, y, γ, u) + r̄′σ(u)− 〈ω̄, u〉 : (x, y, γ, u)} > −∞;

(c) there is δ > 0 and N > 0 such that σ(u) ≥ δ‖u‖ when ‖u‖ ≥ N .

Remark 3.6.4. Assumption (c) is easy to be satisfied: replacing any given augmenting

function σ by σ + ‖ · ‖ is enough.

Proof. Note that (ω̄, r̄) ∈ argmaxψ(ω, r) is equivalent to the condition

p(u) ≥ p(0) + 〈ω̄, u〉 − r̄σ(u),∀u ∈ Rl, (3.102)

holding. The proof of (i) is easy. The exact penalty representation implies that

ψ(ω̄, r) = p(0), for any r ≥ r̄, where r̄ assumes as a penalty threshold. Since ψ(ω, r) is

usc, ψ(ω̄, r̄) ≥ p(0). Combining with Theorem 3.6.1, we have (ω̄, r̄) maximizes ψ(ω, r).

For the proof of (ii), when r̄ is replaced by any r > r̄ in condition (3.102),

argminu{p(u)− 〈ω̄, u〉+ rσ(u)} = {0}.
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As was done in [116], for such r, by defining function

g(x, y, γ, u) := F (x, y, γ, u) + rσ(u)− 〈ω̄, u〉

and its associated functions h(u) := inf(x,y,γ) g(x, y, γ, u) and k(x, y, γ) := infu g(x, y, γ, u),

and under assumption (3.102), we can obtain that ω̄ supports an exact penalty repre-

sentation.

Then, to complete the proof, it is enough to show that condition (3.101) implies the

stronger condition (3.102). This follows just the same as [116].

As in Huang and Yang [60], for the special case that ω̄ = 0 supports an exact penalty

representation, the condition (c) of theorem 3.6.2 can be dismissed.

Theorem 3.6.3. (i) If ω̄ = 0 supports an exact penalty representation for GSIP prob-

lem (3.82), then there exists r̂ > 0 and a neighborhood W of 0 ∈ Rl such that

p(u) ≥ p(0)− r̂σ(u), for all u ∈ W. (3.103)

(ii) The converse is true if, in addition,

(a) p(0) is finite;

(b) there is an r̄′ > 0 such that

inf{F (x, y, γ, u) + r̄′σ(u) : (x, y, γ, u)} > −∞.

Proof. (i) follows directly from Theorem 3.6.2. (ii) First, argue that there is some

r̄ > 0, for all r ≥ r̄, infx∈M f(x) = inf(x,y,γ) l(x, y, γ, 0, r). Assume the contrary, for

some rk →∞, infx∈M f(x) > inf(x,y,γ) l(x, y, γ, 0, rk). Then there is (xk, yk, γk, uk) such

that

p(0) > F (xk, yk, γk, uk) + rkσ(uk) ≥ m0 + (rk − r̄′)σ(uk), (3.104)

where m0 is the lower bound of inf{F (x, y, γ, u) + r̄′σ(u) : (x, y, γ, u)}. By the level-

boundedness of σ, {uk} is bounded and σ(uk) < p(0)
(rk−r̄′)

. Say ū is a cluster point of {uk},
then ū = 0. From (3.104), we also have the inequality p(0) > p(uk) + rkσ(uk) which

contradicts (3.103). Thus infx∈M f(x) = inf(x,y,γ) l(x, y, γ, 0, r) holds.

For any x∗ ∈ argminx∈M f(x), there is (y∗, γ∗) such that (x∗, y∗, γ∗) solves problem (3.85).

From (3.103), (x∗, y∗, γ∗) also solve that inf l(x, y, γ, 0, r) for all r ≥ r̂. That is x∗ ∈
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pr(argmin(x,y,γ)l(x, y, γ, 0, r)) for all r ≥ r̂.

Next we show that there is r∗ > r̂ + 1 such that

pr(argmin(x,y,γ)l(x, y, γ, 0, r)) ⊂ argmin
x∈M

f(x).

Suppose to the contrary that there is r̂ + 1 < rk →∞ and

(xk, yk, γk) ∈ argmin(x,y,γ)l(x, y, γ, 0, rk)

such that xk /∈ argminx∈M f(x). The rest of the proof follows exactly as in [60].

Next we introduce the concept of the strong stationary point of an MPCC problem,

see [123].

Definition 3.6.4. A vector (x, y, γ) feasible for problem (3.85) is called a strongly

stationary point of the problem (3.85) if there is an element (α, β, η, ζ) ∈ R×Rm×Rl×Rl

such that

∇xf(x) + α∇xg(x, y) +∇x∇T
y L(x, y, γ)β −

∑
1≤i≤l

ηi∇xvi(x, y) = 0,

α∇yg(x, y) +∇2
yL(x, y, γ)β −

∑
1≤i≤l

ηi∇yvi(x, y) = 0,

−∇T
y v(x, y)β +

∑
1≤i≤l

ζiei = 0,

α ≥ 0, αg(x, y) = 0,

(∀i : v(x, y) < 0) ηi = 0,

(∀i : γi > 0) ζi = 0,

(∀i : γi = vi(x, y) = 0) ηi ≥ 0, ζi ≥ 0,

where L(x, y, γ) = g(x, y) −
∑l

i=1 γivi(x, y) and ei ∈ Rl is the unit vector with i-th

component 1.

Remark 3.6.5. These above first order necessary optimality conditions involve the sec-

ond order terms, differing all previously obtained results. As Henrion and Surowiec [49],

when studying bilevel problems and mathematical programs with equilibrium constraints,

points out, the first order optimality conditions involving the second terms may be more

informative of the existence of the multipliers β.

Consider a special case: Given a strongly stationary point (x̄, ȳ, γ̄) associated with

(ᾱ, β̄, η̄, ζ̄), let

{i ∈ {1, · · · , l} : vi(x̄, ȳ) = 0} = ∅.
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Then from system (3.84), we know that γ̄ = 0 and from the definition of stationarity,

η̄ = 0. Also we have that ȳ is an interior point of Y (x̄). Since that ȳ is the optimal

solution of the lower level problem Q(x̄), then ∇yg(x̄, ȳ) = 0. Therefore the strongly

stationary system is reduced to

∇xf(x̄) + ᾱ∇xg(x̄, ȳ) +∇x∇T
y g(x̄, ȳ)β̄ = 0,

ᾱ∇yg(x̄, ȳ) +∇2
yg(x̄, ȳ)β̄ = 0,

ᾱ ≥ 0, ᾱg(x̄, ȳ) = 0.

It is known that (x̄, ȳ, γ̄) is a strongly stationary point if and only if (x̄, ȳ, γ̄) is the

KKT point of the following relaxed nonlinear programming

min
x,y,γ

f(x)

s.t. g(x, y) ≤ 0,

∇yg(x, y)−
l∑

i=1

γi∇yvi(x, y) = 0,

γi =

= 0, if γ̄i = 0, vi(x̄, ȳ) < 0,

≥ 0, otherwise,

vi(x, y) =

= 0, if vi(x̄, ȳ) = 0, γ̄i > 0,

≤ 0, otherwise.

(3.105)

The tightened problem associated with (3.85) is

min
x,y,γ

f(x)

s.t. g(x, y) ≤ 0,

∇yg(x, y)−
l∑

i=1

γi∇yvi(x, y) = 0,

γi =

= 0, if γ̄i = 0,

≥ 0, otherwise,

vi(x, y) =

= 0, if vi(x̄, ȳ) = 0,

≤ 0, otherwise.

(3.106)

The feasible set of the tightened problem (3.106) is a subset of that of problem (3.85),

and the feasible set of (3.85) is that of the relaxed problem (3.105), see, e.g., [123].
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Define G(x, y, γ, u) : Rn × Rm × R1+m+3l → R1+m+3l by

G(x, y, γ, u) :=



g(x, y)− a

−λ− c

v(x, y)− d

∇yg(x, y)−
∑

i γi∇yvi(x, y)− b

−λv(x, y)− e


,

where a ∈ R, b ∈ Rm, c, d, e ∈ Rl and uT = (a, bT , cT , dT , eT ), and

F (x, y, γ, u) := f(x) + δR1+2l
− ×0{m+l}

(G(x, y, γ, u)).

When taking σ(u) = (
∑
|ui|)p with p > 0,

l(x, y, γ, 0, r) = f(x) + r[g(x, y)+ +
∑

i

((−λi)+ + (vi(x, y))+ + |λivi(x, y)|)

+ ‖∇yg(x, y)−
∑

i

γi∇yvi(x, y)‖1]
p,

if (x, y, γ) is feasible for problem (3.85), otherwise, is equal to +∞.

Proposition 3.6.2. Let ω̄ = 0 support an exact penalty representation for GSIP prob-

lem (3.82), p ∈ (1
2
, 1] and σ(u) = (

∑
|ui|)p. Assume that g and ∇yv are C1,1. Then

at any solution x̄ for (3.82), there is (ȳ, γ̄) such that (x̄, ȳ, γ̄) is a strongly stationary

point.

Proof. Since x̄ is a solution of (3.82), then there is (ȳ, γ̄) such that (x̄, ȳ, γ̄) is a solution

of problem (3.85). From the definition of exact penalization, (x̄, ȳ, γ̄) minimizes the

function l(x, y, γ, 0, r) for r large enough, that is l is exact at (x̄, ȳ, γ̄) for r large enough.

For any p ∈ (1
2
, 1], since the smoothness properties hold, p belongs to the indication set

in Proposition 3.5 of [92]. Then the conclusion follows from Theorem 3.4 of [92].

Let z := (x, y, γ) ∈ Rn+m+l, d ∈ Rn+m+l and

I1 ={i : γi = 0, vi(x, y) < 0},

I2 ={i : γi > 0, vi(x, y) = 0},

I3 ={i : γi = vi(x, y) = 0}.
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Definition 3.6.5. The second order necessary condition is satisfied at z if it is a

strongly stationary point and

dT

[
∇xxf(x) 0 0

0 0 0

0 0 0

+ α


∇xxg(x, y) ∇xyg(x, y) 0

∇xyg(x, y) ∇yyg(x, y) 0

0 0 0

+∇zz(∇T
y L(z)β)

+
∑

i∈I2∪I3

ηi


∇xxvi(x, y) ∇xyvi(x, y) 0

∇xyvi(x, y) ∇yyvi(x, y) 0

0 0 0


]
d ≥ 0 (3.107)

for all d ∈ Rn+m+l being the critical direction, that is a direction d ∈ Rn+m+l satisfying

〈∇f(x), d〉 = 0 and

〈∇g(x, y), d〉 ≤ 0, if g(x, y) = 0,

〈∇(∇yL(x, y, γ), d〉 = 0,

min{〈−∇vi(x, y), d〉, i ∈ I2 ∪ I3; 〈∇γj, d〉, j ∈ I1 ∪ I3} = 0.

The strong Mangasarian Fromovitz constraint qualificaiton (SMFCQ) holds at fea-

sible point z = (x, y, γ) if the SMFCQ holds at z for the tightened problem (3.106),

that is there exists (α, β, η, ζ) such that the vectors {∇(∇yL(x, y, γ);∇g(x, y), if α > 0;

∇γi, i : γi = 0;∇vi(x, y), i : vi(x, y) = 0} are linearly independent and there exists

d ∈ Rn+m+l orthogonal to these vectors such that ∇g(x, y)Td < 0, if α = g(x, y) = 0.

Theorem 3.6.4 ([123]). (i) At a local optimal solution z, if the SMFCQ is satisfied

at z, then there exists a unique multiplier (α, β, η, ζ) satisfying the strongly stationary

conditions in Definition 3.6.4 such that the second order necessary condition (3.107)

holds at z.

(ii) Let z be a strongly stationary point. If for every critical direction d there exists

a multiplier (α, β, η, ζ) satisfying the system of the strongly stationary point in Def-

inition 3.6.4 and satisfying (3.107) with strict inequality, then z is a strict optimal

solution.
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Chapter 4

Conclusions

This thesis contains various developments of the first order necessary optimality condi-

tions of standard and generalized semi-infinite programming problems. One distinction

of the thesis is the fully exploitation of roles of penalization techniques in terms of the

fundamental theory of semi-infinite programming problems.

Firstly, by introducing two types of lower order penalty functions for standard

semi-infinite programming problems, we establish relationship between the exactness

of penalty functions and corresponding calmness conditions. Under exact penalization

and some second order constraints assumptions, we derive necessary optimality con-

ditions which are slightly weaker than the known KKT optimality conditions. The

same technique is applied to generalized semi-infinite programming problems which are

first transformed into equivalent semi-infinite programming problems via augmented

Lagrangians of the lower level problems.

Secondly, we consider the derivation of optimality conditions of non-smooth gener-

alized semi-infinite programming problems via the lower level value function reformu-

lation. This approach heavily depend on the estimates of lower level value functions

serving as the marginal functions of parametric optimization problems, especially the

estimates of generalized subdifferentials. Under either min-max scheme or partial exact-

ness of penalty functions, we derive optimality conditions for generalized semi-infinite

programming problems involving the basic/limiting subdifferentials or Clarke general-

ized subdifferentials.
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Thirdly, we consider a approximation scheme for generalized semi-infinite program-

ming problems via the penalty functions of the lower level problems. It is known that the

feasible set of generalized semi-infinite programming problems is in general with compli-

cated structures and the value function of the lower level problem is typically improper.

The penalty functions of simple constructions seem to provide good candidates for ap-

proximations of the irregular feasible set. Without any regularity assumptions on the

feasible set, we can effectively approximate the generalized semi-infinite programming

problem restricted to the closure of its feasible set.

Finally, we consider generalized semi-infinite programming problems with convex

lower level problems which nevertheless entail no convexity of the feasible sets. Under

mild assumptions, the generalized semi-infinite programming problems are transformed

into mathematical programs with complementarity constraints via the optimality sys-

tems of lower level problems. We thus establish the strong duality theory and exact

penalization representation via the generalized augmented Lagrangians for generalized

semi-infinite programming problems. Combining lower order penalization, we also de-

rive the optimality conditions involving the second order derivatives of the defining

functions.
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ric regularity of semi-infinite constraint systems, Math. Program., 104 (2005),

pp. 329–346.

[15] , Isolated calmness of solution mappings in convex semi-infinite optimization,

J. Math. Anal. Appl., 350 (2009), pp. 829–837.

[16] M. J. Cánovas, D. Klatte, M. A. López, and J. Parra, Metric regular-
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