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Abstract 

Thesis Title: PEEC Method for Evaluating Magnetic Shielding by Metal 

Structures at Low Frequency 

Submitted by: XIA Nenghong 

For the Degree of: Doctor of Philosophy 

With the proliferation of electrical and electronic systems, the electromagnetic 

environment in modern buildings has been increasingly concerned as the EM 

fields can cause interference to sensitive equipment and potential adverse health 

effects. The EM field is mainly contributed by power equipment including cables 

running at power frequency. The large-size metal plates are frequently employed 

as barriers to isolate the power equipment from the public area. For the power 

lines passed through the office space, enclosures, such as metallic trunking is 

applied to isolate the wires from the outside world. The amount of reduction 

depends very much upon shield material and, its thickness, the size of the 

shielded volume and the frequency of the fields of interest. It is not unusual for 

the performance of a shield to be found unsatisfactory after the shield has been 

completely installed in a building. It is then necessary to have an efficient 

numerical tool for evaluation of shielding performance prior to shield 

construction and erection. Low-frequency magnetic field issues in the presence 

of metal parts have been addressed extensively, but the calculation methods 

developed are valid only for small-scale metallic elements or those metallic parts 

with simple geometry. In addition, the evaluation of magnetic environments in 
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buildings with large metal plates, where the skin effect is significant, has 

received only limited attention. 

In this thesis, the partial element equivalent circuit (PEEC) method is 

developed for modeling of large and complex metal shields used in buildings. 

This method has been widely employed to study EM behavior on a wire structure. 

It provides a full wave solution to EM problems while transforming the problem 

into the circuit domain where circuit analysis techniques can be used. The focus 

of this thesis is to provide efficient solution procedures for the evaluation of 

low-frequency magnetic fields in the buildings. The characteristics of distribution 

of induced current and magnetization excited by a source current, and the 

resultant magnetic fields will be investigated by using the following proposed 

numerical methods. 

First of all, the classic PEEC method (named “M0”) based on the uniform 

distribution of EM components on the plates is provided. Both non-magnetic and 

magnetic materials have been considered for investigation. In non-magnetic 

plates, the solutions of both induced current and the resultant magnetic field 

around the plate can be obtained easily. In magnetic plates, the magnetizing 

current needs to be taken into account, and the skin effect becomes an important 

factor. Due to the significant variation of EM components inside the metal plate, 

the dense grid is required and the method is hard to model large structures. 

However, the high accurate results can be obtained when there is a high density 

of grid. 
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Secondly, the analytical expression of double exponential function arising 

from the skin effects is applied to describe the variation of both induced current 

and magnetization. With this approximation the discretization over the cross 

section of the plate is avoided and a new method (named “M1”) is proposed, 

where the number of unknowns is reduced greatly and the accuracy is retained. 

Due to the irregular distribution of EM components is existed when magnetic 

material is involved, the non-uniform meshing is assigned for the plate 

corresponding to the location of external current sources. The refinement is 

particularly done in the edge area to improve the accuracy of solutions. 

Especially, an improved method (named “IM1”) is also presented for the 

non-magnetic thin plate. In this method, the electric field integral equation is 

established on the middle plane of the plate. There is only one unknown for each 

cell. The total number of unknowns is then reduced. It is efficient to solve the 

eddy-current or shielding problems containing non-magnetic plates. 

Thirdly, after investigation of the irregular distribution of EM components on 

the edge region of the plate, a hybrid method (named “M3”) using both M0 and 

M1 is proposed. This method is particularly for magnetic material. The 

distribution of EM components on the majority area is determined by an 

analytical expression. On the edge region, the mesh refinement is assigned where 

the EM components are assumed to be constant in each cell. This method reduces 

the number of unknowns in the central area and improves the accuracy in the 

edge region. 
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Fourthly, a new method (named “M2”) based on volume and surface cell is 

proposed. The contribution to the vector potential from the magnetization can be 

divided into two parts, one is associated with the volume current and the other is 

with the surface current. The former one has an algebraic relation with the 

induced current. Therefore, this item can be merged with the item contribution to 

the induced current. The EM components now become the induced current 

distributed in volume cell and the magnetization current on the surface cell. This 

method provides a new way to process the magnetization current just on the 

surface of the object. 

M0 and M1 can be used to model both non-magnetic and magnetic structures, 

M2 and M3 are particular for magnetic material. M0 is available to simulate 

small shielding structures and validate the other numerical models. M1 is 

convenient for modeling and easy to understand. This procedure is simple and 

suitable for practical engineering problems. M2 processes the magnetization on 

the outer surface and is meaningful when the thickness is comparable to the other 

characteristic dimensions of the plate. M3 is a hybrid method and has more 

accuracy compared to other methods although there is a considerable amount of 

unknowns. It is suitable for investigation the characteristics of distribution of 

induced current and magnetization. 

To solve the shield problem efficiently use the proposed methods, the 

techniques for reduction the number of unknowns, such as loop method and the 

symmetrical modeling technique have also been proposed. All the above 
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methods and techniques have been validated by numerical approaches and 

experiments. 

Finally, the proposed PEEC modeling methods and techniques have been 

applied to establish complex computation models for actual shielding structures, 

such as large shielding plates and “U-shape” shields. 

The main contributions of this thesis are listed as follows: 

1. Different numerical methods (M0, M1, M2 and M3) have been proposed 

and discussed. The corresponding solution packages have been developed. 

2. Every solver based on the method (M0, M1, M2 and M3) contains 2D and 

3D modules, which can be used to deal with different cases. 

3. The non-uniform meshing techniques for PEEC models have been 

proposed. 

4. The techniques, such as loop method and the symmetrical modeling 

technique have been proposed for reduction of the number of unknowns. 

5. Application of the proposed PEEC numerical methods for evaluating the 

shielding characteristics and performance in the presence of metal shields, 

including different structures, materials, frequencies, etc. 
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1. Introduction 

1.1. Magnetic Shielding at Low Frequency 

As business demands on electric power in modern buildings continue to grow, 

more and more power equipment and cable networks are being installed. The 

electromagnetic environment in the buildings is becoming worse. 

In one hand, the EM fields are inevitably the disturbance to electric and 

electronic devices (e.g. TV and computer monitors, oscilloscopes, electron 

microscopes and hospital imaging equipment). This disturbance may interrupt, 

obstruct, or otherwise degrade or limit the effective performance of the circuit. 

The effects can range from a simple degradation of data to a total loss of data 

[92]. Most countries have legal requirements that mandate electromagnetic 

compatibility: electronic and electrical hardware must work correctly when 

subjected to certain amounts of EMI, and should not emit EMI, which could 

interfere with other equipment (such as radios) [1-8]. In Switzerland and Italy, 

there have existed regulations related to the permitted values of the magnetic 

field induction in new public constructions. 

On the other hand, the concerns about the potential adverse health effects due 

to magnetic field exposure, in some way confirmed by the International Agency 

for Research on Cancer (IARC) [9], have been increasing. In recent years, many 

research programs on the environmental impact of EM fields have been running 

with the aim to avoid or reduce potential health risks. Topics of these programs 

are focused on the characterization of EM environments critical for the human 

https://en.wikipedia.org/wiki/Electromagnetic_compatibility
https://en.wikipedia.org/wiki/Electromagnetic_compatibility
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exposure, the estimation of biological effects, the techniques of measurement and 

control of the EM fields. Some research shows that EM fields have a significant 

disruptive effect on the body's natural energy levels, alter how cells communicate, 

and magnify the “fight or flight” response. There are some publications which 

support the existence of complex biological effects of 

weaker non-thermal electromagnetic fields (see Bio-electromagnetics), including 

weak ELF magnetic fields [10, 29] and modulated RF and microwave fields [19].  

Furthermore, due to EM fields are invisible and insensible, it seems mystic and 

brings human more apprehension. 

In modern buildings, the low frequency EM fields are mainly the magnetic 

field arose from power equipment and cables running at power frequency. 

Electromagnetic compatibility (EMC) has become an important part 

of electrical engineering in modern building design and has been taken into 

consideration in the electrical installation process. To avoid the potential EM 

interference and health problems, EM field assessment and its mitigation have 

been requested continuously by building tenants and even developers in the 

building design stage. With the study on the exposure to low frequency AC 

magnetic fields over the past several years, the knowledge of field 

characterization and effective control strategies has grown concurrently. It is now 

possible, through a comprehensive application of this knowledge, to create living 

and working environments that are essentially free of magnetic fields of the 

magnitudes that are sometimes associated with adverse health effects, or with 

https://en.wikipedia.org/wiki/Bioelectromagnetics
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disruption to sensitive equipment. 

EM shielding is one of measures for reducing the EM field in a space. It is 

achieved by blocking the field with barriers made of conductive or magnetic 

materials. Shielding is typically applied to enclosures to isolate electrical devices 

from the ‘outside world’, and to cables to isolate wires from the environment 

through which the cable runs. The shielding can reduce the coupling of radio 

waves, EM fields and electrostatic fields. The amount of field reduction depends 

very much upon the material used, its thickness, the size of the shielded volume 

and the frequency of the fields of interest, and the size, shape and orientation of 

apertures in a shield to an incident electromagnetic field. 

The standard methods of designing shielding structures by numerical methods 

are usually fail when the large structures are exposed to the low frequency (LF) 

magnetic fields (such as the one generated by power lines). It can be explained 

by the difficulty posed in the computing process by the large aspect ratios 

involved due to thin layers of metal (a few millimetres or centimetres) in contrast 

to the large dimensions of the affected structure (several tens of meters). In some 

cases one has to utilize special approximations such as surface conductivity, 

which are not easy to handle when the designed shielding structure is clearly 

three -dimensional. Other alternatives such as experimentation in situ are very 

costly. 

EM shielding using metal plates is one of the practical ways of achieving 

compatible EM environments in buildings, and is often adopted when other 

https://en.wikipedia.org/wiki/Electromagnetic_field
https://en.wikipedia.org/wiki/Electrical_conductor
https://en.wikipedia.org/wiki/Coupling_(electronics)
https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Electrostatic_field
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measures are not allowed or are difficult to apply in the buildings context. Such 

shields can be made using building structural components, such as metal decking 

and raised floor panels, or using additional metal plates installed on floors, 

ceilings and walls. It is not unusual for the performance of a shield to be found 

unsatisfactory after the shield has been completely installed in a building. An 

efficient design of these shielding systems requires computational techniques 

capable of modeling accurately the shape and geometry of the ELF sources and 

of computing the currents induced in conductive plates. 

As a result, there is an increasing demand for effective and low-cost mitigation 

of low-intensity power-frequency magnetic fields. This yields to the conclusion 

that a reduction of the magnetic field due to power lines has to be pursued, 

especially if costs can be minimized at the design stage or low-cost remedies can 

be applied in existing installations. From the design point of view, it is useful and 

necessary to have at disposal an efficient numerical tool able to predict the 

magnetic field reduction prior to shield construction and erection, in a given 

region of space, as a function of the shield characteristics (geometry, material) 

and source characteristics (conductors disposition, distance from the shield). 

1.2. Computation Methods  

The low-frequency magnetic field in the presence of metal parts has received 

much attention in the study of magnetic shielding, eddy current and others [23, 

36, 38, 54, 57, 88, 101]. Most of the research work has focused on problems 

involving the structures of wires, plates or cylindrical shells. These problems 
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have usually been solved using analytical approaches, “field” approaches or 

“circuit” approaches.  

Analytical approaches are only applicable to metal parts possessing a simple 

geometry [50, 51]. Using the methods of separation of variables and conformal 

transformation, closed-form formulas applicable to electric and magnetic fields 

have been derived for 2D cylindrical or similar structures [99], and for simple 

planar structures [59, 97]. The shielding formulas for multiple-layer shields at 

low frequency have been addressed as well [58, 98]. These formulas are very 

useful in addressing general principles of magnetic shielding and general 

characteristics of magnetic fields around metal structures. However, they cannot 

be applied to complex structures or imperfect structures, such as shields of finite 

size or containing joints and seams, etc. 

In field approaches a field problem is represented by a mathematical 

formulation derived from Maxwell equation and solved numerically. In general, 

the problem domain is discretized into small elements, and the field variable in 

the domain is substituted with an unknown vector. A matrix equation is then 

established in accordance with the formulation adopted, and solved numerically. 

The numerical modeling is a very efficient and cost-effective way to simulate the 

real-world electromagnetic compatibility (EMC) problems, which can provide 

insight into the problems and prediction for the engineering design. The recent 

decades have seen an impressive increase in the capabilities of numerical 

simulation tools and methods for the solution of EMC problems. Tremendous 
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progress in computing power has also taken place. In order to satisfy the 

increasing demands of industrial practice concerning EMC analysis, it was not 

sufficient to utilize only the improved computer equipment, rather new 

computational methods and variants had to be developed.  

It is now feasible to solve many complex circuit analysis and electromagnetic 

problems. Thousands of unknowns can be solved in minutes. However, the focus 

remains on how to solve very large and complex problems more quickly. Model 

reduction research is a very active area focusing on minimizing model 

complexity in order to reduce solution time. Moreover, most of these numerical 

methods are based on two-dimensional (2-D) electromagnetic field analysis, 

which provides useful results for some preliminary evaluations. For instance, 

analytical techniques such as the variable separation method (VSM) or the 

conformal mapping (CTM) have been used to get closed-form solutions [12]. 

However, the 2-D assumption strongly limits the applicability of these methods 

in practical cases. Thus a three-dimensional (3-D) approach is needed to perform 

a reliable field analysis at the design stage. 

On the other hand, the common 3-D commercial codes do not seem to be 

particularly suited to treat these kinds of problems. In fact, they are usually based 

on differential formulations, such as the finite-element method (FEM) or the 

finite-volume method (FVM), which can easily take into account all the 

geometrical parameters and material characteristics but are not particularly suited 

to manage the far-field boundary conditions. Moreover, several numerical 
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problems arise when very thin domains, such as conductive plates, have to be 

discretized, because of the great number of variables required. Instead, hybrid 

and integral formulations have peculiar advantages since only the active parts of 

the model have to be discretized, thus reducing the amount of allocated memory 

and computing time [13, 17]. 

In the following, a brief introduction of the most important numerical methods, 

such as the method of moments (MoM) [78], the finite element methods (FEM) 

[71,75], the finite differences in time domain (FDTD) [56], the boundary element 

method (BEM), and the method of partial element equivalent circuits (PEEC) 

[82], will be characterized firstly, and then the discussion of application of these 

numerical methods to metal shield structures. Generally these numerical methods 

can take into account all the geometrical parameters and material characteristics 

of conductive bodies. For any of these methods there exist quite powerful 

implementations. Any of these methods has its own advantages and 

disadvantages for specific problems [26, 37, 55, 61, 63, 64, 89]. 

The MoM was introduced into computational electromagnetics by Harrington 

in the 1960s, and it was possible to treat problems in the frequency range up to 

the first resonances. In the MoM, integral based equations, describing as an 

example the current distribution on a wire or a surface, are transformed into 

matrix equations which are easily solved using matrix inversion. When using the 

MoM for surfaces a wire-grid approximation of the surface can be utilized as 

described in [20]. Since the memory size required increases with number of 
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unknown current amplitudes    according to    and the computation time as 

  , the applicability of the MoM was limited to relatively small structures, 

measured in wavelengths. However, by using bright matrix reduction techniques 

the computational costs could be reduced to     .  

The FDTD method was introduced in a seminal paper by Yee in 1966 [56]. Its 

broad application to open-space problems was only possible once the perfectly 

matched layer (PML) technique had been developed by Berenger [49]. A third 

example is the TLM, where Johns [70] developed the symmetrically condensed 

node (SCN) and made TLM an efficient alternative. The FDTD method has a 

natural advantage in the treatment of time dependent, broadband, nonlinear 

phenomena and complex inhomogeneous materials. The method is widely used 

within EM modeling mainly due to its simplicity. The FDTD method can be used 

to model arbitrary heterogeneous structures, for instance, PCBs and the human 

body [45]. In the FDTD method finite difference equations are used to solve 

Maxwell’s equations for a restricted computational domain. The method requires 

the whole computational domain to be divided, or discretized, into volume 

elements (cells) for which Maxwell’s equations have to be solved. The volume 

element sizes are determined by considering two main factors: 

1. Frequency. The cell size should not exceed     , where   is the 

wavelength corresponding to the highest frequency in the excitation. 

2. Structure. The cell sizes must allow the discretization of thin structures. 

The finite element method (FEM) [48] is a powerful numerical technique for 
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handling problems involving complex geometries and heterogeneous media. The 

method is more complicated than the previously mentioned FDTD method but 

also applicable to a wider range of problems. FEM is based on the differential 

formulation of Maxwell’s equations in which the complete field space is 

discretized. The method has advanced rapidly in areas such as waveguide 

problems, microstrips, semiconductor devices, and absorption of electromagnetic 

radiation in biological bodies. Good introductions to FEM can be found in [60] 

and [72]. An important feature of the FEM is that it includes the ability to 

describe the geometry or the media of a given problem with great flexibility. The 

reason for this is that the geometrical domain of a boundary value problem can 

be discretized using flexible nonuniform subdomain elements, which is necessary 

to describe complex geometries. The subdomain elements are called finite 

elements. The FEM has a strong resemblance to the MoM because both methods 

convert either a differential or an integral equation into a matrix equation. As a 

distinct variation from the MoM, the FEM is based on the physical principle of 

minimizing the energy of a system [20]. The problem of integrating the partial 

differential equations (PDE) is replaced by the equivalent problem of seeking a 

function that gives a minimum value of a particular integral. Problems of this 

type are called variational problems. Although both timeand frequency-domain 

formulations of FEM are known, most implementations have been in the 

frequency domain. 

These methods have been successfully applied to small-scale 3D problems at 
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low frequency. In the presence of thin metal plates the EM field has been solved 

with FEM in [11, 65], BEM [18] and hybrid FEM-BEM [43, 66]. It is, however, 

noted that both variational-based FEM and differential-based FDM find it 

difficult to handle an open-boundary problem, such as the large plate problem. It 

was also noted that the matrix equation developed in BEM could be singular or 

nearly singular when plate thickness is much less than its width and length. All 

these methods need a large number of discretizing elements in the volume of 

concern or on the surface of conductors, especially in the problem concerning 

multiple conductors. This requires much computer memory and costs a 

significant amount of CPU time. Furthermore, it is difficult to integral external 

circuit components (e.g., wire-grid building structure) into these formulations 

unless they become a part of the problem to be solved. It is also difficult to 

handle a problem with seams and joints on the plates using these methods. 

Moreover, these approaches yield inaccurate results if the eddy current in the 

plate is significant and the current density is unevenly distributed across its 

thickness. In addition, they are not applicable to ferrous plates. 

In circuit approaches the metal part of concern is divided into a number of 

small elements. Each element is represented by circuit components, such as a DC 

resistance and inductance. An equivalent electric circuit network is then 

formulated. A general-purpose network analysis program is used to find both 

voltages and currents and subsequently the magnetic fields. In these approaches a 

field problem is transformed into an equivalent circuit, and solved using circuit 
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analysis techniques. Such approaches are generally applicable to problems at 

extremely low frequency. 

These numerical methods have been applied to address low frequency 

magnetic field issues, but there are several limitations or weakness:  

1) The calculation methods developed are usually valid only for small scale 

metallic elements or those metallic parts with simple geometry;  

2) Both FEM and FDM are difficult to handle an open-boundary problem, 

such as the large plate;  

3) In BEM, the established matrix equation could be or nearly singular when 

plate thickness is much less than its width and length;  

4) For these methods, there are heavy requirements for computer memory 

and CPU time due to the large number of discretized elements;  

5) It is difficult to integral external circuit components (e.g., wire-grid 

building structure) into these formulations unless they become a part of 

the problem to be solved;  

6) It is also difficult to handle a problem with seams and joints on the plates 

using these methods;  

7) These approaches yield inaccurate results if the eddy current in the plate is 

significant and the current density is unevenly distributed across its 

thickness;  

8) The skin effect of the plate has received only limited attention. 

The partial element equivalent circuit (PEEC) approach is a full-wave circuit 
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modeling approach based on an electric field integral equation [16]. This 

approach is primarily used for circuit analysis in three-dimensional 

multi-conductor systems, such as integrated circuit packages and wises or 

conductors located on dielectric layers with ground planes. In this approach the 

circuit parameters of a PEEC cell, such as partial inductance, coefficient of 

potential and resistance are determined with the assumption of locally constant 

current density or surface current. When the skin effect of a conductor is 

significant, fine meshing of the conductor is necessary [25]. This, however, 

increases the number of unknowns and the complexity of solution. Moreover, 

there is no literature about the PEEC application to low frequency shielding in a 

wire-plate structure made of either magnetic or non-magnetic material. 

Nevertheless, for this proposed study the PEEC studies [15, 21, 41, 46, 47, 90, 

100] shed insight into plate modeling, parameter calculation and solution 

procedures. 

This method uses the Mixed Potential Integral Equation (MPIE). By 

employing a specialized discretization, the original structure is converted into a 

network of lumped inductances, capacitances and resistances, entitled partial 

elements. The electromagnetic coupling is modeled using partial mutual elements 

which results in an electromagnetic circuit model where additionally discrete 

components like transmission lines and voltage/current sources are easily 

included. The partial elements are calculated either by using numerical 

integration techniques or simplified closed form equations. The resultant 
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equivalent circuits are solved with, for example, conventional circuit solvers like 

SPICE [67] or ASTAP [95] where the same equivalent circuit can be used to 

obtain results in the time and frequency domain. 

With the proposed approach, it is available to engineers for the design of large 

shields. General guidelines providing effective solutions can be available. The 

work outputs will enable better planning and installation of sensitive equipment 

in buildings, and improving the robustness of building intelligence and other 

electronic system. 

1.3. Focus of This Work 

In order to study the characteristics of the mutual coupling among the 

interconnect metal structures and evaluate the shielding performance contributed 

by the metal structures used in buildings, a series of effective numerical 

procedures based on the partial element equivalent circuit (PEEC) method have 

been developed. The corresponding numerical packages have also been 

developed. 

The shielding structures are made of either magnetic or non-magnetic material. 

By using the PEEC method, both the structures and the conductive wires are 

modeled as a set of interconnected and coupled circuit components. The induced 

current and magnetization in the structures are then solved using basic circuit 

theory. The resultant field around the structures is computed by using the source 

current and the solved excited components. 

In order to reduce the unknowns, the analytical expression of double 
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exponential function is applied to describe the distribution of electromagnetic 

components along the thickness of the structures.  

Different numerical methods (M0, M1, M2 and M3) have been presented. M0 

and M1 can be used to model both non-magnetic and magnetic structures. M2 

and M3 are particular for magnetic material. M0 is available to simulate small 

shielding structures and validate other numerical models. M1 is convenient for 

modeling and easy to understand. This procedure is simple and suitable for 

practical engineering problems. M2 treats the magnetization on the outer surface 

and is meaningful when the thickness is comparable to the other characteristic 

dimensions of the plate. M3 is a hybrid method and has more accuracy compared 

to other methods although there is a considerable amount of unknowns. It is 

suitable for investigating the characteristics of distribution of induced current and 

magnetization. 

To solve shielding problems efficiently with the proposed methods, the 

techniques for reduction the number of unknowns, such as loop method and the 

symmetrical modeling technique have also been proposed. All the above 

methods and techniques have been validated by numerical approaches and 

experiments. 

The proposed PEEC modeling methods and techniques have been applied to 

simulate large, complex shielding structures, such as large shielding plates and 

“U-shape” shields. 

The main contributions of this thesis are listed as follows: 
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1. Different numerical methods (M0, M1, M2 and M3) have been presented 

and discussed. The corresponding solution packages have been developed. 

2. Every solver based on the method (M0, M1, M2 and M3) contains 2D and 

3D modules, which can be used to process different cases. 

3. The non-uniform meshing techniques for PEEC models have been 

proposed. 

4. The techniques, such as loop method and the symmetrical modeling 

technique have been proposed for reduction of the number of unknowns. 

5. Application of the proposed PEEC methods for evaluating the shielding 

characteristics and performance in the presence of metal shields, including 

different structures, materials, frequencies, etc. 

1.4. Brief Outline of This Dissertation 

Chapter 1 introduces the background of the research conducted in this thesis, 

and presents the objectives of this thesis. Brief introduction and discussion of the 

common numerical methods are presented. 

In Chapter 2, introduction of the PEEC method is given firstly. Then the 

fundamentals of the basic PEEC formulation are given. A detailed derivation of 

the equivalent circuit is also presented. The geometrical discretization of plate in 

PEEC modeling is given. From this, the equivalent circuit representations are 

shown for a simple example.  

In Chapter 3, the classic PEEC method (named “M0”) based on the uniform 

distribution of EM components in any cell is provided. Both non-magnetic and 
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magnetic materials are considered for investigation. In non-magnetic plates, the 

solutions of both induced current and the resultant magnetic field around the 

plate can be obtained easily. In magnetic plates, the magnetizing current needs 

to be taken into account, and the skin effect becomes an important factor. Due to 

the significant variation of EM components inside the metal plate, the dense grid 

is required and the method is hard to model large structures. However, the 

accurate results can be obtained when there is a high density of grid. M0 is 

available to simulate small structures and to validate other numerical models. 

In Chapter 4, the analytical expression of double exponential function based 

on the skin effect is applied to describe the variation of both induced current and 

magnetization. With this approximation the discretization over the cross section 

of the plate is avoided and a new modeling method (named “M1”) is proposed, 

where the number of unknowns is reduced greatly and the accuracy retains. Due 

to the irregular distribution of EM components in magnetic plates, non-uniform 

meshing is adopted in the area of plate close to the external current sources. 

Refinement is done as well in the edge area to improve the accuracy of solutions. 

In addition, an improved method (named “IM1”) is presented for the 

non-magnetic thin plate. In this method, the electric field integral equation is 

established on the middle plane of the plate. There is only one unknown for each 

cell. The total number of unknowns is then reduced. It is efficient to solve the 

eddy-current or shielding problems containing non-magnetic plates. 

In Chapter 5, a new method (named “M2”) based on volume and surface 
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element is given. The contribution to the vector potential from the magnetization 

can be divided into two parts, one is associated with the volume current and the 

other is with the surface current. The volume current has a simple relation with 

the induced current. Its contribution can be merged with the item of the induced 

current. The EM components to be solved for now become the induced current 

distributed in volume cell and the magnetization current on the surface cell. This 

method provides a new way to simulate the magnetization current just on the 

surface of the geometry. 

In Chapter 6, the techniques for reducing the number of unknowns, such as 

loop method and the symmetrical modeling technique are presented. 

In Chapter 7, the proposed different PEEC modeling methods are compared. 

The suitable method with the meshing and reduction techniques is applied for 

the large metal plate and U-shape structure used in buildings. The numerical 

application is validated by experiments as well. 

In Chapter 8, the conclusion of this thesis is presented. A series of meaningful 

works are listed for further developing. 
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2. The Method of PEEC 

The partial element equivalent circuit (PEEC) method is derived from the 

Maxwell equations and can be used to model the electromagnetic behavior of 

arbitrary three-dimensional electrical interconnection structures [69]. In this 

chapter, a review of the PEEC method is presented firstly. Then, in view of the 

sinusoidal steady state circumstances at low frequency in this study, the PEEC 

equation system in frequency domain is derived in a general form based on the 

electric field integral equation (EFIE). The orthogonal rectilinear meshing is 

adopted for discretization of thin, finite plates. Both the brick-shaped cells in 

three dimensional (3D) cases and the orthogonal rectangular grid in two 

dimensional (2D) cases are presented. Different ways for establishing the EFIE 

are presented and discussed. A simple 3 cell conductor example is used to 

interpret the PEEC model. Finally, the implementation of PEEC method has been 

presented, including the 3D model and 2D model for both non-magnetic and 

magnetic structures. 

2.1. Introduction to PEEC 

The PEEC method was proposed initially by Albert Ruehli at IBM Thomas J. 

Watson Research Center in 1972, when he published a very detailed and 

thorough paper on inductance calculations [80]. The major motivation for this 

work was the quasi-static analysis of inductive voltage drops and inductively 

coupled voltages for a large number of arbitrary loops of complex geometry. In 

which he introduced a circuit analysis theory of partial inductances based on the 

http://en.wikipedia.org/w/index.php?title=Albert_E._Ruehli&action=edit&redlink=1
http://en.wikipedia.org/wiki/IBM_Thomas_J._Watson_Research_Center
http://en.wikipedia.org/wiki/IBM_Thomas_J._Watson_Research_Center
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inductance of pieces of wire. With this partial inductance concept, the 

complicated geometry could be thought of in terms of the partial inductance of 

many small touching segments. This provided the foundation for computing 

inductances for complicated structures through the use of generalized building 

blocks.  

Also in 1972, Ruehli introduced the concept of partial element equivalent 

circuit (PEEC) models using both partial inductances and partial coefficients of 

potential in his Ph.D. dissertation [79]. With this concept, a comprehensive 

understanding of the relationship between circuit and field theory was provided.  

On the way to improve the analysis and design of integrated circuits, the 

calculation on capacitance using a Galerkin technique was developed by Ruehli 

and Brennan in 1973 [81]. In which, an efficient method of computing partial 

coefficients of potential was introduced for arbitrary three dimensional 

geometries. The derived expressions for the self and mutual potential coefficients 

of and between closely spaced conductor pieces both provided a high precision 

of calculation and minimized the computer storage without excessive 

computation times by complex capacitance calculations. This generalized 

building block approach was introduced in a generalized algorithm which 

provided a method of efficient computation for arbitrary structures.  

In 1974, Ruehli published a paper on the concept of partial element equivalent 

circuit (PEEC) [82], which was developed as a numerical method for 

circuit-oriented modeling of the electromagnetic behavior of electric 
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interconnection structures. This paper provided a comprehensive interpretation of 

the circuit and field relationship using an integral equation approach. By taking 

into account retardation this approach provided full-wave models in the time and 

frequency domains and allowed conductor losses to be considered. The 

corresponding models lead to a flexible computer solution technique for the 

calculation of partial elements and for circuit analysis. Models of different 

complexity could be constructed to suit the application at hand.   

In 1989, a PEEC formulation using nonorthogonal structures was extended for 

electrical simulation of printed circuit boards [62]. In 1990, Heeb and Ruehli [40] 

introduced a coefficient of potential model which included a controlled voltage 

source representing the retarded partial mutual couplings between cells. 

An important extension of the PEEC formulation to include arbitrary, finite, 

homogeneous dielectric regions was given by Ruehli and Heeb in 1992 [84]. The 

extended PEEC formulation was derived for the case of lossless dielectrics. In 

1993, the PEEC formulation for dielectrics was further extended to include lossy 

inhomogeneous dielectric materials by the combination of a new term for 

lossless dielectrics and a term for finite conductivity that was already included in 

the PEEC concept [32]. 

In the early 1990s, the PEEC formulation was being used to analyze radiated 

emissions from circuit structures for EMC applications. In addition, another area 

of interest for EMC analysis is scattering by an arbitrary field for noise immunity. 

In 1993, the PEEC formulation was extended to three-dimensional structures that 
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were illuminated by a nonhomogeneous incident electric field [85]. Within a 

circuit interpretation, incident fields were represented as independent voltage 

sources. This enabled the PEEC method to model scattering problems in an 

adequate form. 

Another EMC application for the PEEC formulation is cable analysis. In 1994, 

a hybrid PEEC formulation was introduced to efficiently analyze cable structures 

[93]. In which, a multiconductor transmission line method was combined with a 

PEEC formulation. With this combination, both common mode and differential 

currents were computed. 

Despite the fact that interconnection structures are passive, physically stable 

systems, time domain solutions of their models that are derived from integral 

equations such as PEEC, may show instabilities. As a general rule, the instability 

may be for two reasons: the numerical technique that is used for the time 

integration and the geometrical discretization that is required to obtain PEEC 

models. In [87] the discretization issue was addressed and a circuit motivated 

technique to stabilize the time domain solution was suggested for the eigenvalues 

of a very small problem. The proposed stabilization scheme consisted in breaking 

the partial self inductances into two equal parts along the length with a delay 

between the two partial mutual inductances where the delay was used as a tuning 

parameter. Using the insight of this work, a stabilization scheme was provided to 

enhance the stability of the PEEC formulation [34]. The numerical efficiency of 

this stabilization scheme was further improved in [35]. Additionally, a further 



The Method of PEEC  22 
 

stabilization measure was proposed: introducing a damping resistor in parallel to 

each self-inductance of the PEEC model. In [74] the proposed stabilization 

scheme was investigated for a rectangular patch geometry in the time domain.  

An important concern for improving the versatility of the PEEC method in 

analyzing interconnection structures was the consideration of the skin effect. 

Although the concept of partial inductances provided the possibility of 

considering the skin and proximity effects by partitioning an arbitrary conductor 

cross section into filaments, the high number of filaments and of magnetic 

couplings between them made an analysis of real interconnection structures 

practically impossible with PEEC modeling. In [25], an enhanced skin effect 

modeling for PEEC models was proposed. The method was based on the 

introduction of a global surface impedance (GSI) that accurately and efficiently 

modeled the quasi-static electromagnetic behavior of a two-dimensional lossy 

conductor (interior problem). Since the interior of the conductor cross section 

was discretized and incorporated into the formulation of the GSI model, it 

eliminated the need for a high-frequency volume filament approach. The GSI 

representation was to be integrated in the EFIE and, finally, in the PEEC model 

for solving the exterior problem. 

With the PEEC formulation, an electric field integral equation is interpreted as 

equivalent circuits in order to accurately describe a given geometry providing a 

full wave solution to Maxwell's equations. The first step in obtaining a solution 

using the PEEC formulation is to divide the geometry into cells and compute the 
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equivalent circuit elements. With this, a systematic approach to forming circuit 

equations which enforces the continuity equation is used to form a system of 

linear equations. 

Due to the size and complexity of modern computer packages model reduction 

and fast solutions are very desirable. Various modeling schemes can be used to 

reduce model complexity and increase the solution speed. In the last few years, a 

variety of PEEC model reduction techniques have been proposed by many 

researchers [28, 31, 42, 73, 76, 91]. Another approach for increasing the solution 

speed is to use a fast multipole technique which has gained importance for EM 

calculations. An example of this acceleration is given in [52] for a PEEC 

formulation. 

Concerning the efforts for a systematic approach to form circuit equations for 

PEEC models, there are two well-known approaches that are modified nodal 

analysis (MNA) and modified loop analysis (MLA). The MNA approach was 

introduced in 1975 [24]. This approach is widely used for circuit simulation 

programs such as SPICE [14, 67]. The second approach is to write only loop 

currents and is called modified loop analysis (MLA) in 1974 [30], and further 

developed in 1978 [83]. The MLA approach is not widely used in circuit 

simulation due to the limitation of not having node voltages as observables. 

Early PEEC formulations utilized general purpose circuit solver approaches 

for forming circuit equations and then for solving the resulting system of linear 

equations. Although these solvers are very general, they are not the most efficient 
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for the PEEC formulation. In particular, as the PEEC formulation is being used 

on a wide variety of applications, it is necessary to introduce modifications to 

both the MNA and MLA formulations to provide more efficient PEEC solutions. 

In 1993, the first application of a new condensed MNA method for the PEEC 

formulation was introduced. This condensed MNA method utilized a new 

coefficient of potential model which is more suitable for nodal analysis. As a 

result, the condensed MNA method provides a more efficient solution for the 

PEEC formulation with fewer unknowns. 

In addition, in order to make the PEEC formulation as efficient as other 

method of moment formulations, a loop method was introduced in 1995 [33]. 

This loop method is based on the MLA approach and leads to a very efficient 

system of linear equations. Generalized stamps were also introduced specific to 

the PEEC implementation. In addition, this PEEC MLA formulation provides the 

ability to easily add arbitrary additional circuit elements. 

A system of linear equations is formed using either a MNA, condensed MNA 

or MLA approach. The size of the system of equations can vary depending on 

which approach is used and on whether model reduction techniques are used. 

Once the system of equations is formed, a variety of solvers may be used. 

The PEEC formulation is a full wave solution to Maxwell's equations in the 

circuit domain. With the extensions of the last decade, the PEEC formulation is 

being used as a design tool for a wide variety of applications including circuit 

design, EIP and EMC. By exploiting circuit analysis techniques, the PEEC 
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formulation can also be used to analyze and design various complex circuit or 

numerical issues. Due to the basic mathematical formulation, PEEC is 

fundamentally more suited to classes of problems identified as dense and 

electrically large [16]. For the future applications with combined wave problems 

will be of very high interest.  

2.2. Fundamental Equations 

From Maxwell’s Equations, the electric field due to charges and currents 

within a system under consideration can be derived directly or indirectly through 

the use of vector and scalar potentials. The details are given in [22]. According 

to electric field integral equation (EFIE), the electric field E  at a point r  can 

be given by the terms of vector and scalar potentials as follow: 

( ) ( ) ( )j   E r A r r                        (2.1) 

where A  is the vector potential term,   is the scalar potential term, in the 

free space they are given by: 
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where J  is the current density and   is the charge density in the source 

volume 'v , G  is the free space Green’s function, which is a response function 

relating the field point ( r ) and the source point ( 'r ), and is given by: 
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where k  is given by k =
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  is the speed of light in free 
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space. 0  and 0  are the permeability and permittivity in vacuum, respectively.  

The method of Green’s functions is a general method for the calculation of 

electromagnetic fields for given sources and boundary conditions. The phase 

term | '|jke r r  which is called retardation, in the time domain, it results in a 

delay called retarded time. In view of the sinusoidal steady state circumstances 

at low frequency in this study, the retarded time is neglected and k 0 . 

Therefore, the Green’s function in a 3D free space is given as: 
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(2.5) 

where | | | '|R   R r r . 

In the absence of an impressed source, for the good conductor | |  , 

electric field strength in dependence on the location of the field point is: 

( )
( )




J r
E r                           (2.6) 

where J  is the current density, and   is the conductivity of the conductor. 

For low frequency applications in this study, capacitive effects can be 

neglected and the PEEC method can be restricted to its inductive formulation. 

The scalar potential   can be defined at some points of the potential cells. 

Then, the electric field integration between these points constitutes a potential 

difference. With Equations (2.2), (2.3) and replacing E  by J , Eq. (2.1) can be 

rewritten as: 
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This is the mixed potential integral equation (MPIE) in good conductors. The 

unknowns of this equation are the current density J  and the scalar potential  . 
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An MPIE for arbitrary shaped scatterers in free space has been developed by 

numerous authors [94]. 

When the concerned cases only involve non-magnetic materials, and the 

excited field defined to be the field due to an impressed current source in the 

absence of the scatterer, the vector potential is generated by induced current and 

external current sources: 

( ) ( ) ( ) c sA r A r + A r                          (2.8) 

and the two items are given as: 
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where cA , sA  are the vector potentials produced by induced current and 

external current sources, respectively. J  represents the induced current density 

in volume 'v  and sI  is the current of external source on the segment 'l .  

Then, Eq. (2.7) can be rewritten as follow: 
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When the magnetic material is involved, the contribution to the magnetic 

vector from magnetic polarization needs to be added, and (2.8) can be rewritten 

as: 

( ) ( ) ( ) ( ) c s mA r A r + A r A r                   (2.12) 

and the new item can be defined as: 
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where mA  is the vector potentials produced by magnetic polarization, and M  
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is the magnetization density. 

Then, the EFIE (2.7) will be rewritten as follow: 
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c c sJ r J r I r

M r r

           (2.14) 

When the magnetization M  is introduced as additional unknowns in 

modeling magnetic plates, additional equations are needed to make the problem 

well posed.  Assume that the plate material is linear and is characterized by 

relative permeability r . According to the constitution law: 

0( ) ( )
1

r

r

 





B r M r                       (2.15) 

Note that magnetic flux density B  is related to vector potential A  by: 

( ) ( )B r A r                         (2.16) 

The following equation then yields: 

0 ( ) ( )
1

r

r

 





M r A r                     (2.17) 

2.3. Interpretation of the PEEC Model 

For an explanation of the equivalent circuit in PEEC models, as an example, 

consider the conductor shown in Fig. 2.1 which has been discretized into 3 

volume potential cells (cell i , j  and k ). For simplicity, assume that the 

induced current is only in the x direction. The scalar potential   is defined at 

the center of the potential cell ( i , j  and k ). And this constitutes two current 

cells (cell m  and n ), which is defined as flowing between the middle cross 

section of adjacent two potential cells. 
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i j
mI

z
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k

i j k

nI

m n

 Figure 2.1  Three cells conductor example. 

Figure 2.2 gives the equivalent circuit for the above example in frequency 

domain at low frequency. It clearly illustrates the Kirchhoff Voltage Law (KVL) 

on a branch in x direction. The law on the branches in y direction is the same as 

x direction. The application of the continuity equation to all nodes of the 

structure connects the nodes and delivers the node equations required for the 

calculation of the PEEC circuit. In Fig. 2.2, s

nU  represents the impressed 

voltage due to an external current source, and the mutual coupling arises from 

the current cells and magnetization cells are equivalent to the CCVS. 
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nI
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s
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 Figure 2.2  Equivalent circuit for PEEC models in frequency domain. 

The branch voltage equation could be obtained as follow: 

0 , 0 ,

1 1

c m

n j k

N N
s

n n n c nm m m ni i

m i

V

U R I j L I j L M

 

 
 

 

     
         (2.18) 

nV  is the branch voltage on cell n. The other equivalent partial components 

are given as: 
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,c nnL  is the partial self inductance of cell n. 

,c nmL  represents the inductive coupling from cell m to cell n,  i.e. the partial 

mutual inductance. 

2.4. Orthogonal Cells 

The rectangular cells, which conform to Cartesian coordinates, are the most 

widespread shapes in the PEEC literature. There are several main reasons for 

this are: 

a) There are analytical solutions for calculating the double integrals in the 

expressions of the partial inductances and potential coefficients for cells 

oriented parallel to the coordinate axes, which enormously reduces the 

calculation expense (e.g. [44, 77]). 

b) In practice, many interconnects, for example PCB traces, traces on VLSI 

and MMIC, but also busbars in power electronics, can be dissected in 

brick-shaped elements. 

c) Besides a good suitability for a one-dimensional discretization of 

wire-like structures, brick-shaped cells or an orthogonal rectilinear 

meshing are very well suited for a two-dimensional discretization of thin, 
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finite plates and a three-dimensional discretization of finite volumes, for 

example if dielectrics have to be considered. 

In this thesis, the structures under investigation are rectangular plates or 

configuration, therefore the rectangular cell is very suitable. A typical shielding 

structure, involved a regular metal plate, is presented to study the geometrical 

discretization. As seen in Fig. 2.3, the plate is placed horizontally, as the 

response to the current carried in the wires, the excited eddy current circulates in 

the plate. 

z

x

y
eddyI

Current-carrying 

wire

 

 Figure 2.3  A typical shielding structure involved a regular metal plate. 

1) Brick-shaped cells 

In order to solve the eddy current numerically as a 3D model, the plate is 

divided into a number of potential cells with brick-shape. Figure 2.4(a) shows 

the discretization in potential and current cells for three-dimensional problems. 

As the eddy current flows between adjacent potential cells, current cells are 

formed by taking the volume between the centers of these adjacent potential 

cells, as seen in Figure 2.4 (b). If the plate is placed parallel to the x-y plane, the 

current cells are classified to two types, one is along x-direction and the other is 
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in y-direction. 

Conductor

Potential (volume) cells

Current (volume) cells

1 2 3

1I 2I

 

(a) Discretization of a rectilinear structure 

z x

y

Current cells in 
x-direction

Current cells in 
y-direction

Potential cells

(b) Discretization of a thin finite plate 

 Figure 2.4  Discretization in potential and current cells for three-dimensional problems. 

2) Rectangular cells 

In some special cases, the geometry can be simplified as a two-dimensional 

model. For the plate with long length, as seen in Figure 2.5, and the concerned 

domain is on the cross section which is perpendicular to the direction of length, 

the plate can be modeled in the 2D region.  
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Cross section

 

 Figure 2.5  The special case can be modeled in 2D domain. 

As seen in Fig. 2.6, the cross section of the plate has been discretized into 

some rectangular cells. The electromagnetic components in any a cell is constant. 

If the distribution is uniform over the thickness, the discretization along the 

thickness can be avoided (as seen in Figure 2.6(a)). Otherwise the cross section 

needs to be discretized as in Figure 2.6(b).  

Conductor cell Conductor cell

Uniform current 
distribution

Nonuniform current 
distribution

 

  (a)                                (b) 

 Figure 2.6  The segmentation of the cross section for two-dimensional problems. 

2.5. Implementation of PEEC Model 

2.5.1. Establishing the EFIE 

The electric field integral equation (EFIE) should be established on a path and 

a potential difference will be generated. In the 3D PEEC model, the flat metal 
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plate is discretized into volume cells. Based on the volume cells, there are three 

ways to set up the integral equation, such as 1) integrated on a line segment, 2) 

set up on the surface, and 3) built in volume. They will be discussed in the 

following. 

A) Based on the segment 

In order to establish the EFIE, an integral path is required. As seen in Figure 

2.7 (a), when volume cell i is treated as the observation object and another cell j 

is the source, the middle line il  inside cell i is naturally selected as the integral 

segment. The equivalent partial elements are different on different segments 

inside the volume cell i. The middle line is the most appropriate choice. The 

EFIE on il  can be expressed as: 

1
( ) ( )

i i
i

l l
v d j d


  iJ r l A r l                   (2.20) 

where iv  is the potential difference on segment il . Equation (2.20) is the 

branch voltage equation. 

When the induced current density distribution is constant on the segment, Eq. 

(2.20) can be rewritten as: 

, ( )
i

i
i c i

l

l
v J j d


   A r l                     (2.21) 

B) Based on the surface 

With a assumption that the induced current distribution only varies along the 

thickness, as seen in Figure 2.7 (b), the current distribution remains uniform on 

any a layer iS . On different paths (such as ml  and nl ) inside the plane iS , the 

equivalent local resistant is the same, but the equivalent local and mutual 
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inductances are different. For mitigating this difference caused by different 

locations, the coupling over the whole plane is taken into account. Then, the 

total coupling will be averaged to a segment which is parallel to the direction of 

current, such as the middle line of the plane is preferred. The EFIE on an 

average value can be expressed as: 

, ( )
i

i
i c i

S
i

l j
v J d

w




   A r S                    (2.22) 

where iw  is the width of cell i, and is perpendicular to the direction of current. 

C) Based on the volume 

When the induced current distribution is uniform over the total volume cell, 

the equivalent local impedance on any a segment (such as ml  and nl ) is the 

same. However, the couplings on different segments arose from the same source 

are different. In order to mitigate the coupling difference caused by location of 

integral segment, the accumulative mutual coupling on the whole observation 

volume cell has been calculated. Then the coupling will be averaged to segment, 

similarly, the middle line il  of the volume cell i is preferred. And the EFIE on 

can be expressed as: 

,

,

( )i
i c i

Vi
i yz

l j
v J dV

S




   A r                   (2.23) 

where ,i yzS  is the cross-sectional area of cell i, and is perpendicular to the 

direction of current. 
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(a) Calculate the mutual coupling on the segment. 
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(b) Calculate the mutual coupling on the plane. 

z

x

y

'dV
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(c) Calculate the mutual coupling on the volume. 

 Figure 2.7  Three ways to set up the electric field integral equation. 

It is clearly that the third way has the highest accuracy and the first one is at 

the lowest. However, the integral equations are mostly related to multiple 

integrals in practical problems, it is hard to analytically calculate and is a heavy 

burden for computer. By comparing the results from these three approaches, the 

difference is not significant when there is an adequate segmentation. Therefore, 

the first approach with minimal computational effort is selected to establish the 

EFIE. 

In the 2D PEEC modeling, the computational region is a plane which involves 
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the cross section of the objective structure. Generally, the structure should be of 

sufficient length relative to the finite width, and the selected cross section is 

perpendicular to the length. Then, the induced current can be seemed as flowing 

perpendicularly into or out of the cross section, as seen in Figure 2.8. Thus, the 

EFIE can be established at the points distributed on the cross section, and the 

direction is perpendicular to the plane. It means that the potential difference 

arose by the EFIE is identical zero and the integral path is omitted. The EFIE is 

expressed as follow: 

,
( ) 0

c iJ
j


 A r                    (2.24) 

r
'S

( )c inJ
'r

( )c outJ

 

 Figure 2.8  The 2D PEEC model on the cross-section. 

2.5.2. Current balance 

As the plate which is employed for investigation in this thesis is very thin, the 

normal component of the eddy current is negligible. The eddy current therefore 

circulates within the layers of the plate and does not go to other layers. As 

shown in Fig. 2.9, for any a layer of the plate, the induced current circulates 

within the layer along the tangential direction. There must be a relationship 

between the currents which are along the two orthogonal directions. 
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 Figure 2.9  The layers of a plate. 

As the discretization process has generated circuit topological entities as 

branches and nodes, in the PEEC method the continuity equation is enforced in 

terms of Kirchhoff’s Current Law (KCL) to each node. Considering the eddy 

current circulates in the object, the corresponding matrix equation is: 

0I IA                           (2.25) 

where A  is the connectivity matrix for induced eddy current. 

2.5.3. PEEC Model 

In order to solve the unknowns in Eq. (2.11), a system of equations needs to 

be generated. Following the usual discretization procedure, Eq. (2.11) can be 

enforced on a point r  as: 
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            (2.26) 

where  𝑐 and    represent the number of elementary volumes for induced 

current and the source wires, respectively. The unknowns here are the current 

density cJ  and the scalar potential  . 

Then, the complete solution matrix for non-magnetic object is established: 

S
V

I

R+ L  A I U

A           0  0

j     
     

    
                   (2.27) 
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R : diagonal matrix of local impedances; 

L : matrix of generalized partial inductances, include local and mutual 

inductance; 

VA : connectivity matrix of scalar potentials; 

IA : connectivity matrix of currents; 

I :  vector of induced currents; 

 : vector of scalar potentials distributes in the object; 

SU : vector of voltages arise from the external source. 

In a similar manner, a system of equations of Eq. (2.14) for the magnetic 

material has the following form: 

 

S

V

I

S

R+ L  A   Q I U

   A        0    0  0

M   B         0    P B

j     
    

      
        

                   (2.28) 

Q : matrix of mutual coupling from the magnetization to current cells; 

B : matrix of mutual coupling from current cells to the magnetization; 

P : matrix of mutual coupling among the magnetization; 

M : vector of magnetization; 

SB : vector of magnetization arise from the external source. 
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3. General PEEC Solution 

In traditional electromagnetic modeling methods, the problem domain is 

discretized into a series of volume or surface cells. An adequate possibility for 

taking into account the distributions of electromagnetic field variations inside 

the involved geometry is to choose a finer cross-sectional segmentation, so that 

in each of the segments the current distribution remains uniform. In each of 

these cells, the density of electromagnetic quantities are considered to be 

constant everywhere.  

When the PEEC modeling method is applied to solve a shielding problem, 

uniform distribution of electromagnetic components in each cell is assumed. A 

traditional PEEC model for a shielding problem can be set up. This modeling 

technique is named ‘Method 0’ (M0) in this thesis. In this chapter both 

three-dimensional and two-dimensional PEEC models for flat metal plates made 

of non-magnetic or magnetic material are established and discussed. The 

numerical validation is carried out. The advantages and the limitations of this 

method are presented finally. 

3.1. Segmentation of the Cross Section 

As illustrated in section 2.4, it is necessary to take into account the variation 

of electromagnetic components when a discritization scheme is applied. For a 

thin flat metal plate, as seen in Fig. 2.6 (a), the discritization scheme using 

uniform current distribution in cells is normally accepted if the skin effect of the 

plate is not critical. Roughly speaking, the skin depth 02 /    should be 
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greater than half of the cross-sectional dimensions. However, electric and 

magnetic couplings via mutual partial inductances of the cells lead to a 

non-uniform distribution of EM components over the whole cross section of the 

plate. The non-uniform distribution across plate thickness should be taken into 

account when the PEEC modeling method is applied, so that in each of the 

segments the distribution varies little. Figure 2.6 (b) shows the PEEC adequate 

solution: the segmentation of the cross section in current cells so that the current 

is uniformly distributed in each of them.  

As seen in Fig. 3.1, a magnetic plate is uniformly discretized into a number of 

brick shaped cells. Both electric and/or magnetic currents are uniformly 

distributed in each volume cell.  

J M

constant  

 Figure 3.1  The electric and magnetic currents are uniformly distributed in each cell. 

With this assumption, the unknowns in each cell are constant. As a result, the 

electric field integral equation (2.14) can be rewritten as follow:  
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where jb  is the basis function of magnetization density M j
. 
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This is the PEEC equation for conducting magnetic material. When the 

non-magnetic material is presented, the item related to magnetization M  will 

be cancelled. 

3.2. 3D PEEC Model for Metal Plate 

In practical problems, shielding structures are normally three dimensional (3D) 

as the structures irregular. Three-dimensional PEEC models are necessary to be 

developed for modeling practical shields. Large metal plates are frequently 

employed as the electromagnetic barriers to isolate power equipment from 

public areas. It is very useful and meaningful to understand shielding 

characteristics of large metal plates. An efficient numerical procedure for 

shielding evaluation is necessary. In this section, the 3D PEEC models for 

non-magnetic and magnetic metal plates at low frequency will be established.  

3.2.1. Discretization of Metal Plate 

The problem under investigation in this section consists of a metal plate 

excited by an external current source, as shown in Fig. 3.2. The plate is made 

from linear material, and is characterized with conductivity   and 

permeability 
0 . The external source is set as a filamentary conductor wire 

carrying a a.c. loop current at low frequency, as seen in Fig. 3.3. The plate and 

conductive loop wire are modeled as a set of interconnected and coupled circuit 

components. The eddy current in the plate is solved using an equivalent circuit 

approach. The resultant field around the plates is then determined by both the 

current source and eddy current in the plates.  
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 Figure 3.2  The wire plate structure under investigation. 
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 Figure 3.3  The filamentary conductor carrying a current I at a frequency f. 

Shown in Fig. 3.4(a) is the discretization scheme for a rectangular metal plate 

placed horizontally. The plate is segmentalized into a number of brick-shaped 

volume cells, called potential cells. With the cell numbers of xN , yN , zN cells 

in the x, y, z directions, respectively, as seen in Fig. 3.4(b). The induced current 

is considered to flow from the one potential cell to another adjacent potential 

cell, thereby a current cell is formed by taking the volume between the centers 

of two potential cells, as seen in Fig 3.4 (c) and (d) . As the thickness of the plate 

is much less than other characteristic dimensions, the normal component of the 

eddy current is negligible. The eddy current therefore circulates within the plate 

along the tangential direction. The current cells on the plate are classified into 

two types, which carry the currents in two orthogonal directions. These cells are 

named X cells and Y cells, as shown in Fig. 3.4(c)-(d). The numbers of X cells 
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and Y cells ( 1)cx x yN N N    and ( 1)cy x yN N N   , respectively.  
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(a) The flat metal plate. 
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z x
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(b) The potential cells. 
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(c) The X cells. 
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(d) The Y cells. 

 Figure 3.4  Discretization of the flat metal plate. 

3.2.2. Non-Magnetic Plate 

a) PEEC Model for Non-Magnetic Plate 

Considering the normal component of the induced current on the plate is 

negligible and the source wires are located in a x-y plane, as shown in Fig. 3.2, 

the induced current density J and source current Is can be expressed, as follows: 

x yJ Jx yJ = e e                            (3.2) 

sx syI Is x yI = e e                           (3.3) 

The corresponding vector potentials are given by: 

c cx cyA A x yA e e                          (3.4) 

s sx syA A x yA e e                          (3.5) 

Using the discritization scheme given in Fig. 3.4, Eq. (3.4-3.5) can be rewrote 

as: 
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Therefore, the KVL equations on all the cell branches derived from Eq. 3.1 

are formulated, and grouped into two different sets; one for x-direction currents 

and one for y-direction currents, as follows: 
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where the equivalent partial circuit components are given as: 
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 
   

 
                  (3.9f) 

, , ,x i x i x iV                                     (3.9g) 
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, , ,y i y i y iV                                     (3.9h) 

As illustrated in Section 2.5.2, the excited induced current circulates within 

the plate. For any 4 adjacent current cells, i.e. 2 X cells and 2 Y cells, the 

continuity of current holds at each potential cell, as shown in Fig. 3.5. The KCL 

equation for each potential node is expressed as: 

, , , , , , , , 0x i x i x j x j y p y p y q y qJ w J w J w J w                   (3.10) 

 

 Figure 3.5  The relationship of the adjacent 4 current cells (2 X cells and 2 Y cells). 

For the discretization scheme given in Figure 3.4, the incidence matrixes of 

current cells at the nodes are shown in Figure 3.6. And the incidence matrixes 

for KVL branches in both x and y direction are shown in Figure 3.7. 

   

(a) The incidence matrix for X cells. 
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(b) The incidence matrix for Y cells. 

 Figure 3.6  The incidence matrix for current cells at the nodes. 

 

(a) The incidence matrix for branches in x direction. 

 

(b) The incidence matrix for branches in y direction. 

 Figure 3.7  The incidence matrix for scalar potentials on the branches. 

According to the KCL, there must exist the relationship between xJ  and 
yJ : 

0 x x y yC J  C J                       (3.11) 

where xC  and 
yC  reflects the relationship among the branch currents. And 

the incidence equations for scalar potential are given as follow: 

t

y   xC V , 
t

x   yC V                     (3.12) 

where t

xC  and 
t

yC  transform the vector of electric scalar potential at nodes to 
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branch voltage. According to the Eq. (3.8), (3.11) and (3.12), the matrix 

equation for a plate is obtained as: 

t

x

t

y

j

j





    
    

    
    

    

s

x x xx

s

y y y y

x y

R + L    0                  C UJ

0                  R + L    C J U

C                C                  0 Φ  0

               (3.13) 

The matrix equation (3.13) gives a complete solution structure. Thousands of 

unknowns in a larger structure can be solved. Note that one potential serves as 

the reference point, the number of unknowns for the three variables  , xJ  and 

yJ  are 1V x yN N N  , ( 1)cx x yN N N  , ( 1)cy x yN N N  .The number of 

total unknowns in  is 3 1tot x y x yN N N N N    . 

b) Numerical Validation 

The PEEC model of (3.13) is validated numerically. The configuration for 

numerical validation is as shown in Figure 3.8. A thin metal plate is investigated 

in this section, which is made from linear non-magnetic material (aluminum) 

with the characteristic of conductivity 73.8 10 /S m    and permeability 

1r  . The size of the plate is 200w mm , 2d mm . The height of the plate 

to the current source is 50h mm , and the square wire has a width is 

100D mm . The external source here is a filamentary conductor carrying a a.c. 

current of 1I A . For studying the response from the magnetic field at low 

frequency, two frequencies ( 50f Hz , 1kHz ) in the range are investigated. 

Using an uniform meshing scheme of 40 40 4  , the plate is divided into a 

large number of potential cells. The induced currents are decomposed into two 

orthogonal components: xJ  and yJ , which are the unknowns to be solved. A 
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line ‘L’ above the plate is selected for evaluating the resultant magnetic field for 

comparison, as shown in Figure 3.8 (a). Another line at y=0, z=49.25mm inside 

the plate is selected for the comparison of induced current density 
yJ , as shown 

in Fig. 3.9. 

The proposed procedure has been implemented in MATLAB. The circuit 

parameters as well as the resultant magnetic field were calculated. The 

numerical validation is conducted by comparing these results with those from 

the software IES-FARADAY based on boundary element method (BEM). As the 

test problem is small in size it can be easily handled by other methods.  

z

x

y

L

Current 

source

 

(a) Configuration of a wire-plate structure. 

w

h

ws
x

z

d

I-I

µ,σ

p

L

 

(b) 
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y

xl

source

w

ws

ls

 

(c) 

(b), (c) Section view of the plate and the filamentary conductor. 

 Figure 3.8  Configuration of a wire-plate structure for testing. 

w

l

y

xz

Jy for 
comparison

 

 Figure 3.9  The line (y=0, z=49.25mm) on the plate for comparison. 

Fig. 3.10 shows the comparison of induced current density yJ  on a middle 

line of the plate. It is shown that the results match well. The deviation among 

total area is small. The largest deviation exists on the edge area and is just 1% at 
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50Hz and 1.9% at 1kHz. The average errors of the two frequencies are 0.3% and 

0.48%, respectively.  

The comparison of the resultant magnetic fields B  at 50Hz and 1kHz along 

a diagonal line above the plate is given in Fig. 3.11. The results also match well . 

For the component of x direction xB , there is almost no deviation at 50Hz and a 

very small deviation of 0.66% at 1kHz. The average errors of the two 

frequencies are 0.3% and 2%, respectively. 

It can be seen that the solutions in presence of non-magnetic material, both 

the electromagnetic components distributed in the plate and the resultant 

magnetic field in the space are matched very well with the software. The 

deviation is very small in most area and increases at the edge area. The error at 

50Hz is smaller than at the relatively larger frequency of 1kHz. 

 

 Figure 3.10  Comparison of yJ  at the line inside the plate. 
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 (a) The component of xB  

 

 (b) The component of zB  

 Figure 3.11  Comparison of B  field at a diagonal line above the plate. 
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3.2.3. Magnetic Plate 

a) PEEC Model for Magnetic Plate 

When the plate is made of magnetic material, the magnetic polarization needs 

to be taken into account. In each magnetic cell, the vector quantity of 

magnetization can be decomposed into three scalar components as follows: 

x y zM M M x y zM = e e e                     (3.14) 

The magnetic vector mA  produced by magnetization M  is defined as: 

0

'

1
( ) ( ') ' '

4
m

v
dv

R





 
   

 
A r M r                (3.15) 

where | | | '|R   R r r . Because of '   , there is 

3

1 1
'

R R R

   
      
   

R
                    (3.16) 

Therefore, Eq. (3.15) can be rewritten as 
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z
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e
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  (3.17) 

where spatial components 'x x x   , 'y y y   , 'z z z   . And the 

vector potentials along three orthogonal directions are given by: 

0

3'
( ) '

4

y z

mx
v

zM yM
A r dv

R





 
                  (3.18a) 
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0

3'
( ) '

4

z x
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v

xM zM
A r dv

R





 
                  (3.18b) 

0

3'
( ) '

4

x y

mz
v

yM xM
A r dv

R





 
                  (3.18c) 

The Eq. (3.8) can be rewritten into the following equivalent circuit equations 

with magnetization component being included: 

, , , , , ,

1 1

, , , ,

1

mycx

mz

NN

x i x i cx ij x j xy ij y j

j j

N
s

xz ij z j x i x i

j

R J j L J j Q M

j Q M V U

 



 



 

  

 



         

(3.19a) 

, , , , , ,

1 1

, , , ,

1

cy mx

mz

N N

y i y i cy ij y j yx ij x j

j j

N
s

yz ij z j y i y i

j

R J j L J j Q M

j Q M V U

 



 



 

  

 



         

(3.19b) 

where the mutual coupling from the magnetization to the current cell are given 

as: 

, ,

0
, 3'

'
4 x i my j

xy ij
l v

z
Q dv dl

R






                  

 

(3.20a) 

, ,

0
, 3'

'
4 x i mz j

xz ij
l v

y
Q dv dl

R






                    (3.20b) 

, ,

0
, 3'

'
4 y i mz j

yx ij
l v

z
Q dv dl

R






                  (3.20c) 

, ,

0
, 3'

'
4 y i mz j

yz ij
l v

x
Q dv dl

R






                     (3.20d) 

Using the relationship ( ) ( )B r A r  magnetic flux density B  can be 

expressed as follows: 

 ,

1

( ) ( ) ( )
cN

c c j

j

  cB r A r A r             (3.21a) 

,

1

( ) ( ) ( )
sN

s s s j

j

  B r A r A r               (3.21b) 

,

1

( ) ( ) ( )
mN

m m m j

j

  B r A r A r            (3.21c) 
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The item 
cB  is given by: 
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         (3.22) 

Considering the structure in this study, Eq. (3.22) can be decomposed as 

follows: 
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Similarly, sB  contributed by source current in this case is given by: 
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mB  is contributed by magnetization M via mutual coupling coefficients. It is 

expressed by: 
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Using the vector identity and considering the uniform distribution: 

( ) ( ) ( )         A B A B B A B A A B          (3.26) 
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As a result, vector mB  can be decomposed to three scalar components, as 

follow: 
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The solution matrix can be then set up as follow: 
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where Φ  and M are respectively the potential and magnetization density at 

nodes, U
s
 and Bs are the inductive voltage and magnetic field contributed by the 

current source. Both Cx and Cy are the nodal incidence matrices for X and Y 

current cells. Assuming 
iju  is zero if i j  and 

iju  is one if i = j, elements in 

sub-matrix of [16] are given by: 
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where ( )b r  and ( )f r  represent the unit vector for M(r) and J(r), respectively. 

Excluding the reference node, the number of total unknowns in  is equal to 

6 1x y x yN N N N   . 

b) Numerical Validation 

The PEEC model of Eq. (3.29) is validated numerically. The numerical 
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validation is conducted by comparing these results with those from the software 

IES-FARADAY based on BEM. The test problem will be small in size, and 

therefore easily handled by the other methods. 

The structure under investigation is as shown in Fig. 3.8. The thin plate is 

made from linear magnetic materials with the conductivity of 

70.75 10 /S m    and permeability of 200r  . The filamentary wire 

carrying a a.c. current 1I A  at the frequency 50f Hz . The dimensions of 

the structure are: w=200mm, d=2mm, h=50mm. A uniform mesh of 40 40 4   

( 40xN  , 40yN  ) is adopted.  

The proposed procedure (PM) has been implemented in MATLAB. For 

comparison the results computed by the boundary-element method-based (BEM) 

software IES-FARADAY are presented in the figure as well. Fig. 3.12 shows the 

eddy current and magnetization density 
yJ  and xM  in the middle line on the 

bottom of the plate. It can be seen that the results are matched well in most area, 

a little deviation exist in the area near to edge and the maximum errors are 4.13% 

and 3.37%, respectively. The two components of resultant magnetic flux density 

B  along a diagonal line above the plate are presented in Figure 3.13, the results 

matched very well and the maximum error is 2.4%. 

In this section, due to the magnetic material involved, the EFIE and magnetic 

equation are integrated as a complete set of equations to solve the eddy current 

and magnetization in the plate and magnetic field around the plate. The proposed 

numerical procedure has been validated and compared with the BEM-based 

software IES-FARADAY, the results indicated the approach has a fairly good 

accuracy in evaluating low frequency magnetic shielding.  
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(a) 
yJ  

 

(b) xM
 

 Figure 3.12  Comparison of EM components at a line on the bottom of the plate. 



General PEEC Solution  61 
 

 

(a) xB  

 

(b) zB
 

 Figure 3.13  Comparison of B  field at a diagonal line above the plate (z=100mm). 
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3.3. 2D PEEC Model for Metal Plate 

3.3.1. 2D PEEC Formulations 

Green’s theorem is one of the most useful theorems in solving 

electromagnetic problems. Many of the solution methods, including classical 

and numerical methods, are based on Green’s theorem. It is derived directly 

from the divergence theorem. 

In a free space, Green’s function is a response function relating the field point 

( r ) and the source point ( 'r ), and it is the fundamental solution of the same 

operator equation. The free space Green’s function in a 2D case is given as: 

1 1
( , ') ln

2 | ' |
G





r r

r r
                       (3.31) 

Then, the vector potentials cA  and sA , produced by induced current and 

external current sources respectively, are given as follows: 

0

'

1
( ) ln ( ') '

2
c

S
dS

R




  cA r J r                    (3.32) 

0 1
( ) ln ( )

2
s s

R




A r I r'                         (3.33) 

where | | | '|R   R r r , cJ , sI  represent the induced current density and 

external sources current, respectively. The induced eddy current circulates in the 

plate plane, and vertically through the cross-section, as seen in Fig. 2.8.  

If the magnetic material is involved, the vector potential mA  produced by 

magnetic polarization is given as follow: 

0

'

1
( ) ( ') ' '

2
m

S
dS

R





 
   

 
A r M r                 (3.34) 

where M  is magnetization density, '  is nabla operator. 
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3.3.2. 2D PEEC Model 

Some of shielding structures can be simplified, and represented by 2D models 

if the variation in one dimension is not significant. The unknowns will be 

reduced sharply and the complexity of the model would be lowered greatly. 

Therefore, the efficiency and applicability of the models will be improved 

significantly. 

The 2D plate is discretized into a number of 2D rectangular cells, which are 

defined potential cells. With the assumption that the electromagnetic 

components in a cell are constant, the 2D model can be established. For 

ferromagnetic materials, the magnetic density inside the plate should be solved. 

This section presents an approach for evaluating eddy currents at low 

frequency in presence of a 2D magnetic plate. The plate is divided into a number 

of 2D rectangular cells, which are defined potential cells. The eddy current is 

solved with the constitutive relation in a magnetic material. The resultant 

magnetic field can be calculated with the Biot-Savart law. This method uses few 

unknown variables, and requires less computer resource. The proposed method 

has been applied to evaluate the eddy-current in the metal plates with different 

kinds of magnetic material.  

The plate of concern is made from linear magnetic material. It is characterized 

by conductivity  and permeability , and has a width of w and a thickness of d 

illustrated in Figure. 3.14. It is noted that the thickness of the plate is much less 

than its relevant characteristic width. The normal component of the current 
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density within a plate is thus considered to negligible in a quasi-stationary field 

problem. According to Maxwell’s equations, the plate can be substituted by a 

non-magnetic plate carrying an equivalent magnetic current of M . For 

efficient calculation magnetization vector M instead of the equivalent current is 

introduced as the unknown variable together with conductive current density Jc.  

x

yw
d

I-I
 

 Figure 3.14  Configuration of a magnetic plate in 2D domain. 

To solve unknown conductive and magnetization currents numerically, the 

plate has to be meshed into small rectangular cells (e.g., N segments along X 

direction and M segments along Y direction). Using the relationship for 

electrical scalar potential and magnetic vector potential E j A    , a 

voltage equation can be established for each cell along its length. The magnetic 

vector potential A is contributed by three items: external source current I, the 

eddy current Jc, and equivalent magnetic current M . Voltage V per unit 

along z direction in a cell is expressed as follows: 
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(3.35) 

where Ns is the number of external source lines, i and j are the index for 

observation and source cells, respectively. For the linear magnetic material both 
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Mx and My can be expressed in terms of Jc and I using the constitutive relation, 

mM H  where 1m r   . With this equation, current density Jc can be 

directly obtained. Subsequently, the magnetic field in or around plate can be 

calculated using the Bio-Savart law.  

In the equation ( , )B A r t , the vector potential A contains three items: As, 

Ac and Am. There items are respectively generated by external source current I, 

eddy current Jc, and equivalent magnetic current M  respectively. So the 

equation can be substituted by ( )s c mB A A A   , which is decoupled into 

two orthogonal equations, as follows: 
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   (3.36b) 

These are the expressions for the x and y components of the magnetic field 

respectively. 

Intuitively, the plate is meshed uniformly, and assuming that the current 

density Jc, magnetization vector M in every cell are constant. Note that both the 

codncutive and magnetization currents vary significantly along its width and 
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thickness, meshing with small cells is required. Fig. 3.15 illustrates a typical 

grid generation. 

 

 Figure 3.15  Two-dimensional meshing of a magnetic plate 

Based on the Equations (3.35) and (3.36), such a system can be expressed in 

the following matrix equation form: 

         [ 11] 12 13e N M c x yG K E J G M G M S
         (3.37a) 

          21 22 23c m N M x y xsG J G K E M G M B
           (3.37b) 

       31 32 33c x m N M y ysG J G M G K E M B
               (3.37c) 

where Ke=1/, Km=0r/(r -1), and [S], [Bxs] and [Bys] are column vectors of 

(N×M) order whose elements are defined by 
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and [G11], [G12], [G13], [G21], [G22], [G23], [G31], [G32], [G33] are square 

matrices of ((N×M) ×(N×M)) order given by 
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Jc(x,y), 

Mx(x,y), 

My(x,y) 
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21 12ij ijG G  ,  31 13ij ijG G  ,  32 23ij ijG G ,  33 22ij ijG G  . 

Numerical validation was conducted on the plate (w=400mm, d=2mm) shown 

in Fig. 3.9. The 8eddy current along the bottom edge of the magnetic plate is 

calculated using the proposed method (one-dimensional meshing method) and a 

boundary element method. Three cases with different frequency and material 

parameters were considered, that is,  f=50Hz, r=200,  f=50Hz, r=10000and (3) 

f=5000Hz, r=200. It is noted that the calculated results agree well in these cases, 

as seen in Fig. 3.16.  

 

 Figure 3.16  Current density in the plate (lines = proposed method, dots = BEM) 

Different meshing methods are also compared numerically using the same plate 

shown above. The plate has the width of 400mm and the thickness of 2mm. It has 
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the permeability r of 200, and the conductivity =0.75×10
7
. The frequency of 

source current f is set to be 50Hz.  

When using the one-dimensional meshing method, the plate is divided into 

100×4 cells. Every cell has the equal size. Assuming that the current density Jc, 

magnetization vector M within the area of each cell are constant, and as same as 

the characteristic value at the middle point of this cell. The curve of Jc and Mx 

along the bottom of plate are shown as Fig. 3.17 and Fig. 3.18 respectively. 

 

 Figure 3.17  Current density Jc on the bottom of the plate. 

 

Figure 3.18  Magnetization Mx on the bottom of the plate. 
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3.4. Conclusion 

In this Chapter, the classic PEEC method (named “M0”) based on the uniform 

distribution of EM components in the cell is provided. Both non-magnetic and 

magnetic materials have been considered for investigation. In non-magnetic 

plates, the solutions of both induced current and the resultant magnetic field 

around the plate can be obtained easily. In magnetic plates, the magnetizing 

current needs to be taken into account. The 3D and 2D PEEC models all have 

been established and discussed.  

The proposed approach was validated numerically. The high accurate results 

can be obtained when there is a high density of grid. Unfortunately, because of 

the big effort for discretization and the high number of unknowns this approach 

is not practicable in many cases. Due to the significant variation of EM 

components inside the metal plate, the dense grid is required and the method is 

hard to model large structures. How to solve the large complex structures with 

huge number of unknowns more quickly is very useful and valuable. 
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4. PEEC Model Using Analytic Distribution Functions 

Generally speaking, a denser meshing scheme yields a higher accuracy of the 

simulation results. This, however, increases the number of unknowns in the 

matrix equation significantly. It would not be possible to solve such a big 

problem with limited capacities of the computing facilities available. Therefore, 

it is necessary to develop appropriate meshing schemes so that the number of 

unknowns in the matrix equation is reduced dramatically, and shielding 

problems can be solved efficiently.  

This chapter presents an extended PEEC modeling procedure. In this 

procedure an analytical expression using the double exponential function is 

applied to describe the variation of both induced current and magnetization 

densities. With this approximation the discretization over the cross section of the 

plate is avoided and a new method (named “M1”) is proposed, where the 

number of unknowns is reduced significantly and the accuracy generally retains. 

In addition, non-uniform meshing is assigned for the part on a plate 

corresponding to the location of external current sources. The refinement is 

particularly done in the edge area for improving the accuracy of solutions. An 

improved method (named “IM1”) is also presented for the non-magnetic thin 

plate. Numerical validation of the proposed procedure using the commercial 

FEM package is presented finally. 
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4.1. Skin Effect in PEEC Models 

4.1.1. Cross-Sectional Discretization 

As mentioned in Section 3.1, the assumption of a uniform current distribution 

is only correct where the skin depth 02 /    is greater than half of the 

cross-sectional dimensions. Fig. 2.6 shows the PEEC adequate solution for 

considering the skin effect is the finer cross-sectional segmentation in cells so 

that the current is uniformly distributed in each of them. This approach has been 

implemented in Chapter 3. In this way, both the skin effect and the proximity 

effect can be taken into account simultaneously. Unfortunately, because of the 

greater effort for discretization and the higher number of unknowns this 

approach is not practicable in many cases. Numerical calculations show that a 

relatively high number of cells for the cross-sectional discretization is needed to 

obtain accurate results (e.g. (Coperich, K. M. et al. 2000, Wollenberg, G et al. 

2003)).  

In a traditional PEEC model, the unknowns such as current and magnetization 

densities in a volume cell are considered to be constant. Discretization is then 

made along x, y and z directions, as seen in Fig. 3.3. When these densities vary 

significantly across plate thickness, a denser grid is required in order to retain 

the accuracy of simulation results. The total number of unknowns for a large 

plate is then significantly high. If some analytical functions are available for the 

distribution of unknown parameters along plate thickness, discretization along 

thickness becomes unnecessary. In this case, a surface discreitzation scheme 
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would be sufficient for solving the problem. 

4.1.2. Analytical Function Based on the Skin Effect 

In probability theory and statistics, the double exponential distribution is a 

continuous probability distribution, because it can be thought of as 

two exponential distributions (with an additional location parameter) spliced 

together back-to-back.  

The implementation of the skin effect in PEEC model by introduction of an 

analytical expression of double exponential distribution has been revealed in (N. 

Ida 1995), that the current density in an infinite plate which is perpendicular to 

the z axis. The aim of this is to reduce the number of unknown currents for 

representation of the elements on the cross section (C.V. Dodd and W.E. Deeds 

1968). If the current density varies with the z direction, it is given by, as shown 

as follow 

  1 2

z zJ z J e J e             (4.1) 

where (1 )j    , and the skin depth of the plate is 02 /   . Both 

1J  and 2J  in Eq. (4.1) are two unknowns to be determined. The eddy current in 

a current cell is similar to that in such an infinite plate. This analytical 

expression is adopted to describe the current density within the cell to avoid the 

discretization along the plate thickness. As shown in Fig. 4.1, in traditional 

discretization, the plate needs be segmentalized along the thickness when the 

skin depth is less than half of the cross-sectional dimension. When the analytical 

expression is applied, this segmentation is avoided and the number of unknowns 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Exponential_distribution
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is reduced from Nz to just 2. In a current cell i  the function ( )iJ z  in Eq. (4.1) 

can be rewritten in terms of current densities 
iJ   and 

iJ   on both the bottom 

and top surfaces of the cell, respectively. The current density in the cell can be 

approximated by a double exponential function, as follow: 

( ( / 2 )) ( ( / 2 ))
( )

( )

i i
i

J sh d z J sh d z
J z

sh d

 



   
                  (4.2) 

where d is the thickness of the plate. In Eq. (4.2) superscripts “+” and “-” denote 

the top and bottom surfaces of a cell, respectively. This expression is applicable 

to any orientation of an external magnetic field. 

jJ
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iJ 

1

j

zN

y x

z ( )iJ z

 

 Figure 4.1  The analytical expression is adopted within the cell. 

Similarly, the magnetization M  can be expressed analytically as follow: 

( ( / 2 )) ( ( / 2 ))
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i i
i

M sh d z M sh d z
M z

sh d

 



   
                (4.3) 

Using such a distribution expression, division for magnetization along the 

thickness of the plate is also avoided and the unknowns can be reduced sharply.  

4.1.3. Numerical Investigation 

In this section, the hypothesis of double exponential distribution of the 

electromagnetic components is checked numerically. A commercial numerical 

tool FARADAY based on the Boundary Element Method (BEM) is employed to 
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reveal the distribution of the electromagnetic components across plate thickness. 

FARADAY is a CAE software package designed to perform full 3D simulations 

of both Time Harmonic (eddy current) and Magnetostatic physical systems. 

The configuration of wire-plate shown in Fig. 3.8 is selected for testing. 

Firstly, the field values of the electromagnetic components distributed on the 

bottom and top surfaces of the plate are directly obtained from IES-FARADAY. 

Then, using the double exponential functions to calculate the field values on the 

selected positions (1, 2, 3), as shown in Fig. 4.2. Finally, the results are 

compared with the corresponding values from IES-FARADAY.  

y x

z

bottom z-

top z+

testing positions
1

2

3

50

49.5

50.5

49

51

cell

 

 

Figure 4.2  Testing positions in a cell. 

Fig. 4.3 shows the flat ferromagnetic plate for numerical evaluation using the 

FARADAY. The plate is made from linear magnetic material with       

       and       . The plate has the dimensions of            . 

The external source, as seen in Fig. 3.2, is a filamentary conductive loop frame 

with the dimension of           , and it carries the current of      at 

the frequency of       . The source is located in the center with the 
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separation distance of      from the plate.  

w

l

d

z

x

y

Observation 
position

 Figure 4.3  The plate under investigation. 

A set of middle lines within the plate have been chosen for comparison with 

the analytical function, as shown in Fig. 4.2. The results of the lines located on 

the bottom and top (position=49mm, 51mm) of the plate have been obtained 

from the IES-FARADAY firstly. Then, the values on the top and bottom surfaces 

of the plate are used to construct the analytical functions given in Eq. (4.2) and 

(4.3). These functions are finally to computer the values on three lines 

(position=49.5mm, 50mm, 50.5mm). The calculated results are compared with 

the corresponding values from IES-FARADAY. Fig. 4.4 is the geometry in the 

IES-FARADAY environment. 
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 Figure 4.4  The geometry under computation in IES-FARADAY. 

In order to make the comparison scientifically, the results are departed into 

the real part and the imaginary part. Fig. 4.5 shows the comparison of induced 

current density on the plate. It can be seen that, both the real part and the 

imaginary part of current density yJ  are agreed with the double exponential 

function very well. Except the singular values on the edge, the deviations on 

almost area are close to zero. The average error is around 0.2%. 

The results of magnetic density xM  are also agreed well with the software, 

as seen in Fig. 4.6. The average error is less than 0.3%. For the magnetic density 

component of zM , there is a significant deviation at the edge points. Except 

this special position, the deviation can be neglected.  

As a result, the analytical expression of double exponential function can be 
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applied in most part of the plate. For the area closed to the side, the analytical 

expression cannot describe the magnetic density zM  accurately. And for 
yJ

 

and xM , there still exist tiny deviations in the area closed to side. However, the 

refinement of meshing can be used to decrease this deviation.  

 

(a) The real part of magnetization density Jy.
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(b) The imaginary part of magnetization density Jy. 

 Figure 4.5  Validation of the analytical expression for current density 
yJ . 

 

(a) The real part of magnetization density Mx. 
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(b) The imaginary part of magnetization density Mx. 

 Figure 4.6  Validation of the analytical expression for magnetic density xM . 

 

(a) The real part of magnetization density Mz. 
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(b) The imaginary part of magnetization density Mz. 

 Figure 4.7  Validation of the analytical expression for magnetization density zM . 

4.2. Application of the Expression to Induced Current 

As the flat metal plate is concerned, the analytical expression is applied to 

describe the distribution of induced current over the cross section of the plate. 

The induced current density J in the cells are replaced by unknowns defined on 

the cell bottom and top surfaces, i.e., 
J , 

J . As seen in Fig. 4.8, the 

assumption of constant in each cell is replaced by the analytical function along 

the thickness. 
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y
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z

iJ

jM

iJ 

iJ 

jM 

jM 

zN

yN

xN

yN

xN
 

(a) constant value in cells (b) analytical function in cells. 

 Figure 4.8  Meshing techniques across plate thickness. 

And the KCL equations are applied to enforce the continuity of current at 

potential nodes. As the distribution function of current density is identical in all 

current cells, the current continuity holds on any x-y plane of a potential cell. 

KCL equations are then set up on the bottom and top surfaces of all potential 

cells, as follow: 

   
, , 0x y

    x yC J  C J                        (4.4) 

where 
xC  and 

yC  are respectively the nodal incidence matrices for x-dir. and 

y-dir. current cells. 

Then, the solution matrix (3.13) can be rewritten as follow:  

,,

, ,

,

t

x

t

y

  

   

 

    
    
    
    

    

x sxx

y y sy

x y

L     0      C UJ

0      L     C J = U

C    C      0 0Φ

                  (4.5) 

where , Φ  is the potential at nodes. , 

sU  is the inductive voltage on the 

bottom and up surfaces of cells, which are contributed by the current source.  

In (4.5) both xL  and yL are the equivalent impedance of current cells. 

Assuming iju  is zero if i j  , and iju  is one if i = j, elements in sub-matrix 

of (4.5) are given by: 
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'

0
ijL '

4 | ' |i j

i
ij

l v
i j

l j k
u dv dl

r r



 
 

           (4.6) 

,0
s,i

'
1

U '
4 | ' |

s

i j

N
s j

l l
j i j

Ij
dl dl

r r



 




                  (4.7) 

where ( )f r  represents the unit vector for J(r). Parameter k  is determined by 

the density distribution function, and is give by  

( ( / 2 '))

( )

sh d z
k

sh d






                  

     
(4.8a) 

for unknowns on the top surfaces, and 

( ( / 2 '))

( )

sh d z
k

sh d






                  

     
(4.8b) 

on the bottom surface.. 

For validation, the same material characteristic and the structure as in section 

3.2.1 are applied. Using an uniform mesh in the x-y plane of 40 40 , the plate 

is divided into a large number of potential cells. And the observation position for 

resultant magnetic field is as same as in section 3.2.1. The comparison position 

for the current density yJ  is at the middle line on the bottom of the plate. 

It can be seen that the solutions, both the electromagnetic components 

distributed in the plate and the resultant magnetic field in the space are matched 

very well with the software. It also confirms that the analytical expression of 

double exponential function for current densities is available and accurate. 
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 Figure 4.9  Current density 
yJ  at the line (y=0) on the bottom of the plate. 

 

(a) xB  
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(b) zB  

 Figure 4.10  Comparison of B  field at a diagonal line above the plate. 

4.3. An Improved Method for Evaluating Magnetic Field 

In this section, an improved equivalent circuit method (named “IM1”) for 

evaluating low-frequency magnetic fields in the presence of non-ferromagnetic 

plate is presented. In this method, a double-exponential function is adopted for the 

eddy current distribution across the thickness of a plate. A voltage equation is 

established by applying the electric current integral equation on the middle plane 

of the thin plate. Using the proposed meshing model an equivalent circuit network 

is established. The equivalent branch current, which is the current density on the 

middle plane, can be solved directly using the transitional circuit analysis 

techniques. This method is tested on a model made of a conductive plate excited 

by an external current source. The results are compared with other integral 
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equation method, and a good agreement is found in the simulation. In this method 

there is only one unknown for each cell. The total number of unknowns is 

significantly reduced. It is efficient to solve the eddy-current or shielding 

problems containing thin plates. 

As stated above, in a current cell i , the current density ( )iJ z  varies along the 

z direction, but remains constant on a x-y plane. When the cell size is small, the 

current density in the cell can be approximated by a double exponential function, 

as follows: 

( ( / 2 )) ( ( / 2 ))
( )

( )

i i
i

J sh d z J sh d z
J z

sh d

 



   
            (4.9) 

where d  is the thickness of the plate, 
iJ   and 

iJ   are the current densities on 

the bottom surface ( / 2d ) and the top surface ( / 2d ) of the plate, respectively.  

In solving the eddy current efficiently the current density at the middle plane of 

the cell ( 0z  ) is introduced as the unknown variable. According to Eq. (4.7), 

the current density 
0,iJ  can be expressed using 

iJ   and 
iJ  , as follow: 

0,

( / 2)
( )

( )
i i i

sh d
J J J

sh d





                        (4.10) 

It is noted from Eq. (3.19) that voltage iV  in current cell i  is balanced by 

resistive and inductive voltages generated by the current in cell i , and inductive 

voltage generated by other cell j  ( 1 )j N . N  is the number of total cells 

in the plate. Applying Eq. (3.19) on a line at z=0 (middle plane) in the current 

cell yields a branch voltage equation for cell i  at frequency  , as follows: 
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0
0,

' '
1 1'

( ') 1
(0) ( ' ' )

4 | ' |i j i k

N M
ji

i i k
l v l l

j kz

J zl j
V J dv dl I dl dl

R r r



   

  


          (4.11) 

in which kI  is the current in external source wire k , and M  is the number of 

wires. And distance ' | ' |zR r r   when z=0, and is given by

2 2 2( ') ( ') ( ')x x y y z    .  

 

 Figure 4.11  Interaction from current cells to electrical branch. 

Substituting (4.10) in (4.11) yields a voltage equation for a circuit branch i , as 

follows: 

0, ,

1 1

(0) ( )
ij ij

N M

i ii i ij ij s ik k

j k

V R J j L J L J j L I    

 

                  (4.12) 

where equivalent resistance iiR , equivalent inductance 
ijL  and 

ijL , and source  

inductance 
,s ikL  are given by 
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[ ( / 2 ')]
' ' '
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'
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sh d z
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L dl dl
r r
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           (4.13) 

Note that two definite integrals are identical to each other, that is, 

x/y 

x/yn+1 

z 

x/yn 

z
-
 

z
+
 

R 
double exponential 

distribution of the 

induced current 

X/Y-cell 
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              (4.14) 

Voltage equation (5.3) is then simplified into 

0, 0. ,

1 1

(0)
N M

i ii i ij j s ik k

j k

V R J j L J j L I 
 

                         (4.15) 

where 0 2

0
1 '

( ')
' ' '

2 i j j

dN

ij
l x y

j z

ch z
L dz dy dx dl

R

 

 

     .  

It is noted in (4.15) that there is only one unknown in each current cell. The 

total number of unknowns is, therefore, significantly reduced.  

Now a current cell shown in Fig. 4.11 is represented by a circuit component 

with its self-resistance and inductance, and mutual inductance with other cells. 

The circuit component is connected to other components at the potential nodes. 

Therefore, an equivalent circuit network, which consists of a number of circuit 

cells, is formulated after using the grid generation approach described above. 

Using the transitional circuit analysis techniques, current density or eddy current 

in the plate can be numerically obtained. 

The magnetic field around the plates can be calculated using the formula

B A , where vector potential A is contributed by both the eddy current and 

source current, as illustrated in . Consider the distance to an observation point is 

usually much greater than plate thickness. Distance | ' |r r is independent of z’, 

and can be approximately expressed by 2 2 2( ') ( ')zR x x y y z     . 

Therefore, the term contributed by the eddy current is expressed by 
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0
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4 i j j j

N
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l x y z

j z

J z
A z dz dy dx dl

R



 

                   (4.16) 

After substituting (4.10) in (4.16) and using the identity given in (4.14), the 

vector potential contributed by the eddy current is given by 

0 2

0
1 '

( ')
( ) ' ' '

2 i j j

dN

c
l x y

j z

ch z
A z dz dy dx dl

R

 

 

                  (4.17) 

It can be seen that the current density distributed on the center plane of the 

plate is matched very well with the solution from software, and the resultant 

magnetic field in the space are also matched very well.  

The proposed method has been implemented in MATLAB, and tested on one 

plate model. As shown in Fig. 3.8, the configuration of the model in the presence 

of an external magnetic field generated from a loop coil. The aluminum plate has 

the conductivity of    S/m, and the dimension is 200×200×2mm
3
. The 

coil in this case carries the current of 1 A at 50 Hz or 1 kHz. In the computation 

the plate was divided into 40×40 potential cells. A uniform meshing model based 

on the classic integral equation (IE method) was also applied to do the 

calculation for comparison. 

By using the proposed method, the current density on the middle plane of the 

plate is solved directly. Fig. 4.12 shows the y-component of the current density 

on the plate, which is distributed symmetrically on the plane.  
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 Figure 4.12  The induced current density on the middle plane of plate 

For comparison, the y-component of the induced current density on the middle 

line within the plate (
cyJ , 0y  ) were extracted. The results computed by the 

proposed method and the IE method at 50 Hz and 1 kHz are presented in Fig. 

4.13 (a) and (b), respectively. It is noted from the figures that the current 

distribution computed by these two methods matches very well. Fig. 4.14 shows 

the resultant magnetic field on a horizontal line at the distance of 0.1m above the 

plate. It is noted that the field results at 50Hz match well again.  
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(a) 50 Hz 

 

(b) 1kHz 

 Figure 4.13  Comparison of the current density on the middle line 
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 Figure 4.14  Comparison of the magnetic fields comparison at 50Hz. 

4.4. Application of the Expression to Magnetization 

Magnetic vector Am in a magnetic plate is generally expressed by: 

0 0

' '

( ') ( ') '
( ) ' '

4 | ' | 4 | ' |
m

v s
dv ds

 

 

 
 

  
M r M r n

A r
r r r r

           (4.18) 

When magnetic polarization in a volume cell is constant, the first term in Am 

is identical to zero, which was adopted in [11]. However, very fine meshing is 

required in this case as M varies significantly within the plate. In this chapter, an 

analytical function is adopted for magnetization density across plate thickness, 

and no discritzation is required along this direction. Similar to the induced 

current, magnetization density M  can be expressed analytically, as follow: 

( ( / 2 )) ( ( / 2 ))
( )

( )

i i
i

sh d z sh d z
z

sh d

 



   


M M
M            (4.19) 

Vector potential Am is then expressed by: 

0

3'

( ') ( ')
( ) '

4 | ' |
m

v
dv





 

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M r r r

A r
r r

                  (4.20) 
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As a result, the voltage equation in  can be rewritten as: 
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              (4.21) 

where cN , mN , 
sN  represent the number of current cells, potential cells and 

source cells, respectively. 

Magnetization Mj ( 1... mj N ) is introduced as additional unknowns in 

modeling magnetic plates. Additional equations are needed to make the problem 

well posed.  Assume that the plate material is linear, and is characterized by 

relative permeability µr. According to the constitution law: 

0( ) ( )
1

r

r

 





B r M r                     (4.22) 

Note that magnetic flux density B is expressed by vector potential A. The 

following equation then yields: 

0

1

r

r

 





M(r) A(r)                       (4.23) 

The equation for magnetization density M  at any node is established, as 

follows: 
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           (4.24) 

As similar as the matrix equation (4.5), add the magnetization density as the 

unknown, the new matrix equation can be set up: 
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                 (4.25) 

where , 

sB  is the magnetic field on the bottom and up surfaces of cells, which 

is contributed by the current source. In (4.25) both 
xQ  and 

yQ  are viewed as 

the M-control voltage sources. Assuming 
iju  is zero if i j  , and 

iju  is one if 

i = j, elements in sub-matrix of (4.25) are given by: 
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where ( )b r  and ( )f r  represent the unit vector for M(r) and J(r), respectively. 

By excluding the reference node, the number of total unknowns in (4.25) is 

reduced to 2 (6 1)x y x yN N N N    . 

Each a coefficient matrix in (4.25) has the configuration of 11 12

21 22

A A

A A

 
 

 
, which 

reflects the self-coupling and cross-coupling between the quantities distributed 

on bottom and top surfaces. 

The structure under evaluation is as shown in Fig. 3.8. The thin plate is made 

from linear magnetic materials with the conductivity of 70.75 10 /S m    and 

permeability of 200r  . The external source is a filamentary conductor 
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carrying a current 1I A  at the frequency 50f Hz . The dimensions of the 

structure are: w=200mm, d=2mm, h=50mm. A non-uniform mesh of 40 40   

is adopted.   

The M1 has been implemented in MATLAB. For comparison the results 

computed by the boundary-element method-based (BEM) software 

IES-FARADAY are presented in the figure as well. Fig. 4.15 shows the eddy 

current and magnetization density 
yJ  and xM  in the middle line on the 

bottom of the plate. It can be seen that the results are matched well in most area, 

a little deviation exist in the area near to edge and the maximum errors are 4.13% 

and 3.37%, respectively.  The two components of resultant magnetic flux 

density B  along a diagonal line above the plate are presented in Fig. 4.16, the 

resultant magnetic field matched very well and the maximum error is 4.2%.  

It is clearly that there are significant deviations between the proposed method 

and the IES-FARADAY. This is because that when the magnetic material is 

involved, the EM components which distributed on the plate vary greatly, 

especially in the edge region. The distribution in the edge region does not strictly 

comply with the analytical function. The assumption causes the deviation of 

simulation from the real physical situation. 
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(a) 
yJ  

 

(a) xM  

 Figure 4.15  At the middle line (y=0, z=49mm) on the bottom of the plate. 
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 Figure 4.16  Comparison of B  field at a diagonal line above the plate. 

4.5. Distribution of EM Components 

It is obviously that there are deviations for the electromagnetic components 

distributed on the plate between the proposed methods and IES-FARADAY, as 

shown in Fig. 4.15. As a contrast, there is a matched well result when the plate is 

made of non-magnetic material.  

In this section, the distribution of different electromagnetic components on 

the plate will be presented and discussed. And the aim is to obtain the principle 

of the distribution and find the key factor which causes the deviations.  

Due to all the deviations existed in former comparisons are significantly in 

the edge area of the plate, the characteristics of distribution of the 

electromagnetic components in this area will be focused. As shown in Fig. 4.17, 

for a magnetic plate, the edge region with a depth of 6mm is taken for 
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investigation.  

As similar as the validation for the analytical expression in section 4.1.3, the 

data from IES-FARADAY is employed for investigation. The results on the 

bottom and top surface from IES-FARADAY will be got firstly. Then, the values 

of lines L1, L2, L3 shown in Fig. 4.17 can be calculated by using the Eq. (4.2) 

and (4.3). The results will be compared with the field values obtained directly 

from IES-FARADAY. The difference will be focused and discussed.  

L1

L2

L3

z x

y

bottom

top 

plate

6mm

 

 Figure 4.17  Edge region for investigating the distribution of EM components. 

As shown in Fig. 4.18, the comparison of the electromagnetic components 

distributed on the edge area has been done. For the induced current density (Jx, 

Jy) and the magnetization density components (Mx, My), the characteristics of 

their distribution comply with the double exponential distribution function in 

most area, as shown in Fig. 4.18(a-b). In the edge region, roughly estimated 

2mm area, there is also a deviation with small amplitude. For the magnetization 

component , such deviation is significant in the edge region but matched in most 

area as well, as shown in Fig. 4.18(c). It is this significant deviation resulting in 

a double exponential distribution assumption on the edge region, which leads 

the errors existed in the results of electromagnetic components distributed on the 

plate and the resultant fields around the plate.  
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(a) The comparison of the induced current density. 

 

(b) The comparison of the magnetization density. 
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(c) The comparison of the magnetization density. 

 Figure 4.18  Comparison of the EM components distributed on the edge area. 

4.6. A Non-uniform Meshing Technique  

For any numerical method, the huge number of unknowns arose from 

discretization is a heavy burden on computing resources and accordingly limits 

its application range. How to catch an effective meshing scheme has been being 

a research focus, which ensures the accuracy of calculation, while produces as 

little as possible number of unknowns. 

The results of previous two PEEC models illustrate that the existing density 

of grid is not enough to get a precise solution. And it is little significance and 

unacceptable to increase the density of grid blindly. 

In this section, a non-uniform meshing technique is presented, which is based 

on the principle of the distribution of electromagnetic quantities on the plate. 
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While taking into account the skin effect from multi-surface in the edge region 

of the plate, a refinement is done in this region, as shown in Fig. 4.19. In the 

other hand, some areas, which are closed to the external magnetic field source 

and with relatively stronger responses, are assigned mesh refinement as well, as 

shown in Fig. 4.21. 

As seen in the Fig. 4.19, the couplings are not only come from the upper and 

lower surfaces but also the side surface. A region for mesh refinement close to 

the side can be defined, which is roughly the skin depth 
02 /    of the 

plate.  

Furthermore, as seen in Fig. 4.18, the electromagnetic components vary 

steeper when it is closer to the side boundary. A superimposed non-uniform 

meshing can be done during the refinement region. A set of weighting 

coefficients, such as [0.1, 0.2, 0.3, 0.4], can be defined to generate the 

non-uniform segmentation from the side boundary to the interior of plate.  

In other regions of the plate, due to the distribution of the electromagnetic 

components exhibits relatively smooth, uniform grid can meet the requirement. 

As we known that the great difference between the sizes of adjacent cells will 

cause the result is not smooth, skip or even inaccurate. Therefore, a connection 

region is needed between the uniform area and refinement area, as shown in Fig. 

4.19. It mitigates the difference of the different sizes of non-uniform grid. 
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 Figure 4.19  Mesh refinement on the edge area. 

The proposed meshing scheme is employed for the numerical test presented in 

Section 4.4. Because this procedure is based on the M1 and with the mesh 

refinement, it is marked M1_R. 

Fig. 4.20 shows the comparison of induced current density and magnetization 

from different numerical solvers. The results from M1_R which employs the 

non-uniform meshing scheme are matched with the results from IES-FARADAY.  

Compared with the results from M1, which applies the uniform meshing scheme, 

the results from M1_R are at a significant higher accuracy. The average error of 

induced current density reduces from 3.95% to 0.96%, and for magnetization it 

is reduces from 5.87% to 2.8%. It is obvious that the proposed meshing scheme 

improves the accuracy of solution. 
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(a) Comparison of induced current density. 

 

(b) Comparison of magnetization density. 

 Figure 4.20  Comparison at the middle line on the bottom of the plate. 

Moreover, another meshing scheme is presented. The response in the area 
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close to the external magnetic source is significant than other areas. And this 

means that the electromagnetic components vary greatly. To describe this 

uneven distribution, a refinement grid is supposed to assign for this area. As 

seen in Fig. 4.21, in addition to the refinement on the edge area, a finer grid is 

done for the areas which are closed to the current sources (I and -I). Similarly, 

the connection area is needed. 



Connection 
Area

z x

y

M1

I I

Finer 
segmentation

 

 Figure 4.21  Mesh refinement corresponding to the external current sources. 

4.7. A Hybrid PEEC Method 

For the plate made from ferromagnetic material, as the response, the 

electromagnetic components vary singularly in edge area of the plate. In section 

4.6, the mesh refinement for specific areas greatly improves the accuracy of the 

solution fields. However, note that the assumption of double exponential 

function is not accurate in the edge region of the magnetic plate, as seen in Fig. 

4.18. Essentially, the mesh refinement just compress the error caused by this 

assumption, but not eliminates. In this section a new hybrid modeling method 

(named M3) will be presented, which is expected to essentially reduce this error. 

From the exhibition in Fig. 4.18, it is clear that the electromagnetic 
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components ( xJ , 
yJ , xM , 

yM ) which are involved in the plane of the plate 

have smooth fluctuation during the total area. Although there is a little deviation 

in the edge area, it can be reduced by the implementation of mesh refinement in 

this area.  

For the component ( zM ) which is perpendicular to the plane of the plate, it 

has a gradual fluctuation among the most area but a dramatic change in the edge 

area. The mesh refinement for the edge area is less effective and costly. As 

mentioned in Chapter 3 that a higher density of grid will lead higher accuracy 

result based on the traditional volume cells. It means that enough number of 

volume cells can simulate the distribution of zM  in the edge area. Therefore, a 

hybrid mesh scheme will be applied for zM . For the edge region, roughly 

estimated as the skin depth, the discretization of traditional volume cells is done. 

And for the rest most area, the double exponential expression is still employed. 

The hybrid mesh scheme has two benefits: 1) the assumption of analytical 

expression distribution reduces the number of unknowns compared with M0; 2) 

the traditional volume cells applied for zM  in edge region improves the 

accuracy of solution. 
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 Figure 4.22  Meshing scheme of M3. 

The new hybrid method is tested with the configuration presented in section 

3.2. The results are compared with the M1, M1_R, and validated by the 

IES-FARADAY. As shown in Fig. 4.23, the results from M3 are very closer to 

the results from M1_R. The average error of induced current of M3 compared 

with BEM is less than 1%, and the largest value which is located on the 

boundary is 5.35%. For the magnetization, the accuracy is improved compared 

with M1. The average error is reduced from 5.87% to 2.8%, and the largest 

value is just 3.47%. 
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(a) Comparison of induced current density. 

 

(b) Comparison of magnetization density. 

 Figure 4.23  Comparison of EM components between different methods. 
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4.8. Conclusion 

In this chapter, a double exponential function is adopted to describe the 

distribution of the induced current and magnetization along the thickness of the 

plate. With this assumption, a new PEEC modeling method is presented and 

named M1. The plate can be then meshed into a set of volume current cells only 

along its width and length. These cells join together at the potential cells 

according to their topology. The circuit model and its correspond circuit 

parameters of a cell were developed using the electric current integral equation. 

As the discretization over the cross section of the plate is avoided, the total 

number of unknowns is significantly reduced.  

This procedure has been tested using the model with a simple plate 

configuration. Both the current density on the plate and the resultant magnetic 

around the plate were calculated. The results were compared with that obtained 

using the IE method. It was found that the proposed procedure is efficient in 

solving the eddy-current or shielding problems with a large thin plate structure.  

For improving the solution accuracy, the non-uniform meshing technique is 

presented for all the electromagnetic components. For the component which is 

perpendicular to the plate, the volume cells are assigned for the edge region. 

Then the hybrid numerical method (M3) is proposed. The numerical testing 

reflects that the assumption of double exponential function is effective and very 

efficient. The hybrid meshing scheme further improves the accuracy of PEEC 

model.  
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This numerical tool may be considered an extension of the traditional PEEC 

approach for solving low-frequency eddy-current/shielding problems of large 

plates, which is usually applied to three-dimensional multi-conductor systems in 

electronic systems. The proposed PEEC approach will broaden the spectrum of 

PEEC applications, and because the skin effect and magnetic properties of plate 

material have been taken into account, it will contribute to the solution of 

low-frequency EM problems where a strong skin effect exists in the plates. 
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5. Surface Elements of Magnetization 

In this chapter, an extended PEEC formulation is proposed to model 3D 

metallic plates for magnetic shielding at low frequency.  The plates are made of 

linear magnetic material, and exhibit induced current and magnetization current 

under the excitation of an external magnetic field. In the proposed PEEC 

formulation the volume current of magnetization is substituted with the induced 

current in the plate. An analytical function is then adopted for the induced current 

to avoid volume discretization on the plate. Circuit equations are then built up, 

and solved for both induced current and surface current of magnetization on the 

plate, subsequently the magnetic field around the magnetic plate. The proposed 

method was tested on a shielding structure made by a magnetic plate. A 

comparison of the results with the boundary-element-method (BEM) based 

software is presented finally. 

5.1. The Problems in Above Models of Magnetization 

The PEEC method or the equivalent circuit method has been proposed to 

solve shielding problems at low frequency. One challenging issues faced in its 

application for shielding is the non-uniform distribution of eddy current within 

the plate. For a shielding problem associated with 3D plates, a large number of 

elementary volume cells are required in order to improve the accuracy of its 

results. It is because volume currents of cells in the standard PECC formulation 

are assumed to be constant, as seen in method M0. This certainly requires a 

significant amount of computing resources for solving 3D shielding problems.  
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The novel technique of M1 has been proposed to deal with the current 

distribution over the cross section of the plate [6], and has been successfully 

applied to solve shielding problems associated with 3D conductive plates.  

In both M0 and M1, the potential cells are the volume cells. Even a small 

plate can bring out a large number of cells. Besides that, since magnetization zM  

is singular in the edge area and varies sharply in this area, the volume cell 

scheme cannot describe preciously the characteristic of zM  near the edge. 

Therefore, it is necessary to search an appropriate approach to represent the 

distribution of zM  accurately and to avoid big deviation in the area close to 

plate edges. 

5.2. Magnetization 

In the absence of an external magnetic field, the magnetic dipoles in a piece 

of material are oriented at random, as shown in Fig. 5.1(a). Thus, the net 

magnetic moment is nearly zero. In the presence of an external magnetic field, 

each magnetic dipole experiences a torque that tends to align it with the 

magnetic field, as illustrated in Fig. 5.1(b). The figure shows an ideal case of 

perfect alignment, but in reality, the alignment is only partial. The alignment of 

the magnetic dipoles is different with the electric dipoles. The alignment of the 

magnetic poles in paramagnetic and ferromagnetic materials increases the 

original magnetic field. The alignment of the magnetic dipoles within the 

material is equivalent to the current along the surface of the material, as depicted 

in Fig. 5.1(c). This current results in an additional magnetic field within the 
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material.  

 

(a) A piece of magnetic material with randomly oriented magnetic dipoles; (b) An external 

field causes the magnetic dipoles to align with it; (c) The small aligned current loops of (b) 

are equivalent to a current along the surface of the material. 

Figure 5.1  Magnetic polarization 

When a finite volume of a magnetic material is considered, the global 

magnetic vector potential generated by the magnetic polarization is: 
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where | | | '|R   R r r , mA  is the magnetic vector potential, and M  is the 

magnetization density. 

The use of vector identities allows to obtain a different representation of mA  

which provides an interpretation in terms of surface currents: 

0

3'

0 0

' '

( ')
( ) '

4

( ') ( ') '
' '

4 4

m
v

v S

dv
R

dv dS
R R





 

 




 
 



 

M r R
A r

M r M r n
        (5.2) 

where n'  is the unit vector of the surface element 'S . 

When the magnetic polarization is uniform inside the volume 'v  and the 

quasi-static approximation (delays negligible) is assumed, the first term in Am is 
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identical to zero. As a consequence, the magnetic vector potential will be 

interpreted in terms of only surface current: 
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This technique was adopted in [10]. However, magnetization is not 

always homogeneous within a body, but rather varies between different points. 

When the magnetic polarization is non-uniform inside the volume 'v , the 

volume current needs to be taken into account. 

Note that the magnetization M  makes a contribution to the current 

density 
mJ  in the volume 'v , known as the magnetization current or bound 

current: 

mJ M                         (5.4) 

Then, the vector potential ( )mA r  can be expressed further by: 
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5.3. PEEC Model Based on Surface Elements of Magnetization 

5.3.1. Vector Potential Using Surface Current of Magnetization 

Electrical current 
cJ  appears in a general PEEC formulation. From the 

Maxwell’s Equations, there is a relation between electrical current 
cJ  and the 

magnetic field H , as follows: 

cJ H                          (5.6) 

In many materials, such as ferromagnetic, the response of the 

magnetization M  in a diamagnet or paramagnet is approximately linear: 

mM H                         (5.7) 

http://en.wikipedia.org/wiki/Homogeneity_(physics)
http://en.wikipedia.org/wiki/Current_density
http://en.wikipedia.org/wiki/Current_density
http://en.wikipedia.org/wiki/Diamagnet
http://en.wikipedia.org/wiki/Paramagnet
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where the constant 
m  of proportionality is the magnetic susceptibility of the 

material.  

Thus, current density of magnetization 
mJ  can be expressed in terms of 

electrical current density 
cJ , as follow: 

m m   m cJ H J                        (5.8) 

and, because of 1m r   , 

( 1)r m cJ J                           (5.9) 

Consequently, in the presence of magnetic material the total magnetic vector 

potential at a point r is given by: 
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The two updated items of vector potential are as follows: 
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This indicates that the effect of magnetization current inside the magnetic 

material can be taken into account by using the induced current in an infinite 

magnetic medium. As a result, the electrical equation is established with two 

types of unknowns: induced current density and surface current density of 

magnetization. Fig. 5.2 illustrates both induced current density and surface 

current density of magnetization within a magnetic plate.  With the constitutive 
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relation (4b), these unknowns can be obtained directly using traditional circuit 

analysis tools. 

J 
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zM
yM

zM

xM
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z

x

y

surface 
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Figure 5.2  Volume elements for induced current and surface elements for surface current 

of magnetization. 

Then, using the vector identity: 

( ) ( )f f f    F F F                   (5.13) 

The magnetic flux contributed by magnetization at a point in the space is 

expressed as: 
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where 

( ') ' ( ')  mJ r M r                    (5.15) 

( ') ( ') ' mK r M r n                     (5.16) 

5.3.2. Discretization of the Plate 

The discretization of a plate is required for both volume electric current and 

surface current of magnetization.  First of all, the plate is divided into a number 

of surface cells over its six surfaces with numbers ( 1xN  , 1yN  , 1zN  ) of 

grid lines in x, y and z directions, as illustrated in Fig. 5.3(a). The total number of 
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surface cells is 2( )S

m x y x z y zN N N N N N N   . These cells are introduced for 

defining surface density of magnetization ( M n ). 

 

(a) Surface elements of magnetization 

 

(b) Segmentation on the surfaces of a magnetic plate for magnetization 

① ②

③

④

⑤ ⑥

xJ

yJ

xJ

yJ

 

(c) Mark for surfaces and the distribution of electric currents 

 Figure 5.3  Discretization and the elementary cells of the plate. 

The electric current flows in the x-y plane only. The potential cell is then 

formed by taking the volume between two opposite surface cells in the x-y plane, 
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as illustrated in Fig. 5.3(c). Then, current cells are formed by taking the volume 

between the centre points of these adjacent potential cells. The current cells on 

the plate are classified into two types, which carry the currents in two orthogonal 

directions. These cells are named X cells and Y cells. The numbers of X cells and 

Y cells are ( 1)x yNX N N   and ( 1)x yNY N N  , respectively. 

5.3.3. New PEEC Model for Magnetic Plate 

With the proposed meshing, the PEEC model can be built up in the form of a 

set of branch equations. The branch voltage defined in Eq. (2.14) can be rewritten, 

as follow: 
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where cN , S

mN , 
sN  represent the numbers of induced current cells, 

magnetization cells and source wires, respectively. 

The constitutive relation given in Eq. (2.17) introduces additional equations for 

surface density of magnetization M n  at any node, as follow: 
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Both 
c,iJ  and iM n  can be solved for directly using traditional circuit 

techniques. With known 
c,iJ  and iM n  on the plate, it is possible to evaluate 

the resultant field around the plate, which is contributed by the excited source 

current, the induced current and surface current of magnetization.  The resultant 

magnetic field B  around the plate is given, as follow: 
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(14) 

5.4. Numerical Investigation 

For numerical validation, the simple shielding structure is investigated in this 

paper, as shown in Fig. 3.9. The thin plate is made from linear magnetic materials 

with the conductivity of 70.75 10 /S m    and the relative permeability of 

200r  . It is a square plate with the side length of 200w mm  and the 

thickness of 2d mm . The external source is a filamentary conductive square 

loop with the side length of 100D mm  running in parallel with the plate. It is 

located in the centre with the separation distance of 50mm from the plate. The 

source loop carries an a.c. current of 1I A  at the frequency of 50f Hz . 

The proposed method (M2) has been run on the platform of MATLAB. Two 

different meshing schemes (PM1 and PM2) were considered for the simulation. 

PM1 is a uniform meshing scheme with 30xN  , 30yN  , and 4zN  . 

Considering strong non-uniform distribution of induced current and surface 

current of magnetization, fine meshing around the edges of the plate was adopted 

in PM2, that is, 44xN  , 44yN   and 4zN  . For comparison, the results 
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computed by the commercial software based on Boundary Element Method 

(BEM) are presented as well. Similarly, two grid sizes have been implemented 

for using BEM: BEM1 ( 30xN  , 30yN  , 4zN  ) and BEM2 ( 40xN  , 

40yN  , 4zN  ). 

Considering the geometrical symmetry of the structure under investigation, a 

quarter of the structure was modeled in the simulation by using these two 

different methods (the detail is presented in Chapter 6). The requirements for 

computer resources were relaxed significantly. The information of the computer 

used for the simulation is given, as follows:  

 CPU:   Intel(R) Pentium(R) 4, 2.00GHz 

 Memory:   2.00GB of RAM 

The computation information is given in Table 5.1. It is clearly that the 

computation time for the proposed method is much less than the software. Note 

that no particular optimization procedure was taken in the program for the 

proposed method running on the Matlab platform. 

TABLE 5.1 Number of Unknowns and Computation Time 

 PM1 PM2 BEM1 BEM2 

Elements in total 570 1144 570 960 

Unknowns 2040 4224 3010 5010 

Computation time 3’36’’ 16’38’’ 32’22’’ 54’ 

The resultant magnetic field was calculated by both methods on a line above 

the plate. It runs in parallel with the diagonal line of the plate at the height of 

50mm. The results are compared in Fig. 5.4. It is noted that the field curves 
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obtained from two different methods match well generally. Relatively large 

difference is observed in the central area of the plate. With less dense meshing 

schemes (PM1 and BEM1), the maximum difference is found to be 3.7% at the 

central point of the plate. With more dense meshing schemes (PM2 and BEM2), 

the maximum difference is reduced to be less than 1% at the same location. 

Reduction of the difference is contributed by the improvement of results in both 

BEM and PM (e.g., 50% reduction in BEM and 50% in PM).  

 

 Figure 5.4  Resultant magnetic field on a diagonal line above the plate (z=100mm). 

5.5. Conclusion 

In this section, an extended PEEC model based on the surface elements of 

magnetization was proposed. In the presence of linear magnetic material, circuit 

equations and constitutive relation equations were set up using both volume 

induced current and surface current of magnetization. The volume current of 

magnetization is substituted by the induced current. This approach avoids volume 

meshing for magnetization, and improves the accuracy of simulation. A double 
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exponential function analytical expression is adopted for the current density to 

avoid the discretization along the thickness of the plate, subsequently reduces 

number of the unknowns greatly. A testing example was presented for validating 

the proposed method with the commercial software. It was found that the 

resultant magnetic fields obtained from these two methods match well. The 

computation time is significantly less than that required by the BEM when the 

similar meshing size was adopted in the simulation. 
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6. The Techniques for Reduction of PEEC Unknowns 

In above chapters, the PEEC method has been developed to deal with the 

electromagnetic problems with the structures of wires and plates. It has the 

capability to generate the models of the interconnected structure in the form of 

an electrical circuit. This allows a better understanding of the shielding behavior 

using circuit concepts. 

However, when using this method for a large 3D problem, the number of 

unknowns would be significantly large due to volume discretization [6]. The 

research on minimizing model complexity in order to reduce solution time is 

particularly interesting. Reduction of unknowns in a PEEC model is one of the 

most popular approaches. 

In this chapter, two techniques for reducing the number of PEEC unknowns 

for 3D metal plates in magnetic shielding are presented, that is, loop analysis 

technique and modeling technique for symmetrical shielding structure. Firstly, 

the loop analysis approach is developed to combine the electric field integral 

equations set up for the branches along different orthogonal directions. The 

branches are merged into loops and the unknown of electrical potential is 

eliminated. According to the pattern of eddy current distribution on the plate, the 

induced current components ( xJ , yJ ) can be expressed by each other. Then the 

variable set is compressed to a reduced set with one variable only ( xJ , yJ  , or a 

new variable - loop current I ).. Secondly, according to the pattern of both eddy 

current distribution and magnetization distribution in the plate, symmetric 
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and/or anti-symmetric properties in a shielding problem can be identified.  The 

set of system equations can be further reduced by these symmetrical and 

anti-symmetric properties. The reduced set of system equations will then be 

solved efficiently. 

6.1. Loop Analysis Techniques 

6.1.1. Variable Elimination 

For simplicity of discussion, the general matrix equation (3.29) given in 

Chapter 3 for a shielding structure made of linear magnetic/conductive materials 

is presented below: 

t

x

t

y

    
    
    
    
    
        

s
x x xx

s
y y y y

x y

sx y

L     0      C     Q UJ

0      L     C     Q J U
=

C    C      0       0 Φ 0

M BT     T      0       P

                  (6.1) 

The matrix equation (6.1) can be solved uniquely for induced current densities 

(Jx and Jy), potential Φ  and magnetization density (Mx, My and Mz). 

Excluding an electric scalar potential for reference node, the number of 

unknowns for the variables Φ , Jx, Jy, and M are 1x yN N N   , 

( 1)cx x yN N N  , ( 1)cy x yN N N   and 3m x yN N N , respectively. 

Therefore, the total number of unknowns in (6.1) is equal to

6 1tot x y x yN N N N N    . 

It is noted that scalar potential Φ  is not necessary in calculating the resultant 

magnetic field, and that there are a considerable number of zeros in the matrix.  

This leads to a very large system matrix equation, and wastes computer 
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resources significantly. 

Moreover, the eddy current circulates within the plate and the orthogonal 

eddy current components are not independent. Different components can be 

expressed by each other. There is a possibility of combining these current 

components or replacing these components with a new variable. At the same 

time the unknowns of electric potential Φ  are eliminated. 

y

xz

, ,,x i x iV J

, ,,x j x jV J

, ,,y p y pV J
, ,,y q y qV JkI

 

 Figure 6.1  Closed loop formed by X/Y branches. 

As shown in Fig. 6.1, a closed loop is formed with four adjacent branches. 

Potential difference for each branch is determined by all loop currents on the 

plate. The total potential difference along the loop is identically zero, that is: 

, , , , 0x i x j y p y qV V V V                            (6.2) 

Voltage equations for these branches are already available in (6.1). 

Substituting the corresponding branch equations of Eq. (6.1) to (6.2) yields a 

loop equation: 

x,i x,j x y,q y,p y x,i x,j y,p y,q

sx,i sx,j sy,p sy,q

(L L ) (L L ) (Q Q Q Q )

U U U U

       

   

J J M
       (6.3) 

From Eq. (3.11) of the KCL relation, xJ  and 
yJ

 
can be expressed by each 

other, as follow 
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1 y x y xJ C C J                       (6.4) 

Eq. (6.3) can be rewrote as follow 

x,i x,j y,q y,p x,i x,j y,p y,q

sx,i sx,j sy,p sy,q

[(L L ) (L L ) ] (Q Q Q Q )

U U U U

       

   

-1

y x xC C J M
    (6.5) 

As a result, the adjacent four X/Y branches can be integrated to one circuit 

loop, the variables of Jy and Φ  in Eq. (6.1) can be substituted with one 

variable Jx 
, and (6.1) can be written as: 

*

*

    
    
      

*
s,loopx x

s

UL   Q J
=

M BB    P
                      (6.6) 

where 
s,loopU  is the excitation on the loop by external current source. The total 

number of unknowns in Eq. (6.6) is equal to 4tot x y yN N N N  . 

This procedure provides an automatic conversion algorithm for reducing the 

set of system equations in which only one variable Jx retains and the unknown 

of electrical potential is eliminated completely. 

6.1.2. Loop Current 

In some cases, a generalized loop current is introduced to establish system 

equation for the induced current problem. As seen in Fig. 6.2, four 

adjacent nodes are connected by four current cells, which include two X-cells 

and two Y-cells. The relationship between the loop current and the current 

densities carried in the four cells is as follow: 

, , , , , , , ,k x i x i x j x j y p y p y q y qI J w J w J w J w                  (6.7) 
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 Figure 6.2  The relationship between loop current and X/Y cells. 

After introducing loop current I  on the plate ( kI  for loop k in Fig. 6.2), 

both xJ  and 
yJ  can be expressed by: 

' '

x yx yJ = C I ,   J = C I                      (6.8) 

where '

xC  and 
'

yC  are the modified nodal incidence matrices by including 

current cell width in the entry for that current cell. 

There are two benefits: 1) the set of two induced current variables have been 

compressed to one variable; 2) the relationship between X/Y cells has been 

merged in the transformation to loop current. As a result, the Eq. (6.3) can be 

rewritten as: 

' '

x,i x,j x y,q y,p y x,i x,j y,p y,q

sx,i sx,j sy,p sy,q

[(L L ) (L L ) ] (Q Q Q Q )

U U U U

       

   

C C I M
      (6.9) 

The matrix equation with loop current I as the unknown is then given by: 

    
    
      

loop loop s,loop

loop s

L   Q UI
=

B   P M B
               (6.10) 

As loop number is equal to ( 1) ( 1)x yN N   , the number of total unknowns 

in matrix (6.10) is reduced to 4 1x y x yN N N N   . 

6.2. Modeling for Symmetrical Structures 

In some structures, the electromagnetic components distributed inside and on 
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the surface of the plates are symmetrical or anti-symmetrical with respective to 

the x, y or z axis in a Cartesian coordinate system. Solve the total electromagnetic 

components for the plates without taking into these symmetric or anti-symmetric 

properties is a waste of computing resources and unnecessary. For a symmetrical 

shielding structure, only a part of the structure needs to be taken into account. For 

example, as shown in Fig. 6.3, the structure is symmetric to the z-axis, that is, the 

electromagnetic components inside and on the surface of the plate is 

anti-symmetrically. Therefore, we can pick up a quarter of the plate for setting 

up the PEEC model. The unknowns will be reduced to 1/4, and the solution 

matrix will be reduced to 1/16. 

z

x

y

eddyI

 

 Figure 6.3  Distribution of electromagnetic components around the plate. 

Long power lines are commonly fixed in buildings, the magnetic shielding at 

power frequency for them is valuable. During the shielding structures by metal 

plates, two typical cases are introduced in Fig. 4. Reference to the plate, the 

source line is parallel in case A and perpendicular in case B. Obviously, there 

exists symmetric and anti-symmetric patterns for the distribution of eddy current 

and magnetization in the plate. Electromagnetic components in some parts of the 
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structure have the same amplitude but different symbol. On the other hand, since 

the overall structure is modeled as interconnected and coupled circuit 

components, some sub-matrixes of the coefficient matrix in Eq. (12) can be 

folded and recombined. Then both the number of unknowns and the size of the 

solution matrix will be reduced greatly. 

Long power lines are commonly found in buildings. The magnetic shielding 

at power frequency against these lines is necessary. For the shielding structures 

made by metal plates, two typical cases are introduced in Fig. 4. With reference 

to the plate, the source line is parallel in case A and perpendicular in case B. 

Obviously, there exists symmetric and anti-symmetric patterns for the 

distribution of eddy current and magnetization in the plate. Electromagnetic 

components in some parts of the structure have the same amplitude but opposite 

phase angle. On the other hand, since the overall structure is modeled as 

interconnected and coupled circuit components, some sub-matrixes of the 

coefficient matrix in Eq. (12) can be folded and recombined. Then both the 

number of unknowns and the size of the solution matrix will be reduced greatly. 

 

 Figure 6.4  Configurations of a wire-plate structure. 
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In both case A and case B, the source lines can be treated as current loops and 

the excited magnetic field can be described in Fig. 5. The plate can be then 

divided into four parts with unique field pattern in each part. According to the 

distribution of magnetic field, the relationship of eddy current and magnetization 

distributed on different parts can be analyzed separately. 

I I

    I

I

 

(a) Case A.                          (b) Case B. 

 Figure 6.5  Distribution of magnetic field in the two cases. 

6.2.1. Modeling for Eddy Current 

The current distribution in a plate is determined by the orientation of a current 

source. Note from the Faraday’s law that the induced current flows in such a 

way that its magnetic field is opposite to the source field. The patterns of the 

current distribution in two cases can then be obtained, as shown in Fig. 6.6. In 

Fig. 6.6 both L1 and L2 are either the symmetrical or anti-symmetrical plane, 

perpendicular to the plate surface, and divide the plate into four parts. Table 1 

presents a summary of the symmetrical properties of current components in the 

plate. 
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 (a) Case A.                           (b) Case B. 

 Figure 6.6  Relationship of eddy current distributed on different parts. 

Table 6.1  Symmetrical properties of current density and magnetization density. 

Symmetrical plane 

Jx or Jy Mx, My or Mz 

L1 L2 L1 L2 

Case A anti-sym. anti-sym. sym. sym. 

Case B sym. anti-sym. anti-sym. sym. 

For case A, the induced current flows across both L1 and L2. The relationship 

among these orthogonal components in four parts is given by: 

1 2 3 4

1 2 3 4

x x x x

y y y y

J J J J

J J J J

    

    
                       (6.11) 

For case B, two current loops are formed in the two parts separately, and there 

is no current crossover L1. The following relationship is obtained: 

1 2 3 4

1 2 3 4

x x x x

y y y y

J J J J

J J J J

    

  
                      (6.12) 

As illustrated in Table 6.1 and Eq. (6.11) or (6.12), the current components in 

corresponding cells of these four parts either are identical or negatively identical. 

Therefore, only one part of the plate needs to be modeled for problem solving. 
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Accordingly, the voltage equation on branch i given in Eq. (6.1) is expressed by 

the current components in four parts, as follows: 

T
1 2 3 4 1 2 3 4 1 1 1

x,i x,i x,i x,i x x x x x,i x,i sx,iL L L L Q V U           J   J   J   J M        (6.13) 

In Eq. (6.13) 2 3 4

x x xJ   J   J  can be substituted by 1

xJ  using the symmetrical 

properties. Elements in (6.13) are then merged to form a modified equation with 

a reduced set of unknowns: 

1 2 3 4 1 1 1 1

x,i x,i x,i x,i x x,i x,i sx,i(L L L L ) Q V U     J M           (6.14) 

for Case A. Repeating the merging process for all branch equations and applying 

the procedure described in Section 6.1 yield a reduced matrix equation, as 

follows: 

11 1,* 11
loop loop s,looploop

*,1

sloop

    
    

          

L Q UI

BB P M
                   (6.15) 

The matrix equation for Case B can be derived in a similar way. The number 

of unknown loop currents in (6.15) is now reduced to / 4x yN N  from x yN N . 

6.2.2. Boundary Conditions 

When a symmetrical or anti-symmetrical plane is adopted in plate modeling, 

it is necessary to apply boundary conditions on these planes for obtaining a 

modified matrix equation. As shown in Fig. 6.7, in both case A and case B, the 

x-z plane and y-z plane are the planes of symmetry. There exists eddy current 

across the x-z and y-z symmetrical planes in case A, but does not go through the 

y-z symmetrical plane in case B. This means that, the eddy current across both 

the x-z plane and y-z plane should be taken into account in case A, and the latter 

is not necessary to consider in case B. 
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 Fig. 6.7 shows two different scenarios of the boundary; (i) current cells do 

not cross over the plane (La), and (ii) current cells cross over the plane (Lb). In 

Case (i), no current loop crosses over the boundary. In Case (ii), no current loop 

exists over the boundary if one of the current components is symmetrical to the 

plane (e.g., L1 in Case B). The matrix equation remains unchanged in these two 

cases. If both Jx and Jy are anti-symmetrical as shown in Case (ii), the potential 

on both sides is anti-symmetrical. A current loop does exist over the boundary, 

as shown in Fig. 6.7. The loop equation is revised by using the branch equations 

in Part  only, as follows: 

, , ,2 0x i x j y pV V V                       (6.16) 

With (6.16) the matrix equation in (6.15) is further updated by using the same 

technique presented early. 

①

, ,,x i x iV J

, ,,x j x jV J

, ,,y p y pV J
, ,,y q y qV JkI

Boundary La

Boundary Lb

 

 Figure 6.7  Different boundary approaches for the two cases. 

6.2.3. Modeling for Magnetization 

In a magnetic plate excited by an external magnetic field, the atomic currents 

are aligned so that the magnetic field is opposite to the source field outside the 
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plate. Inside the plate, it has a similar pattern as the source field for field 

enhancement [11]. Using the modeling technique for symmetrical induced 

current, only one part of the part needs to be considered for modeling the 

magnetization distributed on the full plate. 

For two source orientations shown in Fig. 6.4, the distribution patterns of 

magnetization density are given in Fig. 6.8. Four symmetrical or 

anti-symmetrical parts are identified with two orthogonal planes L1 and L2 

perpendicular to the plate surface. For case A, the wire frame is parallel to the 

plate, the magnetic lines pass through the metal plate perpendicularly, the 

orthogonal magnetization components on different parts are described in Fig. 

6.8, and the relationship is given, as follows: 

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

y y y y

z z z z

M M M M

M M M M

M M M M

    

    

  

                    (6.17) 

For case B, the relationship among these orthogonal components is given by 

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

y y y y

z z z z

M M M M

M M M M

M M M M

  

    

    

                    (6.18) 

The symmetrical properties of three components Mx, My and Mz in these four 

parts are summarized in Table 6.1. 
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 (a) Case A.                           (b) Case B. 

 Figure 6.8  Relationship of magnetization distributed on different parts. 

After applying the same approach adopted for modeling the induced current, 

the constitutive equation at each node is modified by merging matrix entries for 

common Mx, My and Mz in four parts. Repeating the merging process for all 

nodes yields a further-reduced matrix equation, as follows: 

11 11 11
loop loop s,looploop

11 11 11
loop s

    
    

         

L Q UI

B P BM
                  (6.19) 

Similarly, the number of each magnetization density component (Mx, My or 

Mz) is reduced to / 4x yN N , and the total number for three components of M is 

equal to 3 / 4x yN N . By using the techniques given in Section 6.1.2, and 6.2.1, 

the total number of unknowns in matrix (6.19) is equal to x yN N , compared with 

6 1x y x yN N N N    in the original equation (6.1). 

6.3. Numerical Test and Result Comparison 

For validating the reliability and efficiency of the proposed modeling 

techniques, the wire-plate structures with magnetic material for both case A and 
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case B have been selected. First of all, shielding results are computed on the 

MATLAB codes developed using the proposed algorithm. The model of Eq. 

(6.1) is as set of original equations which takes the whole plate into 

consideration, and is named OM. The model in Eq. (6.19) is improved one using 

the proposed modeling techniques of loop analysis and symmetry, and is named 

PM. The simulation results are then compared with those obtained from the 

commercial software based on Finite Element Method (FEM).  

The configuration for testing is as shown in Fig. 6.4. The plate is made from 

linear magnetic material with the conductivity of  =6x10
6
 S/m and the relative 

permeability of r =170. It has the dimensions of 80x80x2 mm
3
. The source of 

loop wire is 20 mm wide and 20 mm long, and carries a current of 1 A at 50 Hz. 

It is located in the center with a distance of 20 mm to the plate.  

The information of the computer used for the simulation is given, as follows:  

 CPU:    Intel(R) Core i7-2600, 3.4GHz 

 Memory:   16.00GB of RAM 

A uniform mesh of 40 x 40 ( 40xN  , 40yN  ) is adopted in both case A and 

case B for OM and PM. Table 6.2 shows a summary of element number on the 

plate and computation time required. It is clearly that the number of total 

elements in FEM is much more than in both OM and PM, it is because all the 

regions including the free space in FEM need to be modeled and the 

discretization over the cross section of the plate. On the other hand, the number 

of unknowns of PM is reduced by 33% from OM when the loop technique is 
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applied, and is further reduced to just one sixth when the symmetrical modeling 

technique is implemented. As a result, PM reduces the computation time 

significantly (e.g., from 11 min. and 33 sec. to 1 min. and 16 sec. in Case A). 

Note that no particular optimization procedure was taken in the Matlab codes 

developed from the proposed method. 

TABLE 6.2  Time and elements required by different methods. 

Source Case A Case B 

Method PM OM FEM PM OM FEM 

Total elements 3200 19038 2308235 3200 19038 2311046 

Computing time 00:01:16 00:11:33 11:26:33 00:01:14 00:11:47 14:10:59 

The computed resultant magnetic fields on line L are plotted in Fig. 6.9. As 

the same formulation is adopted, the same results can be obtained by both OM 

and the improved model (PM). And the results computed by the FEM and PM 

match well, with an average difference of 1.4% for two source orientations. In 

case A, the deviation between PM and FEM in most area is below 1%, the 

obvious deviation exists in the edge area and does not exceed 2%. In case B, the 

deviation is below 3% in most area. Due to the placement of source wire in case 

B, the fluctuations are relatively large in the central area. Both case A and case 

B validate that the proposed techniques are reliability and high efficiency. 
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 Figure 6.9  Magnetic fields on line L computed by the three methods. 

6.4. Conclusion 

This chapter presented the techniques for reduction of unknowns in PEEC 

model. The loop technique is given to combine the electric field integral 

equations set up for the branches along different orthogonal directions. The 

approach is presented for modeling symmetry and anti-symmetry properties of a 

wire-plate structure used in magnetic shielding applications. The PEEC model 

for such a structure was presented. The matrix equation obtained was reduced to 

one sixth approximately in size if these properties are fully taken into account. 

The proposed techniques have been tested numerically, and validated with the 

commercial EFM code. It found that shielding problems can be solved at the 

reduced cost without loss of accuracy. The proposed techniques are particularly 

useful in solving a large plate shielding problem with a high degree of symmetry 
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and/or anti-symmetry. 
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7. Application and Experimental Verification 

To study protection concept and mitigate electromagnetic hazards effectively, 

it is proposed in this thesis to obtain an effective approach for evaluating low 

frequency magnetic fields in the presence of the large plate structures used in 

modern buildings. Different modeling methods based on PEEC method have 

been presented in former chapters.  

In this chapter, for the application to large plate structures, a comparison of 

these modeling methods will be done. The suitable method with the 

optimization techniques will be applied to evaluate the magnetic shielding arose 

from the plate structures used in buildings. The experimental verification for the 

proposed procedure is implemented finally. 

7.1. Discussion of Different PEEC Models 

Different models based on the PEEC formulation have been proposed and 

discussed in above chapters. The advantages and disadvantages of these 

methods are also discussed. Any a method is based on an assumption of 

distribution of electromagnetic components and is suitable for special cases. 

Here, a simple plate is presented to investigate the computation abilities of these 

methods. 

As shown in Fig. 7.1, the different meshing schemes for the presented 

modeling methods for a symmetrical plate are given. Just one fourth of the plate 

needs to be modeled. For M0, the plate needs to be discretized along all the 

directions (x, y, z) and a number of volume cells are formed. Due to the huge 
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number of unknowns, M0 is not capable for practical application. For M1, the 

meshing is done based on volume cells, and the unknowns are defined on the 

bottom and top surfaces (⑤ and ⑥) of the plate. All the electromagnetic 

components have the uniform grid. The refinement on the edge area is also done 

and the number of segmentation (Nrx, Nry) is included in Nx and Ny. The 

improved model is named as M1_R.  

For M2, besides the volumes cells for current, the surface elements for 

magnetization on the outer of the plate (①, ③, ⑤ and ⑥) need to be added. 

Similarly, the refinement on the edge area is implemented and the model is 

named as M2_R.  

For M3, meshing for the electromagnetic components which are in the plane 

of the plate is as same as in M1. But the segmentation on the edge area is also 

done, which is for Mz using the meshing scheme of M0, as seen the corner in 

Fig. 7.1.  

①

③
⑤

⑥

xN

zN

yN
rxN

ryN

z

x

y

 

 Figure 7.1  Meshing of different methods for a symmetrical plate. 

A detail data sheet of the number of unknowns is given in Table 7.1 for 

comparison of different methods. It can be seen that the most complex data 
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constitution exists in M3, and the simplest one is in M1. It reflects the 

complexity of modeling. The number of unknowns in M3 is obviously more 

than in M1. When the plate is thin and Nz is small, the number of unknowns in 

M2 is less than in M1. 

TABLE 7.1  Number of unknowns in different methods. 

 Iloop Mx My Mz Total 

M1_R 2NxNy 2NxNy 2NxNy 2NxNy 8NxNy 

M2_R 2NxNy 2NxNy+ 

NxNz 

2NxNy+ 

NyNz 
NxNz+NyNz 

6NxNy+ 

2Nz(Nx+Ny) 

M3 2NxNy 2NxNy 2NxNy 
2(Nx-Nrx)( Ny-Nry)+ 

Nz(NxNry+NrxNy-NrxNry) 

6NxNy+2(Nx-Nrx)( Ny-Nry)+ 

Nz(NxNry+NrxNy-NrxNry) 

The configuration showed in Fig. 3.8 is employed for testing these different 

methods. The resultant magnetic field on a line in the space is calculated. The 

results from different methods are plotted in Fig. 7.2. It can be seen that the 

results are matched very well. Compared with the result from IES-FARADAY, 

the average errors are 0.8% in M1_R, 0.6% in M2_R and 1.1% in M3, 

respectively. All the results are at high accuracy and can be accepted. The factor 

for the application of these methods needs to be taken into account is the 

requirement for computation resource. 
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 Figure 7.2  Resultant magnetic field from different numerical methods. 

Considering the practical shielding structures are complex rather than the 

single simple plate, the method should be easy to model. M0 is not capable for 

practical application because of its huge number of unknowns after 

discretization. M2 needs to mesh on the surface of the object. When the 

geometry is complex and meshing is hardly to implement. As illustrated in 

Chapter 4, M3 can improve the accuracy of electromagnetic components 

distributed on the plate but a considerable effort is paid. The M1 method is 

convenient for modeling and easy to understand. The meshing scheme of this 

method is simple and uniform for all the electromagnetic components. It is 

suitable for practical engineering problems.  

Therefore, this method is applied to model the practical shielding structures 

which involve the metal plates. To solve the problem efficiently use the 
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proposed methods, the techniques for reduction the number of unknowns, such 

as loop method and the symmetrical modeling technique have been proposed. 

The non-uniform meshing has also been applied. 

7.2. Application 

7.2.1. Application for Plates 

The 3D simulation package based on the proposed method (PM) is developed, 

which runs on the platform of MATLAB. It is applied for a shielding structure 

involved a large magnetic plate. The result is compared with the commercial 

software based on Finite Element Method (FEM).  

Due to the FEM requires that all regions including the free space be modeled, 

a large number of grid will be produced after discretization. Especially when the 

model is three-dimensional, the massive grid will lead the computer cannot 

afford. A relatively large size structure is beyond the capability of 3D module of 

FEM. Therefore, the structures with different sizes will employ different 

modules in FEM. The small size case can be simulated with 3D models, and the 

large size case need be modeled with the 2D model in FEM. Here, a small size 

structure, which is within the computation capacity of the 3D module of FEM, 

will be calculated for reference. 

The large structure under investigation is as seen in Fig. 3.8. Considering the 

geometrical features of the structure, the plate has a long length and finite width. 

The concerned domain is the plane which involves the cross section of the plate. 

And it is perpendicular to the direction of length. Thus, the geometry can be 
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simplified as a two-dimensional model. The 2D module of FEM is available for 

validation. 

The simple wire-plate structures shown in Fig.3.8 will be computed. The plate 

is made from linear magnetic materials with the conductivity of 

66 10 /S m    and the relative permeability of 170r  . The external 

source is a filamentary conductive wire loop frame with the length  l  and 

width w  running in parallel with the plate. It is located in the center with the 

separation distance of h  from the plate. The source loop carries an a.c. current 

of 1I A  at the frequency of 50f Hz . The sizes of the structures are listed 

in Table 7.2. 

TABLE 7.2  The sizes of the two testing structures. (M) 

 w l d ws ls h 

small 0.08 0.08 0.002 0.02 0.02 0.02 

large 1 4 0.002 0.2 4 0.1 

The information of the computer used for the simulation is given, as follows:  

 CPU:     Intel(R) Core i7-2600, 3.4GHz 

 Memory:  16.00GB of RAM 

The computation information is given in Table 7.3. It is clearly that the 

computation time for the proposed method is much less than the software. For 

FEM 3D module, a minimum of grid is adopted to ensure a reasonable result 

and it does not run out of memory on this computer.  
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TABLE 7.3  Compare of computation information. 

 
small large 

FEM 3D PM 3D FEM 2D PM 3D 

Total elements 2308235 3200 61529 12800 

Compute time 11:26:33 00:01:16 00:02:06 00:20:31 

The resultant magnetic field was calculated by both methods on a line above 

the plate. It runs in parallel with the x axis above the plate at the height of p .  

 

(a) Both 3D models in FEM and PM. 
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(b) 2D model in FEM and 3D model in PM. 

 Figure 7.3  Compare the resultant magnetic field from FEM and PM. 

Fig. 7.3 shows the resultant magnetic fields calculated by FEM and the 

proposed method (PM). For case 1, the smaller structure can be calculated with 

3D models in both methods. The results compared in Fig. 7.3(a), the relative 

errors at different positions are well-distributed. The farther away from the plate, 

the greater the error, the relative error is below 0.5% at 10p mm  and is 

around 2% at the space ( 30p mm ). The number of elements of the plate and 

the computation time of FEM are far more than the PM. 

For the larger plate in case 2, it is beyond the capability of FEM 3D module, 

and an approximate 2D model is calculated to compare with the 3D model in 

PM. The resultant magnetic fields in different positions match very well. During 

the most area, the relative error is below 1%. Even at the very narrow edge area 
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where the distribution closed to singular, the relative error is below 3%. At the 

nearest position ( 20p mm ), the relative error has obvious fluctuations, the 

largest error is 1.73% which is on the position of wires. At the other observation 

positions ( 30,40,50p mm ), the relative errors are smooth, they are all located 

at the center point where the magnetic field is the strongest, and the largest error 

is 1.4% ( 50p mm ). 

7.2.2. Application for U-shape Shielding Structure 

As an exploration of application for complex large shielding structures by 

using the proposed PEEC modeling method, a U-shape metal structure is 

employed for investigated. The U-shape structure is commonly used as a 

semi-enclosure metallic trunking to isolate the wires from the outside world. 

Fig. 7.4 shows the configuration of the U-shape shielding structure with the 

power lines. The power lines are surrounded by the U-shape structure. The 

power lines is considered as the long straight wires, thus, the U-shape shield has 

a long length  .  

l

w

I-I
 

 Figure 7.4  The configuration of a U-shape shielding structure for power lines. 
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Figure 7.5  The section of the configuration of a U-shape shielding system. 

The section view of the shielding structure is as shown in Fig. 7.5. The 

U-shape shield is made from linear magnetic materials with the conductivity of 

67.5 10 /S m    and the relative permeability of 200r  . The external 

source is a pair of power lines which carry the a.c. current of 100I A  at the 

frequency of 50f Hz .  It is located in the center with the separation distance 

of D  from the plate. The sizes of the structures are listed in Table 7.4. 

TABLE 7.4  The sizes of the U-shape shielding structures. (M) 

 w l h d ws D p 

size 0.4 1.6 0.2 0.002 0.2 0.1 0.15 0.2 

The computation resource is as same as in section 7.2.1. The resultant 

magnetic fields on the lines above the plate are calculated by the proposed 

PEEC procedure M1_R which is a 3D solver. The lines run in parallel with the x 

axis above the plate at the height of p . The geometry is simplified as a 

two-dimensional model in the 2D module of FEM for validation. And the 

magnetic fields arose from the power lines without shields are calculated for 
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evaluating the shielding effectiveness by the U-shape structure. 

Fig. 7.6 shows the resultant magnetic fields calculated by FEM and the 

proposed method (M1_R). In the center area, the shielding effectiveness at the 

two positions are around 35% ( 0.15p m ) and 38% ( 0.2p m ), respectively. In 

the other area, the shielding effectiveness reduces slowly up to 50%. 

At both the two observation positions, the results from M1_R and FEM are 

matched well. At 0.15p m , the average deviation between FEM and M1_R is 

1.2% and the largest value is 1.8%. At 0.2p m , the average deviation is just 

0.9% and the largest value is 1.5%. The comparison proves that the proposed 

PEEC modeling method is effective and efficient. 

 

 Figure 7.6  Evaluating the shielding effective of U-shape structure.  

There are several new modeling techniques have been developed for U-shape 

structure, such as the meshing technique for the corner, the symmetrical 
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modeling technique for non-plane geometry. These methods and techniques are 

capable to be employed widely. The implementation on U-shape shielding 

structure in this section is a start of the application for complex large shielding 

structures. 

7.3. Experimental Verification 

As mentioned in Chapter 4 that it is difficult to solve a large-plate shielding 

problem using the existing commercial packages if the computing resource is 

limited. Therefore, for validating the application of the proposed PEEC method 

on the larger structures, the experimental verification is useful. 

For the experiments, many factors may lead the measurement errors: 1) size 

error and deformation of the structures; 2) the deviation of measurement 

positions; 3) the error of parameters of the material; 4) current fluctuations; 5) 

the error of the measuring instrument; 6) a “clear” electromagnetic environment 

is very hard to be framed. In order to reduce the measurement error as much as 

possible, according to the directions of polarization of the magnetic field, only 

the effective components of magnetic field have been considered and measured 

separately. 

A laboratory experiment was planned for validating the proposed method 

with a large plate structure. The wire-plate structure was selected for validating 

the proposed method, as illustrated in Fig. 3.8. The validation was made by 

comparing the magnetic fields computed from the proposed method and the 

results from the experiments. The magnetic fields around the shield plates which 



Application and Experimental Verification  150 
 

blocking or covering the power cables will be measured. The magnetic source 

investigated here is the stationary current at power frequency.  

The magnetic plate under test was 1.22m wide and 2.44m long. Its 

conductivity is about 66 10 /S m   , and the relative permeability is about 

170r  . A source loop as shown in Fig. 7.4 is placed under the plate. There 

are three different configurations: (a) horizontally-arranged loop, (b) 

vertically-arranged loop, and (c) L-shape loop. The detailed dimensions of both 

the plate and source loop are given in Table 7.4.  

(a) (b)
(c)

ws

ls

hs

ls
ls

ws
ws

 

 Figure 7.7  Source wire configurations for testing. 

TABLE 7.4  The Sizes of The Three Testing Structures. (m) 

 w l d ws ls hs h p 

Case a 

1.22 2.44 0.002 

0.1 2.2 - 0.136 0.147 

Case b 0.1 2.2 - 0.086 0.147 

Case c 0.1 1 0.5 0.136 0.147 

The magnetic field meter used here to record the magnetic field components 

is ‘Field Star 1000’, which is a three-axis field meter is convenient to use for 

obtaining the resultant value of a magnetic field.  

In the experiment the loop was connected to a current injection source, which 
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provides a constant current of 100I A  at the frequency of 50f Hz . 

Magnetic field density along line L, which is the middle line along x axis above 

the plate, was measured for comparison, as plotted in Fig. 3.8(a). According to 

the layout of the wire frames, the effective components of magnetic field on the 

line L are xB  and zB , and they have been calculated and measured. 

The resultant magnetic field at selected points is presented in Fig. 7.5. The 

matlab code developed for the proposed method was employed to compute the 

magnetic field on the same measurement line as well. In the computation the 

plate was divided into 40x80 potential cells.  

Fig. 7.5 shows the comparison of the resultant magnetic fields obtained from 

both the proposed computation method (PM) and the laboratory experiment for 

the three different source configurations. It is found that both measured and 

calculated magnetic fields match well under these source configurations. Get rid 

of the tiny values which will lead abnormal relative errors. In case a, for both 

xB  and zB , the relative errors are relatively small. The average error of xB  is 

4.9% and the maximum is below 10%, the average error of zB  is 2.9%.  The 

deviation in case b is larger than in case a, there are two reasons: 1) the 

deformation of the wire frame is more significant than in cases 1 due to it is laid 

vertically; 2) it is closer to the plate. Even so, the error of xB  and zB  at most 

area are below 10% and the average value is 4.9%. In case c, the law of error is 

similar to that in case a, but there is an obvious larger deviation at the two sides, 

it is caused by the more complexity of the wire frame. The average error of xB  
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is 5%, and for zB  is 6.5%. The diffidence of the measured and calculated 

magnetic field is considered reasonable for the purpose of experiment 

validation. 

 

(a) Case a 

 

(b) Case b 
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(c) Case c 

 Figure 7.8  Comparison of PM and experimental results for a large plate. 

7.4. Conclusion 

The proposed 3D electromagnetic modeling method and techniques have been 

applied for a large ferromagnetic plate and U-shape structure used for magnetic 

shielding. The solutions are validated by numerical method and experiment. The 

result demonstrates that it is reliable and efficient. This proposed method reduces 

the number of unknowns significantly. The total procedure cut down the 

requirement of computation resources greatly and the results prove that the 

accuracy is retained. The evaluation for power frequency magnetic field shielded 

by larger and complex geometry plates becomes possible. 
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8. Conclusions and Future Work 

In this thesis, different modeling methods (M0, M1, M2 and M3) based on 

PEEC method have been presented and discussed. The corresponding solution 

packages have been developed. Due to the different assumptions, they have 

different advantages and disadvantages and are applicable for corresponding 

cases. Every solver based on the method (M0, M1, M2 and M3) includes 2D and 

3D modules. 

For the methods M0, M1, M3, the geometry is discretized into volume cells. In 

M0, EM components in each cell are constant. The meshing scheme is simple 

and easy to implement. When the distribution of EM components on the plate 

fluctuates greatly, a high density grid is needed. This limits the application of M0. 

M0 is capable to simulate small shielding structures and validate other numerical 

models. 

The analytical expression of double exponential function is applied to the 

PEEC model in M1. Both induced current and magnetization densities in the 

plates are approximated by this analytical function across plate thickness. The 

proposed method eliminates the need of plate meshing along its thickness, and 

reduces the number of unknowns significantly in 3D shielding problems. M1 is 

easy to implement and understand. This procedure is suitable for practical 

engineering problems with complex structures. 

When the plate is made of magnetic material, the EM components distributed 

on the plate vary greatly in some special areas which are related to the location of 
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external source. In order to simulate this variation, the non-uniform meshing 

technique is proposed. For the edge region and the region where is closer to the 

external source, the mesh refinement is carried out. And for most area where the 

EM components vary smoothly, the coarse uniform mesh is assigned. This 

non-uniform mesh scheme significantly improves the accuracy of results and 

maintains a limited number of unknowns. 

Both in M0 and M1, the sets of grid for different EM components (current 

density and/or magnetization) are consistent. Thus, M0 and M1 can be used to 

model both non-magnetic and magnetic structures, and the discretization is easy 

to operate.  

Due to different EM components have different variations on the plate, when 

there is a considerable difference between these variations, different sets of grid 

may be needed to be considered. In view of the component which is 

perpendicular to the plate (for example    in this thesis), a special mesh 

refinement is implemented in the edge region for it and unlike other sets of grid 

for other EM components. This is the modeling method M3. 

To specifically address the magnetization, the new modeling method M2 is 

presented. The volume current and surface current of magnetic polarization are 

separated, and the former item is combined with the induced current. Then, the 

unknowns are composed of the induced current density defined on the volume 

cells and the magnetization defined on the surface cells. 
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M2 and M3 are particular for magnetic material. M2 deals with the 

magnetization on the outer surface and is meaningful when the thickness is 

comparable to the other characteristic dimensions of the plate. M3 is a hybrid 

method and has more accuracy compared to other methods although there is a 

considerable amount of unknowns. It is suitable for investigation the 

characteristics of distribution of induced current and magnetization on the plate. 

For reducing the number of unknowns in PEEC model, the techniques, such as 

loop method and the symmetrical modeling technique have been proposed as 

well.  

For solving the practical problems in shielding system, the modeling method 

M1 is selected. By integrating M1 with the non-uniform meshing technique and 

reduction technique, a numerical solver has been developed. It has a powerful 

computing capability, and the reasonable results can be obtained. 

There are some meaningful works can be further performed: 

1. The proper analytical function needs to be found to express the 

distributions of electromagnetic components located in the edge area of 

the magnetic plate. This can correct the deviation of double exponential 

expression.  

In fact, for a point r  inside the plate, a relationship function can be 

constructed naturally as: 

6

1

( ) ( ') ( ')i i i

i

H r f r r H r


      (8.1) 

Where ( )H r  is the electromagnetic field value at r , ( ')iH r  is the 
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value located on the surface i of the plate, and f  is the functional 

relationship between ( )H r  and ( ')H r . When ( )H r  is located in the 

inner plate, due to the skin effect, i.e. 'ir r  ,   is the skin depth. 

The weight of if  is wake and the effect arose from ( ')iH r  can be 

neglected. For ( )H r  in the center area of the plate, the effective weight 

functions are just came from the bottom and top surface. That is why the 

distribution in center area can be defined by the values on both the 

bottom and top surface according to the double exponential function but 

it is not accurate on the edge area. 

2. Sparse inductance matrix for the PEEC models. There are two steps:  

Firstly, sparsity of the inductance matrix will be done. Using the locality 

of the inverse matrix of inductance matrix, to sparsify the inverse matrix 

and then invert it to return to inductance matrix. This can sparsify the 

dense matrix formed by extracted partial element and mitigate the effort of 

computation. 

Secondly, considering the mutual coupling between two cells which are 

with a quite distance is very small, the equivalent mutual inductance can 

be neglected. A radius 0r  will be defined to form an enclosure, the 

mutual inductance between the center point and the cells inside the 

enclosure will be considered, and the effect from the cells outside the 

enclosure will be omitted.  

3. Sparsity of other coefficient matrixes. 
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As similar as the inductance matrix, other coefficient matrixes are also full 

denseness matrixes and need to be optimized. Maybe the characteristics of 

these matrixes are different from inductance matrix and different to each 

other, they need to be considered separately. 

4. Optimization steps for solving the matrix equations.  

Due to the metal plate employed for investigated in this thesis is very thin, 

the extraction of partial elements on the bottom and the top surfaces are 

very closer. This causes the condition number of the matrix is very large. 

The condition number of a matrix measures the sensitivity of the solution 

of a system of linear equations to errors in the data. It gives an indication 

of the accuracy of the results from matrix inversion and the linear equation 

solution. As a result, the matrix is with low stability and susceptible to 

disturbance.  

The general iterative solution steps are hardly to handle the full dense 

matrixes in this thesis. It is significant to catch a proper solution steps for 

the matrixes. 

5. Application of the PEEC models and the optimization techniques for 

reduction and speeding to the large complex shielding structures in 

buildings. 

In view of the above techniques, the PEEC models can be applied to some 

degree of size of large geometry. For the shielding structures applied in 

buildings, due to the large size of them, they are hardly to be solved in a 



Conclusions and Future Work  159 
 

closed space with a boundary. The open boundary field solution is an 

available approach.  

The proposed method has been applied and implementing for some 

complex structures, such as the shields for transformer.  
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